Drools Planner User Guide

1. Planner iNTrOQUCTIONiiiiiii e e e e et e e e et e e e e et e e e e et s e e e eate s aeeeees 1
1.1. What iS Drools PIANNEIr? ..ottt e e e e e aens 1
1.2. What is a planning problem? ... 1

1.2.1. A planning problem is NP-completeccooiviiiiiiiiiiii e, 1
1.2.2. A planning problem has (hard and soft) constraintsccc.ccoeveviieeinnnnns 2
1.2.3. A planning problem has a huge search spaceccccoooeiiiiiiiiiiinecin, 3
1.3. Status Of Drools PIANNETiiiiiiiiieiiii e e s 3
1.4. Get Drools Planner and run the eXxamplescooooiiiiiin e 3
1.4.1. Get the release zip and run the examplesccooooiiiiiiiiin i, 3
1.4.2. Run the examples in an IDE (IntelliJ, Eclipse, NetBeans)ccc.occeevunne.n. 4
1.4.3. Get it with maven, gradle, ivy, buildr or ANTocoiiiiiiii e, 4
1.4.4. BUIld it frOM SOUICEieeiiiiii e e e e e ees 5
1.5. Questions, issues and blogcooiiiiiiii s 5

2. Use cases and eXaAMPIESiiiiiiiiiiiii e 7
2% I 1 1 £ To 11X 1o) o 1N 7
2.2. N QUEENS EXAMPIE .oeiiiiiii ettt ettt 7

2.2.1. Problem StatemMeNntc.uuiiiiiiiiei e 7
2.2.2. SOIULION(S) eertneiiiii ettt et ettt 8
2.2.3. SCIEENSNOL ...ttt e 8
A o 0] 0] [T 4 = RN 9
P22 ST B 1o o ¢ F= V1 10 T Yo 1= NP PP 10
2.3. Cloud balancing eXampleoiioii e 12
2.3.1. Problem StatemMentccouuuiiiiiiiie e 12
ARG T To 1 . = 1 T 1 4T To 1= 14
2.4. Machine reassignment example (ROADEF 2012)ccoceiiiiiiiiiiiieciiieecceeeee e, 14
2.4.1. Problem State@meNntoiiiiiiii i 14
2.4.2. PrODIBIM SIZE ..vuiiiiiiii e e 15
2.5. Manners 2009 eXAMPIE ..o 16
2.5.1. Problem StatemMentcocuuuiiiiiiiiie e 16
2.6. Traveling Salesman Problem example (TSP)ooviiiiiiiiiiiiiiiec e 16
2.6.1. Problem StatemMentcoouuuiiiiiiiiieei e 16
2.7. Traveling Tournament Problem example (TTP)oiiiiiiiiiiiii e 16
2.7.1. Problem StatemMentcoouuniiiiiiiieee e 16
2.7.2. Simple and smart implementationcccooeeiiiiiieiiiiin e 18
2.7.3. PrODIBIM SIZE ..vviiiiiii e e 18
2.8. Curriculum course scheduling example (ITC 2007 track 3)ccovvveviiieiiiinnenenn. 19
2.8.1. Problem StatemMentcoouuuiiiiiiiii e 19
2.9. Examination timetabling example (ITC 2007 track 1)cccooveeiiiiiiieiiiiineeeiiineeees 19
2.9.1. Problem StatemMentccouuuiiiiiiiiie e 19
A I o 0] o] [T 4 IS P 21
P22 RS TR B 1o o ¢ F= V1 10 T Yo 1= T PSP 21
2.10. Patient admission scheduling (hospital bed planning) example (PAS) 23
2.10.1. Problem State@meNntcooouuiiiiiii e 23

Drools Planner User Guide

2.11. Nurse rostering example (INRC 2010)uveiiiiiiieiiiieeeiieeeei e e 24
2.11.1. Problem State@meNntcooeuuiiiiiii i 24

3. Planner configUIAtioncoooue it 29
0 I O 1= o T PP 29
3.2. SOIVEr CONFIQUIALIONiiiiiiee i 29
3.2.1. Solver configuration by XML fileccooiiiiiiiiii e, 29
3.2.2. Solver configuration by Java APl ... 30

3.3. Model your planning problemcocoiiiii 31
3.3.1. Is this class a problem fact or planning entity?ccccooeiiiiiiiiiiinneiiinnnnn. 31
3.3.2. Problem faCtoooueiiiiii i 32
3.3.3. Planning entity and planning variablescccooooiiiiiiiiiin e 33
3.3.4. Planning value and planning value rangesc.ccoeveviiieiiiieeiiieeiiieeeaneeens 38
3.3.5. Planning problem and planning SOIUtIONcc.ooviiiiiiiniiiiiecei e 42

S 1o] Y- ST 48
3.4.1. The SOIVEr INtEIfACEuiiiiiii e 48
3.4.2. Solving @ problem ... 48
3.4.3. Environment mode: Are there bugs in my code?cccooviiiiiinieiininnenenn. 49
3.4.4. Logging level: What is the Solver doing?ccccoveiiiiiiiiiiii e, 51

4. Score calculation with a rule enNgine ... 53
4.1. Rule based score CalCulationc.uiiiiiiiiiiiii e 53
4.2. Choosing a Score implementation ... 53
4.2.1. The ScoreDefinition INterfacecceviiiiiiiiiiii e 53
4.2.2. SIMPIESCOIE ..ooiiiei et e 53
4.2.3. HardANASOFtSCOIEuuiiiiiiiieiiiie et 54
4.2.4. Implementing & CUSTOM SCOMEuuuiiiiiiiiieiiii e 54

4.3. Defining the SCOre rules SOUICEccivuiiiiiiciie e e 54
4.3.1. A scoreDrl resource on the classpathccooovviiiiiiiii e, 54
4.3.2. A RuleBase (possibly defined by GUVNOr)cocoiiiiiiiiiiii e, 55

4.4, Implementing @ SCOME FUIEoouun et 55
4.5, Aggregating the score rules into the SCOrecccoveviiiiiii i, 56
4.6. Delta based score CalCulationooovuiiiiiiiiiiiee e 58
o G W o FSR= U (o I v o] 59
5. Optimization algorithms ... e 61
5.1. The size of real world ProblEMScoiiiiiiiii e 61
5.2. The secret sauce Of Drools Plannercooveiiiiiiiiiiienee e 61
5.3. Optimization algorithms OVEIVIEWccouiiiiiiiiiii e 62
5.4. Which optimization algorithms should | USE7?ccooiiiiiiiiiiiii e 63
5.5, SOIVEIPRASE ...t 64
LT T I =T 0 11 = o o PP 65
5.6.1. TimeMillisSpendTerminationcccccieeiiiiiiiii e 65
5.6.2. ScoreAttainedTermiNationcooouuiiiiiiieiie e eees 66
5.6.3. StepCountTermMinationcoccuuiiiiiiieiiie e e e e e e e eaa s 67
5.6.4. UnimprovedStepCountTerminationcoovviviiiiniiiiiiiiieieine e, 67
5.6.5. Combining TerminNationSc..ceeiiiiiiiiiieie e e 67

5.6.6. Asynchronous termination from another threadccooooiiiiiiiiiineennnn. 68

5.7. CUSLOM SOIVEIPRASE ..o e 68
LT = ox A 4 1= 1 o o 71
L I O A= T PP 71
B.2. BIULE FOICE .. e 71
6.2.1. Algorithm desCriptionoiiiiiiiii e e 71
6.2.2. CONFIQUIALION .eutiiiiiii e e 73

6.3. Branch and DOUNGooiiiiiiiii e 73
6.3.1. AlIgorithm desCriPtiONccoouiiiiiiiii e 73

(SR T2 ©1o] 0110 [0 - io] o [P 75

7. CONSEIIUCHION NEBUIISTICS 1uuiiiiiiiii e e e e e e eeens 77
A T O Y= T PSP 77
7 6= A | P 77
7.2.1. Algorithm desCriptionc..ciiiiiiiiii e e e 77
7.2.2. CONFIQUIALION euiiiiiii e e e 79

7.3. First Fit DECIEASING ..vuueiitiieii ettt e e e e e e e e e e e e eanas 79
7.3.1. AIgorithm desCriPtiONociiiiiiiiii e 79

RS T ©1o] 110 [0 - i o] o [T 81

A = 1) A | PSPPI 81
7.4.1. Algorithm desCriptionc..iiiiiiiii e e e 81
7.4.2. CONFIQUIALION oeutiiieiii e e 81

7.5. BESt Fit DECIEASING . cevuiiiieiiiieeii e et e et e e e e e e e e e et e e et e e e e st e e et e eeanaeeees 82
7.5.1. AIgorithm desCriPtiONooiiiiiiiiii e 82

AR T o] 110 [0 - i o] o [T 82

7.6. Cheapest INSEITIONiiiiiii e et e et e e e e e e eees 82
7.6.1. Algorithm desCriptionc..oiiiiiiiii e 82
7.6.2. CONFIQUIALION .euuiiiiiii e et 82

8. LOCAl SEArCh SOIVEI oot 83
G TR O 1YY YT 83
8.2. Hill climbing (simple local search)cocoiiiiiii i, 83
8.2.1. AIgorithm desCriPtIONoiiiiiiiiiiii e 83

8.3. TADU SEAICH ... 83
8.3.1. AIgOrithm desCriPIONoiiiiiiiiiiii e e 83

8.4. Simulated annNEaliNgGoeiuiiiiiii i 83
8.4.1. Algorithm desCriPtIONoiiiiiiiiiiii e 83

8.5. About neighborhoods, moves and SIEPScveviiiiiii i 83
8L 5. d. A MOV e 83
8.5.2. MOVE GENETALION ...uuiiiieiiieii e e e e e e e e e et e et e e e e eens 87
85,3, A S P it 88
8.5.4. Getting stuck in local Optimac.covviiiiiiie e 91

8.6. DeCiding the NEXE SLEP ..eevuiiiiii e 92
G0 S 7= =Tl (o SRR 93
8.6.2. ACCEPION .ottt 94
80,3, PO Ag B ittt 96

Drools Planner User Guide

o T =T = 2 A=] [V i) o P 98

8.8. Using a custom Selector, Acceptor, Forager or Terminationccoovevvueeennnns 98

9. Evolutionary algorithms ... 929
LS B O A= T PSP 99

9.2. EVOIULIONAIY STIrAtEOIESiiiieiiieiiiii ettt e enaans 99

9.3. GENEtiC algOrthMS ...coui i e 99

10. Benchmarking and tweakingooooeuiiiiiiiii e 101
10.1. Finding the best configurationcccooiiiiiiiiiii e 101
10.2. Building @ BENCAMAIKETiiiiiiii e 101
10.2.1. Adding the exta dependencycccoceiiiiiiiiiiii e 101

10.2.2. Building a basic Benchmarkerccooooiiiiiiiiiii e, 101

10.2.3. Warming up the hotspot COMPIIErcciviiiiiiiiiiii e, 104

10.3. SUMMANY STALISTICS .vvuuiiiiiiiei it e e e 104
10.3.1. BESt SCOIE SUMIMEAIY ..uuuuiiniineinetne et ae e ee e e e e e e e e e ee e e e e e eaes 104

10.4. Statistics per data set (graph and CSV)c.coiviiiiiiiiiiiiiii e 106
10.4.1. Best score over time statistic (graph and CSV)cccoivviiiiiiiciieeeennn. 106

10.4.2. Calculate count per second statistic (graph and CSV)cccceeveevinnnnen. 108

10.4.3. Memory use statistic (graph and CSV)ccoveviiiiiiiiiiiiecin e 110

11. Repeated PlanNING ... 113
11.1. Introduction to repeated planningcccooviiiiii i 113
11.2. Backup Planning ...o.uuieiiiieii e 113
11.3. Continuous planning (windowed planning)cccoveviiiiiiieiie e, 113
11.4. Real-time planning (event based planning)cccoovviiiiiiiiiii e 115
a0 = OSSP 119

Vi

Drools

Planner &

viii

Chapter 1.

Chapter 1. Planner introduction

1.1. What is Drools Planner?

Drools Planner [http://lwww.jboss.org/drools/drools-planner] optimizes planning problems.
It solves use cases, such as:
« Employee shift rostering: timetabling nurses, repairmen, ...

e Agenda scheduling: scheduling meetings, appointments, maintenance jobs,
advertisements, ...

< Educational timetabling: scheduling lessons, courses, exams, conference presentations, ...
« Vehicle routing: planning vehicles (trucks, trains, boats, airplanes, ...) with freight and/or people

» Bin packing: filling containers, trucks, ships and storage warehouses, but also cloud computers
nodes, ...

« Job shop scheduling: planning car assembly lines, machine queue planning, workforce task
planning, ...

» Cutting stock: minimizing waste while cutting paper, steel, carpet, ...
e Sport scheduling: planning football leagues, baseball leagues, ...
» Financial optimization: investment portfolio optimization, risk spreading, ...

Every organization faces planning problems: provide products and services with a limited set of
constrained resources (employees, assets, time and money).

Drools Planner enables normal Java' ™ programmers to solve planning problems efficiently. Under
the hood, it combines optimization algorithms (including Metaheuristics such as Tabu Search and
Simulated Annealing) with the power of score calculation by a rule engine.

Drools Planner, like the rest of Drools, is business-friendly open source software under
the Apache Software License 2.0 [http://www.apache.org/licenses/LICENSE-2.0] (layman's
explanation [http://www.apache.org/foundation/licence-FAQ.html#WhatDoesItMEAN)]).

1.2. What is a planning problem?

1.2.1. A planning problem is NP-complete

All the use cases above are probably NP-complete [http://en.wikipedia.org/wiki/NP-complete]. In
layman's terms, this means:

« It's easy to verify a given solution to a problem in reasonable time.

http://www.jboss.org/drools/drools-planner
http://www.jboss.org/drools/drools-planner
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/foundation/licence-FAQ.html#WhatDoesItMEAN
http://www.apache.org/foundation/licence-FAQ.html#WhatDoesItMEAN
http://www.apache.org/foundation/licence-FAQ.html#WhatDoesItMEAN
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete

Chapter 1. Planner introduction

» There is no silver bullet to find the optimal solution of a problem in reasonable time (*).

@ Note
(*) At least, none of the smartest computer scientists in the world have found such
a silver bullet yet. But if they find one for 1 NP-complete problem, it will work for
every NP-complete problem.

In fact, there's a $ 1,000,000 reward for anyone that proves if
[http://en.wikipedia.org/wiki/P_%3D_NP_problem].

The implication of this is pretty dire: solving your problem is probably harder than you anticipated,
because the 2 common techniques won't suffice:

A brute force algorithm (even a smarter variant) will take too long.

* A quick algorithm, for example in bin packing, putting in the largest items first, will return a
solution that is usually far from optimal.

Drools Planner does find a good solution in reasonable time for such planning problems.

1.2.2. A planning problem has (hard and soft) constraints

Usually, a planning problem has at least 2 levels of constraints:

* A (negative) hard constraint must not be broken. For example: 1 teacher can not teach 2 different
lessons at the same time.

« A (negative) soft constraint should not be broken if it can be avoided. For example: Teacher A
does not like to teach on Friday afternoon.

Some problems have positive constraints too:

» A positive soft constraint (or reward) should be fulfilled if possible. For example: Teacher B likes
to teach on Monday morning.

In practice, these are just like negative soft constraints, but with a positive weight.

Some toy problems (such as N Queens) only have hard constraints. Some problems have 3 or
more levels of constraints, for example hard, medium and soft constraints.

These constraints define the score function (AKA fitness function) of a planning problem. Each
solution of a planning problem can be graded with a score. Because we 'll define these constraints
as rules in the Drools Expert rule engine, adding constraints in Drools Planner is easy and
scalable.

http://en.wikipedia.org/wiki/P_%3D_NP_problem
http://en.wikipedia.org/wiki/P_%3D_NP_problem
http://en.wikipedia.org/wiki/P_%3D_NP_problem

A planning problem has a huge search space

1.2.3. A planning problem has a huge search space

A planning problem has a number of solutions. There are several categories of solutions:

« A possible solution is a solution that does or does not break any number of constraints. Planning
problems tend to have a incredibly large number of possible solutions. Most of those solutions
are worthless.

» Afeasible solution is a solution that does not break any (negative) hard constraints. The number
of feasible solutions tends to be relative to the number of possible solutions. Sometimes there
are no feasible solutions. Every feasible solution is a possible solution.

< An optimal solution is a solution with the highest score. Planning problems tend to have 1 or a
few optimal solutions. There is always at least 1 optimal solution, even in the case that there
are no feasible solutions and the optimal solution isn't feasible.

» The best solution found is the solution with the highest score found by an implementation in a
given amount of time. The best solution found is likely to be feasible.

Counterintuitively, the number of possible solutions is huge (if calculated correctly), even with a
small dataset. As you'll see in the examples, most instances have a lot more possible solutions
than the minimal number of atoms in the known universe (10780). Because there is no silver bullet
to find the optimal solution, any implementation is forced to evaluate at least a subset of all those
possible solutions.

Drools Planner supports several optimization algorithms to efficiently wade through that incredibly
large number of possible solutions. Depending on the use case, some optimization algorithms
perform better than others. In Drools Planner it is easy to switch the optimization algorithm,
by changing the solver configuration in a few XML lines or by API.

1.3. Status of Drools Planner

Drools Planner is production ready. The API is almost stable but
backward incompatible changes can occur. With the recipe called
Upgr adeFr onPr evi ousVer si onReci pe. t xt [https://github.com/droolsjopm/drools-planner/blob/
master/drools-planner-distribution/src/main/assembly/filtered-resources/
UpgradeFromPreviousVersionRecipe.txt] you can easily upgrade and deal with any backwards
incompatible changes between versions. That recipe file is included in every release.

1.4. Get Drools Planner and run the examples

1.4.1. Get the release zip and run the examples

You can download a release zip of Drools Planner from the Drools download site [http:/
www.jboss.org/drools/downloads.html]. Unzip it. To run an example, just open the directory

https://github.com/droolsjbpm/drools-planner/blob/master/drools-planner-distribution/src/main/assembly/filtered-resources/UpgradeFromPreviousVersionRecipe.txt
https://github.com/droolsjbpm/drools-planner/blob/master/drools-planner-distribution/src/main/assembly/filtered-resources/UpgradeFromPreviousVersionRecipe.txt
https://github.com/droolsjbpm/drools-planner/blob/master/drools-planner-distribution/src/main/assembly/filtered-resources/UpgradeFromPreviousVersionRecipe.txt
https://github.com/droolsjbpm/drools-planner/blob/master/drools-planner-distribution/src/main/assembly/filtered-resources/UpgradeFromPreviousVersionRecipe.txt
http://www.jboss.org/drools/downloads.html
http://www.jboss.org/drools/downloads.html
http://www.jboss.org/drools/downloads.html

Chapter 1. Planner introduction

exanpl es and run the script (runExanpl es. sh on Linux and Mac or runExanpl es. bat on
Windows) and pick an example in the GUI:

$ cd exanpl es
$./runExanpl es. sh

$ cd exanpl es
$ runExanpl es. bat

1.4.2. Run the examples in an IDE (IntelliJ, Eclipse, NetBeans)

To run the examples in your favorite IDE, first configure your IDE:

« In IntelliJ and NetBeans, just open the file exanpl es/ sour ces/ pom xnl as a new project, the
maven integration will take care of the rest.

* In Eclipse, open a new project for the directory exanpl es/ sour ces.

* Add all the jars to the classpath from the directory bi nari es and the directory exanpl es/
bi nari es, except for the file exanpl es/ bi nari es/ dr ool s- pl anner - exanpl es-*.j ar.

* Add the java source directory src/ mai n/ j ava and the java resources directory src/ mai n/
resources.

Next, create a run configuration:

e Main class: or g. dr ool s. pl anner . exanpl es. app. Dr ool sPl anner Exanpl esApp
* VM parameters (optional): - Xnx512M - ser ver

« Working directory: exanpl es (this is the directory that contains the directory dat a)

1.4.3. Get it with maven, gradle, ivy, buildr or ANT

The Drools Planner jars are available on the central maven repository [http://search.maven.org/
#search|ga|l|org.drools.planner] (and the JBoss maven repository [https://repository.jboss.org/
nexus/index.html#nexus-search;gav~org.drools.planner~~~~]).

If you use maven, just add a dependency to dr ool s- pl anner - cor e in your project's pom xmn :
<dependency>

<gr oupl d>org. drool s. pl anner </ gr oupl d>
<artifact!|d>drool s-planner-core</artifactld>

http://search.maven.org/#search|ga|1|org.drools.planner
http://search.maven.org/#search|ga|1|org.drools.planner
http://search.maven.org/#search|ga|1|org.drools.planner
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.drools.planner~~~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.drools.planner~~~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.drools.planner~~~~

Build it from source

<ver si on>5. x</ ver si on>
</ dependency>

This is similar for gradle, ivy and buildr.

If you're still using ant (without ivy), copy all the jars from the download zip's bi nari es directory
and manually verify that your classpath doesn't contain duplicate jars.

1.4.4. Build it from source

You can also easily build it from source yourself.

Set up Git [http://help.github.com/set-up-git-redirect] and clone dr ool s- pl anner from GitHub (or
alternatively, download the zipball [https://github.com/droolsjbpm/drools-planner/zipball/master]):

$ git clone git@ithub.com drool sj bpnif drool s-pl anner.git drool s-planner

Then do a Maven 3 [http://maven.apache.org/] build:

$ cd drool s-pl anner
$ nmvn - Dski pTests clean install

After that, you can run any example directly from the command line, just run this command and
pick an example:

$ cd drool s-pl anner - exanpl es
$ nmvn exec: exec

1.5. Questions, issues and blog

Your questions and comments are welcome on the user mailing list [http://www.jboss.org/
drools/lists.html]. Start the subject of your mail with [planner]. You can read/
write to the user mailing list without littering your mailbox through this web forum
[http://drools.46999.n3.nabble.com/Drools-User-forum-f47000.html] or this newsgroup [nntp://
news.gmane.org/gmane.comp.java.drools.user].

Feel free to report an issue (such as a bug, improvement or a new feature request) for the
Drools Planner code or for this manual to the drools issue tracker [https://jira.jpboss.org/jira/browse/
JBRULES]. Select the component dr ool s- pl anner.

http://help.github.com/set-up-git-redirect
http://help.github.com/set-up-git-redirect
https://github.com/droolsjbpm/drools-planner/zipball/master
https://github.com/droolsjbpm/drools-planner/zipball/master
http://maven.apache.org/
http://maven.apache.org/
http://www.jboss.org/drools/lists.html
http://www.jboss.org/drools/lists.html
http://www.jboss.org/drools/lists.html
http://drools.46999.n3.nabble.com/Drools-User-forum-f47000.html
http://drools.46999.n3.nabble.com/Drools-User-forum-f47000.html
nntp://news.gmane.org/gmane.comp.java.drools.user
nntp://news.gmane.org/gmane.comp.java.drools.user
nntp://news.gmane.org/gmane.comp.java.drools.user
https://jira.jboss.org/jira/browse/JBRULES
https://jira.jboss.org/jira/browse/JBRULES
https://jira.jboss.org/jira/browse/JBRULES

Chapter 1. Planner introduction

Pull requests (and patches) are very welcome and get priority treatment! Include the pull request
link to a JIRA issue and optionally send a mail to the dev mailing list to get the issue fixed fast.
By open sourcing your improvements, you 'll benefit from our peer review, improvements made
upon your improvements and maybe even a thank you on our blog.

Check our blog [http://blog.athico.com/search/label/planner] and twitter (Geoffrey De Smet [http://
twitter.com/geoffreydesmet]) for news and articles. If Drools Planner helps you solve your problem,
don't forget to blog or tweet about it!

http://blog.athico.com/search/label/planner
http://blog.athico.com/search/label/planner
http://twitter.com/geoffreydesmet
http://twitter.com/geoffreydesmet
http://twitter.com/geoffreydesmet

Chapter 2.

Chapter 2. Use cases and examples

2.1. Introduction

Drools Planner has several examples. In this manual we explain Drools Planner mainly using the
n queens example. So it's advisable to read at least the section about that example. For advanced
users, the following examples are recommended: curriculum course and nurse rostering.

You can find the source code of all these examples in the distribution zip under exanpl es/ sour ces
and also in git under dr ool s- pl anner/ dr ool s- pl anner - exanpl es.

2.2. N queens example

2.2.1. Problem statement

The n queens puzzle is a puzzle with the following constraints:

» Use a chessboard of n columns and n rows.
* Place n queens on the chessboard.

« No 2 queens can attack each other. Note that a queen can attack any other queen on the same
horizontal, vertical or diagonal line.

The most common n queens puzzle is the 8 queens puzzle, with n = 8. We 'll explain Drools
Planner using the 4 queens puzzle as the primary example.

A proposed solution could be:

A-B C D

8%

iy

W N = O

Figure 2.1. A wrong solution for the 4 queens puzzle

The above solution is wrong because queens Al and B0 can attack each other (as can queens B0
and D0). Removing queen BO would respect the "no 2 queens can attack each other" constraint,
but would break the "place n queens" constraint.

Chapter 2. Use cases and examples

2.2.2. Solution(s)

Below is a correct solution:

g

Ww N = O

L

Figure 2.2. A correct solution for the 4 queens puzzle

All the constraints have been met, so the solution is correct. Note that most n queens puzzles
have multiple correct solutions. We 'll focus on finding a single correct solution for a given n, not
on finding the number of possible correct solutions for a given n.

2.2.3. Screenshot

Here is a screenshot of the example:

Problem size

Figure 2.3. Screenshot of the n queens example

2.2.4. Problem size
These numbers might give you some insight on the size of this problem.

Table 2.1. NQueens problem size

queens (n) # possible # feasible # optimal # optimal out of
solutions (each solutions (= solutions # possible
queen its own optimal in this
column) use case)

4 256 2 2 1 out of 128

8 16777216 64 64 1 out of 262144

16 1844674407370953457@512 14772512 1 out of

1248720872503

Chapter 2. Use cases and examples

queens (n) # possible # feasible # optimal # optimal out of
solutions (each solutions (= solutions # possible
queen its own optimal in this
column) use case)

32 1.46150163733090291820368483e ? ?
+48

64 3.94020061963944792122790401e ? ?
+115

n n*n ? # feasible | ?

solutions

The Drools Planner implementation has not been optimized because it functions as a beginner
example. Nevertheless, it can easily handle 64 queens.

2.2.5. Domain model

Use a good domain model: it will be easier to understand and solve your planning problem with
Drools Planner. This is the domain model for the n queens example:
public class Colum {

private int index;

/'l ... getters and setters

public class Row {
private int index;

/Il ... getters and setters

public class Queen {

private Col um col um;
private Row row,

public int getAscendi nghi agonal | ndex() {...}
public int getDescendi nghi agonal | ndex() {...}

/Il ... getters and setters

10

Domain model

public class NQueens inplenments Sol ution<Si npl eScore> {
private int n;
private List<Colum> col umLi st;
private List<Row> rowList;
private List<Queen> queenlLi st;

private Sinpl eScore score;

/'l ... getters and setters

A Queen instance has a Col umm (for example: 0 is column A, 1 is column B, ...) and a Row (its row,
for example: O isrow 0O, 1 is row 1, ...). Based on the column and the row, the ascending diagonal
line as well as the descending diagonal line can be calculated. The column and row indexes start
from the upper left corner of the chessboard.

Table 2.2. A solution for the 4 queens puzzle shown in the domain model

A solution Queen columnindex rowlndex ascendingDia(descendingDi
(columnindex (columnindex
+ rowindex) -rowlindex)
A B ‘@:1 D 0 1 1(%) 1
ﬁ 1 0 (" 1(™) 1
2 2 4 0
DO 3 0 3 3

iy

Ww N = O

When 2 queens share the same column, row or diagonal line, such as (*) and (**), they can attack
each other.

A single NQueens instance contains a list of all Queen instances. Itis the Sol ut i on implementation
which will be supplied to, solved by and retrieved from the Solver. Notice that in the 4 queens
example, NQueens's get N() method will always return 4.

11

Chapter 2. Use cases and examples

2.3. Cloud balancing example

2.3.1. Problem statement

Assign each process to a server.

Hard constraints:

« Every server should be able to handle the sum of each of the minimal hardware requirements
(CPR, RAM, network bandwidth) of all its processes.

Soft constraints:

« Each server that has one or more processes assigned, has a fixed maintenance cost. Minimize
the total cost.

This is a form of bin packing.

12

Problem statement

CPU Servers
Cloud balance | 5 Ix[
Assign each process to a server. [6)
Y
CPU Processes RAM

[5 Y
200 C-H —

R e

room

Optimal solution

Chapter 2. Use cases and examples

2.3.2. Domain model

Cloud balance class diagram

Server

cpuPower

memory

networkBandwidth
| cost

server

planning en

Process

£

planning variable

requiredCpuPower
requiredMemory
requiredNetworkBar

CloudBalance

score

2.4. Machine reassignment example (ROADEF 2012)

2.4.1. Problem statement

Assign each process to a machine. All processes already have an original (unoptimized)
assignment. Each process requires an amount of each resource (such as CPU, RAM, ...). This is
more complex version of the Cloud balancing example.

The problem is defined by the Google ROADEF/EURO Challenge 2012 [http://

challenge.roadef.org/2012/en/].

14

http://challenge.roadef.org/2012/en/
http://challenge.roadef.org/2012/en/
http://challenge.roadef.org/2012/en/

Problem size

Hard constraints:

» Maximum capacity: The maximum capacity for each resource for each machine must not be
exceeded.

» Conflict: Processes of the same service must run on distinct machines.
» Spread: Processes of the same service must be spread across locations.

» Dependency: The processes of a service depending on another service must run in the
neighborhood of a process of the other service.

« Transient usage: Some resources are transient and count towards the maximum capacity of
both the original machine as the newly assigned machine.

Soft constraints:

» Load: The safety capacity for each resource for each machine should not be exceeded.

Balance: Leave room for future assignments by balancing the available resources on each
machine.

» Process move cost: A process has a move cost.
* Service move cost: A service has a move cost.

» Machine move cost: Moving a process from machine A to machine B has another A-B specific
move cost.

2.4.2. Problem size

nodel _al 1: 2 resources, 1 nei ghborhoods, 4 |ocations, 4 nachines, 79 services,
100 processes and 1 bal ancePenalties with fl ooredPossi bl eSol uti onSi ze (10760).

nmodel _al 2: 4 resources, 2 neighborhoods, 4 locations, 100 machines, 980
servi ces, 1000 processes and 0 bal ancePenal ties with fl oor edPossi bl eSol uti onSi ze
(1072000) .

nmodel _al 3: 3 resources, 5 neighborhoods, 25 |ocations, 100 nachines, 216
servi ces, 1000 processes and 0 bal ancePenalties with fl ooredPossi bl eSol uti onSi ze
(1072000) .

nodel _al 4: 3 resources, 50 neighborhoods, 50 locations, 50 nachines, 142
servi ces, 1000 processes and 1 bal ancePenalties with fl ooredPossi bl eSol uti onSi ze
(1071698).

nmodel _al 5: 4 resources, 2 neighborhoods, 4 |locations, 12 nmachines, 981
servi ces, 1000 processes and 1 bal ancePenalties with fl ooredPossi bl eSol uti onSi ze
(1071079).

model _a2_1: 3 resources, 1 neighborhoods, 1 locations, 100 machines, 1000
servi ces, 1000 processes and 0 bal ancePenalties with fl ooredPossi bl eSol uti onSi ze
(1072000) .

nodel _a2_2: 12 resources, 5 neighborhoods, 25 |ocations, 100 machines, 170
servi ces, 1000 processes and 0 bal ancePenalties with fl ooredPossi bl eSol uti onSi ze
(1072000) .

15

Chapter 2. Use cases and examples

nmodel _a2_3: 12 resources, 5 neighborhoods, 25 |ocations, 100 machines, 129
servi ces, 1000 processes and 0 bal ancePenal ties with fl ooredPossi bl eSol uti onSi ze
(1072000) .

nmodel _a2_4: 12 resources, 5 neighborhoods, 25 locations, 50 nachines, 180
servi ces, 1000 processes and 1 bal ancePenal ties with fl ooredPossi bl eSol uti onSi ze
(1071698) .

nodel _a2_5: 12 resources, 5 neighborhoods, 25 locations, 50 nachines, 153
servi ces, 1000 processes and 0 bal ancePenalties with fl ooredPossi bl eSol uti onSi ze
(1071698) .

2.5. Manners 2009 example

2.5.1. Problem statement

In Manners 2009, miss Manners is throwing a party again.

» This time she invited 144 guests and prepared 12 round tables with 12 seats each.

» Every guest should sit next to someone (left and right) of the opposite gender.

And that neighbour should have at least one hobby in common with the guest.

« Also, this time there should be 2 politicians, 2 doctors, 2 socialites, 2 sports stars, 2 teachers
and 2 programmers at each table.

And the 2 politicians, 2 doctors, 2 sports stars and 2 programmers shouldn't be the same kind.

Drools Expert also has the normal miss Manners examples (which is much smaller) and employs
a brute force heuristic to solve it. Drools Planner's implementation employs far more scalable
heuristics while still using Drools Expert to calculate the score..

2.6. Traveling Salesman Problem example (TSP)

2.6.1. Problem statement

Given a list of cities, find the shortest tour for a salesman that visits each city exactly once.
See the wikipedia definition of the traveling Salesman Problem. [http://en.wikipedia.org/wiki/
Travelling_salesman_problem]

It is one of the most intensively studied problems [http://www.tsp.gatech.edu/] in computational
mathematics. Yet, in the real world, it's often only part of a planning problem, along with other
constraints, such as employee shift time constraints.

2.7. Traveling Tournament Problem example (TTP)

2.7.1. Problem statement

Schedule matches between n teams with the following hard constraints:

16

http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://www.tsp.gatech.edu/
http://www.tsp.gatech.edu/

Problem statement

« Each team plays twice against every other team: once home and once away.

» Each team has exactly 1 match on each timeslot.

« No team must have more than 3 consecutive home or 3 consecutive away matches.
* No repeaters: no 2 consecutive matches of the same 2 opposing teams.

and the following soft constraint:

« Minimize the total distance traveled by all teams.

The problem is defined on Michael Trick's website (which contains several world records too)
[http://mat.gsia.cmu.edu/TOURN/].

 Philadephia Phillies 30‘ Traveling [Montréal I
1 awayto tournament |1 [MON] Vs
2 away to m 330 Schedule each match | 2 [MON] VE.
3 [PHI]VS 0 in a timeslot. L 3 [MON] VE
4 | PHI | VS MON |14 _awaytc

5 [PHI | VS [MON| 665 A (5 away tc
6 away to 665 6 away tc
Team distance: 2.127 Team dis

1 away to
2 away to
3 away to

3 away tc
4 away tc
5 away tc

Drools Planner

Total distance:
8.276

17

http://mat.gsia.cmu.edu/TOURN/
http://mat.gsia.cmu.edu/TOURN/

Chapter 2. Use cases and examples

2.7.2. Simple and smart implementation

There are 2 implementations (simple and smart) to demonstrate the importance of some
performance tips. The Dr ool sPl anner Exanpl esApp always runs the smart implementation, but
with these commands you can compare the 2 implementations yourself:

$

Dexec. mai nCl ass="or g. dr ool s. pl anner . exanpl es. travel i ngt our nanent . app. si npl e. Si npl eTr avel i ngTour

$

mn

nvn
Dexec. mai nCl ass="or g. dr ool s. pl anner . exanpl es. travel i ngt our nanent . app. smart. Smart Tr avel i ngTour ng

exec: exec

exec: exec

The smart implementation performs and scales exponentially better than the simple
implementation.

2.7.3. Problem size

These numbers might give you some insight on the size of this problem.

Table 2.3. Traveling tournament problem size

teams # days # matches # possible # possible # feasible # optimal
solutions solutions solutions solutions
(simple) (smart)
4 6 12 2176782336 <=518400 | ? 1?
6 10 30 1000000000066000000000000000000 | 17?
47784725839872000000
8 14 56 1.52464943788290465606136043¢e 1?
+64 5.77608277425558771434498864¢e
+43
10 18 90 9.43029892325559280477052413e 1?
+112 1.07573451027871200629339068e
+79
12 22 132 1.584141124#8195320415735060e 1?
+177 2.01650616733413376416949843e
+126
14 26 182 3.350806356954103223315189511e 1?
+257 1.73513467024013808570420241e
+186
16 30 240 3.22924601798855400751522483¢e 1?
+354 2.45064610271441678267620602¢e
+259

18

Curriculum course scheduling example (ITC 2007 track 3)

teams # days # matches # possible # possible # feasible # optimal
solutions solutions solutions solutions
(simple) (smart)
n 2*(n-1) n*(n-1) *(n-1N" <=({(2*(n ? 1?
(n*(n-1)) -))HY~*(n/
2))

2.8. Curriculum course scheduling example (ITC 2007
track 3)

2.8.1. Problem statement

Schedule each lecture into a timeslot and into a room.

The problem is defined by the International Timetabling Competition 2007 track 3 [http://
www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm].

2.9. Examination timetabling example (ITC 2007 track 1)

2.9.1. Problem statement

Schedule each exam into a period and into a room. Multiple exams can share the same room
during the same period.

There are a number of hard constraints that cannot be broken:

« Exam conflict: 2 exams that share students should not occur in the same period.
« Room capacity: A room's seating capacity should suffice at all times.
 Period duration: A period's duration should suffice for all of its exams.
« Period related hard constraints should be fulfilled:
» Coincidence: 2 exams should use the same period (but possibly another room).
» Exclusion: 2 exams should not use the same period.
 After: 1 exam should occur in a period after another exam's period.
» Room related hard constraints should be fulfilled:
» Exclusive: 1 exam should not have to share its room with any other exam.

There are also a number of soft constraints that should be minimized (each of which has
parameterized penalty's):

e 2 exams in a row.

e 2 exams in a day.

19

http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm
http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm
http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm

Chapter 2. Use cases and examples

» Period spread: 2 exams that share students should be a humber of periods apart.

* Mixed durations: 2 exams that share a room should not have different durations.

» Front load: Large exams should be scheduled earlier in the schedule.

» Period penalty: Some periods have a penalty when used.

* Room penalty: Some rooms have a penalty when used.

It uses large test data sets of real-life universities.

The problem is defined by the International Timetabling Competition 2007 track 1 [http://
www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm].

Examination
timetabling

Assign each exam
a period and
a room.

Mon 09:00
Fri 09:00

Fri 14:00

. Greg

(&) Ann [History | Math |
. Bobby | History | Math |
C| Carla | History
—)
D) Dan Math [Chem
[E) Edna Chem| Bio |G
F | Fred | Bio |

G

Most students first Drools PI
Room X Room Y Room X
4 seats 3 seats 4 seats
History Chem Chem| Eng |
A[B]Cc] [DJE] D[E|F]
[Math [Fr| [Bio | Math
A[B]D]|C][E]F] A
| Eng | o [Geo|r
‘@ E

same time

20

http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm
http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm
http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm

Problem size

2.9.2. Problem size

These numbers might give you some insight on the size of this problem.

Table 2.4. Examination problem size

exams/ # periods #rooms # #feasible # optimal
students topics possible | solutions solutions
solutions
exam_comp7888L 607 54 7 10°M564 ? 1?
exam_compl2484 870 40 49 1072864 7? 1?
exam_compl&aed 934 36 48 1003023 7 1?
exam_comp44214 273 21 1 10”360 ? 1?
exam_comp3 &t 1018 42 3 1072138 7 1?
exam_comp/3e% 242 16 8 107509 ? 1?
exam_compl3égb 1096 80 28 10n3671 ? 1?
exam_comp/ 5&8 598 80 8 1071678 7 1?
? S t p r p*nNre 2 1?

Geoffrey De Smet (the Drools Planner lead) finished 4th in the International Timetabling
Competition 2007's examination track with a very early version of Drools Planner. Many
improvements have been made since then.

2.9.3. Domain model

Below you can see the main examination domain classes:

21

Chapter 2. Use cases and examples

Figg

< <interface> =

- lang

!
i

Mot asserted into the working

e ™ e ™ B 0

™

PeriodHardConstraintType

Solution —_—
.f_’;‘:. I
i — twh
. = T
<< singletons = .
Examination _ El
I] -m
1 | - examlList :1]:::
An exam changes during sokving: S . -fr
The exam.period and/far exarm. L. I
room reference change.
The exarm.id and exarm.topic - Exam
reference do not change. —id : long
| - Foom
L /- topic n w |- period .
Calculated before solving 'l“-[1 \,la’
" . - Period
TopicConflict
— - id : long
- studentsize :int - startDateTimestring : String
- periodindex © int
* _ o - dasdndex ; int
- leftTopic - - duration : int
- rightTopic - penalty : int
- frontLoadLlLast : boolean
1 1
Topic T _ topic
~id : long — | PeriodHardConstraint
- duration : int - leftTapicf _ ., lang
- frontLoadLarge : boolean 1
- rightTopic
- studentList 1
o _
e—2-4—amtrater-domeatclass diagram < < ERUM > =
Student

- COINCIDEMCE : int
- EXCLUSIOM : int
- AFTER : int

Patient admission scheduling (hospital bed planning) example (PAS)

Notice that we've split up the exam concept into an Exam class and a Topi ¢ class. The Exam
instances change during solving (this is the planning entity class), when they get another period
or room property. The Topi c, Peri od and Roominstances never change during solving (these are
problem facts, just like some other classes).

2.10. Patient admission scheduling (hospital bed
planning) example (PAS)

2.10.1. Problem statement

Assign each patient (that will come to the hospital) into a bed for each night that the patient will
stay in the hospital. Each bed belongs to a room and each room belongs to a department. The
arrival and departure dates of the patients is fixed: only a bed needs to be assigned for each night.

There are a couple of hard constraints:

« 2 patients shouldn't be assigned to the same bed in the same night.

* A room can have a gender limitation: only females, only males, the same gender in the same
night or no gender limitation at all.

* A department can have a minimum or maximum age.
« A patient can require a room with specific equipment(s).

And of course, there are also some soft constraints:

« A patient can prefer a maximum room size, for example if he/she want a single room.

A patient is best assigned to a department that specializes in his/her problem.

« A patient is best assigned to a room that specializes in his/her problem.

A patient can prefer a room with specific equipment(s).

The problem is defined on this webpage [http://allserv.kahosl.be/~peter/pas/] and the test data
comes from real world hospitals.

23

http://allserv.kahosl.be/~peter/pas/
http://allserv.kahosl.be/~peter/pas/

Chapter 2. Use cases and examples

Patient admission schedule

Assign each patient a hospital bed.

Largest admission first Drools F
November Nover
1 2 3 4 5 6 7 1 2 3 4

General ward
Room 11 bed 1

Room 11 bed 2

Intensive care®
Room 21 bed 1

no space

2.11. Nurse rostering example (INRC 2010)

2.11.1. Problem statement

For each shift, assign a nurse to work that shift.

The problem is defined by the International Nurse Rostering Competition 2010 [http:/
www.kuleuven-kortrijk.be/nrpcompetition].

24

http://www.kuleuven-kortrijk.be/nrpcompetition
http://www.kuleuven-kortrijk.be/nrpcompetition
http://www.kuleuven-kortrijk.be/nrpcompetition

Problem statement

Employee shift rostering

Populate each work shift with a nurse.
B
H)+

Maternity nurses
Ann . Beth . Cory

Emergency nurses

D | Dan .Elin .Greg

Largest staff first Drools |

Sat Sun Mon Sat St
6 14 22| 6 14 22| & 14 22 6 14 22 & -
I I I I I I I I I I I I I

Maternity

nurses

Emergency

nurses

Any

nurses

25

Chapter 2. Use cases and examples

Employee shift rostering

Hard constraints
Fri

& 14 22
| | |
|

Sat Sur

6§ 14 22| & 14
| | | I I

Mon Tue Wed

6 14 22| 6 14 22 & 14 22
| | | | | | | | II

Thu

6 14 22
| | |
|

All required shifts must be assigned

11111121 1111211111

?2[?2]2[A]?] [A]?] s[?]?]?]
4

1(1|1
NBE

BE
BE

Only one shift per day per employee

FREE e R

1 2 1 1

2

No hard constraint broken => solution is feasib

26

Problem statement

Employee shift rostering

Soft constraints
Wed

& 14 22

Thu

6 14 22

Fri

& 14 22

Sat

& 14 22

Sur

6 14
I I

Mon Tue
[+ 14 22 G 14 22

Maximum consecutive working days for Ann: 5

af [l R

1 | 2 | 3 | 4 | 5 6 |

Minimum consecutive free days for Beth: 2 Day off wish for (

et e

1‘ 2‘ F

After a night shift sequence: 2 free days Unwanted pat

ol af o Bl CE R T

F | | E

There are many more soft constraints...

27

28

Chapter 3.

Chapter 3. Planner configuration

3.1. Overview

Solving a planning problem with Drools Planner consists out of 5 steps:

1. Model your planning problem as a class that implements the interface Sol ut i on, for example
the class NQueens.

2. Configure a Sol ver, for example a first fit and tabu search solver for any NQueens instance.

3. Load a problem data set from your data layer, for example a 4 Queens instance. Set it as the
planning problem on the Sol ver with Sol ver. set Pl anni ngProbl en(...).

4. Solve it with Sol ver. sol ve().

5. Get the best solution found by the Sol ver with Sol ver . get Best Sol uti on().
3.2. Solver configuration

3.2.1. Solver configuration by XML file

You can build a Sol ver instance with the Xnl Sol ver Confi gur er. Configure it with a solver
configuration XML file:

Xm Sol ver Confi gurer configurer = new Xm Sol ver Confi gurer();
configurer.configure("/org/drool s/planner/exanpl es/ nqueens/ sol ver/
ngueensSol ver Confi g. xm ") ;
Sol ver sol ver = configurer.buil dSol ver();

A solver configuration file looks something like this:

<?xm version="1.0" encodi ng="UTF-8"?>
<sol ver >
<I-- Define the nodel -->
<sol uti onCl ass>org. drool s. pl anner. exanpl es. nqueens. donmai n. NQueens</
sol uti onCl ass>
<pl anni ngEnti tyCl ass>org. drool s. pl anner. exanpl es. nqueens. donmai n. Queen</
pl anni ngEnti tyd ass>

<!-- Define the score function -->
<scoreDr| >/ org/ drool s/ pl anner/ exanpl es/ nqueens/ sol ver/ nQueensScor eRul es. drl </
scoreDr| >

29

Chapter 3. Planner configuration

<scoreDefinition>
<scoreDefinitionType>SI MPLE</ scor eDefi ni ti onType>
</ scoreDefinition>

<l-- Configure the optim zation algorithn(s) -->
<term nation>

</term nation>
<constructi onHeuristic>

</ constructionHeuristic>
<l ocal Sear ch>

</ | ocal Search>
</ sol ver >

Notice the 3 parts in it;

» Define the model

 Define the score function

» Configure the optimization algorithm(s)

We 'll explain these various parts of a configuration later in this manual.

Drools Planner makes it relatively easy to switch optimization algorithm(s) just by changing
the configuration. There's even a Benchmar k utility which allows you to play out different
configurations against each other and report the most appropriate configuration for your problem.
You could for example play out tabu search versus simulated annealing, on 4 queens and 64
queens.

3.2.2. Solver configuration by Java API

As an alternative to the XML file, a solver configuration can also be configured with the
Sol ver Confi g API:

Sol ver Confi g sol verConfig = new Sol ver Config();

sol ver Confi g. set Sol uti onC ass(NQueens. cl ass);

Set <Cl ass<?>> pl anni ngEntityCl assSet = new HashSet <Cl ass<?>>();
pl anni ngEnt i t yCl assSet . add(Queen. cl ass) ;

sol ver Confi g. set Pl anni ngEnti tyd assSet (pl anni ngEntityC assSet);

sol ver Confi g. set ScoreDr | Li st (
Arrays. asLi st ("/org/ drool s/ pl anner/ exanpl es/ nqueens/ sol ver/
nQueensScoreRul es. drl"));

30

Model your planning problem

Scor eDefinitionConfig scoreDefinitionConfig =
sol ver Confi g. get Scor eDefi niti onConfi g();
scoreDefinitionConfig.setScoreDefinitionType(
Scor eDefi ni ti onConfi g. ScoreDefinitionType. S| MPLE) ;

Term nationConfi g term nati onConfig = sol ver Confi g. get Term nati onConfig();
I
Li st <Sol ver PhaseConfi g> sol ver PhaseConfi gLi st = new
Arrayli st <Sol ver PhaseConfi g>();
Constructi onHeuri sti cSol ver PhaseConfi g
constructionHeuristicSol ver PhaseConfi g
= new ConstructionHeuri sticSol ver PhaseConfig();

I/
sol ver PhaseConfi gLi st. add(constructi onHeuri sti cSol ver PhaseConfi g);
Local Sear chSol ver PhaseConfi g | ocal SearchSol ver PhaseConfig = new
Local Sear chSol ver PhaseConfi g();
/11

sol ver PhaseConfi gLi st. add(| ocal Sear chSol ver PhaseConfi g) ;
sol ver Confi g. set Sol ver PhaseConf i gLi st (sol ver PhaseConfi gLi st);
Sol ver sol ver = sol ver Confi g. bui |l dSol ver () ;

It is highly recommended to configure by XML file instead of this APIl. To dynamically
configure a value at runtime, use the XML file as a template and extract the Sol ver Confi g class
with get Sol ver Confi g() to configure the dynamic value at runtime:

Xm Sol ver Confi gurer configurer = new Xm Sol ver Confi gurer();
configurer.configure("/org/drool s/planner/exanpl es/ nqueens/ sol ver/
nqueensSol ver Confi g. xm ");

Sol ver Confi g sol verConfig = configurer.getSol ver Config();
sol ver Confi g. get Termi nati onConfi g() . set Maxi mumM nut esSpend(user | nput) ;
Sol ver sol ver = sol ver Confi g. buil dSol ver () ;

3.3. Model your planning problem

3.3.1. Is this class a problem fact or planning entity?

Look at a dataset of your planning problem. You 'll recognize domain classes in there, each of
which is one of these:

« A unrelated class: not used by any of the score constraints. From a planning standpoint, this
data is obsolete.

« A problem fact class: used by the score constraints, but does NOT change during planning
(as long as the problem stays the same). For example: Bed, Room Shi ft, Enpl oyee, Topi c,
Peri od, ...

31

Chapter 3. Planner configuration

« A planning entity class: used by the score constraints and changes during planning. For
example: BedDesi gnat i on, Shi f t Assi gnment , Exam ...

Ask yourself: What class changes during planning? Which class has variables that | want the
Sol ver to choose for me? That class is a planning entity. Most use cases have only 1 planning
entity class.

@ Note
In , problem facts can change during planning, because the
problem itself changes. However, that doesn't make them planning entities.

In Drools Planner all problems facts and planning entities are plain old JavaBeans
(POJO's). You can load them from a database (JDBC/JPA/JDO), an XML file, a data repository,
a noSQL cloud, ...: Drools Planner doesn't care.

3.3.2. Problem fact

A problem fact is any JavaBean (POJO) with getters that does not change during planning.
Implementing the interface Seri al i zabl e is recommended (but not required). For example in n
queens, the columns and rows are problem facts:

public class Colum inplenents Serializable {

private int index;

/Il ... getters

public class Row inplenments Serializable {
private int index;

Il ... getters

A problem fact can reference other problem facts of course:

public class Course inplenents Serializable {
private String code;

private Teacher teacher; // Qher problem fact

32

Planning entity and planning variables

private int |ectureSize;
private int m nWrkingDaySi ze;

private List<Curriculunm> curriculuniist; // OQher problemfacts
private int studentSize;

/Il ... getters

A problem fact class does not require any Planner specific code. For example, you can reuse your
domain classes, which might have JPA annotations.

a cached problem fact

3.3.3. Planning entity and planning variables

3.3.3.1. Planning entity

A planning entity is a JavaBean (POJO) that changes during solving, for example a Queen that
changes to another row. A planning problem has multiple planning entities, for example for a single
n queens problem, each Queen is a planning entity. But there's usually only 1 planning entity class,
for example the Queen class.

A planning entity class needs to be annotated with the @ anni ngEnt i t y annotation.

Each planning entity class has 1 or more planning variables. It usually also has 1 or more defining
properties. For example in n queens, a Queen is defined by it's Col urm and has a planning variable
Row. This means that a Queen's column never changes during solving, while it's row does change.

@l anni ngEntity
public class Queen {

private Colum col um;

/'l Pl anni ng vari abl es: changes during pl anni ng, between score cal cul ati ons.

33

Chapter 3. Planner configuration

private Row row,

/Il ... getters and setters

A planning entity class can have multiple planning variables. For example, a Lect ur e is defined
by it's Cour se and it's index in that course (because 1 course has multiple lectures). Each Lect ure
needs to be scheduled into a Per i od and a Roomso it has 2 planning variables (period and room).
For example: the course Mathematics has 8 lectures per week, of which the first lecture is Monday
morning at 08:00 in room 212.

@ anni ngEntity
public class Lecture {

private Course course;
private int |ecturel ndexl nCourse;

/1 Pl anni ng vari abl es: changes during pl anni ng, between score cal cul ati ons.
private Period period;

private Room room

Il

The solver configuration also needs to be made aware of each planning entity class:

<sol ver >

<pl anni ngEnti t yC ass>or g. drool s. pl anner . exanpl es. nqueens. donmai n. Queen</
pl anni ngEnti tyd ass>

</ sol ver>

Some uses cases have multiple planning entity classes. For example: route freight and trains
into railway network arcs, where each freight can use multiple trains over it's journey and each
train can carry multiple freights per arc. Having multiple planning entity classes directly raises the
implementation complexity of your use case.

@ Note

Do not create unnecessary planning entity classes. This leads to difficult Move
implementations and slower score calculation.

34

Planning entity and planning variables

3.3.3.2. Planning entity difficulty

Some optimization algorithms work more efficiently if they have an estimation of which planning
entities are more difficult to plan. For example: in bin packing bigger items are harder to fit, in
course scheduling lectures with more students are more difficult to schedule and in n queens the
middle queens are more difficult.

Therefore, you can set a di f fi cul t yConpar at or Cl ass to the @l anni ngEnt i t y annotation:

@ anni ngEnti ty(difficultyConparatord ass =
Cl oudPr ocessAssi gnment Di ffi cul t yConpar at or. cl ass)
public class C oudProcessAssi gnnent {
11

—

public cl ass Cl oudPr ocessAssi gnment Di f fi cul t yConpar at or i mpl ement s
Conpar at or <Cl oudPr ocessAssi gnnent > {

public int conpare(d oudProcessAssi gnment a, C oudProcessAssi gnnent b) {
return new ConpareToBui | der ()
. append(a. get d oudProcess(). get Requi redMul ti plicand(),
b. get d oudProcess() . get Requi redMul ti plicand())
. append(a. get d oudProcess().getld(), b.getd oudProcess().getld())
.t oConpari son();

—

35

Chapter 3. Planner configuration

Conpar at or <Obj ect >) and be able to handle comparing instances of those
different classes.

Alternatively, you can also set a difficul t ywei ght Fact oryd ass to the @l anni ngEntity
annotation, so you have access to the rest of the problem facts from the solution too:

@ anni ngEntity(difficultyWightFactoryd ass =
QueenDi ffi cul t yWei ght Fact ory. cl ass)
public class Queen {
11

public interface PlanningEntityDifficultyWightFactory {

Conparabl e createDi fficul tyWi ght(Sol ution solution, Object planningEntity);

public cl ass QueenDi ffi cul t yWei ght Factory i mpl ement s
Pl anni ngEntityDi fficul t yWei ght Factory {

public Conparable createbDifficultyWight(Solution solution, bject
pl anni ngEntity) {
NQueens nQueens = (NQueens) sol ution;
Queen queen = (Queen) planningEntity;
int distanceFronM ddl e = cal cul at eDi st anceFronmM ddl e(nQueens. get N(),
queen. get Col uml ndex());
return new QueenbDi fficul t yWei ght (queen, di stanceFronM ddl e);

Il

public static cl ass QueenDi ffi cul t yWei ght i mpl enent s
Conpar abl e<QueenDi ffi cul t yWei ght > {

private final Queen queen;
private final int distanceFronM ddl e;

public QueenDi fficultyWight(Qeen queen, int distanceFronM ddle) {

thi s. queen = queen;
t his.di stanceFronM ddl e = di st anceFronmM ddl e;

public int conpareTo(QueenDi fficultyWight other) {

36

Planning entity and planning variables

return new ConpareToBui | der ()
/1 The nore difficult queens have a | ower di stance to the mddle
. append(ot her. di stanceFronM ddl e, di stanceFronM ddle) //
Decr easi ng
. append(queen. get Col uml ndex(), other.queen. get Col utml ndex())
.toComparison();

None of the current planning variable state may be used to compare planning entities. They are
likely to be nul I anyway. For example, a Queen's r ow variable may not be used.

3.3.3.3. Planning variable

A planning variable is a property (including getter and setter) on a planning entity. It changes
during planning. For example, a Queen's r owproperty is a planning variable. Note that even though
a Queen's r ow property changes to another Rowduring planning, no Rowinstance itself is changed.
A planning variable points to a planning value.

A planning variable getter needs to be annotated with the @?l anni ngVari abl e annotation.
Furthermore, it needs a @al ueRange* annotation too.

@ anni ngEntity
public class Queen {
private Row row,
/1
@l anni ngVari abl e
@al ueRangeFr onSol uti onProperty(propertyNane = "rowli st")

publi ¢ Row get Row() {
return row

public void set Row(Row row) ({
this.row = row,

37

Chapter 3. Planner configuration

3.3.3.4. When is a planning entity initialized?

A planning entity is considered initialized if all it's planning variables are initialized.

By default, a planning variable is considered initialized if it's value is not nul | .
3.3.4. Planning value and planning value ranges

3.3.4.1. Planning value

A planning value is a possible value for a planning variable. Usually, a planning value is problem
fact, but it can also be any object, for example a double. Sometimes it can even be another
planning entity.

A planning value range is the set of possible planning values for a planning variable. This set can
be a discrete (for example row 1, 2, 3 or 4) or continuous (for example any doubl e between 0. 0
and 1. 0). There are several ways to define the value range of a planning variable, each with it's
own @/al ueRange* annotation.

If nul | is a valid planning value, it should be included in the value range and the default way to
detect uninitialized planning variables must be changed.

3.3.4.2. Planning value range

3.3.4.2.1. val ueRangeFr onBol ut i onProperty

All instances of the same planning entity class share the same set of possible planning values for
that planning variable. This is the most common way to configure a value range.

The Sol uti on implementation has property which returns a Col | ecti on. Any value from that
Col | ecti on is a possible planning value for this planning variable.

@l anni ngVari abl e
@al ueRangeFr onSol uti onProperty(propertyNane = "rowli st")
publi ¢ Row get Row() {

return row

public class NQueens inplenments Sol uti on<Si npl eScore> {
11

public List<Row> get RowList() {
return rowli st;

38

Planning value and planning value ranges

3.3.4.2.2. val ueRangeFr onPl anni ngEnti t yProperty

Each planning entity has it's own set of possible planning values for a planning variable. For
example, if a teacher can never teach in a room that does not belong to his department, lectures
of that teacher can limit their room value range to the rooms of his department.

@ anni ngVari abl e
@/al ueRangeFr onPl anni ngEnt i t yProperty(propertyNanme = "possi bl eRoonli st")
publ i ¢ Room get Room() {

return room

publ i c Li st <Roonm> get Possi bl eRoonli st () {
return get Course().get Teacher (). get Possi bl eRoonli st ();

Never use this to enforce a soft constraint (or even a hard constraint when the problem might not
have a feasible solution). For example, when a teacher can not teach in a room that does not
belong to his department unless there is no other way, the teacher should not be limited in his
room value range.

@ Note
By limiting the value range specifically of 1 planning entity, you are effectively
making a build-in hard constraint. This can be a very good thing, as the number of
possible solutions is severely lowered. But this can also be a bad thing because it
takes away the freedom of the optimization algorithms to temporarily break such
a hard constraint.

A planning entity should not use other planning entities to determinate it's value range. It would
only try to solve the planning problem itself and interfere with the optimization algorithms.
3.3.4.2.3. val ueRangeUndef i ned

Leaves the value range undefined. Some optimization algorithms do not support this value range.

@ anni ngVari abl e

@/al ueRangeUndef i ned

publi c Row get Row() {
return row,

39

Chapter 3. Planner configuration

3.3.4.3. Planning value strength

Some optimization algorithms work more efficiently if they have an estimation of which planning
values are stronger, which means they are more likely to satisfy a planning entity. For example: in
bin packing bigger containers are more likely to fit an item and in course scheduling bigger rooms
are less likely to break the student capacity constraint.

Therefore, you can set a st r engt hConpar at or 0 ass to the @l anni ngVvari abl e annotation;

@ anni ngVar i abl e(st rengt hConpar at or Cl ass =
Cl oudComput er St r engt hConpar at or . cl ass)

I
publ i ¢ C oudConput er getd oudConputer() {
/1
}
public cl ass Cl oudConput er St r engt hConpar at or i mpl ement s

Conpar at or <C oudConput er > {

public int conpare(Cd oudConputer a, C oudConputer b) {
return new ConpareToBui | der ()
. append(a.getMul tiplicand(), b.getMiltiplicand())
.append(b. getCost(), a.getCost()) // Descending (but this
i s debat abl e)
.append(a.getld(), b.getld())
. toConpari son();

@ Note
If you have multiple planning value classes in the same value range, the
st rengt hConpar at or Cl ass needs to implement a Conparat or of a common
superclass (for example Conpar at or <Obj ect >) and be able to handle comparing
instances of those different classes.

Alternatively, you can also set a strengt hWi ght Fact oryd ass to the @l anni ngvari abl e
annotation, so you have access to the rest of the problem facts from the solution too:

@ anni ngVari abl e(st rengt hWei ght Fact oryd ass =
RowSt r engt hWei ght Fact ory. cl ass)
11

40

Planning value and planning value ranges

public Row get Row() {
/1

public interface Pl anningVal ueStrengt hWei ght Factory {

Conpar abl e creat eStrengt hWei ght (Sol uti on sol uti on, Cbject planningVal ue);

public cl ass RowsSt r engt hWei ght Fact ory i npl enent s
Pl anni ngVal ueSt r engt h\Wei ght Factory {

public Conparable createStrengthWight(Solution solution, Object
pl anni ngVal ue) {
NQueens nQueens = (NQueens) sol ution;
Row row = (Row) pl anni ngVal ue;
int distanceFronM ddl e = cal cul at eDi st anceFronM ddl e(nQueens. get N(),
row. get I ndex());
return new RowStrengt hWei ght (row, di stanceFronmM ddl e);

/1

public static cl ass RowsSt r engt hWei ght i mpl enent s
Conpar abl e<RowsSt r engt hWei ght > {

private final Row row,
private final int distanceFronM ddl e;

publ i c RowsStrengt hWei ght (Row row, int di stanceFronM ddle) {
this.row = row,
this.di stanceFronM ddl e = di st anceFronM ddl e;

public int conpareTo(RowStrengt hWi ght other) {
return new ConpareToBui | der ()
/1l The stronger rows have a | ower distance to the mddle
. append(ot her. di st anceFronM ddl e, di stanceFromM ddle) //
Decreasing (but this is debatable)
. append(row. getl ndex(), other.row. getlndex())
.toComparison();

41

Chapter 3. Planner configuration

None of the current planning variable state in any of the planning entities may be used to compare
planning values. They are likely to be nul | anyway. For example, None of the r ow variables of
any Queen may be used to determine the strength of a Row.

3.3.5. Planning problem and planning solution

3.3.5.1. Planning problem instance

A dataset for a planning problem needs to be wrapped in a class for the Sol ver to solve. You
must implement this class. For example in n queens, this in the NQueens class which contains a
Col umm list, a Row list and a Queen list.

A planning problem is actually a unsolved planning solution or - stated differently - an uninitialized
Sol ut i on. Therefor, that wrapping class must implement the Sol ut i on interface. For example in
n queens, that NQueens class implements Sol uti on, yet every Queen in a fresh NQueens class
is assigned to a Row yet. So it's not a feasible solution. It's not even a possible solution. It's an
uninitialized solution.

3.3.5.2. The sol ution interface

You need to present the problem as a Sol uti on instance to the Sol ver. So you need to have a
class that implements the Sol ut i on interface:

public interface Solution<S extends Score> {

S get Score();
voi d set Score(S score);

Col | ecti on<? extends Obj ect> get Probl enfacts();

Sol uti on<S> cl oneSol ution();

For example, an NQueens instance holds a list of all columns, all rows and all Queen instances:

public class NQueens inplenments Sol ution<Si npl eScore> {
private int n;

/1 Problemfacts
private List<Colum> col ummLi st;

42

Planning problem and planning solution

private List<Row> rowList;

/1 Planning entities
private List<Queen> queenli st;

Il

3.3.5.3. The getScore and setScore methods

A Sol uti on requires a score property. The score property is nul | if the Sol uti on is uninitialized
or if the score has not yet been (re)calculated. The score property is usually typed to the specific
Scor e implementation you use. For example, NQueens uses a Si npl eScor e:

public class NQueens inplenments Sol uti on<Si npl eScore> {
private SinpleScore score;
public Sinmpl eScore getScore() {

return score,

public void set Score(Si mpl eScore score) {
this.score = score;

Il

Most use cases use a Har dAndSof t Scor e instead:

public class Curricul umCourseSchedul e i npl ements Sol uti on<Har dAndSof t Scor e> {
private HardAndSoft Score score;

publ i ¢ Har dAndSof t Score get Score() {
return score,;

public void set Score(Har dAndSof t Score score) {
this.score = score;

I

43

Chapter 3. Planner configuration

See the Score calculation section for more information on the Scor e implementations.

3.3.5.4. The getProblemFacts method

All objects returned by the get Pr obl enfact s() method will be asserted into the drools working
memory, so the score rules can access them. For example, NQueens just returns all Col unm and
Row instances.

public Collection<? extends Cbject> getProbl enfFacts() {
Li st <Cbj ect> facts = new ArrayLi st <Obj ect >();
facts. addAl | (col umLi st);
facts.addAl | (rowlist);
// Do not add the planning entity's (queenList) because that will be
done autonamtically
return facts;

All planning entities are automatically inserted into the drools working memory. Do not add them
in the method get Pr obl enfFact s() .

The method get Probl enfFact s() is not called much: at most only once per solver phase per
solver thread.

3.3.5.5. Cached problem fact

A cached problem fact is a problem fact that doesn't exist in the real domain model, but is
calculated before the Sol ver really starts solving. The method get Probl enfFact s() has the
chance to enrich the domain model with such cached problem facts, which can lead to simpler
and faster score constraints.

For example in examination, a cache problem fact Topi cConf | i ct is created for every 2 Topi c's
which share at least 1 St udent .

public Collection<? extends Cbject> getProbl enfacts() {
Li st <Cbj ect> facts = new ArraylLi st <Qbj ect >();
I/
facts.addAl | (cal cul at eTopi cConflictList());
I
return facts;

private List<TopicConflict> cal cul ateTopi cConflictList() {
Li st <Topi cConflict> topicConflictList = new ArrayLi st <Topi cConflict>();
for (Topic leftTopic : topiclList) {

44

Planning problem and planning solution

for (Topic rightTopic : topicList) {
if (leftTopic.getld() < rightTopic.getld()) {
int studentSize = 0;
for (Student student : |eftTopic.getStudentList()) {
if (rightTopic.getStudentList().contains(student)) {
st udent Si ze++;

}
if (studentSize > 0) {

topi cConflictList.add(new TopicConflict(leftTopic,
ri ght Topi ¢, studentSize));
}

}

return topicConflictList;

Any score constraint that needs to check if no 2 exams have a topic which share a student are
being scheduled close together (depending on the constraint: at the same time, in a row or in the
same day), can simply use the Topi cConfli ct instance as a problem fact, instead of having to
combine every 2 St udent instances.

3.3.5.6. The cloneSolution method

Most optimization algorithms use the cl oneSol uti on() method to clone the solution each time
they encounter a new best solution (so they can recall it later) or to work with multiple solutions
in parallel.

The NQueens implementation only deep clones all Queen instances. When the original solution is
changed during planning, by changing a Queen, the clone stays the same.

/**
* Clone will only deep copy the { #queenLi st}.
*/
publ i ¢ NQueens cl oneSol ution() {
NQueens cl one = new NQueens();
clone.id =id;
clone.n = n;
cl one. col umLi st = col ummLi st ;
clone.rowLi st = rowLi st
Li st <Queen> cl onedQueenLi st = new ArraylLi st <Queen>(queenLi st.size());
for (Queen queen : queenList) {
cl onedQueenLi st. add(queen. cl one());
}
cl one. queenLi st = cl onedQueenlLi st ;
cl one. score = score;

45

Chapter 3. Planner configuration

return cl one;

The cl oneSol uti on() method should only deep clone the planning entities. Notice that the
problem facts, such as Col utm and Row are normally not cloned: even their Li st instances are
not cloned.

@ Note
If you were to clone the problem facts too, then you'd have to make sure that the
new planning entity clones also refer to the new problem facts clones used by the
solution. For example, if you 'd clone all Rowinstances, then each Queen clone and
the NQueens clone itself should refer to the same set of new Row clones.

3.3.5.7. Build an uninitialized solution

Build a Sol ut i on instance to represent your planning problem, so you can set it on the Sol ver
as the planning problem to solve. For example in n queens, an NQueens instance is created with
the required Col um and Row instances and every Queen set to a different col umm and every r ow
settonul I.

private NQueens createNQueens(int n) {
NQueens nQueens = new NQueens();
nQueens. set 1 d(O0L);
nQueens. set N(n) ;
Li st <Col um> col umLi st = new ArrayLi st <Col utm>(n);
for (int i =0; i <n; i++) {
Col um col um = new Col umm();
colum. setld((long) i);
col um. set | ndex(i);
col umLi st . add(col um);
}
nQueens. set Col umLi st (col ummLi st) ;
Li st <Row> rowLi st = new ArrayLi st <Row>(n);
for (int i =0; i <n; i++) {
Row row = new Row() ;
row. setld((long) i);
row. set | ndex(i);
rowLi st. add(row);
}
nQueens. set RowLi st (rowli st);
Li st <Queen> queenLi st = new ArraylLi st <Queen>(n);
long id = 0;
for (Columm columm : columlList) {
Queen queen = new Queen();

46

Planning problem and planning solution

queen. setld(id);
i d++;
gueen. set Col umm(col umm) ;
/1 Notice that we | eave the Pl anni ngVari abl e properties (row) on null
queenlLi st . add(queen);
}
nQueens. set QueenLi st (queenLi st);
return nQueens;

A°-B C D

Ww N H ©

Figure 3.1. Uninitialized solution for the 4 queens puzzle

Usually, most of this data comes from your data layer, and your Sol uti on implementation just
aggregates that data and creates the uninitialized planning entity instances to plan:

private void createlLecturelist(Curricul umCourseSchedul e schedul e) {
Li st <Course> courseli st = schedul e. get CourselList();
Li st<Lecture> | ectureLi st = new ArraylLi st <Lect ure>(courseList.size());
for (Course course : courselist) {
for (int i = 0; i < course.getlLectureSize(); i++) {
Lecture lecture = new Lecture();
| ecture. set Course(course);
| ecture. set Lect urel ndexl nCourse(i);
/1 Notice that we |eave the PlanningVariable properties
(period and room) on null
| ectureList.add(lecture);

}

schedul e. set Lect ureLi st (Il ecturelList);

47

Chapter 3. Planner configuration

3.4. Solver

3.4.1. The Solver interface

The Sol ver implementation will solve your planning problem. It's build based from a solver
configuration, do not implement it yourself:
public interface Sol ver {

voi d set Pl anni ngPr obl en{ Sol uti on pl anni ngPr obl em ;

voi d sol ve();

Sol uti on get Best Sol ution();

Il

A Solver can only solve 1 problem instance at a time. A Sol ver should only be accessed from a
single thread, except for the methods that are specifically javadocced as being thread-safe.

3.4.2. Solving a problem

Solving a problem is quite easy once you have:

« A Sol ver build from a solver configuration
* A Sol uti on that represents the planning problem instance

Just set the planning problem, solve it and extract the best solution:

sol ver. set Pl anni ngPr obl en{ pl anni ngPr obl en) ;
sol ver. sol ve();
Sol ution best Sol ution = sol ver. get Best Sol ution();

For example in n queens, the method get Best Sol uti on() will return an NQueens instance with
every Queen assigned to a Row.

48

Environment mode: Are there bugs in my code?

Ww N = O

Figure 3.2. Best solution for the 4 queens puzzle in 8 ms (also an optimal
solution)

The sol ve() method can take a long time (depending on the problem size and the solver
configuration). The Sol ver will remember (actually clone) the best solution it encounters during
its solving. Depending on a number factors (including problem size, how time the Sol ver has, the
solver configuration, ...), that best solution will be a feasible or even an optimal solution.

repeated planning

3.4.3. Environment mode: Are there bugs in my code?

The environment mode allows you to detect common bugs in your implementation. It does not
affect the logging level.

You can set the environment mode in the solver configuration XML file:

<sol ver >
<envi r onnent Mbde>DEBUG</ envi r onnent Mode>

49

Chapter 3. Planner configuration

</ sol ver >

A solver has a single Randominstance. Some solver configurations use the Randominstance a lot
more than others. For example simulated annealing depends highly on random numbers, while
tabu search only depends on it to deal with score ties. The environment mode influences the seed
of that Randominstance.

There are 4 environment modes:

3.4.3.1. TRACE

The trace mode is reproducible (see the reproducible mode) and also turns on all assertions (such
as assert that the delta based score is uncorrupted) to fail-fast on rule engine bugs.

The trace mode is very slow (because it doesn't rely on delta based score calculation).
3.4.3.2. DEBUG

The debug mode is reproducible (see the reproducible mode) and also turns on most assertions
(such as assert that the undo Move is uncorrupted) to fail-fast on a bug in your Move
implementation, your score rule, ...

The debug mode is slow.

It's recommended to write a test case which does a short run of your planning problem with debug
mode on.

3.4.3.3. REPRODUCIBLE (default)

The reproducible mode is the default mode because it is recommended during development. In
this mode, 2 runs on the same computer will execute the same code in the same order. They will
also yield the same result, except if they use a time based termination and they have a sufficiently
large difference in allocated CPU time. This allows you to benchmark new optimizations (such as
a score constraint change) fairly.

The reproducible mode is not much slower than the production mode.

In practice, this mode uses the default random seed, and it also disables certain concurrency
optimizations (such as work stealing).

3.4.3.4. PRODUCTION

The production mode is the fastest and the most robust, but not reproducible. It is recommended
for a production environment.

The random seed is different on every run, which makes it more robust against an unlucky random
seed. An unlucky random seed gives a bad result on a certain data set with a certain solver
configuration. Note that in most use cases the impact of the random seed is relatively low on

50

Logging level: What is the Solver doing?

the result (even with simulated annealing). An occasional bad result is far more likely caused by
another issue (such as a score trap).

3.4.4. Logging level: What is the soiver doing?

The best way to illuminate the black box that is a Sol ver, is to play with the logging level:

WARN: Log only when things go wrong.

INFO: Log every phase and the solver itself.

DEBUG: Log every step of every phase.

TRACE: Log every move of every step of every phase.

Set the logging level on the category or g. dr ool s. pl anner, for example with Log4J:

<l og4j : configuration xm ns: | og4j="http://jakarta.apache.org/| og4j/">
<cat egory nane="org. drool s. pl anner">

<priority val ue="debug" />
</ cat egory>

</l og4j: configuration>

Or with Logback:

<confi guration>

<l ogger nanme="org. drool s. pl anner" | evel ="debug"/>

<configuration>

For example, set it to DEBUG logging, to see when the phases end and how fast steps are taken:

I NFO Sol ver started: time spend (0), score (null), new best score (null), random
seed (0).

DEBUG Step index (0), tine spend (1), score (0), initialized planning entity
(col 2@ ow0) .

DEBUG Step index (1), tinme spend (3), score (0), initialized planning entity
(col 1@ ow2) .

51

Chapter 3. Planner configuration

DEBUG Step index (2), tinme spend (4), score (0), initialized planning entity
(col 3@ owg) .

DEBUG Step index (3), tine spend (5), score (-1), initialized planning
entity (col 0@ owl).

I NFO Phase construction heuristic finished: step total (4), tinme spend (6),
best score (-1).

DEBUG Step index (0), time spend (10), score (-1), best score (-1),
accepted nove size (12) for picked step (col 1@ow2 => row3).

DEBUG Step index (1), time spend (12), score (0), new best score (0), accepted
nmove size (12) for picked step (col 3@ow3 => row2).

I NFO Phase | ocal search finished: steptotal (2), tinme spend (13), best score (0).
INFO Solved: tine spend (13), best score (0), average calculate count per
second (4846) .

All time spends are in milliseconds.

52

Chapter 4.

Chapter 4. Score calculation with a
rule engine

4.1. Rule based score calculation

The score calculation (or fithess function) of a planning problem is based on constraints (such
as hard constraints, soft constraints, rewards, ...). A rule engine, such as Drools Expert, makes it
easy to implement those constraints as score rules.

Adding more constraints is easy and scalable (once you understand the DRL syntax). This
allows you to add a bunch of soft constraint score rules on top of the hard constraints score rules
with little effort and at a reasonable performance cost. For example, for a freight routing problem
you could add a soft constraint to avoid the certain flagged highways during rush hour.

4.2. Choosing a Score implementation

4.2.1. The ScoreDefinition interface

The Scor eDefi ni ti on interface defines the score representation. The score must be a Score
instance and the instance type (for example Def aul t Har dAndSof t Score) must be stable
throughout the solver runtime.

The solver aims to find the solution with the highest score. The best solution is the solution with
the highest score that it has encountered during its solving.

E] Note
Most planning problems use negative scores, because they use negative
constraints. The score is usually the sum of the weight of the negative constraints
being broken, with an impossible perfect score of 0. This explains why the score
of a solution of 4 queens is the negative of the number of queen couples which
can attack each other.

Configure a ScoreDefinition in the solver configuration. You can implement a custom
Scor eDef i ni ti on, although the build-in score definitions should suffice for most needs:

4.2.2. SimpleScore

The Si npl eScor eDef i ni ti on defines the Scor e as a Si npl eScor e which has a single int value,
for example - 123.

<scoreDefinition>

53

Chapter 4. Score calculation ...

<scor eDefinitionType>S|I MPLE</ scor eDefi ni ti onType>
</ scoreDefinition>

4.2.3. HardAndSoftScore

The Har dAndSof t Scor eDef i ni ti on defines the Scor e as a Har dAndSof t Scor e which has a hard
int value and a soft int value, for example - 123har d/ - 456sof t .

<scoreDefinition>
<scoreDefiniti onType>HARD AND SOFT</scoreDefinitionType>
</ scoreDefinition>

4.2.4. Implementing a custom Score
To implement a custom Score, you 'll also need to implement a custom Scor eDefi niti on.

Extend Abst r act Scor eDef i ni ti on (preferable by copy pasting Har dAndSof t Scor eDefi ni ti on
or Si npl eScor eDef i ni ti on) and start from there.

Then hook you custom Scor eDef i ni ti on in your Sol ver Confi g. xm :

<scoreDefinition>

efinitionC ass>org. drool s. pl anner. exanpl es. ny. score. definition. MyScor eDefinition</
scoreDefinitionCl ass>
</ scoreDefinition>

4.3. Defining the score rules source
There are 2 ways to define where your score rules live.

4.3.1. A scoreDrl resource on the classpath

This is the simplest way: the score rule live in a DRL file which is a resource on the classpath.
Just add your score rules *. dr | file in the solver configuration, for example:

<scoreDr| >/ org/ drool s/ pl anner/ exanpl es/ nqueens/ sol ver/
nQueensScor eRul es. drl </ scoreDr| >

You can add multiple <scor eDr | > entries if needed, but normally you 'll define all your score rules
in 1 file.

54

A RuleBase (possibly defined by Guvnor)

4.3.2. A RuleBase (possibly defined by Guvnor)

If you prefer to build the Rul eBase yourself or if you're combining Planner with Guvnor, you can
set the Rul eBase on the Xm Sol ver Confi gur er before building the Sol ver:

xm Sol ver Confi gurer. get Sol ver Confi g() . set Rul eBase(rul eBase);

4.4. Implementing a score rule

The score calculation of a planning problem is based on constraints (such as hard constraints,
soft constraints, rewards, ...). A rule engine, such as Drools, makes it easy to implement those
constraints as score rules.

Here's an example of a constraint implemented as a score rule in such a DRL file:

rule "mul tipl eQueensHori zontal "
when
$g1l : Queen($id : id, $y : y);
$0g2 : Queen(id > $id, y == $y);
t hen
i nsertLogi cal (new
Unwei ght edConstrai nt Occurrence("mul ti pl eQueensHori zontal ", $qi1, $q2));
end

This score rule will fire once for every 2 queens with the same y. The (id > $i d) condition is
needed to assure that for 2 queens A and B, it can only fire for (A, B) and not for (B, A), (A, A) or
(B, B). Let's take a closer look at this score rule on this solution of 4 queens:

A°B C D

g g

Ww N ¢+ ©

In this solution the multipleQueensHorizontal score rule will fire for 6 queen couples: (A, B), (A, C),
(A, D), (B, C), (B, D) and (C, D). Because none of the queens are on the same vertical or diagonal
line, this solution will have a score of - 6. An optimal solution of 4 queens has a score of 0.

55

Chapter 4. Score calculation ...

4.5. Aggregating the score rules into the score

A ScoreCal cul ator instance is asserted into the WorkingMenory as a global called
scor eCal cul at or. Your score rules need to (direclty or indirectly) update that instance. Usually
you 'll make a single rule as an aggregation of the other rules to update the score:

gl obal Si npl eScor eCal cul at or scoreCal cul at or

rule "nultipl eQueensHorizontal "
when
$gl : Queen(S$id : id, $y : vy);
$g2 : Queen(id > $id, y == $y);
t hen
i nsertLogi cal (new
Unwei ght edConst rai nt Cccurrence("nmul ti pl eQueensHori zontal ", $ql1, $q92));
end

/1 mul tipleQueensVertical is obsolete because it is always O

rule "nultipl eQueensAscendi ngDi agonal "
when
$g1l : Queen($id : id, $ascendingD : ascendi ngD);
$92 : Queen(id > $id, ascendingD == $ascendi ngD);
t hen
i nsertLogi cal (new
Unwei ght edConst r ai nt Cccurrence(" mul ti pl eQueensAscendi ngDi agonal *, $q1, $q92));
end

rule "mul tipl eQueensDescendi nghi agonal "
when
$gl : Queen($id : id, $descendingD : descendi ngD);
$g2 : Queen(id > $id, descendi ngD == $descendi ngD);
t hen
i nsertLogi cal (new
Unwei ght edConst rai nt Cccurrence("mul ti pl eQueensDescendi ngDi agonal ", $ql, $g2));
end

56

Aggregating the score rules into the Score

rul e "hardConstrai nt sBroken"
when
$occurrenceCount : Number () from accumul at e(
$unwei ght edConstrai nt Occurrence : Unwei ght edConstrai nt Cccurrence(),
count ($unwei ght edConst r ai nt Cccurrence)
)
t hen
scoreCal cul ator. set Score(- $occurrenceCount.intVal ue());
end

Most use cases will also weigh their constraints differently, by multiplying the count of each score
rule with its weight. For example in freight routing, you can make 5 broken "avoid crossroads" soft
constraints count as much as 1 broken "avoid highways at rush hour" soft constraint. This allows
your business analysts to easily tweak the score function as they see fit.

Here's an example from CurriculumCourse, where assiging a Lect ur e to a Roomwhich is missing
2 seats is weighted equally bad as having 1 isolated Lecture ina Curri cul um

/'l RoonCapacity: For each |l ecture, the nunber of students that attend the course
must be | ess or equal
I/ than the nunber of seats of all the rooms that host its |ectures.
/| Each student above the capacity counts as 1 point of penalty.
rul e "roonmCapaci ty"
when

t hen
i nsertLogi cal (new IntConstraintQccurrence("roonCapacity",
Const rai nt Type. NEGATI VE_SOFT,
($student Si ze - $capacity),
o))

end

[/ Curricul unConpact ness: Lectures belonging to a curricul umshoul d be adj acent
// to each other (i.e., in consecutive periods).
/1l For a given curriculum we account for a violation every time there is one
| ecture not adjacent
// to any other lecture within the sanme day.
/] Each isolated lecture in a curriculumcounts as 2 points of penalty.
rul e "curricul unConpact ness”
when

t hen
i nsertLogi cal (new | ntConstraintGccurrence("curricul unConpact ness”,
Const rai nt Type. NEGATI VE_SOFT,
2,
)

end

57

Chapter 4. Score calculation ...

/1 Accunul ate soft constraints
rul e "soft Constraint sBroken"

salience -1 // Do the other rules first (optional, for performance)

when

$sof t Total : Number () from accurul at e(

I nt Constrai nt Cccurrence(constrai nt Type == Constrai nt Type. NEGATI VE_SOFT,
$wei ght : weight),

sun($wei ght)
)

t hen
scor eCal cul at or. set Sof t Const r ai nt sBroken($soft Total .intVal ue());
end

4.6. Delta based score calculation

It's recommended to use Drools in forward-chaining mode (which is the default behaviour),
because this will create the effect of a delta based score calculation, instead of a full score
calculation on each solution evaluation. For example, if a single queen A moves fromy 0 to 3, it
won't bother to recalculate the "multiple queens on the same horizontal line" constraint between
2 queens if neither of those involved queens is queen A.

This is a huge performance and scalibility gain. Drools Planner gives you this huge scalibility
gain without forcing you to write a very complicated delta based score calculation
algorithm. Just let the Drools rule engine do the hard work.

58

Tips and tricks

D Delta based
score calculation

The rule engine
(with forward chaining)
Ms@ﬂ only recalculates dirty tuples.

Ww N H O

S
W N H O
&

queens dirty total speedup
4 3 of 6 time/ 2

8 7of 28 time/ 4

16 150f 120 time/ 8

32 31of 496 time/ 16

64 63 of 2016 time /32

Figure 4.1. Delta based score calculation for the 4 queens puzzle

The speedup due to delta based score calculation is huge, because the speedup is relative to
the size of your planning problem (your n). By using score rules, you get that speedup without
writing any delta code.

4.7. Tips and tricks

« If you know a certain constraint can never be broken, don't bother writing a score rule for it.
For example in n queens, there is no "multipleQueensVertical" rule because a Queen's col umm
never changes and each Sol ut i on build puts each Queen on a different col um. This tends to
give a huge performance gain, not just because the score function is faster, but mainly because
most Sol ver implementations will spend less time evaluating unfeasible solutions.

» Be watchfull for score traps. A score trap is a state in which several moves need to be done to
resolve or lower the weight of a single constraint occurrence. Some examples of score traps:

« If you need 2 doctors at each table, but you're only moving 1 doctor at a time, then the solver
has no insentive to move a doctor to a table with no doctors. Punish a table with no doctors
more then a table with only 1 doctor in your score function.

59

Chapter 4. Score calculation ...

 If you only add the table as a cause of the ConstraintOccurrence and forget the jobType
(which is doctor or politician), then the solver has no insentive to move a docter to table which
is short of a doctor and a politician.

* If you use tabu search, combine it with a ni ni mal Accept edSel ecti on selector. Take some
time to tweak the value of i ni nal Accept edSel ect i on.

* Verify that your score calculation happens in the correct Number type. If you're making the sum
of integer values, don't let drools use Double's or your performance will hurt. The Sol ver will
usually spend most of its execution time running the score function.

» Always remember that premature optimization is the root of all evil. Make sure your design is
flexible enough to allow configuration based tweaking.

e Currently, don't allow drools to backward chain instead of forward chain, so avoid query's. It
kills delta based score calculation (so it Kills scalibility).

« Currently, don't allow drools to switch to MVEL mode, for performance.

» For optimal performance, use at least java 1.6 and always use server mode (j ava -server).
We have seen performance increases of 30% by switching from java 1.5 to 1.6 and 50% by
turning on server mode.

« If you're doing performance tests, always remember that the JVM needs to warm up. First load
your Sol ver and do a short run, before you start benchmarking it.

In case you haven't figured it out yet: performance (and scalability) is very important for solving
planning problems well. What good is a real-time freight routing solver that takes a day to find
a feasible solution? Even small and innocent looking problems can hide an enormous problem
size. For example, they probably still don't know the optimal solution of the traveling tournament
problem for as little as 12 traveling teams.

60

Chapter 5.

Chapter 5. Optimization algorithms

5.1. The size of real world problems

In number of possible solutions for a planning problem can be mind blowing. For example:

* 4 queens has 256 possible solutions (4 ~ 4) and 2 optimal solutions.
« 5 queens has 3125 possible solutions (5 ~ 5) and 1 optimal solution.
* 8 queens has 16777216 possible solutions (8 ~ 8) and 92 optimal solutions.

e 64 queens has more than 107115 possible solutions (64 ~ 64).

Most real-life planning problems have an incredible number of possible solutions and only 1 or
a few optimal solutions.

For comparison: the minimal number of atoms in the known universe (10"80). As a planning
problem gets bigger, the search space tends to blow up really fast. Adding only 1 extra planning
entity or planning value can heavily multiply the running time of some algorithms.

An algorithm that checks every possible solution (even with pruning) can easily run for billions of
years on a single real-life planning problem. What we really want is to find the best solution in
the limited time at our disposal. Planning competitions (such as the International Timetabling
Competition) show that local search variations (tabu search, simulated annealing, ...) usually
perform best for real-world problems given real-world time limitations.

5.2. The secret sauce of Drools Planner

Drools Planner is the first framework to combine optimization algorithms (metaheuristics, ...) with
score calculation by a rule engine such as Drools Expert. This combination turns out to be a very
efficient, because:

« Arule engine such as Drools Expertis great for calculating the score of a solution of a planning
problem. It make it easy and scalable to add additional soft or hard constraints such as "a
teacher shouldn't teach more then 7 hours a day". It does delta based score calculation without
any extra code. However it tends to be not suited to use to actually find new solutions.

« An optimization algorithm is great at finding new improving solutions for a planning problem,
without necessarily brute-forcing every possibility. However it needs to know the score of a
solution and offers no support in calculating that score efficiently.

61

Chapter 5. Optimization algor...

5.3. Optimization algorithms overview

Table 5.1. Optimization algorithms overview

Algorithm Scalable? Optimal Needs little Highly Requires
solution? configuration? configurable? initialized
solution?
Exact
algorithms
Brute force | 0/5 5/5 - 5/5 0/5 No
Guaranteed
Branch and | 0/5 5/5 - 4/5 1/5 No
bound Guaranteed
Construction
heuristics
First Fit 5/5 1/5 - Stops 5/5 1/5 No
after
initialization
First Fit 5/5 2/5 - Stops 4/5 2/5 No
Decreasing after
initialization
Best Fit 5/5 2/5 - Stops 4/5 2/5 No
after
initialization
Best Fit 5/5 2/5 - Stops 4/5 2/5 No
Decreasing after
initialization
Cheapest 3/5 2/5 - Stops 5/5 2/5 No
Insertion after
initialization
Metaheuristics
Local search
Hill- 4/5 2/5 - Gets 3/5 3/5 Yes
climbing stuck in local
optima
Tabu 4/5 4/5 3/5 5/5 Yes
search
Simulated | 4/5 4/5 2/5 5/5 Yes
annealing

62

Which optimization algorithms should | use?

Algorithm Scalable? Optimal Needs little Highly Requires
solution? configuration? configurable? initialized
solution?
Evolutionary
algorithms
Evolutionary| 4/5 ?/5 ?/5 ?/5 Yes
strategies
Genetic 4/5 ?/5 ?/5 215 Yes
algorithms

If you want to learn more about metaheuristics, read the free book Essentials of
Metaheuristics [http://www.cs.gmu.edu/~sean/book/metaheuristics/] or Clever Algorithms [http://
www.cleveralgorithms.com/].

5.4. Which optimization algorithms should | use?

The best optimization algorithms configuration for your use case depends heavily on your use
case. Nevertheless, this vanilla recipe will get you into the game with a pretty good configuration,
probably much better than what you're used to.

Start with a quick configuration that involves little or no configuration and optimization code:

1. First Fit

Next, implement planning entity difficulty comparison and turn it into:

1. First Fit Decreasing

Next, implement moves and add tabu search behind it:

1. First Fit Decreasing
2. Tabu search (use property tabu or move tabu)

At this point the free lunch is over. The return on invested time lowers. The result is probably
already more than good enough.

But you can do even better, at a lower return on invested time. Use the Benchmarker and try a
couple of simulated annealing configurations:

1. First Fit Decreasing

2. Simulated annealing (try several starting temperatures)

63

http://www.cs.gmu.edu/~sean/book/metaheuristics/
http://www.cs.gmu.edu/~sean/book/metaheuristics/
http://www.cs.gmu.edu/~sean/book/metaheuristics/
http://www.cleveralgorithms.com/
http://www.cleveralgorithms.com/
http://www.cleveralgorithms.com/

Chapter 5. Optimization algor...

And combine them with tabu search:

1. First Fit Decreasing
2. Simulated annealing (relatively long time)
3. Tabu search (relatively short time)

If you have time, continue experimenting even further. Blog about your experiments!

55 Sol ver Phase

A Sol ver can use multiple optimization algorithms in sequence. Each optimization algorithm is
represented by a Sol ver Phase. There is never more than 1 Sol ver Phase solving at the same
time.

@ Note
Some Sol ver Phase implementations can combine techniques from multiple
optimization algorithms, but they are still just 1 Sol ver Phase. For example: a local
search Sol ver Phase can do simulated annealing with property tabu.

Here's a configuration that runs 3 phases in sequence:

<sol ver >

<constructionHeuristic>
<l-- Phase 1: First Fit decreasing -->
</ constructionHeuristic>
<l ocal Sear ch>
<I-- Phase 2: Sinulated annealing -->
</l ocal Sear ch>
<l ocal Sear ch>
<!-- Phase 3: Tabu search -->
</l ocal Sear ch>
</ sol ver >

When the first phase terminates, the second phase starts, and so on. When the last phase
terminates, the Sol ver terminates.

Some phases (especially construction heuristics) will terminate automatically. Other phases
(especially metaheuristics) will only terminate if the phase is configured to terminate:

<sol ver >

64

Termination

<term nation><!-- Solver term nation -->

<maxi munBSecondsSpend>90</ maxi munSeconds Spend>
</term nation>
<l ocal Sear ch>

<term nation><!-- Phase ternmnation -->

<maxi munSecondsSpend>60</ maxi munSecondsSpend><! -- G ve the next phase a
chance to run too, before the Solver term nates -->
</term nation>

</l ocal Search>
<l ocal Sear ch>

</ | ocal Search>
</ sol ver>

If the Sol ver terminates (before the last phase terminates itself), the current phase is terminated
and all subsequent phases won't run.

5.6. Termination

Not all phases terminate automatically and sometimes you don't want to wait that long anyway.
A Sol ver can be terminated synchronously by up-front configuration or asynchronously from
another thread.

Especially metaheuristics phases will need to be told when to stop solving. This can be because
of a number of reasons: the time is up, the perfect score has been reached, ... The only thing you
can't depend on is on finding the optimal solution (unless you know the optimal score), because a
metaheuristics algorithm generally doesn't know it when it finds the optimal solution. For real-life
problems this doesn't turn out to be much of a problem, because finding the optimal solution could
take billions of years, so you 'll want to terminate sooner anyway. The only thing that matters is
finding the best solution in the available time.

For synchronous termination, configure a Ter i nati on on a Sol ver or a Sol ver Phase when
it needs to stop. You can implement your own Ter i nati on, but the build-in implementations
should suffice for most needs. Every Ternmi nati on can calculate a time gradient (needed for
some optimization algorithms), which is a ratio between the time already spend solving and the
estimated entire solving time of the Sol ver or Sol ver Phase.

5.6.1. TimeMillisSpendTermination

Terminates when an amount of time has been reached:

<term nati on>
<maxi munili meM | | i sSpend>500</ maxi munili meM | | i sSpend>
</term nation>

65

Chapter 5. Optimization algor...

<term nati on>
<maxi munSeconds Spend>10</ maxi nunSecondsSpend>
</termnation>

<term nati on>
<maxi munmM nut esSpend>5</ maxi nunM nut esSpend>
</term nation>

<term nati on>
<maxi munHour sSpend>1</ maxi nunHour sSpend>
</term nation>

™

5.6.2. ScoreAttainedTermination

Terminates when a certain score has been reached. You can use this Ter i nat i on if you know
the perfect score, for example for 4 queens:

<term nati on>
<scor eAtt ai ned>0</ scor eAtt ai ned>
</term nation>

For a planning problem with hard and soft constraints, it could look like this:

<t erm nati on>
<scor eAt t ai ned>0har d/ - 5000sof t </ scor eAtt ai ned>

66

StepCountTermination

</term nation>

You can use this Ter mi nat i on to terminate once it reaches a feasible solution.

5.6.3. StepCountTermination

Terminates when an amount of steps has been reached:

<term nati on>
<maxi munst epCount >100</ maxi nunst epCount >
</term nati on>

This Ter mi nat i on can only be used for a Sol ver Phase, not for the Sol ver itself.

5.6.4. UnimprovedStepCountTermination

Terminates when the best score hasn't improved in a number of steps:

<term nati on>
<maxi munni npr ovedSt epCount >100</ naxi mumni npr ovedSt epCount >
</term nati on>

If it hasn't improved recently, it's probably not going to improve soon anyway and it's not worth the
effort to continue. We have observed that once a new best solution is found (even after a long time
of no improvement on the best solution), the next few step tend to improve the best solution too.

5.6.5. Combining Terminations

Terminations can be combined, for example: terminate after 100 steps or if a score of 0 has been
reached:

<term nation>
<t erm nati onConposi tionStyl e>OR</term nati onConposi tionStyl e>
<maxi munst epCount >100</ maxi nunst epCount >
<scor eAtt ai ned>0</ scor eAt t ai ned>

</term nation>

Alternatively you can use AND, for example: terminate after reaching a feasible score of at least
-100 and no improvements in 5 steps:

<term nati on>
<term nati onConposi tionStyl e>AND</t erm nati onConposi ti onStyl e>

67

Chapter 5. Optimization algor...

<maxi munmni nmpr ovedSt epCount >5</ maxi munmni npr ovedSt epCount >
<scor eAtt ai ned>- 100</ scor eAtt ai ned>
</term nation>

This example ensures it doesn't just terminate after finding a feasible solution, but also completes
any obvious improvements on that solution before terminating.

5.6.6. Asynchronous termination from another thread

Sometimes you 'll want to terminate a Solver early from another thread, for example because a
user action or a server restart. That cannot be configured by a Ter i nat i on as it's impossible to
predict when and if it will occur. Therefor the Sol ver interface has these 2 thread-safe methods:
public interface Sol ver {

Il

bool ean term nateEarly();
bool ean i sTerm nateEarl y();

If you call the t er mi nat eEar | y() method from another thread, the Sol ver will terminate at its
earliest convenience and the sol ve() method will return in the original Sol ver thread.

5.7. Custom SolverPhase

Between phases or before the first phase, you might want to execute a custom action on the
Sol uti on to get a better score. Yet you'll still want to reuse the score calculation. For example, to
implement a custom construction heuristic without implementing an entire Sol ver Phase.

@ Note
Most of the time, a custom construction heuristic is not worth the hassle. The
supported constructions heuristics are configurable (so you can tweak them with
the Benchmar ker), Ter ni nati on aware and support partially initialized solutions
too.

Implement the Cust onSol ver PhaseConmand interface:

public interface Custonfol ver PhaseConmand {

voi d changeWr ki ngSol uti on(Sol uti onDi rector solutionDirector);

68

Custom SolverPhase

For example:

public class Exani nationSol utionlnitializer inplenments CustonSol ver PhaseConmand

{

public void changeWr ki ngSol uti on(Sol uti onDirector solutionDirector) {
Exam nati on exam nati on = (Exami nati on)
sol uti onDi rect or. get Wor ki ngSol uti on();
for (Exam exam : exam nation. get ExanList()) {
Scor e unschedul edScor e =
sol uti onDi rector. cal cul at eScor eFr omAbr ki ngMenory () ;

for (Period period : examn nation.getPeriodList()) {
exam set Peri od(peri od)
wor ki ngMenor y. updat e(examHandl e, exan);
Score score = sol utionbDirector. cal cul at eScor eFr om\r ki ngMenory() ;

Warning

Any change on the planning entities in a Cust onBol ver PhaseComrand must be told
to the Wor ki ngMenory of sol uti onDi rect or. get Wor ki ngMenor y() .

Warning

Do not change any of the planning facts in a Cust onSol ver PhaseCommand. That
will corrupt the Sol ver because any previous score or solution was for a different
problem. If you want to do that, see repeated planning and real-time planning
instead.

And configure it like this:

<sol ver >

69

Chapter 5. Optimization algor...

<cust onBSol ver Phase>

cust ontol ver PhaseConmandC ass>
</ cust onSol ver Phase>
<l-- Qher phases -->
</ sol ver >

It's possible to configure multiple cust onSol ver PhaseCommandd ass instances, which will be run
in sequence.

-

Chapter 6.

Chapter 6. Exact methods

6.1. Overview

Exact methods will always find the global optimum and recognize it too. That being said, they don't
scale (not even beyond toy problems) and are therefor mostly useless.

6.2. Brute Force

6.2.1. Algorithm description

The brute force algorithm creates and evaluates every possible solution.

71

Chapter 6. Exact methods

A B C D

Ww N H O

e il

48 in-feasible solutions

i T, T 1 T

/

4]

Configuration

Notice that it creates a search tree that explodes as the problem size increases. Brute force is
mostly unusable for a real-world problem due to time limitations.

6.2.2. Configuration

Using the brute force algorithm is easy:

<sol ver >
<br ut eFor ce>

</ br ut eFor ce>
</ sol ver >

6.3. Branch and bound

6.3.1. Algorithm description

Branch and bound is an improvement over brute force, as it prunes away subsets of solutions
which cannot have a better solution than the best solution already found at that point.

73

Chapter 6. Exact methods

A B C D

Ww N H O

Branch and bound .

N queens

12 ’_2‘ 13 ’_1‘ 14 ’_2

Configuration

Notice that it (like brute force) creates a search tree that explodes (but less than brute force) as
the problem size increases. Branch and bound is mostly unusable for a real-world problem
due to time limitations.

It can determine a lower bound of problem. A lower bound is a score which is proven to be higher
than the optimal score of a problem. So it gives an indication of the quality of any best solution
found for that problem: the closer to best score is to the lower bound, the better.

6.3.2. Configuration

Branch and bound is not yet implemented in Drools Planner. Patches welcome.

75

76

Chapter 7.

Chapter 7. Construction heuristics

7.1. Overview

A construction heuristic builds a pretty good initial solution in a finite length of time. Its solution
isn't always feasible, but it finds it fast and metaheuristics can finish the job.

Construction heuristics terminate automatically, so there's usually no need to configure a
Ter nmi nat i on on the construction heuristic phase specifically.

7.2. First Fit

7.2.1. Algorithm description

The First Fit algorithm cycles through all the planning entity (in default order), initializing 1 planning
entity at a time. It assigns the planning entity to the best available planning value, taking the
already initialized planning entities into account. It terminates when all planning entities have been
initialized. It never changes a planning entity after it has been assigned.

77

Chapter 7. Construction heuri...

Order:
default

EEEE

EEEE

EEEE

A B C D
0 Greedy ¢
1 "
) firs
3 N qus
0 n =
W
ﬁ o
i H{““xi;:;'_i_
i W] W] |
0}
i |
1) -1 0 ==
w]] | [
W :
H) ==
wr] |l [
W :

Configuration

Notice that it starts with putting Queen A into row 0 (and never moving it later), which makes it
impossible reach the optimal solution. Suffixing this construction heuristic with metaheurstics can
remedy that.

7.2.2. Configuration

Configure this Sol ver Phase:

<constructionHeuristic>
<constructionHeuristicType>Fl RST_FI T</ constructi onHeuri sti cType>
<!-- Speedup that can be applied to npbst, but not all use cases: -->
<l--

constructi onHeuri sticPi ckEarl yType> -->
</constructionHeuristic>

7.3. First Fit Decreasing

7.3.1. Algorithm description

Like Fi rst Fit, but assigns the more difficult planning entities first, because they are less likely
to fit in the leftovers. So it sorts the planning entities on decreasing difficulty.

Requires the model to support planning entity difficulty comparison.

79

Chapter 7. Construction heuri...

A B C D
Order: o Greedy ¢
decreasing 1 . .
difficulty > first fit de
3 N qu
:E: 0 n =
0
pilrj pilrj
W
pilrj
W [
0 L“:“'hx:;j;x
1 ——
i iy iy iy Wy ;
iy g
Ly g
iy
1 2 (-1 S0) L=
2 T
W W 1
g il
W g
2 e
3
g 1
W
iz
L 1
2

Configuration

7.3.2. Configuration

Configure this Sol ver Phase:

<constructionHeuristic>
<constructionHeuristi cType>Fl RST_FI T_DECREASI NG</ constructi onHeuri sti cType>
<I-- Speedup that can be applied to nost, but not all use cases: -->
<l--

constructionHeuristicPi ckEarlyType> -->
</ constructi onHeuristic>

7.4. Best Fit

7.4.1. Algorithm description

Like Fi rst Fit, but uses the weaker planning values first, because the strong planning values
are more likely to be able to accomodate later planning entities. So it sorts the planning values
on increasing strength.

Requires the model to support planning value strength comparison.

7.4.2. Configuration

Configure this Sol ver Phase:

<constructi onHeuristic>
<constructi onHeuri sticType>BEST_FI T</ constructi onHeuri sti cType>
<I-- Speedup that can be applied to nost, but not all use cases: -->
<I--

constructi onHeuri sticPi ckEarl yType> -->

81

Chapter 7. Construction heuri...

</ constructi onHeuristic>

7.5. Best Fit Decreasing

7.5.1. Algorithm description

Combines First Fit Decreasi ngand Best Fit. So itsorts the planning entities on decreasing
difficulty and the planning values on increasing strength.

Requires the model to support planning entity difficulty comparison and planning value strength
comparison.

7.5.2. Configuration

Configure this Sol ver Phase:

<constructionHeuristic>
<constructionHeuristicType>BEST_FI T_DECREASI NG</ constructi onHeuri sticType>
<!-- Speedup that can be applied to nost, but not all use cases: -->
<l--

constructionHeuristicPi ckEarl yType> -->
</ constructi onHeuristic>

7.6. Cheapest insertion
7.6.1. Algorithm description
TODO

7.6.2. Configuration

TODO Not implemented yet.

82

Chapter 8.

Chapter 8. Local search solver

8.1. Overview

Local search starts from an initial solution and evolves that single solution into a mostly better
and better solution. It uses a single search path of solutions, not a search tree. At each solution
in this path it evaluates a number of moves on the solution and applies the most suitable move
to take the step to the next solution. It does that for high number of iterations until its terminated
(usually because its time has run out).

Local search acts a lot like a human planner: it uses a single search path and moves facts around
to find a good feasible solution. Therefore it's pretty natural to implement.

Local search needs to start from an initialized solution, therefor it's recommended to configure
a construction heuristic solver phase before it.

8.2. Hill climbing (simple local search)

8.2.1. Algorithm description

Hill climbing can easily get stuck in a local optima, but improvements (such as tabu search and
simulated annealing) address this problem.

8.3. Tabu search

8.3.1. Algorithm description

Like hill climbing, but maintains a tabu list to avoid getting stuck in local optima. See Tabu Search
accepter below.

8.4. Simulated annealing

8.4.1. Algorithm description
See Simulated Annealing accepter below.
8.5. About neighborhoods, moves and steps

8.5.1. A move

A move is the change from a solution A to a solution B. For example, below you can see a single
move on the starting solution of 4 queens that moves a single queen to another row:

83

Chapter 8. Local search solver

A B C D A B C D
g g N
1 1

2 ¥ 2 Wi
3 3

Figure 8.1. A single move (4 queens example)

A move can have a small or large impact. In the above example, the move of queen CO to C2
is a small move. Some moves are the same move type. These are some possibilities for move
types in n queens:

« Move a single queen to another row. This is a small move. For example, move queen CO to C2.
* Move all queens a number of rows down or up. This a big move.

* Move a single queen to another column. This is a small move. For example, move queen C2
to AO (placing it on top of queen AO0).

* Add a queen to the board at a certain row and column.
* Remove a queen from the board.

Because we have decided that all queens will be on the board at all times and each queen has
an appointed column (for performance reasons), only the first 2 move types are usable in our
example. Furthermore, we ‘'re only using the first move type in the example because we think it
gives the best performance, but you are welcome to prove us wrong.

Each of your move types will be an implementation of the Move interface:

public interface Mve {
bool ean i sMoveDoabl e(Eval uati onHandl er eval uati onHandl er);
Move creat eUndoMove(Eval uati onHandl er eval uati onHandl er) ;

voi d doMove(Eval uati onHandl er eval uati onHandl er);

Let's take a look at the Move implementation for 4 queens which moves a queen to a different row:

public class RowChangeMove inpl enents Myve {

84

A move

private Queen queen;
private Row toRow;

publ i ¢ RowChangeMbve(Queen queen, Row toRow) {
thi s. queen = queen;
this.toRow = t oRow;

/1l ... see bel ow

An instance of RowChangeMove moves a queen from its current row to a different row.

Drools Planner calls the doMove(Wor ki ngMenor y) method to do a move. The Move implementation
must notify the working memory of any changes it does on the solution facts:

public void doMove(Worki ngMenory wor ki ngMenory) {
Fact Handl e queenHandl e = wor ki ngMenory. get Fact Handl e(queen) ;
queen. set Row(t oRow) ;
wor ki ngMenor y. updat e(queenHandl e, queen); // after changes are nade

You need to call the wor ki ngMenory. updat e(Fact Handl e, Obj ect) method after modifying the
fact. Note that you can alter multiple facts in a single move and effectively create a big move (also
known as a coarse-grained move).

Drools Planner automatically filters out non doable moves by calling the
i sDoabl e(Wor ki ngMenory) method on a move. A non doable move is:

< A move that changes nothing on the current solution. For example, moving queen BO to row 0
is not doable, because it is already there.

« A move that is impossible to do on the current solution. For example, moving queen BO to row
10 is not doable because it would move it outside the board limits.

In the n queens example, a move which moves the queen from its current row to the same row
isn't doable:

publi ¢ bool ean i sMbveDoabl e(Wr ki ngMenory wor ki ngMenory) {
return !QojectUils. equal s(queen. getRow(), toRow);

Because we won't generate a move which can move a queen outside the board limits, we don't
need to check it. A move that is currently not doable can become doable on a later solution.

85

Chapter 8. Local search solver

Each move has an undo move: a move (usually of the same type) which does the exact opposite.
In the above example the undo move of CO to C2 would be the move C2 to C0O. An undo move
can be created from a move, but only before the move has been done on the current solution.

public Move createUndoMove(Wor ki ngMenory wor ki ngMenory) {
return new RowChangeMove(queen, queen. get Row());

Notice that if CO would have already been moved to C2, the undo move would create the move
C2to C2, instead of the move C2 to CO.

The local search solver can do and undo a move more than once, even on different (successive)
solutions.

A move must implement the equal s() and hashcode() methods. 2 moves which make the same
change on a solution, must be equal.

publi ¢ bool ean equal s(Obj ect 0) {

if (this == 0) {
return true;

} else if (o instanceof RowChangeMve) {
RowChangeMove ot her = (RowChangeMove) o;
return new Equal sBui | der ()

. append(queen, ot her.queen)
. append(t oRow, other.toRow)
.isEqual s();

} else {

return fal se;

public int hashCode() ({
return new HashCodeBui | der ()
. append(queen)
. append(t oRow)
. toHashCode() ;

In the above example, the Queen class uses the default bj ect equal () and hashcode()
implementations. Notice that it checks if the other move is an instance of the same move type.
This is important because a move will be compared to a move with another move type if you're
using more then 1 move type.

It's also recommended to implement the toString() method as it allows you to read Drools
Planner's logging more easily:

86

Move generation

public String toString() {
return queen + " =>" + toRow,

Now that we can make a single move, let's take a look at generating moves.

8.5.2. Move generation

At each solution, local search will try all possible moves and pick the best move to change to the
next solution. It's up to you to generate those moves. Let's take a look at all the possible moves
on the starting solution of 4 queens:

3
a3
MILIE

[0 Doable mowve

B Mot doable move
[no change)

Ww N H O

Figure 8.2. Possible moves at step 0 (4 queens example)

As you can see, not all the moves are doable. At the starting solution we have 12 doable moves
(n * (n - 1)), one of which will be move which changes the starting solution into the next
solution. Notice that the number of possible solutions is 256 (n ~ n), much more that the amount
of doable moves. Don't create a move to every possible solution. Instead use moves which can
be sequentially combined to reach every possible solution.

It's highly recommended that you verify all solutions are connected by your move set. This
means that by combining a finite number of moves you can reach any solution from any solution.
Otherwise you're already excluding solutions at the start. Especially if you're using only big moves,
you should check it. Just because big moves outperform small moves in a short test run, it doesn't
mean that they will outperform them in a long test run.

You can mix different move types. Usually you're better off preferring small (fine-grained) moves
over big (course-grained) moves because the score delta calculation will pay off more. However,
as the traveling tournament example proves, if you can remove a hard constraint by using a certain
set of big moves, you can win performance and scalability. Try it yourself: run both the simple
(small moves) and the smart (big moves) version of the traveling tournament example. The smart
version evaluates a lot less unfeasible solutions, which enables it to outperform and outscale the
simple version.

87

Chapter 8. Local search solver

Move generation currently happens with a MoveFact ory:

public class NQueensMveFactory extends CachedMovelLi st MoveFactory {

publ i c List<Mwve> createMveList(Solution solution) {
NQueens nQueens = (NQueens) sol ution;
Li st <Move> noveli st = new ArraylLi st <Move>();

for (Queen queen :

for (int y :

nQueens. get QueenList()) {
nQueens. get RowLi st ()) {

nmoveli st . add(new YChangeMve(queen, Y));

}

return novelLi st;

But we might be making move generation part of the DRL's in the future.

8.5.3. A step

A step is the winning move. The local search solver tries every move on the current solution and
picks the best accepted move as the step:

Figure 8.3. Decide the next step at step 0 (4 queens example)

A
Wy

B C
{88 8y

D
g

Score -b

Ww N = O

g

Score -4

Score -4

Score -3

Score -4

88

A step

Because the move B0 to B3 has the highest score (- 3), it is picked as the next step. Notice that
CO0 to C3 (not shown) could also have been picked because it also has the score - 3. If multiple
moves have the same highest score, one is picked randomly, in this case BO to B3.

The step is made and from that new solution, the local search solver tries all the possible moves
again, to decide the next step after that. It continually does this in a loop, and we get something
like this:

89

Chapter 8. Local search solver

Step 0

Step 1

Step 2

Step 3

Score -6

w N H O

Score -4

Score -4

Score -4

g

g

] |w

Score -1

Score -3

m

Score -4

g

g

iy

iip

g

g

g

g

Score -3

Figure 8.4. All steps (4 queens example)

Notice that the local search solver doesn't use a search tree, but a search path. The search path
is highlighted by the green arrows. At each step it tries all possible moves, but unless it's the

Score -3

90

Score -4

Getting stuck in local optima

step, it doesn't investigate that solution further. This is one of the reasons why local search is
very scalable.

As you can see, the local search solver solves the 4 queens problem by starting with the starting
solution and make the following steps sequentially:

1. BOto B3

2. DO to B2

3. A0Oto B1

If we turn on DEBUG logging for the category or g. dr ool s. pl anner, then those steps are shown

into the log:

INFO Solver started: tine spend (0), score (-6), new best score (-6), random

seed (0).

DEBUG Step index (0), time spend (20), score (-3), new best score (-3),
accepted nove size (12) for picked step (col 1@ow0 => row3).

DEBUG Step index (1), tine spend (31), score (-1), new best score (-1),

accepted nove size (12) for picked step (col0@ow0 => rowl).

DEBUG Step index (2), time spend (40), score (0), new best score (0), accepted
move size (12) for picked step (col3@owd => row2).

I NFO Phase | ocal search finished: steptotal (3), tinme spend (41), best score (0).
INFO Solved: tine spend (41), best score (0), average calculate count per
second (1780).

Notice that the logging uses the t oSt ri ng() method of our Move implementation: col 1@ ow0 =>
rows.

The local search solver solves the 4 queens problem in 3 steps, by evaluating only 37
possible solutions (3 steps with 12 moves each + 1 starting solution), which is only fraction
of all 256 possible solutions. It solves 16 queens in 31 steps, by evaluating only 7441 out of
18446744073709551616 possible solutions. Note: with construction heurstistics it's even a lot
more efficient.

8.5.4. Getting stuck in local optima

A hill climber always takes improving moves. This may seem like a good thing, but it's not. It
suffers from a number of problems:

« It can get stuck in a local optimum. For example if it reaches a solution X with a score -1 and
there is no improving move, it is forced to take a next step that leads to a solution Y with score
-2, after that however, it's very real that it will pick the step back to solution X with score -1. It
will then start looping between solution X and Y.

91

Chapter 8. Local search solver

« It can start walking in its own footsteps, picking the same next step at every step.

Of course Drools Planner implements better local searches, such as tabu search and simulated
annealing which can avoid these problems. We recommend to never use a hill climber, unless
you're absolutely sure there are no local optima in your planning problem.

8.6. Deciding the next step

The local search solver decides the next step with the aid of 3 configurable components:

» A selector which selects (or generates) the possible moves of the current solution.
« An acceptor which filters out unacceptable moves. It can also weigh a move it accepts.

« A forager which gathers all accepted moves and picks the next step from them.

A B C D
g g R

Score -6

Ww N H O

g

Score -4 Score -4 Score -3 Score -4

Figure 8.5. Decide the next step at step 0 (4 queens example)

In the above example the selector generated the moves shown with the blue lines, the acceptor
accepted all of them and the forager picked the move BO to B3.

If we turn on TRACE logging for the category or g. dr ool s. pl anner, then the decision making is
shown in the log:

INFO Solver started: tine spend (0), score (-6), new best score (-6), random
seed (0).

92

Selector

TRACE
TRACE
TRACE
TRACE
TRACE
TRACE
TRACE
DEBUG

I gnoring not doable nove (col 0@ow0 => row0).
Move score (-4), accepted (true) for
Move score (-4), accepted (true) for
Move score (-4), accepted (true) for

Move score (-3), accepted (true) for

Move score (-3), accepted (true) for

Move score (-4), accepted (true) for

Step index (0),

8.6.1. Selector

time spend (6), score (-3),

A selector is currently based on a MoveFact ory.

<sel ect or >

nove

nove

nove

nove

nove

nove

(col0@ow0 => rowl).
(col0@ow0 => row?).
(col 0@ow0 => row3d).
(col l@ow0 => row3d).

(col 2@ ow0 => row3d).

(col 3@ow0 => row3d).

new best score (-3),
accepted nove size (12) for picked step (col 1@ow0 => row3).

<noveFact oryCl ass>or g. drool s. pl anner . exanpl es. nqueens. sol ver. NQueensMveFact or y</
noveFact oryCl ass>
</ sel ector>

You're not obligated to generate the same set of moves at each step. It's generally a good idea
to use several selectors, mixing fine grained moves and course grained moves:

<sel ect or >

<sel ect or >

.nurserostering. sol ver. nove. f act ory. Enpl oyeeChangeMveFact or y</
noveFact or yCl ass>
</ sel ector>

<sel ect or >

g. sol ver. move. factory. Shi ft Assi gnment Swi t chMoveFact or y</
noveFact oryCl ass>

</ sel ector>

<sel ect or >

y. Shi ft Assi gnnment Pi | | ar Part Swi t chMbveFact ory</
noveFact oryCl ass>

</ sel ect or >

</ sel ect or >

93

Chapter 8. Local search solver

8.6.2. Acceptor

An acceptor is used (together with a forager) to active tabu search, simulated annealing, great
deluge, ... For each move it checks whether it is accepted or not.

You can implement your own Accept or, although the build-in acceptors should suffice for most
needs. You can also combine multiple acceptors.

8.6.2.1. Tabu search acceptor

When tabu search takes steps it creates tabu's. It does not accept a move as the next step if that
move breaks tabu. Drools Planner implements several tabu types:

 Solution tabu makes recently visited solutions tabu. It does not accept a move that leads to one
of those solutions. If you can spare the memory, don't be cheap on the tabu size.

<accept or >
<sol uti onTabuSi ze>1000</ sol uti onTabuSi ze>
</ accept or >

* Move tabu makes recent steps tabu. It does not accept a move equal to one of those steps.

<accept or>
<noveTabuSi ze>7</ noveTabuSi ze>
</ accept or >

« Undo move tabu makes the undo move of recent steps tabu.

<accept or>
<undoMoveTabuSi ze>7</ undoMoveTabuSi ze>
</ accept or >

» Property tabu makes a property of recent steps tabu. For example, it can make the queen tabu,
so that a recently moved queen can't be moved.

<accept or >
<propertyTabuSi ze>5</ pr opert yTabuSi ze>
</ accept or >

To use property tabu, your moves must implement the TabuPr opert yEnabl ed interface, for
example:

94

Acceptor

public class YChangeMve inplenments Mve, TabuPropertyEnabl ed {

private Queen queen;
private Row t oRow;

I

public List<? extends Cbject> get TabuPropertyList() {
return Col | ections. singl etonLi st(queen);

You can also make multiple properties tabu (with OR or AND semantics):

public List<? extends Object> get TabuPropertyList() {
/[l tabu with other noves that contain the sane |eftExam OR the

sane ri ght Exam
return Arrays.asList(leftExam rightExan;

public List<? extends Cbject> getTabuPropertyList() {
// tabu with other nobves that contain the sane exam AND the sane

toPeriod (but not necessary the sane toRoom
return Col |l ections. singletonList(Arrays. asLi st(exam toPeriod));

You can even combine tabu types:

<accept or >
<sol uti onTabuSi ze>1000</ sol ut i onTabuSi ze>
<noveTabuSi ze>7</ noveTabuSi ze>

</ accept or >

If you pick a too small tabu size, your solver can still get stuck in a local optimum. On the other
hand, with the exception of solution tabu, if you pick a too large tabu size, your solver can get
stuck by bouncing of the walls. Use the benchmarker to fine tweak your configuration. Experiments
teach us that it is generally best to use a prime number for the move tabu, undo move tabu or
property tabu size.

A tabu search acceptor should be combined with a high or no subset selection.

95

Chapter 8. Local search solver

8.6.2.2. Simulated annealing acceptor

Simulated annealing does not always pick the move with the highest score, neither does it evaluate
many moves per step. At least at first. Instead, it gives unimproving moves also a chance to be
picked, depending on its score and the time gradient of the Ter ni nat i on. In the end, it gradually
turns into a hill climber, only accepting improving moves.

In many use cases, simulated annealing surpasses tabu search. By changing a few lines of
configuration, you can easily switch from tabu search to simulated annealing and back.

Start with a si nul at edAnneal i ngSt art i ngTenper at ur e set to the maximum score delta a single
move can cause. Use the Benchmar ker to tweak the value.

<accept or>
<si mul at edAnneal i ngSt arti ngTenper at ur e>2har d/ 100sof t </
si mul at edAnneal i ngSt arti ngTenper at ur e>
</ accept or >
<f or ager >
<m ni mal Accept edSel ecti on>4</ m ni nal Accept edSel ecti on>
</ forager>

A simulated annealing acceptor should be combined with a low subset selection. The classic
algorithm uses a ni ni mal Accept edSel ect i on of 1, but usually 4 performs better.

You can even combine it with a tabu acceptor at the same time. Use a lower tabu size than in
a pure tabu search configuration.

<accept or >
<si nul at edAnneal i ngSt arti ngTenper at ur e>10. 0</
si mul at edAnneal i ngSt arti ngTenper at ur e>
<propertyTabuSi ze>5</ pr opert yTabuSi ze>
</ accept or >
<f or ager >
<m ni mal Accept edSel ecti on>4</ m ni mal Accept edSel ecti on>

</ forager>

This differs from phasing, another powerful technique, where first simulated annealing is used,
followed by tabu search.

8.6.3. Forager

A forager gathers all accepted moves and picks the move which is the next step. Normally it picks
the accepted move with the highest score. If several accepted moves have the highest score, one
is picked randomly.

You can implement your own For ager , although the build-in forager should suffice for most needs.

96

Forager

8.6.3.1. Subset selection

When there are many possible moves, it becomes inefficient to evaluate all of them at every step.
To evaluate only a random subset of all the moves, use:

< An mi ni mal Accept edSel ecti on integer, which specifies how many accepted moves should
have be evaluated during each step. By default it is positive infinity, so all accepted moves are
evaluated at every step.

<f or ager >
<m ni mal Accept edSel ecti on>1000</ nm ni mal Accept edSel ecti on>
</ f or ager >

Unlike the n queens problem, real world problems require the use of subset selection. Start from
an m ni mal Accept edSel ect i on that takes a step in less then 2 seconds. Turn on INFO logging
to see the step times. Use the Benchmar ker to tweak the value.

8.6.3.2. Pick early type

A forager can pick a move early during a step, ignoring subsequent selected moves. There are
3 pick early types:

* NEVER: A move is never picked early: all accepted moves are evaluated that the selection allows.
This is the default.

<f or ager >
<pi ckEar | yType>NEVER</ pi ckEar| yType>
</ f or ager >

e FI RST_BEST_SCORE_| MPROVI NG. Pick the first accepted move that improves the best score. If
none improve the best score, it behaves exactly like the pickEarlyType NEVER.

<f or ager >
<pi ckEar | yType>FI RST_BEST_SCORE_| MPROVI NG</ pi ckEar | yType>
</ f orager >

e FI RST_LAST_STEP_SCORE | MPROVI NG. Pick the first accepted move that improves the last step
score. If none improve the last step score, it behaves exactly like the pickEarlyType NEVER.

<f or ager >
<pi ckEar | yType>FI RST_LAST_STEP_SCORE_| MPROVI NG</ pi ckEar | yType>

97

Chapter 8. Local search solver

</ f or ager >

8.7. Best solution

Because the current solution can degrade (especially in tabu search and simulated annealing),
the Sol ver remembers the best solution it has encountered through the entire search path. Each
time the current solution is better than the last best solution, the current solution is cloned and
referenced as the new best solution.

You can listen to solver events, including when the best solution changes during solving, by adding
a Sol ver Event Li st ener to the Sol ver:

public interface Solver {
/1

voi d addEvent Li st ener (Sol ver Event Li st ener eventLi stener);
voi d renmoveEvent Li st ener (Sol ver Event Li st ener event Li stener);

8.8. Using a custom Selector, Acceptor, Forager or
Termination

It is easy to plug in a custom Sel ect or, Accept or, Forager or Terni nati on by extending the
abstract class and also the config class.

For example, to wuse a custom Selector, extend the AbstractSelector
class (see All MvesOf OneExantel ector), extend the SelectorConfig class (see
Al | MovesOf OneExansel ect or Conf i g) and configure it in the configuration XML:

s. pl anner . exanpl es. exanmi nati on. sol ver. sel ect or. Al | MovesOf OneExantel ect or Confi g"/
>

If you build a better implementation that's not domain specific, consider adding it as a patch in our
issue tracker and we'll take it along in future refactors and optimize it.

98

Chapter 9.

Chapter 9. Evolutionary algorithms

9.1. Overview

Evolutionary algorithms work on a population of solutions and evolve that population.

9.2. Evolutionary Strategies

This algorithm has not been implemented yet.

9.3. Genetic algorithms

This algorithm has not been implemented yet.

99

100

Chapter 10.

Chapter 10. Benchmarking and
tweaking

10.1. Finding the best configuration

Drools Planner supports several solver types, but you're probably wondering which is the best
one? Although some solver types generally perform better then others, it really depends on your
problem domain. Most solver types also have settings which can be tweaked. Those settings can
influence the results of a solver a lot, although most settings perform pretty good out-of-the-box.

Luckily, Drools Planner includes a benchmarker, which allows you to play out different solver
types and different settings against each other, so you can pick the best configuration for your
problem domain.

10.2. Building a Benchmarker

10.2.1. Adding the exta dependency

The Benchmarker is current in the drools-planner-core modules, but it requires an extra
dependency on the JFreeChart [http://www.jfree.org/jfreechart/] library.

If you use maven, add a dependency in your pom xni file:

<dependency>
<groupl d>j f ree</ gr oupl d>
<artifactld>jfreechart</artifactld>
<version>1.0. 13</ver si on>

</ dependency>

This is similar for gradle, ivy and buildr.

If you use ANT, you've probably already copied the required jars from the download zip's bi nari es
directory.

10.2.2. Building a basic Benchmarker

You can build a Benchnar ker instance with theXm Sol ver Benchmar ker . Configure it with a
benchmarker configuration xml file:

Xm Sol ver Benchmar ker benchmar ker = new Xm Sol ver Benchmar ker () ;
benchmar ker . confi gure("/ org/ drool s/ pl anner/ exanpl es/ nqueens/ benchmar k/
ngueensSol ver Benchmar kConfi g. xm ") ;
benchmar ker . benchmar k() ;

101

http://www.jfree.org/jfreechart/
http://www.jfree.org/jfreechart/

Chapter 10. Benchmarking and ...

benchmarker. witeResults(resultFile);

A basic benchmarker configuration file looks something like this:

<?xm version="1.0" encodi ng="UTF- 8" ?>

<sol ver Benchnar kSui t e>
<benchmar kDi r ect or y>l ocal / dat a/ nqueens</ benchmar kDi r ect or y>
<sol ver Stati sti cType>BEST_SOLUTI ON_CHANGED</ sol ver St ati sti cType>
<war mJpSeconds Spend>30</ war mpSeconds Spend>

<i nheritedSol ver Benchmar k>
<unsol vedSol ut i onFi | e>dat a/ nqueens/ unsol ved/ unsol vedNQueens32. xm </
unsol vedSol uti onFi | e>
<unsol vedSol uti onFi | e>dat a/ nqueens/ unsol ved/ unsol vedNQueens64. xm </
unsol vedSol uti onFi | e>
<sol ver >
<sol uti onCl ass>org. drool s. pl anner . exanpl es. nqueens. domai n. NQueens</
sol utionCl ass>
<pl anni ngEnti t yCl ass>or g. drool s. pl anner . exanpl es. nqueens. donmai n. Queen</
pl anni ngEnti tyd ass>
<scoreDr| >/ org/ drool s/ pl anner/ exanpl es/ nqueens/ sol ver/
nQueensScor eRul es. drl </ scoreDr| >
<scor eDefinition>
<scoreDefinitionType>SlI MPLE</ scor eDefi ni ti onType>
</ scoreDefinition>
<term nati on>
<maxi munSecondsSpend>20</ maxi nunSeconds Spend>
</term nation>
<constructionHeuristic>
<constructionHeuristicType>FI RST_FI T_DECREASI NG</
constructi onHeuri sticType>

<constructionHeuristicPickEarlyType>FI RST_LAST_STEP_SCORE_EQUAL_OR_| MPROVI NG</
constructionHeuristicPi ckEarl yType>
</ constructi onHeuristic>
</ sol ver >
</inheritedSol ver Benchmar k>

<sol ver Benchmar k>
<nanme>Sol uti on tabu</nanme>
<sol ver >
<l ocal Sear ch>
<sel ect or >

. drool s. pl anner . exanpl es. nqueens. sol ver. nove. f act ory. RowChangeMveFact or y</
noveFact oryCl ass>
</ sel ector>

102

Building a basic Benchmarker

<accept or >
<sol uti onTabuSi ze>1000</ sol uti onTabuSi ze>
</ accept or >
<f orager >
<pi ckEar | yType>NEVER</ pi ckEar | yType>
</ f or ager >
</l ocal Sear ch>
</ sol ver >
</ sol ver Benchmar k>
<sol ver Benchnmar k>
<nanme>Move tabu</nane>
<sol ver >
<l ocal Sear ch>
<sel ect or >

. drool s. pl anner . exanpl es. nqueens. sol ver. nove. f act ory. RowChangeMveFact or y</
noveFact oryCl ass>
</ sel ect or >
<accept or >
<nmoveTabuSi ze>5</ noveTabuSi ze>
</ accept or >
<f or ager >
<pi ckEar | yType>NEVER</ pi ckEar | yType>
</ forager>
</l ocal Sear ch>
</ sol ver >
</ sol ver Benchmar k>
<sol ver Benchmar k>
<name>Pr operty tabu</nane>
<sol ver >
<l ocal Sear ch>
<sel ect or>

. drool s. pl anner . exanpl es. nqueens. sol ver. nove. f act or y. RowChangeMoveFact or y</
noveFact or yCl ass>
</ sel ector>
<accept or >
<propertyTabuSi ze>5</ pr opert yTabuSi ze>
</ accept or >
<f orager >
<pi ckEar | yType>NEVER</ pi ckEar | yType>
</ f or ager >
</l ocal Sear ch>
</ sol ver >
</ sol ver Benchmar k>
</ sol ver Benchnar kSui t e>

103

Chapter 10. Benchmarking and ...

This benchmarker will try 3 configurations (1 solution tabu, 1 move tabu and 1 property tabu) on
2 data sets (32 and 64 queens), so it will run 6 solvers.

Every sol ver Benchmar k entity contains a solver configuration (for example a local search solver)
and one or more unsol vedSol ut i onFi | e entities. It will run the solver configuration on each of
those unsolved solution files. A nane is optional and generated if absent.

The common part of multiple sol verBenchmark entities can be extracted to the
i nheri t edSol ver Benchmar k entity, but that can still be overwritten per sol ver Benchnar k entity.
Note that inherited solver phases such as <const r ucti onHeuri sti c> or <l ocal Sear ch> are not
overwritten but instead are added to the head of the solver phases list.

You need to specify a benchmar kDi r ect or y (relative to the working directory). The best solution
of each solver run and a handy overview HTML webpage will be written in that directory.

10.2.3. Warming up the hotspot compiler

Without a warmup, the results of the first (or first few) benchmarks are not reliable, because they
will have lost CPU time on hotspot JIT compilation (and possibly DRL compilation too).

The avoid that distortion, the benchmarker can run some of the benchmarks for a specified amount
of time, before running the real benchmarks. Generally, a warm up of 30 seconds suffices:

<sol ver Benchmar kSui t e>
<war mJpSecondsSpend>30</ war npSeconds Spend>

</ sol ver Benchmar kSui t e>

10.3. Summary statistics

10.3.1. Best score summary

A summary statistic of each solver run will be written in the benchnar kDi rect ory. Here is an
example of a summary statistic:

104

Best score summary

Best score summary (

mediumOl.xml medium02.xml

Chapter 10. Benchmarking and ...

10.4. Statistics per data set (graph and CSV)

The benchmarker supports outputting statistics as graphs and CSV (comma separated values)
files to the benchmar kDi rectory.

To configure graph and CSV output of a statistic, just add a sol ver St ati sti cType line:

<sol ver Benchnar kSui t e>
<benchmar kDi r ect or y>l ocal / dat a/ nqueens/ sol ved</ benchnar kDi r ect or y>
<sol ver Stati sti cType>BEST_SOLUTI ON_ CHANGED</ sol ver St ati sti cType>
</ sol ver Benchnar kSui t e>

Multiple sol ver StatisticType entries are allowed. Some statistic types might influence
performance noticeably. The following types are are supported:

10.4.1. Best score over time statistic (graph and CSV)

To see how the best score evolves over time, add BEST_SOLUTI ON CHANGED as a

sol ver St ati sti cType.

106

Best score over time statistic (graph and CSV)

medium_hint01 b

LhE
55
-0 -
-55
70

75 - S

-B0 -

-85 1
-aQ -
05, -
-100
-105 4
-110
-115
=120
=125
-130
-135

Score

-140 -
-145 -
-150 -
155
160 -
-165 -
-170-
175 -

-120 -
-185 -

-150 4

-195 -
-200 -
-205 -
Figur@i@.i. Best score over time statistic

-215

-220 : : :
0 1m40s 3m20s Sm

Chapter 10. Benchmarking and ...

.

10.4.2. Calculate count per second statistic (graph and CSV)

To see how fast the scores are calculated, add CALCULATE COUNT_PER SECOND as a
sol ver St ati sticType.

108

Calculate count per second statistic (graph and CSV)

exam_comp_set2 cal

14.000 -
12.500 -
13.000
12,500
12.000 -
11.500
11000 -
10500 1
10,000 1

S.500 -

D.000 -

B8.500 -

B.000

Calculate count per second

7500
T.000
5. 500 -
5. 000 -

5.500 -

| | W

Figure4l@z3./Calculate count per second statistic

2.500 -

0 1m40s 3m20s
Tim

Chapter 10. Benchmarking and ...

.

10.4.3. Memory use statistic (graph and CSV)

To see how much memory is used, add MEMORY_USE as a sol ver Stati sti cType.

110

Memory use statistic (graph and CSV)

exam_comp_set2

475,000,000

450.000. 000

425.000.000

400,000,000

375,000,000

250,000,000

325,000,000

300,000,000

275.000.000

250,000,000

225.000.000

200,000,000

175.000.000

150,000,000

125,000,000

100,000, 000

75.000.000

Figure3fo2a0.9éin o

25.000.000

112

Chapter 11.

Chapter 11. Repeated planning

11.1. Introduction to repeated planning

The world constantly changes. The planning facts used to create a solution, might change before
or during the execution of that solution. There are 3 types of situations:

» Unforeseen fact changes: For example: an employee assigned to a shift calls in sick, an airplane
scheduled to take off has a technical delay, one of the machines or vehicles break down, ...
Use backup planning.

« Unknown long term future facts: For example: The hospital admissions for the next 2 weeks are
reliable, but those for week 3 and 4 are less reliable and for week 5 and beyond are not worth
planning yet. Use continuous planning.

« Constantly changing planning facts: Use real-time planning.

Waiting to start planning - to lower the risk of planning facts changing - usually isn't a good way
to deal with that. More CPU time means a better planning solution. An incomplete plan is better
then no plan.

Luckily, the Drools Planner algorithms support planning a solution that's already (partially)
planned, known as repeated planning.

11.2. Backup planning

Backup planning is the technique of adding extra score constraints to create space in the planning
for when things go wrong. That creates a backup plan in the plan. For example: try to assign an
employee as the spare employee (1 for every 10 shifts at the same time), keep 1 hospital bed
open in each department, ...

Then, when things go wrong (one of the employees calls in sick), change the planning facts on
the original solution (delete the sick employee leave his/her shifts unassigned) and just restart the
planning, starting from that solution, which has a different score now. The construction heuristics
will fill in the newly created gaps (probably with the spare employee) and the metaheuristics will
even improve it further.

11.3. Continuous planning (windowed planning)

Continuous planning is the technique of planning one or more upcoming planning windows at the
same time and repeating that process every week (or every day). Because time infinite, there are
an infinite future windows, so planning all future windows is impossible. Instead we plan only a
number of upcoming planning windows.

Past planning windows are immutable. The first upcoming planning window is considered stable
(unlikely to change), while later upcoming planning windows are considered draft (likely to change
during the next planning effort). Distant future planning windows are not planned at all.

113

Chapter 11. Repeated planning

Past planning windows have locked planning entities: the planning entities can no longer be
changed (they are locked in place), but some of them are still needed in the working memory, as
they might affect some of the score constraints that apply on the upcoming planning entities. For
example: when an employee should not work more than 5 days in a row, he shouldn't work today
and tomorrow if he worked the past 4 days already.

Sometimes some planning entities are semi-locked: they can be changed, but occur a certain
score penalty if they differ from their original place. For example: avoid rescheduling hospital beds
less than 2 days before the patient arrives (unless it's really worth it), avoid changing the airplane
gate (or worse, the terminal) during the 2 hours before boarding, ...

Continuous planning

November
1 2 3 4 5 & T & 9 10 11

November 1th draft
Room 11 bed 1
Room 11 bed 2 [backup plannihg: empty bed |

Room 21 bed 1

—cancelled

First planning
Second planning

November 5th past stable
Room 11 bed 1 c EI
Room 11 bed 2
Room 21 bed 1
f locked

Figure 11.1. Continuous planning diagram

114

Real-time planning (event based planning)

Notice the difference between the original planning of November 1th and the new planning of
November 5th: some planning facts (F, H, I, J, K) changed, which results in unrelated planning
entities (G) changing too.

11.4. Real-time planning (event based planning)

To do real-time planning, first combine backup planning and continuous planning with short
planning windows to lower the burden of real-time planning. Don't configure any Ter mi nat i on,
just terminate early when you need the results or subscribe to the Best Sol ut i onChangedEvent
(the latter doesn't guarantee yet that every Pr obl enfact Change has been processed already).

While the Sol ver is solving, an outside event might want to change one of the problem facts,
for example an airplane is delayed and needs the runway at a later time. Do not change the
problem fact instances used by the Sol ver while it is solving, as that will corrupt it. Instead, add
a Pr obl enfFact Change to the Sol ver which it will execute as soon as the timing is right.

public interface Solver {

bool ean addPr obl enfact Change(Pr obl enfact Change probl enfFact Change) ;

public interface Probl enfFact Change {

voi d doChange(Sol utionDirector solutionDirector);

Here's an example:

public void del eteConputer(final C oudComputer cloudConputer) {
sol ver. addPr obl enfact Change(new Probl enfact Change() ({
public void doChange(Sol uti onDirector solutionDirector) {
Cl oudBal ance cl oudBal ance = (C oudBal ance)
sol uti onDi rect or. get Wr ki ngSol uti on();
Wor ki ngMenory wor ki ngMenory = sol uti onDi rect or. get Wr ki ngMenory();
/1l First renmove the planning fact fromall planning entities
that use it
for (C oudProcessAssignment cl oudProcessAssi gnment
cl oudBal ance. get oudPr ocessAssi gnnent Li st ()) {

115

Chapter 11. Repeated planning

if (wjectUtils.equal s(cloudProcessAssi gnnent. get d oudConputer (),
cl oudConputer)) {

Fact Handl e cl oudPr ocessAssi gnnment Handl e
wor ki ngMenory. get Fact Handl e(cl oudPr ocessAssi gnnent) ;
cl oudPr ocessAssi gnnent . set G oudConput er (nul I');
wor ki ngMenory. retract (cl oudPr ocessAssi gnnment Handl e) ;

}

/'l Next renove it the planning fact itself
for (lterator<d oudConputer> it =
cl oudBal ance. get Cl oudConputerList().iterator(); it.hasNext();) {
Cl oudConput er wor ki ngCl oudConputer = it.next();
if (ojectUils.equal s(workingC oudConput er, cl oudConputer)) {
Fact Handl e cl oudConputerHandl e =
wor ki ngMenory. get Fact Handl e(wor ki ngCl oudConput er) ;
wor ki ngMenory. retract (cl oudConput er Handl e) ;
it.remove(); // renmove fromlist
br eak;

1),

Warning

Any change on the problem facts or planning entites in a
Pr obl enFact Change must be done on the instances of the Sol ution of

sol uti onbDi rect or. get Wor ki ngSol uti on() .

Warning

Any change on the problem facts or planning entities in a Probl enfact Change
must be told to the Wor ki ngMenor y of sol uti onDi rect or. get Wor ki ngMenor y() .

E] Note

Many types of changes can leave a planning entity uninitialized, resulting in a
partially initialized solution. That's fine, as long as the first solver phase can handle
it. All construction heuristics solver phases can handle that, so it's recommended
to configure such a Sol ver Phase as the first phase.

116

Real-time planning (event based planning)

In essence, the Sol ver will stop, run the Pr obl enfFact Change and restart. Each Sol ver Phase will
be run again. Each configured Ter ni nat i on (except t er ni nat eEar | y) will reset.

117

118

Index

119

120

	Drools Planner User Guide
	Table of Contents
	
	Chapter 1. Planner introduction
	1.1. What is Drools Planner?
	1.2. What is a planning problem?
	1.2.1. A planning problem is NP-complete
	1.2.2. A planning problem has (hard and soft) constraints
	1.2.3. A planning problem has a huge search space

	1.3. Status of Drools Planner
	1.4. Get Drools Planner and run the examples
	1.4.1. Get the release zip and run the examples
	1.4.2. Run the examples in an IDE (IntelliJ, Eclipse, NetBeans)
	1.4.3. Get it with maven, gradle, ivy, buildr or ANT
	1.4.4. Build it from source

	1.5. Questions, issues and blog

	Chapter 2. Use cases and examples
	2.1. Introduction
	2.2. N queens example
	2.2.1. Problem statement
	2.2.2. Solution(s)
	2.2.3. Screenshot
	2.2.4. Problem size
	2.2.5. Domain model

	2.3. Cloud balancing example
	2.3.1. Problem statement
	2.3.2. Domain model

	2.4. Machine reassignment example (ROADEF 2012)
	2.4.1. Problem statement
	2.4.2. Problem size

	2.5. Manners 2009 example
	2.5.1. Problem statement

	2.6. Traveling Salesman Problem example (TSP)
	2.6.1. Problem statement

	2.7. Traveling Tournament Problem example (TTP)
	2.7.1. Problem statement
	2.7.2. Simple and smart implementation
	2.7.3. Problem size

	2.8. Curriculum course scheduling example (ITC 2007 track 3)
	2.8.1. Problem statement

	2.9. Examination timetabling example (ITC 2007 track 1)
	2.9.1. Problem statement
	2.9.2. Problem size
	2.9.3. Domain model

	2.10. Patient admission scheduling (hospital bed planning) example (PAS)
	2.10.1. Problem statement

	2.11. Nurse rostering example (INRC 2010)
	2.11.1. Problem statement

	Chapter 3. Planner configuration
	3.1. Overview
	3.2. Solver configuration
	3.2.1. Solver configuration by XML file
	3.2.2. Solver configuration by Java API

	3.3. Model your planning problem
	3.3.1. Is this class a problem fact or planning entity?
	3.3.2. Problem fact
	3.3.3. Planning entity and planning variables
	3.3.3.1. Planning entity
	3.3.3.2. Planning entity difficulty
	3.3.3.3. Planning variable
	3.3.3.4. When is a planning entity initialized?

	3.3.4. Planning value and planning value ranges
	3.3.4.1. Planning value
	3.3.4.2. Planning value range
	3.3.4.2.1. ValueRangeFromSolutionProperty
	3.3.4.2.2. ValueRangeFromPlanningEntityProperty
	3.3.4.2.3. ValueRangeUndefined

	3.3.4.3. Planning value strength

	3.3.5. Planning problem and planning solution
	3.3.5.1. Planning problem instance
	3.3.5.2. The Solution interface
	3.3.5.3. The getScore and setScore methods
	3.3.5.4. The getProblemFacts method
	3.3.5.5. Cached problem fact
	3.3.5.6. The cloneSolution method
	3.3.5.7. Build an uninitialized solution

	3.4. Solver
	3.4.1. The Solver interface
	3.4.2. Solving a problem
	3.4.3. Environment mode: Are there bugs in my code?
	3.4.3.1. TRACE
	3.4.3.2. DEBUG
	3.4.3.3. REPRODUCIBLE (default)
	3.4.3.4. PRODUCTION

	3.4.4. Logging level: What is the Solver doing?

	Chapter 4. Score calculation with a rule engine
	4.1. Rule based score calculation
	4.2. Choosing a Score implementation
	4.2.1. The ScoreDefinition interface
	4.2.2. SimpleScore
	4.2.3. HardAndSoftScore
	4.2.4. Implementing a custom Score

	4.3. Defining the score rules source
	4.3.1. A scoreDrl resource on the classpath
	4.3.2. A RuleBase (possibly defined by Guvnor)

	4.4. Implementing a score rule
	4.5. Aggregating the score rules into the Score
	4.6. Delta based score calculation
	4.7. Tips and tricks

	Chapter 5. Optimization algorithms
	5.1. The size of real world problems
	5.2. The secret sauce of Drools Planner
	5.3. Optimization algorithms overview
	5.4. Which optimization algorithms should I use?
	5.5. SolverPhase
	5.6. Termination
	5.6.1. TimeMillisSpendTermination
	5.6.2. ScoreAttainedTermination
	5.6.3. StepCountTermination
	5.6.4. UnimprovedStepCountTermination
	5.6.5. Combining Terminations
	5.6.6. Asynchronous termination from another thread

	5.7. Custom SolverPhase

	Chapter 6. Exact methods
	6.1. Overview
	6.2. Brute Force
	6.2.1. Algorithm description
	6.2.2. Configuration

	6.3. Branch and bound
	6.3.1. Algorithm description
	6.3.2. Configuration

	Chapter 7. Construction heuristics
	7.1. Overview
	7.2. First Fit
	7.2.1. Algorithm description
	7.2.2. Configuration

	7.3. First Fit Decreasing
	7.3.1. Algorithm description
	7.3.2. Configuration

	7.4. Best Fit
	7.4.1. Algorithm description
	7.4.2. Configuration

	7.5. Best Fit Decreasing
	7.5.1. Algorithm description
	7.5.2. Configuration

	7.6. Cheapest insertion
	7.6.1. Algorithm description
	7.6.2. Configuration

	Chapter 8. Local search solver
	8.1. Overview
	8.2. Hill climbing (simple local search)
	8.2.1. Algorithm description

	8.3. Tabu search
	8.3.1. Algorithm description

	8.4. Simulated annealing
	8.4.1. Algorithm description

	8.5. About neighborhoods, moves and steps
	8.5.1. A move
	8.5.2. Move generation
	8.5.3. A step
	8.5.4. Getting stuck in local optima

	8.6. Deciding the next step
	8.6.1. Selector
	8.6.2. Acceptor
	8.6.2.1. Tabu search acceptor
	8.6.2.2. Simulated annealing acceptor

	8.6.3. Forager
	8.6.3.1. Subset selection
	8.6.3.2. Pick early type

	8.7. Best solution
	8.8. Using a custom Selector, Acceptor, Forager or Termination

	Chapter 9. Evolutionary algorithms
	9.1. Overview
	9.2. Evolutionary Strategies
	9.3. Genetic algorithms

	Chapter 10. Benchmarking and tweaking
	10.1. Finding the best configuration
	10.2. Building a Benchmarker
	10.2.1. Adding the exta dependency
	10.2.2. Building a basic Benchmarker
	10.2.3. Warming up the hotspot compiler

	10.3. Summary statistics
	10.3.1. Best score summary

	10.4. Statistics per data set (graph and CSV)
	10.4.1. Best score over time statistic (graph and CSV)
	10.4.2. Calculate count per second statistic (graph and CSV)
	10.4.3. Memory use statistic (graph and CSV)

	Chapter 11. Repeated planning
	11.1. Introduction to repeated planning
	11.2. Backup planning
	11.3. Continuous planning (windowed planning)
	11.4. Real-time planning (event based planning)

	Index

