Guvnor User Guide

For users and administrators of Guvnor

Version 6.0.0.Beta2

by The JBoss Drools team [http://www.jboss.org/drools/team.html]

http://www.jboss.org/drools/team.html
http://www.jboss.org/drools/team.html

IO 1 (o Yo U o {1) o I 1

1.1. What is a BUSINESS RUIES MANAGEI?ccovviiiiii i e e 1
I O V.V o T=T o I (o B U 7= I €U 1Y/ T | RN 1
1.1.2. WHO USES GUVINO ..iiviiieiiiiiieee et e et et e et e e et e e e et s e e e et e e e e eran s 2

1.2, FEAtUreS OULIING ... e e e e e e eees 2

T U 7= G 1 T [PP 5

P O U | 1] (S} = L A U o = 7

2.1, QUICK SEart QUIEuuciiiiiii e e 7
2.1.1. Supported browser platformscoeiriiiiiiiiie 9
2.1.2. Initial configurationc.coooiiiiiiiie e 9
2.1.3. WHItING @ TUIE .ueii e 10
2.1.4. FINAING StUT oo 11
2.1.5. DEPIOYMENT ...t e 11

T 0] g od =] o K= PP PRTRIPRN 13
3.1, RUIES GrE @SSELS ..uuiiiiiieiiiieii et e e et e e e e e e et e e et eeanneee 13
3.2. PACKAQES Are ASSELS ...civuuiiiiiiiiiiieiiiiee e e e e e e e e 13
3.3. PEISPECHIVES ..ottt 13
3.4. The buSINeSS USEr PErSPECLIVEccovviiiiiiieii e 13

3.4.1. Creating @ bUSINESS USEI VIEWiiiiiiiieiiiii et eeeens 14

A, AUTNOTING AS SIS ittt e e 15
4.1. Version MaNAGEIMENTccouuuieiiiii ettt e et e et e e et e e e 15
4.2, The ASSEE EAITOr ...t 15
4.3. Creating @ PACKAGE . ..cevuueiiiii ettt 18

4.3.1. EMPLY PACKAGE ..uuiiiiiieiiieii et e e e e e e e e eaas 19
4.3.2. Importing DRL Packagesccc.uuiieiiiiiiieiiiiiiecei e 19

S o] o B O] () £ N 20

4.5, WOTKING SIS ...ttt 21
4.5.1. Activating and Using Working Setscccociiveiiiiiiiiiiciieecieee e, 24

4.6. Business rules with the guided editorccciiiiiiiiiiiiii e 26
4.6.1. Parts of the Guided Rule EditOrcccoviiiiiiiiiiiiiiiiee e 27
4.6.2. The "WHEN" (left-hand side) of a Rulec.coooooiiiiiiiiie 27
4.6.3. The "THEN" (right-hand side) of a Rulecccooeviiiiiniiiice, 31
4.6.4. Optional attriDULESoouuiiiiiiii e 34
4.6.5. Pattern/Action tOOIDArocuviiiiiiiiiii e 34
4.6.6. User driven drop down [ISIScoouuiiiiiiiiiiiiiii e 34
4.6.7. Augmenting with DSL SENtENCESoeviiiiiiiiiiiiieii e, 35
4.6.8. A more complexX example: ... 36

o 1 I 1 PPN 37

4.8. Technical ruleS (DRL) ...c.uuiiiiiiiiieiii e e 38

4.9. Spreadsheet decision tablesccoooiii i, 39

4.10. Guided decision tables (web based)cciiiiiiiiiiiiiii 39
4.10.1. Types of decision tableccooiiiiiiiii 39
4.10.2. Main compPONENIS\CONCEPLS ...eevuneiiiiiieiieiiie et e et 41
4.10.3. Defining a web based decision tablecccociiiiiiiiiie 44

Guvnor User Guide

4.10.4. Rule definitioncooouiiiie e 59

O ST AN B o [1o Yo PP 60
4.11. Templates Of aSSEtS/TUIESc.uuiiiiiii e 62
4.11.1. Creating a rule templatecoeeiiiiiiiiii e 62
4.11.2. Define the templateooooiiiiiii e 64
4.11.3. Defining the template datacocccoiiiiiiieiiii e, 65
4.11.4. Generated DRLc.uiiiiiiiii e 69
4.12. The FaCt MOAEIcoovniiiiiiii e 70
4.12.1. Ways to define a Fact Model ..o 70
4.12.2. Creating a JAR MOElcoouiiiiiiiiii e 71
4.12.3. Declarative Modelcooiuiiiiiiii e 73
e T ¥ [o 1o T USRI 79
B 1Y I =T 1 (o PSP 79
415, RUIE FIOWS .. 80
4.16. BPIMNZ PrOCESS ...cuiiiiiiiiiiie ittt et e e et e e eanaees 80
4.17. Work Item Definitionooeiiiiiiii e 80
4.18. Data enumerations (drop down list configurations)cccceeveviiiinneiennnnnn. 81
4.18.1. Advanced enumeration CONCEPLSccuuviiiiieiiiieiiiiieeiieeeii e e e eieeeens 82
e T TS S Yo~ -V o S 83
e 11V o 7= Tl o] o L P 85
4.19.2. EXPECE SECHION ...ueiiiiiieiiiii ettt e eneans 86
4.19.3. GlODaAl SECLON ...ciiiiiieeiei e 86
4.19.4. NeW INPUL SECHIONuuiiiiiiieieii e 87

e ST AN B [[} 1 Yo PPN 87
A.20. FIl oot 87
A B O g T T [T Y- N 90
4.21.1. Change-Set Editor Ulcoiiiiiiiiiiii e 91
4.21.2. Adding Packages using a Wizardc.cccoeviiiiniiin i, 91
4.21.3. Adding Assets using a Wizardcoooeeuiiiiiiiiiineiiiieec e 92
S = A Tod = PRSP 93
4.22.1. Configuring Multiple Knowledge Basesccccovveveiiiniiiiiiinieiennnn, 94
4.22.2. Knowledge Base Configuration Panelcccooeviiiiiiiiiinciinen, 95
4.22.3. Downloading War & Managing Dependenciesccceueveeeennnnn. 100
4.23. *INCUBATOR FEATURE** New Rule Asset - Scorecards 103
4.23.1. (8) Setup Parameterscoouuuiieiiiiiiieiiiii et 105
4.23.2. (B) CharacCteriStiCSccuuiiiiieiiii e e 106

5. MANAGING ASSELES ittt 109
5.1. Navigating and finding rUlescooiiii i 109
5.1.1. Package eXPIOreroiiiiiiiiiiii et 109
LN 0% 1 1= Te [0 VY 1 A 112
5.1.3. INboX @and COMMENESuiiiiiiiiii e e e e 113

B2, FBOA o 114
6. QUAIILY ASSUTANCE .oouiiiiiiii ettt e et e e et e ettt e e e et eeeaaa e eees 115
0 I =TS Yot = o - o PP 115

6.2. PACKAQE ANAIYSISueieiiiiieiiiii et 116

6.2.1. Items that the analyser is searching forccooveiiiiiiiiinnennn, 116

7. PACKAGING oeetiiiiiit et 119
% - Vo3 Vo [1T N 119

7.2. Imports and GIODAISuuiiiiiiiii 120
7.2.1. BASIC VIBW .evviieiiiiie et 121

7.2.2. ADVANCEA VIBW ..ovuiiiiiiiiii et e s 122

RS T O 1 (= To (o) Y 101 L= 123

T4 BUIING .o 125

TS T=] (el (o] £ PP 126
7.5.1. BUIIt-IN SEIECION .vniiiiiii e e 126

7.5.2. CUSIOM SEIECIOT ..ivvviiiiiii e 126

7.6, SNAPSNOLS ...t e 127

7.7. Advanced Configurationcoccuiiiiiieiiie e e e 128

8. Administrative FUNCLIONS ..o e e 129
ST O 1 (Yo [0] =P 129

8.2, Status MAaNAGEMENTcoviiiii i 131

SRS I Y (o] 1)Y= o 1 (=] 03 SRR 132

8.4, EVENE LOQ otniiiiiiiii ettt 132

8.5. USEI PEIMIUSSIONS ...vuiiiiiiiiiiieiiiie et et e e e e e e e et e e et e e e e e et e e et e e aaneeaens 133

8.6. IMPOrt and EXPOITuiiiiiiieiiii e 134

8.7. Repository Configurationccoceuieiiiiiiiiiecii e e e e e e e 135

[I. DEVEIOPET GUILEcoeeiiieeeiie et ettt e et e e 137
9. Integrating rules with your applicationscccooviiiiiiii i 139
9.1. The KNOWIEdge AGENTciieiieieiiii et 139

9.2, REST AP ittt 141
9.2, REST oot 141

9.2.2. GUVNOTr REST API oo 142

9.2.3. Source code EXamMPIEccoouuiiiiiiiiiieiiii e 150

9.3. WEDBDAY and HTTP ..uuiiiiiiii e 163
9.3.1. WEDBDAV ..o 163

0.3.2. URLS ottt ettt e aee 163

9.4. Eclipse GUVNOT INLEGIatiONooieiiiiieiiiiiie e 164
9.4.1. Source Code and Plug-in Detailsc.ccoiviiiiiiiiiii e 164

9.4.2. FUNCLiONAlity OVEIVIEWoiiiiiiieiiiii e 164

9.4.3. Guvnor Connection Wizardcovveiiiiiiieiiiiiieeecne e 166

9.4.4. GuvNor Repository EXPIOIEruiiiiiiiiiiiiiiii e 169

9.4.5. Local Copies of GUVNOr FileSccccuviiiiiiiiiii e 171

9.4.6. Actions for Local GUVNOr RESOUICESoevvuniviiieiieeeiiieeiineeeieeeens 173

9.4.7. Importing Guvnor Repository RESOUICESccccuvveviieiiiieeiieaiinans 178

9.4.8. Guvnor plugin PreferenCesoovvvviiiciiiiei e 182

10. Embedding Guvnor In Your Applicationccooeiiiiiiiiiii e, 185
10.1. Getting STArEUuiiiiiiii e 185
10.2. Embedded Editor Entry-Point: StandaloneEditorServletcccoeevvnnein 185

Guvnor User Guide

10.3. Edition MOGESuoiieiiiiieee et e e 186
10.3.1. BRL Edition MOUEiiieiiiiiiiiiiiiie e 186

10.3.2. Edition of Existing ASSets MOdec.covveiiiiiiiiiiiiiiec e, 188

10.3.3. NeW ASSEE MOUEuiiiiiiiiiiii et 190

10.4. Extra HTTP PArametersccceuiiiiiiiiieii it 191
10.4.1. Rule’s Sections Visibility Parametersccccoeveviiiiiiiiicie e, 191

10.4.2. Constraining Fact TYPEScoeuuuniiiiiiiiieieii e 192

10.4.3. Use existing WOrking-Setsccccoveviiiiiiiiiciii e 192

10.5. Interacting with the Editor ... 193

. ADMINISTrAtION GUITEveeieeeiiieeiie et e e e e e et e e e e e e e e nrne e as 195
B [K3 = 11 = Lo PR 197
11.1. Installation StEP DY STEP .evuiiiiiiii i 197
11.2. Supported and recommended platformsccoooeiviiiiiiiiine 197

12. Database CONfIQUIAtioNcciiiiiiiiii e e e e e e e 199
12.1. Changing the location of the data Storeocceeiiiiiiiiiiniiii e, 199
12.2. Configuring Guvnor to use an external RDBMScccoocciiiviiiiiiiineiinnnns 200
12.3. Searching and indexing, Version StOragecccoevieieiiinieiiiiinneeiiiineeeens 202

13. Switch from JackRabbit to ModeShapeccocoeiiiiiiiiii e 203
14. Security - Authentication and basiC aCCesscccceiviiiiiiiiiiiin e, 207
14.1. Using your containers security and LDAPcccoeeiiiiiiiiiciiciceeee, 208

15. Fine grained permissions and SECUNILYcccoviiiiiiiiieiiiiieeece e 211
15.1. Enabling fine grained authorizationccccociiiiii i 213

16. Data ManAgEeMENTcouuiiii ittt e et 215
16.1. BACKUPS ..eieiiiiii i 215
16.2. Repository Data Migrationcoouueiiiieiiiiieiii e 215
16.3. Adding your own logos or styles to Guvnor web GUIc.cccoeeviineennnn. 216
16.4. IMpPOrt and EXPOITcoouuiiiiiiiii e 217

17, ATCRITECTUTE it e et e e e e e e s 219
17.1. BUldiNg frOM SOUICEiiiiiiiiiii e 220
17.1.0. MOUAUIES ..ottt e e eennes 220

17.1.2. Working wWith MaveN 2ccoouiiiiiiiiiieie e 220

17.1.3. WOrking With GWT .oooiiiiiiie e 220

17.1.4. Debugging, Editing and running with Eclipsecccccooevinienenn. 220

17.2. Re-usable COMPONENLScciuiiiiiiici e e e e 221
17.3. Versioning and STOFAgEcccuuuiiiiriiieieiiii et 221
17.4, CONHBULING oovnii e e e e e e aaas 222

Vi

Chapter 1.

Chapter 1. Introduction

This section introduces Guvnor. See the other relevant sections for installation, usage and
administration.

Walcoma: guast [Sign Out]

'~ Browse Find
Create New P [=IName search ...

¥ Assets
(DEnter the name or part of a name. Alteratively, use the categories to browse.

Find items with a name matching:
Include archived assets in results: (]

Search

[ElText search ...

Search for:

‘ Search

[=lAttribute search ...

Source;

Created by:
Description:
Format:

Subject:

Type:

Last modified by:
External link:

Checkin comment:
i Knowledge Bases

Yo Date created After: 7 Befare:

Last modified After: ¥ Before: s

L)
'Package snapshots
- Search

‘ 2 Administration

Figure 1.1. The Guvnor main screen

1.1. What is a Business Rules Manager?

A business rules manager allows people to manage rules in a multi user environment, it is a single
point of truth for your business rules, allowing change in a controlled fashion, with user friendly
interfaces.

Guvnor is the name of the web and network related components for managing rules with drools.
This combined with the core drools engine and other tools forms the business rules manager.

1.1.1. When to use Guvnor

You should consider Guvnor if any of the following apply to you: You need to manage versions/
deployment of rules, you need to let multiple users of different skill levels access and edit rules,
you don't have any existing infrastructure to manage rules, you have lots of "business" rules (as
opposed to technical rules as part of an application).

Chapter 1. Introduction

Guvnor can be used on its own, or with the IDE tooling (often both together).

Guvnor can be "branded" and made part of your application, or it can be a central rule repository.
1.1.1.1. When to not use Guvnor

In some situations applications may exist which have the rules in a database (for instance as part
of an existing application), and no new application is needed to manage the rules.

In this case, the drools-template library is worth a look - you can define templates for rules to be
generated from any tabular data source.

Otherwise, perhaps an existing rule management system and user interface already exists (and
is tailored to your environment already) - in this case migrating to Guvnor may not be necessary.

If you are using rules to solve complex algorithmic problems, and the rules are essentially an
integral part of the application (and don't need to be managed separately to the code).

1.1.2. Who uses Guvnor

The main roles of people who would use Guvnor are: Business Analyst, Rule expert, Developer,
Administrators (rule administrators etc).

Guvnor is designed in such a way as these different roles can be accommodated, it can be
controlled how much is exposed to different users in a safe fashion.

1.2. Features outline

Multiple types of rule editors (GUI, text) including:-
» Guided Rule Editor

* Rule Templates

» Decision Tables

« Store multiple rule "assets" together as a package
« Domain Specific Language support

« Complex Event Processing support

 Version control (historical assets)

» Testing of rules

* Validation and verification of rules

» Categorization

* Build and deploy including:-

Features outline

» Assembly of assets into a binary package for use with a ChangeSet or KnowledgeBuilder.
» Assembly of a self-contained camel-server.
e REST API to manipulate assets.

« WEBDAV integration.

Part |. User Guide

This part covers Guvnor for end-users.

Chapter 2.

Chapter 2. Quick Start Guide

2.1. Quick start guide

If you are reading this, you must be the impatient type who wants to kick the tires (and light the
fires) and have a look around as soon as possible. This section will provide a quick end to end
tour of the steps involved (but does not go through the concepts in detail). This assumes you have
installed the repository correctly, and are able to access the main login screen.

You can also consult the wiki [http://wiki.jboss.org/wiki/Wiki.jsp?page=RulesRepository] for some
tutorials and user tips (it IS a wiki, so you can even contribute your own tips and examples and
even upload files if you desire !).

http://wiki.jboss.org/wiki/Wiki.jsp?page=RulesRepository
http://wiki.jboss.org/wiki/Wiki.jsp?page=RulesRepository

Chapter 2. Quick Start Guide

% Browse

Create New »

Y Assets

fHKnowledge Bases
oA
Figure 211" Raekagersnapshatsuvnor

= Administration

)

Find

—IName se

(L)Enter

I:Oé}

Find items

Include a

—|Text seal

Search foi
—|Attribute

Cre

Last moc
Exte
Checkin ¢
Daty

Last

Supported browser platforms

The above picture shows the main feature areas of Guvnor.

Info: This is the initial screen, with links to resources.

Rules: This is the category and business user perspective.

Package: This is where packages are configured and managed.

* Deployment: this is where deployment snapshots are managed.

Admin: Administrative functions (categories, statuses, import and export)

2.1.1. Supported browser platforms

The supported server side platforms are mentioned in the installation guide. For browsers - the
major ones are supported, this includes Firefox (1.5 and up), IE7 and up, Opera, Safari, Google
Chrome etc. The preferred browser for most platforms is Firefox, it is widely available and free, if
you have any choice at all, Firefox is the preferred platform, followed by safari on mac. IE6 users
can experience some poor performance, and as this is a dangerously insecure browser IE7 or a
superior browser (such as Google Chrome, Firefox, Safari) is recommended.

2.1.2. Initial configuration

Some initial setup is required the first time. The first time the server starts up, it will create an
empty repository, then take the following steps:

« Once deployed, go to http://localhost:8080/guvnor-6.0.0.Beta2/ This will show the initial info
screen or login screen depending on the configuration.
« Ifitis a brand new repository, you will want to go to "Admin", and choose "Manage Categories"

(Add a few categories of your choosing, categories are only for classification, not for execution
or anything else and are optional, but recommended).

* Rules and other assets belong to a Package, a container for related artifacts.

» Select the "Knowledge Bases" section of the menu-bar on the left-hand side of the Guvnor
main window.

» Click on "Create New" to show the types of asset that can be created and select "New
Package". Click on "Create new package" and enter a suitable name.

 Click "Create package".

* Rules need a fact model (object model) to work. The model defines your domain artifacts
representing the knowledge you wish to manage.

» Select the "Knowledge Bases" section of the menu-bar on the left-hand side of the Guvnor
main window.

http://localhost:8080/guvnor-6.0.0.Beta2/

Chapter 2. Quick Start Guide

* Click on "Create New" and select "Upload POJO model JAR" (if you have a JAR containing
your Java model).

» Enter a suitable name and ensure the package you defined above is selected in the "Create
in package" dropdown.

¢ Click OK

» The POJO Upload screen is displayed.

» Click on "Browse" and select your JAR file.
* Click on "Upload".

« At this point, the package is configured and ready to go (you generally won't have to go through
that step very often).

(Note that you can also import an existing DRL package - it will store the rules in the repository
as individual assets).

2.1.3. Writing arule

« Select the "Knowledge Bases" section of the menu-bar on the left-hand side of the Guvnor main
window.

* Click on "Create New" and select the type of rule you want to create.

(There are different types of rule that can be authored but for simplicity we will demonstrate a
new "Guided Rule").

¢ Chose "New Rule".

« « Enter a suitable name and ensure the package you defined above is selected in the "Create
in package" dropdown.

(You can optionally assign the default "Category” to the rule at this stage too).
» Select "Business Rule (guided editor)" in the "Type (format) or rule" dropdown.
» Click "OK".

» The Guided Rule Editor will open. It represents a single DRL rule. You can add and edit
Conditions and Actions using the model, or models, that are available in the package.

« When you are done with rule editing, you can check in the changes (save), or you can validate
or "view source" (for the effective source).

* You can also add/remove categories from the rule editor, and other attributes such as
documentation (if you aren't sure what to do, write a document in natural language describing
the rule, and check it in, that can also serve as a template later)

10

Finding stuff

2.1.4. Finding stuff

In terms of navigating, you can either use the Rules feature, which shows things grouped by
categories, or you can use the Package feature, and view by package (and rule type). If you know
the name or part of the name of an asset, you can also use the "Quick find", start typing a rule
name and it will return a list of matches as you type (so if you have a sensible naming scheme,
it will make it very quick to find stuff).

2.1.5. Deployment

 After you have edited some rules in a package, you can click on the package feature, open the
package that you wish, and build the whole package.

« If that succeeds, then you will be able to download a binary package file which can be deployed
into a runtime system.

« You can also take a "snapshot" of a package for deployment. This freezes the package at that
point in time, so any concurrent changes to not effect the package. It also makes the package
available on a URL of the form: "http://<your server>/guvnor-webapp/org.drools.guvnor.Guvnor/
packages/<packageName>/<snapshotName>" (where you can use that URL and downloads
will be covered in the section on deployment).

11

12

Chapter 3.

Chapter 3. Concepts

3.1. Rules are assets

As the Guvnor can manage many different types of rules (and more), they are all classed as
"assets". An asset is anything that can be stored as a version in the repository. This includes
decision tables, models, DSLs and more. Sometimes the word "rule” will be used to really mean
"asset" (i.e. the things you can do also apply to the other asset types). You can think of asset
as a lot like a file in a folder. Assets are grouped together for viewing, or to make a package for
deployment etc.

3.2. Packages are assets

A package is a logical container for assets.

Packages form a deployable unit containing assets and once a package has been built it itself
becomes an asset.

The Global Area is a special type of package that contains assets that can be shared in other
packages. Shared assets are linked to those in the Global Area.

3.3. Perspectives

TODO

3.4. The business user perspective

You can see from this manual, that some expertise and practice is required to use Guvnor. In fact
any software system in some sense requires that people be "technical" even if it has a nice looking
GUI. Having said that, in the right hands Guvnor can be setup to provide a suitable environment
for non technical users.

The most appropriate rule formats for this use are using the Guided editor, Decision tables and
DSL rules. You can use some DSL expressions also in the guided editor (so it provides "forms"
for people to enter values).

You can use categories to isolate rules and assets from non technical users. Only assets which
have a category assigned will appear in the "categories" view.

The initial setup of Guvnor will need to be done by a developer/technical person who will set the
foundations for all the rules. They may also create "templates" which are rules which may be
copied (they would typically live in a "dummy" package, and have a category of "template" - this
can also help ease the way).

Deployment should also not be done by non technical users (as mentioned previously this happens
from the "Package” feature).

13

Chapter 3. Concepts

3.4.1. Creating a business user view

In most cases not all users will want to see all the functionality described here. You could have a
subset of users who you only want to let view or edit certain sets of rules, without getting confused
by all the other stuff. In this case you can use fine grained authorization (see the Admin Guide
on how to initialize this). By setting permissions on a per category basis, users that only have
category permissions will see a limited subset of functionality, and only items that are tagged with
those categories.

14

Chapter 4.

Chapter 4. Authoring Assets

4.1. Version management

Both assets and whole packages of assets are "versioned" in the Guvnor, but the mechanism is
slightly different. Individual assets are saved a bit like a version of a file in a source control system.
However, packages of assets are versioned "on demand" by taking a snapshot (typically which is
used for deployment). The next section talks about deployment management and snapshots.

Version history i

Version number @ Comment @ Date Modified @Stﬂtus @

1 my change 7/6/07 3:33 PM Draft
2 another change 7/6/07 3:33 PM Draft
3 ch ch changes 7/6/07 3:33 PM Draft

View selected version

Figure 4.1. Asset versions

Each time you make a change to an asset, it creates a new item in the version history. This is a
bit like having an unlimited undo. You can look back through the history of an individual asset like
the list above, and view it (and restore it) from that point in time.

4.2. The Asset Editor

The Asset Editor is the principle component of Guvnor's User-Interface. It consists of two tabs:-

* Attributes
* A Meta data (from the "Dublin Core" standard):-
"Last modified:" The last modified date.
"By:" Who made the last change.
"Note:" A comment made when the Asset was last updated (i.e. why a change was made)
"Created on:" The date and time the Asset was created.
"Created by:" Who initially authored the Asset.

"Format:" The short format name of the type of Asset.

15

Chapter 4. Authoring Assets

"Package:" The package to which the Asset belongs.
"Is Disabled:" Whether the Asset has been disabled from inclusion in a binary package.
"UUID:" A unique identifier for the Asset version.

* B : Other miscellaneous meta data for the Asset.

» C: Version history of the Asset.

» D : Free-format documentation\description for the Asset. It is encouraged, but not mandatory,
to record a description of the Asset before editing.

E : Discussions regarding development of the Asset can be recorded here.

File Edit Source Status: [Draft]

Attributes = Edit

[=IMetadata:

Title: RegexDsiRule *
Categories: Home Morigage/Technical || ==

Last modified 2011-06-04 22:02
by: admin
Note:
Created on: 2011-06-03 22:30
Created by: admin
Format: bri
Package: morigages g7
Is Disabled: []
UUID: e6EBd746-0d63-4707-9715-e8bede3elfic)

[+/Other meta data ...
[+/Version history ...
[+/Description

[+|Discussion

E C B A

Figure 4.2. The Asset Editor - Attributes tab

16

The Asset Editor

—Other meta data ...

Subject:
Type:
External link:

Source:

Figure 4.3. The Asset Editor - Other meta data

—Version history ...

Current version number: 2
Version history o

Figure 4.4. The Asset Editor - Version history

—|Description

=documentation=

Figure 4.5. The Asset Editor - Description

—|Discussion

Comment by alan parsons on Sun Jun 05 20: 14:42 BST 2011
Please review changes.

Add a discussion comment | Erase all comments D

Figure 4.6. The Asset Editor - Discussion
« Edit

* A : The Asset editor is where the "editor widget" lives - exactly what form the editor takes
depends on the Asset type.

* B : These are menus contains various actions for the Asset; such as Saving, Archiving,
changing Status etc.

17

Chapter 4. Authoring Assets

e C: The current status of the Asset.

File Edit Source Status: [Draft]

Attributes | Edit

WHEN y A
1. When the ages islessthan c7 a i

THEN o

(show

options...) -

A

Figure 4.7. The Asset Editor - Edit tab

4.3. Creating a package

Configuring packages is generally something that is done once, and by someone with some
experience with rules/models. Generally speaking, very few people will need to configure
packages, and once they are setup, they can be copied over and over if needed. Package
configuration is most definitely a technical task that requires the appropriate expertise.

All assets live in "packages" in the Guvnor - a package is like a folder (it also serves as a
"namespace"). A home folder for rule assets to live in. Rules in particular need to know what the
fact model is, what the namespace is etc.

So while rules (and assets in general) can appear in any number of categories, they only live in
one package. If you think of the Guvnor as a file system, then each package is a folder, and the
assets live in that folder - as one big happy list of files. When you create a deployment snapshot of
a package, you are effectively copying all the assets in that "folder" into another special "folder".

To create an empty package select "New Package" from the "Create new" (asset) menu.

18

Empty package

Create Mew # 53-“ F’acl-:at}e

2 ses Packages
. = New Spring Context

B defaultPackage

B er aee e -
Figure 4.8. New Package

4.3.1. Empty package

An empty package can be created by simply specifying a name and optional description.

Create a new package *
= Create a new package

& Create new package
O Import from drl file
MName:

Description:

Create package | Cancel |

Figure 4.9. New empty Package

4.3.2. Importing DRL packages

It is also possible to create a package by importing an existing DRL file. When you choose to
create a new package, you can choose an option to upload a . drl file. The Guvnor will then
attempt to understand that DRL, break create a package for you. The rules in it will be stored as
individual assets (but still as DRL text content). Note that to actually build the package, you will
need to upload an appropriate model (as a JAR) to validate against, as a separate step.

Create a new package b 4
L 3
P Create a new package
O create new package

@ Import from drl file

Browse...
DRL file to import
Import | Cancel

Note:
Importing a package from an existing DRL will create the package in the BRMS if it does not already exist. If it does exist, any new rules found will be merged into the package.
Any new rules created will not have any categories assigned initially, but rules and functions will be stored individually (e normalised). Queries, imports etc will show up in the package configuration.

Any DSLs or models required by the imported package will need to be uploaded separately.

Figure 4.10. Importing DRL packages

19

0~ @ U 5w

Chapter 4. Authoring Assets

4.4. Spring Contexts

This textual editor allows you to define Drools (and potentially any) Spring context file. These files
are later accessible through HTTP.

Palette

KSession
KBase
Node
KAgent
Spring Bean

= Packages
DoD
= DOD.PKG1
LATEST

codeReview

defaultPackal~
3

Figure 4.11. Spring Context - Editor

The editor comes with a basic pallete that you can use to paste predefined Spring Beans templates
like kbases, ksessions and so on.

The pallete also has a Package tree that can be used to add resources to the Spring Context
file being edited.

The Beans are inserted in the caret position of the editor

The elements in the pallete can be customized editing the file $GUVNOR_HOME/WEB-INF/
Clases/springContextElements.properties

Node=<drocls:grid-node id= =
KBase=- node=

KSession= ol type="stateful" kbase=
KAgent==drc d Fal
Spring_Bean=<bea d class

VoY

ew-1nstance= Talse PAT=drools:resourcesEANATANATANAT</drools: resources=\N</drools:Kggent=

Figure 4.12. Spring Context - Pallete Configuration

Each Spring Context has its own URL that applications can use to access it. These URLs are
shown in the Package Edit Screen

20

Working Sets

Category Rules: &7 (D)

Validate configuration

© Build whole package®@
O Use built-in selector®
- Use custom selecto@

Build binary package: Build package
Building & package will coliect all the assets, validate and compile into & deployable package.

Take snapshot: Create snapshot for deployment |

URL for package documentation: httu:ﬁlocalhost:E-OE-O.fdmoIS—auvnorfom.dmols.auvnor.Guvnorfuackmmortg@gs!LATEST!documentation.Ddf@
URL for package source: http://localhost:8080/drools-guvnor/rest/packages/morts s/source(d
URL for package binary: http://localhost: 8080/drools-guvnor/rest/packages/morts s/binary(1)
URL for running tests: httu:ﬂlocalhost:ﬁoao.fdmols—auvnorfom.dmol5.auvnor.Guvnor!Dackmmoﬂg@gstATEST!SCENARIOS@
Change Set: http://localhost:8080/drocls-guvnor/org. drools .guvnor. Guvnor/package/mortgages/L ATEST/ChangeSet xmi(3)
POJO Model: httu:ﬂlocalhost:&OE-O.fdrooISﬂuvnorfom.dmols.nuvnor.Guvnor!Dackgge_imor_t,ggggs!LATEST!MODEL@
SpringContext: =

http:/flocalhost:8080/drools-guvnor/org.drools.guvnor. Guvnor/package/mortgages/L ATEST/S pringContext/SpringContextA

http:/flocalhost:8080/drools-guvnor/org.drools.guvnor. Guvnor/package/mortgages/L ATEST/S pringContext/SpringContextB
http:/flocalhost:8080/drools-guvnor/org.drools.guvnor. Guvnor/package/mortgages/L ATEST/SpringContext/sc1

Figure 4.13. Spring Context - Public URLs

4.5. Working Sets

Working Sets are a mean for grouping Facts and then defining constraints on them. You can create
groups of Facts and only those Facts will be visible when authoring rules using the Guided Editor.

Right now, Working Sets must be activated manually from the Guided Editor window (using the
"Select Working Set" button placed in the toolbar). In the future, different Working Sets could be
assigned to different users to reduce the scope and complexity when authoring rules.

21

Chapter 4. Authoring Assets

Find Vehicles WS

File Edit Status: [Draftf

Attributes Edit

WS Definition WS Constraints || WS Custom Forms

Available Facts WorkingSet Facts
Cat Alrplane
Collection Car
Dog Train
Driver
Person B
Rejection <
Address o

Figure 4.14. Creating a new Working Set

The figure above shows the window used to create or modify Working Sets. In this window you
will find 2 lists. The list on the left side contains the possible Fact Types that can be added to the
Working Set. These facts are those defined/imported in the package's model. The list on the right
side contains the allowed Fact Types of this Working Set. When this Working Sets is active, only
those Fact Types could be used while authoring rules using the Guided BRL Editor

22

Working Sets

File Edit Status: [Draft]

Attributes Edit

WS Definition

&l

Field:

brand
- Constraints Parameters
Constraints

Matches | » =7 matches: Ford|Honda - E

C

Figure 4.15. Defining Field Constraints inside a Working Set

Once you have selected the valid Fact Types for a Working Set, you can add Constraints to the
fields of those Facts Types. The image above shows how the Field Constraint tab looks like. In
this configuration screen you will find:

A.- Fact Types dropdown: Here you will find a list containing the Working Set's Fact Types
B.- Field dropdown: Once you have selected a Fact Type, this dropdown will contain its fields.
C.- Constraints List: This lists shows all the Constraints applied to the selected Field

D.- Action Buttons: Using these buttons you will be able to add or remove Constraints to the
selected Field. Right now, Guvnor provides a built-in collection of Constraints. The idea for next
releases is to let users to plug their custom Constraints too.

E.- Constraint's Attributes: In this section you will find all the attributes of the current Constraint
that could be parametrized by the user.

In the example above, a Matches Constraint is created for Car.brand field. This means that when
rule authors use this field in a Rule condition, they should use a value valid according to this
constraint, otherwise they will receive an error or warning.

23

Chapter 4. Authoring Assets

4.5.1. Activating and Using Working Sets

Working Sets are no active by default in Guvnor. Because this is an experimental feature, you
must enable them manually in the Guided Editor panel if you want to use them. In the future,
Working Sets will be associated to each user's profile.

A new button was added in Guided Editor's Toolbar: "Select Working Sets". This button will open
a popup with the list of the package's Working Sets. Using this popup you can activate one or
more Working Sets.

When Working Sets are activated, only the Fact Types allowed by them could be used when
inserting new Patterns or Actions. The Patterns and Actions already present in the rule that contain
prohibited Fact Types are marked as read only. Take a look at the next screen shots comparing
the Guided Editor panel with and without Working Sets

WHEN

THEMN

Description:

Add a condition to the rule...

P05i'tb”3| Bottom =| @D

Doctor ...
Hospital ...
Patient ...

The following exists ...

From ...
From Accumulate ...
From Collect ...

Free form drl

Using Working Sets

The following does not exist ...

Any of the following are true ...

oK

escription:

octor

Add a condition to the rule...

P°5ﬂb”3| Bottom | @

Collection ...
Doctor ...
Hospital ...
HospitalUpdate ...
List ...

Monitar ...
MonitorEvent ...
Motification ...
Number ...
Patient ...
PersistentEntity ...
PulseMonitar ...
Set ..
TemperatureMonitor ...

Without Using Working Sets

The following does not exist ... IE‘

Figure 4.16. Comparison of "Add new Pattern” window using Working Set
and without using them

In the image you can see how Working Sets could help rule's authors by reducing the amount
of available Fact Types

24

Activating and Using Working Sets

WHEN o WHEN
There is a Doctor [$doctor] 1. There is a Doctor [$doctor]
2. There is a Bed [$bed] v} There is a Bed [$bed]
There is a Monitor [$monitor] with: LL lonitor [$monitor] with
3 namel equal to | RH57-E 3 name equal to RH57-E
There is a Bed There is a Be
From 5bed.mc-nilc-r.| Choose... ;l From $bed.monitor
4 4.

Without Using Woorking Sets Using Working Sets
Figure 4.17. Comparison of "Add new Pattern” window using Working Set
and without using them
Here you can see how Patterns containing prohibited Fact Types are switched to read only mode
after Working Sets are activated.
4.5.1.1. Using Field Constraint
Up to now we have only cover how Facts are filtered using Working Sets. Another important
feature of Working Sets is Field Constraints. We have already saw how to configure them, now
we are going to explain how to use them.

Because Field Constraints are defined inside a Working Set, we need to activate one or more
Working Set to start working with them. Once a Working Set defining Field's Constraints is active
we have two ways to use them: on demand validation and real-time validation.
On demand validation is performed when you press the "Verify" button present in Guided Editor's
toolbar. This button will fire a rule verification and will end up showing a report with the results.
Any violated constraint will be shown as an error or warning according to its relevance
WHEN
There is a Driver with: =
1@ age | equal to $ 12548
The value must be between 80 and 18
There is a Driver with: =
2.4 age | less than 5 25 g0
THEN
Insert Person =
(show
options...)

Figure 4.18. On demand Field Constraints validation

25

w44

w49

L IR

Chapter 4. Authoring Assets

The image above shows the report that appears when a Working Set defines a Range Constraint
on Driver.age. The age should be between 18 and 80.

Real-Time validation is an experimental feature (yes, inside another experimental feature like
Working Sets) that checks for Field's Constraints violations in real time and mark the lines where
the violations are using error or warning icons. This feature is disabled by default because
sometimes it could be expensive. If you want to try it out, you should enable it in Administration
-> Rules Verification. This configuration is not yet persisted, so you need to enable it every time
you start Guvnor.

WHEN o Title: [R3]
[show mare info...]

There iz a Driver with:

1.3
k age equal to El 1=
2./
i‘ age less than = 25
THEN ao
Insert Person
1.
(show
options...)

Figure 4.19. Real-Time Field Constraints validation

This Image shows the result of real-time validation. There you can see the same result as on
demand validation, but you don't need to click any button, and the errors/warnings are shown in
a more fashionable way!

Warning

The problem with real-time validation is that right now only support "top level"
Patterns.

4.6. Business rules with the guided editor

Business Rules authored with the Guided Editor are more commonly known as "BRL Rules".

These rules use the guided GUI which controls and prompts user input based on knowledge of
the object model.

This can also be augmented with DSL sentences.

26

Parts of the Guided Rule Editor

4.6.1. Parts of the Guided Rule Editor

The Guided Rule Editor is composed of three main sections.

The following diagram shows the editor in action. The following descriptions apply to the lettered
boxes in the diagram:-

File Edit Source B Shl‘l.rs:[Draﬂ]’]
[| —
WHEN - = D
1. Thereisa LoanApplication [app] ’ o4 —
Any of the following are true: E .
There is an Applicant with: a
crediRating equalto x| OK ;8 —
2 applicatonDate after i [c TR P LAY
There is an Applicant with: a —
creditRating equal to = sub prime %@

. Setvalue of LoanApplication [app] approved false x| o PPN
" Setvalue of LoanApplication [app] explanation Only AA =]
2. Retract LoanApplication [app] 8 b
{options) L
Aftributes:
salience 10 9
H
J

Figure 4.20. The guided BRL editor

A : The different parts of a rule:-

e The "WHEN" part, or conditions, of the rule.
e The "THEN" action part of the rule.

« Optional attributes that may effect the operation of the rule.

4.6.2. The "WHEN" (left-hand side) of a Rule

B : This shows a pattern which is declaring that the rule is looking for a "LoanApplication”
fact (the fields are listed below, in this case none). Another pattern, "Applicant”, is listed below
"LoanApplication”. Fields "creditRating" and "applicationDate" are listed. Clicking on the fact name
("LoanApplication") will pop-up a list of options to add to the fact declaration:-

27

Chapter 4. Authoring Assets

» Add more fields (e.qg. their "location").
» Assign a variable name to the fact (which you can use later on if needs be)
« Add "multiple field" constraints - i.e. constraints that span across fields (e.g. age > 42 or risk > 2).

C : The "minus" icon ("[-]") indicates you can remove something. In this case it would remove
the whole "LoanApplication" fact declaration. Depending upon the placement of the icon different
components of the rule declaration can be removed, for example a Fact Pattern, Field Constraint,

other Conditional Element ("exists", "not exists", "from" etc) or an Action.

D : The "plus" icon ("+") allows you to add more patterns to the condition or the action part of the
rule, or more attributes. In all cases, a popup option box is provided. For the "WHEN" part of the
rule, you can choose from a list of Conditional Elements to add:

« A Constraint on a Fact: it will give you a list of facts.
» "The following does not exist": the fact plus constraints must not exist.

« "The following exists": at least one match should exist (but there only needs to be one - it will
not trigger for each match).

« "Any of the following are true": any of the patterns can match (you then add patterns to these
higher level patterns).

* "From": this will insert a new From Conditional Element to the rule.

* "From Accumulate™: this will insert a new Accumulate Conditional Element to the rule.
* "From Collect": this will insert a new Collect Conditional Element to the rule.

« "From Entry-point": this allows you to define an Entry Point for the pattern.

» "Free Form DRL": this will let you insert a free chunk of DRL.
If you just put a fact (like is shown above) then all the patterns are combined together so they
are all true ("and").

E : This shows the constraint for the "creditRating" field. Looking from left to right you find:-

» The field name: "creditRating". Clicking on it you can assign a variable name to it, or access
nested properties of it.

« A list of constraint operations ("equal to" being selected): The content of this list changes
depending on the field's data type.

» The value field: It could be one of the following:-
1. A literal value: depending on the field's data type different components will be displayed:
» String -> Textbox

» Any numerical value -> Textbox restricting entry to values valid for the numerical sub-type
(e.g. a byte can hold values from -128 to 127). BigDecimal and Biginteger data-types are

28

The "WHEN?" (left-hand side) of a Rule

also supported. Please ensure the appropriate Class has been imported in the Package
configuration. The import will be added automatically if a POJO model has been uploaded
that exposes an accessor or mutator for a BigDecimal or Biginteger field. BigDecimal
values are automatically suffixed with "B" indicating to the underlying Engine that the literal
value should be interpreted as a BigDecimal. Bigintegers are suffixed with "I". The user
does not need to enter the suffix.

» Date -> Calendar
* Enumeration -> Listbox
» Boolean -> Checkbox
2. A "formula": this is an expression which is calculated (this is for advanced users only)

3. An Expression - this will let you use an Expression Builder to build up a full mvel expression.
(At the moment only basic expressions are supported)

F : This shows the constraint for the "applicationDate" field. Looking from left to right you find:

« The field name: "applicationDate".
» A list of constraint operations: "after" being selected.

« A "clock" icon. Since the "applicationDate" is a Date data-type the list of available operators
includes those relating to Complex Event Processing (CEP). When a CEP operator is used this
additional icon is displayed to allow you to enter additional CEP operator parameters. Clicking
the "clock" will cycle the available combinations of CEP operator parameters.

@ Note
Complex Event Processing operators are also available when the Fact has been
declared as an event. Refer to the "Fact Model" chapter of this user-guide for details
on how to add annotations to your Fact model. Events have access to the full range

of CEP operators; Date field-types are restricted to "after", "before" and "coincides".

@ Note
Facts annotated as Events can also have CEP sliding windows defined.

4.6.2.1. Adding Patterns

When clicking on the + button of the WHEN section, a new popup will appear letting you to add
a new Pattern to the Rule. The popup will looks similar to the image below. In this popup you
could select the type of Pattern to add by selecting one of the list items. In the list you will have an
entry for each defined Fact Type, in addition to the already mentioned Conditional Elements like

29

Chapter 4. Authoring Assets

"exists", "doesn't exist", "from", "collect", "accumulate", "from entry-point" and "free form DRL".
Once you have selected one of this elements, you can add a new Pattern by clicking on the "Ok"
button. The new pattern will be added at the bottom of the rule's left hand side. If you want to
choose a different position, you can use the combobox placed at the top of the popup.

You can also open this popup by clicking in the [+] button from a Pattern's action toolbar. If that
is the case, the pop-up that appears wouldn't constraint the position combobox, because the new
Pattern will be added just after the Pattern where you clicked.

Add a condition to the rule... b ¢

Position: Bottom +|®@

When the credit rating is rating A | DK | Cancel |
When the applicant dates is after dos

When the applicant approval is bool
When the ages is less than num

Applicant ...

Bankruptcy ...

IncomeSource ...
LoanApplication ...

The following does not exist ...
The following exists ...

Any of the following are true ...
From ...

From Accumulate ...

From Collect ...

From Entry Point ...

Free form drl v

Figure 4.21. Adding Patterns

4.6.2.2. Adding constraints

The below dialog is what you will get when you want to add constraints to a fact. In the top
half are the simple options: you can either add a field constraint straight away (a list of fields of
the applicable fact will be shown), or you can add a "Multiple field constraint" using AND or OR
operands. In the bottom half of the window you have the Advanced options: you can add a formula
(which resolves to True or False - this is like in the example above: "... salary > (2500 * 4.1)". You
can also assign a Variable name to the fact (which means you can then access that variable on
the action part of the rule, to set a value etc).

30

The "THEN" (right-hand side) of a Rule

Modify constraints for Applicant 4
B Modify constraints for Applicant
Add a restriction on a field |
Multiple field constraint . ~|®
Advanced options:

Add a new formula style expression MNew formula

Expression editor Expression editor |

Yariable name Set

Figure 4.22. Adding constraints

4.6.3. The "THEN" (right-hand side) of a Rule

H : This shows an "action" of the rule, the Right Hand Side of a rule consists in a list of actions.
In this case, we are updating the "explanation” field of the "LoanApplication” fact. There are quite
a few other types of actions you can use:-

 Insert a completely new Fact and optionally set a field on the Fact.
The value field can be one of the following:-
1. A literal value: depending on the field's data type different components will be displayed:

 String -> Textbox

» Any numerical value -> Textbox restricting entry to values valid for the numerical sub-type
(e.g. a byte can hold values from -128 to 127). BigDecimal and Biglnteger data-types are
also supported. Please ensure the appropriate Class has been imported in the Package
configuration. The import will be added automatically if a POJO model has been uploaded
that exposes an accessor or mutator for a BigDecimal or Biginteger field. BigDecimal
values are automatically suffixed with "B" indicating to the underlying Engine that the literal
value should be interpreted as a BigDecimal. Bigintegers are suffixed with "I". The user
does not need to enter the suffix.

» Date -> Calendar
e Enumeration -> Listbox
» Boolean -> Checkbox

2. A variable bound to a Fact or Field in the left-hand side. The data-type of the field being set
must match the data-type of the variable.

31

Chapter 4. Authoring Assets

3. A "formula™: this is an expression which is calculated (this is for advanced users only)

Logically insert a completely new Fact (see "Truth Maintenance" in the Expert documentation)
and optionally set a field on the Fact.

1. A literal value: depending on the field's data type different components will be displayed:
The value field can be one of the following:-
a. A literal value: depending on the field's data type different components will be displayed:
 String -> Textbox

» Any numerical value -> Textbox restricting entry to values valid for the numerical sub-
type (e.g. a byte can hold values from -128 to 127). BigDecimal and Biginteger data-
types are also supported. Please ensure the appropriate Class has been imported in
the Package configuration. The import will be added automatically if a POJO model
has been uploaded that exposes an accessor or mutator for a BigDecimal or Biginteger
field. BigDecimal values are automatically suffixed with "B" indicating to the underlying
Engine that the literal value should be interpreted as a BigDecimal. Bigintegers are
suffixed with "I". The user does not need to enter the suffix.

» Date -> Calendar
* Enumeration -> Listbox
» Boolean -> Checkbox

b. A variable bound to a Fact or Field in the left-hand side. The data-type of the field being
set must match the data-type of the variable.

c. A "formula™: this is an expression which is calculated (this is for advanced users only)

2. A variable bound to a Fact or Field in the left-hand side. The data-type of the field being set
must match the data-type of the variable.

3. A "formula": this is an expression which is calculated (this is for advanced users only)

Modify a field of an existing fact (which tells the engine the fact has changed).

The value field can be one of the following:-

1. A literal value: depending on the field's data type different components will be displayed:
 String -> Textbox

» Any numerical value -> Textbox restricting entry to values valid for the numerical sub-type
(e.g. a byte can hold values from -128 to 127). BigDecimal and Biglnteger data-types are
also supported. Please ensure the appropriate Class has been imported in the Package
configuration. The import will be added automatically if a POJO model has been uploaded

32

The "THEN" (right-hand side) of a Rule

that exposes an accessor or mutator for a BigDecimal or Biginteger field. BigDecimal
values are automatically suffixed with "B" indicating to the underlying Engine that the literal
value should be interpreted as a BigDecimal. Bigintegers are suffixed with "I". The user
does not need to enter the suffix.

» Date -> Calendar
* Enumeration -> Listbox
* Boolean -> Checkbox

2. A variable bound to a Fact or Field in the left-hand side. The data-type of the field being set
must match the data-type of the variable.

3. A "formula": this is an expression which is calculated (this is for advanced users only)

» Setafield on afact (in which case the engine doesn't know about the change - normally because
you are setting a result).

The value field can be one of the following:-
1. A literal value: depending on the field's data type different components will be displayed:
 String -> Textbox

« Any numerical value -> Textbox restricting entry to values valid for the numerical sub-type
(e.g. a byte can hold values from -128 to 127). BigDecimal and Biglinteger data-types are
also supported. Please ensure the appropriate Class has been imported in the Package
configuration. The import will be added automatically if a POJO model has been uploaded
that exposes an accessor or mutator for a BigDecimal or Biginteger field. BigDecimal
values are automatically suffixed with "B" indicating to the underlying Engine that the literal
value should be interpreted as a BigDecimal. Biglntegers are suffixed with "I". The user
does not need to enter the suffix.

» Date -> Calendar
* Enumeration -> Listbox
» Boolean -> Checkbox

2. A variable bound to a Fact or Field in the left-hand side. The data-type of the field being set
must match the data-type of the variable.

3. A "formula™: this is an expression which is calculated (this is for advanced users only)
« Retract a fact from the Engine's Working Memory.
» Add Facts to existing global lists.

» Call a method on a variable.

33

Chapter 4. Authoring Assets

» Write a chunk of free form code.

4.6.4. Optional attributes

The attributes section of a rule provides the means to define metadata and attributes (such as

"salience", "no-loop" etc).

Click on the "+" icon to add a new metadata or attribute definition. Each defined will appear listed
in this section.

Click on the "-" icon beside each metadata or attribute to remove it.

4.6.4.1. Salience

Each rule has a salience value which is an integer value that defaults to zero. The salience value
represents the priority of the rule with higher salience values representing higher priority. Salience
values can be positive or negative.

4.6.5. Pattern/Action toolbar

G : Next to each Pattern or Action you will find a toolbar containing 3 buttons.

The first "+" icon lets you insert a new Pattern/Action at an arbitrary location. The other "+" icons
allow you to insert a new Pattern/Action below that you have selected.

The remaining arrow icons allow you to move the current Pattern/Action up or down.

4.6.6. User driven drop down lists

ok

AA A
oK
Sun%’ime v

Figure 4.23. Data enumeration showing as a drop down list

Note that is it possible to limit field values to items in a pre-configured list. This list is either defined
by a Java enumeration or configured as part of the package (using a data enumeration to provide
values for the drop down list). These values can be a fixed list, or (for example) loaded from a
database. This is useful for codes, and other fields where there are set values. It is also possible

34

Augmenting with DSL sentences

to have what is displayed on screen, in a drop down, be different to the value (or code) used in a
rule. See the section on data enumerations for how these are configured.

It is possible to define a list of values for one field that are dependent upon the value of one or
more other fields, on the same Fact (e.g. a list of "Cities" depending on the selected "Country
region"). Please refer to the section on "Enumerations” for more information.

4.6.7. Augmenting with DSL sentences

If the package the rule is part of has a DSL configuration, when when you add conditions or actions,
then it will provide a list of "DSL Sentences" which you can choose from - when you choose one,
it will add a row to the rule - where the DSL specifies values come from a user, then a edit box
(text) will be shown (so it ends up looking a bit like a form). This is optional, and there is another
DSL editor. Please note that the DSL capabilities in this editor are slightly less then the full set
of DSL features (basically you can do [when] and [then] sections of the DSL only - which is no
different to drools 3 in effect).

The following diagram shows the DSL sentences in action in the guided editor:

WHEN

A template captures |yalues ina form style of input®
THEN

Action sentence template®
(options)

Figure 4.24. DSL in guided editor

35

Chapter 4. Authoring Assets

4.6.8. A more complex example:

WHEMN o
There is a Person [$p] with:

1 birthDate | less than ;[19-Dec-1982
)= |carbrand == "Ford" && salary = (2500 * 4.1)
There is an Address with:
> street| equal to E| Eim st.
From $p.addresses. Choose... =l

The following does not exist:
There is a Person with:

3.
salary| equal to :ll'.ﬂ.'l= tp.salary * 2
There is a Mumber [$totalAddresses]
From Accumulate
There is an Address [$a] with:
zipCode | equal to Fl43240
4.
From $p.addresses. Choose... |
Customn Code Function
Function:| count{%a)
THEN e
Insert Person: %
1.
name $p.name
(show
options...}

Figure 4.25. A more complex BRL example

In the above example, you can see how to use a mixture of Conditional Elements, literal values,
and formulas. The rule has 4 "top level" Patterns and 1 Action. The "top level" Patterns are:

1. A Fact Pattern on Person. This Pattern contains two field constraints: one for birthDate field
and the other one is a formula. Note that the value of the birthDate restriction is selected from
a calendar. Another thing to note is that you can make calculations and use nested fields in the
formula restriction (i.e. car.brand). Finally, we are setting a variable name ($p) to the Person
Fact Type. You can then use this variable in other Patterns.

E] Note
The generated DRL from this Pattern will be:

36

DSL rules

$p : Person(birthDate < "19-Dec-1982" , eval (car.brand == "Ford"
&& salary > (2500 * 4.1)))

2. AFrom Pattern. This condition will create a match for every Address whose street name is "Elm
St." from the Person's list of addresses. The left side of the from is a regular Fact Pattern and
the right side is an Expression Builder that let us inspect variable's fields.

3. A "Not Exist" Conditional Element. This condition will match when its content doesn't create a
match. In this case, its content is a regular Fact Pattern (on Person). In this Fact Pattern you
can see how variables ($p) could be used inside a formula value.

4. A "From Accumulate" Conditional Element. This is maybe one of the most complex Patterns
you can use. It consist in a Left Pattern (It must be a Fact Pattern. In this case is a Number
Pattern. The Number is named $totalAddresses), a Source Pattern (Which could be a Fact
Pattern, From, Collect or Accumulate conditional elements. In this case is an Address Pattern
Restriction with a field restriction in its zip field) and a Formula Section where you can use any
built-in or custom Accumulate Function (in this example a count() function is used). Basically,
this Conditional Element will count the addresses having a zip code of 43240 from the Person's
list of addresses.

4.7. DSL rules

DSL rules are textual rules, that use a language configuration asset to control how they appear.

Chapter 4. Authoring Assets

File Edit Source Status: 'Drait’

Attributes | Edit

WHEN o A
1. When the agesis less than 35 g F 4 9
2 When the applicant dates is after 01-Jan-2000 = Ny
3. When the applicant approval is | f5)se LI g gL 4
THEN o
1. Approve the loan = L4
(show
options...) -

Figure 4.26. DSL rule

A dsl rule is a single rule. Referring to the picture above, you can a text editor. You can use the
icons to the right to provide lists of conditions and actions to choose from (or else press Control
+ Space at the same time to pop up a list).

4.8. Technical rules (DRL)

Technical (DRL) rules are stored as text - they can be managed in the Guvnor. A DRL can either
be a whole chunk of rules, or an individual rule. if its an individual rule, no package statement or
imports are required (in fact, you can skip the "rule" statement altogether, just use "when" and
"then" to mark the condition and action sections respectively). Normally you would use the IDE to
edit raw DRL files, since it has all the advanced tooling and content assistance and debugging.
However, there are times when a rule may have to deal with something fairly technical in a package
in Guvnor. In any typical package of rules, you generally have a need for some "technical rules"
- you can mix and match all the rule types together of course.

salience 100 #this can short circuit any processing
when

g : Approve()

p : Policy()
then

Figure 4.27. DRL technical rule

38

Spreadsheet decision tables

4.9. Spreadsheet decision tables

Multiple rules can be stored in a spreadsheet. Each row in the spreadsheet is a rule, and each
column is either a condition, an action, or an option. The Drools Expert User Guide discusses
spreadsheet decision tables in more detail.

o dt
Upload new version: Browse... | Upload

Download current version: Download

This is a decision table in a spreadshest (XL5). Typically they contain many rules in one sheet.

View source | Validate

Figure 4.28. Spreadsheet decision table

To use a spreadsheet, you upload an XLS file (and can download the current version, as per the
picture above). To create a new decision table, when you launch the rule wizard, you will get an
option to create one (after that point, you can upload the XLS file).

4.10. Guided decision tables (web based)

The guided decision table feature allows decision tables to be edited in place on the web. This
works similar to the guided editor by introspecting what facts and fields are available to guide the
creation of a decision table. Rule attributes, meta-data, conditions and actions can be defined in a
tabular format thus facilitating rapid entry of large sets of related rules. Web-based decision table
rules are compiled into DRL like all other rule assets.

4.10.1. Types of decision table

There are broadly two different types of decision table, both of which are supported in Guvnor:-

» Extended Entry

 Limited Entry

4.10.1.1. Extended Entry

An Extended Entry decision table is one for which the column definitions, or stubs, specify
Pattern, Field and operator but not value. The values, or states, are themselves held in the
body of the decision table. It is normal, but not essential, for the range of possible values to be

39

Chapter 4. Authoring Assets

restricted by limiting entry to values from a list. Guvnor supports use of Java enumerations, Guvnor
enumerations or decision table "optional value lists" to restrict value entry.

Decision tahle

Age Make
H le Description Applicant [Sa) viehicle [Sv] Premium
age [<] make [==
4= = 35 BMW 1000
4= o 35 Audi 1000

Figure 4.29. Extended Entry Decision table

4.10.1.2. Limited Entry

A Limited Entry decision table is one for which the column definitions specify value in addition to
Pattern, Field and operator. The decision table states, held in the body of the table, are boolean
where a positive value (a checked tick-box) has the effect of meaning the column should apply,
or be matched. A negative value (a cleared tick-box) means the column does not apply.

Decision table

Age =35 BN Audi
T # Description m Premium 100
age [=35] make [==BMW] make [==Audi]
= 8|1 V] V] /] O
% 8|2 O] /] O
5 8|3] O /] O
g m| 4 O O & O]
& B3| 5]] O O
% 8|6 O (V] O O
= 8|7 V] O O O
% 8|8 O O O O

Figure 4.30. Limited Entry Decision table

40

Main components\concepts

4.10.2. Main components\concepts

The guided decision table is split into two main sections:-

* The upper section allows table columns to be defined representing rule attributes, meta-data,
conditions and actions.

» The lower section contains the actual table itself; where individual rows define separate rules.

+/Condition columns

+Action columns

+l{options)
i # Descripfip ——Thlenoe Thame age age
gt s
—
_p""'-'
gl 1 1 Bill 30 12345
Bl 2 2 Ben <otherwise> 12345
ol d 3 Weed 40 12345
T -“-‘_"'—"—--"‘—'——-—L_ cptherwise= 50 12345 .

Figure 4.31. Main components

4.10.2.1. Navigation

Cells can be selected in a variety of ways:-

« Firstly individual cells can be double-clicked and a pop-up editor corresponding to the underlying
data-type will appear. Groups of cells in the same column can be selected by either clicking
in the first and dragging the mouse pointer or clicking in the first and clicking the extent of the
required range with the shift key pressed.

« Secondly the keyboard cursor keys can be used to navigate around the table. Pressing the
enter key will pop-up the corresponding editor. Ranges can be selected by pressing the shift
key whilst extending the range with the cursor keys.

Columns can be resized by hovering over the corresponding divider in the table header. The
mouse cursor will change and then the column width dragged either narrower or wider.

4.10.2.2. Cell merging

The icon in the top left of the decision table toggles cell merging on and off. When cells are
merged those in the same column with identical values are merged into a single cell. This simplifies
changing the value of multiple cells that shared the same original value. When cells are merged
they also gain an icon in the top-left of the cell that allows rows spanning the merged cell to be
grouped.

41

Chapter 4. Authoring Assets

@ # Description salience Lol age age
I —
g 2|1 1 Bil 30 =l 12345
g =2 2 = Ben <ptherwise>
gr B2 3 3
gr B2 4 4
gr B B L
g =6 6 Weed 40 =l 12345
gr B 7 T =ptherwise> 50
Figure 4.32. Cell merging
4.10.2.3. Cell grouping
Cells that have been merged can be further collapsed into a single row. Clicking the [+\-] icon in
the top left of a merged cell collapses the corresponding rows into a single entry. Cells in other
columns spanning the collapsed rows that have identical values are shown unchanged. Cells in
other columns spanning the collapsed rows that have different values are highlighted and the first
value displayed.
@ # Diescription salience Ll age age
I ——
gr B2 1 1 Bill 30 12345
+ = H} B - e
&= =6 6 Weed 40 =] 12345
gr B 7 7 =ptherwises 50

Figure 4.33. Cell grouping

When the value of a grouped cell is altered all cells that have been collapsed also have their
values updated.

4.10.2.4. Operation of "otherwise"

Condition columns defined with literal values that use either the equality (==) or inequality (!=)
operators can take advantage of a special decision table cell value of "otherwise". This special
value allows a rule to be defined that matches on all values not explicitly defined in all other rules
defined in the table. This is best illustrated with an example:-

42

Main components\concepts

when
Cheese(nanme not in ("Cheddar", "Edant, "Brie"))

t hen

end

when
Cheese(nane in ("Cheddar", "Edant, "Brie"))

t hen

end

4.10.2.5. Re-arranging columns

Whole patterns and individual conditions can be re-arranged by dragging and dropping them
in the configuration section of the screen. This allows constraints to be re-ordered to maximise
performance of the resulting rules, by placing generalised constraints before more specific. Action
columns can also be re-arranged by dragging and dropping them.

— Condition columns

B el |

income : IncomeSource
8 income
57 Mew column

Figure 4.34. Re-arranging Condition patterns

43

Chapter 4. Authoring Assets

application : LoanApplication
= ﬁamnunt min

= I;:1?‘atm nt max
8 deposit max

Figure 4.35. Re-arranging columns
4.10.3. Defining a web based decision table

4.10.3.1. Manual creation

When a new empty decision table has been created you need to define columns for Facts, their
constraints and corresponding actions.

4.10.3.1.1. Column configuration

Expand the "Decision table" element and you will see three further sections for "Conditions",
"Actions" and "Options". Expanding either the "Conditions" or "Actions" sections reveals the "New
column” icon. This can be used to add new column definitions to the corresponding section.
Existing columns can be removed by clicking the "-" icon beside each column name, or edited by
clicking the "pencil” icon also beside each column name. The "Options" section functions slightly
differently however the principle is the same: clicking the "Add Attribute/Metadata” icon allows
columns for table attributes to be defined (such as "salience", "no-loop" etc) or metadata added.

—| Decision table

= New column

—| Condition columns

LoanApplication [application]

B ;/amount min
B amount max

B #period
B deposit max

IncomeSource [income]
B Fincome
= Action columns

B //Loan approved
8 ZLMI
B Arate

= (options)
Alffributes:
Benabled Defaultvalue: [Hide column:

Figure 4.36. Column configuration

44

Defining a web based decision table

4.10.3.1.1.1. Utility columns

All decision table contain two utility columns containing rule number and rule description.

4.,10.3.1.1.2. Adding columns
To add a column click on the "New column” icon.

You are presented with the following column type selection popup.

Add a new column
Add a new Metadata\l&Attribute column

Add a simple Condition

Add a Condition BRL fragment

Set the value of a field

Set the value of a field on a new fact

Retract an existing fact

Execute a Work Item

Set the value of a field with a Work Itermn parameter

&4 Include advanced options

ok

Figure 4.37. Column type popup

Type of column:

By default the column type popup only shows the following simple types:-

* Add a new Metadata\Attribute column
* Add a simple Condition

» Set the value of a field

Set the value of a field on a new fact

» Retract an existing fact

Clicking on "Include advanced options" adds the following additional "advanced" column types for

more advanced use cases:-

« Add a Condition BRL fragment
» Execute a Work ltem

» Set the value of a field with a Work Item parameter

45

Chapter 4. Authoring Assets

» Set the value of a field on a new Fact with a Work Item parameter
e Add an Action BRL fragment

4.10.3.1.1.3. Simple column types

4.10.3.1.1.3.1. Metadata

Zero or more meta-data columns can be defined, each represents the normal meta-data
annotation on DRL rules.

4.10.3.1.1.3.2. Attributes

Zero or more attribute columns representing any of the DRL rule attributes (e.g. salience, timer,
enabled etc) can be added. An additional pseudo attribute is provide in the guided decision table
editor to "negate" a rule. Use of this attribute allows complete rules to be negated. For example
the following simple rule can be negated as also shown.

when
$c : Cheese(name == "Cheddar")
t hen

end

when
not Cheese(nane == "Cheddar")
t hen

end

4.10.3.1.1.3.3. Simple Condition

Conditions represent constraints on Fact Patterns defined in the left-hand side, or "when" portion,
of a rule. To define a condition column you must first select or define a Fact Pattern bound to
a model class. You can choose to negate the pattern. Once this has been completed you can
define field constraints. If two or more columns are defined using the same fact pattern binding the
field constraints become composite field constraints on the same pattern. If you define multiple
bindings for a single model class each binding becomes a separate model class in the left-hand
side of the rule.

When you edit or create a new column, you will be given a choice of the type of constraint:-

« Literal : The value in the cell will be compared with the field using the operator.

* Formula: The expression in the cell will be evaluated and then compared with the field.

46

Defining a web based decision table

« Predicate : No field is needed, the expression will be evaluated to true or false.

Condition column configuration 4
Pattern: LoanApplication [application] &

Calculation type: @ Literal value O Formula O Predicate
Field: amount @7
Operator: greater than &
From Entry Point:
Column header (description): amount min
(optional) value list: €Y
Default value:
Binding:
Hide column: [

Apply changes

Figure 4.38. Simple Condition popup
4.10.3.1.1.3.4. Set the value of afield

An Action to set the value of a field on previously bound fact. You have the option to notify the
Rule Engine of the modified values which could lead to other rules being re-activated.

Column configuration (set a field on a fact) b
Fact application 7
Field: approved &

Column header (description): Loan approved

(optional) value list: true, false @

Defaultvalue:; Choose... |

Update engine with changes: [] @
Hide column: [

Apply changes |

Figure 4.39. Set the value of a field popup

47

Chapter 4. Authoring Assets

4.10.3.1.1.3.5. Set the value of a field on a new fact

An Action to insert a new Fact into the Rule Engine Working Memory and set the a value of one of
the new Facts' fields. You can choose to have the new Fact "logically inserted" meaning it will be
automatically retracted should the conditions leading to the action being invoked cease to be true.
Please refer to the Drools Expert documentation for details on Truth Maintenance and Logical
insertions.

Action column configuration (inserting a new fact) 4
Pattern: LoanApplication [§la] o#
Field: approved &

Column header (description): Approve application
(optional) value list: @
Defaultvalue: Choose. . ~|
Logically insert: (] (@
Hide column: [

Apply changes |

Figure 4.40. Set the value of a field on a new fact popup
4.10.3.1.1.3.6. Retract an existing fact

An Action to retract a bound Fact.

Column configuration (retract a fact) x
Column header (description): Remove application
Hide column: [

Apply changes

Figure 4.41. Retract an existing fact popup
4.10.3.1.1.4. Advanced column types
4.10.3.1.1.4.1. Condition BRL fragments

A construct that allows a BRL fragment to be used in the left-hand side of a rule. A BRL fragment
is authored using the Guided Rule Editor and hence all features available in that editor can be
used to define a decision table column; such as "from", "collect” and "accumulate” etc. When using

48

Defining a web based decision table

the embedded Guided Rule Editor field values defined as "Template Keys" will form columns in
the decision table. Facts and Fact's fields bound in the BRL fragment can be referenced by the
simpler column types and vice-versa.

In the following example two Template Keys have been defined and hence two columns appear
in the decision table.

Condition column configuration (ERL fragment) x®
Column header (description): Complex
Hide column: []
WHEN s
There is an Applicant [$a] with: 2
L greater than =|sages 5,8 gL
creditRating equal to d LU -
There is a LoanApplication with: =
3 deposit greater than ~|10000m =, 8 F0o5
lengthYears equal to ;|$IengmlnYears=l Ng B
Apply changes
Figure 4.42. Defining a Condition with BRL
w deposit max INCome Complex Loan approved LMI
nj IncomeSource Sage SlengthinYears application application
s [=] deposit [<] type [=] age lengthYears approved insuranceCost
20000 Asset 30 10 true 0
2000 Job 30 20 true 0
3000 Job 30 a0 true 10

/

Figure 4.43. The resulting decision table

4.10.3.1.1.4.2. Execute a Work Item

An Action invoking a jBPM Work Item Handler setting it's input parameters to bound Facts\Facts

fields values.

49

Chapter 4. Authoring Assets

4.10.3.1.1.4.3. Set the value of a field with a Work Item parameter

An Action setting the value of a Fact's field to that of a BPM Work Item Handlers result parameter.

4.10.3.1.1.4.4. Set the value of a field on a new Fact with a Work Item parameter

An Action setting the value of a new Fact's field to that of a JBOM Work Item Handlers result

parameter.

4.10.3.1.1.4.5. Action BRL fragment

A construct that allows a BRL fragment to be used in the right-hand side of a rule. A BRL fragment
is authored using the Guided Rule Editor and hence all features available in that editor can be
used to define a decision table column. When using the embedded Guided Rule Editor field values
defined as "Template Keys" will form columns in the decision table. Facts bound in the BRL
fragment can be referenced by the simpler column types and vice-versa.

In the following example two Template Keys have been defined and hence two columns appear

in the decision table.

Condition column configuration (BERL fragment)

Column header (description): | Complex

Hide column: [

WHEN
There is an Applicant [$a] with:
1. age greater than
creditRating equal to

There is a LoanApplication with:

deposit greater than
length'ears | eqgual to

L |

Apply changes

Figure 4.44. Defining an Action with BRL

~|Sagen 5,8
JM: S B

= |10000m =8
= |$lengthinYearsa 5,8

i

i

50

Defining a web based decision table

~

d deposit max income Complex Loan approved LMI
n} IncomeSource ZlengthinYears applicaticn application
rs[=] deposit [<] type [lengthYears approved insuranceCost
20000 Asset 10 true 0
2000 Job 20 true 0
3000 Job a0 true 10

/

Figure 4.45. The resulting decision table

4.10.3.2. Using a Wizard

A Wizard can also be used to assist with defining the decision table columns.

The wizard can be chosen when first electing to create a new rule. The wizard provides a number
of pages to define the table:-

e Summary

* Add Fact Patterns

+ Add Constraints

» Add Actions to update facts

+ Add Actions to insert facts

» Columns to expand

4.10.3.2.1. Selecting the wizard

The "New Wizard" dialog shows a "Use wizard" checkbox when the asset type is set to "Decision
Table (Web - guided editor)".

51

Chapter 4. Authoring Assets

MNew Rule b4

—-.""\-;1..-"

Mew Rule

O Create new:
O Import asset from global area:
Name: limted-entry
S 1

= Home Mortgage

Initial category: = Commercial Mortgage

[a B |
1 Type (format) of rule: ' Decision Table (Web - guided editor) ;| b
& Use Wizard
Options: O Extended entry, values defined in table body
_ © Limited entry, values defined in columns

© Create in Package: INSUrANce d

) Create in Global area

Initial description:

ok

Figure 4.46. Selecting the wizard
4.10.3.2.2. Summary page

the summary page shows a few basic details about the decision table and allows the asset name
to be changed.

52

Defining a web based decision table

Guided Decision Table Wizard

" Add Constraints
/' Add Actions to update Facts

/' Add Actions to insert Facts

€ €& & & & <&

7 Summary Summary of fields for the decision table.
/' Add Fact Patterns

*
Name: | example

Initial description:

Create in Package: cep

/' Columns to expand

<- Previous | Mext -> | Cancel | Finish |

Figure 4.47. Summary page

4.10.3.2.3. Add Fact Patterns page

This page allows Fact types to be defined that will form the "When" columns of the rules. Fact
types that are available in your model will be shown in the left-hand listbox. Select a Fact type
and use the ">>" button to add it to your list of chosen facts on the right-hand listbox. Removal
is a similar process: the Fact that is no longer required can be selected in the right-hand listbox
and the "<<" button used to remove it. All Fact types need to be bound to a variable. Incomplete
Fact types will be highlighted and a warning message displayed. You will be unable to finish your
definition until all warnings have been resolved.

53

Chapter 4. Authoring Assets

Guided Decision Table Wizard ®
v Summary Define Facts\Patterns on which constraints can be defined.
+/ Add Fact Patterns
+/ Add Constraints Available patterns Chosen patterns
+/ Add Actions to update Facts ArrayList tc : TelephoneCall
Cheese
+/ Add Actions to insert Facts
Collection

+ Columns to expand

List =
TelephoneCall <<

Binding: tc
From Entry Point:

Over sliding window: — None — ~|

<- Previous | Mext -> | Cancel | Finish |

Figure 4.48. Add Fact Patterns page

Guided Decision Table Wizard ®
S _
[Add Fact PHHTS 1

%/ Add Constraints Define Facts\Patterns on which constraints can be defined.

+/ Add Actions to ipdate Facts

+/ Add Actions to |nsert Facts CXEET I [Chosen patterns
+ Columns to exphnd ArrayList TelephoneCall
Cheese
Collection

List =
TelephoneCall <<

therefore marked as incol

The page has errors and
1
The wizard cannot be ﬁ:;s{e

B R

From Entry Point:

Over sliding window: — None — ~|

<- Previous | Mext -> | Cancel |

Figure 4.49. Example of an incomplete Fact definition

54

Defining a web based decision table

4.10.3.2.4. Add Constraints page

This page allows field constraints on the Fact types you have chosen to use in the decision table
to be defined. Fact types chosen on the previous Wizard page are listed in the right-hand listbox.
Selecting a Fact type by clicking on it will result in a list of available fields being shown in the middle
listbox together with an option to create a predicate that do not require a specific field. Fields can
be added to the pattern's constraints by clicking on the field and then the ">>" button. Fields can
be removed from the pattern definition by clicking on the Condition in the right-hand listbox and
then the "<<" button. All fields need to have a column header and operator. Incomplete fields will
be highlighted and a warning message displayed. You will be unable to finish your definition until
all warnings have been resolved.

Guided Decision Table Wizard

% Summary
of
W
o
W

s
W

Add Constraints

% Add Actions to insert Facts

/ Columns to expand

Define constraints on the Facts\Patterns fields.

Add Fact Patterns

Available patterns Available fields Conditions

Add Actions to update Facts tc : TelephoneCall this [Date of call] dateOfCall

duration : Whole number (intege
caller : Text
callee : Text

el
telephoneMumber : Text <<
dateOfCall : Date

[New Predicate]

— e
Calculation type: @ Literal value O Formula
Column header (description): Date of call
Operator: after =G |
(optional) value list: @

Default value:

<- Previous | Mext -> | Cancel | Finish |

Figure 4.50. Add Constraints page

4.10.3.2.5. Add Actions to update facts page

Fact types that have been defined can be updated in the consequence, or action, part of a rule.
This page allows such actions to be defined. Fact types added to the decision table definition are
listed in the left-hand listbox. Selecting a Fact type by clicking on it will result in a list of available
fields being shown in the middle listbox. Fields that need to be updated by the rule can be added
by selecting an available field and pressing the ">>" button. Fields can be removed similarly by
clicking on a chosen field and then the "<<" button. All actions require a column header. Any
incomplete actions will be highlighted and a warning message displayed. You will be unable to
finish your definition until all warnings have been resolved.

55

Chapter 4. Authoring Assets

Guided Decision Table Wizard

p duration : Whole number (intege
7 Add Actions to insert Facts (integ

caller : Text

 Summary Define actions to set the fields on bound Facts\Patterns.

%/ Add Fact Pattermns

+/ Add Constraints Avalable patterns Available fields Chosen fields

«/ Add Actions to update Facts | tc I TelephoneCall this [Who called] caller
&

&

/' Columns to expand
P callee : Text

el
telephoneMumber : Text <<

dateOfCall : Date

— e
Column header (description): Who called
(optional) value list: @

Default value:

O Update engine with changes: @

<- Previous | Mext -> | Cancel | Finish |

Figure 4.51. Add Actions to update facts page

4.10.3.2.6. Add Actions to insert facts page

Actions can also be defined to insert new Facts into the Rule Engine. A list of Fact types available
in your model are listed in the left-hand listbox. Select those you wish to include in your decision
table definition by clicking on them and pressing the ">>" button between the left most listbox
and that titled "Chosen patterns". Removal is a similar process whereby a chosen pattern can be
selected and removed by pressing the "<<" button. Selection of a chosen pattern presents the
user with a list of available fields. Fields that need to have values set by the action can be added
by selecting them and pressing the ">>" button between the "Available fields" and "Chosen fields"
listbox. Removal is a similar process as already described. New Facts need to be bound to a
variable and have a column heading specified. Incomplete Facts and\or fields will be highlighted
and a warning message displayed. You will be unable to finish your definition until all warnings
have been resolved.

56

Defining a web based decision table

Guided Decision Table Wizard
+/ Summary
+/ Add Fact Patterns

% Add Constraints

Define actions to insert new Facts\Patterns.

Available patterns Chosen patterns

Available fields Chosen fields

+/ Add Actions to update Facts ArrayList ¢ : Cheese this [Cheese] f1
; Chee: fl: Text
+/ Add Actions to insert Facts =€ o
) Collection f2: Text
+ Col 1 d
%" Columns to expan List == 3 Text ==
TelephoneCall << <<

*

Binding: ¢
O Logically assert a fact - the fact will be retracted when the supporting evidence is removed. @
Column header (description): Cheese *

(optional) value list: @

Default value:

<- Previous | Mext -> | Cancel | Finish |

Figure 4.52. Add Actions to insert facts page
4.10.3.2.7. Columns to expand page

This page controls how the decision table, based upon Conditions defined on the prior pages,
will be created. Condition columns defined with an optional list of permitted values can be used
to create rows in the decision table. Where a number of Condition columns have been defined
with lists of permitted values the resulting table will contain a row for every combination of values;
i.e. the decision table will be in expanded form. By default all Condition columns defined with
value lists will be included in the expansion however you are able to select a sub-set of columns
if so required. This can be accomplished by unticking the "Fully expand" checkbox and adding
columns to the right-hand listbox. If no expansion is required untick the "Fully expand" checkbox
and ensure zero columns are added to the right-hand listbox.

57

Chapter 4. Authoring Assets

Guided Decision Table Wizard
+/ Summary
+/ Add Fact Patterns

% Add Constraints

Define the columns from which the generated table will be expanded.

O Fully expand the table, including all columns.

«/ Add Actions to update Facts Available columns Chosen columns
+/ Add Actions to insert Facts [Who called] caller
«/ Columns to expand

<- Previous | Next -> | Cancel | Finish |

Figure 4.53. Columns to expand page

Guided Decision Table Wizard
+/ Summary

+/ Add Fact Patterns

%+ Add Constraints

+/ Add Actions to update Facts
+/ Add Actions to insert Facts

%/ Columns to expand

Define constraints on the Facts\Patterns fields.

Available patterns Available fields Conditions

tc : TelephoneCall this [Date of call] dateOfCall
duration : Whole number (intege [Who called] caller
caller : Text

Calculation type:

callee : Text ﬂ Jﬁ
telephoneMumber : Text <<

dateOfCall : Date

[New Predicate]

© Literal value O Formula

Column header (description): Who called *

Operator: equal to d

(optional) value li

Default value:

<- Previous | Mext -> | Cancel | Finish |

. |Rod,Jane,Freddie €y,

Figure 4.54. Example of a Condition column with optional values defined

58

Rule definition

=| Decision table

= Condition columns

8 ;/Date of call
8 #Who called

=7 MNew column

Action columns

(options)
. Dateofcal @ Whocaled |
i # Description TelephoneCall [t
dateCfCall [== caller [==
+ =(1 Rod
CE - | Jane
g B3 . Freddie

Figure 4.55. Example of a decision table generated with expanded columns

4.10.4. Rule definition

This section allows individual rules to be defined using the columns defined earlier.

Rows can be appended to the end of the table by selecting the "Add Row" button. Rows can also
be inserted by clicking the "+" icon beside an existing row. The "-" icon can be used to delete rows.

59

Chapter 4. Authoring Assets

i min-age max-age palicy type make model Premium
HTJH . Description m

age [==] age [<] type [—=] make [=] model [—=] premium
g B2 1 18 25 TPFT BMW 318i 1000
g B2 2 18 25 COMP BMW 318i 1500
g B2 3 18 25 TPFT BMW M3 2000
g B 4 18 25 COMP BMW M3 2500
g B[5 18 25 TPFT Audi A4 1500
g 2| 6 18 25 COMP Audi Ad 2000
g BT 18 25 TPFT Audi R& 2500
g B2 8 18 25 COMP Audi R& 3000

Add row... | Otherwise ‘ Analyze... ‘ Audit log |

Figure 4.56. Rule definition

4.10.5. Audit Log

An audit log has been added to the web-guided Decision Table editor to track additions, deletions
and modifications.

By default the audit log is not configured to record any events, however, users can easily select
the events in which they are interested.

The audit log is persisted whenever the asset is checked in.

60

Audit Log

Audit log
¥ Events being logged
& column deleted.
& column updated.
& Row inserted.
= Row deleted.
& column inserted.

4 4 00fi0 >

Mo entries.

Figure 4.57. An empty audit log

Once the capture of events has been enabled all susbsequent operations are recorded. Users

are able to perform the following:-

» Record an explanatory note beside each event.

» Delete an event from the log. Event details remain in the underlying repository.

Audit log
P Events being logged
4 4 140f4 » C

Column inserted.
On 25-Jun-2012 12:20:16.

Inserted Condition column "'Applicant not approved.
Field: approved
Operator: ==

Column inserted.
On 25-Jun-2012 12:19:51.
Inserted column for attribute ‘salience’.

Row inserted.
On 25-Jun-2012 12:19:41.

Row inserted at index [5].

Row inserted.
On 25-Jun-2012 12:19:40.
Row inserted at index [4].

Figure 4.58. Example of audit events

Only check applicant's not approv

61

Chapter 4. Authoring Assets

4.11. Templates of assets/rules

The guided rule editor is great when you need to define a single rule, however if you need to
define multiple rules following the same structure but with different values in field constraints or
action sections a "Rule Template" is a valuable asset. Rule templates allow the user to define a
rule structure with place-holders for values that are to be interpolated from a table of data. Literal
values, formulae and expressions can also continue to be used.

Rule Templates can often be used as an alternative for Decision Tables in Drools Guvnor.
4.11.1. Creating arule template
To create a template for a rule simply select the "New Rule Template" from the Knowledge Bases

"Create New" popup menu. The create "New Rule Template" asset popup window will appear
from which the normal asset attributes can be defined; such as name, category and description.

62

Creating a rule template

@ Drocls

" Browse

tHKnowledge Bases
Create New P
= e Packages
&5 cep
g defaultPackage
e # mortgages
" Business rule assets
Technical rule assets
®)= Functions
% psL configurations
= Model
4R processes
1=o] Enumerations
Ef Test Scenarios
al XML, Properties
al Other assets, documentation
o WorkingSets
f=:] SpringContext
s=a Global Area

A70A

El

Figure 4.59. Create a template

Find Business rule assets [mortgages]

[refresh lisk] | [open selected]

£9 New Package
i MNew Spring Context
29 New WorkingSet

% New Rule

E2 New Rule Template

% Upload POJO Model jar
& New Declarative Model
& New BPEL package
()= New Function

% New DSL

#F New RuleFlow

+F New BPMNZ Process
j’ Mew Enumeration

Ef Mew Test Scenario

ﬁ‘ﬂ Create a file.

" Rebuild all package binaries

[open selecte

Jptcy history
Approval

1 credit checks
] loans
DsIRule

ige

1As
15!

63

Chapter 4. Authoring Assets

New Rule Template 4

, New Rule Template

@ Create new:
C Import asset from global area:
Name: template-rulet
SR (]
— Home Mortgage

Initial category: — Commercial Mortgage

(]]

® Create in Package: Mortgages hd

(_) Create in Global area

an example template rule

Initial description:

o |

Figure 4.60. Create "New Rule Template" popup

4.11.2. Define the template

Once a rule template has been created the editor is displayed. The editor takes the form of the
standard guided editor explained in more detail under the "Rule Authoring" section. As the rule is
constructed you are given the ability to insert "Template Keys" as place-holders within your field
constraints and action sections. Literal values, formulae and expressions can continue to be used
as in the standard guided editor.

64

Defining the template data

Field value 2
o Field value
Literal value: Literal value | @
Template key: Template key | @
Advanced options:
Aformula: New formula |)
Expression editor: Expression editor | @

Figure 4.61. Template Key popup

The following screenshot illustrates a simple rule that has been defined with a "Template Key"
for the applicants' maximum age, minimum age and credit rating. The template keys have been
defined as "$max_age", "$min_age" and "$cr" respectively.

File Edit Source Status: [Drafi]

Attributes | Edit

Load Template Data |
WHEN e
There is an Applicant with: =2
age less than j $max_age Q@ =}
L age greater than or equal to ~|$min_age 548 w4
creditRating equal to | Sor - 3
2 There is a LoanApplication [$a] =2 i 4
THEN e
1 Modify value of LoanApplication [$a] approved false | m & g
(show —
options...)

Figure 4.62. Rule template in the guided editor

4.11.3. Defining the template data

When you have completed the definition of your rule template you need to enter the data that will
be used to interpolate the "Template Key" place-holders. Drools Guvnor provides the facility to

65

Chapter 4. Authoring Assets

enter data in a flexible grid within the guided editor screen. The grid editor can be launched by
pressing the "Load Template Data" button on the guided editor screen.

The rule template data grid is very flexible; with different pop-up editors for the underlying fields'
data-types. Columns can be resized and sorted; and cells can be merged and grouped to facilitate
rapid data entry.

One row of data interpolates the "Template Key" place-holders for a single rule; thus one row
becomes one rule.

66

Defining the template data

Template Data
Template Data
Smax_age Smin_age Sor
HiH
gs B 25 20 AL
gs B 26 20 OK
CE | 25 20 Sub prime
gs B 35 25 AA
g = 35 25 OK
gs B 35 25 Sub prime
gs B 45 35 AL
I | 45 35 OK
gs B 45 35 Sub prime

Save and close | Add row...

Figure 4.63. Template data grid

4.11.3.1. Cell merging

The icon in the top left of the grid toggles cell merging on and off. When cells are merged those in
the same column with identical values are merged into a single cell. This simplifies changing the
value of multiple cells that shared the same original value. When cells are merged they also gain
an icon in the top-left of the cell that allows rows spanning the merged cell to be grouped.

67

Chapter 4. Authoring Assets

Template Data
Template Data

HEH Smax_age Emin_age Bor
g == 25 = 20 AA
= B oK
CE | Sub prime
g == 35 = 25 AA
= B oK
gs B Sub prime
g == 45 = 35 AA
SUI = 0K
gs B Sub prime

Save and close | Add row..

Figure 4.64. Cell merging

4.11.3.2. Cell grouping

Cells that have been merged can be further collapsed into a single row. Clicking the [+\-] icon in
the top left of a merged cell collapses the corresponding rows into a single entry. Cells in other
columns spanning the collapsed rows that have identical values are shown unchanged. Cells in
other columns spanning the collapsed rows that have different values are highlighted and the first

value displayed.

68

Generated DRL

Template Data
Template Data

HEH Smax_age Emin_age Bor
g = 25 = 20 AA
& B OK
CE | Sub prime
g o= 35 25 AA
L 45 = 35 AA
& B OK
gs B Sub prime
Save and close | Add row...

Figure 4.65. Cell grouping

When the value of a grouped cell is altered all cells that have been collapsed also have their
values updated.

4.11.4. Generated DRL

Whilst not necessary, rule authors can view the DRL that will be generated for a "Rule Template"
and associated data. This feature and its operation is no different to that for other assets. Select
the "Source” -> "View Source” menu item from the Asset Editor screen. The DRL for all rules will
be displayed.

69

Chapter 4. Authoring Assets

Viewing source for: template-rulel

(\(3% Viewing source for: template-rulel

1. |rule "template-rulel 8"

%]

(o5]

n

[{m] oo

-

dialect "mvel"
when
Applicant{ age < 45 , age >= 35, creditRating == "Sub prime" }
Fa : LoanApplication()
then
Fa.setApproved(false)
update($a);

11 |rule "template-rulel 7™

12|
-
3. |
13
14, |
15
15
2
16. |

18. |

dialect "mvel"
when
Applicant(age < 45 , age == 35, creditRating == "OK")
Fa : LoanApplication()
then
Fa.setfpproved| false);
update($a);

10 land

Figure 4.66. Generated DRL

4.12. The Fact Model

For any rule base application, a fact model is needed to drive the rules. The fact model typically
overlaps with the applications domain model, but in general it will be decoupled from it (as it makes
the rules easier to manage over time). There are no technical limitations on using your domain
model as your fact model, however this introduces tighter coupling between your business domain
(domain model) and your knowledge domain (fact model). Consequentially if your domain model
were to change you would need to, at the very least, revisit your rule definitions.

4.12.1. Ways to define a Fact Model

There are two ways to do define your fact model; each of which will be discussed in more detail
in the following sections.

» Upload a JAR file containing Java Classes used by both your application and rules.

70

Creating a JAR Model

» Declare a model within Guvnor; that can be exported as a KnowledgeBase and used within
your Java code.

& MNew Package

3 Mew Spring Context

£9 New WorkingSet

¥ New Rule

E=l New Rule Template

Upload POJO Model jar
= New Declarative Model N
= Mew BEPEL package
®= New Function

% New DSL

** New RuleFlow

+* New BPMN2 Process
j MNew Enumeration

E MNew Test Scenario

& Create a file.

'-‘::-{h Rebuild all package binaries

Figure 4.67. Choosing a model type

4.12.2. Creating a JAR Model

Creating and uploading a JAR model file is a two step process.

71

Chapter 4. Authoring Assets

4.12.2.1. Create a JAR Model asset

Select "Upload POJO Model JAR" from the "Create New" popup menu from the "Knowledge
Bases" section of the Explorer widget. This will launch the "New Asset" configuration screen from
which the new upload can be given basic details such as name, category and a description.

New model archive (jar) i

New model archive (jar)

® Create new:
O Import asset from global area:
Name: myPojoModel
@® Create in Package:; mortgages hd
(J Create in Global area

A JAR containing my model.

Initial description:

ok

Figure 4.68. Creating a JAR Model asset

4.12.2.2. Upload a JAR Model into the asset

Once the POJO Model JAR asset has been created you are presented with a screen to upload
the actual JAR containing the model defined as Java classes and packaged in a regular Java JAR
file. Many Java IDE's are able to export classes as a JAR file.

72

Declarative model

File Edit Status: [Draft]

Attributes | Edit

myPojoModel

Upload new version: | Browse... | Upload

Download current version: Download

Figure 4.69. Uploading the JAR

4.12.3. Declarative model

Why would you chose declared types over JAR files: generally this reinforces the fact that the
model "belongs" to the KnowledgeBase, rather then the application, and allows the model to have
a lifecycle separate from the application. It also allows Java types to be enriched with Rule specific
annotations. Additionally it also removes the burden of keeping JAR files synchronised between
rules and the applications that use the rules.

Declarative models can be either:-

» A standalone definition of the entire Fact model used within your rules.
» Supplementary Fact definitions to support a Java POJO Model.

» Used to enrich a Java JAR model as uploaded in the previous section. Enriching JAR models
allows annotations used by Drools (such as a "role" of type "event" for Facts used as events in
Complex Event Processing) to be appended to classes. When enriching an existing Java JAR
model the package name in Guvnor needs to be identical to the Java package name containing
the class(es) you wish to enrich.

4.12.3.1. Creating a Declarative Model

Creating a Declarative Model is a two step process.

4.12.3.1.1. Create a Declarative Model asset

Select "New Declarative Model" from the "Create New" popup menu from the "Knowledge Bases"

section of the Explorer widget. This will launch the "New Asset" configuration screen from which
the new upload can be given basic details such as name, category and a description.

73

Chapter 4. Authoring Assets

MNew declarative model (using guided editor). 4

New declarative model (using guided editor).

® Create new:
O Import asset from global area:
Name: myDeclarativeModel
@® Create in Package:; mortgages ~
() Create in Global area

A declarative model

Initial description:

ok

Figure 4.70. Creating a Declarative Model asset

4.12.3.1.2. Defining the model

Once the Declarative Model asset has been created you are presented with the initial modelling
screen; that is empty to begin.

File Edit Source Status: [Drafi]
Attributes | Edit

=r Add new fact type

[| 1T |

Figure 4.71. Initial modelling screen

Facts, being semantically equivalent to Java classes, can be created by selecting the "Add new
fact type" button. An existing Fact definition can be edited by clicking the "pencil” icon on the same
row as the Fact name. Furthermore existing Facts can be deleted by clicking the "[-]" icon.

74

File

Declarative model

Name b4
Name Person

Type extends — Does not extend — ~ |

ok

Figure 4.72. New fact popup

Edit Source Status: [Drafi]

Attributes | Edit

=r Add new fact type
—|Person &

=F Add field =F Add annotation

[T>]

Figure 4.73. A Declarative model with one Fact defined

Fact Fields can be created by selecting the "Add field" button. The type of a field is suggested
by a list (but this list is not exhaustive). An existing Fact Field definition can be edited by clicking
the "pencil” icon on the same row as the Fact Field name. Furthermore existing Fact Fields can
be deleted by clicking the "[-]" icon.

4

Field name age

Type | java.math.BigDecimal Decimal number j

ok

Figure 4.74. Fact Field popup

Fact annotations can be created by selecting the "Add annotation" button. Annotations are listed
under the Fact title, before the fields, by convention. Annotations are prefixed with the "@" symbol.
This not only makes them instantly recognisable but is also consistent with their definition in DRL.

The annotation "Name" and "Value" are mandatory whereas the "Key" is optional. If a "Key" is
not given a default value of "value" will be assigned. This is consistent with how annotations are
held within Drools Expert.

75

Chapter 4. Authoring Assets

An existing Fact Annotation can be edited by clicking the "pencil" icon on the same row as the Fact
Annotation name. Furthermore existing Fact Annotations can be deleted by clicking the "[-]" icon.

x
MName Key Value
role event
OK |
Figure 4.75. Fact annotation popup
File Edit Source Status: [Drafi]
Attributes | Edit
=F Add new fact type
=/Person & S|
= Add field =7 Add annotation
@role:value=event / =
age:Decimal number & &
[«] i |

Figure 4.76. A complete

d definition

4.12.3.1.3. Extending the model

Declarative types can extend existing:-

« Java classes uploaded as part of a JAR (POJO) model

« Other declared types in the same package.

MName
MName
Type extends

ok

DeveloperPerson

Person

Person
BusinessP&vson

- Does not extend -

Figure 4.77. Extending an existing type

76

Declarative model

[File Edit Source Status: 'Draft’]
Attributes -
= Add new fact type
[+ Person & 4=
+|DeveloperPerson extends Person &4 e
[+ BusinessPerson extends Person s/ B
(<] []>)

Figure 4.78. Declarative summary showing types that extend other types

4.12.3.1.3.1. Extending a Java class

To extend a Java class the following steps need to be completed:-

« Import the applicable Java JAR into Guvnor

« If the Java package name in which the class belongs is different to the Guvnor package name in
to which the JAR has been imported ensure the Guvnor package imports the class from which
you want to extend. This is normally completed for you automatically when you upload a JAR
model however if you have multiple classes with the same name in the JAR you should check
the appropriate one has been imported.

« Within the Declarative Modelling screen define an empty type (i.e. with no fields) of the same
name as that you want to extend.

« Create a new declarative type as appropriate, extending the empty declaration created in the
preceding step.

4.12.3.1.3.2. Extending existing declared types

To extend an existing declared type simply select the appropriate type from the "Type extends"
dropdown when defining the sub-type.

77

Chapter 4. Authoring Assets

4.12.3.1.4. Consuming a declarative model from Java

Declared types are generated at knowledge base compilation time, i.e. the application will only
have access to them at application run time. Therefore, these classes are not available for direct
reference from the application.

Declarative types can be used like normal fact objects, but the way you create them is different
(as they are not on your applications classpath). To create these objects, they are available from
the KnowledgeBase instance.

Example 4.1. Handling declared fact types through the API

// get a reference to a knowl edge base with a decl ared type:
Knowl edgeBase kbase = ...

/'l get the declared Fact Type
Fact Type personType = kbase. get Fact Type("org. drool s. exanpl es",
"Person");

/'l handl e the type as necessary:
/] create instances:
hj ect bob = personType. new nstance();

/'l set attributes val ues

per sonType. set (bob,
"nane",
"Bob");

per sonType. set (bob,
“age”,
42);

/'l insert fact into a session

St at ef ul Knowl edgeSessi on ksession = ...
ksession.insert(bob);

ksession.fireAl |l Rul es();

/]l read attributes
String nane = personType.get(bob, "nane");
int age = personType.get(bob, "age");

@ Note

The namespace of the declared type is the package namespace where it was
declared (i.e. or g. dr ool s. exanpl es in the above example).

78

Functions

4.13. Functions

Functions are another asset type. They are NOT rules, and should only be used when necessary.
The function editor is a textual editor. Functions

P
function <returmType= funcName(<args here=) |

/lcode goes in here...

Figure 4.79. Function

4.14. DSL editor

The DSL editor allows DSL Sentences to be authored. The reader should take time to explore DSL
features in the Drools Expert documentation; as the syntax in Guvnor's DSL Editor is identical.
The normal syntax is extended to provide "hints" to control how the DSL variable is rendered and
validated within the user-interface.

The following "hints" are supported:-

» {<varName>:<regular expression>}

This will render a text field in place of the DSL variable when the DSL Sentence is used in the
guided editor. The content of the text field will be validated against the regular expression.

« {<varName>:ENUM:<factType.fieldName>}

This will render an enumeration in place of the DSL variable when the DSL Sentence is
used in the guided editor. <factType.fieldName> binds the enumeration to the model Fact and
Field enumeration definition. This could be either a "Guvnor enumeration" (i.e. defined as a
Knowledge Base "Enumeration™) or a Java enumeration (i.e. defined in a model POJO JAR file).

» {<varName>:DATE:<dateFormat>}

This will render a Date selector in place of the DSL variable when the DSL Sentence is used
in the guided editor.

79

Chapter 4. Authoring Assets

» {<varName>:BOOLEAN:<[checked | unchecked]>}

This will render a dropdown selector in place of the DSL variable, providing boolean choices,
when the DSL Sentence is used in the guided editor.

« {<varName>:CF:<factType.fieldName>}

This will render a button that will allow you to set the value of this variable using a Custom
Form. In order to use this feature, a Working-Set containing a Custom Form Configuration for
factType.fieldName must be active. If there is no such Working-Set, a simple text box is used
(just like a regular variable).

For more information, please read more about Working-Sets and Custom Form Configurations.

File Edit Source

Attributes | Edit

[whenlWhen the credit rating is {rating:ENUM:Applicant.creditRating} = applicant:Applicant(creditRating=="{rating}")
[when]When the applicant dates 1s after {dos:DATE:default} = applicant:Applicant(applicationDate="{dos}")

[when]When the applicant approval is {bool:BOOLEAN:checked} = applicant:Applicant(approved=={bool})

[when]When the ages is less than {num:1?7[0-89]?[0-8]} = applicant:Applicant(age<{num})

[then] Approve the loan = applicant.setApproved(true);

[then]Set applicant name to {name} = applicant.setMame("{name}");

Figure 4.80. DSL rule

4.15. Rule flows

Rule flows: Rule flows allow you to visually describe the steps taken - so not all rules are evaluated
at once, but there is a flow of logic. Rule flows are not covered in this chapter on the Guvnor, but
you can use the IDE to graphically draw ruleflows, and upload the . r f mfile to the Guvnor.

Similar to spreadsheets, you upload/download ruleflow files (the eclipse IDE has a graphical editor
for them). The details of Rule Flows are not discussed here.

4.16. BPMN2 Process

Check the jBPM documentation: Chapter 10. Designer, for more information.

4.17. Work Item Definition

Check the jBPM documentation: Chapter 10. Designer, for more information.

80

Data enumerations (drop down list configurations)

4.18. Data enumerations (drop down list configurations)

Data enumerations are an optional asset type that technical folk can configure to provide drop
down lists for the guided editor. These are stored and edited just like any other asset, and apply
to the package that they belong to.

The contents of an enum config are a mapping of Fact.field to a list of values to be used in a
drop down. That list can either be literal, or use a utility class (which you put on the classpath) to
load a list of strings. The strings are either a value to be shown on a drop down, or a mapping
from the code value (what ends up used in the rule) and a display value (see the example below,
using the '=").

File Edit Source Status: ‘Draft’

Attributes | Edit

‘Board.type' : ['Short', ‘Long', 'MM=Mini Mal', 'Boogie’]
'Person.age’ : ['20', '25', '30', '35', '40']

Figure 4.81. Data enumeration

In the above diagram - the "MM" indicates a value that will be used in the rule, yet "Mini Mal" will
be displayed in the GUI.

Getting data lists from external data sources: It is possible to have the Guvnor call a piece of code
which will load a list of Strings. To do this, you will need a bit of code thatreturns aj ava. uti | . Li st
(of String's) to be on the classpath of the Guvnor. Instead of specifying a list of values in the
Guvnor itself - the code can return the list of Strings (you can use the "=" inside the strings if you
want to use a different display value to the rule value, as normal). For example, in the 'Person.age’
line above, you could change it to:

' Person. age' : (new com yourco. Dat aHel per()). getLi st Of Ages()

This assumes you have a class called "DataHelper" which has a method "getListOfAges()" which
returns a List of strings (and is on the classpath). You can of course mix these "dynamic"
enumerations with fixed lists. You could for example load from a database using JDBC. The data
enumerations are loaded the first time you use the guided editor in a session. If you have any
guided editor sessions open - you will need to close and then open the rule to see the change. To
check the enumeration is loaded - if you go to the Package configuration screen, you can "save
and validate" the package - this will check it and provide any error feedback.

81

Chapter 4. Authoring Assets

4.18.1. Advanced enumeration concepts

There are a few other advanced things you can do with data enumerations.

Drop down lists that depend on field values: Lets imagine a simple fact model, we have a class
called Vehicle, which has 2 fields: "engineType" and "fuelType". We want to have a choice for the
"engineType" of "Petrol" or "Diesel". Now, obviously the choice type for fuel must be dependent on
the engine type (so for Petrol we have ULP and PULP, and for Diesel we have BIO and NORMAL).
We can express this dependency in an enumeration as:

' Vehi cl e. engi neType' : ['Petrol', 'Diesel']
" Vehi cl e. fuel Type[engi neType=Petrol]' : ['ULP', 'PULP]
" Vehi cl e. fuel Type[engi neType=Diesel]' : ['BIO, 'NORVAL']

This shows how it is possible to make the choices dependent on other field values. Note that once
you pick the engineType, the choice list for the fuelType will be determined.

Loading enums programmatically: In some cases, people may want to load their enumeration data
entirely from external data source (such as a relational database). To do this, you can implement
a class that returns a Map. The key of the map is a string (which is the Fact.field name as shown
above), and the value isajava. util . Li st of Strings.

public class Sanpl eDat aSource2 {

public Map<String>, List<String> |oadData() {
Map data = new HashMap();

List d = new ArrayList();
d. add("val uel");

d. add("val ue2");

data. put ("Fact.field", d);

return data;

And in the enumeration in the BRMS, you put:

=(new Sanpl eDat aSource2()) .| oadDat a()

The "=" tells it to load the data by executing your code.

82

Test Scenario

Mode advanced enumerations: In the above cases, the values in the lists are calculated up front.
This is fine for relatively static data, or small amounts of data. Imagine a scenario where you have
lists of countries, each country has a list of states, each state has a list of localities, each locality
has a list of streets and so on... You can see how this is a lot of data, and it can not be loaded up.
The lists should be loaded dependent on what country was selected etc...

Well the above can be addressed in the following fashion:

" Fact . fiel d[dependent Fi el d1, dependent Fi el d2]* : " (new

" @ dependent Fi el d2}")"

Similar to above, but note that we have just specified what fields are needed, and also on the
right of the ":" there are quotes around the expression. This expression will then be evaluated,
only when needed, substituting the values from the fields specified. This means you can use the
field values from the GUI to drive a database query, and drill down into data etc. When the drop
down is loaded, or the rule loaded, it will refresh the list based on the fields. 'dependentFieldl’
and 'dependentField2' are names of fields on the 'Fact' type - these are used to calculate the list
of values which will be shown in a drop down if values for the “field".

4.19. Test Scenario

Test Scenarios are used to validate that rules and knowledge base work as expected. When the
knowledge base evolves, Test Scenarios guard against regression.

83

Chapter 4. Authoring Assets

B Attributes | | Edit
= sa@ Packages

B defaultPackage Run scenario
mortgages <AGIVEN

#i% Global Area

L

<RCALL METHOD

JREXPECT®

More...

=
* = (configuration)

|5J, 2
A2l < (globals)
EéhPackage snapshots

[=| Administration

Figure 4.82. Example Test Scenario

Good credit history only

‘“ Browse Find mortgages
HKnowledge Bases i i

File Edit
Create New F

Welcome: guest [Sign Qut]

Status: ‘Draft’

Insert ‘LoanApplication’ [app) =

approved: false jH
=]

v ™ 2
Insert 'IncomeSource’ [incomeSource]

Add a field

Insert "Applicant’ [a] a

creditRating: OK ML
=]

Add input data and expectations hera.
&1 Use real date and time j
LoanApplication 'app’ has values:®

~| faise ~|m

approved: equals

All rules may fire j

Close all itemsA

Given section lists the facts needed for the behaviour. Expect section lists the expected changes
and actions done by the behaviour. Given facts are passed for the Test Scenario before execution.
During the rule execution, changes in the knowledge base are recorded. After the execution
ends the recorded actions, existing facts in the knowledge base and knowledge base output is

compared against the expectations.

84

Given Section

' Browse
e} Knowledge Bases
Create New P
B s Packages
= defaultPackage
& mortgages

sas Global Area

= E
Yaa
héhPackage snapshots

|5/ Administration

Find mortgages Good credit history only

File Edit

Attributes = Edit

Run scenario
T

Summary: E_;l[app] field [approved] was [false].
Audit log: Show events

A GIVEN
Insert ‘LoanApplication' [app] =
approved: false j =]
2
Insert ‘IncomeSource' [incomeSource] |
Add a field
Insert ‘Applicant’ [a] =
creditRating: OK ~|e
2
SPCALL METHOD
Add inpul data and axpeclafions here.
& rules firsd in 83ms. Show rules fired
SREXPECTE
&1 Use real date and time j
LoanApplication 'app' has values:™
E,E.'—_zlappmved: equals j false j a8
More...
(configuration) All rules may fire j
< (glabals)

Figure 4.83. Example Test Scenario after execution

4.19.1. Given Section

New input

Insert a new fact: | Applicant
Modify an existing fact: 2
Retract an existing fact: a

Activate rule flow group

jFact name:

~| Add

~| Add

Add

Figure 4.84. Given popup

Status: ‘Draft”

W/

"
v

Close all items//l

« Insert a new fact - Adds a new fact that will be inserted into the knowledge base before

execution.

85

Chapter 4. Authoring Assets

» Modify an existing fact - Allows editing a fact between knowledge base executions.
« Retract an existing fact - Allows removing facts between executions.

« Activate rule flow group - Allows rules from a rule flow group to be tested, by activating the
group in advance.

4.19.2. Expect Section

New expectation ®
- New expectation

Rule: (show list) | OK |

Fact value: & j Add |
Any fact that matches: Applicant J Add |

T M EE a mELEL O -

Figure 4.85. Expect popup

* Rule - Validate that a certain rule fired.
* Fact value - Validate fact values for a fact created in the Given section.

» Any fact that matches - Validate that there is at least one fact in the knowledge base with the
specified field values.

4.19.3. Global Section

New global ﬁ
o New global

Global: ilogger | Add |

Figure 4.86. Global popup

» Global - Validate that the global field values.

86

New Input Section

4.19.4. New Input Section

New input 4 ‘
P New input |
Call a method on an existing fact:fa "I Add |

Figure 4.87. New Input popup

» Call method on an existing fact - Call a method from a fact in the beginning of the rule execution.

4.19.5. Audit Log

Run scenario |

e

Summary: ﬂ[app] field [approved] was [false].

Audit log:

=R GIVEN

OBJECT ASSERTED value:Applicant(age=0, applicationDate=null, creditRating=0K, name=null,
approved=false) factld: 1

QOBJIECT ASSERTED value:LoanApplication{ amount=0, approved=false, deposit=0, approvedRate=0,
lengthfears=0, explanation=null, insuranceCost=0) factld: 2

OBJECT ASSERTED value:IncomeSource(amount=0, type=null) factld: 3

FIRING rule: [No bad credit checks] activationId:No bad credit checks [1, 2] declarations:
app=LoanApplication(amount=0, approved=false, deposit=0, approvedRate=0, lengthYears=0,
explanation=null,; insuranceCost=0)(2)

OBJECT RETRACTED value:LoanApplication{ amount=0, approved=false, deposit=0, approvedRate=0,
lengthears=0, explanation=0nly A&, insuranceCost=0) factld: 2

FIRING rule: [A] activationId:A [1] declarations:

OBJECT ASSERTED value:IncomeSource(amount=1, type=null) factld: 4

FIRING rule: [RegexDslRule] activationld:RegexDslRule [1] declarations: applicant=Applicant(
age=0, applicationDate=null, creditRating=0K, name=null, approved=false)(1)

FIRING rule: [CreditApproval] activationId:CreditApproval [1] declarations:
applicant=Applicant(age=0, applicationDate=null, creditRating=0K, name=null,
approved=false){1)

FIRING rule: [Dummy rule] activationId:Dummy rule [0] declarations:

Insert ‘LoanApplication' [app]
approved: false v| =]

Figure 4.88. Expanded Audit Log

Audit log shows what happened when the knowledge base was executed.

4.20. File

Files can be stored in Guvnor as assets.

87

Chapter 4. Authoring Assets

You need to provide the asset name and file extension in the "New Asset" popup dialog.
Mew Other assets, documentation b
. New Other assets, documentation

© Create new:

O Import asset from global area:

Name: A_File
File extension (typeformat): png

© Create in Package: gUvnortaso -
) Create in Global area

An 1con file

Initial description:

o
OK |
Figure 4.89. Creating a new file asset
Once you have created the asset a screen to upload (or download) the file itself is shown.
File Edit Status: ‘Draft’

Attributes Edit

G) A_File

Upload newversinn:l Browse... | Upload
Download current version: Download

Upload new version...

Figure 4.90. File upload\download screen

88

File

If you specify a file extension of "properties” a standard Java properties file can also be created.

Mew Other assets, documentation

&4

| Mew Other assets, documentation

© Create new:

O Import asset from global area:

Name: A_Property File
File extension (typeformat). properties

© Create in Package: QUVIOIL460 ~|
() Create in Global area
A property file

Initial description:

ok

Figure 4.91. Creating a new properties file asset

The properties name\value pairs can be maintained from within Guvnor.

89

Chapter 4. Authoring Assets

File Edit

Attributes | | Edit

. A_Property_File

Properties editor

Upload new version: |

Download current version: Download
|

Browse...J Upload

¥

/-Add Delete | [

Item Value
il Iteml Valuel
O Item2 Value2
il Item3 Valued

Figure 4.92. Maintaining a properties file

4.21. Change-Set

Status: 'Draft’

Change-set is one of the ways Drools has to group one or more Assets in a single Asset. Change-
sets can then be added to a Knowledge Builder or a Knowledge Agent to process all the assets

referenced by it.

By default, Guvnor provides a unique Change-Set per package containing the package binary or
the drl source. The main problem with this is when you want to use just a sub-set of assets of a

package (or even from different packages) in your application.

Using the Change-Set editor you can define your own change-sets inside Guvnor in any way you
want. You could have a combination of different assets and packages, or even different snapshots
of a package in a change-set. You can have all the change-sets per package you need, so if
different applications are using the same package in different ways (different assets or assets'
versions of a same package) you can make use of this feature of Guvnor.

90

Change-Set Editor Ul

4.21.1. Change-Set Editor Ul

File Edit Status: 'Draft’

Attributes | Edit

Add new <resource> Element Url: hitp://localhost: 8080/drools-guvnor/rest/packages/defaultPackage/assets/CS1/source @

Package e
Asset e

Figure 4.93. Change-Set Editor

To create a new Chang-Set you have to go to "Create New" -> "New Change Set" option in
Knowledge Base section of Guvnor.

In the editor you have 4 items you can interact with:

1. Change-Set Editor canvas: Here you can edit your change-set by hand. You can add, remove
or edit resources as you wish. Of course you will need to know the URL of each of the resources.
You could get this information from the "Attributes" tab of each of the resources.

2. Change-Set URL: This is the URL you need to use in your applications to make reference to
this change-set.

3. Package Button: This is an easy way to add packages to your change-set. You need to place
the cursor where you want to add a new Package in the Change-Set Editor canvas and then
click this button. A Wizard will appear to help you choose the right package. See next section
for further information.

4. Asset Button: Useful button to add a new Assets to the Change-Set using a Wizard. For more
information please read "Adding Assets using a Wizard" section.

4.21.2. Adding Packages using a Wizard

Clicking in the "Package" button of Change-Set Editor, a wizard will be displayed to help you
choose the package you want to add as resource.

91

Chapter 4. Authoring Assets

New Resource 3 | I

Mame:

Description: @

Packages:
= globalArea i

- LATEST

Workbench

= defaultPackage @ |
J LATEST E

- SNAPSHOT1

| OK | Cancel |

Figure 4.94. Adding a Package resource

The Package Wizard has 3 sections:

1. Name: Each resource inside a Change-Set could have a descriptive name. Use this optional
field to set this property.

2. Description: Each resource inside a Change-Set could have a description. Use this optional
field to set this property.

3. Packages: In this section you can select the package and the Snapshot version of a package
you want to add as a resource of the Change-Set you are editing. If the Change-Set you are
editing belongs to the Global Area, then you will be able to select the resource to add from all the
packages defined in Guvnor and their snapshots of course. If the Change-Set you are editing
belongs to a particular Package, you will only see the Snapshots of that package in this Wizard.

4.21.3. Adding Assets using a Wizard

You have 2 ways of adding assets as resources of a Change-Set: by hand using the Change-
Set Editor canvas or using the Asset Wizard. This Wizard is invoked using the "Asset" button of
the editor.

92

Services

Mew Resource

Mame:

Description:

Package: packagel 5 @
Format: bpmn2 ¥ @
Assets:
B P S 0 el b I 'a.-'r.l'hrll R I ur.n..-ll R L e ﬂll'ﬂl\r LS | Ll_u I
Format Name Status Last modified Open
P2 2011 Oct 12
3 Draft O
- * asd 16:48:58 Pen
2011 Oct 11
R Process1 Draft O
- R 13:24:20 PET
4 4 120f2 » ¥
OK | Cancel |

Figure 4.95. Adding Assets resources

This Wizard has 5 sections:

1. Name: Each resource inside a Change-Set could have a descriptive hame. Use this optional
field to set this property.

2. Description: Each resource inside a Change-Set could have a description. Use this optional
field to set this property.

3. Package: Use this field to filter the assets of a particular Package. If the Change-Set you are
editing belongs to the Global Area, then you will be able to select any package, otherwise the
package where your Change-Set belongs is automatically selected and you will not be able
to change it.

4. Format: Use this field to filter the type of assets you are looking for.

5. Assets: The list of assets that match the selected package and format. You can select one
or more assets using the check-box column and then click "OK" to add each resource to the
Change-Set you are editing.

4.22. Services

Service Config is a special asset that defines an execution service configuration. This execution
service is a war file (generated automatically by the editor) which you can deploy to execute
KnowledgeBases remotely for any sort of client application. As this service is stateless, it is
possible to have as many of these services deployed as you need to serve the client load.

93

Chapter 4. Authoring Assets

This version of the execution server supports as many Knowledge Bases as you need, supporting
also multiple stateless and stateful sessions in a native way.

To create a new Service you have to go to "Create New" -> "New Service Config" option in
Knowledge Base section of Guvnor. In the following sections you have detailed information on
how to configure your Service Config.

File Edit Source Status: ‘Draft’

Attributes | Edit

MyGeneralKBase MySpecificKBase [+

L= CreditApproval
M 4 130f3 » M

Assets Sessions.
Pallete
e MyGeneralkBase Name Type Config
Add Asset... |
sse ® [# mortgages b 4 ksession1 stateless ~|
Remove Selected | 80 % br & b4 ksession2 stateful j
Rename KBase... | = No bad credit checks & x ksession3 stateless j

Advanced Options...
E 20 dd

= Dummy rule

o0 defaultPackage
EmiE changeset
= Test1
e globalArea

= °°°| rhanmnacat

Manage Dependencies... Download War

Figure 4.96. Service Configuration Editor

4.22.1. Configuring Multiple Knowledge Bases

As already mentioned the Service editor allows users configure as many knowledge bases as
they need. This section describes how to use the tabbed panel to configure your Service with
multiple knowledge bases.

Allribules caik
Il %
| i

I""‘H- -"".l T,
kbase1 kbase2¥ [+]/ 3]
II.-"" Iq-h““..I "xq__ ___.--'J
I" .-._II A
— Pallete

B **°| khase1

Figure 4.97. Tabbed Panel

94

Knowledge Base Configuration Panel

The above panel is composed by the following:

1. Named Tab: each tab represents a knowledge base, and once selected, its configuration panel
is displayed. See next section for further information.

2. Removing: in order to remove an existing tab/knowledge base, you have to click the highlighted
"X" and then confirm the action. Important to note that should exists at least one knowledge
base.

3. Add new: to add a new kbase, all you need is click on this special tab. The new kbase will be
added on the left hand side of the plus tab.

4.22.2. Knowledge Base Configuration Panel

kbase1 [+ .
AP
Pallet Assets Sessions '_6/"
— allete -
::f l \:: | khase1 — MName Type Config
" Add Asset... | (5) ;
=~ -\5) o X ksession1 stateless j
\2, Remove Selected | 4 4 1-1af1 F ¥
P

'\;/‘ Rename KBase... |

P
‘ 4 ::Advanced Options...
N

Figure 4.98. Knowledge Base Configuration

In the above configuration panel you have 6 items that you can interact with:

1. Add Asset Button: add new assets to the tree using a wizard. See next section for further
information.

2. Remove Selected Button: remove the selected assets (the ones that are checked) from Assets
Tree.

3. Rename KBase Button: this button will open a standard “prompt for rename” dialog box.

4. Advanced Options Button: opens the advanced knowledge base configuration dialog.
Configurations that are not available in the panel, should be available in this advanced dialog.
Detailed information about it can be found in the "Advanced Knowledge Base Configuration
Options" section.

5. Assets Tree: Here you have the complete set of assets, grouped by package and type, that
are referenced by the active knowledge base configuration. For additional information, please
read the "Assets Tree" section.

6. Sessions Grid: Here users can create, delete and edit in place a list of desires ksessions. For
detailed instructions on how to configure ksessions, please check the "Configuring Knowledge
Sessions" section.

95

Chapter 4. Authoring Assets

4.22.2.1. Adding Assets using Wizard

Add assets | f-l-\‘-
__K\Package: maortgages j "&_ : J
| 2 | Format: bri j
| Assets: ~—
Refresh list | Open selected | Open selected to single tab | [
Format Mame Status Last modified Open
[. 2008 Sep 30
L w Bankruptcy history Draft Open
7 - 23:55:07
3)
h ;] CreditApproval Diraft 2008 Oct 21 Open
|
- = 14:35:55 :

OK | Cancel

Figure 4.99. Adding Assets resources

This Wizard has 3 sections:

1. Package: Use this field to filter the assets of a particular Package. By default the selected
package is the one that your Service belongs to, but you're not limited to it as you can select

any other package that you want.

2. Format: Use this field to filter the type of assets you are looking for.

3. Assets: The list of assets that match the selected package and format. You can select one
or more assets using the check-box column and then click "OK" to add each resource to the

Assets Tree of your active knowledge base configuration.

96

Knowledge Base Configuration Panel

4.22.2.2. Advanced Knowledge Base Configuration Options

KBase Advanced Options . 4
MBeans: Default ~| ~—"

-

Event Processing Mode: Default j :._M 2 j.-:
Assert Behavior: Default j "3“
4 | ¥ Assets Security Information

Enable Authentication

e ™,

User name: | '
Password:
OK | Cancel |

Figure 4.100. Advanced Options Dialog

This dialog has the following sections:

1. MBeans: Can enable or disable MBeans on active knowledge base. Users can also keep the
default engine behavior by choosing the Default option.

2. Event Processing Mode: Defines the event processing mode, which options are Cloud or
Stream. Users can also keep the default engine behavior by choosing the Default option. For
more information about Event Processing Mode, consult the Drools Fusion documentation.

3. Assert Behavior: Defines the expected assert behavior, which options are Identity and Equality.
Users can also keep the default engine behavior by choosing the Default option.

4. Assets Security Information: This section holds any security related configuration to remotely
access the guvnor repository.

5. Enable Authentication, User name and Password: If explicit authentication is enabled, you
should provide the user name and password for remote access.

97

Chapter 4. Authoring Assets

4.22.2.3. Assets Tree

Illf --\-\'\\II
2 2 MyGeneralKBase 'xh_l J
-\
=) B mortgages | |
oages(2)
T .
Y -
yel |
e 0P (3, N
= Dummy rule [~ 4“-

Il'x\- ---III
= EEglc:baIArea -

2 [t changeset

= TestinGlobalArea

Figure 4.101. The Assets Tree

The assets tree is composed by 4 different types of nodes:

1. Knowledge Base: Root node that represents the active kbase.

2. Packages: Selected assets are grouped by its packages. Important to note that those packages
are just informative and are not relevant for the service runtime.

3. Asset Types: Groups assets of the same package by type. The actual list of supported types
are: brl, drl, dsl, bpmn2, gdst, changeset and jars.

4. Assets: Selected assets of a given type (parent) and package (grandparent).

98

Knowledge Base Configuration Panel

4.22.2.4. Configuring Knowledge Sessions

Sessions

(|) Name Type :’K3\‘: Config

'\\.\-- --./ . Il' 'II
a7 x ksession1 Estateleas 'I AN 4 J

1 4 1101 '\3;' stateful

MName

b4 ksession

i | ksession2 :l A j: |

Figure 4.102. Knowledge Sessions Grid - basic information to define a
ksession are available to be edited in place.

The ksessions grid is composed by the following columns:

1. Add and Remove Icons: Users can use these icons to add new or remove existing knowledge
sessions. Important to note that should exists at least one knowledge session.

2. Knowledge Session Name: Defines the ksession name. Users can edit this particular field in
place as highlighted on box "A".

3. Session Type: Defines if a ksession is Stateless or Stateful. Users can also select the desired
type directly on the grid.

4. Configuration Button: This button opens the knowledge session configuration dialog. See next
section for further information.

99

(2]

Chapter 4. Authoring Assets

4.22.2.4.1. Knowledge Session Configuration Options

K.Session Configuration ®
l'.--F- --L\h'h
URL: ksessionl \ |)
— L
I_.-" "\.\ B il
Protocol: Rest j e
- __:'xq_ __.--"l
. I_.-" ""-\.\--
Marshalling: XStream j : 3 :
'.H.\-- --..-___-

¥ Other Options .
Clock Type: Default j H4f

Keep Reference: Default j "5“‘
IL"'H-.__ --.-l_.ll

OK | Cancel |

Figure 4.103. Knowledge Session Configuration Dialog

This ksession configuration dialog has the following 5 fields:

. URL: Defines a custom URL to access the active ksession.
. Protocol: Defines the protocol that ksession should be accessed by, default options is REST.
. Marshalling: Defines which marshalling technology should be used, default option is XStream.

A W N P

. Clock Type: Defines the type of the session clock, which options are Pseudo or Real Time.
Users can also keep the default engine behavior by choosing the Default option.

5. Keep Reference: Enable or disable the engine to keep a weak reference of this section on the

kbase. Users can also use the default engine behavior by choosing the Default option.

4.22.3. Downloading War & Managing Dependencies

After configuring your knowledge bases and sessions, you're ready to download the service war.
For so, all you need to do is click on the "Download War" button and the following screen (or a
similar one, depending on your browser) will show up.

100

Downloading War & Managing Dependencies

e ® O O Opening drools-service.war

J You have chosen to open

. |

= drools-service.war

which is a: war File
B from: http://127.0.0.1:8888

What should Firefox do with this file?

(_)Open with | Choose... |

(»)Save File

¥ Do this automatical ly for files like this from now on.

Settings can be changed using the Applications tab in
Firefox's Preferences.

| Cancel I[OK]

Figure 4.104. Downloading WAR

Warning

Before click on the "Download War" button, makes sure that you don't have pending
changes. This is a very important step, once the the war file is generated based
on the latest saved information and not on the current screen state.

The generated file is a ready to be deployed war file. Which mean that it contains all the necessary
configuration files and all the needed dependencies as well. As dependency management is a
crucial subject in a real world applications deployment, we will discuss that in more detail in the
next section.

101

Chapter 4. Authoring Assets

4.22.3.1. Dependency Management

As already mentioned, the generated war file contains all the necessary dependencies to execute
the configured Service, it works seamlessly on most standard containers.

But the reality is a bit different, rarely you'll have a "standard container", usually what you have is an
already configured and running container. Probably this container even have already configured a
set of shared libs between your deployed application. And, of course, you don't want those shared
libs on your wars.

Based on real world scenarios, we made available a simple dependency management tool, that
enables you explore and configure all the dependencies contained in the generated war file. This
tool can be accessed just by clicking the "Manage Dependencies" button, and the following dialog
will be displayed.

102

*INCUBATOR FEATURE** New Rule Asset - Scorecards

Manage Dependencies...
= MyServiceConfig
v = org.drools:knowledge-api-5.4 0-SNAPSHOT jar
i = org.drools:drools-core-5.4.0-SNAPSHOT jar
i N org.drools:drools-compiler-5.4.0-SNAPSHOT jar
= ™ =) org.drools:drools-decisiontables-5.4.0-SNAPSHOT jar
= W = net.sourceforge jexcelapi:jxl-2.6.10.jar
(] = logdj:log4j-1.2.16 jar
= o o org.drools:drools-persistence-jpa-5.4.0-5SNAPSHOT .jar
™) |avax.persistence:persistence-api-1.0jar
o &= domdj:domd;-1.6.1 jar
™ = org.javassist:javassist-3.14 .0-GA jar
™ = javax.transaction:jta-1.1.jar
= W = org.hibernate:hibernate-entitymanager-3.4.0.GA jar

] o org.hibernate:ejb3-persistence-1.0.2.GA jar

—a =

OK | Eancu.al.| |

Figure 4.105. Dependency Management Dialog

This dialog presents the complete dependency tree of the service. To disable any particular
dependency, all you need to do is "uncheck" it and press the "OK" button.

Important to note that after configuring your dependencies you have to save the service
configuration, in order to have the generated war file reflecting your configuration.

4.23. *INCUBATOR FEATURE** New Rule Asset -
Scorecards

A scorecard is a graphical representation of a formula used to calculate an overall score. A
scorecard can be used to predict the likelihood or probability of a certain outcome. Drools now

103

Chapter 4. Authoring Assets

supports additive scorecards. An additive scorecard calculates an overall score by adding all
partial scores assigned to individual rule conditions.

Additionally, Drools Scorecards will allows for reason codes to be set, which help in identifying
the specific rules (buckets) that have contributed to the overall score. Drools Scorecards will be
based on the PMML 4.1 Standard.

The New Rule Wizard now allows for creation of scorecard assets.

New Rule x

A,
& My
_—

New Rule

@ Create new:
) Import asset from global area:

Mame:
= R &
=Home Mortgage

® !
Initial category: @ — Commercial Mortgage

Fl I

Type (format) of rule: | Business Rule (Guided editor)

Business Rule (Guided editor)
DSL Business Rule (Text editor)

DRL Rule {Technical rule - text editor)
Decision Table (Spreadsheet)
i , .
*|| Scorecard (Spreadsheet)
Scorecard (Web - guided editor)

K]

Initial descripg

Figure 4.106. New Rule Dialog with New Asset Types

104

(a) Setup Parameters

—| Scorecard (sc-wge-5)

—I Setup Parameters

Facts Resultant Score Field Initial Score

CustcmerE customerScore : double IZ| 20 @
Use Reason Codes Resultant Reason Codes Field Reason Codes Algorithm Baseline Score

false none E 0.0

—| Characteristics

Mew Characteristic

Name CustAgeScore Remave Characteristic Add Attribute

Fact Characteristic Baseline Score Reason Code
Customer customerAge - int

Operator Value Partial Score Reason Code Actions
= E 0 10 Remove
»=< [x] 140 20 Remave
>=.< [r] 40,60 25 Remave
== E 60 30 Remave

Figure 4.107. Scorecard Asset - Guided Editor

The above image shows a scorecard with one characteristic. Each scorecard consists of two
sections (a) Setup Parameters (b) Characteristic Section

4.23.1. (a) Setup Parameters

The setup section consits of parameters that define the overall behaviour of this scorecard.

1. Facts: This dropdown shows a list of facts that are visible in this package. These are classes
that are imported into this package.

2. Resultant Score Field: Shows a list of fields from the selected fact. Only fields of type 'double’
are shown. If this dropdown is empty double check your fact model. The final calculated score
will be stored in this field.

3. Initial Score: Numeric Text Field to capture the initial score. The generated rules will initialize
the 'Resultant Score Field' with this score and then is added to the overall score whenever
partial scores are summed up.

4. Use Reason Codes: Boolean indicator to compute reason codes along with the final score.
Selecting Yes/No in this field will enable/disable the 'Resultant Reason Codes Field', 'Reason
Code Algorithm' and the 'Baseline Score' field.

5. Resultant Reason Codes Field: Shows a list of fields from the selected fact. Only fields of type
'java.util.List' are shown. This collection will hold the reason codes selected by this scorecard.

6. Reason Code Algorithm: May be "none", "pointsAbove" or "pointsBelow", describing how
reason codes shall be ranked, relative to the baseline score of each Characteristic, or as set
at the top-level scorecard.

105

Chapter 4. Authoring Assets

7. Baseline Score: A single value to use as the baseline comparison score for all characteristics,
when determining reason code ranking. Alternatively, unique baseline scores may be
set for each individual Characteristic as shown below. This value is required only when
UseReasonCodes is "true" and baselineScore is not given for each Characteristic.

@ Note
If UseReasonCodes is "true", then BaselineScore must be defined at the Scorecard
level or for each Characteristic, and ReasonCode must be provided for each
Characteristic or for each of its input Attributes. If UseReasonCodes is "false", then
baselineScore and reasonCode are not required.

4.23.2. (b) Characteristics

On Clicking the 'New Characteristic' button, a new empty characteristic editor is added to the
scorecard. Defines the point allocation strategy for each scorecard characteristic (numeric or
categorical). Each scorecard characteristic is assigned a single partial score which is used to
compute the overall score. The overall score is simply the sum of all partial scores. Partial scores
are assumed to be continuous values of type "double".

4.23.2.1. Creating Characterstics
Every scorecard must have at least one characteristic

MName Femaove Characteristic | Add Attribute |

Fact Characteristic Baseline Score Reason Code

Figure 4.108. New Characteristic

1. Name: Descriptive name for this characteristic. For informational reasons only.

2. Remove Charteristic: Will remove this characteristic from the scorecard after a confirmation
dialog is shown.

3. Add Attribute: Will add a line entry for an attribute (bin).

4. Fact: Select the class which will be evaluated for calculating the partial score.

5. Characteristic: Shows the list of fields from the selected Fact. Only fields of type "String", "int",
"double", "boolean" are shown.

6. Baseline Score: Sets the characteristic's baseline score against which to compare the actual
partial score when determining the ranking of reason codes. This value is required when

106

(b) Characteristics

useReasonCodes attribute is "true" and baselineScore is not defined in element Scorecard.
Whenever baselineScore is defined for a Characteristic, it takes precedence over the
baselineScore value defined in element Scorecard.

7. Reason Code: Contains the characteristic's reason code, usually associated with an adverse
decision.

4.23.2.2. Creating Attributes

On Clicking the 'New Attribute' button, a new empty attribute editor. In scorecard models, all the
elements defining the Attributes for a particular Characteristic must all reference a single field.

Operator Value Partial Score Reason Code Actions

[=] H
Figure 4.109. New Attribute

1. Operator: The condition upon which the mapping between input attribute and partial score
takes place. The operator dropdown will show different values depending on the datatype of
the selected Field.

a. DataType Strings: "=", "in".
b. DataType Integers: "=", ">", "<", ">=" "<=" "> <" ">= <" ">= .<=" "> <=",
c. DataType Boolean: "true", "false".
Refer to the next sub-section (values) for more details.
2. Value: Basis the operator selected the value specified can either be a single value or a set of

values separated by comma (","). The value field is disabled for operator type boolean.

Table 4.1. Operators / Values

Data Type Operator Value Remarks
String = Single Value will look for an exact
match
String in Comma Separated The operator 'in'
Values (a,b,c,...) indicates an

evaluation to TRUE
if the field value
is contained in the
comma separated list
of values

Boolean is true N/A Value Field is
uneditable (readonly)

107

Chapter 4. Authoring Assets

Data Type

Boolean

Numeric

Numeric

Numeric

Numeric

Numeric

Numeric

Numeric

Numeric

Numeric

Operator Value

is false N/A

= Single Value

> Single Value

< Single Value

>= Single Value

<= Single Value

>.< Comma Separated
Values (a,b)

>=, < Comma Separated
Values (a,b)

>=,.<= Comma Separated
Values (a,b)

>.<= Comma Separated
Values (a,b)

Remarks

Value Field is
uneditable (readonly)

Equals Operator

Greator Than
Operator

Less Than Operator

Greater than or equal
To

Less than or equal To

(Greater than Value
'‘a) and (less than
value 'b")

(Greater than or
equal to Value 'a’) and
(less than value 'b")

(Greater than or
equal to Value 'a") and
(less than or equal to
value 'b")

(Greater than Value
'a’) and (less than or
equal to value 'b")

3. Partial Score: Defines the score points awarded to the Attribute.
4. Reason Code: Defines the attribute's reason code. If the reasonCode attribute is used in this
level, it takes precedence over the ReasonCode associated with the Characteristic element.

5. Actions: Delete this attribute. Prompts the user for confirmation.

g

Note

If Use Reason Codes is "true", then Baseline Score must be defined at the
Scorecard level or for each Characteristic, and Reason Code must be provided
for each Characteristic or for each of its input Attributes. If Use Reason Codes is
"false", then BaselineScore and ReasonCode are not required.

108

Chapter 5.

Chapter 5. Managing Assets

5.1. Navigating and finding rules

The two main ways of viewing the repository are by using the Package Explorer or user-driven

Categorization (tagging) as outlined previously.

5.1.1. Package explorer

The Package Explorer appears in the "Knowledge Bases" section of the left-hand side navigation
bar. The Package Explorer shows a list of all packages (other than those that have been archived).

The list of packages can either be viewed hierarchically or flat and fully expanded or collapsed

using the icons below the tree-view.

fHKnowledge Bases
Create New »
B aa Packages
& defaultPackage
B mortgages
= H parent
& child1
& childz

saw Global Area

H = 8= Feg

Figure 5.1. Hierarchical view

109

Chapter 5. Managing Assets

EEI(nuwledgE Bases
Create New P
=¥ Packages
B defaultPackage
i mortgages
£ parent.childl
& parent.childz

;a8 Global Area

3 B &= &5

Figure 5.2. Flat view

Clicking on a package name in the tree-view will launch the Asset Viewer.

5.1.1.1. Asset Viewer

The Asset Viewer is launched when a package in the Package Explorer is clicked.

The Asset Viewer shows a list of assets in the package grouped by their type. If no assets exist

in the package a warning is displayed.

‘> Browse Find mortgages

HiKnowledge Bases
File Edit Source

Create Mew ¥

a Assets | Attribute || Edit

= =58 Packages

== defaultPackage + g Technical rule assets
5 morgages + T Business rule assets
i=t Global Area H EpsL configurations
o + = Model

+ ¢e<[Enumerations
+ [V Test Scenarios

+)Other assets, documentation

+
|
i

&

Figure 5.3. A package with assets

Status: "

110

Package explorer

‘> Browse
fHKnowledge Bases
Create New »
O i Packages
3 defaultPackage
mongages
f# parent.childl
i) parent.child2

sas Global Area

Find

File Edit

Assets | Attribute

& Mo Assets have been defined for this package

parent.childl

Source

Edit

Figure 5.4. A package without assets

Expanding a section using the [+] icon reveals the assets contained therein.

Status: "

Assets are listed in a table that can be paged forwards or backwards and can be opened by
either clicking their respective "Open" button, or selecting the required rows and clicking the "Open
selected" button. Multiple assets can be opened into a single editor by selecting the required rows
and clicking the "Open selected to single tab" button.

“ Browse
HHKnowledge Bases
Create New »
SR Packages
& defaultPackage
=2} mortgages

ia8 Global Area

H B = %5
QA

" Package snapshots

Find

File Edit

Assets | Attribute

mortgages

Source

Edit

+ &*Technical rule assets

—| % Business rule assets

Refresh list | Openselected | Open selected to single tab | [)

Format Name Status Last modified Open
O k] Bankruptcy history Draft 2008 Oct 1 03:55:07 Open
O k4] CreditApproval Draft 2008 Oct 21 17:35:55 Open
O 9 Mo bad credit checks Draft 2008 Oct 1 03:55:21 Open
(] =] Pricing loans Draft 2008 Oct 1 04:46:07 Cpen
O k4] RegexDsIRule Draft 2008 Oct 22 20:41:28 Cpen
O 9 Underage Draft 2008 Oct 1 03:54:34 Open
O P no Nl,NJAS Draft 2008 Oct 1 22:32:16 Open
Nao ninjas 1
4 4 17of7 »

+ i DSL configurations

1]

T

F]

1]

= Model

¢=<[Enumerations

&Test Scenarios

s PthAr mmrate dasimantatian

Figure 5.5. Showing individual assets

111

Status: "

Chapter 5. Managing Assets

5.1.1.2. Package configuration

A package can be configured by clicking on the "Edit" tab on the Asset Viewer.

The facilities here relate to compiling the package into a binary form. The "Packaging" section of
this user-guide provides a detailed narrative on this section.

File Edit Source Status: "

Assets | Aftribute | Edit

Configuration: Imported types Globals s dyanced view

nfs e

m m

v

Category Rules: &2 @)

Validate configuration ‘

© Build whole package®
O Use built-in selector

O Use custom selector®

Build binary package: Build package

Building a package wil collect all the assefs, valdate and compile inio a deployable package.

Take snapshot: Create snapshot for deployment ‘

URL for package documentation: http://127.0.0.1:8888/org. drools. guvnor. FastCompiledGuvnor/package/mortgages/L ATEST/documentation. paf(d)
URL for package source: hitp://127.0.0.1:8888/org. drools. guvnor. FastCompiledGuvnor/packages/mortgal es/source@
URL for package binary: http://127.0.0.1:8888/org.drools.guvnor. FastCompiledGuvnor/packages/mortgages/binary ()
URL for running tests: hitp://127.0.0.1:8888/org. drools. guvnor. FastCompiledGuvnor/package/mortga ps/L ATEST/ISCENARIOS®D
Change Set: hitp://127.0.0.1:8888/org.drools.guvnor. FastCompiledGuvnor/package/mortgages/L ATE ST/ChangeSet. xm|(D)
POJO Model: httD:HlZ?.O_{].IZBBSS!DrEI_EIrDDIS_uLNnCI-r_FaStCCI-mpiIEI:IGLNnon‘packaue!mortuaues!LATEST!MODEL@

S—

Figure 5.6. Package configuration

5.1.2. Category view

The category view provides a way to navigate your rules in a way that makes sense to your
organization.

112

Inbox and comments

‘" Browse
= ¥ Inbox
= Incoming changes
= Recently Edited
= Recently Opened
2 ¥ Assets
% Find
=l EJ By Status
Draft
B saa By Category
= Home Mortgage
Eligibility rules
Pricing rules
Test scenarios
Technical

Commercial Mortgage

Figure 5.7. Category view

The above diagram shows categories in action. Generally under each category you should have
no more then a few dozen rules, if possible.

5.1.3. Inbox and comments

Built into the Guvnor are two useful features to helping manage changes: an Inbox, and a
comments section. These features do not affect any execution or access to rules, but are purely
for documentation and notification purposes, and are of course always optional to use.

5.1.3.1. Inbox

In the "browse" section of the application, there is an "Inbox" tree item, below this are 3 inboxes.
"Incoming changes" contains changes to any artifacts that the current logged in user has edited in
the past, or commented on. Simply editing or commenting on an artifact registers interest in it to
be notified of changes the next time you log in."Recently opened" contains items that have been

113

Chapter 5. Managing Assets

recently opened (simply opening an artifact will make it appear here, the last 100 recently opened
items will appear here). "Recently edited" contains the last 100 recently edited items (artifacts that
the current user has made changes to).

5.1.3.2. Comments

Below the documentation box of each artifact, is a "comments" section - simply, you can add a
new comment. Administrators can clear all comments on a given artifact, but other users can only
append comments. Each comment records what user made the comment, and when. Users who
can't edit artifacts can still comment on them.

5.2. Feed

Feeds make it easier for users to keep track of Guvnor content. Following Guvnor content are
published in Atom Feed:

» Package version history

» Asset version history

» Asset Discussion

« Categories

» Package assets

114

Chapter 6.

Chapter 6. Quality Assurance

6.1. Test scenarios

Scenarios for package:mortgages

Run all scenarios

Refresh list ‘ Open selected ‘ Open selected to single tab | [

Format Name Status Last medified Open
Are they old enough
O ¥4 v 9 Draft 2011 May 2 12:23:39 Open
Tast really basic validalion, commaon serse siuff
Good credit history on
O ¥4 ry only Draft 2011 May 2 12:23:39 Open
Obwviously we only want people who can pay siulf back
g L.\f MIMNJAS Draft 2011 May 2 12:23:39 Open
Mo bankruptcies
O [P Draft 2011 May 2 12:23:39 Open
We don't want bankrupt peopie since 1980, or if their amownt was over a cerfa...
g L.\f Pricing low end Draft 2011 May 2 12:23:39 Open
4 4 150f5 » M

Figure 6.1. Test Scenarios before execution

Test Scenarios can be executed one at the time or as a group. The group execution contains all
the Scenarios from one module. Test Scenarios are independent, one Scenario can not affect or

modify the other.

115

Chapter 6. Quality Assurance

Scenarios for package:mortgages

Run all scenarios

Owerall result: FAILURE
Resulis:

2 failures out of 7 expectations.

Rules covered: 80 % 80% of the rules were tested.

Uncovered rules: Row 3 Pricing loans
Fow 2 Pricing loans

Are they old enough: 0 failures out of 1 Open

Good credit history Clr'll'j":| 0 % |Mi55ing Expectations Open

MINJAs: 0 failures out of 1 Open

Mo bankruptcies: 0 failures out of 2 Open

Pricing low end:- 33 % |2 failures out of 3 Open

Close |

Figure 6.2. Example Test Scenarios after execution

After running all the Test Scenarios a report is shown. In a valid knowledge base all tests should
pass and rule coverage should be 100%. Passing tests are marked with green, red shows failing
tests and yellow notifies about missing rule coverage or missing expectations.

6.2. Package analysis

Package analysis uses Drools rules to statically analyse knowledge modules. It produces a report
that contains information about the quality of the knowledge module.

Package analysis message types:

* Notes - Needs attention, may be ignored.
* Warnings- Possible problem, usually there is an alternative way.

» Errors - Needs correction, logical falacy etc.

6.2.1. Items that the analyser is searching for

« Range Validation - Making sure all the ranges for a field are covered. For example: Person's age
is greater than 20 restriction exists. Check that the person's age is 20 or less than 20 is missing.

116

Items that the analyser is searching for

Missing Equality - When there are inequalities, but not equality being catered for. For example:
LoanApplication has a field called approved. Approved field is checked to not equal to true
(LoanApplication.approved != true), but a check where approved is equal to true is missing.

Redundancy - Rules or restrictions inside are rule are redundant. Redundancy in rule: Two rules
fire with the same conditions and execute the same actions. Restriction redundancy example:
Person has two restrictions for name, both are checking if the name is "Toni".

Subsumption - Rule subsumption: Both rules have the same actions. There exists one set of
facts that can satisfy both of the rules and another set of facts that only satisfies the other rule.
Restriction subsumption: Person fact has two restrictions, one checks that the age is greater
than 20 and another checks that the age is greater than 50. Age greater than 50 restriction is
subsumptant and can be removed.

Rule Incoherence - Nothing can meet the rule conditions. Example: Rule author has added two
restrictions on one field that are incoherent. Person age is equal to 20 and age is equal to 30.
The rule can never be satisfied.

Excessive Use of eval()- Eval should be avoided, eval is slow and doesn't make use of the
RETE-network. If the rule consists mainly of eval statements then the user should be warned.

Rule Optimisation - The most strict restrictions should be declared first. Slower restrictions like
eval last.

Rule Should Have an Action - If the rule does not have an action it does nothing.

Rules and Patterns That Always Pass - Pattern example: Persons age field has restrictions that
check that the age is greater or equal to 20 and a restriction that checks that the age is less
than 20. All the ranges for age are checked in one pattern.

117

118

Chapter 7.

Chapter 7. Packaging

7.1. Packaging

Packaging is the process of assembling required assets into a single deployable unit, called a
package, and configuring the package as necessary.

Some aspects of the configuration are also critical for authoring assets, such as the import of
model classes and the definition of global variables. For example, you may add a model which
has a class called com sonet hi ng. Hel | o, you would then add i nport com somnet hi ng. Hel | o
in your package configuration and save the change.

The package configuration screen is reached by clicking on the required package in the "Package
Explorer" and then selecting the "Edit" tab.

Eﬂltnuwledge Bases
Create Mew »
D aa Packages
B defaultPackage
[# mortgages]
= H parent

B chilgl
& childz

<=s Global Area

8= T

Figure 7.1. Select a package from the "Package Explorer"

119

Chapter 7. Packaging

> Browse Find mortgages

fHKnowledge Bases - -
File Edit Source
Create New »

a Assets | Attribute
= === Packages

= defaultPackage & Technical rule assets
= morngages ‘2 Business rule assets
san Global Area & DSL configurations

- & Model
¢=<|Enumerations
[V Test Scenarios

¢3|Other assets, documentation

S
Figure 7.2. Select the "Edit" tab

File Edit Source
Assets | Aftribute | | Edit

Configuration: Imported types Globals adyanced view

alds aldr
1} m

v v

Category Rules: &/ (@)

Validate configuration

© Build whole package®
O Use built-in selector®

O Use custom selector®

Build binary package: Build package

Building a package wiWl collect all the assets, valdate and compile info a deplhyable package.

Take snapshot: Create snapshot for deployment ‘

Status:

Status: "

URL for package documentation: hitp//i127.0.0.1:8888/org. drools. guvnor. FastCompiledGuvnonpackage/mortgages/L ATE ST/documentation. df@

URL for package source: http:/f127.0.0.1:8888/org.drools.guvnor. FastCompiledGuvnor/packages/mortgages/sourc e@

URL for package binary: hitp://127.0.0.1:8888/org. drools. guvnor. FastCompiledGuvnor/packages/mortgages/bina

URL for running tests: http://127.0.0.1:8888/org.drools.guvnor.FastCompiledGuvnor/package/mortgages/LATEST/SCENARIOS @

Change Set: http://127.0.0.1:8888/org. drools. guvnor. FastCompiledGuvnor/package/mortgages/L ATEST/ChangeSet. xm
POJO Model: http:ﬂlZ?.O.U.1:SBSSIEI-rEl.|:Irc|-c|-|s.l:luvnur.FastCumniledGuvncrn’packagg!murtuaues!LATEST!MODEL@

®

—

Figure 7.3. The Package Configuration screen

7.2. Imports and Globals

The "imports" section of the package configuration screen allows you to import Java classes

needed by your assets.

When a POJO Model file is uploaded it is scanned for classes and imports are automatically

created.

120

Basic View

Globals are DRL Global variables that can be accessed by rules. Please consult the Drools Expert
documentation for details.

File Edit Source

Assets Attribute | Edit

Configuration: Imported types Globals Advanced view
=

model.Fact2 l4|5F LoanApplication [gla] [&

model. SubFact2 il

Category Rules: & (1)

Validate configuration

© Build whole package®
) Use built-in selector
O Use custom selectﬂ-r®

Build binary package: Build package

Building a package will collect all the assefs, valdate and compile into a deployable package.

Take snapshot: Create snapshot for deployment |

URL for package documentation: hitp:/f127.0.0.1:8888/org.drools. guvnor.FastCompiledGuvnor/package/mortgages/L ATEST/documentation. df@
URL for package source: http:/f127.0.0.1:8888/org. drools. guvnor. FastCompiledGuvnor/packages/mortga es/source@
URL for package binary: http://127.0.0.1:8888/org. drools. guvnor. FastCompiled Guvnor/packages/mortgages/binary (1)
URL for running tests: http:/f127.0.0.1:8888/org. drools. guvnor. FastCompiledGuvnor/package/mortgal es/| ATEST/SCENARIOS®
Change Set: hittp://127.0.0.1:8888/org. drools. guvnor. FastCompiledGuvnor/package/mortgages/L ATE ST/ChangeSet.xmi (@)
POJO Model: hitp://127.0.0.1:8888/0rg. drools. guvnor, FastCompiledGuvnot/package/mortgages/L ATEST/MODEL (D
< NN —————————

Figure 7.4. Imports and Globals configuration

7.2.1. Basic View

The "Basic View" of Imports and Globals is shown by default. This view allows either to be
managed visually.

Imports or Globals can be inserted by clicking the [+] icon beside the applicable panel. Either can
also be deleted by selecting the appropriate Import or Global and clicking the dustbin icon.

121

Chapter 7. Packaging

Choose a fact type x

£ ‘ Choose a fact type

Fact types are classes from jar' fles that have been upladed fa the cument package.
Choose class type: model.Fact ;l@

(advanced) class name: @

Ok | Cancel |

Figure 7.5. Adding an Import with the "Basic View"

Choose a fact type x

£ ‘ Choose a fact type

Global types are classes from jar fles that have bean uplbadead fo the cument packags.
Choose class fype: LoanApplication j@
Global name:

(advanced) class name: @

OK | Cancel |

Figure 7.6. Adding a Global with the "Basic View"

7.2.2. Advanced View

You can switch to the "Advanced View" by clicking the "Advanced View" button. This view provides
a simple text-box in which package-level DRL can be entered.

122

Category rules

File Edit Source

Assets | Attribute Edit

Configuration: import model.Fact2
import model.SubFactz

global LganApplication myGlebal

Basic view

Figure 7.7. The Advanced View

7.3. Category rules

Category Rules allow you to set 'parent rules' for a category of rules. Any rules appearing in the
given category will ‘extend’ the rule specified - i.e. inherit the conditions/left-hand-side.

To be able to take advantage of Category Rules you first need to define one or more categories.
See the section relating to Categories for additional information.

Category Rules are defined on the Package screen.
» By default a new package has zero Category Rules defined.

Configuration: Imported types Globals adyanced view

A+ A+
I i

4

v

Category Rules: &/ (1)

Validate configuration

Figure 7.8. No Category Rules defined
« Click on the pencil icon beside "Category Rules" to show the Category Rule editor.

» Select a Category. Rules belonging to this category will extend another single rule.

123

Chapter 7. Packaging

» Enter the parent rule name in the "Will extend the rule called" TextBox. This is the rule that
others, in the defined category, will extend.

Add a Category Rule to the Package 4
§6% Add a Category Rule to the Package
= -

= Home Mortgage

All the rules in category: _
— Commercial Mortgage
— ChildRules

Will extend the rule called: BaseRule
8] 4 |

Figure 7.9. Category Rule editor
+ Click OK.
» Save the package to ensure changes made take effect when building the package.

 Details of defined Category Rules are shown on the Package screen.

Configuration: Imported types Globals advanced view
& E_Eﬂ & ':u_.nF'
i1} i1}

L

v

Category Rules: /(1)
All rules for Category: *ChildRules’ will now extend the rule: '‘BaseRule’®

Validate configuration

Figure 7.10. Defined Category Rules
* Click on the [-] icon to delete a Category Rule.

« Example DRL achieved with Category Rules.

rul e "BaseRul e"
di al ect "nvel "
when

124

Building

$a : Applicant()
t hen
end

rule "Chil dRul e" extends "BaseRul e"
di al ect "nvel "
when
Bankr upt cy()
t hen
end

7.4. Building

You can build a package by clicking on the button Build package. Any building errors (such as
compilation errors) are shown, failing the build. You can chose to build the whole package or a
subset of it (see next sections).

@) |Build whole package®
) Use built-in selector @

) Use custom selector®

Build binary package: Build package |

Buiding & package will collect all the assets, validate and compile info 8 deployable pachage.

+ Package built successfully. Last modified on Thu Apr 26 15:28:28 CEST 2012
Download binary package

Take snapshot: Create snapshot for deployment |

Figure 7.11. Package building

A Warning

In cases of a large number of rules, all these operations can take some time.

If the build was successful, you can download the binary package as a pkg file. Also you will have
the option to create a shapshot for deployment. You can also view the DRL that this package
results in by clicking on the package source link.

@ Note
If you wish to rebuild all packages in bulk, you can do that faster with the left menu
Knowledge Bases, menu Create New, menu item Rebuild all packages binaries.

125

Chapter 7. Packaging

7.5. Selectors

When building packages using the "Packages" feature you have the option to use a "selector".
This selector will filter the list of rules that are built into the package.

7.5.1. Built-in Selector

Guvnor provides several built-in selectors which allow you to choose what assets form part of a
package build according to asset's status and category.

() Build whole pachage@
© Use built-in selector®
O Use custom selector®
Build package using following assets:
k4 When status © = ;l DRAFT
(] When category : = j = -
= — Home Mortgage
— Eligibility rules
— Pricing rules

[+ — Test scenarins

Build binary package: Build package

Building a package will collect all the assels, validale and compile info a deployable package.

Figure 7.12. Built-in Selector

7.5.2. Custom Selector

You can use a custom selector if the built-in selector does not satisfy your requirement.

To configure a custom selector, you will need to "explode" the WAR file for Guvnor, and locate the
sel ectors. properti es file (note you can also put your own sel ect ors. properti es file in the
system classpath if you like). In this file, you will find details on how you can configure a custom
selector. The options are to use a DRL file, or the name of a class that you have written (and which
is available on the classpath). Classes must implement the Asset Sel ect or interface. DRL files
can also be used and there is an example one in the sel ect or s. properti es file). Each selector
you configure has a unique name in this properties file - and this is the hame that you can use
when building packages.

126

[

Snapshots

7.6. Snapshots

URLs are central to how built packages are provided. Guvnor provides packages via URLs (for
download and use by the Knowledge Agent). These URLSs take the form of:

http://<server >/ guvnor - webapp/ or g. dr ool s. guvnor. Guvnor/ package/
<packageNane>/ <packageVer si on>

<packageName> is the name you gave the package. <packageVersion> is either the name of a
snapshot, or "LATEST" (if its LATEST, then it will be the latest built version from the main package,
not a snapshot). You can use these in the Knowledge Agent, or you can paste them into your
browser and it will download them as a file.

Refer to the section on the Knowledge Agent for details on how you can use these URLs (and
binary downloads) in your application, and how rules can be updated on the fly.

‘% Browse Find BaseRule ChildRule mortgages Snapshot: TEST
fHKnowledge Bases

5 Viewing snapshot: TEST
QA

néhpackage snapshots

Create New P Snapshot created on: 2012-04-24 12:06

. Comment:
= s=a Package snapshots

;s Delete | C
34 defaultPackage ilﬂ‘

& ¥ mortgages Compare to: ANOTHER 7| compare
TEST —| Business rule assets
ANOTHER Refresh lisk | Open selected | Open selected to single tab | [|-
Format Name Status Last modified Open
O] Bankruptcy history Draft 2008 Oct 1 03:55:07 Open
O] Mo bad credit checks Draft 2008 Oct 1 03:55:21 Open
]
(] B Pricing loans Draft 2008 Oct 1 04:46:07 Open
O] Underage Diraft 2008 Oct 1 03:54:34 Open
O no NINJAs Draft 2008 Oct 1 03:55:44 0
] k7] No ninas | ra C :55: pen
4 4 150f5 » b
+ = Model

+ ¢*s[Enumerations
+ [V Test Scenarios

+ @|Other assets, documentation

Figure 7.13. Deployment snapshots

The above shows the Package Snapshots view. On the left there is a list of packages. Clicking
on a specific package will show you a list of snapshots for that package (if any). From there you
can copy, remove or view the assets contained within the snapshot. You can also compare one
snapshot to another. Each snapshot is available for download or access via a URL for deployment.

127

Chapter 7. Packaging

7.7. Advanced configuration

As drools supports various configuration options for a package (such as adding functions for
"accumulate" etc), this can be done by adding a X. package or X. conf file to the package - files
which contain name/value pairs in the "properties” style. These will then be automatically added
to the package configuration. See the main drools documentation for all the things you can do.

128

Chapter 8.

Chapter 8. Administrative
Functions

8.1. Categories

= EHR
+H Dleave
+ = Training
+ = 5ales
+ = Manufacturing

+ = Finance

Figure 8.1. Categories

Categories allow rules (assets) to be labeled (or tagged) with any number of categories that you
define. This means that you can then view a list of rules that match a specific category. Rules can
belong to any number of categories. In the above diagram, you can see this can in effect create
a folder/explorer like view of assets. The names can be anything you want, and are defined by
the Guvnor administrator (you can also remove/add new categories - you can only remove them
if they are not currently in use).

Generally categories are created with meaningful name that match the area of the business
the rule applies to (if the rule applies to multiple areas, multiple categories can be attached).
Categories can also be used to "tag" rules as part of their life-cycle, for example to mark as "Draft"
or "For Review".

Categories: [_
Finance

HR/ Awards/QAS

Figure 8.2. Assets can have multiple categories

The view above shows the category editor/viewer that is seen when you open an asset. In this
example you can see the asset belongs to 2 categories, with a "+" button to add additional items

129

Chapter 8. Administrative Fun...

(use the trash can item to remove them). This means that when either category is used to show
a list of assets, you will see that asset.

In the above example, the first Category "Finance" is a "top level" category. The second one: "HR/
Awards/QAS" is a still a single category, but its a nested category: Categories are hierarchical.
This means there is a category called "HR", which contains a category "Awards" (it will in fact have
more sub-categories of course), and "Awards" has a sub-category of QAS. The screen shows this
as "HR/Awards/QAS" - its very much like a folder structure you would have on your hard disk (the
notable exception is of course that rules can appear in multiple places).

When you open an asset to view or edit, it will show a list of categories that it currently belongs to
If you make a change (remove or add a category) you will need to save the asset - this will create
a new item in the version history. Changing the categories of a rule has no effect on its execution.

Create a new top level category.
Category name

ok

Figure 8.3. Creating categories

The above view shows the administration screen for setting up categories (there) are no categories
in the system by default. As the categories can be hierarchical you chose the "parent" category
that you want to create a sub-category for. From here categories can also be removed (but only
if they are not in use by any current versions of assets).

As a general rule, an asset should only belong to 1 or 2 categories at a time. Categories are critical
in cases where you have large numbers of rules. The hierarchies do not need to be too deep, but
should be able to see how this can help you break down rules/assets into manageable chunks.
Its ok if its not clear at first, you are free to change categories as you go.

130

Status management

8.2. Status management

Every asset, including packages, can be assigned a status. Unlike categories assets can only
have one status. The use of statuses is optional and does not affect the execution of assets,
however, statuses may be used to compile packages when using selectors.

Statuses may help to manage the lifecycle of assets, by assigning assets a status that indicates
its current state, for example, draft, review, production.

If the status for an entire package is changed, it changes the status for every asset in the package.

Procedure 8.1. Setting the available statuses

1 From the navigation panel, select Administration - Status .
2. Click New status, enter the status name in the text box, and click OK.

The new status will show up in Current statuses field.
Procedure 8.2. Changing asset status

1. Open the asset in the asset editor.

2. select Edit — Change status, choose the status from the drop down menu and click Change
status.

hlﬂhnnge status
| _Choose one — | 4 | Change status | Cancel ‘

Figure 8.4. Asset status

The status of the asset will be changed immediately.

131

Chapter 8. Administrative Fun...

8.3. Archived items

This is basically the trash bin.

Archived items

Restore selected package | Permanently delete package

— no archived packages — B

Restore selected asset | Delete selected asset ‘ Refresh list | Open selected | Open selected to single tab

Format Name Last contributor Last modified Open

O w detectFastDrivers guest 2011 Sep 29 15:07:47 Open

Figure 8.5. Archived items

If you've archived an asset (effectively deleting it), and you want to restore it, open this screen,
select the asset and click the button Restore selected asset.

If instead, you want to permanently delete it, select it and click the button Delete selected asset.

8.4. Event Log

The event log shows the server events that have occurred.

Showing recent INFO and ERROR messages from the log

Clean | Refresh list I@

Severity Message Timestamp

@ USER: guest CREATING package [trafficPackage] 2011 Sep 29 14:41:40
@ USER:guest CREATING new asset name [trafficModel] in package [trafficPackage] 2011 Sep 29 14:42:00
@ USER:guest CREATING new asset name [trafficModel2] in package [trafficPackage] 2011 Sep 29 14:42:20
@ USER:guest CHECKING IN asset: [trafficModel2] UUID: [55a6fd62-22b1-4566-a9bb-6261ae8e7713] 2011 Sep 29 14:43:08
@ USER:guest CREATING new asset name [detectFastDrivers] in package [trafficPackage] 2011 Sep 29 14:44:02
@ USER:guest CHECKING IN asset: [detectFastDrivers] UUID: [8856feat-6e2d-4eea-aB57-05192156033b] 2011 Sep 29 14:45:35
@ USER:guest CHECKING IN asset: [trafficModel2] UUID: [55a6fd62-22b1-4566-a9bb-6261ae8e7713] 2011 Sep 29 14:46:01
@ USER:guest CHECKING IN asset: [detectFastDrivers] UUID: [8856feat-6e2d-4eea-aB57-05192156033b] 2011 Sep 29 14:46:29

4« 4 1Bof8 »

Figure 8.6. Event log

132

User permissions

To clean the log, click the button Clean.

8.5. User permissions

When role based permissions are enabled (see administration guide), it's possible limit user
permissions.

Permission details
TiF: To enable or dizable authonzation, open components. xml in H'EB—i'M‘:@

Create new user mapping | Delete selected user | Open selected | Refresh list ‘ il |

User name Administrator Has package permissions Has category permissions Open
O mailman Open
] admin Yes Open
O guest Open
] alan_parsons Open

4 4 14cofa »

Figure 8.7. User permission mappings

To add a new user, click the button Create new user mapping.

@ Note

The user guest is special: if the user exists, Guvnor will automatically log in users
as guest.

Warning

Do not delete or cripple the users adni n or mai | man. They are users used by the
system.

To add or remove a permission to a user, select a user and click on the button Open. Click on
the green + to add a permission type:

133

Chapter 8. Administrative Fun...

Permission type:| — please choose — iw ':D
— please choose —
admin
analyst
analyst.readonly
package.admin
package.developer
package.readonly

Figure 8.8. User permission mapping dialog

There are several permission types:

« Admin: this user can do everything

« Analyst or Analyst read-only: analyst permissions for a specific category. Create the category
before attempting to assign users to it.

« Package admin, Package developer or Package read-only: package permissions for a
specific package. Create the package before attempting to assign users to it.

8.6. Import and Export

The entire Guvnor repository can be exported to a file. This is useful as a backup. It can be
imported in the same or another Guvnor server instance.

Import/Export

Browse. .. Impork

Export

Figure 8.9. Import and export

To export the entire repository content into a zip file, click the button Export. You 'll get a pop-
up in your browser to save the zip file.

To import such a zip file, click the button Browse, select the zip file and click the button Import.

134

Repository Configuration

Both actions may take some time, especially if the repository is big.

8.7. Repository Configuration

Check Chapter "Configuring Guvnor to use an external RDBMS" for more information.

135

136

Part Il. Developer Guide

This part covers Guvnor for software developers.

Chapter 9.

Chapter 9. Integrating rules with
your applications

Its all very interesting to manage rules, but how to you use or "consume" them in your application?
This section covers the usage of the KnowledgeAgent deployment component that automates
most of this for you.

9.1. The Knowledge Agent

The knowledge agent is a component which is embedded in knowledge-api. To use this, you don't
need any extra components. In fact, if you are using Guvnor, your application should only need to
include the knowledge-api and drools-core dependencies in its classpath (drools and mvel JARs
only), and no other rules specific dependencies.

Note that there is also a drools-ant ant task, so you can build rules as part of an Ant script (for
example in cases where the rules are edited in the IDE) without using Guvnor at all - the drools-
ant task will generate .pkg files the same as Guvnor.

Once you have "built" your rules in a package in Guvnor (or from the ant task), you are ready to
use the agent in your target application.

The Following example constructs an agent that will build a new KnowledgeBase from the files
specified in the path String. It will poll those files every 60 seconds, which is the default, to see if
they are updated. If new files are found it will construct a new KnowledgeBase. If the change set
specifies a resource that is a directory it's contents will be scanned for changes too.

Knowl edgeAgent kagent = Know edgeAgent Fact ory. newkKnow edgeAgent ("M/Agent");
kagent . appl yChangeSet (Resour ceFactory. newlr | Resource(url));
Knowl edgeBase kbase = kagent. get Know edgeBase();

The KnowledgeAgent can accept a configuration that allows for some of the defaults to be
changed. An example property is drool s. agent . scanDi rect ori es, by default any specified
directories are scanned for new additions, it is possible to disable this.

Know edgeBase kbase = Know edgeBaseFact ory. newknow edgeBase() ;
Knowl edgeAgent Confi gurati on kaconf = Know edgeAgent Fact ory. newKnow edgeAgent Confi gurati on();

// we do not want to scan directories, just files
kaconf . set Property("drool s.agent.scanDirectories", "false");

/1 the nanme of the agent
Knowl edgeAgent kagent = Know edgeAgent Fact ory. newKnow edgeAgent ("test
agent", kaconf);

139

Chapter 9. Integrating rules ...

/'l resource to the change-set xml for the resources to add

kagent . appl yChangeSet (Resour ceFactory. newUr | Resource(url));

An example of the change-set . xm file.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<change-set xm ns="http://drools.org/drool s-5. 0/ change-set"
xm ns: xs="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xs: schemalLocati on="http://drool s. org/drool s-5. 0/ change-
set http://anonsvn. j boss. or g/ repos/ | abs/ | abs/j bossrul es/trunk/drool s-api/src/
mai n/ r esour ces/ change-set-1.0. 0. xsd" >
<add>
<resource source="http://1 ocal host: 8080/ guvnor-6. 0. 0. Bet a2/
org. drool s. guvnor. Guvnor/ package/ nort gages/
LATEST" type="PKG' basi cAut henti cati on="enabl ed" username="ui d" password="pwd"/ >
</ add>
</ change- set >

Important

The User ID and Password in the change-set should be consistent with the
requirements of the Authenticator configured in components.xml. By default, a
NilAuthenticator is configured that does not authenticate HTTP requests and hence
the "basicAuthentication", "username" and "password" attributes are not required.
If you change components.xml to use another Authenticator you will need to ensure
appropriate authentication credentials are set in the change-set. Please refer to the
"Security - Authentication and basic access" section of the "Administration Guide"

for more details.

@ Note

The change-set schema, change-set-1.0.0.xsd, is also included in the knowledge-
api JAR file applicable to the version of Drools you are running.

Resource scanning is not on by default, it's a service and must be started, the same is for
notification. This can be done via the ResourceFactory.

Resour ceFact ory. get Resour ceChangeNot i fi erService().start();

140

REST API

Resour ceFact ory. get Resour ceChangeScanner Servi ce().start();

Following shows the deployment screen of Guvnor, which provides URLs and downloads of

packages.
) Assets = Viewing snapshot: TEST
i r package: mortgages
Packages *
T g Depl t URL: click here to download binary (or copy URL for Rule Agent)
J‘}f QA - Snapshot ed on: Dec 19, 2008 8:40:25 PM
Comment
Sl Package snapshots - Delete Copy
Deploy... =
. 2 = tlj mortgages
=) o Package snapshots %) Business rule assets
H & Payments chhnical rule assets
& &Y defaultPackage (9= Functicns
H £ merchant e¢ DSL cenfigurations
= %Y mortgages & Model
=] TEST 4k Rule Flows
=] ANOTHER #20| Enumerations
& 5 testt |+ Test Scenarios

'Z"XI'-"IL, Properties
'ZI" Other assets, documentation

Figure 9.1. Snapshot deployment

You can see the "Package URI" - this is the URL that you would copy and paste into the change-
set. xm file to specify that you want this package. It specifies an exact version (in this case to a
snhapshot) - each snapshot has its own URL. If you want the latest snapshot, replace the name of
the snapshot in the URL with the word "LATEST".

You can also download a .pkg file from here, which you can drop in a directory and use the "file"
or "dir" feature of the KnowledgeAgent if needed (in some cases people will not want to have
the runtime automatically contact Guvnor for updates - but that is generally the easiest way for
many people).

9.2. REST API

The repository back end can also be accessed via Rest. Rest is a http based protocol API, which
has clients on all platforms and in all programming languages.

9.2.1. REST

Representational State Transfer (REST) is a style of software architecture for distributed
hypermedia systems such as the World Wide Web. The term Representational State Transfer
was introduced and defined in 2000 by Roy Fielding [http://en.wikipedia.org/wiki/Roy_Fielding] in
his doctoral dissertation.

REST-style architectures consist of clients and servers. Clients initiate requests to servers; servers
process requests and return appropriate responses. Requests and responses are built around
the transfer of representations of resources. A resource can be essentially any coherent and

141

http://en.wikipedia.org/wiki/Roy_Fielding
http://en.wikipedia.org/wiki/Roy_Fielding

Chapter 9. Integrating rules ...

meaningful concept that may be addressed. A representation of a resource is typically a document
that captures the current or intended state of a resource. The REST protocol is often considered
as a light protocol versus SOAP.

9.2.2. Guvnor REST API

The Guvnor Rest APl is divided in two groups of services : one around accessing rule assets by
their names and packages and the second accessing rule assets by categories.

A rule asset represents any element that can be stored and handled in Guvnor : a guided rule,
a web decision table, a test scenario, etc.

The http address to use as base address is http://{ServerName}/{httpPort}/{guvnorWarFilename}/
rest where ServerName is the host name on the server on which Guvnor is deployed, httpPort the
port number (8080 by default development) and guvnorWarFilename the name of the archived
deployed (guvnor-webapp-5.3.0 for version 5.3.0) without the extension.

9.2.2.1. Accessing Rules by Package

Use the URLs listed below to access rules assets by package. The examples below assume a
base URL of http://localhost:8080/guvnor-6.0.0.Beta2/rest/.

/packages. http://localhost:8080/guvnor-6.0.0.Beta2/rest/packages

The GET method produces MIME-Types:

« application/atom+XML
« application/json
« application/xml

The GET method return all packages contained in the repository in the requested format (Atom
feed, JSON, or XML).

The POST method produces MIME-Types:

« application/atom+XML
« application/json
« application/xml

The POST method consumes MIME-Types:

 application/octet-stream

« application/atom+xml

142

http://localhost:8080/guvnor-6.0.0.Beta2/rest/
http://localhost:8080/guvnor-6.0.0.Beta2/rest/packages

Guvnor REST API

« application/json
« application/xml

The POST method creates a new package from an input stream of DRL, an Atom feed, JSON, or
XML, and returns the newly created package in the requested format (Atom feed, JSON, or XML).

/packages/{packageName}. http://localhost:8080/guvnor-6.0.0.Beta2/rest/packages/
{packageName}

The GET method produces MIME-Types:

« application/atom+xml
 application/json
« application/xml

The GET method returns the metadata of the package {packageName} as an Atom entry when
the MIME-Type is application/atom+xml, and as a package element when the MIME-Type is
application/json or application/xml.

The PUT method produces MIME-Types:

« application/atom+xml
« application/json
« application/xml

The PUT method updates the metadata of package {packageName} with the provided format
(Atom Entry, JSON, or XML).

The DELETE method deletes package {packageName}.

Ipackages/{packageName}/source. http://localhost:8080/guvnor-6.0.0.Beta2/rest/packages/
{packageName}/source

The GET method produces MIME-Types:

* text/plain
The GET method returns the source code of the package {packageName} as a text file.

/packages/{packageName}/binary. http://localhost:8080/guvnor-6.0.0.Beta2/rest/packages/
{packageName}/binary

The GET method produces MIME-Types:

 application/octet-stream

143

http://localhost:8080/guvnor-6.0.0.Beta2/rest/packages/{packageName}
http://localhost:8080/guvnor-6.0.0.Beta2/rest/packages/{packageName}
http://localhost:8080/guvnor-6.0.0.Beta2/rest/packages/{packageName}/source
http://localhost:8080/guvnor-6.0.0.Beta2/rest/packages/{packageName}/source
http://localhost:8080/guvnor-6.0.0.Beta2/rest/packages/{packageName}/binary
http://localhost:8080/guvnor-6.0.0.Beta2/rest/packages/{packageName}/binary

Chapter 9. Integrating rules ...

The GET method returns the compiled binary of the package {packageName} as a binary stream.
If the package has not been compiled yet or its binary is not up to date, this will compile the
package first.

Ipackages/{packageName}/versions. http://localhost:8080/guvnor-6.0.0.Beta2/rest/
packages/{packageName}/versions

The GET method produces MIME-Types:

« application/atom+xml
The GET method returns the list of package {packageName} versions as an Atom Feed.

/packages/{packageName}/versions/{version}. http://localhost:8080/guvnor-6.0.0.Beta2/
rest/packages/{packageName}/versions/{version}

The GET method produces MIME-Types:

* application/atom+xml

The GET method returns the metadata of package {packageName} and of version {version} as
an Atom Entry.

/packages/{packageName}/versions/{version}/source. http://localhost:8080/
guvnor-6.0.0.Beta2/rest/packages{packageName}/versions/{version}/source

The GET method produces MIME-Types:

* text/plain

The GET method returns the source code of package {packageName} and of version {version}
as a text file.

/packages/{packageName}/versions/{version}/binary. http://localhost:8080/
guvnor-6.0.0.Beta2/rest/packages/{packageName}/versions/{version}/binary

The GET method produces MIME-Types:

 application/octet-stream

The GET method returns the binary (compiled code) of package {packageName} and of version
{version} as an octet stream. If the package version has not been built, it returns HTTP code 500
with an error message.

/packages/{packageName}/assets. http://localhost:8080/guvnor-6.0.0.Beta2/rest/
packages{packageName}/assets

The GET method produces MIME-Types:

144

http://localhost:8080/guvnor-6.0.0.Beta2/rest/packages/{packageName}/versions
http://localhost:8080/guvnor-6.0.0.Beta2/rest/packages/{packageName}/versions
http://localhost:8080/guvnor-6.0.0.Beta2/rest/packages/{packageName}/versions/{version}
http://localhost:8080/guvnor-6.0.0.Beta2/rest/packages/{packageName}/versions/{version}
http://localhost:8080/guvnor-6.0.0.Beta2/rest/packages{packageName}/versions/{version}/source
http://localhost:8080/guvnor-6.0.0.Beta2/rest/packages{packageName}/versions/{version}/source
http://localhost:8080/guvnor-6.0.0.Beta2/rest/packages/{packageName}/versions/{version}/binary
http://localhost:8080/guvnor-6.0.0.Beta2/rest/packages/{packageName}/versions/{version}/binary
http://localhost:8080/guvnor-6.0.0.Beta2/rest/packages{packageName}/assets
http://localhost:8080/guvnor-6.0.0.Beta2/rest/packages{packageName}/assets

Guvnor REST API

« application/atom+xml
« application/json
« application/xml

The GET method returns the list of rule assets contained in package {packageName} in the
requested format (Atom feed, JSON, or XML).

The POST method produces MIME-Types:

« application/atom+xml
 application/octet-stream
The POST method creates an asset in package {packageName}.

When an Atom Entry is provided the following information must be included in the input: asset
name, asset description, asset initial category, and asset format.

When an octet-stream is provided the value of slug header is used to indicate the name of the
asset. If the slug header is missing a HTTP 500 error is returned.

The POST method produces MIME-Types:

« application/json
« application/xml

The POST method consumes MIME-Types:

» multipart/form-data
The POST method creates the asset {assetName} for the package {packageName}.

/packages/{packageName}/assets/{assetName}. http://localhost:8080/guvnor-6.0.0.Beta2/
rest/packages{packageName}/assets/{assetName}

The GET method produces MIME-Types:

« application/atom+xml
« application/json
« application/xml

The GET method returns the rule asset {assetName} contained in package {packageName} in the
requested format (Atom feed, JSON, or XML).

145

http://localhost:8080/guvnor-6.0.0.Beta2/rest/packages{packageName}/assets/{assetName}
http://localhost:8080/guvnor-6.0.0.Beta2/rest/packages{packageName}/assets/{assetName}

Chapter 9. Integrating rules ...

The PUT method produces MIME-Types:

« application/atom+xml
« application/json
« application/xml

The PUT method consumes MIME-Types:

* multipart/form-data

The PUT method updates the metadata of the rule asset {assetName} contained in package
{packageName} with the provided format (Atom Entry, JSON, or XML). When Multipart/form-data
is supplied the asset {assetName} in package {packageName} is updated.

The DELETE method deletes the rule asset {assetName} contained in package {packageName}.

/packages/{packageName}/assets/{assetName}/binary. http://localhost:8080/
guvnor-6.0.0.Beta2/rest/packages{packageName}/assets/{assetName}/binary

The GET method produces MIME-Types:

« application/octet-stream

The GET method returns the binary content of rule asset {assetName} contained in package
{packageName}. If this asset has no binary content, the source content is returned instead.

The PUT method produces MIME-Types:

« application/octet-stream

The PUT method updates the binary content of the rule asset {assetName} contained in package
{packageName}.

/packages/{packageName}/assets/{assetName}/source. http://localhost:8080/
guvnor-6.0.0.Beta2/rest/packages{packageName}/assets/{assetName}/source

The GET method produces MIME-Types:

 plain/text

The GET method returns the content of rule asset {assetName} contained in package
{packageName}. If this is a binary asset, the binary data is returned as a byte array.

The PUT method produces MIME-Types:

 plain/text

146

http://localhost:8080/guvnor-6.0.0.Beta2/rest/packages{packageName}/assets/{assetName}/binary
http://localhost:8080/guvnor-6.0.0.Beta2/rest/packages{packageName}/assets/{assetName}/binary
http://localhost:8080/guvnor-6.0.0.Beta2/rest/packages{packageName}/assets/{assetName}/source
http://localhost:8080/guvnor-6.0.0.Beta2/rest/packages{packageName}/assets/{assetName}/source

Guvnor REST API

The PUT method updates the source code of the rule asset {assetName} contained in package
{packageName}.

/packages/{packageName}/assets/{assetName}/versions. http://localhost:8080/
guvnor-6.0.0.Beta2/rest/packages{packageName}/assets/{assetName}/versions

The GET method produces MIME-Types:

« application/atom+xml

The GET method returns the list of rule asset {assetName} versions contained in package
{packageName} as an Atom Feed.

Ipackages/{packageName}/assets/{assetName}/versions/{version}. http://localhost:8080/
guvnor-6.0.0.Beta2/rest/packages{packageName}/assets/{assetName}/versions/{version}

The GET method produces MIME-Types:

« application/atom-+xml

The GET method returns the metadata of rule asset {assetName} of version {version} contained
in package {packageName} as an Atom Entry.

/packages/{packageName}/assets/{assetName}/versions/{version}/source. http://
localhost:8080/guvnor-6.0.0.Beta2/rest/packages{packageName}/assets/{assetName}/versions/
{version}/source

The GET method produces MIME-Types:

* plain/text

The GET method returns the source code of rule asset {assetName} of version {version} contained
in package {packageName} as a text file.

/packages/{packageName}/assets/{assetName}/versions/{version}/binary. http://
localhost:8080/guvnor-6.0.0.Beta2/rest/packages{packageName}/assets/{assetName}/versions/
{version}/binary

The GET method produces MIME-Types:

 application/octet-stream

The GET method returns the binary content of rule asset {assetName} of version {version}
contained in package {packageName}. If this asset has no binary content, the source content is
returned instead.

/packages/{packageName}/snapshot/{snapshotName}. http://localhost:8080/
guvnor-6.0.0.Beta2/rest/packages{packageName}/snapshot/{snapshotName}

147

http://localhost:8080/guvnor-6.0.0.Beta2/rest/packages{packageName}/assets/{assetName}/versions
http://localhost:8080/guvnor-6.0.0.Beta2/rest/packages{packageName}/assets/{assetName}/versions
http://localhost:8080/guvnor-6.0.0.Beta2/rest/packages{packageName}/assets/{assetName}/versions/{version}
http://localhost:8080/guvnor-6.0.0.Beta2/rest/packages{packageName}/assets/{assetName}/versions/{version}
http://localhost:8080/guvnor-6.0.0.Beta2/rest/packages{packageName}/assets/{assetName}/versions/{version}/source
http://localhost:8080/guvnor-6.0.0.Beta2/rest/packages{packageName}/assets/{assetName}/versions/{version}/source
http://localhost:8080/guvnor-6.0.0.Beta2/rest/packages{packageName}/assets/{assetName}/versions/{version}/source
http://localhost:8080/guvnor-6.0.0.Beta2/rest/packages{packageName}/assets/{assetName}/versions/{version}/binary
http://localhost:8080/guvnor-6.0.0.Beta2/rest/packages{packageName}/assets/{assetName}/versions/{version}/binary
http://localhost:8080/guvnor-6.0.0.Beta2/rest/packages{packageName}/assets/{assetName}/versions/{version}/binary
http://localhost:8080/guvnor-6.0.0.Beta2/rest/packages{packageName}/snapshot/{snapshotName}
http://localhost:8080/guvnor-6.0.0.Beta2/rest/packages{packageName}/snapshot/{snapshotName}

Chapter 9. Integrating rules ...

The POST method creates a snapshot {snapshotName} for the package {packageName}.

4@ Package © PackageMetadata
= title : String = uuid : String
= description : String = created : Date
= author: String = format : String
= published : Date = state : String
= binaryLink : URI = archived : boolean
= sourcelink : URI = versionNumber : long
= assets : Set<URI> = checkinComment : String

= metadata : PackagelVletadata

Figure 9.2. UML representation of the Package Object

4| Asset © AssetMetadata
= title : String = Uuid : String
= description : String = categories : String][]
= author: String = note : String
= published : Date = created : Date
= binaryLink : URI = format : String
= sourcelink : URI = disabled : boolean
= reflink : URI = state: String
= metadata: AssetMetadata = versionNumber : long

= checkInComment : String

Figure 9.3. UML representation of the Asset Object

9.2.2.2. Accessing Rules by Category

Use the URLs listed below to access rules assets by category. The examples below assume a
base URL of http://localhost:8080/guvnor-6.0.0.Beta2/rest/

/categories/. http://localhost:8080/guvnor-6.0.0.Beta2/rest/categories

The GET method produces MIME-Types:

« application/json
« application/xml
The GET method lists all categories.

/categories/{categoryPath}. http://localhost:8080/guvnor-6.0.0.Beta2/rest/categories/
{categoryPath}

The GET method produces MIME-Types:

« application/json

148

http://localhost:8080/guvnor-6.0.0.Beta2/rest/
http://localhost:8080/guvnor-6.0.0.Beta2/rest/categories
http://localhost:8080/guvnor-6.0.0.Beta2/rest/categories/{categoryPath}
http://localhost:8080/guvnor-6.0.0.Beta2/rest/categories/{categoryPath}

Guvnor REST API

« application/xml

The GET method returns information for a single category.

The PUT method creates a new category with the supplied category path {categoryPath}.
The DELETE method deletes the category with the supplied category path {categoryPath}.

/categories/{categoryPath}/children. http://localhost:8080/guvnor-6.0.0.Beta2/rest/
categories/{categoryPath}/children

The GET method produces MIME-Types:

« application/json
« application/xml
The GET method lists all subcategories under the provided category {categoryPath}.

/categories/{categoryPath}/assets. http://localhost:8080/guvnor-6.0.0.Beta2/rest/
categories/{categoryPath}/assets

The GET method produces MIME-Types:

« application/atom+xml
« application/json
« application/xml

The GET method returns an Atom feed to all the rule assets that the listed category {category}
when the MIME-type is application/atom+xml, and returns a list of asset objects representing rule
assets that have the category {categoryPath} when the MIME-Type is either application/json or
application/xml.

/categories/{categoryPath}/assets/page/{page}. http://localhost:8080/guvnor-6.0.0.Beta2/
rest/categories/{categoryPath}/assets/page/{page}

The GET method produces MIME-Types:

« application/json
« application/xml

The GET method returns a list of asset objects representing rules assets that have the listed
category {categoryPath} and retrieves page {page}, which is a numeric value starting at 1. A page
contains 10 elements. If the list contains 20 elements then the list will have 2 pages. Page 1 must
be called before page 2 and so on.

149

http://localhost:8080/guvnor-6.0.0.Beta2/rest/categories/{categoryPath}/children
http://localhost:8080/guvnor-6.0.0.Beta2/rest/categories/{categoryPath}/children
http://localhost:8080/guvnor-6.0.0.Beta2/rest/categories/{categoryPath}/assets
http://localhost:8080/guvnor-6.0.0.Beta2/rest/categories/{categoryPath}/assets
http://localhost:8080/guvnor-6.0.0.Beta2/rest/categories/{categoryPath}/assets/page/{page}
http://localhost:8080/guvnor-6.0.0.Beta2/rest/categories/{categoryPath}/assets/page/{page}

Chapter 9. Integrating rules ...

9.2.3. Source code Example
We are giving a list of examples to help using the Guvnor's Rest API
9.2.3.1. Retrieving and updating Web decision table

We are using apache CXF in our example to show how to access the Rest API of Guvnor. In the
example here we are getting and updating a web decision table. But this example applies to all
Guvnor asset type.

Example 9.1. Retrieving the source code of the web decision table

WebCient client = Wbd ient.create("http://127.0.0.1:8080/");

String content =cl i ent. pat h(" guvnor - webapp- ${ pr oj ect . versi on}/ rest/ packages/
essai Rest/ assets/tab2/source").accept("text/plain").get(String.class);
Gui dedDeci si onTabl e52 dt =

Gui dedDTXM_Per si st ence. get | nst ance() . unmar shal (content);

In the first line of code above, we are first creating a WebClient variable that points to the server
(here on localhost on port 8080).

In the second line of code above, we are retrieving the source content by accessing the /
rest/packages/{packageName}/assets/{assetName}/source, where in our case packageName is
"essaiRest" and assetName is "tab2".

In the third line of code above, the source code we get is the data structure of a Web decision
table. So to be able to manipulate the Web decision table, we have to transform the string variable
(the source code that contains the xml of the data structure of the web decision table) in the java
structure (a java class) for web decision table GuidedDecisionTable52. All guided asset in Guvnor
have a java structure to manipulate them

Example 9.2. updating the source code of the web decision table

String aut hori zat i onHeader = "Basi c " +
org. apache. cxf.conmmon. util.Base64Utility. encode("qguest:".getBytes());
CGui dedDeci si onTabl e52 dt = new Gui dedDeci si onTabl e52();

Do sonme stuff here

String newContent = Gui dedDTXM.Per si st ence. getl nstance(). nmarshal (dt);

Webdient client2 = WebClient.create("http://127.0.0.1:8080/");

client2. header ("Aut horization", authorizationHeader);

Response response= cl i ent 2. pat h("guvnor - webapp- ${ proj ect . versi on}/rest/
packages/ essai Rest/ assets/tab2/ source"). accept ("application/

xm ") . put (newCont ent) ;

150

Source code Example

In the first line of code above, we are first creating a java String variable that contains the
authorization element needed to update an asset in the Guvnor repository.

In the next lines of code above, we are doing some stuff to modify the Web decision table.

In the following lines of code above, we are first transforming the java structure in an xml structure
that we put in a java String variable. Then we again create a WebClient but this time we are also
filling the header with a variable "Authorization" that contains the String we built in the first line
and that contains the user name "guest" and its password (here no password). We then put the
new content on the Guvnor repository.

Next you can find the pom.xml file to use the Guvnor Rest APl in case you are using Maven.

Example 9.3. pom.xml content for our example

<pr oj ect xm ns="http:// maven. apache. or g/ POM 4. 0. 0" xm ns: xsi="http://
www. W3. or g/ 2001/ XMLSchena- i nst ance"
xsi : schemaLocati on="http:// maven. apache. org/ POM 4. 0. 0 http://
maven. apache. or g/ xsd/ maven- 4. 0. 0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<gr oupl d>or g. dr ool s. exanpl es</ gr oupl d>
<artifactld>dt-exanple</artifactld>
<ver si on>0. 0. 1- SNAPSHOT</ ver si on>
<bui | d>
<fi nal Nanme>cxf - rest - exanpl e</ fi nal Nanme>
<pl ugi ns>
<pl ugi n>
<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifactld>maven-conpil er-plugin</artifactld>
<confi gurati on>
<sour ce>1. 6</ sour ce>
<t arget >1. 6</t arget >
</ configuration>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
<dependenci es>
<dependency>
<gr oupl d>or g. apache. cxf </ gr oupl d>
<artifactld>cxf-bundle-jaxrs</artifactld>
<versi on>2. 3. 0</ ver si on>
</ dependency>
<dependency>
<gr oupl d>or g. dr ool s</ gr oupl d>
<artifactld>drool sjbpmide-comon</artifactld>
<ver si on>5. 3. 0</ ver si on>
</ dependency>
</ dependenci es>

151

Chapter 9. Integrating rules ...

</ pr oj ect >

9.2.3.2. Retriving package list, package metadata, package source

and binary, package version info etc using Atom

In this example we are using Apache Abdera to help parsing and creating Atom Entry and Feed.

9.2.3.2.1. Retrieving all packages contained in the Guvnor repository in

Atom Feed format

Example 9.4. Retrieving all packages contained in the Guvnor repository in

Atom Feed format

public void testGet PackagesFor At om() throws MalfornedURLExcepti on,

| OException {

URL url = new URL("http://127.0.0.1: 8080/ guvnor-5. 4. 0- SNAPSHOT- j boss-

as-7.0/ rest/ packages");

Ht t pURLConnecti on connection = (Htt pURLConnecti on)url.openConnection();

connecti on. set Request Property("Aut hori zati on",

"Basic " + new Base64().encodeToString(("adm n:adm n".getBytes())));

connecti on. set Request Met hod(" GET") ;

connect i on. set Request Property("Accept", Medi aType. APPLI CATI ON_ATOM XM.) ;

connecti on. connect () ;

[/ Systemout.println(lOUils.toString(connection.getlnputStrean()));

I nput Stream i n = connection. getl nput Streamn();
Docunent <Feed> doc = abdera. get Parser (). parse(in);
Feed feed = doc. get Root ();

Systemout.println("BaseUr i Path: " + feed.getBaseUri().getPath());

Systemout.printin("Title: " + feed.getTitle());

Iterator<Entry> it = feed.getEntries().iterator();
while (it.hasNext()) {
Entry entry = it.next();
Systemout.printIn("Title: " + entry.getTitle());
Li st <Li nk> links = entry. getLinks();

Systemout.println("Hef: " + links.get(0).getHref().getPath());

Example 9.5. Sample message returned from server

<f eed xm ns="http://ww. w3. or g/ 2005/ At ont xm : base="http://127.0.0. 1: 8080/

guvnor - 5. 4. 0- SNAPSHOT- j boss-as- 7. 0/ r est / packages" >

152

Source code Example

<title type="text">Packages</title>
<entry>
<title type="text">default Package</title>
<link
href ="http://127.0.0. 1: 8080/ guvnor - 5. 4. 0- SNAPSHOT- j boss-as-7. 0/ rest/
packages/ def aul t Package" />
</entry>
<entry>
<title type="text">nortgages</title>
<li nk
href="http://127.0.0.1: 8080/ guvnor - 5. 4. 0- SNAPSHOT- j boss-as-7. 0/ rest/
packages/ nort gages" />
</entry>
</ feed>

9.2.3.2.2. Retrieving the metadata of the specified package as an Atom
Entry

The client can navigate to specific packages using the package URL retrieved from package list.

Example 9.6. Retrieving the metadata of the specified package as an Atom
Entry

public void testCGetPackageFor Aton() throws Ml fornmedURLException, | OException {
URL url = new URL("http://127.0.0.1: 8080/ guvnor-5. 4. 0- SNAPSHOT- j boss-
as-7.0/ rest/ packages/ nort gages");

Ht t pURLConnecti on connection = (HttpURLConnection)url.openConnection();

connecti on. set Request Property("Aut hori zati on",
"Basic " + new Base64().encodeToString(("adm n:adm n".getBytes())));

connect i on. set Request Met hod(" GET") ;

connect i on. set Request Property("Accept", Medi aType. APPLI CATI ON_ATOM XM.) ;

I nput Stream i n = connection. getl nput Stream();
[/ Systemout.println(lOUils.toString(connection.getlnputStrean()));

Document <Ent ry> doc = abder a. get Parser (). parse(in)
Entry entry = doc. getRoot ();
Systemout.println("BaseUri: " + entry.getBaselri().getPath());
Systemout.printin("Title: " + entry.getTitle());
Systemout. println("Published: " + entry.getPublished())
Systemout.println("Author: " + entry.getAuthor().getNanme());
Systemout. println("Sumary: " + entry.getSummary());

Systemout. println("ContentSrcPath: " + entry.getContentSrc().getPath());

Li st <Li nk> links = entry. getLinks();
Map<String, Link> |linksMap = new HashMap<String, Link>();

153

Chapter 9. Integrating rules ...

for(Link link : links){
Systemout.printin("Link Title: " + link.getTitle());
Systemout.println("Link Path: " + link.getHref().getPath());
i nksMap. put (1'i nk.getTitle(), link);

Ext ensi bl eEl enent net adat aExt ensi on = entry. get Ext ensi on(Tr ansl at or . METADATA) ;
Ext ensi bl eEl enent ar chi vedExt ensi on = net adat aExt ensi on. get Ext ensi on(Tr ansl at or . ARCHI VI
System out . print!| n(" ARCHI VED:
" + archi vedExt ensi on. get Si npl eExt ensi on(Tr ansl at or. VALUE)) ;
Ext ensi bl eEl enent uui dExt ensi on = met adat aExt ensi on. get Ext ensi on(Transl at or. UUI D) ;
System out . println("UU D:
+ uui dExt ensi on. get Si npl eExt ensi on(Tr ansl at or. VALUE)) ;
Ext ensi bl eEl enent checki nCorment Ext ensi on = net adat aExt ensi on. get Ext ensi on(Tr ansl at or . (
System out . printl| n(" CHECKI N_COMVENT:
+ checki nComrent Ext ensi on. get Si npl eExt ensi on(Tr ansl at or. VALUE)) ;
Ext ensi bl eEl enent ver si onNunber Ext ensi on = net adat aExt ensi on. get Ext ensi on(Tr ansl at or . Vi
System out . print!| n(" VERSI ON_NUVBER:
+ ver si onNunber Ext ensi on. get Si npl eExt ensi on(Tr ansl at or. VALUE)) ;

}

"

Example 9.7. Sample message returned from server

<entry xm ns="http://ww.w3. org/ 2005/ At ont
xm : base="http://127.0.0. 1: 8080/ guvnor - 5. 4. 0- SNAPSHOT- j boss-as-7. 0/ rest/
packages/ nort gages" >
<title type="text">nortgages</title>
<sunmmary type="text">Mortgages that aren't stupid</sunmary>
<publ i shed>2011- 05- 02T09: 16: 16. 246Z</ publ i shed>
<aut hor >
<nanme>m c</ nanme>
</ aut hor >
<id>http://127.0.0.1: 8080/ guvnor - 5. 4. 0- SNAPSHOT- j boss- as- 7. 0/ rest / packages/
nor t gages
</id>
<li nk
href="http://127.0.0.1: 8080/ guvnor - 5. 4. 0- SNAPSHOT- j boss-as-7. 0/ rest/
packages/ nort gages/ asset s/ dr ool s"
title="drool s" rel ="asset" />
<li nk
href="http://127.0.0.1: 8080/ guvnor - 5. 4. 0- SNAPSHOT- j boss-as-7. 0/ rest/
packages/ nort gages/ asset s/ Mort gageModel "
title="MortgageMdel " rel ="asset" />
<li nk
href="http://127.0.0.1: 8080/ guvnor - 5. 4. 0- SNAPSHOT- j boss-as-7. 0/ rest/
packages/ nort gages/ asset s/ Under age”

154

Source code Example

title="Underage" rel ="asset" />
<l'i nk

href="http://127.0.0. 1: 8080/ guvnor - 5. 4. 0- SNAPSHOT-

packages/ nort gages/ asset s/ Are%20t hey%200l d%20enough”
title="Are they old enough" rel ="asset" />
<li nk

href="http://127.0.0. 1: 8080/ guvnor - 5. 4. 0- SNAPSHOT-

packages/ nmort gages/ asset s/ No%20bankr upt ci es"
title="No bankruptcies" rel="asset" />
<li nk

href="http://127.0.0. 1: 8080/ guvnor - 5. 4. 0- SNAPSHOT-

packages/ nort gages/ asset s/ Bankr upt ci es”
titl e="Bankruptcies" rel ="asset" />
<li nk

href="http://127.0.0. 1: 8080/ guvnor - 5. 4. 0- SNAPSHOT-

packages/ nort gages/ asset s/ Bankr upt cy%20hi st ory"
title="Bankruptcy history" rel="asset" />
<li nk

href="http://127.0.0. 1: 8080/ guvnor - 5. 4. 0- SNAPSHOT-

packages/ nort gages/ asset s/ credi t %20r ati ngs”
title="credit ratings" rel="asset" />
<li nk

href="http://127.0.0. 1: 8080/ guvnor - 5. 4. 0- SNAPSHOT-

packages/ nmort gages/ asset s/ No%20bad%20cr edi t ¥20checks”
title="No bad credit checks" rel="asset" />
<li nk

href="http://127.0.0. 1: 8080/ guvnor - 5. 4. 0- SNAPSHOT-

packages/ nmort gages/ asset s/ Good%20cr edi t %20hi st or y%200onl y"
title="CGood credit history only" rel="asset" />
<li nk

href="http://127.0.0. 1: 8080/ guvnor - 5. 4. 0- SNAPSHOT-

packages/ nmort gages/ asset s/ no%20NI NJAs"
title="no NINJAs" rel ="asset" />
<li nk

href="http://127.0.0. 1: 8080/ guvnor - 5. 4. 0- SNAPSHOT-

packages/ nort gages/ asset s/ Nl NJAs"
title="N NJAs" rel ="asset" />
<li nk

href="http://127.0.0. 1: 8080/ guvnor - 5. 4. 0- SNAPSHOT-

packages/ nort gages/ asset s/ Pri ci ng¥20l oans"
title="Pricing | oans" rel ="asset" />
<li nk

href="http://127.0.0. 1: 8080/ guvnor - 5. 4. 0- SNAPSHOT-

packages/ nort gages/ asset s/ Pri ci ng¥20l owe20end"
title="Pricing |ow end" rel ="asset" />
<li nk

href="http://127.0.0.1: 8080/ guvnor - 5. 4. 0- SNAPSHOT-

packages/ nort gages/ asset s/ Unappr ove%20by%20def aul t "
title="Unapprove by default" rel ="asset" />

j boss-as-7.0/rest/

j boss-as-7.0/rest/

j boss-as-7.0/rest/

j boss-as-7.0/rest/

j boss-as-7.0/rest/

j boss-as-7.0/rest/

j boss-as-7.0/rest/

j boss-as-7.0/rest/

j boss-as-7.0/rest/

j boss-as-7.0/rest/

j boss-as-7.0/rest/

j boss-as-7.0/rest/

155

Chapter 9. Integrating rules ...

<l'i nk

href="http://127.0.0. 1: 8080/ guvnor - 5.

packages/ nmor t gages/ asset s/ Dunmy%20r ul e"
title="Dunmmy rule" rel ="asset" />
<l i nk

href="http://127.0.0. 1: 8080/ guvnor - 5.

packages/ nort gages/ asset s/ Appl i cant Dsl "
title="ApplicantDsl" rel ="asset" />
<l i nk

href="http://127.0.0. 1: 8080/ guvnor - 5.

packages/ nort gages/ asset s/ Credi t Scor eAppr oval "
title="CreditScoreApproval " rel ="asset" />
<l i nk

href="http://127.0.0. 1: 8080/ guvnor - 5.

packages/ nmor t gages/ asset s/ Credi t Approval "
title="CreditApproval" rel ="asset" />
<l i nk

href="http://127.0.0. 1: 8080/ guvnor - 5.

packages/ nmor t gages/ asset s/ Dat eDsl| Rul e"
title="DateDsl Rul e" rel ="asset" />
<link

href="http://127.0.0. 1: 8080/ guvnor - 5.

packages/ nort gages/ asset s/ RegexDs| Rul e"
titl e="RegexDsl Rul e" rel ="asset" />
<li nk

href="http://127.0.0. 1: 8080/ guvnor - 5.

packages/ nmor t gages/ asset s/ DSLW t hDat e"
title="DSLWthDate" rel ="asset" />
<link

href="http://127.0.0. 1: 8080/ guvnor - 5.

packages/ nort gages/ asset s/ myws"
title="nmyws" rel ="asset" />
<nmet adata xm ns="">
<ar chi ved>
<val ue>f al se</ val ue>
</ ar chi ved>
<uui d>

. 0- SNAPSHOT- j boss- as- 7.

. 0- SNAPSHOT- j boss- as- 7.

. 0- SNAPSHOT- j boss- as- 7.

. 0- SNAPSHOT- j boss- as- 7.

. 0- SNAPSHOT- j boss- as- 7.

. 0- SNAPSHOT- j boss- as- 7.

. 0- SNAPSHOT- j boss- as- 7.

. 0- SNAPSHOT- j boss- as- 7.

<val ue>da98caef - elc4- 4f 98- 880c- 46a740c9131f </ val ue>

</ uui d>
<st at e>
<val ue></val ue>
</ state>
<ver si onNunber >
<val ue>2</ val ue>
</ ver si onNunber >
<checki nComrent >

<val ue>Mort gages that aren't stupid</val ue>

</ checki nConment >
</ net adat a>

0/ rest/

0/ rest/

0/ rest/

0/ rest/

0/ rest/

0/ rest/

0/ rest/

0/ rest/

156

Source code Example

<content src="http://127.0.0.1:8080/guvnor-5. 4. 0- SNAPSHOT- j boss-as-7. 0/ rest/
packages/ nort gages/ bi nary" />
</entry>

9.2.3.2.3. Retrieving the source code of the specified package as plain text

Example 9.8. Retrieving the source code of the specified package as plain
text

public void testCGet PackageSource() throws Exception {
URL url = new URL("http://127.0.0.1:8080/guvnor-5. 4. 0- SNAPSHOT- j boss-
as- 7.0/ rest/ packages/ nort gages/ source");
Ht t pURLConnecti on connection = (Htt pURLConnection) url.openConnection();
connect i on. set Request Property("Aut hori zati on",
"Basic " + newBase64().encodeToString(("adm n:adm n".getBytes())));
connecti on. set Request Met hod(" GET") ;
connecti on. set Request Property("Accept”, Medi aType. W LDCARD) ;
connecti on. connect () ;

System out . println("ResponseCode: " + connection. get ResponseCode());
System out. println("MdiaType: " + connection. get ContentType());
[1String result = IOQU)tils.toString(connection.getlnputStrean());

9.2.3.2.4. Retrieving the compiled binary of the specified package as
binary stream

Retrieving the compiled binary of the specified package as a binary stream. If the package has
not been compiled yet or its binary is not up to date, Guvnor will compile the package first.

Example 9.9. Retrieving the compiled binary of the specified package as
binary stream

public void testCGetPackageBi nary () throws Exception {
URL url = new URL("http://127.0.0.1: 8080/ guvnor-5. 4. 0- SNAPSHOT- j boss-
as- 7.0/ rest/ packages/ nort gages/ bi nary");
Ht t pURLConnecti on connection = (Htt pURLConnection) url.openConnection();
connect i on. set Request Property("Aut hori zation",
"Basic " + new Base64().encodeToString(("adm n:adm n".getBytes())));
connecti on. set Request Met hod(" GET") ;
connect i on. set Request Property("Accept”, Medi aType. APPLI CATI ON_OCTET_STREAM ;
connecti on. connect () ;

157

Chapter 9. Integrating rules ...

System out . printl n("ResponseCode: " + connection. get ResponseCode());
System out. println("MdiaType: " + connection. get ContentType());
I nput Stream i s = connection. getl nput Stream();

9.2.3.2.5. Retrieving package versions as an Atom Feed

Example 9.10. Retrieving package versions as an Atom Feed

public void testCetPackageVersi onsFor Atom() throws Mal formedURLExcepti on, | OException {
URL url = new URL("http://127.0.0.1: 8080/ guvnor-5. 4. 0- SNAPSHOT- j boss-
as- 7.0/ rest/ packages/ nort gages/ versi ons");
Ht t pURLConnecti on connection = (Htt pURLConnection)url.openConnection();
connecti on. set Request Property("Aut hori zati on",
"Basic " + new Base64().encodeToString(("adm n: adm n". getBytes())));
connect i on. set Request Met hod(" GET") ;
connect i on. set Request Property("Accept", Medi aType. APPLI CATI ON_ATOM XM.) ;
connecti on. connect () ;

[/ Systemout.println(lOUtils.toString(connection.getlnputStream()));

I nput Stream i n = connection. getl nput Strean();
Docunment <Feed> doc = abdera. get Parser (). parse(in);
Feed feed = doc. get Root ();

Li st<Entry> entries = feed.getEntries();
for(Entry entry : entries){
Systemout.println("Version title: " + entry.getTitle());
Systemout . println("Href:
+ entry.getLinks().get(0).getHref().getPath());
}

Example 9.11. Sample message returned from server

<feed xm ns="http://ww. w3. or g/ 2005/ At ont
xm : base="http://127.0.0. 1: 8080/ guvnor - 5. 4. 0- SNAPSHOT- j boss-as-7. 0/ rest/
packages" >
<title type="text">Version history of nortgages</title>
<entry>
<title type="text">3</title>
<updat ed>2012- 04- 26T09: 22: 23. 519Z</ updat ed>
<link
href ="http://127.0.0. 1: 8080/ guvnor - 5. 4. 0- SNAPSHOT- j boss-as-7. 0/ rest/
packages/ nort gages/ versi ons/ 3" />

158

Source code Example

</entry>
<entry>
<title type="text">4</title>
<updat ed>2012- 04- 26T09: 23: 07. 500Z</ updat ed>
<link
href="http://127.0.0. 1: 8080/ guvnor - 5. 4. 0- SNAPSHOT- j boss-as-7. 0/ rest/
packages/ nmor t gages/ versi ons/ 4" />
</entry>
</ feed>

9.2.3.2.6. Retrieving package metadata with specified version as an Atom
Entry

Retrieving package metadata with specified version as an Atom Entry.

Example 9.12. Retrieving package metadata with specified version as an
Atom Entry

public void testGetHistorical PackageFor Aton() throws MalformedURLException, | CException {
URL url = new URL("http://127.0.0.1: 8080/ guvnor-5. 4. 0- SNAPSHOT- j boss-
as-7.0/ rest/ packages/ nort gages/ versi ons/5");
Ht t pURLConnecti on connection = (Htt pURLConnection)url.openConnection();
connecti on. set Request Property("Aut hori zati on",
"Basic " + new Base64().encodeToString(("adm n:adm n".getBytes())));
connect i on. set Request Met hod(" GET") ;
connect i on. set Request Property("Accept", Medi aType. APPLI CATI ON_ATOM XM.) ;
connecti on. connect () ;

[/ Systemout.println(lOUils.toString(connection.getlnputStrean()));
I nput Stream i n = connection. getl nput Strean();

Document <Ent ry> doc = abder a. get Parser (). parse(in);
Entry entry = doc. getRoot ();

Systemout.println("BaseUri: " + entry.getBaseUri().getPath());
Systemout.printin("Title: " + entry.getTitle());
Systemout.println("Sumary: " + entry.getSunmary());

Systemout.println("ContentSrc: " + entry.getContentSrc().getPath());

Li st <Li nk> links = entry. getLinks();

Map<String, Link> |inksMap = new HashMap<String, Link>();

for(Link link : links){
Systemout.printin("Link Title: " + link.getTitle());
Systemout.println("Link Path: " + link.getHref().getPath());
i nksMap. put (1'i nk.getTitle(), link);

159

Chapter 9. Integrating rules ...

Ext ensi bl eEl enent net adat aExt ensi on = entry. get Ext ensi on(Tr ansl at or . METADATA)
Ext ensi bl eEl enent ar chi vedExt ensi on = net adat aExt ensi on. get Ext ensi on(Tr ansl at or . ARCHI VI
System out . printl| n(" ARCHI VED:
+ ar chi vedExt ensi on. get Si npl eExt ensi on(Tr ansl at or. VALUE)) ;
Ext ensi bl eEl enent uui dExt ensi on = net adat aExt ensi on. get Ext ensi on(Transl at or. UUI D) ;
System out . println("UU D
+ uui dExt ensi on. get Si npl eExt ensi on(Tr ansl at or . VALUE)) ;
Ext ensi bl eEl enent checki nCorment Ext ensi on = net adat aExt ensi on. get Ext ensi on(Tr ansl at or . (
System out . printl| n(" CHECKI N_COMVENT
+ checki nComrent Ext ensi on. get Si npl eExt ensi on(Tr ansl at or. VALUE)) ;
Ext ensi bl eEl enent ver si onNunmber Ext ensi on = net adat aExt ensi on. get Ext ensi on(Tr ansl at or . VI
System out. printl| n(" VERSI ON_NUVBER:
+ ver si onNunber Ext ensi on. get Si npl eExt ensi on(Tr ansl at or. VALUE)) ;

}

Example 9.13. Sample message returned from server

<entry xm ns="http://ww.w3. or g/ 2005/ At ont
xm : base="http://127.0.0. 1: 8080/ guvnor - 5. 4. 0- SNAPSHOT- j boss-as-7. 0/ rest/
packages/ nort gages/ ver si ons/ 5" >
<title type="text">nortgages</title>
<sumary type="text">update package descri ption</sunmary>
<publ i shed>2012- 04- 26T09: 36: 11. 588Z</ publ i shed>
<aut hor >
<name>adm n</ name>
</ aut hor >
<id>http://127.0.0.1: 8080/ guvnor -5. 4. 0- SNAPSHOT- j boss- as- 7. 0/ rest/ packages/
nor t gages/ ver si ons/ 5
</id>
<link
href="http://127.0.0. 1: 8080/ guvnor - 5. 4. 0- SNAPSHOT- j boss-as-7. 0/ rest/
packages/ nor t gages/ ver si ons/ 5/ asset s/ dr ool s"
title="drool s" rel ="asset" />
<link
href="http://127.0.0. 1: 8080/ guvnor - 5. 4. 0- SNAPSHOT- j boss-as-7. 0/ rest/
packages/ nort gages/ ver si ons/ 5/ asset s/ Mort gageModel "
title="MrtgageMdel " rel ="asset" />
<link
href="http://127.0.0. 1: 8080/ guvnor - 5. 4. 0- SNAPSHOT- j boss-as-7. 0/ rest/
packages/ nort gages/ ver si ons/ 5/ asset s/ Under age"
titl e="Underage" rel ="asset" />
<link
href="http://127.0.0. 1: 8080/ guvnor - 5. 4. 0- SNAPSHOT- j boss-as-7. 0/ rest/
packages/ nort gages/ ver si ons/ 5/ asset s/ Ar e%20t hey%200l d%20enough”
title="Are they old enough" rel ="asset" />
<link

160

Source code Example

href="http://127.0.0. 1: 8080/ guvnor - 5. 4. 0- SNAPSHOT- j boss- as- 7.

packages/ nort gages/ ver si ons/ 5/ asset s/ No%20bankr upt ci es"
title="No bankruptcies" rel="asset" />
<link

href="http://127.0.0. 1: 8080/ guvnor - 5. 4. 0- SNAPSHOT- j boss- as- 7.

packages/ nor t gages/ ver si ons/ 5/ asset s/ Bankr upt ci es"
title="Bankruptcies" rel ="asset" />
<link

href="http://127.0.0. 1: 8080/ guvnor - 5. 4. 0- SNAPSHOT- j boss- as- 7.

packages/ nort gages/ ver si ons/ 5/ asset s/ Bankr upt cy%20hi st ory"
title="Bankruptcy history" rel="asset" />
<link

href="http://127.0.0. 1: 8080/ guvnor - 5. 4. 0- SNAPSHOT- j boss- as- 7.

packages/ nort gages/ ver si ons/ 5/ asset s/ credi t %20r ati ngs"
title="credit ratings" rel="asset" />
<link

href="http://127.0.0. 1: 8080/ guvnor - 5. 4. 0- SNAPSHOT- j boss- as- 7.

packages/ nort gages/ ver si ons/ 5/ asset s/ No%20bad%0cr edi t ¥20checks"
title="No bad credit checks" rel ="asset" />
<l'ink

href="http://127.0.0. 1: 8080/ guvnor - 5. 4. 0- SNAPSHOT- j boss- as- 7.

packages/ nort gages/ ver si ons/ 5/ asset s/ Good%20cr edi t ¥20hi st or y%200onl y"
title="CGood credit history only" rel="asset" />
<link

href="http://127.0.0. 1: 8080/ guvnor - 5. 4. 0- SNAPSHOT- j boss- as- 7.

packages/ nort gages/ ver si ons/ 5/ asset s/ no%20NI NJAs"
title="no NINJAs" rel ="asset" />
<l'ink

href="http://127.0.0. 1: 8080/ guvnor - 5. 4. 0- SNAPSHOT- j boss- as- 7.

packages/ nort gages/ ver si ons/ 5/ asset s/ Nl NJAs"
title="NINJAs" rel ="asset" />
<l'ink

href="http://127.0.0. 1: 8080/ guvnor - 5. 4. 0- SNAPSHOT- j boss- as- 7.

packages/ nort gages/ ver si ons/ 5/ asset s/ Pri ci ng%20l oans"
title="Pricing | oans" rel ="asset" />
<link

href="http://127.0.0. 1: 8080/ guvnor - 5. 4. 0- SNAPSHOT- j boss- as- 7.

packages/ nort gages/ ver si ons/ 5/ asset s/ Pri ci ng%20l ow20end"
title="Pricing | ow end" rel ="asset" />
<link

href="http://127.0.0. 1: 8080/ guvnor - 5. 4. 0- SNAPSHOT- j boss- as- 7.

packages/ nor t gages/ ver si ons/ 5/ asset s/ Unappr ove%20by%20def aul t "
titl e="Unapprove by default" rel ="asset" />
<link

href="http://127.0.0. 1: 8080/ guvnor - 5. 4. 0- SNAPSHOT- j boss- as- 7.

packages/ nor t gages/ ver si ons/ 5/ asset s/ Dunmy%20r ul e"
title="Dummy rule" rel ="asset" />
<link

0/ rest/

0/ rest/

0/ rest/

0/ rest/

0/ rest/

0/ rest/

0/ rest/

0/ rest/

0/ rest/

0/ rest/

0/ rest/

0/ rest/

161

Chapter 9. Integrating rules ...

href="http://127.0.0. 1: 8080/ guvnor -5. 4. 0- SNAPSHOT- j boss-as-7. 0/ rest/
packages/ nort gages/ ver si ons/ 5/ asset s/ Appl i cant Dsl "
title="ApplicantDsl" rel ="asset" />
<link
href="http://127.0.0. 1: 8080/ guvnor - 5. 4. 0- SNAPSHOT- j boss-as-7. 0/ rest/
packages/ nort gages/ ver si ons/ 5/ asset s/ Credi t Scor eAppr oval "
title="CreditScoreApproval " rel ="asset" />
<link
href="http://127.0.0. 1: 8080/ guvnor - 5. 4. 0- SNAPSHOT- j boss-as-7. 0/ rest/
packages/ nort gages/ ver si ons/ 5/ asset s/ Credi t Approval "
title="CreditApproval" rel ="asset" />
<link
href="http://127.0.0. 1: 8080/ guvnor - 5. 4. 0- SNAPSHOT- j boss-as-7. 0/ rest/
packages/ nort gages/ ver si ons/ 5/ asset s/ Dat eDsl| Rul e"
titl e="DateDsl Rul e" rel ="asset" />
<link
href="http://127.0.0. 1: 8080/ guvnor - 5. 4. 0- SNAPSHOT- j boss-as-7. 0/ rest/
packages/ nort gages/ ver si ons/ 5/ asset s/ RegexDsl Rul e"
titl e="RegexDsl Rul e" rel ="asset" />
<link
href="http://127.0.0.1: 8080/ guvnor - 5. 4. 0- SNAPSHOT- j boss-as-7. 0/ rest/
packages/ nort gages/ ver si ons/ 5/ asset s/ DSLW t hDat e"
title="DSLWt hDate" rel ="asset" />
<link
href="http://127.0.0. 1: 8080/ guvnor -5. 4. 0- SNAPSHOT- j boss-as-7. 0/ rest/
packages/ nort gages/ ver si ons/ 5/ asset s/ nyws"
title="nmyws" rel ="asset" />
<nmet adat a xm ns="">
<ar chi ved>
<val ue>f al se</val ue>
</ ar chi ved>
<uui d>
<val ue>8c4edOf 7- a034- 4411- 98ed- 3e7f c3af 994a</ val ue>
</ uui d>
<st at e>
<val ue></ val ue>
</state>
<ver si onNunber >
<val ue>5</val ue>
</ ver si onNunmber >
<checki nCorment >
<val ue>updat e package descri pti on</val ue>
</ checki nComment >
</ net adat a>
<cont ent
src="http://127.0.0. 1: 8080/ guvnor - 5. 4. 0- SNAPSHOT- j boss- as- 7. 0/ r est / packages/
nor t gages/ ver si ons/ 5/ bi nary" />
</entry>

162

WebDAV and HTTP

9.3. WebDAV and HTTP

The repository back end can also be accessed via webdav. WebDAV is a http based file system
API - which has clients on all platforms (some operating systems such as windows can connect

directly to WebDAYV repositories almost like a file system.

9.3.1. WebDAV

Folders x Marne
E} Desktop _I corn.billasurf, Finance
+ |} My Documents _\Icum.billasurf.hrman
= ¢ My Computer _‘Icom.billasurF.manuFacturing
3 };_ 314 Floppy (A1) _I com.billasurf. manufacturing, plant
+ < Local Disk (C:) _I corn. billasurf, sales
4 o DVD-RA Drive (D:) __ldefaultPackage
+ _ﬂ shared Folders on ' host' (2]
+ E-‘ Conkrol Panel
4 |2 Shared Documents
+) Administrator's Documents

8 web Folders

Intermet Address
htkpsfi172,16,190, 2:83888/org.«
http: /172, 16,190, 2:8888 org..
hkbpe 172,16, 190, 2:8885 0rg.
htkpsfi172,16,190, 2:83888/org.«
http: /172, 16,190, 2:8888 org..
hkbpe 172,16, 190, 2:8885 0rg.

= II Quvnar

+ [comn.billasurf hrman

] com, billasurf, manuf ackuring

+] com. billasurf, manuf ackuring. plant
+ [com.billasurf . sales

+] defaultPackage

Figure 9.4. Windows webdav

In windows the "web folders" feature can be used. On OSX - the free Cyberduck client can work
well. To access the repository as webdav, you the url is the same as the web interface, only with /
webdav at the end, instead of Guvnor. ht m . Authentication will be required to get access this
way. This will show a packages and snapshots directory - the snapshots directory is read only (a
view of created snapshots of packages). The packages directory will contain a list of packages in
the repository, drilling in to them will show the individual assets as files.

9.3.2. URLs

There are a few other URLs which are handy to know exist. The package deployment URL
mentioned in the section about knowledge agent deployment also has a few other features:
By appending . drl to the end of a URL, you will show the generated DRL for that package.
e.g.: / package/ t est PDSGet Package/ LATEST. dr | - will show the DRL (not the binary package)
for the latest package. Further to this, you can append / asset Narme. drl - and it will show the
generated DRL for that item. (even if it isn't a DRL file). E.g. / package/ t est PDSGet Package/
LATEST/ SorreFi l e. drl .

163

Chapter 9. Integrating rules ...

9.4. Eclipse Guvnor integration

The Eclipse Guvnor tools (EGT) provide the ability to push/pull artifacts from the Guvnor repository
server and the developers workspace in eclipse. It is therefore possible for artifacts to be
both managed via Guvnor as well as in traditional developer friendly SCM systems (such as
subversion). The Guvnor repository is not intended as a Source Code Management (SCM)
solution, and the EGT are not intended to be Eclipse “team provider” extensions or replacements.
Rather, the Guvnor repository is a location where certain artifacts (such as rules and SOA policy
definitions) are controlled (“governed”) by policies defined by the deployment environment. The
purpose of the EGT is then to enable access to resources held by the Guvnor repository, so they
can be used in development. Thus, limited capabilities for reading, writing, adding, and removing
Guvnor repository resources are provided in the EGT.

9.4.1. Source Code and Plug-in Details

The source code for the EGT is available in github [http://github.com/droolsjbpm/
droolsjbpm-tools/tree/master/drools-eclipse]. EGT consist of two plug-ins: org.guvnor.tools and
org.eclipse.webdav. They require Eclipse 3.3.x. The current Eclipse Drools plug-ins are also useful
for viewing Guvnor repository resources such as rule definitions, but not required for operation
of the EGT.

9.4.2. Functionality Overview

Views and Perspective: The EGT contains two views — Repository Explorer and Version History
— that will be the center of most interaction with Guvnor. Eclipse standard views such as
Properties and the Resource Navigator are also useful. While each of these views can be opened
and positioned independently within an Eclipse workbench, the Guvnor perspective provides
a convenient method of getting a suggested layout. In the Eclipse workbench menu, choose
Window, Open Perspective, Other to get the perspective list and then choose "Guvnor Repository
Exploring."

164

http://github.com/droolsjbpm/droolsjbpm-tools/tree/master/drools-eclipse
http://github.com/droolsjbpm/droolsjbpm-tools/tree/master/drools-eclipse
http://github.com/droolsjbpm/droolsjbpm-tools/tree/master/drools-eclipse

Functionality Overview

=1 CV'S Repository Explonng
% Debug
i) Drools

I Guwnor Repository Exploring
&' Java (default)

» Java Browsing

fs! Java Type Hierarchy

<= Plug-in Development

=) Resource
£ Team Synchronizing

DK Cancel

Figure 9.5. Views and perspectives

This opens the Guvnor perspective.

165

Chapter 9. Integrating rules ...

Tin Edr Wieigate Search Droject [n o Eep
- Qe | 4 L
T1 | i Geenar Ragcsinny Frploing
0 Caremay Repusicnies @ W T =n =T Mgl 2 =
k3 him ¥ozaho st IO S oD e 0 S gL 0T U Tc s Tha s
b 7 B ¥oza b s RIS 0 S TR A s Glre or GUme N ek aoa s =
F o hira ¥nsalho st t

F oo b s besscals .l
porsonl bsiory Test o G200 O LT L
= i hos
- o IR
1T B T)
[st Rl Lel
[wmersion! balony el ol
& noma
Frajet
AR TRSE. I
O serpmPobeodd 3, FO0E-07-1ETIE 3754
sl Teleal 1= AHA-NTAATIS 157
W vepmon | besluryTes L] 6, 2000-07-L7TLE
Fropemes H 1| 5 7 T B0 o Sesowres Helery =
Fropaiy el Frepomteny:
= Sy
theaiueil L] Heemion Cabe Auther Coammen
el iz
Bz mociisd July 1i, 2000 4:00:0 7 HRY
e hize
nraron homi i me- ok conl iRy
Wi whsionHiarory Tesl a1

Figure 9.6. Views and perspectives

On the left side is the Guvnor Repository Explorer and the Eclipse Properties views, the Guvnor
Resource History view is on the bottom, and the Eclipse Resource Navigator is on the right side.
The purpose of the Guvnor Repository Explorer is to enable access to Guvnor repository resources
in a standard tree format, and the Guvnor Resource History view shows revisions of specific
resources available in the repository.

9.4.3. Guvnor Connection Wizard

After opening the Guvnor perspective, the first task is to make a connection to a Guvnor repository.
This is handled by the Guvnor Connection wizard. This wizard appears in a number of places
within the EGT (as detailed below), but in this section we will cover only the two most basic entry
points. The Guvnor Connection wizard can be started using the Eclipse menu: File , New , Other,
Guvnor , Guvnor repository location, or in the Guvnor Explorer using the drop-down menu:

¥ Delete
> 9 Add

Refresh

Figure 9.7. Connection wizard

166

Guvnor Connection Wizard

or the menu button:

rwebdd g a Guvnor respository location
riwebdavipackages |

Figure 9.8. Connection wizard

Choosing either of these will start the Guvnor connection wizard:

New Guvnor location J-
Create a new Guvnar repository connection | Guv |
Location: llocalnost

Port: 8080

Repository /drools-guvnoriorg. drools.guvnor, Guvnoriwebday

User Name:

Password:

Save user name and password

Z Finish Cancel

Figure 9.9. Connection wizard

Default values appear in the Location, Port, and Repository fields. (See "Guvnor plugin
Preferences" for details about how to change these default values.) Of course, any of these fields
can be edited by typing in the corresponding text box. Drag-and-drop or paste into the Location

167

Chapter 9. Integrating rules ...

field of a typical Guvnor repository URL such as http://localhost:8080/guvnor-6.0.0.Beta2/
org.drools.guvnor.Guvnor/webdav results in the URL being parsed into the respective fields as
well. The authentication information (user name and password) can optionally be stored in the
Eclipse workbench's key-ring file based on the selection of "Save user name and password." If the
authentication information is not stored in the key-ring, then the EGT uses session authentication,
which means that the credentials supplied are used only for the lifetime of the Eclipse workbench
instance.

If authentication information is not stored in the key-ring or the authentication information (key-ring
or session) is not valid, the EGT will prompt for authentication information when it has to access
the Guvnor repository:

Guvnor Repository Log in

Authentication required for repository: hitp:Mocalhost/cal { Guv

User Name: ||

Password:

Save user name and password

7 Ok Cancel

Figure 9.10. Login

If authentication fails, the EGT will retry once and then issue an authentication failure error. (If
an authentication failure error occurs, you can retry the same operation and supply different
authentication information.) Note that the EGT calls the Guvnor repository at various times, such
as when determining if resource updates are available, so, if you use session authentication,
the authentication dialog will appear at different times during the Eclipse workbench session,
depending on what actions you take. For ease of use, we recommend saving the authentication
information in the Eclipse key-ring. (The Eclipse key-ring file is distinct from key-ring files found
in some platforms such as Mac OS X and many forms of Linux. Thus, sometimes if you access
a Guvnor repository outside the EGT, the key-ring files might become unsynchronized and you
will be unexpectedly prompted for authentication in Eclipse. This is nuisance, but your usual
credentials should apply in this case.)

Once the Guvnor connection wizard is complete, the new Guvnor repository connection will appear
in the Guvnor Repository Explorer. You can then expand the tree to view Guvnor repository
contents.

168

http://localhost:8080/guvnor-6.0.0.Beta2/org.drools.guvnor.Guvnor/webdav
http://localhost:8080/guvnor-6.0.0.Beta2/org.drools.guvnor.Guvnor/webdav

Guvnor Repository Explorer

9.4.4. Guvnor Repository Explorer

| Guvnor Repositones =2 x O =
= o http: Mocahost 8080/drools -guvnor/org. drools. guvnor. Guvnoriwehday
= = packages/
» = anotherPackage/
= o gdefaultPackage!
addFromWebDav.txt
* derby.log
= drools.package
= guvnor-isting. xmi
= listing. html
newFileAdded. txt
simpleRule_dr
test.xml
*versionHistory Test. txt
¢ = snapshots/
b o http:Mocalhost:8080/drools-guvnor/org. drools. guvnor. Guvnoriwebdavipackages
s http Mocalhost/cal
b o http:Mocalhost/cal/

Figure 9.11. Explorer

The Guvnor Repository Explorer view contains tree structures for Guvnor repository contents. As
described above, there are menu and tool-bar actions for creating Guvnor repository connections.
The red “X” in the tool-bar and “Delete” in the menu removes a Guvnor repository connection, and
the “Refresh” menu item reloads tree content for the selected node. Finally, there are a number of
tool-bar/menu items in support of “drill-into” functionality: one the tool-bar these are represented
by the house (“return to top level/home”) and the arrows (go into/back). Drill-down is useful when
working with deeply nested tree structures and when you wish to concentrate on only branch of the
tree. For example, drilling into the “defaultPackage” node shown above changes the tree view to:

169

Chapter 9. Integrating rules ...

= addFromWebDav. txt
= derby.log

= drools. package

= guvnor-listing. xmi

% listing.html

= newHleAdded.txt

* simpleHule.dr

= test.xml

= yversionHistory Test, txt

Figure 9.12. Explorer

That is, we see only the contents of “defaultPackage” in the tree. Clicking on the house button, or
selecting “Go Home” returns the tree to the top-level structure shown in the previous picture above.

There are a number of operations that can be performed on Guvnor repository files. Selecting a file
in the Guvnor repository causes the Eclipse Properties view to update with details about that file:

- Properties & OENRL
Property Value o

Created 2008-07-15T15:28:002

Last Modified - 2008-07-17T15:41.51

Location Ipackages/defaultPackage/versionHistory Test.txt

Name versionHistoryTest.txt

Revision B

Type file

Figure 9.13. Properties

170

Local Copies of Guvnor Files

Double-clicking on a folder (directory) in the tree will cause that folder to expand if collapsed and
collapse if expanded. Double-clicking on a file in the tree will cause a read-only editor in Eclipse
to open, showing the contents of that file:

versionHistory Test.txt (Read only) 2

W line at the front...

A test for version history.
Another line added.

More lines!

And more lines!

Overwrite line.

A change

Figure 9.14. Comments

Dragging a file from the Guvnor repository tree to a folder in an Eclipse local project (for example in
the Eclipse Resource Navigator view) will cause a copy of that file to be made in the local Eclipse
workspace. (Note: You can also “Save As...” when a file is open in a read-only editor to save a
local writable copy of the contents. Doing so, however, will not associate the file created with its
Guvnor source.) Finally, you can view the revision history of a file selected in the tree using the
“Show History” context menu item. (The details of resource history will be discussed below.)

9.4.5. Local Copies of Guvnor Files

As mentioned in the Introduction, the main purpose of the EGT is to allow development using
resources held in a Guvnor repository. There are two method of getting local copies of Guvnor
repository resources:

1. Drag-and-drop from the Guvnor Repository Explorer, as described above.
2. Using the “import from Guvnor” wizard, as described below.

When local copies of Guvnor repository files are created, the EGT sets an association between the
local copy and the master file in the repository. (This information is kept in the (normally) hidden
. guvnori nf o folder in the local project and, like all metadata, should not be changed by end
users.) This association allows for operations such as update and commit in synchronization with
the master copy held in the Guvnor repository. The EGT decorates local resources associated
with Guvnor repository master copies. This decoration appears in Eclipse views conforming to

171

Chapter 9. Integrating rules ...

the Eclipse Common Navigator framework, such as the Eclipse Resource Navigator and the Java
Package Explorer. The image below shows decoration in the Eclipse Resource Navigator:

= = anotherproject

[versionHistoryTest.txt 6, 2008-07-17T15:41:51
Setest

= temp

= delete Test.txt

41 simpleRule.drl 3, 2008-07-15T15:37.34

14 testRefresh.txt 1, 2008-07-16T15:15:21

L versionHistory Test.txt 6, 2008-07-17T15:41°51

Figure 9.15. Navigator

Note the Guvnor icon decorator on the top right of the file images, and the Guvnor revision details
appended to the file names. (The presence/location of these can be changed. See "Guvnor plugin
Preferences" for details.) Here we see that, for example, si npl eRul e. dr| is associated with a
Guvnor repository resource and the local copy is based on revision 3, with a 7-15-2008, 15:37:34
date/time stamp. The file del et eTest . t xt, however, is not associated with a Guvnor repository
file. Further details about the association can be found in the standard Eclipse properties page,
via the context menu “Properties” selection:

172

Actions for Local Guvnor Resources

type filter text Guvnor =1

Resource Repository: http:/Mocalhost:8080/drools-guvnor/org.drools. guvnor. Guvnoriwebdavipackages

Path: fanotherPackage/simple Rule.drl

Run/Debug Settings Version: 2008-07-15T15:37:34
Rewsion: 3

Restore Defaults Apply

'y (] Cancel

Figure 9.16. Properties

The EGT contributes a property page to the standard Eclipse properties dialog, the contents of
which are shown above. The specific Guvnor repository, the location within the repository, the
version (date/time stamp) and revision number are displayed.

9.4.6. Actions for Local Guvnor Resources

The EGT provides a number of actions (available through the “Guvnor” context menu on files)
for working with files, both those associated with Guvnor repository master copies and those
not associated. The actions are: 1. Update 2.Add 3.Commit 4. Show History 5. Conpare
with Version 6.Switch to Version 7.Delete 8.Disconnect Each of these actions will
be described below.

Update Action:

The Update action is available for one or more Guvnor resources that are not in synchronization
with the Guvnor repository master copies. These resources would not be in synchronization
because either/both (1) there are local changes to these resources or (2) the master copies have
changed in the Guvnor repository. Performing the Update action replaces the local file contents
with the current contents from the Guvnor repository master copies (equivalent to “Switch to
version” for latest version).

Add Action

173

Chapter 9. Integrating rules ...

The Add action is available for one or more local files that are not associated with a Guvnor
repository master copy. Choosing the Add action launches the “Add to Guvnor” wizard:

Select Guvnor repository location |

Select an existing Guvnor repository location or fcreate a new one g

Create a new Guvnor repository location
= LUse an existing Guvnor repository location

http-Mocalhost:8080/drools-guvnoriorg. drools. guvnor. Guvnoriwebday
http:focahosticall

http:-Mocalhost/cal

http Mocahost BOB0/drools -guvnoriorg. drools, guwnor. Guvnoriwebdavipackages

I:":'II

Mext = Cancel

Figure 9.17. Add action

The first page of the wizard asks for the selection of the target Guvnor repository and gives the
choice to create a new Guvnor repository connection (in which case the second page is the same
as the Guvnor Connection wizard described above). Once the target Guvnor repository is chosen,
the wizard then asks for the folder location to add the selection files:

174

Actions for Local Guvnor Resources

Select folder
Select the target folder in the Guvnor repository | Guv |

Select folder:
= o http:/Mocalhost B0OBD/drools-guwvnorforg. drools, guvnor. Guvnoriwebday
= =« packages/
I - defaultPackage/
= testRefresh.txt
= listing.html
= oneFleToAdd. txt

w AT A CSKAT #.08

7 < Back Finish Cancel

Figure 9.18. Add action

Here | have selected the folder “anotherPackage” as the destination locationl. Clicking on “Finish”
adds the selected files to the Guvnor repository and creates an association between the local
and Guvnor repository files. (Not that the wizard will not allow for overwrite of existing Guvnor
repository files — another target location must be chosen.)

Compare with Version Action:

The Compare with Version action is enabled for one Guvnor repository associated file. This action
first opens a wizard asking for the version for comparison (with the local file contents):

175

Chapter 9. Integrating rules ...

Resource Versions

Choose a version for versionHistoryTest.txt

Revision Date Author Comment
2008-07-177T15:41:51 john
2008-07-17T09:37:11 john

]
b
| 2008-07-16T14:41:16
3
2
1

2008-07-16T13:35:33 john
2008-07-15T15:40:32 john
2008-07-15T10:28:00 john

Figure 9.19. Compare

Once the revision is selected, the action opens the Eclipse compare editor (read-only):

& Compare &

<from webdawv>

Guw

Cancel

Text Compare

A line at the front...

A test for version history.
Another line added.

More lines!

A line at the front...

A test for version history.
Another line added.

More lines!

And more lines!
Overwrite line.
A change

Figure 9.20. Compare

This editor uses Eclipse-standard comparison techniques to show the differences in the two
versions. In cases where there are no differences, the editor will not open: rather, a dialog saying

that there are no differences will appear.

Switch to Version Action:

The Switch to Version action is enabled for one Guvnor repository associated file. First the Switch

to Version action prompts for selection of version:

176

Actions for Local Guvnor Resources

Resource Versions

Choose a version for versionHistoryTest.txt L
Revision Date Author Comment

G 2008-07-17T15:41:51 john

5 2008-07-17T09:37:11 john

| 2008-07-16T14:41:16 john

3 2008-07-16T13:35:33 john
2 2008-07-15T15:40:32 john
1 2008-07-15T10:28:00 john <from webdav=
D oK Cancel
Figure 9.21. Versions
Once the version is selected, the Switch to Version action replaces the local file contents with
those from the revision selected.
Delete Action:
The Delete action is enabled for one or more Guvnor repository associated files. After confirmation
via a dialog, the Delete action removes the files in the Guvnor repository and deletes local
metadata for the Guvnor repository association.
Disconnect Action:
The Disconnect action is enabled for one or more Guvnor repository associated files, and removes
local metadata for the Guvnor repository association.
Guvnor Resource History View:
The Guvnor Resource History view should details about revision history for selected files, both
local and those in Guvnor repositories. The initial state of this view is:
[Guvnor Resource History i =3
Repository:
Resource:
Rewision Date Author Comment

Figure 9.22. History

177

Chapter 9. Integrating rules ...

The Guvnor Resource History view is populated by “Show History” actions in either the local
“Guvnor” context menu or in the context menu for a Guvnor repository file in the Guvnor Repository
Explorer. Once this action is performed, the Guvnor Resource History view updates to show the
revision history:

| Guynor Resource History &2

Repository: http-focalhost:B080/drools -guvmoriorg. drools . guvnor. Guwnorfiwebdavipackages
Resource: fanatherPackage/simple Rule, drl

Revision Date Author Comment

3 2008-07-15T15:37:34 john <from webday >
z 2008-07-15T15:32:03 ' john

1 2008-07-15T10:28:35 john <from webdav>

Figure 9.23. History

Here we see that the file “simpleRule.drl” has three revisions. Double clicking on a revision row (or
context menu “Open (Read only)”) opens an Eclipse read-only editor with the revision contents.
(Note: You can also “Save As...” when a file is open in a read-only editor to save a local writable
copy of the contents. Doing so, however, will not associate the file created with its Guvnor source.)

9.4.7. Importing Guvnor Repository Resources

In addition to the single file drag-and-drop from the Guvnor Repository Explorer view, the EGT also
includes a wizard for copying one or more files from a Guvnor repository to the local workspace
(and setting the association with the Guvnor repository). This wizard is available from the Eclipse
Import , Guvnor, Resource from Guvnor and the Eclipse File, New, Other, Guvnor, Resource from
Guvnor menu items. (Note: the wizard is identical but appears in both locations to accommodate
users who tend to view this functionality as being in either category.) The first page of the wizard
asks for the selection of the source Guvnor repository and gives the choice to create a new Guvnor
repository connection (in which case the second page is the same as the Guvnor Connection
wizard described above).

178

Importing Guvnor Repository Resources

Select Guvnor repository location | =l

Select an existing Guvnor repository location or k:reate anew one G

Create a new Guvnor repository location
* Use an existing Guvnor repository location

hitp: Mocalhost: 8080/drools -guvnorforg.drools. guvnor. Guvnoriwebdav
http-Mocalhost/calf

http-/Mocalhost/cal

http-/Mocalhost: B0B0/droocls-guvnor/org. drools. guvnor. Guvnoriwebdavipackages

@ Next > Cancel

Figure 9.24. Import

Once the source Guvnor repository is chosen, the wizard prompts for resource selection:

179

Chapter 9. Integrating rules ...

Select resources 3
Select resources to copy from the Guwvnor repository LIM

Select resources:
= o http: Mocalhost: 8080/drools-guvnorforg. drools. guvnor. Guvnoriwebdav
= - packages/
I - defaultPackage/
= = anotherPackage/

e testHefresh. txt

= gnekle ToAdd. txt

® README.txt o

= simpleRule. drl
= newHleAdded. txt ||

Mext = | Cancel

I;E.'II
A
=
g

Figure 9.25. Import

Finally, the target location in the local workspace is chosen:

180

Importing Guvnor Repository Resources

Select copy location |

Select the destination location

Select location:

- & anotherproject
b = .guvnarinfo
b = test

< Back Finish Cancel

Figure 9.26. Import

On completion the wizard copies the selected files from the Guvnor repository to the local
workspace. If a file with the same name already exists in the destination, the wizard uses the

Eclipse standard “prompt for rename” dialog:

181

Chapter 9. Integrating rules ...

Enter a new name for versionHistory Test. txt

CopyOfversionHistoryTest. tx]

8].4 Cancel

Figure 9.27. Copy

9.4.8. Guvnor plugin Preferences

The EGT provides a preference page in the “Guvnor” category:

type filter text Guvnor o

b General Repository Connections
I Ant

Drools Preferences

<1 Save passwords in platform key-ring

Guvnor URL template: htip:Mocalhost:8080/drools-guvnor/org.drools. guvnor. Guvnoriwebday

- Help File Decoration
b Install/Update leon decoration location: | Top right “
I Java
 Plug-in Development Text
b Run/Debug " Include change mdication (=)
< Include revision
B Team
< Include date/time stamp
Restore Defaults Apply
>
ki Ok Cancel

Figure 9.28. Preferences

The preferences cover two categories: Guvnor repository connections and local Guvnor repository
resource decorations.

Guvnor Repository Connection Preferences

182

Guvnor plugin Preferences

There are two preferences that can be set for Guvnor repository connections, and these are used
when creating new connections. The first is a default Guvnor repository URL template, which can
make it easier to create multiple similar connections by simply changing part of the field, such as
the host name. The second is whether saving of authentication information in the Eclipse platform
key-ring should be enabled by default. As with the Guvnor repository URL template, actually
whether to save a specific instance of authentication information in the Eclipse platform key-ring
can be determined when actually creating the connection. That is, both of these preferences are
simply convenience values set to reasonable defaults.

Local Guvnor Repository Resource Decoration Preferences

The second category of preferences provided by the EGT deals with how decoration of local
resources associated with Guvnor repository resources is presented. Since the Guvnor repository
is not a substitute for a SCM, and since SCM tools in Eclipse tend to decorate local resources, it is
useful to be able to control just how the EGT decorate its local resources to avoid messy conflicts
with SCM packages. In the “File Decoration” section of the preference page, you can choose the
location (top right, bottom right, top left, bottom left) of the decoration icon, or you can choose
not to display it. In the “Text” section, you can format the Guvnor metadata that is appended to
the file names: Whether to show an indicator (>) when the local file has changes not committed
back to the Guvnor repository. Whether to show the revision number. Whether to show the date/
time stamp. Any changes to these preferences take effect immediately upon clicking the “Apply”
or “Ok” buttons.

183

184

Chapter 10.

Chapter 10. Embedding Guvnor In
Your Application

As we already know, Guvnor provides a set of editors to author rules in different ways. According
torule’s format a specialized editor is used. Some of the supported formats are: brl (guided editor),
drl (plain editor), dsl (dsl editor), template (guided editor) and decision table (decision table editor).

One of the features introduced in Guvnor 5.2 was the ability to embed Guvnor's editor in you
own (Web) Applications. So, if you want to edit rules, processes, decision tables, etc. In you
applications without switch to Guvnor, you can.

This section covers all the steps you need to follow to embed Guvnor's editors in your Web
Application

10.1. Getting Started

The Embedded Version of Guvnor's Editors lets you to use just the editor window inside your
applications. So, basically what you need to do to is to embed just the editor you want to use in your
web application using an iframe. In order to be able to invoke an Editor instance from an external
application, Guvnor must be running: Standalone Editor is just a part of Guvnor and not a different
application. The first step is to have Guvnor deployed and running in a web/application server.

Using the Embedded version of Guvnor’s Editor you can create or edit assets only inside existing
categories and packages. You must configure at least one category and package with a valid
model inside Guvnor to start working with this feature.

10.2. Embedded Editor Entry-Point:
StandaloneEditorServlet

Guvnor defines a single entry-point to embed any of its editors in a web application:
StandaloneEditorServlet. This servlet is found in /standaloneEditorServlet URL, and according to
the parameters you pass to it (parameters names and possible values are going to be explained
later), you can open the editor in 3 different modes: BRL Edition Mode, Edition of Existing Assets
Mode and Create New Asset Mode. So, if you want to embed a Guvnor Editor in your application
you will need to perform a request to /standaloneEditorServlet URL. Once opened, you can interact
with the editor using JavaScript.

Important

Because you need to invoke JavaScript in order to interact with the editor, Guvnor
and your application must be running in the same server. Otherwise you will find
cross-domain JavaScript invocation problems.

185

Chapter 10. Embedding Guvnor ...

10.3. Edition Modes

Depending on the parameters used to invoke the Editor, you can use it in 3 different ways: BRL
Edition Mode, Edition of Existing Assets Mode and Create New Asset Mode.

10.3.1. BRL Edition Mode

BRL Edition Mode is used if you want to use BRL code in your application. You can provide
multiple BRL sources to the Editor, each of them will be converted to a temporal RuleAsset (a
Guvnor’s internal representation) and displayed in a separate editor.

These are the parameters you must use in the invocation of StandaloneEditorServlet to open
Guvnor's Editor in BRL Edition Mode:

Table 10.1. BRL Edition Mode HTTP parameters:

Parameter Name Explanation Allow multiple Example
values
client Defines the menu of false oryx

the editor. The only
supported value right
now is oryx

packageName The name of the false mortgages
package used to hold
the created assets.
The package must
exist in Guvnor.

categoryName Each rule must false Home Mortgage
have at least one
category. The created
rules will belong to
this category. The
category must exist in
Guvnor

briSource The BRL source used true
by the editor. You
can pass multiple
briISource parameters

. <rul e>
for multiple rules.

<nane>

Bankr upt cy
hi story

</ nane>

<nmodel Ver si on>
1.0

186

BRL Edition Mode

Parameter Name Explanation Allow multiple Example

values

</ nodel Ver si on>
<attributes>

</attributes>
<l hs>

</l hs>
<r hs>

</rhs>
</rul e>

All the assets created when using this mode are temporal. They are never going to be persisted
in Guvnor. The purpose of this mode is to use just the Guided Editor and not Guvnor persistence
layer. You can provide one or more initial brls, work on them using the Guided Editor and then
retrieve the modified source from your application using javascript. Every time you want to edit
a rule, you must provide its brl code.

A Warning

BRL syntax is an internal format used by Guvnor. It is not supposed to be used in
external applications, so drastic changes in its syntax can occur without any advise.

187

Chapter 10. Embedding Guvnor ...

JBoss Guvnor - Mozilla Firefox

File Edit View History Bookmarks Tools

c @ 9 \http:,f',."'l2?.[}.().1:3883{org.drools.guvnc ERARL B | : @
| B5iMost Visited »+ [@] Getting Started []Latest Headlines v) JBoss Guvnor) JBoss Guvnor - GE

) JBoss Guvnor | [@] Hi,Ishouldb...| ©J JBossG... ® |[@ Hi,I'manas...) JBossGuvnor &P ~

Done Cancel {

| = Bankruptcy history

| Validate Verify | View source

WHEN L
4. Thereis a LoanApplication [a] o @T'J{; T
The following exists: =
There is a Bankruptcy with:
any of the following:
2. w4
yearOfOccurrence | greater than j 1990 B g
amountCwed greater than j 10000 B
[=| Bankruptcy history 2
| Validate Verify View source
WHEN R
1. Thereis a LoanApplication [a] = ﬁ]‘:{; T
The following exists: =
There is a Bankruptcy with:
any of the following:
2. w4
yearOfOccurrence greater than j 1990 B g
amountOwed greater than ~| 10000 B
| *
Done .

Figure 10.1. Embedded Editor with 2 BRL Rules

10.3.2. Edition of Existing Assets Mode

You can use this mode if you want to use the Standalone Editor for edit assets that already exist
inside Guvnor. When editing existing assets, you will be able to save the changes in Guvnor as
well as get the DRL and BRL code of them in your application.

The HTTP parameters involved in this mode are:

188

Edition of Existing Assets Mode

Table 10.2. HTTP parameters for Edition of Existing Assets Mode:

Parameter Name Explanation Allow multiple Example
values
client Defines the menu of false oryx

the editor. The only
supported value right

now is oryx
assetsUUIDs The asset's UUID. true 968c9b3c-bc19-40ba-
Use multiple bb38-44435956ccee

parameters for specify
multiple assets.

@ Note

The asset’s UUID could be found in Guvnor's Ul or through REST-API.

When using this mode, you can edit assets from different types: like rules and decision tables.

189

Chapter 10. Embedding Guvnor ...

JBoss Guvnor - Mozilla Firefox

File Edit View History Bookmarks Tools Help

c @ 9 | http://127.0.0.1:8888/0rg.drools.guvnor.Guvnor/GuidedEditor.htr 7 v | 4§+ | Q|

: f5 Most Visited + [@] Getting Started []Latest Headlines v 9J JBoss Guvnor 93 JBoss Guvnor - GE

[@) Hi, I'm an asset editor! # | © JBoss Guvnor ® | o9 - |

Save all changes Save and close all Cancel

| = Bankruptcy history
| Validate Verify View source

WHEN)

1. There is a LoanApplication [a] e FI |
i

The following exists:
There is a Bankruptcy with:

any of the following:
2. LT
yearOfOccurrence greater than j1990 B g
amountOwed greater than j10002 =]

No bad credit checks
| = Pricing loans

:| Validate Verify View source

| I Decision table

Row Numb Des amount min amount max period income deposit max Loan approved LI rate

= income: Asset (1 ltem)

1 131000 200000 30 Asset 20000 true 0 2

= income: Job (2 Items)

2 10000 100000 20 Job 2000 true 0 4
3 100001 130000 20 Job 3000 true 10 6
Done #F

Figure 10.2. Embedded Editor with Multiple Assets

10.3.3. New Asset Mode

You can use this mode if you want to start a new asset from scratch. Assets created using this
mode can be persisted inside Guvnor using the “Save all Changes” button. At this moment, you
can only create one asset at a time using this mode.

The HTTP parameters involved in this mode are:

Table 10.3. HTTP parameters for New Asset Mode:

Parameter Name Explanation Allow multiple Example

values

client Defines the menu of false oryx
the editor. The only
supported value right
now is oryx

190

Extra HTTP parameters

Parameter Name Explanation Allow multiple Example

values

packageName The name of the false mortgages
package used to hold
the created assets.
The package must
exist in Guvnor.

categoryName Each rule must false Home Mortgage
have at least one
category. The created
rules will belong to
this category. The
category must exist in
Guvnor

createNewAsset Flag indicating that we false true
want to start a new
rule from the scratch.
Must be true

assetName The name for the false New Rule
asset to be created

assetFormat The format of the false * brl (default)
asset to be created.
The format identifies « dsl
the editor to be used. . drl
e gdst
» template

» Any format defined
in
org.drools.guvnor.client.common.AssetF

10.4. Extra HTTP parameters

We already covered all the HTTP parameters that must be used for each Edition Mode. You can
combine these parameters with some others to customize the appearance and behavior of the
editor.

10.4.1. Rule’s Sections Visibility Parameters

When you edit or create rules using the Rule Guided Editor, you can choose which part of the rules
would be visible (LHS, RHS and Attributes). By default, all these sections are visible in the editor.

You can specify which sections should be hidden using 3 different HTTP parameters:

191

Chapter 10. Embedding Guvnor ...

Table 10.4. HTTP parameters for Rule's Sections Visibility:

Parameter Name Explanation Allow multiple Example
values
hideRuleLHS Should the LHS of the false true / false

rules be hidden?

hideRuleRHS Should the RHS of the false true / false
rules be hidden?

hideRuleAttributes Should the Attributes false true / false
of the rules be hidden?

10.4.2. Constraining Fact Types

When you edit or create rules in BRL format (using the Guided Editor), you can define a subset of
the Fact Types defined in the rule’s package. When authoring the rule, you will only see the Fact
Types defined in that subset. This is the same concept as Working-Sets. In fact, a Working-Set
will be created and applied on-the-fly using the provided subset.

If you want to define this set of Fact Types you could use this parameter:

Table 10.5. HTTP parameters for Fact Types Constraints:

Parameter Name Explanation Allow multiple Example

values

validFactType The name of a valid true Bankruptcy
Fact Type. This is just
the class name and
not the fgn.

10.4.3. Use existing Working-Sets

When you edit or create rules in BRL format (using the Guided Editor), you can define which
working-sets must be activated in the editor. In order to do this you must provide one or more
UUID of existing working-sets. If you want to use this feature when editing multiple rules, all of
them must belong to the same package where the working-sets you specify are defined.

In order to you want to define this set of Fact Types you could use this parameter:

Table 10.6. HTTP parameters to specify the Working-Sets to be applied:

Parameter Name Explanation Allow multiple Example

values

activeWorkingSetUUIDs The UUID of an 968c9b3c-bc19-40ba-
existing Working-Set bb38-44435956¢cab

192

Interacting with the Editor

@ Note
The asset’s UUID could be found in Guvnor's Ul or through REST-API.

10.5. Interacting with the Editor

After the Editor is open, you can interact with it using JavaScript. The Editor defines a JavaScript
object in the Window element where it is rendered. This object looks like this:

The window.guvnorEditorObject defines 5 functions that you can use to interact with it. getDRL()
and getBRL() receive a callback function as parameter. This function will receive a String
containing the DRL or BRL of the rules you are editing.

var guvnor Edi t or Obj ect = {
get DRL: function (callbackFunction),
get BRL: function (callbackFunction),
regi st er Aft er SaveAndd oseBut t onCal | backFuncti on: function
(cal | backFuncti on),
regi st er Aft er Cancel But t onCal | backFuncti on: function (call backFunction),
get Asset sUUI Ds: function()

The next 2 functions are for register callbacks for “Save”, “Done” and “Cancel” buttons. These
callback functions don’t accept any parameter. The last function is used to retrieve the UUIDs of
the assets you are editing. This is very useful when you are creating a new rule asset and you
don’t know the UUID of it.

193

194

Part Ill. Administration Guide

This part covers installation and administration issues of Drools Guvnor.

Drools Guvnor is a web application that can run in multiple environments, and be configured to
suit most situations. There is also some initial setup of data, and export/import functions covered.

Chapter 11.

Chapter 11. Installation

The Guvnor application is packaged as a . war file, which can be deployed to any application
server (such as JBoss AS, ...) or servlet container (such as Tomcat, ...) out-of-the-box.

11.1. Installation step by step

Installation is simple: download, deploy, start and surf.

1. If you don't have an application server or servlet container, download and install one. For
example, download JBoss AS [http://www.jboss.org/jbossas/].

2. Download the Guvnor distribution from the download site [http://www.jboss.org/drools/
downloads]. In the download zip, there's 1 war file per app server version, for example
guvnor-5. 2. 0-j boss-eap-5. 1. war for JBoss EAP 5.1. Use the war file best suited for your
app server. Essentially there's little difference between those war files: mostly it's a matter of
excluded jars which are already available on the app server.

If no war specifically for your app server exists yet, take the latest Tomcat war. It might require
minor configuration tweaks. Consult our wiki for specific tips. The community has been able
to make it run on various platforms. Patches (pull requests) to expand our war assemblies for
another app server or version are welcome.

3. Optionally rename that war file to guvnor . war to have a nicer URL. For the rest of the manual
we'll presume you've done this.

4. Optionally customize the configuration. First explode (unzip) the war file, and change any
configuration and then unexplode (zip) it again.

5. Deploy the war file by copying it into the deployment directory of the app server. For JBoss AS
5 and 6, that directory is ser ver/ def aul t / depl oy. Alternatively you can first explode (unzip)
the war file and copy that exploded directory. Note: in JBoss AS, the exploded directory name
must end with the suffix . war .

6. Start the app server. For JBoss AS 5 and 6, run $JBOSS_AS_HOVE/ bi n/ run. sh (or run. bat).

7. Surf to the Guvnor webapp. This will probably be at | ocal host on port 8080, for example
at http://localhost:8080/guvnor-6.0.0.Beta2 (the url depends on the name of the war file you're
using).

11.2. Supported and recommended platforms

Guvnor runs in any application server or servlet container that supports Java SE 5 (JEE 5 is not
required), this includes JBoss AS, Tomcat, Jetty and many more.

197

http://www.jboss.org/jbossas/
http://www.jboss.org/jbossas/
http://www.jboss.org/drools/downloads
http://www.jboss.org/drools/downloads
http://www.jboss.org/drools/downloads
http://localhost:8080/guvnor-6.0.0.Beta2

Chapter 11. Installation

JBoss AS is the recommended application server, because it is actively tested/developed on it.
If you're looking for mission critical, enterprise support, take a look BRMS subscription [http://
www.jboss.com/products/platforms/brms/].

198

http://www.jboss.com/products/platforms/brms/
http://www.jboss.com/products/platforms/brms/
http://www.jboss.com/products/platforms/brms/

Chapter 12.

Chapter 12. Database configuration

Guvnor uses the JCR standard for storing assets such as rules. The default implementation is
Apache Jackrabbit [http://jackrabbit.apache.org]. This includes an out of the box storage engine/
database, which you can use as is, or configure to use an existing RDBMS if needed.

12.1. Changing the location of the data store

Assuming you are using on of the JBoss platforms, running Guvnor for the first time will create a
database in the bi n/ directory of the application server. There you will find the default Jackrabbit
configuration file, namely repository. xnl, and a repository directory which contains your
repository data. Both of these are created automatically for you.

The location of the data store should be a secure location, that is backed up. The default location
may not be suitable for this, so the easiest way is to set a more suitable location. If you want
to change this, please make sure you have stopped Guvnor (i.e. stopped the app server or un-
deployed the application).

To change the location, unzip the Guvnor WAR file, and locate the beans. xni file in the VEB- | NF
directory. This is a JBoss Seam configuration file (Seam 3 is the framework used) which allows
various parts of the system to be customized. When you have located the beans. xni file, you
should see something like the following:

<guvnor Reposi t ory: Guvnor Boot st rapConfi gurati on>
<s:nodifies/>

<l-- JackRabbit -->
<guvnor Reposi tory: properti es>
<s:entry><s: key>org. drool s. reposi tory. confi gurator </
s: key><s:val ue>org. drool s. reposi tory. j ackrabbi t. Jackr abbi t Reposi t or yConfi gur at or </
s:val ue></s:entry>
<I-- the root directory for the repo storage the directory nust exist. -->
<l--<s:entry><s: key>repository.root.directory</s: key><s: val ue>/ opt/
your pat h</s: val ue></s:entry>-->
</ guvnor Reposi tory: properti es>

</ guvnor Reposi t ory: Guvnor Boot st rapConfi gurati on>

Find the component with a name of Guvnor Boot strapConfiguration and its section for
JackRabbit configuration, then the key property with the name of reposi tory. root . directory.

If you un-comment this key element (as in the example above it is commented out), you can set
whatever file-system path you need for the repository data to be stored in. You can also use this
to move the repository around. In that case, when you have set the location in the beans. xni

199

http://jackrabbit.apache.org
http://jackrabbit.apache.org

Chapter 12. Database configur...

you can simply move the reposi t ory. xm AND the repository directory to the new location that
you set in the beans. xm .

If there is no repository.xml configuration file, or the repository directory at the location specified
(or in the default location) then Guvnor will create new empty ones.

There are many more options which can be configured in the r eposi t ory. xni , but for the most
part, it is not recommended to change the defaults.

12.2. Configuring Guvnor to use an external RDBMS

In some cases it may be a requirement that you use an external RDBMS, such as Oracle, MySQL,
or Microsoft SQL Server as the data store - this is permitted and recommended as storing your
repository data in an external RDBMS is much more reliable than the default file-system storage
option. The JackRabbit r eposi t ory. xm file contains the information where your repository data
is stored, so changes to this file are necessary for RDBMS setup. You have two options to make
changes to reposi t ory. xnl , namely make all changes manually, or use the Guvnor Repository
Configuration Manager.

If you opt for the manual configuration, the easiest thing to do is to start up Guvnor with defaults
(or with a suitable repository.root.directory directory as specified above) to let it generate the
default reposi tory. xml . Locate the repository. xn file that was generated, and open it -
it will be annotated with comments describing many of the different options. From here on,
you will need to know a little about Jackrabbit Persistence managers [http://wiki.apache.org/
jackrabbit/PersistenceManagerFAQ]. There are a few persistence managers, some are database
specific (eg Oracle). There is a SimpleDBPersistenceManager which works with any database
that supports JDBC - you also specify the database type, so it uses the specific DDL to create
the table structure (all major databases are supported).After you have added your configuration
options, start the Guvnor application again. Guvnor will then create the database tables the first
time it is started up if it is running against a fresh (empty) RDBMS - so its important to note that
the user credentials supplied have permissions to create tables (at least initially, on first run, after
that they could be locked down).

Using the Repository Configuration Manager in Guvnor is often a lot easier and a less error-
prone options to make the necessary configuration changes in reposi tory. xm . With Guvnor
application running, select the Administration tab in the left-hand-side navigation bar, then select
the Repository Configuration link.

200

http://wiki.apache.org/jackrabbit/PersistenceManagerFAQ
http://wiki.apache.org/jackrabbit/PersistenceManagerFAQ
http://wiki.apache.org/jackrabbit/PersistenceManagerFAQ

Configuring Guvnor to use an external RDBMS

Figure 12.1. Finding the Repository Configuration Manager in the
Administration section

Repository Configuration Manager includes template configuration files for many external RDBMS
types. The first thing you have to do is the select the RDBMS type from the dropdown menu and
select if you are using JNDI to look up your data source or not.

Karnags Hepoidory Confqurafs

ADBNES
P T TR Ry [ru— _I

i BN Lhinied

Figure 12.2. Select RDBMS type

If you opt to use JNDI, you have to enter the JNDI hame configured in your deployed data source.
Otherwise you need to enter your RDBMS information.

Naragn Wepsadnsy Confounafos

HDEME M5
Srndancf HEDEIALE By -
e B0
A e
Dracia B Imic
e

Passreord

Lerarale refsay oy donlsg

Figure 12.3. RDBMS information

201

Chapter 12. Database configur...

At this point you are ready to generate your r eposi t ory. xm give your RDBMS information. Click
on the "Generate repository config" button.

Manage Repository Configuration

RDBMS Info <7xml version="1.0"7> Save Configuration |
<l--

Select RDBMS type: Oracle i :J Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
] this work for additional information regarding copyright ownership.
- The ASF licenses this file te You under the Apache License, Version 2.0
Continue (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses /LICENSE-2.0

Unless regquired by applicable law or agreed te in writing, software

Oracle 9i Info distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
carm.my.Driver See the License for the specifie language governing permissions and
limitations under the License.
myUrl -
<!DOCTYPE Repository PUBLIC "-//The Apache Software Foundation//DTD Jackrabbit 1.4//ER"
mylser "http://jackrabbit.apache.org/dtd/repository-1.4.dtd">
=l-- Example Repository Configuration File -->
Password: (seeessreee <Repository>
Py
Generate repository config virtual file system where the repository stores global state

{e.g. registered namespaces, custom node types, ete.)
-
<l
<FileSystem class="org.apache.jackrabbit.core.fs.local.LocalFileSystem">
<param name="path” wvalue="${rep.home}/repository"/>
</FileSystem>

<FileSystem class="org.apache.jackrabbit.core.fs.db.0OracleFileSysten">
<param name="driver” value="cem.my.Driver"/>
"url" value="myUrl"/>

........ Teroe et T S

Figure 12.4. Generated repository.xml

You can download the generated r eposi t ory. xni file by clicking the "Save Configuration" button,
or copy/paste the generated text manually. Replace your existing repository.xm with the
generated one and restart Guvnor for the changes to get picked up.

12.3. Searching and indexing, Version storage

Jackrabbit has a separate storage area for version storage (as over time, the number of old
versions will increase, yet it should not slow down the performance of the main data store). The
version storage also has its own persistence manage configuration in the r eposi t ory. xm , but for
most purposes you can use the same database as the main storage (just with a different schema
object prefix - ie in your database, all the version data will be prefixed with ver si on_ but otherwise
in the same tablespace). See the r eposi t ory. xnl for more details of this.

Lucene is used to provide indexing across the semi structured data, and across versions. This
indexing is generally best stored on a filesystem, local to Guvnor (as per the default in the
reposi tory. xm) - in most cases the default is fine.

202

Chapter 13.

Chapter 13. Switch from JackRabbit
to ModeShape

Guvnor supports running on either JackRabbit and ModeShape as the underlying JCR-2.0
implementation. By default Guvnor ships using JackRabbit. However if you want to switch to
using ModeShape then you need to install ModeShape as a service in JBossAS-5.x. Check the
ModeShape project and download and install ModeShape 'kit' version 2.5.0 or later. After installing
the kit, you should have a nodeshape-service. jar directory in your deploy directory. Since
ModeShape 2.5.0 only support deployment to JBoss-5.x, make sure to also use the guvnor-5.2.0-
jboss-eap-5.1.war. Now we can remove some jars from the guvnor WAR that are no longer
needed, and in fact will cause classloading issues if you don't remove them:

[l ocal host]$ rm-f WEB-INF/I|ib/jackrabbit-*

[local host]$ rm -f WEB-1NF/Ilib/hibernate-* WEB-I|NF/ persi stence-api-1.0.jar
VEB- | NF/ | ucene-*. j ar

[local host]$ rm-f WEB-INF/lib/jcr-2.0.jar

Next you need to edit the WEB-INF/beans.xml file to switch over to ModeShape. Comment out
the JackRabbit section and uncomment the ModeShape section:

<guvnor Reposi t ory: Guvnor Boot st rapConfi gur ati on>
<s:nodifies/>

<I-- JackRabbit -->
<guvnor Reposi tory: properti es>
<s:entry><s: key>org. drool s. repository. configurator</
s: key><s: val ue>org. drool s. reposi tory. j ackrabbi t. Jackr abbi t Reposi t or yConfi gur at or </
s:val ue></s:entry>
<I-- the root directory for the repo storage the directory nust exist. -->
<I--<s:entry><s: key>repository.root.directory</s: key><s:val ue>/ opt/
your pat h</ s: val ue></s:entry>-->
</ guvnor Reposi tory: properti es>

<l-- MdeShape -->
I
passwords for the background users (Il oglnAdm n and nmail man), these need
to match the setting
you provided for JAAS (used by MddeShape only)
ca >
<! --<guvnor Reposi tory: properties>-->
<I--<s:entry><s: key>org. drool s. repository. confi gurator</
s: key><s: val ue>org. drool s. reposi t ory. nnodeshape. ModeShapeReposi t or yConf i gur at or </
s:val ue></s:entry>-->

203

Chapter 13. Switch from JackR...

<!--<s:entry><s: key>or g. nodeshape. j cr. URL</ s: key><s: val ue>j ndi : jcr/| ocal ?
reposi t or yNane=br ns</s: val ue></s: entry>-->
<I--<s:entry><s: key>org. drool s.reposi tory. secure. passwor ds</
s: key><s: val ue>f al se</s:val ue></s:entry>-->
<I--<s:entry><s: key>org. drool s. repository.|ogl nAdm n. passwor d</
s: key><s: val ue>l ogl nAdm n</s: val ue></s: entry>-->
<I--<s:entry><s: key>org. drool s.reposi tory. mai | man. passwor d</
s: key><s: val ue>mai | man</ s: val ue></s: entry>-->
<!--</guvnor Reposi tory: properties>-->

</ guvnor Reposi t ory: Guvnor Boot st r apConf i gur ati on>

Note that you can use encrypted passwords by setting the
org. drool s. repository. secure. passwor ds setting to t rue. To encrypt a password use:

[local host]$ java -cp client/jboss-Iogging-spi.jar:comon/lib/jbosssx.jar
org.j boss. resource. security. Securel dentityLogi nMddul e <passwor d>

ModeShape does not support 'trusted' access like JackRabbit does, and by default uses JAAS
for authentication and authorization. For more detail on Guvnor and Security see the next section
about Security. To use JAAS and the modeshape policy comment out the defaultAuthenticator
section and uncomment the jaas-configuration section, and change the policy name from 'other’
to 'modeshape”

<security:ldentityl nmpl >
<s:nodi fies/>

<I-- No real authentication: denp authentication for denb purposes -->

<security:aut henticatorC ass>org. drool s. guvnor. server. security. DenbAut henti cat or </
security: authenticatord ass>

<I'-- JAAS based aut hentication -->
<!I--<security:authenticat or Name>j aasAut henti cat or </
security: aut henti cat or Nane>- - >

<I-- | DM based authentication (supports LDAP, see Seam 3 and PicketLink
| DM docunent ati on) -->
==
<security:authenticatorC ass>org.] boss. seam security. managenent . | dmAut henti cat or </
security: aut henticator>-->
</security:ldentitylnpl>

<!--<security:jaas.JaasAut henti cat or>-->
<l--<s:nodifies/>->

<l

204

The following one will use the jaas configuration called "other",
which in jboss AS neans you can use properties files for users.
-->
<I'--<jaasConfi gName>ot her </ j aasConf i gNanme>- - >
<l--</security:jaas.JaasAut henti cator>-->

You may have noticed the settings of two passwords in the modeshape property settings for the
‘admin' and 'mailman’ users. These users are used by guvnor to perform background tasks. Now
that we are no longer allowing for anyone to run as 'guest’, we need to ass these two users to
the modeshape users and roles files. Open the conf/ pr ops/ nodeshape- users. properti es file
and add the mailman and admin users,

adm n=adm n
mai | man=nai | man

Finally open the conf/ pr ops/ nodeshape-r ol es. properti es file and add the admin and mailman
roles,

adm n=connect, adm n
mai | mn=connect, readonl y, readwite

By default JackRabbit uses InMemory storage, which is configured in the nodeshape-
servi ce. j ar/ nodeshape- confi g. xm . To change this we recommend reading the modeshape
documentation. To use a referenced JNDI data source, replace the <node: source></
mode: sour ce> segment with the following:

<node: source jcr:nane="store" node: cl assnane="or g. nodeshape. connect or. store.j pa. JpaSour ce"
node: dat aSour ceJndi Nane="your JNDI namne"

node: nodel =" Si npl e"

node: di al ect ="or g. hi bernat e. di al ect. HSQLDi al ect"
node: referential I ntegrityEnforced="true"

node: | ar geVal ueSi zel nByt es="10000"

node: retryLi m t="3"

node: conpr essDat a="f al se"

node: pr edef i nedWor kspaceNanes="def aul t, syst enf
node: showsql ="f al se”

node: aut oGener at eSchema="updat e"

node: cr eat i ngWr kspacesAl | owed="t r ue"

node: def aul t Wor kspaceNane="defaul t" />

205

Chapter 13. Switch from JackR...

Alternatively you can connect directly to a JDBC data source, use the same <nmode: sour ce>
fragment as for JNDI except replace the node: dat aSour ceJndi Nanme attribute with these

attributes:

node: dri ver G assNanme=or g. hsql db. j dbcDri ver
node: user name=sa

node: passwor d=

node: ur | =j dbc: hsqgl db: nem t ar get

node: maxi mumConnect i onsl nPool =5

For purposes of illustration, the HSQL DB is being used, but simply replace the attribute values
with the appropriate driver class name, username, password, and database URL. Don't forget to
add a dependency to your JDBC jar, so the JDBC driver available in the classpath.

206

Chapter 14.

Chapter 14. Security -
Authentication and basic access

Please note that giving someone access to Guvnor indicates a level of trust. Being able to editing
and build rules is providing a great deal of power to a user. Thus you should not open up Guvnor
to your entire organization - but instead to a select few. Use https (http with TLS/SSL) where ever
possible, even internally in a company network this is a good idea. Use this power wisely - this
not a "run of the mill* application that provides read/write access to a database, but something
much more power. Just imagine you are spider man - with great power comes great responsibility
(of course even more so for super man).

Security is configured by using the beans. xn file in the war file. To customize this, you will need
to unzip the WAR file, and locate the beans. xni file which is in the WEB- | NF directory.

The JAAS standard is used as the underlying authentication and authorization mechanism, the
upshot of which means its very flexible and able to integrate into most existing environments.

Out of the box, Guvnor shows a login screen, but no security credentials are enforced - the
user name is used, but no password check is performed. To enforce authentication, you need to
configure it to use an appropriate user directory, you may have Active Directory or similar already.

In the beans. xm file, you should located a security configuration section like the following:

<security:ldentityl nmpl >
<s:nodi fies/>

<I-- No real authentication: denb authentication for deno purposes -->

<security:authenticatorCl ass>org. drool s. guvnor. server. security. DenoAut henti cat or </
security: authenticatorCd ass>

<I'-- JAAS based authentication -->
<l --<security:aut henti cat or Nane>j aasAut henti cat or </
security: aut henti cat or Nane>- - >

<l-- | DM based authentication (supports LDAP, see Seam 3 and PicketLink
| DM docunent ati on) -->
S
<security:authenticatord ass>org.j boss. seam security. managenent . | dmAut henti cat or </
security: aut henticator>-->
</security:ldentityl npl>

207

Chapter 14. Security - Authen...

As you can see from above, the 2 "out of the box" options are pass through - which means any
user is allowed in, or bypassed, in which case there is no login screen (e.g. you may be securing
access to the app via a web server anyway).

14.1. Using your containers security and LDAP

Every application server supports advanced configurations which can work with your existing
security infrastructure. The case of JBoss AS will be shown here as an example.

<security:identity authenticate-nmethod="#{authenticator.authenticate}"
j aas-confi g- nane="ot her"/ >

This will use the ot her JAAS config in JBoss AS. If you look in j boss- as/ server/ def aul t/ conf
you will see a | ogi n-confi g. xni file. This file contains various configurations. If you use ot her
like the one above, then it will look for users. properties and rol es. properties in the conf/
directory for usernames and passwords to authenticate against. This is maintainable only for a
fixed small number of users.

LDAP is perhaps the most popular choice for larger enterprises. Here is an example
that works with Active Directory. You can get much more information on how to
configure JBoss AS for all scenarios with LDAP from this wiki page [http://wiki.jpboss.org/
wiki/Wiki.jsp?page=LdapLoginModule] and this wiki page [http://wiki.jboss.org/wiki/Wiki.jsp?
page=LdapExtLoginModule].

<application-policy name="brns">
<aut henti cati on>
<l ogi n-
nodul e code="org.] boss. security. auth. spi.LdapExt Logi nMbdul e" flag="required" >
<l--
Sone AD configurations nmay require searching against
the G obal Catal og on port 3268 instead of the usual
port 389. This is nost |ikely when the AD forest
i ncludes multiple domains.

<nodul e-option nane="j ava. nam ng. provi der. url ">l dap://
| dap. j boss. or g: 389</ nodul e- opti on>
<nmodul e- opti on nanme="bi ndDN'>JBOSS\ someadni n</ nodul e- opti on>
<nmodul e- opti on name="bi ndCredenti al " >passwor d</ nodul e- opti on>
<nmodul e- opti on nane="baseCt xDN'>cn=User s, dc=j boss, dc=or g</ nodul e- opti on>
<nodul e- opti on nane="baseFi | ter">(sAMAccount Name={ 0}) </ nodul e- opti on>

<nmodul e-opti on nane="rol esCt xDN'>cn=User s, dc=j boss, dc=or g</ nodul e-
opti on>
<nodul e- opti on nanme="rol eFi | t er">(sAMAccount Name={ 0}) </ nodul e- opti on>
<nmodul e- opti on nane="rol eAttri but el D'>nenber Of </ nodul e- opti on>
<nmodul e-opti on name="rol eAttri butel sDN'>true</ nodul e- opti on>

208

http://wiki.jboss.org/wiki/Wiki.jsp?page=LdapLoginModule
http://wiki.jboss.org/wiki/Wiki.jsp?page=LdapLoginModule
http://wiki.jboss.org/wiki/Wiki.jsp?page=LdapLoginModule
http://wiki.jboss.org/wiki/Wiki.jsp?page=LdapExtLoginModule
http://wiki.jboss.org/wiki/Wiki.jsp?page=LdapExtLoginModule
http://wiki.jboss.org/wiki/Wiki.jsp?page=LdapExtLoginModule

Using your containers security and LDAP

<nmodul e- opti on name="rol eNaneAttri but el D'>cn</ nodul e- opti on>

<nmodul e- opti on nanme="r ol eRecur si on">- 1</ nodul e- opti on>
<nodul e- opti on nanme="sear chScope" >ONELEVEL _SCOPE</ nodul e- opti on>
</ | ogi n- modul e>
</ aut henti cati on>
</ appl i cation-policy>

To use the above, you would put j aas- confi g- nanme="brns" in the security:identity tagin
the beans. xm for Guvnor.

Similar configuration examples can be found for other directory services.

LDAP isn't the final word, you can use JDBC against a database of user name, or you can write
your own login module to use any sort of weird and wonderful authentication and authorization
systems that you may have to deal with (that would be an extreme case, but its possible). Refer
to JBoss AS documentation (or documentation for your existing application server).

209

210

Chapter 15.

Chapter 15. Fine grained
permissions and security

The above section talks about establishing identity and access for users. This section talks about
granting specific permissions to these users (to control data visibility and access). This can be
used to partition data, or to control access for "non power users" which can limit the damage they
can do.

i=| Administration —
= i) Admin
= Categories
s Archived Items
Statuses
= Import/Export
@ Error log
14, User permission mappings

Figure 15.1. Administer user permissions

A common need and desire of the web interface of Guvnor is to be able to have users of different
technical abilities interact with it. Another need is to be able to allocate people different sets of
data to "own".

Typically users identities are managed in a centralized directory - application servers can integrate
with these directories (e.g. active directory, LDAP) so users to Guvnor can be authenticated
without having to create another duplicate identity. It is also possible (thanks to JAAS) to define
what users have the "admin" role for Guvnor (note that an Admin user of Guvnor doesn't have to
really be a system administrator). Further to this, Guvnor augments this identity with data specific
permissions, which are managed in Guvnor itself.

Firdd Ungr Parmisvizn -~
Currently configared upers: | Relosd Creabs miw uler mapping Delebe seloibod woer
Lt AT = L Has padi a0 pormaidi i Soadonptry et Tradid.

= Admsniitrabor: [Mana) {2 Memn)

Nirallded Y

e L Yeird
d Administrator: fou {1 Ttam)

woarkal Yoa

Figure 15.2. User listing

211

Chapter 15. Fine grained perm...

Note that the above users identities are not stored in Guvnor, only their permission mappings are
which are specific to Guvnor.

There are really two system wide roles: Users who are Administrators and users who are not.
Administrators can see and do anything. Out of the box, the permission system is turned off, and
every user is an administrator (this is pretty much how things used to work). There is also a system
setting in beans. xnl that can turn the permissions system on and off (so people can manually
override if needs be). A administrator can also give other users admin rights, regardless of their
roles in the external directory service.

Ed® uiar: Newlier e

Li}’} Edit user: Naw User

Users v whwenbicated by a dinedlony sevdor, here oo cvn dedtoe Gesrnor Soecilic pesme Taons A3
Laqsan
[analyst] for;
caegonaHRE B
[packaga admin] for:
packagea om. billasuar finanoe Q

Save changes

Figure 15.3. Editing

There are several types of permissions: Per package: Package Administrator ("owns" a package
- can deploy etc, but has no administrative rights to the system). Package developer - this
permissions allows users to create new items, edit etc - but only at the package level (not deploy).
They can also run and create tests. Package readonly - well this one is pretty obvious. Per
Category: This is the "interesting" one - as assets (rules) can be tagged with multiple categories,
you can use these to assign permissions to an "analyst" type of user. A user can be assigned
multiple categories. A user can then edit and view any asset that is tagged in that category
(regardless of package). A user that only has category permissions will not be shown any
package views or details, and will only see the simple categories view. This allows administrators
and managers to control exactly what these users can and can't see. Note that per category
permissions can also be set as "read only" so a user can view all the assets in a category, but
not make changes to them.

212

Enabling fine grained authorization

Mavigate Guvnor £ F
% Categories [
=] Rukrs C
,, Find .
=1y Categaries

i

T

Al

Figure 15.4. The analyst view

The per category "analyst" permissions are quite useful - you can also augment their permissions
with a specific package (so on top of their category rights, they can see and play with a particular
package - which may be used as a "practice" area, or test area for instance). This provides a few
ways to manage permissions in a coarse or fine grained way, as suits the different types of users.

15.1. Enabling fine grained authorization

By default authorization is NOT enabled. To enable it, edit the beans. xni file in the WEB- | NF
directory:

<conmponent nane="or(g. | boss. seam security.rol eBasedPerni ssi onResol ver" >;
<s:nodi fies/>
<property nane="enabl eRol eBasedAut hori zati on">true</ property>

</ conponent >

213

214

Chapter 16.

Chapter 16. Data management

16.1. Backups

How backups are performed is dependent on what persistence manager scheme you are using.
Using the default one - then its a matter of backing up the repository directory (wherever you have
it configured to be). Restoring it is simply a matter of copying across the repository directory.

Ideally you will either stop Guvnor application while a file backup is being done, or ensure that
no one is using it.

In the case of using an external database (e.g. Oracle, MySQL), then the normal scheme can
apply that you would use to backup those database (you do back them up, right?). In this case,
when restoring, it is also a good idea to clear the indexes (delete the directory where the indexes
are) so they are created fresh from the data (and thus guaranteed to be in sync).

16.2. Repository Data Migration

It is often needed to migrate your existing repository from one persistence manager schema to
another. A typical scenario for this case is if you have existing rule assets in a repository using the
default file-system configuration and would like to move to storing your existing data to a RDBMS.
In these cases you can use the drools-ant JackrabbitMigrationAntTask which can easily convert
all your repository data from one repository configuration to another repository configuration.
Example configuration for this ant task can be:

<proj ect default="m graterepo">
<path id="m gration.classpath">
<pat hel enent pat h="${cl asspath}" />
<fileset dir="/Users/tihom r/devel opnent/drool sjbpnijboss-4.2.3. GA server/
def aul t / depl oy/ dr ool s- guvnor. war/VWEB- | NF/ | i b" >
<i ncl ude name="**/*_jar"/>
</fileset>
<filelist refid="drools-ant" />
<filelist refid="db-driver-jars" />
</ pat h>

<filelist id="db-driver-jars" dir="/Users/tihom r/devel opment/drool sjbpn
jboss-4.2.3. GA/server/defaul t/lib">
<file name="nysql -connector-java-5.1.11-bin.jar" />
</filelist>

<filelist id="drools-ant" dir="1ib">
<file name="drool s-ant-${project.version}.jar" />
</filelist>

215

Chapter 16. Data management

<t askdef name="m grate" classnane="org.drools.contrib.JackrabbitM grationAnt Task"
cl asspat href ="m gration. cl asspath" />

<target name="mi graterepo">
<record name="migration-log.txt"/>
<m grate verbose="true"
sour cedi r="/Users/tihom r/devel opnent/drool sj bpm j boss-4. 2. 3. GA/ bi n/
repository/"
sour ceconfi g="/Users/tihom r/devel opment/ dr ool sj bpnt j boss-4. 2. 3. GA/ bi n/
reposi tory. xm "
targetdir="/Users/tihomr/deno-jrmgration/targetrepo/”
targetconfig="/Users/tihomr/deno-jrmgration/targetrepo/
repository.xm" />
</target>
</ proj ect >

In the above scenario JackrabbitMigrationAntTask is going to migrate all repository data
configured in repository. xm defined in the sourcedir attribute, to the repository configured
in repository. xm defined in the targetconfig attribute. Note that this data migration is a full
migration, which means it migrates the entire repository which also makes it a good tool to use for
backups as well. This blog post [http://blog.athico.com/2011/03/using-drools-ant-to-migrateback-
up.html] contains a video showing a full example on how to use the JackrabbitMigrationAntTask
for repository migration.

16.3. Adding your own logos or styles to Guvnor web
GUI

To achieve, this, you can "explode" the deployment WAR file, and locate the Guvnor. ht nl file,
which will look something like the following:

<IDOCTYPE HTM. PUBLIC "-//WBC//DTD HTML 4.01 Transitional//EN" "http://
www. W3. or g/ TR/ ht m 4/ | oose. dt d" >
<ht m >
<head>
<!-- Note you can append #asset=UU D to the end of the URL to preload a
gi ven asset.
Also, if you appent #asset=UU D&np; nochrome it will only show the asset
without all the GU "chrone"

To select a locale, specify &anp;locale=en US at the end of the URL to
pi ck the appropriate bundle.
Sy
<meta http-equi v="Cont ent-Type" content="text/htm ; charset=UTF-8">
<neta http-equi v="X-UA- Conpati bl e" content="I1E=Emul atel E7" />
<title>JBoss GQuvnor</title>

216

http://blog.athico.com/2011/03/using-drools-ant-to-migrateback-up.html
http://blog.athico.com/2011/03/using-drools-ant-to-migrateback-up.html
http://blog.athico.com/2011/03/using-drools-ant-to-migrateback-up.html

Import and Export

</ body>
</htm >

Note that the above Guvnor . ht ni file is fairly small (as most of the work is done by the GWT - the
GUI is built dynamically in the browser). The parts you can customize are the style sheet - you
can either edit the Guvnor. css (or better yet, take a copy, and change the style to be what you
need), the "shortcut icon" (its what shows in the address bar in the browser etc - also change the
"icon" link to be the same so it works in IE), and the header logo. The rest should be left as is, to
allow the GWT components to be loaded and attached to the page. This html page is loaded only
once by the browser when the user accesses Guvnor web GUI.

The best way to customize is to take a copy of the Guvnor . ht nl file and then edit. You can also
change the URL by editing the web.xml via the normal means.

16.4. Import and Export

A JCR standard export/import feature is available from the Admin part of the web interface.
This will export the entire repository to an XML format as defined by the JCR standard.
In the case of import, it will clear any existing content in the database.

This is not a substitute for backup but can be useful when migrating. It is important to note that
version history is not exported this way, only the current state. Hence it is still recommended that
a formal backup regime be used at all times on the repository database itself.

Note that when importing repositories with many thousands of items, extra memory will be required
when performing the import.

217

218

Chapter 17.

Chapter 17. Architecture

This section covers the technical aspects of Guvnor, it is not necessary to use this if you are
integrating or an end user of the application. However, Drools is open source, so build instructions
form part of the manual.

You may want to build from source if you want to re-use components, or embed the application
within another.

Browser

Application Server

BRMS application (drools-jbrms)
User applications

{may be seperate
drools-repository drools-compiler... | ApPp Servers)

JCR {jackrabhbit) drools-core

Data store (file system, or existing RDBMS)

Figure 17.1. Architectural diagram

The above diagram shows the major components of the system and how they integrate and
are deployed. The User Guide has more details on the parts that are highly configurable (e.g.
database).

219

Chapter 17. Architecture

Guvnor is deployed as a WAR, which provides user interfaces over the web, and provides binary
packages using URLSs (or files). It uses the JSR-170 standard for data storage (JCR). JBoss Seam
is used as the component framework, and GWT is used as the widget toolkit for constructing the
AJAX-based web user interface.

17.1. Building from source

This section will go over the steps necessary to build various components. Mostly this is
automated, but the manual process is described for thoroughness.

17.1.1. Modules

There are 2 modules: guvnor - reposi t ory (back end) and guvnor - webapp (front end and rules
integration). The guvnor - webapp module depends on the guvnor - r eposi t ory module, as well
as other components. Guvnor is part of the main build for all of Drools - when building Drools,
Guvnor is built alongside it.

17.1.2. Working with Maven 2

Maven 2 is used as the build system. To get started, the whole of the source tree for JBoss Rules
needs to be checked out. This includes the other modules, and the top level lib and repository
directories (which are needed by the build); as the Guvnor build is part of the main Drools build.

Initially, go into the root of the jboss-rules checked out source tree, and run nvn i nstal | to install
all the components for the inter-project dependencies. If the build is broken (all care is taken for
this eventuality not to occur), the flag - Dski pTest s can be used to prevent failing unit tests from
preventing the build.

When wishing to build Guvnor, go into the guvnor-webapp directory, and run nvn package. This
will run the tests, and then build a deployable WAR. Once the WAR file is in the target directory,
the Guvnor is ready to go.

17.1.3. Working with GWT

The GUI widgets for the web front end are developed with GWT (Google Web Toolkit).

17.1.4. Debugging, Editing and running with Eclipse

Each module has a ready to go and up to date eclipse project configuration, so they can merely
be imported into the eclipse workspace. These projects are generated by Maven. Use the nvn
ecl i pse: ecl i pse command to refresh them in case they are wrong or outdated. They have been
manually modified to have project dependencies which means that the code can be stepped
through when debugging.

Some environment variables are required in eclipse (for Window: >Pr ef er ences- >Java- >Bui | d
pat h- > Classpath variables): the M2_REPO, as normal, to point to where Maven downloads shared
dependencies. GM_HOVE should point to where you installed GWT. GAT_DEV must point to the
platform specific "dev" JAR that ships with the version of GWT you have.

220

Re-usable components

How to launch from Eclipse: unit tests can be launched, as normal (in which case only M2_REPO
setup is needed, GWT does not need to be downloaded separately), or it can be launched it in
hosted mode using the GWT browser, which is great for debugging (from GUI to back end, the
code can be stepped through, and changes made on the fly and simply hit refresh). There is a
Guvnor . | aunch file in in the guvnor - webapp directory. To launch Guvnor in debug mode, open
the Run dialog (Run->Run), and then choose Guvnor from the list. Launching this will open a
new window, with Guvnor in debug mode, ready to go.

Downloading and debugging Guvnor with GWT is optional, so if there are no GUI issues being
worked on then this step can be safely skipped.

17.2. Re-usable components

Guvnor uses a service interface to separate the GUI from the back end functionality. In this case
the back end both includes the asset repository (guvnor - reposi t ory and JCR) as well as the
compiler specifics to deal with rules.

The main interface is Reposi t or ySer vi ce, which is implemented in Servi cel npl enent at i on.
The GWT ajax front end talks to this interface using the asynchronous callback mechanism that
GWT uses. The Seam configuration file is beans. xnl . Refer to the Seam documentation, and the
beans. xni file for details.

This service interface may be re-used by alternative components or front ends.
The GWT user interface may be re-used, as it is GWT is only one html page: Guvnor. ht ni .

Normally Guvnor is intended to be deployed as its own WAR, however it can be combined with
another application (with some care), but it is easier to keep it as a separate WAR. We recommend
deploying Guvnor by itself because this will make it easier to upgrade to newer releases as they
come out.

The Guvnor. htm file can be customized. For example to change logos or embed Guvnor in
another page. Take a look at the Guvnor . ht nl file for details.

17.3. Versioning and Storage

Refer to Chapter 12, Database configuration for for configuration options for database and
filesystems.

Versions of assets are stored in the database along with the data.

When snapshots are created, copies are made of the entire package into a separate location in
the JCR database.

For those familiar with JCR and Apache Jackrabbit, the *. c¢nd files are in the source for the node
type definitions as some wish to view these. In a nutshell, a package is a folder and each asset
is a file: an asset can either be textual or have a binary attachment.

221

Chapter 17. Architecture

17.4. Contributing

As an open source project, contributions from the wider community are encouraged. In order to
contribute consult the wiki and project home pages. A useful way to contribute is via logging issues
or feature requests in JIRA. This is JIRA link to use. [https://jira.jboss.org/jira/browse/GUVNOR]

222

https://jira.jboss.org/jira/browse/GUVNOR
https://jira.jboss.org/jira/browse/GUVNOR

	Guvnor User Guide
	Table of Contents
	Chapter 1. Introduction
	1.1. What is a Business Rules Manager?
	1.1.1. When to use Guvnor
	1.1.1.1. When to not use Guvnor

	1.1.2. Who uses Guvnor

	1.2. Features outline

	Part I. User Guide
	Chapter 2. Quick Start Guide
	2.1. Quick start guide
	2.1.1. Supported browser platforms
	2.1.2. Initial configuration
	2.1.3. Writing a rule
	2.1.4. Finding stuff
	2.1.5. Deployment

	Chapter 3. Concepts
	3.1. Rules are assets
	3.2. Packages are assets
	3.3. Perspectives
	3.4. The business user perspective
	3.4.1. Creating a business user view

	Chapter 4. Authoring Assets
	4.1. Version management
	4.2. The Asset Editor
	4.3. Creating a package
	4.3.1. Empty package
	4.3.2. Importing DRL packages

	4.4. Spring Contexts
	4.5. Working Sets
	4.5.1. Activating and Using Working Sets
	4.5.1.1. Using Field Constraint

	4.6. Business rules with the guided editor
	4.6.1. Parts of the Guided Rule Editor
	4.6.2. The "WHEN" (left-hand side) of a Rule
	4.6.2.1. Adding Patterns
	4.6.2.2. Adding constraints

	4.6.3. The "THEN" (right-hand side) of a Rule
	4.6.4. Optional attributes
	4.6.4.1. Salience

	4.6.5. Pattern/Action toolbar
	4.6.6. User driven drop down lists
	4.6.7. Augmenting with DSL sentences
	4.6.8. A more complex example:

	4.7. DSL rules
	4.8. Technical rules (DRL)
	4.9. Spreadsheet decision tables
	4.10. Guided decision tables (web based)
	4.10.1. Types of decision table
	4.10.1.1. Extended Entry
	4.10.1.2. Limited Entry

	4.10.2. Main components\concepts
	4.10.2.1. Navigation
	4.10.2.2. Cell merging
	4.10.2.3. Cell grouping
	4.10.2.4. Operation of "otherwise"
	4.10.2.5. Re-arranging columns

	4.10.3. Defining a web based decision table
	4.10.3.1. Manual creation
	4.10.3.1.1. Column configuration
	4.10.3.1.1.1. Utility columns
	4.10.3.1.1.2. Adding columns
	4.10.3.1.1.3. Simple column types
	4.10.3.1.1.3.1. Metadata
	4.10.3.1.1.3.2. Attributes
	4.10.3.1.1.3.3. Simple Condition
	4.10.3.1.1.3.4. Set the value of a field
	4.10.3.1.1.3.5. Set the value of a field on a new fact
	4.10.3.1.1.3.6. Retract an existing fact

	4.10.3.1.1.4. Advanced column types
	4.10.3.1.1.4.1. Condition BRL fragments
	4.10.3.1.1.4.2. Execute a Work Item
	4.10.3.1.1.4.3. Set the value of a field with a Work Item parameter
	4.10.3.1.1.4.4. Set the value of a field on a new Fact with a Work Item parameter
	4.10.3.1.1.4.5. Action BRL fragment

	4.10.3.2. Using a Wizard
	4.10.3.2.1. Selecting the wizard
	4.10.3.2.2. Summary page
	4.10.3.2.3. Add Fact Patterns page
	4.10.3.2.4. Add Constraints page
	4.10.3.2.5. Add Actions to update facts page
	4.10.3.2.6. Add Actions to insert facts page
	4.10.3.2.7. Columns to expand page

	4.10.4. Rule definition
	4.10.5. Audit Log

	4.11. Templates of assets/rules
	4.11.1. Creating a rule template
	4.11.2. Define the template
	4.11.3. Defining the template data
	4.11.3.1. Cell merging
	4.11.3.2. Cell grouping

	4.11.4. Generated DRL

	4.12. The Fact Model
	4.12.1. Ways to define a Fact Model
	4.12.2. Creating a JAR Model
	4.12.2.1. Create a JAR Model asset
	4.12.2.2. Upload a JAR Model into the asset

	4.12.3. Declarative model
	4.12.3.1. Creating a Declarative Model
	4.12.3.1.1. Create a Declarative Model asset
	4.12.3.1.2. Defining the model
	4.12.3.1.3. Extending the model
	4.12.3.1.3.1. Extending a Java class
	4.12.3.1.3.2. Extending existing declared types

	4.12.3.1.4. Consuming a declarative model from Java

	4.13. Functions
	4.14. DSL editor
	4.15. Rule flows
	4.16. BPMN2 Process
	4.17. Work Item Definition
	4.18. Data enumerations (drop down list configurations)
	4.18.1. Advanced enumeration concepts

	4.19. Test Scenario
	4.19.1. Given Section
	4.19.2. Expect Section
	4.19.3. Global Section
	4.19.4. New Input Section
	4.19.5. Audit Log

	4.20. File
	4.21. Change-Set
	4.21.1. Change-Set Editor UI
	4.21.2. Adding Packages using a Wizard
	4.21.3. Adding Assets using a Wizard

	4.22. Services
	4.22.1. Configuring Multiple Knowledge Bases
	4.22.2. Knowledge Base Configuration Panel
	4.22.2.1. Adding Assets using Wizard
	4.22.2.2. Advanced Knowledge Base Configuration Options
	4.22.2.3. Assets Tree
	4.22.2.4. Configuring Knowledge Sessions
	4.22.2.4.1. Knowledge Session Configuration Options

	4.22.3. Downloading War & Managing Dependencies
	4.22.3.1. Dependency Management

	4.23. **INCUBATOR FEATURE** New Rule Asset - Scorecards
	4.23.1. (a) Setup Parameters
	4.23.2. (b) Characteristics
	4.23.2.1. Creating Characterstics
	4.23.2.2. Creating Attributes

	Chapter 5. Managing Assets
	5.1. Navigating and finding rules
	5.1.1. Package explorer
	5.1.1.1. Asset Viewer
	5.1.1.2. Package configuration

	5.1.2. Category view
	5.1.3. Inbox and comments
	5.1.3.1. Inbox
	5.1.3.2. Comments

	5.2. Feed

	Chapter 6. Quality Assurance
	6.1. Test scenarios
	6.2. Package analysis
	6.2.1. Items that the analyser is searching for

	Chapter 7. Packaging
	7.1. Packaging
	7.2. Imports and Globals
	7.2.1. Basic View
	7.2.2. Advanced View

	7.3. Category rules
	7.4. Building
	7.5. Selectors
	7.5.1. Built-in Selector
	7.5.2. Custom Selector

	7.6. Snapshots
	7.7. Advanced configuration

	Chapter 8. Administrative Functions
	8.1. Categories
	8.2. Status management
	8.3. Archived items
	8.4. Event Log
	8.5. User permissions
	8.6. Import and Export
	8.7. Repository Configuration

	Part II. Developer Guide
	Chapter 9. Integrating rules with your applications
	9.1. The Knowledge Agent
	9.2. REST API
	9.2.1. REST
	9.2.2. Guvnor REST API
	9.2.2.1. Accessing Rules by Package
	9.2.2.2. Accessing Rules by Category

	9.2.3. Source code Example
	9.2.3.1. Retrieving and updating Web decision table
	9.2.3.2. Retriving package list, package metadata, package source and binary, package version info etc using Atom
	9.2.3.2.1. Retrieving all packages contained in the Guvnor repository in Atom Feed format
	9.2.3.2.2. Retrieving the metadata of the specified package as an Atom Entry
	9.2.3.2.3. Retrieving the source code of the specified package as plain text
	9.2.3.2.4. Retrieving the compiled binary of the specified package as binary stream
	9.2.3.2.5. Retrieving package versions as an Atom Feed
	9.2.3.2.6. Retrieving package metadata with specified version as an Atom Entry

	9.3. WebDAV and HTTP
	9.3.1. WebDAV
	9.3.2. URLs

	9.4. Eclipse Guvnor integration
	9.4.1. Source Code and Plug-in Details
	9.4.2. Functionality Overview
	9.4.3. Guvnor Connection Wizard
	9.4.4. Guvnor Repository Explorer
	9.4.5. Local Copies of Guvnor Files
	9.4.6. Actions for Local Guvnor Resources
	9.4.7. Importing Guvnor Repository Resources
	9.4.8. Guvnor plugin Preferences

	Chapter 10. Embedding Guvnor In Your Application
	10.1. Getting Started
	10.2. Embedded Editor Entry-Point: StandaloneEditorServlet
	10.3. Edition Modes
	10.3.1. BRL Edition Mode
	10.3.2. Edition of Existing Assets Mode
	10.3.3. New Asset Mode

	10.4. Extra HTTP parameters
	10.4.1. Rule’s Sections Visibility Parameters
	10.4.2. Constraining Fact Types
	10.4.3. Use existing Working-Sets

	10.5. Interacting with the Editor

	Part III. Administration Guide
	Chapter 11. Installation
	11.1. Installation step by step
	11.2. Supported and recommended platforms

	Chapter 12. Database configuration
	12.1. Changing the location of the data store
	12.2. Configuring Guvnor to use an external RDBMS
	12.3. Searching and indexing, Version storage

	Chapter 13. Switch from JackRabbit to ModeShape
	Chapter 14. Security - Authentication and basic access
	14.1. Using your containers security and LDAP

	Chapter 15. Fine grained permissions and security
	15.1. Enabling fine grained authorization

	Chapter 16. Data management
	16.1. Backups
	16.2. Repository Data Migration
	16.3. Adding your own logos or styles to Guvnor web GUI
	16.4. Import and Export

	Chapter 17. Architecture
	17.1. Building from source
	17.1.1. Modules
	17.1.2. Working with Maven 2
	17.1.3. Working with GWT
	17.1.4. Debugging, Editing and running with Eclipse

	17.2. Re-usable components
	17.3. Versioning and Storage
	17.4. Contributing

