The Case For Aspects

Version: 1.0

Table of Contents

(1=, =0 2SR iii
1. What Is Aspect-Oriented Programming?cccccccccccoooioieinnnnnnnnnnnnnnnnnsnennnnnnnnannsnnnsasnnannnnnnnnn—.—.. 1
I T = 1 | PP PP 1

1.2. Creating ASPECIS IN IBOSS AP ...ttt es 2

1.3. Applying ASPECISIN JBOSSAORP ...coooeiiiiiiiieeee e e e e e e e e st e e e e e e e e e eaneeees 2

2 T B IS e 4
P2 @ Y= V= PSR PPRR 4

S BUITAING ASPECES ...ttt ettt e e ettt e e e bt e e e sbe e e e e anbb e e e e e anbne e e e e nnes 5
G I O Lo = Y71 T AN = £ 5

3.2, EXCEPLION HANAIINGevvviiieii ettt e e e e e e s e st r e e e e e e s s e s naaaeeaeaeeeaans 5

4. ASPECt-Oriented ANNOLALIONSoiiiiiiiieeiiiiiee e e e e e s e e s s e e e e s anrr e e s aannreeeeaas 7
4.1. Methods @and ANNOLALTIONScciiuiiiieiiiiiee e eieie et e s e e et e e s stae e e s snnbeeeeennbaeeeeans 7

4.2, FIeldS @and ANNOLBLIONScoiiieeiiiiiiiiiieeie e e e ettt e e e e e s s e eeeeeeesssnsnteaeeeeaeeessannssaaaneeaeeessans 8

G B = o = o = Tox YA 1 = o 1 o o 10

5. MiXinSand INtrOdUCLIONScouiiiiiiiiee et e e e s e e e e e e e e e e e e e s s st ereeaaeesaannnnaneeeeas 12
5.1. Introducing INtrodUCLiONS ..o, 12

5.2 MIXIN TEUD 1o e e e e s e e e e e e e e e s s st e e e e eaeeeeaantrraaeaaaaeeaans 12
5.2.1. MUItIPIE INNEITTANCEeeiiiiiiieee et 13

5.3 ASPECISWITN APLS ... e e e e e e e e e e et raaaa e e e 13

6. DYNAMIC AOP .ottt et e e et e e ekttt e e e bt et e e e e b e e e e e anbreeeean 17
6.1. HOt DEPIOYMENT ..., 17

B.2. PEr INSLANCE ADP ... 17

7. Integration With POINTCULSceeiiiiiiie et e e e e e e eeeeas 18
25 T 1 1 o = 1o o PR PRSPR 18

8. TESINGWITN AP ...ttt e et e e ek e e e et e e e e e b e e e e e anbrneeeans 19
8.1. Testing EXCEption HaNAIINGcvviiiiiiiiiiiiciee e e et r e e e e 19

8.2. INJECtiNG MOCK ODBJECESceeiiiiiiiee ittt e e e nnbe e e e an 20
8.2.1. Required KNOWIEAQEcooeeeiiiiie 20

S I = = (0] o =1 o TP 20

8.2.3. MOCK OBJECES ...ttt e e et r e e e e e e e et e e e e e e e e e nenneeeeeeas 21

8.2.4. AOP WITN IMIOCKScciiuiiiiie ittt et 22

9. JBOSSAOP IDE ...ttt ettt e e e e e e e ettt e e e et a e e e anraaeeaanrreeeaans 25
S I 0 TC Y @ 1 5 SR UPSRTRTRR 25

0.2, INSEBIIING ettt e e et r e e et e e e e e bre e an 25

LS G T U (o] T SRR 25
S I 01 (=] o o] = o PR 26

S O (= X O PSSP 26

o G RS I O (== (] g1 o= o) (o R 27

9.3.4. AppPlying the INTErCEPLOroiiiiiiiie et 27

0.3.5. RUNNING ..eeeiiiiiiiiiciieee et e e e e e e e e e e sttt e e e e e e e e s s saatbbeeeeeeessaantbraeeeeans 28

0.3.6. INAVIGALION ...eieiiiiiieeeiie ettt e et e et e e e st e e et b e e e e abar e e e e nnr e e e e e nees 28

0.3.6.1. AQVISEA MArKEN'S ...t et 28

0.3.6.2. The AdVised MemMbBErS VIBWc..vviiiiiiiiie e 29

9.3.6.3. The ASPECt MANAGEN VIBWccciiiiiiiiiiiiiee e 29

JBoss AOP User Guidel.O

Preface

Aspect-Oriented Programming (AOP) is a new paradigm that allows you to organize and layer your software
applications in ways that are impossible with traditional object-oriented approaches. Aspects allow you to
transparently glue functionality together so that you can have a more layered design. AOP allows you to inter-
cept any event in a Java program and trigger functionality based on those events. Mixins alow you to introduce
multiple inheritance to Java so that you can provide APIs for your aspects. Combined with JDK 5.0 annota-
tions, it allows you to extend the Java language with new syntax.

JBoss AOP is a 100% Pure Java aspected oriented framework usuable in any programming environment or as
tightly integrated with our application server.

This document walks you through how AOP can be used to build your applications. A large number of real-
world examples are given in each section to illustrate various ideas. The book is broken up in the following
manner:

What is an Aspect?
The section gives an overview on exactly what Aspect-Oriented Programming is.

Terms
Defines some basic AOP terms that you will need when reading this document.

Building Aspects
The chapter walks through some examples of building an aspect. One example shown is how to detect JD-
BC connection leakages in your code. Another example is using the Observer/Observable pattern Another
is doing dependency injection.

Aspect-Oriented Annotations
This chapter walks through how you can use JDK 5.0 annotations and AOP to actually extend the Java lan-
guage with new syntax. Numerous real-world examples are given.

Mixins and Introductions
This chapter walks through how you can use AOP introductions and mixins to have aspects with APIs, or
how to extend a POJO's functionality transparently. Specific examples are an Asynchronous framework
and making a POJO into aJM X MBean.

Dynamic AOP
This chapter walks through how you can use the dynamic per-instance API that each aspectized class hasto
define aspects on a per instance basis rather than for every instance of aclass.

Integration with Pointcuts
This chapter steps away from writing aspects, but rather talks about how you can publish pointcuts that can
be used by users/customers to integrate with your products.

Testing with AOP
This chapter shows how you can use AOP to test your applicationsin aeasier way.

If you have questions, use the user forum linked on the JBoss AOP website. We also provide a tracking links
for tracking bug reports and feature requests. If you are interested in the development of JBoss AOP, post a
message on the forum. If you are interested in trandlating this documentation into your language, contact us on
the developer mailing list.

Commercia development support, production support and training for JBoss AOP is available through JBoss

JBoss AOP User Guidel.O i

Preface

Inc. (see http://www.jboss.org/). JBoss AOP is a project of the JBoss Professional Open Source product suite.

In some of the example listings, what is meant to be displayed on one line does not fit inside the avail able page
width. These lines have been broken up. A '\' at the end of aline means that a break has been introduced to fit in

the page, with the following lines indented. So:

Let's pretend to have an extrenely \
long line that \
does not fit

This one is short

Isredly:

Let's pretend to have an extrenely long |line that does not fit
This one is short

JBoss AOP User Guidel.O

Chapter 1. What Is Aspect-Oriented Programming?

1.1. What is it?

An aspect is a common feature that's typically scattered across methods, classes, object hierarchies, or even en-
tire object models. It is behavior that looks and smells like it should have structure, but you can't find away to
express this structure in code with traditional object-oriented techniques.

For example, metrics is one common aspect. To generate useful logs from your application, you have to (often
liberally) sprinkle informative messages throughout your code. However, metrics is something that your class
or object model really shouldn't be concerned about. After all, metricsisirrelevant to your actual application: it
doesn't represent a customer or an account, and it doesn't realize a business rule. It's smply orthogonal.

In AOP, a feature like metrics is called a crosscutting concern, as it's a behavior that "cuts' across multiple
points in your object models, yet is distinctly different. As a development methodology, AOP recommends that
you abstract and encapsul ate crosscutting concerns.

For example, let's say you wanted to add code to an application to measure the amount of time it would take to
invoke a particular method. In plain Java, the code would look something like the following.

publ i c class BankAccount DAO
{

public void withdrawdoubl e armount)

{

long startTime = SystemcurrentTimeM I 1is();
try

{
/1 Actual nethod body. ..

}
finally

{

long endTime = SystemcurrentTimeMI1is() - startTinme;
Systemout. println("w thdraw took: " + endTine);

}
}
}

While this code works, there are afew problems with this approach:

1. It'sextremely difficult to turn metrics on and off, as you have to manually add the code in the try>/finally
block to each and every method or constructor you want to benchmark.

2. The profiling code realy doesn't belong sprinkled throughout your application code. It makes your code
bloated and harder to read, as you have to enclose the timings within atry/finally block.

3. If you wanted to expand this functionality to include a method or failure count, or even to register these
statistics to a more sophisticated reporting mechanism, you'd have to modify alot of different files (again).

This approach to metrics is very difficult to maintain, expand, and extend, because it's dispersed throughout
your entire code base. And thisisjust atiny example! In many cases, OOP may not aways be the best way to
add metricsto a class.

Aspect-oriented programming gives you a way to encapsulate this type of behavior functionality. It allows you
to add behavior such as metrics "around” your code. For example, AOP provides you with programmatic con-
trol to specify that you want calls to BankAccountDAO to go through a metrics aspect before executing the ac-

JBoss AOP User Guidel.O 1

What |s Aspect-Oriented Programming?

tual body of that code.

1.2. Creating Aspects in JBoss AOP

In short, al AOP frameworks define two things: away to implement crosscutting concerns, and a programmat-
ic construct -- a programming language or a set of tags -- to specify how you want to apply those snippets of
code.

Let'stake alook at how JBoss AOP, its cross-cutting concerns, and how you can implement a metrics aspect in
JBoss.

The first step in creating a metrics aspect in JBoss AOP is to encapsulate the metrics feature in its own Java
class. Listing Two extracts the try/finally block in Listing One's BankAccountDAO.withdraw() method into
Metrics, an implementation of a JBoss AOP Interceptor class.

Listing Two: Implementing metrics in a JBoss AOP I nterceptor

01. public class Metrics inplements org.jboss. aop. | nterceptor

02. {

03. public Object invoke(lnvocation invocation) throws Throwabl e

04. {

05. long startTine = SystemcurrentTineM I 1is();

06. try

07. {

08. return invocation.invokeNext();

09. }

10. finally

11. {

12. Il ong endTinme = SystemcurrentTimeMIlis() - startTine;

13. java.lang.refl ect. Method m = ((Methodl nvocati on)i nvocati on). net hod;
14. Systemout.println("nethod " + mtoString() + " time: " + endTinme + "ns");
15. }

16. }

17. }

Under JBoss AOP, the Metrics class wraps withdraw(): when calling code invokes withdraw(), the AOP frame-
work breaks the method call into its parts and encapsulates those parts into an Invocation object. The frame-
work then calls any aspects that sit between the calling code and the actual method body.

When the AOP framework is done dissecting the method call, it calls Metric's invoke method at line 3. Line 8
wraps and delegates to the actual method and uses an enclosing try/finally block to perform the timings. Line
13 obtains contextual information about the method call from the Invocation object, while line 14 displays the
method name and the cal culated metrics.

Having the metrics code within its own object allows us to easily expand and capture additional measurements
later on. Now that metrics are encapsulated into an aspect, let's see how to apply it.

1.3. Applying Aspects in JBoss AOP

To apply an aspect, you define when to execute the aspect code. Those points in execution are called pointcuts.
An analogy to a pointcut is aregular expression. Where aregular expression matches strings, a pointcut expres-
sion matches events/points within your application. For example, a valid pointcut definition would be "for all
callsto the IDBC method executeQuery(), call the aspect that verifies SQL syntax."

An entry point could be a field access, or a method or constructor call. An event could be an exception being

JBoss AOP User Guidel.O 2

What |s Aspect-Oriented Programming?

thrown. Some AOP implementations use languages akin to queries to specify pointcuts. Others use tags. JBoss
AOP uses both. Listing Three shows how to define a pointcut for the metrics example.

Listing Three: Defining a pointcut in JBoss AOP

1. <bind pointcut="public void com nt. BankAccount DAO >wi t hdr aw(doubl e anmpunt)">
2. <interceptor class="comnc. Metrics"/>
3. </bind >

4. <bind pointcut="* comnt.billing.*->*(..)">
5. <interceptor class="comnc. Metrics"/>
6. </bind >

Lines 1-3 define a pointcut that applies the metrics aspect to the specific method BankAccount-
DAO.withdraw(). Lines 4-6 define a general pointcut that applies the metrics aspect to all methods in all classes
in the com.mc.billing package.

There is aso an optional annotation mapping if you do not like XML. See our Reference Guide for more in-
formation.

JBoss AOP has arich set of pointcut expressions that you can use to define various points/events in your Java
application so that you can apply your aspects. Y ou can attach your aspects to a specific Java class in your ap-
plication or you can use more complex compositional pointcuts to specify a wide range of classes within one
expression.

With AOP, as this example shows, you're able to pull together crosscutting behavior into one object and apply
it easily and simply, without polluting and bloating your code with features that ultimately don't belong
mingled with business logic. Instead, common crosscutting concerns can be maintained and extended in one
place.

Notice too that the code within the BankAccountDAO class has no idea that it's being profiled. Thisiswhat as-
pect-oriented programmers deem orthogonal concerns. Profiling is a orthogonal concern. In the OOP code snip-
pet in Listing One, profiling was part of the application code. With AOP, you can remove that code. A modern
promise of middleware is transparency, and AOP (pardon the pun) clearly delivers.

Just as important, orthogonal behavior could be bolted on after development. In Listing One, monitoring and
profiling must be added at development time. With AOP, a developer or an administrator can (easily) add mon-
itoring and metrics as needed without touching the code. This is a very subtle but significant part of AOP, as
this separation (obliviousness, some may say) allows aspects to be layered on top of or below the code that they
cut across. A layered design allows features to be added or removed at will. For instance, perhaps you snap on
metrics only when you're doing some benchmarks, but remove it for production. With AOP, this can be done
without editing, recompiling, or repackaging the code.

JBoss AOP User Guidel.O 3

Chapter 2. Terms

2.1. Overview

The section defines some basic terms that will be used throughout this guide.

Joinpoint
A joinpoint is any point in your java program. The call of a method. The execution of a constructor the ac-
cess of a field. All these are joinpoints. You could also think of a joinpoint as a particular Java event.
Where an event is amethod call, constructor call, field access etc...

Invocation
An Invocation is a JBoss AOP class that encapsulates what a joinpiont is at runtime. It could contain in-
formation like which method is being called, the arguments of the method, etc...

Advice
An advice is a method that is called when a particular joinpoint is executed, i.e., the behavior that is
triggered when a method is called. It could also be thought of as the code that does the interception. Anoth-
er analogy isthat an adviceisan "event handler".

Pointcut
Pointcuts are AOP's expression language. Just as a regular expression matches strings, a pointcut expres-
sion matches a particular joinpoint.

Introductions
An introduction modifies the type and structure of a Java class. It can be used to force an existing class to
implement an interface or to add an annotation to anything.

Aspect
An Aspect is a plain Java class that encapsulates any number of advices, pointcut definitions, mixins, or
any other JBoss AOP construct.

I nterceptor
An interceptor is an Aspect with only one advice named "invoke". It is a specific interface that you can im-
plement if you want your code to be checked by forcing your class to implement an interface. It also will be
portable and can be reused in other JBoss environments like EJBs and IMX MBeans.

JBoss AOP User Guidel.O 4

Chapter 3. Building Aspects

The last chapter had a basic boring introduction to aspects with the lame, commonly used example of metrics.
AOP can be applied in a much broader sense than the overused examples of tracing and security and this
chapter looks into other more compelling examples of using basic AOP.

3.1. Identifying Aspects

Aspect-Oriented programming is not a replacement for object-oriented programming, but rather a compliment
to it. AOPers generally say that OOP solves 90% of problems and AOP solves the 10% of problems that OOP
isn't good at. This section of the docbook will expand over time, but let's discuss some ways in which you can
identify whether or not AOP is agood solution for a particular problem.

Cross-cutting Concerns
The metrics example in the previous chapter is an example of a cross-cutting concern in its purest form.
Sometimes you see structure in your code that can't be expressed as an object because it completly wraps
around the method you are invoking. If the behavior in question is something that you want to be able to
extend and maintain within its own structure then it may be a candidate for aspectizing.

Layering Based on Deployment

Another place where AOP may be very useful isto layer your applications. Sometimes you want to model a
particular service or object that has many configuration options yet you don't want to bloat your service
with unmaintainable code. AOP provides a hice way to layer such complex services. JBoss AOP provides a
XML configurable mechanism to configure such aspects per deployment. A good example of thisis a cach-
ing service that might have different locking policies. It is easier to encapsulate such locking policies as as-
pects so that the base caching code doesn't get polluted with locking concerns. This makes the code easier
to maintain.

Transparency
Many times you want to write plain Java code that focuses solely on business or application logic and do
not want to introduce any concerns like middleware. AOP alows you to apply things like middieware
transparently to your code without polluting your code. Some examples include the transaction demarcation
and role-based security featuresin the JBoss AOP Aspect Library.

3.2. Exception Handling

Metrics and tracing are simple examples of building aspects. Another great simple example is to use AOP for
exception handling. For example, SQLException is an exception that contains error information like invalid sql
statement or deadlock that is similar per database vendor, but is expressed as different error codes and string
messages. Y ou can use AOP to intercept statement execution, catch SQL Exception errors, and turn them into
typed exceptions that application code can handle independent of database vendor. So let's code an example of
this.

public class InvalidSQ Exception extends SQ.Exception

I nval i dSQLExcepti on(SQLExcepti on ex)
{

}
}

super (ex. get Message(), ex.getSQ.State(), ex.getErrorCode());

JBoss AOP User Guidel.O 5

Building Aspects

What we'll do is write an aspect that wraps callsto all j ava. sql . St at ement execute methods and turn them in-
to typed exceptions like the example above. WE'll leave some code up to your imagination since such an aspect
would be quite long to deal with every error code of every database vendor, but hopefully you can get the idea
here.

public class SQ.Excepti onAspect
{

publ i c Obj ect handl eSql Excepti on(lnvocation invocation) throws Throwabl e
{

try

{

}
catch (SQLException ex)

{

return invocation.invokeNext();

i f (isVendorlnvalidSql ErrorCode(ex.get ErrorCode())) throw new I nval i dSQLExcepti on(ex);
i f (isVendorDeadl ockError Code(ex. get ErrorCode()) throw new SQLDeadl ockExcepti on(ex);
and so on ...

i mpl of isVendor nethods ...

Now that the aspect is defined we use a cal | pointcut expression to intercept all the execute methods of
java. sql . Statenent.

<aspect class="SQ.Excepti onAspect" scope="PER VM'/>

<bi nd pointcut="call (* $i nstanceof{java. sql. Statenent}->execute*(..))">
<advi ce nanme="handl eSqgl Excepti on" aspect="SQLExcepti onAspect"/>

</ bi nd>

JBoss AOP User Guidel.O 6

Chapter 4. Aspect-Oriented Annotations

Annotations are a new feature of JDK 5.0 that allow you to attach metadata to any Java construct. They allow
you to define metadata in a typesafe way and apply it to a class, method, constructor, field, or parameter. For
those of you familiar with XDoclet, annotations will be very intuitive to you in that you are used to declaring
tags to generate code. The main difference between the two is that annotations are a typed part of the Java lan-
guage, while XDaoclet tags can be mistyped and are harder to create. In a nutshell, JDK 5.0 annotations allow
you to define new Java syntax.

AOP provides a unique way of encapsulating behavior and applying it transparently to your application code. If
you combine it with annotations, you basically have a very structured, simple way of extending the Java lan-
guage. The annotation is the syntax, and the aspect provides the functionality for that aspect. This chapter walks
through detailed examples on how you can use AOP and annotations to turn your frameworks into Java lan-
guage features.

4.1. Methods and Annotations

Let's take alook at how you can use method annotations with AOP. Using annotations and AOP together and
applying this to a method is very analogous to using Java's synchronized keyword with a method. When you
tag a method as synchronized, you are telling the JVM that you want that method to behave in a special way
when it isinvoked. Annotations allow you to define new keywords that you want to have trigger your own spe-
cia custom behavior. AOP gives you the ability to encapsulate this behavior and weave it into the execution of
the method.

Let's say we want to add a new syntax that will allow us to fire voi d methods in the background, in another
thread, if they are tagged as @neway. Using this new syntax would look like this:

i mport org.jboss. aspects. Oneway;

public class Foo

{
@neway public static void soneMethod() {...}

public static void main(String[] args)

{

}
}

sonmeMet hod(); // executes in background

When soneMet hod() isinvoked within main, it will run asynchronously so that the code in main is free to do
ther tasksin paralel.

To implement this functionality, the first thing that must be done is to define the new Java syntax for our
@neway tag within an annotation.

package org.]j boss. aspects;

i mport java.l ang. annot ati on. El ement Type;
i mport java.l ang. annot ati on. Tar get;

@rar get ({ El ement Type. METHOD})
public @nterface Oneway {}

Simple enough. The @rar get tag allows you to narrow down where the annotation is allowed to be applied. In

JBoss AOP User Guidel.O 7

Aspect-Oriented Annotations

this case, our @Oneway annotation can only be applied to a method. Remember, this is al pure 100 percent
Javathat is available in J2SE 5.0.

The next thing we have to do is to define an aspect class that will encapsulate our @neway behavior.

package org.j boss. aspects;

publ i c OnewayAspect
{

private static class Task inplements Runnabl e

{

private Methodl nvocation invocati on;

publ i ¢ Task(Met hodl nvocati on i nvocati on)

{

this.invocation = invocation

}

public void run()

{

try { invocation.invokeNext(); }
catch (Throwabl e ignore) { }

}
}

publ i c Obj ect oneway(Met hodl nvocati on invocation) throws Throwabl e

{

Met hodl nvocati on copy = invocation. copy();
Thread t = new Thread(new Task(copy));

t. set Daenon(fal se);

t.start();

return null;

The aspect is simple enough. The oneway() method copies the invocation, creates a thread, fires off the com-
plete invocation in the background, and returns. We could imagine a more sophisticated example using some of
the new Executors within the J2SE 5.0 java.util.concurrent package, but hopefully this code illustrates how you
could build on this example to implement more complete implementations.

The last thing that must be done is to specify the pointcut expression that will trigger the application of the tne-
wayAspect When the @meway annotation is declared on a method.

<aop>
<aspect cl ass="org.|boss. aspects. OnewayAspect"/>

<bi nd poi nt cut =" executi on(void *->@rg. j boss. Oneway(..))">
<advi ce name="oneway"
aspect ="org. j boss. aspects. OnewayAspect "/ >
</ bi nd>
</ aop>

The pointcut expression states that any void method that is tagged as @neway should have the neway-
Aspect . oneway () method executed before it itself executes. With the annotation, aspect, and pointcut expres-
sion now defined, the @Oneway syntax is now usable in your application. A simple, clean, easy way of extend-
ing the Javalanguage!

4.2. Fields and Annotations

JBoss AOP User Guidel.O 8

Aspect-Oriented Annotations

Let'slook at how you could use field annotations and AOP. Using annotations and AOP, you can can actually
change how afield is stored by an object or as a static member of a class. What we want to accomplish in this
example is that when you tag afield (static or member) as @ThreadBased, its value will behave as though it
were stored in a javalang.ThreadLocal. Sure, you could use a ThreadLocal variable directly, but the problem
with ThreadLocal is that it is untyped and you have to use "verbose" (okay, they're not that verbose) get() and
set() methods. So what we'll do hereis create atyped ThreadLocal field. Basically, well create a new Javafield
type called the @Threadbased variable.

Using this new type would look like this:

i mport org.]jboss. aspects. Thr eadbased;

public class Foo

{
}

@hreadbased private int counter

To implement this functionality, we must first define the annotation.

package org.j boss. aspects;

i mport java.l ang. annot ati on. El enment Type;
i mport java.l ang. annot ati on. Tar get;

@rar get ({ El ement Type. FI ELD})
public @nterface Threadbased {}

Simple enough. The @Target tag allows you to narrow down where the annotation is allowed to be applied. In
this case, our @T hreadbased annotation can only be applied to fields.

The next thing to do is to define the aspect that will encapsulate our ThreadL ocal behavior.

package org.]j boss. aspects;

i mport org.jboss. aop.joi npoint.*;
import java.lang.reflect.Field,

public class ThreadbasedAspect

{
private ThreadLocal threadbased = new ThreadLocal ();
public Object access(Fi el dReadl nvocati on invocati on)
throws Throwabl e
{
/1 just in case we have a prinmtive,
/1 we can't return nul
if (threadbased.get() == null)
return invocation.invokeNext();
return threadbased. get();
}
public Object access(Fiel dWitelnvocation invocation)
throws Throwabl e
{
t hr eadbased. set (i nvocati on. get Val ue());
return null;
}
}

ThreadbasedA spect encapsul ates the access to a Javafield. It has a dedicated ThreadL ocal variable within it to

JBoss AOP User Guidel.O 9

Aspect-Oriented Annotations

track threadlocal changes to a particular field. It also has separate access() methods that are invoked depending
upon whether a get or set of the field is called. These methods delegate to the ThreadL ocal to abtain the current
value of thefield.

Finally, we must define a pointcut expression that will trigger the application of the ThreadbasedA spect when
the @Threadbased annotation is specified on a particular field.

<aop>

<aspect cl ass="org.|boss. aspects. Thr eadbasedAspect"

scope="PER_JO NPO NT"/ >
<bi nd pointcut="field(* *->@rg.]jboss. aspects. Threadbased) " >
<advi ce nane="access"
aspect ="org. j boss. aspects. Thr eadbasedAspect "/ >

</ bi nd>

</ aop>

Just in case we have multiple @Threadbased variables defined in one class, we want an instance of Thread-
basedAspect to be allocated per field for static fields. For member fields, we want an instance of Thread-
basedAspect to be allocated per field, per object instance. To facilitate this behavior, the aspect definition
scopes the instance of when and where the aspect class will be allocated by setting it to PER_JOINPOINT. If
we didn't do this scoping, JBoss AOP would only alocate one instance of ThreadbasedAspect and different
fields would be sharing the same instance of the ThreadL ocal -- something that we don't want.

Well that's it. A clean, easy way of extending Java to specify a new special type. Note: This particular aspect
comes bundled with JBoss AOP.

4.3. Dependency Injection

Another interesting place where field annotations and AOP can be used is with dependency injection. Depend-
ency injection is about objects declaring what information, configuration, or service references they need, and
having the runtime automagically inject those dependencies rather than having your code do explicit lookups
on a registry service. In J2EE-land, getting access to a javax.transaction.TransactionManager service is not
standardized and is actually different per vendor implementation. Many framework developers need to use the
TransactionManager to implement custom transactional services. The use of AOP with field annotations is a
great way to provide this dependency injection and to abstract away the details of how a TransactionManager is
referenced by components that need it. Let's define an aspect that will inject a reference to a TransactionMan-
ager into the value of afield.

First, we must again define our annotation.

package org.j boss. aspects;

i nport java.l ang. annot ati on. El enent Type;
i mport java.l ang. annot ati on. Target;

@rar get ({ El ement Type. FI ELD})
public @nterface Inject {}

Next we will define the aspect class that will encapsulate the resolving of the TransactionManager. This aspect
will be specific to the JBoss application server, but you could define different implementations per vendor.

package org.]j boss. aspects;

i mport org.jboss. aop.joi npoint.*;
i mport java.lang.reflect.Field;

JBoss AOP User Guidel.O 10

Aspect-Oriented Annotations

i mport javax.transaction. Transacti onManager;
i mport org.jboss.tm TxManager ;

public |nject TMAspect

{
private Transacti onManager tm = TxManager. get | nstance();
publ i c Object access(Fi el dReadl nvocati on invocati on)
throws Throwabl e
{
return tm
}
public Object access(Fiel dWitelnvocation invocation)
throws Throwabl e
{
throw new Runti nmeExcepti on(
"Setting an @njected variable is illegal");
}
}

Finaly, we have to define the XML binding that will trigger the application of the InjectTMAspect when the
@Inject tag is applied to afield. The pointcut expression basically states that for any field of type Transaction-
Manager and tagged as @I nject, apply the InjectTM A spect.

<aop>
<aspect cl ass="org.jboss. aspects.|nject TMAspect"/>

<bi nd pointcut="field(javax.transaction. Transacti onManager *->@rg.j boss. aspects.|nject)">
<advi ce nane="access"
aspect ="org. j boss. aspects. | nj ect TMAspect"/ >
</ bi nd>
</ aop>

Now that the annotation, aspect class, and XML binding have been defined, we can use it within our code.

i mport javax.transaction. Transacti onManager;
i mport org.jboss. aspects. | nject;

public class M/Transacti onal Cache

{

@nj ect private Transacti onManager tm

JBoss AOP User Guidel.O 11

Chapter 5. Mixins and Introductions

When people thing of AOP, they usually think of interception, pointcut expressions, aspects, and advices. AOP
isn't just about those things. Another important feature in JBoss AOP is the ability to introduce an interface to
an existing Java class in a transparent way. Y ou can force a class to implement an interface and even specify an
additional class called a mixin that implements that interface. Very similar to C++'s multiple inheritance. Now,
why would you want to use introductions/mixins? That's what this chapter is all about.

5.1. Introducing Introductions

The first thing we'll show here is how to force an existing Java class to implement any interface you want. The
JBoss AOP tutorial isagood place to start for an example, so let's grab the code from the introductions tutorial .

The first example we'll show is how to take an existing non-serializable class and make it serializable. This use
case may be usable if there's a thirdparty library you don't have the source for, or you want to control whether
your classis serializable or not based on how you deploy your application.

public class PQIO

{
private String field;

}

To take this class and make it serializable is very simple. Just the following XML isrequired:

<i ntroduction cl ass="PQJO"'>
<interfaces>java.io. Serializabl e</interfaces>
</introduction>

The above XML just states that the AOP framework is to apply the j ava.io. Seri al i zabl e interface to the
PQJO class. You can have one or more interfaces specified with the i nt er f aces element. These interfaces are
comma delimited.

If the introduced interfaces have methods not implemented by the class, then the AOP framework with add an
implementation of these methods to the class. The methods will delegate to the AOP framework and must be
handled/serviced by an interceptor or advice otherwise aNul | Poi nt er Except i on Will result.

5.2. Mixin It Up

Introducing interfaces only is quite limited when the introduced interfaces have methods that the class doesn't
implement as you have to write alot of generically inclined code that handle these types of method calls within
an advice or interceptor. Thisiswhere mixins come in. The AOP framework allows you to define a mixin class
that implements the introduced interface(s). An instance of this mixin class will be allocated the first time you
invoke a method of the introduced interface.

Again, let's steal from the introductions tutorial. WEe'l take an existing class, force it to implement the
java.io. External i zabl e interface and provide a class that implements Ext er nal i zabl e

public class PQIO

{
private String field;

}

JBoss AOP User Guidel.O 12

Mixins and Introductions

To take this class and make it externalizable is very simple. Just the following XML is required:

<i ntroduction class="PQIO'>
<m Xi n>
<i nterfaces>
java.io. Externalizable
</interfaces>
<cl ass>Ext er nal i zabl eM xi n</ cl ass>
<constructi on>new External i zabl eM xi n(thi s)</construction>
</ m xi n>
</introduction>

The above XML just states that the AOP framework is to apply the j ava. i 0. Ext ernal i zabl e interface to the
PQJO class. You can have one or more interfaces specified with the i nt er f aces element. These interfaces are
comma delimited.

The cl ass element defines the mixin class that will implement the externalizable interface and handle serializa-
tion of the PayOclass.

The construct i on element allows you to specify Java code that will be used to initialize the mixin class when
it is created. JBoss AOP will create a field within the paso class that will hold the instance of the mixin. This
field will be initialized with the Java code you provide in the const ructi on element. The t hi s pointer in the
construction above pertains to the Pl O class instance.

Finally, you need to implement the mixin class that will handle externalization.

public class ExternalizableM xin inplenents java.io.Externalizable

{
PQJO poj o;

publ i c Externalizabl eM xi n(PQJO poj o)
{

}

this. pojo = pojo;

public void readExternal (Qojectlnput in) throws | OException, C assNot FoundException

{
poj o.stuff2 = in.readUTF();

}
public void witeExternal (CbjectQutput out) throws | OException
{
out.witeUTF(pojo.stuff2);
}

}

5.2.1. Multiple Inheritance

One thing that should be noted about mixins is that they allow you to do true multiple inheritance within Java.
Yes, it is not explicit multiple inheritance as you must define the inheritance mappings in XML or via an an-
notation binding, but it does allow you to take advantage of something C++ has had for years. Many thought
leaders argue against the use of multiple inheritance, but when used correctly and purely as an abstract mixin, it
can be avery useful tool in application design.

5.3. Aspects with APIs

The seridization and externalization examples show previoudly in this chapter are kinda lame. Sure, you can
use introductions/mixins for multiple inheritance, or to do nice tricks like forcing an existing class to be serial-
izable. A more compelling use case is heeded to justify this particular feature. Thisiswhat this section is about.

JBoss AOP User Guidel.O 13

Mixins and Introductions

The best use cases for introductions/mixins comes when you have an aspect that requires an API for the user to
interact with. Many aspects have runtime APIs so that the application developer can interact with a particular
aspect to set configuration or to gain added behavior. A good example of an aspect with an API isif we expand
on the @ameway example in the "Aspect-Oriented Annotations' section of this user guide. @neway alows you to
tag a method as oneway and when you invoke that method it runs in the background. The problem with this ex-
ampleisthat you can only run voi d methods in the background and cannot interact asynchronously with meth-
ods that return a value. You have no way of obtaining the return value of an asynchronous call. Let's walk
through an example of taking the oneway aspect and addding a runtime API for that aspect so that application
devel opers can obtain method return values asynchronoudly.

The end goal of this example is to allow an application developer to tag a method as @synchr onous have the
method run in the background, but to provide an API so that the developer can obtain the value of a method re-
turn asynchronously. What well use here is an introduction and mixin to provide an APl to obtain a
java.util.concurrent. Future instance (from JDK 5.0 concurrent package) that will allow us to get accessto
the asynchronous method's return value.

Using the @synchr onous annotation

public class PQIO
{

}

@synchronous int someMethod() { ... }

Thisisthe interface we want to introduce to any class that has a method tagged as @synchr onous

public interface AsynchronousFacade

{
}

java. util.concurrent. Future getlLastFuture();

So, the user would interact with this asynchronous aspect in the following way.

{
PQJO pojo = new PQIQ();
Asynchr onousFacade facade = (AsynchronousFacade) poj o;
poj o. someMet hod(); // invokes in background
Future future = facade. getLastFuture();
. do other work. ..
/1 go back and get result. block until it returns.
int result = (Integer)future.get();
}

The first thing we need to do is define the mixin that will provide Fut ures. This mixin should aso have a
private interface so that the asynchronous aspect has a way to set the current invocation's future after it spawns
the method invocation to the background. The mixin will be very very simple. It will basically expose a
java. | ang. ThreadLocal SO that the Future can be set and acquired.

public class AsynchM xi n i npl enents AsynchronousFacade, FutureProvi der

{

private ThreadLocal currentFuture = new ThreadLocal ();

public Future getlLastFuture()
{

return (Future)currentFuture.get();

}

public void setFuture(Future future)

{

current Future. set(future);return (Future)current Future.get();

}

JBoss AOP User Guidel.O 14

Mixins and Introductions

The Fut ur eProvi der is an additional interface introduction that the aspect will use to set the future when after
it spawns the task in the background.

public interface FutureProvider

{
}

public void setFuture(Future future);

Next, let'slook at the aspect that will implement the asynchronous behavior. The aspect is made up of an advice
that will create aj ava. util.concurrent. Cal | abl e instance so that the current method invocation will run in
the background.

public class AsynchAspect

{
Execut or Servi ce executor = Executors. newCachedThr eadPool ();
publ i c Object invokeAsynch(Methodl nvocation invocation) throws Throwabl e
{
final Invocation copy = invocation.copy();
Future future = executor.submt(new Call abl e()
{
public Object call()
{
try
{
return copy.invokeNext ();
catch (Throwabl e t hrowabl e)
{
return throwabl e;
}
}
1)
Fut ur eProvi der provider = (FutureProvider)invocation.getTarget Cbject();
provi der.set Future(future);
return nul |l O Zero(invocati on. get Met hod() . get ReturnType());
}
private Object null OrZero(d ass type)
{
if (type.equal s(long.class)) return O;
/l... other types ...
return null;
}
}

Thei nvokeAsynch advice first copies the invocation. A copy copies the entire state of the invocation objec and
remembers exactly in the interceptor/advice chain to continue on when the method is spawned off into a separ-
ate thread. The copy allows the current Java call stack to return while allowing the copy to live in a separate
thread and continue down the interceptor stack towards the actual method call.

After creating a callable and running the method in a separate thread, the advice gets the target object from the
invocation, and typecasts it to Fut ur ePr ovi der SO that it can make the future available to the app devel oper.

So the mixin and aspect are written. The next thing to do is to define an advice binding so that when a method
is tagged as asynchronous, the asynch advice will be triggered, and the method will run in the background.

<aspect cl ass="AsynchAspect" scope="PER VM'/>
<bi nd poi nt cut ="execution(!static * *->@\synchronous(..))">
<advi ce nane="i nvokeAsynch" aspect="AsynchAspect"/>

JBoss AOP User Guidel.O 15

Mixins and Introductions

</ bi nd>

After defining the aspect binding, we then come to the introduction definition itself. We want the introduction
to be added to any class that has any method tagged as @synchr onous. The JBoss AOP pointcut expression
language has a keyword has to alow for thistype of matching. Let's look at the introduction binding.

<introducti on expr="has(!static * *->@\synchronous(..))">
<m Xi n>
<i nterfaces>Asynchr onousFacade, FutureProvider</interfaces>
<cl ass>AsynchM xi n</ cl ass>
<const ructi on>new AsynchM xi n() </ constructi on>
</ m xi n>
</introduction>

The example is now complete. Introductions/mixins aren't solely limited to pseudo-multiple inheritance and the
asynch aspect is a great example of an aspect with aruntime API.

JBoss AOP User Guidel.O 16

Chapter 6. Dynamic AOP

6.1. Hot Deployment

Any joinpoint that has been aspectized by the aopc compiler or by a load time transformation is set up to be
able to have advices/interceptors added or removed from it at runtime. This is JBoss AOP's first definition of
Dynamic AOP. Using the pr epar e action allows you to aspectize any joinpoint in your application so that ad-
vices/interceptors can be applied later at runtime. The over head of such a massaging of the bytecode is very
minimal asit isjust an extra boolean expression. The benefits for search an architecture allow you to do things
like deploy and undeploy metrics or statistic gathering on a needed basis. If you are using AOP for testing (See
"Testing with AOP"), it allows you to deploy/undeploy testing aspects as you run your automated tests on your
live system.

6.2. Per Instance AOP

JBoss AOP has the ability to apply interceptors on a per instance basis rather than having interceptors be ap-
plied entirely to the class. Thisis very useful when you have instances of an object that need to behave differ-
ently in different circumstances.

A perfect example of thisis JBoss Cache AOP (TreeCacheAOP). It uses AOP to prepar e classes so that field
access may be intercepted. When an object isinserted into the cache, TreeCacheAOP adds field interceptors for
that particular instance so that it can do automatic replication across a cluster or to automatically provide trans-
action properties to the object's state. When the abject is removed from cache, the field interceptors are re-
moved from that particular instance.

JBoss AOP User Guidel.O 17

Chapter 7. Integration With Pointcuts

This docbook has talked a lot about building aspects either with regualr aspects, annotations, and introductions.
This chapter takes a step back and doesn't talk about building aspects, but rather how you can use plain old
pointcuts in your application to provide logical integration points.

7.1. Integration

What you've seen by reading this docbook and the "Reference Manua"” on JBoss AOP is that AOP provides a
rich pointcut expression language that allows you to intercept various points in the Java language. If you think
about it, the pointcut language allows you to turn any point in your Java language into an event. An event that
can be caught and handled by any piece of code.

After productizing and shipping an application, sometimes users want to integrate with such "events'. They
want to be able to hook into different places of your application so that they can trigger things specific to their
particular deployment of your product. Using object-oriented techniques to provide these hooks to users would
require specia gluecode every time a user request like this was made. Also, as more and more of these hooks
are exposed through object-orientation, it becomes harder and harder to redesign, refactor, or change APIs as
the user base istightly coupled to existing code.

Thisiswere AOP and pointcuts come in. Instead of writing sometimes complicated gluecode, or refactoring the
application to provide such user-request integration points, the application can provide pointcut expressions the
user base can use to integrate their specific integration use cases. The application provides logical names to
code points as pointcut expressions. The pointcut expression can change over time as the application codeis re-
designed and/or refactored, but the logical name of the join point/event/integration point stays the same and
user hooks don't have to change either. Let's ook at an example:

public class BankAccount

{
public void w thdraw(doubl e amount) {...}

}

Let's say the user of this bank account ERP system wanted to have an email sent to the account holder whenev-
er a successful withdraw was made. The ERP system could provide the hook as a pointcut and then the user can
write an email aspect that binds with this pointcut.

<poi nt cut nanme="W THDRAW expr ="execution(public void BankAccount->wi t hdraw(doubl e))"/>

The BankAccount class would be instrumented with AOP hooks. The overhead is quite tiny as only an addition-
al boolean expression is needed to instrument this kind of hook. If the class or method name changes, the user
integration code is unaffected as they bind their email hook to the logical pointcut name.

JBoss currently provides integration points in its EJB and MBean layers in such the same way. Recently, BEA
Weblogic published Aspect] style pointcuts into the Weblogic runtime so that users could integrate using As-
pect]. As AOP becomes more popular you'll see more and more software products offering integration points
through pointcut expressions.

JBoss AOP User Guidel.O 18

Chapter 8. Testing with AOP

In the previous sections we talked more about using AOP to build and design applications and services. This
chapter focuses on how you can use AOP to test your applications.

8.1. Testing Exception Handling

The sign of awell design application is how gracefully it can handle errors. To be able to handle errors grace-
fully in al circumstances though requires lots and lots of testing. Y ou have to test that your application is catch-
ing and handling exceptions carefully. Sometimes its hard to produce error conditions because your code is in-
teracting with athird party library, or third party service like a database or something. Y ou can write complex
mock objects in these scenarios, but let's see how you can create these error conditions in an easier and more
flexible way with JBoss AOP.

The example scenario well give is an application that needs to be tested on whether or not it handles an Oracle
database deadlock exception gracefully. What well do is write an advice that intercepts cals to
java.sql . Statenent execute methods and always throw a SQL Exception with the appropriate deadlock error
code.

public class SQ.Deadl ockExcepti onl nj ect or
{

publ i c Object throwbeadl ock(lnvocation invocation) throws Throwabl e

{
t hrow new SQLExcepti on("Oracl e Deadl ock", "RETRY", ORACLE_DEADLOCK CODE);

}
}

What's great about the JBoss AOP approach to testing exception handling is that you can use it on alive system
and change how your tests run by deploying and/or undeploying certain aspects at runtime during your auto-
matic testing phase. Let's apply this aspect.

<aspect class="SQ.Deadl ockExcepti onl nj ector/>

<bi nd pointcut="call (* $i nstanceof{java. sql . Statenent}->execute*(..))">
<advi ce name="t hr owDeadl ock" aspect =" SQ.Deadl ockExcepti onl njector"/>

</ bi nd>

So, the above binding well throw a deadlock exception every time an execute method of a Statement is in-
voked. This example is a bit limited though. Maybe not all code paths can handle deadlock exceptions, or they
should not handle deadlock exceptions and just rollback and such. The pointcut expression language allows you
to do more fine grain application of this particular exception aspect. Let's say that only our BankAccount class
is designed to successfully recover from a Oracle deadlock exception. We can change the pointcut expression
to be asfollows:

<bi nd pointcut="call (* $instanceof{java. sql. Statenent}->execute*(..)) AND /
wi t hi n(BankAccount)" >
<advi ce name="t hr owDeadl ock" aspect =" SQ.Deadl ockExcepti onl njector"/>
</ bi nd>

The difference in this expression isthe wi t hi n. It is saying that any call to execute methods that are within the
BankAccount class. We can even get more fine grained than that. We can even specify which methods within
BankA ccount the exception aspect should be applied to.

<bi nd pointcut="call (* $i nstanceof{java. sql. Statenent}->execute*(..)) AND /
wi t hi ncode(voi d BankAccount - >wi t hdr aw(doubl e)) ">
<advi ce nane="t hr owDeadl ock" aspect ="SQ.Deadl ockExcepti onl njector"/>

JBoss AOP User Guidel.O 19

Testing with AOP

</ bi nd>

In the above listing the wi t hi ncode keyword specificies to match the calling of any execute method that isin-
voked within the BankAccount . wi t hdr aw() method.

AOP gives you alot of flexibilty in testing error conditions, JBoss AOP in particular. Because JBoss AOP al-
lows you to hotdeploy (deploy/undeploy) aspects at runtime it is very easy to integrate these types of tests into
alive system instead of having to go through the pain of writing complex mock objects and running your ap-
plications outside of the application server environment.

8.2. Injecting Mock Objects

This section was taken from Staale Pedersen's article at http://fol k. ui 0. no/ st aal ep/ aop/testing. htm .
Thanks Staale for putting together some ideas on how you can use JBoss AOP for use in unit testing.

The use of unit testing has increased tremendoudly lately, and many devel opers have seen the increase in qual-
ity and speed that comes from having a comprehensive unit-test suite. As the use of unit testing has increased,
so have the number of situations where writing test are troublesome or maybe impossible. A common problem
with writing testsis that it can require large amount of setup code. Testing code that rely on a remote system or
data access from file/db/net can be almost impossible to implement. But with the help of JBoss AOP and mock
objects thisis no longer any problem.

In this example we will examine a common situation where writing unit testsis difficult, but desirable. For sm-
plicity we will use POJO's, but the example can easily be translated for alarge J2EE application.

8.2.1. Required Knowledge

This article focuses on unit testing with JUnit using Mock Maker and of course JBoss AOP. Knowledge of JU-
nit and JBoss AOP is required, Mock Maker is used, but thoroughly knowledge is not required. The example
source code is compiled with Ant, env JUNIT_HOME must be set (mock maker and JBoss AOP jars are in-
cluded in the example source).

8.2.2. The Problem

The situation is common, we have a Bank application that manages Customers which can have one or more
BankAccounts. The Bank has different business methods to calculate interest, accept loans, etc. (in production
code this would be large and complex methods.) We want to write tests for the Bank's business methods to
make sure they work as intended and that we don't introduce bugs if we refactor, extend, modify etc. The Bank
has three business methods.

package bank;

import java.util.Arraylist;

i mport custoner.*;

public class BankBusi ness {
private BankAccount DAO bankAccount DAG,
publ i ¢ BankBusi ness() {

try {
bankAccount DAO = BankAccount DAOFact ory. get BankAccount DACSer i al i zer () ;

}
catch(Exception e) {

JBoss AOP User Guidel.O 20

Testing with AOP

System out . printl n(e.get Message());
}
}

publ i c bool ean creditCheck(Customer c, double anmpunt) {
return (getSuntf Al |l Accounts(c) < amount * 0.4);

}

publ i c doubl e cal cul at el nt er est (BankAccount account) {
i f (account . get Bal ance() < 1000)
return 0.01;
el se if(account. getBal ance() < 10000)
return 0.02;
el se if(account. getBal ance() < 100000)
return 0.03;
el se if(account. getBal ance() < 1000000)
return 0.05;
el se
return 0.06;
}

publ i ¢ doubl e get SumOf Al | Account s(Custonmer c¢) {
doubl e sum = O;
i f(c.getAccounts().size() < 1)
return sum
el se {
for(int i=0; i < c.getAccounts().size(); i++) {
BankAccount a =
bankAccount DAQ. get BankAccount (((Long) c.getAccounts().get(i)).longValue());
if(a!=null)
sum += a. get Bal ance();

}
}

return sum

}

cal cul at el nt er est (BankAccount b) can easily betested since it is only dependent on the object it recieves as
aparameter.

credit Check(Customer ¢, double ampunt) and get SunCF Al | Account s(Cust oner) are more complicated
since they are data dependent. It uses a DAO layer to fetch al BankAccounts for a specified customer. The test
should not be dependent of the DAO implementation since its goa is to check the business logic, not the DAO
layer. In this example the DAO implementation is a simple serializer, but it could easily be an Entity beans, Hi-
bernate, etc..

8.2.3. Mock Objects

Mock objects are objects that implement no logic of their own and are used to replace the parts of the system
with which the unit test interacts. In our case it is the DAO layer we would like to mock. We could write our
own mock implementation, but mock maker does a very good job of autogenerating the mock for us.

package bank;

/**
* @mock
*/
public interface BankAccount DAO {
public voi d saveBankAccount (BankAccount b) throws Exception;

publ i c BankAccount get BankAccount (long a);

public voi d renpbveBankAccount (BankAccount b) throws Exception;

}

JBoss AOP User Guidel.O 21

Testing with AOP

With the @mock tag in the header mock maker generates the mock. In the example the ant target ant gener at e-
nocks generates the mock implementation of BankAccount. Now we need to replace the DAO call to return our
mock objects instead of the DAO implementation.

8.2.4. AOP with Mocks

- and intercepting a method invocation is just what aop does best. Our jboss-aop.xml file:

<?xm version="1.0" encodi ng="UTF-8""?>

<aop>

<bi nd poi nt cut ="executi on(public static bank.BankAccount DAO bank. BankAccount DACFact or y- >get BankAcc¢

<i nterceptor class="bank.BankAccount DAO nt erceptor"/>

</ bi nd>

</ aop>

The pointcut expression intercepts the factorycall bank.BankAccountDAOFactory.getBankAccountDAO* ()
and calls the interceptor bank.BankA ccountDA Ol nterceptor.

package bank;

i mport
i mport
i mport
i mport

public

org. j boss. aop. j oi npoi nt. I nvocati on;

org.j boss. aop. j oi npoi nt. Met hodl nvocat i on;
org. j boss. aop. advi ce. | nterceptor;
util.MckServi ce;

cl ass BankAccount DAO nt erceptor inplenments |nterceptor {

public String getNane() { return "BankAccount DAQ nterceptor"; }

publ i c Qoject invoke(lnvocation invocation) throws Throwabl e {

try {
MockSer vi ce nockServi ce = MockServi ce. getl nstance();

(bj ect nmock = nockServi ce. get MockFor I nterface("BankAccount DAC');

if(mock == null) {
System out . println("ERROR BankAccount DAQ nterceptor didnt find class!");
[/ this will probably fail, but its the sainest thing to do
return invocation.invokeNext();

}

return nock;

}

finally {

}

Instead of returning i nvocati on. i nvokeNext (), we ignore the invocation stack since we want to replace the in-
vocation call with a mock implementation. The interceptor receives the invocation and get an instance of the
singleton MockService. The use of MockService may not be clear, but we want the test to instanciate the mock
objects. That way, the test can easily modify the input to the methods we want to test. The test creates an object
of the mock and put it into the MockService with the interface name as the key. The Interceptor then tries to get
the mock from MockService and return it.

package util;

i mport java.util.Hashtabl e;
import java.util.lterator;
i mport java.util.Map;

i mport java.util. Set;
public class MyckService {

JBoss AOP User Guidel.O 22

Testing with AOP

private static MyckService instance = new MdckService();
private Map nockReferences = null;

prot ected MockService() {
nockRef erences = new Hasht abl e();
}

public static MockService getlnstance() {
return instance;

}

public void addMock(String c, Object nock) {
nmockRef er ences. put (¢, nock);

}

public Object get MockForlnterface(String nyKey) ({
Set keys = nockReferences. keySet () ;

for (lterator iter = keys.iterator(); iter.hasNext();) {
String key = (String) iter.next();
i f (myKey. equal s(key)) {
return nockRef erences. get (key);
}

}

return null;

}

Everyting is now in place to write the test. Note that much of this setup code is written once and it will be re-

used by all similar tests. Then the test: BankBusinessTestCase

package bank;
i mport junit.franework. Test Case;

i nport cust oner. Cust oner ;
import util.MckService;

public cl ass BankBusi nessTest Case extends Test Case {

private MyckBankAccount DAO nock;
private Custoner custoner;

publ i ¢ BankBusi nessTest Case(Stri ng nane) ({
super (nane);

}

public void setUp() {
nmock = new MockBankAccount DAQ() ;

BankAccount account = new BankAccount (10);
account . set Bal ance(100);

BankAccount account2 = new BankAccount (11);
account 2. set Bal ance(500);

nock. set upGet BankAccount (account) ;
nock. set upGet BankAccount (account 2) ;

MockSer vi ce nockServi ce = MockServi ce. getl nstance();
nockSer vi ce. addMock(" BankAccount DAC', nock);

custoner = new Custoner("John", "Doe");
cust oner. addAccount (new Long(10));
cust oner . addAccount (new Long(11));

JBoss AOP User Guidel.O

23

Testing with AOP

public void testSumOf Al |l Accounts() {
BankBusi ness busi ness = new BankBusi ness();
doubl e sum = busi ness. get Suntf Al | Account s(custoner);
assert Equal s((doubl e) 600, sum;
Systemout.println("SUM "+sum;

}
}

To compile and run the test we call ant compile test. Output from the test:

t est - bankbusi ness:
[junit] .SUM 600.0
[junit] Time: 0,23
[Junit] OK (1 test)

The testresult was exactly what we expected.

With the the use of AOP we can test every aspect of our code. This example show the limits of object-oriented
programming (OOP) compared to AOP. It must be pointed out that it is possible to write these tests without
AOP, but it would require to edit production code just to make the tests pass.

The approach in this example can easily be used to mock SessionBeans instead of a DAO layer. Theoreticaly,
we can test al of the business methods in a large J2EE application outside the container. This would greatly in-
crease quality and speed during software development.

JBoss AOP User Guidel.O 24

Chapter 9. JBoss AOP IDE

9.1. The AOP IDE

JBoss AOP comes with an Eclipse plugin that helps you define interceptors to an eclipse project viaa GUI, and
to run the appication from within Eclipse. Thisisanew project, and expect the feature set to grow quickly!

9.2. Installing

You install the JBoss AOP IDE in the same way as any other Eclipse plugin.

» Make sure you have Eclipse 3.0.x installed, and start it up.
* Select Help > Software Updates > Find and Install in the Eclipse workbench.
* Inthewizard that opens, click on the "Search for new featuresto install" radio button, and click Next.

¢ On the next page you will need to add a new update site for JBossIDE. Click the "New Remote Site.." but-
ton.

¢ Type in "JBossIDE" for the name, and "http://jboss.sourceforge.net/jbosside/updates’ for the URL, and
click OK.

¢ You should see a new site in the list now called JBossIDE. click the "+" sign next to it to show the plat-
forms available.

¢ Now, depending if you just want to install the AOP IDE (if you don't know what JBoss-IDE is, go for this
set of options):
* Check the "JBoss-IDE AOP Standalone" checkbox.

e Inthefeaturelist you should check the "JBoss-IDE AOP Standalone 1.0" checkbox.

If you have JBoss-IDE installed, or want to use all the other (non-AOP) features of JBoss-IDE:

* If you don't have JBossIDE installed, check the "JBoss-IDE 1.4/Eclipse 3.0" checkbox.
* Check the "JBoss-IDE AOP Extension" checkbox.

* Inthe feature list you should check the "JBoss-IDE AOP Extension 1.0" checkbox, and the JBoss-IDE
(1.4.0) checkbox if you don't have JBossIDE installed.

e At this point you should only need to accept the license agreement(s) and wait for the install processto fin-
ish.

9.3. Tutorial

This tutorial is meant to guide you through creating a new AOP project in eclipse using the AOP extension to
JBossIDE. It assumes that you have some working knowledge of AOP, and Java.. and possibly some minimal

JBoss AOP User Guidel.O 25

JBoss AOP IDE

experience dealing with eclipse as well.

9.3.1. Create Project

¢ From eclipse's main menu, you can click on the File Menu, and under it, New > Project...
« Doubleclick on JBoss AOP Project under the JBossAOP folder
» Inthe Project Name text box, let's enter Hel | oACP.

* Use Default should be fine for the project location. (If you want to use an external location, make sure
there are no spaces in the path.)

¢ Click Fini sh

At this point, your eclipse workbench should look something like this:

F = -
&= Java - Eclipse Platform [;]g,ﬁ
Fie Edit Source Refactor Mavigate Search Project Rum Window Help

[d- &= - B L N BHEH G ey o o - B | & dava | L5 Resource

¥ Package Explorer [0 | Migrarchy, = O

- e -
3 [HelloADP
- ere
B, JRE System Libeary [jre1.5.0]
+- B\, JBossAOP 1.0RC2 Libreries
K| jboss-aop.ml

E-_ Ouiine =5
an outhng is mot avalable.

[5. Froblems ©7 Javadoc Dedaration | Database Explorer 3w =08
0 errors, O wamnings, 0 infos (Filter matched 0 of 14 items)
Dieseriplian Ressuros I Falder
£ | *

9.3.2. Create Class

Next step isto create anormal Java class.

* Right click on the "src" directory in the Package Explorer and in the menu, click New > Class.

JBoss AOP User Guidel.O 26

JBoss AOP IDE

e Theonly thing you should need to change is the Name of the class. Enter Hel | oAOP without quotes into the
Name textbox, and click Fi ni sh

Modify the code for your class so it loks like

public class Hel | 0ACP {

public void call M ()

{
Systemout.println("ACP! ");
}
public static void main (String args[])
{
new Hel | oACP() . cal | Me();
}

9.3.3. Create Interceptor

Next we want to create an interceptor to the class.

* Right click on the "src" directory in the Package Explorer and in the menu, click New > Class. In the result-
ing diaog:

« Nametheclass Hel | 0ACPI nt er cept or

e Addorg.|boss. aop. advi ce. I nter cept or to thelist of interceptors.
Then modify the class so it looks like:

i mport org.jboss. aop. advi ce. | nterceptor;
i mport org.jboss. aop.joi npoint.|nvocati on;

public class Hell oAOPI nterceptor inplenments |Interceptor {

public String getNane() {
return "Hel | oAOPI nterceptor”;
}

/ /W renaned the arg0 paraneter to invocation
public Qbject invoke(lnvocation invocation) throws Throwabl e {
Systemout.print("Hello, ");
//Here we invoke the next in the chain
return invocation.invokeNext();

}

9.3.4. Applying the Interceptor

In order to apply your Interceptor to the callMe() method, we'll first need to switch back to the Hel | 0ACP. j ava
editor. Once the editor is active, you should be able to see the callMe() method in the Outline view (If you can-
not see the outline view, go to Window > Show View > Outline).

JBoss AOP User Guidel.O 27

JBoss AOP IDE

E= outline 53 = |m
1L 8w @ W -

o (9, HelloACP

— - @ callMel)

@° main{String[]}

Right click on this method, and click JBoss AOP > Apply Interceptor(s)... A dialog should open, with alist of
available Interceptors. Click on Hel | oACPI nt er cept or, and click Fi ni sh.

Y ou should see in your Package Explorer that the file "jboss-aop.xml" now exists under your project root.

9.3.5. Running

Now all that's left is running the application! Similar to running a normal Java Application from Eclipse, you
must create a Run Configuration for your project.
e From the Run menu of eclipse, and choose "Run..."

¢ Inthedialog that opens, you should see afew choicesin alist on the left. Double click on "JBoss AOP Ap-
plication”.

e Onceitisfinished loading, you should have a new Run Configuration under JBoss AOP Application called
"Hello AOP".

* Click the"Run" button
The Eclipse console should now say: Hel | o, AOP!, wheretheHel | o, bit has been added by the interceptor.

Problems | Javadoc | Dedaration ECDHSD|E o

<terminated = HelloAOP [JBoss AQP Application] C:\devtoolsijdk 1. 4%binYj
Hello, AOQP

9.3.6. Navigation

In the real world, when developing AOP application across a devel opment team, you can expect it will be hard
to understand when and where aspects are applied in your codebase. JBoss-IDE/AOP has a few different
strategies for notifying devel opers when an aspect is applied to a certain part of code.

9.3.6.1. Advised Markers

A marker in eclipse is a small icon that appears on the left side of the editor. Most devel opers are familiar with
the Java Error and Bookmark markers. The AOP IDE provides markers for methods and fields which are inter-

JBoss AOP User Guidel.O 28

JBoss AOP IDE

cepted. To further facilitate this marking, anytime the developer presses Ctrl + 1 (the default key combination
for the Eclipse Quick Fix functionality)), alist of interceptors and advice will be given for that method or field.
This makes navigation between methods and their interceptors extremeley easy!

m HelloAOP . java &3 HelloInterceptor.java B

o [

* Created on Oct 20, 2004

] To change the template for this generated file go to
* Window - Preferences - Java - Code Style - Code Templates
—y
= Marshall
L] = To change the template for this generated type comment go to

Window - Preferences - Java - Code Style - Code Templates
vpﬁhlic class HelloAOP {

%3 = public veoid callMe ()
{
: %% Go to Interceptor 'HelloInterceptor’ (execute) 50 to Interceptor ‘HelloInterceptor’ (execute)

v P

¥
by

9.3.6.2. The Advised Members View

The Advised Members view gives the developer an overview of every single method and field in the current
classthat is advised by an Aspect or Interceptor. Let's have alook.

* From the Eclipse main menu, click on Window > Show View > Other...
¢ Inthewindow that opens, you should see afolder called "JBoss AOP'. Press the "+" to expand it.
« Doubleclick on "Advised Members"

Once you've done this, you should now make sure you are currently editing the Hel | oACP class we created in
the last tutorial. Once you have that class open in an editor, you should see something similar to thisin the Ad-
vised Members view:

@. Advised Members &7 =0

= @ calMe()
%3 HelloInterceptor

Here we see that the method "callMe()" is intercepted by the interceptor Hel | ol nt er cept or . Double clicking
on Hel | ol nt er cept or Will take you straight to it. Thisview issimilar to the Outline view, except it only shows
members in your class which are intercepted.

JBoss AOP User Guidel.O 29

JBoss AOP IDE

9.3.6.3. The Aspect Manager View

The Aspect Manager View is a graphical representation of the AOP descriptor file (jboss-aop.xml). It alows
you to remove an Interceptor or advice from a pointcut, as well as apply new Interceptors and Advice to exist-
ing pointcuts.

* From the Eclipse main menu, click on Window > Show View > Other...
* Inthewindow that opens, you should see afolder called "JBoss AOP". Pressthe "+" to expand it.

« Doubleclick on "Aspect Manager"

Under Bindings, you'll notice that a pointcut is aready defined that matches our "callMe()" method, and our
Hel | ol nt er cept or isdirectly under it. Right Click on Hel | ol nt er cept or will provide you with this menu:

Problems | Javadoc | Dedaration | %, Aspect Manager &

= =§= Bindings
—I-=%= execution{public void HelloAQP->calMe(})

%5 HelloInterceptor i
» GoTo

¥ Remove

Y ou can remove the interceptor, or jump to it directly in code. If you right click on the binding (pointcut) itself,
you'll be able to apply more interceptors and advice just like when right clicking on a field or method in the
outline view. You can also remove the entire binding altogether (which subsequently removes all child inter-
ceptors and advice, be warned)

Problems | Javadoc | Dedaration E,t.ﬁ.spectl"-ﬂanager X

=] =§- Bindings
- =%- execution(public void Hello AOP->calMe ()}
%3 HelloInterceptor %3 Apply Interceptor(s)...

%o Apply Advice...

¥ Remove

JBoss AOP User Guidel.O 30

	JBoss AOP - User Guide
	Table of Contents
	Preface
	Chapter 1. What Is Aspect-Oriented Programming?
	1.1. What is it?
	1.2. Creating Aspects in JBoss AOP
	1.3. Applying Aspects in JBoss AOP

	Chapter 2. Terms
	2.1. Overview

	Chapter 3. Building Aspects
	3.1. Identifying Aspects
	3.2. Exception Handling

	Chapter 4. Aspect-Oriented Annotations
	4.1. Methods and Annotations
	4.2. Fields and Annotations
	4.3. Dependency Injection

	Chapter 5. Mixins and Introductions
	5.1. Introducing Introductions
	5.2. Mixin It Up
	5.2.1. Multiple Inheritance

	5.3. Aspects with APIs

	Chapter 6. Dynamic AOP
	6.1. Hot Deployment
	6.2. Per Instance AOP

	Chapter 7. Integration With Pointcuts
	7.1. Integration

	Chapter 8. Testing with AOP
	8.1. Testing Exception Handling
	8.2. Injecting Mock Objects
	8.2.1. Required Knowledge
	8.2.2. The Problem
	8.2.3. Mock Objects
	8.2.4. AOP with Mocks

	Chapter 9. JBoss AOP IDE
	9.1. The AOP IDE
	9.2. Installing
	9.3. Tutorial
	9.3.1. Create Project
	9.3.2. Create Class
	9.3.3. Create Interceptor
	9.3.4. Applying the Interceptor
	9.3.5. Running
	9.3.6. Navigation
	9.3.6.1. Advised Markers
	9.3.6.2. The Advised Members View
	9.3.6.3. The Aspect Manager View

