Drools Planner
User Guide

Version 6.0.0.Alpha9

by The JBoss Drools team [http://www.jboss.org/drools/team.html]

http://www.jboss.org/drools/team.html
http://www.jboss.org/drools/team.html

1. Planner iNTrOQUCTIONiiiiiii e e e e et e e e et e e e e et e e e e et s e e e eate s aeeeees 1
1.1. What iS Drools PIANNEIr? ..ottt e e e e e aens 1
1.2. What is a planning problem? ... 1

1.2.1. A planning problem is NP-completeccooiviiiiiiiiiiii e, 1
1.2.2. A planning problem has (hard and soft) constraintsccc.ccoeveviieeinnnnns 2
1.2.3. A planning problem has a huge search spaceccccoooeiiiiiiiiiiinecin, 2
1.3. Status Of Drools PIANNETiiiiiiiiieiiii e e s 3
1.4. Download and run the eXamples ... 3
1.4.1. Get the release zip and run the examplesccooooiiiiiiiiin i, 3
1.4.2. Run the examples in an IDE (IntelliJ, Eclipse, NetBeans)ccc.occeevunne.n. 5
1.4.3. Use Drools Planner with maven, gradle, ivy, buildr or ANTccoeeeinniiis 5
1.4.4. Build Drools Planner from SOUICEoeveuiiiiiiiiiiiieii e 6
1.5. Questions, issues and blogcooiiiiiiii s 6

O 11 | [od =] - P 9

2.1. Cloud balancing tUtorialccouiiiiiiii e 9
2.1.1. Problem State@mMeENtc.uiiiiiiii i 9
2.1.2. ProDIBIM SIZE ..vuiiiiiiii i e 10
2.1.3. Domain model diagramc.uuiiiiiiiiiie e 11
2.1.4. Main MELNOAcoiiiiieie e 12
2.1.5. Solver configuIationccouuuiiiiiiiiiei e 13
2.1.6. Domain model implementationccccoiiiiiiiiin 15
2.1.7. Score configurationooocieuiiiiiiii e 18
2.1.8. Beyond this tutorialccoeiiiiiiiii i 23

3. Use cases and eXamples i 25
3.1, EXGMPIES OVEIVIEWiviiiiiiiciie et e e e e e e e e e e e e e e e e et e e et e e et e e e e eeaes 25
3.2, TOY EXAMPIES oottt e e e eee 26

32,1, N QUEBEBNS ettt e 26
3.2.2. Cloud DaAANCING ...ceeiiiiiiii e 30
3.2.3. Traveling salesman (TSP - Traveling salesman problem) 30
3.2.4. MANNErs 2009ouiiiiiii e 31

3.3, REAI EXAMPIES ...iiiiiii e 31
3.3.1. Course timetabling (ITC 2007 track 3 - Curriculum course scheduling) 31
3.3.2. Machine reassignment (Google ROADEF 2012)ccooveviiieiiiieciieeeineans 33
3.3.3. VERICIE TOULING ..oevvtiiiiii e e e 35
3.3.4. Hospital bed planning (PAS - Patient admission scheduling) 37

3.4. DIffiCUlt @XAMPIES ..ot e 39
3.4.1. Exam timetabling (ITC 2007 track 1 - Examination)cccccccovvevuneeinnnnns 39
3.4.2. Employee rostering (INRC 2010 - Nurse rostering)cooceeveevverinneeennnnns 43
3.4.3. Sport scheduling (TTP - Traveling tournament problem)c.c..... 48

4. Planner CONfIQUIAtIONocoiiuiiiii e 51
I @ Y= TP 51
4.2, Solver CONfIQUIALIONuuiiiiiii e e e eae 52

4.2.1. Solver configuration by XML filecccoieiiiiiiii e 52

Drools Planner User Guide

4.2.2. Solver configuration by Java AP ... 53

4.3. Model your planning problem ..o 54
4.3.1. Is this class a problem fact or planning entity?cccoooeviiiiiiiiiinnennnn. 54
4.3.2. Problem factoooiiiiiiiiii e 55
4.3.3. Planning entity and planning variablescccoooiiiiiiniine 57
4.3.4. Planning value and planning value rangescccocccoviviiiiiiiiieiin e, 61
4.3.5. Planning problem and planning SoIUtioncoooviiiiiiiinieieee 69
I 1 Lo TS T =T PP 76
4.4.1. The SOIVEr INTEIfACEiiei i e 76
4.4.2. SoIVING @ ProbIEM ...oe 77
4.4.3. Environment mode: Are there bugs in my code?ccoooevviiiiiiiiiineeiinnnnn. 78
4.4.4. Logging level: What is the Solver doing?coocoiiiiiiiiiin e, 80

LTS oTo] I of= | [| =1 4 o] o P 83
LT S Yoo £ T (Y 2111 4o [o | 83
5.1.1. WRAL IS @ SCOME? .evuiiiiii ettt e e e e e e e e e e eea e eees 83
5.1.2. Score constraint signum (positive or NEQAtIVE)cc.veviiieiiiieiiiieeiieeaennn, 83
5.1.3. Score constraint Weightooouuiiiiiiiei e 85
B5.10A. SCOIE HEVEL ..o 85
5.1.5. Pareto scoring (AKA multi-objective optimization SCoring)ccccoeeevevenne. 87
5.1.6. Combining SCOre tEChNIQUESiiiiiiiiiiieie e e 89
5.1.7. The SCOre iNterfaCec.coeuiiiiiiiiii e 89

5.2. Choose a Score definitiono..uiiiiiiiiiei e 91
B5.2.1. SIMPIESCOIE ..ooeeieii e 91
5.2.2. HardSoftScore (recommended)ccooevuiiiiiiiiiinci e 92
5.2.3. HardMediumSOftSCOreoovieiiiiiiiiii e 92
5.2.4. BENAADIESCOIEuiiiiiiii e 92
5.2.5. Implementing a CUSIOM SCOMEccuuiiiiiiiiiieiiiii e 93

5.3. CalCulate the SCOMEiiiiiii e 93
5.3.1. Score calCulation tYPESocuuiiiiiiiiieiiii e 93
5.3.2. Simple Java score calCulationc.ccieiiiiieiiiiicie e 93
5.3.3. Incremental Java score calCulationcocooiieiiiieiiiiiiiineie e 95
5.3.4. Drools score CalCulationcoiiiiuiiiiiiiiiii e 98
5.3.5. Detecting invalid SCOTEScccuuiiiiiiiiiieci e 103

5.4. Score calculation performance tricksccooceuiiiiiiiiii e 103
L T @Y= 1 P 103
5.4.2. Average calculation count per SECONcoevvvieiiiiiiiiiieiiieeeiie e eais 103
5.4.3. Incremental score calculation (with delta's)cccoovviiiiiiiiiiin, 104
5.4.4. Avoid calling remote services during score calculationccc.ceuvveeee. 105
5.4.5. UNUSEA CONSIIAINTieviiiiiiiiii et e e e e e e e eanaeees 105
5.4.6. Build-in hard CONSLrAINtcooeviiiiiiiii e 106
5.4.7. Other performance trickSooiiiiiiiiii e 106
D.4.8. SCOME TP evieiitii i e 106
5.4.9. stepLimit benchmark ... 108

5.5. Reusing the score calculation outside the Solvercccoeeviiiiiiicii e, 108

6. Optimization algorithms 109

6.1. Search space size in the real Worldcocooiiiii i, 109
6.2. Does Planner find the optimal SOIUtION?cooviiiiiiiii e, 109
6.3. AICHItECIUIE OVEIVIEWiiiiiieiiii et e et e e 110
6.4. Optimization algorithMS OVEIVIEWccuuuiiiiiiiieiiiii et 111
6.5. Which optimization algorithms should | US€?cccoiiiiiiiiiiiii e, 111
B.6. SOIVEIPRASEouiiiiii e 112
B.7. SCOPE OVEIVIEW ..vuiiiiiieiiii e e et e e e e et e e e e r e e e e e et e e et e e et e e et e e aaneeeens 114
(SR T =11 1211 F= LT o ST 115
6.8.1. TimeMillisSpendTerminationccccoieeiiiiiiiie e 116
6.8.2. ScoreAttainedTermMiNatioNcoviiuieeiine e e 117
6.8.3. StepCountTermMinationcccouuiiiiiiieiii e e e e eees 117
6.8.4. UnimprovedStepCountTerminationcccooveiiiinieiiiiinieeeein e 117
6.8.5. Combining multiple Terminationsccccceiiieiiieiin e 118
6.8.6. Asynchronous termination from another threadccooeviiiiiiiiinnnne, 118

6.9. SOIVEIEVENTLISIENETiiiiiiiieieei e e et e et e e et s eeeera e eees 119
6.10. CUSIOM SOIVEIPRASE ...ceviiiiiie e e 119
7. Move and neighborhood Selection ... 123
7.1. Move and neighborhood introductionc.ccooeiiiiiiiiiii e 123
7.01.1. WHat IS @ MOVE? ..uniiiiiiii ettt e e et eeeera e eees 123
7.1.2. What iS @ MOVESEIECIOI?oeeeieiiiei e 124
7.1.3. Subselecting of entities, values and other movescccccccoiviiiiieine 124

7.2. General SElector FEAUIEScvuuiiiiee e 126
7.2.1. CacheType: Create moves ahead of time or Just In Time 126
7.2.2. SelectionOrder: original, sorted, random, shuffled or probabilistic 127
7.2.3. Recommended combinations of CacheType and SelectionOrder 129
7.2.4. Filtered SEIECHONcoouiiiiiei e e e e 131
7.2.5. SOrted SEIECLION ...civvviieiii e 133
7.2.6. Probabilistic SEIECHONcccuiiiiiiii e 136

7.3. GENEIIC MOVESEIECLONSuiiiiiiiiieiiii e e e e e aees 136
7.3.1. ChanNQEMOVESEIECIONcuuuniiiiii e 136
7.3.2. SWAPMOVESEIECIONeviiiiii e e e e 138
7.3.3. PillarSWapMOVESEIECIONccoiiiiiiiii e 139
7.3.4. subChainChangeMOoVeSEIECIOrccuveiiiiiiiiie e 139
7.3.5. sUbChainSWapMOVESEIECIONccvviviiiiiiii e 139

7.4. Combining multiple MOVESEIECIOISoivviiiiiiiii e 140
7.4.1. UNIONMOVESEIECION .. ceviiieiiei e e e 140
7.4.2. cartesianProductMOVESEIECIOrcuuuiiiiiiiii i 141

7.5, ENUEYSEIECION ...t eneaas 142
A Y 4= 1= T=] 1=t (o] PPN 142
R R O3 (o] 0 1 14101/ P 143
7.7.1. Which move types might be missing in my implementation? 143
7.7.2. Custom mMoves INtrOdUCTIONccuuiiiiiieiie e 143
7.7.3. The interface MOVEoiiiiiiiiiiiii e e 143

Drools Planner User Guide

7.7.4. MovelListFactory: the easy way to generate custom moves 147
7.7.5. MovelteratorFactory: generate custom moves justin time 148
7.7.6. Move generation through DRLc.oiiiiiiiiiiiiiii e 149
8. CONSIIUCLION NBUFISTICS ..uuiiieiiiiiiiii e 151
S TR O 1YY 4T P 151
S | A | PPN PPSUPPPPPRPTIN 151
8.2.1. Algorithm desCriPioNccoiiiiiiiiiii e 151
8.2.2. CONfIQUIAtIONiiii i e e e e e e e r e 152
8.3. FirSt Fit DECIEASINGeeeettieiiiiiie ettt et e et e et eeaaa e eees 152
8.3.1. Algorithm desCriptionouiiiiiiiii e 152
8.3.2. CONFIQUIALION ..oevuiiiiiiii ettt e 153
8.4, BESE Flt i e e 154
8.4.1. Algorithm desCriPiONociiiiiiiiiiii e 154
8.4.2. CoNfIQUIAtIONciiii i e e et e e e e r e 154
8.5. BESt Fit DECIEASING ...vuuiiiiti ettt ettt e e 154
8.5.1. Algorithm desCriptioniiiiiiiii i e 154
8.5.2. CONFIQUIALION ..oevuiiiiii et 155
8.6. Cheapest INSEITIONiiiiiiiiii e e e e e e e e aaaaes 155
8.6.1. Algorithm desCriptioNccoiuuiiiiiiiii e 155
8.6.2. CONfIQUIALIONciiie i e e e e e e e e e e 155
8.7. REQIet INSEITIONuuiiiiii ettt e e et e eeea e e eens 155
8.7.1. Algorithm desCriptionccuuiiiiiiiii e 155
8.7.2. CONFIQUIALION ..eeviiiiiiiii et 155
9. LOCAI SEAICR ... e 157
LS TR O 1YY YT P 157
9.2. Hill climbing (simple local Search)cccoiiiiiiiiii e 157
9.2.1. AIgorithm desCriPiONooiiiiiiiiiii e 157
9.3, TADU SEAICK ... 159
9.3.1. AIgorithm desCriPiONooiiiiiiiiii e 159
9.4, Simulated annNEaliNGcociuiiiiii i 160
9.4.1. Algorithm desCriPiONociiiiiieii e 160
0.5, LAt ACCEPIANCE ..uuiiiiiiiii e 161
9.5.1. AIgorithm desCriPLioNcooiiiiiiiiiii e 161
9.6. About neighborhoods, moves and StEPScecvviiiiiiiiiiii e 162
9.6.1. MOVE gENETALION TIPS .vvueiiiiiieeiiii ettt et e e e eera e eens 162
0.0, 2, A S O ittt 163
9.6.3. Getting stuck in local Optimaccoevviiiiiiiiii e 165
9.7. DeCiding the NEXE SEEP ..ivuuiiiii i e e e e e e 166
O.7. 0., ACCEPION .ottt ettt ettt 167
L I o - Vo] PP 170

9.8. Using a custom Termination, MoveSelector, EntitySelector, ValueSelector or
oo o (o PRSP 171
10. Evolutionary algoritms ... 173
L0, 1. OVEIVIEW ...ttt ettt e e et e e e e e e e e e e se b e n e e e e e e e rnnana s 173

Vi

10.2. EVOIULIONArY SIrat@QIESccevuniiiiitiieiiiii ettt ettt e eeeeens 173

10.3. Genetic algorithmsiiiii e 173
B o T A 0 =1 o Yo 175
30 O @Y= = PP 175
O = T (= o] (ol PP 175
11.2.1. Algorithm deSCriPtionccouiiiiiiiii e 175
11.2.2. CONFIQUIALIONceeieieeie et 176
11.3. Depth-first SEArCHoiiiiii e 176
11.3.1. AIGOrithm deSCrPLIONcoeeiiieiiii e 176

5 B @ T o [U= 11 o] o PP 177

12. Benchmarking and twWeakingoooouiiiiiiii e 179
12.1. Finding the best Solver configurationc.cciiiiiii i 179
12.2. DOING @ DENCRMAIKouiiiiii e 179
12.2.1. Adding the extra dependencCyc.cceeeiiiieiiiieeiii e 179
12.2.2. Building and running a PlannerBenchmarkcccccoooiiiiiniiiiiiinnennnn. 179
12.2.3. ProblemIO: input and output of Solution filesccocciiiiiiiiiiin, 182
12.2.4. Writing the output solution of the benchmark runscccooooeiins 184
12.2.5. Warming up the HotSpot compilercccoiviiiiiiiiii e, 184
12.3. BENCAMAIK FEPOIT ...ttt eeees 184
12.3.1 HTML PO ittt e e e e e e e e 184
12.3.2. SUMMArY SEALISICS ...cceiviiiiiiiii e 185
12.3.3. Statistic per data set (graph and CSV)ccooeviiiiiiiiiiiiicinceeeeee 186
12.3.4. RaANKING the SOIVEISciiiiiiieiii e 189
12.4. Advanced benchmarkingccoiiiiiiiiii e 190
12.4.1. Benchmarking performance trickScooooieiiiiiiiiiiniiiiec e 190
12.4.2. Template based benchmarking and matrix benchmarking 192

13. Repeated PlanNING ... 195
13.1. Introduction to repeated planningccoooiiiiii i 195
13.2. BacKUup Planninguoieiiiieii e 195
13.3. Continuous planning (windowed planning)cccoveriiiiiiieii e, 195
13.3.1. Immovable planning entitiescciiiiiiiiiiii e 197
13.4. Real-time planning (event based planning)c.cccoerviiiiiiiin e, 197

Vii

viii

Drools

Planner &

Chapter 1.

Chapter 1. Planner introduction

1.1. What is Drools Planner?

Drools Planner [http://iwww.jboss.org/drools/drools-planner] is a lightweight, embeddable
planning engine that optimizes planning problems. It solves use cases, such as:

« Employee shift rostering: timetabling nurses, repairmen, ...

« Agenda scheduling: scheduling meetings, appointments, maintenance jobs,
advertisements, ...

« Educational timetabling: scheduling lessons, courses, exams, conference presentations, ...
« Vehicle routing: planning vehicles (trucks, trains, boats, airplanes, ...) with freight and/or people

» Bin packing: filling containers, trucks, ships and storage warehouses, but also cloud computers
nodes, ...

« Job shop scheduling: planning car assembly lines, machine queue planning, workforce task
planning, ...

« Cutting stock: minimizing waste while cutting paper, steel, carpet, ...
» Sport scheduling: planning football leagues, baseball leagues, ...
» Financial optimization: investment portfolio optimization, risk spreading, ...

Every organization faces planning problems: provide products and services with a limited set
of constrained resources (employees, assets, time and money). This is known as Constraint
Satisfaction Programming (which is part of the discipline Operations Research).

Drools Planner helps normal Java™ programmers solve planning problems efficiently. Under the
hood, it combines optimization heuristics and metaheuristics with very efficient score calculation.

Drools Planner, like the rest of Drools, is open source software under the Apache Software
License 2.0 [http://www.apache.org/licenses/LICENSE-2.0] (layman's explanation [http:/
www.apache.org/foundation/licence-FAQ.html#WhatDoesItMEAN]). It is 100% pure Java™ and
runs on any JVM.

1.2. What is a planning problem?

1.2.1. A planning problem is NP-complete

All the use cases above are probably NP-complete [http://en.wikipedia.org/wiki/NP-complete]. In
layman's terms, this means:

« It's easy to verify a given solution to a problem in reasonable time.

http://www.jboss.org/drools/drools-planner
http://www.jboss.org/drools/drools-planner
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/foundation/licence-FAQ.html#WhatDoesItMEAN
http://www.apache.org/foundation/licence-FAQ.html#WhatDoesItMEAN
http://www.apache.org/foundation/licence-FAQ.html#WhatDoesItMEAN
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete

Chapter 1. Planner introduction

» There is no silver bullet to find the optimal solution of a problem in reasonable time (*).

@ Note
(*) At least, none of the smartest computer scientists in the world have found such
a silver bullet yet. But if they find one for 1 NP-complete problem, it will work for
every NP-complete problem.

In fact, there's a $ 1,000,000 reward for anyone that proves if
[http://en.wikipedia.org/wiki/P_%3D_NP_problem].

The implication of this is pretty dire: solving your problem is probably harder than you anticipated,
because the 2 common techniques won't suffice:

A brute force algorithm (even a smarter variant) will take too long.

e A quick algorithm, for example in bin packing, putting in the largest items first, will return a
solution that is usually far from optimal.

By using advanced optimization algorithms, Planner does find a good solution in reasonable
time for such planning problems.

1.2.2. A planning problem has (hard and soft) constraints

Usually, a planning problem has at least 2 levels of constraints:

» A (negative) hard constraint must not be broken. For example: 1 teacher can not teach 2 different
lessons at the same time.

* A (negative) soft constraint should not be broken if it can be avoided. For example: Teacher A
does not like to teach on Friday afternoon.

Some problems have positive constraints too:

* A positive soft constraint (or reward) should be fulfilled if possible. For example: Teacher B likes
to teach on Monday morning.

Some toy problems (such as N Queens) only have hard constraints. Some problems have 3 or
more levels of constraints, for example hard, medium and soft constraints.

These constraints define the score calculation (AKA fitness function) of a planning problem. Each
solution of a planning problem can be graded with a score. With Planner, score constraints are
written in an Object Orientated language, such as Java code or Drools rules. Such code is
easy, flexible and scalable.

1.2.3. A planning problem has a huge search space

A planning problem has a number of solutions. There are several categories of solutions:

http://en.wikipedia.org/wiki/P_%3D_NP_problem
http://en.wikipedia.org/wiki/P_%3D_NP_problem
http://en.wikipedia.org/wiki/P_%3D_NP_problem

Status of Drools Planner

« A possible solution is any solution, whether or not it breaks any number of constraints. Planning
problems tend to have an incredibly large number of possible solutions. Many of those solutions
are worthless.

« Afeasible solution is a solution that does not break any (negative) hard constraints. The number
of feasible solutions tends to be relative to the number of possible solutions. Sometimes there
are no feasible solutions. Every feasible solution is a possible solution.

« An optimal solution is a solution with the highest score. Planning problems tend to have 1 or a
few optimal solutions. There is always at least 1 optimal solution, even in the case that there
are no feasible solutions and the optimal solution isn't feasible.

» The best solution found is the solution with the highest score found by an implementation in a
given amount of time. The best solution found is likely to be feasible and, given enough time,
it's an optimal solution.

Counterintuitively, the number of possible solutions is huge (if calculated correctly), even with a
small dataset. As you can see in the examples, most instances have a lot more possible solutions
than the minimal number of atoms in the known universe (10780). Because there is no silver bullet
to find the optimal solution, any implementation is forced to evaluate at least a subset of all those
possible solutions.

Drools Planner supports several optimization algorithms to efficiently wade through that incredibly
large number of possible solutions. Depending on the use case, some optimization algorithms
perform better than others, but it's impossible to tell in advance. With Planner, it is easy to switch
the optimization algorithm, by changing the solver configuration in a few lines of XML or code.

1.3. Status of Drools Planner

Drools Planner is production ready. The APl is almost stable but
backward incompatible changes can occur. With the recipe called
Upgr adeFr onPr evi ousVer si onReci pe. t xt [https://github.com/droolsjbpm/drools-planner/blob/
master/drools-planner-distribution/src/main/assembly/filtered-resources/
UpgradeFromPreviousVersionRecipe.txt] you can easily upgrade to a newer version and quickly
deal with any backwards incompatible changes. That recipe file is included in every release.

1.4. Download and run the examples

1.4.1. Get the release zip and run the examples

To try it now:

« Download a release zip of Drools Planner from the Drools download site [http://www.jboss.org/
drools/downloads.html].

e Unzip it

https://github.com/droolsjbpm/drools-planner/blob/master/drools-planner-distribution/src/main/assembly/filtered-resources/UpgradeFromPreviousVersionRecipe.txt
https://github.com/droolsjbpm/drools-planner/blob/master/drools-planner-distribution/src/main/assembly/filtered-resources/UpgradeFromPreviousVersionRecipe.txt
https://github.com/droolsjbpm/drools-planner/blob/master/drools-planner-distribution/src/main/assembly/filtered-resources/UpgradeFromPreviousVersionRecipe.txt
https://github.com/droolsjbpm/drools-planner/blob/master/drools-planner-distribution/src/main/assembly/filtered-resources/UpgradeFromPreviousVersionRecipe.txt
http://www.jboss.org/drools/downloads.html
http://www.jboss.org/drools/downloads.html
http://www.jboss.org/drools/downloads.html

Chapter 1. Planner introduction

» Open the directory exanpl es and run the script.

Linux or Mac:

$ cd exanpl es
$./runExanpl es. sh

Windows:

$ cd exanpl es
$ runExanpl es. bat

The Examples GUI application will open. Just pick an example:
Drools Planner examples ==

Which example do you want to see?

~Toy examples -Real examples -Difficult examples
Course timetabling Exam timetabling
|
W Sport scheduling
[Travelingsalesman | || ~ Vehideroutng | || === |
Manners 2009 Hospital bed planning

Description

Run the examples in an IDE (IntelliJ, Eclipse, NetBeans)

1.4.2. Run the examples in an IDE (IntelliJ, Eclipse, NetBeans)
To run the examples in your favorite IDE, first configure your IDE:

« In IntelliJ and NetBeans, just open the file exanpl es/ sour ces/ pom xnl as a new project, the
maven integration will take care of the rest.

« In Eclipse, open a new project for the directory exanpl es/ sour ces.

« Add all the jars to the classpath from the directory bi nari es and the directory exanpl es/
bi nari es, except for the file exanpl es/ bi nari es/ dr ool s- pl anner - exanpl es-*.j ar.

* Add the Java source directory sr c/ mai n/ j ava and the Java resources directory sr ¢/ mai n/
resources.

Next, create a run configuration:

* Main class: or g. dr ool s. pl anner . exanpl es. app. Dr ool sPl anner Exanpl esApp
* VM parameters (optional): - Xnx512M - ser ver

« Working directory: exanpl es (this is the directory that contains the directory dat a)

1.4.3. Use Drools Planner with maven, gradle, ivy, buildr or ANT

The Drools Planner jars are available in the central maven repository [http://search.maven.org/
#search|gall|org.drools.planner] (and also in the JBoss maven repository [https:/
repository.jboss.org/nexus/index.html#nexus-search;gav~org.drools.planner~~~~1]).

If you use maven, just add a dependency to dr ool s- pl anner - cor e in your project's pom xm :

<dependency>
<groupl d>org. drool s. pl anner </ gr oupl d>
<artifactld>drool s-pl anner-core</artifactld>
<version>...</version>

</ dependency>

This is similar for gradle, ivy and buildr. To identify the latest version, check the central maven
repository [http://search.maven.org/#search|gall|org.drools.planner].

If you're still using ant (without ivy), copy all the jars from the download zip's bi nari es directory
and manually verify that your classpath doesn't contain duplicate jars.

@ Note
The download zip's bi nari es directory contains far more jars then drool s-
pl anner - cor e actually uses. It also contains the jars used by other modules, such
as dr ool s- pl anner - benchmar k.

http://search.maven.org/#search|ga|1|org.drools.planner
http://search.maven.org/#search|ga|1|org.drools.planner
http://search.maven.org/#search|ga|1|org.drools.planner
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.drools.planner~~~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.drools.planner~~~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.drools.planner~~~~
http://search.maven.org/#search|ga|1|org.drools.planner
http://search.maven.org/#search|ga|1|org.drools.planner
http://search.maven.org/#search|ga|1|org.drools.planner

Chapter 1. Planner introduction

Check the maven repository pom xni files to determine the minimal dependency
set for a specific version of a specific module.

1.4.4. Build Drools Planner from source

You can also easily build Drools Planner from source yourself.

Set up Git [http://help.github.com/set-up-git-redirect] and clone dr ool s- pl anner from GitHub (or
alternatively, download the zipball [https://github.com/droolsjbpm/drools-planner/zipball/master]):

$ git clone git@ithub.comdrool sjbpnm drool s-pl anner. git drool s-pl anner

Then do a Maven 3 [http://maven.apache.org/] build:

$ cd drool s-pl anner
$ nvn - DskipTests clean install

After that, you can run any example directly from the command line, just run this command and
pick an example:

$ cd drool s-pl anner - exanpl es
$ mvn exec: exec

1.5. Questions, issues and blog

Your questions and comments are welcome on the user mailing list [http://www.jboss.org/
drools/lists.html]. Start the subject of your mail with [planner]. You can read/
write to the user mailing list without littering your mailbox through this web forum
[http://drools.46999.n3.nabble.com/Drools-User-forum-f47000.html] or this newsgroup [nntp://
news.gmane.org/gmane.comp.java.drools.user].

Feel free to report an issue (such as a bug, improvement or a new feature request) for the Drools
Planner code or for this manual to our issue tracker [https://issues.jboss.org/browse/PLANNER].

Pull requests (and patches) are very welcome and get priority treatment! Include the pull request
link to a JIRA issue and optionally send a mail to the dev mailing list to get the issue fixed fast. By
open sourcing your improvements, you 'll benefit from our peer review and from our improvements
made upon your improvements.

http://help.github.com/set-up-git-redirect
http://help.github.com/set-up-git-redirect
https://github.com/droolsjbpm/drools-planner/zipball/master
https://github.com/droolsjbpm/drools-planner/zipball/master
http://maven.apache.org/
http://maven.apache.org/
http://www.jboss.org/drools/lists.html
http://www.jboss.org/drools/lists.html
http://www.jboss.org/drools/lists.html
http://drools.46999.n3.nabble.com/Drools-User-forum-f47000.html
http://drools.46999.n3.nabble.com/Drools-User-forum-f47000.html
nntp://news.gmane.org/gmane.comp.java.drools.user
nntp://news.gmane.org/gmane.comp.java.drools.user
nntp://news.gmane.org/gmane.comp.java.drools.user
https://issues.jboss.org/browse/PLANNER
https://issues.jboss.org/browse/PLANNER

Questions, issues and blog

Check our blog [http://blog.athico.com/search/label/planner], Google+(Drools Planner
[https://plus.google.com/112724449845406009021], Geoffrey De Smet [https://
plus.google.com/112811208792575157490]) and twitter (Geoffrey De Smet [http://twitter.com/
geoffreydesmet]) for news and articles. If Drools Planner helps you solve your problem, don't
forget to blog or tweet about it!

http://blog.athico.com/search/label/planner
http://blog.athico.com/search/label/planner
https://plus.google.com/112724449845406009021
https://plus.google.com/112724449845406009021
https://plus.google.com/112811208792575157490
https://plus.google.com/112811208792575157490
https://plus.google.com/112811208792575157490
http://twitter.com/geoffreydesmet
http://twitter.com/geoffreydesmet
http://twitter.com/geoffreydesmet

Chapter 2.

Chapter 2. Quick start

2.1. Cloud balancing tutorial

2.1.1. Problem statement

Suppose your company owns a number of cloud computers and needs to run a number of
processes on those computers. Assign each process to a computer under the following 4
constraints.

Hard constraints which must be fulfilled:

» Every computer must be able to handle the minimum hardware requirements of the sum of its
processes:

» The CPU power of a computer must be at least the sum of the CPU power required by the
processes assigned to that computer.

» The RAM memory of a computer must be at least the sum of the RAM memory required by
the processes assigned to that computer.

» The network bandwidth of a computer must be at least the sum of the network bandwidth
required by the processes assigned to that computer.

Soft constraints which should be optimized:

« Each computer that has one or more processes assigned, incurs a maintenance cost (which
is fixed per computer).

» Minimize the total maintenance cost.

How would you do that? This problem is a form of bin packing. Here's a simplified example where
we assign 4 processes to 2 computers with 2 constraints (CPU and RAM) with a simple algorithm:

Chapter 2. Quick start

Cloud balance

Assign each process to a computer.

Processes

CPU

I . |

RAM

@28

L

Not enough L
° P-n?:::u::?rn

cPU Computers RAM
7 Jx(6
[6 ¥ 6

J(

[(ST - s

[[4 xC 8 |
[| 5) 5 B
(2 4 x(3 e
[| 5 Jv| 5 B

2 | 4)x[3]
[5 Jv(5 B

(2 ST (6 1]

Optimal solution

4

M

The simple algorithm used here is the First Fit Decreasing algorithm, which assigns the bigger
processes first and assigns the smaller processes to the remaining space. As you can see, it's
not optimal, because it does not leave enough room to assign the yellow process D.

Drools Planner does find the more optimal solution fast, by using additional, smarter algorithms.
And it scales too: both in data (more processes, more computers) and constraints (more hardware
requirements, other constraints). So let's take a look how we can use Planner for this.

2.1.2. Problem size

cb-0002conp- 0006pr oc
of 64.
cb- 0003conp- 0009pr oc
of 10M4.
cb-0004conp- 0012pr oc
of 1077.
cb- 0100conp- 0300pr oc
of 107600.

has 2 computers

has 3 conputers

has 4 conputers

has 100 conputers

and

and

and

and

6 processes

9 processes

12 processes

300 processes

w th

W th

w th

W th

search

search

search

sear ch

space

space

space

space

10

3 [3]

Domain model diagram

cb-0200conp- 0600proc has 200 conputers and

of 1071380.

600 processes with a search space

cb- 0400conp- 1200proc has 400 conputers and 1200 processes with a search space

of 1073122.

cb-0800conp- 2400proc has 800 conputers and 2400 processes with a search space

of 10"6967.

2.1.3. Domain model diagram

Let's start by taking a look at the domain model. It's pretty simple:

« Conput er : represents a computer with certain hardware (CPU power, RAM memory, network

bandwidth) and maintenance cost.

* Process: represents a process with a demand. Needs to be assigned to a Conput er by Drools

Planner.

e O oudBal ance: represents a problem. Contains every Conput er and Pr ocess for a certain data

set.

Cloud balance class diagram

Computer

cpuPower
memory

@P~PlanningVariable

-

computer

@PlanningEntity

-

Process

requiredCpuPower
requiredMemory

networkBandwidth 1
cost

computerList

CloudBalance

score

*

requiredNetworkBandwidth

processlList

@PlanningEntityCollectionProperty

In the UML class diagram above, the Planner concepts are already annotated:

11

Chapter 2. Quick start

« Planning entity: the class (or classes) that changes during planning. In this example that's the
class Process.

« Planning variable: the property (or properties) of a planning entity class that changes during
planning. In this examples, that's the property conput er on the class Pr ocess.

 Solution: the class that represents a data set and contains all planning entities. In this example
that's the class C oudBal ance.

2.1.4. Main method

Try it vyourself. Download and configure the examples in your favorite IDE.
Run org. drool s. pl anner. exanpl es. cl oudbal anci ng. app. Cl oudBal anci ngHel | oWor | d. By
default, it is configured to run for 120 seconds. It will execute this code:

Example 2.1. CloudBalancingHelloWorld.java

public class d oudBal anci ngHel | oWorl d {

public static void main(String[] args) {
/1 Build the Sol ver
Sol ver Fact ory sol verFactory = new Xm Sol ver Fact or y(
"/ or g/ drool s/ pl anner/ exanpl es/ cl oudbal anci ng/ sol ver/
cl oudBal anci ngSol ver Confi g. xm ") ;
Sol ver sol ver = solverFactory. buil dSol ver();

/1 Load a problemw th 400 conputers and 1200 processes

Cl oudBal ance unsol vedC oudBal ance = new O oudBal anci ngGener at or (). cr eat e oudBal ance(4(

/1 Solve the problem
sol ver. set Pl anni ngPr obl en(unsol vedd oudBal ance) ;
sol ver. sol ve();
Cl oudBal ance sol vedC oudBal ance = (Cl oudBal ance) sol ver. get Best Sol uti on();

/1 Display the result
Systemout. println("\nSol ved cl oudBal ance with 400 conputers and 1200

processes:\n"
+ toDi spl ayString(sol vedC oudBal ance)) ;

The code above does this:

 Build the Sol ver based on a solver configuration (in this case an XML file).

12

Solver configuration

Sol ver Fact ory sol ver Factory = new Xnl Sol ver Fact or y(
"/ org/ drool s/ pl anner/ exanpl es/ cl oudbal anci ng/ sol ver/
cl oudBal anci ngSol ver Confi g. xm ") ;
Sol ver sol ver = sol verFactory. buil dSol ver();

» Load the problem. d oudBal anci ngGener at or generates a random problem: you'll replace this
with a class that loads a real problem, for example from a database.

Cl oudBal ance unsol vedC oudBal ance = new O oudBal anci ngGenerator (). creat ed oudBal ance(

* Solve the problem.

sol ver. set Pl anni ngPr obl em(unsol vedd oudBal ance) ;
sol ver. sol ve();
Cl oudBal ance sol vedd oudBal ance = (d oudBal ance) sol ver. get Best Sol uti on();

« Display the result.

System out. println("\nSol ved cl oudBal ance with 400 conputers and 1200
processes:\n"
+ toDi splayString(sol vedd oudBal ance)) ;

The only non-obvious part is building the Sol ver . Let's examine that.

2.1.5. Solver configuration

Take a look at the solver configuration:

Example 2.2. cloudBalancingSolverConfig.xml

<?xm version="1.0" encodi ng="UTF- 8" ?>
<sol ver >
<! --<envi ronnent Mode>FAST_ASSERT</ envi r onnent Mbde>- - >

<l-- Domai n nodel configuration -->
<sol uti onCl ass>or g. drool s. pl anner . exanpl es. cl oudbal anci ng. domai n. d oudBal ance</
sol uti onC ass>
<pl anni ngEnt i t yCl ass>or g. dr ool s. pl anner . exanpl es. cl oudbal anci ng. donai n. C oudPr ocess</
pl anni ngEntityCl ass>

<!-- Score configuration -->

13

Chapter 2. Quick start

<scoreDi rect or Fact ory>
<scoreDefinitionType>HARD _SOFT</ scor eDefiniti onType>

sol ver. score. Cl oudBal anci ngSi npl eScor eCal cul at or </
si npl eScor eCal cul at or Gl ass>
<! --<scoreDrl >/ org/drool s/ pl anner/ exanpl es/ cl oudbal anci ng/ sol ver/
cl oudBal anci ngScor eRul es. drl </ scoreDr| >-->
</ scoreDirectorFact ory>

<l-- Optimzation algorithns configuration -->
<term nati on>
<maxi munSeconds Spend>120</ naxi nunmSeconds Spend>
</term nation>
<constructionHeuristic>
<constructionHeuri sticType>FI RST_FI T_DECREASI NG</ const ructi onHeuri sti cType>

<constructionHeuristicPi ckEarlyType>FI RST_LAST_STEP_SCORE_EQUAL_OR_| MPROVI NG</
constructionHeuri sticPi ckEarl yType>
</ constructi onHeuri stic>
<l ocal Sear ch>
<accept or>
<pl anni ngEnt i t yTabuSi ze>7</ pl anni ngEnti t yTabuSi ze>
</ accept or >
<f or ager >
<m ni mal Accept edSel ect i on>1000</ mi ni mal Accept edSel ecti on>
</ f or ager >
</l ocal Sear ch>
</ sol ver >

This solver configuration consists out of 3 parts:

» Domain model configuration: What can Planner change? We need to make Planner aware
of our domain classes:

<sol utionCl ass>org. drool s. pl anner . exanpl es. cl oudbal anci ng. domai n. Cl oudBal ance</
sol uti ond ass>
pl anni ngEnti t yCl ass>org. drool s. pl anner . exanpl es. cl oudbal anci ng. domai n. Cl oudPr ocess</
pl anni ngEnti tyCd ass>

» Score configuration: How should Planner optimize the planning variables? Since we have
hard and soft constraints, we use a Har dSof t Scor e. But we also need to tell Planner how to
calculate such the score, depending on our business requirements. Further down, we 'll look into
2 alternatives to calculate the score: using a simple Java implementation or using Drools DRL.

<scor eDi rect or Fact ory>
<scoreDefinitionType>HARD_SOFT</ scor eDefi niti onType>

14

Domain model implementation

| ver . score. O oudBal anci ngSi npl eScor eCal cul at or </
si nmpl eScor eCal cul at or Cl ass>
<l --<scoreDrl >/ org/drool s/ pl anner/ exanpl es/ cl oudbal anci ng/ sol ver/
cl oudBal anci ngScor eRul es. drl </ scoreDr| >-->
</ scoreDirectorFactory>

» Optimization algorithms configuration: How should Planner optimize it? Don't worry about
this for now: this is a good default configuration that works on most planning problems. It
will already surpass human planners and most in-house implementations. Using the Planner
benchmark toolkit, you can tweak it to get even better results.

<term nati on>
<maxi munSeconds Spend>120</ maxi nunSecondsSpend>
</term nation>
<constructionHeuristic>
<constructionHeuri sticType>FI RST_FI T_DECREASI NG</
constructionHeuristicType>

<constructionHeuristicPi ckEarlyType>FI RST_LAST_STEP_SCORE_EQUAL_OR_| MPROVI NG</
constructi onHeuri sticPi ckEarl yType>
</ constructionHeuristic>
<l ocal Sear ch>
<accept or >
<pl anni ngEnt i t yTabuSi ze>7</ pl anni ngEnti t yTabuSi ze>
</ accept or >
<f or ager >
<m ni mal Accept edSel ect i on>1000</ m ni mal Accept edSel ecti on>
</ forager>
</ | ocal Sear ch>

Let's examine the domain model classes and the score configuration.
2.1.6. Domain model implementation

2.1.6.1. The class conput er

The class Comput er is a POJO (Plain Old Java Object), nothing special. Usually, you'll have more
of these kind of classes.

Example 2.3. CloudComputer.java

public class d oudConputer ... {

private int cpuPower;
private int nmenory;

15

Chapter 2. Quick start

private int networkBandw dt h;
private int cost;

/] getters

2.1.6.2. The class process

The class Process is a little bit special. We need to tell Planner that it can change the field
conput er, SO we annotate the class with @l anni ngEntity and the getter get Conput er with
@ anni ngVari abl e:

Example 2.4. CloudProcess.java

@ anni ngEntity(...)
public class doudProcess ... {

private int requiredCpuPower;
private int requiredMenory;
private int requiredNetworkBandw dt h;

private C oudConputer conputer;
[l getters

@ anni ngVari able(...)
@/al ueRange(type = Val ueRangeType. FROM SOLUTI ON_PROPERTY, sol uti onProperty
public C oudConputer get Conputer() {

return conputer;

public void set Conput er (Cl oudConput er conputer) {
conput er = conputer;

// Rk I kO R R R S Sk S S R O kR I R S kR Sk

/1 Conpl ex nethods

// EE R IR I b I I b I S S I I S R O S S

The values that Planner can choose from for the field conput er, are retrieved from a method
on the Sol uti on implementation: Cl oudBal ance. get Conput er Li st () which returns a list of all
computers in the current data set. We tell Planner about this by using the annotation @/al ueRange.

16

"conputerlList”

Domain model implementation

2.1.6.3. The class d oudBal ance

The class C oudBal ance implements the Sol ut i on interface. It holds a list of all computers and
processes. We need to tell Planner how to retrieve the collection of process which it can change,
so we need to annotate the getter get Pr ocessLi st with @Il anni ngEnti tyCol | ecti onProperty.

The C oudBal ance class also has a property scor e which is the Scor e of that Sol ut i on instance
in it's current state:

Example 2.5. CloudBalance.java

public class O oudBal ance ... inplenents Sol ution<HardSoft Score> {
private List<Cl oudConputer> conputerList;
private List<C oudProcess> processLi st;
private HardSoftScore score;

public List<C oudConput er> get ConputerList() {
return computerlList;

@l anni ngEnti tyCol | ecti onProperty
public List<C oudProcess> get ProcessList() {
return processlLi st;

publ i ¢ HardSoft Score get Score() ({
return score;

public void set Score(HardSoftScore score) {
this.score = score;

// R S O S S S S L

/1 Conpl ex nethods

// EE R R I S I I S R I R R I I I I R S I R R I R R I I I S I I R R I I I I I R I S I I

public Collection<? extends Cbject> getProbl enfFacts() {
Li st <Cbj ect> facts = new ArraylLi st <Obj ect >();
facts. addAl | (conputerlList);
/1 Do not add the planning entity's (processList) because that wll
be done automatically
return facts;

17

Chapter 2. Quick start

The method get Pr obl enfact s() is only needed for score calculation with Drools. It's not needed
for the other score calculation types.

2.1.7. Score configuration

Planner will search for the Sol uti on with the highest Score. We're using a Har dSof t Scor e,
which means Planner will look for the solution with no hard constraints broken (fulfill hardware
requirements) and as little as possible soft constraints broken (minimize maintenance cost).

Processes Computers
CPU CPU Cost
08 - X sos
8 [6 J . ooos
Score
2
; ’ -2hard [-500soft
| | Y 10008
Ohard [/ -1500s0oft
[[3 } Y 1000%
| | X 5008 \
Optimal solution — Ohard / -1000s0f
- Y 1000% Highest score

Of course, Planner needs to be told about these domain-specific score constraints. There are
several ways to implement such a score function:

e Simple Java

18

Score configuration

¢ Incremental Java
e Drools

Let's take a look look at 2 different implementations:
2.1.7.1. Simple Java score configuration

One way to define a score function is to implement the interface Si npl eScor eCal cul at or in plain
Java.

<scorebDi rect or Fact ory>
<scor eDefi nitionType>HARD _SOFT</ scor eDefiniti onType>

sol ver. score. C oudBal anci ngSi npl eScor eCal cul at or </
si npl eScor eCal cul at or Cl ass>
</ scoreDirectorFact ory>

Just implement the method cal cul at eScor e(Sol uti on) to return a Har dSof t Scor e instance.

Example 2.6. CloudBalancingSimpleScoreCalculator.java

public class d oudBal anci ngSi npl eScor eCal cul ator i npl enments Si npl eScor eCal cul at or <Cl oudBal ance:

/**
* A very sinple inplenmentation. The double | oop can easily be renoved by using Maps as she
* { Cl oudBal anci ngMapBasedSi npl eScor eCal cul at or #cal cul at eScor e(C oudBal ance) }.
*/
publ i ¢ HardSoft Score cal cul at eScor e(Cl oudBal ance cl oudBal ance) {
int hardScore = O;
int softScore = 0;
for (C oudConputer computer : cloudBal ance. get ConputerList()) {
i nt cpuPower Usage = O;
i nt menoryUsage = O;
i nt networ kBandw dt hUsage = O;
bool ean used = fal se;

/1 Cal cul ate usage
for (C oudProcess process : cloudBal ance. get ProcessList()) {
i f (conputer.equal s(process. get Conputer())) {
cpuPower Usage += process. get Requi r edCpuPower () ;
menor yUsage += process. get Requi redMenory();
net wor kBandwi dt hUsage += process. get Requi r edNet wor kBandwi dt h() ;
used = true;

19

Chapter 2. Quick start

/1 Hard constraints
i nt cpuPower Avai | abl e = conput er. get CouPower () - cpuPower Usage;
i f (cpuPowerAvail able < 0) {

har dScore += cpuPower Avai | abl e;

}

i nt menoryAvail abl e = conputer.getMenory() - nenoryUsage;
if (menoryAvail able < 0) {
hardScore += menoryAvai | abl e;

}
i nt networ kBandwi dt hAvai | abl e = conput er. get Net wor kBandwi dt h() - networ kBandw dt hlUk

i f (networkBandw dt hAvai | able < 0) {
har dScore += net wor kBandw dt hAvai | abl e;

/1 Soft constraints
if (used) {
sof t Score -= comput er. get Cost ();

}

return HardSoft Score. val ueXt (hardScore, soft Score);

Even if we optimize the code above to use Maps to iterate through the processLi st only once,
it is still slow because it doesn't do incremental score calculation. To fix that, either use an
incremental Java score function or a Drools score function. Let's take a look at the latter.

2.1.7.2. Drools score configuration

To use the Drools rule engine as a score function, simply add a scoreDrl| resource in the
classpath:

<scorebDi rect or Fact ory>
<scoreDefi nitionType>HARD _SOFT</ scor eDefiniti onType>
<scoreDr| >/ org/ drool s/ pl anner/ exanpl es/ cl oudbal anci ng/ sol ver/
cl oudBal anci ngScor eRul es. drl </ scoreDr | >
</ scoreDirector Fact ory>

First, we want to make sure that all computers have enough CPU, RAM and network bandwidth
to support all their processes, so we make these hard constraints:

Example 2.7. cloudBalancingScoreRules.drl - hard constraints

20

Score configuration

i nport org.drools. pl anner. exanpl es. cl oudbal anci ng. dormai n. C oudBal ance;
i mport org.drools. pl anner. exanpl es. cl oudbal anci ng. donai n. Cl oudConput er ;
i mport org.drools. pl anner. exanpl es. cl oudbal anci ng. dormai n. C oudPr ocess;

gl obal Har dSoft Scor eHol der scor eHol der
[| #HEH#H AR R R R R R R R R R R R R R R R R R R R
/1 Hard constraints

|| HHHHH

rul e "requiredCpuPower Tot al "

when
$conputer : Cl oudConput er ($cpuPower : cpuPower)
$requi redCpuPower Tot al : Nunber (i nt Val ue > $cpuPower) from accunul at e(
Cl oudProcess(
conput er == $conput er,
$requi redCpuPower : requiredCpuPower),
sum($r equi r edCpuPower)
)
t hen

i nsertLogi cal (new | ntConstraintGccurrence("requiredCpuPower Total ",
Const rai nt Type. HARD
$cpuPower - $requi redCpuPower Tot al . i nt Val ue(),
$conputer));
end

rul e "requiredMenoryTotal "

end

rul e "requiredNet wor kBandwi dt hTot al "

end

| | HBHHBHBHBH R R R R R R R R R
/] Calculate hard score

|| ###H#HAH S H B RS R H RS R H R R R R R R H R H R H R
/1 Accunul ate hard constraints

rul e "accunul at eHar dScor e"
salience -1 // Do the other rules first (optional, for performance)

when
$hardTotal : Number() from accurul at e(
I nt Constrai nt Cccurrence(constrai nt Type == Constrai nt Type. HARD,
$wei ght : weight),
sum($wei ght)
)
t hen

21

Chapter 2. Quick start

scor eHol der . set Har dScor e($hardTot al . i nt Val ue());
end

Next, if those constraints are met, we want to minimize the maintenance cost, so we add that as
a soft constraint:

Example 2.8. cloudBalancingScoreRules.drl - soft constraints

| | #HHHHHHHRH TSR H SRR R R R R R R R R R R R R R R
/1l Soft constraints
[| H#H##HHH R R R R R R R R R R R R R R R R R

rul e "comput er Cost "
when
$conputer : C oudConput er ($cost : cost)
exi sts C oudProcess(conputer == $conputer)
t hen
i nsertLogi cal (new IntConstraintQccurrence("conputerCost",
Constrai nt Type. SOFT,
- $cost,
$conputer));
end

|| ###HBHBHHHHEH SRS H RS HHERH R R H R RS R RS R R S H RS R
// Cal cul ate soft score

| | ###HRHHHH PR H PR H T H TR

/1l Accunul ate soft constraints
rul e "accunul at eSoft Scor e"
salience -1 // Do the other rules first (optional, for performance)

when
$soft Total : Number () from accunul at e(
I nt Constrai nt Cccurrence(constrai nt Type == Constraint Type. SOFT,
$wei ght : weight),
sum($wei ght)
)
t hen

scor eHol der . set Sof t Scor e($sof t Tot al . i nt Val ue());
end

If you use the Drools rule engine for score calculation, you can integrate with other Drools
technologies, such as decision tables (XLS or web based), the Guvnor rule repository, ...

22

Beyond this tutorial

2.1.8. Beyond this tutorial

Now that this simple example works, try going further. Enrich the domain model and add extra
constraints such as these:

« Each Process belongs to a Ser vi ce. A computer can crash, so processes running the same
service should be assigned to different computers.

e Each Conput er is located in a Bui | di ng. A building can burn down, so processes of the same
services should be assigned to computers in different buildings.

23

24

Chapter 3.

Chapter 3. Use cases and examples

3.1. Examples overview

Drools Planner has several examples. In this manual we explain Drools Planner mainly using the
n queens example. So it's advisable to read at least the section about that example.

The source code of all these examples is available in the distribution zip under exanpl es/ sour ces

and also in git under dr ool s- pl anner/ dr ool s- pl anner - exanpl es.

Table 3.1. Examples overview

Example Entity Competition?
size
N queens * 1 entity class <=256 |<=256 <= Pointless
10”616
» 1 variable
Cloud balancing * 1 entity class <=2400 | <=800 <= No
1076967
* 1 variable
Traveling » 1 entity class <=980 |<=980 <= Unrealistic
salesman 1072927
* 1 chained
variable
Manners 2009 + 1 entity class <= 144 |<=144 <= Unrealistic
107310
» 1 variable
Course timetabling « 1 entity class <=434 <=25 <= Realistic
_ and <= 1071171
» 2 variables 20
Machine 1 entity class <= <=5000 <= Realistic
reassignment 50000 107184948
» 1 variable
Vehicle routing * 1 entity class <=134 |<=144 <= Unrealistic
107285
* 1 chained
variable
Hospital bed » 1 entity class <=2750 | <=471 <= Realistic
planning 1076851
» 1 variable
Exam timetabling + 1 entity class <=1096 | <=80 <= Realistic
and <= 1073374
» 2 variables 49

25

Chapter 3. Use cases and examples

Example Domain Entity Value Search Competition?
size size space
Employee rostering < 1 entity class <=752 |<=50 <= Realistic
1071277
» 1 variable
Sport scheduling * 1 entity class <=1560 | <=78 <= Unrealistic
1072951
» 1 variable

A realistic competition is an official, independent competition:

« that clearly defines a real-word use case

* with real-world constraints

 with multiple, real-world datasets

« that expects reproducible results within a specific time limit on specific hardware

« that has had serious participation from the academic and/or enterprise Operations Research
community

These realistic competitions provide an objective comparison of Planner with competitive software
and academic research.

3.2. Toy examples

3.2.1. N queens

3.2.1.1. Problem statement

Place n queens on a n sized chessboard so no 2 queens can attach each other. The most common
n queens puzzle is the 8 queens puzzle, with n = 8:

26

N queens

Constraints:

» Use a chessboard of n columns and n rows.
 Place n queens on the chessboard.

* No 2 queens can attack each other. A queen can attack any other queen on the same horizontal,
vertical or diagonal line.

This documentation heavily uses the 4 queens puzzle as the primary example.

A proposed solution could be:

27

Chapter 3. Use cases and examples

oy

W N = O

Figure 3.1. A wrong solution for the 4 queens puzzle

The above solution is wrong because queens Al and B0 can attack each other (so can queens B0
and D0). Removing queen BO would respect the "no 2 queens can attack each other" constraint,
but would break the "place n queens"” constraint.

Below is a correct solution:

g

Ww N H O

g

Figure 3.2. A correct solution for the 4 queens puzzle

All the constraints have been met, so the solution is correct. Note that most n queens puzzles
have multiple correct solutions. We'll focus on finding a single correct solution for a given n, not
on finding the number of possible correct solutions for a given n.

3.2.1.2. Problem size

4 has 4 queens with a search space of 256.
8 has 8 queens with a search space of 1077.
16 has 16 queens with a search space of 10719.
32 has 32 queens with a search space of 10748.
64 has 64 queens with a search space of 107115.
256 has 256 queens with a search space of 107616.

The Drools Planner implementation of the N queens example has not been optimized because
it functions as a beginner example. Nevertheless, it can easily handle 64 queens. With a few
changes it has been shown to easily handle 5000 queens and more.

28

N queens

3.2.1.3. Domain model

Use a good domain model: it will be easier to understand and solve your planning problem. This
is the domain model for the n queens example:
public class Colum {

private int index;

/[l ... getters and setters

public class Row {
private int index;

[l ... getters and setters

public class Queen {

private Colum col um,;
private Row row;

public int getAscendi nghi agonal I ndex() {...}
public int getDescendi ngDi agonal I ndex() {...}

/[l ... getters and setters

A Queen instance has a Col umm (for example: 0 is column A, 1 is column B, ...) and a Row (its row,
for example: O isrow 0, 1 is row 1, ...). Based on the column and the row, the ascending diagonal
line as well as the descending diagonal line can be calculated. The column and row indexes start
from the upper left corner of the chessboard.

public class NQueens inplenments Sol uti on<Si npl eScore> {
private int n;
private List<Colum> col ummlLi st;

private List<Row> rowlList;

private List<Queen> queenlLi st;

29

Chapter 3. Use cases and examples

private SinpleScore score;

/[l ... getters and setters

A single NQueens instance contains a list of all Queen instances. It is the Sol ut i on implementation
which will be supplied to, solved by and retrieved from the Solver. Notice that in the 4 queens
example, NQueens's get N() method will always return 4.

Table 3.2. A solution for 4 queens shown in the domain model

A solution Queen columnindex rowlndex ascendingDia(descendingDi

(columnindex (columnindex
+rowlndex) - rowlndex)

A B C D 0 1 1 (%) -1
@ 1 0 1(%) 1

2 2 4 0

DO 3 0 (%) 3 3

iy

W N = O

When 2 queens share the same column, row or diagonal line, such as (*) and (**), they can attack
each other.

3.2.2. Cloud balancing

This example is explained in a tutorial.
3.2.3. Traveling salesman (TSP - Traveling salesman problem)

3.2.3.1. Problem statement

Given a list of cities, find the shortest tour for a salesman that visits each city exactly once.

The problem is defined by Wikipedia [http://en.wikipedia.org/wiki/Travelling_salesman_problem].
It is one of the most intensively studied problems [http://www.tsp.gatech.edu/] in computational
mathematics. Yet, in the real world, it's often only part of a planning problem, along with other
constraints, such as employee shift rostering constraints.

3.2.3.2. Problem size

dj 38 has 38 cities with a search space of 10758.

30

http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://www.tsp.gatech.edu/
http://www.tsp.gatech.edu/

Manners 2009

europe40 has 40 cities with a search space of 10762.
st 70 has 70 cities with a search space of 107126.
pch442 has 442 cities with a search space of 1071166.
| u980 has 980 cities with a search space of 1072927.

3.2.4. Manners 2009

3.2.4.1. Problem statement

In Manners 2009, miss Manners is throwing a party again.

« This time she invited 144 guests and prepared 12 round tables with 12 seats each.
» Every guest should sit next to someone (left and right) of the opposite gender.
« And that neighbour should have at least one hobby in common with the guest.

 Also, this time there should be 2 politicians, 2 doctors, 2 socialites, 2 sports stars, 2 teachers
and 2 programmers at each table.

And the 2 politicians, 2 doctors, 2 sports stars and 2 programmers shouldn't be the same kind.

Drools Expert also has the normal miss Manners examples (which is much smaller) and employs
a brute force heuristic to solve it. Drools Planner's implementation is far more scalable because it
uses heuristics to find the best solution and Drools Expert to calculate the score of each solution.

3.2.4.2. Problem size

geoffreyl has 18 jobs, 144 guests, 288 hobby practicians, 12 tables
and 144 seats with a search space of 107310.
j anmes1W t hGender Change has 18 j obs, 144 guests, 432 hobby practicians, 12 tables
and 144 seats with a search space of 107310.

3.3. Real examples

3.3.1. Course timetabling (ITC 2007 track 3 - Curriculum course
scheduling)

3.3.1.1. Problem statement

Schedule each lecture into a timeslot and into a room.

Hard constraints:

» Teacher conflict: A teacher must not have 2 lectures in the same period.

31

Chapter 3. Use cases and examples

 Curriculum conflict: A curriculum must not have 2 lectures in the same period.
* Room occupancy: 2 lectures must not be in the same room in the same period.

» Unavailable period (specified per dataset): A specific lecture must not be assigned to a specific
period.

Soft constraints:

« Room capacity: A room's capacity should not be less than the number of students in its lecture.

« Minimum working days: Lectures of the same course should be spread into a minimum number
of days.

e Curriculum compactness: Lectures belonging to the same curriculum should be adjacent to
each other (so in consecutive periods).

» Room stability: Lectures of the same course should be assigned the same room.

The problem is defined by the International Timetabling Competition 2007 track 3 [http://
www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm].

3.3.1.2. Problem size

conp0l1 has 24 teachers, 14 curricula, 30 courses, 160 |ectures, 30 periods, 6
roons and 53 unavail abl e period constraints with a search space of 107360.
conp02 has 71 teachers, 70 curricula, 82 courses, 283 | ectures, 25 periods, 16
rooms and 513 unavail abl e period constraints with a search space of 107736.
conp03 has 61 teachers, 68 curricula, 72 courses, 251 |ectures, 25 periods, 16
roons and 382 unavail able period constraints with a search space of 107653.
conp04 has 70 teachers, 57 curricula, 79 courses, 286 |ectures, 25 periods, 18
rooms and 396 unavail abl e period constraints with a search space of 107758.
conp05 has 47 teachers, 139 curricula, 54 courses, 152 lectures, 36 periods, 9
roons and 771 unavail able period constraints with a search space of 107381.
conp06 has 87 teachers, 70 curricula, 108 courses, 361 | ectures, 25 periods, 18
rooms and 632 unavail able period constraints with a search space of 107957.
conp07 has 99 teachers, 77 curricula, 131 courses, 434 | ectures, 25 periods, 20
roons and 667 unavail abl e period constraints with a search space of 1071171.
conp08 has 76 teachers, 61 curricula, 86 courses, 324 | ectures, 25 periods, 18
roons and 478 unavail able period constraints with a search space of 107859.
conp09 has 68 teachers, 75 curricula, 76 courses, 279 |ectures, 25 periods, 18
roons and 405 unavail abl e period constraints with a search space of 107740.
conpl0 has 88 teachers, 67 curricula, 115 courses, 370 | ectures, 25 periods, 18
rooms and 694 unavail abl e period constraints with a search space of 107981.
conpll has 24 teachers, 13 curricula, 30 courses, 162 |ectures, 45 periods, 5
roons and 94 unavail abl e period constraints with a search space of 107381.
conpl2 has 74 teachers, 150 curricula, 88 courses, 218 |ectures, 36 periods, 11
roons and 1368 unavail abl e period constraints with a search space of 107566.

32

http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm
http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm
http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm

Machine reassignment (Google ROADEF 2012)

conpl3 has 77 teachers, 66 curricula, 82 courses, 308 |ectures, 25 periods, 19
roons and 468 unavail abl e period constraints with a search space of 107824.
conpl4 has 68 teachers, 60 curricula, 85 courses, 275 | ectures, 25 periods, 17
roons and 486 unavail abl e period constraints with a search space of 107722.

3.3.1.3. Domain model

Curriculum course class diagram

| Teacher] [Day]
1 1
[Curriculum] [Timeslot]
. 1
[Course] [Period] [Room
1 1 1

@~PlanningVariable

@PlanningVariable

. @PlanningEntity s |-

[Lecture]
N

@PlanningEntityCollectionProperty

[CourseSchedule

3.3.2. Machine reassignment (Google ROADEF 2012)

3.3.2.1. Problem statement

Assign each process to a machine. All processes already have an original (unoptimized)
assignment. Each process requires an amount of each resource (such as CPU, RAM, ...). This is
more complex version of the Cloud Balancing example.

Hard constraints:

« Maximum capacity: The maximum capacity for each resource for each machine must not be
exceeded.

33

Chapter 3. Use cases and examples

Conflict: Processes of the same service must run on distinct machines.
» Spread: Processes of the same service must be spread across locations.

« Dependency: The processes of a service depending on another service must run in the
neighborhood of a process of the other service.

« Transient usage: Some resources are transient and count towards the maximum capacity of
both the original machine as the newly assigned machine.

Soft constraints:

Load: The safety capacity for each resource for each machine should not be exceeded.

Balance: Leave room for future assignments by balancing the available resources on each
machine.

« Process move cost: A process has a move cost.
* Service move cost: A service has a move cost.

« Machine move cost: Moving a process from machine A to machine B has another A-B specific
move cost.

The problem is defined by the Google ROADEF/EURO Challenge 2012 [http://
challenge.roadef.org/2012/en/].

3.3.2.2. Problem size

nodel _al 1 has 2 resources, 1 neighborhoods, 4 | ocati ons, 4 machi nes, 79
services, 100 processes and 1 bal ancePenalties with a search space of 10760.
nmodel _al 2 has 4 resources, 2 nei ghbor hoods, 4 | ocations, 100 machi nes,

980 services, 1000 processes and O bal ancePenalties with a search space
of 1072000.

nmodel _al 3 has 3 resources, 5 nei ghbor hoods, 25 | ocati ons, 100 nmachi nes,
216 services, 1000 processes and O bal ancePenalties with a search space

of 1072000.

nodel _al 4 has 3 resources, 50 neighborhoods, 50 | ocations, 50 machi nes,
142 servi ces, 1000 processes and 1 bal ancePenalties with a search space

of 1071698.

nmodel _al 5 has 4 resources, 2 nei ghbor hoods, 4 |ocations, 12 nachi nes,

981 services, 1000 processes and 1 bal ancePenalties with a search space
of 1071079.

nmodel _a2_1 has 3 resources, 1 nei ghbor hoods, 1 | ocations, 100 machi nes,
1000 services, 1000 processes and 0O bal ancePenalties with a search space

of 1072000.

nodel a2 2 has 12 resources, 5 nei ghbor hoods, 25 locations, 100 nmchi nes,
170 servi ces, 1000 processes and O bal ancePenalties with a search space

of 1072000.

34

http://challenge.roadef.org/2012/en/
http://challenge.roadef.org/2012/en/
http://challenge.roadef.org/2012/en/

Vehicle routing

nmodel _a2_3 has 12

129 services,

of 1072000

nodel _a2_4 has 12

180 services,

of 1071698

nmodel a2 5 has 12

153 servi ces,
of 1071698
nodel _b 1 has 1
2512 services,
of 10710000.
nmodel _b_ 2 has 1
2462 servi ces,
of 10710000.
nmodel _b_3
15025 services
10740000.
nmodel b 4
1732 servi ces,
10753979
nodel _b_5 has
35082 services,
10780000.
nmodel _b_6 has
14680 services
10792041.
nmodel _b_7
15050 services
107144082
nmodel b 8
45030 servi ces,
107100000.
nodel _b_9 has
4609 services,
107150000.
nodel _b_10 has
4896 servi ces,
107184948.

has

has

has

has

3.3.3. Vehicle

3.3.3.1. Problem statement

resources,

5 nei ghbor hoods,

25 | ocations,

100 mmchi nes,

1000 processes and 0O bal ancePenalties with a search space

resources,

5 nei ghbor hoods

25 |l ocati ons,

50 machi nes,

1000 processes and 1 bal ancePenalties with a search space

resources,

5 nei ghbor hoods

25 |l ocations,

50 machi nes,

1000 processes and O bal ancePenalties with a search space

2 resources,

5 nei ghbor hoods,

10 | ocati ons,

100 nmachi nes,

5000 processes and 0 bal ancePenalties with a search space

2 resources,

5 nei ghbor hoods,

10 | ocations

100 machi nes,

5000 processes and 1 bal ancePenalties with a search space

6 resources,

5 nei ghbor hoods,

10 | ocati ons,

20000 processes and 0 bal ancePenalties with a

6 resources,

5 nei ghbor hoods,

50 | ocati ons,

20000 processes and 1 bal ancePenalties with a

6 resources,

5 nei ghbor hoods,

10 | ocati ons,

40000 processes and 0 bal ancePenalties with a

6 resources,

5 nei ghbor hoods,

50 | ocati ons,

40000 processes and 1 bal ancePenalties with a

6 resources,

5 nei ghbor hoods,

50 |l ocati ons,

40000 processes and 1 bal ancePenalties with a

3 resources,

5 nei ghbor hoods,

10 | ocati ons,

50000 processes and 0 bal ancePenalties with a

3 resources

5 nei ghbor hoods

100 | ocati ons,

50000 processes and 1 bal ancePenalties with a

3 resources,

5 nei ghbor hoods,

100 | ocati ons,

50000 processes and 1 bal ancePenalties with a

routing

100 machi nes,
search space of

500 machi nes
search space of

100 machi nes,
search space of

200 machi nes,
search space of

4000 nmchi nes,
search space of

100 machi nes,
search space of

1000 machi nes,
search space of

5000 mmchi nes,
search space of

Using a fleet of vehicles, pick up the objects of each customer and bring them to the depot. Each
vehicle can service multiple customers, but it has a limited capacity.

35

Chapter 3. Use cases and examples

21

22

- Depot 08 743 fuel

* Customer demand

The capacitated vehicle routing problem (CRVP) is defined by the VRP web [http://neo.lcc.uma.es/
radi-aeb/WebVRP/].

3.3.3.2. Problem size

A-n32-k5 has 1 depots, 5 vehicles and 31 customers with
A-n33-k5 has 1 depots, 5 vehicles and 32 custonmers with
A-n33-k6 has 1 depots, 6 vehicles and 32 custonmers with
A-n34-k5 has 1 depots, 5 vehicles and 33 custoners with
A-n36-k5 has 1 depots, 5 vehicles and 35 customers with
A-n37-k5 has 1 depots, 5 vehicles and 36 custonmers with
A-n37-k6 has 1 depots, 6 vehicles and 36 custonmers with
A-n38-k5 has 1 depots, 5 vehicles and 37 custoners with
A-n39-k5 has 1 depots, 5 vehicles and 38 customers with
A-n39-k6 has 1 depots, 6 vehicles and 38 custonmers with
A-nd4-k7 has 1 depots, 7 vehicles and 43 custonmers with
A-n45-k6 has 1 depots, 6 vehicles and 44 custoners with
A-n45-k7 has 1 depots, 7 vehicles and 44 customers with
A-n46-k7 has 1 depots, 7 vehicles and 45 custoners with

search space of 10746.
search space of 10748.
search space of 10748.
search space of 10750.
search space of 10754.
search space of 10756.
search space of 10756.
search space of 10758.
search space of 10760.
search space of 10760.
search space of 10770.
search space of 10772.
search space of 10772.
search space of 10774.

L LY Y O DD DD DY DD DYDY D

36

http://neo.lcc.uma.es/radi-aeb/WebVRP/
http://neo.lcc.uma.es/radi-aeb/WebVRP/
http://neo.lcc.uma.es/radi-aeb/WebVRP/

Hospital bed planning (PAS - Patient admission scheduling)

A- n48- k7
A-n53- k7
A- n54- k7
A- n55- k9
A- n60- k9
107104.
A-n61- k9
107106.
A-n62- k8
101108.
A-n63-k10
107111,
A-n63- k9
107111,
A- n64- k9
107113.
A- n65- k9
107115.
A- n69- k9
10n124.
A-n80- k10
107149.
F- n135- k7
107285.

has 1 depots,
has 1 depots,
has 1 depots,
has 1 depots,

has

has

has

has

has

has

has

has

has

has

1 depots,

1 depots,

1 depots,

1 depots,

1 depots,

1 depots,

1 depots,

1 depots,

1 depots,

1 depots,

F-n45-k4 has 1 depots,

F-n72-k4
107131.

has

1 depots,

7 vehicl es and

7 vehicl es and

7 vehi cl es and

9 vehi cl es and

9 vehicles

9 vehicles

8 vehicles

10 vehicles

9 vehicles

9 vehicles

9 vehicles

9 vehicles

10 vehicles

7 vehicles

4 vehicl es and
4 vehicles

47 custoners with a search space of
52 custoners with a search space of
53 custoners with a search space of
54 custoners with a search space of

10778.
10789.
10791.
10793.

59 custoners with a search space of

and

and 60
and 61
and 62
and 62
and 63
and 64
and 68
and 79
and 134

44 custoners with a search space of

and

cust oners

custoners

cust oners

custoners

cust oners

custoners

cust oners

custoners

cust oners

W th

W th

w th

W th

W th

W th

W th

wi th

w th

search

search

sear ch

search

search

search

search

search

search

space

space

space

space

space

space

space

space

space

of

of

of

of

of

of

of

of

of

10772.

71 custoners with a search space of

3.3.4. Hospital bed planning (PAS - Patient admission

scheduling)

3.3.4.1. Problem statement

Assign each patient (that will come to the hospital) into a bed for each night that the patient will
stay in the hospital. Each bed belongs to a room and each room belongs to a department. The
arrival and departure dates of the patients is fixed: only a bed needs to be assigned for each night.

37

Chapter 3. Use cases and examples

Patient admission schedule

General ward
Room 11 bed 1

Room 11 bed 2

Intensive care®
Room 21 bed 1

Room 22 bed 1

Hard constraints:

Assign each patient a hospital bed.

Largest admission first

November

6

Drools Planner

November
3 4 5

no space

2 patients must not be assigned to the same bed in the same night.

< A room can have a gender limitation: only females, only males, the same gender in the same
night or no gender limitation at all.

* A department can have a minimum or maximum age.

Soft constraints:

A patient can require a room with specific equipment(s).

* A patient can prefer a maximum room size, for example if he/she want a single room.

» A patient is best assigned to a room that specializes in his/her problem.

« A patient can prefer a room with specific equipment(s).

A patient is best assigned to a department that specializes in his/her problem.

38

Difficult examples

The problem is defined on this webpage [http://allserv.kahosl.be/~peter/pas/] and the test data
comes from real world hospitals.

3.3.4.2. Problem size

testdat a0l has 4
14 nights, 652
t est dat a02 has 6
14 nights, 755
t est dat a03 has 5
14 nights, 708
t est dat a04 has 6
14 nights, 746
t est dat a05 has 4
14 nights, 587
t est dat a06 has 4
14 nights, 685
t est dat a07 has 6
14 nights, 519
t est dat a08 has 6
21 nights, 895
test dat a09 has 4
28 nights, 1400
testdatal0 has 4
56 nights, 1575
testdatall has 4
91 nights, 2514
testdatal2 has 4
84 nights, 2750
testdatal3 has 5
28 nights, 907

speci al i sns, 2 equi pnents, 4
patients and 652 admi ssions
speci al i sns, 2 equi pnents, 6
patients and 755 admi ssions
speci ali sns, 2 equiprments, 5
patients and 708 admi ssions
speci al i snms, 2 equi pnents, 6
patients and 746 admi ssions
speci al i sns, 2 equipnments, 4
patients and 587 admi ssions
speci al i snms, 2 equi pnents, 4
patients and 685 admi ssions
speci al i sns, 4 equi pments, 6
patients and 519 admi ssions
speci al i sns, 4 equipnents, 6
patients and 895 admi ssions
speci al i sms, 4 equipnents, 4
patients and 1400 admi ssions
speci al i sns, 4 equi pnents, 4
patients and 1575 admi ssions
speci al i sms, 4 equipnents, 4
patients and 2514 admi ssions
speci al i sns, 4 equi pnents, 4
patients and 2750 admi ssions
speci al i sns, 4 equiprments, 5
patients and 1109 admi ssions

3.4. Difficult examples

3.4.1. Exam timetabling (ITC 2007 track 1 - Examination)

3.4.1.1. Problem statement

departments, 98 roons,
with a search space of
departnments, 151 roons,
with a search space of
departnments, 131 roons,
with a search space of
departnments, 155 roons,
with a search space of
departments, 102 roons,
with a search space of
departnments, 104 roons,
with a search space of
departments, 162 roons,
with a search space of
departnments, 148 roons,
with a search space of
departments, 105 roons,
with a search space of
departnments, 104 roons,
with a search space of
departments, 107 roons,
with a search space of
departnments, 105 roons,
with a search space of
departments, 125 roons,
with a search space of

286 beds,
1071601.
465 beds,
1072013
395 beds,
1011838.
471 beds,
1071994,
325 beds,
1071474,
313 beds,
1071709.
472 beds,
1071387.
441 beds,
1072366.
310 beds,
10"3487.
308 beds,
10739109.
318 beds,
1076291.
310 beds,
1076851.
368 beds,
1012845

Schedule each exam into a period and into a room. Multiple exams can share the same room
during the same period.

39

http://allserv.kahosl.be/~peter/pas/
http://allserv.kahosl.be/~peter/pas/

Chapter 3. Use cases and examples

Examination Ann [History | Math |
timetabling | [B] Bobby [History | Math |
Assign each exam Carla [HiStOI’Y]
sperodand | () Dan (Math_[Chem
(E) Edna Chem| Bio | Geo]
Fred [Bio | (Eng |
Greg Geo | Eng
Most students first Drools Planner
Room X RoomY Room X ||[RoomY
4 seats 3 seats 4 seats 3 seats
Mon 09:00 History Chem Chem| Eng | | History
on (A[B]c] [DJE] DIE|F]
B 09:00 Math |Fr|| Bio Math Bio
o ‘AlBID]|c] [EIF) AlB|D] [E|F]
same /, ..Il'n same same /
Fri 14:00 day/ | o % day/ f:"
e S/

—

same time

Hard constraints:

* Room capacity: A room's seating capacity must suffice at all times.

 Period duration: A period's duration must suffice for all of its exams.

Period related hard constraints (specified per dataset):

Exam conflict: 2 exams that share students must not occur in the same period.

» Coincidence: 2 specified exams must use the same period (but possibly another room).

» Exclusion: 2 specified exams must not use the same period.

» After: A specified exam must occur in a period after another specified exam's period.

« Room related hard constraints (specified per dataset):

» Exclusive: 1 specified exam should not have to share its room with any other exam.

Soft constraints (each of which has a parametrized penalty):

40

Exam timetabling (ITC 2007 track 1 - Examination)

* The same student should not have 2 exams in a row.

e The same student should not have 2 exams on the same day.

» Period spread: 2 exams that share students should be a humber of periods apart.
* Mixed durations: 2 exams that share a room should not have different durations.
» Front load: Large exams should be scheduled earlier in the schedule.

 Period penalty (specified per dataset): Some periods have a penalty when used.
* Room penalty (specified per dataset): Some rooms have a penalty when used.

It uses large test data sets of real-life universities.

The problem is defined by the International Timetabling Competition 2007 track 1 [http://
www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm]. Geoffrey De Smet finished 4th in
that competition with a very early version of Drools Planner. Many improvements have been made

since then.

3.4.1.2. Problem size

exam conp_set1l has 7883 students, 607 exans, 54 periods, 7 roons, 12
constraints and O room constraints with a search space of 1071564.
exam conp_set2 has 12484 students, 870 exans, 40 periods, 49 roons, 12
constraints and 2 roomconstraints with a search space of 1072864.
exam conp_set 3 has 16365 students, 934 exans, 36 periods, 48 roons, 168
constraints and 15 room constraints with a search space of 1073023.
exam conp_set4 has 4421 students, 273 exans, 21 periods, 1 roons, 40
constraints and O roomconstraints with a search space of 107360.
exam conp_set5 has 8719 students, 1018 exans, 42 periods, 3 roons, 27
constraints and O room constraints with a search space of 1072138.
exam conp_set6 has 7909 students, 242 exans, 16 periods, 8 roons, 22
constraints and O roomconstraints with a search space of 107509.
exam conp_set 7 has 13795 students, 1096 exans, 80 periods, 15 roons, 28
constraints and O room constraints with a search space of 1073374.
exam conp_set8 has 7718 students, 598 exans, 80 periods, 8 roons, 20
constraints and 1 roomconstraints with a search space of 1071678.

3.4.1.3. Domain model

Below you can see the main examination domain classes:

peri

peri

peri

peri

peri

peri

peri

peri

od

od

od

od

od

od

od

od

41

http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm
http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm
http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm

Chapter 3. Use cases and examples

=<interface>=
Solution

<<singleton==>
InstitutionParametrization

~

X - twolnARowPenality : int
— - twolnADayPenality : int
<<singieton== - periodSpreadLength : int
Examination |——3 . periodSpreadPenality : int

1 - mixedDurationPenality : int
- frontLoadLargeTopicSize : int
1 - examlList - frontLoadLastPeriodSize : int

- frontLoadPenality : int

An exam changes during

solving: 1.*
The exam.period and/or exam.
room reference change. <<@PlanningEntity ==
The exam.id and exam.topic = Exam
reference do not change.)
-id : long
- .- room
1 4 topic " |- period ™~
Calculated before solving % 0.* [N
T 1 A/ “\ 5
! A = Room
- - Period 1
TopicConflict o -id: long
T -ld:long - capacity : int
- studentSize : int - startDateTimeString : String 3 peﬁalty% int
- periodindex : int
0.+ - daylndex : int
- leftTopic 0.* - duration : int
- rightTopic - penalty : int
- frontLoadLast : boolean
1 1 .
- elA//—- RoomHardConstraint
Topic topic | -id: long
-id : long .é._--—-—--""""' PeriodHardConstraint
- duration : int - leftTopic | 4. long
- frontLoadLarge : boolean 1
1 - rightTopic
- stlidentList 1 1
O”:{:
<<enums> <<enums=:=
Student PeriodHardConstraintType RoomHardConstraintType
-id : long - COINCIDENCE : int - ROOM_EXCLUSIVE : int
- EXCLUSION : int
. - AFTER @ int
Mot asserted into the working
memaory

Figure 3.3. Examination domain class diagram

Notice that we've split up the exam concept into an Exam class and a Topi ¢ class. The Exam
instances change during solving (this is the planning entity class), when their period or room
property changes. The Topi c, Peri od and Roominstances never change during solving (these
are problem facts, just like some other classes).

42

Employee rostering (INRC 2010 - Nurse rostering)

3.4.2. Employee rostering (INRC 2010 - Nurse rostering)

3.4.2.1. Problem statement

For each shift, assign a nurse to work that shift.

Employee shift rostering

Populate each work shift with a nurse.

Basic nurses

Maternity nurses Emergency nurses
Ann .Beth .Cory D | Dan . Elin .Greg

H | Hue mllse
Largest staff first Drools Planner
Sat Sun Mon Sat Sun Mon
6 14 22| & 14 22 6 14 22 6 14 22| & 14 22 6 14 22
| | | | | | | | | | | | | | | | | |
Maternity
nurses
Emergency
nurses
Any
nurses

43

Chapter 3. Use cases and examples

Employee shift rostering

Hard constraints
Wed

6 14 22

Thu

6 14 22

Fri

6 14 22

Sat

6 14 22
| | |

Mon

6 14 22

Sun

6 14 22
| | |

Mon Tue
6 14 22 6 14 22

All required shifts must be assigned

No hard constraint broken => solution is feasible

44

Employee rostering (INRC 2010 - Nurse rostering)

Employee shift rostering

Soft constraints
Wed

6 14 22
| | |

Thu

6 14 22
| | |

Fri

6 14 22

Sat

6 14 22
| |

Sun

6 14 22
| | |

Tue
6 14 22

Mon

Maximum consecutive working days for Ann: é
ﬂﬂﬂﬂﬂgﬂﬂﬂlllllllﬂﬂ1
1 2 3 6 7

1111111111111 (1(1
R

)
)

22 B[?[?[?]?[B]?[?]?]?]E]"
N F E
There are many more soft constraints...

The problem is defined by the International Nurse Rostering Competition 2010 [http://

www.kuleuven-kortrijk.be/nrpcompetition].

3.4.2.2. Problem size

There are 3 dataset types:

 sprint: must be solved in seconds.
* medium: must be solved in minutes.

« long: must be solved in hours.

toyl has 1 skills, 3 shiftTypes, 2 patterns, 1 contracts, 6 enployees, 7
shiftDates, 35 shiftAssignments and O requests with a search space of 10727.
toy2 has 1 skills, 3 shiftTypes, 3 patterns, 2 contracts, 20 enpl oyees, 28

shi ft Dat es, 180 shiftAssignnents and 140 requests with a search space of 107234.

sprint01 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 enpl oyees, 28
shi ft Dat es, 152 shiftAssignnents and 150 requests with a search space of 107152.

45

HBELBEENEENEENEan

v
m

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ
D) -
N

http://www.kuleuven-kortrijk.be/nrpcompetition
http://www.kuleuven-kortrijk.be/nrpcompetition
http://www.kuleuven-kortrijk.be/nrpcompetition

Chapter 3. Use cases and examples

sprint02 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 enpl oyees, 28
shi ftDates, 152 shiftAssignments and 150 requests with a search space of 107152.
sprint03 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 enpl oyees, 28
shi ft Dat es, 152 shiftAssignments and 150 requests with a search space of 107152.
spri nt 04 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 enpl oyees, 28
shi ft Dates, 152 shiftAssignments and 150 requests with a search space of 107152.
sprint 05 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 enpl oyees, 28
shi ft Dat es, 152 shiftAssignments and 150 requests with a search space of 107152.
sprint 06 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 enpl oyees, 28
shi ftDates, 152 shiftAssignments and 150 requests with a search space of 107152.
sprint 07 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 enpl oyees, 28
shi ft Dat es, 152 shiftAssignments and 150 requests with a search space of 107152.
sprint08 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 enpl oyees, 28
shi ftDates, 152 shiftAssignments and 150 requests with a search space of 107152.
sprint 09 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 enpl oyees, 28
shi ft Dat es, 152 shiftAssignments and 150 requests with a search space of 107152.
sprint 10 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 enpl oyees, 28
shi ft Dates, 152 shiftAssignments and 150 requests with a search space of 107152.
sprint_hint0Ol has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 enpl oyees,
28 shiftDates, 152 shiftAssignments and 150 requests with a search space of
107152.

sprint_hint02 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 enpl oyees,
28 shiftDates, 152 shiftAssignments and 150 requests with a search space of
107152.

sprint_hint03 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 enpl oyees,
28 shiftDates, 152 shiftAssignnments and 150 requests with a search space of
107152.

sprint_lateOl has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 enpl oyees,
28 shiftDates, 152 shiftAssignments and 150 requests with a search space of
107152.

sprint_late02 has 1 skills, 3 shiftTypes, 4 patterns, 3 contracts, 10 enpl oyees,
28 shiftDates, 144 shiftAssignments and 139 requests with a search space of
107144,

sprint_late03 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 enpl oyees,
28 shiftDates, 160 shiftAssignments and 150 requests with a search space of
107160.

sprint_late04 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 enpl oyees,
28 shiftDates, 160 shiftAssignments and 150 requests with a search space of
107160.

sprint_late05 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 enpl oyees,
28 shiftDates, 152 shiftAssignments and 150 requests with a search space of
107152.

sprint_|late06 has 1 skills, 4 shiftTypes, O patterns, 3 contracts, 10 enpl oyees,
28 shiftDates, 152 shiftAssignments and 150 requests with a search space of
107152.

sprint_late07 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 enpl oyees,
28 shiftDates, 152 shiftAssignments and 150 requests with a search space of
107152.

46

Employee rostering (INRC 2010 - Nurse rostering)

sprint_late08 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 enpl oyees,
28 shiftDates, 152 shiftAssignnents and 0 requests with a search space of
107152.

sprint_late09 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 enpl oyees,
28 shiftDates, 152 shiftAssignnents and 0 requests with a search space of
107152.

sprint_latel0 has 1 skills, 4 shiftTypes, O patterns, 3 contracts, 10 enpl oyees,
28 shiftDates, 152 shiftAssignments and 150 requests with a search space of
107152.

medi unD1 has 1 skills, 4 shiftTypes, O patterns, 4 contracts, 31 enpl oyees, 28
shi ft Dat es, 608 shiftAssignments and 403 requests with a search space of 107906.
medi unD2 has 1 skills, 4 shiftTypes, O patterns, 4 contracts, 31 enpl oyees, 28
shi ft Dat es, 608 shiftAssignments and 403 requests with a search space of 107906.
medi unD3 has 1 skills, 4 shiftTypes, O patterns, 4 contracts, 31 enpl oyees, 28
shi ft Dat es, 608 shi ftAssi gnments and 403 requests with a search space of 107906.
medi unD4 has 1 skills, 4 shiftTypes, O patterns, 4 contracts, 31 enpl oyees, 28
shi ft Dat es, 608 shiftAssignments and 403 requests with a search space of 107906.
medi unD5 has 1 skills, 4 shiftTypes, O patterns, 4 contracts, 31 enpl oyees, 28

shi ft Dat es, 608 shiftAssignments and 403 requests with a search space of 107906.

medi um hint01 has 1 skills, 4 shiftTypes, 7 patterns, 4 contracts, 30 enpl oyees,
28 shiftDates, 428 shiftAssignnments and 390 requests with a search space of
107632.

medi um hint02 has 1 skills, 4 shiftTypes, 7 patterns, 3 contracts, 30 enpl oyees,
28 shiftDates, 428 shiftAssignments and 390 requests with a search space of
107632.

medi um hint03 has 1 skills, 4 shiftTypes, 7 patterns, 4 contracts, 30 enpl oyees,
28 shiftDates, 428 shiftAssignments and 390 requests with a search space of
107632.

medi um | ate01 has 1 skills, 4 shiftTypes, 7 patterns, 4 contracts, 30 enpl oyees,
28 shiftDates, 424 shiftAssignments and 390 requests with a search space of
107626.

medi um | ate02 has 1 skills, 4 shiftTypes, 7 patterns, 3 contracts, 30 enpl oyees,
28 shiftDates, 428 shiftAssignnments and 390 requests with a search space of
107632.

medi um | ate03 has 1 skills, 4 shiftTypes, 0 patterns, 4 contracts, 30 enpl oyees,
28 shiftDates, 428 shiftAssignments and 390 requests with a search space of
107632.

medi um | ate04 has 1 skills, 4 shiftTypes, 7 patterns, 3 contracts, 30 enpl oyees,
28 shiftDates, 416 shiftAssignments and 390 requests with a search space of
107614.

medi um | ate05 has 2 skills, 5 shiftTypes, 7 patterns, 4 contracts, 30 enpl oyees,
28 shiftDates, 452 shiftAssignments and 390 requests with a search space of
107667.

| ong01 has 2 skills, 5 shiftTypes, 3 patterns, 3 contracts, 49 enpl oyees,
28 shiftDates, 740 shiftAssignments and 735 requests with a search space of
10711250.

47

Chapter 3. Use cases and examples

| ong02 has 2 skills, 5 shiftTypes, 3 patterns, 3 contracts, 49 enpl oyees,
28 shiftDates, 740 shiftAssignnments and 735 requests with a search space of
10"11250.
ong03 has 2 skills, 5 shiftTypes, 3 patterns, 3 contracts, 49 enpl oyees,
28 shiftDates, 740 shiftAssignments and 735 requests with a search space of
10711250.
ong04 has 2 skills, 5 shiftTypes, 3 patterns, 3 contracts, 49 enpl oyees,
28 shiftDates, 740 shiftAssignments and 735 requests with a search space of
10711250.
ong05 has 2 skills, 5 shiftTypes, 3 patterns, 3 contracts, 49 enpl oyees,
28 shiftDates, 740 shiftAssignments and 735 requests with a search space of
1071250.
ong_hint0l has 2 skills, 5 shiftTypes, 9 patterns, 3 contracts, 50 enpl oyees,
28 shiftDates, 740 shiftAssignnents and 0 requests with a search space of
1011257.
ong_hint02 has 2 skills, 5 shiftTypes, 7 patterns, 3 contracts, 50 enpl oyees,
28 shiftDates, 740 shiftAssignnents and 0 requests with a search space of
1011257.
ong_hint03 has 2 skills, 5 shiftTypes, 7 patterns, 3 contracts, 50 enpl oyees,
28 shiftDates, 740 shiftAssignnents and 0 requests with a search space of
10"11257.
ong late0l has 2 skills, 5 shiftTypes, 9 patterns, 3 contracts, 50 enpl oyees,
28 shiftDates, 752 shiftAssignnents and 0 requests with a search space of
1011277.
ong late02 has 2 skills, 5 shiftTypes, 9 patterns, 4 contracts, 50 enpl oyees,
28 shiftDates, 752 shiftAssignnents and 0 requests with a search space of
1011277.
ong |l ate03 has 2 skills, 5 shiftTypes, 9 patterns, 3 contracts, 50 enpl oyees,
28 shiftDates, 752 shiftAssignnents and 0 requests with a search space of
1011277.
ong_l ate04 has 2 skills, 5 shiftTypes, 9 patterns, 4 contracts, 50 enpl oyees,
28 shiftDates, 752 shiftAssignnents and 0 requests with a search space of
1011277.
ong late05 has 2 skills, 5 shiftTypes, 9 patterns, 3 contracts, 50 enpl oyees,
28 shiftDates, 740 shiftAssignnents and 0 requests with a search space of
10"11257.

3.4.3. Sport scheduling (TTP - Traveling tournament problem)

3.4.3.1. Problem statement

Schedule matches between n teams.

48

Sport scheduling (TTP - Traveling tournament problem)

[Philadephia Phillies 30
away to

away to m 330

3

oo
E
6

665

Team distance: 2.127 |

Hard constraints:

Traveling
tournament

Schedule each match
in a timeslot.

MON

ATL

Drools Planner

Total distance:
8.276

Montréal Expos 0
[MON] VS 0
0

[MON]VS [PHI |

1

E

(3 [MON] Vs
(4

|

|

929

away to
5 away to m 30
6 awayto 337

Team distance: 2.011 |

Each team plays twice against every other team: once home and once away.

Each team has exactly 1 match on each timeslot.

No team must have more than 3 consecutive home or 3 consecutive away matches.

No repeaters: no 2 consecutive matches of the same 2 opposing teams.

Soft constraints:

* Minimize the total distance traveled by all teams.

The problem is defined on Michael Trick's website (which contains the world records too) [http://
mat.gsia.cmu.edu/TOURNY/].

3.4.3.2. Problem size

1-nl 04

has 6 days,

4 teans and

12 matches with a search space of

1079.

49

http://mat.gsia.cmu.edu/TOURN/
http://mat.gsia.cmu.edu/TOURN/
http://mat.gsia.cmu.edu/TOURN/

Chapter 3. Use cases and examples

1-nl 06
1-nl 08
1-nl 10
1-nl 12
1-nl 14
1-nl 16
2-bra24
3-nfl 16
3-nfl18
3-nfl 20
3-nfl 22
3-nfl 24
3-nfl 26
3-nfl 28
3-nfl 30
3-nfl 32
4-super 04
4- super 06
4-super 08
4-super 10
4-super 12
4-super 14
5- gal axy04
5- gal axy06
5- gal axy08
5-gal axy10
5- gal axy12
5- gal axy14
5-gal axy16
5- gal axy18
5- gal axy20
5- gal axy22
5- gal axy24
5- gal axy26
5- gal axy28
5- gal axy30
5- gal axy32
5- gal axy34
5- gal axy36
5- gal axy38
5- gal axy40

has
has
has
has
has
has
has
has
has
has
has
has
has
has
has
has
has
has
has
has
has
has
has
has
has
has
has
has
has
has
has
has
has
has
has
has
has
has
has
has
has

10
14
18
22
26
30
46
30
34
38
42
46
50
54
58
62

10
14
18
22
26

10
14
18
22
26
30
34
38
42
46
50
54
58
62
66
70
74
78

days,
days,
days,
days,
days,
days,
days,
days,
days,
days,
days,
days,
days,
days,
days,
days,
days,
days,
days,
days,
days,
days,
days,
days,
days,
days,
days,
days,
days,
days,
days,
days,
days,
days,
days,
days,
days,
days,
days,
days,
days,

10
12
14
16
24
16
18
20
22
24
26
28
30
32

t eans
t eans
t eans
t eans
t eans
t eans
t eans
t eans
t eans
t eans
t eans
t eans
t eans
t eans
t eans
t eans
t eans
t eans
t eans
t eans
t eans
t eans
t eans
t eans
t eans
t eans
t eans
t eans
t eans
t eans
t eans
t eans
t eans
t eans
t eans
t eans
t eans
t eans
t eans
t eans
t eans

and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and

30
56
90
132
182
240
552
240
306
380
462
552
650
756
870
992
12
30
56
90
132
182
12
30
56
90
132
182
240
306
380
462
552
650
756
870
992
1122
1260
1406
1560

mat ches
mat ches
mat ches
mat ches
mat ches
mat ches
mat ches
mat ches
mat ches
mat ches
mat ches
mat ches
mat ches
mat ches
mat ches
mat ches
mat ches
mat ches
mat ches
mat ches
mat ches
mat ches
mat ches
mat ches
mat ches
mat ches
mat ches
mat ches
mat ches
mat ches
mat ches
mat ches
mat ches
mat ches
mat ches
mat ches
mat ches
mat ches
mat ches
mat ches
mat ches

w th
W th
w th
W th
w th
W th
W th
W th
W th
W th
W th
W th
w th
W th
W th
W th
w th
Wi th
w th
W th
W th
W th
W th
w th
w th
W th
W th
W th
W th
W th
W th
W th
W th
W th
wi th
W th
W th
W th
W th
W th
W th

SV« DI <D« DI « DI VN « I « DB« RN S N D N D <D T D TN « D O <D R S B D O DO < B« DI B« N D R D B B < R < R « DI « VI « I « DR « DR < I < B B R]

search
search
search
search
search
search
search
search
sear ch
sear ch
search
search
sear ch
sear ch
search
search
search
sear ch
search
search
search
search
search
search
sear ch
search
search
search
search
sear ch
search
search
search
search
search
search
search
search
search
search
search

space
space
space
space
space
space
space
space
space
space
space
space
space
space
space
space
space
space
space
space
space
space
space
space
space
space
space
space
space
space
space
space
space
space
space
space
space
space
space
space
space

of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of

10730.
10764.
10n112.
107177
107257.
107354.
107917.
107354.
107468.
107600.
107749.
107917.
1071104.
1071309.
1071534.
1071778.
1079.
10730.
10"64.
10nM112.
107177.
107257.
1079.
10730.
10764.
107112.
10nM177.
107257.
107354.
107468.
107600.
107749.
107917.
1071104.
1071309.
1071534.
1071778.
1072041.
1072324.
1072628.
1072951.

50

Chapter 4.

Chapter 4. Planner configuration

4.1. Overview

Solving a planning problem with Drools Planner consists out of 5 steps:

1. Model your planning problem as a class that implements the interface Sol ut i on, for example

the class NQueens.

2. Configure a Sol ver, for example a first fit and tabu search solver for any NQueens instance.

3. Load a problem data set from your data layer, for example a 4 Queens instance. Set it as the
planning problem on the Sol ver with Sol ver. set Pl anni ngProbl en(...).

4. Solve it with Sol ver. sol ve().

5. Get the best solution found by the Sol ver with Sol ver . get Best Sol uti on().

Input/Output overview

Domain (java, .

Score function (an, .

Hard constraints:

([Computer Je——— Process)

CloudBalance

- CPU power capacity
- RAM memory capacity
- Network bandwidth capacity

Soft constraints:

- Minimize maintenance cost

-

Problem dataset 1

)
Process C

(Computer ¥) [ProcessD)

[FrocessE)

((Computer Z) (ProcessF) |setPlanningProblem()

(Process G

buildSalver()

Solver

solvel)

getBestSolution()

Solution dataset 1

= { ProcessE)

{ Computer Z J¢e—— PracessF)
S EEEE

51

Chapter 4. Planner configuration

4.2. Solver configuration

4.2.1. Solver configuration by XML file

You can build a Sol ver instance with the Xm Sol ver Fact ory. Configure it with a solver
configuration XML file:

Xm Sol ver Fact ory sol ver Factory = new Xm Sol ver Factory();
sol ver Fact ory. confi gure("/org/ drool s/ pl anner/ exanpl es/ nqueens/ sol ver/
ngueensSol ver Config. xm ") ;
Sol ver sol ver = solverFactory. buil dSol ver();

A solver configuration file looks something like this:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<sol ver >
<!-- Define the nodel -->
<sol utionCl ass>org. drool s. pl anner. exanpl es. nqueens. domai n. NQueens</
sol uti onCl ass>
<pl anni ngEnt it yCl ass>org. drool s. pl anner. exanpl es. nqueens. donai n. Queen</
pl anni ngEnti tyd ass>

<I-- Define the score function -->
<scoreDi rect or Fact ory>
<scor eDefini ti onType>SlI MPLE</ scor eDefi ni ti onType>
<scoreDr| >/ org/ drool s/ pl anner/ exanpl es/ nqueens/ sol ver/
nQueensScor eRul es. drl </ scoreDr| >
</ scoreDirectorFactory>

<I-- Configure the optim zation algorithn(s) -->
<term nati on>

</termnation>
<constructionHeuristic>

</ constructionHeuristic>
<| ocal Sear ch>

</| ocal Search>
</ sol ver>

Notice the 3 parts in it:

* Define the model

52

Solver configuration by Java API

 Define the score function
 Configure the optimization algorithm(s)
We'll explain these various parts of a configuration later in this manual.

Drools Planner makes it relatively easy to switch optimization algorithm(s) just by changing
the configuration. There's even a Benchmar k utility which allows you to play out different
configurations against each other and report the most appropriate configuration for your problem.
You could for example play out tabu search versus simulated annealing, on 4 queens and 64
queens.

4.2.2. Solver configuration by Java API

As an alternative to the XML file, a solver configuration can also be configured with the
Sol ver Confi g API:

Sol ver Confi g sol verConfig = new Sol ver Config();

sol ver Confi g. set Sol uti onCl ass(NQueens. cl ass);

sol ver Confi g. set Pl anni ngEntityC assSet (Col | ecti ons. <Cl ass<?>>si ngl et on(Queen. cl ass));

Scor eDi rect or Fact oryConfi g scorebDirectorFactoryConfig = new ScoreDirectorFact oryConfi gf
scoreDirect or Fact oryConfi g. set ScoreDefi niti onType(ScoreDirect or Fact or yConfi g. Scor eDefir
scoreDi rector Fact oryConfi g. set ScoreDr | Li st (

Arrays. asLi st ("/org/drool s/ pl anner/ exanpl es/ nqueens/ sol ver/

nQueensScor eRul es. drl"));

sol ver Conf i g. set Scor eDi r ect or Fact or yConfi g(scor eDi rect or Fact oryConfi g) ;

Term nationConfig termni nati onConfig = new Terminati onConfig();
Il
sol ver Confi g. set Term nati onConfi g(term nati onConfig);
Li st <Sol ver PhaseConfi g> sol ver PhaseConfi gLi st = new ArrayLi st <Sol ver PhaseConfi g>();
Constructi onHeuri sticSol ver PhaseConfi g constructionHeuristicSol ver PhaseConfi g
= new ConstructionHeuristicSol ver PhaseConfi g();
I/
sol ver PhaseConfi gLi st . add(constructi onHeuri sti cSol ver PhaseConfi g);
Local Sear chSol ver PhaseConfi g | ocal SearchSol ver PhaseConfi g = new Local Sear chSol ver Phase(
Il
sol ver PhaseConfi gLi st. add(| ocal Sear chSol ver PhaseConfi g) ;
sol ver Confi g. set Sol ver PhaseConfi gLi st (sol ver PhaseConfi gLi st);
Sol ver sol ver = sol ver Confi g. bui |l dSol ver();

It is highly recommended to configure by XML file instead of this API. To dynamically
configure a value at runtime, use the XML file as a template and extract the Sol ver Confi g class
with get Sol ver Confi g() to configure the dynamic value at runtime:

53

Chapter 4. Planner configuration

Xm Sol ver Factory sol ver Factory = new Xm Sol ver Factory();
sol ver Fact ory. confi gure("/org/ drool s/ pl anner/ exanpl es/ nqueens/ sol ver/
nqueensSol ver Confi g. xm ");

Sol ver Confi g sol verConfig = sol ver Factory. get Sol ver Confi g();
sol ver Confi g. get Termi nati onConfi g() . set Maxi mumM nut esSpend(user | nput) ;
Sol ver sol ver = sol ver Confi g. buil dSol ver () ;

4.3. Model your planning problem

4.3.1. Is this class a problem fact or planning entity?

Look at a dataset of your planning problem. You 'll recognize domain classes in there, each of
which is one of these:

« A unrelated class: not used by any of the score constraints. From a planning standpoint, this
data is obsolete.

« A problem fact class: used by the score constraints, but does NOT change during planning
(as long as the problem stays the same). For example: Bed, Room Shi ft, Enpl oyee, Topi c,
Peri od, ...

* A planning entity class: used by the score constraints and changes during planning. For
example: BedDesi gnat i on, Shi f t Assi gnment , Exam ...

Ask yourself: What class changes during planning? Which class has variables that | want the
Sol ver to change for me? That class is a planning entity. Most use cases have only 1 planning
entity class.

@ Note

In , problem facts can change during planning, because the
problem itself changes. However, that doesn't make them planning entities.

A good model can greatly improve the success of your planning implementation. For inspiration,
take a look at how the examples modeled their domain:

54

Problem fact

Entity, variable and value examples

Use case planning entity planning variable planning value
row
N queens [Queen } - 7 { Row
computer
Cloud balancing Process = d - [Computer
: : employee
Employee rostering [ShiftAssignment }— Py 3 [Employee
eriod -
Course scheduling [Lecture } - P 7 [Period
\ room
_ - [Room
_ _) previousAppearance (
Vehicle routing [Customer o i Appearance
[Vehicle

When in doubt, it's usually the many side of a many to one relationship that is the planning entity.
For example in employee rostering, the planning entity class is Shi f t Assi gnnent , not Enpl oyee.
Vehicle routing is special, because it uses a chained planning variable.

In Drools Planner all problems facts and planning entities are plain old JavaBeans
(POJO's). You can load them from a database (JDBC/JPA/JDO), an XML file, a data repository,
a noSQL cloud, ...: Drools Planner doesn't care.

4.3.2. Problem fact

A problem fact is any JavaBean (POJO) with getters that does not change during planning.
Implementing the interface Seri al i zabl e is recommended (but not required). For example in n
gueens, the columns and rows are problem facts:

public class Colum inplenents Serializable {

private int index;

/[l ... getters

55

Chapter 4. Planner configuration

public class Row inplenents Serializable {

private int index;

/Il ... getters

A problem fact can reference other problem facts of course:

public class Course inplenents Serializable {
private String code;
private Teacher teacher; // O her problemfact
private int |ectureSize;

private int m nWrkingDaySi ze;

private List<Curriculums curriculunlist; // Oher problemfacts
private int studentSize;

/Il ... getters

A problem fact class does not require any Planner specific code. For example, you can reuse your
domain classes, which might have JPA annotations.

a cached problem fact

56

Planning entity and planning variables

4.3.3. Planning entity and planning variables

4.3.3.1. Planning entity

A planning entity is a JavaBean (POJO) that changes during solving, for example a Queen that
changes to another row. A planning problem has multiple planning entities, for example for a single
n queens problem, each Queen is a planning entity. But there's usually only 1 planning entity class,
for example the Queen class.

A planning entity class needs to be annotated with the @l anni ngEnti t y annotation.

Each planning entity class has 1 or more planning variables. It usually also has 1 or more defining
properties. For example in n queens, a Queen is defined by its Col unm and has a planning variable
Row. This means that a Queen's column never changes during solving, while its row does change.

@ anni ngEntity
public class Queen {

private Colum col um;

/1 Planni ng vari abl es: changes during planni ng, between score cal cul ati ons.
private Row row,

/[l ... getters and setters

A planning entity class can have multiple planning variables. For example, a Lect ur e is defined
by its Cour se and its index in that course (because 1 course has multiple lectures). Each Lect ure
needs to be scheduled into a Peri od and a Roomso it has 2 planning variables (period and room).
For example: the course Mathematics has 8 lectures per week, of which the first lecture is Monday
morning at 08:00 in room 212.

@ anni ngEntity
public class Lecture {

private Course course;
private int |ecturel ndexl nCour se;

/1 Pl anning variabl es: changes during pl anni ng, between score cal cul ati ons.
private Period period;
private Room room

Il

57

Chapter 4. Planner configuration

The solver configuration also needs to be made aware of each planning entity class:

<sol ver >

<pl anni ngEnti t yCl ass>or g. dr ool s. pl anner. exanpl es. nqueens. domai n. Queen</
pl anni ngEnti tyCd ass>

</ sol ver >

Some uses cases have multiple planning entity classes. For example: route freight and trains
into railway network arcs, where each freight can use multiple trains over its journey and each
train can carry multiple freights per arc. Having multiple planning entity classes directly raises the
implementation complexity of your use case.

4.3.3.2. Planning entity difficulty

Some optimization algorithms work more efficiently if they have an estimation of which planning
entities are more difficult to plan. For example: in bin packing bigger items are harder to fit, in
course scheduling lectures with more students are more difficult to schedule and in n queens the
middle queens are more difficult to fit on the board.

Therefore, you can seta di ffi cul t yConpar at or O ass to the @Il anni ngEnt i t y annotation:

@ anni ngEntity(difficultyConparatord ass = C oudProcessDi fficul t yConparator. cl ass)
public class C oudProcess {
/1

public class C oudProcessDifficul tyConparator inplenments Conparator<C oudProcess>

58

Planning entity and planning variables

public int conpare(d oudProcess a, C oudProcess b) {
return new Conpar eToBui | der ()
. append(a. get Requi redMul ti plicand(), b.getRequiredMultiplicand())
.append(a.getld(), b.getld())
. toConpari son();

Alternatively, you can also set a diffi cul t ywei ght Fact oryd ass to the @l anni ngEntity
annotation, so you have access to the rest of the problem facts from the Sol uti on too:

@ anni ngEntity(difficultyWightFactoryC ass = QueenDifficultyWightFactory. cl ass)
public class Queen {
/Il

See Sorted Selection for more information.

Important

Difficulty should be implemented ascending: easy entities are lower, difficult
entities are higher. For example in bin packing: small item < medium item < big
item.

Even though some algorithms start with the more difficult entities first, they just
reverse the ordering.

None of the current planning variable state should be used to compare planning entity difficult.
During construction heuristics, those variables are likely to be nul | anyway. For example, a
Queen's r ow variable should not be used.

4.3.3.3. Planning variable

A planning variable is a property (including getter and setter) on a planning entity. It points to a
planning value, which changes during planning. For example, a Queen's r owproperty is a planning
variable. Note that even though a Queen's r ow property changes to another Row during planning,
no Row instance itself is changed.

A planning variable getter needs to be annotated with the @°l anni ngVari abl e annotation.
Furthermore, it needs a @al ueRange annotation too.

@ anni ngEntity

59

Chapter 4. Planner configuration

public class Queen {
private Row row,
Il

@l anni ngVari abl e
@/al ueRange(type = Val ueRangeType. FROM SOLUTI ON_PROPERTY, sol utionProperty = rowLi st")
public Row get Row() {

return row,

public void set Row(Row row) ({
this.row = row,

4.3.3.4. Nullable planning variable

By default, an initialized planning variable cannot be nul | , so an initialized solution will never use
nul | for any of its planning variables. In over-constrained use case, this can be contra productive.
For example: in task assignment with too many tasks for the workforce, we would rather leave low
priority tasks unassigned instead of assigning them to an overloaded worker.

To allow an initialized planning variable to be nul | , set nul | abl e to t r ue:

@ anni ngVari abl e(nul | abl e = true)

@/al ueRange(. . .)

public Worker getWirker() {
return worker;

Important

Planner will automatically add the value nul | to the value range. There is no need
to add nul | in a collection used by a Val ueRange.

@ Note

Using a nullable planning variable implies that your score calculation is responsible
for punishing (or even rewarding) variables with a null value.

60

Planning value and planning value ranges

Repeated planning (especially real-time planning) does not mix well with a nullable planning
variable: every time the Solver starts or a problem fact change is made, the construction
heuristics will try to initialize all the null variables again, which can be a huge waste of time.
One way to deal with this, is to change when a planning entity should be reinitialized with an
reinitializeVariableEntityFilter:

@ anni ngVari abl e(nul lable = true, reinitializeVariableEntityFilter = ReinitializeTaskFilte
@/al ueRange(. . .)
public Worker getWirker() {

return worker;

4.3.3.5. When is a planning variable considered initialized?

A planning variable is considered initialized if its value is not null or if the variable is
nul l abl e. So a nullable variable is always considered initialized, even when a custom
reinitializeVariabl eEntityFilter triggers a reinitialization.

A planning entity is initialized if all of its planning variables are initialized.

A Sol uti on is initialized if all of its planning entities are initialized.
4.3.4. Planning value and planning value ranges

4.3.4.1. Planning value

A planning value is a possible value for a planning variable. Usually, a planning value is a problem
fact, but it can also be any object, for example a double. It can even be another planning entity or
even a interface implemented by a planning entity and a problem fact.

A planning value range is the set of possible planning values for a planning variable. This set
can be a discrete (for example row 1, 2, 3 or 4) or continuous (for example any doubl e between
0.0 and 1. 0). Continuous planning variables are currently undersupported and require the use
of custom moves.

There are several ways to define the value range of a planning variable with the @/al ueRange
annotation.

4.3.4.2. Planning value range

4.3.4.2.1. val ueRange from Sol uti on property

All instances of the same planning entity class share the same set of possible planning values for
that planning variable. This is the most common way to configure a value range.

The Sol uti on implementation has property which returns a Col | ecti on. Any value from that
Col | ecti on is a possible planning value for this planning variable.

61

Chapter 4. Planner configuration

@ anni ngVari abl e
@/al ueRange(type = Val ueRangeType. FROM SOLUTI ON_PROPERTY, sol utionProperty = "rowList")
publi ¢ Row get Row() {

return row,

public class NQueens inplenments Sol uti on<Si npl eScore> {
/11

public List<Row> get RowlList() {
return rowlist;

That Col | ecti on must not contain the value nul | , even for a nullable planning variable.
4.3.4.2.2. val ueRange from planning entity

Each planning entity has its own set of possible planning values for a planning variable. For
example, if a teacher can never teach in a room that does not belong to his department, lectures
of that teacher can limit their room value range to the rooms of his department.

@l anni ngVari abl e
@/al ueRange(type = Val ueRangeType. FROM PLANNI NG_ENTI TY_PROPERTY, pl anni ngEntityProperty ="
publ i ¢ Room get Room() {

return room

publ i c List<Roonm> get Possi bl eRoonli st () {
return get Course().get Teacher (). get Possi bl eRoonli st ();

Never use this to enforce a soft constraint (or even a hard constraint when the problem might not
have a feasible solution). For example: Unless there is no other way, a teacher can not teach in
a room that does not belong to his department. In this case, the teacher should not be limited in
his room value range (because sometimes there is no other way).

@ Note
By limiting the value range specifically of 1 planning entity, you are effectively
making a build-in hard constraint. This can be a very good thing, as the number of

62

Planning value and planning value ranges

possible solutions is severely lowered. But this can also be a bad thing because
it takes away the freedom of the optimization algorithms to temporarily break that
constraint in order to escape a local optima.

A planning entity should not use other planning entities to determinate its value range. That would
only try to make it solve the planning problem itself and interfere with the optimization algorithms.

This value range is not compatible with a chained variable.
4.3.4.2.3. val ueRange undefined

Leaves the value range undefined. Most optimization algorithms do not support this value range.

@l anni ngVari abl e
@/al ueRange(type = Val ueRangeType. UNDEFI NED)
publi ¢ Row get Row() {

return row,

4.3.4.2.4. Combining ValueRanges

Value ranges can be combined, for example:

@ anni ngVari able(...)
@/al ueRanges({
@/al ueRange(type Val ueRangeType. FROM_SOLUTI ON_PROPERTY, sol uti onProperty = "conp:
@/al ueRange(type = Val ueRangeType. FROM PLANNI NG_ENTI TY_PROPERTY, pl anni ngEntityPr of
public Car getCar() {
return car;

4.3.4.2.5. A val ueRange Which includes other planning entities

In some cases (such as in chaining), the planning value itself is sometimes another planning entity.
In such cases, it's often required that a planning entity is only eligible as a planning value if it's
initialized:

@l anni ngVari abl e
@al ueRange(type = Val ueRangeType. FROM SOLUTI ON_PROPERTY, sol utionProperty = "copList", exc
public Cop getPartner() {

return partner;

63

Chapter 4. Planner configuration

TODO: this is likely to change in the future (jira [https://issues.jboss.org/browse/JBRULES-3408]),
as it should support specific planning variable initialization too.

4.3.4.3. Chained planning variable

Some use cases, such as TSP and Vehicle Routing, require chaining. This means the planning
entities point to each other and form a chain.

A planning variable that is chained either:

« Directly points to a planning fact, which is called an anchor.

 Points to another planning entity with the same planning variable, which recursively points to
an anchor.

Here are some example of valid and invalid chains:

Chain principles

Multiple Anchor without Initialzed entity Multiple direct Loop
chains trailing entity without anchor trailing entities

NOT OK NOT OK NOT OK

anchor anchor

tity (entity | entity
anchor entity
|]

ti [entity

anchor

DO
-
IO

-

g

i
!

S
EJ
g
i

‘.

entity |

anchor

il @
18

entity entity

Every initialized planning entity is part of an open-ended chain that begins from an anchor.
A valid model means that:

* A chain is never a loop. The tail is always open.

64

https://issues.jboss.org/browse/JBRULES-3408
https://issues.jboss.org/browse/JBRULES-3408

Planning value and planning value ranges

« Every chain always has exactly 1 anchor. The anchor is a problem fact, never a planning entity.

e Achainis never a tree, it is always a line. Every anchor or planning entity has at most 1 trailing
planning entity.

« An anchor with no planning entities pointing to it, is also considered a chain.

A Warning

Every initialized planning entity is part of a chain.

A planning problem instance given to the Sol ver must be valid.

@ Note

If your constraints dictate a closed chain, model it as an open-ended chain (which
is easier to persist in a database) and implement a score constraint for the last
entity back to the anchor.

The optimization algorithms and build-in MoveFact or y's do chain correction to guarantee that the
model stays valid:

65

Chapter 4. Planner configuration

Chain correction

Before After
(anchor| [anchor] (anchor| [anchor] (anchor| [anchor]
[entity | [entity | [entity] [entity] _entity] [entity]

Centity) (niiy)
Centiy) [enly. [entiy)

Changing 1 planning variable may inflict up to 2 chain corrections.

A Warning

A custom Move implementation must leave the model in a valid state.

For example, in TSP the anchor is a Doni ci | e (in vehicle routing it is the vehicle):

public class Domicile ... inplenments Appearance {

public City getCity() {...}

The anchor (which is a problem fact) and the planning entity implement a common interface, for
example TSP's Appear ance:

66

Planning value and planning value ranges

public interface Appearance {

Gty getdty();

That interface is the return type of the planning variable. Furthermore, the planning variable is
chained. For example TSP's Vi si t (in vehicle routing it is the customer):

@l anni ngEntity
public class Visit ... inplenents Appearance {

public City getCty() {...}

@ anni ngVari abl e(chai ned = true)
@/al ueRanges({
@/al ueRange(type = Val ueRangeType. FROM SOLUTI ON_PROPERTY, sol uti onProperty "dom ¢
@/al ueRange(type = Val ueRangeType. FROM SOLUTI ON_PROPERTY, sol uti onProperty = "visit
excl udeUninitializedPl anni ngEntity = true)})
publ i ¢ Appearance get Previ ousAppearance() {
return previousAppear ance;

public void setPrevi ousAppear ance(Appear ance previ ousAppear ance) {
t hi s. previ ousAppear ance = previ ousAppear ance;

Notice how 2 value ranges need to be combined:

« The value range which holds the anchors, for example domi ci | eLi st .

» The value range which holds the initialized planning entities, for example vi si t Li st. This
always requires an enabled excl udeUni ni ti al i zedPl anni ngEnt i ty, because an initialized
entity should never point to an uninitialized entity: that would break the principle that every chain
must have an anchor.

4.3.4.4. Planning value strength

Some optimization algorithms work more efficiently if they have an estimation of which planning
values are stronger, which means they are more likely to satisfy a planning entity. For example: in

67

Chapter 4. Planner configuration

bin packing bigger containers are more likely to fit an item and in course scheduling bigger rooms
are less likely to break the student capacity constraint.

Therefore, you can set a st r engt hConpar at or C ass to the @l anni ngVari abl e annotation:

@ anni ngVari abl e(strengt hConparat or Cl ass = C oudConput er St r engt hConparator. c
I
publ i c C oudConput er get Conputer () {
I
}

public class C oudConput er Strengt hConparator inpl enents Conpar at or <Cl oudConput er >

public int conpare(Cd oudConputer a, C oudConputer b) {
return new ConpareToBui | der ()
.append(a.getMiltiplicand(), b.getMiltiplicand())
. append(b. get Cost (), a.getCost()) // Descending (but this
i s debat abl e)
.append(a.getld(), b.getld())
.toConpari son();

Alternatively, you can also set a strengt hWi ght Fact oryCd ass to the @l anni ngVari abl e
annotation, so you have access to the rest of the problem facts from the solution too:

@l anni ngVari abl e(strengt hWei ght Fact oryCl ass = RowSt r engt hWei ght Fact ory. cl ass

I

publ i c Row get Row() {
I

}

See Sorted Selection for more information.

68

ass)

Planning problem and planning solution

Important

Strength should be implemented ascending: weaker values are lower, stronger
values are higher. For example in bin packing: small container < medium container
< big container.

None of the current planning variable state in any of the planning entities should be used to
compare planning values. During construction heuristics, those variables are likely to be nul |
anyway. For example, none of the r ow variables of any Queen may be used to determine the
strength of a Row.

4.3.5. Planning problem and planning solution

4.3.5.1. Planning problem instance

A dataset for a planning problem needs to be wrapped in a class for the Sol ver to solve. You
must implement this class. For example in n queens, this in the NQueens class which contains a
Col um list, a Row list and a Queen list.

A planning problem is actually a unsolved planning solution or - stated differently - an uninitialized
Sol ut i on. Therefor, that wrapping class must implement the Sol ut i on interface. For example in
n queens, that NQueens class implements Sol ut i on, yet every Queen in a fresh NQueens class is
not yet assigned to a Row (their r ow property is nul 1). So it's not a feasible solution. It's not even
a possible solution. It's an uninitialized solution.

4.3.5.2. The sol ution interface

You need to present the problem as a Sol ut i on instance to the Sol ver. So you need to have a
class that implements the Sol uti on interface:

public interface Solution<S extends Score> {

S get Score();
voi d set Score(S score);

Col | ecti on<? extends Object> get Probl enfFacts();

For example, an NQueens instance holds a list of all columns, all rows and all Queen instances:

public class NQueens inplenments Sol uti on<Si npl eScore> {

private int n;

69

Chapter 4. Planner configuration

/1 Problemfacts
private List<Colum> col umLi st;
private List<Row> rowlList;

/1 Planning entities
private List<Queen> queenLi st;

Il

4.3.5.3. The get score() and set Score() methods

A Sol uti on requires a score property. The score property is nul | if the Sol uti on is uninitialized
or if the score has not yet been (re)calculated. The scor e property is usually typed to the specific
Scor e implementation you use. For example, NQueens uses a Si npl eScor e:
public class NQueens inplenents Sol uti on<Si npl eScore> {

private SinpleScore score;

public Sinmpl eScore getScore() {

return score,

public void set Score(Si nmpl eScore score) {
this.score = score;

Il

Most use cases use a Har dSof t Scor e instead:

public class CourseSchedul e i npl ements Sol uti on<Har dSof t Scor e> {
private HardSoft Score score;
public HardSoft Score getScore() {

return score;

public void set Score(HardSoft Score score) {
this.score = score;

70

Planning problem and planning solution

Il

See the Score calculation section for more information on the Scor e implementations.
4.3.5.4. The get Probl enFacts() method

The method is only used if Drools is used for score calculation. Other score directors do not use it.

All objects returned by the get Pr obl enFact s() method will be asserted into the Drools working
memory, so the score rules can access them. For example, NQueens just returns all Col unm and
Row instances.

public Collection<? extends Cbject> getProbl enfFacts() {
Li st <Cbj ect> facts = new ArraylLi st <Qbj ect >();
facts.addAl | (col umLi st);
facts.addAl | (rowlList);
/1 Do not add the planning entity's (queenList) because that will be
done autonatically
return facts;

All planning entities are automatically inserted into the Drools working memory. Do not add them
in the method get Pr obl enfact s() .

The method get Pr obl enfFact s() is not called much: at most only once per solver phase per
solver thread.

4.3.5.5. Cached problem fact

A cached problem fact is a problem fact that doesn't exist in the real domain model, but is
calculated before the Sol ver really starts solving. The method get Probl enfact s() has the
chance to enrich the domain model with such cached problem facts, which can lead to simpler
and faster score constraints.

For example in examination, a cached problem fact Topi cConf | i ct is created for every 2 Topi c's
which share at least 1 St udent .

public Collection<? extends Cbject> getProbl enfFacts() {
Li st <Cbj ect> facts = new ArraylLi st <Obj ect >();
Il
facts.addAl | (cal cul at eTopi cConflictList());
I/
return facts;

71

Chapter 4. Planner configuration

private List<TopicConflict> cal cul ateTopi cConflictList() {
Li st <Topi cConflict> topicConflictList = new ArrayLi st <Topi cConflict>();
for (Topic leftTopic : topiclList) {
for (Topic rightTopic : topicList) {
if (leftTopic.getld() < rightTopic.getld()) {
int studentSize = 0;
for (Student student : |eftTopic.getStudentList()) {
if (rightTopic.getStudentList().contains(student)) {
student Si ze++;

}
if (studentSize > 0) {

topi cConflictList.add(new Topi cConflict(leftTopic, rightTopic, student:

}

return topicConflictList;

Any score constraint that needs to check if no 2 exams have a topic which share a student are
being scheduled close together (depending on the constraint: at the same time, in a row or in the
same day), can simply use the Topi cConfli ct instance as a problem fact, instead of having to
combine every 2 St udent instances.

4.3.5.6. Cloning a sol ution

Most (if not all) optimization algorithms clone the solution each time they encounter a new best
solution (so they can recall it later) or to work with multiple solutions in parallel.

@ Note

There are many ways to clone, such as a shallow clone, deep clone, ... This context
focuses on a planning clone.

A planning clone of a Sol ut i on must fulfill these requirements:

« The clone must represent the same planning problem. Usually it reuses the same instances of
the problem facts and problem fact collections as the original.

« The clone must use different, cloned instances of the entities and entity collections. Changes
to an original Sol uti on's entity's variables must not effect its clone.

72

Planning problem and planning solution

Solution cloning

@PlanningVariable
Original solution

[Computer Lﬂ— — Process | @PlanningEntity

List<Process>]

L

@PlanningEntityCollectionProperty

CloudBalance | @FlanningSolution

Cloned solution

Process]

*

List<Process> J

L

CloudBalance]

Implementing a planning clone method is hard, therefore you don't need to implement it.
4.3.5.6.1. Fi el dAccessi ngSol uti onC oner

This Sol uti onC oner is used by default. It works for the majority of use cases.

Warning

When the Fi el dAccessi ngSol uti onC oner clones your entity collection, it might

not recognize the implementation and replace it with ArrayLi st, Li nkedHashSet
or Tr eeSet (whichever is more applicable). It recognizes most of the common JDK
Col | ect i on implementations.

4.3.5.6.2. Custom cloning: Make sol uti on implement Pl anni ngQ oneabl e

If your Solution implements PlanningCloneable, Planner will automatically choose to clone it by
calling the method pl anni ngCl one().

73

Chapter 4. Planner configuration

public interface Planni ngCl oneabl e<T> {

T pl anni ngd one();

For example: If NQueens implements Pl anni ngCl oneabl e, it would only deep clone all Queen
instances. When the original solution is changed during planning, by changing a Queen, the clone

stays the same.

public class NQueens inplenments Solution<...> PlanningC oneabl e<NQueens> {

[**
* Clone will only deep copy the { #queenLi st}.
*/

publ i ¢ NQueens pl anni ngC one() {

NQueens cl one = new NQueens();
clone.id =id;

clone.n = n;

cl one. col umLi st = col umlLi st ;
clone.rowLi st = rowLi st;

Li st <Queen> cl onedQueenLi st = new Arrayli st <Queen>(queenLi st. size());

for (Queen queen : queenList) ({
cl onedQueenLi st . add(queen. pl anni ngd one());
}
cl one. queenLi st = cl onedQueenLi st ;
cl one. score = score;
return clone;

The pl anni ngCl one() method should only deep clone the planning entities. Notice that the
problem facts, such as Col utm and Row are normally not cloned: even their Li st instances are
not cloned. If you were to clone the problem facts too, then you'd have to make sure that the
new planning entity clones also refer to the new problem facts clones used by the solution. For
example, if you would clone all Rowinstances, then each Queen clone and the NQueens clone itself

should refer to those new Row clones.

74

Planning problem and planning solution

Warning

Cloning an entity with a chained variable is devious: a variable of an entity A might
point to another entity B. If A is cloned, then it's variable must point to the clone
of B, not the original B.

4.3.5.7. Build an uninitialized solution

Build a Sol ut i on instance to represent your planning problem, so you can set it on the Sol ver
as the planning problem to solve. For example in n queens, an NQueens instance is created with
the required Col umm and Row instances and every Queen set to a different col unm and every r ow
setto nul | .

private NQueens createNQeens(int n) {
NQueens nQueens = new NQueens();
nQueens. set 1 d(OL) ;
nQueens. set N(n);
nQueens. set Col ummLi st (cr eat eCol ummLi st (nQueens));
nQueens. set RowLi st (creat eRowLi st (nQueens));
nQueens. set QueenLi st (cr eat eQueenLi st (nQueens));
return nQueens;

private List<Queen> createQueenLi st (NQeens nQueens) ({
int n = nQueens. get N();
Li st <Queen> queenLi st = new ArraylLi st <Queen>(n);
long id = O;
for (Columm columm : nQueens. get Col umList()) {
Queen queen = new Queen();
queen. setld(id);
i d++;
gueen. set Col umm(col umm) ;
/1 Notice that we | eave the Pl anningVari abl e properties on null
queenLi st . add(queen) ;

}

return queenLi st;

75

Chapter 4. Planner configuration

A°B C D

Ww N ¥+ ©

Figure 4.1. Uninitialized solution for the 4 queens puzzle

Usually, most of this data comes from your data layer, and your Sol uti on implementation just
aggregates that data and creates the uninitialized planning entity instances to plan:

private void createlLecturelist(CourseSchedul e schedul e) {
Li st <Course> courselLi st = schedul e. get CourseList();
Li st<Lecture> | ectureLi st = new ArraylLi st <Lect ure>(courseList.size());
for (Course course : courselist) {
for (int i = 0; i < course.getlLectureSize(); i++) {
Lecture | ecture = new Lecture();
| ecture. set Course(course);
| ecture. set Lect urel ndexl nCourse(i);
/1 Notice that we |eave the PlanningVariable properties
(period and room) on null
| ectureList.add(lecture);

}

schedul e. set Lect ureLi st (Il ecturelList);

4.4. Use the sol ver

4.4.1. The Solver interface

A Sol ver implementation will solve your planning problem.

public interface Solver {
voi d set Pl anni ngPr obl en{ Sol uti on pl anni ngPr obl en ;
voi d sol ve();

Sol uti on get Best Sol ution();

76

Solving a problem

Il

A Sol ver can only solve 1 planning problem instance at a time. A Sol ver should only be accessed
from a single thread, except for the methods that are specifically javadocced as being thread-safe.
It's build with a Sol ver Fact or y, do not implement or build it yourself.

4.4.2. Solving a problem

Solving a problem is quite easy once you have:

e A Sol ver build from a solver configuration
e A Sol uti on that represents the planning problem instance

Just set the planning problem, solve it and extract the best solution:

sol ver . set Pl anni ngPr obl em(pl anni ngPr obl enj ;
sol ver. sol ve();
Sol ution best Sol uti on = sol ver. get Best Sol uti on();

For example in n queens, the method get Best Sol uti on() will return an NQueens instance with
every Queen assigned to a Row.

A°B C D

g

g

i

Ww N H O

g

Figure 4.2. Best solution for the 4 queens puzzle in 8 ms (also an optimal
solution)

The sol ve() method can take a long time (depending on the problem size and the solver
configuration). The Sol ver will remember (actually clone) the best solution it encounters during
its solving. Depending on a number factors (including problem size, how much time the Sol ver
has, the solver configuration, ...), that best solution will be a feasible or even an optimal solution.

77

Chapter 4. Planner configuration

repeated planning

4.4.3. Environment mode: Are there bugs in my code?

The environment mode allows you to detect common bugs in your implementation. It does not
affect the logging level.

You can set the environment mode in the solver configuration XML file:

<sol ver >
<envi ronnent Mode>FAST_ASSERT</ envi r onnent Mode>

</ sol ver >

A solver has a single Randominstance. Some solver configurations use the Randominstance a lot
more than others. For example simulated annealing depends highly on random numbers, while
tabu search only depends on it to deal with score ties. The environment mode influences the seed
of that Randominstance.

There are 4 environment modes:

4.4.3.1. FULL_ASSERT

The FULL_ASSERT mode is reproducible (see the reproducible mode) and also turns on all
assertions (such as assert that the incremental score calculation is uncorrupted) to fail-fast on
rule engine bugs.

The FULL_ASSERT mode is very slow (because it doesn't rely on delta based score calculation).

78

Environment mode: Are there bugs in my code?

4.4.3.2. FAST_ASSERT

The FAST_ASSERT mode is reproducible (see the reproducible mode) and also turns on most
assertions (such as assert that an undo Move's score is the same as before the Move) to fail-fast
on a bug in your Move implementation, your score rule, ...

The FAST_ASSERT mode is slow.

It's recommended to write a test case which does a short run of your planning problem with the
FAST_ASSERT mode on.

4.4.3.3. REPRODUCIBLE (default)

The reproducible mode is the default mode because it is recommended during development. In
this mode, 2 runs in the same Planner version will execute the same code in the same order.
Those 2 runs will have the same result, except if the note below applies . This allows you to
consistently reproduce bugs. It also allows you to benchmark certain refactorings (such as a score
constraint optimization) fairly across runs.

The reproducible mode is not much slower than the production mode. If your production
environment requires reproducibility, use it in production too.

In practice, this mode uses the default random seed, and it also disables certain concurrency
optimizations (such as work stealing).

4.4.3.4. PRODUCTION

The production mode is the fastest and the most robust, but not reproducible. It is recommended
for a production environment.

79

Chapter 4. Planner configuration

The random seed is different on every run, which makes it more robust against an unlucky random
seed. An unlucky random seed gives a bad result on a certain data set with a certain solver
configuration. Note that in most use cases the impact of the random seed is relatively low on the
result (even with simulated annealing). An occasional bad result is far more likely to be caused
by another issue (such as a score trap).

4.4.4. Logging level: What is the solver doing?

The best way to illuminate the black box that is a Sol ver, is to play with the logging level:

« error: Log errors, except those that are thrown to the calling code as a Runt i meExcept i on.

* warn: Log suspicious circumstances.
« info: Log every phase and the solver itself. See scope overview.
« debug: Log every step of every phase. See scope overview.

 trace: Log every move of every step of every phase. See scope overview.

For example, set it to debug logging, to see when the phases end and how fast steps are taken:

INFO Solving started: tine spend (0), score (null), new best score (null),
random seed (0).

DEBUG Step index (0), tinme spend (1), score (0), initialized planning entity
(col 2@ ow0) .

DEBUG Step index (1), tine spend (3), score (0), initialized planning entity
(col 1@ ow2) .

80

Logging level: What is the Solver doing?

DEBUG Step index (2), tinme spend (4), score (0), initialized planning entity
(col 3@ owg) .

DEBUG Step index (3), tine spend (5), score (-1), initialized planning
entity (col 0@ owl).

INFO Phase (0) constructionHeuristic ended: step total (4), tinme spend (6),
best score (-1).

DEBUG Step index (0), time spend (10), score (-1), best score (-1),
accept ed/ sel ected nmove count (12/12) for picked step (col1l@ow2 => row3).
DEBUG Step index (1), time spend (12), score (0), new best score (0),

accept ed/ sel ected nmove count (12/12) for picked step (col 3@ow3 => row2).

I NFO Phase (1) | ocal Search ended: step total (2), tinme spend (13), best score (0).
INFO Solving ended: tine spend (13), best score (0), average cal cul ate count
per second (4846).

All time spends are in milliseconds.

Everything is logged to SLF4J [http://www.slf4].org/], which is a simple logging facade which
delegates every log message to Logback, Apache Commons Logging, Log4j or java.util.logging.
Add a dependency to the logging adaptor for your logging framework of choice.

If you're not using any logging framework yet, use Logback by adding this Maven dependency

(there is no need to add an extra bridge dependency):

<dependency>
<groupl d>ch. qos. | ogback</ gr oupl d>
<artifactld>l ogback-cl assic</artifactld>
<ver si on>1. x</ ver si on>

</ dependency>

Configure the logging level on the package or g. dr ool s. pl anner in your | ogback. xm file:

<configuration>

<l ogger nane="org.drool s. planner" | evel ="debug"/>

<configuration>

If instead, you're still using Log4J (and you don't want to switch to its faster successor, Logback),
add the bridge dependency:

<dependency>
<gr oupl d>or g. sl f 4j </ gr oupl d>

81

http://www.slf4j.org/
http://www.slf4j.org/

Chapter 4. Planner configuration

<artifactld>slf4j-1og4j12</artifactld>
<ver si on>1. x</ ver si on>
</ dependency>

And configure the logging level on the package or g. dr ool s. pl anner in your | og4j . xn file:

<l og4j : configuration xm ns:|og4j="http://jakarta.apache.org/log4j/">

<cat egory nane="org. drool s. pl anner">

<priority val ue="debug" />
</ cat egory>

</1 og4j : configuration>

82

Chapter 5.

Chapter 5. Score calculation

5.1. Score terminology

5.1.1. What is a score?

Every initialized Sol uti on has a score. That score is an objective way to compare 2 solutions:
the solution with the higher score is better. The Sol ver aims to find the Sol ut i on with the highest
Scor e of all possible solutions. The best solution is the Sol uti on with the highest Scor e that
Sol ver has encountered during solving, which might be the optimal solution.

Planner cannot automatically know which Sol ut i on is best for your business, so you need to tell
it how to calculate the score of a given Sol uti on according to your business needs. There are
multiple score techniques that you can use and combine:

« Maximize or minimize a constraint: score constraint signum (positive or negative)

Put a cost/profit on constraints: score constraint weight

Prioritize constraints: score level

» Pareto scoring
5.1.2. Score constraint signum (positive or negative)
All score techniques are based on constraints. Such a constraint can be a simple pattern (such as

Maximize the apple harvest in the solution) or a more complex pattern. A positive constraint is a
constraint you're trying to maximize. A negative constraint is a constraint you're trying to minimize.

83

Chapter 5. Score calculation

Positive constraints

Maximize apples

Maximize @

-
== | | l
A
=
@ < ek < -]
—_— 4
- J» - V

Optimal solution

Negative constraints

Minimize fuel usage

Minimize B

Optimal solution

Notice in the image above, that the optimal solution always has the highest score, regardless if
the constraints are positive or negative.

Most planning problems have only negative constraints and therefore have a negative score. In
that case, the score is usually the sum of the weight of the negative constraints being broken, with
a perfect score of 0. This explains why the score of a solution of 4 queens is the negative (and
not the positive!) of the number of queen couples which can attack each other.

Negative and positive constraints can be combined, even in the same score level.

@ Note

Don't presume your business knows all its score constraints in advance. Expect
score constraints to be added or changed after the first releases.

When a constraint activates (because the negative constraint is broken or the positive constraint
is fulfilled) on a certain planning entity set, it is called a constraint occurrence.

84

Score constraint weight

5.1.3. Score constraint weight

Not all score constraints are equally important. If breaking one constraint is equally bad as breaking
another constraint x times, then those 2 constraints have a different weight (but they are in the
same score level). For example in vehicle routing, you can make 2 "unhappy driver" constraint
occurrences count as much as 1 "fuel tank usage" constraint occurrence:

Score weighting

l‘:" — 1
2 W Minimize driver unhappiness
= 2 Minimize fuel usage
\
B l PR
1 unhappy driver is as bad o\
as 2 fuel usages e
D)
* g ") N
Y R < R
s G S =g

-—

Optimal solution

Score weighting is often used in use cases where you can put a price tag on everything. In that
case, the positive constraints maximize revenue and the negative constraints minimize expenses:
together they maximize profit. Alternatively, score weighting is also often used to create social
fairness. For example: nurses that request a free day on New Year's eve pay a higher weight
than on a normal day.

The weight of a constraint occurrence can be dynamically based on the planning entities involved.
For example in cloud balance: the weight of the soft constraint occurrence for an active Conput er
is the cost of that Conput er.

5.1.4. Score level

Sometimes a score constraint outranks another score constraint, no matter how many times the
other is broken. In that case, those score constraints are in different levels. For example: a nurse

85

Chapter 5. Score calculation

cannot do 2 shifts at the same time (due to the constraints of physical reality), this outranks all
nurse happiness constraints.

Most use cases have only 2 score levels: hard and soft. When comparing 2 scores, they are
compared lexicographically: the first score level gets compared first. If those differ, the others
score levels are ignored. For example: a score that breaks 0 hard constraints and 1000000 soft
constraints is better than a score that breaks 1 hard constraint and 0 soft constraints.

Score levels

First minimize overloaded truck axles,
then minimize fuel usage

dn= W A
1 overloaded axle is worse PRRER
than any number of fuel usages

- .

I:Ll,n al&
NER *\ ="\

-—

A A

Optimal solution

Score levels often employ score weighting per level. In such case, the hard constraint level
usually makes the solution feasible and the soft constraint level maximizes profit by weighting the
constraints on price.

Don't use a big constraint weight when your business actually wants different score levels. That
hack, known as score folding, is broken:

86

Pareto scoring (AKA multi-objective optimization scoring)

Score folding is broken

Don't mix score levels

CPU Folded score Good score
{hard * 1 000 000) + soft hard and soft separated

500 000 §

800000 % -1 500 000 -1 hard / -500 000 soft

Highest score

I-L
=

A §
|
=<

[] Z 800000%
C- Y 8000008 -2 100 000 [o hard / -2 100 000 soﬂ]
Highest score

Score folding also stimulates overflow

3000

W 100000 % 1284 867 296 -3 000 hard / -100 000 soft

score trap

3 or more score levels is supported. For example: a company might decide that profit outranks
employee satisfaction (or visa versa), while both are outranked by the constraints of physical
reality.

5.1.5. Pareto scoring (AKA multi-objective optimization scoring)

Far less common is the use case of pareto optimization, which is also known under the more
confusing term multi-objective optimization. In pareto scoring, score constraints are in the same
score level, yet they are not weighted against each other. When 2 scores are compared, each

87

Chapter 5. Score calculation

of the score constraints are compared individually and the score with the most dominating score
constraints wins. Pareto scoring can even be combined with score levels and score constraint
weighting.

Consider this example with positive constraints, where we want to get the most apples and
oranges. Since it's impossible to compare apples and oranges, we can't weight them against each
other. Yet, despite that we can't compare them, we can state that 2 apples are better then 1 apple.
Similarly, we can state that 2 apples and 1 orange are better than just 1 orange. So despite our
inability to compare some Scores conclusively (at which point we declare them equal), we can
find a set of optimal scores. Those are called pareto optimal.

Pareto optimization scoring

(:‘j: ?@ Maximize apples and oranges harvest

Don't compare apples and oranges
9-@

1 apple is worth an unknown

number of oranges

1 orange is worth an unknown

number of apples

-
/"“\/'EJT:

AN\

Optimal solution A

Optimal solution B

Only pareto optimal solutions
are shown to the user
User decides between A and B

Scores are considered equal far more often. It's left up to a human to choose the better out of a
set of best solutions (with equal scores) found by Planner. In the example above, the user must
choose between solution A (3 apples and 1 orange) and solution B (1 apples and 6 oranges). It's
guaranteed that Planner has not found another solution which has more apples or more oranges
or even a better combination of both (such as 2 apples and 3 oranges).

To implement pareto scoring in Planner, implement a custom ScoreDefinition and Score.
Future versions will provide out-of-the-box support.

88

Combining score techniques

5.1.6. Combining score techniques

All the score techniques mentioned above, can be combined seamlessly:

Score composition

How are the score techniques combined?

Constraint 0 Constraint 0 Constraint 0
Overloaded axle Fuel cost CO? emissions

Constraint 1 Constraint 1 Constraint 1
Sleep-deprived driver Happy driver Methane emissions

| -34 / -170 : -1004 /..)

Score for 1 solution

5.1.7. The score interface

A score is represented by the Scor e interface, which naturally extends Conpar abl e:

public interface Score<...> extends Conparable<...> {

89

Chapter 5. Score calculation

The Scor e implementation to use depends on your use case. Your score might not efficiently fit in
asingle doubl e value. Planner has several build-in Score implementations, but you can implement
a custom Score too. Most use cases will just use the build-in Har dSof t Scor e.

Score class diagram

Choose a Score implementation or write a custom one

<<interface>> - <<interface>>
‘ Score ‘ | Comparable ‘
‘o

l SimpleScore S‘impIeLongScore SirﬁpleBigDeeimalScore
.| score : int score : long score : BigDecimal
e
lHardSoftScore HeirdSoftLongScore arﬁiSoﬂBigDecimalScore
' | hardScore : int hardScore : long hardScore : BigDecimal
softScore : int softScore : long softScore : BigDecimal

HardMediumSoftScore

hardScore : int

mediumScore: int

softScore : int

The Scor e implementation (for example Har dSof t Scor e) must be the same throughout a Sol ver
runtime. The Scor e implementation is configured in the solver configuration as a ScoreDefinition:

<scoreDi rect or Fact ory>
<scor eDefini ti onType>HARD SOFT</ scor eDefi niti onType>

</ scoreDirectorFact ory>

As for all calculations with a computer, choose the correct type. Don't use doubl e for financial data.

90

Choose a Score definition

Score weight type

W =0.01 $ Use the correct number type
Fuel usage double BigDecimal
double-precision 64-bit IEEE 754 arbitrary-precision signed
floating point decimal number
Vehicle X EEE 0.03 0.03
Vehicle Y EEE 0.03 0.03
Total 0.06 ' 0.06

Highest score

Wehicle X "X 0.01 0.01
Vehicle Y EEEEE 0.05 0.05
Total |0.060000000000000005 | 0.06 \
Highest score Highest score
| SimpleDoubleScore | [SimpleBigDecimalScore |
| score : double | | score : BigDecimal ‘

Based on your score constraints and score level requirements, you'll choose a certain
Scor eDefinition:

5.2. Choose a Score definition

Each Score implementation also has a ScoreDefinition implementation. For example:
Si nmpl eScor e is definied by Si npl eScor eDefi ni ti on.

5.2.1. SimpleScore

A Si npl eScor e has a single i nt value, for example - 123. It has a single score level.

<scoreDi rector Fact ory>
<scoreDefiniti onType>SlI MPLE</ scor eDefi ni ti onType>

</ scoreDirectorFactory>

Variants of this scor eDef i ni ti onType:

91

Chapter 5. Score calculation

* SI MPLE_LONG Uses Si npl eLongScor e which has a | ong value instead of ani nt value.
e SI MPLE_DOUBLE: Uses Si npl eDoubl eScor e which has a doubl e value instead of an i nt value.

* SI MPLE_BI G_DECI MAL: Uses Si npl eBi gDeci mal Scor e which has a Bi gDeci mal value instead
of anint value.

5.2.2. HardSoftScore (recommended)

A Har dSof t Scor e has a hard i nt value and a soft i nt value, for example - 123har d/ - 456soft .
It has 2 score levels (hard and soft).

<scoreDirector Fact ory>
<scoreDefi nitionType>HARD _SOFT</ scoreDefiniti onType>

</ scoreDirectorFact ory>

Variants of this scor eDef i ni ti onType:

¢ HARD SOFT_LONG Uses Har dSof t LongScor e which has | ong values instead of i nt values.

e HARD SOFT_DOUBLE: Uses Har dSof t Doubl eScor e which has doubl e values instead of i nt
values.

e HARD SOFT_BI G DECI MAL: Uses Har dSof t Bi gDeci mal Score which has Bi gDeci mal values
instead of i nt values..

5.2.3. HardMediumSoftScore

A Har dMedi untof t Scor e which has a hard i nt value, a medium i nt value and a softi nt value,

for example - 123har d/ - 456nedi uni - 789sof t . It has 3 score levels (hard, medium and soft).
<scoreDi rect or Fact ory>

<scor eDefi niti onType>HARD_MEDI UM SOFT</ scor eDefi ni ti onType>

</ scoreDirectorFact ory>

5.2.4. BendableScore

A Bendabl eScore has a configurable number of score levels. It has an array of hard int
values and an array of soft i nt value, for example 2 hard levels and 3 soft levels for a score
- 123/ - 456/ - 789/ - 012/ - 345. The number of hard and soft score levels needs to be set at
configuration time, it's not flexible to change during solving.

<scoreDi rect or Fact ory>

92

Implementing a custom Score

<scor eDefi niti onType>BENDABLE</ scor eDefi niti onType>
<bendabl eHar dLevel Count >2</ bendabl eHar dLevel Count >
<bendabl eSof t Level Count >3</ bendabl eSof t Level Count >

</ scoreDirectorFactory>

5.2.5. Implementing a custom Score

The Scor eDefi ni ti on interface defines the score representation.

To implement a custom Score, you'll also need to implement a custom ScoreDefinition.
Extend Abst r act Scor eDef i ni ti on (preferable by copy pasting Har dSof t Scor eDefi niti on or
Si npl eScor eDef i ni ti on) and start from there.

Then hook your custom Scor eDef i ni ti on in your Sol ver Confi g. xni :

<scoreDirector Fact ory>
<scoreDefinitionC ass>... MyScoreDefinition</scoreDefinitionC ass>

</ scoreDirectorFact ory>

5.3. Calculate the score

5.3.1. Score calculation types

There are several ways to calculate the Scor e of a Sol uti on:

« Simple Java score calculation: implement a single Java method
* Incremental Java score calculation: implement multiple Java methods
» Drools score calculation: implement score rules

Every score calculation type can use any Score definition. For example, simple Java score
calculation can output a Har dSof t Scor e.

All score calculation types are Object Orientated and can reuse existing Java code.

5.3.2. Simple Java score calculation

A simple way to implement your score calculation in Java.

« Advantages:

e Plain old Java: no learning curve

93

Chapter 5. Score calculation

» Opportunity to delegate score calculation to an existing code base or legacy system
» Disadvantages:
» Slower and less scalable
¢ Because there is no incremental score calculation

Just implement one method of the interface Si npl eScor eCal cul at or :

public interface SinpleScoreCal cul ator<Sol extends Sol ution> {

Scor e cal cul at eScore(Sol sol ution);

For example in n queens:

public class NQueensSi npl eScor eCal cul ator i npl enments Si npl eScor eCal cul at or <NQueens> {

public Sinmpl eScore cal cul at eScor e(NQueens nQueens) {
int n = nQueens.getN();
Li st <Queen> queenLi st = nQueens. get QueenLi st ();

int score = O;
for (int i =0; i <n; i++) {
for (int j =i +1; j <n; j++) {
Queen | eft Queen = queenList.get(i);
Queen right Queen = queenList.get(j);
if (leftQueen.getRow() != null && rightQeen.getRow) !'= null) {
if (leftQueen.get Row ndex() == right Queen. get Rowl ndex()) {

score--;

}

i f (IeftQueen. get Ascendi ngDi agonal | ndex() == ri ght Queen. get Ascendi ngDi agon:z
score--;

}

i f (IeftQueen. get Descendi nghi agonal | ndex() == ri ght Queen. get Descendi nghi agc¢
score--;

}

}

return Sinmpl eScore. val ued (score);

94

Incremental Java score calculation

Configure it in your solver configuration:

<scoreDi rect or Fact ory>
<scoreDefinitionType>...</scoreDefinitionType>

ner . exanpl es. nqueens. sol ver. score. NQueensSi npl eScor eCal cul at or </
si npl eScor eCal cul at or Cl ass>
</ scoreDirectorFact ory>

Alternatively, build a Sinpl eScoreCal cul ator instance at runtime and set it with the
programmatic API:

sol ver Fact ory. get Sol ver Confi g() . get Scor ebDi r ect or Fact or yConfi g. set Si npl eScor eCal cul at or (si

5.3.3. Incremental Java score calculation

A way to implement your score calculation incrementally in Java.

« Advantages:
* Very fast and scalable
» Currently the fastest if implemented correctly
» Disadvantages:
» Hard to write

* A scalable implementation heavily uses maps, indexes, ... (things the Drools rule engine
can do for you)

* You have to learn, design, write and improve all these performance optimizations yourself
» Hard to read
¢ Regular score constraint changes can lead to a high maintenance cost

Implement all the methods of the interface | ncr enent al Scor eCal cul at or and extend the class
Abstract | ncrement al Scor eCal cul at or:
public interface Incremental ScoreCal cul at or<Sol extends Sol ution> {

voi d reset Wr ki ngSol uti on(Sol wor ki ngSol uti on);

voi d beforeEntityAdded(Object entity);

95

Chapter 5. Score calculation

void afterEntityAdded(Object entity);

voi d beforeAl |l Vari abl esChanged(Qbj ect entity);

voi d afterAl |l Vari abl esChanged(Obj ect entity);

voi d bef oreVari abl eChanged(Obj ect entity, String vari abl eNane);
voi d afterVari abl eChanged(Obj ect entity, String variabl eNane);
voi d beforeEntityRenoved(Cbject entity);

voi d afterEntityRenoved(hject entity);

Score cal cul ateScore();

For example in n queens:

public class NQueensAdvancedl ncrenent al Scor eCal cul at or extends Abstract| ncremnmental ScoreCal cul at

private Map<l nteger, List<Queen>> row ndexMap;
private Map<Integer, List<Queen>> ascendi nghi agonal | ndexMap;
private Map<lnteger, List<Queen>> descendi ngD agonal | ndexMap;

private int score;

public void resetWrkingSol uti on(NQueens nQueens) {
int n = nQueens.getN();
row ndexMap = new HashMap<I nt eger, List<Queen>>(n);
ascendi ngDi agonal | ndexMap = new HashMap<I nt eger, List<Queen>>(n * 2);
descendi nghi agonal | ndexMap = new HashMap<I| nt eger, List<Queen>>(n * 2);
for (int i =0; i <n; i++) {
row ndexMap. put (i, new ArrayLi st <Queen>(n));
ascendi ngDi agonal | ndexMap. put (i, new ArraylLi st <Queen>(n));
descendi nghi agonal | ndexMap. put (i, new ArrayLi st <Queen>(n));
if (i '=0) {
ascendi ngDi agonal | ndexMap. put(n - 1 + i, new ArrayLi st<Queen>(n));
descendi ngDi agonal | ndexMap. put ((-i), new ArraylLi st <Queen>(n));

}

score = O;

for (Queen queen : nQueens. get QueenList()) {
i nsert(queen);

96

Incremental Java score calculation

public void beforeEntityAdded(hject entity) {
/1 Do not hing

public void afterEntityAdded(Ohject entity) {
i nsert((Queen) entity);

public void beforeAll Vari abl esChanged(Cbj ect entity) {
retract ((Queen) entity);

public void afterAl |l Vari abl esChanged(Chject entity) {
i nsert((Queen) entity);

public void beforeVariabl eChanged(Cbj ect entity, String variabl eNane) {
retract ((Queen) entity);

public void afterVariabl eChanged(Obj ect entity, String variabl eNanme) {
i nsert((Queen) entity);

public void beforeEntityRenoved(Ohject entity) {
retract ((Queen) entity);

public void afterEntityRenoved(Object entity) {
/1 Do not hing

private void insert(Queen queen) {

Row row = queen. get Row() ;

if (row!=null) {
int rowl ndex = queen. get Row ndex();
Li st <Queen> row ndexLi st = row ndexMap. get (r owl ndex) ;
score -= row ndexLi st. si ze();
row ndexLi st. add(queen);
Li st <Queen> ascendi ngDi agonal | ndexLi st = ascendi ngDi agonal | ndexMap. get (queen. get Asc
score -= ascendi ngDi agonal | ndexLi st. si ze();
ascendi ngDi agonal | ndexLi st. add(queen);
Li st <Queen> descendi ngDi agonal | ndexLi st = descendi ngDi agonal | ndexMap. get (queen. get [
score -= descendi ngDi agonal | ndexLi st. si ze();
descendi ngDi agonal | ndexLi st. add(queen);

97

Chapter 5. Score calculation

private void retract(Qeen queen) {

Row row = queen. get Row() ;

if (row!=null) {
Li st <Queen> row ndexLi st = row ndexMap. get (queen. get Row ndex());
row ndexLi st . renove(queen);
score += rowl ndexLi st. si ze();
Li st <Queen> ascendi ngDi agonal | ndexLi st = ascendi ngDi agonal | ndexMap. get (queen. get Asc
ascendi ngDi agonal | ndexLi st . renove(queen);
score += ascendi ngDi agonal | ndexLi st . si ze();
Li st <Queen> descendi ngDi agonal | ndexLi st = descendi ngDi agonal | ndexMap. get (queen. get [
descendi ngDi agonal | ndexLi st. renove(queen);
score += descendi ngDi agonal | ndexLi st . si ze();

public Sinmpl eScore cal cul ateScore() {
return Sinpl eScore. val ueX (score);

Configure it in your solver configuration:

<scorebDi rect or Fact ory>
<scoreDefinitionType>...</scoreDefinitionType>

r e. NQueensAdvanced! ncr enent al Scor eCal cul at or </
i ncrement al Scor eCal cul at or Cl ass>
</ scoreDirectorFact ory>

Optionally, to get better output when the Increnental ScoreCal cul ator is corrupted
in environment Mode FAST_ASSERT or FULL_ASSERT, you can overwrite the method
bui | dScor eCor r upt i onAnal ysi s from Abstract | ncr enent al Scor eCal cul at or .

5.3.4. Drools score calculation

5.3.4.1. Overview

Implement your score calculation using the Drools rule engine. Every score constraint is written
as one or more score rules.

» Advantages:
* Incremental score calculation for free

« Because most DRL syntax uses forward chaining, it does incremental calculation without
any extra code

98

Drools score calculation

» Score constraints are isolated as separate rules
« Easy to add or edit existing score rules
 Flexibility to augment your score constraints by
» Defining them in decision tables
» Excel (XLS) spreadsheet
* Guvnor WebUI
» Translate them into natural language with DSL
« Store and release in the Guvnor repository
» Performance optimizations in future versions for free
* In every release, the Drools rule engine tends to become faster.
» Disadvantages:
e DRL learning curve
» Usage of DRL

« Polyglot fear can prohibit the use of a new language such as DRL in some organizations
5.3.4.2. Drools score rules configuration
There are several ways to define where your score rules live.

5.3.4.2.1. A scoreDrl resource on the classpath

This is the easy way: the score rule live in a DRL file which is a resource on the classpath. Just
add your score rules *. dr | file in the solver configuration:

<scoreDi rector Fact ory>
<scoreDefinitionType>...</scoreDefinitionType>
<scoreDr| >/ org/ drool s/ pl anner/ exanpl es/ nqueens/ sol ver/
nQueensScor eRul es. drl </ scoreDr| >
</ scoreDirectorFact ory>

You can add multiple <scor eDr | > entries if needed, but normally you'll define all your score rules
in 1 file.

99

Chapter 5. Score calculation

5.3.4.2.2. A RuleBase (possibly defined by Guvnor)

If you prefer to build the Rul eBase yourself or if you're combining Planner with Guvnor, you can
set the Rul eBase on the Sol ver Fact or y before building the Sol ver :

sol ver Fact ory. get Sol ver Confi g() . get Scor eDi r ect or Fact or yConfi g. set Rul eBase(rul eBase) ;

5.3.4.3. Implementing a score rule

Here's an example of a score constraint implemented as a score rule in a DRL file:

rule "nmul tipl eQueensHorizontal "
when
$gl : Queen($id : id, $y : y);
$92 : Queen(id > $id, y == $y);
t hen
i nsert Logi cal (new
Unwei ght edConstrai nt Cccurrence("nul ti pl eQueensHori zontal ", $ql, $92));
end

This score rule will fire once for every 2 queens with the same y. The (id > $i d) condition is
needed to assure that for 2 queens A and B, it can only fire for (A, B) and not for (B, A), (A, A) or
(B, B). Let's take a closer look at this score rule on this solution of 4 queens:

A°-B C D

g R g

Ww N H ©

In this solution the multipleQueensHorizontal score rule will fire for 6 queen couples: (A, B), (A, C),
(A, D), (B, C), (B, D) and (C, D). Because none of the queens are on the same vertical or diagonal
line, this solution will have a score of - 6. An optimal solution of 4 queens has a score of 0.

@ Note

Notice that every score rule will relate to at least 1 planning entity class (directly or
indirectly though a logically inserted fact).

100

Drools score calculation

This is normal: it would be a waste of time to write a score rule that only relates to
problem facts, as the consequence will never change during planning, no matter
what the possible solution.

5.3.4.4. Aggregating the score rules into the score

A Scor eHol der instance is asserted into the Wor ki ngMenory as a global called scor eHol der .
Your score rules need to (directly or indirectly) update that instance. Usually you'll make a single
rule as an aggregation of the other rules to update the score:

gl obal Si npl eScor eHol der scor eHol der;

rule "nultipl eQueensHorizontal "
when
$gl : Queen($id : id, $y : y);
$g2 : Queen(id > $id, y == 3y);
t hen
i nsertLogi cal (new
Unwei ght edConstrai nt Cccurrence("mul ti pl eQueensHori zontal ", $q1, $q2));
end

/1l multipleQueensVertical is obsolete because it is always 0O

rule "nmultipl eQueensAscendi ngDi agonal "
when
$gl : Queen($id : id, $ascendingD : ascendi ngD);
$0g2 : Queen(id > $id, ascendi ngD == $ascendi ngD)
t hen
i nsert Logi cal (new
Unwei ght edConst rai nt Occurrence(" mul ti pl eQueensAscendi nghi agonal ", $ql1, $q2));
end

rule "mul tipl eQueensDescendi nghi agonal "
when
$gl1 : Queen($id : id, $descendi ngD : descendi ngD);
$g2 : Queen(id > $id, descendi ngD == $descendi ngD) ;
t hen
i nsertLogi cal (new
Unwei ght edConstrai nt Cccurrence(" mul ti pl eQueensDescendi nghi agonal ", $gl1, $92));
end

rul e "accunul at eScor e"
when
$occurrenceCount : Number () from accurnul at e(
$unwei ght edConstrai nt ccurrence : Unwei ght edConstrai nt Occurrence(),
count ($unwei ght edConst r ai nt Cccurrence)

101

Chapter 5. Score calculation

)
t hen
scor eHol der. set Score(- $occurrenceCount.intVal ue());
end

Most use cases will also weigh their constraints differently, by multiplying the count of each score
rule with its weight.

Here's an example from CurriculumCourse, where assigning a Lect ur e to a Roomwhich is missing
2 seats is weighted equally bad as having 1 isolated Lecture ina Curri cul um

/| RoontCapacity: For each |l ecture, the nunmber of students that attend the course
must be |l ess or equa
/1 than the nunber of seats of all the roons that host its |ectures
/| Each student above the capacity counts as 1 point of penalty.
rul e "roomCapaci ty"
when

t hen
i nsertLogi cal (new [|ntConstraintQccurrence("roonCapacity",
Constrai nt Type. SOFT,
($capacity - $studentSize),
$room $lecture));
end

[/ Curricul unConpact ness: Lectures belonging to a curricul umshoul d be adj acent
// to each other (i.e., in consecutive periods).
I/ For a given curriculum we account for a violation every tine there is one
| ecture not adjacent
// to any other lecture within the same day.
/| Each isolated lecture in a curriculumcounts as 2 points of penalty.
rul e "curricul umConpact ness"
when

t hen
i nsertLogi cal (new | ntConstraintCccurrence("curricul umConpact ness",
Constrai nt Type. SOFT,
-2,
$l ecture, S$curriculum);
end

/'l Accunul ate soft constraints
rul e "accunul at eSof t Scor e"
salience -1 // Do the other rules first (optional, for performance)
when
$soft Total : Number () from accumul at e(

102

Detecting invalid scores

I nt Constrai nt Cccurrence(constrai nt Type == Constraint Type. SOFT,
$wei ght : weight),
sum($wei ght)
)
t hen

scor eHol der . set Sof t Scor e($sof t Tot al . i nt Val ue());
end

5.3.5. Detecting invalid scores

Put the environnment Mode in FULL_ASSERT (or FAST_ASSERT) to detect corruption in the
incremental score calculation. For the difference between both modes, see the section about
envi ronnent Mbde. However, that will not detect if your score calculator implements your score
constraints as your business actually desires.

A piece of incremental score calculator code can be difficult to write and to review.
You can assert its correctness by using a different implementation (for example a
Si npl eScor eCal cul at or) to do the assertions triggered by the envi r onment Mode. Just configure
it as assertionScoreDirector Factory:

<envi r onment Mbde>FAST_ASSERT</ envi r onnment Mbde>

<scoreDi rector Fact ory>
<scoreDefinitionType>...</scoreDefinitionType>
<scoreDr| >/ org/ drool s/ pl anner/ exanpl es/ nqueens/ sol ver/
nQueensScor eRul es. drl </ scoreDr| >
<assertionScoreDirectorFactory>

ner . exanpl es. nqueens. sol ver. scor e. NQueensSi npl eScor eCal cul at or </
si npl eScor eCal cul at or Cl ass>

</ assertionScoreDirectorFactory>
</ scoreDirectorFact ory>

5.4. Score calculation performance tricks

5.4.1. Overview

The Sol ver will normally spend most of its execution time running the score calculation (which is
called in its deepest loops). Faster score calculation will return the same solution in less time with
the same algorithm, which normally means a better solution in equal time.

5.4.2. Average calculation count per second

After solving a problem, the Sol ver will log the average calculation count per second. This
is a good measurement of Score calculation performance, despite that it is affected by non

103

Chapter 5. Score calculation

score calculation execution time. It depends on the problem scale of the problem dataset.
Normally, even for high scale problems, it is higher than 1000, except when you're using

Si npl eScor eCal cul at or.

Important

When improving your score calculation, focus on maximizing the average
calculation count per second, instead of maximizing the best score. A big
improvement in score calculation can sometimes yield little or no best score
improvement, for example when the algorithm is stuck in a local or global optima.
If you're watching the calculation count instead, score calculation improvements
are far more visible.

Furthermore, watching the calculation count, allows you to remove or add score
constraints, and still compare it with the original calculation count. Comparing the
best score with the original would be wrong, because it's comparing apples and
oranges.

5.4.3. Incremental score calculation (with delta's)

When a Sol uti on changes, incremental score calculation (AKA delta based score calculation),
will calculate the delta with the previous state to find the new Scor e, instead of recalculating the
entire score on every solution evaluation.

For example, if a single queen A moves from row 1 to 2, it won't bother to check if queen B and
C can attack each other, since neither of them changed.

104

Avoid calling remote services during score calculation

A B C D A B ¢ D Delta based
o @l of [hw .
J{E] Newe score calculation
’ The rule engine
2L 2 |1l \ (with forward chaining)
3 “‘“@ 3 Ms@ﬂ only recalculates dirty tuples.

queens dirty total speedup
4 3 of 6 time/ 2

8 7of 28 time/ 4

16 150f 120 time/ 8

32 31of 496 time/ 16

64 63 of 2016 time /32

Figure 5.1. Incremental score calculation for the 4 queens puzzle

This is a huge performance and scalability gain. Drools score calculation gives you this huge
scalability gain without forcing you to write a complicated incremental score calculation
algorithm. Just let the Drools rule engine do the hard work.

Notice that the speedup is relative to the size of your planning problem (your n), making
incremental score calculation far more scalable.

5.4.4. Avoid calling remote services during score calculation

Do not call remote services in your score calculation (except if you're bridging
Si npl eScor eCal cul at or to a legacy system). The network latency will kill your score calculation
performance. Cache the results of those remote services if possible.

If some parts of a constraint can be calculated once, when the Sol ver starts, and never change
during solving, then turn them into cached problem facts.

5.45. Unused constraint

If you know a certain constraint can never be broken, don't bother writing a score constraint for
it. For example in n queens, the score calculation doesn't check if multiple queens occupy the
same column, because a Queen's col unmm never changes and every Sol uti on starts with each
Queen on a different col um.

105

Chapter 5. Score calculation

5.4.6. Build-in hard constraint

Instead of implementing a hard constraint, you can sometimes make it build-in too. For example: If
Cour se A should never be assigned to RoomX, but it uses ValueRange from Solution, the Sol ver
will often try to assign it to RoomX too (only to find out that it breaks a hard constraint). Use filtered
selection to define that Course A should only be assigned a Roomother than X.

This tends to give a good performance gain, not just because the score calculation is faster, but
mainly because most optimization algorithms will spend less time evaluating unfeasible solutions.

5.4.7. Other performance tricks

« Verify that your score calculation happens in the correct Nunber type. If you're making the sum
of i nt values, don't let Drools sum it in a doubl e which takes longer.

 For optimal performance, always use server mode (j ava - ser ver). We have seen performance
increases of 50% by turning on server mode.

» For optimal performance, use at least java 1.6. We have seen performance increases of 30%
by switching from java 1.5 to 1.6.

« Always remember that premature optimization is the root of all evil. Make sure your design is
flexible enough to allow configuration based tweaking.

5.4.8. Score trap

Be watchful for score traps. A score trap is a state in which several moves need to be done to
resolve or lower the weight of a single constraint occurrence. Some examples of score traps:

« If you need 2 doctors at each table, but you're only moving 1 doctor at a time, then the solver
has no incentive to move a doctor to a table with no doctors. Punish a table with no doctors
more then a table with only 1 doctor in your score function.

Score trap

« If you only add the table as a cause of the ConstraintOccurrence and forget the jobType (which
is doctor or politician), then the solver has no incentive to move a doctor to table which is short
of a doctor and a politician.

For example, consider this score trap. If the blue item moves from an overloaded computer to an
empty computer, the hard score should improve. The trapped score implementation fails to do that:

Score trap

There are degrees of infeasibility

CFU Trapped score Good score
5 -1hard if any missing CPU -Thard per missing CPU
EEREEE « o
[[3] Y 1000% -thard [-1500soft -5hard / -1500soft
\ | z 10008
2
s < o
[[3] Y 1000 % -Thard / -2500s0ft -2hard [-2500soft
Highest score
Z 1000%
5 A\ V
3 [3[] X s00s
\ / | v 10008 ~thard / -1500soft -Shard / -1500soft
L Highest score
[¥ [3] Z 1000%

The Solver should eventually get out of this trap, but it will take a lot of effort (especially if there
are even more processes on the overloaded computer). Before they do that, they might actually
start moving more processes into that overloaded computer, as there is no penalty for doing so.

Important

Always specify the degree of infeasibility. The business will often say: "if the
solution is infeasible, it doesn't matter how infeasible it." While that's true for the
business, it's not true for score calculation: it benefits from knowing how infeasible
it is. In practice, soft constraints usually do this naturally and it's just a matter of
doing it for the hard constraints too.

107

Chapter 5. Score calculation

@ Note
Mixing course-grained and fine-grained moves reduces the chance of hitting a
score trap.

5.4.9. stepLimit benchmark

Not all score constraints have the same performance cost. Sometimes 1 score constraint can kill
the score calculation performance outright. Use the benchmarker to do a 1 minute run and check
what happens to the average calculation count per second if you comment out all but 1 of the
score constraints.

5.5. Reusing the score calculation outside the Solver

Other parts of your application, for example your webUI, might need to calculate the score too.
Do that by reusing the Scor eDi r ect or Fact or y of the Sol ver to build a separate Scor eDi r ect or
for that webUI:

ScoreDi rector Factory scoreDirectorFactory = sol ver. get ScoreDirectorFactory();
ScoreDi rector gui ScoreDirector = scorebDirectorFactory. buil dScorebDirector();

Then use it when you need to calculate the Scor e of a Sol uti on:

gui Scor eDi rect or. set Wr ki ngSol uti on(sol ution);
Score score = gui ScorebDirector. cal cul ateScore();

Currently it's not officially supported to get the specific constraint occurrences, to explain in the GUI
what entities are causing which part of the Scor e. But if you're using the Dr ool sScor eDi r ect or,
it's possible to extract it. See the examples.

108

Chapter 6.

Chapter 6. Optimization algorithms

6.1. Search space size in the real world

The number of possible solutions for a planning problem can be mind blowing. For example:

» 4 queens has 256 possible solutions (4 ~ 4) and 2 optimal solutions.
« 5 queens has 3125 possible solutions (5 ~ 5) and 1 optimal solution.
* 8 queens has 16777216 possible solutions (8 ~ 8) and 92 optimal solutions.

* 64 queens has more than 107115 possible solutions (64 ~ 64).

Most real-life planning problems have an incredible number of possible solutions and only 1 or
a few optimal solutions.

For comparison: the minimal number of atoms in the known universe (10"80). As a planning
problem gets bigger, the search space tends to blow up really fast. Adding only 1 extra planning
entity or planning value can heavily multiply the running time of some algorithms.

An algorithm that checks every possible solution (even with pruning) can easily run for billions of
years on a single real-life planning problem. What we really want is to find the best solution in
the limited time at our disposal. Planning competitions (such as the International Timetabling
Competition) show that local search variations (tabu search, simulated annealing, ...) usually
perform best for real-world problems given real-world time limitations.

6.2. Does Planner find the optimal solution?

The business wants the optimal solution, but they also have other requirements:

» Scale out: Large production datasets must not crash and have good results too.

Optimize the right problem: The constraints must match the actual business needs.

Available time: The solution must be found in time, before it becomes useless to execute.

Reliability: Every dataset must have at least a decent result (better than a human planner).

Given these requirements, and despite the promises of some salesmen, it's usually impossible
for anyone or anything to find the optimal solution. Therefore, Planner focuses on finding the best
solution in available time. In realistic, independent competitions, Planner often comes out as the
best reusable software.

The nature of NP-complete problems make scaling a prime concern. The result quality of asmall
dataset guarantees nothing about the result quality of a large dataset. Scaling problems

109

Chapter 6. Optimization algor...

cannot be mitigated by hardware purchases. Start testing with a production sized dataset as soon
as possible. Don't asses quality on small datasets (unless production encounters such datasets).
Instead, solve a production sized dataset and compare with the results of longer execution,
different algorithms and - if available - the human planner.

6.3. Architecture overview

Drools Planner is the first framework to combine optimization algorithms (metaheuristics, ...) with
score calculation by a rule engine such as Drools Expert. This combination turns out to be a very
efficient, because:

< Arule engine such as Drools Expertis great for calculating the score of a solution of a planning
problem. It makes it easy and scalable to add additional soft or hard constraints such as "a
teacher shouldn't teach more then 7 hours a day". It does delta based score calculation without
any extra code. However it tends to be not suitable to actually find new solutions.

» An optimization algorithm is great at finding new improving solutions for a planning problem,
without necessarily brute-forcing every possibility. However it needs to know the score of a
solution and offers no support in calculating that score efficiently.

Architecture overview

The Solver wades through the search space of solutions efficiently.
The ScoreDirector calculates the score of every solution under evaluation.

Solver

Drools Expert
(rule engine)

DRL
Decision Table
Guvnor

First Fit
Best Fit
Cheapest Insertion

Tabu Search
Simulated Annealing
Late Acceptance
Genetic Algorithms

Java

| SimpleScoreCalculator |
| IncrementalScoreCalc... |

Find a better solution Calculate the score
of a solution

110

Optimization algorithms overview

6.4. Optimization algorithms overview

Table 6.1. Optimization algorithms overview

Algorithm Scalable? Optimal? Easy Tweakable'Requires

to use? CH?

Exact algorithms

Brute force 0/5 5/5 5/5 0/5 No

Branch and bound 0/5 5/5 4/5 1/5 No

Construction heuristics (CH)

First Fit 5/5 1/5 5/5 1/5 No
First Fit Decreasing 5/5 2/5 4/5 2/5 No
Best Fit 5/5 2/5 4/5 2/5 No
Best Fit Decreasing 5/5 2/5 4/5 2/5 No
Cheapest Insertion 3/5 2/5 5/5 2/5 No

Metaheuristics (MH)

Local search

Hill-climbing 5/5 2/5 4/5 3/5 Yes
Tabu search 5/5 4/5 3/5 5/5 Yes
Simulated annealing 5/5 4/5 2/5 5/5 Yes
Late acceptance 5/5 4/5 3/5 5/5 Yes

Evolutionary algorithms

Evolutionary strategies 4/5 3/5 ?/5 ?/5 Yes

Genetic algorithms 4/5 3/5 ?2/5 ?/5 Yes

If you want to learn more about metaheuristics, read the free book Essentials of
Metaheuristics [http://www.cs.gmu.edu/~sean/book/metaheuristics/] or Clever Algorithms [http://
www.cleveralgorithms.com/].

6.5. Which optimization algorithms should | use?

The best optimization algorithms configuration for your use case depends heavily on your use
case. Nevertheless, this vanilla recipe will get you into the game with a pretty good configuration,
probably much better than what you're used to.

Start with a quick configuration that involves little or no configuration and optimization code:

1. First Fit

Next, implement planning entity difficulty comparison and turn it into:

111

http://www.cs.gmu.edu/~sean/book/metaheuristics/
http://www.cs.gmu.edu/~sean/book/metaheuristics/
http://www.cs.gmu.edu/~sean/book/metaheuristics/
http://www.cleveralgorithms.com/
http://www.cleveralgorithms.com/
http://www.cleveralgorithms.com/

Chapter 6. Optimization algor...

1. First Fit Decreasing

Next, implement moves and add tabu search behind it:

1. First Fit Decreasing
2. Tabu search (use planning entity tabu)

At this point the free lunch is over. The return on invested time lowers. The result is probably
already more than good enough.

But you can do even better, at a lower return on invested time. Use the Benchmarker and try a
couple of simulated annealing configurations:

1. First Fit Decreasing

2. Simulated annealing (try several starting temperatures)

And combine them with tabu search:

1. First Fit Decreasing
2. Simulated annealing (relatively long time)
3. Tabu search (relatively short time)

If you have time, continue experimenting even further. Blog about your experiments!

66 Sol ver Phase

A Sol ver can use multiple optimization algorithms in sequence. Each optimization algorithm is
represented by a Sol ver Phase. There is never more than 1 Sol ver Phase solving at the same
time.

@ Note
Some Sol ver Phase implementations can combine techniques from multiple
optimization algorithms, but they are still just 1 Sol ver Phase. For example: a local
search Sol ver Phase can do simulated annealing with planning entity tabu.

Here's a configuration that runs 3 phases in sequence:

<sol ver >

<constructionHeuristic>
<I-- First phase: First Fit decreasing -->

112

SolverPhase

</ constructionHeuristic>
<l ocal Sear ch>
<I-- Second phase: Simulated annealing -->
</l ocal Sear ch>
<l ocal Sear ch>
<l-- Third phase: Tabu search -->
</l ocal Sear ch>
</ sol ver >

The solver phases are run in the order defined by solver configuration. When the first phase
terminates, the second phase starts, and so on. When the last phase terminates, the Sol ver
terminates. Usually, a solver will first run a construction heuristic and then run 1 or multiple
metaheuristics:

General phase sequence

First a construction heuristic,
then metaheuristics

—

L

L

Construction heuristic

First Fit Decreasing

Metaheuristic

Tabu Search

g

Some phases (especially construction heuristics) will terminate automatically. Other phases
(especially metaheuristics) will only terminate if the phase is configured to terminate:

<sol ver >

113

Chapter 6. Optimization algor...

<term nation><!-- Solver term nation -->

<maxi munSecondsSpend>90</ maxi munSeconds Spend>
</term nation>
<l ocal Sear ch>

<term nation><!-- Phase ternination -->

<maxi munSecondsSpend>60</ maxi nunSecondsSpend><! -- G ve the next phase a

chance to run too, before the Solver term nates -->

</term nation>

</l ocal Search>
<l ocal Sear ch>

</| ocal Search>
</ sol ver >

If the Sol ver terminates (before the last phase terminates itself), the current phase is terminated
and all subsequent phases won't run.

6.7. Scope overview

A solver will iteratively run phases. Each phase will usually iteratively run steps. Each step, in turn,
usually iteratively runs moves. These form 4 nested scopes: solver, phase, step and move.

114

Termination

Scope overview

Each scope triggers lifecycle events

stepStarted()

stepEnded() queen B to row 3

stepStarted()

stepEnded() queen C to row 0

Configure logging to display the log messages of each scope.

6.8. Termination

Not all phases terminate automatically and sometimes you don't want to wait that long anyway.
A Sol ver can be terminated synchronously by up-front configuration or asynchronously from
another thread.

Especially metaheuristic phases will need to be told when to stop solving. This can be because
of a number of reasons: the time is up, the perfect score has been reached, ... The only thing you
can't depend on, is on finding the optimal solution (unless you know the optimal score), because
a metaheuristic algorithm generally doesn't know it when it finds the optimal solution. For real-life
problems this doesn't turn out to be much of a problem, because finding the optimal solution could
take billions of years, so you 'll want to terminate sooner anyway. The only thing that matters is
finding the best solution in the available time.

For synchronous termination, configure a Termi nati on on a Sol ver or a Sol ver Phase when
it needs to stop. You can implement your own Ter i nat i on, but the build-in implementations
should suffice for most needs. Every Terni nati on can calculate a time gradient (needed for

115

Chapter 6. Optimization algor...

some optimization algorithms), which is a ratio between the time already spend solving and the
estimated entire solving time of the Sol ver or Sol ver Phase.

6.8.1. TimeMillisSpendTermination

Terminates when an amount of time has been reached:

<term nati on>
<maxi munili meM | | i sSpend>500</ maxi nunili meM | | i sSpend>
</term nati on>

<term nati on>
<maxi munSecondsSpend>10</ maxi nunSecondsSpend>
</term nation>

<term nati on>
<maxi munM nut esSpend>5</ maxi nunM nut esSpend>
</term nation>

<term nati on>
<maxi munHour sSpend>1</ maxi nunHour sSpend>
</termnation>

o

116

ScoreAttainedTermination

6.8.2. ScoreAttainedTermination

Terminates when a certain score has been reached. You can use this Ter ni nat i on if you know
the perfect score, for example for 4 queens:

<term nati on>
<scor eAtt ai ned>0</ scor eAt t ai ned>
</term nation>

For a planning problem with hard and soft constraints, it could look like this:

<t erm nati on>
<scor eAtt ai ned>0har d/ - 5000sof t </ scor eAtt ai ned>
</term nation>

You can use this Ter mi nat i on to terminate once it reaches a feasible solution.

6.8.3. StepCountTermination

Terminates when an amount of steps has been reached:

<term nation>
<maxi munst epCount >100</ maxi nunst epCount >
</term nation>

This Ter mi nat i on can only be used for a Sol ver Phase, not for the Sol ver itself.

6.8.4. UnimprovedStepCountTermination

Terminates when the best score hasn't improved in a number of steps:

<term nati on>
<maxi mumni npr ovedSt epCount >100</ maxi munmJni npr ovedSt epCount >
</term nation>

If the score hasn't improved recently, it's probably not going to improve soon anyway and it's not
worth the effort to continue. We have observed that once a new best solution is found (even after
a long time of no improvement on the best solution), the next few steps tend to improve the best
solution too.

This Ter mi nat i on can only be used for a Sol ver Phase, not for the Sol ver itself.

117

Chapter 6. Optimization algor...

6.8.5. Combining multiple Terminations

Terminations can be combined, for example: terminate after 100 steps or if a score of 0 has been
reached:

<term nation>
<t erm nati onConposi tionStyl e>OR</ter m nati onConpositi onStyl e>
<maxi munst epCount >100</ maxi nuntt epCount >
<scor eAtt ai ned>0</ scor eAt t ai ned>

</term nation>

Alternatively you can use AND, for example: terminate after reaching a feasible score of at least
-100 and no improvements in 5 steps:

<term nation>
<t erm nati onConposi tionStyl e>AND</t er mi nati onConposi tionStyl e>
<maxi mumJni mpr ovedSt epCount >5</ maxi munni npr ovedSt epCount >
<scor eAtt ai ned>- 100</ scor eAt t ai ned>

</term nation>

This example ensures it doesn't just terminate after finding a feasible solution, but also completes
any obvious improvements on that solution before terminating.

6.8.6. Asynchronous termination from another thread

Sometimes you'll want to terminate a Solver early from another thread, for example because a
user action or a server restart. This cannot be configured by a Ter mi nati on as it's impossible to
predict when and if it will occur. Therefore the Sol ver interface has these 2 thread-safe methods:
public interface Solver {

Il

bool ean term nateEarly();
bool ean i sTerm nateEarly();

If you call the t er mi nat eEar | y() method from another thread, the Sol ver will terminate at its
earliest convenience and the sol ve() method will return in the original Sol ver thread.

118

SolverEventListener

6.9. SolverEventListener

Each time a new best solution is found, the Sol ver fires a Best Sol ut i onChangedEvent .

To listen to such events, add a Sol ver Event Li st ener to the Sol ver:

public interface Sol ver {
/1

voi d addEvent Li st ener (Sol ver Event Li st ener eventLi stener);
voi d renpveEvent Li st ener (Sol ver Event Li st ener event Li stener);

6.10. Custom SolverPhase

Between phases or before the first phase, you might want to execute a custom action on the
Sol uti on to get a better score. Yet you'll still want to reuse the score calculation. For example, to
implement a custom construction heuristic without implementing an entire Sol ver Phase.

Implement the Cust onSol ver PhaseConmand interface:

public interface CustonSol ver PhaseConmand {

voi d changeWbr ki ngSol uti on(ScoreDirector scoreDirector);

For example:

public class Exam nationSolutionlnitializer inplenents Custonfol ver PhaseCommand {

public void changeWr ki ngSol uti on(ScoreDi rector scoreDirector) {
Exami nati on exami nation = (Exami nation) scoreDirector.getWrkingSol ution();

119

Chapter 6. Optimization algor...

for (Exam exam : exam nation. get ExanmList()) {
Score unschedul edScore = scoreDirector. cal cul ateScore();

for (Period period : examination.getPeriodList()) {
scoreDi rect or. bef oreVari abl eChanged(exam "period");
exam set Peri od(peri od)
scoreDirector. af ter Vari abl eChanged(exam "period");
Score score = scoreDirector.cal cul ateScore();

Warning

Any change on the planning entities in a Cust onfSol ver PhaseConmand must be
notified to the Scor eDi r ect or .

Warning

Do not change any of the planning facts in a Cust onSol ver PhaseCommand. That
will corrupt the Sol ver because any previous score or solution was for a different
problem. If you want to do that, see repeated planning and real-time planning
instead.

And configure it like this:

<sol ver >
<cust onBSol ver Phase>

ializer.Exam nationSolutionlnitializer</
cust onfSol ver PhaseComandC ass>
</ cust ool ver Phase>
<l-- O her phases -->
</ sol ver >

It's possible to configure multiple cust onol ver PhaseConmandd ass instances, which will be run
in sequence.

120

Custom SolverPhase

Important

If the changes of a Cust onSol ver PhaseConmand don't result in a better score,
the best solution won't be changed (so effectively nothing will have changed for
the next Sol ver Phase or Cust onfSol ver PhaseCommand). To force such changes
anyway, use f or ceUpdat eBest Sol uti on:

<cust onBol ver Phase>
<cust onSol ver PhaseConmandC ass>. .. M/Uniniti al i zer </
cust ontSol ver PhaseConmandCl ass>
<f or ceUpdat eBest Sol ut i on>t rue</ f or ceUpdat eBest Sol uti on>
</ cust onol ver Phase>

@ Note
If the Solver or SolverPhase wants to terminate while a
Cust onBol ver PhaseConmmand is still running, it will wait to terminate until the
Cust onBol ver PhaseCommand is done, however long that takes.

121

122

Chapter 7.

Chapter 7. . and neighborhood
selection

7.1. wve and neighborhood introduction

7.1.1. What is a mwve?

A Move is a change (or set of changes) from a solution A to a solution B. For example, the move
below changes queen C from row 0 to row 2:

A B C D A B C D

R g

e

Ww N ¥+ ©

L

Ww N H O

The new solution is called a neighbor of the original solution, because it can be reached in a single
Move. Although a single move can change multiple queens, the neighbors of a solution should
always be a very small subset of all possible solutions. For example, on that original solution,
these are all possible changeMove's:

A B C D

A

!
3

|

¥ B

[[] Doable mowve

[l Mot doable move
[no change)

Ww N H O

If we ignore the 4 changeMove's that have not impact and are therefore not doable, we can see
that number of movesisn * (n - 1) = 12. Thisis far less than the number of possible solutions,
whichisn ~ n = 256. As the problem scales out, the number of possible moves increases far
less than the number of possible solutions.

Yet, in 4 changeMve's or less we can reach any solution. For example we can reach a very
different solution in 3 changeMove's:

123

Chapter 7. Move and neighborh...

A B D A B C D A B C D A B
gy g i RS o [y
1 (/ 1 L 1/ Wl 1

2 W 2 Tkr 2|| Tkr 2

3 3 3 3 [{idr

@ Note
There are many other types of moves besides changeMyve's. Many move types
are included out-of-the-box, but you can also implement custom moves.

A Move can affect multiple entities or even create/delete entities. But it must not
change the problem facts.

All optimization algorithms use Mve's to transition from one solution to a neighbor solution.
Therefor, all the optimization algorithms are confronted with Move selection: the craft of creating
and iterating moves efficiently and the art of finding the most promising subset of random moves
to evaluate first.

7.1.2. What is a wmvesel ector ?

A MoveSel ect or's main function is to create |t er at or <Mbve> when needed. An optimization
algorithm will iterate through a subset of those moves.

Here's an example how to configure a changeMoveSel ect or for the optimization algorithm Local
Search:

<l ocal Sear ch>
<changeMoveSel ect or/ >

</| ocal Search>

Out of the box, this works and all properties of the changeMoveSel ect or are defaulted sensibly
(unless that fails fast due to ambiguity). On the other hand, the configuration can be customized
significantly for specific use cases. For example: you want want to configure a filter to discard
pointless moves.

7.1.3. Subselecting of entities, values and other moves

To create a Move, we need to select 1 or more planning entities and/or planning values to
move. Just like MoveSel ect or s, Enti t ySel ect or sand Val ueSel ect or s need to support a similar

124

Subselecting of entities, values and other moves

feature set (such as scalable just-in-time selection). Therefor, they implement a common interface
Sel ect or and they are configured similarly.

A MoveSelector is often composed out of EntitySel ectors, Val ueSel ect ors or even other
MoveSel ect or s, which can be configured individually if desired:

<uni onMoveSel ect or >
<changeMoveSel ect or >
<entitySel ect or >

</entitySel ector>
<val ueSel ect or >

</ val ueSel ect or >
</ changeMbveSel ect or >

</ uni onMoveSel ect or >

Together, this structure forms a Sel ect or tree:

125

Chapter 7. Move and neighborh...

Selector tree

A MoveSelector can be composed out of other MoveSelectors, EntitySelectors and/or ValueSelectors.

A0, A1,A2, ..., BO, B1, B2, .., CO, C1,C2, ..
AB, AC, AD, ..., BC,BD, ..., CD, ...

A0, A1, A2, ... AB, AC,AD, ...
BO, B1, B2, ... BC, BD, ...
Co, C1, C2, ... CD, ...

A B,C, D, .. 0,1, 2, .. A B CD,... ABCD,..
(entitySelector] (valueSelector] (entitySelector] [(entitySelector)

The root of this tree is a MoveSel ect or which is injected into the optimization algorithm
implementation to be (partially) iterated in every step.

7.2. General selector features

7.2.1. cachetype: Create moves ahead of time or Just In Time

A Sel ect or's cacheType determines when a selection (such as a Mve, an entity, a value, ...) is
created and how long it lives.

Almost every Sel ect or supports setting a cacheType:

<changeMoveSel ect or >
<cacheType>PHASE</ cacheType>

</ changeMbveSel ect or >

The following cacheTypes are supported:

126

SelectionOrder: original, sorted, random, shuffled or probabilistic

e JUST_I N_TI ME (default): Not cached. Construct each selection (Move, ...) just before it's used.
This scales up well in memory footprint.

« STEP: Cached. Create each selection (Move, ...) at the beginning of a step and cache them in a
list for the remainder of the step. This scales up badly in memory footprint.

* PHASE: Cached. Create each selection (Move, ...) at the beginning of a Sol ver Phase and cache
them in a list for the remainder of the Sol ver Phase. Some selections cannot be phase cached
because the list changes every step. This scales up badly in memory footprint, but has a slight
performance gain.

* SCOLVER: Cached. Create each selection (Move, ...) at the beginning of a Sol ver and cache them
in a list for the remainder of the Sol ver . Some selections cannot be solver cached because the
list changes every step. This scales up badly in memory footprint, but has a slight performance
gain.

A cacheType can be set on composite selectors too:
<uni onMoveSel ect or >
<cacheType>PHASE</ cacheType>
<changeMoveSel ect or/ >

<swapMbveSel ect or/ >

</ uni onMoveSel ect or >

Nested selectors of a cached selector cannot be configured to be cached themselves, unless it's
a higher cacheType. For example: a STEP cached uni onMoveSel ect or can hold a PHASE cached
changeMoveSel ect or, but not a STEP cached changeMbveSel ect or .

7.2.2. SelectionOrder: original, sorted, random, shuffled or
probabilistic

A Sel ector's sel ecti onOrder determines the order in which the selections (such as Mves,
entities, values, ...) are iterated. An optimization algorithm will usually only iterate through a subset
of its MoveSel ect or's selections, starting from the start, so the sel ecti onOrder is critical to
decide which Moves are actually evaluated.

Almost every Sel ect or supports setting a sel ecti onQOr der :

<changeMoveSel ect or >
<sel ecti onOr der >RANDOWK/ sel ecti onOr der >

</ changeMoveSel ect or >

127

Chapter 7. Move and neighborh...

The following sel ecti onOr der s are supported:

e ORI G NAL: Select the selections (Moves, entities, values, ...) in default order. Each selection will
be selected only once.

« For example: A0, Al, A2, A3, ..., BO, B1, B2, B3, ..., CO, C1, C2, C3, ...

* SORTED: Select the selections (Moves, entities, values, ...) in sorted order. Each selection will
be selected only once. Requires cacheType >= STEP. Mostly used on an enti t ySel ect or or
val ueSel ect or for construction heuristics. See sorted selection.

» For example: A0, BO, CO, ..., A2, B2, C2, ..., A1, B1, C1, ...

* RANDOM (default): Select the selections (Moves, entities, values, ...) in non-shuffled random
order. A selection might be selected multiple times. This scales up well in performance because
it does not require caching.

» For example: C2, A3, B1, C2, A0, CO, ...

« SHUFFLED: Select the selections (Moves, entities, values, ...) in shuffled random order. Each
selection will be selected only once. Requires cacheType >= STEP. This scales up badly
in performance, not just because it requires caching, but also because a random number is
generated for each element, even if it's not selected (which is the grand majority when scaling

up).
» For example: C2, A3, B1, A0, CO, ...

« PROBABILISTIC: Select the selections (Moves, entities, values, ...) in random order, based
on the selection probability of each element. A selection with a higher probability has a
higher chance to be selected than elements with a lower probability. A selection might be
selected multiple times. Requires cacheType >= STEP. Mostly used on anentitySel ect or or
val ueSel ect or . See probabilistic selection.

» For example: B1, B1, Al, B2, B1, C2, B1, B1, ...

A sel ecti onOrder can be set on composite selectors too.

@ Note

When a Sel ector is cached, all of its nested Sel ect ors will naturally default
to sel ecti onOrder ORI G NAL. Avoid overwriting the sel ecti onOr der of those
nested Sel ect or S.

128

Recommended combinations of CacheType and SelectionOrder

7.2.3. Recommended combinations of cacheType and sel ecti onor der

7.2.3.1. Just in time random selection (default)

This combination is great for big use cases (10 000 entities or more), as it scales up well in memory
footprint and performance. Other combinations are often not even viable on such sizes. It works for
smaller use cases too, so it's a good way to start out. It's the default, so this explicit configuration
of cacheType and sel ecti onOr der is actually obsolete:

<uni onMoveSel ect or >
<cacheType>JUST I N_TI ME</ cacheType>
<sel ecti onO der >RANDOVWK/ sel ecti onOr der >

<changeMoveSel ect or/ >
<swapMoveSel ect or/ >
</ uni onMoveSel ect or >

Here's how it works. When | t er at or <Mbve>. next () is called, a child MoveSel ect or is randomly
selected (1), which creates a random Mve is created (2, 3, 4) and is then returned (5):

Just in time random selection

Create a random Move just before it's needed and no sooner

Move C2 is never cached

C2

Select ChangeMove C2 .
Randomly select child
changeMoveSelector

C2

Create new ChangeMove C2
just in time and select it

(_changeMoveSelector] | swapMoveSelector
C 2
cocontyc. @ Saecrvave2

(entitySelector] (valueSelector| (entitySelector] [entitySelector)

129

Chapter 7. Move and neighborh...

Notice that it never creates a list of Moves and it generates random numbers only for Moves that
are actually selected.

7.2.3.2. Cached shuffled selection

This combination often wins for small and medium use cases (5000 entities or less). Beyond that
size, it scales up badly in memory footprint and performance.

<uni onMoveSel ect or >
<cacheType>PHASE</ cacheType>
<sel ecti onOr der >SHUFFLED</ sel ecti onOr der >

<changeMoveSel ect or/ >
<swapMoveSel ect or/ >
</ uni onMoveSel ect or >

Here's how it works: At the start of the phase (or step depending on the cacheType), all moves are
created (1) and cached (2). When MoveSel ector.iterator() is called, the moves are shuffled
(3). When | t er at or <Move>. next () is called, the next element in the shuffled list is returned (4):

Cached shuffled selection

Cache all possible moves. Shuffle them when a Move Iterator is created

rom e e @ C2
C2, BC, C0, A2, B2, AB, C1, BD,

CD, A1, AC, BO, B1, AD, A0, ... @ Shuffle altmaves

@ Cache all moves

Move C2 is only selected once

A0, A1, A2, ... AB, AC, AD, ...
BO, B1, B2, ... BC, BD, ...
B O ity CRi

A, B, C, D, .. A, B, C,D, .. A, B, C, D, ..
(entitySelector]| (valueSelector| (entitySelector| [entitySelector)

130

Filtered selection

Notice that each Move will only be selected once, even though they are selected in random order.

Use cacheType PHASE if none of the (possibly nested) Selectors require STEP. Otherwise, do
something like this:

<uni onMoveSel ect or >
<cacheType>STEP</ cacheType>
<sel ecti onOr der >SHUFFLED</ sel ecti onOr der >

<changeMoveSel ect or >
<cacheType>PHASE</ cacheType>
</ changeMoveSel ect or >
<swapMbveSel ect or/ >
<cacheType>PHASE</ cacheType>
</ swapMoveSel ect or >
<pi | | ar SwapMoveSel ect or/ ><! -- Does not support cacheType PHASE -->
</ uni onMoveSel ect or >

7.2.3.3. Cached random selection

This combination is often a worthy competitor for medium use cases, especially with fast stepping
optimization algorithms (such as simulated annealing). Unlike cached shuffled selection, it doesn't
waste time shuffling the move list at the beginning of every step.

<uni onMoveSel ect or >
<cacheType>PHASE</ cacheType>
<sel ecti onOr der >RANDOWVK/ sel ecti onOr der >

<changeMoveSel ect or/ >
<swapMoveSel ect or/ >
</ uni onMoveSel ect or >

7.2.4. Filtered selection

There are certain moves that you don't want to select, because:

e The move is pointless and would only waste CPU time. For example, swapping 2 lectures of
the same course will result in the same score and the same schedule because all lectures of 1
course are interchangeable (same teacher, same students, same topic).

» Doing the move would break a build-in hard constraint, so the solution would be infeasible but
the score function doesn't check build-in hard constraints (for performance gain). For example,
don't change a gym lecture to a room which is not a gym room.

131

Chapter 7. Move and neighborh...

* Note that any build-in hard constraint must usually be filtered on every move type. For
example, don't swap the room of a gym lecture with another lecture if the other lecture's
original room isn't a gym room.

Filtered selection can happen on any Selector in the selector tree, including any MoveSel ect or,
EntitySel ect or or Val ueSel ect or. It works with any kind of cacheType and sel ecti onOr der .

Filtered selection

The output of any Selector can be filtered with one or mare SelectionFilters

A0, A1, A2, ..., CO, C1,C2, ..
AB, AD, ..., BC, ..., CD, ...

AB, AC, AD, ...

BC, BD, ...
A0, A1, A2, ... CD, ...

C0,C1,C2, ...

swaiMoveSelectionFilter

AR CE,..
[entitySaladionFiIter] 0,1,2, .. A B,C,D,.. A B, C, D, ..

(entitySelector| (valueSelector] (entitySelector] [entitySelector)

Filtering uses the interface Sel ectionFil ter:

public interface Sel ectionFilter<T> {

bool ean accept (ScoreDirector scoreDirector, T selection);

Implement the method accept to returnf al se on a discarded sel ect i on. Unaccepted moves will
not be selected and will therefore never have their method doMove called.

132

Sorted selection

public class DifferentCourseSwapMveFilter inplenments Sel ectionFilter<SwapMve> {

publi ¢ bool ean accept (ScorebDirector scorebirector, SwapMove nove) {
Lecture leftLecture = (Lecture) nove.getlLeftEntity();
Lecture rightlLecture = (Lecture) move.getR ghtEntity();
return !leftLecture. get Course().equal s(rightlLecture. getCourse());

Apply the filter on the lowest level possible. In most cases, you 'll need to know both the entity
and the value involved and you'll have to apply afil ter C ass on the noveSel ect or:

<swapMbveSel ect or >
.exanpl es. curri cul untour se. sol ver. nove. Di f f er ent Cour seSwapMveFi | t er </

filterC ass>
</ swapMoveSel ect or >

But if possible, apply it on a lower levels, such as a filterC ass on the entitySel ector or
val ueSel ect or:

<changeMoveSel ect or >
<entitySel ector>
<filterClass>. ..EntityFilter</filterC ass>
</entitySel ector>
</ changeMoveSel ect or >

You can configure multiple fi | t er d ass elements on a single selector.

7.2.5. Sorted selection

Sorted selection can happen on any Selector in the selector tree, including any MoveSel ect or,
EntitySel ect or orVal ueSel ect or . It does not work with cacheType JUST_I N TIMEandit only
wor ks with sel ecti onOrder SORTED.

It's mostly used in construction heuristics.

7.2.5.1. Sorted selection by conparat or

The easiest way to sort a Sel ect or is with a plain old Conpar at or :

public class O oudProcessDifficultyConparator inplenents Conparator<C oudProcess> {

133

Chapter 7. Move and neighborh...

public int conpare(C oudProcess a, d oudProcess b) {
return new ConpareToBui | der ()
. append(a. get Requi redMul ti plicand(), b.getRequiredMultiplicand())
.append(a.getld(), b.getld())
.toConmparison();

You 'll also need to configure it (unless it's annotated applied for this optimization algorithm):

<entitySel ector>
<cacheType>PHASE</ cacheType>
<sel ecti onOr der >SORTED</ sel ecti onOr der >
<sorter Conparat or Cl ass>. .. C oudProcessDi fficul t yConpar at or </
sort er Conpar at or Cl ass>
<sorter O der >DESCENDI NG</ sort er O der >
</entitySel ector>

7.2.5.2. Sorted selection by sel ectionSort er Wi ght Fact ory
If you need the entire Sol uti on to sort a Sel ect or, use a Sel ecti onSort er Wi ght Fact ory
instead:

public interface Sel ectionSorterWi ght Fact ory<Sol extends Solution, T> {

Conpar abl e createSorter Wi ght(Sol solution, T selection);

public class QueenDifficultyWightFactory inplenments Sel ecti onSorter Wi ght Fact ory<NQueens, Quee
publ i c Conpar abl e creat eSorter Wi ght (NQueens nQueens, Queen queen) {
i nt di stanceFromM ddl e = cal cul at eDi st anceFromM ddl e(nQueens. get N(), queen. get Col umml nc
return new QueenDi fficul t yWei ght (queen, di stanceFronM ddl e);
I/

public static class QueenDifficultyWight inplenments Conparabl e<QueenDi fficultyWight> {

private final Queen queen;
private final int distanceFronM ddl e;

134

Sorted selection

public QueenDi fficultyWight(Qeen queen, int distanceFronM ddle) {
thi s. queen = queen;
thi s. di stanceFronM ddl e = di st anceFr oniM ddl e;

public int conpareTo(QueenDi fficultyWight other) ({
return new ConpareToBui |l der ()
/1 The nore difficult queens have a | ower di stance to the m ddle
. append(ot her. di stanceFronM ddl e, di stanceFronM ddle) //
Decr easi ng
/1 Tie breaker

. append(queen. get Col uml ndex(), other. queen. get Col utml ndex())

.toComparison();

You 'll also need to configure it (unless it's annotated and automatically applied for this optimization
algorithm):

<entitySel ector>
<cacheType>PHASE</ cacheType>
<sel ecti onOr der >SORTED</ sel ecti onOr der >
<sorter\Wight Fact oryCl ass>. .. QueenDi ffi cul t yWei ght Fact ory</
sort er Wi ght Fact oryd ass>
<sorter O der >DESCENDI NG</ sort er O der >
</entitySel ector>

7.2.5.3. Sorted selection by sel ectionSorter

Alternatively, you can also use the interface Sel ecti onSorter directly:

public interface Sel ectionSorter<T> {

voi d sort(ScoreDirector scoreDirector, List<T> selectionList);

<entitySel ector>
<cacheType>PHASE</ cacheType>
<sel ecti onOr der >SORTED</ sel ecti onOr der >

135

Chapter 7. Move and neighborh...

<sorterCl ass>... WEntitySorter</sorterC ass>
</entitySel ector>

7.2.6. Probabilistic selection

Probabilistic selection can happen on any Selector in the selector tree, including any
MoveSel ector, EntitySelector or ValueSelector. It does not work with cacheType
JUST_ IN.TIMEandit only works with sel ectionO der PROBABI LI STI C.

Each selection has a pr obabi | i t ywi ght , which determines the chance that's that selection will
be selected:

public interface Sel ectionProbabilityWi ghtFactory<T> {

doubl e creat eProbabilityWight(ScoreDirector scorebDirector, T selection);

<entitySel ector>
<cacheType>PHASE</ cacheType>
<sel ecti onOr der >PROBABI LI STI C</ sel ecti onOr der >
<probabi | i tyWei ght Fact oryCl ass>. .. MWEntityProbabilityW.ightFactoryd ass</
pr obabi | i t yWei ght Fact oryd ass>
</entitySel ector>

For example, if there are 3 entities: process A (probabilityWeight 2.0), process B
(probabilityWeight 0.5) and process C (probabilityWeight 0.5), then process A will be selected 4
times more than B and C.

7.3. Generic MoveSelectors

7.3.1. changeMoveSel ect or

For 1 planning variable, the ChangeMve selects 1 planning entity and 1 planning value and assigns
the entity's variable to that value.

136

changeMoveSelector

ChangeMove

Change 1 value of 1 entity

N queens Cloud balance

A B C D
o |1iilr @ [ﬁ[2 I 3 }x
AN \ y
2 |
5 z
A B C D
W |, [L3 Jx

Ww N B O

Simplest configuration:
<changeMoveSel ect or/ >
Advanced configuration:

<changeMoveSel ect or >
<l-- Normal selector properties -->
<entitySel ector>
<entityC ass>...Lecture</entityC ass>

</entitySel ector>
<val ueSel ect or >
<vari abl eNane>r oonx/ vari abl eNane>

</val ueSel ect or >
</ changeMbveSel ect or >

Vehicle routing
(chained variable)

137

Chapter 7. Move and neighborh...

A ChangeMove is the finest grained move.

Important

Almost every noveSel ect or configuration injected into a metaheuristic algorithm
should include a changeMoveSelector or a custom implementation. This
guarantees that every possible Sol uti on can be reached through applying a
number of moves in sequence (not taking score traps into account). Of course,
normally it is unioned with other, more course grained moves.

7.3.2. swapMoveSelector

The SwapMve selects 2 different planning entities and swaps the planning values of all their
planning variables.

Although a SwapMove on a single variable is essentially just 2 ChangeMoves, it's often the winning
step where the first of the 2 ChangeMves would not be the winning step because it leave the
solution in a state with broken hard constraints. For example: swapping the room of 2 lectures
doesn't bring the solution in a intermediate state where both lectures are in the same room which
breaks a hard constraint.

Simplest configuration:
<swapMbveSel ect or/ >
Advanced configuration:

<swapMbveSel ect or >
<I-- Normal selector properties -->

<entitySel ector>
<entityC ass>...Lecture</entityC ass>

</entitySel ector>
<secondar yEntitySel ect or >

</ secondar yEntitySel ect or >

<vari abl eNanel ncl ude>r oonx/ vari abl eNanel ncl ude>

<vari abl eNanel ncl ude>. .. </ vari abl eNanel ncl ude>
</ swapMoveSel ect or >

The secondar yEntitySel ect or is rarely needed: if it is not specified, entities from the same
entitySel ector are swapped.

138

pillarSwapMoveSelector

If one or more vari abl eNamel ncl ude properties are specified, not all planning variables will
be swapped, but only those specified. For example for course scheduling, specifying only
vari abl eNamel ncl ude room will make it only swap room, not period.

7.3.3. pillarSwapMoveSelector

A pillar is a set of planning entities which have the same planning value(s) for each of their planning
variables. The pi | | ar SwapMove selects 2 different entity pillars and swaps the values of all their
variables for all their entities.

Simplest configuration:
<pi | | ar SwapMoveSel ect or / >
Advanced configuration:

<pi | | ar SwapMoveSel ect or >
<l-- Nornmal selector properties -->
<pi | | ar Sel ect or >
<entitySel ector>
<entityC ass>...Lecture</entityC ass>

</entitySel ector>
</pillarSel ector>
<secondaryPi | | ar Sel ect or >

<entitySel ector>

</entitySel ector>
</ secondaryPi | | ar Sel ect or >
<vari abl eNanel ncl ude>r oonx/ vari abl eNanel ncl ude>

<vari abl eNanel ncl ude>. .. </ vari abl eNanel ncl ude>
</ pill ar SwapMoveSel ect or >

The secondaryPi | | ar Sel ect or is rarely needed: if it is not specified, entities from the same
pi | | ar Sel ect or are swapped.

The other properties are explained in swapMoveSelector.
7.3.4. subChainChangeMoveSelector
TODO

7.3.5. subChainSwapMoveSelector

TODO

139

Chapter 7. Move and neighborh...

7.4. Combining multiple mvesel ector S

7.4.1. unionMoveSelector

A uni onMbveSel ect or selects a Move by selecting 1 of its child MoveSel ect or s to supply the
next Move.

Simplest configuration:

<uni onMoveSel ect or >
<...MoveSel ector/>
<...MoveSel ector/>
<...MoveSel ector/>

</ uni onMoveSel ect or >
Advanced configuration:

<uni onMoveSel ect or >
<l-- Nornmal selector properties -->
<sel ect or Probabi | i t yWei ght Fact oryC ass>. .. Probabi | i t yWei ght Fact ory</
sel ect or Probabi | i t yWei ght Fact oryCl ass>
<changeMoveSel ect or >
<fi xedPr obabi | i t yWei ght >. .. </fi xedProbabilityWight>

</ changeMbveSel ect or >
<swapMbveSel ect or >
<fi xedPr obabi | i t yWei ght>. .. </fi xedProbabilityWight>

</ swapMoveSel ect or >
<...MoveSel ect or >
<fi xedPr obabi | i t yWei ght>. .. </fi xedProbabilityWight>

</...MveSel ect or >

</ uni onMoveSel ect or >
The sel ect or Probabi | i t yWei ght Fact ory determines in sel ecti onOr der RANDOMhow often a
child MoveSelector is selected to supply the next Move. By default, each child MoveSel ect or has
the same chance of being selected. Change the fixedProbabilityWeight of such a child to select

it more often. For example, the uni onMoveSel ect or can return a Swaphove twice as often as a
ChangeMve:

<uni onMoveSel ect or >

140

cartesianProductMoveSelector

<changeMoveSel ect or >
<fi xedPr obabi | i t yWei ght >1. 0</fi xedPr obabi | i t yWei ght >

</ changeMbveSel ect or >
<swapMbveSel ect or >
<fi xedPr obabi | i t yWei ght >2. 0</fi xedPr obabi | i t yWei ght >

</ swapMoveSel ect or >
</ uni onMoveSel ect or >

The number of possible ChangeMves is very different from the number of possible SwapMves
and furthermore it's problem dependent. To give each individual Move the same selection chance
(as opposed to each MoveSel ect or), use the Fai r Sel ect or Probabi | i t yWei ght Factory:

<uni onMoveSel ect or >

Sel ect or Probabi | i t yWei ght Fact ory</
sel ect or Probabi | i t yWei ght Fact oryCl ass>
<changeMoveSel ect or/ >
<swapMbveSel ect or/ >
</ uni onMoveSel ect or >

7.4.2. cartesianProductMoveSelector

Acartesi anProduct MoveSel ect or selects a new Conposi t eMove. It builds that Conposi t eMove
by selecting 1 Move per child MoveSel ect or and adding it to the Conposi ti veMove.

Simplest configuration:

<cart esi anPr oduct MbveSel ect or >
<...MoveSel ector/>
<...MoveSel ector/>
<...MoveSel ector/>

</ cartesi anPr oduct MoveSel ect or >

Advanced configuration:

<cart esi anProduct MoveSel ect or >
<I-- Normal selector properties -->
<changeMoveSel ect or >

</ changeMbveSel ect or >
<swapMbveSel ect or >

141

Chapter 7. Move and neighborh...

</ swapMoveSel ect or >
<...MoveSel ect or >

</...MoveSel ect or>

</ cart esi anProduct MoveSel ect or >

7.5. EntitySelector

Simplest configuration:
<entitySel ector/>
Advanced configuration:

<entitySel ector>
<l-- Nornmal selector properties -->

<entityC ass>org. drool s. pl anner. exanpl es. curri cul untour se. donmai n. Lect ur e</
entityd ass>
</entitySel ector>

The entityd ass property is only required if it cannot be deduced automatically because there
are multiple entity classes.

7.6. ValueSelector

Simplest configuration:
<val ueSel ector/ >
Advanced configuration:

<val ueSel ect or >
<I-- Normal selector properties -->
<vari abl eNanme>r oonx/ vari abl eNanme>
</ val ueSel ect or >

142

Custom moves

The vari abl eNane property is only required if it cannot be deduced automatically because there
are multiple variables (for the related entity class).

7.7. Custom moves

7.7.1. Which move types might be missing in my
implementation?

To determine which move types might be missing in your implementation, run a benchmarker for
a short amount of time and configure it to write the best solutions to disk. Take a look at such a
best solution: it will likely be a local optima. Try to figure out if there's a move that could get out
of that local optima faster.

If you find one, implement that course-grained move, mix it with the existing moves and benchmark
it against the previous configurations to see if you want to keep it.

7.7.2. Custom moves introduction

Instead of reusing the generic Moves (such as ChangeMove) you can also implement your own
Moves. Generic and custom MoveSel ect or s can be combined as wanted.

A custom Move can be tailored to work to the advantage of your constraints. For example, in
examination scheduling, changing the period of an exam A also changes te period of all the exams
that need to coincide with exam A.

A custom Move is also slightly faster than a generic Move. However, it's far more work to implement
and much harder to avoid bugs. After implementing a custom Myve, make sure to turn on
envi ronnment Mode FULL_ASSERT to check for score corruptions.

7.7.3. The interface wve

Your custom moves must implement the Move interface:

public interface Mve {
bool ean i sMoveDoabl e(ScorebDi rector scorebDirector);

Move creat eUndoMove(ScoreDirector scoreDirector);
voi d doMove(ScoreDirector scoreDirector);

Col | ecti on<? extends Onbject> getPl anni ngEntities();
Col | ecti on<? extends Obj ect> get Pl anni ngVal ues();

Let's take a look at the Move implementation for 4 queens which moves a queen to a different row:

143

Chapter 7. Move and neighborh...

public class RowChangeMove inpl enents Myve {

private Queen queen;
private Row t oRow,

publ i ¢ RowChangeMove(Queen queen, Row toRow) {
thi s. queen = queen;
this.toRow = t oRow;

/1l ... see bel ow

An instance of RowChangeMove moves a queen from its current row to a different row.

Planner calls the doMove(Scor eDi r ect or) method to do a move. The Move implementation must
notify the Scor eDi r ect or of any changes it make to planning entity's variables:

public void doMove(ScoreDirector scorebDirector) {
scoreDi rect or. bef oreVari abl eChanged(queen, "row'); // before changes
are made to the queen.row
gueen. set Row(t oRow) ;
scoreDirector. afterVari abl eChanged(queen, "row'); // after changes are
made to the queen.row

}

You need to «call the methods scoreDirector. beforeVariabl eChanged(Object,

String) and scoreDirector. afterVariabl eChanged(Qbj ect, String) directly
before and after modifying the entity. Alternatively, you can also
call the methods scoreDirector. beforeAl | Vari abl esChanged(Qbj ect) and

scoreDirector. after Al'l Vari abl esChanged(Obj ect) .

. Note
[1
You can alter multiple entities in a single move and effectively create a big move
(also known as a coarse-grained move).

Warning

A Move can only change/add/remove planning entities, it must not change any of
the problem facts.

144

The interface Move

Planner automatically filters out non doable moves by calling the i sDoabl e(Scor eDi r ect or)
method on a move. A non doable move is:

« A move that changes nothing on the current solution. For example, moving queen BO to row 0
is not doable, because it is already there.

* A move that is impossible to do on the current solution. For example, moving queen BO to row
10 is not doable because it would move it outside the board limits.

In the n queens example, a move which moves the queen from its current row to the same row
isn't doable:

publi ¢ bool ean i sMbveDoabl e(ScoreDi rector scoreDirector) ({
return !QojectUtils. equal s(queen. getRow(), toRow);

Because we won't generate a move which can move a queen outside the board limits, we don't
need to check it. A move that is currently not doable could become doable on the working
Sol ut i on of a later step.

Each move has an undo move: a move (normally of the same type) which does the exact opposite.
In the example above the undo move of CO to C2 would be the move C2 to CO. An undo move is
created from a Move, before the Move has been done on the current solution.

public Move createUndoMove(ScoreDirector scoreDirector) {
return new RowChangeMove(queen, queen. get Row());

Notice that if CO would have already been moved to C2, the undo move would create the move
C2 to C2, instead of the move C2 to CO.

A solver phase might do and undo the same Move more than once. In fact, many solver phases
will iteratively do an undo a number of moves to evaluate them, before selecting one of those and
doing that move again (without undoing it this time).

A Move mustimplement the get Pl anni ngEnti ti es() and get Pl anni ngVal ues() methods. They
are used by entity tabu and value tabu respectively. When they are called, the Move has already
been done.

public List<? extends Object> getPlanningEntities() {
return Col | ections. singl etonLi st (queen);

public Coll ection<? extends Object> getPl anni ngVal ues() {

145

Chapter 7. Move and neighborh...

return Col |l ections. singletonList(toRow);

If your Move changes multiple planning entities, return all of them in get Pl anni ngEnti ti es() and
return all their values (to which they are changing) in get Pl anni ngVal ues() .

public Collection<? extends Object> getPlanni ngEntities() {
return Arrays. asList(leftd oudProcess, rightC oudProcess);

public Collection<? extends Object> getPl anni ngVal ues() {
return Arrays. asList(leftC oudProcess. get Conputer(), rightd oudProcess. getConputer());

A Move must implement the equal s() and hashCode() methods. 2 moves which make the same
change on a solution, should be equal.

public bool ean equal s(Obj ect 0) {

if (this == 0) {
return true;

} else if (o instanceof RowChangeMove) {
RowChangeMove ot her = (RowChangeMove) o;
return new Equal sBui |l der ()

. append(queen, other. queen)
. append(t oRow, other.toRow)
. i sEqual s();

} else {

return false;

public int hashCode() {
return new HashCodeBui | der ()
. append(queen)
. append(t oRow)
.t oHashCode();

Notice that it checks if the other move is an instance of the same move type. This i nst anceof
check is important because a move will be compared to a move with another move type if you're
using more then 1 move type.

It's also recommended to implement the t oSt ri ng() method as it allows you to read Planner's
logging more easily:

146

MoveListFactory: the easy way to generate custom moves

public String toString() {
return queen + " =>" + toRow,

Now that we can implement a single custom Mve, let's take a look at generating such custom
moves.

7.7.4. wvelistractory: the easy way to generate custom moves

The easiest way to generate custom moves is by implementing the interface Moveli st Fact ory:

public interface MovelListFactory {

Li st <Move> creat eMovelLi st (Sol uti on sol ution);

For example:

public class RowChangeMveFactory inplenments MpvelListFactory {

public List<Move> creat eMvelList(Solution solution) {
NQueens nQueens = (NQueens) sol ution;
Li st <Move> noveli st = new ArraylLi st <Move>();
for (Queen queen : nQueens. get QueenList()) {
for (Row toRow : nQueens. get RowList()) {
noveli st . add(new RowChangeMove(queen, toRow));

}

return noveLi st;

Simple configuration (which can be nested in a uni onMoveSel ector just like any other
MoveSel ect or):

<noveli st Fact ory>
ol s. pl anner . exanpl es. nqueens. sol ver. nove. f act ory. RowChangeMveFact or y</

noveli st Fact oryC ass>
</ moveli st Fact ory>

147

Chapter 7. Move and neighborh...

Advanced configuration:

<noveli st Fact ory>
<l-- Nornal noveSel ector properties -->
ol s. pl anner . exanpl es. nqueens. sol ver. nove. f act ory. RowChangeMveFact or y</

noveli st Fact oryCl ass>
</ noveli st Fact ory>

Because the Moveli st Fact ory generates all moves at once in a List<Move>, it does not support
cacheType JUST_I N_TI ME. Therefore, novelLi st Fact ory uses cacheType STEP by default and it
scales badly in memory footprint.

7.7.5. mvelteratorFactory: generate custom moves just in time

Use this advanced form to generate custom moves by implementing the interface
Movel t er at or Fact ory:
public interface MywvelteratorFactory {

| ong get Si ze(ScoreDirector scoreDirector);

It erat or<Move> createOrigi nal Movel terator(ScoreDirector scoreDirector);

|t erat or<Move> creat eRandomiVbvel t er at or (ScorebDi rector scorebDirector, Random wor ki ngRandom) ;

The method get Si ze() must give an estimation of the size. It doesn't need to be correct.
The method creat eOri gi nal Movel terator is called if the sel ecti onOrder is ORI G NAL or
if it is cached. The method cr eat eRandomivbvel t er at or is called for sel ecti onOr der RANDOM
combined with cacheType JUST_I N_TI ME.

Important

Don't create a collection (list, array, map, set) of Moves when creating
the Iterator<Mve>: the whole purpose of MvelteratorFactory over
MovelLi st Fact ory is giving you the ability to create a Move just in time in the
It erator's method next ().

Simple configuration (which can be nested in a uni onMoveSel ector just like any other
MoveSel ect or):

148

Move generation through DRL

<novel t er at or Fact ory>
<movel t erat or Fact oryCd ass>. .. </ novel t er at or Fact oryCl ass>
</ movel t er at or Fact ory>

Advanced configuration:

<novel t er at or Fact ory>
<I-- Nornal noveSel ector properties -->
<nmovel t erat or Fact oryd ass>. .. </ novel t er at or Fact or yCl ass>
</ novel t er at or Fact ory>

7.7.6. Move generation through DRL

Not yet supported.

149

150

Chapter 8.

Chapter 8. Construction heuristics

8.1. Overview

A construction heuristic builds a pretty good initial solution in a finite length of time. Its solution
isn't always feasible, but it finds it fast and metaheuristics can finish the job.

Construction heuristics terminate automatically, so there's usually no need to configure a
Ter mi nat i on on the construction heuristic phase specifically.

8.2. First Fit

8.2.1. Algorithm description

The First Fit algorithm cycles through all the planning entities (in default order), initializing 1
planning entity at a time. It assigns the planning entity to the best available planning value, taking
the already initialized planning entities into account. It terminates when all planning entities have
been initialized. It never changes a planning entity after it has been assigned.

A B C D
1 entity o Construction heuristic: n: <= n"n iterations
per step 1 . . 4:4'4=16
ordered > FlrSt flt 8:8"8 = 64
arbitrary 3 N queens (n = 4) 64: 64*64 = 4096
0
) Step 0 0
“momlC
by [
i [
0 —_—
ﬁlepﬂ —
Eg) il | 0y iy b
%
m_mRT
i
2 Jop—tc—
Stepg T
s I g 7 A ity g
i
B julig iy g julig
i iy
8
Step3 4
] el 1|
¥
g g
|

The end

9 10

infeasible

11

12

151

Chapter 8. Construction heuri...

Notice that it starts with putting Queen A into row 0 (and never moving it later), which makes it
impossible to reach the optimal solution. Suffixing this construction heuristic with metaheurstics
can remedy that.

8.2.2. Configuration

Configure this Sol ver Phase:

<constructionHeuristic>
<constructionHeuri sti cType>Fl RST_FI T</ constructi onHeuri sti cType>
<!-- Speedup that can be applied to npbst, but not all use cases: -->
<l--

constructi onHeuri sticPi ckEarlyType> -->
</constructionHeuristic>

8.3. First Fit Decreasing

8.3.1. Algorithm description

Like Fi rst Fit, but assigns the more difficult planning entities first, because they are less likely
to fit in the leftovers. So it sorts the planning entities on decreasing difficulty.

Requires the model to support planning entity difficulty comparison.

152

Configuration

1 entity Construction heuristic: n: <= n*n iterations
per step . . 4:4*4 =16
ordered in First fit decreasing 8:8'8 = 64
decreasing N queens (n = 4) 64: 6464 = 4096
difficulty

Middle queens are

more difficult to place,

so we place them first

HEEONENENC NN

1
—_

The end

| R
' N

E| | |
T B
B
WL
L8
E
L |

i
g
infeasible

i

8.3.2. Configuration

Configure this Sol ver Phase:

<constructionHeuristic>

<constructionHeuristi cType>FI RST_FI T_DECREASI NG</ constructi onHeuri sti cType>
<l -- Speedup that can be applied to nost, but not all use cases: -->

constructionHeuristicPi ckEarl yType>
</ constructionHeuristic>

coS

SIEE

153

Chapter 8. Construction heuri...

8.4. Best Fit

8.4.1. Algorithm description

Like First Fit, but uses the weaker planning values first, because the strong planning values
are more likely to be able to accommodate later planning entities. So it sorts the planning values
on increasing strength.

Requires the model to support planning value strength comparison.

8.4.2. Configuration

Configure this Sol ver Phase:

<constructionHeuristic>
<constructionHeuri sticType>BEST_FI T</ constructi onHeuri sti cType>
<l -- Speedup that can be applied to nost, but not all use cases: -->
<I--

constructionHeuristicPi ckEarl yType> -->
</ constructionHeuristic>

8.5. Best Fit Decreasing

8.5.1. Algorithm description

Combines First Fit Decreasi ngandBest Fit. So itsorts the planning entities on decreasing
difficulty and the planning values on increasing strength.

Requires the model to support planning entity difficulty comparison and planning value strength
comparison.

Configuration

8.5.2. Configuration

Configure this Sol ver Phase:

<constructi onHeuristic>
<constructionHeuri sticType>BEST _FI T_DECREASI NG</ constructi onHeuri sti cType>
<I-- Speedup that can be applied to nost, but not all use cases: -->
SIS

constructionHeuri sticPi ckEarl yType> -->
</ constructionHeuristic>

8.6. Cheapest insertion

8.6.1. Algorithm description

TODO
8.6.2. Configuration
TODO Not implemented yet.

8.7. Regret insertion

8.7.1. Algorithm description
TODO
8.7.2. Configuration

TODO Not implemented yet.

155

156

Chapter 9.

Chapter 9. Local search

9.1. Overview

Local search starts from an initial solution and evolves that single solution into a mostly better and
better solution. It uses a single search path of solutions, not a search tree. At each solution in
this path it evaluates a number of moves on the solution and applies the most suitable move to
take the step to the next solution. It does that for a high number of iterations until it's terminated
(usually because its time has run out).

Local search acts a lot like a human planner: it uses a single search path and moves facts around
to find a good feasible solution. Therefore it's pretty natural to implement.

Local search often needs to start from an initialized solution, therefore it's recommended to
configure a construction heuristic solver phase before it.

9.2. Hill climbing (simple local search)

9.2.1. Algorithm description

Hill climbing tries all selected moves and then takes the best move, which is the move which
leads to the solution with the highest score. That best move is called the step move. From that
new solution, it again tries all selected moves and takes the best move and continues like that
iteratively. If multiple selected moves tie for the best move, one of them is randomly chosen as
the best move.

157

Chapter 9. Local search

A B C D
Selected N ey Loca| seaq rch: n: <= s * n"2 iterations
moves 1] . .
for each 2 Hill Cllmblng
step 3 N queens (n = 4)
Step 0 -
tep — -
j L g Tl [88
B B |
ol
] 2 ik Rz g
:7§ -3 = 6 ,___7_ lost tie 9 12
Step 1 T~
A g O O
JE1 314 i
il ci b | ik i
2 iy 1| g P)
-‘1 lost tie 13 14 5 - -1 23 “
Step 2 =
% p iy I g My O 4 L
JEI3E! i iy
ab | @ i 0 0
. iy i o] |t
0] perfect 25 26 27 (4 28 29 36
Uses a search path, not a search tree
=> highly scalable

Notice that one a queen has moved, it can be moved again later. This is a good thing, because
in an NP-complete problem it's impossible to predict what will be the optimal final value for a
planning variable.

Hill climbing can easily get stuck in a local optima:

158

Tabu search

A B C D
Selected s o H||| C||mb|ng gets StUCk n: <= s * n"2 iterations
moves Wi |1] .
for each W 2 in local Optlma
step 3 N queens (n = 4)
Step 0 _7:?,7:??——___?____7__*———7__,__
99 | ity Ly L Ly
L i il i iy _ i
o o el o N
W |8 L Ly
___,_——__—S,T_r"-——-—-:,—__-,__‘_ij_|7c._1,_|}_@__ Y Iusllc 1
Step 1 g e T
R @ @] [@l | |8 [
B o | | | W i iy
33 Niw-w Ruw mn jnce Rure
») |1 Ly il | L il
-2 lost tie 12 16 17 18 lost tie 21 lost tie 22
Step 2
w9 E p Solution already encountered:
= | [i same as starting solution
M - => possibly stuck
L ﬁ% iy %
28
Step 3
7 [iy
JEL W |
4[4 L% it %
o i
39

Improvements upon hill climbing (such as tabu search and simulated annealing) address the
problem of being stuck in local optima.

9.3. Tabu search

9.3.1. Algorithm description

Tabu search works like hill climbing, but it maintains a tabu list to avoid getting stuck in local
optima. The tabu list holds recently used objects that are taboo to use for now. Moves that involve
an object in the tabu list, are not accepted. The tabu list objects can be anything related to the
move, such as the planning entity, planning value, move, solution, ... Here's an example with entity
tabu for 4 queens, so the queens are put in the tabu list:

159

Chapter 9. Local search

Tabu search:
entity tabu

N queens (n = 4, entityTabuSize = 2)

n: <= s * n2 iterations

A B C D
Selected g °
moves i IS
for each Tabu i 2 ieenonp2
step list | 3 h
Step 0 h
SR H
E |
M L
L
Step 1
R J6] (2]
SEIEINEN
3 b
)
Step 2
&2 [°|-
bl o [| e |<
9 |3 ¢
)
Step 3

Fir

B [FBE
il | 5
g
o
NS
E
E

iy

* 3

See Tabu Search acceptor below.

9.4. Simulated annealing

9.4.1. Algorithm description

Simulated annealing evaluates only a few moves per step, so it steps quickly. In the classic
implementation, the first accepted move is the winning step. A move is accepted if it doesn't
decrease the score or - in case it does decrease the score - if passes a random check. The chance
that a decreasing move passes the random check decreases relative to the size of the score
decrement and the time the phase has been running (which is represented as the temperature).

160

Late acceptance

Simulated Annealing
(Time Gradiant aware)

N queens (n = 4, startingTemperature = 2)

n: <= s * m iterations

max § = eBt

A B C D
Temperature (il o
decreases @ (1
for each step g >
g E
Step 0
e8] [, i
20| any i |
1] 061] !
2| 0a7 i TR |
3| 022 ! 2
B fb:zu_u > 037 ?GJU'S.‘.:._, 0,61
Step 1 . T
| e @)] il iy , [
=0 any 7 "@ ((‘@"
T oss o oo
2| o028 T ' i
3| 045 3 N °
4| o008 A=-1 A=2 A=+2
@-vss >o054 @=031 >020 @=na| =any
Step 2 B —— B __77_ -
- A [max (G X kil
=0 any ["@ "@
1| 043 iy iy
2| 018 i gy
3| 008 6 7
‘| o ?0:10_74 =043 ?0:20.15 £0.19

See Simulated Annealing acceptor below.

9.5. Late acceptance

9.5.1. Algorithm description

Step 3

A maxﬂ

=0 any

1 0.29

2| 0.08

3| 0.02

-4 | 0.01

I
i
v

A |max (G)
=0 any ‘7 [@"
1| 008 ‘@’ 1 g

2| 0.01 i b |y g

2| 000 9 10 @ 11
4| 000 A=- A=-1 A=+

2
@-o097 =001 @=011 =008 [{=na

Late acceptance also evaluates only a few moves per step. A move is accepted if it leads to score
that is at least the winning score of a fixed number of steps ago.

161

<any

Chapter 9. Local search

A B C D
Late o
acceptance Wy |1
list g >
i LE
0
Step 0 D
~ L1
< i
0 T
: i
S ank 1
Step 1 D
L [
&
Hy el
18
= ank 2
Step 2 D B ——
Y 1 w
& |
B [T "
¢ i 5857 | gy
<_4 3 D | 4
Step 3) ——
N] Ky iy
< B ey
B &]
< 0857 | " ip|
< 2 5 <—2 G D 2 7

Late Acceptance

N queens (n = 4, lateAcceptanceSize = 3)

See Late Acceptance acceptor below.

Step 4

!

w
£z
=
o

L]
WY E WA

Step 6

L]
W WA

)

n: <= s * m iterations

9.6. About neighborhoods, moves and steps

9.6.1. Move generation tips

At each solution, local search will try all possible moves and pick the best move to change to the
next solution. It's up to you to generate those moves. Let's take a look at all the possible moves

on the starting solution of 4 queens:

It's highly recommended that you verify all solutions are connected by your move set. This
means that by combining a finite number of moves you can reach any solution from any solution.
Otherwise you're already excluding solutions at the start. Especially if you're using only big moves,
you should check it. Just because big moves outperform small moves in a short test run, it doesn't

mean that they will outperform them in a long test run.

You can mix different move types. Usually you're better off preferring small (fine-grained) moves
over big (course-grained) moves because the score delta calculation will pay off more. However,
as the traveling tournament example proves, if you can remove a hard constraint by using a certain

162

@ T
HEz il
LT
<_3 10
w) [
e e L
[l]] |
L&

13

A step

set of big moves, you can win performance and scalability. A big moves version could evaluate a
lot less unfeasible solutions, which enables it to outperform and outscale a small moves version.

9.6.2. A step

A step is the winning move. The local search solver tries every move on the current solution and

picks the best accepted move as the step:

A B C D
g R

Ww N = O

Score -6

i

Score -4 Score -4 Score -3

Figure 9.1. Decide the next step at step 0 (4 queens example)

Score -4

Because the move B0 to B3 has the highest score (- 3), it is picked as the next step. Notice that
CO0 to C3 (not shown) could also have been picked because it also has the score - 3. If multiple

moves have the same highest score, one is picked randomly, in this case BO to B3.

The step is made and from that new solution, the local search solver tries all the possible moves
again, to decide the next step after that. It continually does this in a loop, and we get something

like this:

163

Chapter 9. Local search

Step 0

Step 1

Step 2

Step 3

Score -6

Ww N B O

W

Score -4

Score -4

Score -3

Score -4

i

g

Score 0

Score -3

Figure 9.2. All steps (4 queens example)

Score -3

Score -4

Notice that the local search solver doesn't use a search tree, but a search path. The search path
is highlighted by the green arrows. At each step it tries all possible moves, but unless it's the
step, it doesn't investigate that solution further. This is one of the reasons why local search is

very scalable.

164

Getting stuck in local optima

As you can see, the local search solver solves the 4 queens problem by starting with the starting
solution and make the following steps sequentially:

1. BOto B3
2. DOto B2
3. AOto Bl

If we turn on debug logging for the category or g. dr ool s. pl anner, then those steps are shown
into the log:

INFO Solving started: time spend (0), score (-6), new best score (-6), random

seed (0).

DEBUG Step index (0), tine spend (20), score (-3), new best score (-3),
accept ed/ sel ect ed nove count (12/12) for picked step (coll@owd => row3).
DEBUG Step index (1), tine spend (31), score (-1), new best score (-1),
accept ed/ sel ected nmove count (12/12) for picked step (col0@ow0 => rowl).
DEBUG Step index (2), tine spend (40), score (0), new best score (0),

accept ed/ sel ect ed nove count (12/12) for picked step (col 3@ow0 => row2).

I NFO Phase (0) | ocal Search ended: step total (3), tinme spend (41), best score (0).
INFO Solving ended: tine spend (41), best score (0), average cal cul ate count
per second (1780).

Notice that the logging uses the t oSt ri ng() method of our Move implementation: col 1@ ow0 =>
rows.

The local search solver solves the 4 queens problem in 3 steps, by evaluating only 37
possible solutions (3 steps with 12 moves each + 1 starting solution), which is only fraction
of all 256 possible solutions. It solves 16 queens in 31 steps, by evaluating only 7441 out of
18446744073709551616 possible solutions. Note: with construction heuristics it's even a lot more
efficient.

9.6.3. Getting stuck in local optima

A hill climber always takes improving moves. This may seem like a good thing, but it's not. It
suffers from a number of problems:

« It can get stuck in a local optimum. For example if it reaches a solution X with a score -1 and
there is no improving move, it is forced to take a next step that leads to a solution Y with score
-2, after that however, it's very real that it will pick the step back to solution X with score -1. It
will then start looping between solution X and Y.

* It can start walking in its own footsteps, picking the same next step at every step.

Of course Drools Planner implements better local searches, such as tabu search and simulated
annealing which can avoid these problems. We recommend to never use a hill climber, unless
you're absolutely sure there are no local optima in your planning problem.

165

Chapter 9. Local search

9.7. Deciding the next step

The local search solver decides the next step with the aid of 3 configurable components:

* A MoveSel ect or which selects the possible moves of the current solution. See the chapter
about Move and neighborhood selection.

« An acceptor which filters out unacceptable moves. It can also weigh a move it accepts.

« A forager which gathers all accepted moves and picks the next step from them.

A B C D
g g

Score -b

Ww N = O

g

Score -4 Score -4 Score -3 Score -4

Figure 9.3. Decide the next step at step 0 (4 queens example)

In the above example the selector generated the moves shown with the blue lines, the acceptor
accepted all of them and the forager picked the move BO to B3.

If we turn on tr ace logging for the category or g. dr ool s. pl anner, then the decision making is
shown in the log:

INFO Sol ver started: tine spend (0), score (-6), new best score (-6), random

seed (0).

TRACE I gnoring not doable nove (col 0@ow0 => row0).

TRACE Move index (1), score (-4), accepted (true) for nove (col 0@ ow0
=> rowl).

TRACE Move index (2), score (-4), accepted (true) for nmove (col 0@ ow0
=> row2).

166

Acceptor

TRACE Move index (3), score (-4), accepted (true) for nove (col 0@ ow0
=> row3).

TRACE Move index (6), score (-3), accepted (true) for nmove (col 1@ ow0
=> row3).

TRACE Move index (9), score (-3), accepted (true) for nmove (col 2@ ow0
=> row3).

TRACE Move index (12), score (-4), accepted (true) for nove (col 3@ ow0
=> rows).

DEBUG Step index (0), time spend (6), score (-3), new best score (-3),

accept ed/ sel ected nove count (12/12) for picked step (coll@ow0 => row3).

Because the last solution can degrade (especially in tabu search and simulated annealing), the
Sol ver remembers the best solution it has encountered through the entire search path. Each
time the current solution is better than the last best solution, the current solution is cloned and
referenced as the new best solution.

9.7.1. Acceptor

An acceptor is used (together with a forager) to active tabu search, simulated annealing, great
deluge, ... For each move it checks whether it is accepted or not.

You can implement your own Accept or, although the build-in acceptors should suffice for most
needs. You can also combine multiple acceptors.

9.7.1.1. Tabu search acceptor

When tabu search takes steps it creates tabu's. It does not accept a move as the next step if that
move breaks tabu. Drools Planner implements several tabu types:

 Solution tabu makes recently visited solutions tabu. It does not accept a move that leads to one
of those solutions. If you can spare the memory, don't be cheap on the tabu size.

<accept or >
<sol uti onTabuSi ze>1000</ sol uti onTabuSi ze>
</ accept or >

* Move tabu makes recent steps tabu. It does not accept a move equal to one of those steps.

<accept or>
<noveTabuSi ze>7</ noveTabuSi ze>

167

Chapter 9. Local search

</ accept or >

« Undo move tabu makes the undo move of recent steps tabu.

<accept or >
<undoMoveTabuSi ze>7</ undoMoveTabuSi ze>
</ accept or >

» Planning entity tabu makes the planning entities of recent steps tabu. For example, for N queens
it makes the recently moved queens tabu.

<accept or >
<pl anni ngEnti t yTabuSi ze>7</ pl anni ngEnti t yTabuSi ze>
</ accept or >

« Planning value tabu makes the planning values of recent steps tabu. For example, for N queens
it makes the recently moved to rows tabu.

<accept or >
<pl anni ngVal ueTabuSi ze>7</ pl anni ngVal ueTabuSi ze>
</ accept or >

You can even combine tabu types:

<accept or >
<sol uti onTabuSi ze>1000</ sol uti onTabuSi ze>
<nmoveTabuSi ze>7</ noveTabuSi ze>

</ accept or >

If you pick a too small tabu size, your solver can still get stuck in a local optimum. On the other
hand, with the exception of solution tabu, if you pick a too large tabu size, your solver can get
stuck by bouncing of the walls. Use the benchmarker to fine tweak your configuration. Experiments
teach us that it is generally best to use a prime number for the move tabu, undo move tabu, entity
tabu or value tabu size.

A tabu search acceptor should be combined with a high subset selection, such as 1000.
9.7.1.2. Simulated annealing acceptor

Simulated annealing does not always pick the move with the highest score, neither does it evaluate
many moves per step. At least at first. Instead, it gives non improving moves also a chance to be

168

Acceptor

picked, depending on its score and the time gradient of the Ter mi nat i on. In the end, it gradually
turns into a hill climber, only accepting improving moves.

In many use cases, simulated annealing surpasses tabu search. By changing a few lines of
configuration, you can easily switch from tabu search to simulated annealing and back.

Start with a si nul at edAnneal i ngSt arti ngTenper at ur e set to the maximum score delta a single
move can cause. Use the Benchmar ker to tweak the value.

<accept or >
<si mul at edAnneal i ngSt arti ngTenper at ur e>2har d/ 100sof t </
si mul at edAnneal i ngSt arti ngTenper at ur e>
</ accept or >
<f or ager >
<m ni mal Accept edSel ecti on>4</ mi ni mal Accept edSel ecti on>
</ f orager >

A simulated annealing acceptor should be combined with a low subset selection. The classic
algorithm uses a i ni mal Accept edSel ect i on of 1, but usually 4 performs better.

You can even combine it with a tabu acceptor at the same time. Use a lower tabu size than in
a pure tabu search configuration.

<accept or >
<si nul at edAnneal i ngSt arti ngTenper at ur e>10. 0</
si mul at edAnneal i ngSt arti ngTenper at ur e>
<pl anni ngEnt i t yTabuSi ze>5</ pl anni ngEnti t yTabuSi ze>
</ accept or >
<f orager >
<m ni mal Accept edSel ect i on>4</ i ni mal Accept edSel ecti on>

</ f or ager >

This differs from phasing, another powerful technique, where first simulated annealing is used,
followed by tabu search.

9.7.1.3. Late acceptance acceptor

Late acceptance accepts any move that has a score which is higher than the best score of a
number of steps ago. That number of steps is the | at eAccept anceSi ze.

<accept or >
<l at eAccept anceSi ze>500</ | at eAccept anceSi ze>
</ accept or >
<f orager >
<m ni mal Accept edSel ect i on>1000</ mi ni mal Accept edSel ecti on>

169

Chapter 9. Local search

</ forager >

9.7.2. Forager

A forager gathers all accepted moves and picks the move which is the next step. Normally it picks
the accepted move with the highest score. If several accepted moves have the highest score, one
is picked randomly.

You can implement your own For ager , although the build-in forager should suffice for most needs.
9.7.2.1. Subset selection

When there are many possible moves, it becomes inefficient to evaluate all of them at every step.
To evaluate only a random subset of all the moves, use:

« An mi ni mal Accept edSel ecti on integer, which specifies how many accepted moves should
have be evaluated during each step. By default it is positive infinity, so all accepted moves are
evaluated at every step.

<f or ager >
<m ni mal Accept edSel ecti on>1000</ m ni nmal Accept edSel ecti on>
</ f orager>

Unlike the n queens problem, real world problems require the use of subset selection. Start from
an mi ni nmal Accept edSel ect i on that takes a step in less then 2 seconds. Turn on INFO logging
to see the step times. Use the Benchmar ker to tweak the value.

Important

With a low ni ni mal Accept edSel ection it is recommended to avoid using
sel ecti onOrder SHUFFLED because the shuffling generates a random number
for every element in the selector, taking up a lot of time, but only a few are actually
selected.

9.7.2.2. Pick early type

A forager can pick a move early during a step, ignoring subsequent selected moves. There are
3 pick early types:

* NEVER: A move is never picked early: all accepted moves are evaluated that the selection allows.
This is the default.

<f or ager >

170

Using a custom Termination, MoveSelector, EntitySelector, ValueSelector or Acceptor

<pi ckEar | yType>NEVER</ pi ckEar | yType>
</ f orager >

» FI RST_BEST_SCORE_| MPROVI NG Pick the first accepted move that improves the best score. If
none improve the best score, it behaves exactly like the pickEarlyType NEVER.

<f or ager >
<pi ckEar | yType>FI RST_BEST_SCORE_| MPROVI NG</ pi ckEar | yType>
</ f or ager >

e FI RST_LAST_STEP_SCORE_| MPROVI NG, Pick the first accepted move that improves the last step
score. If none improve the last step score, it behaves exactly like the pickEarlyType NEVER.

<f or ager >
<pi ckEar| yType>FI RST_LAST_STEP_SCORE_| MPROVI NG</ pi ckEar | yType>
</ f orager>

9.8. Using a custom Termination, MoveSelector,
EntitySelector, ValueSelector or Acceptor

You can plug in a custom Ter i nati on, MoveSel ect or, EntitySel ect or, Val ueSel ector or
Accept or by extending the abstract class and also the related * Conf i g class.

For example, to use a custom MoveSel ect or, extend the Abstract MoveSel ect or class, extend
the MoveSel ect or Confi g class and configure it in the solver configuration.

171

Chapter 9. Local search

If you build a better implementation that's not domain specific, consider contributing it back as a
pull request on github and we'll optimize it and take it along in future refactors.

172

Chapter 10.

Chapter 10. Evolutionary
algorithms

10.1. Overview

Evolutionary algorithms work on a population of solutions and evolve that population.

10.2. Evolutionary Strategies

This algorithm has not been implemented yet.

10.3. Genetic algorithms

This algorithm has not been implemented yet.

173

174

Chapter 11.

Chapter 11. Exact methods

11.1. Ov

erview

Exact methods will always find the global optimum and recognize it too. That being said, they don't
scale (not even beyond toy problems) and are therefore mostly useless.

11.2. Brute Force

11.2.1. Algorithm description

The Brute Force algorithm creates and evaluates every possible solution.

A B C D

w N HF ©

El (]

Brute force

N queens (n =4)

E| (]

n: <= n" iterations

4: 4% = 256
8:8%=16777216 ~ 10’
B4: 64% ~10"°

mhnhu

]
—_— lir 647|nfeas&3|e
48 infeasible solutions L solutions
™ :_:__':.'7:-_-72_'_;_'_7-_-_1___7__7___7 \’%\"3\"-\ “'.I
wEelmt 1 % wll [
B B B i
L iy
= :.'fj_:_f_‘i-i?_-_j_—_;_ - - N '*—--_._
e (e | efEe] | e [el |® * e
i il s
] i i
W i il
’ 1 ’ ’ @ I'L'-':lx;,!:w(:':\1 @ feas L‘104;

Notice that it creates a search tree that explodes as the problem size increases. Brute Force is
mostly unusable for areal-world problem due to time limitations, as proven by this scalability
graph from the benchmarker:

175

Chapter 11. Exact methods

Scalability summary (lower is better)

1h15m10s
1h15m
1hl0m50s
1h&m40s
1h2m30s
5Bm20s
54ml0s
50m
45m50s

41m40s

Time spend

37m30s
33m20s
25m10s
25m
20m50s
16m40s
12m30s
B8m20s
4ml0s

4 queens 5 queens 6 queens 7 queens 8 queens

o - n - -

10 queens

9 queens

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Problem scale

|-- Brute force (favorite)|

11.2.2. Configuration

Using the brute force algorithm is easy:

<sol ver >

<br ut eFor ce>
</ br ut eFor ce>
</ sol ver >

11.3. Depth-first search

11.3.1. Algorithm description

75 80 85 a0 95

Depth-First Search is an improvement over Brute Force, as it regularly prunes away an entire
subset of solutions which cannot have a better solution than the best solution already found at
that point. for example: at index 15, it can prune away all unvisited solutions with queen A on row

0, because none will be better than the solution of index 14 with a score of - 1.

176

100

103

Configuration

A B C D

Backtracking depth-first search n: <= n"” iterations
with pruning

N queens (n = 4)

w N H O

E| (2]
1

i
@ N
N

13 infeasible
solutions
(17 scores)

E| (<]

CINEN

i ity Ly Wi Ly i
12 13 M

-
7]
=
T
-}
o
(%]
@

Notice that it (much like Brute Force) creates a search tree that explodes as the problem size
increases. Depth-First Search is mostly unusable for areal-world NP-complete problem due
to time limitations.

Technically, this Backtracking Depth-First Search with pruning is a form of Branch And Bound,
although Branch and Bound is often more flexible in its pruning.

11.3.2. Configuration

Depth-first search is not yet implemented. Patches welcome.

177

178

Chapter 12.

Chapter 12. Benchmarking and
tweaking

12.1. Finding the best soiver configuration

Drools Planner supports several optimization algorithms, but you're probably wondering which is
the best one? Although some optimization algorithms generally perform better than others, it really
depends on your problem domain. Most solver phases have parameters which can be tweaked.
Those parameters can influence the results a lot, even though most solver phases work pretty
well out-of-the-box.

Luckily, Drools Planner includes a benchmarker, which allows you to play out different solver
phases with different settings against each other, so you can pick the best configuration for your
planning problem.

12.2. Doing a benchmark

12.2.1. Adding the extra dependency

The benchmarker is in a separate artifact called dr ool s- pl anner - benchnar k.

If you use maven, add a dependency in your pom xmi file:

<dependency>
<gr oupl d>or g. dr ool s. pl anner </ gr oupl d>
<artifactl|d>drool s-pl anner-benchmark</artifactld>
<version>...</version>

</ dependency>

This is similar for gradle, ivy and buildr. The version must be exactly the same as the dr ool s-
pl anner - cor e version used.

If you use ANT, you've probably already copied the required jars from the download zip's bi nari es
directory.

12.2.2. BU|Id|ng and running a Pl anner Benchmar k

You can build a Pl anner Benchnar k instance with the Xm Pl anner Benchnar kFact or y. Configure
it with a benchmark configuration xml file:

Xm Pl anner Benchnmar kFact ory pl anner Benchmar kFact ory = new Xml Pl anner Benchmar kFact ory() ;
pl anner Benchmar kFact ory. conf i gure("/ or g/ drool s/ pl anner/ exanpl es/ nqueens/
benchmar k/ nqueensBenchmar kConf i g. xm ") ;

179

Chapter 12. Benchmarking and ...

Pl anner Benchmar k pl anner Benchmar k = benchmar kFact ory. bui | dPl anner Benchmar k() ;
pl anner Benchmar k. benchmar k() ;

A basic benchmark configuration file looks something like this:

<?xm version="1.0" encodi ng="UTF- 8" ?>

<pl anner Benchmar k>
<benchmar kDi r ect or y>| ocal / dat a/ nqueens</ benchmar kDi r ect or y>
<I'--<paral | el Benchmar kCount >AUTO</ par al | el Benchmar kCount >- - >
<war mJpSecondsSpend>30</ war npSeconds Spend>

<i nherit edSol ver Benchmar k>
<pr obl emBenchmar ks>

<xstreamAnnot at edCl ass>or g. dr ool s. pl anner. exanpl es. nqueens. domai n. NQueens</
xst reamAnnot at edd ass>
<i nput Sol uti onFi | e>dat a/ nqueens/ unsol ved/ unsol vedNQueens32. xm </
i nput Sol uti onFi |l e>
<i nput Sol uti onFi | e>dat a/ nqueens/ unsol ved/ unsol vedNQueens64. xm </
i nput Sol uti onFi | e>
<probl entt ati sti cType>BEST_SOLUTI ON_CHANGED</ pr obl entSt ati sti cType>
</ pr obl emBenchmar ks>
<sol ver >
<sol uti onCl ass>org. drool s. pl anner . exanpl es. nqueens. domai n. NQueens</
sol uti onC ass>
<pl anni ngEnti t yCl ass>or g. drool s. pl anner. exanpl es. nqueens. donai n. Queen</
pl anni ngEnti tyCl ass>
<scoreDi rector Fact ory>
<scoreDefiniti onType>SlI MPLE</ scor eDefi ni ti onType>
<scoreDr| >/ org/ drool s/ pl anner/ exanpl es/ nqueens/ sol ver/
nQueensScor eRul es. drl </ scoreDr| >
</ scoreDirectorFact ory>
<term nation>
<maxi munSeconds Spend>20</ maxi munSeconds Spend>
</term nation>
<constructionHeuristic>
<constructionHeuristicType>FI RST_FI T_DECREASI NG</
constructionHeuristicType>

<constructionHeuristicPickEarlyType>FI RST_LAST_STEP_SCORE_EQUAL_OR_| MPROVI NG</
constructionHeuristicPi ckEarl yType>
</ constructionHeuristic>
</ sol ver >
</inheritedSol ver Benchmar k>

<sol ver Benchmar k>
<nane>Entity tabu</nane>

180

Building and running a PlannerBenchmark

<sol ver >
<l ocal Sear ch>
<changeMoveSel ect or >
<sel ecti onOrder >ORl A NAL</ sel ecti onOr der >
</ changeMbveSel ect or >
<accept or >
<pl anni ngEnti t yTabuSi ze>5</ pl anni ngEnti t yTabuSi ze>
</ accept or >
<f or ager >
<pi ckEar | yType>NEVER</ pi ckEar | yType>
</ forager>
</l ocal Sear ch>
</ sol ver >
</ sol ver Benchmar k>
<sol ver Benchmar k>
<name>Val ue tabu</nane>
<sol ver >
<l ocal Sear ch>
<changeMoveSel ect or >
<sel ecti onOr der >ORl G NAL</ sel ecti onOr der >
</ changeMbveSel ect or >
<accept or >
<pl anni ngVal ueTabuSi ze>5</ pl anni ngVal ueTabuSi ze>
</ accept or >
<f or ager >
<pi ckEar | yType>NEVER</ pi ckEar | yType>
</ forager>
</l ocal Sear ch>
</ sol ver >
</ sol ver Benchmar k>
<sol ver Benchmar k>
<name>Move tabu</ nane>
<sol ver >
<l ocal Sear ch>
<changeMoveSel ect or >
<sel ecti onOrder >ORl G NAL</ sel ecti onOr der >
</ changeMbveSel ect or >
<accept or >
<noveTabuSi ze>5</ noveTabuSi ze>
</ accept or >
<f or ager >
<pi ckEar | yType>NEVER</ pi ckEar | yType>
</ forager>
</l ocal Sear ch>
</ sol ver >
</ sol ver Benchmar k>
</ pl anner Benchmar k>

181

Chapter 12. Benchmarking and ...

This PI anner Benchnar k will try 3 configurations (1 move tabu, 1 entity tabu and 1 value tabu) on
2 data sets (32 and 64 queens), so it will run 6 solvers.

Every sol ver Benchmar k element contains a solver configuration (for example with a local search
solver phase) and one or more i nput Sol uti onFi | e elements. It will run the solver configuration
on each of those unsolved solution files. The element nane is optional, because it is generated if
absent. The inputSolutionFile is read by a ProblemlIO.

To lower verbosity, the common part of multiple sol verBenchmark entities can be
extracted to the inheritedSol verBenchmark element. Yet, every element can still be
overwritten per sol verBenchmark element. Note that inherited solver phases such as
<constructionHeuri stic> or <l ocal Sear ch> are not overwritten but instead are added to the
tail of the solver phases list.

You need to specify a benchmar kDi rect ory (relative to the working directory). A benchmark
report will be written in that directory.

@ Note

It's recommended that the benchmar kDi r ect ory is a directory ignored for source
control and not cleaned by your build system. This way the generated files are not
bloating your source control and they aren't lost when doing a build. Usually that
directory is called | ocal .

12.2.3. ProblemlO: input and output of Solution files

12.2.3.1. probl em 0 interface

The benchmarker needs to be able to read the input files to contain a Sol ut i on write the best
Sol uti on of each benchmark to an output file. For that it uses a class that implements the
Pr obl em Ointerface:
public interface Problem O {

String getFil eExtension();

Sol ution read(File inputSolutionFile);

void write(Solution solution, File outputSolutionFile);

182

ProblemIO: input and output of Solution files

A Warning

Your input files need to have been written with the same Pr obl enl Oclass as they
are being read by the benchmarker.

12.2.3.2. xstreanProbl eni 0. the default probl em 0

By default, a benchmarker uses a XSt r eanPr obl enl Oinstance to read and write solutions.
You need to tell the benchmarker about your Sol uti on class which is annotated with XStream
annotations:

<pr obl enBenchmar ks>

<xstreamAnnot at edCl ass>or g. dr ool s. pl anner . exanpl es. nqueens. domai n. NQueens</
xst reamAnnot at edd ass>
<i nput Sol ut i onFi | e>dat a/ nqueens/ unsol ved/ unsol vedNQueens32. xm </

i nput Sol uti onFi | e>

</ pr obl enBenchmar ks>

Your input files need to have been written with a XSt r eanPr obl em O instance, not just any
XSt r eaminstance, because the XSt r eanPr obl el Ouses a customized XSt r eaminstance.

Warning

XStream and XML in general is a very verbose format. Reading or writing
large datasets in this format can cause an Qut Of Menor yError and performance
degradation.

12.2.3.3. Custom Probl eni O

Alternatively, you can implement your own Pr obl eml O implementation and configure it with the
probl em Od ass element:

<pr obl enBenchmar ks>

es. machi ner eassi gnnent . per si st ence. Machi neReassi gnnent Pr obl end O</
pr obl em OCl ass>
<i nput Sol ut i onFi | e>dat a/ nachi ner eassi gnnent /i nput/ nmodel _al_1.txt</
i nput Sol uti onFi | e>

183

Chapter 12. Benchmarking and ...

</ pr obl enBenchmar ks>

A Warning

A Pr obl enl Oimplementation must be thread-safe.

12.2.4. Writing the output solution of the benchmark runs

The best solution of each benchmark run can be written to the in the benchmar kDi rect ory. By
default, this is disabled, because the files are rarely used and considered bloat. Also, on large
datasets, writing the best solution of each single benchmark can take quite some time and memory
(causing an Qut OF Menor yEr r or), especially in a verbose format like XStream.

You can enable to write the output solution in the benchmarkDirectory with
wri t eCut put Sol ut i onEnabl ed:
<pr obl emBenchmar ks>
<wr i t eQut put Sol uti onEnabl ed>t rue</ wri t eQut put Sol uti onEnabl ed>

</ pr obl enBenchmar ks>

12.2.5. Warming up the HotSpot compiler

Without awarm up, the results of the first (or first few) benchmarks are not reliable, because
they will have lost CPU time on HotSpot JIT compilation (and possibly DRL compilation too).

The avoid that distortion, the benchmarker can run some of the benchmarks for a specified amount
of time, before running the real benchmarks. Generally, a warm up of 30 seconds suffices:

<pl anner Benchmar k>
<war mJpSeconds Spend>30</ war mpSeconds Spend>

</ pl anner Benchmar k>

12.3. Benchmark report

12.3.1. HTML report

After the running a benchmark, a HTML report will be written in the benchnar kDi r ect or y with the
filename i ndex. ht m . Openitin your browser. It has a nice overview of your benchmark including:

184

Summary statistics

* Summary statistics: graphs and tables

» Problem statistics per i nput Sol uti onFil e

« Each solver configuration (ranked): easy to copy and paste.
» Benchmark information

The HTML report will use your default locale to format numbers. If you need to share
the benchmark report with people from another country, you might want to overwrite the
benchnmar kReport Local e:

<pl anner Benchmar k>
<benchmar kReport Local e>en_US</ benchmar kRepor t Local e>

</ pl anner Benchmar k>

12.3.2. Summary statistics

12.3.2.1. Best score summary

Shows the best score per i nput Sol uti onFi | e and solver configuration.

185

Chapter 12. Benchmarking and ...

Best score summary (higher score is better)

Score

medium0l.xml medium02,xml mediurn_hint01.xml medium_hint02.xml
Data

|l tabuSearch-moveTabu mtabuSearch-propertyTabu m simulatedannealing (winner)

Figure 12.1. Best score summary statistic
12.3.3. Statistic per data set (graph and CSV)

12.3.3.1. Enabling a problem statistic

The benchmarker supports outputting problem statistics as graphs and CSV (comma separated
values) files to the benchmar kDi rect ory.

To configure graph and CSV output of a statistic, just add a pr obl enfSt ati sti cType line:

<pl anner Benchmar k>
<benchmar kDi r ect or y>l ocal / dat a/ nqueens/ sol ved</ benchnar kDi r ect or y>

<i nheritedSol ver Benchmar k>
<pr obl enBenchmar ks>

<probl entt ati sti cType>BEST_SOLUTI ON_CHANGED</ pr obl enfSt ati sti cType>
<probl enSt ati sti cType>CALCULATE_COUNT_PER_SECOND</ pr obl enfSt at i sti cType>
</ pr obl emBenchmar ks>

186

Statistic per data set (graph and CSV)

</inheritedSol ver Benchmar k>

</ pl anner Benchmar k>

Multiple probl entt ati sticType elements are allowed. Some statistic types might influence
performance and benchmark results noticeably. The following types are supported:

12.3.3.2. Best score over time statistic (graph and CSV)

To see how the best score evolves over time, add BEST_SOLUTI ON CHANGED as a
probl enfSt ati sti cType.

medium_hint01 best score statistic

Score
=
w
L

4] 1m40s 3m20s 5m &m40s B8m20s 10m 11m40s
Time millis spend

|— tabuSearch-moveTabu — simulatedAnnealing — tabuSearch-propertyTabu

Figure 12.2. Best score over time statistic

The best score over time statistic is very useful to detect abnormalities, such as score
traps.

187

Chapter 12. Benchmarking and ...

12.3.3.3. Calculate count per second statistic (graph and CSV)

To see how fast the scores are calculated, add CALCULATE COUNT PER SECOND as a
probl enSt ati sti cType.

exam_comp_set2 calculate count statistic

14.000

13.500

13.000

12.500

12.000

11.500

11.000

10.500

10.000

9.500

9.000

8.500

8.000

Calculate count per second

7.500

7.000

6.500

6.000

5.500

5.000

4.500

4.000

3.500

4] 1m40s 3m20s 5m &m40s B8m20s
Time millis spend

|-I— examination_tabuSearch |

Figure 12.3. Calculate count per second statistic

188

Ranking the Solvers

@ Note
The initial high calculate count is typical during solution initialization. In this
example, it's far easier to calculate the score of a solution if only a handful exams
have been added, in contrast to all of them. After those few seconds of initialization,
the calculate count is relatively stable, apart from an occasional stop-the-world
garbage collector disruption.

12.3.3.4. Memory use statistic (graph and CSV)

To see how much memory is used, add MEMORY_USE as a probl enfSt ati sti cType.

exam_comp_set2 memory use statistic

475.000.000

450.000.000

425.000.000

400.000.000

375.000.000

350.000.000

325.000.000

300.000.000

275.000.000

Memory

250.000.000

225.000.000

200.000.000

175.000.000

150.000.000

125.000.000

100.000.000

75.000.000

50.000.000

25.000.000

4] 1m40s 3m20s 5m &m40s B8m20s 10m
Time millis spend

|n examination_tabuSearch used a examination_tabuSearch max

Figure 12.4. Memory use statistic

12.3.4. Ranking the sol vers

The benchmark report automatically ranks the solvers. The Sol ver with rank 0 is called the favorite
Sol ver : it performs best overall, but it might not be the best on every problem. It's recommended
to use that favorite Sol ver in production.

189

Chapter 12. Benchmarking and ...

However, there are different ways of ranking the solvers. You can configure how:

<pl anner Benchmar k>
<sol ver Benchmar kRanki ngType>TOTAL_SCORE</ sol ver Benchmar kRanki ngType>

</ pl anner Benchnar k>
The following sol ver Benchnar kRanki ngTypes are supported:

e TOTAL_SCORE (default): Maximize the overall score, so minimize the overall cost if all solutions
would be executed.

e WORST_SCORE: Minimize the worst case scenario.

* TOTAL_RANKI NG Maximize the overall ranking. Use this if your datasets differ greatly in size or
difficulty, producing a difference in Scor e magnitude.

You can also use a custom ranking, by implementing a Conpar at or :

sol ver Benchmar kRanki ngConpar at or Cl ass>. .. Tot al Scor eSol ver Benchrmar kRanki ngConpar at or </
sol ver Benchmar kRanki ngConpar at or Cl ass>

Or a weight factory:

hmar kRanki ng\Wei ght Fact or yCl ass>. .. Tot al RankSol ver Benchmar kRanki ng\Wei ght Fact or y</
sol ver Benchmar kRanki ngWei ght Fact or yCl ass>

12.4. Advanced benchmarking

12.4.1. Benchmarking performance tricks

12.4.1.1. Parallel benchmarking on multiple threads

If you have multiple processors available on your computer, you can run multiple benchmarks in
parallel on multiple threads to get your benchmarks results faster:

<pl anner Benchmar k>

<par al | el Benchmar kCount >AUTO</ par al | el Benchmar kCount >

190

Benchmarking performance tricks

</ pl anner Benchmar k>

Warning

Running too many benchmarks in parallel will affect the results of benchmarks
negatively. Leave some processors unused for garbage collection and other
processes.

We tweak parall el Benchmar kCount AUTO to maximize the reliability and
efficiency of the benchmark results.

The following par al | el Benchmar kCount s are supported:

1 (default): Run all benchmarks sequentially.

AUTC: Let Planner decide how many benchmarks to run in parallel. This formula is based on
experience. It's recommended to prefer this over the other parallel enabling options.

Static number: The number of benchmarks to run in parallel.

<par al | el Benchmar kCount >2</ par al | el Benchmar kCount >

JavaScript formula: Formula for the number of benchmarks to run in parallel. It can use the
variable avai | abl eProcessor Count . For example:

<par al | el Benchmar kCount >(avai | abl eProcessor Count / 2) + 1</
par al | el Benchmar kCount >

a
g

Note

The paral | el Benchmar kCount is always limited to the number of available
processors. If it's higher, it will be automatically decreased.

Note

In the future, we will also support multi-JVM benchmarking. This feature
is independent of [https://issues.jboss.org/browse/
JBRULES-681] or multi-JVM solving.

191

https://issues.jboss.org/browse/JBRULES-681
https://issues.jboss.org/browse/JBRULES-681
https://issues.jboss.org/browse/JBRULES-681

Chapter 12. Benchmarking and ...

12.4.2. Template based benchmarking and matrix
benchmarking

Matrix benchmarking is benchmarking a combination of value sets. For example: benchmark 4
pl anni ngEnt i t yTabuSi ze values (5, 7, 11 and 13) combined with 3 mi ni mal Accept edSel ecti on
values (500, 1000 and 2000), resulting in 12 solver configurations.

To reduce the verbosity of such a benchmark configuration, you can use a Freemarker [http://
freemarker.sourceforge.net/] template for the benchmark configuration instead:

<pl anner Benchmar k>

<i nherit edSol ver Benchmar k>
</inheritedSol ver Benchmar k>

<#list [5, 7, 11, 13] as planningEntityTabuSi ze>
<#list [500, 1000, 2000] as mi ni mal Accept edSel ecti on>
<sol ver Benchmar k>

<nanme>ent it yTa®upl anni ngEnt i t yTabuSi z&gcept edSel ect i ®jm ni mal Accept edSel ecti on} </
name>
<sol ver >
<l ocal Sear ch>
<uni onMoveSel ect or >
<changeMoveSel ect or/ >
<swapMoveSel ect or/ >
</ uni onMoveSel ect or >
<accept or >
<pl anni ngEnti t yTabuSi ze>%${ pl anni ngEnti t yTabuSi ze} </

pl anni ngEnti t yTabuSi ze>

</ accept or >

<f or ager >

<m ni mal Accept edSel ecti on>${m ni mal Accept edSel ecti on} </

m ni mal Accept edSel ecti on>

</ forager>

</l ocal Sear ch>
</ sol ver >
</ sol ver Benchmar k>

</#list>
</#list>
</ pl anner Benchmar k>

And configure it with the method conf i gur eFr onTenpl at e:

192

http://freemarker.sourceforge.net/
http://freemarker.sourceforge.net/
http://freemarker.sourceforge.net/

Template based benchmarking and matrix benchmarking

Xm Pl anner Benchmar kFact ory pl anner Benchmar kFact ory = new Xml Pl anner Benchmar kFact ory() ;
pl anner Benchnar kFact ory. conf i gur eFr oniTenpl at e("/ or g/ dr ool s/ pl anner/ exanpl es/
cl oudbal anci ng/ benchmar k/ cl oudBal anci ngBenchmar kConfi gTenpl ate. xm . ftl");
Pl anner Benchnar k pl anner Benchmar k = benchrar kFact ory. bui | dPl anner Benchrar k() ;

193

194

Chapter 13.

Chapter 13. Repeated planning

13.1. Introduction to repeated planning

The world constantly changes. The planning facts used to create a solution, might change before
or during the execution of that solution. There are 3 types of situations:

« Unforeseen fact changes: For example: an employee assigned to a shift calls in sick, an airplane
scheduled to take off has a technical delay, one of the machines or vehicles break down, ...
Use backup planning.

* Unknown long term future facts: For example: The hospital admissions for the next 2 weeks are
reliable, but those for week 3 and 4 are less reliable and for week 5 and beyond are not worth
planning yet. Use continuous planning.

« Constantly changing planning facts: Use real-time planning.

Waiting to start planning - to lower the risk of planning facts changing - usually isn't a good way
to deal with that. More CPU time means a better planning solution. An incomplete plan is better
than no plan.

Luckily, the Drools Planner algorithms support planning a solution that's already (partially)
planned, known as repeated planning.

13.2. Backup planning

Backup planning is the technique of adding extra score constraints to create space in the planning
for when things go wrong. That creates a backup plan in the plan. For example: try to assign an
employee as the spare employee (1 for every 10 shifts at the same time), keep 1 hospital bed
open in each department, ...

Then, when things go wrong (one of the employees calls in sick), change the planning facts on
the original solution (delete the sick employee leave his/her shifts unassigned) and just restart the
planning, starting from that solution, which has a different score now. The construction heuristics
will fill in the newly created gaps (probably with the spare employee) and the metaheuristics will
even improve it further.

13.3. Continuous planning (windowed planning)

Continuous planning is the technique of planning one or more upcoming planning windows at the
same time and repeating that process monthly, weekly, daily or hourly. Because time is infinite,
there are infinite future windows, so planning all future windows is impossible. Instead, plan only
a fixed number of upcoming planning windows.

195

Chapter 13. Repeated planning

Past planning windows are immutable. The first upcoming planning window is considered stable
(unlikely to change), while later upcoming planning windows are considered draft (likely to change
during the next planning effort). Distant future planning windows are not planned at all.

Past planning windows have only immovable planning entities: the planning entities can no longer
be changed (they are unable to move), but some of them are still needed in the score calculation,
as they might affect some of the score constraints that apply on the upcoming planning entities.
For example: when an employee should not work more than 5 days in a row, he shouldn't work
today and tomorrow if he worked the past 4 days already.

Sometimes some planning entities are semi-immovable: they can be changed, but occur a certain
score penalty if they differ from their original place. For example: avoid rescheduling hospital beds
less than 2 days before the patient arrives (unless it's really worth it), avoid changing the airplane
gate during the 2 hours before boarding (unless there is no alternative), ...

Continuous planning

November
5 6 7 8 9 10 1 12 13

November 1th stable draft
Room 11 bed 1 E
4-7
[
Room 11 bed 2 yackup planning: empty bed

Room 21 bed 1

Second planning
November 5th past stable

Room 11 bed 1

“~cance ,d

First planning

Room 11 bed 2

Room 21 bed 1

8 immovable

Figure 13.1. Continuous planning diagram

Notice the difference between the original planning of November 1th and the new planning of
November 5th: some planning facts (F, H, I, J, K) changed, which results in unrelated planning
entities (G) changing too.

196

Immovable planning entities

13.3.1. Immovable planning entities
To make some planning entities immovable, simply add an entity Sel ecti onFi | t er that returns
t rue if an entity is movable and f al se if it is immovable.
public class Mvabl eShi ft Assi gnnent Sel ectionFilter inplenents Sel ectionFilter<ShiftAssignnent>
publ i ¢ bool ean accept (ScorebDirector scorebDirector, ShiftAssignment shiftAssignnent) {
ShiftDate shiftDate = shiftAssignment.getShift().getShiftDate();

Nur seRost er nurseRoster = (NurseRoster) scoreDirector.get WrkingSol ution();
return nurseRoster. get NurseRosterlnfo().islnPlanni ngW ndow(shiftDate);

And configure it like this:

@ anni ngEnti ty(nmovabl eEntitySel ectionFilter = Movabl eShift Assi gnnent Sel ectionFilter.cl ass)
public class ShiftAssignnent {

A Warning

Custom Moveli st Factory and Movel t erat or Fact ory implementations must
make sure that they don't move immovable entities.

13.4. Real-time planning (event based planning)

To do real-time planning, first combine backup planning and continuous planning with short
planning windows to lower the burden of real-time planning.

While the Sol ver is solving, an outside event might want to change one of the problem facts,
for example an airplane is delayed and needs the runway at a later time. Do not change the
problem fact instances used by the Sol ver while it is solving, as that will corrupt it. Instead, add a
Pr obl enFact Change to the Sol ver which it will execute in the solver thread as soon as possible.

public interface Solver {

bool ean addPr obl enfact Change(Pr obl enfact Change pr obl enfact Change) ;

197

Chapter 13. Repeated planning

bool ean i sEver yProbl enfact ChangePr ocessed() ;

public interface Probl enfFact Change {

voi d doChange(ScoreDirector scoreDirector);

Here's an example:

public void del et eConputer(final O oudConputer conputer) {
sol ver. addPr obl enfact Change(new Probl enfFact Change() {
public void doChange(ScoreDirector scorebDirector) ({

Cl oudBal ance cl oudBal ance = (C oudBal ance) scoreDirector.get WrkingSol ution();

/'l First renpve the planning fact fromall planning entities

that use it
for (C oudProcess process : cloudBal ance. get ProcessList()) {
if (OojectUils.equal s(process. getConputer(), conputer)) {
scoreDi rector. bef oreVari abl eChanged(process, "conputer");
process. set Comput er (nul) ;
scoreDirector. aft er Vari abl eChanged(process, "conputer");

}

/1 Next renove it the planning fact itself
for (lterator<C oudConputer> it = cloudBal ance. get ConputerList().iterator(); it
Cl oudConput er wor ki ngConputer = it.next();
if (pjectUils. equal s(workingConputer, conputer)) {
scoreDi rect or. bef or ePr obl enfact Renoved(wor ki ngConput er) ;
it.renmove(); // renmove fromli st
scoreDi rect or. bef or ePr obl enfact Renoved(wor ki ngConput er) ;
br eak;

1)

198

Real-time planning (event based planning)

g

Warning

Any change on the problem facts or planning entities in a
Pr obl enFact Change must be done on the instances of the Sol ution of
scor eDi rect or. get Wor ki ngSol ut i on() . Note that these are not the same entity
instances as in the bestSolution (or therefore your user interface): they are clones.

Warning

Any change on the problem facts or planning entities in a Pr obl enFact Change
must be told to the Scor eDi r ect or .

Note

Many types of changes can leave a planning entity uninitialized, resulting in a
partially initialized solution. That's fine, as long as the first solver phase can handle
it. All construction heuristics solver phases can handle that, so it's recommended
to configure such a Sol ver Phase as the first phase.

In essence, the Sol ver will stop, run the Pr obl enfFact Change and restart. Each Sol ver Phase will
run again. Each configured Ter mi nati on (except t er m nat eEar | y) will reset. This means the
construction heuristic will run again, but because little or no planning variables will be uninitialized
(unless you have a nullable planning variable), this won't take long.

Normally, you won't configure any Term nati on, just call Sol ver.term nateEarly() when
the results are needed. Alternatively, you can subscribe to the Best Sol uti onChangedEvent .
A Best Sol uti onChangedEvent doesn't guarantee that every Probl enfFact Change has been
processed already, so check Sol ver . i sEver yPr obl enfFact ChangePr ocessed() and ignore any
Best Sol ut i onChangedEvent fired while that method returns f al se.

199

200

	Drools Planner User Guide
	Table of Contents
	
	Chapter 1. Planner introduction
	1.1. What is Drools Planner?
	1.2. What is a planning problem?
	1.2.1. A planning problem is NP-complete
	1.2.2. A planning problem has (hard and soft) constraints
	1.2.3. A planning problem has a huge search space

	1.3. Status of Drools Planner
	1.4. Download and run the examples
	1.4.1. Get the release zip and run the examples
	1.4.2. Run the examples in an IDE (IntelliJ, Eclipse, NetBeans)
	1.4.3. Use Drools Planner with maven, gradle, ivy, buildr or ANT
	1.4.4. Build Drools Planner from source

	1.5. Questions, issues and blog

	Chapter 2. Quick start
	2.1. Cloud balancing tutorial
	2.1.1. Problem statement
	2.1.2. Problem size
	2.1.3. Domain model diagram
	2.1.4. Main method
	2.1.5. Solver configuration
	2.1.6. Domain model implementation
	2.1.6.1. The class Computer
	2.1.6.2. The class Process
	2.1.6.3. The class CloudBalance

	2.1.7. Score configuration
	2.1.7.1. Simple Java score configuration
	2.1.7.2. Drools score configuration

	2.1.8. Beyond this tutorial

	Chapter 3. Use cases and examples
	3.1. Examples overview
	3.2. Toy examples
	3.2.1. N queens
	3.2.1.1. Problem statement
	3.2.1.2. Problem size
	3.2.1.3. Domain model

	3.2.2. Cloud balancing
	3.2.3. Traveling salesman (TSP - Traveling salesman problem)
	3.2.3.1. Problem statement
	3.2.3.2. Problem size

	3.2.4. Manners 2009
	3.2.4.1. Problem statement
	3.2.4.2. Problem size

	3.3. Real examples
	3.3.1. Course timetabling (ITC 2007 track 3 - Curriculum course scheduling)
	3.3.1.1. Problem statement
	3.3.1.2. Problem size
	3.3.1.3. Domain model

	3.3.2. Machine reassignment (Google ROADEF 2012)
	3.3.2.1. Problem statement
	3.3.2.2. Problem size

	3.3.3. Vehicle routing
	3.3.3.1. Problem statement
	3.3.3.2. Problem size

	3.3.4. Hospital bed planning (PAS - Patient admission scheduling)
	3.3.4.1. Problem statement
	3.3.4.2. Problem size

	3.4. Difficult examples
	3.4.1. Exam timetabling (ITC 2007 track 1 - Examination)
	3.4.1.1. Problem statement
	3.4.1.2. Problem size
	3.4.1.3. Domain model

	3.4.2. Employee rostering (INRC 2010 - Nurse rostering)
	3.4.2.1. Problem statement
	3.4.2.2. Problem size

	3.4.3. Sport scheduling (TTP - Traveling tournament problem)
	3.4.3.1. Problem statement
	3.4.3.2. Problem size

	Chapter 4. Planner configuration
	4.1. Overview
	4.2. Solver configuration
	4.2.1. Solver configuration by XML file
	4.2.2. Solver configuration by Java API

	4.3. Model your planning problem
	4.3.1. Is this class a problem fact or planning entity?
	4.3.2. Problem fact
	4.3.3. Planning entity and planning variables
	4.3.3.1. Planning entity
	4.3.3.2. Planning entity difficulty
	4.3.3.3. Planning variable
	4.3.3.4. Nullable planning variable
	4.3.3.5. When is a planning variable considered initialized?

	4.3.4. Planning value and planning value ranges
	4.3.4.1. Planning value
	4.3.4.2. Planning value range
	4.3.4.2.1. ValueRange from Solution property
	4.3.4.2.2. ValueRange from planning entity
	4.3.4.2.3. ValueRange undefined
	4.3.4.2.4. Combining ValueRanges
	4.3.4.2.5. A ValueRange which includes other planning entities

	4.3.4.3. Chained planning variable
	4.3.4.4. Planning value strength

	4.3.5. Planning problem and planning solution
	4.3.5.1. Planning problem instance
	4.3.5.2. The Solution interface
	4.3.5.3. The getScore() and setScore() methods
	4.3.5.4. The getProblemFacts() method
	4.3.5.5. Cached problem fact
	4.3.5.6. Cloning a Solution
	4.3.5.6.1. FieldAccessingSolutionCloner
	4.3.5.6.2. Custom cloning: Make Solution implement PlanningCloneable

	4.3.5.7. Build an uninitialized solution

	4.4. Use the Solver
	4.4.1. The Solver interface
	4.4.2. Solving a problem
	4.4.3. Environment mode: Are there bugs in my code?
	4.4.3.1. FULL_ASSERT
	4.4.3.2. FAST_ASSERT
	4.4.3.3. REPRODUCIBLE (default)
	4.4.3.4. PRODUCTION

	4.4.4. Logging level: What is the Solver doing?

	Chapter 5. Score calculation
	5.1. Score terminology
	5.1.1. What is a score?
	5.1.2. Score constraint signum (positive or negative)
	5.1.3. Score constraint weight
	5.1.4. Score level
	5.1.5. Pareto scoring (AKA multi-objective optimization scoring)
	5.1.6. Combining score techniques
	5.1.7. The Score interface

	5.2. Choose a Score definition
	5.2.1. SimpleScore
	5.2.2. HardSoftScore (recommended)
	5.2.3. HardMediumSoftScore
	5.2.4. BendableScore
	5.2.5. Implementing a custom Score

	5.3. Calculate the Score
	5.3.1. Score calculation types
	5.3.2. Simple Java score calculation
	5.3.3. Incremental Java score calculation
	5.3.4. Drools score calculation
	5.3.4.1. Overview
	5.3.4.2. Drools score rules configuration
	5.3.4.2.1. A scoreDrl resource on the classpath
	5.3.4.2.2. A RuleBase (possibly defined by Guvnor)

	5.3.4.3. Implementing a score rule
	5.3.4.4. Aggregating the score rules into the Score

	5.3.5. Detecting invalid scores

	5.4. Score calculation performance tricks
	5.4.1. Overview
	5.4.2. Average calculation count per second
	5.4.3. Incremental score calculation (with delta's)
	5.4.4. Avoid calling remote services during score calculation
	5.4.5. Unused constraint
	5.4.6. Build-in hard constraint
	5.4.7. Other performance tricks
	5.4.8. Score trap
	5.4.9. stepLimit benchmark

	5.5. Reusing the score calculation outside the Solver

	Chapter 6. Optimization algorithms
	6.1. Search space size in the real world
	6.2. Does Planner find the optimal solution?
	6.3. Architecture overview
	6.4. Optimization algorithms overview
	6.5. Which optimization algorithms should I use?
	6.6. SolverPhase
	6.7. Scope overview
	6.8. Termination
	6.8.1. TimeMillisSpendTermination
	6.8.2. ScoreAttainedTermination
	6.8.3. StepCountTermination
	6.8.4. UnimprovedStepCountTermination
	6.8.5. Combining multiple Terminations
	6.8.6. Asynchronous termination from another thread

	6.9. SolverEventListener
	6.10. Custom SolverPhase

	Chapter 7. Move and neighborhood selection
	7.1. Move and neighborhood introduction
	7.1.1. What is a Move?
	7.1.2. What is a MoveSelector?
	7.1.3. Subselecting of entities, values and other moves

	7.2. General Selector features
	7.2.1. CacheType: Create moves ahead of time or Just In Time
	7.2.2. SelectionOrder: original, sorted, random, shuffled or probabilistic
	7.2.3. Recommended combinations of CacheType and SelectionOrder
	7.2.3.1. Just in time random selection (default)
	7.2.3.2. Cached shuffled selection
	7.2.3.3. Cached random selection

	7.2.4. Filtered selection
	7.2.5. Sorted selection
	7.2.5.1. Sorted selection by Comparator
	7.2.5.2. Sorted selection by SelectionSorterWeightFactory
	7.2.5.3. Sorted selection by SelectionSorter

	7.2.6. Probabilistic selection

	7.3. Generic MoveSelectors
	7.3.1. changeMoveSelector
	7.3.2. swapMoveSelector
	7.3.3. pillarSwapMoveSelector
	7.3.4. subChainChangeMoveSelector
	7.3.5. subChainSwapMoveSelector

	7.4. Combining multiple MoveSelectors
	7.4.1. unionMoveSelector
	7.4.2. cartesianProductMoveSelector

	7.5. EntitySelector
	7.6. ValueSelector
	7.7. Custom moves
	7.7.1. Which move types might be missing in my implementation?
	7.7.2. Custom moves introduction
	7.7.3. The interface Move
	7.7.4. MoveListFactory: the easy way to generate custom moves
	7.7.5. MoveIteratorFactory: generate custom moves just in time
	7.7.6. Move generation through DRL

	Chapter 8. Construction heuristics
	8.1. Overview
	8.2. First Fit
	8.2.1. Algorithm description
	8.2.2. Configuration

	8.3. First Fit Decreasing
	8.3.1. Algorithm description
	8.3.2. Configuration

	8.4. Best Fit
	8.4.1. Algorithm description
	8.4.2. Configuration

	8.5. Best Fit Decreasing
	8.5.1. Algorithm description
	8.5.2. Configuration

	8.6. Cheapest insertion
	8.6.1. Algorithm description
	8.6.2. Configuration

	8.7. Regret insertion
	8.7.1. Algorithm description
	8.7.2. Configuration

	Chapter 9. Local search
	9.1. Overview
	9.2. Hill climbing (simple local search)
	9.2.1. Algorithm description

	9.3. Tabu search
	9.3.1. Algorithm description

	9.4. Simulated annealing
	9.4.1. Algorithm description

	9.5. Late acceptance
	9.5.1. Algorithm description

	9.6. About neighborhoods, moves and steps
	9.6.1. Move generation tips
	9.6.2. A step
	9.6.3. Getting stuck in local optima

	9.7. Deciding the next step
	9.7.1. Acceptor
	9.7.1.1. Tabu search acceptor
	9.7.1.2. Simulated annealing acceptor
	9.7.1.3. Late acceptance acceptor

	9.7.2. Forager
	9.7.2.1. Subset selection
	9.7.2.2. Pick early type

	9.8. Using a custom Termination, MoveSelector, EntitySelector, ValueSelector or Acceptor

	Chapter 10. Evolutionary algorithms
	10.1. Overview
	10.2. Evolutionary Strategies
	10.3. Genetic algorithms

	Chapter 11. Exact methods
	11.1. Overview
	11.2. Brute Force
	11.2.1. Algorithm description
	11.2.2. Configuration

	11.3. Depth-first search
	11.3.1. Algorithm description
	11.3.2. Configuration

	Chapter 12. Benchmarking and tweaking
	12.1. Finding the best Solver configuration
	12.2. Doing a benchmark
	12.2.1. Adding the extra dependency
	12.2.2. Building and running a PlannerBenchmark
	12.2.3. ProblemIO: input and output of Solution files
	12.2.3.1. ProblemIO interface
	12.2.3.2. XStreamProblemIO: the default ProblemIO
	12.2.3.3. Custom ProblemIO

	12.2.4. Writing the output solution of the benchmark runs
	12.2.5. Warming up the HotSpot compiler

	12.3. Benchmark report
	12.3.1. HTML report
	12.3.2. Summary statistics
	12.3.2.1. Best score summary

	12.3.3. Statistic per data set (graph and CSV)
	12.3.3.1. Enabling a problem statistic
	12.3.3.2. Best score over time statistic (graph and CSV)
	12.3.3.3. Calculate count per second statistic (graph and CSV)
	12.3.3.4. Memory use statistic (graph and CSV)

	12.3.4. Ranking the Solvers

	12.4. Advanced benchmarking
	12.4.1. Benchmarking performance tricks
	12.4.1.1. Parallel benchmarking on multiple threads

	12.4.2. Template based benchmarking and matrix benchmarking

	Chapter 13. Repeated planning
	13.1. Introduction to repeated planning
	13.2. Backup planning
	13.3. Continuous planning (windowed planning)
	13.3.1. Immovable planning entities

	13.4. Real-time planning (event based planning)

