Chapter 1. What Is Aspect-Oriented Programming?

1.1. What is it?

An aspect is a common feature that's typically scattered across methods, classes, object hierarchies, or even entire object models. It is behavior that looks and smells like it should have structure, but you can't find a way to express this structure in code with traditional object-oriented techniques.

For example, metrics is one common aspect. To generate useful logs from your application, you have to (often liberally) sprinkle informative messages throughout your code. However, metrics is something that your class or object model really shouldn't be concerned about. After all, metrics is irrelevant to your actual application: it doesn't represent a customer or an account, and it doesn't realize a business rule. It's simply orthogonal.

In AOP, a feature like metrics is called a crosscutting concern, as it's a behavior that "cuts" across multiple points in your object models, yet is distinctly different. As a development methodology, AOP recommends that you abstract and encapsulate crosscutting concerns.

For example, let's say you wanted to add code to an application to measure the amount of time it would take to invoke a particular method. In plain Java, the code would look something like the following.

public class BankAccountDAO
{
  public void withdraw(double amount)
  {
    long startTime = System.currentTimeMillis();
    try
    {
      // Actual method body...
    }
    finally
    {
      long endTime = System.currentTimeMillis() - startTime;
      System.out.println("withdraw took: " + endTime);
    }
  }
}

While this code works, there are a few problems with this approach:

  1. It's extremely difficult to turn metrics on and off, as you have to manually add the code in the try>/finally block to each and every method or constructor you want to benchmark.
  2. The profiling code really doesn't belong sprinkled throughout your application code. It makes your code bloated and harder to read, as you have to enclose the timings within a try/finally block.
  3. If you wanted to expand this functionality to include a method or failure count, or even to register these statistics to a more sophisticated reporting mechanism, you'd have to modify a lot of different files (again).

This approach to metrics is very difficult to maintain, expand, and extend, because it's dispersed throughout your entire code base. And this is just a tiny example! In many cases, OOP may not always be the best way to add metrics to a class.

Aspect-oriented programming gives you a way to encapsulate this type of behavior functionality. It allows you to add behavior such as metrics "around" your code. For example, AOP provides you with programmatic control to specify that you want calls to BankAccountDAO to go through a metrics aspect before executing the actual body of that code.

1.2. Creating Aspects in JBoss AOP

In short, all AOP frameworks define two things: a way to implement crosscutting concerns, and a programmatic construct -- a programming language or a set of tags -- to specify how you want to apply those snippets of code.

Let's take a look at how JBoss AOP, its cross-cutting concerns, and how you can implement a metrics aspect in JBoss.

The first step in creating a metrics aspect in JBoss AOP is to encapsulate the metrics feature in its own Java class. Listing Two extracts the try/finally block in Listing One's BankAccountDAO.withdraw() method into Metrics, an implementation of a JBoss AOP Interceptor class.

Listing Two: Implementing metrics in a JBoss AOP Interceptor

01. public class Metrics implements org.jboss.aop.Interceptor
02. {
03.   public Object invoke(Invocation invocation) throws Throwable
04.   {
05.     long startTime = System.currentTimeMillis();
06.     try
07.     {
08.       return invocation.invokeNext();
09.     }
10.     finally
11.     {
12.       long endTime = System.currentTimeMillis() - startTime;
13.       java.lang.reflect.Method m = ((MethodInvocation)invocation).method;
14.       System.out.println("method " + m.toString() + " time: " + endTime + "ms");
15.     }
16.   }
17. }

Under JBoss AOP, the Metrics class wraps withdraw(): when calling code invokes withdraw(), the AOP framework breaks the method call into its parts and encapsulates those parts into an Invocation object. The framework then calls any aspects that sit between the calling code and the actual method body.

When the AOP framework is done dissecting the method call, it calls Metric's invoke method at line 3. Line 8 wraps and delegates to the actual method and uses an enclosing try/finally block to perform the timings. Line 13 obtains contextual information about the method call from the Invocation object, while line 14 displays the method name and the calculated metrics.

Having the metrics code within its own object allows us to easily expand and capture additional measurements later on. Now that metrics are encapsulated into an aspect, let's see how to apply it.

1.3. Applying Aspects in JBoss AOP

To apply an aspect, you define when to execute the aspect code. Those points in execution are called pointcuts. An analogy to a pointcut is a regular expression. Where a regular expression matches strings, a pointcut expression matches events/points within your application. For example, a valid pointcut definition would be "for all calls to the JDBC method executeQuery(), call the aspect that verifies SQL syntax."

An entry point could be a field access, or a method or constructor call. An event could be an exception being thrown. Some AOP implementations use languages akin to queries to specify pointcuts. Others use tags. JBoss AOP uses both. Listing Three shows how to define a pointcut for the metrics example.

Listing Three: Defining a pointcut in JBoss AOP

1. <bind pointcut="public void com.mc.BankAccountDAO->withdraw(double amount)">
2.       <interceptor class="com.mc.Metrics"/>
3. </bind >

4. <bind pointcut="* com.mc.billing.*->*(..)">
5.       <interceptor class="com.mc.Metrics"/>
6. </bind >

Lines 1-3 define a pointcut that applies the metrics aspect to the specific method BankAccountDAO.withdraw(). Lines 4-6 define a general pointcut that applies the metrics aspect to all methods in all classes in the com.mc.billing package.

There is also an optional annotation mapping if you do not like XML. See our Reference Guide for more information.

JBoss AOP has a rich set of pointcut expressions that you can use to define various points/events in your Java application so that you can apply your aspects. You can attach your aspects to a specific Java class in your application or you can use more complex compositional pointcuts to specify a wide range of classes within one expression.

With AOP, as this example shows, you're able to pull together crosscutting behavior into one object and apply it easily and simply, without polluting and bloating your code with features that ultimately don't belong mingled with business logic. Instead, common crosscutting concerns can be maintained and extended in one place.

Notice too that the code within the BankAccountDAO class has no idea that it's being profiled. This is what aspect-oriented programmers deem orthogonal concerns. Profiling is a orthogonal concern. In the OOP code snippet in Listing One, profiling was part of the application code. With AOP, you can remove that code. A modern promise of middleware is transparency, and AOP (pardon the pun) clearly delivers.

Just as important, orthogonal behavior could be bolted on after development. In Listing One, monitoring and profiling must be added at development time. With AOP, a developer or an administrator can (easily) add monitoring and metrics as needed without touching the code. This is a very subtle but significant part of AOP, as this separation (obliviousness, some may say) allows aspects to be layered on top of or below the code that they cut across. A layered design allows features to be added or removed at will. For instance, perhaps you snap on metrics only when you're doing some benchmarks, but remove it for production. With AOP, this can be done without editing, recompiling, or repackaging the code.