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Chapter 1.

Chapter 1. Planner introduction

1.1. What is Drools Planner?

Drools Planner [http://www.jboss.org/drools/drools-planner] is a lightweight, embeddable
planning engine that optimizes planning problems. It solves use cases, such as:
« Employee shift rostering: timetabling nurses, repairmen, ...

e Agenda scheduling: scheduling meetings, appointments, maintenance jobs,
advertisements, ...

< Educational timetabling: scheduling lessons, courses, exams, conference presentations, ...
« Vehicle routing: planning vehicles (trucks, trains, boats, airplanes, ...) with freight and/or people

» Bin packing: filling containers, trucks, ships and storage warehouses, but also cloud computers
nodes, ...

« Job shop scheduling: planning car assembly lines, machine queue planning, workforce task
planning, ...

» Cutting stock: minimizing waste while cutting paper, steel, carpet, ...
e Sport scheduling: planning football leagues, baseball leagues, ...
» Financial optimization: investment portfolio optimization, risk spreading, ...

Every organization faces planning problems: provide products and services with a limited set of
constrained resources (employees, assets, time and money).

Drools Planner helps normal Java™ programmers solve planning problems efficiently. Under the
hood, it combines optimization heuristics and metaheuristics with very efficient score calculation.

Drools Planner, like the rest of Drools, is business-friendly open source software under
the Apache Software License 2.0 [http://www.apache.org/licenses/LICENSE-2.0] (layman's
explanation [http://www.apache.org/foundation/licence-FAQ.html#WhatDoesItMEAN]). It is 100%
pure Java™ and runs on any JVM.

1.2. What is a planning problem?

1.2.1. A planning problem is NP-complete

All the use cases above are probably NP-complete [http://en.wikipedia.org/wiki/NP-complete]. In
layman's terms, this means:

« It's easy to verify a given solution to a problem in reasonable time.
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» There is no silver bullet to find the optimal solution of a problem in reasonable time (*).

@ Note
(*) At least, none of the smartest computer scientists in the world have found such
a silver bullet yet. But if they find one for 1 NP-complete problem, it will work for
every NP-complete problem.

In fact, there's a $ 1,000,000 reward for anyone that proves if
[http://en.wikipedia.org/wiki/P_%3D_NP_problem].

The implication of this is pretty dire: solving your problem is probably harder than you anticipated,
because the 2 common techniques won't suffice:

A brute force algorithm (even a smarter variant) will take too long.

e A quick algorithm, for example in bin packing, putting in the largest items first, will return a
solution that is usually far from optimal.

By using advanced optimization algorithms, Planner does find a good solution in reasonable
time for such planning problems.

1.2.2. A planning problem has (hard and soft) constraints

Usually, a planning problem has at least 2 levels of constraints:

» A (negative) hard constraint must not be broken. For example: 1 teacher can not teach 2 different
lessons at the same time.

* A (negative) soft constraint should not be broken if it can be avoided. For example: Teacher A
does not like to teach on Friday afternoon.

Some problems have positive constraints too:

* A positive soft constraint (or reward) should be fulfilled if possible. For example: Teacher B likes
to teach on Monday morning.

Some toy problems (such as N Queens) only have hard constraints. Some problems have 3 or
more levels of constraints, for example hard, medium and soft constraints.

These constraints define the score calculation (AKA fitness function) of a planning problem. Each
solution of a planning problem can be graded with a score. With Planner, score constraints are
written in an Object Orientated language, such as Java code or Drools rules. Such code is
easy, flexible and scalable.

1.2.3. A planning problem has a huge search space

A planning problem has a number of solutions. There are several categories of solutions:
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« A possible solution is any solution, whether or not it breaks any number of constraints. Planning
problems tend to have a incredibly large number of possible solutions. Many of those solutions
are worthless.

« Afeasible solution is a solution that does not break any (negative) hard constraints. The number
of feasible solutions tends to be relative to the number of possible solutions. Sometimes there
are no feasible solutions. Every feasible solution is a possible solution.

« An optimal solution is a solution with the highest score. Planning problems tend to have 1 or a
few optimal solutions. There is always at least 1 optimal solution, even in the case that there
are no feasible solutions and the optimal solution isn't feasible.

» The best solution found is the solution with the highest score found by an implementation in a
given amount of time. The best solution found is likely to be feasible and, given enough time,
it's an optimal solution.

Counterintuitively, the number of possible solutions is huge (if calculated correctly), even with a
small dataset. As you can see in the examples, most instances have a lot more possible solutions
than the minimal number of atoms in the known universe (10780). Because there is no silver bullet
to find the optimal solution, any implementation is forced to evaluate at least a subset of all those
possible solutions.

Drools Planner supports several optimization algorithms to efficiently wade through that incredibly
large number of possible solutions. Depending on the use case, some optimization algorithms
perform better than others, but it's impossible to tell in advance. With Planner, it is easy to switch
the optimization algorithm, by changing the solver configuration in a few lines of XML or code.

1.3. Status of Drools Planner

Drools Planner is production ready. The APl is almost stable but
backward incompatible changes can occur. With the recipe called
Upgr adeFr onPr evi ousVer si onReci pe. t xt [https://github.com/droolsjbpm/drools-planner/blob/
master/drools-planner-distribution/src/main/assembly/filtered-resources/
UpgradeFromPreviousVersionRecipe.txt] you can easily upgrade to a newer version and quickly
deal with any backwards incompatible changes. That recipe file is included in every release.

1.4. Download and run the examples

1.4.1. Get the release zip and run the examples

To try it now:

« Download a release zip of Drools Planner from the Drools download site [http://www.jboss.org/
drools/downloads.html].

e Unzip it
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» Open the directory exanpl es and run the script.

Linux or Mac:

$ cd exanpl es
$ ./runExanpl es. sh

Windows:

$ cd exanpl es
$ runExanpl es. bat

The Examples GUI application will open. Just pick an example:
Drools Planner examples ==

Which example do you want to see?

~Toy examples -Real examples -Difficult examples
Course timetabling Exam timetabling
|
W Sport scheduling
[ Travelingsalesman | || ~ Vehideroutng | || === |
Manners 2009 Hospital bed planning

Description




Run the examples in an IDE (IntelliJ, Eclipse, NetBeans)

1.4.2. Run the examples in an IDE (IntelliJ, Eclipse, NetBeans)

To run the examples in your favorite IDE, first configure your IDE:

 In IntelliJ and NetBeans, just open the file exanpl es/ sour ces/ pom xnl as a new project, the
maven integration will take care of the rest.

« In Eclipse, open a new project for the directory exanpl es/ sour ces.

* Add all the jars to the classpath from the directory bi nari es and the directory exanpl es/
bi nari es, except for the file exanpl es/ bi nari es/ dr ool s- pl anner - exanpl es-*.j ar.

» Add the Java source directory src/ mai n/ j ava and the Java resources directory sr c/ mai n/

resources.

Next, create a run configuration:

e Main class: or g. dr ool s. pl anner . exanpl es. app. Dr ool sPl anner Exanpl esApp
« VM parameters (optional): - Xnx512M - ser ver

« Working directory: exanpl es (this is the directory that contains the directory dat a)

1.4.3. Use it with maven, gradle, ivy, buildr or ANT

The Drools Planner jars are available on the central maven repository [http://search.maven.org/
#search|ga|l|org.drools.planner] (and the JBoss maven repository [https://repository.jboss.org/
nexus/index.html#nexus-search;gav~org.drools.planner~~~~1).

If you use maven, just add a dependency to dr ool s- pl anner - cor e in your project's pom xm :

<dependency>
<groupl d>or g. dr ool s. pl anner </ gr oupl d>
<artifactld>drool s-pl anner-core</artifactld>
<ver si on>5. x</ ver si on>

</ dependency>

This is similar for gradle, ivy and buildr.

If you're still using ant (without ivy), copy all the jars from the download zip's bi nari es directory
and manually verify that your classpath doesn't contain duplicate jars.

1.4.4. Build it from source

You can also easily build it from source yourself.

Set up Git [http://help.github.com/set-up-git-redirect] and clone dr ool s- pl anner from GitHub (or
alternatively, download the zipball [https://github.com/droolsjbpm/drools-planner/zipball/master]):
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$ git clone git@ithub. com drool sj bpnif drool s-pl anner.git drool s-planner

Then do a Maven 3 [http://maven.apache.org/] build:

$ cd drool s-pl anner
$ nvn - DskipTests clean install

After that, you can run any example directly from the command line, just run this command and
pick an example:

$ cd drool s-pl anner - exanpl es
$ nvn exec: exec

1.5. Questions, issues and blog

Your questions and comments are welcome on the user mailing list [http://www.jboss.org/
drools/lists.html]. Start the subject of your mail with [planner]. You can read/
write to the user mailing list without littering your mailbox through this web forum
[http://drools.46999.n3.nabble.com/Drools-User-forum-f47000.html] or this newsgroup [nntp://
news.gmane.org/gmane.comp.java.drools.user].

Feel free to report an issue (such as a bug, improvement or a new feature request) for the
Drools Planner code or for this manual to the drools issue tracker [https://jira.jpboss.org/jira/browse/
JBRULES]. Select the component dr ool s- pl anner.

Pull requests (and patches) are very welcome and get priority treatment! Include the pull request
link to a JIRA issue and optionally send a mail to the dev mailing list to get the issue fixed fast. By
open sourcing your improvements, you 'll benefit from our peer review and from our improvements
made upon your improvements.

Check our blog [http://blog.athico.com/search/label/planner], Google+(Drools Planner
[https://plus.google.com/112724449845406009021], Geoffrey De Smet [https://
plus.google.com/112811208792575157490]) and twitter (Geoffrey De Smet [http://twitter.com/
geoffreydesmet]) for news and articles. If Drools Planner helps you solve your problem, don't
forget to blog or tweet about it!
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Chapter 2. Quick start

2.1. Cloud balancing tutorial

2.1.1. Problem statement

Assign each process to a computer.

Hard constraints:

» Every computer should be able to handle the sum of each of the minimal hardware requirements
(CPR, RAM, network bandwidth) of all its processes.

Soft constraints:

« Each computer that has one or more processes assigned, has a fixed maintenance cost.
Minimize the total cost.

This is a form of bin packing. Here's a simplified example where we assign 4 processes to 2
computers:

Computers
Cloud balance | 7 6]
Assign each process to a computer.
[ 6 J¥| 6 J
CPU Processes RAM

| X |
D N e s
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4 ) 3 ] T 5
(BN <+ (= S

20-0800 T )
Notenough[ ‘ 2 | 4 }x[ 3 | 3 }

@D@ room [ | 5 }Y[ 5 | ]

(2 s« (s T 1)
21 4 (3 [3]

Optimal solution




Chapter 2. Quick start

2.1.2. Domain model diagram

The domain model is pretty simple:

« Conput er : represents a computer with a capacity and cost.
* Process: represents a process with a demand. Needs to be assigned to a Conput er .

e O oudBal ance: represents a problem. Contains every Conput er and Pr ocess.

Cloud balance class diagram

planning entity

Computer Process
cpuPower requiredCpuPower
memory computer | requiredMemory
networkBandwidth 1 | requiredNetworkBandwidth
cost

planning variable

CloudBalance
score
2.1.3. Main method
Download and configure the examples in your favorite IDE.

Run org. drool s. pl anner . exanpl es. cl oudbal anci ng. app. Cl oudBal anci ngHel | oWor | d. By
default, it is configured to run for 120 seconds.

Example 2.1. CloudBalancingHelloWorld.java

public class d oudBal anci ngHel | oWbrl d {




Solver configuration

public static void main(String[] args) {
/1 Build the Sol ver
Sol ver Factory sol ver Factory = new Xml Sol ver Fact or y(
"/ or g/ drool s/ pl anner/ exanpl es/ cl oudbal anci ng/ sol ver/
cl oudBal anci ngSol ver Confi g. xm ") ;
Sol ver sol ver = solverFactory. buil dSol ver();

/1 Load a problemw th 400 conputer and 1200 processes
Cl oudBal ance unsol vedC oudBal ance = new O oudBal anci ngGener at or (). creat ed oudBal ance( 4(

/1 Solve the problem
sol ver. set Pl anni ngPr obl em(unsol vedd oudBal ance) ;
sol ver. sol ve();
Cl oudBal ance sol vedd oudBal ance = (C oudBal ance) sol ver. get Best Sol uti on();

/1 Display the result
Systemout. println("\nSol ved cl oudBal ance with 400 conputers and 1200
processes:\n"
+ tobDisplayString(sol vedCl oudBal ance) ) ;

This code above basically does this:

Build the Sol ver .

Load the problem. A oudBal anci ngGener at or generates a random problem: you'll replace this
with a class that loads a real problem, for example from a database.

Solve the problem.

Display the result.

The only non-obvious part is building the Sol ver . Let's examine that.

2.1.4. Solver configuration

Take a look at the solver configuration:

Example 2.2. cloudBalancingSolverConfig.xml
<?xm version="1.0" encodi ng="UTF- 8" ?>

<sol ver >

<! --<envi ronnent Mode>DEBUG</ envi r onnent Mbde>- - >

<!-- Domai n nodel configuration -->
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<sol utionCl ass>org. drool s. pl anner. exanpl es. cl oudbal anci ng. donai n. C oudBal ance</
sol utionCl ass>
<pl anni ngEnt i t yCl ass>or g. dr ool s. pl anner . exanpl es. cl oudbal anci ng. donmai n. O oudPr ocess</
pl anni ngEnti tyd ass>

<l-- Score configuration -->
<scoreDirector Fact ory>
<scoreDefinitionType>HARD_AND_SOFT</ scor eDefi ni ti onType>

sol ver. score. C oudBal anci ngSi npl eScor eCal cul at or </
si npl eScor eCal cul at or Cl ass>
<l --<scoreDrl >/ org/drool s/ pl anner/ exanpl es/ cl oudbal anci ng/ sol ver/
cl oudBal anci ngScor eRul es. drl </ scoreDr| >-->
</ scoreDirectorFactory>

<I-- Optimzation algorithnms configuration -->
<term nati on>
<maxi munSecondsSpend>120</ maxi mnunSecondsSpend>
</term nation>
<constructionHeuristic>
<constructi onHeuri sticType>FI RST_FI T_DECREASI NG</ constructi onHeuri sti cType>

<constructionHeuristicPi ckEarl yType>FI RST_LAST_STEP_SCORE_EQUAL_OR | MPROVI NG</
constructionHeuristicPi ckEarl yType>
</ constructionHeuristic>
<l ocal Sear ch>
<sel ect or>
<sel ect or>

<noveFact oryCl ass>or g. dr ool s. pl anner . cor e. nove. generi c. Generi cChangeMveFact or y</
noveFact or yCl ass>
</ sel ector>
<sel ect or >

<noveFact oryCl ass>or g. dr ool s. pl anner . cor e. nbve. generi c. Generi cSwapMveFact or y</
noveFact or yCl ass>
</ sel ector>
</ sel ect or>
<accept or >
<pl anni ngEnt i t yTabuSi ze>7</ pl anni ngEnti t yTabuSi ze>
</ accept or >
<f or ager >
<m ni mal Accept edSel ect i on>1000</ m ni mal Accept edSel ecti on>
</ forager>
</l ocal Sear ch>
</ sol ver >

This consists out of 3 parts:
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* Domain model configuration: What can Planner change?

e Score configuration: What should Planner optimize?

« Optimization algorithms configuration: How should Planner optimize it? Don't worry about

this for now: this is a good default configuration that works on most planning problems.

Let's examine the domain model and the score configuration.

2.1.5. Domain model implementation

The class Conput er is a POJO (Plain Old Java Object), nothing special. Usually, you'll have more
of these kind of classes.

Example 2.3. CloudComputer.java

public class d oudConputer ... {
private int cpuPower;
private int menory;
private int networkBandw dt h;
private int cost;
/] getters

The class Process is a little bit special. We need to tell Planner that it can change the field
conput er, SO we annotate the class with @ anni ngEntity and the getter get Conput er with

@ anni ngVari abl e:

Example 2.4. CloudProcess.java

@l anni ngEntity(...)

public class CoudProcess ... {
private int requiredCpuPower;
private int requiredMenory;
private int requiredNetwor kBandwi dt h;
private C oudConputer conputer;

/Il getters

@ anni ngVari able(...)

@/al ueRange(type = Val ueRangeType. FROM SOLUTI ON_PROPERTY,

publi ¢ C oudConput er getConputer() {

sol uti onProperty

11
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return conputer;

}

public void set Conputer (C oudConput er conputer) {
computer = conputer;

}

// R S S O O S S S O S S

/1l Conpl ex nethods

// EE R R I R I R I R R I I I I I R I R R R I R R I I I I I R R R I I I I I R I I I I I I I

public C oudProcess clone() {
Cl oudProcess cl one = new C oudProcess();

cl one.
cl one.
cl one.
cl one.
cl one.

id=id,

requi redCpuPower = requiredCpuPower ;

requi redMenory = requiredMvenory;

requi r edNet wor kBandwi dt h = requi r edNet wor kBandwi dt h;
conputer = conputer;

return clone;

The values that Planner can chose from for the field conput er, are retrieved from a method on

the Sol uti on implementation: Cl oudBal ance. get Conput er Li st ().

The class d oudBal ance implements the Sol ut i on interface. It holds a list of all computers and
processes. It has a property scor e which is the Scor e of that Sol uti on instance in it's current

state:

Example 2.5. CloudBalance.java

public class O oudBal ance ... inplenents Sol uti on<HardAndSoft Score> {

private List<d oudConputer> conputerList;
private List<C oudProcess> processlLi st;
private HardAndSoft Score score;

publ i c List<C oudConput er> get ConputerList() {

return conputerlList;

@ anni ngEntityCol | ecti onProperty

12
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public List<C oudProcess> get ProcessList() {
return processList;

publ i ¢ Har dAndSof t Score get Score() {

return score,

public void set Score(Har dAndSof t Score score) {
this.score = score;

// Rk I kR S S O S S R R Sk S

/1 Conpl ex nethods

// EE R IR S b I I b I S S S S I I S I I I S S I I

public Collection<? extends Cbject> getProbl enfFacts() {

Li st <Cbj ect> facts = new ArraylLi st <Qbj ect >();
facts. addAl | (conputerlList);

/1 Do not add the planning entity's (processList)

be done automatically
return facts;

/**
* Clone will only deep copy the {
*/
publi ¢ C oudBal ance cl oneSol ution() {
Cl oudBal ance cl one = new C oudBal ance();
clone.id =id;
cl one. conput erLi st = conputerList;

#processLi st}.

because that will

Li st <O oudProcess> cl onedProcessLi st = new ArrayLi st <O oudPr ocess>(

processLi st.size());
for (C oudProcess process :
Cl oudProcess cl onedProcess = process. cl one();
cl onedPr ocessLi st. add(cl onedPr ocess);

processlList) {

}

cl one. processLi st = cl onedProcessLi st ;
cl one. score = score;
return clone;

13
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The method get Pr obl enfact s() is only needed for score calculation with Drools. It's not needed
with the other score calculation types.

The method cl one() is required. Planner uses it to make a clone of the best Sol ution in
encounters during searching.

2.1.6. Score configuration

Planner will search for the Sol ut i on with the highest Scor e. We're using a Har dAndSof t Scor e,
which means Planner will look for the solution with no hard constraints broken (hardware
requirements) and as little as possible soft constraints broken (maintenance cost).

There are several ways to implement the score function:

e Simple Java
¢ Incremental Java
* Drools

Let's look at 2 of those:

2.1.6.1. Simple Java score configuration

One way to define a score function is to implement the interface Si npl eScor eCal cul at or in plain
Java.

<scoreDi rect or Fact ory>
<scor eDefi niti onType>HARD_AND_SOFT</ scor eDefi ni ti onType>
sol ver. scor e. C oudBal anci ngSi npl eScor eCal cul at or </

si npl eScor eCal cul at or Gl ass>
</ scoreDirectorFactory>

Just implement the method cal cul at eScor e( Sol uti on) to return a Def aul t Har dAndSof t Scor e
instance.

Example 2.6. CloudBalance.java

public class d oudBal anci ngSi npl eScor eCal cul ator i npl enments Si npl eScor eCal cul at or <Cl oudBal ance:

public Score cal cul at eScor e( C oudBal ance cl oudBal ance) {
Map<C oudConput er, | nteger> cpuPower UsageMap = new HashMap<>();

for (C oudConputer computer : cloudBal ance. get ConputerList()) {
cpuPower UsageMap. put (conputer, 0);

14
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Set <Cl oudCornput er > usedConput er Set = new HashSet <>() ;

vi si t ProcessLi st (cpuPower UsageMap, ...,
usedConput er Set, cl oudBal ance. get ProcessList());

i nt hardScore = sunHar dScor e( cpuPower UsageMap, ...);
int softScore sunBof t Scor e(usedConput er Set ) ;

return Defaul t Har dAndSof t Scor e. val ueO (hardScore, softScore);

private void visitProcessLi st (Map<C oudConput er, |nteger> cpuPower UsageMap,
Set <O oudConput er > usedConput er Set, Li st <C oudProcess> processList) {
/1 We | oop through the processList only once for performance
for (Cl oudProcess process : processList) {
Cl oudConput er conputer = process. get Conputer();
if (conputer != null) {
i nt cpuPower Usage = cpuPower UsageMap. get (conputer) + process. get Requi r edCpuPow«
cpuPower UsageMap. put (conput er, cpuPower Usage) ;

usedConput er Set . add( conput er) ;

}
}
}
private int sunHardScor e( Map<Cl oudConput er, | nteger> cpuPower UsageMap, ...) {
int hardScore = O;
for (Map. Entry<d oudConputer, Integer> usageEntry : cpuPowerUsageMap. entrySet()) {
Cl oudConput er conputer = usageEntry. get Key();
i nt cpuPower Avai | abl e = conput er. get CouPower () - usageEntry. get Val ue();
i f (cpuPowerAvail able < 0) {
har dScore += cpuPower Avai | abl e;
}
}
return hardScor e;
}

private int sunSoft Score(Set<C oudConput er> usedConput er Set) {
int softScore = O;
for (C oudConputer usedConmputer : usedConputerSet) ({
soft Score -= usedConputer. get Cost () ;
}

return soft Scor e;

15
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Despite that the code above is optimized with Maps to only go through the pr ocessLi st once, itis
still slow because it doesn't do incremental score calculation. To fix that, either use an incremental
Java score function or a Drools score function.

2.1.6.2. Drools score configuration

To use Drools as a score function, simply add a scor eDr| resource in the classpath:

<scorebDirector Fact ory>
<scor eDefiniti onType>HARD AND SOFT</ scor eDefiniti onType>
<scoreDr| >/ or g/ drool s/ pl anner/ exanpl es/ cl oudbal anci ng/ sol ver/
cl oudBal anci ngScor eRul es. drl </ scoreDr| >
</ scoreDirectorFactory>

First, we want to make sure that all computers have enough CPU, RAM and network bandwidth
to support all their processes, so we make those hard constraints:

Example 2.7. cloudBalancingScoreRules.drl - hard constraints

i mport org.drool s. pl anner. exanpl es. cl oudbal anci ng. domai n. Cl oudBal ance;
i nport org.drools. pl anner. exanpl es. cl oudbal anci ng. donai n. Cl oudConput er;
i mport org.drools. pl anner. exanpl es. cl oudbal anci ng. dormai n. C oudPr ocess;

gl obal Har dAndSof t Scor eHol der scoreHol der;
1] HHHE I R R
// Hard constraints

| | H#HHHRHHHH T H P H R

rul e "requiredCpuPower Tot al "

when
$conput er : C oudConput er ($cpuPower : cpuPower)
$requi redCpuPower Tot al : Number (i ntVal ue > $cpuPower) from accunul at e(
Cl oudProcess(
conput er == $conput er,
$requi redCpuPower : requiredCpuPower),
sum( $r equi r edCpuPower )
)
t hen

i nsertLogi cal (new | ntConstrai ntCGccurrence("requiredCpuPower Total ",
Constrai nt Type. NEGATI VE_HARD,
$requi redCpuPower Tot al . i nt Val ue() - $cpuPower,
$computer));
end

16
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rule "requiredMenoryTotal "
end
rul e "requiredNet wor kBandwi dt hTot al "

end

|| ####H#H S HEH RS HHHEHRH R R R RS R R RS R R R R R
// Cal cul ate hard score
| | HBHHHHBHBH R R R R R R R R

/1 Accurul ate hard constraints
rul e "hardConstrai nt sBroken”
salience -1 // Do the other rules first (optional, for performnce)
when
$hardTotal : Number () from accunul at e(
I nt Constrai nt Cccurrence(constraint Type == Constr ai nt Type. NEGATI VE_HARD
$wei ght : weight),
sun( $wei ght)
)
t hen
scor eHol der . set Har dConst r ai nt sBr oken( $har dTot al . i nt Val ue());
end

Next, if those constraints are met, we want to minimize the maintenance cost, so we add that as
a soft constraint:

Example 2.8. cloudBalancingScoreRules.drl - soft constraints

|| ###HHHBHHHHEH SRS H B HHHEHRH R EH R H R R H R R H R R R H R H]
// Soft constraints

| | ###HRHHHH PP H T H TR

rul e "conput er Cost "
when
$conputer : C oudConput er ($cost : cost)
exi sts C oudProcess(conmputer == $conput er)
t hen
i nsertLogi cal (new I|ntConstraintQccurrence("conputer Cost",
Const rai nt Type. NEGATI VE_SOFT,
$cost,
$conputer));
end

| | #H#H#HRHHHH P H P H T R H R

17
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/] Calcul ate soft score
| | #HHBHERHBHB R R H R H R R R R R R H R R R R

/1 Accunmul ate soft constraints
rul e "soft Constraint sBroken"
salience -1 // Do the other rules first (optional, for performance)
when
$soft Total : Number () from accurul at e(
I nt Constrai nt ccurrence(constrai nt Type == Constrai nt Type. NEGATI VE_SOFT,
$wei ght : weight),
sum( $wei ght)
)
t hen
scor eHol der . set Sof t Const r ai nt sBroken($soft Total . i ntVal ue());
end

2.1.7. Beyond this tutorial

Now that this simple example works, you can go further. Try this:
« Each Process belongs to a Ser vi ce. A computer can crash, so processes running the same
service should be assigned to different Computers.

« Each Conput er is located in a Bui | di ng. A building can burn down, so processes of the same
services should be assigned to computers in different buildings.
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Chapter 3. Use cases and examples

3.1. Introduction

Drools Planner has several examples. In this manual we explain Drools Planner mainly using the
n queens example. So it's advisable to read at least the section about that example. For advanced
users, the following examples are recommended: curriculum course and nurse rostering.

You can find the source code of all these examples in the distribution zip under exanpl es/ sour ces
and also in git under dr ool s- pl anner/ dr ool s- pl anner - exanpl es.

3.2. Toy examples

3.2.1. N queens

3.2.1.1. Problem statement

The n queens puzzle is a puzzle with the following constraints:

* Use a chessboard of n columns and n rows.
» Place n queens on the chessboard.

* No 2 queens can attack each other. Note that a queen can attack any other queen on the same
horizontal, vertical or diagonal line.

The most common n queens puzzle is the 8 queens puzzle, with n = 8. We 'll explain Drools
Planner using the 4 queens puzzle as the primary example.

A proposed solution could be:

A B C D

Rt

Wiy

W N = O

Figure 3.1. A wrong solution for the 4 queens puzzle

The above solution is wrong because queens Al and B0 can attack each other (as can queens B0
and D0). Removing queen B0 would respect the "no 2 queens can attack each other" constraint,
but would break the "place n queens" constraint.
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3.2.1.2. Solution(s)

Below is a correct solution:

g

Ww N H O

i

Figure 3.2. A correct solution for the 4 queens puzzle

All the constraints have been met, so the solution is correct. Note that most n queens puzzles
have multiple correct solutions. We 'll focus on finding a single correct solution for a given n, not
on finding the number of possible correct solutions for a given n.

3.2.1.3. Screenshot

Here is a screenshot of the example:

20



N queens

Figure 3.3. Screenshot of the n queens example

3.2.1.4. Problem size

These numbers might give you some insight on the size of this problem.

Table 3.1. NQueens problem size

# queens (n) # possible # feasible # optimal # optimal out of
solutions (each solutions (= solutions # possible
gueen its own optimal in this
column) use case)

4 256 2 2 1 out of 128

8 16777216 64 64 1 out of 262144

16 18446744073709534512512 14772512 1 out of

1248720872503
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# queens (n) # possible # feasible # optimal # optimal out of
solutions (each solutions (= solutions # possible
queen its own optimal in this
column) use case)

32 1.46150163733090291820368483e  ? ?
+48

64 3.94020061963944792122790401e ? ?
+115

n n*n ? # feasible | ?

solutions

The Drools Planner implementation has not been optimized because it functions as a beginner
example. Nevertheless, it can easily handle 64 queens.

3.2.1.5. Domain model

Use a good domain model: it will be easier to understand and solve your planning problem with
Drools Planner. This is the domain model for the n queens example:
public class Colum {

private int index;

/[l ... getters and setters

public class Row {
private int index;

Il ... getters and setters

public class Queen {

private Colum col um;
private Row row,

public int getAscendi nghi agonal | ndex() {...}
public int getDescendi nghi agonal | ndex() {...}

/[l ... getters and setters
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public class NQueens inplenments Sol ution<Si npl eScore> {
private int n;
private List<Colum> col ummLi st;
private List<Row> rowList;
private List<Queen> queenlLi st;

private SinpleScore score;

/[l ... getters and setters

A Queen instance has a Col umm (for example: 0 is column A, 1 is column B, ...) and a Row (its row,
for example: O isrow 0O, 1 is row 1, ...). Based on the column and the row, the ascending diagonal
line as well as the descending diagonal line can be calculated. The column and row indexes start
from the upper left corner of the chessboard.

Table 3.2. A solution for the 4 queens puzzle shown in the domain model

A solution Queen columnindex rowlndex ascendingDia( descendingDi
(columnindex (columnindex
+ rowindex) -rowlndex)
@ 1 0" 107 1
2 2 4 0
DO 3 0™ 3 3

Ww N = O

When 2 queens share the same column, row or diagonal line, such as (*) and (**), they can attack
each other.

A single NQueens instance contains a list of all Queen instances. It is the Sol ut i on implementation
which will be supplied to, solved by and retrieved from the Solver. Notice that in the 4 queens
example, NQueens's get N() method will always return 4.

3.2.2. Cloud balancing

This example is explained in a tutorial.
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3.2.3. Traveling salesman (TSP - Traveling salesman problem)

3.2.3.1. Problem statement

Given a list of cities, find the shortest tour for a salesman that visits each city exactly once.
See the wikipedia definition of the traveling Salesman Problem. [http://en.wikipedia.org/wiki/
Travelling_salesman_problem]

It is one of the most intensively studied problems [http://www.tsp.gatech.edu/] in computational
mathematics. Yet, in the real world, it's often only part of a planning problem, along with other
constraints, such as employee shift time constraints.

3.2.4. Manners 2009

3.2.4.1. Problem statement

In Manners 2009, miss Manners is throwing a party again.

 This time she invited 144 guests and prepared 12 round tables with 12 seats each.
« Every guest should sit next to someone (left and right) of the opposite gender.
« And that neighbour should have at least one hobby in common with the guest.

 Also, this time there should be 2 politicians, 2 doctors, 2 socialites, 2 sports stars, 2 teachers
and 2 programmers at each table.

« And the 2 politicians, 2 doctors, 2 sports stars and 2 programmers shouldn't be the same kind.

Drools Expert also has the normal miss Manners examples (which is much smaller) and employs
a brute force heuristic to solve it. Drools Planner's implementation employs far more scalable
heuristics while still using Drools Expert to calculate the score..

3.3. Real examples

3.3.1. Course timetabling (ITC 2007 track 3 - Curriculum course
scheduling)

3.3.1.1. Problem statement

Schedule each lecture into a timeslot and into a room.

The problem is defined by the International Timetabling Competition 2007 track 3 [http://
www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm].
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Machine reassignment (Google ROADEF 2012)

3.3.2. Machine reassignment (Google ROADEF 2012)

3.3.2.1. Problem statement

Assign each process to a machine. All processes already have an original (unoptimized)
assignment. Each process requires an amount of each resource (such as CPU, RAM, ...). This is
more complex version of the Cloud balancing example.

The problem is defined by the Google ROADEF/EURO Challenge 2012 [http://
challenge.roadef.org/2012/en/].

Hard constraints:

« Maximum capacity: The maximum capacity for each resource for each machine must not be
exceeded.

» Conflict: Processes of the same service must run on distinct machines.

» Spread: Processes of the same service must be spread across locations.

« Dependency: The processes of a service depending on another service must run in the
neighborhood of a process of the other service.

« Transient usage: Some resources are transient and count towards the maximum capacity of
both the original machine as the newly assigned machine.

Soft constraints:

Load: The safety capacity for each resource for each machine should not be exceeded.

« Balance: Leave room for future assignments by balancing the available resources on each
machine.

* Process move cost: A process has a move cost.
* Service move cost: A service has a move cost.

* Machine move cost: Moving a process from machine A to machine B has another A-B specific
move cost.

3.3.2.2. Problem size

model _al 1: 2 resources, 1 neighborhoods, 4 |ocations, 4 nmachines, 79 services,
100 processes and 1 bal ancePenalties with fl ooredPossi bl eSol uti onSi ze (10760).

nmodel _al 2: 4 resources, 2 neighborhoods, 4 |ocations, 100 machines, 980
servi ces, 1000 processes and 0 bal ancePenalties with fl ooredPossi bl eSol uti onSi ze
(1072000) .
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nmodel _al _3: 3 resources, 5 neighborhoods, 25 |ocations, 100 nachines, 216
servi ces, 1000 processes and 0 bal ancePenalties with fl oor edPossi bl eSol uti onSi ze
(1072000) .

nmodel _al 4: 3 resources, 50 neighborhoods, 50 I|ocations, 50 nachines, 142
servi ces, 1000 processes and 1 bal ancePenalties with fl ooredPossi bl eSol uti onSi ze
(1071698) .

nodel _al 5: 4 resources, 2 neighborhoods, 4 |ocations, 12 nmachines, 981
servi ces, 1000 processes and 1 bal ancePenalties with fl ooredPossi bl eSol uti onSi ze
(1071079).

nodel _a2_1: 3 resources, 1 neighborhoods, 1 locations, 100 nmachines, 1000
servi ces, 1000 processes and 0 bal ancePenalties with fl ooredPossi bl eSol uti onSi ze
(1072000) .

nmodel _a2_2: 12 resources, 5 neighborhoods, 25 |ocations, 100 machines, 170
servi ces, 1000 processes and 0 bal ancePenalties with fl oor edPossi bl eSol uti onSi ze
(1072000) .

nmodel _a2_3: 12 resources, 5 neighborhoods, 25 |ocations, 100 machi nes, 129
servi ces, 1000 processes and 0 bal ancePenalties with fl ooredPossi bl eSol uti onSi ze
(1072000) .

nodel _a2_4: 12 resources, 5 neighborhoods, 25 locations, 50 nachines, 180
servi ces, 1000 processes and 1 bal ancePenalties with fl ooredPossi bl eSol uti onSi ze
(1071698) .

nodel _a2_5: 12 resources, 5 neighborhoods, 25 locations, 50 nachines, 153
servi ces, 1000 processes and 0 bal ancePenalties with fl oor edPossi bl eSol uti onSi ze
(1071698) .

3.3.3. Vehicle routing

3.3.3.1. Problem statement

Using a fleet of vehicles, pick up the objects of each customer and bring them to the depot. Each
vehicle can service multiple customers, but it has a limited capacity.

The capacitated vehicle routing problem (CRVP) is defined by the VRP web [http://neo.lcc.uma.es/
radi-aeb/WebVRP/].

3.3.4. Hospital bed planning (PAS - Patient admission
scheduling)
3.3.4.1. Problem statement

Assign each patient (that will come to the hospital) into a bed for each night that the patient will
stay in the hospital. Each bed belongs to a room and each room belongs to a department. The
arrival and departure dates of the patients is fixed: only a bed needs to be assigned for each night.

There are a couple of hard constraints:

» 2 patients shouldn't be assigned to the same bed in the same night.
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Hospital bed planning (PAS - Patient admission scheduling)

* A room can have a gender limitation: only females, only males, the same gender in the same
night or no gender limitation at all.

* A department can have a minimum or maximum age.
A patient can require a room with specific equipment(s).

And of course, there are also some soft constraints:

» A patient can prefer a maximum room size, for example if he/she want a single room.

A patient is best assigned to a department that specializes in his/her problem.

» A patient is best assigned to a room that specializes in his/her problem.

A patient can prefer a room with specific equipment(s).

The problem is defined on this webpage [http://allserv.kahosl.be/~peter/pas/] and the test data
comes from real world hospitals.

Patient admission schedule

Assign each patient a hospital bed.

Largest admission first Drools Planner
November November
1 2 3 4 5 6 T 1 2 3 4 5 & T

General ward
Room 11 bed 1

Room 11 bed 2

Intensive care®
Room 21 bed 1

Room 22 bed 1

no space
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Chapter 3. Use cases and examples

3.4. Difficult examples

3.4.1. Exam timetabling (ITC 2007 track 1 - Examination)

3.4.1.1. Problem statement

Schedule each exam into a period and into a room. Multiple exams can share the same room
during the same period.

There are a number of hard constraints that cannot be broken:

« Exam conflict: 2 exams that share students should not occur in the same period.
« Room capacity: A room's seating capacity should suffice at all times.
 Period duration: A period's duration should suffice for all of its exams.
« Period related hard constraints should be fulfilled:
» Coincidence: 2 exams should use the same period (but possibly another room).
» Exclusion: 2 exams should not use the same period.
» After: 1 exam should occur in a period after another exam's period.
* Room related hard constraints should be fulfilled:
» Exclusive: 1 exam should not have to share its room with any other exam.

There are also a number of soft constraints that should be minimized (each of which has
parametrized penalty's):

e 2 exams in a row.

e 2 exams in a day.

» Period spread: 2 exams that share students should be a number of periods apart.
* Mixed durations: 2 exams that share a room should not have different durations.
» Front load: Large exams should be scheduled earlier in the schedule.

 Period penalty: Some periods have a penalty when used.

« Room penalty: Some rooms have a penalty when used.

It uses large test data sets of real-life universities.
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Exam timetabling (ITC 2007 track 1 - Examination)

The problem is defined by the International Timetabling Competition 2007 track 1 [http://
www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm].

Examination Ann [ History | Math |
timetabling Bobby [ History | Math |
Assigln each exam Carla [ HiStOW ]
2peredand (D) Dan (Math_JChem
Edna Chem| Bio | Geo]
F| Fred [ Bio | (Eng |
Greg Geo | Eng
Most students first Drools Planner
Room X | |RoomY Room X | |RoomY
4 seats 3 seats 4 seats 3 seats
Mon 09:00 History Chem %hem‘ng }I:istor(yz
Fri 09:00 %
Fri  14:00 day

same time
3.4.1.2. Problem size
These numbers might give you some insight on the size of this problem.

Table 3.3. Examination problem size

# # exams/ # periods #rooms # #feasible # optimal
students topics possible | solutions solutions
solutions

exam_comp/388L 607 54 7 1071564 7 1?
exam_compl2484 870 40 49 1072864 7 1?
exam_compl&aed 934 36 48 1073023 7 1?
exam_compi4ei4 273 21 1 10”360 ? 1?
exam_comp3 &t 1018 42 3 1072138 7 1?
exam_comp/3e% 242 16 8 107509 ? 1?
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Chapter 3. Use cases and examples

# # exams/ # periods #rooms # #feasible # optimal

students topics possible | solutions solutions
solutions

‘ exam_com‘pl_Sé% 1096 ‘ 80 28 ‘ 10°3671 2 ‘ 17 ‘
‘ exam_com‘p?_EHB 508 ‘ 80 8 ‘ 10°1678 2 ‘ 12 ‘
‘? ‘s t ‘p r ‘(p*r)"e ? ‘1’? ‘

Geoffrey De Smet (the Drools Planner lead) finished 4th in the International Timetabling
Competition 2007's examination track with a very early version of Drools Planner. Many
improvements have been made since then.

3.4.1.3. Domain model

Below you can see the main examination domain classes:
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Exam timetabling (ITC 2007 track 1 - Examination)

room reference change.

reference do not change.

An exam changes during solving:
The exam. period andfor exam.

The exam.id and exam.topic

Calculated before salving [5[

1]
L]

TopicConflict

- studentsize © int

o.r
- leftTopic n.r
- rightTopic
1

=

Lo 1

1

< <interface s »
Solution

7~

< < singletons >
Examination

< <singletons >
InstitutionalWeighting

- twaolnARowPenality © int

- twolnaDayFenality © int

- periodspreadLlength ;int

- periodspreadPenality © int

- mixedDurationPenality : int

- frontLoadLargeTopicsize | int
- frontLoadlastPeriodsize © int
- frantLoadPenality © int

1 | - examdList
1=

Exam

- id : long

-topic g o« |- period
1
Period

- id : long

- startDateTimestring : 5tring
- periodindex : int

- davindex : int
- duratian : int
- penalty : int

- frontLoacdLast ; boolean

- room

1 Room
- id : lang
- capacity : int
- penalty ; int

RoomHardConstraint

Topic -
- N - id : long
-id : long PeriodHardConstraint
- duration : int - leftTopicla - jang
- frontLoadLarge ; boolean 1
- rightT opic
-~ studentList 1 1
0.
< CBMUM > > < < enum > >
Student PeriodHardConstraintType RoomHardConstraintType

-id : long

T

LY
Mot asserted into the working
Memory

|

- COIMNCIDEMCE : int
- EXCLUSION © int
- AFTER. @ int

Figure 3.4. Examination domain class diagram

- ROOM_EXCLUSIVE : int

Notice that we've split up the exam concept into an Exam class and a Topi ¢ class. The Exam
instances change during solving (this is the planning entity class), when they get another period
or room property. The Topi c, Peri od and Roominstances never change during solving (these are
problem facts, just like some other classes).
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Chapter 3. Use cases and examples

3.4.2. Employee rostering (INRC 2010 - Nurse rostering)

3.4.2.1. Problem statement

For each shift, assign a nurse to work that shift.

The problem is defined by the International Nurse Rostering Competition 2010 [http://
www.kuleuven-kortrijk.be/nrpcompetition].

Employee shift rostering

Populate each work shift with a nurse.
Basic nurses
H | Hue m lIse

Maternity nurses Emergency nurses
Ann .Beth .Cory D | Dan . Elin .Greg

Largest staff first Drools Planner
Sat Sun Mon Sat Sun Mon
6 14 22| & 14 22 6 14 22 6 14 22| & 14 22 6 14 22
| | | | | | | | | | | | | | | | | |
Maternity
nurses
Emergency
nurses
Any
nurses
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Employee rostering (INRC 2010 - Nurse rostering)

Employee shift rostering

Hard constraints
Wed

6 14 22

Thu

6 14 22

Fri

6 14 22

Sat

6 14 22
| | |

Mon

6 14 22

Sun

6 14 22
| | |

Mon Tue
6 14 22 6 14 22

All required shifts must be assigned

No hard constraint broken => solution is feasible
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Employee shift rostering

Soft constraints
Wed

6 14 22
| | |

Thu

6 14 22
| | |

Fri

6 14 22

Sat

6 14 22
| | |

Sun
6 14 22

Tue

6 14 22
| |

Mon

|
Maximum consecutive working days for Ann:

(A7 ]2 JAl? ]2 [A] 7] 7 [A] 2] 2] 7 JA] 7] ?)

1 2 3

e
2 [BJ 2] 7] 1212222

EH
-] )

B
] -]
] -]

7[7 ol 2 2 2 el 2T T2 [ Lo [ [

There are many more soft constraints...

3.4.3. Sport scheduling (TTP - Traveling tournament problem)

3.4.3.1. Problem statement

Schedule matches between n teams with the following hard constraints:

» Each team plays twice against every other team: once home and once away.

« Each team has exactly 1 match on each timeslot.

« No team must have more than 3 consecutive home or 3 consecutive away matches.
« No repeaters: no 2 consecutive matches of the same 2 opposing teams.

and the following soft constraint:

< Minimize the total distance traveled by all teams.

The problem is defined on Michael Trick's website (which contains several world records too)
[http://mat.gsia.cmu.edu/TOURN/].
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Sport scheduling (TTP - Traveling tournament problem)

[ Philadephia Phillies 30 Traveling [ Montréal Expos 0
[1_awayto tournament (1 [MON] VS 0
[ 2 away to m 330 Schedule each match [ 2 [MON] VS m 0
[3 [ PHI J 0 in a timeslot. [3 [MON] VS 929
[4 [PHI]VS (4 away to

|5 [PHI]VS[MON| s (5 awayto ﬁ}]] 30
[6 away to 665 (6 awayto 337

Team distance: 2.011 |

Drools Planner

Total distance:
8.276

3.4.3.2. Simple and smart implementation

There are 2 implementations (simple and smart) to demonstrate the importance of some
performance tips. The Dr ool sPl anner Exanpl esApp always runs the smart implementation, but
with these commands you can compare the 2 implementations yourself:

$ mvn exec: exec
Dexec. mai nCl ass="or g. dr ool s. pl anner . exanpl es. travel i ngt our nanent . app. si npl e. Si npl eTravel i ngTout

$ mvn exec: exec
Dexec. mai nCl ass="or g. dr ool s. pl anner . exanpl es. travel i ngt our nanent . app. smart. Smart Tr avel i ngTour n¢

The smart implementation performs and scales exponentially better than the simple
implementation.

3.4.3.3. Problem size

These numbers might give you some insight on the size of this problem.
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Table 3.4. Traveling tournament problem size

# teams # days # matches # possible # possible # feasible # optimal
solutions  solutions  solutions  solutions
(simple) (smart)
4 6 12 2176782336 <= 518400 | ? 1?
6 10 30 10000000000668000000000200000000 | 1?
47784725839872000000
8 14 56 1.52464943788290465606136043¢e 1?
+64 5.77608277425558771434498864¢e
+43
10 18 20 9.43029892325559280477@52413e 1?
+112 1.07573451027871200629339068e
+79
12 22 132 1.584141124%8195320415135060e 1?
+177 2.01650616733413376416949843e
+126
14 26 182 3.35080635685103223315189511e 1?
+257 1.73513467024013808570420241e
+186
16 30 240 3.22924601798855400751522483¢e 1?
+354 2.45064610271441678267620602¢e
+259
n 2*(n-1) n*(n-1) *(n-1N" <=({(2*(n ? 1?
(n*(n-1)) -~/
2))
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Chapter 4. Planner configuration

4.1. Overview

Solving a planning problem with Drools Planner consists out of 5 steps:

1. Model your planning problem as a class that implements the interface Sol ut i on, for example
the class NQueens.

2. Configure a Sol ver, for example a first fit and tabu search solver for any NQueens instance.

3. Load a problem data set from your data layer, for example a 4 Queens instance. Set it as the
planning problem on the Sol ver with Sol ver . set Pl anni ngProbl en(...).

4. Solve it with Sol ver. sol ve().

5. Get the best solution found by the Sol ver with Sol ver . get Best Sol uti on().
4.2. Solver configuration

4.2.1. Solver configuration by XML file

You can build a Sol ver instance with the Xml Sol ver Fact ory. Configure it with a solver
configuration XML file:

Xm Sol ver Factory sol ver Factory = new Xnl Sol ver Factory();
sol ver Fact ory. confi gure("/org/drool s/ pl anner/ exanpl es/ nqueens/ sol ver/
nqueensSol ver Confi g. xm ");
Sol ver sol ver = sol verFactory. buil dSol ver();

A solver configuration file looks something like this:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<sol ver >
<I-- Define the nodel -->
<sol uti onCl ass>org. drool s. pl anner . exanpl es. nqueens. domai n. NQueens</
sol uti ond ass>
<pl anni ngEnti t yCl ass>or g. drool s. pl anner . exanpl es. nqueens. domai n. Queen</
pl anni ngEntityCl ass>

<!-- Define the score function -->
<scoreDi rector Fact ory>
<scor eDefiniti onType>SlI MPLE</ scor eDefi ni ti onType>
<scoreDr| >/ org/ drool s/ pl anner/ exanpl es/ nqueens/ sol ver/
nQueensScor eRul es. drl </ scoreDr| >
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Chapter 4. Planner configuration

</ scoreDirectorFactory>

<l--

Configure the optinm zation algorithms) -->

<t erm nati on>

</term nation>

<constructi onHeuristic>

</ constructi onHeuristic>

<l ocal Sear ch>

</| ocal Search>

</ sol ver >

Notice the 3 parts in it:

* Define the model

« Define the score function

» Configure the optimization algorithm(s)

We 'll explain these various parts of a configuration later in this manual.

Drools Planner makes it relatively easy to switch optimization algorithm(s) just by changing
the configuration. There's even a Benchmar k utility which allows you to play out different
configurations against each other and report the most appropriate configuration for your problem.
You could for example play out tabu search versus simulated annealing, on 4 queens and 64

queens.

4.2.2. Solver configuration by Java API

As an alternative to the XML file, a solver configuration can also be configured with the
Sol ver Confi g API:

Sol ver Confi g sol verConfig = new Sol ver Config();

sol ver Confi g. set Sol uti onCl ass(NQueens. cl ass);

Set <Cl ass<?>> pl anni ngEntityCl assSet = new HashSet <Cl ass<?>>();
pl anni ngEnti t yd assSet . add( Queen. cl ass);

sol ver Confi g. set Pl anni ngEnti t yCl assSet (pl anni ngEntityC assSet);

Scor eDi rect or Fact oryConfi g scorebDirectorFactoryConfig = sol ver Confi g. get Scor eDi rect or Fe
scor eDi rect or Fact oryConfi g. set ScoreDefi ni ti onType( Scor eDi rect or Fact oryConfi g. ScoreDefi 1
scoreDirector Fact oryConfi g. set ScoreDr | Li st (

Arrays. asLi st ("/org/drool s/ pl anner/ exanpl es/ nqueens/ sol ver/

nQueensScoreRul es. drl"));
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Model your planning problem

Term nati onConfig termni nati onConfig = sol ver Confi g. get Termi nati onConfig();
Il
Li st <Sol ver PhaseConfi g> sol ver PhaseConfi gLi st = new ArrayLi st <Sol ver PhaseConfi g>();
ConstructionHeuri sticSol ver PhaseConfi g constructi onHeuri sticSol ver PhaseConfig
= new ConstructionHeuristicSol ver PhaseConfig();
Il
sol ver PhaseConfi gLi st. add(constructi onHeuri sti cSol ver PhaseConfi g);
Local Sear chSol ver PhaseConfi g | ocal Sear chSol ver PhaseConfi g = new Local Sear chSol ver Phase(
I/
sol ver PhaseConfi gLi st. add(| ocal Sear chSol ver PhaseConfi g) ;
sol ver Confi g. set Sol ver PhaseConfi gLi st (sol ver PhaseConfi gLi st);
Sol ver sol ver = sol ver Confi g. bui |l dSol ver () ;

It is highly recommended to configure by XML file instead of this APIl. To dynamically
configure a value at runtime, use the XML file as a template and extract the Sol ver Confi g class
with get Sol ver Confi g() to configure the dynamic value at runtime:

Xm Sol ver Factory sol ver Factory = new Xm Sol ver Factory();
sol ver Fact ory. confi gure("/org/drool s/ pl anner/ exanpl es/ nqueens/ sol ver/
nqueensSol ver Confi g. xm ");

Sol ver Confi g sol verConfig = sol ver Factory. get Sol ver Confi g();
sol ver Confi g. get Term nati onConfi g() . set Maxi mumM nut esSpend(user | nput);
Sol ver sol ver = sol ver Confi g. buil dSol ver () ;

4.3. Model your planning problem

4.3.1. Is this class a problem fact or planning entity?

Look at a dataset of your planning problem. You 'll recognize domain classes in there, each of
which is one of these:

« A unrelated class: not used by any of the score constraints. From a planning standpoint, this
data is obsolete.

< A problem fact class: used by the score constraints, but does NOT change during planning
(as long as the problem stays the same). For example: Bed, Room Shi ft, Enpl oyee, Topi c,
Peri od, ...

* A planning entity class: used by the score constraints and changes during planning. For
example: BedDesi gnat i on, Shi f t Assi gnment , Exam ...

Ask yourself: What class changes during planning? Which class has variables that | want the
Sol ver to choose for me? That class is a planning entity. Most use cases have only 1 planning
entity class.
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Chapter 4. Planner configuration

@ Note
In , problem facts can change during planning, because the
problem itself changes. However, that doesn't make them planning entities.

In Drools Planner all problems facts and planning entities are plain old JavaBeans
(POJO's). You can load them from a database (JDBC/JPA/JDO), an XML file, a data repository,
a noSQL cloud, ...: Drools Planner doesn't care.

4.3.2. Problem fact

A problem fact is any JavaBean (POJO) with getters that does not change during planning.
Implementing the interface Seri al i zabl e is recommended (but not required). For example in n
gueens, the columns and rows are problem facts:

public class Colum inplenents Serializable {

private int index;

Il ... getters

public class Row inplenments Serializable {
private int index;

/[l ... getters

A problem fact can reference other problem facts of course:

public class Course inplenents Serializable {
private String code;
private Teacher teacher; // OQher problem fact
private int |ectureSize;

private int m nWrkingDaySi ze;

private List<Curriculunms curriculunList; // Oher problemfacts
private int studentSize;

/[l ... getters
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Planning entity and planning variables

‘ }

A problem fact class does not require any Planner specific code. For example, you can reuse your
domain classes, which might have JPA annotations.

a cached problem fact

4.3.3. Planning entity and planning variables

4.3.3.1. Planning entity

A planning entity is a JavaBean (POJO) that changes during solving, for example a Queen that
changes to another row. A planning problem has multiple planning entities, for example for a single
n queens problem, each Queen is a planning entity. But there's usually only 1 planning entity class,
for example the Queen class.

A planning entity class needs to be annotated with the @ anni ngEnt i t y annotation.

Each planning entity class has 1 or more planning variables. It usually also has 1 or more defining
properties. For example in n queens, a Queen is defined by its Col uim and has a planning variable
Row. This means that a Queen's column never changes during solving, while its row does change.

@l anni ngEntity
public class Queen {

private Colum col um;

/1 Planning variabl es: changes during planni ng, between score cal cul ati ons.
private Row row

/'l ... getters and setters
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A planning entity class can have multiple planning variables. For example, a Lect ur e is defined
by its Cour se and its index in that course (because 1 course has multiple lectures). Each Lect ure
needs to be scheduled into a Peri od and a Roomso it has 2 planning variables (period and room).
For example: the course Mathematics has 8 lectures per week, of which the first lecture is Monday
morning at 08:00 in room 212.

@ anni ngEntity
public class Lecture {

private Course course;
private int |ecturel ndexl nCourse;

/1 Planning variabl es: changes during pl anni ng, between score cal cul ati ons.
private Period period;

private Room room

/1

The solver configuration also needs to be made aware of each planning entity class:

<sol ver >

<pl anni ngEnti tyC ass>or g. dr ool s. pl anner . exanpl es. nqueens. donmai n. Queen</
pl anni ngEnti tyd ass>

</ sol ver >

Some uses cases have multiple planning entity classes. For example: route freight and trains
into railway network arcs, where each freight can use multiple trains over its journey and each
train can carry multiple freights per arc. Having multiple planning entity classes directly raises the
implementation complexity of your use case.
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4.3.3.2. Planning entity difficulty

Some optimization algorithms work more efficiently if they have an estimation of which planning
entities are more difficult to plan. For example: in bin packing bigger items are harder to fit, in
course scheduling lectures with more students are more difficult to schedule and in n queens the
middle queens are more difficult.

Therefore, you can seta di ffi cul t yConpar at or O ass to the @l anni ngEnt i t y annotation:

@ anni ngEntity(difficultyConparatord ass = C oudProcessDi fficul tyConparator.clas
public class C oudProcess {
/1

public class C oudProcessDifficul tyConparator inplenments Conparator<C oudProcess>

public int conpare(C oudProcess a, d oudProcess b) {
return new ConpareToBui | der ()
. append(a. get Requi redMul ti plicand(), b.getRequiredMiltiplicand())
.append(a.getld(), b.getld())
.t oConpari son();

Alternatively, you can also set a diffi cul t ywei ght Fact oryd ass to the @l anni ngEntity
annotation, so you have access to the rest of the problem facts from the solution too:

@l anni ngEntity(difficultyWightFactoryd ass = QueenDi fficul t yWei ght Factory. cl ass
public class Queen {
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Il

public interface PlanningEntityDifficultyWightFactory {

Conparabl e createDi fficultyWi ght(Sol ution solution, Object planningEntity);

public class QueenDifficultyWightFactory inplenments PlanningEntityDifficultyWightFactory {

public Conparabl e createDifficultyWight(Solution solution, Object planningEntity) {
NQueens nQueens = (NQueens) sol ution;
Queen queen = (Queen) planningEntity;
i nt di stanceFronM ddl e = cal cul at eDi st anceFromM ddl e( nQueens. get N(), queen. get Col umml nc
return new QueenDifficul t yWeight (queen, distanceFronM ddl e);

I/
public static class QueenDifficultyWight inplenments Conparabl e<QueenDi fficultyWight> {

private final Queen queen;
private final int distanceFronM ddl e;

public QueenDi fficultyWight(Qeen queen, int distanceFronM ddle) {
thi s. queen = queen;
this.di stanceFronM ddl e = di st anceFronmM ddl e;

public int conpareTo(QueenDi fficultyWight other) {
return new Conpar eToBui | der ()
/1 The nmore difficult queens have a | ower di stance to the m ddle
. append( ot her. di st anceFronM ddl e, di stanceFronM ddle) //
Decr easi ng
. append( queen. get Col unml ndex(), ot her. queen. get Col umml ndex())
.toCompari son();

None of the current planning variable state may be used to compare planning entities. They are
likely to be nul I anyway. For example, a Queen's r ow variable may not be used.
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4.3.3.3. Planning variable

A planning variable is a property (including getter and setter) on a planning entity. It changes
during planning. For example, a Queen's r owproperty is a planning variable. Note that even though
a Queen's r owproperty changes to another Rowduring planning, no Rowinstance itself is changed.
A planning variable points to a planning value.

A planning variable getter needs to be annotated with the @°l anni ngVari abl e annotation.
Furthermore, it needs a @/al ueRange annotation too.

@ anni ngEntity
public class Queen {

private Row row;
/1

@ anni ngVari abl e
@/al ueRange(type = Val ueRangeType. FROM SOLUTI ON_PROPERTY, sol utionProperty = rowLi st")
publ i c Row get Row() {

return row,

public void set Row( Row row) ({
this.row = row,

4.3.3.4. When is a planning entity initialized?

A planning entity is considered initialized if all its planning variables are initialized.

By default, a planning variable is considered initialized if its value is not nul | .
4.3.4. Planning value and planning value ranges

4.3.4.1. Planning value

A planning value is a possible value for a planning variable. Usually, a planning value is problem
fact, but it can also be any object, for example a double. It can even be another planning entity or
even a interface implemented by a planning entity and a problem fact.

A planning value range is the set of possible planning values for a planning variable. This set
can be a discrete (for example row 1, 2, 3 or 4) or continuous (for example any doubl e between
0.0 and 1. 0). There are several ways to define the value range of a planning variable with the
@val ueRange annotation.
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If nul'| is a valid planning value, it should be included in the value range and the default way to
detect uninitialized planning variables must be changed (TODO for now, a workaround [https://
issues.jboss.org/browse/JBRULES-3317] is needed).

4.3.4.2. Planning value range

4.3.4.2.1. val ueRange from Sol uti on property

All instances of the same planning entity class share the same set of possible planning values for
that planning variable. This is the most common way to configure a value range.

The Sol uti on implementation has property which returns a Col | ecti on. Any value from that
Col | ecti on is a possible planning value for this planning variable.

@ anni ngVari abl e
@/al ueRange(type = Val ueRangeType. FROM SOLUTI ON_PROPERTY, sol utionProperty = "rowList")
public Row get Row() {

return row

public class NQueens inplenments Sol uti on<Si npl eScore> {
I/

public List<Row> get RowList() {
return rowli st;

4.3.4.2.2. val ueRange from planning entity

Each planning entity has its own set of possible planning values for a planning variable. For
example, if a teacher can never teach in a room that does not belong to his department, lectures
of that teacher can limit their room value range to the rooms of his department.

@ anni ngVari abl e
@/al ueRange(type = Val ueRangeType. FROM PLANNI NG_ENTI TY_PROPERTY, pl anni ngEntityProperty ="
publ i ¢ Room get Room() {

return room

publ i c Li st <Room> get Possi bl eRoonli st () {
return get Course().get Teacher (). get Possi bl eRoonli st ();
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Never use this to enforce a soft constraint (or even a hard constraint when the problem might not
have a feasible solution). For example: Unless there is no other way, a teacher can not teach in
a room that does not belong to his department. In this case, the teacher should not be limited in
his room value range (because sometimes there is no other way).

A planning entity should not use other planning entities to determinate its value range. That would
only try to make it solve the planning problem itself and interfere with the optimization algorithms.

4.3.4.2.3. val ueRange undefined

Leaves the value range undefined. Some optimization algorithms do not support this value range.

@ anni ngVari abl e
@/al ueRange(type = Val ueRangeType. UNDEFI NED)
publ i c Row get Row() {

return row,

4.3.4.2.4. Combining ValueRanges

Value ranges can be combined, for example:

@l anni ngVari abl e(...)
@/al ueRanges( {
@/al ueRange(type = Val ueRangeType. FROM SOLUTI ON_PROPERTY, sol uti onPro
@/al ueRange(type = Val ueRangeType. FROM PLANNI NG_ENTI TY_PROPERTY, pl an
public Car getCar() {
return car;
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4.3.4.2.5. A val ueRange Which includes other planning entities
In some cases (such as in chaining), the planning value itself is sometimes another planning entity.

In such cases, it's often required that a planning entity is only eligible as a planning value if it's
initialized:

@ anni ngVari abl e

@/al ueRange(type = Val ueRangeType. FROM SOLUTI ON_PROPERTY, sol uti onProperty = "copList",

public Cop getPartner() {
return partner;

TODO: this is likely to change in the future (jira [https://issues.jboss.org/browse/JBRULES-3408]),
as it should support specific planning variable initialization too.

4.3.4.2.6. Chained

Some use cases, such as TSP and Vehicle Routing, require chaining. This means the planning
entities point to each other and form a chain.

A planning variable that is chained either:

« Directly points to a planning fact, which is called an anchor.

» Points to another planning entity with the same planning variable, which recursively points to
an anchor.

Here are some example of valid and invalid chains:
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Chain principles

Multiple Anchor without Initialzed entity Multiple direct
chains trailing entity without anchor trailing entities
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Every initialized planning entity is part of an open-ended chain that begins from an anchor.

A valid model

« Achainisn

means that:

ever a loop. The tail is always open.

« Every chain always has exactly 1 anchor. The anchor is a problem fact, never a planning entity.

* Achain is never a tree, it is always a line. Every anchor or planning entity has at most 1 trailing

planning en

* Every initial

tity.

ized planning entity is part of a chain.

« An anchor with no planning entities pointing to it, is also considered a chain.

A

Warning

A planning problem instance given to the Sol ver must be valid.
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@ Note

If your constraints dictate a closed chain, model it as an open-ended chain (which
is easier to persist in a database) and implement a score constraint for the last
entity back to the anchor.

The optimization algorithms and build-in MoveFact or y's do chain correction to guarantee that the
model stays valid:

Chain correction

Before After
(anchor| [anchor] (anchor| [anchor] (anchor| [anchor]
[ entity | [ entity | [ entity ] [ entity ] _entity ] [ entity ]

(entity ) (eniiy)

Changing 1 planning variable may inflict up to 2 chain corrections.

A Warning

A custom Move implementation must leave the model in a valid state.

For example, in TSP the anchor is a Doni ci | e (in vehicle routing it is the vehicle):

public class Domicile ... inplenments Appearance {
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public City getCity() {...}

The anchor (which is a problem fact) and the planning entity implement a common interface, for
example TSP's Appear ance:

public interface Appearance {

City getGity();

That interface is the return type of the planning variable. Furthermore, the planning variable is
chained. For example TSP's Vi si t (in vehicle routing it is the customer):

@ anni ngEntity
public class Visit ... inplenents Appearance {

public City getCity() {...}

@l anni ngVari abl e(chai ned = true)
@/al ueRanges( {
@/al ueRange(type Val ueRangeType. FROM _SOLUTI ON_PROPERTY, sol uti onProperty "domi ¢
@/al ueRange(type = Val ueRangeType. FROM SOLUTI ON_PROPERTY, sol utionProperty = "visit
excl udeUni nitializedPl anni ngEntity = true)})
publ i ¢ Appearance get Previ ousAppearance() {
return previousAppear ance;

public void setPrevi ousAppear ance( Appear ance previ ousAppear ance) {
t hi s. previ ousAppear ance = previ ousAppear ance;

Notice how 2 value ranges need to be combined:

* The value range which holds the anchors, for example doni ci | eLi st .
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* The value range which holds the initialized planning entities, for example vi si t Li st. This
always requires an enabled excl udeUni ni ti al i zedPl anni ngEnti ty, because an initialized
entity should never point to an uninitialized entity: that would break the principle that every chain
must have an anchor.

4.3.4.3. Planning value strength

Some optimization algorithms work more efficiently if they have an estimation of which planning
values are stronger, which means they are more likely to satisfy a planning entity. For example: in
bin packing bigger containers are more likely to fit an item and in course scheduling bigger rooms
are less likely to break the student capacity constraint.

Therefore, you can set a st r engt hConpar at or C ass to the @ anni ngVvari abl e annotation:

@ anni ngVari abl e(strengt hConparat or Cl ass = C oudConput er St r engt hConpar at or. cl ass)
I/
publ i ¢ C oudConput er get Conmputer() {

I/

public class C oudConputer Strengt hConparator inplenents Conparat or <C oudConput er > {

public int conpare(d oudConputer a, Cl oudConputer b) {
return new Conpar eToBui | der ()
.append(a. getMul tiplicand(), b.getMiltiplicand())
.append(b. getCost(), a.getCost()) // Descending (but this
i s debat abl e)
. append(a.getld(), b.getld())
.toCompari son();

@ Note
If you have multiple planning value classes in the same value range, the
st rengt hConpar at or Cl ass needs to implement a Conparat or of a common
superclass (for example Conpar at or <Obj ect >) and be able to handle comparing
instances of those different classes.

Alternatively, you can also set a strengt hWi ght Fact oryCd ass to the @l anni ngVari abl e
annotation, so you have access to the rest of the problem facts from the solution too:
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@l anni ngVari abl e(strengt hWei ght Fact oryCl ass = RowStrengt hWei ght Fact ory. cl ass)
I/
publi ¢ Row get Row() {

Il

public interface PlanningVal ueStrengthWei ght Factory {

Conpar abl e creat eStrengt hWei ght (Sol uti on sol uti on, Obj ect pl anni ngVal ue);

public class RowStrengthWi ght Factory inpl enments Pl anni ngVal ueStrengt hWei ght Factory {

publ i ¢ Compar abl e creat eStrengt hWi ght (Sol uti on sol ution, Object planningVal ue) {
NQueens nQueens = (NQueens) sol ution;
Row row = (Row) pl anni ngVal ue;
i nt di stanceFronmM ddl e = cal cul at eDi st anceFromM ddl e( nQueens. get N(), row. getlndex());
return new RowStrengt hWei ght (row, distanceFronmM ddl e);

I/
public static class RowStrengthWi ght inplenments Conparabl e<RowSt r engt hWei ght > {

private final Row row
private final int distanceFronM ddl e;

publ i ¢ RowsSt rengt hWei ght (Row row, int distanceFronM ddle) {
this.row = row,
thi s. di stanceFronM ddl e = di st anceFr oniM ddl e;

public int conpareTo(RowSt rengt hWi ght other) {
return new ConpareToBui |l der ()
/1 The stronger rows have a | ower distance to the middle
. append( ot her. di st anceFronM ddl e, di stanceFronM ddle) //
Decreasing (but this is debatable)
. append(row. getl ndex(), other.row. getlndex())
.toCompari son();
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None of the current planning variable state in any of the planning entities may be used to compare
planning values. They are likely to be nul I anyway. For example, None of the r ow variables of
any Queen may be used to determine the strength of a Row.

4.3.5. Planning problem and planning solution

4.3.5.1. Planning problem instance

A dataset for a planning problem needs to be wrapped in a class for the Sol ver to solve. You
must implement this class. For example in n queens, this in the NQueens class which contains a
Col umm list, a Rowlist and a Queen list.

A planning problem is actually a unsolved planning solution or - stated differently - an uninitialized
Sol ut i on. Therefor, that wrapping class must implement the Sol ut i on interface. For example in
n queens, that NQueens class implements Sol ut i on, yet every Queen in a fresh NQueens class is
not yet assigned to a Row (their r ow property is nul I ). So it's not a feasible solution. It's not even
a possible solution. It's an uninitialized solution.

4.3.5.2. The sol ution interface

You need to present the problem as a Sol ut i on instance to the Sol ver. So you need to have a
class that implements the Sol uti on interface:

public interface Sol ution<S extends Score> {

S get Score();
voi d set Score(S score);

Col | ecti on<? extends Object> getProbl enfFacts();

Sol uti on<S> cl oneSol ution();

For example, an NQueens instance holds a list of all columns, all rows and all Queen instances:

public class NQueens inplenments Sol uti on<Si npl eScore> {
private int n;
/1 Problemfacts

private List<Colum> col ummLi st;
private List<Row> rowList;
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/1 Planning entities
private List<Queen> queenLi st;

Il

4.3.5.3. The getScore and setScore methods

A Sol uti on requires a score property. The score property is nul | if the Sol uti on is uninitialized
or if the score has not yet been (re)calculated. The scor e property is usually typed to the specific
Scor e implementation you use. For example, NQueens uses a Si npl eScor e:

public class NQueens inplenents Sol uti on<Si npl eScore> {

private SinpleScore score;

public Sinmpl eScore getScore() {
return score;

public void set Score(Si nmpl eScore score) {
this.score = score;

Il

Most use cases use a Har dAndSof t Scor e instead:

public class Curricul unCourseSchedul e i npl enents Sol uti on<Har dAndSoft Scor e> {
private HardAndSoft Score score;

publ i c Har dAndSoft Score get Score() {
return score;

public void set Score(Har dAndSoft Score score) {
this.score = score;

Il
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See the Score calculation section for more information on the Scor e implementations.
4.3.5.4. The getProblemFacts method

The method is only used if Drools is used for score calculation. Other score directors do not use it.

All objects returned by the get Pr obl enFact s() method will be asserted into the Drools working
memory, so the score rules can access them. For example, NQueens just returns all Col unm and
Row instances.

public Collection<? extends Object> getProbl enfFacts() ({
Li st <Cbj ect> facts = new ArraylLi st <Obj ect >();
facts.addAl | (col umLi st);
facts.addAl | (rowlist);
/[l Do not add the planning entity's (queenList) because that will be
done automatically
return facts;

All planning entities are automatically inserted into the Drools working memory. Do not add them
in the method get Pr obl enfFact s() .

The method get Pr obl enfFact s() is not called much: at most only once per solver phase per
solver thread.

4.3.5.5. Cached problem fact

A cached problem fact is a problem fact that doesn't exist in the real domain model, but is
calculated before the Sol ver really starts solving. The method get Probl enfact s() has the
chance to enrich the domain model with such cached problem facts, which can lead to simpler
and faster score constraints.

For example in examination, a cache problem fact Topi cConf | i ct is created for every 2 Topi c's
which share at least 1 St udent .

public Collection<? extends Cbject> getProbl enfFacts() {
Li st <Cbj ect> facts = new ArraylLi st <Qbj ect >();
Il
facts.addAl | (cal cul at eTopi cConflictList());
Il
return facts;

private List<TopicConflict> calcul ateTopicConflictList() {
Li st <Topi cConflict> topicConflictList = new ArrayLi st <Topi cConflict>();
for (Topic leftTopic : topiclList) {
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for (Topic rightTopic : topicList) {
if (leftTopic.getld() < rightTopic.getld()) {
int studentSize = 0;
for (Student student : |eftTopic.getStudentList()) {
if (rightTopic.getStudentList().contains(student)) {
st udent Si ze++;

}
if (studentSize > 0) {

topi cConflictList.add(new Topi cConflict(leftTopic, rightTopic, student:

}

return topicConflictList;

Any score constraint that needs to check if no 2 exams have a topic which share a student are
being scheduled close together (depending on the constraint: at the same time, in a row or in the
same day), can simply use the Topi cConfli ct instance as a problem fact, instead of having to
combine every 2 St udent instances.

4.3.5.6. The cloneSolution method

Most optimization algorithms use the cl oneSol uti on() method to clone the solution each time
they encounter a new best solution (so they can recall it later) or to work with multiple solutions
in parallel.

The NQueens implementation only deep clones all Queen instances. When the original solution is
changed during planning, by changing a Queen, the clone stays the same.

| **
* Clone will only deep copy the { #queenLi st}.
*/
publ i ¢ NQueens cl oneSol ution() {
NQueens cl one = new NQueens();
clone.id = id;
clone.n = n;
cl one. col umLi st = col ummLi st ;
cl one.rowLi st = rowli st;
Li st <Queen> cl onedQueenLi st = new ArrayLi st <Queen>(queenLi st. size());
for (Queen queen : queenList) ({
cl onedQueenlLi st . add( queen. cl one());
}
cl one. queenLi st = cl onedQueenLi st ;
cl one. score = score;
return clone;
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The cl oneSol ution() method should only deep clone the planning entities. Notice that the
problem facts, such as Col utm and Row are normally not cloned: even their Li st instances are
not cloned.

@ Note
If you were to clone the problem facts too, then you'd have to make sure that the
new planning entity clones also refer to the new problem facts clones used by the
solution. For example, if you 'd clone all Rowinstances, then each Queen clone and
the NQueens clone itself should refer to the same set of new Row clones.

4.3.5.7. Build an uninitialized solution

Build a Sol ut i on instance to represent your planning problem, so you can set it on the Sol ver
as the planning problem to solve. For example in n queens, an NQueens instance is created with
the required Col uim and Row instances and every Queen set to a different col unm and every r ow
settonul | .

private NQueens createNQueens(int n) {
NQueens nQueens = new NQueens();
nQueens. set | d(OL);
nQueens. set N(n) ;
Li st <Col um> col ummLi st = new ArrayLi st <Col utm>(n);
for (int i =0; i <n; i++) {
Col um colum = new Col um();
colum. setld((long) i);
col um. set | ndex(i);
col ummLi st . add( col um) ;
}
nQueens. set Col ummLi st (col ummLi st) ;
Li st <Row> rowLi st = new ArrayLi st <Row>(n);
for (int i =0; i <n; i++) {
Row row = new Row();
row.setld((long) i);
row. setl ndex(i);
rowLi st. add(row);
}
nQueens. set RowLi st (rowli st);
Li st <Queen> queenLi st = new ArraylLi st <Queen>(n);
long id = 0;
for (Columm columm : columList) {
Queen queen = new Queen();
queen. set1d(id);
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i d++;
gueen. set Col umm( col umm) ;
/'l Notice that we | eave the Pl anni ngVari abl e properties (row) on null
gueenlLi st . add(queen);
}
nQueens. set QueenLi st (queenLi st);
return nQueens;

A°-B C D
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Figure 4.1. Uninitialized solution for the 4 queens puzzle

Usually, most of this data comes from your data layer, and your Sol uti on implementation just
aggregates that data and creates the uninitialized planning entity instances to plan:

private void createlectureList(Curricul umCourseSchedul e schedul e) {
Li st <Cour se> courselLi st = schedul e. get Cour seLi st();
Li st <Lecture> | ectureList = new ArraylLi st <Lect ure>(courseList.size());
for (Course course : courselist) {
for (int i = 0; i < course.getLectureSize(); i++) {
Lecture lecture = new Lecture();
| ecture. set Course(course);
| ecture. set Lecturel ndexl nCourse(i);
/1 Notice that we |eave the PlanningVariable properties
(period and room) on null
| ecturelList.add(lecture);

}

schedul e. set Lect ureLi st (I ectureList);

4.4. Use the sol ver

4.4.1. The Solver interface

A Sol ver implementation will solve your planning problem.
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public interface Solver {
voi d set Pl anni ngPr obl en{ Sol uti on pl anni ngPr obl em ;
voi d sol ve();
Sol uti on get Best Sol uti on();

Il

A Sol ver can only solve 1 planning problem instance at a time. A Sol ver should only be accessed
from a single thread, except for the methods that are specifically javadocced as being thread-safe.
It's build with a Sol ver Fact ory, do not implement or build it yourself.

4.4.2. Solving a problem

Solving a problem is quite easy once you have:

e A Sol ver build from a solver configuration
* A Sol uti on that represents the planning problem instance

Just set the planning problem, solve it and extract the best solution:

sol ver. set Pl anni ngPr obl en( pl anni ngPr obl en) ;
sol ver. sol ve();
Sol ution best Sol uti on = sol ver. get Best Sol uti on();

For example in n queens, the method get Best Sol uti on() will return an NQueens instance with
every Queen assigned to a Row.

A°B C D
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g

g

Ww N = O

g

Figure 4.2. Best solution for the 4 queens puzzle in 8 ms (also an optimal
solution)
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Environment mode: Are there bugs in my code?

The sol ve() method can take a long time (depending on the problem size and the solver
configuration). The Sol ver will remember (actually clone) the best solution it encounters during
its solving. Depending on a number factors (including problem size, how time the Sol ver has, the
solver configuration, ...), that best solution will be a feasible or even an optimal solution.

repeated planning

4.4.3. Environment mode: Are there bugs in my code?

The environment mode allows you to detect common bugs in your implementation. It does not
affect the logging level.

You can set the environment mode in the solver configuration XML file:

<sol ver >
<envi r onnent Mode>DEBUG</ envi r onnent Mode>

</ sol ver >

A solver has a single Randominstance. Some solver configurations use the Randominstance a lot
more than others. For example simulated annealing depends highly on random numbers, while
tabu search only depends on it to deal with score ties. The environment mode influences the seed
of that Randominstance.

There are 4 environment modes:

4.4.3.1. TRACE

The trace mode is reproducible (see the reproducible mode) and also turns on all assertions (such
as assert that the delta based score is uncorrupted) to fail-fast on rule engine bugs.
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The trace mode is very slow (because it doesn't rely on delta based score calculation).
4.4.3.2. DEBUG

The debug mode is reproducible (see the reproducible mode) and also turns on most assertions
(such as assert that the undo Move is uncorrupted) to fail-fast on a bug in your Move
implementation, your score rule, ...

The debug mode is slow.

It's recommended to write a test case which does a short run of your planning problem with debug
mode on.

4.4.3.3. REPRODUCIBLE (default)

The reproducible mode is the default mode because it is recommended during development. In
this mode, 2 runs in the same Planner version will execute the same code in the same order.
Those 2 runs will have the same result, except if they rely on time based termination and
they have a sufficiently large difference in allocated CPU time. This allows you to consistently
reproduce bugs. It also allows you to benchmark certain refactorings (such as a score constraint
optimization) fairly across runs.

The reproducible mode is not much slower than the production mode. If your production
environment requires reproducibility, use it in production too.

In practice, this mode uses the default random seed, and it also disables certain concurrency
optimizations (such as work stealing).

4.4.3.4. PRODUCTION

The production mode is the fastest and the most robust, but not reproducible. It is recommended
for a production environment.

The random seed is different on every run, which makes it more robust against an unlucky random
seed. An unlucky random seed gives a bad result on a certain data set with a certain solver
configuration. Note that in most use cases the impact of the random seed is relatively low on
the result (even with simulated annealing). An occasional bad result is far more likely caused by
another issue (such as a score trap).

4.4.4. Logging level: What is the soiver doing?

The best way to illuminate the black box that is a Sol ver, is to play with the logging level:

« ERROR: When something is wrong, Planner fails fast: it throws a subclass of
Runt i meExcept i on with a detailed message to the calling code, but does not log an error
message to avoid duplicate log messages. If the calling code doesn't catch and eat that
Runt i meExcepti on, a Thr ead's default Except i onHandl er will log it as an error anyway.

« WARN: Log suspicious circumstances.
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* INFO: Log every phase and the solver itself.
« DEBUG: Log every step of every phase.
» TRACE: Log every move of every step of every phase.

For example, set it to DEBUG logging, to see when the phases end and how fast steps are taken:

INFO Solving started: time spend (0), score (null), new best score (null),
random seed (0).
DEBUG Step index (0), tinme spend (1), score (0), initialized planning entity

(col 2@ ow0) .
DEBUG Step index (1), tine spend (3), score (0), initialized planning entity
(col 1@ ow2) .
DEBUG Step index (2), tinme spend (4), score (0), initialized planning entity
(col 3@ owg) .
DEBUG Step index (3), tine spend (5), score (-1), initialized planning

entity (col 0@ owl).

I NFO Phase constructionHeuristic finished: step total (4), time spend (6), best
score (-1).

DEBUG Step index (0), time spend (10), score (-1), best score (-1),
accepted nove size (12) for picked step (col 1@ow2 => row3).

DEBUG Step index (1), time spend (12), score (0), new best score (0), accepted
nove size (12) for picked step (col 3@ow3 => row2).

I NFO Phase | ocal Search ended: step total (2), tinme spend (13), best score (0).
INFO Solving ended: tine spend (13), best score (0), average cal cul ate count
per second (4846).

All time spends are in milliseconds.

Everything is logged to SLF4J [http://www.slf4j.org/], which is a simple logging facade that
can delegate any log to Logback, Apache Commons Logging, Log4j or java.util.logging. Add a
dependency to the logging adaptor for your logging framework of choice. If you're not using any
logging framework yet, you can use Logback by adding this Maven dependency:

<dependency>
<gr oupl d>ch. qos. | ogback</ gr oupl d>
<artifactld>l ogback-cl assic</artifactld>
<versi on>1. x</ ver si on>

</ dependency>

Configure the logging level on the package or g. dr ool s. pl anner . For example:

In Logback, configure it in your | ogback. xm file:

<configuration>
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<l ogger name="org.drool s. pl anner" | evel ="debug"/>

<confi guration>

In Log4J, configure it in your | og4j . xm file:

<l og4j:configuration xmns:log4j="http://]jakarta.apache.org/l og4j/">

<cat egory nanme="org. drool s. pl anner">

<priority val ue="debug" />
</ cat egory>

</l og4j: configuration>
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Chapter 5. Score calculation

5.1. Score terminology

5.1.1. What is a score?

Every initialized Sol ut i on has a score. That score is an objective way to compare 2 solutions: the
solution with the highest score is better. The Sol ver aims to find the Sol ut i on with the highest
Scor e. The best solution is the Sol uti on with the highest Scor e that it has encountered during
solving, so it might be the optimal solution.

Planner cannot automatically know which Sol ut i on your business prefers, so you need to tell it
how to calculate the score of a Sol uti on.

5.1.2. Negative and positive constraints

Most planning problems use negative scores, because they have negative constraints. In that
case, the score is usually the sum of the weight of the negative constraints being broken, with an
perfect score of 0. This explains why the score of a solution of 4 queens is the negative (and not
the positive!) of the number of queen couples which can attack each other.

Negative and positive constraints can be combined, even in the same level.

@ Note

Don't presume your business knows all its score constraints in advance. Expect
score constraints to be added or changed after the first releases.

When a constraint activates (because the negative constraint is broken or the positive constraint
is fulfilled) on a certain planning entity set, it is called a constraint occurrence.

5.1.3. Score constraint weighting

Not all score constraints are equally important. If breaking one constraint is equally bad as breaking
another constraint x times, then those 2 constraints have a different weight (but they are in the
same score level). For example in vehicle routing, you can make 5 broken "avoid crossroads" soft
constraints count as much as 1 broken "avoid highways at rush hour" soft constraint.

The weight of a constraint occurrence is often dynamically based on the planning entities involved.
For example in cloud balance: the weight of the soft constraint occurrence for an active Conput er
is the cost of that Conput er.
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@ Note
Your business will probably tell you that your hard constraints all have the same
weight, because they cannot be broken (so their weight does not matter). This is not
true and it could create a . For example in cloud balance: if a Conput er
has 7 CPU too little for its Pr ocesses, then it must be weighted 7 times as much
as if it had only 1 CPU too little. This way, there is an incentive to move a Pr ocess
with 6 CPU or less away from that Computer.

5.1.4. Score level

Sometimes score constraints are in different level. If breaking one constraint is always worse
than another, no matter how much another constraint is broken, then those 2 constraints are in
a different level.

Most use cases have 2 score levels: hard and soft. When comparing 2 scores, the higher score
level gets compared first. If those differ, the lower score levels are ignored. For example: a score
that breaks 0 hard constraints and 1000000 soft constraints is better than a score that breaks 1
hard constraint and 0 soft constraints.

5.1.5. The score interface

A score is represented by the Scor e interface, which naturally extends Conpar abl e:

public interface Score<...> extends Conparable<...> {

The Scor e implementation to use depends on your use case. Your score might not efficiently fit
in a single doubl e value. Planner has several build-in Score implementations, but you can also
implement a custom Score too. Most use cases will just use the build-in Har dAndSof t Scor e.

The Score implementation (for example Def aul t Har dAndSoft Score) must be the same
throughout a Sol ver runtime. The Scor e implementation is configured in the solver configuration
as a ScoreDefinition:

<scoreDi rector Fact ory>
<scoreDefiniti onType>HARD AND SOFT</scor eDefinitionType>

</ scoreDirectorFactory>

Based on your score constraints and score level requirements, you 'll choose a certain
ScoreDefinition:
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5.2. Choose a Score definition

5.2.1. SimpleScore

The Si npl eScor eDef i ni ti on defines the Scor e as a Si npl eScor e which has a single i nt value,
for example - 123. It has 1 score level.

<scoreDi rect or Fact ory>
<scor eDefi nitionType>S|I MPLE</ scor eDefi ni ti onType>

</ scoreDirectorFact ory>

Variants:

* Si npl eDoubl eScore: Uses a doubl e value instead of an int value. Configure it with
scoreDefinitionType SI MPLE_DOUBLE.

5.2.2. HardAndSoftScore (recommended)

The Har dAndSof t Scor eDef i ni t i on defines the Scor e as a Har dAndSof t Scor e which has a hard
i nt value and a softi nt value, for example - 123har d/ - 456sof t . It has 2 score levels (hard and
soft).

<scoreDi rect or Fact ory>
<scoreDefiniti onType>HARD _AND_SOFT</ scor eDefi ni ti onType>

</ scoreDirectorFact ory>

Variants:

e Har dAndSoft LongScore: Uses |ong values instead of int values. Configure it with
scoreDefinitionType HARD_AND_SOFT_LONG

5.2.3. Implementing a custom Score

The Scor eDefi ni ti on interface defines the score representation.

To implement a custom Score, you 'll also need to implement a custom Scor eDefi niti on.
Extend Abst r act Scor eDef i ni ti on (preferable by copy pasting Har dAndSof t Scor eDefi ni ti on
or Si npl eScor eDef i ni ti on) and start from there.

Then hook you custom Scor eDef i ni ti on in your Sol ver Confi g. xm :

<scoreDi rect or Fact ory>
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efinitionCl ass>org. drool s. pl anner. exanpl es. ny. score. definition. M/Scor eDefinition</
scoreDefinitionC ass>

</ scoreDirectorFactory>

5.3. Calculate the score

5.3.1. Score calculation types

There are several ways to calculate the Scor e of a Sol uti on:

« Simple Java score calculation: implement a single Java method
* Incremental Java score calculation: implement multiple Java methods
« Drools score calculation: implement score rules

Every score calculation type can use any Score definition. For example, simple score calculation
can output a Har dAndSof t Scor e.

All score calculation types are Object Orientated and can reuse existing Java code.
5.3.2. Simple Java score calculation
A simple way to implement your score calculation in Java.
« Advantages:

» Plain old Java: no learning curve

» Opportunity to delegate score calculation to an existing code base or legacy system
» Disadvantages:

» Slower and less scalable

* Because there is no incremental score calculation

Just implement one method of the interface Si npl eScor eCal cul at or :

public interface SinpleScoreCal cul ator<Sol extends Sol ution> {

Scor e cal cul at eScore(Sol sol ution);

For example in n queens:
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public class NQueensSi npl eScor eCal cul ator i npl ements Si npl eScor eCal cul at or <NQueens> {

publi c Si nmpl eScore cal cul at eScor e( NQueens nQueens) {
int n = nQueens.getN();
Li st <Queen> queenLi st = nQueens. get QueenLi st ();

int score = O;
for (int i =0; i <n; i++) {
for (int j =i +1; j <n; j++) {
Queen | eft Queen = queenList.get(i);
Queen right Queen = queenList.get(j);
if (leftQueen.getRow() != null && rightQeen.getRow) != null) {
if (leftQueen.get Row ndex() == right Queen. get Rowl ndex()) {

score--;

}

i f (IeftQueen. get Ascendi ngDi agonal | ndex() == ri ght Queen. get Ascendi ngDi agonz
score--;

}

i f (IeftQueen. get Descendi ngbDi agonal | ndex() == ri ght Queen. get Descendi nghi agc¢
score--;

}

}

return Defaul tSinpleScore.val ued (score);

Configure it in your solver configuration:
<scoreDi rect or Fact ory>
<scoreDefinitionType>...</scoreDefinitionType>
ner . exanpl es. nhqueens. sol ver. scor e. NQueensSi npl eScor eCal cul at or </

si nmpl eScor eCal cul at or Cl ass>
</ scoreDirectorFact ory>

Alternatively, build a Sinpl eScoreCal cul ator instance at runtime and set it with the
programmatic API:

sol ver Fact ory. get Sol ver Confi g() . get Scor eDi r ect or Fact or yConfi g. set Si npl eScor eCal cul at or ( si
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5.3.3. Incremental Java score calculation

A way to implement your score calculation incrementally in Java.

« Advantages:
» Very fast and scalable
¢ Currently the fastest if implemented correctly
» Disadvantages:
» Hard to write

¢ A scalable implementation heavily uses maps, indexes, ... (things the Drools rule engine
can do for you)

* You have to learn, design, write and improve all these performance optimizations yourself
» Hard to read
* Regular score constraint changes can lead to a high maintenance cost

Implement all the methods of the interface | ncr enent al Scor eCal cul at or:

public interface Increnental ScoreCal cul at or <Sol extends Sol ution> {
voi d reset Wor ki ngSol uti on(Sol worki ngSol uti on);
voi d beforeEntityAdded(Cbject entity);
voi d afterEntityAdded(Object entity);
voi d beforeAl | Vari abl esChanged( Cbj ect entity);
voi d afterAl | Vari abl esChanged( Obj ect entity);
voi d bef oreVari abl eChanged(Obj ect entity, String variabl eNane);
voi d afterVari abl eChanged( Obj ect entity, String variabl eNane);
voi d beforeEntityRenmoved(Object entity);
voi d afterEntityRenoved((hject entity);

Score cal cul ateScore();
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For example in n queens:

public class NQueensAdvancedl ncrenent al Scor eCal cul at or ext ends Abstract| ncrenental ScoreCal cul at

private Map<lnteger, List<Queen>> row ndexMap;
private Map<lnteger, List<Queen>> ascendi ngDi agonal | ndexMap;
private Map<Integer, List<Queen>> descendi ngDi agonal | ndexMap;

private int score;

public void reset WrKkingSol uti on( NQueens nQueens) {
int n = nQueens.getN();
row ndexMap = new HashMap<I nt eger, List<Queen>>(n)
ascendi ngbi agonal | ndexMap = new HashMap<I nt eger, List<Queen>>(n * 2);
descendi nghi agonal | ndexMap = new HashMap<I| nt eger, List<Queen>>(n * 2);
for (int i =0; i <n; i++) {
row ndexMap. put (i, new ArrayLi st <Queen>(n));
ascendi ngbi agonal | ndexMap. put (i, new ArrayLi st <Queen>(n));
descendi ngDi agonal | ndexMap. put (i, new ArraylLi st <Queen>(n));
if (i '=0) {
ascendi ngDi agonal | ndexMap. put (n - 1 + i, new ArrayLi st<Queen>(n));
descendi nghi agonal | ndexMap. put ((-i), new ArraylLi st <Queen>(n));

}

score = O;

for (Queen queen : nQueens. get QueenList()) {
i nsert(queen);

public void beforeEntityAdded(hject entity) {
/1 Do not hing

public void afterEntityAdded(Object entity) {
i nsert((Queen) entity);

public void beforeAll Vari abl esChanged(Obj ect entity) {
retract ((Queen) entity);

public void afterAl |l Vari abl esChanged(Chj ect entity) {
i nsert((Queen) entity);

public void beforeVariabl eChanged(Cbj ect entity, String variabl eNanme) {
retract ((Queen) entity);
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public void afterVariabl eChanged(Obj ect entity, String variabl eName) {
i nsert((Queen) entity);

public void beforeEntityRenoved(Object entity) {
retract ((Queen) entity);

public void afterEntityRenoved(Cbject entity) ({
/1 Do nothing

private void insert(Queen queen) {

Row row = queen. get Row() ;

if (row!= null) {
int rowl ndex = queen. get Row ndex();
Li st <Queen> r ow ndexLi st = row ndexMap. get (r ow ndex) ;
score -= row ndexLi st. size();
row ndexLi st. add( queen);
Li st <Queen> ascendi ngDi agonal | ndexLi st = ascendi ngDi agonal | ndexMap. get (queen. get Asc
score -= ascendi ngDi agonal | ndexLi st . si ze();
ascendi ngDi agonal | ndexLi st. add( queen);
Li st <Queen> descendi ngDi agonal | ndexLi st = descendi nghi agonal | ndexMap. get (queen. get [
score -= descendi nghi agonal | ndexLi st . si ze();
descendi ngDi agonal | ndexLi st. add( queen);

private void retract(Qeen queen) {

Row row = queen. get Row() ;

if (row!= null) {
Li st <Queen> rowl ndexLi st = rowl ndexMap. get (queen. get Row ndex());
rowm ndexLi st . renmove( queen);
score += row ndexLi st. size();
Li st <Queen> ascendi ngDi agonal | ndexLi st = ascendi ngDi agonal | ndexMap. get (queen. get Asc
ascendi ngDi agonal | ndexLi st . renove( queen);
score += ascendi ngDi agonal | ndexLi st . si ze();
Li st <Queen> descendi ngDi agonal | ndexLi st = descendi ngDi agonal | ndexMap. get (queen. get [
descendi nghi agonal | ndexLi st . renove( queen);
score += descendi ngDi agonal | ndexLi st . si ze();

public Sinmpl eScore cal cul ateScore() {
return Defaul tSinpleScore.val ued (score);
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Configure it in your solver configuration:

<scoreDi rect or Fact ory>
<scoreDefinitionType>...</scoreDefinitionType>

re. NQueensAdvancedl ncr enment al Scor eCal cul at or </
i ncrement al Scor eCal cul at or Cl ass>
</ scoreDirectorFactory>

5.3.4. Drools score calculation

5.3.4.1. Overview

Implement your score calculation using the Drools rule engine. Every score constraint is written
as one or more score rules.
« Advantages:

» Incremental score calculation for free

« Because most DRL syntax uses forward chaining, it does incremental calculation without
any extra code

» Score constraints are isolated as separate rules
« Easy to add or edit existing score rules
* Flexibility to augment your score constraints by
« Defining them in decision tables
» Excel (XLS) spreadsheet
e Guvnor WebUI
« Translate them into natural language with DSL
< Store and release in the Guvnor repository
» Performance optimizations in future versions for free
« In every release, the Drools rule engine tends to become faster.
» Disadvantages:

» DRL learning curve
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» Usage of DRL

« Polyglot fear can prohibit the use of a new language such as DRL in some organizations
5.3.4.2. Drools score rules configuration
There are sever ways to define where your score rules live.
5.3.4.2.1. A scoreDrl resource on the classpath

This is the easy way: the score rule live in a DRL file which is a resource on the classpath. Just
add your score rules *. dr | file in the solver configuration:

<scoreDi rect or Fact ory>
<scoreDefinitionType>...</scoreDefinitionType>
<scoreDr| >/ org/ drool s/ pl anner/ exanpl es/ nqueens/ sol ver/
nQueensScor eRul es. drl </ scoreDr| >
</ scoreDirectorFact ory>

You can add multiple <scor eDr | > entries if needed, but normally you 'll define all your score rules
in 1 file.

5.3.4.2.2. A RuleBase (possibly defined by Guvnor)

If you prefer to build the Rul eBase yourself or if you're combining Planner with Guvnor, you can
set the Rul eBase on the Sol ver Fact ory before building the Sol ver :

sol ver Fact ory. get Sol ver Confi g(). get Scor eDi r ect or Fact or yConfi g. set Rul eBase(rul eBase) ;

5.3.4.3. Implementing a score rule

Here's an example of a score constraint implemented as a score rule in a DRL file:

rule "nmul tipl eQueensHorizontal "
when
$gl : Queen($id : id, By : y);
$92 : Queen(id > $id, y == $y);
t hen
i nsert Logi cal (new
Unwei ght edConst rai nt Occurrence("nmul ti pl eQueensHori zontal ", $qi1, $q2));
end
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This score rule will fire once for every 2 queens with the same y. The (id > $i d) condition is
needed to assure that for 2 queens A and B, it can only fire for (A, B) and not for (B, A), (A, A) or
(B, B). Let's take a closer look at this score rule on this solution of 4 queens:

A°B C D

g g

Ww N + ©

In this solution the multipleQueensHorizontal score rule will fire for 6 queen couples: (A, B), (A, C),
(A, D), (B, C), (B, D) and (C, D). Because none of the queens are on the same vertical or diagonal
line, this solution will have a score of - 6. An optimal solution of 4 queens has a score of 0.

@ Note
Notice that every score rule will relate to at least 1 planning entity class (directly or
indirectly though a logically inserted fact).

This is normal: it would be a waste of time to write a score rule that only relates to
problem facts, as the consequence will never change during planning, no matter
what the possible solution.

5.3.4.4. Aggregating the score rules into the score

A Scor eHol der instance is asserted into the Wor ki ngMenory as a global called scor eHol der .
Your score rules need to (directly or indirectly) update that instance. Usually you 'll make a single
rule as an aggregation of the other rules to update the score:

gl obal Si npl eScor eHol der scor eHol der;

rule "nultipl eQueensHorizontal "
when
$gl : Queen(S$id : id, $y : vy);
$g2 : Queen(id > $id, y == 3y);
t hen
i nsertLogi cal (new
Unwei ght edConstrai nt Cccurrence("mul ti pl eQueensHori zontal ", $qi1, $q2));
end

/1 multipleQueensVertical is obsolete because it is always O

rule "nmultipl eQueensAscendi ngDi agonal "
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when
$ql : Queen($id : id, $ascendingD : ascendi ngD);
$0g2 : Queen(id > $id, ascendi ngD == $ascendi ngD)
t hen
i nsertLogi cal (new
Unwei ght edConst rai nt Cccurrence( " nmul ti pl eQueensAscendi nghi agonal ", $ql1, $q2));
end

rule "mul tipl eQueensDescendi nghi agonal "
when
$gl1 : Queen($id : id, $descendi ngD : descendi ngD);
$g2 : Queen(id > $id, descendi ngD == $descendi ngD) ;
t hen
i nsertLogi cal (new
Unwei ght edConstrai nt Cccurrence( " mul ti pl eQueensDescendi ngDi agonal ", $ql1, $92));
end

rul e "hardConstrai nt sBroken"
when
$occurrenceCount : Number () from accurnul at e(
$unwei ght edConstrai nt ccurrence : Unwei ght edConstrai nt Occurrence(),
count ($unwei ght edConst r ai nt Cccurrence)
)
t hen
scor eHol der. set Score(- $occurrenceCount.intVal ue());
end

Most use cases will also weigh their constraints differently, by multiplying the count of each score
rule with its weight.

Here's an example from CurriculumCourse, where assigning a Lect ur e to a Roomwhich is missing
2 seats is weighted equally bad as having 1 isolated Lecture ina Curri cul um

/!l RoonCapacity: For each | ecture, the nunber of students that attend the course
must be | ess or equal
/'l than the nunber of seats of all the roonms that host its |ectures
/1 Each student above the capacity counts as 1 point of penalty.
rul e "roomCapacity"
when

t hen
i nsertLogi cal (new IntConstraintQccurrence("roonCapacity"”,
Const rai nt Type. NEGATI VE_SOFT,
($student Si ze - $capacity),
o))

end

[/ Curricul unConpact ness: Lectures belonging to a curriculumshoul d be adj acent
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// to each other (i.e., in consecutive periods).
/1l For a given curriculum we account for a violation every tinme there is one
| ecture not adjacent
/!l to any other lecture within the same day.
/| Each isolated lecture in a curriculumcounts as 2 points of penalty.
rul e "curricul unConpact ness"
when

t hen
i nsertLogi cal (new | ntConstraintGccurrence("curricul unConpact ness”,
Const rai nt Type. NEGATI VE_SOFT,
2y
)

end

I/ Accurul ate soft constraints
rul e "soft Constraint sBroken"

salience -1 // Do the other rules first (optional, for performance)

when

$soft Total : Number () from accunul at e(

I nt Constrai nt Occurrence(constrai nt Type == Constr ai nt Type. NEGATI VE_SOFT,
$wei ght : weight),

sum( $wei ght )
)

t hen
scor eHol der . set Sof t Const rai nt sBroken($soft Total .intVal ue());
end

5.4. Score calculation performance tricks

5.4.1. Overview

The Sol ver will normally spend most of its execution time running the score calculation (which
is called in its deepest loops). Faster score calculation will return the same solution in less time,
which normally means a better solution in equal time.

After solving a problem, the Sol ver will log the average calculation count per second. This
is a good measurement of Score calculation performance, but it depends on the problem
scale. Normally, even for high scale problems, it is higher than 1000, unless you're using
Si nmpl eScor eCal cul at or.

5.4.2. Incremental score calculation (with delta's)

When a Sol uti on changes, incremental score calculation (AKA delta based score calculation),
will calculate the delta with the previous state to find the new Scor e, instead of recalculating the
entire score on every solution evaluation.
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For example, if a single queen A moves from row 1 to 2, it won't bother to check if queen B and
C can attack each other, since neither of them changed.

A D A

D Delta based
score calculation

The rule engine
(with forward chaining)
M%ﬂ only recalculates dirty tuples.

W

Ww N H O
r
w N +H 0O

queens dirty total speedup
4 3 of 6 time/ 2

8 7of 28 time/ 4

16 150f 120 time/ 8

32 310of 496 time/ 16

64 63 of 2016 time /32

Figure 5.1. Incremental score calculation for the 4 queens puzzle

This is a huge performance and scalability gain. Drools score calculation gives you this huge
scalability gain without forcing you to write a complicated incremental score calculation
algorithm. Just let the Drools rule engine do the hard work.

Notice that the speedup is relative to the size of your planning problem (your n), making
incremental score calculation far more scalable.

5.4.3. Caching

Do not call remote services in your score calculation (except if you're bridging
Si npl eScor eCal cul at or to a legacy system). The network latency will kill your score calculation
performance. Cache the results of those remote services if possible

If some parts of a constraint can be calculated once, when the Sol ver starts, and never change
during solving, then turn them into cached problem facts.

5.4.4. Unused constraint

If you know a certain constraint can never be broken, don't bother writing a score constraint for
it. For example in n queens, the score calculation doesn't check if multiple queens occupy the
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same column, because a Queen's col unm never changes and every Sol uti on starts with each
Queen on a different col um.

5.4.5. Build-in hard constraint

Instead of implementing a hard constraint, you can sometimes make it build-in too. For example: If
Cour se A should never be assigned to RoomX, but it uses ValueRange from Solution, the Sol ver
will often try to assign it to RoomX too (only to find out that it breaks a hard constraint). Switch to
ValueRange from planning entity to define that Course A should only be assigned a Roomother
then X.

This tends to give a good performance gain, not just because the score calculation is faster, but
mainly because most optimization algorithms will spend less time evaluating unfeasible solutions.

5.4.6. Other performance tricks

* Verify that your score calculation happens in the correct Number type. If you're making the sum
of i nt values, don't let Drools sum it in a doubl e which takes longer.

 For optimal performance, always use server mode (j ava - ser ver ). We have seen performance
increases of 50% by turning on server mode.

 For optimal performance, use at least java 1.6. We have seen performance increases of 30%
by switching from java 1.5 to 1.6.

» Always remember that premature optimization is the root of all evil. Make sure your design is
flexible enough to allow configuration based tweaking.

5.4.7. Score trap

Be watchful for score traps. A score trap is a state in which several moves need to be done to
resolve or lower the weight of a single constraint occurrence. Some examples of score traps:
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« If you need 2 doctors at each table, but you're only moving 1 doctor at a time, then the solver
has no incentive to move a doctor to a table with no doctors. Punish a table with no doctors
more then a table with only 1 doctor in your score function.

« If you only add the table as a cause of the ConstraintOccurrence and forget the jobType (which
is doctor or politician), then the solver has no incentive to move a doctor to table which is short
of a doctor and a politician.

5.4.8. stepLimit benchmark

Not all score constraints have the same performance cost. Sometimes one score constraint can
kill the score calculation performance outright. Use the benchmarker to do a 1 minute run and
check what happens if you comment out all but a few of the score constraints.

5.5. Reusing the score calculation outside the Solver

Other parts of your application, for example your webUI, might need to calculate the score too.
Do that by reusing the Scor eDi r ect or Fact or y of the Sol ver to build a separate Scor eDi r ect or
for that webUI:

ScoreDirector Factory scoreDirectorFactory = sol ver. get ScoreDirectorFactory();
Scor eDi rector gui ScorebDirector = scoreDirectorFactory. buil dScoreDirector();

Then use it when you need to calculate the Scor e of a Sol uti on:

gui Scor ebDi rect or. set Wr ki ngSol uti on(sol ution);
Score score = gui ScorebDirector.cal cul ateScore();

Currently it's not officially supported to get the specific constraint occurrences, so you can
explain in the GUI what entities are causing which part of the Score. But if you're using the
Dr ool sScor eDi r ect or, it's possible. See the examples.
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Chapter 6. Optimization algorithms

6.1. The size of real world problems

In number of possible solutions for a planning problem can be mind blowing. For example:

* 4 queens has 256 possible solutions (4 ~ 4) and 2 optimal solutions.
« 5 queens has 3125 possible solutions (5 ~ 5) and 1 optimal solution.
* 8 queens has 16777216 possible solutions (8 ~ 8) and 92 optimal solutions.

e 64 queens has more than 107115 possible solutions (64 ~ 64).

Most real-life planning problems have an incredible number of possible solutions and only 1 or
a few optimal solutions.

For comparison: the minimal number of atoms in the known universe (10"80). As a planning
problem gets bigger, the search space tends to blow up really fast. Adding only 1 extra planning
entity or planning value can heavily multiply the running time of some algorithms.

An algorithm that checks every possible solution (even with pruning) can easily run for billions of
years on a single real-life planning problem. What we really want is to find the best solution in
the limited time at our disposal. Planning competitions (such as the International Timetabling
Competition) show that local search variations (tabu search, simulated annealing, ...) usually
perform best for real-world problems given real-world time limitations.

6.2. The secret sauce of Drools Planner

Drools Planner is the first framework to combine optimization algorithms (metaheuristics, ...) with
score calculation by a rule engine such as Drools Expert. This combination turns out to be a very
efficient, because:

« Arule engine such as Drools Expertis great for calculating the score of a solution of a planning
problem. It make it easy and scalable to add additional soft or hard constraints such as "a
teacher shouldn't teach more then 7 hours a day". It does delta based score calculation without
any extra code. However it tends to be not suited to use to actually find new solutions.

« An optimization algorithm is great at finding new improving solutions for a planning problem,
without necessarily brute-forcing every possibility. However it needs to know the score of a
solution and offers no support in calculating that score efficiently.
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6.3. Optimization algorithms overview

Table 6.1. Optimization algorithms overview

Algorithm Scalable? Optimal Needs little Highly Requires
solution? configuration? configurable? initialized
solution?
Exact
algorithms
Brute force | 0/5 5/5 - 5/5 0/5 No
Guaranteed
Branch and | 0/5 5/5 - 4/5 1/5 No
bound Guaranteed
Construction
heuristics
First Fit 5/5 1/5 - Stops 5/5 1/5 No
after
initialization
First Fit 5/5 2/5 - Stops 4/5 2/5 No
Decreasing after
initialization
Best Fit 5/5 2/5 - Stops 4/5 2/5 No
after
initialization
Best Fit 5/5 2/5 - Stops 4/5 2/5 No
Decreasing after
initialization
Cheapest 3/5 2/5 - Stops 5/5 2/5 No
Insertion after
initialization
Metaheuristics
Local search
Hill- 4/5 2/5 - Gets 3/5 3/5 Yes
climbing stuck in local
optima
Tabu 4/5 4/5 3/5 5/5 Yes
search
Simulated | 4/5 4/5 2/5 5/5 Yes
annealing
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Which optimization algorithms should | use?

Algorithm Scalable? Optimal Needs little Highly Requires
solution? configuration? configurable? initialized
solution?
Evolutionary
algorithms
Evolutionary| 4/5 ?/5 ?/5 ?/5 Yes
strategies
Genetic 4/5 ?/5 ?/5 215 Yes
algorithms

If you want to learn more about metaheuristics, read the free book Essentials of
Metaheuristics [http://www.cs.gmu.edu/~sean/book/metaheuristics/] or Clever Algorithms [http://
www.cleveralgorithms.com/].

6.4. Which optimization algorithms should | use?

The best optimization algorithms configuration for your use case depends heavily on your use
case. Nevertheless, this vanilla recipe will get you into the game with a pretty good configuration,
probably much better than what you're used to.

Start with a quick configuration that involves little or no configuration and optimization code:

1. First Fit

Next, implement planning entity difficulty comparison and turn it into:

1. First Fit Decreasing

Next, implement moves and add tabu search behind it:

1. First Fit Decreasing
2. Tabu search (use planning entity tabu)

At this point the free lunch is over. The return on invested time lowers. The result is probably
already more than good enough.

But you can do even better, at a lower return on invested time. Use the Benchmarker and try a
couple of simulated annealing configurations:

1. First Fit Decreasing
2. Simulated annealing (try several starting temperatures)

And combine them with tabu search:

1. First Fit Decreasing
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2. Simulated annealing (relatively long time)
3. Tabu search (relatively short time)

If you have time, continue experimenting even further. Blog about your experiments!

65 Sol ver Phase

A Sol ver can use multiple optimization algorithms in sequence. Each optimization algorithm is
represented by a Sol ver Phase. There is never more than 1 Sol ver Phase solving at the same
time.

Here's a configuration that runs 3 phases in sequence:

<sol ver >

<constructi onHeuristic>
<I-- First phase: First Fit decreasing -->
</ constructionHeuristic>
<l ocal Sear ch>
<!-- Second phase: Sinulated annealing -->
</l ocal Sear ch>
<l ocal Sear ch>
<l-- Third phase: Tabu search -->
</l ocal Sear ch>
</ sol ver >

The solver phases are run in the order defined by solver configuration. When the first phase
terminates, the second phase starts, and so on. When the last phase terminates, the Sol ver
terminates.

Some phases (especially construction heuristics) will terminate automatically. Other phases
(especially metaheuristics) will only terminate if the phase is configured to terminate:

<sol ver >

<term nation><!-- Solver termnation -->
<maxi nunSeconds Spend>90</ maxi nunSeconds Spend>
</term nation>
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<l ocal Sear ch>
<term nation><!-- Phase term nation -->
<maxi munmSecondsSpend>60</ naxi nunSecondsSpend><! -- G ve the next phase a
chance to run too, before the Solver term nates -->
</term nation>

</ | ocal Search>
<l ocal Sear ch>

</ | ocal Search>
</ sol ver >

If the Sol ver terminates (before the last phase terminates itself), the current phase is terminated
and all subsequent phases won't run.

6.6. Termination

Not all phases terminate automatically and sometimes you don't want to wait that long anyway.
A Sol ver can be terminated synchronously by up-front configuration or asynchronously from
another thread.

Especially metaheuristics phases will need to be told when to stop solving. This can be because
of a number of reasons: the time is up, the perfect score has been reached, ... The only thing you
can't depend on is on finding the optimal solution (unless you know the optimal score), because a
metaheuristics algorithm generally doesn't know it when it finds the optimal solution. For real-life
problems this doesn't turn out to be much of a problem, because finding the optimal solution could
take billions of years, so you 'll want to terminate sooner anyway. The only thing that matters is
finding the best solution in the available time.

For synchronous termination, configure a Ter mi nati on on a Sol ver or a Sol ver Phase when
it needs to stop. You can implement your own Ter ni nati on, but the build-in implementations
should suffice for most needs. Every Terni nati on can calculate a time gradient (needed for
some optimization algorithms), which is a ratio between the time already spend solving and the
estimated entire solving time of the Sol ver or Sol ver Phase.

6.6.1. TimeMillisSpendTermination

Terminates when an amount of time has been reached:

<term nati on>
<maxi munli meM | | i sSpend>500</ maxi munili mreM | | i sSpend>
</term nation>

<t erm nati on>
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<maxi nunSecondsSpend>10</ maxi nunSecondsSpend>
</term nati on>

<term nati on>
<maxi munM nut esSpend>5</ maxi nunM nut esSpend>
</termnation>

<term nati on>
<maxi munmHour sSpend>1</ maxi nunHour sSpend>
</term nation>

6.6.2. ScoreAttainedTermination

Terminates when a certain score has been reached. You can use this Ter ni nati on if you know
the perfect score, for example for 4 queens:

<term nati on>
<scor eAtt ai ned>0</ scoreAttai ned>
</termnation>

For a planning problem with hard and soft constraints, it could look like this:

<term nati on>
<scor eAt t ai ned>0har d/ - 5000so0f t </ scor eAtt ai ned>
</term nation>
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StepCountTermination

You can use this Ter i nat i on to terminate once it reaches a feasible solution.

6.6.3. StepCountTermination

Terminates when an amount of steps has been reached:

<term nation>
<maxi munst epCount >100</ maxi nunst epCount >
</term nati on>

This Ter mi nat i on can only be used for a Sol ver Phase, not for the Sol ver itself.

6.6.4. UnimprovedStepCountTermination

Terminates when the best score hasn't improved in a number of steps:

<term nati on>
<maxi mumni npr ovedSt epCount >100</ maxi munmJni npr ovedSt epCount >
</term nation>

If it hasn't improved recently, it's probably not going to improve soon anyway and it's not worth the
effort to continue. We have observed that once a new best solution is found (even after a long time
of no improvement on the best solution), the next few step tend to improve the best solution too.

This Ter mi nat i on can only be used for a Sol ver Phase, not for the Sol ver itself.

6.6.5. Combining Terminations

Terminations can be combined, for example: terminate after 100 steps or if a score of 0 has been
reached:

<term nati on>
<t erm nati onConposi tionStyl e>OR</term nati onConpositionStyl e>
<maxi munst epCount >100</ maxi nunst epCount >
<scor eAtt ai ned>0</ scor eAtt ai ned>

</term nati on>

Alternatively you can use AND, for example: terminate after reaching a feasible score of at least
-100 and no improvements in 5 steps:

<term nati on>
<t erm nati onConposi tionStyl e>AND</t er mi nati onConposi tionStyl e>
<maxi munni npr ovedSt epCount >5</ maxi nmunJni npr ovedSt epCount >
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<scor eAtt ai ned>- 100</ scor eAt t ai ned>
</term nation>

This example ensures it doesn't just terminate after finding a feasible solution, but also completes
any obvious improvements on that solution before terminating.

6.6.6. Asynchronous termination from another thread

Sometimes you 'll want to terminate a Solver early from another thread, for example because a
user action or a server restart. That cannot be configured by a Ter mi nat i on as it's impossible to
predict when and if it will occur. Therefor the Sol ver interface has these 2 thread-safe methods:
public interface Solver {

Il

bool ean term nateEarly();
bool ean i sTerm nateEarly();

If you call the t er mi nat eEar | y() method from another thread, the Sol ver will terminate at its
earliest convenience and the sol ve() method will return in the original Sol ver thread.

6.7. SolverEventListener

Each time a new best solution is found, the Sol ver fires a Best Sol ut i onChangedEvent .

To listen to such events, add a Sol ver Event Li st ener to the Sol ver:

public interface Solver {
I/

voi d addEvent Li st ener ( Sol ver Event Li st ener eventLi stener);
voi d renoveEvent Li st ener ( Sol ver Event Li st ener eventLi stener);

6.8. Custom SolverPhase

Between phases or before the first phase, you might want to execute a custom action on the
Sol uti on to get a better score. Yet you'll still want to reuse the score calculation. For example, to
implement a custom construction heuristic without implementing an entire Sol ver Phase.
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Custom SolverPhase

a

Note

Most of the time, a custom construction heuristic is not worth the hassle. The
supported constructions heuristics are configurable (so you can tweak them with
the Benchmar ker), Ter mi nati on aware and support partially initialized solutions
too.

Implement the Cust onSol ver PhaseConmand interface:

public i

voi d

nt erface CustonSol ver PhaseConmand {

changeWor ki ngSol uti on( ScoreDirector scoreDirector);

For example:

public c

publ

| ass Exami nationSol utionlnitializer inplenments Custonfol ver PhaseConmand {

i c void changeWr ki ngSol uti on(ScorebDi rector scoreDirector) {
Exami nati on exami nation = (Exam nation) scoreDirector.getWrkingSolution();
for (Exam exam : exam nation. get ExanList()) {

Score unschedul edScore = scorebDirector. cal cul ateScore();

for (Period period : exani nation.getPeriodList()) {
scoreDirector. bef oreVari abl eChanged(exam "period");
exam set Peri od( peri od)
scoreDirector. afterVari abl eChanged(exam "period");
Score score = scoreDirector.cal cul ateScore();

Warning

Any change on the planning entities in a Cust onBol ver PhaseConmmand must be
notified to the Scor eDi rect or.
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Warning

Do not change any of the planning facts in a Cust onSol ver PhaseCommand. That
will corrupt the Sol ver because any previous score or solution was for a different
problem. If you want to do that, see repeated planning and real-time planning
instead.

And configure it like this:

<sol ver >
<cust onBSol ver Phase>

i alizer.Exam nationSolutionlnitializer</
cust ontSol ver PhaseComandd ass>
</ cust onBSol ver Phase>
<l-- O her phases -->
</ sol ver >

It's possible to configure multiple cust onol ver PhaseConmandd ass instances, which will be run
in sequence.

@ Note
If the changes of a Cust onSol ver PhaseConmand don't result in a better score,
the best solution won't be changed (so effectively nothing will have changed for
the next Sol ver Phase or Cust onSol ver PhaseCommand). TODO: we might want to
change this behaviour?

@ Note
If the Solver or SolverPhase wants to terminate while a
Cust onBol ver PhaseConmmand is still running, it will wait to terminate until the
Cust onSol ver PhaseConmand is done.
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Chapter 7. Exact methods

7.1. Overview

Exact methods will always find the global optimum and recognize it too. That being said, they don't

scale (not even beyond toy problems) and are therefor mostly useless.
7.2. Brute Force

7.2.1. Algorithm description

The brute force algorithm creates and evaluates every possible solution.
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Notice that it creates a search tree that explodes as the problem size increases. Brute force is

mostly unusable for a real-world problem due to time limitations.

7.2.2. Configuration

Using the brute force algorithm is easy:
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<sol ver >
<br ut eFor ce>

</ br ut eFor ce>
</ sol ver >

7.3. Branch and bound

7.3.1. Algorithm description

Branch and bound is an improvement over brute force, as it prunes away subsets of solutions
which cannot have a better solution than the best solution already found at that point.
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Notice that it (like brute force) creates a search tree that explodes (but less than brute force) as
the problem size increases. Branch and bound is mostly unusable for a real-world problem
due to time limitations.
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Configuration

It can determine a lower bound of problem. A lower bound is a score which is proven to be higher
than the optimal score of a problem. So it gives an indication of the quality of any best solution
found for that problem: the closer to best score is to the lower bound, the better.

7.3.2. Configuration

Branch and bound is not yet implemented in Drools Planner. Patches welcome.

93



94



Chapter 8.

Chapter 8. Construction heuristics

8.1. Overview

A construction heuristic builds a pretty good initial solution in a finite length of time. Its solution

isn't always feasible, but it finds it fast and metaheuristics can finish the job.

Construction heuristics terminate automatically, so there's usually no need to configure a
Ter mi nat i on on the construction heuristic phase specifically.

8.2. First Fit

8.2.1. Algorithm description

The First Fit algorithm cycles through all the planning entity (in default order), initializing 1 planning
entity at a time. It assigns the planning entity to the best available planning value, taking the
already initialized planning entities into account. It terminates when all planning entities have been
initialized. It never changes a planning entity after it has been assigned.
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Notice that it starts with putting Queen A into row 0 (and never moving it later), which makes it
impossible reach the optimal solution. Suffixing this construction heuristic with metaheurstics can
remedy that.

8.2.2. Configuration

Configure this Sol ver Phase:

<constructionHeuristic>
<constructionHeuri sti cType>Fl RST_FI T</ constructi onHeuri sti cType>
<!-- Speedup that can be applied to npbst, but not all use cases: -->
<l--

constructi onHeuri sticPi ckEarlyType> -->
</constructionHeuristic>

8.3. First Fit Decreasing

8.3.1. Algorithm description

Like Fi rst Fit, but assigns the more difficult planning entities first, because they are less likely
to fit in the leftovers. So it sorts the planning entities on decreasing difficulty.

Requires the model to support planning entity difficulty comparison.
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Configuration

Order:
decreasing
difficulty

Greedy algorithm
first fit decreasing
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8.3.2. Configuration

Configure this Sol ver Phase:

n: <= n*n iterations
4:4*4 =16

8:8*8 =64

64: 64"64 = 4096

E]
L]

<constructionHeuristic>

<constructionHeuristi cType>FI RST_FI T_DECREASI NG</ constructi onHeuri sti cType>
<l-- Speedup that can be applied to nost, but not all use cases: --

constructionHeuristicPi ckEarlyType> -->
</constructionHeuristic>

>

SIEE
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8.4. Best Fit

8.4.1. Algorithm description

Like First Fit, but uses the weaker planning values first, because the strong planning values
are more likely to be able to accommodate later planning entities. So it sorts the planning values
on increasing strength.

Requires the model to support planning value strength comparison.

8.4.2. Configuration

Configure this Sol ver Phase:

<constructionHeuristic>
<constructionHeuri sticType>BEST_FI T</ constructi onHeuri sti cType>
<l -- Speedup that can be applied to nost, but not all use cases: -->
<I--

constructionHeuristicPi ckEarl yType> -->
</ constructionHeuristic>

8.5. Best Fit Decreasing

8.5.1. Algorithm description

Combines First Fit Decreasi ngandBest Fit. So itsorts the planning entities on decreasing
difficulty and the planning values on increasing strength.

Requires the model to support planning entity difficulty comparison and planning value strength
comparison.




Configuration

8.5.2. Configuration

Configure this Sol ver Phase:

<constructionHeuristic>

<constructionHeuri sticType>BEST _FI T_DECREASI NG</ constructi onHeuri sti cType>

<I-- Speedup that can be applied to nost, but not all use cases: -->

<l --

constructionHeuri sticPi ckEarl yType> -->
</ constructionHeuristic>

8.6. Cheapest insertion
8.6.1. Algorithm description
TODO

8.6.2. Configuration

TODO Not implemented yet.
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Chapter 9. Local search

9.1. Overview

Local search starts from an initial solution and evolves that single solution into a mostly better
and better solution. It uses a single search path of solutions, not a search tree. At each solution
in this path it evaluates a number of moves on the solution and applies the most suitable move
to take the step to the next solution. It does that for high number of iterations until its terminated
(usually because its time has run out).

Local search acts a lot like a human planner: it uses a single search path and moves facts around
to find a good feasible solution. Therefore it's pretty natural to implement.

Local search needs to start from an initialized solution, therefor it's recommended to configure
a construction heuristic solver phase before it.

9.2. Hill climbing (simple local search)

9.2.1. Algorithm description

Hill climbing can easily get stuck in a local optima, but improvements (such as tabu search and
simulated annealing) address this problem.

9.3. Tabu search

9.3.1. Algorithm description

Like hill climbing, but maintains a tabu list to avoid getting stuck in local optima. See Tabu Search
acceptor below.

9.4. Simulated annealing

9.4.1. Algorithm description
See Simulated Annealing acceptor below.
9.5. About neighborhoods, moves and steps

95.1. A move

A move is the change from a solution A to a solution B. For example, below you can see a single
move on the starting solution of 4 queens that moves a single queen to another row:
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Figure 9.1. A single move (4 queens example)

A move can have a small or large impact. In the above example, the move of queen CO to C2
is a small move. Some moves are the same move type. These are some possibilities for move
types in n queens:

* Move a single queen to another row. This is a small move. For example, move queen CO to C2.

Move all queens a number of rows down or up. This a big move.

* Move a single queen to another column. This is a small move. For example, move queen C2
to AO (placing it on top of queen AQ).

Add a queen to the board at a certain row and column.
* Remove a queen from the board.

Because we have decided that all queens will be on the board at all times and each queen has
an appointed column (for performance reasons), only the first 2 move types are usable in our
example. Furthermore, we 're only using the first move type in the example because we think it
gives the best performance, but you are welcome to prove us wrong.

Each of your move types will be an implementation of the Move interface:

public interface Mve {
bool ean i sMbveDoabl e( ScoreDi rector scoreDirector);
Move creat eUndoMove(ScoreDirector scoreDirector);

voi d doMove( ScoreDirector scoreDirector);

Let's take a look at the Move implementation for 4 queens which moves a queen to a different row:

public class RowChangeMyve inplenments Mve {
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A move

private Queen queen;
private Row t oRow,

publ i ¢ RowChangeMove( Queen queen, Row toRow) {
thi s. queen = queen;
this.toRow = t oRow,

/1l ... see bel ow

An instance of RowChangeMve moves a queen from its current row to a different row.

Planner calls the doMove( Scor eDi r ect or) method to do a move. The Move implementation must
notify the Scor eDi r ect or of any changes it make to the planning entities's variables:

public void doMove(ScoreDirector scorebDirector) {
scoreDi rector. bef oreVari abl eChanged(queen, "row'); // before changes
are made
queen. set Row(t oRow) ;
scoreDirector. afterVari abl eChanged(queen, "row'); // after changes are nade

}

You need to «call the methods scoreDirector. beforeVariabl eChanged(Object,

String) and scoreDirector. afterVari abl eChanged( bj ect, String) before
and after modifying the entity. Alternatively, you can also
call the methods scoreDirector. beforeAl | Vari abl esChanged( Qbj ect) and

scoreDirector. after Al'l Vari abl esChanged( Obj ect) .

@ Note
You can alter multiple entities in a single move and effectively create a big move
(also known as a coarse-grained move). A move cannot change any of the problem

facts.

Planner automatically filters out non doable moves by calling the i sDoabl e( Scor eDi r ect or)
method on a move. A non doable move is:

* A move that changes nothing on the current solution. For example, moving queen BO to row 0
is not doable, because it is already there.

« A move that is impossible to do on the current solution. For example, moving queen BO to row
10 is not doable because it would move it outside the board limits.

103



Chapter 9. Local search

In the n queens example, a move which moves the queen from its current row to the same row
isn't doable:

publ i c bool ean i sMbveDoabl e( ScoreDi rector scoreDirector) ({
return !QojectUils. equal s(queen. getRow(), toRow);

Because we won't generate a move which can move a queen outside the board limits, we don't
need to check it. A move that is currently not doable could become doable on the working
Sol ut i on of a later step.

Each move has an undo move: a move (normally of the same type) which does the exact opposite.
In the example above the undo move of CO to C2 would be the move C2 to CO. An undo move is
created from a Move, before the Move has been done on the current solution.

public Move createUndoMove(ScoreDirector scoreDirector) {
return new RowChangeMove(queen, queen.getRow());

Notice that if CO would have already been moved to C2, the undo move would create the move
C2 to C2, instead of the move C2 to CO.

The local search solver phase might do and undo the same Move more than once, even on different
(successive) solutions.

A Move mustimplement the get Pl anni ngEnti ti es() and get Pl anni ngVal ues() methods. They
are used by entity tabu and value tabu respectively. When they are called, the Move has already
been done.

public List<? extends Object> getPlanningEntities() {
return Col | ections. singl etonList(queen);

public Collection<? extends Object> getPl anni ngVal ues() {
return Col | ections. singletonList(toRow);

If your Move changes multiple planning entities, return all them in get Pl anni ngEnti ti es() and
return all their values (to which they are changing) in get Pl anni ngVval ues().

public Collection<? extends Object> getPlanni ngEntities() {
return Arrays. asLi st (Il eftC oudProcess, rightC oudProcess);
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public Coll ection<? extends Object> getPl anni ngVal ues() {
return Arrays. asList (I eftd oudProcess. get Conputer (), rightd oudProcess. get Conputer());

A Move must implement the equal s() and hashCode() methods. 2 moves which make the same
change on a solution, should be equal.

publi ¢ bool ean equal s(Obj ect 0) {

if (this == 0) {
return true;

} else if (o instanceof RowChangeMve) {
RowChangeMove ot her = (RowChangeMove) o;
return new Equal sBuil der ()

. append(queen, other.queen)
. append(t oRow, ot her.toRow)
. i sEqual s();

} else {

return fal se;

public int hashCode() {
return new HashCodeBui | der ()
. append( queen)
. append(t oRow)
.t oHashCode();

In the above example, the Queen class uses the default Obj ect equal s() and hashCode()
implementations. Notice that it checks if the other move is an instance of the same move type.
This i nst anceof check is important because a move will be compared to a move with another
move type if you're using more then 1 move type.

It's also recommended to implement the t oSt ri ng() method as it allows you to read Planner's
logging more easily:

public String toString() {
return queen + " =>" + toRow,

Now that we can make a single move, let's take a look at generating moves.
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9.5.2. Move generation

At each solution, local search will try all possible moves and pick the best move to change to the
next solution. It's up to you to generate those moves. Let's take a look at all the possible moves
on the starting solution of 4 queens:

3
3| 313
yy|yy

O Doable move

[ Mot deable move
[no change)

Ww N H O

Figure 9.2. Possible moves at step 0 (4 queens example)

As you can see, not all the moves are doable. At the starting solution we have 12 doable moves
(n * (n - 1)), one of which will be move which changes the starting solution into the next
solution. Notice that the number of possible solutions is 256 (n ~ n), much more that the amount
of doable moves. Don't create a move to every possible solution. Instead use moves which can
be sequentially combined to reach every possible solution.

It's highly recommended that you verify all solutions are connected by your move set. This
means that by combining a finite number of moves you can reach any solution from any solution.
Otherwise you're already excluding solutions at the start. Especially if you're using only big moves,
you should check it. Just because big moves outperform small moves in a short test run, it doesn't
mean that they will outperform them in a long test run.

You can mix different move types. Usually you're better off preferring small (fine-grained) moves
over big (course-grained) moves because the score delta calculation will pay off more. However,
as the traveling tournament example proves, if you can remove a hard constraint by using a certain
set of big moves, you can win performance and scalability. Try it yourself: run both the simple
(small moves) and the smart (big moves) version of the traveling tournament example. The smart
version evaluates a lot less unfeasible solutions, which enables it to outperform and outscale the
simple version.

Move generation currently happens with a MoveFact ory:

public cl ass RowChangeMveFactory extends CachedMoveli st MoveFactory {

public List<Mve> createMveList(Solution solution) {

106



Generic MoveFactory

NQueens nQueens = (NQueens) sol ution;
Li st <Move> noveli st = new ArrayLi st <Move>();
for (Queen queen : nQueens. get QueenList()) {
for (Row toRow : nQueens. get RowList()) {
noveli st . add( new RowChangeMove( queen, toRow));

}

return noveli st;

Future versions might also support move generation by DRL.

9.5.3. Generic MoveFactory

To get started quickly, Planner comes with a few build-in MoveFact or y implementations:

* GenericChangeMoveFactory: A GenericChangeMve changes 1 planning variable of 1
planning entity to another planning value. For example: Given course C1 in room R1 and period
P1, change its room to room R2.

* Generi cSwapMveFact ory: A Gener i cSwapMve swaps all the planning variables of 2 planning
entities. For example: Given course C1 in room R1 and period P1 and course C2 in room R2
and period P2, put course C1 in room R2 and period P2 and put course C2 in room R1 and
period P1.

e GenericSwapPil |l ar MoveFactory: A GenericSwapPillarMve swaps all the planning
variables of 2 pillars. A pillar is a set of planning entities that have the same planning values for
all those planning variables. For example: Given course C10, course 11 and course 12 in room
R1 and period P1 and course C20 in room R2 and period P2, put course C10, course 11 and
course 12 in room R2 and period P2 and put course C20 in room R1 and period P1.

To use one or multiple build-in MoveFact or y implementations, configure it as a Sel ect or :

<l ocal Sear ch>
<sel ect or >
<sel ect or >

<noveFact oryCl ass>or g. drool s. pl anner. cor e. nove. generi c. Gener i cChangeMyveFact or y</
noveFact oryCl ass>
</ sel ect or >
<sel ector>

<noveFact or yCl ass>or g. drool s. pl anner . cor e. nove. generi c. Generi cSwapMveFact ory</
noveFact oryCl ass>
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</ sel ect or >
</ sel ect or >

</| ocal Search>

They are slightly slower than a custom implementation, but equally scalable.

9.5.4. A step

A step is the winning move. The local search solver tries every move on the current solution and

picks the best accepted move as the step:

A B C D
g g

Score -6

Ww N H O

i

Score -4 Score -4 Score -3

Figure 9.3. Decide the next step at step 0 (4 queens example)

Score -4

Because the move B0 to B3 has the highest score (- 3), it is picked as the next step. Notice that
CO0 to C3 (not shown) could also have been picked because it also has the score - 3. If multiple

moves have the same highest score, one is picked randomly, in this case BO to B3.

The step is made and from that new solution, the local search solver tries all the possible moves
again, to decide the next step after that. It continually does this in a loop, and we get something

like this:
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Figure 9.4. All steps (4 queens example)

Notice that the local search solver doesn't use a search tree, but a search path. The search path
is highlighted by the green arrows. At each step it tries all possible moves, but unless it's the
step, it doesn't investigate that solution further. This is one of the reasons why local search is
very scalable.
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As you can see, the local search solver solves the 4 queens problem by starting with the starting
solution and make the following steps sequentially:

1. BOto B3
2. DO to B2
3. A0Oto B1
If we turn on DEBUG logging for the category or g. dr ool s. pl anner, then those steps are shown

into the log:

INFO Solving started: time spend (0), score (-6), new best score (-6), random

seed (0).

DEBUG Step index (0), tine spend (20), score (-3), new best score (-3),
accepted nove size (12) for picked step (col 1l@owd => row3).

DEBUG Step index (1), time spend (31), score (-1), new best score (-1),

accepted nove size (12) for picked step (col 0@ow0 => rowl).

DEBUG Step index (2), tinme spend (40), score (0), new best score (0), accepted
nmove size (12) for picked step (col3@owd => row2).

I NFO Phase | ocal Search ended: step total (3), tinme spend (41), best score (0).
INFO Solving ended: tine spend (41), best score (0), average cal cul ate count
per second (1780).

Notice that the logging uses the t oSt ri ng() method of our Move implementation: col 1@ ow0 =>
rows.

The local search solver solves the 4 queens problem in 3 steps, by evaluating only 37
possible solutions (3 steps with 12 moves each + 1 starting solution), which is only fraction
of all 256 possible solutions. It solves 16 queens in 31 steps, by evaluating only 7441 out of
18446744073709551616 possible solutions. Note: with construction heuristics it's even a lot more
efficient.

9.5.5. Getting stuck in local optima

A hill climber always takes improving moves. This may seem like a good thing, but it's not. It
suffers from a number of problems:

« It can get stuck in a local optimum. For example if it reaches a solution X with a score -1 and
there is no improving move, it is forced to take a next step that leads to a solution Y with score
-2, after that however, it's very real that it will pick the step back to solution X with score -1. It
will then start looping between solution X and Y.

« It can start walking in its own footsteps, picking the same next step at every step.
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Of course Drools Planner implements better local searches, such as tabu search and simulated
annealing which can avoid these problems. We recommend to never use a hill climber, unless
you're absolutely sure there are no local optima in your planning problem.

9.6. Deciding the next step

The local search solver decides the next step with the aid of 3 configurable components:

» A selector which selects (or generates) the possible moves of the current solution.
« An acceptor which filters out unacceptable moves. It can also weigh a move it accepts.

« A forager which gathers all accepted moves and picks the next step from them.

A B C D
g g R

Score -6

Ww N H O

g

Score -4 Score -4 Score -3 Score -4

Figure 9.5. Decide the next step at step 0 (4 queens example)

In the above example the selector generated the moves shown with the blue lines, the acceptor
accepted all of them and the forager picked the move BO to B3.

If we turn on TRACE logging for the category or g. dr ool s. pl anner, then the decision making is
shown in the log:

INFO Solver started: tine spend (0), score (-6), new best score (-6), random

seed (0).
TRACE I gnoring not doable nove (col 0@ow0 => row0).
TRACE Move score (-4), accepted (true) for nove (col0@ow0 => rowl).
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TRACE
TRACE

TRACE
TRACE
TRACE
DEBUG

Move score (-4),
Move score (-4),

Move score (-3),

Move score (-3),

Move score (-4),

Step index (0),

time spend

(6),

accepted (true) for
accepted (true) for

accepted (true) for

accepted (true) for

accepted (true) for
score (-3),

nove
nove

nove

nove

nove

(col0@ow0 => row?).
(col0@ow0 => row3d).

(col l@ow0 => row3d).

(col2@ow0 => row3d).

(col 3@ow0 => row3d).
new best score (-3),

accepted nove size (12) for picked step (col 1l@owd => row3).

Because the last solution can degrade (especially in tabu search and simulated annealing), the
Sol ver remembers the best solution it has encountered through the entire search path. Each
time the current solution is better than the last best solution, the current solution is cloned and
referenced as the new best solution.

9.6.1. Selector

A selector is currently based on a MoveFact ory.

<sel ect or >

<noveFact oryCl ass>or g. dr ool s. pl anner . exanpl es. nqueens. sol ver. NQueensMoveFact or y</
noveFact oryCl ass>
</ sel ect or >

You're not obligated to generate the same set of moves at each step. It's generally a good idea
to use several selectors, mixing fine grained moves and course grained moves:

<sel ect or >

<sel ect or >

. hurserostering. sol ver. nove. f act ory. Enpl oyeeChangeMveFact or y</
noveFact oryCl ass>

</ sel ect or >

<sel ect or >

ering. sol ver. nove. factory. Shi ft Assi gnnent SwapMoveFact or y</
noveFact oryCl ass>
</ sel ect or >

<sel ect or >

ctory. ShiftAssignment Pil | arPart SnapMoveFact ory</
noveFact or yCl ass>
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</ sel ect or >
</ sel ect or >

9.6.2. Acceptor

An acceptor is used (together with a forager) to active tabu search, simulated annealing, great
deluge, ... For each move it checks whether it is accepted or not.

You can implement your own Accept or, although the build-in acceptors should suffice for most
needs. You can also combine multiple acceptors.

9.6.2.1. Tabu search acceptor

When tabu search takes steps it creates tabu's. It does not accept a move as the next step if that
move breaks tabu. Drools Planner implements several tabu types:

« Solution tabu makes recently visited solutions tabu. It does not accept a move that leads to one
of those solutions. If you can spare the memory, don't be cheap on the tabu size.

<accept or>
<sol uti onTabuSi ze>1000</ sol uti onTabuSi ze>
</ accept or >

« Move tabu makes recent steps tabu. It does not accept a move equal to one of those steps.

<accept or>
<npbveTabuSi ze>7</ noveTabuSi ze>
</ accept or >

« Undo move tabu makes the undo move of recent steps tabu.

<accept or>
<undoMoveTabuSi ze>7</ undoMoveTabuSi ze>
</ accept or >

« Planning entity tabu makes the planning entities of recent steps tabu. For example, for N queens
it makes the recently moved queens tabu.

<accept or>
<pl anni ngEnt i t yTabuSi ze>7</ pl anni ngEnt i t yTabuSi ze>

113



Chapter 9. Local search

</ accept or >

« Planning value tabu makes the planning values of recent steps tabu. For example, for N queens
it makes the recently moved to rows tabu.

<accept or >
<pl anni ngVal ueTabuSi ze>7</ pl anni ngVal ueTabuSi ze>
</ accept or >

You can even combine tabu types:

<accept or >
<sol uti onTabuSi ze>1000</ sol uti onTabuSi ze>
<nmoveTabuSi ze>7</ noveTabuSi ze>

</ accept or >

If you pick a too small tabu size, your solver can still get stuck in a local optimum. On the other
hand, with the exception of solution tabu, if you pick a too large tabu size, your solver can get
stuck by bouncing of the walls. Use the benchmarker to fine tweak your configuration. Experiments
teach us that it is generally best to use a prime number for the move tabu, undo move tabu, entity
tabu or value tabu size.

A tabu search acceptor should be combined with a high subset selection, such as 1000.

9.6.2.2. Simulated annealing acceptor

Simulated annealing does not always pick the move with the highest score, neither does it evaluate
many moves per step. At least at first. Instead, it gives non improving moves also a chance to be
picked, depending on its score and the time gradient of the Ter ni nat i on. In the end, it gradually
turns into a hill climber, only accepting improving moves.

In many use cases, simulated annealing surpasses tabu search. By changing a few lines of
configuration, you can easily switch from tabu search to simulated annealing and back.

Start with a si nul at edAnneal i ngSt arti ngTenper at ur e set to the maximum score delta a single
move can cause. Use the Benchmar ker to tweak the value.

<accept or >
<si mul at edAnneal i ngSt arti ngTenper at ur e>2har d/ 100sof t </
si mul at edAnneal i ngSt arti ngTenper at ur e>
</ accept or >
<f or ager >
<m ni mal Accept edSel ecti on>4</ i ni mal Accept edSel ecti on>
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</ forager>

A simulated annealing acceptor should be combined with a low subset selection. The classic
algorithm uses a mi ni mal Accept edSel ect i on of 1, but usually 4 performs better.

You can even combine it with a tabu acceptor at the same time. Use a lower tabu size than in
a pure tabu search configuration.

<accept or >
<si nul at edAnneal i ngSt arti ngTenper at ur e>10. 0</
si mul at edAnneal i ngSt arti ngTenper at ur e>
<pl anni ngEnti t yTabuSi ze>5</ pl anni ngEnt i t yTabuSi ze>
</ accept or >
<f or ager >
<m ni mal Accept edSel ecti on>4</ m ni mal Accept edSel ecti on>

</ forager>

This differs from phasing, another powerful technique, where first simulated annealing is used,
followed by tabu search.

9.6.3. Forager

A forager gathers all accepted moves and picks the move which is the next step. Normally it picks
the accepted move with the highest score. If several accepted moves have the highest score, one
is picked randomly.

You can implement your own For ager , although the build-in forager should suffice for most needs.
9.6.3.1. Subset selection

When there are many possible moves, it becomes inefficient to evaluate all of them at every step.
To evaluate only a random subset of all the moves, use:

« An mi ni mal Accept edSel ecti on integer, which specifies how many accepted moves should
have be evaluated during each step. By default it is positive infinity, so all accepted moves are
evaluated at every step.

<f or ager >
<m ni mal Accept edSel ect i on>1000</ m ni mal Accept edSel ecti on>
</ forager>

Unlike the n queens problem, real world problems require the use of subset selection. Start from
an mi ni mal Accept edSel ect i on that takes a step in less then 2 seconds. Turn on INFO logging
to see the step times. Use the Benchmar ker to tweak the value.
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9.6.3.2. Pick early type

A forager can pick a move early during a step, ignoring subsequent selected moves. There are
3 pick early types:

* NEVER: A move is never picked early: all accepted moves are evaluated that the selection allows.
This is the default.

<f or ager >
<pi ckEar | yType>NEVER</ pi ckEar | yType>
</ f or ager >

e FI RST_BEST SCORE_| MPROVI NG Pick the first accepted move that improves the best score. If
none improve the best score, it behaves exactly like the pickEarlyType NEVER.

<f or ager >
<pi ckEar | yType>FI RST_BEST_SCORE | MPROVI NG</ pi ckEar | yType>
</ forager>

e FIRST_LAST_STEP_SCORE | MPROVI NG, Pick the first accepted move that improves the last step
score. If none improve the last step score, it behaves exactly like the pickEarlyType NEVER.

<f or ager >
<pi ckEar | yType>FI RST_LAST_STEP_SCORE_| MPROVI NG</ pi ckEar | yType>
</ forager>

9.7. Using a custom Selector, Acceptor, Forager or
Termination

You can plug in a custom Sel ect or, Acceptor, Forager or Termi nati on by extending the
abstract class and also the * Confi g class.

For example, to wuse a custom Selector, extend the AbstractSelector
class (see All MovesOf OneExanBel ector), extend the SelectorConfig class (see
Al | MovesOf OneExansel ect or Conf i g) and configure it in the solver configuration:

s. pl anner . exanpl es. exani nati on. sol ver. sel ect or. Al | MovesOf OneExantel ect or Confi g"/
>
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If you build a better implementation that's not domain specific, consider contributing it back as a
pull request on github and we'll take it along in future refactors and optimize it.
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Chapter 10.

Chapter 10. Evolutionary
algorithms

10.1. Overview

Evolutionary algorithms work on a population of solutions and evolve that population.

10.2. Evolutionary Strategies

This algorithm has not been implemented yet.

10.3. Genetic algorithms

This algorithm has not been implemented yet.
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Chapter 11. Benchmarking and
tweaking

11.1. Finding the best configuration

Drools Planner supports several optimization algorithms (as solver phases), but you're probably
wondering which is the best one? Although some optimization algorithms generally perform better
then others, it really depends on your problem domain. Most solver phases have settings which
can be tweaked. Those settings can influence the results a lot, although most solver phases work
pretty well out-of-the-box.

Luckily, Drools Planner includes a benchmarker, which allows you to play out different solver
phases with different settings against each other, so you can pick the best configuration for your
planning problem.

11.2. Building a benchmarker

11.2.1. Adding the extra dependency

The benchmarker is current in the drools-planner-core modules, but it requires an extra
dependency on the JFreeChart [http://www.jfree.org/jfreechart/] library.

If you use maven, add a dependency in your pom xni file:

<dependency>
<groupl d>j f ree</ gr oupl d>
<artifactld>jfreechart</artifactld>
<versi on>1. 0. 13</ ver si on>

</ dependency>

This is similar for gradle, ivy and buildr.

If you use ANT, you've probably already copied the required jars from the download zip's bi nari es
directory.

11.2.2. BU|Id|ng a Pl anner Benchmar k

You can build a Pl anner Benchnar k instance with the Xm Pl anner Benchnar kFact or y. Configure
it with a benchmark configuration xml file:

Xm Pl anner Benchnmar kFact ory pl anner Benchmar kFact ory = new Xml Pl anner Benchmar kFact ory() ;
pl anner Benchmar kFact ory. conf i gure("/ or g/ drool s/ pl anner/ exanpl es/ nqueens/
benchmar k/ nqueensBenchmar kConf i g. xm ") ;
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Pl anner Benchmar k pl anner Benchmar k = benchmar kFact ory. bui | dPl anner Benchmar k() ;
pl anner Benchmar k. benchmar k() ;

A basic benchmark configuration file looks something like this:

<?xm version="1.0" encodi ng="UTF- 8" ?>

<pl anner Benchmar k>
<benchmar kDi r ect or y>| ocal / dat a/ nqueens</ benchmar kDi r ect or y>
<war mJpSeconds Spend>30</ war mpSeconds Spend>

<i nherit edSol ver Benchmar k>
<pr obl emBenchmar ks>

<xst reamAnnot at edCl ass>or g. drool s. pl anner . exanpl es. nqueens. domai n. NQueens</
xst r eamAnnot at edCl ass>
<i nput Sol ut i onFi | e>dat a/ nqueens/ unsol ved/ unsol vedNQueens32. xm </
i nput Sol uti onFi | e>
<i nput Sol ut i onFi | e>dat a/ nqueens/ unsol ved/ unsol vedNQueens64. xn </
i nput Sol uti onFi | e>
<probl enSt ati sti cType>BEST_SOLUTI ON_CHANGED</ pr obl enfst ati sti cType>
</ pr obl emBenchmar ks>
<sol ver >
<sol uti onC ass>org. drool s. pl anner . exanpl es. nqueens. domai n. NQueens</
sol uti onCl ass>
<pl anni ngEnti tyC ass>org. drool s. pl anner . exanpl es. nqueens. donmai n. Queen</
pl anni ngEnti tyCd ass>
<scoreDi rect or Fact ory>
<scoreDefinitionType>SlI MPLE</ scor eDefi ni ti onType>
<scoreDr| >/ org/ drool s/ pl anner/ exanpl es/ nqueens/ sol ver/
nQueensScor eRul es. drl </ scoreDr| >
</ scoreDirectorFactory>
<term nation>
<maxi munmSeconds Spend>20</ maxi munSeconds Spend>
</term nati on>
<constructionHeuristic>
<constructionHeuristicType>Fl RST_FI T_DECREASI NG</
constructionHeuristicType>

<constructionHeuristicPi ckEarlyType>FI RST_LAST_STEP_SCORE _EQUAL_OR | MPROVI NG</
constructionHeuristicPi ckEarl yType>
</ constructionHeuri stic>
</ sol ver >
</inheritedSol ver Benchmar k>

<sol ver Benchmar k>
<nanme>Move t abu</ nane>
<sol ver >
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<l ocal Sear ch>
<sel ect or >

. drool s. pl anner . exanpl es. nqueens. sol ver. nove. f act ory. RowChangeMveFact or y</
noveFact oryCl ass>
</ sel ect or >
<accept or >
<nmoveTabuSi ze>5</ noveTabuSi ze>
</ accept or >
<f or ager >
<pi ckEar | yType>NEVER</ pi ckEar | yType>
</ forager>
</l ocal Sear ch>
</ sol ver >
</ sol ver Benchmar k>
<sol ver Benchnar k>
<name>Entity tabu</nane>
<sol ver >
<l ocal Sear ch>
<sel ect or>

. drool s. pl anner . exanpl es. nqueens. sol ver. nove. f act or y. RowChangeMoveFact or y</
noveFact or yCl ass>
</ sel ector>
<accept or >
<pl anni ngEnt i t yTabuSi ze>5</ pl anni ngEnti t yTabuSi ze>
</ accept or >
<f or ager >
<pi ckEar | yType>NEVER</ pi ckEar | yType>
</ f or ager >
</l ocal Sear ch>
</ sol ver >
</ sol ver Benchmar k>
<sol ver Benchnmar k>
<nanme>Val ue tabu</nane>
<sol ver >
<l ocal Sear ch>
<sel ect or >

. drool s. pl anner . exanpl es. nqueens. sol ver. nove. f act ory. RowChangeMveFact or y</
noveFact oryCl ass>
</ sel ector>
<accept or >
<pl anni ngVal ueTabuSi ze>5</ pl anni ngVal ueTabuSi ze>
</ accept or >
<f or ager >
<pi ckEar | yType>NEVER</ pi ckEar | yType>
</ forager>
</l ocal Sear ch>
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</ sol ver >
</ sol ver Benchmar k>
</ pl anner Benchmar k>

This PI anner Benchnar k will try 3 configurations (1 move tabu, 1 entity tabu and 1 value tabu) on
2 data sets (32 and 64 queens), so it will run 6 solvers.

Every sol ver Benchmar k entity contains a solver configuration (for example with a local search
solver phase) and one or more i nput Sol uti onFi | e elements. It will run the solver configuration
on each of those unsolved solution files. A nane is optional and generated if absent.

The common part of multiple sol verBenchmark entities can be extracted to the
i nheri t edSol ver Benchmar k entity, but that can still be overwritten per sol ver Benchmar k entity.
Note that inherited solver phases such as <const ruct i onHeur i sti ¢>or <l ocal Sear ch> are not
overwritten but instead are added to the head of the solver phases list.

You need to specify a benchmar kDi r ect or y (relative to the working directory). The best solution
of each Sol ver run and a handy overview HTML file will be written in that directory.

11.2.3. ProblemlO: input and output of Solution files

11.2.3.1. rrobl eni 0interface
The benchmarker needs to be able to read the input files to contain a Sol ut i on write the best
Sol uti on of each benchmark to an output file. For that it uses a class that implements the
Pr obl em Qinterface:
public interface Problem O {

String getFil eExtension();

Sol ution read(File inputSolutionFile);

void write(Solution solution, File outputSolutionFile);

11.2.3.2. xSt reanProbl em O

By default, a XSt r eanPr obl eml Oinstance is used and you just need to configure your Sol uti on
class as being annotated with XStream:
<pr obl enmBenchmar ks>

<xst reamAnnot at edCl ass>or g. dr ool s. pl anner . exanpl es. nqueens. domai n. NQueens</
xst reamAnnot at edCl ass>
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<i nput Sol uti onFi | e>dat a/ nqueens/ unsol ved/ unsol vedNQueens32. xmi </
i nput Sol uti onFi | e>

</ pr obl emBenchmar ks>

However, your input files need to have been written with a XSt r eanPr obl eml Oinstance.

11.2.3.3. Custom problem O
Alternatively, you can implement your own Pr obl eml O implementation and configure it with the
probl em Od ass element:
<pr obl emBenchmar ks>
es. machi ner eassi gnnent . per si st ence. Machi neReassi gnnent Pr obl eml O</
probl em OCl ass>
<i nput Sol uti onFi | e>dat a/ machi ner eassi gnment /i nput/ nodel _al_1.txt</

i nput Sol uti onFi |l e>

</ pr obl enBenchmar ks>

11.2.4. Warming up the hotspot compiler

Without awarm up, the results of the first (or first few) benchmarks are not reliable, because
they will have lost CPU time on hotspot JIT compilation (and possibly DRL compilation too).

The avoid that distortion, the benchmarker can run some of the benchmarks for a specified amount
of time, before running the real benchmarks. Generally, a warm up of 30 seconds suffices:

<pl anner Benchmar k>
<war mJpSeconds Spend>30</ war mpSeconds Spend>

</ pl anner Benchmar k>

11.3. Summary statistics

11.3.1. Best score summary

Several summary statistics of the Pl annerBenchmark run will be written in the
benchmar kDi r ect ory. Here is an example of a summary statistic:
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Best score summary (higher score is better)

Score

medium0l.xml medium02,xml mediurn_hint01.xml medium_hint02.xml
Data

|l tabuSearch-moveTabu mtabuSearch-propertyTabu m simulatedannealing (winner)

Figure 11.1. Best score summary statistic

11.4. Statistics per data set (graph and CSV)

The benchmarker supports outputting statistics as graphs and CSV (comma separated values)
files to the benchmar kDi rectory.

To configure graph and CSV output of a statistic, just add a pr obl entt ati sti cType line:

<pl anner Benchmar k>
<benchmar kDi r ect or y>l ocal / dat a/ nqueens/ sol ved</ benchnmar kDi r ect or y>
<i nheritedSol ver Benchmar k>
<pr obl emBenchmar ks>

<probl enSt ati sti cType>BEST_SOLUTI ON_CHANGED</ pr obl enfst ati sti cType>
<probl enSt ati sti cType>CALCULATE_COUNT_PER_SECOND</ pr obl enfSt at i sti cType>
</ pr obl enBenchmar ks>

</inheritedSol ver Benchmar k>
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</ pl anner Benchnar k>

Multiple probl enBt ati sti cType elements are allowed. Some statistic types might influence
performance noticeably. The following types are supported:

11.4.1. Best score over time statistic (graph and CSV)

To see how the best score evolves over time, add BEST_SOLUTI ON CHANGED as a
probl enfst ati sti cType.

medium_hint01 best score statistic
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|— tabuSearch-moveTabu — simulatedAnnealing — tabuSearch-propertyTabu

Figure 11.2. Best score over time statistic

The best score over time statistic is very useful to detect abnormalities, such as score
traps.
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11.4.2. Calculate count per second statistic (graph and CSV)

To see how fast the scores are calculated, add CALCULATE COUNT_PER SECOND as a
probl ent ati sti cType.

exam_comp_set2 calculate count statistic
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Figure 11.3. Calculate count per second statistic
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11.4.3. Memory use statistic (graph and CSV)

To see how much memory is used, add MEMORY_USE as a probl entt ati sti cType.
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Figure 11.4. Memory use statistic
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Chapter 12.

Chapter 12. Repeated planning

12.1. Introduction to repeated planning

The world constantly changes. The planning facts used to create a solution, might change before
or during the execution of that solution. There are 3 types of situations:

« Unforeseen fact changes: For example: an employee assigned to a shift calls in sick, an airplane
scheduled to take off has a technical delay, one of the machines or vehicles break down, ...
Use backup planning.

* Unknown long term future facts: For example: The hospital admissions for the next 2 weeks are
reliable, but those for week 3 and 4 are less reliable and for week 5 and beyond are not worth
planning yet. Use continuous planning.

« Constantly changing planning facts: Use real-time planning.

Waiting to start planning - to lower the risk of planning facts changing - usually isn't a good way
to deal with that. More CPU time means a better planning solution. An incomplete plan is better
then no plan.

Luckily, the Drools Planner algorithms support planning a solution that's already (partially)
planned, known as repeated planning.

12.2. Backup planning

Backup planning is the technique of adding extra score constraints to create space in the planning
for when things go wrong. That creates a backup plan in the plan. For example: try to assign an
employee as the spare employee (1 for every 10 shifts at the same time), keep 1 hospital bed
open in each department, ...

Then, when things go wrong (one of the employees calls in sick), change the planning facts on
the original solution (delete the sick employee leave his/her shifts unassigned) and just restart the
planning, starting from that solution, which has a different score now. The construction heuristics
will fill in the newly created gaps (probably with the spare employee) and the metaheuristics will
even improve it further.

12.3. Continuous planning (windowed planning)

Continuous planning is the technique of planning one or more upcoming planning windows at the
same time and repeating that process every week (or every day). Because time infinite, there are
an infinite future windows, so planning all future windows is impossible. Instead we plan only a
number of upcoming planning windows.

131



Chapter 12. Repeated planning

Past planning windows are immutable. The first upcoming planning window is considered stable
(unlikely to change), while later upcoming planning windows are considered draft (likely to change
during the next planning effort). Distant future planning windows are not planned at all.

Past planning windows have locked planning entities: the planning entities can no longer be
changed (they are locked in place), but some of them are still needed in the score calculation, as
they might affect some of the score constraints that apply on the upcoming planning entities. For
example: when an employee should not work more than 5 days in a row, he shouldn't work today
and tomorrow if he worked the past 4 days already.

Sometimes some planning entities are semi-locked: they can be changed, but occur a certain
score penalty if they differ from their original place. For example: avoid rescheduling hospital beds
less than 2 days before the patient arrives (unless it's really worth it), avoid changing the airplane
gate (or worse, the terminal) during the 2 hours before boarding, ...

Continuous planning

November
5 6 7 8 9 10 1 12 13

November 1th stable draft
Room 11 bed 1 E
4-7
[
Room 11 bed 2 yackup planning: empty bed |

Room 21 bed 1

“~cance ,d

First planning
Second planning

November 5th past stable

Room 11 bed 1

Room 11 bed 2

Room 21 bed 1

8 locked

Figure 12.1. Continuous planning diagram

Notice the difference between the original planning of November 1th and the new planning of
November 5th: some planning facts (F, H, I, J, K) changed, which results in unrelated planning
entities (G) changing too.
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12.4. Real-time planning (event based planning)

To do real-time planning, first combine backup planning and continuous planning with short
planning windows to lower the burden of real-time planning.

While the Sol ver is solving, an outside event might want to change one of the problem facts,
for example an airplane is delayed and needs the runway at a later time. Do not change the
problem fact instances used by the Sol ver while it is solving, as that will corrupt it. Instead, add a
Pr obl enFact Change to the Sol ver which it will execute in the solver thread as soon as possible.

public interface Solver {

bool ean addPr obl enfact Change( Pr obl enfact Change pr obl enfact Change) ;

bool ean i sEver yProbl enfact ChangePr ocessed() ;

public interface Probl enfFact Change {

voi d doChange(ScoreDirector scoreDirector);

Here's an example:

public void del eteConputer(final C oudConputer conputer) {
sol ver. addPr obl enfact Change( new Probl enfFact Change() {
public void doChange(ScoreDirector scorebDirector) ({

Cl oudBal ance cl oudBal ance = (C oudBal ance) scorebDirector.getWrkingSol ution();

/1 First renmove the planning fact fromall planning entities
that use it
for (C oudProcess process : cloudBal ance. get ProcessList()) {
if (OojectUtils.equal s(process. getConputer(), conmputer)) {
scoreDi rect or. bef oreVari abl eChanged( process, "conputer");
process. set Comput er (nul ) ;
scoreDirector. aft er Vari abl eChanged( process, "computer");

}

/1 Next renpbve it the planning fact itself
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for (lterator<C oudConputer> it = cloudBal ance. get ConputerList().iterator(); it
Cl oudConput er wor ki ngConputer = it.next();
if (ObjectUils.equal s(workingConputer, conputer)) {
scoreDi rect or. bef or ePr obl enfact Renoved(wor ki ngConput er) ;
it.renmove(); // renmove fromli st
scoreDi rect or. bef or ePr obl enfact Renoved(wor ki ngConput er) ;
br eak;

Warning

Any change on the problem facts or planning entites in a
Pr obl enFact Change must be done on the instances of the Sol ution of
scor eDi rect or. get Wor ki ngSol ut i on() . Note that these are not the same entity
instances as in the bestSolution (or therefor your user interface): they are clones.

Warning

Any change on the problem facts or planning entities in a Probl enfact Change
must be told to the Scor eDi r ect or .

@ Note
Many types of changes can leave a planning entity uninitialized, resulting in a
partially initialized solution. That's fine, as long as the first solver phase can handle
it. All construction heuristics solver phases can handle that, so it's recommended
to configure such a Sol ver Phase as the first phase.

In essence, the Sol ver will stop, run the Pr obl enFact Change and restart. Each Sol ver Phase will
run again. Each configured Ter mi nati on (exceptt er m nat eEar | y) will reset.

Normally, you won't configure any Term nati on, just call Sol ver.termi nateEarly() when
the results are needed. Alternatively, you can subscribe to the Best Sol uti onChangedEvent .
A Best Sol uti onChangedEvent doesn't guarantee that every Probl enfact Change has been
processed already, so check Sol ver . i sEver yPr obl enFact ChangePr ocessed() and ignore any
Best Sol uti onChangedEvent fired while that method returns f al se.
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