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Chapter 1.

Chapter 1. Planner introduction

1.1. What is Drools Planner?

Drools Planner [http://www.jboss.org/drools/drools-planner] is a lightweight, embeddable
planning engine that optimizes planning problems. It solves use cases, such as:
« Employee shift rostering: timetabling nurses, repairmen, ...

e Agenda scheduling: scheduling meetings, appointments, maintenance jobs,
advertisements, ...

< Educational timetabling: scheduling lessons, courses, exams, conference presentations, ...
« Vehicle routing: planning vehicles (trucks, trains, boats, airplanes, ...) with freight and/or people

» Bin packing: filling containers, trucks, ships and storage warehouses, but also cloud computers
nodes, ...

« Job shop scheduling: planning car assembly lines, machine queue planning, workforce task
planning, ...

» Cutting stock: minimizing waste while cutting paper, steel, carpet, ...
e Sport scheduling: planning football leagues, baseball leagues, ...
» Financial optimization: investment portfolio optimization, risk spreading, ...

Every organization faces planning problems: provide products and services with a limited set of
constrained resources (employees, assets, time and money).

Drools Planner helps normal Java™ programmers solve planning problems efficiently. Under the
hood, it combines optimization heuristics and metaheuristics with very efficient score calculation.

Drools Planner, like the rest of Drools, is business-friendly open source software under
the Apache Software License 2.0 [http://www.apache.org/licenses/LICENSE-2.0] (layman's
explanation [http://www.apache.org/foundation/licence-FAQ.html#WhatDoesItMEAN]). It is 100%
pure Java™ and runs on any JVM.

1.2. What is a planning problem?

1.2.1. A planning problem is NP-complete

All the use cases above are probably NP-complete [http://en.wikipedia.org/wiki/NP-complete]. In
layman's terms, this means:

« It's easy to verify a given solution to a problem in reasonable time.
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» There is no silver bullet to find the optimal solution of a problem in reasonable time (*).

@ Note
(*) At least, none of the smartest computer scientists in the world have found such
a silver bullet yet. But if they find one for 1 NP-complete problem, it will work for
every NP-complete problem.

In fact, there's a $ 1,000,000 reward for anyone that proves if
[http://en.wikipedia.org/wiki/P_%3D_NP_problem].

The implication of this is pretty dire: solving your problem is probably harder than you anticipated,
because the 2 common techniques won't suffice:

A brute force algorithm (even a smarter variant) will take too long.

e A quick algorithm, for example in bin packing, putting in the largest items first, will return a
solution that is usually far from optimal.

By using advanced optimization algorithms, Planner does find a good solution in reasonable
time for such planning problems.

1.2.2. A planning problem has (hard and soft) constraints

Usually, a planning problem has at least 2 levels of constraints:

» A (negative) hard constraint must not be broken. For example: 1 teacher can not teach 2 different
lessons at the same time.

* A (negative) soft constraint should not be broken if it can be avoided. For example: Teacher A
does not like to teach on Friday afternoon.

Some problems have positive constraints too:

* A positive soft constraint (or reward) should be fulfilled if possible. For example: Teacher B likes
to teach on Monday morning.

Some toy problems (such as N Queens) only have hard constraints. Some problems have 3 or
more levels of constraints, for example hard, medium and soft constraints.

These constraints define the score calculation (AKA fitness function) of a planning problem. Each
solution of a planning problem can be graded with a score. With Planner, score constraints are
written in an Object Orientated language, such as Java code or Drools rules. Such code is
easy, flexible and scalable.

1.2.3. A planning problem has a huge search space

A planning problem has a number of solutions. There are several categories of solutions:
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« A possible solution is any solution, whether or not it breaks any number of constraints. Planning
problems tend to have an incredibly large number of possible solutions. Many of those solutions
are worthless.

« Afeasible solution is a solution that does not break any (negative) hard constraints. The number
of feasible solutions tends to be relative to the number of possible solutions. Sometimes there
are no feasible solutions. Every feasible solution is a possible solution.

« An optimal solution is a solution with the highest score. Planning problems tend to have 1 or a
few optimal solutions. There is always at least 1 optimal solution, even in the case that there
are no feasible solutions and the optimal solution isn't feasible.

» The best solution found is the solution with the highest score found by an implementation in a
given amount of time. The best solution found is likely to be feasible and, given enough time,
it's an optimal solution.

Counterintuitively, the number of possible solutions is huge (if calculated correctly), even with a
small dataset. As you can see in the examples, most instances have a lot more possible solutions
than the minimal number of atoms in the known universe (10780). Because there is no silver bullet
to find the optimal solution, any implementation is forced to evaluate at least a subset of all those
possible solutions.

Drools Planner supports several optimization algorithms to efficiently wade through that incredibly
large number of possible solutions. Depending on the use case, some optimization algorithms
perform better than others, but it's impossible to tell in advance. With Planner, it is easy to switch
the optimization algorithm, by changing the solver configuration in a few lines of XML or code.

1.3. Status of Drools Planner

Drools Planner is production ready. The APl is almost stable but
backward incompatible changes can occur. With the recipe called
Upgr adeFr onPr evi ousVer si onReci pe. t xt [https://github.com/droolsjbpm/drools-planner/blob/
master/drools-planner-distribution/src/main/assembly/filtered-resources/
UpgradeFromPreviousVersionRecipe.txt] you can easily upgrade to a newer version and quickly
deal with any backwards incompatible changes. That recipe file is included in every release.

1.4. Download and run the examples

1.4.1. Get the release zip and run the examples

To try it now:

« Download a release zip of Drools Planner from the Drools download site [http://www.jboss.org/
drools/downloads.html].

e Unzip it
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» Open the directory exanpl es and run the script.

Linux or Mac:

$ cd exanpl es
$ ./runExanpl es. sh

Windows:

$ cd exanpl es
$ runExanpl es. bat

The Examples GUI application will open. Just pick an example:
Drools Planner examples ==

Which example do you want to see?

~Toy examples -Real examples -Difficult examples
Course timetabling Exam timetabling
|
W Sport scheduling
[ Travelingsalesman | || ~ Vehideroutng | || === |
Manners 2009 Hospital bed planning

Description




Run the examples in an IDE (IntelliJ, Eclipse, NetBeans)

1.4.2. Run the examples in an IDE (IntelliJ, Eclipse, NetBeans)
To run the examples in your favorite IDE, first configure your IDE:

« In IntelliJ and NetBeans, just open the file exanpl es/ sour ces/ pom xnl as a new project, the
maven integration will take care of the rest.

« In Eclipse, open a new project for the directory exanpl es/ sour ces.

« Add all the jars to the classpath from the directory bi nari es and the directory exanpl es/
bi nari es, except for the file exanpl es/ bi nari es/ dr ool s- pl anner - exanpl es-*.j ar.

* Add the Java source directory sr c/ mai n/ j ava and the Java resources directory sr ¢/ mai n/
resources.

Next, create a run configuration:

* Main class: or g. dr ool s. pl anner . exanpl es. app. Dr ool sPl anner Exanpl esApp
* VM parameters (optional): - Xnx512M - ser ver

« Working directory: exanpl es (this is the directory that contains the directory dat a)

1.4.3. Use Drools Planner with maven, gradle, ivy, buildr or ANT

The Drools Planner jars are available in the central maven repository [http://search.maven.org/
#search|gall|org.drools.planner] (and also in the JBoss maven repository [https:/
repository.jboss.org/nexus/index.html#nexus-search;gav~org.drools.planner~~~~1]).

If you use maven, just add a dependency to dr ool s- pl anner - cor e in your project's pom xm :

<dependency>
<groupl d>org. drool s. pl anner </ gr oupl d>
<artifactld>drool s-pl anner-core</artifactld>
<version>...</version>

</ dependency>

This is similar for gradle, ivy and buildr. To identify the latest version, check the central maven
repository [http://search.maven.org/#search|gall|org.drools.planner].

If you're still using ant (without ivy), copy all the jars from the download zip's bi nari es directory
and manually verify that your classpath doesn't contain duplicate jars.

@ Note
The download zip's bi nari es directory contains far more jars then drool s-
pl anner - cor e actually uses. It also contains the jars used by other modules, such
as dr ool s- pl anner - benchmar k.
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Check the maven repository pom xni files to determine the minimal dependency
set for a specific version of a specific module.

1.4.4. Build Drools Planner from source

You can also easily build Drools Planner from source yourself.

Set up Git [http://help.github.com/set-up-git-redirect] and clone dr ool s- pl anner from GitHub (or
alternatively, download the zipball [https://github.com/droolsjbpm/drools-planner/zipball/master]):

$ git clone git@ithub.comdrool sjbpnfdrool s-planner.git drool s-pl anner

Then do a Maven 3 [http://maven.apache.org/] build:

$ cd drool s-pl anner
$ nmvn - Dski pTests cl ean instal

After that, you can run any example directly from the command line, just run this command and
pick an example:

$ cd drool s-pl anner - exanpl es
$ nmvn exec: exec

1.5. Questions, issues and blog

Your questions and comments are welcome on the user mailing list [http://www.jboss.org/
drools/lists.html]. Start the subject of your mail with [planner]. You can read/
write to the user mailing list without littering your mailbox through this web forum
[http://drools.46999.n3.nabble.com/Drools-User-forum-f47000.html] or this newsgroup [nntp://
news.gmane.org/gmane.comp.java.drools.user].

Feel free to report an issue (such as a bug, improvement or a new feature request) for the
Drools Planner code or for this manual to the drools issue tracker [https://jira.jboss.org/jira/browse/
JBRULES]. Select the component dr ool s- pl anner.

Pull requests (and patches) are very welcome and get priority treatment! Include the pull request
link to a JIRA issue and optionally send a mail to the dev mailing list to get the issue fixed fast. By
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Questions, issues and blog

open sourcing your improvements, you 'll benefit from our peer review and from our improvements
made upon your improvements.

Check our blog [http://blog.athico.com/search/label/planner], Google+(Drools Planner
[https://plus.google.com/112724449845406009021], Geoffrey De Smet [https://
plus.google.com/112811208792575157490]) and twitter (Geoffrey De Smet [http://twitter.com/
geoffreydesmet]) for news and articles. If Drools Planner helps you solve your problem, don't
forget to blog or tweet about it!



http://blog.athico.com/search/label/planner
http://blog.athico.com/search/label/planner
https://plus.google.com/112724449845406009021
https://plus.google.com/112724449845406009021
https://plus.google.com/112811208792575157490
https://plus.google.com/112811208792575157490
https://plus.google.com/112811208792575157490
http://twitter.com/geoffreydesmet
http://twitter.com/geoffreydesmet
http://twitter.com/geoffreydesmet




Chapter 2.

Chapter 2. Quick start

2.1. Cloud balancing tutorial

2.1.1. Problem statement

Suppose your company owns a number of cloud computers and needs to run a number of
processes on those computers. Assign each process to a computer under the following 4
constraints.

Hard constraints which must be fulfilled:

» Every computer must be able to handle the minimum hardware requirements of the sum of its
processes:

» The CPU power of a computer must be at least the sum of the CPU power required by the
processes assigned to that computer.

» The RAM memory of a computer must be at least the sum of the RAM memory required by
the processes assigned to that computer.

» The network bandwidth of a computer must be at least the sum of the network bandwidth
required by the processes assigned to that computer.

Soft constraints which should be optimized:

« Each computer that has one or more processes assigned, incurs a maintenance cost (which
is fixed per computer).

» Minimize the total maintenance cost.

How would you do that? This problem is a form of bin packing. Here's a simplified example where
we assign 4 processes to 2 computers with 2 constraints (CPU and RAM) with a simple algorithm:
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The simple algorithm used here is the First Fit Decreasing algorithm, which assigns the bigger
processes first and assigns the smaller processes to the remaining space. As you can see, it's
not optimal, because it does not leave enough room to assign the yellow process D.

Optimal solution

Drools Planner does find the more optimal solution fast, by using additional, smarter algorithms.
And it scales too: both in data (more processes, more computers) and constraints (more hardware
requirements, other constraints). So let's take a look how we can use Planner for this.

2.1.2. Domain model diagram

Let's start by taking a look at the domain model. It's pretty simple:
e Conput er : represents a computer with certain hardware (CPU power, RAM memory, network
bandwidth) and maintenance cost.

* Process: represents a process with a demand. Needs to be assigned to a Conput er by Drools
Planner.

e O oudBal ance: represents a problem. Contains every Conput er and Pr ocess for a certain data
set.
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Main method

Cloud balance class diagram

planning entity

Computer Process
cpuPower requiredCpuPower
memory computer | requiredMemory
networkBandwidth 1 | requiredNetworkBandwidth
cost

planning variable

CloudBalance
score

In the UML class diagram above, the Planner concepts are already annotated:

« Planning entity: the class (or classes) that changes during planning. In this example that's the
class Process.

« Planning variable: the property (or properties) of a planning entity class that changes during
planning. In this examples, that's the property conput er on the class Process.

 Solution: the class that represents a data set and contains all planning entities. In this example
that's the class Cl oudBal ance.

2.1.3. Main method

Try it vyourself. Download and configure the examples in your favorite IDE.
Run or g. dr ool s. pl anner . exanpl es. cl oudbal anci ng. app. C oudBal anci ngHel | oWor | d. By
default, it is configured to run for 120 seconds. It will execute this code:

Example 2.1. CloudBalancingHelloWorld.java

public class C oudBal anci ngHel | oWor | d {

11
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public static void main(String[] args) {
/1 Build the Sol ver
Sol ver Factory sol ver Factory = new Xm Sol ver Fact or y(
"/ or g/ drool s/ pl anner/ exanpl es/ cl oudbal anci ng/ sol ver/
cl oudBal anci ngSol ver Confi g. xm ") ;
Sol ver sol ver = sol verFactory. buil dSol ver () ;

/1 Load a problemw th 400 conputers and 1200 processes
Cl oudBal ance unsol vedC oudBal ance = new O oudBal anci ngGener at or (). creat e oudBal ance( 4(

/1 Solve the problem
sol ver. set Pl anni ngPr obl en(unsol vedd oudBal ance) ;
sol ver. sol ve();
Cl oudBal ance sol vedC oudBal ance = (Cl oudBal ance) sol ver. get Best Sol uti on();

/1 Display the result
Systemout. println("\nSol ved cl oudBal ance with 400 conputers and 1200

processes:\n"
+ toDi spl ayString(sol vedCl oudBal ance) ) ;

The code above does this:

 Build the Sol ver based on a solver configuration (in this case an XML file).

Sol ver Factory sol verFactory = new Xm Sol ver Fact or y(
"/ or g/ drool s/ pl anner/ exanpl es/ cl oudbal anci ng/ sol ver/
cl oudBal anci ngSol ver Confi g. xm ") ;
Sol ver sol ver = sol verFactory. buil dSol ver () ;

» Load the problem. G oudBal anci ngGener at or generates a random problem: you'll replace this
with a class that loads a real problem, for example from a database.

Cl oudBal ance unsol vedd oudBal ance = new O oudBal anci ngGener at or (). creat ed oudBal ance(

* Solve the problem.

sol ver . set Pl anni ngPr obl em(unsol vedd oudBal ance) ;
sol ver. sol ve();

12



Solver configuration

Cl oudBal ance sol vedd oudBal ance = (C oudBal ance) sol ver. get Best Sol uti on();

» Display the result.

System out. println("\nSol ved cl oudBal ance with 400 conputers and 1200
processes:\n"
+ toDi splayString(sol vedd oudBal ance)) ;

The only non-obvious part is building the Sol ver . Let's examine that.

2.1.4. Solver configuration

Take a look at the solver configuration:

Example 2.2. cloudBalancingSolverConfig.xml

<?xm version="1.0" encodi ng="UTF- 8" ?>
<sol ver >
<! --<envi r onnment Mode>DEBUG</ envi r onnent Mode>- - >

<I-- Domain nodel configuration -->
<sol utionCl ass>org. drool s. pl anner. exanpl es. cl oudbal anci ng. donai n. G oudBal ance</
sol utionCl ass>
<pl anni ngEnt i t yCl ass>or g. dr ool s. pl anner . exanpl es. cl oudbal anci ng. donmai n. O oudPr ocess</
pl anni ngEnti tyd ass>

<!-- Score configuration -->
<scoreDi rect or Fact ory>
<scoreDefinitionType>HARD_AND_SOFT</ scor eDefi ni ti onType>

sol ver. scor e. Cl oudBal anci ngSi npl eScor eCal cul at or </
si mpl eScor eCal cul at or Cl ass>
<l --<scoreDrl >/ org/drool s/ pl anner/ exanpl es/ cl oudbal anci ng/ sol ver/
cl oudBal anci ngScor eRul es. drl </ scoreDr| >-->
</ scoreDirectorFactory>

<I-- Optimzation algorithnms configuration -->
<term nati on>
<maxi munSecondsSpend>120</ maxi munSecondsSpend>
</term nation>
<constructionHeuristic>
<constructionHeuristicType>FI RST_FI T_DECREASI NG</ constructi onHeuri sti cType>

<constructionHeuristicPi ckEarl yType>FI RST_LAST_STEP_SCORE EQUAL OR | MPROVI NG</
constructionHeuristicPi ckEarl yType>
</ constructionHeuristic>

13



Chapter 2. Quick start

<l ocal Sear ch>
<accept or >
<pl anni ngEnti t yTabuSi ze>7</ pl anni ngEnt i t yTabuSi ze>
</ accept or >
<f orager >
<m ni mal Accept edSel ect i on>1000</ m ni mal Accept edSel ecti on>
</f orager>
</l ocal Sear ch>
</ sol ver >

This solver configuration consists out of 3 parts:

» Domain model configuration: What can Planner change? We need to make Planner aware
of our domain classes:

<sol utionCl ass>org. drool s. pl anner . exanpl es. cl oudbal anci ng. dormai n. Cl oudBal ance</
sol uti ond ass>
pl anni ngEnti t yCl ass>org. drool s. pl anner . exanpl es. cl oudbal anci ng. domai n. Cl oudPr ocess</
pl anni ngEntityCl ass>

« Score configuration: How should Planner optimize the planning variables? Since we have
hard and soft constraints, we use a Har dAndSof t Scor e. But we also need to tell Planner how to
calculate such the score, depending on our business requirements. Further down, we 'll look into
2 alternatives to calculate the score: using a simple Java implementation or using Drools DRL.

<scor eDi rect or Fact ory>
<scoreDefinitionType>HARD AND SOFT</scoreDefiniti onType>

| ver. score. Cl oudBal anci ngSi nmpl eScor eCal cul at or </
si npl eScor eCal cul at or Cl ass>
<l --<scoreDrl >/org/drool s/ pl anner/ exanpl es/ cl oudbal anci ng/ sol ver/
cl oudBal anci ngScor eRul es. drl </ scoreDr| >-->
</ scoreDirector Fact ory>

« Optimization algorithms configuration: How should Planner optimize it? Don't worry about
this for now: this is a good default configuration that works on most planning problems. It
will already surpass human planners and most in-house implementations. Using the Planner
benchmark toolkit, you can tweak it to get even better results.

<term nati on>

<maxi munSecondsSpend>120</ maxi munSeconds Spend>
</term nation>
<constructionHeuristic>
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<constructionHeuristicType>Fl RST_FI T_DECREASI NG</

constructi onHeuri sticType>

<constructionHeuristicPi ckEarlyType>FI RST_LAST_STEP_SCORE_EQUAL_OR_| MPROVI NG</
constructionHeuristicPi ckEarl yType>
</ constructionHeuristic>

<l ocal Sear ch>

<accept or>

<pl anni ngEnt i t yTabuSi ze>7</ pl anni ngEnt i t yTabuSi ze>
</ accept or >

<f or ager >

<m ni mal Accept edSel ect i on>1000</ m ni mal Accept edSel ecti on>

</ f orager >

</| ocal Sear ch>

Let's examine the domain model classes and the score configuration.

2.1.5. Domain model implementation

2.1.5.1. The class conputeer

The class Conmput er is a POJO (Plain Old Java Object), nothing special. Usually, you'll have more
of these kind of classes.

Example 2.3. CloudComputer.java

public class doudConputer ... {
private int cpuPower;
private int menory;
private int networkBandw dt h;
private int cost;
/] getters
}

2.1.5.2. The class process

The class Process is a little bit special. We need to tell Planner that it can change the field
conput er, SO we annotate the class with @ anni ngEntity and the getter get Conput er with

@ anni ngVari abl e:

Example 2.4. CloudProcess.java

@l anni ngEntity(...)
public class CoudProcess ... {
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private int requiredCpuPower;
private int requiredMenory;
private int requiredNetwor kBandwi dt h;

private C oudConputer conputer;
/] getters

@l anni ngVari able(...)
@/al ueRange(type = Val ueRangeType. FROM SOLUTI ON_PROPERTY, sol uti onProperty = "conputerlList"
publ i ¢ C oudConput er get Conmputer() {

return conputer;

public void set Conputer (C oudConput er conputer) {
computer = conputer;

// R S S S O S O S S S S S S S S S S S

/'l Conpl ex nethods

// EE R R I I I R I R R I I I I I R I R R R I R R I I R I I R R I I I R R I I I I I I I

public C oudProcess clone() {
Cl oudProcess cl one = new C oudProcess();
clone.id = id;
cl one. requi redCpuPower = requi redCpuPower ;
cl one. requi redMenory = requiredMvenory;
cl one. requi r edNet wor kBandwi dt h = requi r edNet wor kBandwi dt h;
cl one. conputer = conputer;
return clone;

The values that Planner can choose from for the field conput er, are retrieved from a method
on the Sol uti on implementation: C oudBal ance. get Conput er Li st () which returns a list of all
computers in the current data set. We tell Planner about this by using the annotation @al ueRange.

The method cl one() is used by the class C oudBal ance.

2.1.5.3. The class d oudBal ance

The class C oudBal ance implements the Sol ut i on interface. It holds a list of all computers and
processes. We need to tell Planner how to retrieve the collection of process which it can change,
so we need to annotate the getter get Pr ocessLi st with @Il anni ngEnti t yCol | ecti onProperty.

16
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The C oudBal ance class also has a property scor e which is the Scor e of that Sol ut i on instance
in it's current state:

Example 2.5. CloudBalance.java

public class O oudBal ance ... inplenents Sol uti on<Har dAndSoft Score> {

be

private List<d oudConputer> conputerlList;

private List<C oudProcess> processLi st;

private HardAndSoft Score score;

publ i c List<C oudConput er> get ConputerList() {
return conputerlList;

@ anni ngEntityCol | ecti onProperty
publ i c List<C oudProcess> get ProcessList() {
return processList;

publ i ¢ Har dAndSof t Score get Score() {
return score;

public void set Score(Har dAndSoft Score score) {
this.score = score;

// EE I I I I R I I R I I I I I R I R I I R I I I I R I R I R R R I I I I I I R I I I I I I I I

/1 Conpl ex met hods

// EE S S S S S O S S S I O S S S S S S S S S S O S

public Collection<? extends Object> getProbl enfFacts() {
Li st <Cbj ect> facts = new ArraylLi st <Obj ect >();
facts. addAl | (comput er Li st);
/1 Do not add the planning entity's (processList) because that will
done automatically
return facts;

/**

* Clone will only deep copy the { #processList}.
*/

publi ¢ C oudBal ance cl oneSol ution() {

17
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Cl oudBal ance cl one = new C oudBal ance() ;
clone.id = id;
cl one. conput erLi st = conputerList;
Li st <Cl oudPr ocess> cl onedProcessLi st = new ArrayLi st <Cl oudProcess>(
processLi st.size());
for (Cl oudProcess process : processList) {
Cl oudPr ocess cl onedProcess = process. clone();
cl onedPr ocessLi st. add(cl onedPr ocess);

}

cl one. processLi st = cl onedProcessLi st;
cl one. score = score;
return clone;

The method get Pr obl enfact s() is only needed for score calculation with Drools. It's not needed
for the other score calculation types.

The method cl one() is required. Planner uses it to make a clone of the best Sol ution in
encounters during search.

2.1.6. Score configuration

Planner will search for the Sol uti on with the highest Scor e. We're using a Har dAndSof t Scor e,
which means Planner will look for the solution with no hard constraints broken (fulfill hardware
requirements) and as little as possible soft constraints broken (minimize maintenance cost).

There are several ways to implement the score function:

e Simple Java
¢ Incremental Java
* Drools

Let's take a look look at 2 different implementations:
2.1.6.1. Simple Java score configuration

One way to define a score function is to implement the interface Si npl eScor eCal cul at or in plain
Java.

<scoreDi rect or Fact ory>
<scoreDefinitionType>HARD_AND_SOFT</ scor eDefi ni ti onType>

18
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sol ver. scor e. Cl oudBal anci ngSi npl eScor eCal cul at or </
si mpl eScor eCal cul at or Cl ass>
</ scoreDirectorFact ory>

Just implement the method cal cul at eScor e( Sol uti on) to return a Def aul t Har dAndSof t Scor e
instance.

Example 2.6. CloudBalancingSimpleScoreCalculator.java

public class d oudBal anci ngSi npl eScor eCal cul at or i npl enents Si npl eScor eCal cul at or <Cl oudBal ance:

/**

* A very sinple inplenmentation. The double | oop can easily be renoved by using Maps as she
* { Cl oudBal anci ngMapBasedSi npl eScor eCal cul at or #cal cul at eScor e( C oudBal ance) }.
*/
publ i ¢ Har dAndSof t Score cal cul at eScor e( C oudBal ance cl oudBal ance) {
int hardScore = 0;
int softScore = 0;
for (C oudConputer computer : cloudBal ance. get ConputerList()) {
i nt cpuPower Usage = O;
i nt menoryUsage = O;
i nt networ kBandwi dt hUsage = O;
bool ean used = fal se;

/1 Cal cul ate usage
for (C oudProcess process : cloudBal ance. get ProcessList()) {
i f (conputer.equal s(process. get Conputer())) {
cpuPower Usage += process. get Requi r edCpuPower () ;
menor yUsage += process. get Requi redMenory();
net wor kBandwi dt hUsage += process. get Requi r edNet wor kBandwi dt h() ;
used = true;

/1 Hard constraints
i nt cpuPower Avai | abl e = conput er. get CpuPower () - cpuPower Usage;
i f (cpuPowerAvail able < 0) {
har dScore += cpuPower Avai | abl e;
}
i nt menoryAvail abl e = conputer.getMenory() - nmenoryUsage;
if (menoryAvailable < 0) {
har dScore += nmenoryAvai |l abl e;
}
i nt networ kBandwi dt hAvai | abl e = conput er. get Net wor kBandwi dt h() - networ kBandw dt hUk
i f (networkBandw dt hAvai |l able < 0) {
har dScore += net wor kBandwi dt hAvai | abl e;
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/1 Soft constraints
if (used) {
soft Score -= comput er. get Cost ();

}
return Defaul t Har dAndSof t Scor e. val ueO (hardScore, soft Score);

Even if we optimize the code above to use Maps to iterate through the processLi st only once,
it is still slow because it doesn't do incremental score calculation. To fix that, either use an
incremental Java score function or a Drools score function. Let's take a look at the latter.

2.1.6.2. Drools score configuration

To use the Drools rule engine as a score function, simply add a scoreDrl| resource in the
classpath:

<scorebDi rect or Fact ory>
<scoreDefiniti onType>HARD_AND_SOFT</ scor eDefi ni ti onType>
<scoreDr| >/ org/ drool s/ pl anner/ exanpl es/ cl oudbal anci ng/ sol ver/
cl oudBal anci ngScor eRul es. drl </ scoreDr | >
</ scoreDirector Fact ory>

First, we want to make sure that all computers have enough CPU, RAM and network bandwidth
to support all their processes, so we make these hard constraints:

Example 2.7. cloudBalancingScoreRules.drl - hard constraints

i mport org.drool s. pl anner. exanpl es. cl oudbal anci ng. donai n. Cl oudBal ance;
i mport org.drools. pl anner. exanpl es. cl oudbal anci ng. donai n. Cl oudConput er ;
i mport org.drool s. pl anner. exanpl es. cl oudbal anci ng. domai n. Cl oudPr ocess;

gl obal Har dAndSof t Scor eHol der scor eHol der;
[ | #H##HHH R R R R R R R R R R R R R R R R R R R R R
// Hard constraints

|| HHHHH

rul e "requiredCpuPower Tot al "
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when
$conputer : C oudConput er ($cpuPower : cpuPower)
$requi redCpuPower Tot al : Nunber (i nt Val ue > $cpuPower) from accunul at e(
Cl oudProcess(
conput er == $conput er,
$requi redCpuPower : requiredCpuPower),
sum( $r equi r edCpuPower )
)
t hen

i nsertLogi cal (new | ntConstraintGccurrence("requiredCpuPower Total ",
Const rai nt Type. NEGATI VE_HARD,
$requi r edCpuPower Tot al . i nt Val ue() - $cpuPower,
$conputer));
end

rul e "requiredMenoryTotal "

end

rul e "requiredNet wor kBandwi dt hTot al "
end

[ | #Ht##HH R R R R R R R R R R R R R R R R R R R R R
/] Calculate hard score
| | #HHBHERHHHB R R R R R R R R R H R R R R

/1 Accumul ate hard constraints
rul e "hardConstrai nt sBroken"
salience -1 // Do the other rules first (optional, for perfornmance)
when
$hardTotal : Number() from accurul at e(
I nt Constraint Cccurrence(constraint Type == Const r ai nt Type. NEGATI VE_HARD
$wei ght : weight),
sum( $wei ght)
)
t hen

scor eHol der . set Har dConst r ai nt sBr oken( $har dTot al . i nt Val ue()) ;
end

Next, if those constraints are met, we want to minimize the maintenance cost, so we add that as
a soft constraint:

Example 2.8. cloudBalancingScoreRules.drl - soft constraints

[ | #Ht##HHHH R R R R R R R R R R R R R R R R R R R R R
/] Soft constraints
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| | #HHHHRHHHH P H P R H R R H R

rul e "comput er Cost "
when
$conputer : C oudConput er ($cost : cost)
exi sts C oudProcess(conputer == $conputer)
t hen
i nsertLogi cal (new |ntConstraintQccurrence("conputerCost",
Constrai nt Type. NEGATI VE_SOFT,
$cost,
$conputer));
end

|| ###H#H#H S HEH SRR H R R RS R R RS R R R R R R
// Cal cul ate soft score
| | HBHHHHBHBH R R R R R R R R

/1 Accunul ate soft constraints
rul e "softConstraint sBroken”

salience -1 // Do the other rules first (optional, for performnce)

when
$soft Total : Number () from accunul at e(
I nt Constrai nt Cccurrence(constraint Type == Constr ai nt Type. NEGATI VE_SOFT,
$wei ght : weight),
sun( $wei ght)

)
t hen

scor eHol der . set Sof t Const r ai nt sBroken($sof t Tot al . i nt Val ue());
end

If you use the Drools rule engine for score calculation, you can integrate with other Drools
technologies, such as decision tables (XSL or web based), the Guvnor rule repository, ...

2.1.7. Beyond this tutorial

Now that this simple example works, try going further. Enrich the domain model and add extra
constraints such as these:

« Each Process belongs to a Servi ce. A computer can crash, so processes running the same
service should be assigned to different computers.

» Each Conput er is located in a Bui | di ng. A building can burn down, so processes of the same
services should be assigned to computers in different buildings.
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Chapter 3. Use cases and examples

3.1. Introduction

Drools Planner has several examples. In this manual we explain Drools Planner mainly using the
n queens example. So it's advisable to read at least the section about that example. For advanced
users, the following examples are recommended: curriculum course and nurse rostering.

You can find the source code of all these examples in the distribution zip under exanpl es/ sour ces
and also in git under dr ool s- pl anner/ dr ool s- pl anner - exanpl es.

3.2. Toy examples

3.2.1. N queens

3.2.1.1. Problem statement

The n queens puzzle is a puzzle with the following constraints:

* Use a chessboard of n columns and n rows.
» Place n queens on the chessboard.

* No 2 queens can attack each other. Note that a queen can attack any other queen on the same
horizontal, vertical or diagonal line.

The most common n queens puzzle is the 8 queens puzzle, with n = 8. We'll explain Drools Planner
using the 4 queens puzzle as the primary example.

A proposed solution could be:

Wiy

W N = O

Figure 3.1. A wrong solution for the 4 queens puzzle

The above solution is wrong because queens Al and B0 can attack each other (so can queens B0
and D0). Removing queen B0 would respect the "no 2 queens can attack each other" constraint,
but would break the "place n queens" constraint.
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3.2.1.2. Solution(s)

Below is a correct solution:

g

Ww N H O

g

Figure 3.2. A correct solution for the 4 queens puzzle

All the constraints have been met, so the solution is correct. Note that most n queens puzzles
have multiple correct solutions. We'll focus on finding a single correct solution for a given n, not
on finding the number of possible correct solutions for a given n.

3.2.1.3. Screenshot

Here is a screenshot of the example:
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N queens

Figure 3.3. Screenshot of the n queens example

3.2.1.4. Problem size

These numbers might give you some insight in the size of this problem.

Table 3.1. NQueens problem size

# queens (n) # possible # feasible # optimal # optimal out of
solutions (each solutions (= solutions # possible
gueen its own optimal in this
column) use case)

4 256 2 2 1 out of 128

8 16777216 64 64 1 out of 262144

16 18446744073709534512512 14772512 1 out of

1248720872503
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# queens (n) # possible # feasible # optimal # optimal out of
solutions (each solutions (= solutions # possible
queen its own optimal in this
column) use case)

32 1.46150163733090291820368483e  ? ?
+48

64 3.94020061963944792122790401e ? ?
+115

n n*n ? # feasible | ?

solutions

The Drools Planner implementation of the N queens example has not been optimized because it
functions as a beginner example. Nevertheless, it can easily handle 64 queens.

3.2.1.5. Domain model

Use a good domain model: it will be easier to understand and solve your planning problem with
Drools Planner. This is the domain model for the n queens example:
public class Colum {

private int index;

/[l ... getters and setters

public class Row {
private int index;

Il ... getters and setters

public class Queen {

private Colum col um;
private Row row,

public int getAscendi nghi agonal | ndex() {...}
public int getDescendi nghi agonal | ndex() {...}

/[l ... getters and setters
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Cloud balancing

public class NQueens inplenments Sol ution<Si npl eScore> {
private int n;
private List<Colum> col ummLi st;
private List<Row> rowList;
private List<Queen> queenlLi st;

private SinpleScore score;

/[l ... getters and setters

A Queen instance has a Col umm (for example: 0 is column A, 1 is column B, ...) and a Row (its row,
for example: O isrow 0O, 1 is row 1, ...). Based on the column and the row, the ascending diagonal
line as well as the descending diagonal line can be calculated. The column and row indexes start
from the upper left corner of the chessboard.

Table 3.2. A solution for the 4 queens puzzle shown in the domain model

A solution Queen columnindex rowlndex ascendingDia( descendingDi
(columnindex (columnindex
+ rowindex) -rowlndex)
A E {: D 0 1 1 (**) '1
@ 1 0" 107 1
2 2 4 0
DO 3 0™ 3 3

iy

Ww N = O

When 2 queens share the same column, row or diagonal line, such as (*) and (**), they can attack
each other.

A single NQueens instance contains a list of all Queen instances. It is the Sol ut i on implementation
which will be supplied to, solved by and retrieved from the Solver. Notice that in the 4 queens
example, NQueens's get N() method will always return 4.

3.2.2. Cloud balancing

This example is explained in a tutorial.
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3.2.3. Traveling salesman (TSP - Traveling salesman problem)

3.2.3.1. Problem statement

Given a list of cities, find the shortest tour for a salesman that visits each city exactly once.
See the wikipedia definition of the traveling Salesman Problem. [http://en.wikipedia.org/wiki/
Travelling_salesman_problem]

It is one of the most intensively studied problems [http://www.tsp.gatech.edu/] in computational
mathematics. Yet, in the real world, it's often only part of a planning problem, along with other
constraints, such as employee shift time constraints.

3.2.4. Manners 2009

3.2.4.1. Problem statement

In Manners 2009, miss Manners is throwing a party again.

 This time she invited 144 guests and prepared 12 round tables with 12 seats each.
« Every guest should sit next to someone (left and right) of the opposite gender.
« And that neighbour should have at least one hobby in common with the guest.

 Also, this time there should be 2 politicians, 2 doctors, 2 socialites, 2 sports stars, 2 teachers
and 2 programmers at each table.

« And the 2 politicians, 2 doctors, 2 sports stars and 2 programmers shouldn't be the same kind.

Drools Expert also has the normal miss Manners examples (which is much smaller) and employs
a brute force heuristic to solve it. Drools Planner's implementation employs far more scalable
heuristics while still using Drools Expert to calculate the score..

3.3. Real examples

3.3.1. Course timetabling (ITC 2007 track 3 - Curriculum course
scheduling)

3.3.1.1. Problem statement

Schedule each lecture into a timeslot and into a room.

The problem is defined by the International Timetabling Competition 2007 track 3 [http://
www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm].
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Machine reassignment (Google ROADEF 2012)

3.3.2. Machine reassignment (Google ROADEF 2012)

3.3.2.1. Problem statement

Assign each process to a machine. All processes already have an original (unoptimized)
assignment. Each process requires an amount of each resource (such as CPU, RAM, ...). This is
more complex version of the Cloud balancing example.

The problem is defined by the Google ROADEF/EURO Challenge 2012 [http://
challenge.roadef.org/2012/en/].

Hard constraints:

« Maximum capacity: The maximum capacity for each resource for each machine must not be
exceeded.

» Conflict: Processes of the same service must run on distinct machines.

» Spread: Processes of the same service must be spread across locations.

« Dependency: The processes of a service depending on another service must run in the
neighborhood of a process of the other service.

« Transient usage: Some resources are transient and count towards the maximum capacity of
both the original machine as the newly assigned machine.

Soft constraints:

Load: The safety capacity for each resource for each machine should not be exceeded.

« Balance: Leave room for future assignments by balancing the available resources on each
machine.

* Process move cost: A process has a move cost.
* Service move cost: A service has a move cost.

* Machine move cost: Moving a process from machine A to machine B has another A-B specific
move cost.

3.3.2.2. Problem size

model _al 1: 2 resources, 1 neighborhoods, 4 |ocations, 4 nmachines, 79 services,
100 processes and 1 bal ancePenalties with fl ooredPossi bl eSol uti onSi ze (10760).

nmodel _al 2: 4 resources, 2 neighborhoods, 4 |ocations, 100 machines, 980
servi ces, 1000 processes and 0 bal ancePenalties with fl ooredPossi bl eSol uti onSi ze
(1072000) .
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nmodel _al _3: 3 resources, 5 neighborhoods, 25 |ocations, 100 nachines, 216
servi ces, 1000 processes and 0 bal ancePenalties with fl oor edPossi bl eSol uti onSi ze
(1072000) .

nmodel _al 4: 3 resources, 50 neighborhoods, 50 I|ocations, 50 nachines, 142
servi ces, 1000 processes and 1 bal ancePenalties with fl ooredPossi bl eSol uti onSi ze
(1071698) .

nodel _al 5: 4 resources, 2 neighborhoods, 4 |ocations, 12 nmachines, 981
servi ces, 1000 processes and 1 bal ancePenalties with fl ooredPossi bl eSol uti onSi ze
(1071079).

nodel _a2_1: 3 resources, 1 neighborhoods, 1 locations, 100 nmachines, 1000
servi ces, 1000 processes and 0 bal ancePenalties with fl ooredPossi bl eSol uti onSi ze
(1072000) .

nmodel _a2_2: 12 resources, 5 neighborhoods, 25 |ocations, 100 machines, 170
servi ces, 1000 processes and 0 bal ancePenalties with fl oor edPossi bl eSol uti onSi ze
(1072000) .

nmodel _a2_3: 12 resources, 5 neighborhoods, 25 |ocations, 100 machi nes, 129
servi ces, 1000 processes and 0 bal ancePenalties with fl ooredPossi bl eSol uti onSi ze
(1072000) .

nodel _a2_4: 12 resources, 5 neighborhoods, 25 locations, 50 nachines, 180
servi ces, 1000 processes and 1 bal ancePenalties with fl ooredPossi bl eSol uti onSi ze
(1071698) .

nodel _a2_5: 12 resources, 5 neighborhoods, 25 locations, 50 nachines, 153
servi ces, 1000 processes and 0 bal ancePenalties with fl oor edPossi bl eSol uti onSi ze
(1071698) .

3.3.3. Vehicle routing

3.3.3.1. Problem statement

Using a fleet of vehicles, pick up the objects of each customer and bring them to the depot. Each
vehicle can service multiple customers, but it has a limited capacity.

The capacitated vehicle routing problem (CRVP) is defined by the VRP web [http://neo.lcc.uma.es/
radi-aeb/WebVRP/].

3.3.4. Hospital bed planning (PAS - Patient admission
scheduling)
3.3.4.1. Problem statement

Assign each patient (that will come to the hospital) into a bed for each night that the patient will
stay in the hospital. Each bed belongs to a room and each room belongs to a department. The
arrival and departure dates of the patients is fixed: only a bed needs to be assigned for each night.

There are a couple of hard constraints:

» 2 patients shouldn't be assigned to the same bed in the same night.
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Hospital bed planning (PAS - Patient admission scheduling)

* A room can have a gender limitation: only females, only males, the same gender in the same
night or no gender limitation at all.

* A department can have a minimum or maximum age.
A patient can require a room with specific equipment(s).

And of course, there are also some soft constraints:

» A patient can prefer a maximum room size, for example if he/she want a single room.

A patient is best assigned to a department that specializes in his/her problem.

» A patient is best assigned to a room that specializes in his/her problem.

A patient can prefer a room with specific equipment(s).

The problem is defined on this webpage [http://allserv.kahosl.be/~peter/pas/] and the test data
comes from real world hospitals.

Patient admission schedule

Assign each patient a hospital bed.

Largest admission first Drools Planner
November November
1 2 3 4 5 6 T 1 2 3 4 5 & T

General ward
Room 11 bed 1

Room 11 bed 2

Intensive care®
Room 21 bed 1

Room 22 bed 1

no space
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3.4. Difficult examples

3.4.1. Exam timetabling (ITC 2007 track 1 - Examination)

3.4.1.1. Problem statement

Schedule each exam into a period and into a room. Multiple exams can share the same room
during the same period.

There are a number of hard constraints that cannot be broken:

« Exam conflict: 2 exams that share students should not occur in the same period.
« Room capacity: A room's seating capacity should suffice at all times.
 Period duration: A period's duration should suffice for all of its exams.
« Period related hard constraints should be fulfilled:
» Coincidence: 2 exams should use the same period (but possibly another room).
» Exclusion: 2 exams should not use the same period.
» After: 1 exam should occur in a period after another exam's period.
* Room related hard constraints should be fulfilled:
» Exclusive: 1 exam should not have to share its room with any other exam.

There are also a number of soft constraints that should be minimized (each of which has
parametrized penalty's):

e 2 exams in a row.

e 2 exams in a day.

» Period spread: 2 exams that share students should be a number of periods apart.
* Mixed durations: 2 exams that share a room should not have different durations.
» Front load: Large exams should be scheduled earlier in the schedule.

 Period penalty: Some periods have a penalty when used.

« Room penalty: Some rooms have a penalty when used.

It uses large test data sets of real-life universities.
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Exam timetabling (ITC 2007 track 1 - Examination)

The problem is defined by the International Timetabling Competition 2007 track 1 [http://
www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm].

Examination Ann [ History | Math |
timetabling Bobby [ History | Math |
Assigln each exam Carla [ HiStOW ]
2peredand (D) Dan (Math_JChem
Edna Chem| Bio | Geo]
F| Fred [ Bio | (Eng |
Greg Geo | Eng
Most students first Drools Planner
Room X | |RoomY Room X | |RoomY
4 seats 3 seats 4 seats 3 seats
Mon 09:00 History Chem %hem‘ng }I:istor(yz
Fri 09:00 %
Fri  14:00 day

same time
3.4.1.2. Problem size
These numbers might give you some insight on the size of this problem.

Table 3.3. Examination problem size

# # exams/ # periods #rooms # #feasible # optimal
students topics possible | solutions solutions
solutions

exam_comp/388L 607 54 7 1071564 7 1?
exam_compl2484 870 40 49 1072864 7 1?
exam_compl&aed 934 36 48 1073023 7 1?
exam_compi4ei4 273 21 1 10”360 ? 1?
exam_comp3 &t 1018 42 3 1072138 7 1?
exam_comp/3e% 242 16 8 107509 ? 1?
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# # exams/ # periods #rooms # #feasible # optimal

students topics possible | solutions solutions
solutions

‘ exam_com‘pl_Sé% 1096 ‘ 80 28 ‘ 10°3671 2 ‘ 17 ‘
‘ exam_com‘p?_EHB 508 ‘ 80 8 ‘ 10°1678 2 ‘ 12 ‘
‘? ‘s t ‘p r ‘(p*r)"e ? ‘1’? ‘

Geoffrey De Smet (the Drools Planner lead) finished 4th in the International Timetabling
Competition 2007's examination track with a very early version of Drools Planner. Many
improvements have been made since then.

3.4.1.3. Domain model

Below you can see the main examination domain classes:
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Exam timetabling (ITC 2007 track 1 - Examination)

=<interface>=
Solution

~

<<singleton=>=

<<singleton==>
InstitutionParametrization

- twolnARowPenality : int
- twolnADayPenality : int
- periodSpreadLength : int

Examination |——3 . periodSpreadPenality : int
1 - mixedDurationPenality : int
- frontLoadLargeTopicSize : int
1 - examlList - frontLoadLastPeriodSize : int
- frontLoadPenality : int
An exam changes during
solving: 1.*
The exam.period and/or exam.
room reference change. <<@PlanningEntity ==
The exam.id and exam.topic Exam
reference do not change. -
-id : long
- .- room
1 4 topic " |- period =
Calculated before solving % 0.* [ N
T 1 NV S,
i » = Room
: : Period 1
TopicConflict T -id: long
T -ld:long - capacity : int
- studentSize : int - startDateTimeString : String 3 peﬁalty% int
- periodindex : int
0..* - daylndex : int
- leftTopic 0.* - duration : int
- rightTopic - penalty : int
- frontLoadLast : boolean
1 1
elA//—- RoomHardConstraint
Topic .
P - - topic | -id : long
-id : long .é._--—-—--""""' PeriodHardConstraint
- duration : int - leftTopic | _ id : long
- frontLoadLarge : boolean 1
1 - rightTopic
- stlidentList 1 1
O”:}:
<<enums> <<enums=:=
Student PeriodHardConstraintType RoomHardConstraintType
-id : long - COINCIDENCE : int - ROOM_EXCLUSIVE : int
- EXCLUSION : int
. - AFTER @ int
Mot asserted into the working
memaory

Figure 3.4. Examination domain class diagram

Notice that we've split up the exam concept into an Exam class and a Topi ¢ class. The Exam
instances change during solving (this is the planning entity class), when they get another period
or room property. The Topi c, Peri od and Roominstances never change during solving (these are
problem facts, just like some other classes).
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3.4.2. Employee rostering (INRC 2010 - Nurse rostering)

3.4.2.1. Problem statement

For each shift, assign a nurse to work that shift.

The problem is defined by the International Nurse Rostering Competition 2010 [http://
www.kuleuven-kortrijk.be/nrpcompetition].

Employee shift rostering

Populate each work shift with a nurse.
Basic nurses
H | Hue m lIse

Maternity nurses Emergency nurses
Ann .Beth .Cory D | Dan . Elin .Greg

Largest staff first Drools Planner
Sat Sun Mon Sat Sun Mon
6 14 22| & 14 22 6 14 22 6 14 22| & 14 22 6 14 22
| | | | | | | | | | | | | | | | | |
Maternity
nurses
Emergency
nurses
Any
nurses
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Employee rostering (INRC 2010 - Nurse rostering)

Employee shift rostering

Hard constraints
Wed

6 14 22

Thu

6 14 22

Fri

6 14 22

Sat

6 14 22
| | |

Mon

6 14 22

Sun

6 14 22
| | |

Mon Tue
6 14 22 6 14 22

All required shifts must be assigned

No hard constraint broken => solution is feasible
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Employee shift rostering

Soft constraints
Wed

6 14 22
| | |

Thu

6 14 22
| | |

Fri

6 14 22

Sat

6 14 22
| | |

Sun
6 14 22

Tue

6 14 22
| |

Mon

|
Maximum consecutive working days for Ann:

(A7 ]2 JAl? ]2 [A] 7] 7 [A] 2] 2] 7 JA] 7] ?)

1 2 3

e
2 [BJ 2] 7] 1212222

EH
-] )

B
] -]
] -]

7[7 ol 2 2 2 el 2T T2 [ Lo [ [

There are many more soft constraints...

3.4.3. Sport scheduling (TTP - Traveling tournament problem)

3.4.3.1. Problem statement

Schedule matches between n teams with the following hard constraints:

» Each team plays twice against every other team: once home and once away.

« Each team has exactly 1 match on each timeslot.

« No team must have more than 3 consecutive home or 3 consecutive away matches.
« No repeaters: no 2 consecutive matches of the same 2 opposing teams.

and the following soft constraint:

< Minimize the total distance traveled by all teams.

The problem is defined on Michael Trick's website (which contains several world records too)
[http://mat.gsia.cmu.edu/TOURN/].
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Sport scheduling (TTP - Traveling tournament problem)

[ Philadephia Phillies 30 Traveling [ Montréal Expos 0
[1_awayto tournament (1 [MON] VS 0
[ 2 away to m 330 Schedule each match [ 2 [MON] VS m 0
[3 [ PHI J 0 in a timeslot. [3 [MON] VS 929
[4 [PHI]VS (4 away to

|5 [PHI]VS[MON| s (5 awayto ﬁ}]] 30
[6 away to 665 (6 awayto 337

Team distance: 2.011 |

Drools Planner

Total distance:
8.276

3.4.3.2. Simple and smart implementation

There are 2 implementations (simple and smart) to demonstrate the importance of some
performance tips. The Dr ool sPl anner Exanpl esApp always runs the smart implementation, but
with these commands you can compare the 2 implementations yourself:

$ mvn exec: exec
Dexec. mai nCl ass="or g. dr ool s. pl anner . exanpl es. travel i ngt our nanent . app. si npl e. Si npl eTravel i ngTout

$ mvn exec: exec
Dexec. mai nCl ass="or g. dr ool s. pl anner . exanpl es. travel i ngt our nanent . app. smart. Smart Tr avel i ngTour n¢

The smart implementation performs and scales exponentially better than the simple
implementation.

3.4.3.3. Problem size

These numbers might give you some insight on the size of this problem.
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Table 3.4. Traveling tournament problem size

# teams # days # matches # possible # possible # feasible # optimal
solutions  solutions  solutions  solutions
(simple) (smart)
4 6 12 2176782336 <= 518400 | ? 1?
6 10 30 10000000000668000000000200000000 | 1?
47784725839872000000
8 14 56 1.52464943788290465606136043¢e 1?
+64 5.77608277425558771434498864¢e
+43
10 18 20 9.43029892325559280477@52413e 1?
+112 1.07573451027871200629339068e
+79
12 22 132 1.584141124%8195320415135060e 1?
+177 2.01650616733413376416949843e
+126
14 26 182 3.35080635685103223315189511e 1?
+257 1.73513467024013808570420241e
+186
16 30 240 3.22924601798855400751522483¢e 1?
+354 2.45064610271441678267620602¢e
+259
n 2*(n-1) n*(n-1) *(n-1N" <=({(2*(n ? 1?
(n*(n-1)) -~/
2))
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Chapter 4. Planner configuration

4.1. Overview

Solving a planning problem with Drools Planner consists out of 5 steps:

1. Model your planning problem as a class that implements the interface Sol ut i on, for example
the class NQueens.

2. Configure a Sol ver, for example a first fit and tabu search solver for any NQueens instance.

3. Load a problem data set from your data layer, for example a 4 Queens instance. Set it as the
planning problem on the Sol ver with Sol ver . set Pl anni ngProbl en(...).

4. Solve it with Sol ver. sol ve().

5. Get the best solution found by the Sol ver with Sol ver . get Best Sol uti on().
4.2. Solver configuration

4.2.1. Solver configuration by XML file

You can build a Sol ver instance with the Xml Sol ver Fact ory. Configure it with a solver
configuration XML file:

Xm Sol ver Factory sol ver Factory = new Xnl Sol ver Factory();
sol ver Fact ory. confi gure("/org/drool s/ pl anner/ exanpl es/ nqueens/ sol ver/
nqueensSol ver Confi g. xm ");
Sol ver sol ver = sol verFactory. buil dSol ver();

A solver configuration file looks something like this:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<sol ver >
<I-- Define the nodel -->
<sol uti onCl ass>org. drool s. pl anner . exanpl es. nqueens. domai n. NQueens</
sol uti ond ass>
<pl anni ngEnti t yCl ass>or g. drool s. pl anner . exanpl es. nqueens. domai n. Queen</
pl anni ngEntityCl ass>

<!-- Define the score function -->
<scoreDi rector Fact ory>
<scor eDefiniti onType>SlI MPLE</ scor eDefi ni ti onType>
<scoreDr| >/ org/ drool s/ pl anner/ exanpl es/ nqueens/ sol ver/
nQueensScor eRul es. drl </ scoreDr| >
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</ scoreDirectorFactory>

<l--

Configure the optinm zation algorithms) -->

<t erm nati on>

</term nation>

<constructi onHeuristic>

</ constructi onHeuristic>

<l ocal Sear ch>

</| ocal Search>

</ sol ver >

Notice the 3 parts in it:

* Define the model

« Define the score function

» Configure the optimization algorithm(s)

We'll explain these various parts of a configuration later in this manual.

Drools Planner makes it relatively easy to switch optimization algorithm(s) just by changing
the configuration. There's even a Benchmar k utility which allows you to play out different
configurations against each other and report the most appropriate configuration for your problem.
You could for example play out tabu search versus simulated annealing, on 4 queens and 64

queens.

4.2.2. Solver configuration by Java API

As an alternative to the XML file, a solver configuration can also be configured with the
Sol ver Confi g API:

Sol ver Confi g sol verConfig = new Sol ver Config();

sol ver Confi g. set Sol uti onCl ass(NQueens. cl ass);

Set <Cl ass<?>> pl anni ngEntityCl assSet = new HashSet <Cl ass<?>>();
pl anni ngEnti t yd assSet . add( Queen. cl ass);

sol ver Confi g. set Pl anni ngEnti t yCl assSet (pl anni ngEntityC assSet);

Scor eDi rect or Fact oryConfi g scorebDirectorFactoryConfig = sol ver Confi g. get Scor eDi rect or Fe
scor eDi rect or Fact oryConfi g. set ScoreDefi ni ti onType( Scor eDi rect or Fact oryConfi g. ScoreDefi 1
scoreDirector Fact oryConfi g. set ScoreDr | Li st (

Arrays. asLi st ("/org/drool s/ pl anner/ exanpl es/ nqueens/ sol ver/

nQueensScoreRul es. drl"));
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Model your planning problem

Term nati onConfig termni nati onConfig = sol ver Confi g. get Termi nati onConfig();
Il
Li st <Sol ver PhaseConfi g> sol ver PhaseConfi gLi st = new ArrayLi st <Sol ver PhaseConfi g>();
ConstructionHeuri sticSol ver PhaseConfi g constructi onHeuri sticSol ver PhaseConfig
= new ConstructionHeuristicSol ver PhaseConfig();
Il
sol ver PhaseConfi gLi st. add(constructi onHeuri sti cSol ver PhaseConfi g);
Local Sear chSol ver PhaseConfi g | ocal Sear chSol ver PhaseConfi g = new Local Sear chSol ver Phase(
I/
sol ver PhaseConfi gLi st. add(| ocal Sear chSol ver PhaseConfi g) ;
sol ver Confi g. set Sol ver PhaseConfi gLi st (sol ver PhaseConfi gLi st);
Sol ver sol ver = sol ver Confi g. bui |l dSol ver () ;

It is highly recommended to configure by XML file instead of this APIl. To dynamically
configure a value at runtime, use the XML file as a template and extract the Sol ver Confi g class
with get Sol ver Confi g() to configure the dynamic value at runtime:

Xm Sol ver Factory sol ver Factory = new Xm Sol ver Factory();
sol ver Fact ory. confi gure("/org/drool s/ pl anner/ exanpl es/ nqueens/ sol ver/
nqueensSol ver Confi g. xm ");

Sol ver Confi g sol verConfig = sol ver Factory. get Sol ver Confi g();
sol ver Confi g. get Term nati onConfi g() . set Maxi mumM nut esSpend(user | nput);
Sol ver sol ver = sol ver Confi g. buil dSol ver () ;

4.3. Model your planning problem

4.3.1. Is this class a problem fact or planning entity?

Look at a dataset of your planning problem. You 'll recognize domain classes in there, each of
which is one of these:

« A unrelated class: not used by any of the score constraints. From a planning standpoint, this
data is obsolete.

< A problem fact class: used by the score constraints, but does NOT change during planning
(as long as the problem stays the same). For example: Bed, Room Shi ft, Enpl oyee, Topi c,
Peri od, ...

* A planning entity class: used by the score constraints and changes during planning. For
example: BedDesi gnat i on, Shi f t Assi gnment , Exam ...

Ask yourself: What class changes during planning? Which class has variables that | want the
Sol ver to choose for me? That class is a planning entity. Most use cases have only 1 planning
entity class.

43



Chapter 4. Planner configuration

@ Note
In , problem facts can change during planning, because the
problem itself changes. However, that doesn't make them planning entities.

In Drools Planner all problems facts and planning entities are plain old JavaBeans
(POJO's). You can load them from a database (JDBC/JPA/JDO), an XML file, a data repository,
a noSQL cloud, ...: Drools Planner doesn't care.

4.3.2. Problem fact

A problem fact is any JavaBean (POJO) with getters that does not change during planning.
Implementing the interface Seri al i zabl e is recommended (but not required). For example in n
gueens, the columns and rows are problem facts:

public class Colum inplenents Serializable {

private int index;

Il ... getters

public class Row inplenments Serializable {
private int index;

/[l ... getters

A problem fact can reference other problem facts of course:

public class Course inplenents Serializable {
private String code;
private Teacher teacher; // OQher problem fact
private int |ectureSize;

private int m nWrkingDaySi ze;

private List<Curriculunms curriculunList; // Oher problemfacts
private int studentSize;

/[l ... getters
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‘ }

A problem fact class does not require any Planner specific code. For example, you can reuse your
domain classes, which might have JPA annotations.

a cached problem fact

4.3.3. Planning entity and planning variables

4.3.3.1. Planning entity

A planning entity is a JavaBean (POJO) that changes during solving, for example a Queen that
changes to another row. A planning problem has multiple planning entities, for example for a single
n queens problem, each Queen is a planning entity. But there's usually only 1 planning entity class,
for example the Queen class.

A planning entity class needs to be annotated with the @ anni ngEnt i t y annotation.

Each planning entity class has 1 or more planning variables. It usually also has 1 or more defining
properties. For example in n queens, a Queen is defined by its Col uim and has a planning variable
Row. This means that a Queen's column never changes during solving, while its row does change.

@l anni ngEntity
public class Queen {

private Colum col um;

/1 Planning variabl es: changes during planni ng, between score cal cul ati ons.
private Row row

/'l ... getters and setters
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A planning entity class can have multiple planning variables. For example, a Lect ur e is defined
by its Cour se and its index in that course (because 1 course has multiple lectures). Each Lect ure
needs to be scheduled into a Peri od and a Roomso it has 2 planning variables (period and room).
For example: the course Mathematics has 8 lectures per week, of which the first lecture is Monday
morning at 08:00 in room 212.

@ anni ngEntity
public class Lecture {

private Course course;
private int |ecturel ndexl nCourse;

/1 Planning variabl es: changes during pl anni ng, between score cal cul ati ons.
private Period period;

private Room room

/1

The solver configuration also needs to be made aware of each planning entity class:

<sol ver >

<pl anni ngEnti tyC ass>or g. dr ool s. pl anner . exanpl es. nqueens. donmai n. Queen</
pl anni ngEnti tyd ass>

</ sol ver >

Some uses cases have multiple planning entity classes. For example: route freight and trains
into railway network arcs, where each freight can use multiple trains over its journey and each
train can carry multiple freights per arc. Having multiple planning entity classes directly raises the
implementation complexity of your use case.
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4.3.3.2. Planning entity difficulty

Some optimization algorithms work more efficiently if they have an estimation of which planning
entities are more difficult to plan. For example: in bin packing bigger items are harder to fit, in
course scheduling lectures with more students are more difficult to schedule and in n queens the
middle queens are more difficult to fit on the board.

Therefore, you can seta di ffi cul t yConpar at or O ass to the @l anni ngEnt i t y annotation:

@ anni ngEntity(difficultyConparatord ass = C oudProcessDi fficul tyConparator.clas
public class C oudProcess {
/1

public class C oudProcessDifficul tyConparator inplenments Conparator<C oudProcess>

public int conpare(C oudProcess a, d oudProcess b) {
return new ConpareToBui | der ()
. append(a. get Requi redMul ti plicand(), b.getRequiredMiltiplicand())
.append(a.getld(), b.getld())
.t oConpari son();

Alternatively, you can also set a diffi cul t ywei ght Fact oryd ass to the @l anni ngEntity
annotation, so you have access to the rest of the problem facts from the solution too:

@l anni ngEntity(difficultyWightFactoryd ass = QueenDi fficul t yWei ght Factory. cl ass
public class Queen {
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Il

public interface PlanningEntityDifficultyWightFactory {

Conparabl e createDi fficultyWi ght(Sol ution solution, Object planningEntity);

public class QueenDifficultyWightFactory inplenments PlanningEntityDifficultyWightFactory {

public Conparabl e createDifficultyWight(Solution solution, Object planningEntity) {
NQueens nQueens = (NQueens) sol ution;
Queen queen = (Queen) planningEntity;
i nt di stanceFronM ddl e = cal cul at eDi st anceFromM ddl e( nQueens. get N(), queen. get Col umml nc
return new QueenDifficul t yWeight (queen, distanceFronM ddl e);

I/
public static class QueenDifficultyWight inplenments Conparabl e<QueenDi fficultyWight> {

private final Queen queen;
private final int distanceFronM ddl e;

public QueenDi fficultyWight(Qeen queen, int distanceFronM ddle) {
thi s. queen = queen;
this.di stanceFronM ddl e = di st anceFronmM ddl e;

public int conpareTo(QueenDi fficultyWight other) {
return new Conpar eToBui | der ()
/1 The nmore difficult queens have a | ower di stance to the m ddle
. append( ot her. di st anceFronM ddl e, di stanceFronM ddle) //
Decr easi ng
. append( queen. get Col unml ndex(), ot her. queen. get Col umml ndex())
.toCompari son();

None of the current planning variable state may be used to compare planning entities. They are
likely to be nul I anyway. For example, a Queen's r ow variable may not be used.
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4.3.3.3. Planning variable

A planning variable is a property (including getter and setter) on a planning entity. It changes
during planning. For example, a Queen's r owproperty is a planning variable. Note that even though
a Queen's r owproperty changes to another Rowduring planning, no Rowinstance itself is changed.
A planning variable points to a planning value.

A planning variable getter needs to be annotated with the @°l anni ngVari abl e annotation.
Furthermore, it needs a @/al ueRange annotation too.

@ anni ngEntity
public class Queen {

private Row row;
/1

@ anni ngVari abl e
@/al ueRange(type = Val ueRangeType. FROM SOLUTI ON_PROPERTY, sol utionProperty = rowLi st")
publ i c Row get Row() {

return row,

public void set Row( Row row) ({
this.row = row,

4.3.3.4. When is a planning entity initialized?

A planning entity is considered initialized if all of its planning variables are initialized.

By default, a planning variable is considered initialized if its value is not nul | .
4.3.4. Planning value and planning value ranges

4.3.4.1. Planning value

A planning value is a possible value for a planning variable. Usually, a planning value is a problem
fact, but it can also be any object, for example a double. It can even be another planning entity or
even a interface implemented by a planning entity and a problem fact.

A planning value range is the set of possible planning values for a planning variable. This set
can be a discrete (for example row 1, 2, 3 or 4) or continuous (for example any doubl e between
0.0 and 1. 0). There are several ways to define the value range of a planning variable with the
@val ueRange annotation.
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If nul'| is a valid planning value, it should be included in the value range and the default way to
detect uninitialized planning variables must be changed (TODO for now, a workaround [https://
issues.jboss.org/browse/JBRULES-3317] is needed).

4.3.4.2. Planning value range

4.3.4.2.1. val ueRange from Sol uti on property

All instances of the same planning entity class share the same set of possible planning values for
that planning variable. This is the most common way to configure a value range.

The Sol uti on implementation has property which returns a Col | ecti on. Any value from that
Col | ecti on is a possible planning value for this planning variable.

@ anni ngVari abl e
@/al ueRange(type = Val ueRangeType. FROM SOLUTI ON_PROPERTY, sol utionProperty = "rowList")
public Row get Row() {

return row

public class NQueens inplenments Sol uti on<Si npl eScore> {
I/

public List<Row> get RowList() {
return rowli st;

4.3.4.2.2. val ueRange from planning entity

Each planning entity has its own set of possible planning values for a planning variable. For
example, if a teacher can never teach in a room that does not belong to his department, lectures
of that teacher can limit their room value range to the rooms of his department.

@ anni ngVari abl e
@/al ueRange(type = Val ueRangeType. FROM PLANNI NG_ENTI TY_PROPERTY, pl anni ngEntityProperty ="
publ i ¢ Room get Room() {

return room

publ i c Li st <Room> get Possi bl eRoonli st () {
return get Course().get Teacher (). get Possi bl eRoonli st ();
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Never use this to enforce a soft constraint (or even a hard constraint when the problem might not
have a feasible solution). For example: Unless there is no other way, a teacher can not teach in
a room that does not belong to his department. In this case, the teacher should not be limited in
his room value range (because sometimes there is no other way).

A planning entity should not use other planning entities to determinate its value range. That would
only try to make it solve the planning problem itself and interfere with the optimization algorithms.

4.3.4.2.3. val ueRange undefined

Leaves the value range undefined. Some optimization algorithms do not support this value range.

@ anni ngVari abl e
@/al ueRange(type = Val ueRangeType. UNDEFI NED)
publ i c Row get Row() {

return row,

4.3.4.2.4. Combining ValueRanges

Value ranges can be combined, for example:

@l anni ngVari abl e(...)
@/al ueRanges( {
@/al ueRange(type = Val ueRangeType. FROM SOLUTI ON_PROPERTY, sol uti onPro
@/al ueRange(type = Val ueRangeType. FROM PLANNI NG_ENTI TY_PROPERTY, pl an
public Car getCar() {
return car;
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4.3.4.2.5. A val ueRange Which includes other planning entities
In some cases (such as in chaining), the planning value itself is sometimes another planning entity.

In such cases, it's often required that a planning entity is only eligible as a planning value if it's
initialized:

@ anni ngVari abl e

@/al ueRange(type = Val ueRangeType. FROM SOLUTI ON_PROPERTY, sol uti onProperty = "copList",

public Cop getPartner() {
return partner;

TODO: this is likely to change in the future (jira [https://issues.jboss.org/browse/JBRULES-3408]),
as it should support specific planning variable initialization too.

4.3.4.2.6. Chained

Some use cases, such as TSP and Vehicle Routing, require chaining. This means the planning
entities point to each other and form a chain.

A planning variable that is chained either:

« Directly points to a planning fact, which is called an anchor.

» Points to another planning entity with the same planning variable, which recursively points to
an anchor.

Here are some example of valid and invalid chains:
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Chain principles

Multiple Anchor without Initialzed entity Multiple direct
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Every initialized planning entity is part of an open-ended chain that begins from an anchor.

A valid model

« Achainisn

means that:

ever a loop. The tail is always open.

« Every chain always has exactly 1 anchor. The anchor is a problem fact, never a planning entity.

* Achain is never a tree, it is always a line. Every anchor or planning entity has at most 1 trailing

planning en

* Every initial

tity.

ized planning entity is part of a chain.

« An anchor with no planning entities pointing to it, is also considered a chain.

A

Warning

A planning problem instance given to the Sol ver must be valid.
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@ Note

If your constraints dictate a closed chain, model it as an open-ended chain (which
is easier to persist in a database) and implement a score constraint for the last
entity back to the anchor.

The optimization algorithms and build-in MoveFact or y's do chain correction to guarantee that the
model stays valid:

Chain correction

Before After
(anchor| [anchor] (anchor| [anchor] (anchor| [anchor]
[ entity | [ entity | [ entity ] [ entity ] _entity ] [ entity ]

(entity ) (eniiy)

Changing 1 planning variable may inflict up to 2 chain corrections.

A Warning

A custom Move implementation must leave the model in a valid state.

For example, in TSP the anchor is a Doni ci | e (in vehicle routing it is the vehicle):

public class Domicile ... inplenments Appearance {
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public City getCity() {...}

The anchor (which is a problem fact) and the planning entity implement a common interface, for
example TSP's Appear ance:

public interface Appearance {

City getGity();

That interface is the return type of the planning variable. Furthermore, the planning variable is
chained. For example TSP's Vi si t (in vehicle routing it is the customer):

@ anni ngEntity
public class Visit ... inplenents Appearance {

public City getCity() {...}

@l anni ngVari abl e(chai ned = true)
@/al ueRanges( {
@/al ueRange(type Val ueRangeType. FROM _SOLUTI ON_PROPERTY, sol uti onProperty "domi ¢
@/al ueRange(type = Val ueRangeType. FROM SOLUTI ON_PROPERTY, sol utionProperty = "visit
excl udeUni nitializedPl anni ngEntity = true)})
publ i ¢ Appearance get Previ ousAppearance() {
return previousAppear ance;

public void setPrevi ousAppear ance( Appear ance previ ousAppear ance) {
t hi s. previ ousAppear ance = previ ousAppear ance;

Notice how 2 value ranges need to be combined:

* The value range which holds the anchors, for example doni ci | eLi st .
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* The value range which holds the initialized planning entities, for example vi si t Li st. This
always requires an enabled excl udeUni ni ti al i zedPl anni ngEnti ty, because an initialized
entity should never point to an uninitialized entity: that would break the principle that every chain
must have an anchor.

4.3.4.3. Planning value strength

Some optimization algorithms work more efficiently if they have an estimation of which planning
values are stronger, which means they are more likely to satisfy a planning entity. For example: in
bin packing bigger containers are more likely to fit an item and in course scheduling bigger rooms
are less likely to break the student capacity constraint.

Therefore, you can set a st r engt hConpar at or C ass to the @ anni ngVvari abl e annotation:

@ anni ngVari abl e(strengt hConparat or Cl ass = C oudConput er St r engt hConpar at or. cl ass)
I/
publ i ¢ C oudConput er get Conmputer() {

I/

public class C oudConputer Strengt hConparator inplenents Conparat or <C oudConput er > {

public int conpare(d oudConputer a, Cl oudConputer b) {
return new Conpar eToBui | der ()
.append(a. getMul tiplicand(), b.getMiltiplicand())
.append(b. getCost(), a.getCost()) // Descending (but this
i s debat abl e)
. append(a.getld(), b.getld())
.toCompari son();

@ Note
If you have multiple planning value classes in the same value range, the
st rengt hConpar at or Cl ass needs to implement a Conparat or of a common
superclass (for example Conpar at or <Obj ect >) and be able to handle comparing
instances of those different classes.

Alternatively, you can also set a strengt hWi ght Fact oryCd ass to the @l anni ngVari abl e
annotation, so you have access to the rest of the problem facts from the solution too:
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@l anni ngVari abl e(strengt hWei ght Fact oryCl ass = RowStrengt hWei ght Fact ory. cl ass)
I/
publi ¢ Row get Row() {

Il

public interface PlanningVal ueStrengthWei ght Factory {

Conpar abl e creat eStrengt hWei ght (Sol uti on sol uti on, Obj ect pl anni ngVal ue);

public class RowStrengthWi ght Factory inpl enments Pl anni ngVal ueStrengt hWei ght Factory {

publ i ¢ Compar abl e creat eStrengt hWi ght (Sol uti on sol ution, Object planningVal ue) {
NQueens nQueens = (NQueens) sol ution;
Row row = (Row) pl anni ngVal ue;
i nt di stanceFronmM ddl e = cal cul at eDi st anceFromM ddl e( nQueens. get N(), row. getlndex());
return new RowStrengt hWei ght (row, distanceFronmM ddl e);

I/
public static class RowStrengthWi ght inplenments Conparabl e<RowSt r engt hWei ght > {

private final Row row
private final int distanceFronM ddl e;

publ i ¢ RowsSt rengt hWei ght (Row row, int distanceFronM ddle) {
this.row = row,
thi s. di stanceFronM ddl e = di st anceFr oniM ddl e;

public int conpareTo(RowSt rengt hWi ght other) {
return new ConpareToBui |l der ()
/1 The stronger rows have a | ower distance to the middle
. append( ot her. di st anceFronM ddl e, di stanceFronM ddle) //
Decreasing (but this is debatable)
. append(row. getl ndex(), other.row. getlndex())
.toCompari son();
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None of the current planning variable state in any of the planning entities may be used to compare
planning values. They are likely to be nul I anyway. For example, None of the r ow variables of
any Queen may be used to determine the strength of a Row.

4.3.5. Planning problem and planning solution

4.3.5.1. Planning problem instance

A dataset for a planning problem needs to be wrapped in a class for the Sol ver to solve. You
must implement this class. For example in n queens, this in the NQueens class which contains a
Col umm list, a Rowlist and a Queen list.

A planning problem is actually a unsolved planning solution or - stated differently - an uninitialized
Sol ut i on. Therefor, that wrapping class must implement the Sol ut i on interface. For example in
n queens, that NQueens class implements Sol ut i on, yet every Queen in a fresh NQueens class is
not yet assigned to a Row (their r ow property is nul I ). So it's not a feasible solution. It's not even
a possible solution. It's an uninitialized solution.

4.3.5.2. The sol ution interface

You need to present the problem as a Sol ut i on instance to the Sol ver. So you need to have a
class that implements the Sol uti on interface:

public interface Sol ution<S extends Score> {

S get Score();
voi d set Score(S score);

Col | ecti on<? extends Object> getProbl enfFacts();

Sol uti on<S> cl oneSol ution();

For example, an NQueens instance holds a list of all columns, all rows and all Queen instances:

public class NQueens inplenments Sol uti on<Si npl eScore> {
private int n;
/1 Problemfacts

private List<Colum> col ummLi st;
private List<Row> rowList;

58



Planning problem and planning solution

/1 Planning entities
private List<Queen> queenLi st;

Il

4.3.5.3. The getScore and setScore methods

A Sol uti on requires a score property. The score property is nul | if the Sol uti on is uninitialized
or if the score has not yet been (re)calculated. The scor e property is usually typed to the specific
Scor e implementation you use. For example, NQueens uses a Si npl eScor e:

public class NQueens inplenents Sol uti on<Si npl eScore> {

private SinpleScore score;

public Sinmpl eScore getScore() {
return score;

public void set Score(Si nmpl eScore score) {
this.score = score;

Il

Most use cases use a Har dAndSof t Scor e instead:

public class Curricul unCourseSchedul e i npl enents Sol uti on<Har dAndSoft Scor e> {
private HardAndSoft Score score;

publ i c Har dAndSoft Score get Score() {
return score;

public void set Score(Har dAndSoft Score score) {
this.score = score;

Il
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See the Score calculation section for more information on the Scor e implementations.
4.3.5.4. The getProblemFacts method

The method is only used if Drools is used for score calculation. Other score directors do not use it.

All objects returned by the get Pr obl enFact s() method will be asserted into the Drools working
memory, so the score rules can access them. For example, NQueens just returns all Col unm and
Row instances.

public Collection<? extends Object> getProbl enfFacts() ({
Li st <Cbj ect> facts = new ArraylLi st <Obj ect >();
facts.addAl | (col umLi st);
facts.addAl | (rowlist);
/[l Do not add the planning entity's (queenList) because that will be
done automatically
return facts;

All planning entities are automatically inserted into the Drools working memory. Do not add them
in the method get Pr obl enfFact s() .

The method get Pr obl enfFact s() is not called much: at most only once per solver phase per
solver thread.

4.3.5.5. Cached problem fact

A cached problem fact is a problem fact that doesn't exist in the real domain model, but is
calculated before the Sol ver really starts solving. The method get Probl enfact s() has the
chance to enrich the domain model with such cached problem facts, which can lead to simpler
and faster score constraints.

For example in examination, a cached problem fact Topi cConfl i ct is created for every 2 Topi c's
which share at least 1 St udent .

public Collection<? extends Cbject> getProbl enfFacts() {
Li st <Cbj ect> facts = new ArraylLi st <Qbj ect >();
Il
facts.addAl | (cal cul at eTopi cConflictList());
Il
return facts;

private List<TopicConflict> calcul ateTopicConflictList() {
Li st <Topi cConflict> topicConflictList = new ArrayLi st <Topi cConflict>();
for (Topic leftTopic : topiclList) {
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for (Topic rightTopic : topicList) {
if (leftTopic.getld() < rightTopic.getld()) {
int studentSize = 0;
for (Student student : |eftTopic.getStudentList()) {
if (rightTopic.getStudentList().contains(student)) {
st udent Si ze++;

}
if (studentSize > 0) {

topi cConflictList.add(new Topi cConflict(leftTopic, rightTopic, student:

}

return topicConflictList;

Any score constraint that needs to check if no 2 exams have a topic which share a student are
being scheduled close together (depending on the constraint: at the same time, in a row or in the
same day), can simply use the Topi cConfli ct instance as a problem fact, instead of having to
combine every 2 St udent instances.

4.3.5.6. The cloneSolution method

Most optimization algorithms use the cl oneSol uti on() method to clone the solution each time
they encounter a new best solution (so they can recall it later) or to work with multiple solutions
in parallel.

The NQueens implementation only deep clones all Queen instances. When the original solution is
changed during planning, by changing a Queen, the clone stays the same.

| **
* Clone will only deep copy the { #queenLi st}.
*/
publ i ¢ NQueens cl oneSol ution() {
NQueens cl one = new NQueens();
clone.id = id;
clone.n = n;
cl one. col umLi st = col ummLi st ;
cl one.rowLi st = rowli st;
Li st <Queen> cl onedQueenLi st = new ArrayLi st <Queen>(queenLi st. size());
for (Queen queen : queenList) ({
cl onedQueenlLi st . add( queen. cl one());
}
cl one. queenLi st = cl onedQueenLi st ;
cl one. score = score;
return clone;
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The cl oneSol ution() method should only deep clone the planning entities. Notice that the
problem facts, such as Col utm and Row are normally not cloned: even their Li st instances are
not cloned.

@ Note
If you were to clone the problem facts too, then you'd have to make sure that the
new planning entity clones also refer to the new problem facts clones used by the
solution. For example, if you 'd clone all Rowinstances, then each Queen clone and
the NQueens clone itself should refer to the same set of new Row clones.

4.3.5.7. Build an uninitialized solution

Build a Sol ut i on instance to represent your planning problem, so you can set it on the Sol ver
as the planning problem to solve. For example in n queens, an NQueens instance is created with
the required Col uim and Row instances and every Queen set to a different col unm and every r ow
settonul | .

private NQueens createNQueens(int n) {
NQueens nQueens = new NQueens();
nQueens. set | d(OL);
nQueens. set N(n) ;
Li st <Col um> col ummLi st = new ArrayLi st <Col utm>(n);
for (int i =0; i <n; i++) {
Col um colum = new Col um();
colum. setld((long) i);
col um. set | ndex(i);
col ummLi st . add( col um) ;
}
nQueens. set Col ummLi st (col ummLi st) ;
Li st <Row> rowLi st = new ArrayLi st <Row>(n);
for (int i =0; i <n; i++) {
Row row = new Row();
row.setld((long) i);
row. setl ndex(i);
rowLi st. add(row);
}
nQueens. set RowLi st (rowli st);
Li st <Queen> queenLi st = new ArraylLi st <Queen>(n);
long id = 0;
for (Columm columm : columList) {
Queen queen = new Queen();
queen. set1d(id);
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i d++;
gueen. set Col umm( col umm) ;
/'l Notice that we | eave the Pl anni ngVari abl e properties (row) on null
gueenlLi st . add(queen);
}
nQueens. set QueenLi st (queenLi st);
return nQueens;

A°-B C D
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Figure 4.1. Uninitialized solution for the 4 queens puzzle

Usually, most of this data comes from your data layer, and your Sol uti on implementation just
aggregates that data and creates the uninitialized planning entity instances to plan:

private void createlectureList(Curricul umCourseSchedul e schedul e) {
Li st <Cour se> courselLi st = schedul e. get Cour seLi st();
Li st <Lecture> | ectureList = new ArraylLi st <Lect ure>(courseList.size());
for (Course course : courselist) {
for (int i = 0; i < course.getLectureSize(); i++) {
Lecture lecture = new Lecture();
| ecture. set Course(course);
| ecture. set Lecturel ndexl nCourse(i);
/1 Notice that we |eave the PlanningVariable properties
(period and room) on null
| ecturelList.add(lecture);

}

schedul e. set Lect ureLi st (I ectureList);

4.4. Use the sol ver

4.4.1. The Solver interface

A Sol ver implementation will solve your planning problem.
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public interface Solver {
voi d set Pl anni ngPr obl en{ Sol uti on pl anni ngPr obl em ;
voi d sol ve();
Sol uti on get Best Sol uti on();

Il

A Sol ver can only solve 1 planning problem instance at a time. A Sol ver should only be accessed
from a single thread, except for the methods that are specifically javadocced as being thread-safe.
It's build with a Sol ver Fact ory, do not implement or build it yourself.

4.4.2. Solving a problem

Solving a problem is quite easy once you have:

e A Sol ver build from a solver configuration
* A Sol uti on that represents the planning problem instance

Just set the planning problem, solve it and extract the best solution:

sol ver. set Pl anni ngPr obl en( pl anni ngPr obl en) ;
sol ver. sol ve();
Sol ution best Sol uti on = sol ver. get Best Sol uti on();

For example in n queens, the method get Best Sol uti on() will return an NQueens instance with
every Queen assigned to a Row.

A°B C D

g

g

g

Ww N = O

g

Figure 4.2. Best solution for the 4 queens puzzle in 8 ms (also an optimal
solution)
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The sol ve() method can take a long time (depending on the problem size and the solver
configuration). The Sol ver will remember (actually clone) the best solution it encounters during
its solving. Depending on a number factors (including problem size, how much time the Sol ver
has, the solver configuration, ...), that best solution will be a feasible or even an optimal solution.

repeated planning

4.4.3. Environment mode: Are there bugs in my code?

The environment mode allows you to detect common bugs in your implementation. It does not
affect the logging level.

You can set the environment mode in the solver configuration XML file:

<sol ver >
<envi r onnent Mode>DEBUG</ envi r onnent Mode>

</ sol ver >

A solver has a single Randominstance. Some solver configurations use the Randominstance a lot
more than others. For example simulated annealing depends highly on random numbers, while
tabu search only depends on it to deal with score ties. The environment mode influences the seed
of that Randominstance.

There are 4 environment modes:

4.4.3.1. TRACE

The trace mode is reproducible (see the reproducible mode) and also turns on all assertions (such
as assert that the incremental score calculation is uncorrupted) to fail-fast on rule engine bugs.
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The trace mode is very slow (because it doesn't rely on delta based score calculation).

4.4.3.2. DEBUG

The debug mode is reproducible (see the reproducible mode) and also turns on most assertions
(such as assert that an undo Move's score is the same as before the Move) to fail-fast on a bug
in your Move implementation, your score rule, ...

The debug mode is slow.

It's recommended to write a test case which does a short run of your planning problem with debug
mode on.

4.4.3.3. REPRODUCIBLE (default)

The reproducible mode is the default mode because it is recommended during development. In
this mode, 2 runs in the same Planner version will execute the same code in the same order.
Those 2 runs will have the same result, except if they rely on time based termination and
they have a sufficiently large difference in allocated CPU time. This allows you to consistently
reproduce bugs. It also allows you to benchmark certain refactorings (such as a score constraint
optimization) fairly across runs.

The reproducible mode is not much slower than the production mode. If your production
environment requires reproducibility, use it in production too.

In practice, this mode uses the default random seed, and it also disables certain concurrency
optimizations (such as work stealing).

4.4.3.4. PRODUCTION

The production mode is the fastest and the most robust, but not reproducible. It is recommended
for a production environment.

The random seed is different on every run, which makes it more robust against an unlucky random
seed. An unlucky random seed gives a bad result on a certain data set with a certain solver
configuration. Note that in most use cases the impact of the random seed is relatively low on the
result (even with simulated annealing). An occasional bad result is far more likely to be caused
by another issue (such as a score trap).

4.4.4. Logging level: What is the soiver doing?
The best way to illuminate the black box that is a Sol ver, is to play with the logging level:

* ERROR: Log errors, except those that are thrown to the calling code as a Runt i neExcept i on.

E] Note
If an error happens, Planner normally fails fast: it throws a subclass of
Runt i meExcepti on with a detailed message to the calling code. It does not
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log it as an error itself to avoid duplicate log messages. Unless the calling
code explicitly catches and eats that Runt i meExcepti on, a Thread's default
Except i onHandl er will log it as an error anyway. Meanwhile, the code is
disrupted from doing further harm or obfuscating the error.

WARN: Log suspicious circumstances.

INFO: Log every phase and the solver itself.

DEBUG: Log every step of every phase.

TRACE: Log every move of every step of every phase.

@ Note
Turning on TRACE logging, will slow down performance considerably: it's often
4 times slower. However, it's invaluable during development to discover a
bottleneck.

For example, set it to DEBUG logging, to see when the phases end and how fast steps are taken:

INFO Solving started: time spend (0), score (null), new best score (null),
random seed (0).
DEBUG Step index (0), time spend (1), score (0), initialized planning entity

(col 2@ ow0) .
DEBUG Step index (1), tinme spend (3), score (0), initialized planning entity
(col 1@ ow2) .
DEBUG Step index (2), tinme spend (4), score (0), initialized planning entity
(col 3@ owg) .
DEBUG Step index (3), tine spend (5), score (-1), initialized planning

entity (col 0@ owl).
I NFO Phase constructionHeuristic finished: step total (4), time spend (6), best

score (-1).

DEBUG Step index (0), time spend (10), score (-1), best score (-1),
accept ed/ sel ected nmove count (12/12) for picked step (coll@ow2 => row3).
DEBUG Step index (1), time spend (12), score (0), new best score (0),

accept ed/ sel ected nmove count (12/12) for picked step (col 3@ow3 => row2).

I NFO Phase | ocal Search ended: step total (2), tine spend (13), best score (0).
INFO Solving ended: tine spend (13), best score (0), average cal cul ate count
per second (4846).

All time spends are in milliseconds.

Everything is logged to SLF4J [http://www.slf4j.org/], which is a simple logging facade that
can delegate any log to Logback, Apache Commons Logging, Log4j or java.util.logging. Add a
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dependency to the logging adaptor for your logging framework of choice. If you're not using any
logging framework yet, you can use Logback by adding this Maven dependency:

<dependency>
<gr oupl d>ch. qos. | ogback</ gr oupl d>
<artifactld>l ogback-classic</artifactld>
<ver si on>1. x</ ver si on>

</ dependency>

Configure the logging level on the package or g. dr ool s. pl anner . For example:

In Logback, configure it in your | ogback. xm file:

<configuration>

<l ogger nanme="org. drool s. planner" | evel ="debug"/>

<confi guration>

In Log4J, configure it in your | og4j . xm file:

<l og4j:configuration xm ns:|og4j ="http://]akarta.apache.org/l og4j/">
<cat egory nane="org. drool s. pl anner">

<priority val ue="debug" />
</ cat egory>

</l og4j: configuration>
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Chapter 5. Score calculation

5.1. Score terminology

5.1.1. What is a score?

Every initialized Sol uti on has a score. That score is an objective way to compare 2 solutions:
the solution with the higher score is better. The Sol ver aims to find the Sol ut i on with the highest
Scor e of all possible solutions. The best solution is the Sol uti on with the highest Scor e that
Sol ver has encountered during solving, which might be the optimal solution.

Planner cannot automatically know which Sol ut i on is best for your business, so you need to tell
it how to calculate the score of a given Sol uti on according to your business needs. There are
multiple score techniques that you can use and combine.

5.1.2. Positive and negative constraints

All score techniques are based on constraints. Such a constraint can be a simple pattern (such as
Maximize the apple harvest in the solution) or a more complex pattern. a positive constraint is a
constraint you're trying to maximize. A negative constraint is a constraint you're trying to minimize.
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Positive constraints

Maximize apples

Maximize @
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Optimal solution

Negative constraints

Minimize fuel usage

Minimize B

Optimal solution

Notice in the image above, that the optimal solution always has the highest score, regardless if
the constraints are positive or negative.

Most planning problems have only negative constraints and therefore have a negative score. In
that case, the score is usually the sum of the weight of the negative constraints being broken, with
a perfect score of 0. This explains why the score of a solution of 4 queens is the negative (and
not the positive!) of the number of queen couples which can attack each other.

Negative and positive constraints can be combined, even in the same score level.

@ Note

Don't presume your business knows all its score constraints in advance. Expect
score constraints to be added or changed after the first releases.

When a constraint activates (because the negative constraint is broken or the positive constraint
is fulfilled) on a certain planning entity set, it is called a constraint occurrence.
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5.1.3. Score constraint weighting

Not all score constraints are equally important. If breaking one constraint is equally bad as breaking
another constraint x times, then those 2 constraints have a different weight (but they are in the
same score level). For example in vehicle routing, you can make 2 "unhappy driver" constraint
occurrences count as much as 1 "fuel tank usage" constraint occurrence:

Score weighting

l‘:" — 1
2 W Minimize driver unhappiness
= (B 2 Minimize fuel usage
\
U l PR
1 unhappy driver is as bad R
as 2 fuel usages ——
e
® B " ")
Y < I
=y ey

Optimal solution

Score weighting is often used in use cases where you can put a price tag on everything. In that
case, the positive constraints maximize revenue and the negative constraints minimize expenses:
together they maximize profit. Alternatively, score weighting is also often used to create social
fairness. For example: nurses that request a free day on New Year's eve pay a higher weight
than on a normal day.

The weight of a constraint occurrence can be dynamically based on the planning entities involved.
For example in cloud balance: the weight of the soft constraint occurrence for an active Conput er
is the cost of that Conput er.

5.1.4. Score level

Sometimes a score constraint outranks another score constraint, no matter how many times the
other is broken. In that case, those score constraints are in different levels. For example: a nurse
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cannot do 2 shifts at the same time (due to the constraints of physical reality), this outranks nurse
happiness constraints.

Most use cases have only 2 score levels: hard and soft. When comparing 2 scores, they are
compared lexicographically: the first score level gets compared first. If those differ, the others
score levels are ignored. For example: a score that breaks 0 hard constraints and 1000000 soft
constraints is better than a score that breaks 1 hard constraint and 0 soft constraints.

Score levels

First minimize overloaded truck axles,
then minimize fuel usage
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Score levels often employ score weighting per level. In such case, the hard constraint level
usually makes the solution feasible and the soft constraint level maximizes profit by weighting the
constraints on price.

score trap
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as if it had only 1 CPU too little. This way, there is an incentive to move a Pr ocess
with 6 CPU or less away from that Computer.

3 or more score levels is supported. For example: a company might decide that profit outranks
employee satisfaction (or visa versa), while both are outranked by the constraints of physical
reality.

5.1.5. Pareto scoring (AKA multi-objective optimization scoring)

Far less common is the use case of pareto optimization, which is also known under the more
confusing term multi-objective optimization. In pareto scoring, score constraints are in the same
score level, yet they are not weighted against each other. When 2 scores are compared, each
of the score constraints are compared individually and the score with the most dominating score
constraints wins. Pareto scoring can even be combined with score levels and score constraint
weighting.

Consider this example with positive constraints, where we want to get the most apples and
oranges. Since it's impossible to compare apples and oranges, we can't weight them against each
other. Yet, despite that we can't compare them, we can state that 2 apples are better then 1 apple.
Similarly, we can state that 2 apples and 1 orange are better than just 1 orange. So despite our
inability to compare some Scores conclusively (at which point we declare them equal), we can
find a set of optimal scores. Those are called pareto optimal.
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Pareto optimization scoring

é = ?. Maximize apples and oranges harvest

-G

1 apple is worth an unknown
number of oranges

1 orange is worth an unknown
number of apples

—

///
<

Optimal solution A

Don't compare apples and oranges

Optimal solution B

0 =

Only pareto optimal solutions
are shown to the user
User decides between A and B

Scores are considered equal far more often. It's left up to a human to choose the better out of a
set of best solutions (with equal scores) found by Planner. In the example above, the user must
choose between solution A (3 apples and 1 orange) and solution B (1 apples and 6 oranges). It's
guaranteed that Planner has not found another solution which has more apples or more oranges
or even a better combination of both (such as 2 apples and 3 oranges).

To implement pareto scoring in Planner, implement a custom ScoreDefinition and Score.

Future versions will provide out-of-the-box support.
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5.1.6. The score interface

A score is represented by the Scor e interface, which naturally extends Conpar abl e:

public interface Score<...> extends Conparabl e<...> {

The Scor e implementation to use depends on your use case. Your score might not efficiently fit in
a single doubl e value. Planner has several build-in Score implementations, but you can implement
a custom Score too. Most use cases will just use the build-in Har dAndSof t Scor e.

The Score implementation (for example Def aul t Har dAndSoft Score) must be the same
throughout a Sol ver runtime. The Scor e implementation is configured in the solver configuration
as a ScoreDefinition:

<scoreDi rector Fact ory>
<scor eDefiniti onType>HARD AND SOFT</scor eDefinitionType>

</ scoreDirectorFactory>

Based on your score constraints and score level requirements, you'll choose a certain
ScoreDefinition:

5.2. Choose a Score definition

5.2.1. SimpleScore

The Si npl eScor eDef i ni ti on defines the Scor e as a Si npl eScor e which has a single i nt value,
for example - 123. It has a single score level.

<scoreDi rect or Fact ory>
<scoreDefinitionType>SI MPLE</ scor eDefi ni ti onType>

</ scoreDirectorFact ory>

Variants:

* Si npl eDoubl eScore: Uses a doubl e value instead of an int value. Configure it with
scoreDefinitionType S| MPLE_DOUBLE.
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5.2.2. HardAndSoftScore (recommended)

The Har dAndSof t Scor eDef i ni ti on defines the Scor e as a Har dAndSof t Scor e which has a hard
i nt value and a softi nt value, for example - 123har d/ - 456sof t . It has 2 score levels (hard and
soft).

<scoreDi rector Fact ory>
<scoreDefinitionType>HARD AND SOFT</scoreDefi nitionType>

</ scoreDirectorFactory>

Variants:

e Har dAndSof t LongScore: Uses |ong values instead of int values. Configure it with
scoreDefinitionType HARD_AND_SOFT_LONG

5.2.3. Implementing a custom Score

The Scor eDefi ni ti on interface defines the score representation.

To implement a custom Score, you'll also need to implement a custom ScoreDefinition.
Extend Abst r act Scor eDef i ni ti on (preferable by copy pasting Har dAndSof t Scor eDefi ni ti on
or Si npl eScor eDef i ni ti on) and start from there.

Then hook you custom Scor eDef i ni ti on in your Sol ver Confi g. xm :

<scoreDi rect or Fact ory>

efinitionCl ass>org. drool s. pl anner. exanpl es. ny. score. definition. M/Scor eDefinition</
scoreDefinitionC ass>

</ scoreDirectorFactory>

5.3. Calculate the score

5.3.1. Score calculation types

There are several ways to calculate the Scor e of a Sol uti on:

« Simple Java score calculation: implement a single Java method
* Incremental Java score calculation: implement multiple Java methods

» Drools score calculation: implement score rules
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Every score calculation type can use any Score definition. For example, simple score calculation
can output a Har dAndSof t Scor e.

All score calculation types are Object Orientated and can reuse existing Java code.

5.3.2. Simple Java score calculation

A simple way to implement your score calculation in Java.

« Advantages:
» Plain old Java: no learning curve
» Opportunity to delegate score calculation to an existing code base or legacy system
» Disadvantages:
» Slower and less scalable
» Because there is no incremental score calculation

Just implement one method of the interface Si npl eScor eCal cul at or :

public interface SinpleScoreCal cul ator<Sol extends Sol ution> {

Scor e cal cul at eScore(Sol sol ution);

For example in n queens:

public class NQueensSi npl eScor eCal cul ator i npl enents Si npl eScor eCal cul at or <NQueens> {

publi c Si mpl eScore cal cul at eScor e( NQueens nQueens) {
int n = nQueens.getN();
Li st <Queen> queenLi st = nQueens. get QueenLi st();

int score = O;
for (int i =0; i <n; i++) {
for (int j =1 +1; j <n; j++) {
Queen | ef t Queen = queenList.get(i);
Queen right Queen = queenList.get(j);
if (leftQueen.getRowm) != null && rightQueen.getRowm) != null) {
if (leftQueen.get Rowl ndex() == right Queen. get Row ndex()) {
score--;
}
if (leftQueen.getAscendi nghi agonal I ndex() == ri ght Queen. get Ascendi ngDi agonz
score--;

77



Chapter 5. Score calculation

}
i f (IeftQueen. get Descendi nghi agonal | ndex() == ri ght Queen. get Descendi ngDhi agc¢
score--;

}

return Defaul tSinpl eScore.val ued (score);

Configure it in your solver configuration:

<scoreDi rector Fact ory>
<scoreDefinitionType>...</scoreDefinitionType>

ner . exanpl es. nqueens. sol ver. scor e. NQueensSi npl eScor eCal cul at or </
si npl eScor eCal cul at or Cl ass>
</ scoreDirector Fact ory>

Alternatively, build a Sinpl eScoreCal cul ator instance at runtime and set it with the
programmatic API:

sol ver Fact ory. get Sol ver Confi g() . get ScorebDi r ect or Fact or yConfi g. set Si npl eScor eCal cul at or (si

5.3.3. Incremental Java score calculation
A way to implement your score calculation incrementally in Java.

* Advantages:
» Very fast and scalable
¢ Currently the fastest if implemented correctly
» Disadvantages:
+ Hard to write

« A scalable implementation heavily uses maps, indexes, ... (things the Drools rule engine
can do for you)

¢ You have to learn, design, write and improve all these performance optimizations yourself

» Hard to read
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¢ Regular score constraint changes can lead to a high maintenance cost
Implement all the methods of the interface I ncr enent al Scor eCal cul at or and extend the class
Abstract | ncrenment al ScoreCal cul ator:
public interface |ncrenmental ScoreCal cul at or<Sol extends Sol ution> {

voi d reset Wr ki ngSol uti on(Sol wor ki ngSol uti on);

voi d beforeEntityAdded(Object entity);

void afterEntityAdded(Object entity);

voi d beforeAl |l Vari abl esChanged( Qoj ect entity);

voi d afterAl | Vari abl esChanged( Obj ect entity);

voi d bef oreVari abl eChanged(Obj ect entity, String variabl eNane);

voi d afterVari abl eChanged(Obj ect entity, String variabl eNane);

voi d beforeEntityRenpoved(Cbject entity);

voi d afterEntityRenoved(Chject entity);

Scor e cal cul at eScore();

For example in n queens:

public class NQueensAdvancedl ncrenent al Scor eCal cul at or ext ends Abstractl| ncrenent al Scor eCal cul at

private Map<Integer, List<Queen>> row ndexMap;
private Map<Integer, List<Queen>> ascendi ngDi agonal | ndexMap;
private Map<Integer, List<Queen>> descendi ngDi agonal | ndexMap;

private int score;

public void resetWrki ngSol uti on(NQueens nQueens) {
int n = nQueens. getN();
rom ndexMap = new HashMap<I nt eger, List<Queen>>(n);
ascendi nghi agonal | ndexMap = new HashMap<I nt eger, List<Queen>>(n * 2);
descendi nghi agonal | ndexMap = new HashMap<I nt eger, List<Queen>>(n * 2);
for (int i =0; i <n; i++) {
row ndexMap. put (i, new ArrayLi st <Queen>(n));
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ascendi ngbhi agonal | ndexMap. put (i, new ArrayLi st <Queen>(n));
descendi ngDi agonal | ndexMap. put (i, new ArrayLi st <Queen>(n));
if (i '=0) {
ascendi ngDi agonal | ndexMap. put (n - 1 + i, new ArrayLi st<Queen>(n));
descendi nghi agonal | ndexMap. put ((-i), new ArraylLi st <Queen>(n));

}

score = 0;

for (Queen queen : nQueens. get QueenList()) {
i nsert(queen);

public void beforeEntityAdded(hject entity) {
/1 Do not hing

public void afterEntityAdded(Object entity) {
i nsert((Queen) entity);

public void beforeAll Vari abl esChanged(Cbj ect entity) {
retract ((Queen) entity);

public void afterAl |l Vari abl esChanged(Chj ect entity) {
i nsert((Queen) entity);

public void beforeVariabl eChanged(Cbj ect entity, String variabl eNane) {
retract ((Queen) entity);

public void afterVariabl eChanged(Obj ect entity, String variabl eName) {
i nsert((Queen) entity);

public void beforeEntityRenoved(Ohject entity) {
retract ((Queen) entity);

public void afterEntityRenoved(Object entity) {
/1 Do not hing

private void insert(Queen queen) {
Row row = queen. get Row() ;
if (row!=null) {
int rowl ndex = queen. get Row ndex();
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Li st <Queen> row ndexLi st = row ndexMap. get (r ow ndex) ;

score -= rowl ndexLi st. si ze();

row ndexLi st. add( queen);

Li st <Queen> ascendi ngDi agonal | ndexLi st = ascendi ngDi agonal | ndexMap. get (queen. get Asc
score -= ascendi ngDi agonal | ndexLi st . si ze();

ascendi ngDi agonal | ndexLi st. add( queen);

Li st <Queen> descendi ngDi agonal | ndexLi st = descendi ngDi agonal | ndexMap. get (queen. get [
score -= descendi nghi agonal | ndexLi st . si ze();

descendi nghi agonal | ndexLi st. add( queen) ;

private void retract(Qeen queen) {

Row row = queen. get Row() ;

if (row!=null) {
Li st <Queen> r owl ndexLi st = row ndexMap. get (queen. get Row ndex());
row ndexLi st . renove( queen);
score += rowl ndexLi st. si ze();
Li st <Queen> ascendi ngDi agonal | ndexLi st = ascendi ngDi agonal | ndexMap. get (queen. get Asc
ascendi ngDi agonal | ndexLi st . renove( queen);
score += ascendi ngDi agonal | ndexLi st . si ze();
Li st <Queen> descendi ngDi agonal | ndexLi st = descendi nghi agonal | ndexMap. get (queen. get [
descendi ngDi agonal | ndexLi st. renove(queen);
score += descendi ngDi agonal | ndexLi st . si ze();

public Sinmpl eScore cal cul ateScore() ({
return Defaul tSinpl eScore.val ued (score);

Configure it in your solver configuration:

<scorebDirect or Fact ory>
<scoreDefinitionType>...</scoreDefinitionType>

r e. NQueensAdvanced! ncr enent al Scor eCal cul at or </
i ncrement al Scor eCal cul at or Cl ass>
</ scoreDirectorFact ory>

Optionally, to get better output when the Increnental ScoreCalculator s
corrupted in environment Mode DEBUG or TRACE, you can overwrite the method
bui | dScor eCor r upt i onAnal ysi s from Abstract | ncr enent al Scor eCal cul at or .
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5.3.4. Drools score calculation

5.3.4.1. Overview

Implement your score calculation using the Drools rule engine. Every score constraint is written
as one or more score rules.

» Advantages:
» Incremental score calculation for free

« Because most DRL syntax uses forward chaining, it does incremental calculation without
any extra code

» Score constraints are isolated as separate rules
< Easy to add or edit existing score rules
* Flexibility to augment your score constraints by
» Defining them in decision tables
* Excel (XLS) spreadsheet
* Guvnor WebUI
e Translate them into natural language with DSL
« Store and release in the Guvnor repository
» Performance optimizations in future versions for free
* In every release, the Drools rule engine tends to become faster.
« Disadvantages:
e DRL learning curve
» Usage of DRL

« Polyglot fear can prohibit the use of a new language such as DRL in some organizations
5.3.4.2. Drools score rules configuration
There are several ways to define where your score rules live.
5.3.4.2.1. A scoreDrl resource on the classpath

This is the easy way: the score rule live in a DRL file which is a resource on the classpath. Just
add your score rules *. dr file in the solver configuration:
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<scoreDirector Fact ory>
<scoreDefinitionType>...</scoreDefinitionType>
<scoreDr| >/ org/ drool s/ pl anner/ exanpl es/ nqueens/ sol ver/
nQueensScor eRul es. drl </ scoreDr| >
</ scoreDirector Fact ory>

You can add multiple <scor eDr | > entries if needed, but normally you'll define all your score rules
in 1 file.

5.3.4.2.2. A RuleBase (possibly defined by Guvnor)

If you prefer to build the Rul eBase yourself or if you're combining Planner with Guvnor, you can
set the Rul eBase on the Sol ver Fact ory before building the Sol ver:

sol ver Fact ory. get Sol ver Confi g() . get Scor ebi r ect or Fact or yConfi g. set Rul eBase(r ul eBase) ;

5.3.4.3. Implementing a score rule

Here's an example of a score constraint implemented as a score rule in a DRL file:

rule "nultipl eQueensHorizontal "
when
$gl : Queen($id : id, $y : y);
$g2 : Queen(id > $id, y == 3y);
t hen
i nsertLogi cal (new
Unwei ght edConstrai nt Cccurrence("mul ti pl eQueensHorizontal ", $q1, $q2));
end

This score rule will fire once for every 2 queens with the same y. The (id > $i d) condition is
needed to assure that for 2 queens A and B, it can only fire for (A, B) and not for (B, A), (A, A) or
(B, B). Let's take a closer look at this score rule on this solution of 4 queens:

A°B C D

g g

Ww N ¥+ ©
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Chapter 5. Score calculation

In this solution the multipleQueensHorizontal score rule will fire for 6 queen couples: (A, B), (A, C),
(A, D), (B, C), (B, D) and (C, D). Because none of the queens are on the same vertical or diagonal
line, this solution will have a score of - 6. An optimal solution of 4 queens has a score of 0.

@ Note

Notice that every score rule will relate to at least 1 planning entity class (directly or
indirectly though a logically inserted fact).

This is normal: it would be a waste of time to write a score rule that only relates to
problem facts, as the consequence will never change during planning, no matter
what the possible solution.

5.3.4.4. Aggregating the score rules into the score

A Scor eHol der instance is asserted into the Wor ki ngMenory as a global called scor eHol der .
Your score rules need to (directly or indirectly) update that instance. Usually you'll make a single
rule as an aggregation of the other rules to update the score:

gl obal Si npl eScor eHol der scor eHol der

rule "nmul tipl eQueensHorizontal "
when
$gl : Queen($id : id, By : y);
$g92 : Queen(id > $id, y == $y);
t hen
i nsert Logi cal (new
Unwei ght edConstrai nt Cccurrence("nul ti pl eQueensHori zontal", $ql1, $q2))
end

/1 multipleQueensVertical is obsolete because it is always 0O

rule "nul tipl eQueensAscendi nghi agonal "
when
$ql : Queen($id : id, $ascendingD : ascendi ngD);
$g2 : Queen(id > $id, ascendi ngD == $ascendi ngD);
t hen
i nsert Logi cal (new
Unwei ght edConstrai nt ccurrence(" mul ti pl eQueensAscendi nghi agonal ", $ql1, $q2));
end

rule "mul tipl eQueensDescendi nghi agonal "
when
$ql : Queen($id : id, $descendingD : descendi ngD);
$092 : Queen(id > $id, descendi ngD == $descendi ngD);
t hen
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Drools score calculation

i nsertLogi cal (new
Unwei ght edConst rai nt Occurrence( " nul ti pl eQueensDescendi ngDi agonal ", $g1, $92));
end

rul e "hardConstrai nt sBroken"
when
$occurrenceCount : Number () from accumrul at e(
$unwei ght edConstrai nt Occurrence : Unwei ght edConstrai nt Cccurrence(),
count ($unwei ght edConst r ai nt Cccurrence)
)
t hen
scor eHol der. set Score(- $occurrenceCount.intVal ue());
end

Most use cases will also weigh their constraints differently, by multiplying the count of each score
rule with its weight.

Here's an example from CurriculumCourse, where assigning a Lect ur e to a Roomwhich is missing
2 seats is weighted equally bad as having 1 isolated Lecture ina Curri cul um

/'l RoonCapacity: For each | ecture, the nunber of students that attend the course
must be | ess or equal
/1 than the nunmber of seats of all the roons that host its |ectures.
/| Each student above the capacity