
Arquillian: An integration testing

framework for Containers

Reference Guide
1.0.0-SNAPSHOT

by Dan Allen, Aslak Knutsen, Pete Muir, Andrew Rubinger, and Karel Piwko

iii

Preface: Test in the container! .. vii

1. Introduction ... 1

1.1. Mission statement ... 1

1.2. Architecture overview .. 2

1.3. Integration testing in Java EE .. 3

1.3.1. Testing the real component .. 4

1.3.2. Finding a happy medium .. 4

1.3.3. Controlling the test classpath .. 4

1.4. Usage scenarios ... 5

2. Introductory examples ... 7

2.1. Testing an EJB ... 10

2.2. Testing CDI beans .. 11

2.3. Testing JPA .. 12

2.4. Testing JMS ... 14

3. Getting started ... 17

3.1. Setting up Arquillian in a Maven project ... 17

3.2. Writing your first Arquillian test .. 18

3.3. Setting up and running the test in Maven ... 21

3.4. Setting up and running the test in Eclipse ... 23

3.5. Setting up and running the test in NetBeans ... 25

4. Target containers ... 27

4.1. Container varieties .. 27

4.2. Container management ... 28

4.3. Supported containers .. 28

4.4. Container configuration ... 29

5. Test enrichment ... 31

5.1. Injection into the test case ... 31

5.2. Active scopes ... 32

6. Test execution ... 33

6.1. Anatomy of a test ... 33

6.2. ShrinkWrap packaging .. 33

6.3. Test archive deployment ... 34

6.4. Enriching the test class ... 34

6.5. Negotiating test execution ... 34

6.6. Test run modes .. 35

6.6.1. Mode: in-container .. 35

6.6.2. Mode: as-client .. 36

6.6.3. Mode: mixed .. 37

7. Debugging remote tests .. 39

7.1. Debugging in Eclipse .. 39

7.1.1. Attaching the IDE debugger to the container .. 39

7.1.2. Launching the test in debug mode .. 40

7.1.3. Stepping into external libraries .. 40

7.2. Assertions in remote tests ... 41

Arquillian: An integration te...

iv

7.2.1. Enabling assertions in JBoss AS ... 41

8. Build system integration ... 43

8.1. Arquillian's active build ingredient .. 43

8.2. Integrating Arquillian into a Gradle build ... 44

8.2.1. apply from: common ... 44

8.2.2. Strategy #1: Container-specific test tasks ... 47

8.2.3. Strategy #2: Test profiles .. 51

8.3. Integrating Arquillian into an Ant (+Ivy) build ... 55

9. Advanced use cases ... 57

9.1. Descriptor deployment ... 57

9.2. Resource injection .. 57

9.3. Multiple Deployments .. 58

9.4. Multiple Containers ... 58

9.5. Protocol selection .. 60

10. Extending Arquillian .. 63

11. Complete Extension/Framework Reference ... 65

11.1. Performance ... 65

11.2. JSFUnit .. 66

11.3. Drone ... 68

12. Complete Container Reference .. 79

12.1. JBoss AS 5 - Remote ... 79

12.1.1. Configuration .. 79

12.2. JBoss AS 5.1 - Remote ... 80

12.2.1. Configuration .. 80

12.3. JBoss AS 5.1 - Managed .. 81

12.3.1. Configuration .. 81

12.4. JBoss AS 6.0 - Remote ... 83

12.4.1. Configuration .. 83

12.5. JBoss AS 6.0 - Managed .. 84

12.5.1. Configuration .. 84

12.6. JBoss AS 6.0 - Embedded .. 85

12.6.1. Configuration .. 86

12.7. JBoss Reloaded 1.0 - Embedded ... 87

12.7.1. Configuration .. 88

12.8. GlassFish 3.1 - Embedded .. 88

12.8.1. Configuration .. 88

12.9. GlassFish 3.1 - Remote ... 89

12.9.1. Configuration .. 90

12.10. Tomcat 6.0 - Embedded .. 91

12.10.1. Configuration .. 92

12.11. Jetty 6.1 - Embedded .. 94

12.11.1. Configuration .. 94

12.12. Jetty 7.0 - Embedded .. 96

12.12.1. Configuration .. 96

v

12.13. Weld SE 1.0 - Embedded .. 98

12.13.1. Configuration .. 98

12.14. Weld SE 1.1 - Embedded .. 99

12.14.1. Configuration .. 99

12.15. Weld EE 1.1 - Embedded .. 100

12.15.1. Configuration .. 101

12.16. Apache OpenWebBeans 1.0 - Embedded ... 103

12.16.1. Configuration .. 103

12.17. Apache OpenEJB 3.1 - Embedded ... 105

12.17.1. Configuration .. 105

13. Complete Protocol Reference .. 107

13.1. Local .. 107

13.1.1. Configuration .. 107

13.2. Servlet 2.5 .. 107

13.2.1. Configuration .. 108

13.3. Servlet 3.0 .. 108

13.3.1. Configuration .. 108

vi

vii

Preface: Test in the container!

Ever since the inception of Java EE, testing enterprise applications has been a major pain

point. Testing business components, in particular, can be very challenging. Often, a vanilla

unit test isn't sufficient for validating such a component's behavior. Why is that? The reason is

that components in an enterprise application rarely perform operations which are strictly self-

contained. Instead, they interact with or provide services for the greater system. They also have

declarative functionality which gets applied at runtime. You could say "no business component

is an island."

The way the component interacts with the system is just as important as the work it performs.

Even with the application separated into more layers than your favorite Mexican dip, to validate

the correctness of a component, you have to observe it carrying out its work—in situ. Unit tests

and mock testing can only take you so far. Business logic aside, how do you test your component's

"enterprise" semantics?

Especially true of business components, you eventually have to ensure that the declarative

services, such as dependency injection and transaction control, actually get applied and work as

expected. It means interacting with databases or remote systems and ensuring that the component

plays well with its collaborators. What happens when your Message Driven Bean can't parse the

XML message? Will the right component be injected? You may just need to write a test to explore

how the declarative services behave, or that your application is configured correctly to use them.

This style of testing needed here is referred to as integration testing, and it's an essential part of

the enterprise development process.

Arquillian, a new testing framework developed at JBoss.org, empowers the developer to write

integration tests for business objects that are executed inside a container or that interact with the

container as a client. The container may be an embedded or remote Servlet container, Java EE

application server, Java SE CDI environment or any other container implementation provided.

Arquillian strives to make integration testing no more complicated than basic unit testing.

The importance of Arquillian in the Java EE space cannot be emphasized enough. If writing

good tests for Java EE projects is some dark art in which knowledge is shared only by the

Java gurus, people are either going to be turned off of Java EE or a lot of fragile applications

are going to be written. Arquillian is set to become the first comprehensive solution for testing

Java EE applications, namely because it leverages the container rather than a contrived runtime

environment.

This guide documents Arquillian's architecture, how to get started using it and how to extend

it. If you have questions, please use the discussion forum in the top-level Arquillian space on

JBoss.org. We also provide a JIRA issue tracking system for bug reports and feature requests. If

you are interested in the development of Arquillian, or want to translate this documentation into

your language, we welcome you to join us in the Arquillian Development subspace on JBoss.org.

viii

Chapter 1.

1

Introduction
We believe that integration testing should be no more complex than writing a basic unit test. We

created Arquillian to realize that goal. One of the major complaints we've heard about Seam 2

testing (i.e., SeamTest) was, not that it isn't possible, but that it isn't flexible and it's difficult to

setup. We wanted to correct those shortcomings with Arquillian.

Testing needs vary greatly, which is why it's so vital that, with Arquillian (and ShrinkWrap), we

have decomposed the problem into its essential elements. The result is a completely flexible and

portable integration testing framework.

1.1. Mission statement

Arquillian is the missing link in Java EE development. Developers have long had to fend for

themselves in the testing stage, burdened with bootstrapping the infrastructure on which the test

depends. That's time lost, and it places a high barrier to entry on integration testing. Arquillian

tears down that barrier.

Arquillian is a container-oriented test framework. It picks up where unit tests leave off, targeting the

integration of application code inside a real runtime environment. Just as Java EE 5 simplified the

server programming model by providing declarative services for POJOs, Arquillian equips tests

with container lifecycle management and enrichment.

With Arquillian, you write a basic test case and annotate it with declarative behavior that says,

"run with Arquillian." Launching the test is as simple as right-clicking the test class in the IDE and

selecting Run As > JUnit or TestNG test. Based on the classpath configuration, Arquillian starts

or binds to the target container (JBoss AS, GlassFish, OpenEJB, etc) and deploys the test case

bundled with the test archive defined in the @Deployment method. Your test executes inside the

container and enjoys all the same services as an application component. That means you get

dependency and resource injection into the test, you can access EJBs, you can load a persistence

unit, you can get a handle to a database connection, etc. Yet, on the surface, it looks like any

other unit test. (Arquillian also has a client execution mode, which only deploys the test archive,

not the test case).

Instead of bringing your runtime to the test, Arquillian brings your test to the runtime.

Features of Arquillian include:

• Runnable from both JUnit and TestNG

• Abstracts out server lifecycle and deployment

• Injects resources like managed beans, EJBs or objects from JNDI into the test instance

• Zero reliance upon a formal build; can be run or debugged from IDEs like Eclipse, IDEA,

NetBeans

Chapter 1. Introduction

2

• Supports remote and embedded containers: JBoss AS, GlassFish, Jetty, Tomcat, OpenEJB,

OSGi and more on the way

• Enables pass-by-reference between the test and the server, even if the server is in another

JVM from the test launcher

• Provides an extensible SPI - plug in your own containers and take advantage of the Arquillian

bus to provide services to the test

No longer does writing a test involve system administration tasks. No more custom scripts or copy-

paste Maven configuration. No more full builds. No more test classpath mayhem. No more looking

up resources manually in JNDI. No more reliance on coarse-grained, black-box testing.

Arquillian keeps you focused on the test, while enjoying the services provided by the container.

And it's turning heads.

1.2. Architecture overview

Arquillian combines a unit testing framework (JUnit or TestNG), ShrinkWrap, and one or more

supported target containers (Java EE container, servlet container, Java SE CDI environment, etc)

to provide a simple, flexible and pluggable integration testing environment.

The Arquillian test infrastructure

At the core, Arquillian provides a custom test runner for JUnit and TestNG that turns control of

the test execution lifecycle from the unit testing framework to Arquillian. From there, Arquillian

can delegate to service providers to setup the environment to execute the tests inside or against

the container. An Arquillian test case looks just like a regular JUnit or TestNG test case with two

declarative enhancements, which will be covered later.

Since Arquillian works by replacing the test runner, Arquillian tests can be executed using existing

test IDE, Ant and Maven test plugins without any special configuration. Test results are reported

just like you would expect. That's what we mean when we say using Arquillian is no more

complicated than basic unit testing.

At this point, it's appropriate to pause and define the three aspects of an Arquillian test case. This

terminology will help you better understand the explainations of how Arquillian works.

Integration testing in Java EE

3

1. container — a runtime environment for a deployment

2. deployment — the process of dispatching an artifact to a container to make it operational

3. archive — a packaged assembly of code, configuration and resources

The test case is dispatched to the container's environment through coordination with ShrinkWrap,

which is used to declaratively define a custom Java EE archive that encapsulates the test class

and its dependent resources. Arquillian packages the ShrinkWrap-defined archive at runtime and

deploys it to the target container. It then negotiates the execution of the test methods and captures

the test results using remote communication with the server. Finally, Arquillian undeploys the test

archive. We'll go into more detail about how Arquillian works in a later chapter.

So what is the target container? Some proprietary testing container that emulates the behavior

of the technology (Java EE)? Nope, it's pluggable. It can be your actual target runtime, such

as JBoss AS, GlassFish or Tomcat. It can even been an embedded container such as JBoss

Embedded AS, GlassFish Embedded or Weld SE. All of this is made possible by a RPC-style

(or local, if applicable) communication between the test runner and the environment, negotiating

which tests are run, the execution, and communicating back the results. This means two things

for the developer:

• You develop Arquillian tests just like you would a regular unit test and

• the container in which you run the tests can be easily swapped, or you can use each one.

With that in mind, let's consider where we are today with integration testing in Java EE and why

an easy solution is needed.

1.3. Integration testing in Java EE

Integration testing is very important in Java EE. The reason is two-fold:

• Business components often interact with resources or sub-system provided by the container

• Many declarative services get applied to the business component at runtime

The first reason is inherent in enterprise applications. For the application to perform any sort of

meaningful work, it has to pull the strings on other components, resources (e.g., a database) or

systems (e.g., a web service). Having to write any sort of test that requires an enterprise resource

(database connection, entity manager, transaction, injection, etc) is a non-starter because the

developer has no idea what to even use. Clearly there is a need for a simple solution, and Arquillian

fills that void.

Some might argue that, as of Java EE 5, the business logic performed by most Java EE

components can now be tested outside of the container because they are POJOs. But let's not

forget that in order to isolate the business logic in Java EE components from infrastructure services

(transactions, security, etc), many of those services were pushed into declarative programming

Chapter 1. Introduction

4

constructs. At some point you want to make sure that the infrastructure services are applied

correctly and that the business logic functions properly within that context, justifying the second

reason that integration testing is important in Java EE.

1.3.1. Testing the real component

The reality is that you aren't really testing your component until you test it in situ. It's all to easy to

create a test that puts on a good show but doesn't provide any real guarantee that the code under

test functions properly in a production environment. The show typically involves mock components

and/or bootstrapped environments that cater to the test. Such "unit tests" can't verify that the

declarative services kick in as they should. While unit tests certainly have value in quickly testing

algorithms and business calculations within methods, there still need to be tests that exercise the

component as a complete service.

Rather than instantiating component classes in the test using Java's new operator, which is

customary in a unit test, Arquillian allows you to inject the container-managed instance of the

component directly into your test class (or you can look it up in JNDI) so that you are testing the

actual component, just as it runs inside the application.

1.3.2. Finding a happy medium

Do you really need to run the test in a real container when a Java SE CDI environment would do?

It's true, some tests can work without a full container. For instance, you can run certain tests in a

Java SE CDI environment with Arquillian. Let's call these "standalone" tests, whereas tests which

do require a full container are called "integration" tests. Every standalone test can also be run

as an integration test, but not the other way around. While the standalone tests don't need a full

container, it's also important to run them as integration tests as a final check just to make sure

that there is nothing they conflict with (or have side effects) when run in a real container.

It might be a good strategy to make as many tests work in standalone mode as possible to ensure

a quick test run, but ultimately you should consider running all of your tests in the target container.

As a result, you'll likely enjoy a more robust code base.

We've established that integration testing is important, but how can integration testing being

accomplished without involving every class in the application? That's the benefit that ShrinkWrap

brings to Arquillian.

1.3.3. Controlling the test classpath

One huge advantage ShrinkWrap brings to Arquillian is classpath control. The classpath of a test

run has traditionally been a kitchen sink of all production classes and resources with the test

classes and resources layered on top. This can make the test run indeterministic, or it can just be

hard to isolate test resources from the main resources.

Arquillian uses ShrinkWrap to create "micro deployments" for each test, giving you fine-grained

control over what you are testing and what resources are available at the time the test is executed.

Usage scenarios

5

An archive can include classes, resources and libraries. This not only frees you from the classpath

hell that typically haunts test runners (Eclipse, Maven), it also gives you the option to focus

on the interaction between an subset of production classes, or to easily swap in alternative

classes. Within that grouping you get the self-assembly of services provided by Java EE—the

very integration which is being tested.

Let's move on and consider some typical usage scenarios for Arquillian.

1.4. Usage scenarios

With the strategy defined above, where the test case is executed in the container, you should

get the sense of the freedom you have to test a broad range of situations that may have seemed

unattainable when you only had the primitive unit testing environment. In fact, anything you can

do in an application you can now do in your test class.

A fairly common scenario is testing an EJB session bean. As you are inside the container, you can

simply do a JNDI lookup to get the EJB reference and your test becomes a client of the EJB. But

having to use JNDI to get a reference to the EJB is inconvenient (at least to Java EE 5 developers

that have become accustomed to annotation-based dependency injection). Arquillian allows you

to use the @EJB annotation to inject the reference to an EJB session bean into your test class.

EJB session beans are one type of Java EE resource you may want to access. But that's

just the beginning. You can access any resource available in a Java EE container, from a

UserTransaction to a DataSource to a mail session. Any of these resources can be injected

directly into your test class using the Java EE 5 @Resource annotation.

Resource injections are convenient, but they are so Java EE 5. In Java EE 6, when you think

dependency injection, you think JSR-299: CDI. Your test class can access any bean in the

ShrinkWrap-defined archive, provided the archive contains a beans.xml file to make it a bean

archive. And you can inject bean instances directly into your class using the @Inject annotation,

or you can inject an Instance reference to the bean, allowing you to create a bean instance when

needed in the test. Of course, you can do anything else you can do with CDI within your test as well.

Another important scenario in integration testing is performing data access. If the ShrinkWrap-

defined archive contains a persistence.xml descriptor, the persistence unit will be started when

the archive is deployed and you can perform persistence operations. You can obtain a reference

to an EntityManager by injecting it into your class with @PersistenceContext or from a CDI

producer-field. Alternatively, you can execute the persistence operation indirectly through an EJB

session bean or a managed bean.

Those examples should give you an idea of some of the tasks that are possible from within an

Arquillian-enhanced test case. Now that you have plenty of motivation for using Arquillian, let's

look at how to get started using Arquillian.

6

Chapter 2.

7

Introductory examples
The following examples demonstrate the use of Arquillian. Currently Arquillian is distributed as

a Maven only project, so you'll need to grab the examples from Git. You can choose between

a JUnit example [http://github.com/arquillian/arquillian/tree/1.0.0-SNAPSHOT/examples/junit]

and a TestNG example [http://github.com/arquillian/arquillian/tree/1.0.0-SNAPSHOT/examples/

testng]. In this tutorial we show you how to use both.

git clone git://github.com/arquillian/arquillian.git arquillian

cd arquillian

git checkout 1.0.0-SNAPSHOT

cd examples/junit

cd examples/testng

Running these tests from the command line is easy. The examples run against all the servers

supported by Arquillian (of course, you must choose a container that is capable of deploying EJBs

for these tests). To run the test, we'll use Maven. For this tutorial, we'll use JBoss AS 6 (currently

at Milestone 3), for which we use the jbossas-remote-6 profile.

First, make sure you have a copy of JBoss AS; you can download it from jboss.org [http://

www.jboss.org/jbossas/downloads]. We strongly recommend you use a clean copy of JBoss AS.

Unzip JBoss AS to a directory of your choice and start it; we'll use $JBOSS_HOME to refer to this

location throughout the tutorial.

$ unzip jboss-6.0.0.Final.zip && mv jboss-6.0.0.Final $JBOSS_HOME && $JBOSS_HOME/bin/

run.sh

Now, we tell Maven to run the tests, for both JUnit and TestNG:

$ mvn test -Pjbossas-remote-6

$ cd ../arquillian-example-junit/

$ mvn test -Pjbossas-remote-6

http://github.com/arquillian/arquillian/tree/1.0.0-SNAPSHOT/examples/junit
http://github.com/arquillian/arquillian/tree/1.0.0-SNAPSHOT/examples/junit
http://github.com/arquillian/arquillian/tree/1.0.0-SNAPSHOT/examples/testng
http://github.com/arquillian/arquillian/tree/1.0.0-SNAPSHOT/examples/testng
http://github.com/arquillian/arquillian/tree/1.0.0-SNAPSHOT/examples/testng
http://www.jboss.org/jbossas/downloads
http://www.jboss.org/jbossas/downloads
http://www.jboss.org/jbossas/downloads

Chapter 2. Introductory examples

8

You can also run the tests in an IDE. We'll show you how to run the tests in Eclipse, with m2eclipse

installed, next.

Before running an Arquillian test in Eclipse, you must have the plugin for the unit testing framework

you are using installed. Eclipse ships with the JUnit plugin, so you are already setup if you selected

JUnit. If you are writing your tests with TestNG, you need the Eclipse TestNG plugin [http://

testng.org].

Since the examples in this guide are based on a Maven 2 project, you will also need the m2eclipse

plugin. Instructions for using the m2eclipse update site to add the m2eclipse plugin to Eclipse

are provided on the m2eclipse home page. For more, read the m2eclipse reference guide [http://

www.sonatype.com/books/m2eclipse-book/reference].

Once the plugins are installed, import your Maven project into the Eclipse workspace. Before

executing the test, you need to enable the profile for the target container, as we did on the

command line. We'll go ahead and activate the profile globally for the project (we also need the

default profile, read the note above for more). Right click on the project and select Properties.

Select the Maven property sheet and in the first form field, enter jbossas-remote-6; you also

need to tell Maven to not resolve dependencies from the workspace (this interferes with resource

loading):

http://testng.org
http://testng.org
http://testng.org
http://www.sonatype.com/books/m2eclipse-book/reference
http://www.sonatype.com/books/m2eclipse-book/reference
http://www.sonatype.com/books/m2eclipse-book/reference

9

Maven settings for project

Click OK and accept the project changes. Before we execute tests, make sure that Eclipse has

properly processed all the resource files by running a full build on the project by selecting Clean

from Project menu. Now you are ready to execute tests.

Assuming you have JBoss AS started from running the tests on the command line, you can now

execute the tests. Right click on the InjectionTestCase.java file in the Package Explorer and select

Run As... > JUnit Test or Run As... > TestNG Test depending on which unit testing framework

the test is using.

Chapter 2. Introductory examples

10

Running the test from Eclipse using TestNG

You can now execute all the tests from Eclipse!

2.1. Testing an EJB

Here's a JUnit Arquillian test that validates the behavior of the EJB session bean

GreetingManager. Arquillian looks up an instance of the EJB session bean in the test archive and

injects it into the matching field type annotated with @EJB.

import javax.ejb.EJB;

import org.jboss.arquillian.api.Deployment;

import org.jboss.arquillian.junit.Arquillian;

import org.jboss.shrinkwrap.api.ShrinkWrap;

import org.jboss.shrinkwrap.api.spec.JavaArchive;

import org.junit.Assert;

import org.junit.Test;

import org.junit.runner.RunWith;

@RunWith(Arquillian.class)

public class InjectionTestCase {

 @Deployment

 public static JavaArchive createTestArchive() {

 return ShrinkWrap.create(JavaArchive.class, "test.jar")

 .addClasses(GreetingManager.class, GreetingManagerBean.class);

 }

 @EJB

 private GreetingManager greetingManager;

 @Test

 public void shouldBeAbleToInjectEJB() throws Exception {

Testing CDI beans

11

 String userName = "Earthlings";

 Assert.assertEquals(Hello " + userName, greetingManager.greet(userName));

 }

}

The TestNG version of this test looks identical, except that it extends the

org.jboss.arquillian.testng.Arquillian class rather than being annotated with @RunWith.

2.2. Testing CDI beans

Here's an example of an JUnit Arquillian test that validates the GreetingManager EJB session

bean again, but this time it's injected into the test class using the @Inject annotation. You could

also make GreenManager a basic managed bean and inject it with the same annotation. The test

also verifies that the CDI BeanManager instance is available and gets injected. Notice that to inject

beans with CDI, you have to add a beans.xml file to the test archive.

import javax.enterprise.inject.spi.BeanManager;

import javax.inject.Inject;

import org.jboss.arquillian.api.Deployment;

import org.jboss.arquillian.junit.Arquillian;

import org.jboss.shrinkwrap.api.ShrinkWrap;

import org.jboss.shrinkwrap.api.ArchivePaths;

import org.jboss.shrinkwrap.api.spec.JavaArchive;

import org.jboss.shrinkwrap.api.asset.EmptyAsset;

import org.junit.Assert;

import org.junit.Test;

import org.junit.runner.RunWith;

import com.acme.ejb.GreetingManager;

import com.acme.ejb.GreetingManagerBean;

@RunWith(Arquillian.class)

public class InjectionTestCase

{

 @Deployment

 public static JavaArchive createTestArchive() {

 return ShrinkWrap.create(JavaArchive.class, "test.jar")

 .addClasses(GreetingManager.class, GreetingManagerBean.class)

 .addAsManifestResource(EmptyAsset.INSTANCE, ArchivePaths.create("beans.xml"));

 }

 @Inject GreetingManager greetingManager;

 @Inject BeanManager beanManager;

Chapter 2. Introductory examples

12

 @Test

 public void shouldBeAbleToInjectCDI() throws Exception {

 String userName = "Earthlings";

 Assert.assertNotNull("Should have the injected the CDI bean manager", beanManager);

 Assert.assertEquals("Hello " + userName, greetingManager.greet(userName));

 }

}

2.3. Testing JPA

In order to test JPA, you need both a database and a persistence unit. For the sake of example,

let's assume we are going to use the default datasource provided by the container and that the

tables will be created automatically when the persistence unit starts up. Here's a persistence unit

configuration that satisfies that scenario.

<?xml version="1.0" encoding="UTF-8"?>

<persistence version="1.0"

 xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd">

 <persistence-unit name="users" transaction-type="JTA">

 <provider>org.hibernate.ejb.HibernatePersistence</provider>

 <jta-data-source>java:/DefaultDS</jta-data-source>

 <properties>

 <property name="hibernate.hbm2ddl.auto" value="create-drop" />

 <property name="hibernate.dialect" value="org.hibernate.dialect.HSQLDialect" />

 </properties>

 </persistence-unit>

</persistence>

Now let's assume that we have an EJB session bean that injects a persistence context and is

responsible for storing and retrieving instances of our domain class, User. We've catered it a bit

to the test for purpose of demonstration.

public @Stateless class UserRepositoryBean implements UserRepository {

 @PersistenceContext EntityManager em;

 public void storeAndFlush(User u) {

 em.persist(u);

Testing JPA

13

 em.flush();

 }

 public List<User> findByLastName(String lastName) {

 return em.createQuery("select u from User u where u.lastName = :lastName")

 .setParameter("lastName", lastName)

 .getResultList();

 }

}

Now let's create an Arquillian test to ensure we can persist and subsequently retrieve a user.

Notice that we'll need to add the persistence unit descriptor to the test archive so that the

persistence unit is booted in the test archive.

public class UserRepositoryTest extends Arquillian {

 @Deployment

 public static JavaArchive createTestArchive() {

 return ShrinkWrap.create(JavaArchive.class, "test.jar")

 .addClasses(User.class, UserRepository.class, UserRepositoryBean.class)

 .addAsManifestResource(

 "test-persistence.xml",

 ArchivePaths.create("persistence.xml"));

 }

 private static final String FIRST_NAME = "Agent";

 private static final String LAST_NAME = "Kay";

 @EJB

 private UserRepository userRepository;

 @Test

 public void testCanPersistUserObject() {

 User u = new User(FIRST_NAME, LAST_NAME);

 userRepository.storeAndFlush(u);

 List<User> users = userRepository.findByLastName(LAST_NAME);

 Assert.assertNotNull(users);

 Assert.assertTrue(users.size() == 1);

 Assert.assertEquals(users.get(0).getLastName(), LAST_NAME);

 Assert.assertEquals(users.get(0).getFirstName(), FIRST_NAME);

 }

Chapter 2. Introductory examples

14

}

2.4. Testing JMS

Here's another JUnit Arquillian test that exercises with JMS, something that may have previously

seemed very tricky to test. The test uses a utility class QueueRequestor to encapsulate the low-

level code for sending and receiving a message using a queue.

import javax.annotation.Resource;

import javax.jms.*;

import org.jboss.arquillian.api.Deployment;

import org.jboss.arquillian.junit.Arquillian;

import org.jboss.shrinkwrap.api.ShrinkWrap;

import org.jboss.shrinkwrap.api.spec.JavaArchive;

import org.junit.Assert;

import org.junit.Test;

import org.junit.runner.RunWith;

import com.acme.ejb.MessageEcho;

import com.acme.util.jms.QueueRequestor;

@RunWith(Arquillian.class)

public class InjectionTestCase {

 @Deployment

 public static JavaArchive createTestArchive() {

 return ShrinkWrap.create(JavaArchive.class, "test.jar")

 .addClasses(MessageEcho.class, QueueRequestor.class);

 }

 @Resource(mappedName = "/queue/DLQ")

 private Queue dlq;

 @Resource(mappedName = "/ConnectionFactory")

 private ConnectionFactory factory;

 @Test

 public void shouldBeAbleToSendMessage() throws Exception {

 String messageBody = "ping";

 Connection connection = factory.createConnection();

 Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

 QueueRequestor requestor = new QueueRequestor((QueueSession) session, dlq);

Testing JMS

15

 connection.start();

 Message request = session.createTextMessage(messageBody);

 Message response = requestor.request(request, 5000);

 Assert.assertEquals("Should have responded with same

 message", messageBody, ((TextMessage) response).getText());

 }

}

That should give you a taste of what Arquillian tests look like. To learn how to setup Arquillian in

your application and start developing tests with it, refer to the Chapter 3, Getting started chapter.

16

Chapter 3.

17

Getting started
We've promised you that integration testing with Arquillian is no more complicated than writing a

unit test. Now it's time to prove it to you. In this chapter, we'll look at what is required to setup

Arquillian in your project, how to write an Arquillian test case, how to execute the test case and

how the test results are displayed. That sounds like a lot, but you'll be writing your own Arquillian

tests in no time. (You'll also learn about Chapter 7, Debugging remote tests in Chapter 7).

3.1. Setting up Arquillian in a Maven project

The quickest way to get started with Arquillian is to add it to an existing Maven 2 project.

Regardless of whether you plan to use Maven as your project build, we recommend that you take

your first steps with Arquillian this way so as to get to your first green bar with the least amount

of distraction.

The first thing you should do is define a Maven property for the version of Arquillian you are going

to use. This way, you only have to maintain the version in one place and can reference it using

the Maven variable syntax everywhere else in your build file.

<properties>

 <arquillian.version>1.0.0-SNAPSHOT</arquillian.version>

</properties>

Make sure you have the correct APIs available for your test. In this test we are going to use CDI:

<dependency>

 <groupId>javax.enterprise</groupId>

 <artifactId>cdi-api</artifactId>

 <version>1.0-SP1</version>

</dependency>

Next, you'll need to decide whether you are going to write tests in JUnit 4.x or TestNG 5.x. Once

you make that decision (use TestNG if you're not sure), you'll need to add either the JUnit or

TestNG library to your test build path as well as the corresponding Arquillian library.

If you plan to use JUnit 4, begin by adding the following two test-scoped dependencies to the

<dependencies> section of your pom.xml.

<dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

Chapter 3. Getting started

18

 <version>4.8.1</version>

 <scope>test</scope>

</dependency>

<dependency>

 <groupId>org.jboss.arquillian</groupId>

 <artifactId>arquillian-junit</artifactId>

 <version>${arquillian.version}</version>

 <scope>test</scope>

</dependency>

If you plan to use TestNG, then add these two test-scoped dependencies instead:

<dependency>

 <groupId>org.testng</groupId>

 <artifactId>testng</artifactId>

 <version>5.12.1</version>

 <scope>test</scope>

</dependency>

<dependency>

 <groupId>org.jboss.arquillian</groupId>

 <artifactId>arquillian-testng</artifactId>

 <version>${arquillian.version}</version>

 <scope>test</scope>

</dependency>

That covers the libraries you need to write your first Arquillian test case. We'll revisit the pom.xml

file in a moment to add the library you need to execute the test.

3.2. Writing your first Arquillian test

You're now going to write your first Arquillian test. But in order to write a test, we need to have

something to test. So let's first create a managed bean that we can invoke.

We'll help out those Americans still trying to convert to the metric system by providing them a

Fahrenheit to Celsius converter.

Here's our TemperatureConverter:

public class TemperatureConverter {

 public double convertToCelsius(double f) {

Writing your first Arquillian test

19

 return ((f - 32) * 5 / 9);

 }

 public double convertToFarenheit(double c) {

 return ((c * 9 / 5) + 32);

 }

}

Now we need to validate that this code runs. We'll be creating a test in the src/test/java

classpath of the project.

Granted, in this trivial case, we could simply instantiate the implementation class in a unit test to

test the calculations. However, let's assume that this bean is more complex, needing to access

enterprise services. We want to test it as a full-blown container-managed bean, not just as a simple

class instance. Therefore, we'll inject the bean into the test class using the @Inject annotation.

You're probably very familiar with writing tests using either JUnit or TestNG. A regular JUnit or

TestNG test class requires two enhancements to make it an Arquillian integration test:

• Define the deployment archive for the test using ShrinkWrap

• Declare for the test to use the Arquillian test runner

The deployment archive for the test is defined using a static method annotated with Arquillian's

@Deployment annotation that has the following signature:

public static Archive<?> methodName();

We'll add the managed bean to the archive so that we have something to test. We'll also add an

empty beans.xml file, so that the deployment is CDI-enabled:

@Deployment

public static JavaArchive createTestArchive() {

 return ShrinkWrap.create(JavaArchive.class, "test.jar")

 .addClasses(TemperatureConverter.class)

 .addAsManifestResource(

 new ByteArrayAsset("<beans/>".getBytes()),

 ArchivePaths.create("beans.xml"));

}

The JUnit and TestNG versions of our test class will be nearly identical. They will only differ in

how they hook into the Arquillian test runner.

Chapter 3. Getting started

20

When creating the JUnit version of the Arquillian test case, you will define at least one test

method annotated with the JUnit @Test annotation and also annotate the class with the @RunWith

annotation to indicate that Arquillian should be used as the test runner for this class.

Here's the JUnit version of our test class:

@RunWith(Arquillian.class)

public class TemperatureConverterTest {

 @Inject

 private TemperatureConverter converter;

 @Deployment

 public static JavaArchive createTestArchive() {

 return ShrinkWrap.create(JavaArchive.class, "test.jar")

 .addClasses(TemperatureConverter.class)

 .addAsManifestResource(

 EmptyAsset.INSTANCE,

 ArchivePaths.create("beans.xml"));

 }

 @Test

 public void testConvertToCelsius() {

 Assert.assertEquals(converter.convertToCelsius(32d), 0d);

 Assert.assertEquals(converter.convertToCelsius(212d), 100d);

 }

 @Test

 public void testConvertToFarenheit() {

 Assert.assertEquals(converter.convertToFarenheit(0d), 32d);

 Assert.assertEquals(converter.convertToFarenheit(100d), 212d);

 }

}

TestNG doesn't provide anything like JUnit's @RunWith annotation, so instead the TestNG version

of the Arquillian test case must extend the Arquillian class and define at least one method

annotated with TestNG's @Test annotation.

public class TemperatureConverterTest extends Arquillian {

 @Inject

 private TemperatureConverter converter;

 @Deployment

 public static JavaArchive createTestArchive() {

Setting up and running the test in Maven

21

 return ShrinkWrap.create(JavaArchive.class, "test.jar")

 .addClasses(TemperatureConverter.class)

 .addAsManifestResource(

 EmptyAsset.INSTANCE,,

 ArchivePaths.create("beans.xml"));

 }

 @Test

 public void testConvertToCelsius() {

 Assert.assertEquals(converter.convertToCelsius(32d), 0d);

 Assert.assertEquals(converter.convertToCelsius(212d), 100d);

 }

 @Test

 public void testConvertToFarenheit() {

 Assert.assertEquals(converter.convertToFarenheit(0d), 32d);

 Assert.assertEquals(converter.convertToFarenheit(100d), 212d);

 }

}

As you can see, we are not instantiating the bean implementation class directly, but rather using

the CDI reference provided by the container at the injection point, just as it would be used in the

application. (If the target container supports EJB, you could replace the @Inject annotation with

@EJB). Now let's see if this baby passes!

3.3. Setting up and running the test in Maven

As we've been emphasizing, this test is going to run inside of a container. That means you have

to have a container running somewhere. While you can execute tests in an embedded container

or a Java SE CDI environment, we're going to start off by testing using the real deal.

If you haven't already, download the latest version of JBoss AS 6.0 from the JBoss AS download

page [http://www.jboss.org/jbossas/downloads/], extract the distribution and start the container.

Since Arquillian needs to perform JNDI lookups to get references to the components under test,

we need to include a jndi.properties file on the test classpath. Create the file src/test/

resources/jndi.properties and populate it with the following contents:

java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory

java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces

java.naming.provider.url=jnp://localhost:1099

Next, we're going to return to pom.xml to add another dependency. Arquillian picks which container

it's going to use to deploy the test archive and negotiate test execution using the service provider

http://www.jboss.org/jbossas/downloads/
http://www.jboss.org/jbossas/downloads/
http://www.jboss.org/jbossas/downloads/

Chapter 3. Getting started

22

mechanism, meaning which implementation of the DeployableContainer SPI is on the classpath.

We'll control that through the use of Maven profiles. Add the following profiles to pom.xml:

<profiles>

 <profile>

 <id>jbossas-remote-6</id>

 <dependencies>

 <dependency>

 <groupId>org.jboss.arquillian.container</groupId>

 <artifactId>arquillian-jbossas-remote-6</artifactId>

 <version>${arquillian.version}</version>

 </dependency>

 <dependency>

 <groupId>org.jboss.jbossas</groupId>

 <artifactId>jboss-as-client</artifactId>

 <version>6.0.0.Final</version>

 <type>pom</type>

 </dependency>

 </dependencies>

 </profile>

</profiles>

You would setup a similar profile for each Arquillian-supported container in which you want your

tests executed.

All that's left is to execute the tests. In Maven, that's easy. Simply run the Maven test goal with

the jbossas-remote-6 profile activated:

mvn test -Pjbossas-remote-6

You should see that the two tests pass.

 T E S T S

Running TemperatureConverterTest

Tests run: 2, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 1.964 sec

Results :

Tests run: 2, Failures: 0, Errors: 0, Skipped: 0

Setting up and running the test in Eclipse

23

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

The tests are passing, but we don't see a green bar. To get that visual, we need to run the tests

in the IDE. Arquillian tests can be executed using existing IDE plugins for JUnit and TestNG,

respectively, or so you've been told. It's once again time to prove it.

3.4. Setting up and running the test in Eclipse

Before running an Arquillian test in Eclipse, you must have the plugin for the unit testing framework

you are using installed. Eclipse ships with the JUnit plugin, so you are already setup if you selected

JUnit. If you are writing your tests with TestNG, you need the Eclipse TestNG plugin [http://

testng.org].

Note

Since the example in this guide is based on a Maven 2 project, you will also need the m2eclipse

plugin. Instructions for using the m2eclipse update site to add the m2eclipse plugin to Eclipse

are provided on the m2eclipse home page. For more, read the m2eclipse reference guide [http://

www.sonatype.com/books/m2eclipse-book/reference].

Once the plugins are installed, import your Maven project into the Eclipse workspace. Before

executing the test, you need to enable the profile for the target container, as you did in the previous

section. We'll go ahead and activate the profile globally for the project. Right click on the project

and select Properties. Select the Maven property sheet and in the first form field, enter jbossas-

remote-6; you also need to tell Maven to not resolve depedencies from the workspace (this

interferes with resource loading):

http://testng.org
http://testng.org
http://testng.org
http://www.sonatype.com/books/m2eclipse-book/reference
http://www.sonatype.com/books/m2eclipse-book/reference
http://www.sonatype.com/books/m2eclipse-book/reference

Chapter 3. Getting started

24

Maven settings for project

Click OK and accept the project changes. Before we execute tests, make sure that Eclipse has

properly processed all the resource files by running a full build on the project by selecting Clean

from Project menu. Now you are ready to execute tests.

Right click on the TemperatureConverterTest.java file in the Package Explorer and select Run

As... > JUnit Test or Run As... > TestNG Test depending on which unit testing framework the

test is using.

Setting up and running the test in NetBeans

25

Running the the JUnit test in Eclipse

3.5. Setting up and running the test in NetBeans

Things get even simpler when using NetBeans 6.8 or better. NetBeans ships with native Maven

2 support and, rather than including a test plugin for each unit testing framework, it has a generic

test plugin which delegates to the Maven surefire plugin to execute the tests.

Import your Maven project into NetBeans. Then, look for a select menu in the main toolbar, which

you can use to set the active Maven profile. Select the jbossas-remote-6 profile as shown here:

NetBeans project configuration

Now you are ready to test. Simply right click on the TemperatureConverter.java file in the Projects

pane and select Test File. NetBeans will delegate to the Maven surefire plugin to execute the tests

and then display the results in a result windown, showing us a pretty green bar!

Chapter 3. Getting started

26

Successful test report in NetBeans

As you can see, there was no special configuration necessary to execute the tests in either Eclipse

or NetBeans.

Chapter 4.

27

Target containers
Arquillian's forte is not only in its ease of use, but also in its flexibility. Good integration testing

is not just about testing in any container, but rather testing in the container you are targeting. It's

all too easy to kid ourselves by validating components in a specialized testing container, only to

realize that the small variations causes the components fail when it comes time to deploy to the

application for real. To make tests count, you want to execute them in the real container.

Arquillian supports a variety of target containers out of the box, which will be covered in this

chapter. If the container you are using isn't supported, Arquillian makes it very easy to plug in

your own implementation.

4.1. Container varieties

You can run the same test case against various containers with Arquillian. The test class does

not reference the container directly, which means you don't get locked into a proprietary test

environment. It also means you can select the optimal container for development or easily test

the compatibility of your application.

Arquillian recognizes three container interaction styles:

1. a remote container resides in a separate JVM from the test runner; Arquillian binds to the

container to deploy and undeploy the test archive and invokes tests via a remote protocol

(typically HTTP)

2. an embedded container resides in the same JVM as the test runner; lifecycle managed by

Arquillian; tests are executed via a local protocol for containers without a web component (e.g.,

Embedded EJB) and via a remote protocol for containers that have a web component (e.g.,

Embedded Java EE)

3. a managed container is the same as a remote container, but in addition, its lifecycle (startup/

shutdown) is managed by Arquillian and is run as a separate process

Containers can be further classified by their capabilities. There are three common catagories:

1. A fully compliant Java EE application server (e.g., GlassFish, JBoss AS, Embedded GlassFish)

2. A Servlet container (e.g., Jetty, Tomcat)

3. A standalone bean container (e.g., Weld SE, Spring)

Arquillian provides SPIs that handle each of the tasks involved in controlling the runtime

environment, executing the tests and aggregating the results. So in theory, you can support just

about any environment that can be controlled with the set of hooks you are given.

Chapter 4. Target containers

28

4.2. Container management

While the management of an embedded container is straightforward, you may wonder how

Arquillian knows where the remote and managed containers are installed. Actually, Arquillian only

needs to know the install path of managed containers (e.g., jbossas-managed-6). In this case,

since Arquillian manages the container process, it must have access to the container's startup

script. For managed JBoss AS containers, the install path is read from the environment variable

JBOSS_HOME.

For remote containers (e.g., jbossas-remote-6), Arquillian simply needs to know that the container

is running and communicates with it using a remote protocol (e.g., JNDI). For remote JBoss AS

containers, the JNDI settings are set in a jndi.properties file on the classpath. You also have to

set the remote address and HTTP port in the container configuration if they differ from the default

values (localhost and 8080 for JBoss AS, respectively).

4.3. Supported containers

The implementations provided so far are shown in the table below. Also listed is the artifactId of the

JAR that provides the implementation. To execute your tests against a container, you must include

the artifactId that corresponds to that container on the classpath. Use the following Maven profile

definition as a template to add support for a container to your Maven build, replacing %artifactId

% with the artifactId from the table. You then activate the profile when executing the tests just as

you did in the Chapter 3, Getting started chapter.

<profile>

 <id>%artifactId%</id>

 <dependencies>

 <dependency>

 <groupId>org.jboss.arquillian.container</groupId>

 <artifactId>%artifactId%</artifactId>

 <version>${arquillian.version}</version>

 </dependency>

 </dependencies>

</profile>

Table 4.1. Target containers supported by Arquillian

Container name Container type Spec

compliance

artifactId

JBoss AS 5 remote Java EE 5 arquillian-jbossas-

remote-5

JBoss AS 5.1 remote Java EE 5 arquillian-jbossas-

remote-5.1

Container configuration

29

Container name Container type Spec

compliance

artifactId

JBoss AS 5.1 managed Java EE 5 arquillian-jbossas-

managed-5.1

JBoss AS 6.0 remote Java EE 6 arquillian-jbossas-

remote-6

JBoss AS 6.0 managed Java EE 6 arquillian-jbossas-

managed-6

JBoss AS 6.0 embedded Java EE 6 arquillian-jbossas-

embedded-6

JBoss Reloaded 1.0 embedded JBoss MC arquillian-reloaded-

embedded-1

GlassFish 3.1 remote Java EE 6 arquillian-glassfish-

remote-3.1

GlassFish 3.1 embedded Java EE 6 arquillian-glassfish-

embedded-3.1

Tomcat 6.0 embedded Servlet 2.5 arquillian-tomcat-

embedded-6

Jetty 6.1 embedded Servlet 2.5 arquillian-jetty-

embedded-6.1

Jetty 7.0 embedded Servlet ~3.0 arquillian-jetty-

embedded-7

Weld SE 1.0 embedded CDI arquillian-weld-se-

embedded-1

Weld SE 1.1 embedded CDI arquillian-weld-se-

embedded-1.1

Weld EE 1.1 embedded CDI arquillian-weld-ee-

embedded-1.1

Apache OpenWebBeans

1.0

embedded CDI arquillian-openwebbeans-

embedded-1

Apache OpenEJB 3.1 embedded EJB 3.0 arquillian-openejb-

embedded-3.1

Support for other containers is planned, including Weblogic (remote), WebSphere (remote) and

Hibernate.

4.4. Container configuration

You can come a long way with default values, but at some point you may need to customize some

of the container settings to fit your environment. We're going to have a look at how this can be done

Chapter 4. Target containers

30

with Arquillian. Arquillian will look for a file named arquillian.xml in the root of your classpath.

If it exists it will be auto loaded, else default values will be used. So this file is not a requirement.

Lets imagine that we're working for the company example.com and in our environment we have

two servers; test.example.com and hudson.example.com. test.example.com is the JBoss

instance we use for our integration tests and hudson.example.com is our continuous integration

server that we want to run our integration suite from. By default, Arquillian will use localhost, so

we need to tell it to use test.example.com to run the tests. The JBoss AS container by default

use the Servlet protocol, so we have to override the default configuration.

<?xml version="1.0"?>

<arquillian xmlns="http://jboss.com/arquillian"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://jboss.org/schema/arquillian http://jboss.org/schema/arquillian/

arquillian_1_0.xsd">

 <container qualifier="jbossas" default="true">

 <configuration>

 <property name="providerUrl">jnp://test.example.com:1099</property>

 </configuration>

 <protocol type="Servlet 3.0">

 <configuration>

 <property name="host">test.example.com</property>

 <property name="port">8181</property>

 </configuration>

 </protocol>

 </container>

</arquillian>

That should do it! Here we use the JBoss AS 6.0 Remote container which default use the Servlet

3.0 protocol implementation. We override the default Servlet configuration to say that the http

requests for this container can be executed over test.example.com:8181, but we also need to

configure the container so it knows where to deploy our archives. We could for example have

configured the Servlet protocol to communicate with a Apache server in front of the JBoss AS

Server if we wanted to. Each container has different configuration options.

Tip
For a complete overview of all the containers and their configuration options, see

Chapter 12, Complete Container Reference

Chapter 5.

31

Test enrichment
When you use a unit testing framework like JUnit or TestNG, your test case lives in a world on

its own. That makes integration testing pretty difficult because it means the environment in which

the business logic executes must be self-contained within the scope of the test case (whether at

the suite, class or method level). The bonus of setting up this environment in the test falls on the

developer's shoulders.

With Arquillian, you no longer have to worry about setting up the execution environment because

that is all handled for you. The test will either be running in a container or a local CDI environment.

But you still need some way to hook your test into this environment.

A key part of in-container integration testing is getting access the container-managed components

that you plan to test. Using the Java new operator to instantiate the business class is not suitable

in this testing scenario because it leaves out the declaratives services that get applied to the

component at runtime. We want the real deal. Arquillian uses test enrichment to give us access

to the real deal. The visible result of test enrichment is injection of container resources and beans

directly into the test class.

5.1. Injection into the test case

Before Arquillian negotiates the execution of the test, it enriches the test class by satisfying

injection points specified declaratively using annotations. There are three injection-based

enrichers provided by Arquillian out of the box:

• @Resource - Java EE resource injections

• @EJB - EJB session bean reference injections

• @Inject - CDI injections

The first two enrichers use JNDI to lookup the instance to inject. The CDI injections are handled

by treating the test class as a bean capable of receiving standard CDI injections.

The @Resource annotation gives you access to any object which is available via JNDI. It follows

the standard rules for @Resource (as defined in the Section 2.3 of the Common Annotations for

the Java Platform specification).

The @EJB annotation performs a JNDI lookup for the EJB session bean reference using the

following equation in the specified order:

"java:global/test.ear/test/" + fieldType.getSimpleName() + "Bean",

"java:global/test.ear/test/" + fieldType.getSimpleName(),

"java:global/test/" + fieldType.getSimpleName(),

"java:global/test/" + fieldType.getSimpleName() + "Bean",

Chapter 5. Test enrichment

32

"java:global/test/" + fieldType.getSimpleName() + "/no-interface",

"test/" + unqualified interface name + "Bean/local",

"test/" + unqualified interface name + "Bean/remote",

"test/" + unqualified interface name + "/no-interface",

unqualified interface name + "Bean/local",

unqualified interface name + "Bean/remote",

unqualified interface name + "/no-interface"

If no matching beans were found in those locations the injection will fail.

Warning

At the moment, the lookup for an EJB session reference relies on some common

naming convention of EJB beans. In the future the lookup will rely on the standard

JNDI naming conventions established in Java EE 6.

In order for CDI injections to work, the test archive defined with ShrinkWrap must be a bean

archive. That means adding beans.xml to the META-INF directory. Here's a @Deployment method

that shows one way to add a beans.xml to the archive:

@Deployment

public static JavaArchive createTestArchive() {

 return ShrinkWrap.create("test.jar", JavaArchive.class)

 .addClass(NameOfClassUnderTest.class)

 .addAsManifestResource(new ByteArrayAsset(new byte[0]), Paths.create("beans.xml"))

In an application that takes full advantage of CDI, you can likely get by only using injections defined

with the @Inject annotation. Regardless, the other two types of injection come in handy from

time-to-time.

5.2. Active scopes

When running your tests the embedded Weld EE container, Arquillian activates scopes as follows:

• Application scope - Active for all methods in a test class

• Session scope - Active for all methods in a test class

• Request scope - Active for a single test method

Scope control is experimental at this point and may be altered in a future release of Arquillian.

Chapter 6.

33

Test execution
This chapter walks through the details of test execution, covering both the remote and local

container cases.

Note

Whilst it's not necessary to understand the details of how Arquillian works, it is often

useful to have some insight. This chapter gives you an overview of how Arquillian

executes your test for you in your chosen container.

6.1. Anatomy of a test

In both JUnit 4 and TestNG 5, a test case is a class which contains at least one test method. The

test method is designated using the @Test annotation from the respective framework. An Arquillian

test case looks just like a regular JUnit or TestNG test case with two declarative enhancements:

• The class contains a static method annotated with @Deployment that returns a JavaArchive

• The class is annotated with @RunWith(Arquillian.class) (JUnit) or extends Arquillian

(TestNG)

With those two modifications in place, the test is recognized by the Arquillian test runner and will

be executed in the target container. It can also use the extra functionality that Arquillian provides

—namely container resource injections and the injection of beans.

6.2. ShrinkWrap packaging

When the Arquillian test runner processes a test class, the first thing it does is retrieve the definition

of the Java archive from the @Deployment method, appends the test class to the archive and

packages the archive using ShrinkWrap.

The name of the archive is irrelevant, so the base name "test" is typically choosen (e.g., test.jar,

test.war). Once you have created the shell of the archive, the sky is really the limit of how you can

assemble it. You are customizing the layout and contents of the archive to suit the needs of the

test. Essentially, you creating a micro application in which to execute the code under test.

You can add the following artifacts to the test archive:

• Java classes

• A Java package (which adds all the Java classes in the package)

• Classpath resources

Chapter 6. Test execution

34

• File system resources

• A programmatically-defined file

• Java libraries (JAR files)

• Other Java archives defined by ShrinkWrap

Consult the ShrinkWrap API [http://docs.jboss.org/shrinkwrap/1.0.0-alpha-11/] to discover all the

options you have available for constructing the test archive.

6.3. Test archive deployment

After the Arquillian test runner packages the test archive, it deploys it to the container. For a remote

container, this means copying the archive the hot deployment directory or deploying the archive

using the container's remote deployment service. In the case of a local container, such as Weld

SE, deploying the archive simply means registering the contents of the archive with the runtime

environment.

How does Arquillian support multiple containers? And how are both remote and local cases

supported? The answer to this question gets into the extensibility of Arquillian.

Arquillian delegates to an SPI (service provider interface) to handle starting and stopping

the server and deploying and undeploying archives. In this case, the SPI is the interface

org.jboss.arquillian.spi.client.DeployableContainer. If you recall from the getting

started section, we included an Arquillian library according to the target container we wanted

to use. That library contains an implementation of this interface, thus controlling how Arquillian

handles deployment. If you wanted to introduce support for another container in Arquillian, you

would simply provide an implementation of this interface.

With the archive deployed, all is left is negotiating execution of the test and capturing the results.

As you would expect, once all the methods in the test class have be run, the archive is undeployed.

6.4. Enriching the test class

The last operation that Arquillian performs before executing the individual test methods is

"enriching" the test class instance. This means hooking the test class to the container environment

by satisfying its injection points. The enrichment is provided by any implementation of the

org.jboss.arquillian.spi.TestEnricher SPI on the classpath. Chapter 5, Test enrichment

details the injection points that Arquillian supports.

6.5. Negotiating test execution

The question at this point is, how does Arquillian negotiate with the container to execute

the test when the test framework is being invoked locally? Technially the mechanism

is pluggable using another SPI, org.jboss.arquillian.spi.ContainerMethodExecutor.

Arquillian provides a default implementation for remote servers which uses HTTP communication

http://docs.jboss.org/shrinkwrap/1.0.0-alpha-11/
http://docs.jboss.org/shrinkwrap/1.0.0-alpha-11/

Test run modes

35

and an implementation for local tests, which works through direct execution of the test in the same

JVM. Let's have a look at how the remote execution works.

The archive generator bundles and registers (in the web.xml descriptor) an

HttpServlet, org.jboss.arquillian.protocol.servlet.ServletTestRunner, that responds to test

execution GET requests. The test runner on the client side delegates to the

org.jboss.arquillian.spi.ContainerMethodExecutor SPI implementation, which originates

these test execution requests to transfer control to the container JVM. The name of the test class

and the method to be executed are specified in the request query parameters named className

and methodName, respectively.

When the test execution request is received, the servlet delegates to an implementation of the

org.jboss.arquillian.spi.TestRunner SPI, passing it the name of the test class and the test

method. TestRunner generates a test suite dynamically from the test class and method name and

runs the suite (now within the context of the container).

The ServletTestRunner translates the native test result object of JUnit or TestNG into a

org.jboss.arquillian.spi.TestResult and passes it back to the test executor on the client

side by serializing the translated object into the response. The object gets encoded as either html

or a serialized object, depending on the value of the outputMode request parameter that was

passed to the servlet. Once the result has been transfered to the client-side test runner, the testing

framework (JUnit or TestNG) wraps up the run of the test as though it had been executed in the

same JVM.

Now you should have an understanding for how tests can be executed inside the container, but

still be executed using existing IDE, Ant and Maven test plugins without any modification. Perhaps

you have even started thinking about ways in which you can enhance or extend Arquillian. But

there's still one challenge that remains for developing tests with Arquillian. How do you debug

test? We'll look at how to hook a debugger into the test execution process in the next chapter.

6.6. Test run modes

So far, we've focused on testing your application internals, but we also want to test how others

(people, or other programs) interact with the application. Typically, you want to make sure that

every use case and execution path is fully tested. Third parties can interact with your application

in a number of ways, for example web services, remote EJBs or via http. You need to check that

you object serialization or networking work for instance.

This is why Arquillian comes with two run modes, in container and as client. in container is

to test your application internals and as client is to test how your application is used by clients.

Lets dive a bit deeper into the differences between the run modes and see how they effect your

test execution and packaging.

6.6.1. Mode: in-container

@Deployment(testable = true)

Chapter 6. Test execution

36

As we mentioned above, we need to repackage your @Deployment, adding some Arquillian

support classes, to run in-container. This gives us the ability to communicate with the test, enrich

the test and run the test remotely. In this mode, the test executes in the remote container; Arqullian

uses this mode by default.

See the Complete Protocol Reference for an overview of the expected output of the packaging

process when you provide a @Deployment.

6.6.2. Mode: as-client

@Deployment(testable = false)

Now this mode is the easy part. As apposed to in-container mode which repackages and overrides

the test execution, the as-client mode does as little as possible. It does not repackage your

@Deployment nor does it forward the test execution to a remote server. Your test case is running

in your JVM as expected and you're free to test the container from the outside, as your clients see

it. The only thing Arquillian does is to control the lifecycle of your @Deployment.

Here is an example calling a Servlet using the as client mode.

@RunWith(Arquillian.class)

public class LocalRunServletTestCase

{

 @Deployment(testable = false)

 public static WebArchive createDeployment()

 {

 return ShrinkWrap.create("test.war", WebArchive.class)

 .addClass(TestServlet.class);

 }

 @Test

 public void shouldBeAbleToCallServlet(@ArquillianResource(TestServlet.class) URL baseUrl) throws Exception

 {

 // http://localhost:8080/test/

 String body = readAllAndClose(new URL(baseUrl, "/Test").openStream());

 Assert.assertEquals(

 "Verify that the servlet was deployed and returns the expected result",

 "hello",

 body);

 }

}

Mode: mixed

37

6.6.3. Mode: mixed

@Deployment(testable = true)

public static WebArchive create()

{

}

@Test // runs in container

public void shouldBeAbleToRunOnClientSide() throws Exception

{

}

@Test @RunAsClient // runs as client

public void shouldBeAbleToRunOnClientSide() throws Exception

{

}

It is also possible to mix the two run modes within the same test class. If you have defined the

Deployment to be testable, you can specify the @Test method to use run mode as client by

using the @RunAsClient annotation. This will allow two method within the same test class to run

in different modes. This can be useful if you in a run as client mode want to execute against a

remote endpoint in your application, for then in the next test method assert on server side state

the remote endpoint migh thave created.

Tip

The effect of the different run modes depend on the DeployableContainer used.

Both modes might seem to behave the same in some Embedded containers, but

you should avoid mixing your internal and external tests. One thing is that they

should test different aspects of your application and different usecases, another

is that you will miss the benefits of switching DeployableContainers and run the

same tests suite against a remote server if you do.

38

Chapter 7.

39

Debugging remote tests
While Arquillian tests can be easily executing using existing IDE, Ant and Maven test plugins,

debugging tests are not as straightforward (but by no means difficult). The extra steps documented

in this chapter are only relevant for tests which are not executed in the same JVM as the test

runner. These steps to not apply to tests that are run in a local bean container (e.g., Weld SE),

which can be debugged just like any other unit test.

We'll assume in this chapter that you are already using Eclipse and you already have the test

plugin installed for the testing framework you are using (JUnit or TestNG).

7.1. Debugging in Eclipse

If you set a break point and execute the test in debug mode using a remote container, your break

point won't be hit. That's because when you debug an in-container test, you're actually debugging

the container. The test runner and the test are executing in different JVMs. Therefore, to setup

debugging, you must first attach the IDE debugger to the container, then execute the test in debug

mode (i.e., debug as test). That puts the debugger on both sides of the fence, so to speak, and

allows the break point to be discovered.

Let's begin by looking at how to attach the IDE debugger to the container. This isn't specific to

Arquillian. It's the same setup you would use to debug a deployed application.

7.1.1. Attaching the IDE debugger to the container

There are two ways to attach the IDE debugger to the container. You can either start the container

in debug mode from within the IDE, or you can attach the debugger over a socket connection to

a standalone container running with JPDA enabled.

The Eclipse Server Tools, a subproject of the Eclipse Web Tools Project (WTP), has support

for launching most major application servers, including JBoss AS 5. However, if you are using

JBoss AS, you should consider using JBoss Tools instead, which offers tighter integration with

JBoss technologies. See either the Server Tools documentation [http://www.eclipse.org/webtools/

server/server.php] or the JBoss Tools documentation [http://docs.jboss.org/tools/3.0.1.GA/en/as/

html/index.html] for instructions on how to setup a container and start it in debug mode.

See this blog entry [http://maverikpro.wordpress.com/2007/11/26/remote-debug-a-web-

application-using-eclipse] to learn how to start JBoss AS with JPDA enabled and how to get the

Eclipse debugger to connect to the remote process.

7.1.1.1. Starting JBoss AS in debug mode

If you are using JBoss AS, the quickest way to setup debug mode is to add the following line to

the end of $JBOSS_AS_HOME/bin/run.conf (Unix/Linux):

JAVA_OPTS="$JAVA_OPTS

http://www.eclipse.org/webtools/server/server.php
http://www.eclipse.org/webtools/server/server.php
http://www.eclipse.org/webtools/server/server.php
http://docs.jboss.org/tools/3.0.1.GA/en/as/html/index.html
http://docs.jboss.org/tools/3.0.1.GA/en/as/html/index.html
http://docs.jboss.org/tools/3.0.1.GA/en/as/html/index.html
http://maverikpro.wordpress.com/2007/11/26/remote-debug-a-web-application-using-eclipse
http://maverikpro.wordpress.com/2007/11/26/remote-debug-a-web-application-using-eclipse
http://maverikpro.wordpress.com/2007/11/26/remote-debug-a-web-application-using-eclipse

Chapter 7. Debugging remote tests

40

 -Xrunjdwp:transport=dt_socket,address=8787,server=y,suspend=n"

or before the line :JAVA_OPTS_SET in $JBOSS_AS_HOME/bin/run.conf.bat (Windows)

set JAVA_OPTS="%JAVA_OPTS% -

Xrunjdwp:transport=dt_socket,address=8787,server=y,suspend=n"

Keep in mind your container will always run with debug mode enabled after making this change.

You might want to consider putting some logic in the run.conf* file.

7.1.2. Launching the test in debug mode

Once Eclipse is debugging the container, you can set a breakpoint in the test and debug it just

like a unit test. Let's give it a try.

Open an Arquillian test in the Java editor, right click in the editor view, and select Debug As >

TestNG (or JUnit) Test. When the IDE hits the breakpoint, it halts the JVM thread of the container

rather than the thread that launched the test. You are now debugging remotely.

7.1.3. Stepping into external libraries

If you plan to step into a class in an external library (code outside of your application), you must

ensure that the source is properly associated with the library. Below are the steps to follow to

associate the source of a library with the debug configuration:

1. Select the Run > Debug Configurations... menu from the main menubar

2. Select the name of the test class in the TestNG (or JUnit) category

3. Select the Source tab

4. Click the Add... button on the right

5. Select Java Project

6. Check the project the contains the class you want to debug

7. Click OK on the Project Selection window

8. Click Close on the Debug Configurations window

You'll have to complete those steps for any test class you are debugging, though you only have

to do it once (the debug configuration hangs around indefinitely).

Assertions in remote tests

41

Tip

These steps may not be necessary if you have a Maven project and the sources

for the library are available in the Maven repository.

7.2. Assertions in remote tests

The first time you try Arquillian, you may find that assertions that use the Java assert keyword are

not working. Keep in mind that the test is not executing the same JVM as the test runner.

In order for the Java keyword "assert" to work you have to enable assertions (using the -ea flag)

in the JVM that is running the container. You may want to consider specifying the package names

of your test classes to avoid assertions to be enabled throughout the container's source code.

7.2.1. Enabling assertions in JBoss AS

If you are using JBoss AS, the quickest way to setup debug mode is to add the following line to

the end of $JBOSS_AS_HOME/bin/run.conf (Unix/Linux):

JAVA_OPTS="$JAVA_OPTS -ea"

or before the line :JAVA_OPTS_SET in $JBOSS_AS_HOME/bin/run.conf.bat (Windows)

set "JAVA_OPTS=%JAVA_OPTS% -ea"

Keep in mind your container will always run with assertions enabled after making this change.

You might want to consider putting some logic in the run.conf* file.

As an alternative, we recommend using the 'Assert' object that comes with your test framework

instead to avoid the whole issue. Also keep in mind that if you use System.out.println statements,

the output is going to show up in the log file of the container rather than in the test output.

42

Chapter 8.

43

Build system integration
Just because the Arquillian project uses Maven doesn't mean you have to use it to run your

Arquillian tests. Arquillian is designed to have seamless integration with JUnit and TestNG without

any necessary test framework configuration. That means you can use any build system that has

a JUnit or TestNG task to execute your Arquillian test cases. Since most of this guide focuses

on using Arquillian in a Maven build, this chapter is going to be about alternative build systems,

namely Gradle and Ant.

8.1. Arquillian's active build ingredient

The secret ingredient required to activate the Arquillian test runner is getting the correct libraries

on the classpath. (Often easier said than done). The libraries consist of the Arquillian container

integration and the container runtime (for an embedded container) or deployment client (for a

remote container).

In general, the steps to incorporate Arquillian into a build, regardless of what build tool you are

using, can be summarized as:

1. Activate/configure the JUnit or TestNG task/plugin

2. Add the Arquillian container integration to the test classpath

(e.g., org.jboss.arquillian.container:arquillian-%VENDOR%-%TYPE%-%VERSION%)

3. Add the container runtime (embedded) or deployment client (remote) to the classpath

4. Execute the test build task/goal

If you are only running the Arquillian tests on a single container, this setup is exceptionally

straightforward. The challenge comes when you want to run the tests on multiple containers. It's

really just a matter of putting the correct libraries on the test classpath, though.

For some build systems, isolating multiple classpath definitions is more tricky than others. For

instance, in Maven, you only get one test classpath per run (without using really advanced plugin

configuration). You can toggle between different test classpath pairings through the use of profiles.

Each profile contains the libraries for a single target container (a combination of the libraries

itemized in steps 2 and 3 above). You'll see this strategy used in the Arquillian examples.

Other build tools, such as Gradle, can easily define new test tasks that each have their own,

unique classpath. This makes it not only possible to separate out the target containers, but also

run the tests against each one in the same build execution. We'll see an example of that later in

this chapter. Gradle can also emulate the Maven profile strategy through the use of build fragment

imports. We'll also show an example of that approach for contrast.

Chapter 8. Build system integ...

44

8.2. Integrating Arquillian into a Gradle build

Gradle [http://gradle.org] is a build tool that allows you to create declarative, maintainable, concise

and highly-performing builds. More importantly, in this context, Gradle gives you all the freedom

you need instead of imposing a rigid build lifecycle on you. You'll get a glimpse of just how flexible

Gradle can be by learning how to integrate Arquillian into a Gradle build.

We'll be contrasting two strategies for running Arquillian tests from Gradle:

1. Container-specific test tasks

2. Test "profiles" via build fragment imports

The first strategy is the recommended one since it gives you the benefit of being able to run your

tests on multiple containers in the same build. However, the second approach is less esoteric and

will be more familiar to Maven users. Of course, Gradle is so flexible that there are likely other

solutions for this problem. We invite you to give us feedback if you find a better way (or another

way worth documenting).

Let's get the common build stuff out of the way, then dive into the two strategies listed above.

8.2.1. apply from: common

The simplest Gradle build for a Java project is a sparse one line.

apply plugin: JavaPlugin

Put this line into a file named build.gradle at the root of the project, which is the standard location

of the Gradle build file. (Perhaps after seeing this configuration you'll understand the reference

in the section title).

Next we'll add the Maven Central and JBoss Community repository definitions, so that we can pull

down dependent libraries. The latter repository hosts the Arquillian artifacts.

apply plugin: JavaPlugin

repositories {

 mavenCentral()

 mavenRepo urls: 'http://repository.jboss.org/nexus/content/groups/public'

}

If your SCM (e.g., SVN, Git) is already ignoring the target directory, you may want to move the

Gradle build output underneath this folder, rather than allowing Gradle to use it's default build

directory, build. Let's add that configuration to the common build logic as well:

http://gradle.org
http://gradle.org

apply from: common

45

apply plugin: JavaPlugin

buildDir = 'target/gradle-build'

repositories {

 mavenCentral()

 mavenRepo urls: 'http://repository.jboss.org/nexus/content/groups/public'

}

Warning

If you are using Gradle alongside Maven, you shouldn't set the buildDir to target

since Gradle organizes compiled classes different than Maven does, possibly

leading to conflicts (Though, the behavior of Gradle can also be customized).

We also recommend that you centralize version numbers at the top of your build to make upgrading

your dependency easy. This list will grow as you add other containers, but we'll seed the list for

the examples below:

apply plugin: JavaPlugin

buildDir = 'target/gradle-build'

libraryVersions = [

 junit: '4.8.1', arquillian: '1.0.0.Alpha4', jbossJavaeeSpec: '1.0.0.Beta7', weld: '1.0.1-Final',

 slf4j: '1.5.8', log4j: '1.2.14', jbossas: '6.0.0.Final', glassfish: '3.0.1-b20', cdi: '1.0-SP1'

]

...

We also need to add the unit test library (JUnit or TestNG) and the corresponding Arquillian

integration:

dependencies {

 testCompile group: 'junit', name: 'junit', version: libraryVersions.junit

 testCompile group: 'org.jboss.arquillian', name: 'arquillian-junit', version:

 libraryVersions.arquillian

}

Chapter 8. Build system integ...

46

In this example, we'll assume the project is compiling against APIs that are provided by the target

container runtime, so we need to add a dependency configuration (aka scope) to include libraries

on the compile classpath but excluded from the runtime classpath. In the future, Gradle will include

support for such a scope. Until then, we'll define one ourselves in the configurations closure.

configurations {

 compileOnly

}

We also need to add the dependencies associated with that configuration to the compile

classpaths using the sourceSets closure:

sourceSets {

 main {

 compileClasspath = configurations.compile + configurations.compileOnly

 }

 test {

 compileClasspath = compileClasspath + configurations.compileOnly

 }

}

Here's the Gradle build all together now:

apply plugin: JavaPlugin

buildDir = 'target/gradle-build'

libraryVersions = [

 junit: '4.8.1', arquillian: '1.0.0.Alpha3', jbossJavaeeSpec: '1.0.0.Beta7', weld: '1.0.1-Final',

 slf4j: '1.5.8', log4j: '1.2.14', jbossas: '6.0.0.Final', glassfish: '3.0.1-b20', cdi: '1.0-SP1'

]

repositories {

 mavenCentral()

 mavenRepo urls: 'http://repository.jboss.org/nexus/content/groups/public'

}

configurations {

 compileOnly

}

Strategy #1: Container-specific test tasks

47

sourceSets {

 main {

 compileClasspath = configurations.compile + configurations.compileOnly

 }

 test {

 compileClasspath = compileClasspath + configurations.compileOnly

 }

}

Now that the foundation of a build is in place (or you've added these elements to your existing

Gradle build), we are ready to configuring the container-specific test tasks. In the first approach,

we'll create a unique dependency configuration and task for each container.

8.2.2. Strategy #1: Container-specific test tasks

Each project in Gradle is made up of one or more tasks. A task represents some atomic piece

of work which a build performs. Examples include compiling classes, executing tests, creating

a JAR, publishing an artifact to a repository. We are interested in the executing tests task. But

it's not necessarily just a single test task. Gradle allows you to define any number of test tasks,

each having its own classpath configuration. We'll use this to configure test executions for each

container.

Let's assume that we want to run the tests against the following three Arquillian-supported

containers:

• Weld EE Embedded 1.1

• Remote JBoss AS 6

• Embedded GlassFish 3

We'll need three components for each container:

1. Dependency configuration (scope)

2. Runtime dependencies

3. Custom test task

We'll start with the Weld EE Embedded container. Starting from the Gradle build defined in the

previous section, we first define a configuration for the test runtime dependencies.

configurations {

 compileOnly

 weldEmbeddedTestRuntime { extendsFrom testRuntime }

}

Chapter 8. Build system integ...

48

Next we add the dependencies for compiling against the Java EE API and running Arquillian tests

in the Weld EE Embedded container:

dependencies {

 compileOnly group: 'javax.enterprise', name: 'cdi-api', version: libraryVersions.cdi

 testCompile group: 'junit', name: 'junit', version: libraryVersions.junit

 testCompile group: 'org.jboss.arquillian', name: 'arquillian-junit', version:

 libraryVersions.arquillian

 // temporarily downgrade the weld-ee-embedded-1.1 container

 weldEmbeddedTestRuntime group: 'org.jboss.arquillian.container', name: 'arquillian-weld-ee-

embedded-1.1', version: '1.0.0.Alpha3'

 weldEmbeddedTestRuntime group: 'org.jboss.spec', name: 'jboss-javaee-6.0', version:

 libraryVersions.jbossJavaeeSpec

 weldEmbeddedTestRuntime group: 'org.jboss.weld', name: 'weld-core', version:

 libraryVersions.weld

 weldEmbeddedTestRuntime group: 'org.slf4j', name: 'slf4j-log4j12', version: libraryVersions.slf4j

 weldEmbeddedTestRuntime group: 'log4j', name: 'log4j', version: libraryVersions.log4j

}

Finally, we define the test task:

task weldEmbeddedTest(type: Test) {

 testClassesDir = sourceSets.test.classesDir

 classpath = sourceSets.test.classes + sourceSets.main.classes +

 configurations.weldEmbeddedTestRuntime

}

This task will execute in the lifecycle setup by the Java plugin in place of the normal test task.

You run it as follows:

gradle weldEmbeddedTest

Or, more simply:

gradle wET

Now we just repeat this setup for the other containers.

Strategy #1: Container-specific test tasks

49

Tip

Since you are creating custom test tasks, you likely want to configure the default

test task to either exclude Arquillian tests are to use a default container, perhaps

Weld EE Embedded in this case.

Here's the full build file with the tasks for our three target containers:

apply plugin: JavaPlugin

buildDir = 'target/gradle-build'

libraryVersions = [

 junit: '4.8.1', arquillian: '1.0.0.Alpha4', jbossJavaeeSpec: '1.0.0.Beta7', weld: '1.0.1-Final',

 slf4j: '1.5.8', log4j: '1.2.14', jbossas: '6.0.0.Final', glassfish: '3.0.1-b20', cdi: '1.0-SP1'

]

repositories {

 mavenCentral()

 mavenRepo urls: 'http://repository.jboss.org/nexus/content/groups/public'

 mavenRepo urls: 'http://repository.jboss.org/nexus/content/repositories/deprecated'

}

configurations {

 compileOnly

 weldEmbeddedTestRuntime { extendsFrom testRuntime }

 jbossasRemoteTestRuntime { extendsFrom testRuntime, compileOnly }

 glassfishEmbeddedTestRuntime { extendsFrom testRuntime }

}

dependencies {

 compileOnly group: 'javax.enterprise', name: 'cdi-api', version: libraryVersions.cdi

 testCompile group: 'junit', name: 'junit', version: libraryVersions.junit

 testCompile group: 'org.jboss.arquillian', name: 'arquillian-junit', version:

 libraryVersions.arquillian

 // temporarily downgrade the weld-ee-embedded-1.1 container

 weldEmbeddedTestRuntime group: 'org.jboss.arquillian.container', name: 'arquillian-weld-ee-

embedded-1.1', version: '1.0.0.Alpha3'

 weldEmbeddedTestRuntime group: 'org.jboss.spec', name: 'jboss-javaee-6.0', version:

 libraryVersions.jbossJavaeeSpec

Chapter 8. Build system integ...

50

 weldEmbeddedTestRuntime group: 'org.jboss.weld', name: 'weld-core', version:

 libraryVersions.weld

 weldEmbeddedTestRuntime group: 'org.slf4j', name: 'slf4j-log4j12', version: libraryVersions.slf4j

 weldEmbeddedTestRuntime group: 'log4j', name: 'log4j', version: libraryVersions.log4j

 jbossasRemoteTestRuntime group: 'org.jboss.arquillian.container', name: 'arquillian-jbossas-

remote-6', version: libraryVersions.arquillian

 jbossasRemoteTestRuntime group: 'org.jboss.jbossas', name: 'jboss-as-server', classifier:

 'client', version: libraryVersions.jbossas, transitive: false

 jbossasRemoteTestRuntime group: 'org.jboss.jbossas', name: 'jboss-as-profileservice',

 classifier: 'client', version: libraryVersions.jbossas

 glassfishEmbeddedTestRuntime group: 'org.jboss.arquillian.container', name: 'arquillian-

glassfish-embedded-3', version: libraryVersions.arquillian

 glassfishEmbeddedTestRuntime group: 'org.glassfish.extras', name: 'glassfish-embedded-all',

 version: libraryVersions.glassfish

}

sourceSets {

 main {

 compileClasspath = configurations.compile + configurations.compileOnly

 }

 test {

 compileClasspath = compileClasspath + configurations.compileOnly

 }

}

task weldEmbeddedTest(type: Test) {

 testClassesDir = sourceSets.test.classesDir

 classpath = sourceSets.test.classes + sourceSets.main.classes +

 configurations.weldEmbeddedTestRuntime

}

task jbossasRemoteTest(type: Test) {

 testClassesDir = sourceSets.test.classesDir

 classpath = sourceSets.test.classes + sourceSets.main.classes + files('src/test/resources-

jbossas') + configurations.jbossasRemoteTestRuntime

}

task glassfishEmbeddedTest(type: Test) {

 testClassesDir = sourceSets.test.classesDir

 classpath = sourceSets.test.classes + sourceSets.main.classes +

 configurations.glassfishEmbeddedTestRuntime

Strategy #2: Test profiles

51

}

Note

Notice we've added an extra resources directory for remote JBoss AS 6 to include

the required jndi.properties file. That's a special configuration for the remote JBoss

AS containers, though won't be required after Arquillian 1.0.0.Alpha4.

It's now possible to run the Arquillian tests against each of the three containers in sequence using

this Gradle command (make sure a JBoss AS is started in the background):

gradle weldEmbeddedTest jbossasRemoteTest glassfishEmbeddedTest

Pretty cool, huh?

Now let's look at another way to solve this problem.

8.2.3. Strategy #2: Test profiles

Another way to approach integrating Arquillian into a Gradle build is to emulate the behavior of

Maven profiles. In this case, we won't be adding any extra tasks, rather overriding the Java plugin

configuration and provided tasks.

Note

A Maven profile effectively overrides portions of the build configuration and is

activated using a command option (or some other profile activation setting).

Once again, let's assume that we want to run the tests against the following three Arquillian-

supported containers:

• Weld EE Embedded 1.1

• Remote JBoss AS 6

• Embedded GlassFish 3

All we need to do is customize the test runtime classpath for each container. First, let's setup the

common compile-time dependencies in the main build file:

apply plugin: JavaPlugin

buildDir = 'target/gradle-build'

Chapter 8. Build system integ...

52

libraryVersions = [

 junit: '4.8.1', arquillian: '1.0.0.Alpha3', jbossJavaeeSpec: '1.0.0.Beta7', weld: '1.0.1-Final',

 slf4j: '1.5.8', log4j: '1.2.14', jbossas: '6.0.0.Final', glassfish: '3.0.1-b20', cdi: '1.0-SP1'

]

repositories {

 mavenCentral()

 mavenRepo urls: 'http://repository.jboss.org/nexus/content/groups/public'

}

configurations {

 compileOnly

}

dependencies {

 group: 'org.jboss.spec', name: 'jboss-javaee-6.0', version: libraryVersions.jbossJavaeeSpec

}

sourceSets {

 main {

 compileClasspath = configurations.compile + configurations.compileOnly

 }

 test {

 compileClasspath = compileClasspath + configurations.compileOnly

 }

}

We then need to create a partial Gradle build file for each container that contains the container-

specific dependencies and configuration. Let's start with Weld EE Embedded.

Create a file named weld-ee-embedded-profile.gradle and populate it with the following contents:

dependencies {

 // temporarily downgrade the weld-ee-embedded-1.1 container

 testRuntime group: 'org.jboss.arquillian.container', name: 'arquillian-weld-ee-embedded-1.1',

 version: '1.0.0.Alpha3'

 testRuntime group: 'org.jboss.spec', name: 'jboss-javaee-6.0', version:

 libraryVersions.jbossJavaeeSpec

 testRuntime group: 'org.jboss.weld', name: 'weld-core', version: libraryVersions.weld

 testRuntime group: 'org.slf4j', name: 'slf4j-log4j12', version: libraryVersions.slf4j

 testRuntime group: 'log4j', name: 'log4j', version: libraryVersions.log4j

}

Strategy #2: Test profiles

53

Here's the partial build file for Remote JBoss AS, named jbossas-remote-profile.gradle:

dependencies {

 testRuntime group: 'javax.enterprise', name: 'cdi-api', version: libraryVersions.cdi

 testRuntime group: 'org.jboss.arquillian.container', name: 'arquillian-jbossas-remote-6', version:

 libraryVersions.arquillian

 testRuntime group: 'org.jboss.jbossas', name: 'jboss-as-server', classifier: 'client', version:

 libraryVersions.jbossas, transitive: false

 testRuntime group: 'org.jboss.jbossas', name: 'jboss-as-profileservice', classifier: 'client', version:

 libraryVersions.jbossas

}

test {

 classpath = sourceSets.test.classes + sourceSets.main.classes + files('src/test/resources-

jbossas') + configurations.testRuntime

}

And finally the one for Embedded GlassFish, named glassfish-embedded-profile.gradle:

dependencies {

 testRuntime group: 'org.jboss.arquillian.container', name: 'arquillian-glassfish-embedded-3',

 version: libraryVersions.arquillian

 testRuntime group: 'org.glassfish.extras', name: 'glassfish-embedded-all', version:

 libraryVersions.glassfish

}

Now we need to import the appropriate partial Gradle build into the main build. The file will be

selected based on the value of the project property named profile.

apply plugin: JavaPlugin

buildDir = 'target/gradle-build'

libraryVersions = [

 junit: '4.8.1', arquillian: '1.0.0.Alpha4', jbossJavaeeSpec: '1.0.0.Beta7', weld: '1.0.1-Final',

 slf4j: '1.5.8', log4j: '1.2.14', jbossas: '6.0.0.Final', glassfish: '3.0.1-b20', cdi: '1.0-SP1'

]

apply from: profile + '-profile.gradle'

repositories {

Chapter 8. Build system integ...

54

 mavenCentral()

 mavenRepo urls: 'http://repository.jboss.org/nexus/content/groups/public'

}

configurations {

 compileOnly

}

dependencies {

 compileOnly group: 'javax.enterprise', name: 'cdi-api', version: libraryVersions.cdi

 testCompile group: 'junit', name: 'junit', version: libraryVersions.junit

 testCompile group: 'org.jboss.arquillian', name: 'arquillian-junit', version:

 libraryVersions.arquillian

}

sourceSets {

 main {

 compileClasspath = configurations.compile + configurations.compileOnly

 }

 test {

 compileClasspath = compileClasspath + configurations.compileOnly

 }

}

Tests are run in the Weld EE Embedded runtime using this command:

gradle test -Pprofile=weld-ee-embedded

That's pretty much the same experience you get when you use Maven (and a whole heck of a

lot simpler).

While the configuration is much simpler using the profiles strategy, there are two things to keep

in mind:

1. It crosses over into more than one build file

2. You cannot run the tests in each container in a single build execution

If you have a better idea of how to integrate an Arquillian test suite into a Gradle build, we'd love

to hear it on the Arquillian discussion forums [http://community.jboss.org/en/arquillian].

http://community.jboss.org/en/arquillian
http://community.jboss.org/en/arquillian

Integrating Arquillian into an Ant (+Ivy) build

55

8.3. Integrating Arquillian into an Ant (+Ivy) build

See the CDI subproject [http://github.com/mojavelinux/arquillian-showcase/tree/master/cdi/] of

the Arquillian showcase for an Ant+Ivy build example until this section is written.

http://github.com/mojavelinux/arquillian-showcase/tree/master/cdi/
http://github.com/mojavelinux/arquillian-showcase/tree/master/cdi/

56

Chapter 9.

57

Advanced use cases
This chapter walks through some more advanced features and use cases you can have Arquillian

do for you.

9.1. Descriptor deployment

We have previously seen Arquillian deploy ShrinkWrap Archives, but some times you need to

deploy other items like a JMS Queue or a DataSource for your test to run. This can be done

by using a ShrinkWrap sub project called ShrinkWrap Descriptors. Just like you would deploy a

Archive you can deploy a Descriptor.

@Deployment(order = 1)

public static Descriptor createDep1()

{

 return Descriptors.create(DataSourceDescriptor.class);

}

@Deployment(order = 2)

public static WebArchive createDep2() {}

@Test

public void testDataBase() {}

9.2. Resource injection

When dealing with multiple different environments and hidden dynamic container configuration

you very soon come to a point where you need access to the backing containers ip/port/context

information. This is especially useful when doing remote end point testing. So instead of trying to

setup all containers on the same ip/port/context, or hard code this in your test, Arquillian provides

something we call @ArquillianResource injection. Via this injection point we can expose multiple

internal object.

When you need to get a hold of the HTTP context your Deployment defined, you can use

@ArquillianResource on a field or method argument of type URL.

@ArquillianResource

private URL baseURL;

@ArquillianResource(MyServlet.class)

private URL baseServerURL;

Chapter 9. Advanced use cases

58

@Test

private void shouldDoX(@ArquillianResource(MyServlet.class) URL baseURL)

{

}

9.3. Multiple Deployments

Sometimes a single Deployment is not enough, and you need to specify more then one to get

your test done. Maybe you want to test communication between two different web applications?

Arquillian supports this as well. Simple just add more @Deployment methods to the test class

and your done. You can use the @Deployment.order if they need to be deployed in a specific

order. When dealing with multiple in container deployments you need to specify which Deployment

context the individual test methods should run in. You do this by adding a name to the

deployment by using the @Deployment.name and refer to that name on the test method by adding

@OperateOnDeployment("deploymentName").

@Deployment(name = "dep1", order = 1)

public static WebArchive createDep1() {}

@Deployment(name = "dep2", order = 2)

public static WebArchive createDep2() {}

@Test @OperateOnDeployment("dep1")

public void testRunningInDep1() {}

@Test @OperateOnDeployment("dep2")

public void testRunningInDep2() {}

9.4. Multiple Containers

There are times when you need to involve multiple containers in the same test case, if you for

instance want to test clustering. The first step you need to take is to add a group with multiple

containers to your Arquillian configuration.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<arquillian xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xsi:schemaLocation="http://jboss.org/schema/arquillian http://jboss.org/schema/

arquillian/arquillian_1_0.xsd">

 <group qualifier="tomcat-cluster">

 <container qualifier="container-1" default="true">

 <configuration>

Multiple Containers

59

 <property name="tomcatHome">target/tomcat-embedded-6-standby</property>

 <property name="workDir">work</property>

 <property name="bindHttpPort">8880</property>

 <property name="unpackArchive">true</property>

 </configuration>

 <dependencies>

 <dependency>org.jboss.arquillian.container:arquillian-tomcat-embedded-6:1.0.0-

SNAPSHOT</dependency>

 <dependency>org.apache.tomcat:catalina:6.0.29</dependency>

 <dependency>org.apache.tomcat:coyote:6.0.29</dependency>

 <dependency>org.apache.tomcat:jasper:6.0.29</dependency>

 </dependencies>

 </container>

 <container qualifier="container-2">

 <configuration>

 <property name="tomcatHome">target/tomcat-embedded-6-active-1</property>

 <property name="workDir">work</property>

 <property name="bindHttpPort">8881</property>

 <property name="unpackArchive">true</property>

 </configuration>

 <dependencies>

 <dependency>org.jboss.arquillian.container:arquillian-tomcat-embedded-6:1.0.0-

SNAPSHOT</dependency>

 <dependency>org.apache.tomcat:catalina:6.0.29</dependency>

 <dependency>org.apache.tomcat:coyote:6.0.29</dependency>

 <dependency>org.apache.tomcat:jasper:6.0.29</dependency>

 </dependencies>

 </container>

 </group>

</arquillian>

So what we have done here is to say we have two containers that Arquillian will control, container-1

and container-2. Arquillian will now instead of starting up one container, which is normal, start up

two. In your test class you can target different deployments against the different containers using

the @TargetsContainer("containerName") annotation on your Deployment methods.

@Deployment(name = "dep1") @TargetsContainer("container-1")

public static WebArchive createDep1() {}

@Deployment(name = "dep2") @TargetsContainer("container-2")

public static WebArchive createDep2() {}

@Test @OperateOnDeployment("dep1")

Chapter 9. Advanced use cases

60

public void testRunningInDep1() {}

@Test @OperateOnDeployment("dep2")

public void testRunningInDep2() {}

We now have a single test class that will be executed in two different containers.

testRunningInDep1 will operate in the context of the dep1 deployment which is deployed on the

container named container-1 and testRunningInDep2 will operate in the context of deployment

dep2 which is deployed on container container-2. As the test moves along, each method is

executed inside the individual containers.

Note
We also define the containers dependencies as part of the Arquillian xml. In some

cases, like when running against multiple containers of the same type and the

container has no client side state, this might not be needed. But for the sake of the

example we define them in the configuration. In this case you should not have any

of these dependencies on your application classpath.

Warning
Defining dependencies in arquillian xml is at the moment considered a

experimental feature.

9.5. Protocol selection

A protocol is how Arquillian talks and executes the tests inside the container. For ease of

development and configuration a container defines a default protocol that will be used if no other

is specified. You can override this default behavior by defining the @OverProtocol annotation on

your @Deployment method.

@Deployment @OverProtocol("MyCustomProtocol")

public static WebArchive createDep1() {}

@Test

public void testExecutedUsingCustomProtocol() {}

When testExecutedUsingCustomProtocol is executed, instead of using the containers default

defined protocol, Arquillian will use MyCustomProtocol to communicate with the container. Since

this is defined on Deployment level, you can have different test methods operate on different

deployments and there for be executed using different protocols. This can be useful when for

Protocol selection

61

instance a protocols packaging requirements hinder how you define your archive, or you simply

can't communicate with the container using the default protocol due to e.g. fire wall settings.

Warning
Arquillian only support Servlet 2.5 and Servlet 3.0 at this time. EJB 3.0 and 3.1

are in the plans. But your might implement your own Protocol. See the Complete

Protocol Reference for what is currently supported.

62

Chapter 10.

63

Extending Arquillian
Arquillian is designed to be very extensible. This is accomplished through the use of Service

Provider Interfaces (SPIs). The following diagram shows how the various SPIs in Arquillian tie

into the test execution.

Arquillian test execution and SPI overview

64

Chapter 11.

65

Complete Extension/Framework

Reference

11.1. Performance

The performance extension to Arquillian is a simple way of checking that the code you want to

test performs within the range you want it to. It's can also automatically catch any performance

regressions that might be added to your applications. - and as Arquillian itself, its very easy to use.

11.1.1. Code example

// include other arquillian imports here...

import org.jboss.arquillian.performance.annotation.Performance;

import org.jboss.arquillian.performance.annotation.PerformanceTest;

@PerformanceTest(resultsThreshold=2)

@RunWith(Arquillian.class)

public class WorkHardCdiTestCase

{

 @Deployment

 public static JavaArchive createDeployment() {

 return ShrinkWrap.create(JavaArchive.class ,"test.jar")

 .addPackage(WorkHard.class.getPackage())

 .addAsManifestResource(

 EmptyAsset.INSTANCE,

 ArchivePaths.create("beans.xml"));

 }

 @Inject HardWorker worker;

 @Test

 @Performance(time=20)

 public void doHardWork() throws Exception

 {

 Assert.assertEquals(21, worker.workingHard(), 0d);

 }

}

Chapter 11. Complete Extensio...

66

As you can see the only two additions needed are @Performance and @PerformanceTest. They

do different things and can be used seperately or combined.

@Performance require one argument, time (a double) which set the required maximum time

that the test is allowed to spend in milliseconds. If the test exceeds that time it will fail with an

exception explaining the cause.

@PerformanceTest will cause every testrun of that test to be saved and every new run

will compare results with previous runs. If the new testrun exceeds the previous runs with a

defined threshold an exception will be thrown. The threshold can be set with the parameter

resultsThreshold. It is by default set to 1d.

How threshold is calculated: resultsThreshold * newTime < oldTime.

11.1.2. Maven setup example

The only extra dependency needed is to add arquillian-performance to your pom.xml. Take

a look at the Chapter 3, Getting started to see how you set up arquillian using maven.

<dependency>

 <groupId>org.jboss.arquillian.extension</groupId>

 <artifactId>arquillian-performance</artifactId>

 <version>${arquillian.version}</version>

 <scope>test</scope>

</dependency>

11.2. JSFUnit

The JSFUnit integration to Arquillian is a simpler way of using JSFUnit.

• You no longer need to manually post processor your WebArchives with JSFUnit dependecies

• You can easly test single pages

• Both in-contianer and client mode support

• Use JUnit 4.8.1 or TestNG 5.12.1

Warning

JSFUnit integration requires a Java EE 6 compliant server. The packaging is based

on web-fragments from Servlet 3.0.

Code example

67

11.2.1. Code example

// imports here...

@RunWith(Arquillian.class)

public class JSFUnitTestCase

{

 @Deployment

 public static WebArchive createDeployment()

 {

 return ShrinkWrap.create(WebArchive.class ,"test.war")

 .addClasses(

 RequestScopeBean.class,

 ScopeAwareBean.class)

 .setWebXML("jsf/jsf-web.xml")

 .addResource("jsf/index.xhtml", "index.xhtml")

 .addWebResource(EmptyAsset.INSTANCE, ArchivePaths.create("beans.xml"));

 }

 @Test

 public void shouldExecutePage() throws Exception

 {

 JSFSession jsfSession = new JSFSession("/index.jsf");

 Assert.assertTrue(Environment.is12Compatible());

 Assert.assertTrue(Environment.is20Compatible());

 Assert.assertEquals(2, Environment.getJSFMajorVersion());

 Assert.assertEquals(0, Environment.getJSFMinorVersion());

 JSFServerSession server = jsfSession.getJSFServerSession();

 Assert.assertEquals("request", server.getManagedBeanValue("#{requestBean.scope}"));

 }

}

11.2.2. Maven setup example

The only dependencies needed is to add org.jboss.arquillian.framework:arquillian-

framework-jsfunit and org.jboss.jsfunit:jboss-jsfunit-core to your pom.xml. The rest

is handled by Arquillian in the background. Take a look at the Chapter 3, Getting started to see

how you set up arquillian using maven.

Chapter 11. Complete Extensio...

68

<dependency>

 <groupId>org.jboss.arquillian.framework</groupId>

 <artifactId>arquillian-framework-jsfunit</artifactId>

 <version>1.0.0-SNAPSHOT</version>

 <scope>test</scope>

</dependency>

<dependency>

 <groupId>org.jboss.jsfunit</groupId>

 <artifactId>jboss-jsfunit-core</artifactId>

 <version>1.3.0.Final</version>

 <scope>test</scope>

</dependency>

Warning

To use JSFUnit with Arquillian, JSFUnit 1.3.0.Final is required.

11.3. Drone

The Arquillian Drone extension for Arquillian provides a simple way of including functional tests

for your web based application. Arquillian Drone manages the life cycle of web testing tool, which

is either Arquillian Ajocado, Selenium or WebDriver. Arquillian Drone automatically manages life

cycle of objects required for interaction between browser and deployed application.

11.3.1. Commented Example

Following example illustrates how Arquillian Drone can be used with Arquillian Ajocado. This

example is a part of Arquillian Drone test classes, so you are free to experiment with it.

Arquillian Ajocado is a Selenium on steroids, because it provides type safe API over classic

DefaultSelenium object, has extended support for handling AJAX based UI and adds pretty fast

JQuery locators to you browser, so your test are executed faster. If you are not experienced with

Arquillian Ajocado, you can still use DefaultSelenium or WebDriver specific browser, such as

FirefoxDriver. The beauty of Arquillian Drone is that is supports all of them and their usage is

pretty much the same.

package org.jboss.arquillian.drone.example;

import static org.jboss.arquillian.ajocado.Ajocado.elementPresent;

import static org.jboss.arquillian.ajocado.Ajocado.waitModel;

import static org.jboss.arquillian.ajocado.guard.request.RequestTypeGuardFactory.waitHttp;

Commented Example

69

import static org.jboss.arquillian.ajocado.locator.LocatorFactory.id;

import static org.jboss.arquillian.ajocado.locator.LocatorFactory.xp;

import java.net.URL;

import org.jboss.arquillian.ajocado.framework.AjaxSelenium;

import org.jboss.arquillian.ajocado.locator.IdLocator;

import org.jboss.arquillian.ajocado.locator.XpathLocator;

import org.jboss.arquillian.api.Run;

import org.jboss.arquillian.drone.annotation.ContextPath;

import org.jboss.arquillian.drone.annotation.Drone;

import org.jboss.arquillian.junit.Arquillian;

import org.junit.Assert;

import org.junit.Test;

import org.junit.runner.RunWith;

/**

 * Tests Arquillian Drone extension against Weld Login example. *

 * Uses Ajocado driver bound to Firefox browser.

 *

 */

@RunWith(Arquillian.class)

public class AjocadoTestCase extends AbstractTestCase

{

 // load ajocado driver

 @Drone

 AjaxSelenium driver;

 // Load context path to the test

 @ContextPath

 URL contextPath;

 protected XpathLocator LOGGED_IN = xp("//li[contains(text(),'Welcome')]");

 protected XpathLocator LOGGED_OUT = xp("//li[contains(text(),'Goodbye')]");

 protected IdLocator USERNAME_FIELD = id("loginForm:username");

 protected IdLocator PASSWORD_FIELD = id("loginForm:password");

 protected IdLocator LOGIN_BUTTON = id("loginForm:login");

 protected IdLocator LOGOUT_BUTTON = id("loginForm:logout");

 @Deployment(testable=false)

 public static WebArchive createDeployment()

 {

Chapter 11. Complete Extensio...

70

 return ShrinkWrap.create(WebArchive.class, "weld-login.war")

 .addClasses(Credentials.class, LoggedIn.class, Login.class, User.class, Users.class)

 .addAsWebInfResource(new File("src/test/webapp/WEB-INF/beans.xml"))

 .addAsWebInfResource(new File("src/test/webapp/WEB-INF/faces-config.xml"))

 .addAsWebInfResource(new File("src/test/resources/import.sql"))

 .addAsWebResource(new File("src/test/webapp/index.html"))

 .addAsWebResource(new File("src/test/webapp/home.xhtml"))

 .addAsWebResource(new File("src/test/webapp/template.xhtml"))

 .addAsWebResource(new File("src/test/webapp/users.xhtml"))

 .addAsResource(new File("src/test/resources/META-INF/

persistence.xml"), ArchivePaths.create("META-INF/persistence.xml"))

 .setWebXML(new File("src/test/webapp/WEB-INF/web.xml"));

 }

 @Test

 public void testLoginAndLogout()

 {

 driver.open(contextPath);

 waitModel.until(elementPresent.locator(USERNAME_FIELD));

 Assert.assertFalse("User should not be logged

 in!", driver.isElementPresent(LOGOUT_BUTTON));

 driver.type(USERNAME_FIELD, "demo");

 driver.type(PASSWORD_FIELD, "demo");

 waitHttp(driver).click(LOGIN_BUTTON);

 Assert.assertTrue("User should be logged in!", driver.isElementPresent(LOGGED_IN));

 waitHttp(driver).click(LOGOUT_BUTTON);

 Assert.assertTrue("User should not be logged in!", driver.isElementPresent(LOGGED_OUT));

 }

}

As you can see, execution does not differ from common Arquillian test much. The only requirement

is actually running Arquillian in client mode, which is enforced by marking deployment as

utestable = false or alternatively by @RunAsClient annotation. The other annotations

present in the test are used to inject web test framework instance (@Drone) and context path

(@ContextPath) for deployed archive into your test. Their life cycle is completely managed by

Arquillian Drone, as described in Section 11.3.3, “Life cycle of @Drone objects”. The instance

is used in test method to traverse UI of application via Firefox browser, fill user credentials and

signing up and out. Test is based on JUnit, but Arquillian Drone, as well as the rest of Arquillian

supports TestNG as well.

Maven setup example

71

Table 11.1. Supported frameworks and their tested versions

Framework name and

implementation class

Tested version Additional information

Arquillian Ajocado -

AjaxSelenium

1.0.0.Alpha1 Requires Selenium Server

running

Selenium - DefaultSelenium 2.0b2 Requires Selenium Server

running

Selenium - HtmlUnitDriver,

FirefoxDriver

2.0b2 Selenium Server is not

required

This combination matrix is tested and known to work. However, we expect that all WebDriver

interface based browsers will work. Arquillian Drone does not force you to use a specific version

of web framework test implementation, so feel free to experiment with it.

11.3.2. Maven setup example

Arquillian Drone requires a few test dependencies which are marked as provided to let you

choose their versions. Add following code into your Maven dependecies to enable Arquillian Drone

functionality in your test cases.

<!-- Arquillian Drone dependency -->

<dependency>

 <groupId>org.jboss.arquillian.extension</groupId>

 <artifactId>arquillian-drone</artifactId>

 <version>${arquillian.version}</version>

 <scope>test</scope>

</dependency>

<!-- Arquillian Ajocado dependencies -->

<dependency>

 <groupId>org.jboss.arquillian.ajocado</groupId>

 <artifactId>arquillian-ajocado-api</artifactId>

 <version>${version.ajocado}</version>

 <scope>test</scope>

</dependency>

<dependency>

 <groupId>org.jboss.arquillian.ajocado</groupId>

 <artifactId>arquillian-ajocado-impl</artifactId>

 <version>${version.ajocado}</version>

 <scope>test</scope>

</dependency>

<!-- Selenium (including WebDriver in 2.x versions) -->

Chapter 11. Complete Extensio...

72

<dependency>

 <groupId>org.seleniumhq.selenium</groupId>

 <artifactId>selenium-remote-control</artifactId>

 <version>${version.selenium}</version>

 <scope>test</scope>

</dependency>

<dependency>

 <groupId>org.seleniumhq.selenium</groupId>

 <artifactId>selenium-server</artifactId>

 <version>${version.selenium}</version>

 <scope>test</scope>

</dependency>

<!-- required to run Selenium Server, needed if you want Arquillian Drone to start Selenium Server

 for you -->

<dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-simple</artifactId> <!-- choose different underlying implementation if you want --

>

 <version>${version.slf4j}</version> <!-- up to you, tested with 1.5.10 -->

 <scope>test</scope>

</dependency>

11.3.3. Life cycle of @Drone objects

Arquillian Drone does not allow you to control life cycle of web testing framework objects,

but it provides two different scenarios which should be sufficient for most usages required by

developers. These are

1. Class based life cycle

2. Method based life cycle

For class based life cycle, configuration for the instance is created before a test class is run. This

configuration is used to propertly initialize an instance of the tool. The instance is injected into the

field and hold until the last test in the test class is finished, then it is disposed. You can think of

@BeforeClass and @AfterClass equivalents. On the other hand, for method based life cycle, an

instance is configured and created before Arquillian enters test method and it is disposed after

method finishes. You can think of @Before and @After equivalents.

It is import to know that you can combines multiple instances in one tests and you can have

them in different scopes. You can as well combine different framework types. Following example

shows class based life cycle instance foo of type AjaxSelenium (Arquillian Ajocado) combined

with method based life cycle bar of type DefaultSelenium (Selenium).

Keeping multiple @Drone instances of the same type

73

@RunWith(Arquillian.class)

@RunAs(AS_CLIENT)

public class EnrichedClass

{

 @Drone AjaxSelenium foo;

 public void testRatherWithSelenium(@Drone DefaultSelenium bar)

 {

 ...

 }

}

11.3.4. Keeping multiple @Drone instances of the same type

With Arquillian Drone, it is possible to keep more than one instance of a web test framework tool

of the same type and determine which instance to use in a type safe way. Arquillian Drone uses

concept of @Qualifier, which may be known to you from CDI. @Qualifier is a meta-annotations

which allows you to annotate annotation you create to tell instances appart. By default, if no

@Qualifier annotation is present, Arquillian Drone uses @Default. Following code defines new

qualifying annotation

package org.jboss.arquillian.drone.factory;

import java.lang.annotation.ElementType;

import java.lang.annotation.Retention;

import java.lang.annotation.RetentionPolicy;

import java.lang.annotation.Target;

import org.jboss.arquillian.drone.spi.Qualifier;

@Retention(RetentionPolicy.RUNTIME)

@Target({ ElementType.FIELD, ElementType.PARAMETER })

@Qualifier

public @interface Different

{

}

Once you have defined a qualifier, you can use it in you tests, for example in following way, having

two distinct class based life cycle instances of DefaultSelenium.

Chapter 11. Complete Extensio...

74

@RunWith(Arquillian.class)

@RunAs(AS_CLIENT)

public class EnrichedClass

{

 @Drone DefaultSelenium foo;

 @Drone @Different DefaultSelenium bar;

 public void testWithBothFooAndBar()

 {

 ...

 }

}

11.3.5. Configuring @Drone instances

@Drone instances are automatically configured from arquillian.xml descriptor file, with possibility

of overridding arquillian.xml configuration by system properties. Every type of @Drone instance

has its own configuration namespace, although namespace overlap in areas where it makes

sense, such as sharing a part of configuration between Selenium and Selenium server. System

properties always take precedence.

If you are using @Qualifiers, you can use them to modify configuration, such as create a special

configuration for a method based life cycle browser.

Table 11.2. Arquillian Ajocado configuration

Property name Default value Description

contextRoot http://localhost:8080 Web Server URL

contextPath (empty) Application URL of your

deployed application

browser *firefox Browser type, following

Selenium conventions

resourcesDirectory target/test-classes Directory where additional

resources are stored

buildDirectory target Directory where application is

built

seleniumHost localhost Name of the machine where

Selenium server is running

seleniumPort 14444 Port on machine where

Selenium server is running

seleniumMaximize false Maximize browser window

Configuring @Drone instances

75

Property name Default value Description

seleniumDebug false Produce debug output in

browser console

seleniumNetworkTrafficEnabledfalse Capture network traffic in

browser console

seleniumSpeed 0 Delay in ms before each

command is sent

seleniumTimeoutDefault 30000 Default timeout in ms

seleniumTimeoutGui 5000 Timeout of GUI wait in ms

seleniumTimeoutAjax 15000 Timeout of AJAX wait in ms

seleniumTimeoutModel 30000 Timout of Model wait in ms

Arquillian Ajocado uses ajacodo namespace. This means, you can define properties either in

arquillian.xml

<extension qualifier="ajocado">

 <configuration>

 <property name="seleniumHost">myhost.org</property>

 </configuration>

</extension>

Or you can convert property name to name of system property, using following formula

arqullian. + (namespace) + . + (property name converted to

dotted lowercase). For instance, seleniumNetworkTrafficEnabled will be converted to

arquillian.ajocado.selenium.network.traffic.enabled System property name.

Table 11.3. Selenium configuration

Property name Default value Description

serverPort 14444 Port on machine where

Selenium server is running

serverHost localhost Name of the machine where

Selenium server is running

url http://localhost:8080 Web Server URL

timeout 60000 Default timeout in ms

speed 0 Delay in ms before each

command is sent

browser *firefox Browser type, following

Selenium conventions

Selenium uses selenium namespace.

Chapter 11. Complete Extensio...

76

Table 11.4. WebDriver configuration

Property name Default value Description

implementationClass org.openqa.selenium.htmlunit.HtmlUnitDriverDetermines which browser

instance is created for

WebDriver testing

WebDriver uses webdriver namespace.

Table 11.5. Selenium Server configuration

Property name Default value Description

port 14444 Port on machine where to start

Selenium Server

host localhost Name of the machine where to

start Selenium Server

output target/selenium-server-

output.log

Name of file where to redirrect

Selenium Server logger

enable false Enable Arquillian to start

Selenium Server

Selenium Server uses selenium-server namespace.

Warning

Please note that non-letter characters are converted to dots, so for

instance to enable Selenium via System property, you have to set

arquillian.selenium.server.enable to true.

Selenium Server has different life cycle than @Drone instance, it is created and started before

test suite and disposed after test suite. If you have your own Selenium Server instance running,

you simply omit its configuration, however specifying it is the simplest way how to start it and have

it managed by Arquillian.

If you are wondering how to define configuration for @Qualifier @Drone instance, it's very

easy. Only modification you have to do is to change namespace to include - (@Qualifier

annotation name converted to lowercase). Please note, that for System properties are all non-

letter characters converted to dots. For instance, if you qualified Arquillian Ajocado instance with

@MyExtraBrowser, its namespace will become ajocado-myextrabrowser.

The namespace resolution is a bit more complex. Arquillian Drone will search for configuration

in following order:

1. Search for the exact match of namespace (e.g. ajocado-myextrabrowser) in arqullian.xml, if

found, step 2 is not performed

Arquillian Drone SPI

77

2. Search for a match of base namespace, without qualifier (e.g. ajocado) in arqullian.xml

Then System property overriddes are applied in the same fashion.

11.3.6. Arquillian Drone SPI

The big advantage of Arquillian Drone extension is its flexibility. We provide you reasonable

defaults, but if they are not sufficient or if they do not fulfill your needs, you can change them.

You can change behaviour of existing implemenation or implement support for your own testing

framework. See JavaDoc/sources for more details, here is an enumeration of classes you should

focus on:

org.jboss.arquillian.drone.spi.Configurator<T, C>

Provides a way how to configure configurations of type C for @Drone object of type T

org.jboss.arquillian.drone.spi.Instantiator<T, C>

Provides a way how to instantiate @Drone object of type T with configuration C

org.jboss.arquillian.drone.spi.Destructor<T>

Provides a way how to dispose @Drone object of type T

org.jboss.arquillian.drone.spi.DroneConfiguration

This is effectivelly a marker for configuration of type C

The import note is that implemenation of Configurator, Instantiator and Destructor are searched

on the class path and they are sorted according to precedence they declare. Arquillian Ajocado

default implemenation has precedence of 0, so if your implementation has bigger precedence

and instantiates type T with configuration C, Arquillian Drone will use it. This provides you the

ultimate way how to change behavior if desired. Of course, you can provide support for your

own framework in the very same way, so in your test you can use @Drone annotation to manage

instance of arbitrary web testing framework.

Arquillian Drone SPI extensions are searched via descriptions in META-INF/services on class

path. For instance, to override DefaultSelenium instantiator, create file META-INF/services/

org.jboss.arquillian.drone.spi.Instantiator with following content:

fully.quallified.name.of.my.implementation.Foo

Your class Foo must implement Instantiator<DefaultSelenium,SeleniumConfiguration>

interface.

78

Chapter 12.

79

Complete Container Reference

12.1. JBoss AS 5 - Remote

A DeployableContainer implementation that can connect and run against a remote(different JVM,

different machine) running JBoss AS 5 instance. This implementation has no lifecycle support, so

it can not be started or stopped.

Warning
This container needs a jndi.properties file on classpath to be able to connect to the

remote running instance.

Table 12.1. Container Injection Support Matrix

@EJB @EJB (no-

interface)

@Inject (CDI) @Inject (MC) @PersistenceContext

@PersistenceUnit

12.1.1. Configuration

Default Protocol: Servlet 2.5

Table 12.2. Container Configuration Options

Name Type Default Description

profileName String default ProfileService profileKey. Used to

load the correct profile into the

DeploymentManager.

providerUrl String jnp://localhost:1099 The JNDI connection URL.

urlPkgPrefix String org.jboss.naming:org.jnp.interfacesThe JNDI package prefix.

contextFactory String org.jnp.interfaces.NamingContextFactoryJNDI Context factory class name.

Example of Maven profile setup

<profile>

 <id>jbossas-remote-5</id>

 <dependencies>

 <dependency>

 <groupId>org.jboss.arquillian.container</groupId>

 <artifactId>arquillian-jbossas-remote-5</artifactId>

Chapter 12. Complete Containe...

80

 <version>1.0.0-SNAPSHOT</version>

 </dependency>

 <dependency>

 <groupId>org.jboss.jbossas</groupId>

 <artifactId>jboss-as-client</artifactId>

 <version>5.0.1.GA</version>

 <type>pom</type>

 </dependency>

 </dependencies>

</profile>

12.2. JBoss AS 5.1 - Remote

A DeployableContainer implementation that can connect and run against a remote(different JVM,

different machine) running JBoss AS 5.1 instance. This implementation has no lifecycle support,

so it can not be started or stopped.

Warning
This container needs a jndi.properties file on classpath to be able to connect to the

remote running instance.

Table 12.3. Container Injection Support Matrix

@EJB @EJB (no-

interface)

@Inject (CDI) @Inject (MC) @PersistenceContext

@PersistenceUnit

12.2.1. Configuration

Default Protocol: Servlet 2.5

Table 12.4. Container Configuration Options

Name Type Default Description

profileName String default ProfileService profileKey. Used to

load the correct profile into the

DeploymentManager.

providerUrl String jnp://localhost:1099 The JNDI connection URL.

urlPkgPrefix String org.jboss.naming:org.jnp.interfacesThe JNDI package prefix.

contextFactory String org.jnp.interfaces.NamingContextFactoryJNDI Context factory class name.

JBoss AS 5.1 - Managed

81

Example of Maven profile setup

<profile>

 <id>jbossas-remote-5.1</id>

 <dependencies>

 <dependency>

 <groupId>org.jboss.arquillian.container</groupId>

 <artifactId>arquillian-jbossas-remote-5.1</artifactId>

 <version>1.0.0-SNAPSHOT</version>

 </dependency>

 <dependency>

 <groupId>org.jboss.jbossas</groupId>

 <artifactId>jboss-as-client</artifactId>

 <version>5.1.0.GA</version>

 <type>pom</type>

 </dependency>

 </dependencies>

</profile>

12.3. JBoss AS 5.1 - Managed

A DeployableContainer implementation that can run and connect to a remote(different JVM, same

machine) JBoss AS 5.1 instance. This implementation has lifecycle support, so the container will

be started and stopped as part of the test run.

Table 12.5. Container Injection Support Matrix

@EJB @EJB (no-

interface)

@Inject (CDI) @Inject (MC) @PersistenceContext

@PersistenceUnit

12.3.1. Configuration

Default Protocol: Servlet 2.5

Table 12.6. Container Configuration Options

Name Type Default Description

profileName String default ProfileService profileKey. Used to

load the correct profile into the

DeploymentManager.

bindAddress String localhost The Address the server should bind

to.

Chapter 12. Complete Containe...

82

Name Type Default Description

httpPort int 8080 Used by the ServerManager to

communicate with the server.

rmiPort int 1099 Used by the ServerManager to

communicate with the server.

jbossHome String $JBOSS_HOME The JBoss configuration to start.

javaHome String $JAVA_HOME The Java runtime to use to start the

server.

javaVmArguments String -Xmx512m -

XX:MaxPermSize=128m

JVM arguments used to start the

server.

useRmiPortForAliveCheckboolean false If the ServerManager should use the

RMI port when checking if the server

is up.

startupTimeoutInSecondsint 120 Time to way before throwing

Exception on server startup.

shutdownTimeoutInSecondsint 45 Time to way before throwing

Exception on server shutdown.

Example of Maven profile setup

<profile>

 <id>jbossas-managed-5.1</id>

 <dependencies>

 <dependency>

 <groupId>org.jboss.arquillian.container</groupId>

 <artifactId>arquillian-jbossas-managed-5.1</artifactId>

 <version>1.0.0-SNAPSHOT</version>

 </dependency>

 <dependency>

 <groupId>org.jboss.jbossas</groupId>

 <artifactId>jboss-server-manager</artifactId>

 <version>1.0.3.GA</version>

 </dependency>

 <dependency>

 <groupId>org.jboss.jbossas</groupId>

 <artifactId>jboss-as-client</artifactId>

 <version>5.1.0.GA</version>

 <type>pom</type>

 </dependency>

 </dependencies>

</profile>

JBoss AS 6.0 - Remote

83

12.4. JBoss AS 6.0 - Remote

A DeployableContainer implementation that can connect and run against a remote(different JVM,

different machine) running JBoss AS 6.0 instance. This implementation has no lifecycle support,

so it can not be started or stopped.

Warning
This container needs a jndi.properties file on classpath to be able to connect to the

remote running instance.

Table 12.7. Container Injection Support Matrix

@EJB @EJB (no-

interface)

@Inject (CDI) @Inject (MC) @PersistenceContext

@PersistenceUnit

12.4.1. Configuration

Default Protocol: Servlet 3.0

Table 12.8. Container Configuration Options

Name Type Default Description

profileName String default ProfileService profileKey. Used to

load the correct profile into the

DeploymentManager.

providerUrl String jnp://localhost:1099 The JNDI connection URL.

urlPkgPrefix String org.jboss.naming:org.jnp.interfacesThe JNDI package prefix.

contextFactory String org.jnp.interfaces.NamingContextFactoryJNDI Context factory class name.

Example of Maven profile setup

<profile>

 <id>jbossas-remote-6</id>

 <dependencies>

 <dependency>

 <groupId>org.jboss.arquillian.container</groupId>

 <artifactId>arquillian-jbossas-remote-6</artifactId>

 <version>1.0.0-SNAPSHOT</version>

 </dependency>

 <dependency>

Chapter 12. Complete Containe...

84

 <groupId>org.jboss.jbossas</groupId>

 <artifactId>jboss-as-client</artifactId>

 <version>6.0.0.Final</version>

 <type>pom</type>

 </dependency>

 </dependencies>

</profile>

12.5. JBoss AS 6.0 - Managed

A DeployableContainer implementation that can run and connect to a remote(different JVM, same

machine) JBoss AS 6.0 instance. This implementation has lifecycle support, so the container will

be started and stopped as part of the test run.

Table 12.9. Container Injection Support Matrix

@EJB @EJB (no-

interface)

@Inject (CDI) @Inject (MC) @PersistenceContext

@PersistenceUnit

12.5.1. Configuration

Default Protocol: Servlet 3.0

Table 12.10. Container Configuration Options

Name Type Default Description

profileName String default ProfileService profileKey. Used to

load the correct profile into the

DeploymentManager.

bindAddress String localhost The Address the server should bind

to.

httpPort int 8080 Used by Servlet Protocol to connect

to the server.

rmiPort int 1099 Used by the ServerManager to

communicate with the server.

jbossHome String $JBOSS_HOME The JBoss configuration to start.

javaHome String $JAVA_HOME The Java runtime to use to start the

server.

javaVmArguments String -Xmx512m -

XX:MaxPermSize=128m

JVM arguments used to start the

server.

JBoss AS 6.0 - Embedded

85

Name Type Default Description

useRmiPortForAliveCheckboolean false If the ServerManager should use the

RMI port when checking if the server

is up.

startupTimeoutInSecondsint 120 Time to way before throwing

Exception on server startup.

shutdownTimeoutInSecondsint 45 Time to way before throwing

Exception on server shutdown.

Example of Maven profile setup

<profile>

 <id>jbossas-managed-6</id>

 <dependencies>

 <dependency>

 <groupId>org.jboss.arquillian.container</groupId>

 <artifactId>arquillian-jbossas-managed-6</artifactId>

 <version>1.0.0-SNAPSHOT</version>

 </dependency>

 <dependency>

 <groupId>org.jboss.jbossas</groupId>

 <artifactId>jboss-server-manager</artifactId>

 <version>1.0.3.GA</version>

 </dependency>

 <dependency>

 <groupId>org.jboss.jbossas</groupId>

 <artifactId>jboss-as-client</artifactId>

 <version>6.0.0.Final</version>

 <type>pom</type>

 </dependency>

 </dependencies>

</profile>

12.6. JBoss AS 6.0 - Embedded

A DeployableContainer implementation that can run and connect to a embedded(same JVM)

JBoss AS 6.0 instance. This implementation has lifecycle support, so the container will be started

and stopped as part of the test run.

Chapter 12. Complete Containe...

86

Table 12.11. Container Injection Support Matrix

@EJB @EJB (no-

interface)

@Inject (CDI) @Inject (MC) @PersistenceContext

@PersistenceUnit

12.6.1. Configuration

Default Protocol: Servlet 3.0

Table 12.12. Container Configuration Options

Name Type Default Description

profileName String default ProfileService profileKey. Used to load the

correct profile into the DeploymentManager.

bindAddress String localhost The Address the server should bind to.

Example of Maven profile setup

<profile>

 <id>jbossas-embedded-6</id>

 <dependencies>

 <dependency>

 <groupId>org.jboss.arquillian.container</groupId>

 <artifactId>arquillian-jbossas-embedded-6</artifactId>

 <version>1.0.0-SNAPSHOT</version>

 </dependency>

 <dependency>

 <groupId>org.jboss.jbossas</groupId>

 <artifactId>jboss-as-depchain</artifactId>

 <version>6.0.0.Final</version>

 <type>pom</type>

 </dependency>

 </dependencies>

 <dependencyManagement>

 <dependencies>

 <dependency>

 <groupId>org.jboss.jbossas</groupId>

 <artifactId>jboss-as-depchain</artifactId>

 <version>6.0.0.Final</version>

 <type>pom</type>

 <scope>import</scope>

 </dependency>

 </dependencies>

JBoss Reloaded 1.0 - Embedded

87

 </dependencyManagement>

 <build>

 <plugins>

 <plugin>

 <artifactId>maven-surefire-plugin</artifactId>

 <configuration>

 <additionalClasspathElements>

 <additionalClasspathElement>${env.JBOSS_HOME}/client/jbossws-native-

client.jar</additionalClasspathElement>

 <!--

 Because jbossweb.sar contains shared web.xml, which must be

 visible from same CL as TomcatDeployer.class.getClassLoader

 -->

 <additionalClasspathElement>${env.JBOSS_HOME}/server/default/deploy/

jbossweb.sar</additionalClasspathElement>

 </additionalClasspathElements>

 <redirectTestOutputToFile>true</redirectTestOutputToFile>

 <trimStackTrace>false</trimStackTrace>

 <printSummary>true</printSummary>

 <forkMode>once</forkMode>

 <!--

 MaxPermSize Required to bump the space for relective data like

 classes, methods, etc. EMB-41. Endorsed required for things like

 WS support (EMB-61)

 -->

 <argLine>-Xmx512m -XX:MaxPermSize=256m -Djava.net.preferIPv4Stack=true -

Djava.util.logging.manager=org.jboss.logmanager.LogManager -

Djava.endorsed.dirs=${env.JBOSS_HOME}/lib/endorsed -

Djboss.home=${env.JBOSS_HOME} -Djboss.boot.server.log.dir=${env.JBOSS_HOME}</

argLine>

 </configuration>

 </plugin>

 </plugins>

 </build>

</profile>

12.7. JBoss Reloaded 1.0 - Embedded

A DeployableContainer implementation that can run and connect to a embedded(same JVM)

JBoss Reloaded(MicroContainer + VirtualDeploymentFramework) instance. This implementation

has lifecycle support, so the container will be started and stopped as part of the test run.

Chapter 12. Complete Containe...

88

Table 12.13. Container Injection Support Matrix

@EJB @EJB (no-

interface)

@Inject (CDI) @Inject (MC) @PersistenceContext

@PersistenceUnit

12.7.1. Configuration

Default Protocol:

Table 12.14. Container Configuration Options

Name Type Default Description

12.8. GlassFish 3.1 - Embedded

A DeployableContainer implementation that can run and connect to a embedded(same JVM)

GlassFish 3.1 instance. This implementation has lifecycle support, so the container will be started

and stopped as part of the test run.

Table 12.15. Container Injection Support Matrix

@EJB @EJB (no-

interface)

@Inject (CDI) @Inject (MC) @PersistenceContext

@PersistenceUnit

12.8.1. Configuration

Default Protocol: Servlet 3.0

Table 12.16. Container Configuration Options

Name Type Default Description

bindHttpPort int 8181 The HTTP port the server should bind

to.

instanceRoot String The instanceRoot to use for booting

the server. If it does not exist, a

default structure will be created.

installRoot String The installRoot to use for booting the

server. If it does not exist, a default

structure will be created.

configurationXml String The relative or absolute path to the

domain.xml file that will be used to

GlassFish 3.1 - Remote

89

Name Type Default Description

configure the instance. If absent, the

default domain.xml configuration will

be used.

configurationReadOnlyboolean false If true deployment changes are

not written to the configuration and

persisted.

sunResourcesXml String The relative or absolute path to the

sun-resources.xml file that will be

used to add resources to the instance

using the add-resources asadmin

command.

Example of Maven profile setup

<profile>

 <id>glassfish-embedded-3.1</id>

 <dependencies>

 <dependency>

 <groupId>org.jboss.arquillian.container</groupId>

 <artifactId>arquillian-glassfish-embedded-3</artifactId>

 <version>1.0.0-SNAPSHOT</version>

 </dependency>

 <dependency>

 <groupId>org.glassfish.extras</groupId>

 <artifactId>glassfish-embedded-all</artifactId>

 <version>3.1</version>

 </dependency>

 </dependencies>

</profile>

12.9. GlassFish 3.1 - Remote

A DeployableContainer implementation that connects to a remote GlassFish 3.1 instance and

deploys the test archive using the admin REST api.

Table 12.17. Container Injection Support Matrix

@EJB @EJB (no-

interface)

@Inject (CDI) @Inject (MC) @PersistenceContext

@PersistenceUnit

Chapter 12. Complete Containe...

90

12.9.1. Configuration

Default Protocol: Servlet 3.0

Table 12.18. Container Configuration Options

Name Type Default Description

remoteServerAdminPort int 4848 The

administrative

port the client

should connect

to.

remoteServerAddress String localhost The

administrative

address the client

should connect

to.

remoteServerAdminHttps boolean false Use SSL for

communicating

with the admin

server.

remoteServerHttps boolean false Use SSL to

communicate

with application.

remoteServerHttpPort int 8080 The HTTP port

of the remote

server.

Example of Maven profile setup

<profile>

 <id>glassfish-remote-3.1</id>

 <dependencies>

 <dependency>

 <groupId>org.jboss.arquillian.container</groupId>

 <artifactId>arquillian-glassfish-remote-3</artifactId>

 <version>1.0.0-SNAPSHOT</version>

 <scope>test</scope>

 </dependency>

 </dependencies>

</profile>

Tomcat 6.0 - Embedded

91

12.10. Tomcat 6.0 - Embedded

A DeployableContainer implementation that manages the complete lifecycle of an embedded

(same JVM) Tomcat 6 Servlet Container. (Keep in mind that only select EE APIs are available in

Tomcat 6, such as JNDI and Servlet 2.5). Test archives are adapted to Tomcat's StandardContext

API by ShrinkWrap and deployed programmatically.

Table 12.19. Container Injection Support Matrix

@Resource@EJB @EJB (no-

interface)

@Inject (CDI) @Inject (MC) @PersistenceContext

@PersistenceUnit

Warning
CDI support requires use of Weld Servlet and associated configuration. The WAR

will have to be unpacked as well in order for Weld to locate the classes. See the

following configuration example.

<?xml version="1.0" encoding="UTF-8"?>

<arquillian xmlns="http://jboss.com/arquillian"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:tomcat6="urn:arq:org.jboss.arquillian.container.tomcat.embedded_6">

 <tomcat6:container>

 <!-- unpackArchive must be true if using the Weld Servlet module -->

 <tomcat6:unpackArchive>true</tomcat6:unpackArchive>

</tomcat6:container>

</arquillian>

Running an in-container test on Tomcat 6 currently requires that you add the Arquillian Protocol

Servlet to the test archive's web.xml, a temporary measure until ARQ-217 is resolved. The listing

below shows a minimum web.xml containing the required Servlet mapping:

<?xml version="1.0" encoding="UTF-8"?>

<web-app version="2.5"

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 http://java.sun.com/xml/ns/javaee

Chapter 12. Complete Containe...

92

 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">

 <servlet>

 <servlet-name>ServletTestRunner</servlet-name>

 <servlet-class>org.jboss.arquillian.protocol.servlet_3.ServletTestRunner</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>ServletTestRunner</servlet-name>

 <url-pattern>/ArquillianServletRunner</url-pattern>

 </servlet-mapping>

</web-app>

If you forget to add this Servlet mapping for a test using the in-container run mode, you will get

a failure with the message "Kept getting 404s" because Arquillian can't communicate with the

deployed application.

12.10.1. Configuration

Default Protocol: Servlet 2.5

Table 12.20. Container Configuration Options

Name Type Default Description

bindHttpPort int 9090 The HTTP port the server should bind

to.

bindAddress String localhost The host the server should be run on.

tomcatHome String Optional location of a Tomcat

installation to link against.

serverName String Optional name of the server

appBase String Optional relative or absolute path to

the directory where applications are

deployed (e.g., webapps).

workDir String Optional relative or absolute path to

the directory where applications are

expanded and session serialization

data is stored (e.g., work).

unpackArchive boolean true Specify if the deployment should be

deployed exploded or compressed.

Example of Maven profile setup

Configuration

93

<profile>

 <id>tomcat-embedded</id>

 <dependencies>

 <dependency>

 <groupId>org.jboss.arquillian.container</groupId>

 <artifactId>arquillian-tomcat-embedded-6</artifactId>

 <version>1.0.0-SNAPSHOT</version>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>org.apache.tomcat</groupId>

 <artifactId>catalina</artifactId>

 <version>6.0.29</version>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>org.apache.tomcat</groupId>

 <artifactId>coyote</artifactId>

 <version>6.0.29</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>org.apache.tomcat</groupId>

 <artifactId>jasper</artifactId>

 <version>6.0.29</version>

 <scope>provided</scope>

 </dependency>

 <!-- Weld servlet, EL and JSP required for testing CDI injections -->

 <dependency>

 <groupId>org.jboss.weld.servlet</groupId>

 <artifactId>weld-servlet</artifactId>

 <version>1.0.1-Final</version>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>org.glassfish.web</groupId>

 <artifactId>el-impl</artifactId>

 <version>2.2</version>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>javax.servlet.jsp</groupId>

 <artifactId>jsp-api</artifactId>

Chapter 12. Complete Containe...

94

 <version>2.2</version>

 <scope>test</scope>

 </dependency>

 </dependencies>

</profile>

12.11. Jetty 6.1 - Embedded

A DeployableContainer implementation that can run and connect to a embedded (same JVM)

Jetty 6.1 Servlet Container. The minimum recommended version is Jetty 6.1.12, though you can

use an earlier 6.1 version if you aren't using JNDI resources. Only select EE APIs are available,

such as JNDI and Servlet 2.5. This implementation has lifecycle support, so the container will be

started and stopped as part of the test run.

Table 12.21. Container Injection Support Matrix

@Resource@EJB @EJB (no-

interface)

@Inject (CDI) @Inject (MC) @PersistenceContext

@PersistenceUnit

Warning
CDI support requires use of Weld Servlet.

12.11.1. Configuration

Default Protocol: Servlet 2.5

Table 12.22. Container Configuration Options

Name Type Default Description

bindHttpPort int 9090 The HTTP port the server should bind

to.

bindAddress String localhost The host the server should be run on.

jettyPlus boolean true Activates the Jetty plus configuration

to support JNDI resources (requires

jetty-plus and jetty-naming artifacts

on the classpath).

configurationClassesString null Specify your own Jetty configuration

classes as a comma separated list.

Example of Maven profile setup

Configuration

95

<profile>

 <id>jetty-embedded</id>

 <dependencies>

 <dependency>

 <groupId>org.jboss.arquillian.container</groupId>

 <artifactId>arquillian-jetty-embedded-6.1</artifactId>

 <version>1.0.0-SNAPSHOT</version>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>org.mortbay.jetty</groupId>

 <artifactId>jetty</artifactId>

 <version>6.1.12</version>

 <scope>test</scope>

 </dependency>

 <!-- plus and naming requires for using JNDI -->

 <dependency>

 <groupId>org.mortbay.jetty</groupId>

 <artifactId>jetty-plus</artifactId>

 <version>6.1.12</version>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>org.mortbay.jetty</groupId>

 <artifactId>jetty-naming</artifactId>

 <version>6.1.12</version>

 <scope>test</scope>

 </dependency>

 <!-- Weld servlet, EL and JSP required for testing CDI injections -->

 <dependency>

 <groupId>org.jboss.weld.servlet</groupId>

 <artifactId>weld-servlet</artifactId>

 <version>1.0.1-Final</version>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>org.glassfish.web</groupId>

 <artifactId>el-impl</artifactId>

 <version>2.2</version>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>javax.servlet.jsp</groupId>

Chapter 12. Complete Containe...

96

 <artifactId>jsp-api</artifactId>

 <version>2.2</version>

 <scope>test</scope>

 </dependency>

 </dependencies>

</profile>

12.12. Jetty 7.0 - Embedded

A DeployableContainer implementation that can run and connect to a embedded (same JVM)

Jetty 7 Servlet Container. Only select EE APIs are available, such as JNDI and parts of Servlet

(support for web-fragement.xml is the important bit). This implementation has lifecycle support,

so the container will be started and stopped as part of the test run.

Table 12.23. Container Injection Support Matrix

@Resource@EJB @EJB (no-

interface)

@Inject (CDI) @Inject (MC) @PersistenceContext

@PersistenceUnit

Warning
CDI support requires use of Weld Servlet.

12.12.1. Configuration

Default Protocol: Servlet 3.0

Table 12.24. Container Configuration Options

Name Type Default Description

bindHttpPort int 9090 The HTTP port the server should bind

to.

bindAddress String localhost The host the server should be run on.

jettyPlus boolean true Activates the Jetty plus configuration

to support JNDI resources (requires

jetty-plus and jetty-naming artifacts

on the classpath).

configurationClassesString null Specify your own Jetty configuration

classes as a comma separated list.

Example of Maven profile setup

Configuration

97

<profile>

 <id>jetty-embedded</id>

 <dependencies>

 <dependency>

 <groupId>org.jboss.arquillian.container</groupId>

 <artifactId>arquillian-jetty-embedded-7</artifactId>

 <version>1.0.0-SNAPSHOT</version>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>org.eclipse.jetty</groupId>

 <artifactId>jetty-webapp</artifactId>

 <version>7.0.2.v20100331</version>

 <scope>test</scope>

 </dependency>

 <!-- plus and naming requires for using JNDI -->

 <dependency>

 <groupId>org.eclipse.jetty</groupId>

 <artifactId>jetty-plus</artifactId>

 <version>7.0.2.v20100331</version>

 <scope>test</scope>

 </dependency>

 <!-- Weld servlet, EL and JSP required for testing CDI injections -->

 <dependency>

 <groupId>org.jboss.weld.servlet</groupId>

 <artifactId>weld-servlet</artifactId>

 <version>1.0.1-Final</version>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>org.glassfish.web</groupId>

 <artifactId>el-impl</artifactId>

 <version>2.2</version>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>javax.servlet.jsp</groupId>

 <artifactId>jsp-api</artifactId>

 <version>2.2</version>

 <scope>test</scope>

 </dependency>

 </dependencies>

</profile>

Chapter 12. Complete Containe...

98

12.13. Weld SE 1.0 - Embedded

A DeployableContainer implementation that can run and connect to a embedded(same JVM)

Weld(CDI reference implementation) SE edition. No EE APIs are available. This implementation

has lifecycle support, so the container will be started and stopped as part of the test run.

Table 12.25. Container Injection Support Matrix

@EJB @EJB (no-

interface)

@Inject (CDI) @Inject (MC) @PersistenceContext

@PersistenceUnit

Warning
Local EJBs only, which get treated as managed beans. Transactions, security and

EJB context injection are not applied.

12.13.1. Configuration

Default Protocol: Local

Table 12.26. Container Configuration Options

Name Type Default Description

Example of Maven profile setup

<profile>

 <id>weld-se-embedded-1</id>

 <dependencies>

 <dependency>

 <groupId>org.jboss.arquillian.container</groupId>

 <artifactId>arquillian-weld-se-embedded-1</artifactId>

 <version>1.0.0-SNAPSHOT</version>

 </dependency>

 <dependency>

 <groupId>org.jboss.weld</groupId>

 <artifactId>weld-core</artifactId>

 </dependency>

 <dependency>

 <groupId>org.jboss.weld</groupId>

 <artifactId>weld-api</artifactId>

 </dependency>

Weld SE 1.1 - Embedded

99

 <dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-simple</artifactId>

 </dependency>

 </dependencies>

 <dependencyManagement>

 <dependencies>

 <dependency>

 <groupId>org.jboss.weld</groupId>

 <artifactId>weld-core-bom</artifactId>

 <version>1.0.1-SP1</version>

 <type>pom</type>

 <scope>import</scope>

 </dependency>

 </dependencies>

 </dependencyManagement>

</profile>

12.14. Weld SE 1.1 - Embedded

A DeployableContainer implementation that can run and connect to a embedded(same JVM)

Weld(CDI reference implementation) SE edition. No EE APIs are available. This implementation

has lifecycle support, so the container will be started and stopped as part of the test run.

Table 12.27. Container Injection Support Matrix

@EJB @EJB (no-

interface)

@Inject (CDI) @Inject (MC) @PersistenceContext

@PersistenceUnit

Warning
Local EJBs only, which get treated as managed beans. Transactions, security and

EJB context injection are not applied.

12.14.1. Configuration

Default Protocol: Local

Table 12.28. Container Configuration Options

Name Type Default Description

Chapter 12. Complete Containe...

100

Example of Maven profile setup

<profile>

 <id>weld-se-embedded-11</id>

 <dependencies>

 <dependency>

 <groupId>org.jboss.arquillian.container</groupId>

 <artifactId>arquillian-weld-se-embedded-1</artifactId>

 <version>1.0.0-SNAPSHOT</version>

 </dependency>

 <dependency>

 <groupId>org.jboss.weld</groupId>

 <artifactId>weld-core</artifactId>

 </dependency>

 <dependency>

 <groupId>org.jboss.weld</groupId>

 <artifactId>weld-api</artifactId>

 </dependency>

 <dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-simple</artifactId>

 </dependency>

 </dependencies>

 <dependencyManagement>

 <dependencies>

 <dependency>

 <groupId>org.jboss.weld</groupId>

 <artifactId>weld-core-bom</artifactId>

 <version>1.1.0.Final</version>

 <type>pom</type>

 <scope>import</scope>

 </dependency>

 </dependencies>

 </dependencyManagement>

</profile>

12.15. Weld EE 1.1 - Embedded

A DeployableContainer implementation that can run and connect to a embedded(same

JVM) Weld(CDI reference implementation) EE version. Mock EE APIs are available. This

implementation has lifecycle support, so the container will be started and stopped as part of the

test run.

Configuration

101

Table 12.29. Container Injection Support Matrix

@EJB @EJB (no-

interface)

@Inject (CDI) @Inject (MC) @PersistenceContext

@PersistenceUnit

Warning
Local EJBs only, which get treated as managed beans. Transactions, security and

EJB context injection are not applied.

12.15.1. Configuration

Default Protocol: Local

Table 12.30. Container Configuration Options

Name Type Default Description

enableConversationScope boolean false Activate ConversationScope

between @Test methods. Use this

to simulate Weld Servlet HTTP

Conversation scope support.

Example of Maven profile setup

<profile>

 <id>weld-ee-embedded-1.1</id>

 <dependencies>

 <dependency>

 <groupId>org.jboss.arquillian.container</groupId>

 <artifactId>arquillian-weld-ee-embedded-1.1</artifactId>

 <version>1.0.0-SNAPSHOT</version>

 </dependency>

 <dependency>

 <groupId>org.jboss.weld</groupId>

 <artifactId>weld-core</artifactId>

 </dependency>

 <dependency>

 <groupId>org.jboss.weld</groupId>

 <artifactId>weld-api</artifactId>

 </dependency>

 <dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-simple</artifactId>

Chapter 12. Complete Containe...

102

 </dependency>

 </dependencies>

 <dependencyManagement>

 <dependencies>

 <dependency>

 <groupId>org.jboss.weld</groupId>

 <artifactId>weld-core-bom</artifactId>

 <version>1.1.0.Final</version>

 <type>pom</type>

 <scope>import</scope>

 </dependency>

 </dependencies>

 </dependencyManagement>

</profile>

To run Weld EE Embedded you also need the Java EE APIs. These APIs might be provided to you

by other dependencies like org.jboss.jbossas:jboss-as-client, org.jboss.spec:jboss-

javaee-6.0 or org.glassfish.extras:glassfish-embedded-all.

<dependency>

 <groupId>javax.el</groupId>

 <artifactId>el-api</artifactId>

 <version>2.2</version>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>org.glassfish.web</groupId>

 <artifactId>el-impl</artifactId>

 <version>2.1.2-b04</version>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>org.jboss.spec.javax.servlet</groupId>

 <artifactId>jboss-servlet-api_3.0_spec</artifactId>

 <version>1.0.0.Beta2</version>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>javax.validation</groupId>

 <artifactId>validation-api</artifactId>

 <version>1.0.0.GA</version>

 <scope>test</scope>

 </dependency>

Apache OpenWebBeans 1.0 - Embedded

103

 <dependency>

 <groupId>javax.transaction</groupId>

 <artifactId>jta</artifactId>

 <version>1.1</version>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>javax.persistence</groupId>

 <artifactId>persistence-api</artifactId>

 <version>1.0</version>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>org.jboss.ejb3</groupId>

 <artifactId>jboss-ejb3-api</artifactId>

 <version>3.1.0</version>

 <scope>test</scope>

 </dependency>

12.16. Apache OpenWebBeans 1.0 - Embedded

A DeployableContainer implementation that can run and connect to a embedded(same JVM)

WeldApache OpenWebBeans(CDI) instance. No EE APIs are available. This implementation has

lifecycle support, so the container will be started and stopped as part of the test run.

Table 12.31. Container Injection Support Matrix

@EJB @EJB (no-

interface)

@Inject (CDI) @Inject (MC) @PersistenceContext

@PersistenceUnit

Warning
Local EJBs only, which get treated as managed beans. Transactions, security and

EJB context injection are not applied.

12.16.1. Configuration

Default Protocol: Local

Table 12.32. Container Configuration Options

Name Type Default Description

Chapter 12. Complete Containe...

104

Example of Maven profile setup

<profile>

 <id>openwebbeans-embedded-1</id>

 <dependencies>

 <dependency>

 <groupId>org.jboss.arquillian.container</groupId>

 <artifactId>arquillian-openwebbeans-embedded-1</artifactId>

 <version>1.0.0-SNAPSHOT</version>

 </dependency>

 <dependency>

 <groupId>org.apache.openwebbeans</groupId>

 <artifactId>openwebbeans-spi</artifactId>

 </dependency>

 <dependency>

 <groupId>org.apache.openwebbeans</groupId>

 <artifactId>openwebbeans-impl</artifactId>

 </dependency>

 <dependency>

 <groupId>org.apache.geronimo.specs</groupId>

 <artifactId>geronimo-el_2.2_spec</artifactId>

 </dependency>

 <dependency>

 <groupId>org.apache.geronimo.specs</groupId>

 <artifactId>geronimo-jta_1.1_spec</artifactId>

 </dependency>

 <dependency>

 <groupId>org.apache.geronimo.specs</groupId>

 <artifactId>geronimo-validation_1.0_spec</artifactId>

 </dependency>

 <dependency>

 <groupId>org.apache.geronimo.specs</groupId>

 <artifactId>geronimo-interceptor_1.1_spec</artifactId>

 </dependency>

 <dependency>

 <groupId>org.apache.geronimo.specs</groupId>

 <artifactId>geronimo-jcdi_1.0_spec</artifactId>

 </dependency>

 <dependency>

 <groupId>org.apache.geronimo.specs</groupId>

 <artifactId>geronimo-atinject_1.0_spec</artifactId>

 </dependency>

 <dependency>

 <groupId>org.apache.geronimo.specs</groupId>

Apache OpenEJB 3.1 - Embedded

105

 <artifactId>geronimo-servlet_2.5_spec</artifactId>

 </dependency>

 </dependencies>

 <dependencyManagement>

 <dependencies>

 <dependency>

 <groupId>org.apache.openwebbeans</groupId>

 <artifactId>openwebbeans</artifactId>

 <version>1.0.0</version>

 <type>pom</type>

 <scope>import</scope>

 </dependency>

 </dependencies>

 </dependencyManagement>

</profile>

12.17. Apache OpenEJB 3.1 - Embedded

A DeployableContainer implementation that can run and connect to a embedded(same JVM)

Apache OpenEJB instance. EJB 3.0 APIs are available, but no JMS. This implementation has

lifecycle support, so the container will be started and stopped as part of the test run.

Table 12.33. Container Injection Support Matrix

@EJB @EJB (no-

interface)

@Inject (CDI) @Inject (MC) @PersistenceContext

@PersistenceUnit

12.17.1. Configuration

Default Protocol: Local

Table 12.34. Container Configuration Options

Name Type Default Description

openEjbXml String Specify the OpenEJB XML

configuration file.

jndiProperties String Specify the OpenEJB properties

configuration file.

Example of Maven profile setup

<profile>

Chapter 12. Complete Containe...

106

 <id>openejb-embedded-3.1</id>

 <dependencies>

 <dependency>

 <groupId>org.jboss.arquillian.container</groupId>

 <artifactId>arquillian-openejb-3.1</artifactId>

 <version>1.0.0-SNAPSHOT</version>

 </dependency>

 <dependency>

 <groupId>org.apache.openejb</groupId>

 <artifactId>openejb-core</artifactId>

 <version>3.1.4</version>

 </dependency>

 </dependencies>

</profile>

Chapter 13.

107

Complete Protocol Reference

13.1. Local

The Local Protocol implementation is used by most EE5 compliant containers. It does nothing to

the deployment. The Local Protocol is also used when executing in run mode as client.

Table 13.1. Packaging rules

@Deployment Output Action

JavaArchive JavaArchive Does nothing.

WebArchive WebArchive Does nothing.

EnterpriseArchive EnterpriseArchive Does nothing.

13.1.1. Configuration

Table 13.2. Protocol Configuration Options

Name Type Default Description

13.2. Servlet 2.5

The Servlet 2.5 Protocol implementation is used by most EE5 compliant containers. It will attempt

to add a war to the deployment.

Table 13.3. Packaging rules

@Deployment Output Action

JavaArchive EnterpriseArchive Create a new EnterpriseArchive, add @Deployment

and ServletProtocol as module, the other Auxiliary

Archives as libraries.

WebArchive WebArchive If a web.xml is found, a Servlet will be added, else

a web.xml will be added. The Servlet WebArchive will

be merged with the Deployment and the Auxiliary

Archives added as libraries.

EnterpriseArchive EnterpriseArchive Same as JavaArchive, but using the @Deployment

defined EnterpriseArchive instead of creating a new.

Chapter 13. Complete Protocol...

108

13.2.1. Configuration

Table 13.4. Protocol Configuration Options

Name Type Default Description

host String none Used to override the Deployments default

hostname.

port String none Used to override the Deployments default http

port.

contextRoot int none Used to override the Deployments default

contextRoot.

13.3. Servlet 3.0

The Servlet 3.0 Protocol implementation is used by most EE6 compliant containers. It will attempt

to add a web-fragment to the deployment.

Table 13.5. Packaging rules

@Deployment Output Action

JavaArchive WebArchive Creates a new WebArchive, adds @Deployment and

Auxiliary Archives as libraries.

WebArchive WebArchive Adds @Deployment and Auxiliary Archives as

libraries.

EnterpriseArchive EnterpriseArchive If a single WebArchive is found, the same as for

WebArchive is done. If no WebArchives are found a

new one is creates, adds @Deployment and Auxiliary

Archives as libraries. If multiple WebArchives are found,

a exception is thrown.

13.3.1. Configuration

Table 13.6. Protocol Configuration Options

Name Type Default Description

host String none Used to override the Deployments default

hostname.

port String none Used to override the Deployments default http

port.

contextRoot int none Used to override the Deployments default

contextRoot.

	Arquillian: An integration testing framework for Containers
	Table of Contents
	Preface: Test in the container!
	Chapter 1. Introduction
	1.1. Mission statement
	1.2. Architecture overview
	1.3. Integration testing in Java EE
	1.3.1. Testing the real component
	1.3.2. Finding a happy medium
	1.3.3. Controlling the test classpath

	1.4. Usage scenarios

	Chapter 2. Introductory examples
	2.1. Testing an EJB
	2.2. Testing CDI beans
	2.3. Testing JPA
	2.4. Testing JMS

	Chapter 3. Getting started
	3.1. Setting up Arquillian in a Maven project
	3.2. Writing your first Arquillian test
	3.3. Setting up and running the test in Maven
	3.4. Setting up and running the test in Eclipse
	3.5. Setting up and running the test in NetBeans

	Chapter 4. Target containers
	4.1. Container varieties
	4.2. Container management
	4.3. Supported containers
	4.4. Container configuration

	Chapter 5. Test enrichment
	5.1. Injection into the test case
	5.2. Active scopes

	Chapter 6. Test execution
	6.1. Anatomy of a test
	6.2. ShrinkWrap packaging
	6.3. Test archive deployment
	6.4. Enriching the test class
	6.5. Negotiating test execution
	6.6. Test run modes
	6.6.1. Mode: in-container
	6.6.2. Mode: as-client
	6.6.3. Mode: mixed

	Chapter 7. Debugging remote tests
	7.1. Debugging in Eclipse
	7.1.1. Attaching the IDE debugger to the container
	7.1.1.1. Starting JBoss AS in debug mode

	7.1.2. Launching the test in debug mode
	7.1.3. Stepping into external libraries

	7.2. Assertions in remote tests
	7.2.1. Enabling assertions in JBoss AS

	Chapter 8. Build system integration
	8.1. Arquillian's active build ingredient
	8.2. Integrating Arquillian into a Gradle build
	8.2.1. apply from: common
	8.2.2. Strategy #1: Container-specific test tasks
	8.2.3. Strategy #2: Test profiles

	8.3. Integrating Arquillian into an Ant (+Ivy) build

	Chapter 9. Advanced use cases
	9.1. Descriptor deployment
	9.2. Resource injection
	9.3. Multiple Deployments
	9.4. Multiple Containers
	9.5. Protocol selection

	Chapter 10. Extending Arquillian
	Chapter 11. Complete Extension/Framework Reference
	11.1. Performance
	11.1.1. Code example
	11.1.2. Maven setup example

	11.2. JSFUnit
	11.2.1. Code example
	11.2.2. Maven setup example

	11.3. Drone
	11.3.1. Commented Example
	11.3.2. Maven setup example
	11.3.3. Life cycle of @Drone objects
	11.3.4. Keeping multiple @Drone instances of the same type
	11.3.5. Configuring @Drone instances
	11.3.6. Arquillian Drone SPI

	Chapter 12. Complete Container Reference
	12.1. JBoss AS 5 - Remote
	12.1.1. Configuration

	12.2. JBoss AS 5.1 - Remote
	12.2.1. Configuration

	12.3. JBoss AS 5.1 - Managed
	12.3.1. Configuration

	12.4. JBoss AS 6.0 - Remote
	12.4.1. Configuration

	12.5. JBoss AS 6.0 - Managed
	12.5.1. Configuration

	12.6. JBoss AS 6.0 - Embedded
	12.6.1. Configuration

	12.7. JBoss Reloaded 1.0 - Embedded
	12.7.1. Configuration

	12.8. GlassFish 3.1 - Embedded
	12.8.1. Configuration

	12.9. GlassFish 3.1 - Remote
	12.9.1. Configuration

	12.10. Tomcat 6.0 - Embedded
	12.10.1. Configuration

	12.11. Jetty 6.1 - Embedded
	12.11.1. Configuration

	12.12. Jetty 7.0 - Embedded
	12.12.1. Configuration

	12.13. Weld SE 1.0 - Embedded
	12.13.1. Configuration

	12.14. Weld SE 1.1 - Embedded
	12.14.1. Configuration

	12.15. Weld EE 1.1 - Embedded
	12.15.1. Configuration

	12.16. Apache OpenWebBeans 1.0 - Embedded
	12.16.1. Configuration

	12.17. Apache OpenEJB 3.1 - Embedded
	12.17.1. Configuration

	Chapter 13. Complete Protocol Reference
	13.1. Local
	13.1.1. Configuration

	13.2. Servlet 2.5
	13.2.1. Configuration

	13.3. Servlet 3.0
	13.3.1. Configuration

