OptaPlanner User Guide

Version 6.1.0.Betad

by The OptaPlanner team [http://www.optaplanner.org/community/team.html]

http://www.optaplanner.org/community/team.html
http://www.optaplanner.org/community/team.html

1. Planner iNTrOQUCTIONiiiiiii e e e e et e e e et e e e e et e e e e et s e e e eate s aeeeees 1
1.1. What iS OPtaPIaNNEr?uuiiiiii et eaees 1
1.2. What is a planning problem? ... 3

1.2.1. A planning problem is NP-completeccooiviiiiiiiiiiii e, 3
1.2.2. A planning problem has (hard and soft) constraintsccc.ccoeveviieeinnnnns 3
1.2.3. A planning problem has a huge search spaceccccoooeiiiiiiiiiiinecin, 4
1.3. Download and run the eXamplescccoiiiiiii i 4
1.3.1. Get the release zip and run the examplescccooveiiiiiiiiin e, 4
1.3.2. Run the examples in an IDE (IntelliJ, Eclipse, NetBeans)ccccecevvneene 6
1.3.3. Use OptaPlanner with Maven, Gradle, Ivy, Buildr or ANTccooiiniiiiinnnnen. 7
1.3.4. Build OptaPlanner from SOUICEcc.oviiiiiiiiiii e e e e e 8
1.4. Status Of OPLaAPIANNET ..o 9
1.5, ComPAtiDIlity ..oovnieiie e 10
1.6. Relationship with Drools and JBPMooiiiiiiiiiiiiiii e 10
1.7. Questions, issues and blog ..o 11

A © 11 | o]] = 1 S P 13

2.1. Cloud balancing tUtorialcccouiiiiiiii e e 13
2.1.1. Problem State@mMeNntiiiiiiiiiei e 13
2.1.2. ProDIBIM SIZE ..vuiiiiiiii i e 14
2.1.3. Domain model diagramc.uuiiiiiiiiiie e 15
2.1.4. Main MELNOAcoiiiiieie e 16
2.1.5. Solver configuIationccouuuiiiiiiiiiei e 17
2.1.6. Domain model implementationccccoiiiiiiiiin 19
2.1.7. Score configurationooocieuiiiiiiii e 22
2.1.8. Beyond this tutorialcc.iiiiiiiiii i 26

3. Use cases and eXamples i 27
3.1, EXGMPIES OVEIVIEWiviiiiiiiciie et e e e e e e e e e e e e e e e e et e e et e e et e e e e eeaes 27
3.2. BASIC EXAMPIES ..ot 30

32,1, N QUEBEBINS ettt et 30
3.2.2. Cloud DaAANCING ...ceeiiiiiiii e 34
3.2.3. Traveling salesman (TSP - Traveling salesman problem) 34
3.2.4. DINNET PAILY .eeetieeeeie ettt et e e e et e e r e eeeaa e 35
3.2.5. Tennis club SChedulingccoiiiiiiiii e 35

3.3, REAI BXAMPIES ..ot 36
3.3.1. Course timetabling (ITC 2007 track 3 - Curriculum course scheduling) 36
3.3.2. Machine reassignment (Google ROADEF 2012)cccccovviiiiiiiiiiiiineeeens 38
3.3.3. VENICIE FOULING ..vuiiiiicii e e e eae e 41
3.3.4. Project job SChedulingoviiiiiiiiiiii e 46
3.3.5. Hospital bed planning (PAS - Patient admission scheduling) 49

3.4. DIffiCUlt @XAMPIESoei i e 51
3.4.1. Exam timetabling (ITC 2007 track 1 - Examination)ccc.cccovvevuneeinnnnns 51
3.4.2. Employee rostering (INRC 2010 - Nurse rostering)ccoceeevvevverinneeennnnns 54
3.4.3. Traveling tournament problem (TTP)ooiiiiiiiiii e, 59

OptaPlanner User Guide

4. Planner CONfIQUIAtIONcoouuiiiii e 63
I @ Y= TP 63
4.2, SoIver CONfIQUIALIONcouuiiiiiii e e e e eenes 64

4.2.1. Solver configuration by XML filecccoiiiiiiiii e 64
4.2.2. Solver configuration by Java AP ... 65
4.3. Model your planning problem ..o 65
4.3.1. Is this class a problem fact or planning entity?cccoooeviiiiiiiiiiinneennne. 65
4.3.2. Problem factoooiiiiiiiiii e 67
4.3.3. Planning €NtiLYccouuuiiiiiiieei e 68
4.3.4. Planning variablecooiiiiiii i 71
4.3.5. Planning value and planning value rangescc.ccoeeveviiiiiiiiinieeiiiieeeeennnn, 73
4.3.6. Planning problem and planning solutionccccooiiiiiiiiin i, 85
T U 7= R 1 1= IS Yo YT 92
4.4.1. The SOIVEr INEITACEuiiiiiii i 92
4.4.2. SOIVING @ ProbIEM ... 93
4.4.3. Environment mode: Are there bugs in my code?ccooeeviviiiiiiineinee, 94
4.4.4. Logging level: What is the Solver doing?cooveiiiiiiiiiiiiiineecie, 96
4.4.5. Random NUMDEr gENEIALONieiiiieiiii e e e e e e e e e e e aens 98

LIRS oTo] I oF= | [U | =1 4 o] o K PP 101

5.1. SCOre tEIMINOIOQY ..vvvniiiiieii e e e e e e e e e e e e e et e e e e eaes 101
LR I T VY o P A o= U o o = P 101
5.1.2. Score constraint signum (positive or Negative)ccoceeveviieeiiiieeinennnn. 101
5.1.3. Score constraint Weightcooouiiiiiiiii e 103
B.10A. SCOME LBVEL .. 103
5.1.5. Pareto scoring (AKA multi-objective optimization scoring)cccccoeeeen. 105
5.1.6. Combining SCOre teChNIQUESovviinieiiieeiie e e 107
5.1.7. The SCOre iNterfaCecocoeuiiiiiiiiiiei e e 107
5.1.8. Avoid floating point numbers in score calculationcccooceiveiieeennnn. 108

5.2. Choose a Score definitionooouiiiiiiiiiii e 110
L S 1]][o o = P 110
5.2.2. HardSoftScore (recommended)coouviiiiiiiiiiieiiiee e 110
5.2.3. HardMediumSOftSCOIeoooiiiiiiieiiii e 111
5.2.4. BENAADIESCOIEceeiiiiiiei e 111
5.2.5. Implementing a CUStOM SCOMEiiviiiiiiiiieii e 111

5.3. Calculate the SCOIEuiiieiiii e e e e e ees 112
5.3.1. Score calculation tYPESoviiiiiiiiiciii e 112
5.3.2. Easy Java score CalCulationooovuuiiiiiiiiiiieii e 112
5.3.3. Incremental Java score calculationcooovvviiiieiiiiiiieniiinec e 114
5.3.4. Drools score calCulationooiveiiiiiiiiiiiii e 118
5.3.5. INitializingSCOreTrendc.ieiiiiiiii e 123
5.3.6. Invalid SCOre deteCtioncceuiiiiiiiiiiie e 124

5.4. Score calculation performance trickscooceuiiiiiiiiiii e 124
L T @Y= Y1 P 124
5.4.2. Average calculation count per SECONcoevvvieiiiiiiiiiieiiieeeiee e eais 124

5.4.3. Incremental score calculation (with delta’'s)cccooeveiiiiiiiiin, 125

5.4.4. Avoid calling remote services during score calculationccc.ceuvveiee. 126
5.4.5. POINtIeSS CONSLIAINTSiieiiiiiieiiiie e e e e e e 126
5.4.6. Build-in hard CONSLrAINtcooiuiiiiiiiiiie e e 127
5.4.7. Other performance trickScoiiiiiiiiii e 127
D.4.8. SCOIME TP eviriitiit it e 127
5.4.9. stepLimit benchmark ... 129
5.4.10. Fairness SCOre CONSIIAINTSccvvvuieiiiiiiieeiiii e e et e et e e e eei e e e eain e eenes 129

5.5. Reusing the score calculation outside the SoIVercccovvviiiiiiiiiiiie e, 130
6. Optimization algorithms ... e 133
6.1. Search space size in the real Worldoooiiiiiiii e 133
6.2. Does Planner find the optimal solution?cocoiiiiiiiiiii e, 135
6.3. ArChiItECUIE OVEIVIEWiceiiiiiiii ettt e e e e e e e e aes 135
6.4. Optimization algorithms OVEIVIEWcouiiiiiiiiiii e e e 136
6.5. Which optimization algorithms should | USE?coooiiiiiiiiiiii e, 137
B.6. SOIVEI PRASE ... 138
B.7. SCOPE OVEIVIEW ...oitiiiiiiii ettt ettt e ettt e ettt e et e atr e e e eab e e e eeatnaeeeens 140
LS T =T 0011 =1 1o o ISP 140
6.8.1. TimeMillisSpentTerminationcccoveiieiiiieiiii e 141
6.8.2. UnimprovedTimeMillisSpentTerminationc.cccovveiiineiiiieiiiieeniieeeinns 142
6.8.3. BeStSCOreTerminationooouuiiiiiieiiieii e e e e e e eees 143
6.8.4. BestScoreFeasibleTerminationcooveiiiiiiiiiiiiii e 143
6.8.5. StepCountTerMiNAtioNc.uuiiiiiiiiii i 144
6.8.6. UnimprovedStepCountTerminationcoovvvuiieiiiieiiii e e e 144
6.8.7. Combining multiple Terminationsocovuiiiiiiiiiiiee e 144
6.8.8. Asynchronous termination from another threadcccocooviiiiniinne, 145

6.9. SOIVEIEVENTLISIENETuiiiiieii et e e e e e e e e e e eeen 145
6.10. CUSIOM SOIVET PRASE .. ccvviiiiii i e e e e e e e e eees 146
7. Move and neighborhood Selectionccoooiiiiiiiii e 149
7.1. Move and neighborhood introductioncccccoiiiiiiicii e, 149
7.1.1. What iS @ MOVE? ..eeiiiii ettt e e e e e 149
7.1.2. What is @ MOVESEIECIOI? ..covvviiiiiiiiie ettt e 150
7.1.3. Subselecting of entities, values and other movescccooviiiiiiieinns 150

7.2. GENEIIC MOVESEIECLONSuiiiiiiiiiiiii e e e e e aees 152
7.2.1. chanQgeMOVESEIECIONcuuuiiiiiiii e 152
7.2.2. SWAPMOVESEIECION .. vveiiiiiiii e e e e 154
7.2.3. pillarChangeMOoVESEIECIONooeiiiiiiieiiii e 155
7.2.4. pillarSWapMOVESEIECIOLcviiiciii e 157
7.2.5. subChainChangeMOoVEeSEIECIOrocivuuiiieiiiiii e 159
7.2.6. sUbChainSWapMOoVESEIECIOrcocvniiiiiei e 160

7.3. Combining multiple MOVESEIECIOrSuuiiiiiiiieeii e 161
7.3.1. UNIONMOVESEIECIONuviiiiiiiiiiei it eenes 161
7.3.2. cartesianProductMOVESEIECIOrvvvviiiiiieiii e 163

A 0111745 1] (=Tt o T P 164

OptaPlanner User Guide

A T 2= LU 1= 7= [Tor (o] PN 164
7.6. General Selector fEAtUMESui i 165
7.6.1. CacheType: Create moves ahead of time or Just In Time 165
7.6.2. SelectionOrder: original, sorted, random, shuffled or probabilistic 166
7.6.3. Recommended combinations of CacheType and SelectionOrder 167
7.6.4. Filtered SEIECHONcc.uuiiiiiii e 170
7.6.5. SOrted SEIECHIONuiii e 172
7.6.6. Probabilistic SEIECONovviiiii i 175
7.6.7. Limited SEIECHIONuiiieii e 177
7.6.8. Mimic selection (record/replay)ccooeeiiiiiiii i 177

T. 7. CUSTOM IMOVES ..oiitiiiiiteet et ettt e e et e e et e et e et e et e et e e an et e e et e eaeenaees 178
7.7.1. Which move types might be missing in my implementation? 178
7.7.2. Custom mMoves INtrOdUCHIONocuuiiiiieiiie e e e 178
7.7.3. The interface MOVEiiiiiiiiiiiiii e e e 178
7.7.4. MovelListFactory: the easy way to generate custom moves 182
7.7.5. MovelteratorFactory: generate custom moves justin time 183

8. CONSIIUCHION NEBUIISTICS 1uuiiiiiiiiiiee e e e e e e e e e e e eees 185
S I @ 1= T PSP 185
S €= | PR 185
8.2.1. Algorithm desCriptionccuuiiiiiiiii e 185
8.2.2. CONFIQUIALION ..eevuiiiiiii et 186

8.3. First Fit DECIEASING ..vuuiiiiniiiii et e et e e e e e e e e e e e et e e et e e ean e eaes 186
8.3.1. Algorithm desCriPioNccoiiuiiiiiiii e 186
8.3.2. CONfIQUIAtIONciiii i e e e e e 187

S = T Al | PP 188
8.4.1. Algorithm desCriptionccuuiiiiiiiii e 188
8.4.2. CONFIQUIALION ..eeviiiiiiii et 188

8.5. BESt Fit DECIEASING ..evuieiiiniiii e et e et e e e e e e e e e e e et e e et e e et e e e e eanaees 189
8.5.1. Algorithm desCriptioNccoieuiiiiiiiiie e 189
IR ©de] 1110 [V - 1o o [NE N 189

8.6. Advanced Greedy Fit ... 189
8.6.1. Algorithm desCriptionviiiiiiiii e 189
8.6.2. CONFIGUIALION ..oevuniiiiii et 189
8.6.3. MUltiple variablescccoiiiiii e 190
8.6.4. Multiple entity ClaSSESuiiiiiiiiiie e 192
8.6.5. PICK BarlY YD oovniiiiiiii e 193

8.7. Cheapest INSEITIONc..uuiiiiii et e aeaeans 193
8.7.1. Algorithm desCriptionccuuiiiiiiiii e 193
8.7.2. CONFIGUIALION ..eeviiiiiiiiii et 194

RS T = LYo | (= [Y= 1 o] o T 194
8.8.1. Algorithm desCriptioNcooeuiiiiiiiii e 194
8.8.2. CONfIQUIAtIONciiii i e e et e e e e e e 194

8.9. Advanced Constructive INSErtioNcc.uiiiiiiiiiiiiii e 194
8.9.1. Algorithm desCriptioncuuiiiiiiiii e 194

Vi

8.9.2. CONFIGUIALION ..oevuiiiiiii et 194

9. LOCAI SEAICR ... 195
LS TR O 1YY 4T P 195
9.2. Local SEarch CONCEPLSciiviiiii e e 195
9.2.1. TAKING SIEPS oetiiiiiiiiiet ettt et 195
9.2.2. Deciding the NEXE SEP ...cvviiiiii e 198
9.2.3. ACCEPION .ottt 200
LS B o] =T] PP 200
9.3. Hill Climbing (Simple Local SEarch)cccoiiiiiiiiiiiiiii e 201
9.3.1. Algorithm desCriptionouiiiiiiiii e 201
9.3.2. Getting stuck in local Optimaccoevviiiiiiiiiii e 202
LS IRC RS T @40 10 11 - 1o o U 203
S I I Lo U == 1 o o P 204
9.4.1. Algorithm desCriptionccuuiiiiiiiiii e 204
9.4.2. CONFIQUIALION .eetiiiiiiiii ettt eaanns 204
9.5. Simulated ANNEAIINGuiiiii i 207
9.5.1. AIgorithm desCriptioNcoieuiiiiiii e 207
LS IR ©4e] 10 [0 - 1o o [NE N 207
O.6. LAte ACCEPLANCEietiiieiieii ettt ettt et e 208
9.6.1. Algorithm desCriptionccuuiiiiiiiiiii e 208
9.6.2. CONFIGUIALION ..eevuiiiiii et 209
9.7. Step Counting Hill Climbingcooiiiiii e 210
9.7.1. Algorithm desCriPLiONooiiiiiiiiii e 210
9.7.2. CONfIQUIALIONuiii e e et e e e e e e e e e ee 210

9.8. Using a custom Termination, MoveSelector, EntitySelector, ValueSelector or
Yoo o (o | PRSP 211
10. Evolutionary algoritms ... 213
L0, 1. OVEIVIEW ...ttt ettt e e et e bbb e e e e e e e e e e e b e n e e e e e e e rnrana s 213
10.2. EVOIULIONArY SIrat@QIESccevuuiiiiiiiieieiii ettt eeeans 213
10.3. Genetic AlGONtNMS ... 213
11, HYPEINEUIISTICS ittt ettt e et e e e e eeees 215
L1.1. OVEIVIEW ...ttt ettt e e e et et e e e e et e e e se b e r e e e e e e e rnnane s 215
12, EXhAUSEIVE SEAICH ..o 217
12,1, OVEIVIEW ...ttt ettt et et et e e e e et e et e e b e r e e e e e e e e s nana s 217
12.2. BIrUEE FOICE ittt ettt et e et e e ees 217
12.2.1. Algorithm deSCriPtioncccuuiiiiiiiiii e e 217
12.2.2. CONFIQUIALIONceiiiieeii et 218
12.3. Branch And BOUNGcoooiiiiiiiiiiie e 218
12.3.1. AlGOrithm deSCrPLIONcceeviiieiiii e 218
12.3.2. CoNfIQUIALIONovuiiiicce e e 219
12.4. Scalability of Exhaustive Searchcccoiviiiiiiiiiiii e 221
13. Benchmarking and tWeakingcccouiiiiiiiiiii e 225
13.1. Finding the best Solver configurationcoocoiiiieiiiiinier e 225
13.2. DOING @ BENCHMAIK ...coviiiii e 226

Vii

OptaPlanner User Guide

13.2.1. Adding a dependency on optaplanner-benchmarkccoooeivin. 226
13.2.2. Building and running a PlannerBenchmarkcccoooiiiiiiiniiinies 226
13.2.3. ProblemlO: input and output of Solution filescccoooiiiiiiiiii, 229
13.2.4. Warming up the HotSpot compilercccoiviiiiiiiiii e, 230
13.2.5. Writing the output solution of the benchmark runscc..ooooii 231
13.3. BENChMAIK rEPOIt ... e e 231
13.3.1. HTIML FEPOIT ettt ettt e e e e 231
13.3.2. RanKiNg the SOIVEISoiiiiiii e 232
13.4. SUMMANY STALISTICS ..vuuiiiiiiiei it 233
13.4.1. Best score summary (graph and table)cccoooiiiiiiiiiiinii 233
13.4.2. Best score scalability summary (graph)cccoovviiiiiiiii, 234
13.4.3. Winning score difference summary (graph and table)ccccoeeuniii. 234
13.4.4. Worst score difference percentage (ROI) summary (graph and table) 234
13.4.5. Average calculation count summary (graph and table) 234
13.4.6. Time spent summary (graph and table)ccoooiiiiiiiiiiii 234
13.4.7. Time spent scalability summary (graph)cc.ccooveiiiiiiiiiiinieeeeen, 234
13.4.8. Best score per time spent summary (graph)cccoooeeiiiiniiiiiineien. 235
13.5. Statistic per dataset (graph and CSV)cooiiiiiiiii i 235
13.5.1. Enabling a problem StatiSticccoeuviiiiiiiiiiii e 235
13.5.2. Best score over time statistic (graph and CSV)occcovviiiiiiiievieeeennn. 235
13.5.3. Step score over time statistic (graph and CSV)cccovviiiiiniiiiiiinnenennn. 237
13.5.4. Calculate count per second statistic (graph and CSV)cccevevvnne. 238
13.5.5. Best solution mutation over time statistic (graph and CSV) 239
13.5.6. Move count per step statistic (graph and CSV)ccooeviiiiiiiiiiiiieiinnenn, 240
13.5.7. Memory use statistic (graph and CSV)ccoooviiiiiniiiiiiiniee 241
13.6. Advanced benchmarkingcc.oiiiiiiiiii e 242
13.6.1. Benchmarking performance tricksccoooieiiiiiiiiiiniiiiec e 242
13.6.2. Template based benchmarking and matrix benchmarking 244
13.6.3. Benchmark report aggregationcoveveeiiiieeiiiinieeeii e 245

14. Repeated Planning ..o 247
14.1. Introduction to repeated Planningcoouiiiiiiiiiii 247
14.2. Backup Planningcooe i 247
14.3. Continuous planning (windowed planning)cooveieiiiiiiiiine e 247
14.3.1. Immovable planning entitiescc.oviiiiiiiiiiiii e 248
14.4. Real-time planning (event based planning)cccooiviiiiiiiiii e 249
14.4.1. ProblemFactChangecooiiiiiiiiii e 250
14.4.2. Daemon: solve() does NOL retUMvviiiiiiieiiii e 253

ST [0 =T = Lo o 255
ST I @ Y= V1= PR 255
ST T S) (=T) (oI = Lo [T 256
15.2.1. Database: JPA and Hibernateccoviiiiiiiiiiiii e 256
15.2.2. XIML: XSITEAM .vtuiiiiiii i ee et e et e et e e e e ettt e e e et s e e e et s e e eenenaeeaees 256
15.2.3. XML JAXB ..ottt ettt 256
15.3. SOA AN ESB ...oviiiiiiiiiiieii e 256

viii

15.3.1. Camel and KaArafc.oouieiiiiiii e
15.4. Other ENVIFONMENESouiitiieiii it e e e e e e e e e e e aaeeneenaenas
15.4.1. OSGi

15.4.2. Android

15.5. Integration with human planners (politics)

OptaPlanner@

Xii

Chapter 1.

Chapter 1. Planner introduction

1.1. What is OptaPlanner?

OptaPlanner [http://www.optaplanner.org] is a lightweight, embeddable planning engine
that optimizes planning problems. It solves use cases, such as:

« Employee shift rostering: timetabling nurses, repairmen, ...

« Agenda scheduling: scheduling meetings, appointments, maintenance jobs,
advertisements, ...

« Educational timetabling: scheduling lessons, courses, exams, conference presentations, ...
« Vehicle routing: planning vehicles (trucks, trains, boats, airplanes, ...) with freight and/or people

» Bin packing: filling containers, trucks, ships and storage warehouses, but also cloud computers
nodes, ...

« Job shop scheduling: planning car assembly lines, machine queue planning, workforce task
planning, ...

» Cutting stock: minimizing waste while cutting paper, steel, carpet, ...
» Sport scheduling: planning football leagues, baseball leagues, ...

» Financial optimization: investment portfolio optimization, risk spreading, ...

http://www.optaplanner.org
http://www.optaplanner.org

Chapter 1. Planner introduction

Job shop scheduling

January
1 2 a 4 G 3} T
| | | | | | . -
Vehicle routing b 1 Equipment scheduling
November
Job 2 TR TR
Job 3
Job 4
Less makespan
Ao,
OptaPl e
! Do more business
. | with less resources ﬁa‘a)
m | % Employee rostering
&° Sat Sun Mon
X .
9.79,_&’?0 \?"DQQ IT 1I-1 2I2 Ili 1|-t 2I2 ilj 1;1 2|2
Cag; o
Bin packing s Employee 1 ree
. CPU RAM Employee 2 @ Free
)
' g (2] (1) Employee 3 [@ Free ree
" F
by - 4 J(3 - Employee 4 | Free @ @

Employee 5 | Free @ @

Every organization faces planning problems: provide products or services with a limited set
of constrained resources (employees, assets, time and money). OptaPlanner optimizes such
planning to do more business with less resources. This is known as Constraint Satisfaction
Programming (which is part of the discipline Operations Research).

OptaPlanner helps normal Java™ programmers solve constraint satisfaction problems efficiently.
Under the hood, it combines optimization heuristics and metaheuristics with very efficient score
calculation.

OptaPlanner is open source software, released under the Apache Software License 2.0 [http://
www.apache.org/licenses/LICENSE-2.0.html]. This license is very liberal and allows reuse for
commercial purposes. Read the layman's explanation [http://www.apache.org/foundation/licence-
FAQ.html#WhatDoesItMEAN]. OptaPlanner is 100% pure JavaTM, runs on any JVM [compatibility]
and is available in the Maven Central Repository too.

http://www.apache.org/licenses/LICENSE-2.0.html
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.apache.org/foundation/licence-FAQ.html#WhatDoesItMEAN
http://www.apache.org/foundation/licence-FAQ.html#WhatDoesItMEAN
http://www.apache.org/foundation/licence-FAQ.html#WhatDoesItMEAN
compatibility
compatibility

What is a planning problem?

1.2. What is a planning problem?

1.2.1. A planning problem is NP-complete

All the use cases above are probably NP-complete [http://en.wikipedia.org/wiki/NP-complete]. In
layman's terms, this means:

« It's easy to verify a given solution to a problem in reasonable time.

 There is no silver bullet to find the optimal solution of a problem in reasonable time (*).

such a silver bullet

actually exists or not

The implication of this is pretty dire: solving your problem is probably harder than you anticipated,
because the 2 common techniques won't suffice:

A brute force algorithm (even a smarter variant) will take too long.

+ A quick algorithm, for example in bin packing, putting in the largest items first, will return a
solution that is usually far from optimal.

By using advanced optimization algorithms, Planner does find a good solution in reasonable
time for such planning problems.

1.2.2. A planning problem has (hard and soft) constraints

Usually, a planning problem has at least 2 levels of constraints:

» A (negative) hard constraint must not be broken. For example: 1 teacher can not teach 2 different
lessons at the same time.

« A (negative) soft constraint should not be broken if it can be avoided. For example: Teacher A
does not like to teach on Friday afternoon.

Some problems have positive constraints too:

http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/P_%3D_NP_problem
http://en.wikipedia.org/wiki/P_%3D_NP_problem
http://en.wikipedia.org/wiki/P_%3D_NP_problem

Chapter 1. Planner introduction

A positive soft constraint (or reward) should be fulfilled if possible. For example: Teacher B likes
to teach on Monday morning.

Some basic problems (such as N Queens) only have hard constraints. Some problems have 3 or
more levels of constraints, for example hard, medium and soft constraints.

These constraints define the score calculation (AKA fitness function) of a planning problem. Each
solution of a planning problem can be graded with a score. With Planner, score constraints are
written in an Object Orientated language, such as Java code or Drools rules. Such code is
easy, flexible and scalable.

1.2.3. A planning problem has a huge search space

A planning problem has a number of solutions. There are several categories of solutions:

« A possible solution is any solution, whether or not it breaks any number of constraints. Planning
problems tend to have an incredibly large number of possible solutions. Many of those solutions
are worthless.

» Afeasible solution is a solution that does not break any (negative) hard constraints. The number
of feasible solutions tends to be relative to the number of possible solutions. Sometimes there
are no feasible solutions. Every feasible solution is a possible solution.

« An optimal solution is a solution with the highest score. Planning problems tend to have 1 or a
few optimal solutions. There is always at least 1 optimal solution, even in the case that there
are no feasible solutions and the optimal solution isn't feasible.

» The best solution found is the solution with the highest score found by an implementation in a
given amount of time. The best solution found is likely to be feasible and, given enough time,
it's an optimal solution.

Counterintuitively, the number of possible solutions is huge (if calculated correctly), even with a
small dataset. As you can see in the examples, most instances have a lot more possible solutions
than the minimal number of atoms in the known universe (10780). Because there is no silver bullet
to find the optimal solution, any implementation is forced to evaluate at least a subset of all those
possible solutions.

OptaPlanner supports several optimization algorithms to efficiently wade through that incredibly
large number of possible solutions. Depending on the use case, some optimization algorithms
perform better than others, but it's impossible to tell in advance. With Planner, it is easy to switch
the optimization algorithm, by changing the solver configuration in a few lines of XML or code.

1.3. Download and run the examples

1.3.1. Get the release zip and run the examples

To try it now:

Get the release zip and run the examples

« Download a release zip of OptaPlanner from the OptaPlanner website [http:/
www.optaplanner.org].

e Unzipit.
» Open the directory exanpl es and run the script.
Linux or Mac:

$ cd exanpl es
$./runExanpl es. sh

Windows:

$ cd exanpl es
$ runExanpl es. bat

Distribution zip

Running the examples locally

@ Surf to www.optaplanner.org @ Open the directory examples
and double click on runExamples

v optaplanner-distribution-*
@ o[LN A4 Download OptaPlanner » [l binaries
v examples

> binaries

> data

2 sources

‘ = runExamples.bat]

@ Unzip [l optaplanner-distribution-*.zip

qu

|| runExamples.sh

> | javadocs

> reference_manual
[2 sources

» [l webexamples

|=| ReadMeOptaPlanner.txt

|=| UpgradeFromPreviousVersionRecipe.txt

The Examples GUI application will open. Just pick an example:

http://www.optaplanner.org
http://www.optaplanner.org
http://www.optaplanner.org

Chapter 1. Planner introduction

Which example do you want to see?

Basic examples Real examples Difficult examples

—
|

@ N queens Course timetabling | %I' Exam timetabling
| S—

e) B &
o ¢ Cloud balancing ' Machine reassignment Employee rostering

m Traveling salesman

Vehicle routing Traveling tournament

i g g

Manners 2009 Project job scheduling

|1 |||

Tennis club scheduling Hospital bed planning

Description

Place gueens on a chessboard,

Mo 2 queens must be able to attack each other.

| »

1]

@ Note
OptaPlanner itself has no GUI dependencies. It runs just as well on a server or a
mobile JVM as it does on the desktop.

1.3.2. Run the examples in an IDE (IntelliJ, Eclipse, NetBeans)

To run the examples in your favorite IDE:

1. Configure your IDE:

« In IntelliJ IDEA and NetBeans, just open the file exanpl es/ sour ces/ pom xml as a new
project, the maven integration will take care of the rest.

« In Eclipse, open a new project for the directory exanpl es/ sour ces.

» Add all the jars to the classpath from the directory bi nari es and the directory exanpl es/
bi nari es, except for the file exanpl es/ bi nari es/ opt apl anner - exanpl es-*.j ar.

Use OptaPlanner with Maven, Gradle, Ivy, Buildr or ANT

» Add the Java source directory src/ mai n/j ava and the Java resources directory src/
mai n/ r esour ces.

2. Create a run configuration:
* Main class: or g. opt apl anner . exanpl es. app. Qpt aPl anner Exanpl esApp
« VM parameters (optional): - Xnx512M - ser ver
« Working directory: exanpl es (this is the directory that contains the directory dat a)

3. Run that run configuration.

1.3.3. Use OptaPlanner with Maven, Gradle, vy, Buildr or ANT

The OptaPlanner jars are also available in the central maven repository [http://
search.maven.org/#search|gall|org.optaplanner] (and also in the JBoss maven repository [https://
repository.jboss.org/nexus/index.html#nexus-search;gav~org.optaplanner~~~~]).

If you use Maven, add a dependency to opt apl anner - cor e in your project's pom xm :

<dependency>
<groupl d>or g. opt apl anner </ gr oupl d>
<artifact|d>optapl anner-core</artifactld>
</ dependency>

This is similar for Gradle, Ivy and Buildr. To identify the latest version, check the central maven
repository [http://search.maven.org/#search|gall|org.optaplanner].

Because you might end up using other optaplanner modules too, it's recommended to import the
opt apl anner - bomin Maven's dependencyManagenent so the optaplanner version is specified
only once:

<dependencyManagenent >
<dependenci es>
<dependency>
<groupl d>or g. opt apl anner </ gr oupl d>
<artifact|d>optapl anner-bom</artifactld>
<t ype>ponx/type>
<version>...</version>
<scope>i nport </ scope>
</ dependency>

</ dependenci es>
</ dependencyManagenent >

http://search.maven.org/#search|ga|1|org.optaplanner
http://search.maven.org/#search|ga|1|org.optaplanner
http://search.maven.org/#search|ga|1|org.optaplanner
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.optaplanner~~~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.optaplanner~~~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.optaplanner~~~~
http://search.maven.org/#search|ga|1|org.optaplanner
http://search.maven.org/#search|ga|1|org.optaplanner
http://search.maven.org/#search|ga|1|org.optaplanner

Chapter 1. Planner introduction

If you're still using ANT (without Ivy), copy all the jars from the download zip's bi nari es directory
and manually verify that your classpath doesn't contain duplicate jars.

1.3.4. Build OptaPlanner from source

It's easy to build OptaPlanner from source:

1. Set up Git [http://help.github.com/set-up-git-redirect] and clone opt apl anner from GitHub (or
alternatively, download the zipball [https://github.com/droolsjbpm/optaplanner/zipball/master]):

$ git clone git@ithub.comdrool sjbpnt optapl anner. git optapl anner

$ git cl one https://github. com drool sj bpni opt apl anner. gi t
opt apl anner

2. Build it with Maven [http://maven.apache.org/]:

$ cd optapl anner
$ nvn clean install -DskipTests

http://help.github.com/set-up-git-redirect
http://help.github.com/set-up-git-redirect
https://github.com/droolsjbpm/optaplanner/zipball/master
https://github.com/droolsjbpm/optaplanner/zipball/master
http://maven.apache.org/
http://maven.apache.org/

Status of OptaPlanner

@ Note
The first time, Maven might take a lot time, because it needs to download jars.
3. Run the examples:

$ cd opt apl anner - exanpl es
$ nmvn exec: exec

4. Edit the sources in your favorite IDE.

5. Optional: use a Java profiler.

1.4. Status of OptaPlanner

OptaPlanner is:

Stable: Heavily tested with unit, integration and stress tests.

Reliable: Used in production across the world.

Scalable: One of the examples handles 50 000 variables with 5 000 variables each, multiple
constraint types and billions of possible constraint matches.

* Documented: See this detailed manual or one of the many examples.

OptaPlanner has a public API:

* Public API: All classes in the package namespace org.optaplanner.core.api are 100%
backwards compatible in future releases.

e Impl classes: All classes in the package namespace org.optaplanner.core.impl are
not backwards compatible: they might change in future releases. The recipe called
Upgr adeFr onPr evi ousVer si onReci pe. t xt [https://github.com/droolsjbpm/optaplanner/blob/
master/optaplanner-distribution/src/main/assembly/filtered-resources/
UpgradeFromPreviousVersionRecipe.txt] describes every such change and on how to quickly
deal with it when upgrading to a newer version. That recipe file is included in every release zip.

e XML configuration: The XML solver configuration is backwards compatible for all elements,
except for elements that require the use of non public API classes. The XML solver configuration
is defined by the classes in the package namespace org.optaplanner.core.config.

https://github.com/droolsjbpm/optaplanner/blob/master/optaplanner-distribution/src/main/assembly/filtered-resources/UpgradeFromPreviousVersionRecipe.txt
https://github.com/droolsjbpm/optaplanner/blob/master/optaplanner-distribution/src/main/assembly/filtered-resources/UpgradeFromPreviousVersionRecipe.txt
https://github.com/droolsjbpm/optaplanner/blob/master/optaplanner-distribution/src/main/assembly/filtered-resources/UpgradeFromPreviousVersionRecipe.txt
https://github.com/droolsjbpm/optaplanner/blob/master/optaplanner-distribution/src/main/assembly/filtered-resources/UpgradeFromPreviousVersionRecipe.txt

Chapter 1. Planner introduction

1.5. Compatibility

OptaPlanner is 100% pure Java™ and runs on any JVM 1.6 or higher.

Compatibility

OptaPlanner works on any Java Virtual Machine

Enterprise Java JVM languages

Lg JBoss AS _ﬁ ,

0 java
peenes SScala G-

1.6. Relationship with Drools and jBPM

OptaPlanner is part of the KIE group of projects [http://www.kiegroup.org]. It releases regularly
(often once or twice per month) together with the Drools [http://www.drools.org/] rule engine and

the |BPM [http://www.jbpm.org/] workflow engine.

10

http://www.kiegroup.org
http://www.kiegroup.org
http://www.drools.org/
http://www.drools.org/
http://www.jbpm.org/
http://www.jbpm.org/

Questions, issues and blog

KIE functionality overview

What are the KIE projects?

Drools Drools workbench
Rule engine WebApp to manage
and Complex Event Processing rules, decision tables, ...

Example: insurance rate calculation

&2 OptaPlanner
Planning engine
and optimization solver

Example: employee rostering B R M S

. jBPM jBPM workbench

Workflow engine WebApp to manage and monitor
workflows, forms, ...

Example: mortgage approval process B P M S

L o S

Nd N
Lightweight, embeddable engines (jars) Web applications (wars)
which run in a Java VM which run on a Java Application Server

See the architecture overview to learn more about the optional integration with Drools.

1.7. Questions, issues and blog

Your questions and comments are welcome on the user mailing list [http://www.jboss.org/
drools/lists.html]. Start the subject of your mail with [planner]. You can read/
write to the user mailing list without littering your mailbox through this web forum
[http://drools.46999.n3.nabble.com/Drools-User-forum-f47000.html] or this newsgroup [nntp://
news.gmane.org/gmane.comp.java.drools.user].

Feel free to report an issue (such as a bug, improvement or a new feature request) for
the OptaPlanner code or for this manual to our issue tracker [https://issues.jboss.org/browse/
PLANNER].

Pull requests are very welcome and get priority treatment! By open sourcing your improvements,
you 'll benefit from our peer review and from our improvements made upon your improvements.

Check our blog [http://www.optaplanner.org/blog/], Google+ (OptaPlanner [https://
plus.google.com/+OptaPlannerOrg], Geoffrey De Smet [https://plus.google.com/

11

http://www.jboss.org/drools/lists.html
http://www.jboss.org/drools/lists.html
http://www.jboss.org/drools/lists.html
http://drools.46999.n3.nabble.com/Drools-User-forum-f47000.html
http://drools.46999.n3.nabble.com/Drools-User-forum-f47000.html
nntp://news.gmane.org/gmane.comp.java.drools.user
nntp://news.gmane.org/gmane.comp.java.drools.user
nntp://news.gmane.org/gmane.comp.java.drools.user
https://issues.jboss.org/browse/PLANNER
https://issues.jboss.org/browse/PLANNER
https://issues.jboss.org/browse/PLANNER
http://www.optaplanner.org/blog/
http://www.optaplanner.org/blog/
https://plus.google.com/+OptaPlannerOrg
https://plus.google.com/+OptaPlannerOrg
https://plus.google.com/+OptaPlannerOrg
https://plus.google.com/+GeoffreyDeSmet
https://plus.google.com/+GeoffreyDeSmet

Chapter 1. Planner introduction

+GeoffreyDeSmet]) and twitter (Geoffrey De Smet [http://twitter.com/geoffreydesmet]) for news
and articles. If OptaPlanner helps you solve your problem, don't forget to blog or tweet about it!

12

https://plus.google.com/+GeoffreyDeSmet
http://twitter.com/geoffreydesmet
http://twitter.com/geoffreydesmet

Chapter 2.

Chapter 2. Quick start

2.1. Cloud balancing tutorial

2.1.1. Problem statement

Suppose your company owns a number of cloud computers and needs to run a number of
processes on those computers. Assign each process to a computer under the following 4
constraints.

Hard constraints which must be fulfilled:

» Every computer must be able to handle the minimum hardware requirements of the sum of its
processes:

» The CPU power of a computer must be at least the sum of the CPU power required by the
processes assigned to that computer.

» The RAM memory of a computer must be at least the sum of the RAM memory required by
the processes assigned to that computer.

» The network bandwidth of a computer must be at least the sum of the network bandwidth
required by the processes assigned to that computer.

Soft constraints which should be optimized:

« Each computer that has one or more processes assigned, incurs a maintenance cost (which
is fixed per computer).

» Minimize the total maintenance cost.

How would you do that? This problem is a form of bin packing. Here's a simplified example where
we assign 4 processes to 2 computers with 2 constraints (CPU and RAM) with a simple algorithm:

13

Chapter 2. Quick start

Cloud balance < |

Assign each process to a computer.

CPU Processes

I . |

J"J-l.llj,/'

T
Yy~

_;PU]x[RgM
6 M 6

RAM

J(

[(ST - s

X

3 |

(2][3)

L2)o(1]

<

>

o 8

Not enough [|

room [|

Jx(
Jv|
Jx{
v
Jx{
Jv

[] 5 v 5 B
2 | 4 x. 3 |
5 Y 5 B

(2 ST (6 1]

Optimal solution

(2] 4

M

3 [3]

The simple algorithm used here is the First Fit Decreasing algorithm, which assigns the bigger
processes first and assigns the smaller processes to the remaining space. As you can see, it's
not optimal, because it does not leave enough room to assign the yellow process D.

OptaPlanner does find the more optimal solution fast, by using additional, smarter algorithms. And
it scales too: both in data (more processes, more computers) and constraints (more hardware

requirements, other constraints). So let's take a look how we can use Planner for this.

2.1.2. Problem size

2conput er s- 6pr ocesses
space of 64.
3comput er s- 9pr ocesses
space of 1074.
4conput er s- 012pr ocesses
space of 1077.
100conput er s- 300pr ocesses
space of 107600.

has 2 conputers and

has 3 conputers and

has 4 conputers and

has 100 conputers and

6 processes

9 processes

12 processes

300 processes

wi th

W th

W th

wi th

a search

a search

a search

a search

14

Domain model diagram

200conput er s- 600processes has 200 conputers and 600 processes with a search
space of 1071380.
400conput er s- 1200pr ocesses has 400 computers and 1200 processes with a search
space of 1073122.
800conput er s- 2400pr ocesses has 800 conputers and 2400 processes with a search
space of 1076967.

2.1.3. Domain model diagram

Let's start by taking a look at the domain model. It's pretty simple:

e Conput er : represents a computer with certain hardware (CPU power, RAM memory, network
bandwidth) and maintenance cost.

* Process: represents a process with a demand. Needs to be assigned to a Conput er by Planner.

« O oudBal ance: represents a problem. Contains every Conput er and Pr ocess for a certain data
set.

Cloud balance class diagram

@~PlanningEntity

Computer Process
-(-- Tl | "
cpuPower @PFlanningVariable requiredCpuPower
memory computer | requiredMemory
networkBandwidth 1 * | requiredNetworkBandwidth
cost
CloudBalance
score
computerList processlList
@PlanningEntityCollectionProperty

In the UML class diagram above, the Planner concepts are already annotated:

15

Chapter 2. Quick start

« Planning entity: the class (or classes) that changes during planning. In this example that's the
class Process.

« Planning variable: the property (or properties) of a planning entity class that changes during
planning. In this examples, that's the property conput er on the class Pr ocess.

 Solution: the class that represents a data set and contains all planning entities. In this example
that's the class Cl oudBal ance.

2.1.4. Main method

Try it yourself. Download and configure the examples in your favorite IDE. Run
or g. opt apl anner . exanpl es. cl oudbal anci ng. app. d oudBal anci ngHel | oWr | d. By default, it
is configured to run for 120 seconds. It will execute this code:

Example 2.1. CloudBalancingHelloWorld.java

public class C oudBal anci ngHel | oWbr | d {

public static void main(String[] args) {
/1 Build the Sol ver
Sol ver Factory sol ver Factory = Sol ver Fact ory. cr eat eFr omXm Resour ce(
"or g/ opt apl anner/ exanpl es/ cl oudbal anci ng/ sol ver/
cl oudBal anci ngSol ver Confi g. xm ") ;
Sol ver sol ver = solverFactory. buil dSol ver();

/1 Load a problemw th 400 conputers and 1200 processes
Cl oudBal ance unsol vedC oudBal ance = new O oudBal anci ngGener at or (). creat e oudBal ance(4(

/1l Solve the problem
sol ver . sol ve(unsol vedd oudBal ance) ;
Cl oudBal ance sol vedC oudBal ance = (C oudBal ance) sol ver. get Best Sol ution();

/1l Display the result
System out. println("\nSol ved cl oudBal ance with 400 conputers and 1200

processes:\n"
+ toDi spl ayString(sol vedCl oudBal ance)) ;

The code above does this:

 Build the Sol ver based on a solver configuration (in this case an XML file from the classpath).

16

Solver configuration

Sol ver Fact ory sol ver Factory = Sol ver Fact ory. cr eat eFr omXm Resour ce(
"or g/ opt apl anner / exanpl es/ cl oudbal anci ng/ sol ver/
cl oudBal anci ngSol ver Confi g. xm ") ;
Sol ver sol ver = sol verFactory. buil dSol ver();

Load the problem. A oudBal anci ngGener at or generates a random problem: you'll replace this
with a class that loads a real problem, for example from a database.

Cl oudBal ance unsol vedC oudBal ance = new O oudBal anci ngGenerator (). creat ed oudBal ance(

Solve the problem.

sol ver. sol ve(unsol vedC oudBal ance) ;
Cl oudBal ance sol vedd oudBal ance = (C oudBal ance) sol ver. get Best Sol uti on();

Display the result.

System out. println("\nSol ved cl oudBal ance with 400 conputers and 1200
processes:\n"
+ toDi splayString(sol vedC oudBal ance)) ;

The only non-obvious part is building the Sol ver . Let's examine that.

2.1.5. Solver configuration

Take a look at the solver configuration:

Example 2.2. cloudBalancingSolverConfig.xml

<?xm version="1.0" encodi ng="UTF- 8" ?>
<sol ver >

<!l --<environnment Mode>FAST ASSERT</ envi r onnent Mbde>- - >

<I'-- Domain nodel configuration -->
<sol uti onCl ass>or g. opt apl anner . exanpl es. cl oudbal anci ng. domai n. Cl oudBal ance</

sol uti onC ass>
<pl anni ngEnt i t yCl ass>or g. opt apl anner . exanpl es. cl oudbal anci ng. donai n. Cl oudPr ocess</
pl anni ngEnti tyCd ass>

<!-- Score configuration -->
<scoreDi rect or Fact ory>

17

Chapter 2. Quick start

<scor eDefi nitionType>HARD_SOFT</ scor eDefiniti onType>

al anci ng. sol ver. scor e. 0 oudBal anci ngEasyScor eCal cul at or </
easyScor eCal cul at or G ass>
<! --<scoreDrl >or g/ opt apl anner/ exanpl es/ cl oudbal anci ng/ sol ver/
cl oudBal anci ngScor eRul es. drl </ scoreDr| >-->
<initializingScoreTrend>ONLY DOMK/initializingScoreTrend>
</ scoreDirectorFact ory>

<l-- Optimzation algorithns configuration -->
<term nati on>
<secondsSpent Li m t >120</ secondsSpent Li mi t >
</term nation>
<constructionHeuristic>
<constructionHeuri sticType>FI RST_FI T_DECREASI NG</ const ructi onHeuri sti cType>
</ constructionHeuristic>
<l ocal Sear ch>
<accept or >
<entityTabuSi ze>7</enti tyTabuSi ze>
</ accept or >
<f or ager >
<accept edCount Li mi t >1000</ accept edCount Li mi t >
</ forager>
</l ocal Sear ch>
</ sol ver >

This solver configuration consists out of 3 parts:

« Domain model configuration: What can Planner change? We need to make Planner aware
of our domain classes:

<sol uti onCl ass>or g. opt apl anner . exanpl es. cl oudbal anci ng. donmai n. C oudBal ance</
sol uti onCl ass>

<pl anni ngEnt i t yCl ass>or g. opt apl anner . exanpl es. cl oudbal anci ng. donai n. oudPr ocess</
pl anni ngEntityCd ass>

e Score configuration: How should Planner optimize the planning variables? Since we have
hard and soft constraints, we use a Har dSof t Scor e. But we also need to tell Planner how to
calculate such the score, depending on our business requirements. Further down, we 'll look into
2 alternatives to calculate the score: using a simple Java implementation or using Drools DRL.

<scor eDi rect or Fact ory>
<scoreDefinitionType>HARD_SOFT</ scor eDefi niti onType>

anci ng. sol ver. score. C oudBal anci ngEasyScor eCal cul at or </
easyScor eCal cul at or Gl ass>

18

Domain model implementation

<!--<scoreDrl >or g/ opt apl anner/ exanpl es/ cl oudbal anci ng/ sol ver/
cl oudBal anci ngScor eRul es. drl </ scoreDr| >-->
<initializingScoreTrend>ONLY DOWN</initializingScoreTrend>
</ scoreDirector Fact ory>

e Optimization algorithms configuration: How should Planner optimize it? Don't worry about
this for now: this is a good default configuration that works on most planning problems. It
will already surpass human planners and most in-house implementations. Using the Planner
benchmark toolkit, you can tweak it to get even better results.

<term nati on>
<secondsSpent Li m t >120</ secondsSpent Li ni t >
</term nation>
<constructionHeuristic>
<constructionHeuristicType>FI RST_FI T_DECREASI NG</
constructi onHeuri sticType>
</ constructionHeuristic>
<l ocal Sear ch>
<accept or >
<entityTabuSi ze>7</entityTabuSi ze>
</ accept or >
<f orager >
<accept edCount Li mi t >1000</ accept edCount Li nmi t >
</ f or ager >
</ | ocal Sear ch>

Let's examine the domain model classes and the score configuration.
2.1.6. Domain model implementation

2.1.6.1. The class conputer

The class Conmput er is a POJO (Plain Old Java Object), nothing special. Usually, you'll have more
of these kind of classes.

Example 2.3. CloudComputer.java

public class d oudConputer ... {

private int cpuPower;

private int nmenory;

private int networkBandw dt h;
private int cost;

/] getters

19

Chapter 2. Quick start

2.1.6.2. The class process

The class Process is a little bit special. We need to tell Planner that it can change the field
conput er, SO we annotate the class with @l anni ngEntity and the getter get Conput er with
@l anni ngVari abl e:

Example 2.4. CloudProcess.java

@ anni ngEntity(...)
public class CoudProcess ... {

private int requiredCpuPower;
private int requiredMenory;
private int requiredNetwor kBandwi dt h;

private C oudConputer conputer;
[l getters

@ anni ngVari abl e(val ueRangePr ovi der Ref s = {" conput er Range"})
publi ¢ C oudConput er getConputer() {
return conputer;

public void set Conput er(C oudConput er conputer) {
conmputer = conputer;

// EE R IR S S I I S R I S I S S I I S I S I I S I I I I S S I S I I I I I I S I S S I kI I S

/1 Conpl ex met hods

// Rk S Sk R I S O S O

The values that Planner can choose from for the field conputer, are retrieved from a
method on the Sol uti on implementation: C oudBal ance. get Conput er Li st () which returns
a list of all computers in the current data set. We tell Planner about this by using the
val ueRangePr ovi der Ref s property.

20

Domain model implementation

2.1.6.3. The class d oudBal ance

The class C oudBal ance implements the Sol ut i on interface. It holds a list of all computers and
processes. We need to tell Planner how to retrieve the collection of process which it can change,
so we need to annotate the getter get Pr ocessLi st with @Il anni ngEnti tyCol | ecti onProperty.

The C oudBal ance class also has a property scor e which is the Scor e of that Sol ut i on instance
in it's current state:

Example 2.5. CloudBalance.java

public class O oudBal ance ... inplenents Sol ution<HardSoft Score> {
private List<Cl oudConputer> conputerList;
private List<C oudProcess> processLi st;
private HardSoftScore score;

@/al ueRangePr ovi der (i d = "conput er Range")
public List<C oudConputer> get ConputerList() {
return conputerList;

@ anni ngEntityCol | ecti onProperty
publ i c List<C oudProcess> get ProcessList() {
return processlLi st;

publ i ¢ HardSoft Score get Score() ({
return score;

public void set Score(HardSoftScore score) {
this.score = score;

// EE R IR I S I I b O S S S S I I S I I O S S I

/1l Conpl ex met hods

// Rk S b S O kR O S R Ok kR e Sk S

public Coll ection<? extends Object> getProbl enfacts() ({
Li st <Cbj ect> facts = new ArrayLi st <Obj ect >();
facts. addAl | (conputerlList);
/1 Do not add the planning entity's (processList) because that wll
be done automatically

21

Chapter 2. Quick start

return facts;

The method get Pr obl enfact s() is only needed for score calculation with Drools. It's not needed

for the other score calculation types.

2.1.7. Score configuration

Planner will search for the Sol uti on with the highest Score. We're using a Har dSof t Scor e,
which means Planner will look for the solution with no hard constraints broken (fulfill hardware
requirements) and as little as possible soft constraints broken (minimize maintenance cost).

Processes
CPU

II
]
A
(3]

Optimal solution

Computers
CPU Cost
X 500%
] v 10008
X 5008
| Y 10008
3 } Y 1000%
| X 5008
Y 1000%

Score

-2hard / -500soft

N

Ohard [/ -1500soft

A

Ohard [/ -1000soft

Highest score

Of course, Planner needs to be told about these domain-specific score constraints. There are

several ways to implement such a score function:

« Easy Java

22

Score configuration

¢ Incremental Java
e Drools

Let's take a look at 2 different implementations:
2.1.7.1. Easy Java score configuration

One way to define a score function is to implement the interface EasyScor eCal cul at or in plain
Java.

<scorebDi rect or Fact ory>
<scor eDefi nitionType>HARD _SOFT</ scor eDefiniti onType>

al anci ng. sol ver. scor e. C oudBal anci ngEasyScor eCal cul at or </
easyScor eCal cul at or Cl ass>
</ scoreDirectorFact ory>

Just implement the method cal cul at eScor e(Sol uti on) to return a Har dSof t Scor e instance.

Example 2.6. CloudBalancingEasyScoreCalculator.java

public class d oudBal anci ngEasyScor eCal cul ator i npl enments EasyScor eCal cul at or <C oudBal ance> {

/**
* A very sinple inplenmentation. The double | oop can easily be renoved by using Maps as she
* { Cl oudBal anci ngMapBasedEasyScor eCal cul at or #cal cul at eScor e(C oudBal ance) }.
*/
publ i ¢ HardSoft Score cal cul at eScor e(Cl oudBal ance cl oudBal ance) {
int hardScore = O;
int softScore = 0;
for (C oudConputer computer : cloudBal ance. get ConputerList()) {
i nt cpuPower Usage = O;
i nt menoryUsage = O;
i nt networ kBandw dt hUsage = O;
bool ean used = fal se;

/1 Cal cul ate usage
for (C oudProcess process : cloudBal ance. get ProcessList()) {
i f (conputer.equal s(process. get Conputer())) {
cpuPower Usage += process. get Requi r edCpuPower () ;
menor yUsage += process. get Requi redMenory();
net wor kBandwi dt hUsage += process. get Requi r edNet wor kBandwi dt h() ;
used = true;

23

Chapter 2. Quick start

/1 Hard constraints
i nt cpuPower Avai | abl e = conput er. get CouPower () - cpuPower Usage;
i f (cpuPowerAvail able < 0) {

har dScore += cpuPower Avai | abl e;

}

i nt menoryAvail abl e = conputer.getMenory() - nenoryUsage;
if (menoryAvail able < 0) {
hardScore += menoryAvai | abl e;

}
i nt networ kBandwi dt hAvai | abl e = conput er. get Net wor kBandwi dt h() - networ kBandw dt hlUk

i f (networkBandw dt hAvai | able < 0) {
har dScore += net wor kBandw dt hAvai | abl e;

/1 Soft constraints
if (used) {
sof t Score -= comput er. get Cost ();

}

return HardSoft Score. val ueXt (hardScore, soft Score);

Even if we optimize the code above to use Maps to iterate through the processLi st only once,
it is still slow because it doesn't do incremental score calculation. To fix that, either use an
incremental Java score function or a Drools score function. Let's take a look at the latter.

2.1.7.2. Drools score configuration

To use the Drools rule engine as a score function, simply add a scoreDrl| resource in the
classpath:

<scorebDi rect or Fact ory>
<scoreDefi nitionType>HARD _SOFT</ scor eDefiniti onType>
<scor eDr | >or g/ opt apl anner/ exanpl es/ cl oudbal anci ng/ sol ver/
cl oudBal anci ngScor eRul es. drl </ scoreDr | >
</ scoreDirector Fact ory>

First, we want to make sure that all computers have enough CPU, RAM and network bandwidth
to support all their processes, so we make these hard constraints:

Example 2.7. cloudBalancingScoreRules.drl - hard constraints

24

Score configuration

i nport org.optapl anner. exanpl es. cl oudbal anci ng. domai n. Cl oudBal ance
i mport org.optapl anner. exanpl es. cl oudbal anci ng. domai n. Cl oudConput er ;
i mport org.optapl anner. exanpl es. cl oudbal anci ng. donmai n. Cl oudPr ocess;

gl obal Har dSoft Scor eHol der scor eHol der
[| #HEH#H AR R R R R R R R R R R R R R R R R R R R
/1 Hard constraints

|| HHHHH

rul e "requiredCpuPower Tot al "

when
$conputer : Cl oudConput er ($cpuPower : cpuPower)
$requi redCpuPower Tot al : Nunber (i nt Val ue > $cpuPower) from accunul at e(
Cl oudProcess(
conput er == $conput er,
$requi redCpuPower : requiredCpuPower),
sum($r equi r edCpuPower)
)
t hen

scor eHol der . addHar dConst r ai nt Mat ch(kcont ext, $cpuPower -
$requi redCpuPower Tot al . i nt Val ue());
end

rule "requiredMenoryTotal "

end

rul e "requiredNet wor kBandwi dt hTot al "
end

Next, if those constraints are met, we want to minimize the maintenance cost, so we add that as
a soft constraint:

Example 2.8. cloudBalancingScoreRules.drl - soft constraints

[| H#H##HHHH R R R R R R R R R R R R R R R R R R R
/] Soft constraints
| | #HHHHHHHRH SR PR R R R R R R R R R R R R R

rul e "conput er Cost "
when
$conputer : C oudConput er ($cost : cost)
exi sts Cl oudProcess(conputer == $conputer)
t hen

25

Chapter 2. Quick start

scor eHol der . addSof t Const r ai nt Mat ch(kcontext, - $cost);
end

If you use the Drools rule engine for score calculation, you can integrate with other Drools
technologies, such as decision tables (XLS or web based), the KIE Workbench rule repository, ...

2.1.8. Beyond this tutorial

Now that this simple example works, try going further. Enrich the domain model and add extra
constraints such as these:

« Each Process belongs to a Ser vi ce. A computer can crash, so processes running the same
service should be assigned to different computers.

« Each Conput er is located in a Bui | di ng. A building can burn down, so processes of the same
services should be assigned to computers in different buildings.

26

Chapter 3.

Chapter 3. Use cases and examples

3.1. Examples overview

OptaPlanner has several examples. In this manual we explain OptaPlanner mainly using the n
gueens example and cloud balancing example. So it's advisable to read at least those sections.

The source code of all these examples is available in the distribution zip under exanpl es/ sour ces
and also in git under opt apl anner/ opt apl anner - exanpl es.

Table 3.1. Examples overview

SpeExample Domain Competition Special features used
N queens e 1 entity e Entity <= < Pointless | None
class 256 (cheatable
[http://
1 * Value <= | o wikipedia.org/
variable 256 wiki/
« Search Eight_queens_puzzle#Explicit_solutions])
space <=
10”616
Cloud balancing e 1 entity e Entity<= |+ No ¢ Real-time planning
class 2400
 Definied
e 1 e Value <= by us
variable 800
e Search
space <=
1076967
Traveling salesman e 1 entity e Entity <= |+ Unrealistic « Real-time planning
class 980
e TSP web
e 1 e Value <= [http://
chained 980 www.tsp.gatech.edu/
variable]
» Search
space <=
1072927
Dinner party e lentity |+ Entity<= ¢ Unrealistic » Decision Table
class 144 spreadsheet for score
constraints
e 1 e Value <=
variable 72

27

http://en.wikipedia.org/wiki/Eight_queens_puzzle#Explicit_solutions
http://en.wikipedia.org/wiki/Eight_queens_puzzle#Explicit_solutions
http://en.wikipedia.org/wiki/Eight_queens_puzzle#Explicit_solutions
http://en.wikipedia.org/wiki/Eight_queens_puzzle#Explicit_solutions
http://en.wikipedia.org/wiki/Eight_queens_puzzle#Explicit_solutions
http://www.tsp.gatech.edu/
http://www.tsp.gatech.edu/
http://www.tsp.gatech.edu/

Chapter 3. Use cases and examples

SpeExample Domain Size Competition Special features used
e Search
space <=
107310
Tennis club scheduling e 1 entity e Entity<= |+ No e Fairness score
class 72 constraints
 Definied
e 1 e Value <= by us ¢ Immovable entities
variable 7
e Search
space <=
10760
Course timetabling e 1 entity e Entity <= | « Realistic |+ Immovable entities
class 434
e ITC 2007
« 2 e Value <= track 3
variables 25 and [http://
<=20 www.cs.qub.ac.uk/
itc2007/
e Search

curriculmcourse/

<= . .
Space course_curriculm_index.htm]

10n1171

Machine reassignment * 1 entity o Entity <= |« Nearly ¢ Real-time planning

class 50000 realistic
e 1 e Value <= |« ROADEF

variable 5000 2012

[http://
* Search challenge.roadef.org/2012/
space <= enl]
107184948
Vehicle routing e lentity |« Entity <= |+ Unrealistic * VariableListener
class 134
* VRP web | ¢ Real-time planning

e 1 * Value <= [http://

chained 141 neo.lcc.uma.es/

variable vrp/]

e Search

e 1 space <=

shadow 107285

entity

class
e 1

automatic

28

http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm
http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm
http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm
http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm
http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm
http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm
http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm
http://challenge.roadef.org/2012/en/
http://challenge.roadef.org/2012/en/
http://challenge.roadef.org/2012/en/
http://challenge.roadef.org/2012/en/
http://challenge.roadef.org/2012/en/
http://neo.lcc.uma.es/vrp/
http://neo.lcc.uma.es/vrp/
http://neo.lcc.uma.es/vrp/
http://neo.lcc.uma.es/vrp/

Examples overview

SpeExample Domain Size Competition Special features used
shadow
variable
Vehicle routing with time | Extra on e Entity <= | « Unrealistic « VariableListener
windows Vehicle 1000
routing: *« VRP web | « Real-time planning
e Value <= [http://
1250 neo.lcc.uma.es/
"1 vrp/]
shadow |« Search
variable space <=
1073000
Project job scheduling * 1 entity o Entity <= |« Nearly ¢ Bendable score
class 640 realistic
¢ VariableListener
e 2 * Value * MISTA
variables <=?and 2013
<=7 [http://
° 1 allserv.kahosl.be/
shadow |+ Search mista2013challenge/
variable space <=]
?
Hospital bed planning e 1 entity e Entity <= | ¢ Unrealistic « Overconstrained
class 2750 planning
« Kaho
e 1 * Value <= PAS
nullable 471 [http://
variable allserv.kahosl.be/
» Search ~peter/
space <= pas]
1076851
Exam timetabling e 2entity |« Entity <= |+ Realistic | » VariableListener
classes 1096
(same « ITC 2007
hierarchy) | * Value <= track 1
80 and [http://
e 2 <= 49 www.cs.qub.ac.uk/
variables itc2007/
* Search examtrack
space <= exam_track_index.htm]
1073374
Employee rostering e 1 entity e Entity <= | « Realistic | ¢« Continuous planning
class 752
* INRC ¢ Real-time planning
e 1 e Value <= 2010
variable 50 [http://

29

http://neo.lcc.uma.es/vrp/
http://neo.lcc.uma.es/vrp/
http://neo.lcc.uma.es/vrp/
http://neo.lcc.uma.es/vrp/
http://allserv.kahosl.be/mista2013challenge/
http://allserv.kahosl.be/mista2013challenge/
http://allserv.kahosl.be/mista2013challenge/
http://allserv.kahosl.be/mista2013challenge/
http://allserv.kahosl.be/mista2013challenge/
http://allserv.kahosl.be/~peter/pas/
http://allserv.kahosl.be/~peter/pas/
http://allserv.kahosl.be/~peter/pas/
http://allserv.kahosl.be/~peter/pas/
http://allserv.kahosl.be/~peter/pas/
http://allserv.kahosl.be/~peter/pas/
http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm
http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm
http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm
http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm
http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm
http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm
http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm
http://www.kuleuven-kortrijk.be/nrpcompetition
http://www.kuleuven-kortrijk.be/nrpcompetition
http://www.kuleuven-kortrijk.be/nrpcompetition

Chapter 3. Use cases and examples

SpeExample Domain Size Competition Special features used
e Search www.kuleuven-
space <= kortrijk.be/
1001277 nrpcompetition]
Traveling tournament * 1 entity « Entity <= Unrealistic None
class 1560
TTP
e 1 e Value <= [http://
variable 78 mat.gsia.cmu.edu/
TOURN/]
e Search
space <=
1072951

A realistic competition is an official, independent competition:

« that clearly defines a real-word use case

» with real-world constraints

» with multiple, real-world datasets

« that expects reproducible results within a specific time limit on specific hardware

« that has had serious participation from the academic and/or enterprise Operations Research

community

These realistic competitions provide an objective comparison of OptaPlanner with competitive

software and academic research.

3.2. Basic examples

3.2.1. N queens

3.2.1.1. Problem statement

Place n queens on a n sized chessboard so no 2 queens can attach each other. The most common

n queens puzzle is the 8 queens puzzle, with n = 8:

30

http://www.kuleuven-kortrijk.be/nrpcompetition
http://www.kuleuven-kortrijk.be/nrpcompetition
http://www.kuleuven-kortrijk.be/nrpcompetition
http://mat.gsia.cmu.edu/TOURN/
http://mat.gsia.cmu.edu/TOURN/
http://mat.gsia.cmu.edu/TOURN/
http://mat.gsia.cmu.edu/TOURN/

N queens

Constraints:

» Use a chessboard of n columns and n rows.
 Place n queens on the chessboard.

* No 2 queens can attack each other. A queen can attack any other queen on the same horizontal,
vertical or diagonal line.

This documentation heavily uses the 4 queens puzzle as the primary example.

A proposed solution could be:

31

Chapter 3. Use cases and examples

oy

W N = O

Figure 3.1. A wrong solution for the 4 queens puzzle

The above solution is wrong because queens Al and B0 can attack each other (so can queens B0
and D0). Removing queen BO would respect the "no 2 queens can attack each other" constraint,
but would break the "place n queens"” constraint.

Below is a correct solution:

g

Ww N H O

g

Figure 3.2. A correct solution for the 4 queens puzzle

All the constraints have been met, so the solution is correct. Note that most n queens puzzles
have multiple correct solutions. We'll focus on finding a single correct solution for a given n, not
on finding the number of possible correct solutions for a given n.

3.2.1.2. Problem size

4queens has 4 queens with a search space of 256.
8queens has 8 queens with a search space of 1077.
16queens has 16 queens with a search space of 10719.
32queens has 32 queens with a search space of 10748.
64queens has 64 queens with a search space of 107115.
256queens has 256 queens with a search space of 107616.

The implementation of the N queens example has not been optimized because it functions as a
beginner example. Nevertheless, it can easily handle 64 queens. With a few changes it has been
shown to easily handle 5000 queens and more.

32

N queens

3.2.1.3. Domain model

Use a good domain model: it will be easier to understand and solve your planning problem. This
is the domain model for the n queens example:
public class Colum {

private int index;

/[l ... getters and setters

public class Row {
private int index;

[l ... getters and setters

public class Queen {

private Colum col um,;
private Row row;

public int getAscendi nghi agonal I ndex() {...}
public int getDescendi ngDi agonal I ndex() {...}

/[l ... getters and setters

A Queen instance has a Col umm (for example: 0 is column A, 1 is column B, ...) and a Row (its row,
for example: O isrow 0, 1 is row 1, ...). Based on the column and the row, the ascending diagonal
line as well as the descending diagonal line can be calculated. The column and row indexes start
from the upper left corner of the chessboard.

public class NQueens inplenments Sol uti on<Si npl eScore> {
private int n;
private List<Colum> col ummlLi st;

private List<Row> rowlList;

private List<Queen> queenlLi st;

33

Chapter 3. Use cases and examples

private SinpleScore score;

/[l ... getters and setters

A single NQueens instance contains a list of all Queen instances. It is the Sol ut i on implementation
which will be supplied to, solved by and retrieved from the Solver. Notice that in the 4 queens
example, NQueens's get N() method will always return 4.

Table 3.2. A solution for 4 queens shown in the domain model

A solution Queen columnindex rowlndex ascendingDia(descendingDi

(columnindex (columnindex
+rowlndex) - rowlndex)

A B C D 0 1 1 (%) -1
@ 1 0 1(%) 1

2 2 4 0

DO 3 0 (%) 3 3

iy

W N = O

When 2 queens share the same column, row or diagonal line, such as (*) and (**), they can attack
each other.

3.2.2. Cloud balancing

This example is explained in a tutorial.
3.2.3. Traveling salesman (TSP - Traveling salesman problem)

3.2.3.1. Problem statement

Given a list of cities, find the shortest tour for a salesman that visits each city exactly once.

The problem is defined by Wikipedia [http://en.wikipedia.org/wiki/Travelling_salesman_problem].
It is one of the most intensively studied problems [http://www.tsp.gatech.edu/] in computational
mathematics. Yet, in the real world, it's often only part of a planning problem, along with other
constraints, such as employee shift rostering constraints.

3.2.3.2. Problem size

dj 38 has 38 cities with a search space of 10758.

34

http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://www.tsp.gatech.edu/
http://www.tsp.gatech.edu/

Dinner party

europe40 has 40
st 70 has 70
pch442 has 442
| u980 has 980

cities
cities
cities
cities

3.2.4. Dinner party

3.2.4.1. Problem statement

wi th
Wi th
w th
wi th

QO O @©

search
sear ch
search
search

space
space
space
space

Miss Manners is throwing another dinner party.

of
of
of
of

10762.
107126

1071166.

1072927.

 This time she invited 144 guests and prepared 12 round tables with 12 seats each.

« Every guest should sit next to someone (left and right) of the opposite gender.

« And that neighbour should have at least one hobby in common with the guest.

« At every table, there should be 2 politicians, 2 doctors, 2 socialites, 2 coaches, 2 teachers and

2 programmers.

« And the 2 politicians, 2 doctors, 2 coaches and 2 programmers shouldn't be the same kind at

a table.

Drools Expert also has the normal Miss Manners example (which is much smaller) and employs
an exhaustive heuristic to solve it. OptaPlanner's implementation is far more scalable because it
uses heuristics to find the best solution and Drools Expert to calculate the score of each solution.

3.2.4.2. Problem size

weddi ng01 has 18 j obs,
with a search space of 107310

144 guests,

3.2.5. Tennis club scheduling

3.2.5.1. Problem statement

288 hobby practi ci ans,

12 tabl es and 144 seats

Every week the tennis club has 4 teams playing round robin against each other. Assign those 4
spots to the teams fairly.

Hard constraints:

« Conflict: A team can only play once per day.

* Unavailability: Some teams are unavailable on some dates.

35

Chapter 3. Use cases and examples

Medium constraints:

 Fair assignment: All teams should play an (almost) equal number of times.

Soft constraints:

« Evenly confrontation: Each team should play against every other team an equal number of
times.

3.2.5.2. Problem size

nmuni ch-7teans has 7 teans, 18 days, 12 wunavailabilityPenalties and 72
teamAssi gnments with a search space of 10760.

3.3. Real examples

3.3.1. Course timetabling (ITC 2007 track 3 - Curriculum course
scheduling)

3.3.1.1. Problem statement
Schedule each lecture into a timeslot and into a room.

Hard constraints:

« Teacher conflict: A teacher must not have 2 lectures in the same period.
 Curriculum conflict: A curriculum must not have 2 lectures in the same period.

* Room occupancy: 2 lectures must not be in the same room in the same period.

Unavailable period (specified per dataset): A specific lecture must not be assigned to a specific
period.

Soft constraints:

* Room capacity: A room's capacity should not be less than the number of students in its lecture.

* Minimum working days: Lectures of the same course should be spread into a minimum number
of days.

36

Course timetabling (ITC 2007 track 3 - Curriculum course scheduling)

e Curriculum compactness: Lectures belonging to the same curriculum should be adjacent to
each other (so in consecutive periods).

* Room stability: Lectures of the same course should be assigned the same room.

The problem is defined by the International Timetabling Competition 2007 track 3 [http://
www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm].

3.3.1.2. Problem size

conp0l1 has 24 teachers, 14 curricula, 30 courses, 160 | ectures, 30 periods, 6
roons and 53 unavail abl e period constraints with a search space of 107360.
conp02 has 71 teachers, 70 curricula, 82 courses, 283 |ectures, 25 periods, 16
rooms and 513 unavail abl e period constraints with a search space of 107736.
conp03 has 61 teachers, 68 curricula, 72 courses, 251 |ectures, 25 periods, 16
roons and 382 unavail able period constraints with a search space of 107653.
conp04 has 70 teachers, 57 curricula, 79 courses, 286 |ectures, 25 periods, 18
rooms and 396 unavail abl e period constraints with a search space of 107758.
conp05 has 47 teachers, 139 curricula, 54 courses, 152 lectures, 36 periods, 9
roons and 771 unavail able period constraints with a search space of 107381.
conp06 has 87 teachers, 70 curricula, 108 courses, 361 | ectures, 25 periods, 18
rooms and 632 unavail able period constraints with a search space of 107957.
conp07 has 99 teachers, 77 curricula, 131 courses, 434 | ectures, 25 periods, 20
roons and 667 unavail abl e period constraints with a search space of 1071171.
conp08 has 76 teachers, 61 curricula, 86 courses, 324 |ectures, 25 periods, 18
roons and 478 unavail abl e period constraints with a search space of 107859.
conp09 has 68 teachers, 75 curricula, 76 courses, 279 |ectures, 25 periods, 18
roons and 405 unavail abl e period constraints with a search space of 107740.
conpl0 has 88 teachers, 67 curricula, 115 courses, 370 | ectures, 25 periods, 18
rooms and 694 unavail abl e period constraints with a search space of 107981.
conpll has 24 teachers, 13 curricula, 30 courses, 162 |lectures, 45 periods, 5
roons and 94 unavail abl e period constraints with a search space of 107381.
conpl2 has 74 teachers, 150 curricula, 88 courses, 218 |ectures, 36 periods, 11
roons and 1368 unavail abl e period constraints with a search space of 107566.
conpl3 has 77 teachers, 66 curricula, 82 courses, 308 | ectures, 25 periods, 19
roons and 468 unavail abl e period constraints with a search space of 107824.
conpl4 has 68 teachers, 60 curricula, 85 courses, 275 | ectures, 25 periods, 17
rooms and 486 unavail abl e period constraints with a search space of 107722.

37

http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm
http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm
http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm

Chapter 3. Use cases and examples

3.3.1.3. Domain model

Curriculum course class diagram

(Teacher] [Day]
1 1
[Curriculum] [Timeslot]
* 1
[Course] [Period] [Room

@~PlanningVariable

@~PlanningVariable
R @PlanningEntity s |-
[Lecture]

L

@PlanningEntityCollectionProperty

[CourseSchedule

3.3.2. Machine reassignment (Google ROADEF 2012)

3.3.2.1. Problem statement

Assign each process to a machine. All processes already have an original (unoptimized)
assignment. Each process requires an amount of each resource (such as CPU, RAM, ...). This is
more complex version of the Cloud Balancing example.

Hard constraints:

« Maximum capacity: The maximum capacity for each resource for each machine must not be
exceeded.

» Conflict: Processes of the same service must run on distinct machines.
» Spread: Processes of the same service must be spread across locations.

« Dependency: The processes of a service depending on another service must run in the
neighborhood of a process of the other service.

38

Machine reassignment (Google ROADEF 2012)

« Transient usage: Some resources are transient and count towards the maximum capacity of
both the original machine as the newly assigned machine.

Soft constraints:

» Load: The safety capacity for each resource for each machine should not be exceeded.

« Balance: Leave room for future assignments by balancing the available resources on each
machine.

» Process move cost: A process has a move cost.
* Service move cost: A service has a move cost.

« Machine move cost: Moving a process from machine A to machine B has another A-B specific
move cost.

The problem is defined by the Google ROADEF/EURO Challenge 2012 [http://
challenge.roadef.org/2012/en/].

3.3.2.2. Problem size

nmodel _al 1 has 2 resources, 1 neighborhoods, 4 | ocati ons, 4 machi nes, 79

services, 100 processes and 1 bal ancePenal ties with a search space of 10760.

nodel _al 2 has 4 resources, 2 nei ghbor hoods, 4 |ocations, 100 nmchi nes,
980 servi ces, 1000 processes and O bal ancePenalties with a search space

of 1072000.

nmodel _al 3 has 3 resources, 5 nei ghbor hoods, 25 | ocations, 100 nmchi nes,
216 services, 1000 processes and O bal ancePenalties with a search space

of 1072000.

nmodel _al 4 has 3 resources, 50 neighborhoods, 50 | ocati ons, 50 machi nes,
142 servi ces, 1000 processes and 1 bal ancePenalties with a search space

of 1071698.

nmodel _al 5 has 4 resources, 2 nei ghbor hoods, 4 | ocations, 12 machi nes,
981 services, 1000 processes and 1 bal ancePenalties with a search space

of 1071079.

nodel _a2_1 has 3 resources, 1 nei ghbor hoods, 1 | ocati ons, 100 nmchi nes,
1000 services, 1000 processes and O bal ancePenalties with a search space

of 1072000.

nodel _a2_2 has 12 resources, 5 nei ghbor hoods, 25 | ocati ons, 100 mmchi nes,
170 servi ces, 1000 processes and O bal ancePenalties with a search space

of 1072000.

nmodel _a2_3 has 12 resources, 5 nei ghbor hoods, 25 locations, 100 nmchi nes,
129 servi ces, 1000 processes and O bal ancePenalties with a search space

of 1072000.

nmodel a2 4 has 12 resources, 5 nei ghbor hoods, 25 | ocations, 50 machi nes,
180 servi ces, 1000 processes and 1 bal ancePenalties with a search space
of 1071698.

39

http://challenge.roadef.org/2012/en/
http://challenge.roadef.org/2012/en/
http://challenge.roadef.org/2012/en/

Chapter 3. Use cases and examples

nodel _a2_5 has 12 resources,

153 services

of 1071698.
nmodel _b_1
2512 servi ces,
of 10710000.
nodel b 2
2462 services,
of 10710000.
nodel _b_3 has
15025 servi ces,
10740000.
nmodel _b_4 has
1732 servi ces,
10753979.
nmodel _b_5 has
35082 services,
10780000.
nodel _b 6 has
14680 servi ces,
10792041.
nodel _b_7 has
15050 servi ces,
107144082.
nmodel _b_8 has
45030 servi ces,
107100000.
nmodel _b_9 has
4609 servi ces,
107150000.

nmodel b _10 has
4896 services,
101184948.

has 12 resources,

has 12 resources,

5 nei ghbor hoods, 25 |ocati ons, 50 nachi nes,
1000 processes and 0O bal ancePenalties with a search space
5 nei ghbor hoods, 10 | ocati ons, 100 machi nes,
5000 processes and 0 bal ancePenalties with a search space
5 nei ghbor hoods, 10 | ocati ons, 100 nmachi nes,
5000 processes and 1 bal ancePenalties with a search space

6 resources, 5 nei ghbor hoods, 10 | ocati ons, 100 nmchi nes,
20000 processes and 0O bal ancePenalties with a search space of

6 resources, 5 neighborhoods, 50 locations, 500 nachines,

20000 processes and 1 bal ancePenalties with a search space of
6 resources, 5 nei ghbor hoods, 10 | ocati ons, 100 machi nes,
40000 processes and 0 bal ancePenalties with a search space of
6 resources, 5 nei ghbor hoods, 50 | ocati ons, 200 nachi nes,
40000 processes and 1 bal ancePenalties with a search space of

6 resources, 5 nei ghbor hoods, 50 | ocations, 4000 nmchi nes,
40000 processes and 1 bal ancePenalties with a search space of

3 resources, 5 nei ghbor hoods, 10 | ocations, 100 nmchi nes,
50000 processes and 0 bal ancePenalties with a search space of
3 resources, 5 nei ghbor hoods, 100 | ocations, 1000 nachi nes,
50000 processes and 1 bal ancePenalties with a search space of
3 resources, 5 nei ghbor hoods, 100 | ocations, 5000 machi nes,
50000 processes and 1 bal ancePenalties with a search space of

40

Vehicle routing

3.3.2.3. Domain model

Machine reassignment class diagram

. dependency
(Service e [Neighborhood |
1 1
[ProcessRequirement| | MachineCapacity | Location
* * * * 1
. 1 1 1 1 . :
| Process] [Resource] [Machine |
1 1 1
originalMachine
@~PlanningVariable
1 @PlanningEntity . .
[ProcessAssignment]
@PlanningEntityCollectionProperty
[MachineReassignment

3.3.3. Vehicle routing

3.3.3.1. Problem statement

Using a fleet of vehicles, pick up the objects of each customer and bring them to the depot. Each
vehicle can service multiple customers, but it has a limited capacity.

41

Chapter 3. Use cases and examples

21
7 13
15 15 &
1 17
17 11
=~ :
677100 ”
89,100
15
2
87 /100
11 o7 /104l m
82100
A5 . >
o
{ P
= Customer: dermand 32 customers 742'69 fUEI

Besides the basic case (CVRP), there is also a variant with time windows (CVRPTW).

Hard constraints:

* Vehicle capacity: a vehicle cannot carry more items then its capacity.
e Time windows (only in CVRPTW):
» Travel time: Traveling from one location to another takes time.

» Customer service duration: a vehicle must stay at the customer for the length of the service
duration.

» Customer ready time: a vehicle may arrive before the customer's ready time, but it must wait
until the ready time before servicing.

42

Vehicle routing

» Customer due time: a vehicle must arrive in time, before the customer's due time.

Soft constraints:

 Total distance: minimize the total distance driven (fuel consumption) of all vehicles.

The capacitated vehicle routing problem (CVRP) and it's timewindowed variant (CVRPTW) are
defined by the VRP web [http://neo.lcc.uma.es/vrp/].

3.3.3.2. Problem size

CVRP instances (without time windows):

A-n32- k5
A-n33- k5
A-n33- k6
A-n34- k5
A-n36- k5
A-n37- k5
A-n37- k6
A-n38- k5
A-n39- k5
A-n39- k6
A-n44- k7
A-n45- k6
A-n45- k7
A-n46- k7
A-n48- k7
A-n53- k7
A-n54- k7
A-n55- k9
A-n60- k9
107104.
A-n61- k9
107106.
A-n62- k8
10”7108.
A-n63- k10
107111,
A-n63- k9
107111,
A-n64- k9
107113.
A- n65- k9
107115.
A-n69- k9
10n124.

has
has
has
has
has
has
has
has
has
has
has
has
has
has
has
has
has
has

R R P R RPRPRPRRPRRPRRPRRRRRERERRR

depot s,
depot s,
depot s,
depot s,
depot s,
depot s,
depot s,
depot s,
depot s,
depot s,
depot s,
depot s,
depot s,
depot s,
depot s,
depot s,
depot s,
depot s,

has 1 depots,

has 1 depots,

has

has

has

has

has

has

1 depots,

1 depots,

1 depots,

1 depots,

1 depots,

1 depots,

5 vehicl es
5 vehi cl es
6 vehicles
5 vehicl es
5 vehicl es
5 vehi cl es
6 vehicles
5 vehicl es
5 vehicl es
6 vehicl es

7

6
7
7
7
7
7
9

vehi cl es
vehi cl es
vehi cl es
vehi cl es
vehi cl es
vehi cl es
vehi cl es
vehi cl es

9 vehicles

and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and

vehi cl es

vehi cl es

vehi cl es

vehi cl es

vehi cl es

vehi cl es

vehi cl es

31
32
32
33
35
36
36
37
38
38
43
44
44
45
47
52
53
54
and

and

and

and

and

and

and

and

custoners with
custoners with
custoners with
custoners with
custoners with
custoners with
custoners with
custoners with
custoners with
custoners with
custoners with
custoners with
custoners with
custoners with
custoners with
custoners with
custoners with
custoners with

59 custoners with a

60

61

62

62

63

64

68

custoners

custoners

custoners

custoners

custoners

custoners

custoners

search
sear ch
search
search
search
sear ch
search
search
search
sear ch
search
search
search
sear ch
search
search
search
sear ch

DO O L L DYDY D OO DYDY DD

with a

with a

with a

with a

with a

with a

with a

space
space
space
space
space
space
space
space
space
space
space
space
space
space
space
space
space
space

of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of

10746.
10748.
10748.
10750.
10754.
10"756.
10756.
10”758.
10760.
10760.
10770.
10772.
10772.
10774.
10778.
10789.
10791.
10793.

search space of

search space of

search

search

search

search

search

search

space of

space of

space of

space of

space of

space of

43

http://neo.lcc.uma.es/vrp/
http://neo.lcc.uma.es/vrp/

Chapter 3. Use cases and examples

A-n80-k10 has 1 depots, 10 vehicles and 79 custonmers with a search space of
101149.
F-n135-k7 has 1 depots, 7 vehicles and 134 custoners with a search space of
101 285.
F-n45-k4 has 1 depots, 4 vehicles and 44 custonmers with a search space of 10772.
F-n72-k4 has 1 depots, 4 vehicles and 71 custoners with a search space of
101131,

CVRPTW instances (with time windows):

Sol onon_025_C101 has 1 depots, 25 vehicles and 25 custoners with a
search space of 107 34.
Sol oron_025_C201 has 1 depots, 25 vehicl es and 25 custoners with a
search space of 107 34.
Sol onon_025_R101 has 1 depots, 25 vehicles and 25 custoners with a
search space of 107 34.
Sol oron_025_R201 has 1 depots, 25 vehicl es and 25 custoners with a
search space of 107 34.
Sol onon_025_RC101 has 1 depots, 25 vehicles and 25 custoners with a
search space of 107 34.
Sol onmon_025_RC201 has 1 depots, 25 vehicles and 25 custoners with a
search space of 107 34.
Sol onon_100_C101 has 1 depots, 25 vehicles and 100 custoners with a
search space of 107200.
Sol oron_100_C201 has 1 depots, 25 vehicles and 100 custoners with a
search space of 107200.
Sol onon_100_R101 has 1 depots, 25 vehicles and 100 custoners with a
search space of 107200.
Sol oron_100_R201 has 1 depots, 25 vehicles and 100 custoners with a
search space of 107200.
Sol onon_100_RC101 has 1 depots, 25 vehicles and 100 custoners with a
search space of 107200.
Sol onron_100_RC201 has 1 depots, 25 vehicles and 100 custonmers with a

search space of 107200.
Honmberger 0200 _C1 2 1 has 1 depots, 50 vehicles and 200 custoners with a
search space of 107460.
Honmberger _0200_C2_2 1 has 1 depots, 50 vehicles and 200 custonmers with a
search space of 107460.
Honmberger 0200 R1 2 1 has 1 depots, 50 vehicles and 200 custoners with a
search space of 107460.
Honmberger _0200_R2_ 2 1 has 1 depots, 50 vehicles and 200 custonmers with a
search space of 107460.
Honmberger 0200 _RC1 2 1 has 1 depots, 50 vehicles and 200 custoners with a
search space of 107460.
Honmber ger _0200_RC2_2_1 has 1 depots, 50 vehicles and 200 custonmers with a
search space of 107460.

44

Vehicle routing

Honmberger _0400_Cl1_4 1 has
search space of 1071040
Honmber ger _0400_C2_4_1 has
search space of 1071040
Honmberger _0400_R1_4 1 has
search space of 1071040
Honmber ger _0400_R2_4 1 has
search space of 1071040
Honber ger _0400_RC1_4 1 has
search space of 1071040
Honmber ger _0400_RC2_4_1 has
search space of 1071040
Honmberger _0600_Cl1_6_1 has
search space of 1071666
Honmber ger _0600_C2_6_1 has
search space of 1071666
Honmberger _0600_R1_6_1 has
search space of 1071666
Honmberger _0600_R2_6_1 has
search space of 1071666
Honber ger _0600_RC1_6_1 has
search space of 1071666
Honmber ger _0600_RC2_6_1 has
search space of 1071666
Honmberger _0800_C1_8 1 has
search space of 1072322
Honmber ger _0800_C2_8_1 has
search space of 1072322
Honmberger _0800_R1_8 1 has
search space of 1072322
Honmberger _0800_R2_8 1 has
search space of 1072322
Honber ger _0800_RC1_8 1 has
search space of 1072322
Honmber ger _0800_RC2_8_1 has
search space of 1072322
Honmber ger _1000_C110_1 has
search space of 1073000
Homber ger _1000_C210_1 has
search space of 1073000
Honmber ger _1000_R110_1 has
search space of 1073000
Honmber ger _1000_R210_1 has
search space of 1073000
Honmber ger _1000_RC110_1 has
search space of 1073000
Honmber ger _1000_RC210_1 has
search space of 1073000

depot s,

depot s,

depot s,

depot s,

depot s,

depot s,

depot s,

depot s,

depot s,

depot s,

depot s,

depot s,

depot s,

depot s,

depot s,

depot s,

depot s,

depot s,

depot s,

depot s,

depot s,

depot s,

depot s,

depot s,

100

100

100

100

100

100

150

150

150

150

150

150

200

200

200

200

200

200

250

250

250

250

250

250

vehi cl es

vehi cl es

vehi cl es

vehi cl es

vehi cl es

vehi cl es

vehi cl es

vehi cl es

vehi cl es

vehi cl es

vehi cl es

vehi cl es

vehi cl es

vehi cl es

vehi cl es

vehi cl es

vehi cl es

vehi cl es

vehi cl es

vehi cl es

vehi cl es

vehi cl es

vehi cl es

vehi cl es

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

400

400

400

400

400

400

600

600

600

600

600

600

800

800

800

800

800

800

1000

1000

1000

1000

1000

1000

custoners

cust oners

custoners

cust oners

custoners

cust oners

custoners

cust oners

custoners

cust oners

custoners

cust oners

custoners

cust oners

custoners

cust oners

custoners

cust oners

custoners

cust oners

custoners

cust oners

custoners

cust oners

W th

wi th

W th

wi th

with

w th

W th

wi th

W th

wi th

with

w th

W th

w th

W th

w th

with

w th

with

w th

wi th

w th

W th

W th

45

Chapter 3. Use cases and examples

3.3.3.3. Domain model

@~PlanningSolution

Vehicle routing class diagram

VehicleRoutingSolution

@~PlanningEntityCollectionProperty

@PlanningEntity
| Standstill]<} Customer
AN r :
@PlanningVariable readyleme
'. ousStandstill dueTime
previousstandst serviceDuration |
nextCustomer ... 17| arrivalTime
) departureTime - |
vehicle ... '
1
| Vehicle
readyTime
dueTime | e
1 ’ 1
(Depot J [Location]

)

Shadow variables

arrivalTime =
previousS departureTime
+ travelTime

-+ departureTime =

max(arrivalTime, readyTime)
+ serviceDuration

nextCustomer =
inverse of previousStandstill

vehicle =
(this instanceof Vehicle)
7 this : previousS.vehicle

The vehicle routing with timewindows domain model makes heavily use of shadow variables. This
allows it to express its constraints more naturally, because properties such as arri val Ti mre and
depart ur eTi ne, are directly available on the domain model.

3.3.4. Project job scheduling

3.3.4.1. Problem statement

Schedule all jobs in time and execution mode to minimize project delays. Each job is part of a
project. A job can be executed in different ways: each way is an execution mode that implies a
different duration but also different resource usages. This is a form of flexible job shop scheduling.

46

Project job scheduling

Project job scheduling

For each job, choose an execution mode and a start time.

November
1 2 34 4 5 & 7T 8 9 10 11

Design
Cover

Pages (400/book)

Book 1 <

Assembly
Design
Cover

Pages (500/book)

Book 2 <

Assembly

A

1Gr_g.fdav

Resources < 1%;::33:

1 % fday

Hard constraints:

« Job precedence: a job can only start when all its predecessor jobs are finished.
» Resource capacity: do not use more resources then available.

» Resources are local (shared between jobs of the same project) or global (shared between
all jobs)

» Resource are renewable (capacity available per day) or nonrenewable (capacity available
for all days)

Medium constraints:

» Total project delay: minimize the duration (makespan) of each project.

Soft constraints:

» Total makespan: minimize the duration of the whole multi-project schedule.

47

Chapter 3. Use cases and examples

The problem is
mista2013challenge/].

defined by t

3.3.4.2. Problem size

Schedule A-1 has
and 150 resource
Schedul e A-2 has
and 420 resource
Schedul e A-3 has
and 630 resource
Schedul e A-4 has
and 390 resource
Schedul e A-5 has
and 900 resource
Schedul e A-6 has

2 projects,

he

requirements.

2 projects,

requi rements.

2 projects,

requirements.

5 projects,

requi rements.

5 projects, 1
requirements.

5 projects, 1

and 1440 resource
Schedul e A-7 has 10 projects,
900 resource requirenents.
Schedul e A-8 has 10 projects,
1860 resource requirenents.
Schedul e A-9 has 10 projects,
2880 resource requirements.
Schedul e A-10 has 10 projects,
2970 resource requirements.
Schedul e B-1 has 10 projects,
900 resource requirenents.
Schedul e B-2 has 10 projects,
1740 resource requirenents.
Schedul e B-3 has 10 projects,
3060 resource requirenments.
Schedul e B-4 has 15 projects,
1530 resource requirenents.
Schedul e B-5 has 15 projects,
2760 resource requirements.
Schedul e B-6 has 15 projects,
4500 resource requirements.
Schedul e B-7 has 20 projects,
1710 resource requirenents.
Schedul e B-8 has 20 projects,
3180 resource requirements.
Schedul e B-9 has 20 projects,
5940 resource requirements.
Schedul e B-10 has 20 projects,
4260 resource requirements.

requi rements.

120

220

320

320

120

220

320

180

330

480

240

440

640

460

MISTA 2013 challenge
24 jobs, 64 execution nodes,
44 j obs, 124 executi on nobdes
64 j obs, 184 execution nodes,
60 j obs, 160 execution nobdes,
10 j obs, 310 execution nodes,
60 | obs, 460 execution nodes,
jobs, 320 execution nodes, 22
jobs, 620 execution nodes, 22
jobs, 920 execution nodes, 31
jobs, 920 execution nodes, 31
jobs, 320 execution nodes, 31
jobs, 620 execution nodes, 22
jobs, 920 execution nodes, 31
jobs, 480 execution nodes, 46
jobs, 930 execution nodes, 46
jobs, 1380 execution nodes, 46
jobs, 640 execution nodes, 61
jobs, 1240 execution nodes, 42
jobs, 1840 execution nodes, 61
jobs, 1300 execution nodes, 42

[http://allserv.kahosl.be/

7 resources

7 resources

7 resources

16

16

resources

resources

16 resources

resources

resources

resources

resources

resources

resources

resources

resources

resources

resources

resources

resources

resources

resources

and

and

and

and

and

and

and

and

and

and

and

and

and

and

48

http://allserv.kahosl.be/mista2013challenge/
http://allserv.kahosl.be/mista2013challenge/
http://allserv.kahosl.be/mista2013challenge/

Hospital bed planning (PAS - Patient admission scheduling)

3.3.5. Hospital bed planning (PAS - Patient admission
scheduling)
3.3.5.1. Problem statement

Assign each patient (that will come to the hospital) into a bed for each night that the patient will
stay in the hospital. Each bed belongs to a room and each room belongs to a department. The
arrival and departure dates of the patients is fixed: only a bed needs to be assigned for each night.

This problem features overconstrained datasets.

Patient admission schedule

Assign each patient a hospital bed.

Largest admission first OptaPlanner
November November
1 2 3 4 5 6 7 1 2 3 4 5 3 T
| | | | | | | | | | | |
General ward
Room 11 bed 1 C
4-7
Room 11 bed 2
Intensive care®
Room 21 bed 1 ®
6-7
- no space

Hard constraints:
« 2 patients must not be assigned to the same bed in the same night. Weight: - 1000hard *
conflictNi ght Count.

» A room can have a gender limitation: only females, only males, the same gender in the same
night or no gender limitation at all. Weight: - 50hard * ni ght Count .

* A department can have a minimum or maximum age. Weight: - 100hard * ni ght Count .

49

Chapter 3. Use cases and examples

» A patient can require a room with specific equipment(s). Weight: - 50hard * ni ght Count .

Medium constraints:

e Assign every patient to a bed, unless the dataset is overconstrained. Weight: - 1medi um *

ni ght Count .

Soft constraints:

-8soft * night Count.

* ni ght Count .

A patient can prefer a maximum room size, for example if he/she want a single room. Weight:

A patient is best assigned to a department that specializes in his/her problem. Weight: - 10sof t

« A patient is best assigned to a room that specializes in his/her problem. Weight: - 20soft *

ni ght Count .

* That room specialism should be priority 1. Weight: - 10soft *

ni ght Count .

(priority

- 1) o+

« A patient can prefer a room with specific equipment(s). Weight: - 20soft * ni ght Count .

The problem is a variant on Kaho's Patient Scheduling [http://allserv.kahosl.be/~peter/pas/] and
the datasets come from real world hospitals.

3.3.5.2. Problem size

testdatalOl has 4
14 nights, 652
t est dat a02 has 6
14 nights, 755
testdat a03 has 5
14 nights, 708
t est dat a04 has 6
14 nights, 746
testdat a05 has 4
14 nights, 587
t est dat a06 has 4
14 nights, 685
testdat a07 has 6
14 nights, 519
t est dat a08 has 6
21 nights, 895
testdat a09 has 4
28 ni ghts, 1400
testdatal0 has 4
56 nights, 1575
testdatall has 4
91 nights, 2514

speci al i sns,
patients and
speci al i sns,
patients and
speci al i sns,
patients and
speci al i sns,
patients and
speci al i sns,
patients and
speci al i sns,
patients and
speci al i sns,
patients and
speci al i sns,
patients and
speci al i sns,
patients and
speci al i sns,
patients and
speci al i sns,
patients and

2 equi pments, 4
652 adni ssi ons
2 equi pnents, 6
755 admi ssi ons
2 equi pments, 5
708 adni ssi ons
2 equi pnents, 6
746 admi ssions
2 equi pments, 4
587 adni ssi ons
2 equi pments, 4
685 admi ssi ons
4 equi pnents, 6
519 adni ssi ons
4 equi prents, 6
895 admi ssi ons
4 equi prments, 4
1400 adni ssi ons
4 equi pnents, 4
1575 admi ssi ons
4 equi prments, 4
2514 admi ssi ons

departments, 98 roons,
with a search space of
departments, 151 roons,
with a search space of
departments, 131 roons,
with a search space of
departments, 155 roons,
with a search space of
departments, 102 roons,
with a search space of
departments, 104 roons,
with a search space of
departments, 162 roons,
with a search space of
departments, 148 roons,
with a search space of
departments, 105 roons,
with a search space of
departments, 104 roons,
with a search space of
departments, 107 roons,
with a search space of

286 beds,
1071601
465 beds,
1072013
395 beds,
1071838.
471 beds,
1071994.
325 beds,
1071474.
313 beds,
1071709
472 beds,
1071387
441 beds,
1072366
310 beds,
1073487
308 beds,
1073919
318 beds,
1076291

50

http://allserv.kahosl.be/~peter/pas/
http://allserv.kahosl.be/~peter/pas/

Difficult examples

testdatal2 has 4 specialisnms, 4 equipnments, 4 departnments, 105 roons, 310 beds,
84 nights, 2750 patients and 2750 adm ssions with a search space of 1076851.
testdatal3 has 5 specialisnms, 4 equipnments, 5 departments, 125 roons, 368 beds,
28 nights, 907 patients and 1109 admi ssions with a search space of 1072845.

3.4. Difficult examples

3.4.1. Exam timetabling (ITC 2007 track 1 - Examination)

3.4.1.1. Problem statement

Schedule each exam into a period and into a room. Multiple exams can share the same room
during the same period.

Examination Ann [History | Math]
timetabling Bobby [History | Math |
Assign each exam Carla | History |
soeeaans | (] Dan (Math Jchem
(E) Edna Chem| Bio | Geo|
Fred [Bio | [Eng |
Greg Geo | Eng
Most students first OptaPlanner
Room X | |[Room Y Room X | |RoomY
4 seats 3 seats 4 seats 3 seats

Mon 09:00 [History | [Chem Chem| Eng | [History |
o (A[B]c] [DJE] DJEJF @ [A]B]C
Math |F Bi Math Bi
Fri 09:00 I L Eﬂ 2
Geo Sgge
E
——

m

Fri 14:00

o) d

same time

Hard constraints:

« Exam conflict: 2 exams that share students must not occur in the same period.

* Room capacity: A room's seating capacity must suffice at all times.

51

Chapter 3. Use cases and examples

» Period duration: A period's duration must suffice for all of its exams.

» Period related hard constraints (specified per dataset):

» Coincidence: 2 specified exams must use the same period (but possibly another room).

» Exclusion: 2 specified exams must not use the same period.

 After: A specified exam must occur in a period after another specified exam's period.

* Room related hard constraints (specified per dataset):

» Exclusive: 1 specified exam should not have to share its room with any other exam.

Soft constraints (each of which has a parametrized penalty):

* The same student should not have 2 exams in a row.

» The same student should not have 2 exams on the same day.

» Period spread: 2 exams that share students should be a number of periods apart.

* Mixed durations: 2 exams that share a room should not have different durations.
» Front load: Large exams should be scheduled earlier in the schedule.

 Period penalty (specified per dataset): Some periods have a penalty when used.
* Room penalty (specified per dataset): Some rooms have a penalty when used.

It uses large test data sets of real-life universities.

The problem is defined by the International Timetabling Competition 2007 track 1 [http://
www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm]. Geoffrey De Smet finished 4th in
that competition with a very early version of OptaPlanner. Many improvements have been made

since then.

3.4.1.2. Problem size

exam conp_set1l has 7883 students, 607 exans, 54 periods, 7 roons,
constraints and O roomconstraints with a search space of 1071564.
exam conmp_set 2 has 12484 students, 870 exans, 40 periods, 49 roons,
constraints and 2 roomconstraints with a search space of 1072864.
exam conp_set3 has 16365 students, 934 exans, 36 periods, 48 roons,
constraints and 15 roomconstraints with a search space of 1073023.
exam conmp_set4 has 4421 students, 273 exans, 21 periods, 1 roons,
constraints and O roomconstraints with a search space of 107360.
exam conp_set5 has 8719 students, 1018 exans, 42 periods, 3 roons,
constraints and O roomconstraints with a search space of 1072138.
exam conmp_set6 has 7909 students, 242 exans, 16 periods, 8 roons,
constraints and O roomconstraints with a search space of 107509.

12

12

168

40

27

22

peri

peri

peri

peri

peri

peri

od

od

od

od

od

od

52

http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm
http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm
http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm

Exam timetabling (ITC 2007 track 1 - Examination)

exam conp_set 7 has 13795 students, 1096 exans, 80 periods, 15 roons, 28 period
constraints and O roomconstraints with a search space of 1073374.
exam conp_set8 has 7718 students, 598 exans, 80 periods, 8 rooms, 20 period

constraints and

3.4.1.3. Domain model

Below you can see the main exam

ination domain classes:

<<interface=>
Solution

~

<<singleton>=>

1 roomconstraints with a search space of 1071678.

<<singleton=>=
InstitutionParametrization

- twolnARowPenality : int
- twolnADayPenality : int
- periodSpreadLength : int

Examination —>1 . periodSpreadPenality : int
- mixedDurationPenality : int
- frontLoadLargeTopicSize : int
1 - examList - frontLoadLastPeriodSize : int
- frontLoadPenality : int
An exam changes during
sohving: 1.*
The exam.period and/or exam.
room reference change. <<@PlanningEntity ==
The exam.id and exam.topic = Exam
reference do not change. -
-id : long
- _-room
1 /- topic 4+ | - period ~.
Calculated before solving H 0.4 ||
. 1 N
I ! — Room
= - Period 1
TopicConflict -id : long
- -id :long - capacity : int
- studentSize : int - startDateTimeString : String B peﬁaltyy: int
- periodindex : int
0, - dayindex : int
" [- leftTopic 0.* - duration : int
- rightTopic - penalty : int
- frontLoadLast : boolean
1 1 .
RoomHardConstraint
Topic E————————
P - - topic | -id : long
-id : long [| PeriodHardConstraint
- duration : int - leftTopic | 4. long
- frontLoadlLarge : boolean 1
1+ - rightTopic
- sthidentList 1 1
0.*
<<enums== <<enum==
Student PeriodHardConstraintType RoomHardConstraintType
-id @ long - COINCIDENCE : int - ROOM_EXCLUSIVE : int
- EXCLUSION : int

- AFTER @ int

A
Mot asserted into the working
memory

]

Figure 3.3. Examination domain class diagram

53

Chapter 3. Use cases and examples

Notice that we've split up the exam concept into an Exam class and a Topi ¢ class. The Exam
instances change during solving (this is the planning entity class), when their period or room
property changes. The Topi c, Peri od and Roominstances never change during solving (these
are problem facts, just like some other classes).

3.4.2. Employee rostering (INRC 2010 - Nurse rostering)

3.4.2.1. Problem statement

For each shift, assign a nurse to work that shift.

Employee shift rostering

Populate each work shift with a nurse.

Maternity nurses Emergency nurses Basic nurses
Ann .Beth .Cory D|Dan .Elin .Greg H | Hue mllse
Largest staff first OptaPlanner
Sat Sun Mon Sat Sun Mon
6 14 22| & 14 22 6 14 22 6 14 22| & 14 22 6 14 22
| | | | | | | | | | | | | | | | | |
Maternity
nurses
Emergency
nurses
Any
nurses

54

Employee rostering (INRC 2010 - Nurse rostering)

Employee shift rostering

Hard constraints
Wed

6 14 22

Thu

6 14 22

Fri

6 14 22

Sat

6 14 22
| | |

Mon

6 14 22

Sun

6 14 22
| | |

Mon Tue
6 14 22 6 14 22

All required shifts must be assigned

No hard constraint broken => solution is feasible

55

Chapter 3. Use cases and examples

Employee shift rostering

Soft constraints
Wed

6 14 22
| | |

Thu

6 14 22
| | |

Fri

6 14 22

Sat

6 14 22
| |

Sun

6 14 22
| | |

Tue
6 14 22

Mon

Maximum consecutive working days for Ann: é
ﬂﬂﬂﬂﬂgﬂﬂﬂlllllllﬂﬂ1
1 2 3 6 7

1111111111111 (1(1
R

)
)

22 B[?[?[?]?[B]?[?]?]?]E]"
N F E
There are many more soft constraints...

The problem is defined by the International Nurse Rostering Competition 2010 [http://

www.kuleuven-kortrijk.be/nrpcompetition].

3.4.2.2. Problem size

There are 3 dataset types:

 sprint: must be solved in seconds.
* medium: must be solved in minutes.

« long: must be solved in hours.

toyl has 1 skills, 3 shiftTypes, 2 patterns, 1 contracts, 6 enployees, 7
shiftDates, 35 shiftAssignments and O requests with a search space of 10727.
toy2 has 1 skills, 3 shiftTypes, 3 patterns, 2 contracts, 20 enpl oyees, 28

shi ft Dat es, 180 shiftAssignnents and 140 requests with a search space of 107234.

sprint01 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 enpl oyees, 28
shi ft Dat es, 152 shiftAssignnents and 150 requests with a search space of 107152.

56

HBELBEENEENEENEan

v
m

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ
D) -
N

http://www.kuleuven-kortrijk.be/nrpcompetition
http://www.kuleuven-kortrijk.be/nrpcompetition
http://www.kuleuven-kortrijk.be/nrpcompetition

Employee rostering (INRC 2010 - Nurse rostering)

sprint02 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 enpl oyees, 28
shi ftDates, 152 shiftAssignments and 150 requests with a search space of 107152.
sprint03 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 enpl oyees, 28
shi ft Dat es, 152 shiftAssignments and 150 requests with a search space of 107152.
spri nt 04 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 enpl oyees, 28
shi ft Dates, 152 shiftAssignments and 150 requests with a search space of 107152.
sprint 05 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 enpl oyees, 28
shi ft Dat es, 152 shiftAssignments and 150 requests with a search space of 107152.
sprint 06 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 enpl oyees, 28
shi ftDates, 152 shiftAssignments and 150 requests with a search space of 107152.
sprint 07 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 enpl oyees, 28
shi ft Dat es, 152 shiftAssignments and 150 requests with a search space of 107152.
sprint08 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 enpl oyees, 28
shi ftDates, 152 shiftAssignments and 150 requests with a search space of 107152.
sprint 09 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 enpl oyees, 28
shi ft Dat es, 152 shiftAssignments and 150 requests with a search space of 107152.
sprint 10 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 enpl oyees, 28
shi ft Dates, 152 shiftAssignments and 150 requests with a search space of 107152.
sprint_hint0Ol has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 enpl oyees,
28 shiftDates, 152 shiftAssignments and 150 requests with a search space of
107152.

sprint_hint02 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 enpl oyees,
28 shiftDates, 152 shiftAssignments and 150 requests with a search space of
107152.

sprint_hint03 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 enpl oyees,
28 shiftDates, 152 shiftAssignnments and 150 requests with a search space of
107152.

sprint_lateOl has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 enpl oyees,
28 shiftDates, 152 shiftAssignments and 150 requests with a search space of
107152.

sprint_late02 has 1 skills, 3 shiftTypes, 4 patterns, 3 contracts, 10 enpl oyees,
28 shiftDates, 144 shiftAssignments and 139 requests with a search space of
107144,

sprint_late03 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 enpl oyees,
28 shiftDates, 160 shiftAssignments and 150 requests with a search space of
107160.

sprint_late04 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 enpl oyees,
28 shiftDates, 160 shiftAssignments and 150 requests with a search space of
107160.

sprint_late05 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 enpl oyees,
28 shiftDates, 152 shiftAssignments and 150 requests with a search space of
107152.

sprint_|late06 has 1 skills, 4 shiftTypes, O patterns, 3 contracts, 10 enpl oyees,
28 shiftDates, 152 shiftAssignments and 150 requests with a search space of
107152.

sprint_late07 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 enpl oyees,
28 shiftDates, 152 shiftAssignments and 150 requests with a search space of
107152.

57

Chapter 3. Use cases and examples

sprint_late08 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 enpl oyees,
28 shiftDates, 152 shiftAssignnents and 0 requests with a search space of
107152.

sprint_late09 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 enpl oyees,
28 shiftDates, 152 shiftAssignnents and 0 requests with a search space of
107152.

sprint_latel0 has 1 skills, 4 shiftTypes, O patterns, 3 contracts, 10 enpl oyees,
28 shiftDates, 152 shiftAssignments and 150 requests with a search space of
107152.

medi unD1 has 1 skills, 4 shiftTypes, O patterns, 4 contracts, 31 enpl oyees, 28
shi ft Dat es, 608 shiftAssignments and 403 requests with a search space of 107906.
medi unD2 has 1 skills, 4 shiftTypes, O patterns, 4 contracts, 31 enpl oyees, 28
shi ft Dat es, 608 shiftAssignments and 403 requests with a search space of 107906.
medi unD3 has 1 skills, 4 shiftTypes, O patterns, 4 contracts, 31 enpl oyees, 28
shi ft Dat es, 608 shi ftAssi gnments and 403 requests with a search space of 107906.
medi unD4 has 1 skills, 4 shiftTypes, O patterns, 4 contracts, 31 enpl oyees, 28
shi ft Dat es, 608 shiftAssignments and 403 requests with a search space of 107906.
medi unD5 has 1 skills, 4 shiftTypes, O patterns, 4 contracts, 31 enpl oyees, 28

shi ft Dat es, 608 shiftAssignments and 403 requests with a search space of 107906.

medi um hint01 has 1 skills, 4 shiftTypes, 7 patterns, 4 contracts, 30 enpl oyees,
28 shiftDates, 428 shiftAssignnments and 390 requests with a search space of
107632.

medi um hint02 has 1 skills, 4 shiftTypes, 7 patterns, 3 contracts, 30 enpl oyees,
28 shiftDates, 428 shiftAssignments and 390 requests with a search space of
107632.

medi um hint03 has 1 skills, 4 shiftTypes, 7 patterns, 4 contracts, 30 enpl oyees,
28 shiftDates, 428 shiftAssignments and 390 requests with a search space of
107632.

medi um | ate01 has 1 skills, 4 shiftTypes, 7 patterns, 4 contracts, 30 enpl oyees,
28 shiftDates, 424 shiftAssignments and 390 requests with a search space of
107626.

medi um | ate02 has 1 skills, 4 shiftTypes, 7 patterns, 3 contracts, 30 enpl oyees,
28 shiftDates, 428 shiftAssignnments and 390 requests with a search space of
107632.

medi um | ate03 has 1 skills, 4 shiftTypes, 0 patterns, 4 contracts, 30 enpl oyees,
28 shiftDates, 428 shiftAssignments and 390 requests with a search space of
107632.

medi um | ate04 has 1 skills, 4 shiftTypes, 7 patterns, 3 contracts, 30 enpl oyees,
28 shiftDates, 416 shiftAssignments and 390 requests with a search space of
107614.

medi um | ate05 has 2 skills, 5 shiftTypes, 7 patterns, 4 contracts, 30 enpl oyees,
28 shiftDates, 452 shiftAssignments and 390 requests with a search space of
107667.

| ong01 has 2 skills, 5 shiftTypes, 3 patterns, 3 contracts, 49 enpl oyees,
28 shiftDates, 740 shiftAssignments and 735 requests with a search space of
10711250.

58

Traveling tournament problem (TTP)

| ong02 has 2 skills, 5 shiftTypes, 3 patterns, 3 contracts, 49 enpl oyees,
28 shiftDates, 740 shiftAssignnments and 735 requests with a search space of
10"11250.
ong03 has 2 skills, 5 shiftTypes, 3 patterns, 3 contracts, 49 enpl oyees,
28 shiftDates, 740 shiftAssignments and 735 requests with a search space of
10711250.
ong04 has 2 skills, 5 shiftTypes, 3 patterns, 3 contracts, 49 enpl oyees,
28 shiftDates, 740 shiftAssignments and 735 requests with a search space of
10711250.
ong05 has 2 skills, 5 shiftTypes, 3 patterns, 3 contracts, 49 enpl oyees,
28 shiftDates, 740 shiftAssignments and 735 requests with a search space of
1071250.
ong_hint0l has 2 skills, 5 shiftTypes, 9 patterns, 3 contracts, 50 enpl oyees,
28 shiftDates, 740 shiftAssignnents and 0 requests with a search space of
1011257.
ong_hint02 has 2 skills, 5 shiftTypes, 7 patterns, 3 contracts, 50 enpl oyees,
28 shiftDates, 740 shiftAssignnents and 0 requests with a search space of
1011257.
ong_hint03 has 2 skills, 5 shiftTypes, 7 patterns, 3 contracts, 50 enpl oyees,
28 shiftDates, 740 shiftAssignnents and 0 requests with a search space of
10"11257.
ong late0l has 2 skills, 5 shiftTypes, 9 patterns, 3 contracts, 50 enpl oyees,
28 shiftDates, 752 shiftAssignnents and 0 requests with a search space of
1011277.
ong late02 has 2 skills, 5 shiftTypes, 9 patterns, 4 contracts, 50 enpl oyees,
28 shiftDates, 752 shiftAssignnents and 0 requests with a search space of
1011277.
ong |l ate03 has 2 skills, 5 shiftTypes, 9 patterns, 3 contracts, 50 enpl oyees,
28 shiftDates, 752 shiftAssignnents and 0 requests with a search space of
1011277.
ong_l ate04 has 2 skills, 5 shiftTypes, 9 patterns, 4 contracts, 50 enpl oyees,
28 shiftDates, 752 shiftAssignnents and 0 requests with a search space of
1011277.
ong late05 has 2 skills, 5 shiftTypes, 9 patterns, 3 contracts, 50 enpl oyees,
28 shiftDates, 740 shiftAssignnents and 0 requests with a search space of
10"11257.

3.4.3. Traveling tournament problem (TTP)

3.4.3.1. Problem statement

Schedule matches between n teams.

59

Chapter 3. Use cases and examples

[Philadephia Phillies 30 1 Traveling [Montréal Expos 0
[1_awayto tournament (1 [MON] VS 0
[2 away to m 330 Schedule each match [2 [MON] VS m 0
[3 [PHI J 0 in a timeslot. [3 [MON] VS 929
[4 [PHI]VS (4 away to

|5 [PHI]VS[MON| s (5 awayto ﬁ}]] 30
[6 away to 665 (6 awayto 337

Team distance: 2.011 |

OptaPlanner

Total distance:
8.276

Hard constraints:

» Each team plays twice against every other team: once home and once away.

» Each team has exactly 1 match on each timeslot.

» No team must have more than 3 consecutive home or 3 consecutive away matches.
» No repeaters: no 2 consecutive matches of the same 2 opposing teams.

Soft constraints:

* Minimize the total distance traveled by all teams.

The problem is defined on Michael Trick's website (which contains the world records too) [http://
mat.gsia.cmu.edu/TOURNY/].

3.4.3.2. Problem size

1-nl 04 has 6 days, 4 teanms and 12 matches with a search space of 1079.

60

http://mat.gsia.cmu.edu/TOURN/
http://mat.gsia.cmu.edu/TOURN/
http://mat.gsia.cmu.edu/TOURN/

Traveling tournament problem (TTP)

1-nl 06 has 10 days, 6 teans and 30 natches with a search space of 10730.
1-nl 08 has 14 days, 8 teans and 56 nmatches with a search space of 10764.
1-nl 10 has 18 days, 10 teans and 90 matches with a search space of 107112.
1-nl 12 has 22 days, 12 teans and 132 natches with a search space of 107177.
1-nl 14 has 26 days, 14 teans and 182 matches with a search space of 107257.
1-nl 16 has 30 days, 16 teans and 240 natches with a search space of 107354.

2- bra24 has 46 days, 24 teanms and 552 matches with
3-nfl 16 has 30 days, 16 teanms and 240 matches with
3-nfl 18 has 34 days, 18 teans and 306 natches with
3-nfl 20 has 38 days, 20 teans and 380 natches with
3-nfl 22 has 42 days, 22 teanms and 462 matches with
3-nfl 24 has 46 days, 24 teanms and 552 matches with
3-nfl 26 has 50 days, 26 teans and 650 matches with
3-nfl 28 has 54 days, 28 teans and 756 matches with
3-nfl 30 has 58 days, 30 teanms and 870 matches with
3-nfl 32 has 62 days, 32 teanms and 992 matches with
4-super04 has 6 days, 4 teans and 12 matches with
4-super 06 has 10 days, teans and 30 matches with
4-super08 has 14 days, 8 teans and 56 matches with
4-super10 has 18 days, 10 teanms and 90 matches with
4-super12 has 22 days, 12 teans and 132 natches with
4-super14 has 26 days, 14 teans and 182 matches with
5-gal axy04 has 6 days, 4 teans and 12 matches with
5-gal axy06 has 10 days, 6 teanms and 30 natches with
5-gal axy08 has 14 days, 8 teans and 56 natches with
5-gal axyl0 has 18 days, 10 teans and 90 natches with
5-gal axyl2 has 22 days, 12 teanms and 132 matches with
5-gal axyl4 has 26 days, 14 teans and 182 matches with
5-gal axyl16 has 30 days, 16 teans and 240 matches with
5-gal axyl8 has 34 days, 18 teans and 306 matches with
5- gal axy20 has 38 days, 20 teans and 380 matches with
5-gal axy22 has 42 days, 22 teans and 462 matches with
5-gal axy24 has 46 days, 24 teans and 552 matches with
5-gal axy26 has 50 days, 26 teans and 650 matches with
5- gal axy28 has 54 days, 28 teans and 756 matches with
5-gal axy30 has 58 days, 30 teans and 870 matches with
5-gal axy32 has 62 days, 32 teans and 992 matches with
5-gal axy34 has 66 days, 34 teans and 1122 natches with
5-gal axy36 has 70 days, 36 teans and 1260 matches with
5-gal axy38 has 74 days, 38 teans and 1406 nmatches with
5-gal axy40 has 78 days, 40 teans and 1560 natches with

search space of 107917.
search space of 107354.
search space of 107468.
search space of 107600.
search space of 107749.
search space of 1071917.
search space of 1071104.
search space of 1071309.
search space of 1071534.
search space of 1071778.
search space of 1079.
search space of 10730.
search space of 10764.
search space of 107112.
search space of 107177.
search space of 107257.
search space of 1079.
search space of 10730.
sear ch space of 10764.
search space of 107112.
search space of 107177.
search space of 107257.
search space of 107354.
search space of 107468.
search space of 107600.
search space of 107749.
search space of 107917.
search space of 1071104.
search space of 1071309.
search space of 1071534.
search space of 1071778.
search space of 1072041.
search space of 1072324.
search space of 1072628.
search space of 1072951.

]

SV« DI <D« DI « DI VN « I « DB« RN S N D N D <D T D TN « D O <D R S B D O DO < B« DI B« N D R D B B < R < R « DI « VI « I « DR « DR < I < B B R]

61

62

Chapter 4.

Chapter 4. Planner configuration

4.1. Overview

Solving a planning problem with OptaPlanner consists out of 5 steps:

1. Model your planning problem as a class that implements the interface Sol ut i on, for example

the class NQueens

2. Configure a Sol ver, for example a First Fit and Tabu Search solver for any NQueens instance.

3. Load a problem data set from your data layer, for example a 4 Queens instance. That is the

planning problem.

4. Solve it with Sol ver. sol ve(pl anni ngPr obl em) .

5. Get the best solution found by the Sol ver with Sol ver . get Best Sol uti on().

Domain (java, .

Input/Output overview

Score function (.

Hard constraints:

([Computer Je——— Process) - CPU power capacity

Problem dataset 1

Process C

(Computer ¥)

[ProcessD)

[FrocessE)

(Computer Z }

[ProcessF)

(Process G

CloudBalance

- RAM memory capacity
- Network bandwidth capacity

Soft constraints:
- Minimize maintenance cost

-

buildSalver()

solve(problem)

van)

Solver

getBestSolution()

Solution dataset 1

= { ProcessE)

{ Computer Z J¢e—— PracessF)
S EEEE

63

Chapter 4. Planner configuration

4.2. Solver configuration

4.2.1. Solver configuration by XML file

Build a Sol ver instance with the Sol ver Fact or y. Configure it with a solver configuration XML file,
provided as a classpath resource (as definied by C assLoader . get Resour ce()):

Sol ver Fact ory sol ver Factory = Sol ver Fact ory. cr eat eFr onXm Resour ce(
"or g/ opt apl anner/ exanpl es/ nqueens/ sol ver/ nqueensSol ver Confi g. xm ") ;
Sol ver sol ver = sol verFactory. buil dSol ver ();

In a typical project (following the Maven directory structure), that solverConfig XML file would
be located at $PRQIECT DI R/ src/ mai n/ resources/ or g/ opt apl anner/ exanpl es/ nqueens/
sol ver/ nqueensSol ver Confi g. xni . Alternatively, a Sol ver Fact or y can be created fromakFi | e,
an | nput Streamor a Reader with methods such as Sol ver Fact ory. creat eFronmXm Fi | e().
However, for portability reasons, a classpath resource is recommended.

A solver configuration file looks something like this:

<?xm version="1.0" encodi ng="UTF-8"?>
<sol ver >
<I-- Define the nodel -->
<sol uti onCl ass>or g. opt apl anner . exanpl es. nqueens. domai n. NQueens</
sol uti onCl ass>
<pl anni ngEntityCl ass>or g. opt apl anner . exanpl es. nqueens. domai n. Queen</
pl anni ngEnti tyd ass>

<I-- Define the score function -->
<scoreDi rect or Fact ory>
<scoreDefinitionType>SlI MPLE</ scor eDefi ni ti onType>
<scor eDr | >or g/ opt apl anner/ exanpl es/ nqueens/ sol ver/ nQueensScor eRul es. dr | </
scorebDr| >
</ scoreDirectorFact ory>

<l-- Configure the optim zation algorithn(s) -->
<term nation>

</term nation>
<constructi onHeuristic>

</ constructionHeuristic>
<l ocal Sear ch>

</l ocal Search>
</ sol ver >

64

Solver configuration by Java API

Notice the 3 parts in it:

» Define the model

 Define the score function

» Configure the optimization algorithm(s)

These various parts of a configuration are explained further in this manual.

OptaPlanner makes it relatively easy to switch optimization algorithm(s) just by changing
the configuration. There's even a Benchmar k utility which allows you to play out different
configurations against each other and report the most appropriate configuration for your problem.
You could for example play out tabu search versus simulated annealing, on 4 queens and 64
gueens.

4.2.2. Solver configuration by Java API

A solver configuration can also be configured with the Sol ver Conf i g API. This especially useful
to change some values dynamically at runtime, for example to change the running time based on
user input, before building the Sol ver:

Sol ver Factory sol ver Factory = Sol ver Fact ory. cr eat eFr omXm Resour ce(
"or g/ opt apl anner/ exanpl es/ nqueens/ sol ver/ nqueensSol ver Confi g. xm ") ;

Sol ver Confi g sol verConfig = sol verFactory. get Sol ver Confi g();
Term nationConfi g term nati onConfig = sol ver Confi g. get Term nati onConfig();
term nati onConfig. setM nutesSpentLimt(userlnput);

Sol ver sol ver = sol verFactory. buil dSol ver();

Every element in the solver configuration XML is available as a * Confi g class or a property on
a *Confi g class in the package namespace or g. opt apl anner . core. confi g. These *Confi g
classes are the Java representation of the XML format and they also provide the user-friendly way
to assemble the runtime components (of the package namespace or g. opt apl anner. core. i npl)
into an efficient Sol ver .

4.3. Model your planning problem

4.3.1. Is this class a problem fact or planning entity?

Look at a dataset of your planning problem. You 'll recognize domain classes in there, each of
which can be categorized as one of these:

« A unrelated class: not used by any of the score constraints. From a planning standpoint, this
data is obsolete.

65

Chapter 4. Planner configuration

« A problem fact class: used by the score constraints, but does NOT change during planning
(as long as the problem stays the same). For example: Bed, Room Shi ft, Enpl oyee, Topi c,
Peri od, ...

e A planning entity class: used by the score constraints and changes during planning. For
example: BedDesi gnat i on, Shi f t Assi gnment , Exam ...

Ask yourself: What class changes during planning? Which class has variables that | want the
Sol ver to change for me? That class is a planning entity. Most use cases have only 1 planning
entity class.

@ Note

In , problem facts can change during planning, because the
problem itself changes. However, that doesn't make them planning entities.

A good model can greatly improve the success of your planning implementation. For inspiration,
take a look at how the examples modeled their domain:

Entity, variable and value examples

Use case planning entity planning variable planning value
row
N queens [Queen } : 7 { Row
computer
Cloud balancing | Process = P - [Computer

employee (

Employee rostering [ShiftAssignment } . il Employee
eriod -
Course scheduling [Lecture } - P 7 [Period
room
k _ [Room
171
iousStandstill
Vehicle routing | Customer] Oprfmus anest - [Standstill
[Vehicle

66

Problem fact

When in doubt, it's usually the many side of a many to one relationship that is the planning entity.
For example in employee rostering, the planning entity class is Shi f t Assi gnment , not Enpl oyee.
Vehicle routing is special, because it uses a chained planning variable.

In OptaPlanner all problems facts and planning entities are plain old JavaBeans (POJO's).
You can load them from a database (JDBC/JPA/JDO), an XML file, a data repository, a noSQL
cloud, ...: OptaPlanner doesn't care.

4.3.2. Problem fact

A problem fact is any JavaBean (POJO) with getters that does not change during planning.
Implementing the interface Seri al i zabl e is recommended (but not required). For example in n
queens, the columns and rows are problem facts:

public class Colum inplenents Serializable {

private int index;

/[l ... getters

public class Row inplenments Serializable {
private int index;

Il ... getters

A problem fact can reference other problem facts of course:

public class Course inplenents Serializable {
private String code;
private Teacher teacher; // O her problem fact
private int |ectureSi ze;

private int m nWrkingDaySi ze;

private List<Curriculunms curriculunlist; // Oher problemfacts
private int studentSi ze;

/[l ... getters

67

Chapter 4. Planner configuration

A problem fact class does not require any Planner specific code. For example, you can reuse your
domain classes, which might have JPA annotations.

a cached problem fact

4.3.3. Planning entity

4.3.3.1. Planning entity annotation

A planning entity is a JavaBean (POJO) that changes during solving, for example a Queen that
changes to another row. A planning problem has multiple planning entities, for example for a single
n queens problem, each Queen is a planning entity. But there's usually only 1 planning entity class,
for example the Queen class.

A planning entity class needs to be annotated with the @l anni ngEnt i t y annotation.

Each planning entity class has 1 or more planning variables. It usually also has 1 or more defining
properties. For example in n queens, a Queen is defined by its Col untm and has a planning variable
Row. This means that a Queen's column never changes during solving, while its row does change.

@ anni ngEntity
public class Queen {

private Colum col um;

/'l Planning variabl es: changes during pl anni ng, between score cal cul ati ons.
private Row row,

/1l ... getters and setters

A planning entity class can have multiple planning variables. For example, a Lect ur e is defined
by its Cour se and its index in that course (because 1 course has multiple lectures). Each Lect ur e
needs to be scheduled into a Peri od and a Roomso it has 2 planning variables (period and room).

68

Planning entity

For example: the course Mathematics has 8 lectures per week, of which the first lecture is Monday
morning at 08:00 in room 212.

@l anni ngEntity
public class Lecture {

private Course course;
private int |ecturel ndexl nCourse;

/'l Pl anni ng vari abl es: changes during pl anni ng, between score cal cul ati ons.
private Period period;

private Room room

/1

The solver configuration also needs to be made aware of each planning entity class:

<sol ver >

<pl anni ngEnti t yCl ass>or g. opt apl anner. exanpl es. nqueens. domai n. Queen</
pl anni ngEnti tyC ass>

</ sol ver >

Some uses cases have multiple planning entity classes. For example: route freight and trains
into railway network arcs, where each freight can use multiple trains over its journey and each
train can carry multiple freights per arc. Having multiple planning entity classes directly raises the
implementation complexity of your use case.

69

Chapter 4. Planner configuration

4.3.3.2. Planning entity difficulty

Some optimization algorithms work more efficiently if they have an estimation of which planning
entities are more difficult to plan. For example: in bin packing bigger items are harder to fit, in
course scheduling lectures with more students are more difficult to schedule and in n queens the
middle queens are more difficult to fit on the board.

Therefore, you can seta di ffi cul t yConpar at or G ass to the @l anni ngEnt i t y annotation:

@ anni ngEntity(difficultyConparatord ass = C oudProcessDi fficul t yConparator.cl ass)
public class d oudProcess {
Il

public class O oudProcessDifficultyConparator inplenents Conparator<C oudProcess> {

public int conpare(C oudProcess a, d oudProcess b) {
return new ConpareToBui |l der ()
. append(a. get Requi redMul ti plicand(), b.getRequiredMiltiplicand())
.append(a.getld(), b.getld())
.toCompari son();

Alternatively, you can also set a difficul t ywei ght Fact oryd ass to the @l anni ngEntity
annotation, so you have access to the rest of the problem facts from the Sol uti on too:

@ anni ngEntity(difficultyWightFactoryC ass = QueenDi fficul tyWight Factory. cl ass)
public class Queen {
I/

See sorted selection for more information.

Important

Difficulty should be implemented ascending: easy entities are lower, difficult
entities are higher. For example in bin packing: small item < medium item < big
item.

70

Planning variable

Even though some algorithms start with the more difficult entities first, they just

reverse the ordering.

None of the current planning variable state should be used to compare planning entity difficult.
During construction heuristics, those variables are likely to be nul | anyway. For example, a
Queen's r ow variable should not be used.

4.3.4. Planning variable

4.3.4.1. Planning variable annotation

A planning variable is a property (including getter and setter) on a planning entity. It points to a
planning value, which changes during planning. For example, a Queen's r owproperty is a planning
variable. Note that even though a Queen's r ow property changes to another Row during planning,
no Row instance itself is changed.

A planning variable getter needs to be annotated with the @l anni ngVari abl e annotation, which
needs a non-empty val ueRangePr ovi der Ref s property.
@l anni ngEntity
public class Queen {
private Row row;
Il
@ anni ngVari abl e(val ueRangePr ovi der Refs = {"rowRange"})

public Row get Row() {
return row,

public void set Rowm Row row) {
this.row = row,

The val ueRangePr ovi der Ref s property defines what are the possible planning values for this
planning variable. It references 1 or more @/al ueRangePr ovi der i d's.

4.3.4.2. Nullable planning variable

By default, an initialized planning variable cannot be nul I, so an initialized solution will never
use nul I for any of its planning variables. In an over-constrained use case, this can be contra

71

Chapter 4. Planner configuration

productive. For example: in task assignment with too many tasks for the workforce, we would
rather leave low priority tasks unassigned instead of assigning them to an overloaded worker.

To allow an initialized planning variable to be nul | , set nul | abl e to t r ue:

@ anni ngVariable(..., nullable = true)
public Worker getWrker() {
return worker;

Important

Planner will automatically add the value nul | to the value range. There is no need
to add nul | in a collection used by a Val ueRangePr ovi der .

. Note
e

Using a nullable planning variable implies that your score calculation is responsible
for punishing (or even rewarding) variables with a null value.

Repeated planning (especially real-time planning) does not mix well with a nullable planning
variable: every time the Solver starts or a problem fact change is made, the construction
heuristics will try to initialize all the nul | variables again, which can be a huge waste of time.
One way to deal with this, is to change when a planning entity should be reinitialized with an
reinitializeVariableEntityFilter:

@l anningVariable(..., nullable = true, reinitializeVariableEntityFilter = ReinitializeTasl
public Worker getWrker() {
return worker;

4.3.4.3. When is a planning variable considered initialized?

A planning variable is considered initialized if its value is not null or if the variable is
nul | abl e. So a nullable variable is always considered initialized, even when a custom
reinitializeVariabl eEntityFilter triggers a reinitialization during construction heuristics.

A planning entity is initialized if all of its planning variables are initialized.

A Sol uti on is initialized if all of its planning entities are initialized.

72

Planning value and planning value ranges

4.3.5. Planning value and planning value ranges

4.3.5.1. Planning value

A planning value is a possible value for a planning variable. Usually, a planning value is a problem
fact, but it can also be any object, for example a doubl e. It can even be another planning entity
or even a interface implemented by both a planning entity and a problem fact.

A planning value range is the set of possible planning values for a planning variable. This set can
be a countable (for example row 1, 2, 3 or 4) or uncountable (for example any doubl e between
0.0 and 1. 0).

4.3.5.2. Planning value range provider

4.3.5.2.1. Introduction

The value range of a planning variable is defined with the @/al ueRangePr ovi der annotation.
A @al ueRangeProvi der annotation always has a property i d, which is referenced by the
@ anni ngVar i abl e's property val ueRangePr ovi der Ref s.

This annotation can be located on 2 types of methods:

« On the Solution: All planning entities share the same value range.
» On the planning entity: The value range differs per planning entity. This is less common.

The return type of that method can be 2 types:

e Col |l ecti on: The value range is defined by a Col | ecti on (usually aLi st) of it's possible values.

» Val ueRange: The value range is defined by its bounds. This is less common.
4.3.5.2.2. val ueRangePr ovi der on the Sol ution

All instances of the same planning entity class share the same set of possible planning values for
that planning variable. This is the most common way to configure a value range.

The Sol ut i on implementation has method which returns a Col | ecti on (or a Val ueRange). Any
value from that Col | ecti on is a possible planning value for this planning variable.

@ anni ngVari abl e(val ueRangeProvi derRefs = {"rowRange"})
publ i c Row get Row() {
return row

@ anni ngSol uti on
public class NQueens inplenments Sol uti on<Si npl eScore> {

73

Chapter 4. Planner configuration

Il

@/al ueRangeProvi der (id = "rowRange")
public List<Row> get RowList() {
return rowlist;

Important

That Col | ecti on (or Val ueRange) must not contain the value nul | , not even for
a nullable planning variable.

4.3.5.2.3. val ueRangePr ovi der on the planning entity

Each planning entity has its own set of possible planning values for a planning variable. For
example, if a teacher can never teach in a room that does not belong to his department, lectures
of that teacher can limit their room value range to the rooms of his department.

@ anni ngVari abl e(val ueRangeProvi der Refs = {"possi bl eRoonmRange"})
publ i c Room get Room() {
return room

@/al ueRangeProvi der (id = "possi bl eRoomRange")
publ i c Li st <Roonm> get Possi bl eRoonli st () {
return get Course().get Teacher (). get Possi bl eRoonli st ();

Never use this to enforce a soft constraint (or even a hard constraint when the problem might not
have a feasible solution). For example: Unless there is no other way, a teacher can not teach in
a room that does not belong to his department. In this case, the teacher should not be limited in
his room value range (because sometimes there is no other way).

E] Note
By limiting the value range specifically of 1 planning entity, you are effectively
creating a build-in hard constraint. This can be a very good thing, as the number
of possible solutions is severely lowered. But this can also be a bad thing because
it takes away the freedom of the optimization algorithms to temporarily break that
constraint in order to escape a local optima.

74

Planning value and planning value ranges

A planning entity should not use other planning entities to determinate its value range. That would
only try to make it solve the planning problem itself and interfere with the optimization algorithms.

A Warning

A value range on planning entity is not (yet) compatible with a chained variable,
nor with generic swap moves.

4.3.5.2.4. val ueRangeFact ory

Instead of a Col | ecti on, you can also return a Val ueRange or Count abl eVal ueRange, build by
the Val ueRangeFact ory:

@/al ueRangeProvi der (id = "del ayRange")
publ i ¢ Count abl eVal ueRange<I nt eger > get Del ayRange() {
return Val ueRangeFact ory. creat el nt Val ueRange(0, 5000);

A Val ueRange uses far less memory, because it only holds the bounds. In the example above, a
Col | ecti on would need to hold all 5000 ints, instead of just the 2 bounds.

Furthermore, an i ncr ement Uni t can be specified, for example if you have to buy stocks in units
of 200 pieces:

@/al ueRangePr ovi der (i d = "st ockAnbunt Range")
publ i c Count abl eVal ueRange<I nt eger > get St ockAnmount Range() {
/'l Range: 0, 200, 400, 600, ..., 9999600, 9999800, 10000000
return Val ueRangeFact ory. creat el nt Val ueRange(0, 10000000, 200);

@ Note
Return Count abl evVal ueRange instead of Val ueRange whenever possible (so
OptaPlanner knows it's countable).

The Vval ueRangeFact ory supports several value class types:

e int:Aninteger range.

» doubl e: A floating point range which only supports random selection (because it does not
implement Count abl eVal ueRange).

75

Chapter 4. Planner configuration

* Bi gDeci mal : A decimal point range. By default, the increment unit is the lowest non-zero value
in the scale of the bounds.

4.3.5.2.5. Combining ValueRangeProviders

Value range providers can be combined, for example:

@ anni ngVari abl e(val ueRangeProvi der Ref s = {" conpanyCar Range", "personal Car Range"})
public Car getCar() {
return car;

@al ueRangePr ovi der (i d = "conpanyCar Range")
public List<ConpanyCar> get ConpanyCar Li st () {
return conmpanyCarLi st;

@/al ueRangePr ovi der (id = "personal Car Range")
public List<Personal Car> get Personal CarList() {
return personal CarlList;

4.3.5.3. Planning value strength

Some optimization algorithms work more efficiently if they have an estimation of which planning
values are stronger, which means they are more likely to satisfy a planning entity. For example: in
bin packing bigger containers are more likely to fit an item and in course scheduling bigger rooms
are less likely to break the student capacity constraint.

Therefore, you can set a st r engt hConpar at or ass to the @l anni ngVvari abl e annotation:

@l anni ngVari abl e(..., strengthConparatord ass = C oudConput er St rengt hConpar at or . cl ass)
publi ¢ C oudConput er get Conmputer() {
Il

public class O oudConputer Strengt hConparator inplenents Conparat or <C oudConput er > {

public int conpare(Cd oudConputer a, Cl oudConputer b) {
return new ConpareToBui |l der ()
.append(a. getMul tiplicand(), b.getMiltiplicand())
.append(b. getCost (), a.getCost()) // Descending (but this
i s debat abl e)

76

Planning value and planning value ranges

.append(a.getld(), b.getld())
. toConpari son();

@ Note
If you have multiple planning value classes in the same value range, the
st rengt hConpar at or Cl ass needs to implement a Conparat or of a common
superclass (for example Conpar at or <Cbj ect >) and be able to handle comparing
instances of those different classes.

Alternatively, you can also set a strengt hWi ght Fact oryd ass to the @l anni ngVari abl e
annotation, so you have access to the rest of the problem facts from the solution too:

@l anni ngVari abl e(..., strengthWi ght FactoryC ass = RowStrengt hWei ght Fact ory. cl ass)
public Row get Row() {
/1

See sorted selection for more information.

Important

Strength should be implemented ascending: weaker values are lower, stronger
values are higher. For example in bin packing: small container < medium container
< big container.

None of the current planning variable state in any of the planning entities should be used to
compare planning values. During construction heuristics, those variables are likely to be nul |
anyway. For example, none of the r ow variables of any Queen may be used to determine the
strength of a Row.

4.3.5.4. Chained planning variable (TSP, VRP, ...)

Some use cases, such as TSP and Vehicle Routing, require chaining. This means the planning
entities point to each other and form a chain. By modeling the problem as a set of chains (instead
of a set of trees/loops), the search space is heavily reduced.

A planning variable that is chained either:

« Directly points to a planning fact, which is called an anchor.

77

Chapter 4. Planner configuration

» Points to another planning entity with the same planning variable, which recursively points to
an anchor.

Here are some example of valid and invalid chains:

Multiple
chains

anchor

K

g

tity

:
i

anchor

entity

i
18

Anchor without
trailing entity

anchor

IO
P

anchor

t

S

entity

Initialzed entity
without anchor

NOT OK

Multiple direct
trailing entities

NOT OK

anchor

Chain principles

[entity

entity
]

Loop

NOT OK

'

entity |

Every initialized planning entity is part of an open-ended chain that begins from an anchor.
A valid model means that:

« A chain is never a loop. The tail is always open.

» Every chain always has exactly 1 anchor. The anchor is a problem fact, never a planning entity.

< Achainis never a tree, it is always a line. Every anchor or planning entity has at most 1 trailing
planning entity.

« Every initialized planning entity is part of a chain.

» An anchor with no planning entities pointing to it, is also considered a chain.

78

Planning value and planning value ranges

Warning

A planning problem instance given to the Sol ver must be valid.

@ Note
If your constraints dictate a closed chain, model it as an open-ended chain (which
is easier to persist in a database) and implement a score constraint for the last
entity back to the anchor.

The optimization algorithms and build-in Move's do chain correction to guarantee that the model
stays valid:

Chain correction

Before After
(anchor| [anchor] (anchor| (anchor] (anchor| (anchor]
[entity | [entity | _entity | (entity | _entity | (entity |

(Centity] ((eniy)

Changing 1 planning variable may inflict up to 2 chain corrections.

Warning

A custom Move implementation must leave the model in a valid state.

79

Chapter 4. Planner configuration

For example, in TSP the anchor is a Doni ci | e (in vehicle routing it is Vehi cl e):

public class Domicile ... inplenents Standstill {

public City getCity() {...}

The anchor (which is a problem fact) and the planning entity implement a common interface, for
example TSP's St andstil | :
public interface Standstill {

Gty getGty();

That interface is the return type of the planning variable. Furthermore, the planning variable is
chained. For example TSP's Vi si t (in vehicle routing it is Cust orer):

@ anni ngEntity
public class Visit ... inplenents Standstill {

public City getCity() {...}

@ anni ngVari abl e(chai ned = true, val ueRangeProvi derRefs = {"domi cil| eRange",
public Standstill getPreviousStandstill () {
return previousStandstill;

}

public void setPreviousStandstill (Standstill previousStandstill) {
this.previousStandstill = previousStandstill;

}

Notice how 2 value range providers are usually combined:

» The value range provider which holds the anchors, for example domi ci | eLi st .

80

"vi sitRange"})

Planning value and planning value ranges

» The value range provider which holds the initialized planning entities, for example vi si t Li st .
4.3.5.5. Bi-directional variable

2 variables are bi-directional if their instances always point to each other (unless they point to
null). So if A references B, then B references A.

Bi-directional variable

Use case planning entity genuine planning entity
planning variable

mappedBy variable
(shadow variable)

Standstill

reviousStandstill J\
Vehicle routing [Customer] P

/& nextCustomer

0..1

When the genuine planning variable changes,
then the mappedBy variable changes accordingly.

To map a bi-directional relationship between 2 planning variables, annotate the master side as a
normal (= genuine) planning variable:

@l anni ngEntity
public class Customer ... {
@ anni ngVari abl e(chained = true, ...)

public Standstill getPreviousStandstill () {
return previousStandstill;

public void setPreviousStandstill (Standstill previousStandstill) {...}

81

Chapter 4. Planner configuration

And then annotate the other side as a @I anni ngVar i abl e with only a mappedBy annotation (and
no val ueRangePr ovi der Ref s).

@ anni ngEntity
public interface Standstill {

@ anni ngVari abl e(mappedBy = "previ ousStandstill")
Cust oner get Next Custoner ();
voi d set Next Cust omer (Cust oner next Cust omer) ;

The mappedBy variable is a form of a shadow variable: Planner uses a build-in Vari abl eLi st ener
to update its state.

4.3.5.6. Variable listener that updates shadow variables

A shadow variable is a variables who's correct value can be deduced from the state of the
genuine planning variables. Even though such a variable violates the principle of normalization
by definition, in some use cases it can be very practical to use a shadow variable, especially to
express the constraints more naturally. For example in vehicle routing with time windows: the
arrival time at a customer for a vehicle can be calculated based on the previously visited customers
of that vehicle (and the known travel times between 2 locations).

82

Planning value and planning value ranges

Planning Variable Listener

When a Customer's assignment changes,
the arrival time of that customer and its trailing customers change too.

=4
"

previous arrival time | previous arrival time
genuine shadow genuine shadow
variable variable variable variable
6:30 6:30
Brus. Start 7:00 (Brus. | Start 7:00
=l
Brus. 9:30

=3

Bonn | Brus. 9:00 (Bonn] Amst. ,Qfﬂﬁ212:00
Bonn 14700 17:00

When a genuine planning variable changes,
then the Listener(s) change the shadow variable(s) accordingly.

Bonn 14:00

As the customers for a vehicle change, the arrival time is automatically adjusted. For more

information, see the vehicle routing domain model.

To use custom Vari abl eLi st ener, implement the interface and annotate it on the genuine
planning variable(s) that trigger changes in the shadow variable(s):

@ anni ngVari abl e(..., variabl eLi stenerd asses = {Vehicl eUpdati ngVari abl eLi st ener. cl ass, Ar

public Standstill getPreviousStandstill () {
return previousStandstill;

For example, the VehicleUpdatingVariableListener assures that every Cust oner in a chain has
the same Vehi cl e, namely the chain's anchor.
public class Vehicl eUpdati ngVari abl eLi st ener inplenents Vari abl eLi st ener <Cust oner> {

public void afterEntityAdded(ScorebDirector scorebirector, Customer custoner) {
updat eVehi cl e(scorebDirector, custoner);

83

Chapter 4. Planner configuration

public void afterVariabl eChanged(Scorebi rector scorebDirector, Customer customer) {
updat eVehi cl e(scorebDirector, custoner);

protected voi d updat eVehi cl e(Scorebirector scorebDirector, Custonmer sourceCustoner) {
Standstill previousStandstill = sourceCustoner.getPreviousStandstill();
Vehi cl e vehicle = previousStandstill == null ? null : previousStandstill.getVehicle();
Cust omrer shadowCust oner = sour ceCust oner;
whi | e (shadowCust oner ! = null && shadowCust orer. get Vehicle() !'= vehicle) {
scoreDirector. beforeVari abl eChanged(shadowCust oner, "vehicle");
shadowCust oner . set Vehi cl e(vehi cl e);
scoreDirector. aft er Vari abl eChanged(shadowCust oner, "vehicle");
shadowCust onmer = shadowCust oner . get Next Cust orrer () ;

Any class that has a shadow variable, is a planning entity class, even it has no genuine planning
variables.

Warning

A Vari abl eLi st ener can only change shadow variables. It must never change a
genuine planning variable or a problem fact.

Warning

Any change of a shadow variable must be told to the Scor eDi r ect or .

From a score calculation perspective, a shadow variable is like any other planning variable. From
an optimization perspective, Planner effectively only optimizes the genuine variables (and mostly
ignores the shadow variables): it just assures that when a genuine variable changes, it changes
any dependent shadow variables accordingly.

84

Planning problem and planning solution

4.3.6. Planning problem and planning solution

4.3.6.1. Planning problem instance

A dataset for a planning problem needs to be wrapped in a class for the Sol ver to solve. You
must implement this class. For example in n queens, this in the NQueens class which contains a
Col um list, a Row list and a Queen list.

A planning problem is actually a unsolved planning solution or - stated differently - an uninitialized
Sol ut i on. Therefor, that wrapping class must implement the Sol ut i on interface. For example in
n queens, that NQueens class implements Sol ut i on, yet every Queen in a fresh NQueens class is
not yet assigned to a Row (their r ow property is nul 1). So it's not a feasible solution. It's not even
a possible solution. It's an uninitialized solution.

4.3.6.2. The sol ution interface

You need to present the problem as a Sol uti on instance to the Sol ver. So you need to have a
class that implements the Sol ut i on interface:
public interface Sol ution<S extends Score> {

S get Score();
voi d set Score(S score);

Col | ecti on<? extends Object> getProbl enfFacts();

For example, an NQueens instance holds a list of all columns, all rows and all Queen instances:

public class NQueens inplenents Sol uti on<Si npl eScore> {
private int n;
/1 Problemfacts
private List<Colum> col ummLi st;

private List<Row> rowlList;

/] Planning entities
private List<Queen> queenlLi st;

Il

85

Chapter 4. Planner configuration

4.3.6.3. The get score() and set Score() methods
A Sol uti on requires a score property. The score property is nul | if the Sol uti on is uninitialized

or if the score has not yet been (re)calculated. The scor e property is usually typed to the specific
Scor e implementation you use. For example, NQueens uses a Si npl eScor e:

public class NQueens inplenents Sol uti on<Si npl eScore> {
private SinpleScore score;

public Sinmpl eScore getScore() {
return score;

public void set Score(Si nmpl eScore score) {
this.score = score;

Il

Most use cases use a Har dSof t Scor e instead:

public class CourseSchedul e i npl ements Sol uti on<Har dSof t Scor e> {
private HardSoft Score score;

public HardSoft Score getScore() {
return score;

public void set Score(HardSoft Score score) {
this.score = score;

Il

See the Score calculation section for more information on the Scor e implementations.

4.3.6.4. The get Probl enfFact s() method

The method is only used if Drools is used for score calculation. Other score directors do not use it.

86

Planning problem and planning solution

All objects returned by the get Pr obl enfFact s() method will be asserted into the Drools working
memory, so the score rules can access them. For example, NQueens just returns all Col unm and

Row instances.

publ

done au

ic Collection<? extends Object> getProbl enfFacts() {
Li st <Cbj ect> facts = new ArrayLi st <Obj ect >();
facts.addAl | (col ummlLi st);
facts. addAl | (rowLi st);
// Do not add the planning entity's (queenList) because that will be
tomatically
return facts;

All planning entities are automatically inserted into the Drools working memory. Do not add them
in the method get Pr obl enfFact s() .

g

The meth

Note
A common mistake is to use f acts. add(. . .) instead of fact . addAl | (...) fora

Col | ecti on, which leads to score rules failing to match because the elements of
that Col | ecti on aren't in the Drools working memory.

od get Probl enfact s() is not called much: at most only once per solver phase per

solver thread.

4.3.6.5.

Cached problem fact

A cached problem fact is a problem fact that doesn't exist in the real domain model, but is
calculated before the Sol ver really starts solving. The method get Probl enfFact s() has the
chance to enrich the domain model with such cached problem facts, which can lead to simpler

and faster score constraints.

For example in examination, a cached problem fact Topi cConf | i ct is created for every 2 Topi c's
which share at least 1 St udent .

publ

priv

ic Collection<? extends Object> getProbl enfacts() {
Li st <Cbj ect> facts = new ArrayLi st <Obj ect >();

I

facts.addAl | (cal cul at eTopi cConflictList());

I

return facts;

ate List<TopicConflict> cal cul ateTopi cConflictList() {

87

Chapter 4. Planner configuration

Li st <Topi cConflict> topicConflictList = new ArrayLi st<Topi cConflict>();
for (Topic leftTopic : topicList) {
for (Topic rightTopic : topicList) {
if (leftTopic.getld() < rightTopic.getld()) {
int studentSize = 0;
for (Student student : |eftTopic.getStudentList()) {
if (rightTopic.getStudentList().contains(student)) {
student Si ze++;

}
if (studentSize > 0) {

topi cConflictList.add(new Topi cConflict(leftTopic, rightTopic, student:

}

return topi cConflictList;

Any score constraint that needs to check if no 2 exams have a topic which share a student are
being scheduled close together (depending on the constraint: at the same time, in a row or in the
same day), can simply use the Topi cConfl i ct instance as a problem fact, instead of having to
combine every 2 St udent instances.

4.3.6.6. Cloning a sol ution

Most (if not all) optimization algorithms clone the solution each time they encounter a new best
solution (so they can recall it later) or to work with multiple solutions in parallel.

@ Note

There are many ways to clone, such as a shallow clone, deep clone, ... This context
focuses on a planning clone.

A planning clone of a Sol ut i on must fulfill these requirements:

» The clone must represent the same planning problem. Usually it reuses the same instances of
the problem facts and problem fact collections as the original.

» The clone must use different, cloned instances of the entities and entity collections. Changes
to an original Sol uti on's entity's variables must not effect its clone.

88

Planning problem and planning solution

Solution cloning

@PlanningVariable
Original solution

[Computer h : [Process] @PlanningEntity

List<Process>]

W

@PlanningEntityCollectionProperty

CloudBalance] @~PlanningSolution

Cloned solution

Process]

*

List<Process> J

CloudBalance]

Implementing a planning clone method is hard, therefore you don't need to implement it.
4.3.6.6.1. Fi el dAccessi ngSol uti onC oner

This Sol uti onC oner is used by default. It works for the majority of use cases.

Warning

When the Fi el dAccessi ngSol uti onC oner clones your entity collection, it might

not recognize the implementation and replace it with ArrayLi st, Li nkedHashSet
or Tr eeSet (whichever is more applicable). It recognizes most of the common JDK
Col | ect i on implementations.

The Fi el dAccessi ngSol uti onCl oner does not clone problem facts by default. If any of your
problem facts needs to be deep cloned for a planning clone, for example if the problem fact
references a planning entity or the planning solution, mark it with a @eepPl anni ngCl one
annotation:

89

Chapter 4. Planner configuration

@eepPl anni ngd one

public cl ass Seat Desi gnati onDependency {
private SeatDesignation | eftSeatDesignation; // planning entity
private SeatDesignation right Seat Designation; // planning entity

In the example above, because Seat Desi gnati on is a planning entity (which is deep planning
cloned automatically), Seat Desi gnat i onDependency must be deep planning cloned too.

Alternatively, the @eepPl anni ngC one annotation can also be used on a getter method.
4.3.6.6.2. Custom cloning: Make sol uti on implement Pl anni ngd oneabl e

If your Solution implements PlanningCloneable, Planner will automatically choose to clone it by
calling the method pl anni ngCl one().

public interface Planni ngCl oneabl e<T> {

T pl anni ngd one();

For example: If NQueens implements Pl anni ngCl oneabl e, it would only deep clone all Queen
instances. When the original solution is changed during planning, by changing a Queen, the clone
stays the same.

public class NQueens inplenments Solution<...> Planni ngC oneabl e<NQueens> {

/**
* Clone will only deep copy the { #queenLi st}.
*/
publ i ¢ NQueens pl anni ngC one() {
NQueens cl one = new NQueens();
clone.id =id;
clone.n = n;
cl one. col umLi st = col ummLi st ;
clone.rowLi st = rowLi st
Li st <Queen> cl onedQueenLi st = new ArraylLi st <Queen>(queenLi st.size());
for (Queen queen : queenList) {
cl onedQueenLi st . add(queen. pl anni ngd one());
}
cl one. queenLi st = cl onedQueenlLi st ;
cl one. score = score;

90

Planning problem and planning solution

return cl one;

The pl anni ngCl one() method should only deep clone the planning entities. Notice that the
problem facts, such as Col utm and Row are normally not cloned: even their Li st instances are
not cloned. If you were to clone the problem facts too, then you'd have to make sure that the
new planning entity clones also refer to the new problem facts clones used by the solution. For
example, if you would clone all Rowinstances, then each Queen clone and the NQueens clone itself
should refer to those new Row clones.

Warning

Cloning an entity with a chained variable is devious: a variable of an entity A might
point to another entity B. If A is cloned, then it's variable must point to the clone
of B, not the original B.

4.3.6.7. Build an uninitialized solution

Build a Sol ut i on instance to represent your planning problem, so you can set it on the Sol ver
as the planning problem to solve. For example in n queens, an NQueens instance is created with
the required Col umm and Row instances and every Queen set to a different col unm and every r ow
setto nul | .

private NQueens createNQeens(int n) {
NQueens nQueens = new NQueens();
nQueens. set |1 d(OL) ;
nQueens. set N(n);
nQueens. set Col ummLi st (cr eat eCol ummLi st (nQueens)) ;
nQueens. set RowLi st (creat eRowLi st (nQueens));
nQueens. set QueenLi st (cr eat eQueenLi st (nQueens));
return nQueens;

private List<Queen> createQueenList(NQeens nQueens) ({
int n = nQueens.getN();
Li st <Queen> queenLi st = new ArraylLi st <Queen>(n);
long id = 0;
for (Colum columm : nQueens. get Col umList()) {
Queen queen = new Queen();
queen. setld(id);
i d++;
gueen. set Col umm(col umm) ;
/1 Notice that we | eave the Pl anningVari abl e properties on null
queenlLi st . add(queen);

91

Chapter 4. Planner configuration

}

return queenLi st;

A°B C D

Ww N ¢+ ©

Figure 4.1. Uninitialized solution for the 4 queens puzzle

Usually, most of this data comes from your data layer, and your Sol uti on implementation just
aggregates that data and creates the uninitialized planning entity instances to plan:

private void createlLecturelist(CourseSchedul e schedul e) {
Li st <Course> courselLi st = schedul e. get CourselList();
Li st<Lecture> | ectureLi st = new ArraylLi st <Lect ure>(courseList.size());
for (Course course : courselist) {
for (int i = 0; i < course.getlLectureSize(); i++) {
Lecture | ecture = new Lecture();
| ecture. set Course(course);
| ecture. setLect urel ndexl nCourse(i);
/1 Notice that we |eave the PlanningVariable properties
(period and room) on null
| ectureList.add(lecture);

}

schedul e. set Lect ureLi st (Il ecturelList);

4.4, Use the sol ver

4.4.1. The Solver interface

A Sol ver implementation will solve your planning problem.

public interface Solver {

voi d sol ve(Sol uti on pl anni ngProbl en;

92

Solving a problem

Sol uti on get Best Sol ution();

Il

A Sol ver can only solve 1 planning problem instance at a time. A Sol ver should only be accessed
from a single thread, except for the methods that are specifically javadocced as being thread-safe.
It's build with a Sol ver Fact ory, do not implement or build it yourself.

4.4.2. Solving a problem

Solving a problem is quite easy once you have:

* A Sol ver build from a solver configuration
e A Sol uti on that represents the planning problem instance
Just set the planning problem, solve it and extract the best solution:

sol ver. sol ve(pl anni ngProbl en) ;
Sol ution best Sol ution = sol ver. get Best Sol uti on();

For example in n queens, the method get Best Sol uti on() will return an NQueens instance with
every Queen assigned to a Row.

A°-B C D

g

g

il

Ww N H O

g

Figure 4.2. Best solution for the 4 queens puzzle in 8 ms (also an optimal
solution)

The sol ve(Sol uti on) method can take a long time (depending on the problem size and the solver
configuration). The Sol ver will remember (actually clone) the best solution it encounters during
its solving. Depending on a number factors (including problem size, how much time the Sol ver
has, the solver configuration, ...), that best solution will be a feasible or even an optimal solution.

93

Chapter 4. Planner configuration

repeated planning

4.4.3. Environment mode: Are there bugs in my code?

The environment mode allows you to detect common bugs in your implementation. It does not
affect the logging level.

You can set the environment mode in the solver configuration XML file:

<sol ver >
<envi ronnent Mode>FAST_ASSERT</ envi r onnent Mode>

</ sol ver >

A solver has a single Randominstance. Some solver configurations use the Randominstance a lot
more than others. For example simulated annealing depends highly on random numbers, while
tabu search only depends on it to deal with score ties. The environment mode influences the seed
of that Randominstance.

There are 4 environment modes:

4.4.3.1. FULL_ASSERT

The FULL_ASSERT mode turns on all assertions (such as assert that the incremental score
calculation is uncorrupted for each move) to fail-fast on a bug in a Move implementation, a score
rule, the rule engine itself, ...

This mode is reproducible (see the reproducible mode). It is also intrusive because it calls the
method cal cul at eScor e() more frequently than a non assert mode.

94

Environment mode: Are there bugs in my code?

The FULL_ASSERT mode is horribly slow (because it doesn't rely on delta based score
calculation).

4.4.3.2. NON_INTRUSIVE_FULL_ASSERT

The NON_INTRUSIVE_FULL_ASSERT turns on several assertions to fail-fast on a bug in a Move
implementation, a score rule, the rule engine itself, ...

This mode is reproducible (see the reproducible mode). It is non-intrusive because it does not call
the method cal cul at eScor e() more frequently than a non assert mode.

The NON_INTRUSIVE_FULL_ASSERT mode is horribly slow (because it doesn't rely on delta
based score calculation).

4.4.3.3. FAST_ASSERT

The FAST_ASSERT mode turns on most assertions (such as assert that an undo Move's score
is the same as before the Move) to fail-fast on a bug in a Move implementation, a score rule, the
rule engine itself, ...

This mode is reproducible (see the reproducible mode). It is also intrusive because it calls the
method cal cul at eScor e() more frequently than a non assert mode.

The FAST_ASSERT mode is slow.

It's recommended to write a test case which does a short run of your planning problem with the
FAST_ASSERT mode on.

4.4.3.4. REPRODUCIBLE (default)

The reproducible mode is the default mode because it is recommended during development. In
this mode, 2 runs in the same OptaPlanner version will execute the same code in the same order.
Those 2 runs will have the same result at every step, except if the note below applies. This
enables you to reproduce bugs consistently. It also allows you to benchmark certain refactorings
(such as a score constraint performance optimization) fairly across runs.

@ Note
Despite the reproducible mode, your application might still not be fully reproducible
because of:

e Use of HashSet (or another Col | ecti on which has an inconsistent order
between JVM runs) for collections of planning entities or planning values (but
not normal problem facts), especially in the Sol ut i on implementation. Replace
it with Li nkedHashSet .

e Combining a time gradient dependent algorithms (most notably Simulated
Annealing) together with time spent termination. A sufficiently large difference in

95

Chapter 4. Planner configuration

The reproducible mode is slightly slower than the production mode. If your production environment
requires reproducibility, use this mode in production too.

In practice, this mode uses the default, fixed random seed if no seed is specified, and it also
disables certain concurrency optimizations (such as work stealing).

4.4.3.5. PRODUCTION

The production mode is the fastest, but it is not reproducible. It is recommended for a production
environment, unless reproducibility is required.

In pratice, this mode uses no fixed random seed if no seed is specified.

4.4.4. Logging level: What is the solver doing?

The best way to illuminate the black box that is a Sol ver, is to play with the logging level:

 error: Log errors, except those that are thrown to the calling code as a Runt i meExcepti on.

» warn: Log suspicious circumstances.

info: Log every phase and the solver itself. See scope overview.

debug: Log every step of every phase. See scope overview.

trace: Log every move of every step of every phase. See scope overview.

Logging level: What is the Solver doing?

Even debug logging can slow down performance considerably for fast stepping
algorithms (such as Late Acceptance and Simulated Annealing), but not for slow
stepping algorithms (such as Tabu Search).

For example, set it to debug logging, to see when the phases end and how fast steps are taken:

INFO Solving started: tine spent (3), best score (uninitialized/0), random (JDK
with seed 0).

DEBUG CH step (0), time spent (5), score (0), selected nove count (1),
pi cked nove (col 2@ull => row0).

DEBUG CH step (1), time spent (7), score (0), selected nove count (3)
pi cked nove (col 1@ull => row2).

DEBUG CH step (2), tinme spent (10), score (0), selected nove count (4),
pi cked nove (col 3@wull => row3).

DEBUG CH step (3), tine spent (12), score (-1), selected nove count (4),

pi cked move (col 0@ull => rowl).

INFO Construction Heuristic phase (0) ended: step total (4), tinme spent (12),
best score (-1).

DEBUG LS step (0), time spent (19), score (-1), best score (-1), accepted/
sel ected nove count (12/12), picked nove (col 1@ow2 => row3).

DEBUG LS step (1), tine spent (24), score (0), new best score (0), accepted/

sel ected nove count (9/12), picked nove (col 3@ow3 => row2).

I NFO Local Search phase (1) ended: step total (2), time spent (24), best score
(0).

INFO Solving ended: tine spent (24), best score (0), average cal cul ate count
per second (1625).

All time spent values are in milliseconds.

Everything is logged to SLF4J [http://www.slf4].org/], which is a simple logging facade which
delegates every log message to Logback, Apache Commons Logging, Log4j or java.util.logging.
Add a dependency to the logging adaptor for your logging framework of choice.

If you're not using any logging framework yet, use Logback by adding this Maven dependency
(there is no need to add an extra bridge dependency):

<dependency>
<gr oupl d>ch. qos. | ogback</ gr oupl d>
<artifact!| d>l ogback-cl assic</artifactld>
<ver si on>1. x</ ver si on>

</ dependency>

Configure the logging level on the package or g. opt apl anner in your | ogback. xm file:

97

http://www.slf4j.org/
http://www.slf4j.org/

Chapter 4. Planner configuration

<configuration>

<l ogger name="org. optapl anner" | evel ="debug"/>

<confi guration>

If instead, you're still using Log4J (and you don't want to switch to its faster successor, Logback),
add the bridge dependency:

<dependency>
<gr oupl d>or g. sl f 4j </ gr oupl d>
<artifactld>slf4j-1og4j12</artifactld>
<versi on>1. x</ ver si on>

</ dependency>

And configure the logging level on the package or g. opt apl anner in your | og4j . xm file:

<l og4j : configuration xmns:|og4j="http://]jakarta.apache.org/log4j/">
<cat egory nane="or g. opt apl anner" >

<priority val ue="debug" />
</ cat egory>

</l og4j: configuration>

4.4.5. Random number generator

Many heuristics and metaheuristics depend on a pseudorandom number generator for move
selection, to resolve score ties, probability based move acceptance, ... During solving, the same
Random instance is reused to improve reproducibility, performance and uniform distribution of
random values.

To change the random seed of that Randominstance, specify a r andonfeed:

<sol ver >
<r andonBSeed>0</ r andonSeed>

</ sol ver >

98

Random number generator

To change the pseudorandom number generator implementation, specify a r andoniype:

<sol ver >
<r andonily pe>MERSENNE_TW STER</ r andomlype>

</ sol ver >

The following types are supported:

» JDK (default): Standard implementation (j ava. uti | . Random).

e MERSENNE_TW STER: Implementation by Commons Math [commons.apache.org/proper/
commons-math/userguide/random.html].

e WELL512A, WELL1024A, WELL19937A, WELL19937C, WELL44497A and WELL44497B:
Implementation by Commons Math [commons.apache.org/proper/commons-math/userguide/
random.html].

For most use cases, the randomType has no significant impact on the average quality of the best
solution on multiple datasets. If you want to confirm this on your use case, use the benchmarker.

99

commons.apache.org/proper/commons-math/userguide/random.html
commons.apache.org/proper/commons-math/userguide/random.html
commons.apache.org/proper/commons-math/userguide/random.html
commons.apache.org/proper/commons-math/userguide/random.html
commons.apache.org/proper/commons-math/userguide/random.html
commons.apache.org/proper/commons-math/userguide/random.html

100

Chapter 5.

Chapter 5. Score calculation

5.1. Score terminology

5.1.1. What is a score?

Every initialized Sol uti on has a score. That score is an objective way to compare 2 solutions:
the solution with the higher score is better. The Sol ver aims to find the Sol ut i on with the highest
Scor e of all possible solutions. The best solution is the Sol uti on with the highest Scor e that
Sol ver has encountered during solving, which might be the optimal solution.

Planner cannot automatically know which Sol ut i on is best for your business, so you need to tell
it how to calculate the score of a given Sol uti on according to your business needs. There are
multiple score techniques that you can use and combine:

« Maximize or minimize a constraint: score constraint signum (positive or negative)

Put a cost/profit on constraints: score constraint weight

Prioritize constraints: score level

» Pareto scoring
5.1.2. Score constraint signum (positive or negative)
All score techniques are based on constraints. Such a constraint can be a simple pattern (such as

Maximize the apple harvest in the solution) or a more complex pattern. A positive constraint is a
constraint you're trying to maximize. A negative constraint is a constraint you're trying to minimize.

101

Chapter 5. Score calculation

Positive constraints

Maximize apples

Maximize @

P
= | ‘I l
@
A
fimeery | < .f Jf Y 3 < .-' R
A 4 ol /

Optimal solution

Negative constraints

Minimize fuel usage

Minimize B

Optimal solution

Notice in the image above, that the optimal solution always has the highest score, regardless if
the constraints are positive or negative.

Most planning problems have only negative constraints and therefore have a negative score. In
that case, the score is usually the sum of the weight of the negative constraints being broken, with
a perfect score of 0. This explains why the score of a solution of 4 queens is the negative (and
not the positive!) of the number of queen couples which can attack each other.

Negative and positive constraints can be combined, even in the same score level.

@ Note

Don't presume your business knows all its score constraints in advance. Expect
score constraints to be added or changed after the first releases.

When a constraint activates (because the negative constraint is broken or the positive constraint
is fulfilled) on a certain planning entity set, it is called a constraint match.

102

Score constraint weight

5.1.3. Score constraint weight

Not all score constraints are equally important. If breaking one constraint is equally bad as breaking
another constraint x times, then those 2 constraints have a different weight (but they are in the
same score level). For example in vehicle routing, you can make 2 "unhappy driver" constraint
matches count as much as 1 "fuel tank usage" constraint match:

Score weighting

l‘:" — 1
2 W Minimize driver unhappiness
= 2 Minimize fuel usage
\
B l PR
1 unhappy driver is as bad o\
as 2 fuel usages e
D)
* g ") N
Y R < R
CIney S sy,

-—

Optimal solution

Score weighting is often used in use cases where you can put a price tag on everything. In that
case, the positive constraints maximize revenue and the negative constraints minimize expenses:
together they maximize profit. Alternatively, score weighting is also often used to create social
fairness. For example: nurses that request a free day on New Year's eve pay a higher weight
than on a normal day.

The weight of a constraint match can be dynamically based on the planning entities involved. For
example in cloud balance: the weight of the soft constraint match for an active Conput er is the
cost of that Conput er.

5.1.4. Score level

Sometimes a score constraint outranks another score constraint, no matter how many times the
other is broken. In that case, those score constraints are in different levels. For example: a nurse

103

Chapter 5. Score calculation

cannot do 2 shifts at the same time (due to the constraints of physical reality), this outranks all
nurse happiness constraints.

Most use cases have only 2 score levels: hard and soft. When comparing 2 scores, they are
compared lexicographically: the first score level gets compared first. If those differ, the others
score levels are ignored. For example: a score that breaks 0 hard constraints and 1000000 soft
constraints is better than a score that breaks 1 hard constraint and 0 soft constraints.

Score levels

First minimize overloaded truck axles,
then minimize fuel usage

dn= W A
1 overloaded axle is worse PRRER
than any number of fuel usages

- .

I:Ll,n al&
NER *\ ="\

-—

A A

Optimal solution

Score levels often employ score weighting per level. In such case, the hard constraint level
usually makes the solution feasible and the soft constraint level maximizes profit by weighting the
constraints on price.

Don't use a big constraint weight when your business actually wants different score levels. That
hack, known as score folding, is broken:

104

Pareto scoring (AKA multi-objective optimization scoring)

Score folding is broken

Don't mix score levels

CPU Folded score Good score
{hard * 1 000 000) + soft hard and soft separated

500 000 §

800000 % -1 500 000 -1 hard / -500 000 soft

Highest score

I-L
=

A §
|
=<

[] Z 800000%
C- Y 8000008 -2 100 000 [o hard / -2 100 000 soﬂ]
Highest score

Score folding also stimulates overflow

3000

W 100000 % 1284 867 296 -3 000 hard / -100 000 soft

score trap

3 or more score levels is supported. For example: a company might decide that profit outranks
employee satisfaction (or visa versa), while both are outranked by the constraints of physical
reality.

5.1.5. Pareto scoring (AKA multi-objective optimization scoring)

Far less common is the use case of pareto optimization, which is also known under the more
confusing term multi-objective optimization. In pareto scoring, score constraints are in the same
score level, yet they are not weighted against each other. When 2 scores are compared, each

105

Chapter 5. Score calculation

of the score constraints are compared individually and the score with the most dominating score
constraints wins. Pareto scoring can even be combined with score levels and score constraint
weighting.

Consider this example with positive constraints, where we want to get the most apples and
oranges. Since it's impossible to compare apples and oranges, we can't weight them against each
other. Yet, despite that we can't compare them, we can state that 2 apples are better then 1 apple.
Similarly, we can state that 2 apples and 1 orange are better than just 1 orange. So despite our
inability to compare some Scores conclusively (at which point we declare them equal), we can
find a set of optimal scores. Those are called pareto optimal.

Pareto optimization scoring

(:‘j: ?@ Maximize apples and oranges harvest

Don't compare apples and oranges
9-@

1 apple is worth an unknown

number of oranges

1 orange is worth an unknown

number of apples

-
/"“\/'EJT:

AN\

Optimal solution A

Optimal solution B

Only pareto optimal solutions
are shown to the user
User decides between A and B

Scores are considered equal far more often. It's left up to a human to choose the better out of a
set of best solutions (with equal scores) found by Planner. In the example above, the user must
choose between solution A (3 apples and 1 orange) and solution B (1 apples and 6 oranges). It's
guaranteed that Planner has not found another solution which has more apples or more oranges
or even a better combination of both (such as 2 apples and 3 oranges).

To implement pareto scoring in Planner, implement a custom Scor eDef i ni ti on and Scor e (and
replace the Best Sol ut i onRecal | er). Future versions will provide out-of-the-box support.

106

Combining score techniques

5.1.6. Combining score techniques

All the score techniques mentioned above, can be combined seamlessly:

Score composition

How are the score techniques combined?

Constraint 0 Constraint 0 Constraint 0
Overloaded axle Fuel cost CO? emissions

Constraint 1 Constraint 1 Constraint 1
Sleep-deprived driver Happy driver Methane emissions

| -34 / -170 : -1004 /..)

Score for 1 solution

5.1.7. The score interface

A score is represented by the Scor e interface, which naturally extends Conpar abl e:

public interface Score<...> extends Conparable<...> {

107

Chapter 5. Score calculation

The Scor e implementation to use depends on your use case. Your score might not efficiently fit in
a single | ong value. Planner has several build-in Scor e implementations, but you can implement
a custom Scor e too. Most use cases tend to use the build-in Har dSof t Scor e.

Score class diagram

Choose a Score implementation or write a custom one

<<interface>> <<interface>>
‘ Score ‘ | Comparable ‘
‘o
l SimpleScore S‘impIeLongScore SirﬁpleBigDeeimalScore
.| score : int score : long score : BigDecimal
e
lHardSoftScore HeirdSoftLongScore ar&iSoﬂBigDecimalScore
' | hardScore : int hardScore : long hardScore : BigDecimal
softScore : int softScore : long softScore : BigDecimal

=

HardMediumSoﬂScore

hardScore : int

softScore : int

mediumScore: int

The Scor e implementation (for example Har dSof t Scor e) must be the same throughout a Sol ver
runtime. The Scor e implementation is configured in the solver configuration as a ScoreDefinition:

<scoreDi rect or Fact ory>

<scor eDefini ti onType>HARD SOFT</ scor eDefi niti onType>

</ scoreDirectorFact ory>

5.1.8. Avoid floating point numbers in score calculation

Avoid the use of f | oat and doubl e for score calculation. Use Bi gDeci mal instead.

108

Avoid floating point numbers in score calculation

Floating point numbers (fl oat and doubl e) cannot represent a decimal number correctly.
For example: a doubl e cannot hold the value 0. 05 correctly. Instead, it holds the nearest
representable value. Arithmetic (including addition and subtraction) with floating point numbers,
especially for planning problems, leads to incorrect decisions:

Score weight type

=
i 0.01% Use the correct number type
Fuel usage double BigDecimal
double-precision 64-bit IEEE 754 arbitrary-precision signed
floating point decimal number
Vehicle X EEE 0.03 0.03
Vehicle Y EEE 0.03 0.03
Total 0.06 0.06
Highest score
Wehicle X "X 0.01 0.01
Vehicle Y EEEEE 0.05 0.05
Total |0.060000000000000005 | 0.06

Highest score

Highest score

[SimpleDoubleScore

| |SimpleBigDecimalScore |

| score : double

| | score : BigDecimal

Additionally, floating point number addition is not associative:

Systemout.printin(((0.01 + 0.02) + 0.03)

/| returns false

This leads to score corruption.

(0.01 + (0.02 + 0.03))); [/

Decimal numbers (Bi gDeci mal) have none of these problems.

@ Note

BigDecimal arithmetic is considerably slower thani nt, | ong or doubl e arithmetic.
In experiments we've seen the average calculation count get divided by 5.

109

Chapter 5. Score calculation

Therefore, in some cases, it can be worthwhile to multiply all numbers for a single
score weight by a plural of ten (for example 1000), so the score weight fits in an
int orlong.

5.2. Choose a Score definition

Each Score implementation also has a ScoreDefinition implementation. For example:
Si npl eScor e is definied by Si npl eScor eDefi ni ti on.

5.2.1. SimpleScore

A Si npl eScor e has a single i nt value, for example - 123. It has a single score level.

<scoreDi rect or Fact ory>
<scor eDefi nitionType>S|I MPLE</ scor eDefi ni ti onType>

</ scoreDirectorFact ory>
Variants of this scor eDef i ni ti onType:

* SI MPLE_LONG Uses Si npl eLongScor e which has a | ong value instead of ani nt value.

e SI MPLE_DOUBLE: Uses Si npl eDoubl eScor e which has a doubl e value instead of an i nt value.
Not recommended to use.

e SI MPLE_BI G _DECI MAL: Uses Si npl eBi gDeci mal Scor e which has a Bi gDeci mal value instead
of ani nt value.

5.2.2. HardSoftScore (recommended)

A Har dSof t Scor e has a hard i nt value and a soft i nt value, for example - 123har d/ - 456soft .
It has 2 score levels (hard and soft).

<scoreDi rector Fact ory>
<scoreDefi niti onType>HARD_SOFT</ scor eDefiniti onType>
</ scorebDirector Fact ory>

Variants of this scor eDef i ni ti onType:

e HARD SOFT_LONG Uses Har dSof t LongScor e which has | ong values instead of i nt values.

110

HardMediumSoftScore

e HARD SOFT_DOUBLE: Uses Har dSof t Doubl eScor e which has doubl e values instead of i nt
values. Not recommended to use.

e HARD SOFT_BI G DECI MAL: Uses Har dSof t Bi gDeci mal Scor e which has Bi gDeci mal values
instead of i nt values..

5.2.3. HardMediumSoftScore

A Har dMedi untof t Scor e which has a hard i nt value, a medium i nt value and a softi nt value,
for example - 123har d/ - 456medi uni - 789sof t . It has 3 score levels (hard, medium and soft).

<scoreDi rector Fact ory>
<scoreDefinitionType>HARD MEDI UM SOFT</ scoreDefinitionType>

</ scoreDirectorFactory>

Variants of this scor eDefi ni ti onType:

e HARD_ MEDI UM SOFT_LONG Uses Har dMedi untof t LongScor e which has | ong values instead of
i nt values.

5.2.4. BendableScore

A Bendabl eScore has a configurable number of score levels. It has an array of hard int
values and an array of soft i nt value, for example 2 hard levels and 3 soft levels for a score
- 123/ - 456/ - 789/ - 012/ - 345. The number of hard and soft score levels needs to be set at
configuration time, it's not flexible to change during solving.

<scoreDi rect or Fact ory>
<scor eDef i ni ti onType>BENDABLE</ scor eDefi niti onType>
<bendabl eHar dLevel Count >2</ bendabl eHar dLevel Count >
<bendabl eSof t Level Count >3</ bendabl eSof t Level Count >

</ scoreDirectorFactory>

5.2.5. Implementing a custom Score

The Scor eDef i ni ti on interface defines the score representation.

To implement a custom Score, you'll also need to implement a custom ScoreDefi nition.
Extend Abst r act Scor eDef i ni ti on (preferable by copy pasting Har dSof t Scor eDefi ni ti on or
Si npl eScor eDef i ni ti on) and start from there.

Then hook your custom Scor eDef i ni ti on in your Sol ver Confi g. xni :

111

Chapter 5. Score calculation

<scoreDirector Fact ory>
<scoreDefinitionC ass>... MScoreDefinition</scoreDefinitionC ass>

</ scoreDirectorFactory>

5.3. Calculate the score

5.3.1. Score calculation types

There are several ways to calculate the Scor e of a Sol uti on:

» Easy Java score calculation: implement a single Java method
* Incremental Java score calculation: implement multiple Java methods
« Drools score calculation (recommended): implement score rules

Every score calculation type can use any Score definition. For example, easy Java score
calculation can output a Har dSof t Scor e.

All score calculation types are Object Orientated and can reuse existing Java code.

Important

The score calculation should be read-only: it should not change the planning
entities or the problem facts in any way. For example, it must not call a setter
method on a planning entity in a Drools score rule's RHS. This does not apply to
logically inserted objects, which can be changed by the score rules who logically
inserted them in the first place.

OptaPlanner will not recalculate the score of a Sol ut i on if it can predict it (unless
an environmentMode assertion is enabled). For example, after a winning step is
done, there is no need to calculate the score because that move was done and
undone earlier. As a result, there's no guarantee that such changes applied during
score calculation are actually done.

5.3.2. Easy Java score calculation

An easy way to implement your score calculation in Java.

« Advantages:

¢ Plain old Java: no learning curve

112

Easy Java score calculation

» Opportunity to delegate score calculation to an existing code base or legacy system
» Disadvantages:
» Slower and less scalable
¢ Because there is no incremental score calculation

Just implement one method of the interface EasyScor eCal cul at or :

public interface EasyScoreCal cul at or<Sol extends Sol ution> {

Scor e cal cul at eScore(Sol sol ution);

For example in n queens:

public class NQueensEasyScoreCal cul ator inplenments EasyScoreCal cul at or <NQueens> {

public Sinmpl eScore cal cul at eScor e(NQueens nQueens) {
int n = nQueens.getN();
Li st <Queen> queenLi st = nQueens. get QueenLi st ();

int score = O;
for (int i =0; i <n; i++) {
for (int j =i +1; j <n; j++) {
Queen | eft Queen = queenList.get(i);
Queen right Queen = queenList.get(j);
if (leftQueen.getRow() != null && rightQeen.getRow) !'= null) {
if (leftQueen.get Row ndex() == right Queen. get Rowl ndex()) {

score--;

}

i f (IeftQueen. get Ascendi ngDi agonal | ndex() == ri ght Queen. get Ascendi ngDi agon:z
score--;

}

i f (IeftQueen. get Descendi nghi agonal | ndex() == ri ght Queen. get Descendi nghi agc¢
score--;

}

}

return Sinmpl eScore. val ued (score);

113

Chapter 5. Score calculation

Configure it in your solver configuration:
<scoreDi rect or Fact ory>
<scoreDefinitionType>...</scoreDefinitionType>
. opt apl anner . exanpl es. nqueens. sol ver. scor e. NQueensEasyScor eCal cul at or </

easyScor eCal cul at or C ass>
</ scoreDirectorFact ory>

Alternatively, build a EasyScor eCal cul at or instance at runtime and set it with the programmatic
API:

sol ver Fact ory. get Sol ver Confi g() . get Scor ebDi r ect or Fact or yConfi g. set EasyScor eCal cul at or (easy St

5.3.3. Incremental Java score calculation

A way to implement your score calculation incrementally in Java.

» Advantages:
» Very fast and scalable
¢ Currently the fastest if implemented correctly
» Disadvantages:
* Hard to write

« A scalable implementation heavily uses maps, indexes, ... (things the Drools rule engine
can do for you)

* You have to learn, design, write and improve all these performance optimizations yourself
* Hard to read
* Regular score constraint changes can lead to a high maintenance cost
Implement all the methods of the interface | ncr enent al Scor eCal cul at or and extend the class
Abstract | ncrement al Scor eCal cul at or:
public interface |ncrenental ScoreCal cul at or<Sol extends Sol ution> {
voi d reset Wor ki ngSol uti on(Sol worki ngSol uti on);

voi d beforeEntityAdded(Object entity);

114

Incremental Java score calculation

void afterEntityAdded(Object entity);

voi d bef oreVari abl eChanged(Obj ect entity, String vari abl eNane);
voi d afterVari abl eChanged(Obj ect entity, String variabl eNange);
voi d beforeEntityRenoved(Cbject entity);

voi d afterEntityRenoved(bject entity);

Scor e cal cul at eScore();

IncrementalScoreCalculator
sequence diagram

A B C D
] o OptaPlanner Queen IncrementalScoreCalculator]|
@v 1 + resetWorkingSolution(...)
2 T
calculateScore() i
[AE
ChangeMove
A B C D doMove(...) ; beforeVariableChanged(, "row")
o
{i w‘@“ .setRow(3)
1
” > aftervariableChanged(, "row")
3
‘@“ l@ . calculateScore()
-3
SwapMove
doMove(...) : beforeVariableChanged(| "row")
.setRow(3)
A B C D
A@v o afterVariableChanged(| "row") >
?}E 1 beforeVariableChanged(L row”) i
> T]
/ .setRow(1)
7 3
afterVariableChanged(L row”)
. calculateScore() - |
-1

For example in n queens:

public class NQueensAdvancedl ncrenent al Scor eCal cul at or ext ends Abstract| ncrenental ScoreCal cul at

115

Chapter 5. Score calculation

private Map<Integer, List<Queen>> row ndexMap;
private Map<lnteger, List<Queen>> ascendi ngDi agonal | ndexMap;
private Map<lnteger, List<Queen>> descendi ngD agonal | ndexMap;

private int score;
public void resetWrKkingSol uti on(NQueens nQueens) {

int n = nQueens. getN();
row ndexMap = new HashMap<I nt eger, List<Queen>>(n);

ascendi ngDi agonal | ndexMap = new HashMap<I nt eger, List<Queen>>(n * 2);
descendi ngDi agonal | ndexMap = new HashMap<I nt eger, List<Queen>>(n * 2);

for (int i =0; i <n; i++) {
row ndexMap. put (i, new ArrayLi st <Queen>(n));
ascendi ngDi agonal | ndexMap. put (i, new ArraylLi st <Queen>(n));
descendi ngDi agonal | ndexMap. put (i, new ArraylLi st <Queen>(n));
if (i '=0) {

ascendi ngbhi agonal | ndexMap. put(n - 1 + i, new ArraylLi st <Queen>(n));
descendi ngDi agonal | ndexMap. put ((-i), new ArraylLi st <Queen>(n));

}

score = O;

for (Queen queen : nQueens. get QueenList()) {
i nsert(queen);

public void beforeEntityAdded(Chject entity) {
/1 Do nothing

public void afterEntityAdded(Object entity) {
i nsert((Queen) entity);

public void beforeVariabl eChanged(Cbj ect entity, String variabl eNanme) {
retract ((Queen) entity);

public void afterVariabl eChanged(Obj ect entity, String variabl eName) {
i nsert((Queen) entity);

public void beforeEntityRenoved(Object entity) {
retract ((Queen) entity);

public void afterEntityRenoved(Object entity) ({
/1 Do nothing

116

Incremental Java score calculation

private void insert(Queen queen) {
Row row = queen. get Row() ;
if (row!=null) {
int rowl ndex = queen. get Row ndex();

Li st <Queen> rowl ndexLi st = row ndexMap. get (r owl ndex) ;

score -= row ndexLi st. si ze();
rowm ndexLi st. add(queen);

Li st <Queen> ascendi ngDi agonal | ndexLi st = ascendi ngDi agonal | ndexMap. get (queen. get Asc

score -= ascendi ngDi agonal | ndexLi st. si ze();
ascendi ngDi agonal | ndexLi st. add(queen);

Li st <Queen> descendi ngDi agonal | ndexLi st = descendi ngDi agonal | ndexMap. get (queen. get [

score -= descendi ngDi agonal | ndexLi st. si ze();
descendi ngDi agonal | ndexLi st. add(queen);

private void retract(Qeen queen) {
Row row = queen. get Row() ;
if (row!=null) {

Li st <Queen> row ndexLi st = row ndexMap. get (queen. get Row ndex());

row ndexLi st . renove(queen);
score += rowl ndexLi st. si ze();

Li st <Queen> ascendi ngDi agonal | ndexLi st = ascendi ngDi agonal | ndexMap. get (queen. get Asc

ascendi nghi agonal | ndexLi st . renmove(queen);
score += ascendi ngDi agonal | ndexLi st. si ze();

Li st <Queen> descendi ngDi agonal | ndexLi st = descendi nghi agonal | ndexMap. get (queen. get [

descendi ngDi agonal | ndexLi st . renove(queen);
score += descendi ngDi agonal | ndexLi st. si ze();

public Sinmpl eScore cal cul ateScore() {
return Sinmpl eScore.val uet (score);

Configure it in your solver configuration:

<scoreDi rect or Fact ory>
<scoreDefinitionType>...</scoreDefinitionType>

scor e. NQueensAdvanced! ncr enent al Scor eCal cul at or </
i ncrement al Scor eCal cul at or Cl ass>
</ scoreDirectorFactory>

117

Chapter 5. Score calculation

Optionally, to get better output when the Increnmental ScoreCal cul ator is corrupted
in environment Mode FAST_ASSERT or FULL_ASSERT, you can overwrite the method
bui | dScor eCor r upt i onAnal ysi s from Abstract | ncr ement al Scor eCal cul at or .

5.3.4. Drools score calculation

5.3.4.1. Overview

Implement your score calculation using the Drools rule engine. Every score constraint is written
as one or more score rules.

« Advantages:
* Incremental score calculation for free

« Because most DRL syntax uses forward chaining, it does incremental calculation without
any extra code

e Score constraints are isolated as separate rules
» Easy to add or edit existing score rules
* Flexibility to augment your score constraints by
« Defining them in decision tables
« Excel (XLS) spreadsheet
» KIE Workbench WebUI
» Translate them into natural language with DSL
« Store and release in the KIE Workbench repository
» Performance optimizations in future versions for free
< In every release, the Drools rule engine tends to become faster.
» Disadvantages:
* DRL learning curve
» Usage of DRL

¢ Polyglot fear can prohibit the use of a new language such as DRL in some organizations

5.3.4.2. Drools score rules configuration

There are several ways to define where your score rules live.
118

Drools score calculation

5.3.4.2.1. A scoreDrl resource on the classpath

This is the easy way: the score rule live in a DRL file which is provided as a classpath resource.
Just add the score rules DRL file in the solver configuration as a <scor eDr | > element:

<scoreDi rect or Fact ory>
<scoreDefinitionType>...</scoreDefinitionType>
<scor eDr | >or g/ opt apl anner/ exanpl es/ nqueens/ sol ver/ nQueensScor eRul es. dr | </
scorebDr| >
</ scoreDirectorFact ory>

In a typical project (following the Maven directory structure), that DRL file would
be located at $PRQIECT_DI R/ src/ mai n/ resour ces/ or g/ opt apl anner / exanpl es/ nqueens/
sol ver/ nQueensScor eRul es. dr| (even for a war project).

@ Note
The <scoreDrl> element expects a classpath resource, as defined by
Cl assLoader . get Resour ce(String), it does not accept a Fi | e, nor an URL, nor
a webapp resource. See below to use a Fi | e instead.

Add multiple <scor eDr | > elements if the score rules are split across multiple DRL files.

Optionally, you can also set drools configuration properties but beware of backwards compatibility
issues:

<scoreDi rect or Fact ory>

<scor eDr | >or g/ opt apl anner/ exanpl es/ nqueens/ sol ver/ nQueensScor eRul es. dr | </
scorebDr| >
<ki eBaseConfi gurati onProperties>
<drool s. equal i t yBehavi or>. .. </drool s. equal i t yBehavi or >
</ ki eBaseConfi gurati onProperti es>
</ scoreDirectorFact ory>

5.3.4.2.2. A scoreDrlFile

To use Fi | e on the local file system, instead of a classpath resource, add the score rules DRL
file in the solver configuration as a <scor eDr | Fi | e> element:

<scoreDi rector Fact ory>
<scoreDefinitionType>...</scoreDefinitionType>
<scoreDr| Fi | e>/ home/ geOf f rey/ t np/ nQueensScor eRul es. drl </ scoreDr| Fi | e>

119

Chapter 5. Score calculation

</ scoreDirectorFactory>

Warning

For portability reasons, a classpath resource is recommended over a File. An
application build on one computer, but used on another computer, might not find
the file on the same location. Worse, if they use a different Operating System, it's
hard to choose a portable file path.

Add multiple <scor eDr | Fi | e> elements if the score rules are split across multiple DRL files.
5.3.4.2.3. A KieBase (possibly defined by Drools Workbench)

If you prefer to build the Ki eBase yourself or if you're combining OptaPlanner with KIE Workbench
(formerly known as Guvnor), you can set the Ki eBase on the Sol ver Fact or y before building the
Sol ver:

sol ver Fact ory. get Sol ver Confi g(). get Scor eDi r ect or Fact or yConfi g. set Ki eBase(ki eBase) ;

@ Note

To be able to define your score rules in Drools Workbench, you'll want to:

1. Upload the optaplanner-core jar as a POJO model.

2. Add a global variable called scor eHol der (see below).

5.3.4.3. Implementing a score rule

Here's an example of a score constraint implemented as a score rule in a DRL file:

rule "nultipl eQueensHorizontal "
when
Queen($id : id, row!= null, $i : row ndex)
Queen(id > $id, row ndex == $i)
t hen
scor eHol der. addConst r ai nt Mat ch(kcontext, -1);
end

120

Drools score calculation

This score rule will fire once for every 2 queens with the same r owl ndex. The (i d > $i d) condition
is needed to assure that for 2 queens A and B, it can only fire for (A, B) and not for (B, A), (A, A)
or (B, B). Let's take a closer look at this score rule on this solution of 4 queens:

A B C D

8

w N = O

In this solution the multipleQueensHorizontal score rule will fire for 6 queen couples: (A, B), (A, C),
(A, D), (B, C), (B, D) and (C, D). Because none of the queens are on the same vertical or diagonal
line, this solution will have a score of - 6. An optimal solution of 4 queens has a score of 0.

5.3.4.4. Weighing score rules

A Scor eHol der instance is asserted into the Ki eSessi on as a global called scor eHol der. Your
score rules need to (directly or indirectly) update that instance.

gl obal Si npl eScor eHol der scor eHol der;

rule "multipl eQueensHori zontal "
when
Queen($id : id, row!= null, $i : row ndex)
Queen(id > $id, rowm ndex == $i)
t hen

121

Chapter 5. Score calculation

scor eHol der. addConst r ai nt Mat ch(kcont ext, -1);
end

/1 multipleQueensVertical is obsolete because it is always O

rule "nmultipl eQueensAscendi nghi agonal "
when
Queen($id : id, row!= null, $i : ascendi ngD agonal | ndex)
Queen(id > $id, ascendi ngDi agonal | ndex == $i)
t hen
scor eHol der . addConst r ai nt Mat ch(kcont ext, -1);
end

rule "mul tipl eQueensDescendi nghi agonal "
when
Queen($id : id, row!=null, $i : descendi ngh agonal | ndex)
Queen(id > $id, descendi ngDi agonal I ndex == $i)
t hen
scor eHol der . addConst r ai nt Mat ch(kcontext, -1);
end

Most use cases will also weigh their constraint types or even their matches differently, by using
a specific weight for each constraint match.

Here's an example from CurriculumCourse, where assigning a Lect ur e to a Roomwhich is missing
2 seats is weighted equally bad as having 1 isolated Lecture ina Curri cul um

gl obal Har dSoft Scor eHol der scor eHol der;

/! RoonCapacity: For each | ecture, the nunber of students that attend the course
must be | ess or equal
/'l than the nunber of seats of all the rooms that host its |ectures.
/1 Each student above the capacity counts as 1 point of penalty.
rul e "roomCapacity"
when
$room : Roon($capacity : capacity)
$l ecture : Lecture(room== $room studentSize > $capacity, $studentSi ze :
student Si ze)
t hen
scor eHol der . addSof t Const rai nt Mat ch(kcont ext, ($capacity - $student Si ze));
end

[/ Curricul unConpact ness: Lectures belonging to a curricul umshoul d be adj acent
// to each other (i.e., in consecutive periods).

/1l For a given curriculum we account for a violation every time there is one
| ecture not adjacent

/1 to any other lecture within the sane day.

/] Each isolated lecture in a curriculumcounts as 2 points of penalty.

122

InitializingScoreTrend

rul e "curricul umConpact ness”
when

t hen
scor eHol der . addSof t Const r ai nt Mat ch(kcontext, -2);
end

5.3.5. InitializingScoreTrend

The I nitializingScoreTrend specifies how the Score will change as more and more variables
are initialized (while the already variables don't change). Some optimization algorithms (such
Construction Heuristics and Exhaustive Search) run faster if they have such information.

For for the Score (or each score level separately), specify a trend:

* ANY (default): Initializing an extra variable can change the score positively or negatively. Gives
no performance gain.

e ONLY_UP (rare): Initializing an extra variable can only change the score positively. Implies that:
» There are only positive constraints

« Initializing the next variable can unmatch a positive constraint matched by a previous
initialized variable.

e ONLY_DOWN: Initializing an extra variable can only change the score negatively. Implies that:
» There are only negative constraints

« Initializing the next variable can unmatch a negative constraint matched by a previous
initialized variable.

Most use cases only have negative constraints. Many of those have an | ni ti al i zi ngScor eTr end
that only goes down:

<scorebDi rect or Fact ory>
<scoreDefi nitionType>HARD _SOFT</ scor eDefiniti onType>
<scoreDr| >.../cl oudBal anci ngScor eRul es. drl </ scoreDr| >
<initializingScoreTrend>ONLY_DOWN</initializingScoreTrend>
</ scoreDirectorFact ory>

Alternatively, you can also specify the trend for each score level separately:

<scoreDi rect or Fact ory>
<scor eDefini ti onType>HARD_SOFT</ scor eDefi ni ti onType>
<scoreDr| >.../cl oudBal anci ngScor eRul es. drl </ scoreDr| >
<initializingScoreTrend>ONLY_DOM ONLY_DOMNK/ i ni ti al i zi ngScor eTr end>

123

Chapter 5. Score calculation

</ scoreDirectorFactory>

5.3.6. Invalid score detection

Put the environment Mode in FULL_ASSERT (or FAST_ASSERT) to detect corruption in the
incremental score calculation. For more information, see the section about envi r onnent Mode.
However, that will not verify that your score calculator implements your score constraints as your
business actually desires.

A piece of incremental score calculator code can be difficult to write and to review. Assert its
correctness by using a different implementation (for example a EasyScor eCal cul at or) to do the
assertions triggered by the envi r onment Mode. Just configure the different implementation as a
assertionScoreDirectorFactory:

<envi r onment Mode>FAST_ASSERT</ envi r onment Mbde>

<scoreDi rector Fact ory>
<scoreDefinitionType>...</scoreDefinitionType>
<scor eDr | >or g/ opt apl anner/ exanpl es/ nqueens/ sol ver/ nQueensScor eRul es. drl </
scoreDr| >
<assertionScoreDirectorFactory>

. opt apl anner . exanpl es. nqueens. sol ver. scor e. NQueensEasyScor eCal cul at or </
easyScor eCal cul at or C ass>
</ assertionScoreDirectorFactory>
</ scoreDirector Fact ory>

This way, the scor eDr | will be validated by the EasyScor eCal cul at or.
5.4. Score calculation performance tricks

5.4.1. Overview

The Sol ver will normally spend most of its execution time running the score calculation (which is
called in its deepest loops). Faster score calculation will return the same solution in less time with
the same algorithm, which normally means a better solution in equal time.

5.4.2. Average calculation count per second

After solving a problem, the Sol ver will log the average calculation count per second. This is
a good measurement of Score calculation performance, despite that it is affected by non score
calculation execution time. It depends on the problem scale of the problem dataset. Normally, even
for high scale problems, it is higher than 1000, except when you're using EasyScor eCal cul at or.

124

Incremental score calculation (with delta's)

Important

When improving your score calculation, focus on maximizing the average
calculation count per second, instead of maximizing the best score. A big
improvement in score calculation can sometimes yield little or no best score
improvement, for example when the algorithm is stuck in a local or global optima.
If you're watching the calculation count instead, score calculation improvements
are far more visible.

Furthermore, watching the calculation count, allows you to remove or add score
constraints, and still compare it with the original calculation count. Comparing the
best score with the original would be wrong, because it's comparing apples and
oranges.

5.4.3. Incremental score calculation (with delta's)

When a Sol uti on changes, incremental score calculation (AKA delta based score calculation),
will calculate the delta with the previous state to find the new Scor e, instead of recalculating the
entire score on every solution evaluation.

For example, if a single queen A moves from row 1 to 2, it won't bother to check if queen B and
C can attack each other, since neither of them changed.

125

Chapter 5. Score calculation

A B C D A B ¢ D Delta based
o @l of [hw .
J{E] Newe score calculation
’ The rule engine
2L 2 |1l \ (with forward chaining)
3 “‘“@ 3 Ms@ﬂ only recalculates dirty tuples.

queens dirty total speedup
4 3 of 6 time/ 2

8 7of 28 time/ 4

16 150f 120 time/ 8

32 31of 496 time/ 16

64 63 of 2016 time /32

Figure 5.1. Incremental score calculation for the 4 queens puzzle

This is a huge performance and scalability gain. Drools score calculation gives you this huge
scalability gain without forcing you to write a complicated incremental score calculation
algorithm. Just let the Drools rule engine do the hard work.

Notice that the speedup is relative to the size of your planning problem (your n), making
incremental score calculation far more scalable.

5.4.4. Avoid calling remote services during score calculation

Do not call remote services in your score calculation (except if you're bridging
EasyScor eCal cul at or to a legacy system). The network latency will kill your score calculation
performance. Cache the results of those remote services if possible.

If some parts of a constraint can be calculated once, when the Sol ver starts, and never change
during solving, then turn them into cached problem facts.

5.4.5. Pointless constraints

If you know a certain constraint can never be broken (or it is always broken), don't bother writing
a score constraint for it. For example in n queens, the score calculation doesn't check if multiple
gueens occupy the same column, because a Queen's col unm never changes and every Sol ut i on
starts with each Queen on a different col um.

126

Build-in hard constraint

@ Note
Don't go overboard with this. If some datasets don't use a specific constraint but
others do, just return out of the constraint as soon as you can. There is no need to
dynamically change your score calculation based on the dataset.

5.4.6. Build-in hard constraint

Instead of implementing a hard constraint, you can sometimes make it build-in too. For example:
If Lect ure A should never be assigned to RoomX, but it uses ValueRangeProvider on Solution,
the Sol ver will often try to assign it to RoomX too (only to find out that it breaks a hard constraint).
Use filtered selection to define that Course A should only be assigned a Roomother than X.

This tends to give a good performance gain, not just because the score calculation is faster, but
mainly because most optimization algorithms will spend less time evaluating unfeasible solutions.

@ Note
Don't go overboard with this. Many optimization algorithms rely on the freedom to
break hard constraints when changing planning entities, to get out of local optima.
There is a real risk of trading short term benefits for long term harm.

5.4.7. Other performance tricks

Verify that your score calculation happens in the correct Nunber type. If you're making the sum
of i nt values, don't let Drools sum it in a doubl e which takes longer.

« For optimal performance, always use server mode (j ava - ser ver). We have seen performance
increases of 50% by turning on server mode.

« For optimal performance, use the latest Java version. For example, in the past we have seen
performance increases of 30% by switching from java 1.5 to 1.6.

» Always remember that premature optimization is the root of all evil. Make sure your design is
flexible enough to allow configuration based tweaking.

5.4.8. Score trap

Make sure that none of your score constraints cause a score trap. A trapped score constraint
uses the same weight for different constraint matches, when it could just as easily use a different
weight. It effectively lumps its constraint matches together, which creates a flatlined score function
for that constraint. This can cause a solution state in which several moves need to be done to
resolve or lower the weight of that single constraint. Some examples of score traps:

127

Chapter 5. Score calculation

« If you need 2 doctors at each table, but you're only moving 1 doctor at a time. So the solver has
no incentive to move a doctor to a table with no doctors. Punish a table with no doctors more
then a table with only 1 doctor in that score constraint in the score function.

» 2 exams needs to be conducted at the same time, but you're only move 1 exam at a time. So
the solver has a disincentive move one of those exams to another timeslot without moving the
other in the same move. Add a course-grained move that moves both exams at the same time.

For example, consider this score trap. If the blue item moves from an overloaded computer to an
empty computer, the hard score should improve. The trapped score implementation fails to do that:

Score trap

There are degrees of infeasibility

CFU Trapped score Good score
-1hard if any missing CPU -1hard per missing CPU

(%)
o
!
>

500 %
[[3] Y 1000% -thard [/ -1500s0ft -5hard / -1500soft
\ | z 10008
2
[[3.] Y 1000 % -1hard [-2500soft -2hard / -2500soft
Highest score
Z 10003
5 A\ V
\ / | v 10008 ~thard / -1500soft -Shard / -1500soft
I Highest score
[téﬂ[3] Z 1000$

The Solver should eventually get out of this trap, but it will take a lot of effort (especially if there
are even more processes on the overloaded computer). Before they do that, they might actually
start moving more processes into that overloaded computer, as there is no penalty for doing so.

Note

-]

Avoiding score traps does not mean that your score function should be smart
enough to avoid local optima. Leave it to the optimization algorithms to deal with
the local optima.

128

stepLimit benchmark

Avoiding score traps means to avoid - for each score constraint individually - a
flatlined score function.

Important

Always specify the degree of infeasibility. The business will often say: "if the
solution is infeasible, it doesn't matter how infeasible it." While that's true for the
business, it's not true for score calculation: it benefits from knowing how infeasible
it is. In practice, soft constraints usually do this naturally and it's just a matter of
doing it for the hard constraints too.

There are several ways to deal with a score trap:

« Improve the score constraint to make a distinction in the score weight. For example: penalize
- 1har d for every missing CPU, instead of just - 1har d if any CPU is missing.

« If changing the score constraint is not allowed from the business perspective, add a lower score
level with a score constraint that makes such a distinction. For example: penalize - 1subsoft for
every missing CPU, on top of - 1har d if any CPU is missing. The business ignores the subsoft
score level.

* Add course-grained moves and union select them with the existing fine-grained moves. A
course-grained move effectively does multiple moves to directly get out of a score trap with a
single move. For example: move multiple items from the same container to another container.

5.4.9. stepLimit benchmark

Not all score constraints have the same performance cost. Sometimes 1 score constraint can Kill
the score calculation performance outright. Use the Benchmarker to do a 1 minute run and check
what happens to the average calculation count per second if you comment out all but 1 of the
score constraints.

5.4.10. Fairness score constraints

Some use cases have a business requirement to provide a fair schedule (usually as a soft score
constraint), for example:

« Fairly distribute the workload amongst the employees, to avoid envy.

« Evenly distribute the workload amongst assets, to improve reliability.

Implementing such a constraint can seem difficult (especially because there are different ways to
formalize fairness), but usually the squared workload implementation behaves most desirable: for
each employee/asset, count the workload wand subtract the square w2 from the score.

129

Chapter 5. Score calculation

Fairness score constraints

Distribute the shift workload fairly across all employees by squaring the number of their shifts.

Employee X Employee Y Employee Z Score

ABICIBIE) (FIGIH[1)]

5 shifts 4 shifts 1 shift

- 5% =- 25 soft - 4% =-16 soft -1*=-1soft 25-16-1=-42 soft
5 shifts 3 shifts 2 shifts

- 5% =-25soft -3 =-9soft -2*=-4 soft -25-9-4=-38 soft
4 shifts 4 shifts 2 shifts

- 4% =-16 soft - 4% =-16 soft -2°=-4 soft -16-16-4 = - 36 soft
4 shifts 3 shifts 3 shifts)

- 4% = - 16 soft - 3* =-9 soft - 3 =- 9 soft -16-9-9 = - 34 soft .

Highest score

As shown above, the squared workload implementation guarantees that if you select 2 employees
from a given solution and make their distribution between those 2 employees more fair that the
resulting new solution will have a better overall score.

5.5. Reusing the score calculation outside the Solver

Other parts of your application, for example your webUI, might need to calculate the score too.
Do that by reusing the Scor eDi r ect or Fact or y of the Sol ver to build a separate Scor eDi r ect or
for that webUI:

ScoreDi rector Factory scoreDirectorFactory = sol ver. get ScoreDirectorFactory();
ScoreDi rector gui ScorebDirector = scorebirectorFactory. buil dScoreDirector();

Then use it when you need to calculate the Scor e of a Sol uti on:

gui Scor eDi rect or. set Wir ki ngSol uti on(sol ution);

130

Reusing the score calculation outside the Solver

Score score = gui ScoreDirector. cal cul ateScore();

To explain in the GUI what entities are causing which part of the Scor e, get the Const r ai nt Mat ch
objects from the Scor eDi rect or (after calling cal cul at eScore()):

for (ConstraintMatchTotal constraintMatchTotal : gui ScorebDirector. getConstraintMatchTotal s()) {
String constrai nt Name = constraint Mat chTot al . get Const r ai nt Nane() ;
Number wei ght Total = constraint Mat chTot al . get Wei ght Tot al AsNunber () ;
for (ConstraintMatch constrai nt Match : constrai nt Mat chTot al . get Constrai nt Mat chSet ()) {
Li st<Onject> justificationList = constraintMtch. getJustificationList();
Number wei ght = constrai nt Mat ch. get Wei ght AsNumber () ;

131

132

Chapter 6.

Chapter 6. Optimization algorithms

6.1. Search space size in the real world

The number of possible solutions for a planning problem can be mind blowing. For example:

* 4 queens has 256 possible solutions (4*4) and 2 optimal solutions.
» 5 queens has 3125 possible solutions (5”5) and 1 optimal solution.
e 8 queens has 16777216 possible solutions (828) and 92 optimal solutions.

* 64 queens has more than 107115 possible solutions (6464).

Most real-life planning problems have an incredible number of possible solutions and only 1 or
a few optimal solutions.

For comparison: the minimal number of atoms in the known universe (10"80). As a planning
problem gets bigger, the search space tends to blow up really fast. Adding only 1 extra planning
entity or planning value can heavily multiply the running time of some algorithms.

What is the size of the search space?

How big is the haystack?

CPU CPU One combination (feasible)
En o 7)+ [(IEnEs-
mm: o (6) [=

(1o : :

: 100 computers Another combination (infeasible)

300 processes [] X

[127
In how many combinations can 300 processes ‘j[:- z

be assigned to 100 computers?

IVaIueSet| |variableSet| — 1 00300
=10 % = 1000000000000000000000...

133

Chapter 6. Optimization algor...

Calculating the number of possible solutions depends on the design of the domain model:

Calculate the size of the search space

Given a Solution model, how many different combinations can it represent?

Cloud balancing

Traveling salesman (TSP)

Course scheduling

CPU C Room
< [ABE~ : SC
w Period 1
o | c | R Period 2 [C)
A
Model: (Gamputer)é——{Process) Model: linked list Model: e Lecture
@ ® © p times (B times ® ® o ‘o
D 0 I) 1 oIxX X 1
g ™,
X X @ 1 Ay
xe * {pxs)
x @ x) X E®
x 0 ® 1% 1x @
we 4 ®(pxr)
B ® = 1 Av ax :
Y o x ¥ WAy Ay i
Y ¥ X 10 . X Ay &% !
Y ¥y v : :]
Search space: cP Search space: n! Search space: (pxr)‘
computers # processes search space # customers search space # periods # rooms # lectures space
2 3 E 4 24 2 2 3 4
100 300 10 100 10 38 B 100 1077
200 600 10t 1000 10%% 36 18 400 1plta
400 1200 105957 10000 10355 36 36 800 10749

An algorithm that checks every possible solution (even with pruning such as in Branch And Bound)
can easily run for billions of years on a single real-life planning problem. What we really want
is to find the best solution in the limited time at our disposal. Planning competitions (such

134

Does Planner find the optimal solution?

as the International Timetabling Competition) show that Local Search variations (Tabu Search,
Simulated Annealing, Late Acceptance, ...) usually perform best for real-world problems given
real-world time limitations.

6.2. Does Planner find the optimal solution?

The business wants the optimal solution, but they also have other requirements:

Scale out: Large production datasets must not crash and have good results too.

« Optimize the right problem: The constraints must match the actual business needs.

Available time: The solution must be found in time, before it becomes useless to execute.

Reliability: Every dataset must have at least a decent result (better than a human planner).

Given these requirements, and despite the promises of some salesmen, it's usually impossible
for anyone or anything to find the optimal solution. Therefore, OptaPlanner focuses on finding the
best solution in available time. In realistic, independent competitions, OptaPlanner often comes
out as the best reusable software.

The nature of NP-complete problems make scaling a prime concern. The result quality of asmall
dataset guarantees nothing about the result quality of a large dataset. Scaling issues cannot
be mitigated by hardware purchases later on. Start testing with a production sized dataset as
soon as possible. Don't asses quality on small datasets (unless production encounters only such
datasets). Instead, solve a production sized dataset and compare the results of longer executions,
different algorithms and - if available - the human planner.

6.3. Architecture overview

OptaPlanner is the first framework to combine optimization algorithms (metaheuristics, ...) with
score calculation by a rule engine such as Drools Expert. This combination turns out to be a very
efficient, because:

« Arule engine such as Drools Expertis great for calculating the score of a solution of a planning
problem. It makes it easy and scalable to add additional soft or hard constraints such as "a
teacher shouldn't teach more then 7 hours a day". It does delta based score calculation without
any extra code. However it tends to be not suitable to actually find new solutions.

« An optimization algorithm is great at finding new improving solutions for a planning problem,
without necessarily brute-forcing every possibility. However it needs to know the score of a
solution and offers no support in calculating that score efficiently.

135

Chapter 6. Optimization algor...

Architecture overview

The Solver wades through the search space of solutions efficiently.
The ScoreDirector calculates the score of every solution under evaluation.

Solver

Drools
(rule engine)

First Fit
Best Fit
Cheapest Insertion

DRL
Decision Table
€mmmmmmm ” KIE Workbench

many times per ms

calculateScore()

Tabu Search
Simulated Annealing
Late Acceptance
Genetic Algorithms

Java

| EasyScoreCalculator
| IncrementalScoreCalc...

Find a better solution Calculate the score
of a solution

6.4. Optimization algorithms overview

Table 6.1. Optimization algorithms overview

Algorithm Scalable? Optimal? Easy Tweakable'Requires

to use? CH?

Exhaustive Search
Brute Force 0/5 5/5 5/5 0/5 No
Branch And Bound 0/5 5/5 4/5 2/5 No

Construction heuristics (CH)

First Fit 5/5 1/5 5/5 1/5 No
First Fit Decreasing 5/5 2/5 4/5 2/5 No
Best Fit 5/5 2/5 4/5 2/5 No
Best Fit Decreasing 5/5 2/5 4/5 2/5 No
Cheapest Insertion 3/5 2/5 5/5 2/5 No
Regret Insertion 3/5 2/5 5/5 2/5 No

136

Which optimization algorithms should | use?

Algorithm Scalable? Optimal? Easy Tweakable'Requires

to use? CH?

Metaheuristics (MH)

Local Search

Hill Climbing 5/5 2/5 4/5 3/5 Yes
Tabu Search 5/5 4/5 3/5 5/5 Yes
Simulated Annealing 5/5 4/5 2/5 5/5 Yes
Late Acceptance 5/5 4/5 3/5 5/5 Yes
Step Counting Hill Climbing 5/5 4/5 3/5 5/5 Yes
Evolutionary Algorithms
Evolutionary Strategies 4/5 3/5 2/5 5/5 Yes
Genetic Algorithms 4/5 3/5 2/5 5/5 Yes

If you want to learn more about metaheuristics, read the free books Essentials of
Metaheuristics [http://www.cs.gmu.edu/~sean/book/metaheuristics/] or Clever Algorithms [http://
www.cleveralgorithms.com/].

6.5. Which optimization algorithms should | use?

The best optimization algorithms configuration for your use case depends heavily on your use
case. Nevertheless, this vanilla recipe will get you into the game with a pretty good configuration,
probably much better than what you're used to.

Start with a quick configuration that involves little or no configuration and optimization code:

1. First Fit

Next, implement planning entity difficulty comparison and turn it into:

1. First Fit Decreasing

Next, add Late Acceptance behind it:

1. First Fit Decreasing
2. Late Acceptance. A late acceptance size of 400 usually works well.

At this point the free lunch is over. The return on invested time lowers. The result is probably
already more than good enough.

But you can do even better, at a lower return on invested time. Use the Benchmarker and try a
couple of different Tabu Search, Simulated Annealing and Late Acceptance configurations, for
example:

137

http://www.cs.gmu.edu/~sean/book/metaheuristics/
http://www.cs.gmu.edu/~sean/book/metaheuristics/
http://www.cs.gmu.edu/~sean/book/metaheuristics/
http://www.cleveralgorithms.com/
http://www.cleveralgorithms.com/
http://www.cleveralgorithms.com/

Chapter 6. Optimization algor...

1. First Fit Decreasing

2. Tabu Search. An entity tabu size of 7 usually works well.

Use the Benchmarker to improve the values for those size parameters.

If it's worth your time, continue experimenting further. For example, you can even combine multiple
algorithms together:

1. First Fit Decreasing

2. Late Acceptance (relatively long time)

3. Tabu Search (relatively short time)

6.6. Solver phase

A Sol ver can use multiple optimization algorithms in sequence. Each optimization algorithm is
represented by a solver Phase. There is never more than 1 Phase solving at the same time.

Here's a configuration that runs 3 phases in sequence:

<sol ver >

<constructionHeuristic>
<l-- First phase: First Fit Decreasing -->
</ constructionHeuristic>
<l ocal Sear ch>
<I-- Second phase: Late acceptance -->
</l ocal Sear ch>
<l ocal Sear ch>
<l-- Third phase: Tabu Search -->
</l ocal Sear ch>
</ sol ver >

The solver phases are run in the order defined by solver configuration. When the first Phase
terminates, the second Phase starts, and so on. When the last Phase terminates, the Sol ver
terminates. Usually, a Sol ver will first run a construction heuristic and then run 1 or multiple
metaheuristics:

138

Solver phase

General phase sequence

First a construction heuristic,
then metaheuristics

™

L

LR

Construction heuristic

First Fit Decreasing

Metaheuristic

Tabu Search

Some phases (especially construction heuristics) will terminate automatically. Other phases
(especially metaheuristics) will only terminate if the Phase is configured to terminate:

<sol ver >

<term nati on><!-- Solver termnation -->

<secondsSpent Li m t >90</ secondsSpent Li m t >
</term nation>
<l ocal Sear ch>

<term nati on><!-- Phase term nation -->

<secondsSpent Li m t >60</ secondsSpent Li m t><!-- G ve the next phase a chance
to run too, before the Sol ver ternm nates -->
</term nation>

</| ocal Search>
<l ocal Sear ch>

</l ocal Search>
</ sol ver >

139

Chapter 6. Optimization algor...

If the Sol ver terminates (before the last Phase terminates itself), the current phase is terminated
and all subsequent phases won't run.

6.7. Scope overview

A solver will iteratively run phases. Each phase will usually iteratively run steps. Each step, in turn,
usually iteratively runs moves. These form 4 nested scopes: solver, phase, step and move.

Scope overview

Each scope triggers lifecycle events

stepStarted()

stepEnded() queen B to row 3

stepStarted()

stepEnded() queen C to row 0

Configure logging to display the log messages of each scope.

6.8. Termination

Not all phases terminate automatically and sometimes you don't want to wait that long anyway.
A Sol ver can be terminated synchronously by up-front configuration or asynchronously from
another thread.

Especially metaheuristic phases will need to be told when to stop solving. This can be because
of a number of reasons: the time is up, the perfect score has been reached, ... The only thing you
can't depend on, is on finding the optimal solution (unless you know the optimal score), because
a metaheuristic algorithm generally doesn't know it when it finds the optimal solution. For real-life

140

TimeMillisSpentTermination

problems this doesn't turn out to be much of a problem, because finding the optimal solution could
take billions of years, so you 'll want to terminate sooner anyway. The only thing that matters is
finding the best solution in the available time.

For synchronous termination, configure a Ter mi nati on on a Sol ver or a Phase when it needs to
stop. You can implement your own Ter ni nat i on, but the build-in implementations should suffice
for most needs. Every Ter ni nat i on can calculate a time gradient (needed for some optimization
algorithms), which is a ratio between the time already spent solving and the estimated entire
solving time of the Sol ver or Phase.

6.8.1. TimeMillisSpentTermination

Terminates when an amount of time has been used:

<term nati on>
<m | | i secondsSpent Li m t >500</ i | | i secondsSpent Li m t >
</termnation>

<term nati on>
<secondsSpent Li m t >10</ secondsSpent Li m t >
</term nation>

<term nati on>
<m nut esSpent Li m t >5</ m nut esSpent Li m t >
</term nation>

<term nati on>
<hour sSpent Li mi t >1</ hour sSpent Li m t >
</term nati on>

141

Chapter 6. Optimization algor...

6.8.2. Unimproved TimeMillisSpentTermination

Terminates when the best score hasn't improved in an amount of time:

<l ocal Sear ch>
<term nati on>
<uni nprovedM | | i secondsSpent Li m t >500</ uni nprovedM | | i secondsSpent Li m t >
</term nati on>
</l ocal Sear ch>

<l ocal Sear ch>
<term nati on>
<uni npr ovedSecondsSpent Li mi t >10</ uni npr ovedSecondsSpent Li mi t >
</term nation>
</l ocal Sear ch>

<l ocal Sear ch>
<term nation>
<uni nprovedM nut esSpent Li mi t >5</ uni npr ovedM nut esSpent Li m t >
</term nati on>
</l ocal Sear ch>

<l ocal Sear ch>
<term nati on>
<uni npr ovedHour sSpent Li ni t >1</ uni npr ovedHour sSpent Li ni t >
</term nati on>
</l ocal Sear ch>

This termination should not be applied to Construction Heuristics, because they only update the
best solution at the end. Therefore it might be better to configure it on a specific Phase (such as
<l ocal Sear ch>), instead of on the Sol ver itself.

142

BestScoreTermination

6.8.3. BestScoreTermination

Terminates when a certain score has been reached. You can use this Ter i nati on if you know
the perfect score, for example for 4 queens:

<term nati on>
<best Scor eLi m t >0</ best Scor eLi m t >
</term nation>

For a planning problem with hard and soft constraints, it could look like this:

<term nati on>
<best Scor eLi m t >0har d/ - 5000sof t </ best ScoreLi m t >
</term nation>

To terminate once a feasible solution has been reached, this Ter ni nat i on isn't practicle because it
requires a best Scor eLi m t such as Ohard/ - 2147483648sof t . Instead, use the next termination.

6.8.4. BestScoreFeasibleTermination

Terminates when a certain score is feasible. Requires that the Scor e implementation implements
Feasi bilityScore.

<term nati on>
<best Scor eFeasi bl e>t r ue</ best Scor eFeasi bl e>
</term nation>

This Ter mi nat i on is usually combined with other terminations.

143

Chapter 6. Optimization algor...

6.8.5. StepCountTermination

Terminates when an amount of steps has been reached:

<l ocal Sear ch>
<term nation>
<st epCount Li m t >100</ st epCount Li mi t >
</term nati on>
</l ocal Sear ch>

This Ter m nati on can only be used for a Phase (such as <l ocal Sear ch>), not for the Sol ver
itself.

6.8.6. UnimprovedStepCountTermination

Terminates when the best score hasn't improved in a number of steps:

<l ocal Sear ch>
<term nati on>
<uni npr ovedSt epCount Li m t >100</ uni npr ovedSt epCount Li m t >
</term nation>
</l ocal Sear ch>

If the score hasn't improved recently, it's probably not going to improve soon anyway and it's not
worth the effort to continue. We have observed that once a new best solution is found (even after
a long time of no improvement on the best solution), the next few steps tend to improve the best
solution too.

This Ter mi nati on can only be used for a Phase (such as <lI ocal Sear ch>), not for the Sol ver
itself.

6.8.7. Combining multiple Terminations

Terminations can be combined, for example: terminate after 100 steps or if a score of 0 has been
reached:

<term nation>
<term nati onConpositionStyl e>OR</term nati onConpositionStyl e>
<st epCount Li m t >100</ st epCount Li m t >
<best Scor eLi m t >0</ best ScoreLi m t >

</term nation>

144

Asynchronous termination from another thread

Alternatively you can use AND, for example: terminate after reaching a feasible score of at least
- 100 and no improvements in 5 steps:

<term nati on>
<t erm nati onConposi tionStyl e>AND</t er mi nati onConposi tionStyl e>
<uni nprovedSt epCount Li nmi t >5</ uni npr ovedSt epCount Li m t >
<best Scor eLi m t >- 100</ best ScoreLi m t >

</term nation>

This example ensures it doesn't just terminate after finding a feasible solution, but also completes
any obvious improvements on that solution before terminating.

6.8.8. Asynchronous termination from another thread

Sometimes you'll want to terminate a Solver early from another thread, for example because a
user action or a server restart. This cannot be configured by a Ter mi nati on as it's impossible to
predict when and if it will occur. Therefore the Sol ver interface has these 2 thread-safe methods:
public interface Solver {

Il

bool ean term nateEarly();
bool ean i sTerm nateEarly();

If you call the t er mi nat eEar | y() method from another thread, the Sol ver will terminate at its
earliest convenience and the sol ve(Sol uti on) method will return in the original Sol ver thread.

6.9. SolverEventListener

Each time a new best solution is found, the Sol ver fires a Best Sol ut i onChangedEvent, in the
solver's thread.

To listen to such events, add a Sol ver Event Li st ener to the Sol ver:

public interface Solver {
Il

voi d addEvent Li st ener (Sol ver Event Li st ener <? ext ends Sol uti on> event Li st ener);
voi d renmoveEvent Li st ener (Sol ver Event Li st ener <? ext ends Sol uti on> eventLi stener);

145

Chapter 6. Optimization algor...

The Best Sol ut i onChangedEvent 's newBest Sol uti on might not be initialized or feasible. Use the
methods on Best Sol uti onChangedEvent to detect such cases:

sol ver. addEvent Li st ener (new Sol ver Event Li st ener <O oudBal ance>() {
publ i c void best Sol uti onChanged(Best Sol uti onChangedEvent <Cl oudBal ance> event) {
/1 lgnore invalid solutions
if (event.isNewBestSolutionlnitialized()
&& event . get NewBest Sol uti on().getScore().isFeasible()) {

1),

Warning

The best Sol uti onChanged() method is called in the solver's thread, as part of
Sol ver . sol ve() . So it should return quickly to avoid slowing down the solving.

6.10. Custom solver phase

Between phases or before the first phase, you might want to execute a custom action on the
Sol uti on to get a better score. Yet you'll still want to reuse the score calculation. For example, to
implement a custom construction heuristic without implementing an entire Phase.

@ Note
Most of the time, a custom construction heuristic is not worth the hassle. The
supported constructions heuristics are configurable (use the to tweak
them), Ter mi nat i on aware and support partially initialized solutions too.

Implement the Cust onPhaseComand interface:

public interface CustonPhaseComrand {

voi d changeWr ki ngSol uti on(ScorebDirector scorebDirector);

For example:

146

Custom solver phase

public class ToOri gi nal Machi neSol utionlnitializer inplenments CustonPhaseCommand {

public void changeWr ki ngSol uti on(ScoreDi rector scoreDirector) {
Machi neReassi gnnent nachi neReassi gnnent = (Machi neReassi gnnent) scoreDirector. get Wrkir
for (M ProcessAssi gnment processAssi gnnent : nachi neReassi gnnent. get ProcessAssi gnment Li
scoreDi rect or. bef oreVari abl eChanged(processAssi gnnent, "nmachi ne");
processAssi gnnent . set Machi ne(processAssi gnnent . get Oi gi nal Machi ne());
scoreDirector. aft er Vari abl eChanged(processAssi gnnent, "nmachi ne");

Warning

Any change on the planning entities in a Cust onPhaseCommand must be notified
to the ScoreDirect or.

Warning

Do not change any of the planning facts in a Cust onPhaseConmmand. That will corrupt
the Sol ver because any previous score or solution was for a different problem. To
do that, read about repeated planning and do it with a ProblemFactChange instead.

Configure your Cust onPhaseComand like this:

<sol ver >
<cust onPhase>

y i gi nal Machi neSol utionlnitializer</
cust onPhaseConmandCl ass>
</ cust onPhase>
<l-- O her phases -->
</ sol ver >

Configure multiple cust onPhaseCommandd ass instances to run them in sequence.

147

Chapter 6. Optimization algor...

Important

If the changes of a Cust onPhaseConmand don't result in a better score, the

best solution won't be changed (so effectively nothing will have changed for
the next Phase or Cust onPhaseCommand). To force such changes anyway, use
f or ceUpdat eBest Sol uti on

<cust onPhase>
<cust onPhaseComrandCl ass>. .. MyUninitializer</

cust onPhaseConmandCl ass>
<f or ceUpdat eBest Sol ut i on>t rue</ f or ceUpdat eBest Sol uti on>

</ cust onPhase>

@ Note
If the Sol ver or a Phase wants to terminate while a Cust onPhaseConmand is still
running, it will wait to terminate until the Cust onPhaseCommand is done, however

long that takes.

148

Chapter 7.

Chapter 7. . and neighborhood
selection

7.1. wve and neighborhood introduction

7.1.1. What is a mwve?

A Move is a change (or set of changes) from a solution A to a solution B. For example, the move
below changes queen C from row 0 to row 2:

A B C D A B C D

R g

e

Ww N ¥+ ©

L

Ww N H O

The new solution is called a neighbor of the original solution, because it can be reached in a single
Move. Although a single move can change multiple queens, the neighbors of a solution should
always be a very small subset of all possible solutions. For example, on that original solution,
these are all possible changeMove's:

A B C D

A

!
3

|

¥ B

[[] Doable mowve

[l Mot doable move
[no change)

Ww N H O

If we ignore the 4 changeMove's that have not impact and are therefore not doable, we can see
that number of movesisn * (n - 1) = 12. Thisis far less than the number of possible solutions,
whichisn ~ n = 256. As the problem scales out, the number of possible moves increases far
less than the number of possible solutions.

Yet, in 4 changeMve's or less we can reach any solution. For example we can reach a very
different solution in 3 changeMove's:

149

Chapter 7. Move and neighborh...

A B D A B
R L gy R

e

[
W

Ww N H O
Ww N H ©
Ww N H ©
Ww N H ©

@ Note
There are many other types of moves besides changeMyve's. Many move types
are included out-of-the-box, but you can also implement custom moves.

A Move can affect multiple entities or even create/delete entities. But it must not
change the problem facts.

All optimization algorithms use Mve's to transition from one solution to a neighbor solution.
Therefor, all the optimization algorithms are confronted with Move selection: the craft of creating
and iterating moves efficiently and the art of finding the most promising subset of random moves
to evaluate first.

7.1.2. What is a wmvesel ector ?

A MoveSel ect or's main function is to create |t er at or <Mbve> when needed. An optimization
algorithm will iterate through a subset of those moves.

Here's an example how to configure a changeMoveSel ect or for the optimization algorithm Local
Search:

<l ocal Sear ch>
<changeMoveSel ect or/ >

</| ocal Search>

Out of the box, this works and all properties of the changeMoveSel ect or are defaulted sensibly
(unless that fails fast due to ambiguity). On the other hand, the configuration can be customized
significantly for specific use cases. For example: you might want to configure a filter to discard
pointless moves.

7.1.3. Subselecting of entities, values and other moves

To create a Move, a MoveSel ect or needs to select 1 or more planning entities and/or planning
values to move. Just like MoveSel ectors, EntitySel ectors and Val ueSel ect ors need to

150

Subselecting of entities, values and other moves

support a similar feature set (such as scalable just-in-time selection). Therefore, they all implement
a common interface Sel ect or and they are configured similarly.

A MoveSelector is often composed out of EntitySel ectors, Val ueSel ect ors or even other

MoveSel ect or s, which can be configured individually if desired:

<uni onMoveSel ect or >
<changeMoveSel ect or >
<entitySel ect or >

</entitySel ector>
<val ueSel ect or >

</ val ueSel ect or >

</ changeMbveSel ect or >
<swapMbveSel ect or >

</ swapMoveSel ect or >
</ uni onMbveSel ect or >

Together, this structure forms a Sel ect or tree:

151

Chapter 7. Move and neighborh...

Selector tree

A MoveSelector can be composed out of other MoveSelectors, EntitySelectors and/or ValueSelectors.

A0, A1,A2, ..., BO, B1, B2, .., CO, C1,C2, ..
AB, AC, AD, ..., BC,BD, ..., CD, ...

A0, A1, A2, ... AB, AC,AD, ...
BO, B1, B2, ... BC, BD, ...
Co, C1, C2, ... CD, ...

A B,C, D, .. 0,1, 2, .. A B CD,... ABCD,..
(entitySelector] (valueSelector] (entitySelector] [(entitySelector)

The root of this tree is a MoveSel ect or which is injected into the optimization algorithm
implementation to be (partially) iterated in every step.

7.2. Generic MoveSelectors

7.2.1. changeMoveSel ect or

For 1 planning variable, the ChangeMve selects 1 planning entity and 1 planning value and assigns
the entity's variable to that value.

152

changeMoveSelector

ChangeMove

Change 1 variable of 1 entity

N queens Cloud balance

A B C D
o |1iilr @ [ﬁ[2 I 3 }x
AN \ y
2 |
5 z
A B C D
W |, [L3 Jx

Ww N B O

Simplest configuration:
<changeMoveSel ect or/ >
Advanced configuration:

<changeMoveSel ect or >
<l-- Normal selector properties -->
<entitySel ector>
<entityC ass>...Lecture</entityC ass>

</entitySel ector>
<val ueSel ect or >
<vari abl eNane>r oonx/ vari abl eNane>

</val ueSel ect or >
</ changeMbveSel ect or >

Vehicle routing
(chained variable)

153

Chapter 7. Move and neighborh...

A ChangeMove is the finest grained move.

Important

Almost every noveSel ect or configuration injected into a metaheuristic algorithm
should include a changeMoveSelector or a custom implementation. This
guarantees that every possible Sol uti on can be reached through applying a
number of moves in sequence (not taking score traps into account). Of course,
normally it is unioned with other, more course grained move selectors.

7.2.2. swapMoveSelector

The SwapMve selects 2 different planning entities and swaps the planning values of all their
planning variables.

SwapMove

Swap all variables of 2 entities

N queens Cloud balance Vehicle routing
(chained variable)

B

A C
W) [

© X | Paris | [Brus. |
1 L v
2 Amst.
i
3

CarB

£

W N
[Brus. | [Paris |

Ww N B O

Although a SwapMove on a single variable is essentially just 2 ChangeMoves, it's often the winning
step where the first of the 2 ChangeMves would not be the winning step because it leave the
solution in a state with broken hard constraints. For example: swapping the room of 2 lectures

154

pillarChangeMoveSelector

doesn't bring the solution in a intermediate state where both lectures are in the same room which
breaks a hard constraint.

Simplest configuration:
<swapMbveSel ect or/ >
Advanced configuration:

<swapMbveSel ect or >
<I-- Normal selector properties -->

<entitySel ector>
<entityC ass>...Lecture</entityC ass>

</entitySel ector>
<secondar yEntitySel ect or>

</ secondar yEntitySel ect or >

<vari abl eNanel ncl ude>r oonx/ vari abl eNanel ncl ude>

<vari abl eNanel ncl ude>. . . </ vari abl eNanel ncl ude>
</ swapMoveSel ect or >

The secondar yEntitySel ect or is rarely needed: if it is not specified, entities from the same
entitySel ector are swapped.

If one or more vari abl eNamel ncl ude properties are specified, not all planning variables will
be swapped, but only those specified. For example for course scheduling, specifying only
var i abl eNamel ncl ude room will make it only swap room, not period.

7.2.3. pillarChangeMoveSelector

A pillar is a set of planning entities which have the same planning value(s) for their planning
variable(s). The Pi | | ar ChangeMove selects 1 entity pillar (or subset of those) and changes the
value of 1 variable (which is the same for all entities) to another value.

155

Chapter 7. Move and neighborh...

PillarChangeMove

Change 1 variable of each entity in 1 pillar. A pillar is a set of entities with the same value(s).

N queens Cloud balance

A B C D
o] |8 | - X
1 W .
2| [HWr i
3 Z

A B C D
0 X
1 iy y
2 {8

Z

3

In the example above, queen A and C have the same value (row 0) and are moved to row 2. Also
the yellow and blue process have the same value (computer Y) and are moved to computer X.

Simplest configuration:
<pi | | ar ChangeMoveSel ect or/ >
Advanced configuration:

<pi | | ar SwapMoveSel ect or >
<l-- Normal selector properties -->
<pi |l | ar Sel ect or >
<entitySel ector>
<entityC ass>...Lecture</entityC ass>

</entitySel ector>
<subPi I | ar Enabl ed>t r ue</ subPi | | ar Enabl ed>
<m ni munBSubPi | | ar Si ze>1</ m ni nunSubPi | | ar Si ze>

156

pillarSwapMoveSelector

<maxi munBSubPi | | ar Si ze>1000</ maxi munBSubPi | | ar Si ze>
</pillarSel ect or>
<val ueSel ect or >

<vari abl eNane>r oonx/ vari abl eName>

</ val ueSel ect or >
</ pi | | ar SwapMbveSel ect or >

A sub pillar is a subset of entities that share the same value(s) for their variable(s). For example if
queen A, B, C and D are all located on row 0, they are a pillar and [A, D] is one of the many sub
pillars. If subPi | | ar Enabl ed (defaults to t r ue) is false, no sub pillars are selected. If sub pillars
are enabled, the pillar itself is also included and the properties ni ni munSubPi | | ar Si ze (defaults
to 1) and naxi nunSubPi | | ar Si ze (defaults to i nfi ni t y) limit the size of the selected (sub) pillar.

JIT random selection

The other properties are explained in changeMoveSelector.

7.2.4. pillarSwapMoveSelector

A pillar is a set of planning entities which have the same planning value(s) for their planning
variable(s). The Pi | | ar SwapMve selects 2 different entity pillars and swaps the values of all their
variables for all their entities.

157

Chapter 7. Move and neighborh...

PillarSwapMove

Swap all variables of 2 pillars. A pillar is a set of entities with the same value(s).

N queens Cloud balance
A B C D
oty Ml |« X
1 Wi "II:I y
2| [fwr 4
3 Z

Nél—'o
E

Simplest configuration:
<pi | | ar SwapMoveSel ect or / >
Advanced configuration:

<pi | | ar SwapMoveSel ect or >
<l-- Normal selector properties -->
<pi |l | ar Sel ect or >
<entitySel ector>
<entityC ass>...Lecture</entityC ass>

</entitySel ector>
<subPi | | ar Enabl ed>t r ue</ subPi | | ar Enabl ed>
<m ni munBSubPi | | ar Si ze>1</ m ni nunSubPi | | ar Si ze>
<maxi munBSubPi | | ar Si ze>1000</ maxi nunBSubPi | | ar Si ze>
</ pill arSel ector>
<secondar yPi | | ar Sel ect or >

158

subChainChangeMoveSelector

<entitySel ector>
</entitySel ector>

</ secondaryPi | | ar Sel ect or >

<vari abl eNanel ncl ude>r oonx/ vari abl eNanel ncl ude>

<vari abl eNanel ncl ude>. . . </ vari abl eNanel ncl ude>
</ pill ar SwapMoveSel ect or >

The secondaryPi | | ar Sel ect or is rarely needed: if it is not specified, entities from the same
pi | | ar Sel ect or are swapped.

The other properties are explained in swapMoveSelector and pillarChangeMoveSelector.

7.2.5. subChainChangeMoveSelector

A subChain is a set of planning entities with a chained planning variable which form part of a
chain. The subChai nChangeMve selects a subChain and moves it to another place in a different
or the same anchor chain.

Simplest configuration:
<subChai nChangeMboveSel ect or/ >
Advanced configuration:

<subChai nChangeMboveSel ect or >
<I-- Normal selector properties -->
<subChai nSel ect or >
<entitySel ector>
<entityC ass>...Customer</entityCl ass>

</entitySel ector>
<m ni munSubChai nSi ze>2</ m ni nunSubChai nSi ze>
<maxi munSubChai nSi ze>40</ maxi munSubChai nSi ze>
</ subChai nSel ect or >
<val ueSel ect or >
<vari abl eNane>pr evi ousSt andsti | | </ vari abl eNane>

</val ueSel ect or >
<sel ect Rever si ngvbveToo>t r ue</ sel ect Rever si nghvbveToo>
</ subChai nChangeMoveSel ect or >

The subChai nSel ect or selects a number of entities, no less than mi ni nunSubChai nSi ze
(defaults to 1) and no more than maxi nunSubChai nSi ze (defaults to i nfi ni ty).

159

Chapter 7. Move and neighborh...

The property sel ect Rever si ngMoveToo (defaults to true) enabled selecting the reverse of every
subchain too.

7.2.6. subChainSwapMoveSelector

The subChai nSwapMve selects 2 different subChains and moves it to another place in a different
or the same anchor chain.

Simplest configuration:

<subChai nSwapMveSel ect or/ >

Advanced configuration:

<subChai nSwapMveSel ect or >
<I-- Normal selector properties -->
<subChai nSel ect or >
<entitySel ector>
<entityC ass>...Custoner</entityC ass>

</entitySel ector>
<m ni nunBSubChai nSi ze>2</ nmi ni nunBubChai nSi ze>
<maxi munBSubChai nSi ze>40</ maxi munSubChai nSi ze>
</ subChai nSel ect or >
<secondar ySubChai nSel ect or >
<entitySel ector>
<entityC ass>...Custoner</entityC ass>

</entitySel ector>
<m ni nunBSubChai nSi ze>2</ nmi ni nunBubChai nSi ze>
<maxi munBSubChai nSi ze>40</ maxi nunSubChai nSi ze>
</ secondar ySubChai nSel ect or >
<sel ect Rever si ngvbveToo>t r ue</ sel ect Rever si ngvbveToo>

160

Combining multiple MoveSelectors

</ subChai nSwapMoveSel ect or >
The secondar ySubChai nSel ect or is rarely needed: if it is not specified, entities from the same
subChai nSel ect or are swapped.

The other properties are explained in subChainChangeMoveSelector.
7.3. Combining multiple wvesel ectorS

7.3.1. unionMoveSelector

A uni onMoveSel ect or selects a Move by selecting 1 of its child MoveSel ect or s to supply the
next Move.

Simplest configuration:

<uni onMoveSel ect or >
<...MoveSel ector/>
<...MoveSel ector/>
<...MoveSel ector/>

</ uni onMoveSel ect or >
Advanced configuration:

<uni onMoveSel ect or >
<l-- Normal selector properties -->
<sel ect or Probabi | i t yWei ght Fact oryC ass>. .. Probabi | i t yWei ght Fact ory</
sel ect or Probabi | i t yWei ght Fact oryCl ass>
<changeMveSel ect or >
<fi xedPr obabi | i t yWei ght >. .. </fi xedProbabilityWight>

</ changeMbveSel ect or >
<swapMoveSel ect or >
<fi xedPr obabi | i t yWei ght >. .. </fi xedProbabilityWight>
</ swapMoveSel ect or >
<...MyveSel ect or >
<fi xedPr obabi | i t yWei ght >. .. </fi xedProbabi | ityWight>

</...MveSel ect or >

</ uni onMoveSel ect or >

161

Chapter 7. Move and neighborh...

The sel ect or Probabi | i t yWei ght Fact ory determines in sel ecti onOr der RANDOMhow often a
child MoveSelector is selected to supply the next Move. By default, each child MoveSel ect or has
the same chance of being selected.

Selector probability in union o(5) Probabilty

A cached Selector can favor some selections over others. () to select x

A0, A1, BO, B1, C0, C1, DO, D1, AB, AC, AD, BC, BD, CD
P(A0)=1/16, ..., P(AB)=1/12, ..

1/2 probabilityWeight 1/2
8 moves (default) 6 moves

A0, A1, BO, B1, CO, C1, DO, D1 AB, AC, AD, BC, BD, CD
P(A0)=1/8, ... P(AB)=1/6, ...

A0, A1, BO, B1, C0, C1, DO, D1, AB, AC, AD, BC, BD, CD
P(A0)=1/14, ..., P(AB)=1/14, ...

8/14 probabilityWeight 6/14

8 moves 6 moves
A0, A1, BO, B1, CO, C1, DO, D1 AB, AC, AD, BC, BD, CD
P(A0)=1/8, ... P(AB)=1/6, ...

Change the fixedProbabilityWeight of such a child to select it more often. For example, the
uni onMoveSel ect or can return a SwapMve twice as often as a ChangeMove:

<uni onMoveSel ect or >
<changeMoveSel ect or >
<fi xedPr obabi | i t yWei ght >1. 0</fi xedPr obabi | i t yWei ght >

</ changeMbveSel ect or >
<swapMbveSel ect or >
<fi xedPr obabi | i t yWei ght >2. 0</f i xedPr obabi | i t yWei ght >

</ swapMoveSel ect or >
</ uni onMoveSel ect or >

162

cartesianProductMoveSelector

The number of possible ChangeMves is very different from the number of possible SwapMves
and furthermore it's problem dependent. To give each individual Move the same selection chance
(as opposed to each MoveSel ect or), use the Fai r Sel ect or Probabi | i t yWei ght Factory:

<uni onMoveSel ect or >
| ect or Probabi | i t yWei ght Fact ory</
sel ect or Probabi | i t yWei ght Fact oryCl ass>
<changeMoveSel ect or/ >

<swapMbveSel ect or/ >
</ uni onMbveSel ect or >

7.3.2. cartesianProductMoveSelector

Acartesi anProduct MoveSel ect or selects a new Conposi t eMove. It builds that Conposi t eMove
by selecting 1 Move per child MoveSel ect or and adding it to the Conposi t eMove.

Simplest configuration:

<cart esi anPr oduct MoveSel ect or >
<...MoveSel ector/>
<...MoveSel ector/ >
<...MoveSel ector/>

</ cart esi anProduct MoveSel ect or >
Advanced configuration:

<cart esi anPr oduct MbveSel ect or >
<l-- Normal selector properties -->
<i gnor eEnpt yChi | dl t er at or s>t r ue</ i gnor eEnpt yChi | dl t er at or s>
<changeMoveSel ect or >

</ changeMbveSel ect or >
<swapMoveSel ect or >

</ swapMoveSel ect or >
<...MyveSel ect or >

</...MveSel ect or >

</ cart esi anPr oduct MoveSel ect or >

163

Chapter 7. Move and neighborh...

The propery ignoreEnptyChilditerators (true by default) will ignore every empty
chi | dvbveSel ector to avoid returning no moves. For example: a cartesian product of
changeMoveSel ector A and B, for which B is empty (because all it's entities are immovable)
returns no moves if ignoreEnptyChilditerators is false and the moves of A if
i gnor eEnpt yChi l dlteratorsistrue.

7.4. EntitySelector

Simplest configuration:
<entitySel ector/>
Advanced configuration:

<entitySel ector>
<l-- Nornmal selector properties -->
<entityC ass>org. opt apl anner. exanpl es. curri cul uncour se. domai n. Lect ur e</
entityd ass>
</entitySel ector>

The entityd ass property is only required if it cannot be deduced automatically because there
are multiple entity classes.

7.5. ValueSelector

Simplest configuration:
<val ueSel ect or/ >
Advanced configuration:

<val ueSel ect or >
<I'-- Normal selector properties -->
<vari abl eName>r oonx/ vari abl eName>
</val ueSel ect or >

The vari abl eNane property is only required if it cannot be deduced automatically because there
are multiple variables (for the related entity class).

In exotic Construction Heuristic configurations, the entityd ass from the EntitySel ect or
sometimes needs to be downcasted, which can be done with the property downcast Enti t yd ass:

164

General Selector features

<val ueSel ect or >
<downcast EntityCl ass>. .. Leadi ngExanx/ downcast EntityCl ass>
<vari abl eNane>peri od</ vari abl eName>

</ val ueSel ect or >

If a selected entity cannot be downcasted, the Val ueSel ect or is empty for that entity.
7.6. General seiector features

7.6.1. cachetype: Create moves ahead of time or Just In Time

A Sel ector's cacheType determines when a selection (such as a Move, an entity, a value, ...) is
created and how long it lives.

Almost every Sel ect or supports setting a cacheType:

<changeMoveSel ect or >
<cacheType>PHASE</ cacheType>

</ changeMoveSel ect or >

The following cacheTypes are supported:

e JUST_I N_TI ME (default): Not cached. Construct each selection (Move, ...) just before it's used.
This scales up well in memory footprint.

« STEP: Cached. Create each selection (Move, ...) at the beginning of a step and cache them in a
list for the remainder of the step. This scales up badly in memory footprint.

e PHASE: Cached. Create each selection (Move, ...) at the beginning of a solver phase and
cache them in a list for the remainder of the phase. Some selections cannot be phase cached
because the list changes every step. This scales up badly in memory footprint, but has a slight
performance gain.

e SOLVER Cached. Create each selection (Move, ...) at the beginning of a Sol ver and cache them
in a list for the remainder of the Sol ver . Some selections cannot be solver cached because the
list changes every step. This scales up badly in memory footprint, but has a slight performance
gain.

A cacheType can be set on composite selectors too:
<uni onMoveSel ect or >

<cacheType>PHASE</ cacheType>
<changeMoveSel ect or/ >

165

Chapter 7. Move and neighborh...

<swapMbveSel ect or/ >

</ uni onMbveSel ect or >

Nested selectors of a cached selector cannot be configured to be cached themselves, unless it's
a higher cacheType. For example: a STEP cached uni onMveSel ect or can hold a PHASE cached
changeMoveSel ect or, but not a STEP cached changeMbveSel ect or .

7.6.2. SelectionOrder: original, sorted, random, shuffled or
probabilistic

A Sel ector's sel ecti onOrder determines the order in which the selections (such as Mves,
entities, values, ...) are iterated. An optimization algorithm will usually only iterate through a subset
of its MoveSel ect or's selections, starting from the start, so the sel ecti onOrder is critical to
decide which Moves are actually evaluated.

Almost every Sel ect or supports setting a sel ecti onOr der :

<changeMoveSel ect or >
<sel ecti onOr der >RANDOWVK/ sel ecti onOr der >

</ changeMbveSel ect or >

The following sel ecti onOr der s are supported:

e ORI G NAL: Select the selections (Moves, entities, values, ...) in default order. Each selection will
be selected only once.

+ For example: A0, Al, A2, A3, ..., BO, B1, B2, B3, ..., C0O, C1, C2, C3, ...

* SORTED: Select the selections (Mbves, entities, values, ...) in sorted order. Each selection will
be selected only once. Requires cacheType >= STEP. Mostly used on an ent i t ySel ect or or
val ueSel ect or for construction heuristics. See sorted selection.

» For example: AQ, BO, CO, ..., A2,B2,C2, ..., A1, B1, C1, ...

« RANDOM (default): Select the selections (Mves, entities, values, ...) in non-shuffled random
order. A selection might be selected multiple times. This scales up well in performance because
it does not require caching.

» For example: C2, A3, B1, C2, AOQ, CO, ...

« SHUFFLED: Select the selections (Moves, entities, values, ...) in shuffled random order. Each
selection will be selected only once. Requires cacheType >= STEP. This scales up badly

166

Recommended combinations of CacheType and SelectionOrder

in performance, not just because it requires caching, but also because a random number is
generated for each element, even if it's not selected (which is the grand majority when scaling

up).
» For example: C2, A3, B1, A0, CO, ...

« PROBABILISTIC: Select the selections (Moves, entities, values, ...) in random order, based
on the selection probability of each element. A selection with a higher probability has a
higher chance to be selected than elements with a lower probability. A selection might be
selected multiple times. Requires cacheType >= STEP. Mostly used on anentitySel ect or or
val ueSel ect or . See probabilistic selection.

» For example: B1, B1, Al, B2, B1, C2, B1, B1, ...

A sel ecti onOrder can be set on composite selectors too.

@ Note

When a Sel ector is cached, all of its nested Sel ect ors will naturally default
to sel ecti onOrder ORI G NAL. Avoid overwriting the sel ecti onOr der of those
nested Sel ect or S.

7.6.3. Recommended combinations of cacheType and sel ecti onor der

7.6.3.1. Just in time random selection (default)

This combination is great for big use cases (10 000 entities or more), as it scales up well in memory
footprint and performance. Other combinations are often not even viable on such sizes. It works for
smaller use cases too, so it's a good way to start out. It's the default, so this explicit configuration
of cacheType and sel ecti onOr der is actually obsolete:

<uni onMoveSel ect or >
<cacheType>JUST | N Tl ME</ cacheType>
<sel ecti onOr der >RANDOWK/ sel ecti onOr der >

<changeMoveSel ect or/ >
<swapMoveSel ect or/ >
</ uni onMoveSel ect or >

Here's how it works. When | t er at or <Mbve>. next () is called, a child MoveSel ect or is randomly
selected (1), which creates a random Mve is created (2, 3, 4) and is then returned (5):

167

Chapter 7. Move and neighborh...

Just in time random selection

Create a random Move just before it's needed and no sooner
Move C2 is never cached

C2

Select ChangeMove C2 .
Randomly select child

changeMoveSelector

C2

Create new ChangeMove C2
just in time and select it

[changeMoveSelector] | swapMoveSelector
C 2
cocrontyc| @ e

(entitySelector] (valueSelector] (entitySelector] [(entitySelector)

Notice that it never creates a list of Moves and it generates random numbers only for Moves that
are actually selected.

7.6.3.2. Cached shuffled selection

This combination often wins for small and medium use cases (5000 entities or less). Beyond that
size, it scales up badly in memory footprint and performance.

<uni onMoveSel ect or >
<cacheType>PHASE</ cacheType>
<sel ecti onOr der >SHUFFLED</ sel ecti onOr der >

<changeMoveSel ect or/ >
<swapMbveSel ect or/ >
</ uni onMoveSel ect or >

Here's how it works: At the start of the phase (or step depending on the cacheType), all moves are
created (1) and cached (2). When MoveSel ector.iterator () is called, the moves are shuffled
(3). When | t er at or <Mbve>. next () is called, the next element in the shuffled list is returned (4):

168

Recommended combinations of CacheType and SelectionOrder

Cached shuffled selection

Cache all possible moves. Shuffle them when a Move Iterator is created

rom i snitea move 1ot @) C2
C2, BC, C0, A2, B2, AB, C1, BD,

CD, A1,AC, B0, B1,AD, A0, ... @ Shuffle all moves

@ Cache all moves

Move C2 is only selected once

AO, A1, A2, ... AB, AC, AD, ...

B0, B1, B2, ... BC, BD, ...
Create all

CO,C1,C2, .. @ el moume GEs e

A, B, C,D, .. A, B, C, D, .. A, B, C,D, ..
(entitySelector] (valueSelector] (entitySelector] [(entitySelector)

Notice that each Move will only be selected once, even though they are selected in random order.

Use cacheType PHASE if none of the (possibly nested) Selectors require STEP. Otherwise, do
something like this:

<uni onMoveSel ect or >
<cacheType>STEP</ cacheType>
<sel ecti onOr der >SHUFFLED</ sel ecti onOr der >

<changeMoveSel ect or >
<cacheType>PHASE</ cacheType>
</ changeMbveSel ect or >
<swapMbveSel ect or/ >
<cacheType>PHASE</ cacheType>
</ swapMoveSel ect or >
<pi | | ar SwapMbveSel ect or/ ><!'-- Does not support cacheType PHASE -->
</ uni onMoveSel ect or >

169

Chapter 7. Move and neighborh...

7.6.3.3. Cached random selection

This combination is often a worthy competitor for medium use cases, especially with fast stepping
optimization algorithms (such as simulated annealing). Unlike cached shuffled selection, it doesn't
waste time shuffling the move list at the beginning of every step.

<uni onMoveSel ect or >
<cacheType>PHASE</ cacheType>
<sel ecti onOr der >RANDOWK/ sel ecti onOr der >

<changeMoveSel ector/ >
<swapMoveSel ect or/ >
</ uni onMoveSel ect or >

7.6.4. Filtered selection

There can be certain moves that you don't want to select, because:

* The move is pointless and would only waste CPU time. For example, swapping 2 lectures of
the same course will result in the same score and the same schedule because all lectures of 1
course are interchangeable (same teacher, same students, same topic).

» Doing the move would break a build-in hard constraint, so the solution would be infeasible but
the score function doesn't check build-in hard constraints (for performance gain). For example,
don't change a gym lecture to a room which is not a gym room.

* Note that any build-in hard constraint must usually be filtered on every move type. For
example, also don't swap the room of a gym lecture with another lecture if the other lecture's
original room isn't a gym room.

Filtered selection can happen on any Selector in the selector tree, including any MoveSel ect or,
EntitySel ect or or Val ueSel ect or . It works with any cacheType and sel ecti onOr der .

170

Filtered selection

Filtered selection

The output of any Selector can be filtered with one or more SelectionFilters

A0, A1,A2, ..., CO, C1, C2, ..
AB, AD, ..., BC, ..., CD, ...

AB, AC, AD, ...
BC, BD, ...

A0, A1, A2, ... CD, ...
Co, C1,C2, ...
swapMoveSelectionFilter
[changeMoveSelector |
A B CH, ..
[entitySelectionFitter | 0, 1, 2, ... A, B,C,D,.. AMBC,D,..
(entitySelector] (valueSelector] (entitySelector] [(entitySelector)

Filtering uses the interface Sel ecti onFilter:

public interface SelectionFilter<T> {

bool ean accept (ScoreDirector scoreDirector, T selection);

Implement the method accept toreturn f al se on a discarded sel ect i on. Unaccepted moves will
not be selected and will therefore never have their method doMbve called.

public class Different CourseSwapMveFilter inplenents Sel ectionFilter<SwapMve> {

publi ¢ bool ean accept (ScorebDirector scorebDirector, SwapMyve nove) {
Lecture leftLecture = (Lecture) nove.getlLeftEntity();
Lecture rightLecture = (Lecture) nove.getRightEntity();
return !l eftLecture.getCourse().equal s(rightLecture.getCourse());

171

ner . exanpl es.

Chapter 7. Move and neighborh...

Apply the filter on the lowest level possible. In most cases, you 'll need to know both the entity
and the value involved and you'll have to apply afi |l t er ass on the noveSel ect or:

curri cul untour se. sol ver. nove. Di f f er ent Cour seSwapMoveFi | t er </

<swapMbveSel ect or >

filterC ass>
</ swapMoveSel ect or >

But if possible, apply it on a lower levels, such as a filterC ass on the entitySel ector or
val ueSel ector:

<changeMoveSel ect or >
<entitySel ector>
<filterClass> ..EntityFilter</filterC ass>
</entitySel ector>
</ changeMoveSel ect or >

You can configure multiple fi | t er d ass elements on a single selector.

7.6.5. Sorted selection

Sorted selection can happen on any Selector in the selector tree, including any MoveSel ect or,
EntitySel ect or orVal ueSel ect or . It does not work with cacheType JUST_IN TIMEandit only
works with sel ecti onOrder SORTED.

It's mostly used in construction heuristics.

7.6.5.1. Sorted selection by sorter Manner

Some Sel ect or types implement a Sor t er Manner out of the box:

* EntitySel ector supports:

172

Sorted selection

» DECREASI NG _DI FFI CULTY: Sorts the planning entities according to decreasing planning entity
difficulty. Requires that planning entity difficulty is annotated on the domain model.

<entitySel ector>

<cacheType>PHASE</ cacheType>

<sel ecti onOr der >SORTED</ sel ect i onOr der >

<sorter Manner >DECREASI NG _DI FFI CULTY</ sort er Manner >
</entitySel ector>

* Val ueSel ect or supports:

* | NCREASI NG_STRENGTH: Sorts the planning values according to increasing planning value
strength. Requires that planning value strength is annotated on the domain model.

<val ueSel ect or >

<cacheType>PHASE</ cacheType>

<sel ecti onOr der >SORTED</ sel ecti onOr der >

<sort er Manner > NCREASI NG_STRENGTH</ sor t er Manner >
</ val ueSel ect or >

7.6.5.2. Sorted selection by conparat or

An easy way to sort a Sel ect or is with a plain old Conpar at or :

public class C oudProcessDifficultyConparator inplenments Conparator<Cl oudProcess> {

public int conpare(C oudProcess a, d oudProcess b) {
return new ConpareToBui |l der ()
. append(a. get Requi redMul ti plicand(), b.getRequiredMultiplicand())
.append(a.getld(), b.getld())
.toComparison();

You 'll also need to configure it (unless it's annotated on the domain model and automatically
applied by the optimization algorithm):

<entitySel ector>
<cacheType>PHASE</ cacheType>
<sel ecti onOr der >SORTED</ sel ecti onOr der >

<sorter Conparat orCl ass>. .. oudProcessDi fficul t yConpar at or </
sort er Conpar at or d ass>

173

Chapter 7. Move and neighborh...

<sorter O der >DESCENDI NG</ sort er Or der >
</entitySel ector>

7.6.5.3. Sorted selection by sel ectionSort er Wi ght Fact ory

If you need the entire Sol uti on to sort a Sel ect or, use a Sel ecti onSort er Wi ght Fact ory
instead:

public interface Sel ectionSorterWi ght Fact ory<Sol extends Sol ution, T> {

Conpar abl e createSorter Wi ght(Sol solution, T selection);

public class QueenDifficultyWightFactory inplenents Sel ecti onSorter Wi ght Fact ory<NQueens, Quee

publ i ¢ Conpar abl e creat eSorter Wi ght (NQueens nQueens, Queen queen) {
i nt di stanceFronM ddl e = cal cul at eDi st anceFromM ddl e(nQueens. get N(), queen. get Col umml nc
return new QueenbDi fficul t yWei ght (queen, distanceFronM ddl e);

Il
public static class QueenDi fficultyWight inplenents Conparabl e<QueenDi fficultyWight> {

private final Queen queen;
private final int distanceFronM ddl e;

public QueenDi fficultyWight(Qeen queen, int distanceFronM ddle) {
thi s. queen = queen;
t hi s. di stanceFronM ddl e = di stanceFronM ddl e;

public int conpareTo(QueenDi fficultyWight other) {
return new ConpareToBui |l der ()
/1 The nore difficult queens have a | ower di stance to the m ddle
. append(ot her. di st anceFronM ddl e, di stanceFronM ddle) //
Decr easi ng
/'l Tie breaker

. append(queen. get Col unml ndex(), ot her. queen. get Col umml ndex())

.toCompari son();

174

Probabilistic selection

You 'll also need to configure it (unless it's annotated on the domain model and automatically
applied by the optimization algorithm):

<entitySel ector>
<cacheType>PHASE</ cacheType>
<sel ecti onOr der >SORTED</ sel ecti onOr der >
<sorter\Wight FactoryCl ass>... QueenDi ffi cul t yWi ght Fact ory</
sorter Wi ght Fact oryCl ass>
<sorter O der >DESCENDI NG</ sort er Or der >
</entitySel ector>

7.6.5.4. Sorted selection by sel ectionSorter

Alternatively, you can also use the interface Sel ecti onSort er directly:

public interface Sel ectionSorter<T> {

void sort(ScoreDirector scoreDirector, List<T> selectionList);

<entitySel ector>
<cacheType>PHASE</ cacheType>
<sel ecti onOr der >SORTED</ sel ecti onOr der >
<sorterCl ass>... WEntitySorter</sorterC ass>
</entitySel ector>

7.6.6. Probabilistic selection

Probabilistic selection can happen on any Selector in the selector tree, including any
MoveSel ector, EntitySelector or ValueSelector. It does not work with cacheType
JUST_ IN.TIMEandit only works with sel ectionO der PROBABI LI STI C.

175

Chapter 7. Move and neighborh...

Probabillistic selection

A cached Selector can favor some selections over others.

probability
P(x) to select x

P(A0)=0.0250, P(A1)=0.0250, P(AB)=0.0690,
P(B0)=0.1000, P(B1)=0.1000, P(AC)=0.0862,
P(C0)=0.1250, P(C1)=0.1250, P(BC)=0.3448

P(A0)=0.05, P(A1)=0.05,
P(B0)=0.20, P(B1)=0.20,
P(C0)=0.25, P(C1)=0.25

P(A)=0.1,
P(B)=0.4, P(C)=0.5 P(0)=0.5,

entityWeightFactory] P(1):0_ 5

S ¥

entitySelector| [valueSelector)

P(AB)=4/29=0.1379,
P(AC)=5/20=0.1724,
P(BC)=20/29=0.6897

P(A)=0.1, P(A)=0.1,
P(B)=0.4, P(C)=0.5 P(B)=0.4, P(C)=0.5

[entityWaightFactory] [entityWeightFactory]
(entitySelector] [(entitySelector|

Each selection has a pr obabi | i t ywi ght , which determines the chance that's that selection will

be selected:

public interface Sel ectionProbabilityWightFactory<T> {

doubl e creat eProbabilityWight(ScoreDirector scoreDirector, T selection);

<entitySel ector>
<cacheType>PHASE</ cacheType>

<sel ecti onOr der >PROBABI LI STI C</ sel ecti onOr der >
<probabi | i t yWei ght Fact oryCl ass>. .. M/Enti t yProbabi | i t yWei ght Fact oryCl ass</

pr obabi | i t yWei ght Fact oryd ass>
</entitySel ector>

176

Limited selection

For example, if there are 3 entities: process A (probabilityWeight 2.0), process B
(probabilityWeight 0.5) and process C (probabilityWeight 0.5), then process A will be selected 4
times more than B and C.

7.6.7. Limited selection

Selecting all possible moves sometimes does not scale well enough, especially for construction
heuristics (which don't support acceptedCountLimit).

To limit the number of selected selection per step, apply a sel ect edCount Li mi t on the selector:

<changeMoveSel ect or >
<sel ect edCount Li m t >100</ sel ect edCount Li m t >
</ changeMoveSel ect or >

@ Note
To scale Local Search, setting is usually better than using
sel ectedCount Lim t.

7.6.8. Mimic selection (record/replay)

During mimic selection, 1 normal selector records its selection and 1 or multiple other special
selectors replay that selection. The recording selector acts as a normal selector and supports all
other configuration properties. A replaying selector mimics the recording selection and support ho
other configuration properties.

The recording selector needs an i d. A replaying selector must reference a recorder's id with a
nm m cSel ect or Ref :

<cart esi anPr oduct MoveSel ect or >
<changeMoveSel ect or >
<entitySel ector id="entitySel ector"/>
<val ueSel ect or >
<vari abl eNane>peri od</ vari abl eName>
</ val ueSel ect or >
</ changeMoveSel ect or >
<changeMoveSel ect or >
<entitySel ector mimcSel ectorRef="entitySelector"/>
<val ueSel ect or >
<vari abl eName>r oonx/ vari abl eNane>
</val ueSel ect or >
</ changeMbveSel ect or >
</ cart esi anProduct MoveSel ect or >

177

Chapter 7. Move and neighborh...

Mimic selection is usefull to create a composite move from 2 moves that affect the same entity.

7. 7. Custom moves

7.7.1. Which move types might be missing in my
implementation?

To determine which move types might be missing in your implementation, run a Benchmarker for
a short amount of time and configure it to write the best solutions to disk. Take a look at such a
best solution: it will likely be a local optima. Try to figure out if there's a move that could get out
of that local optima faster.

If you find one, implement that course-grained move, mix it with the existing moves and benchmark
it against the previous configurations to see if you want to keep it.

7.7.2. Custom moves introduction

Instead of reusing the generic Moves (such as ChangeMbve) you can also implement your own
Moves. Generic and custom MoveSel ect or s can be combined as desired.

A custom Move can be tailored to work to the advantage of your constraints. For example, in
examination scheduling, changing the period of an exam A also changes te period of all the exams
that need to coincide with exam A.

A custom Move is also slightly faster than a generic Move. However, it's far more work to implement
and much harder to avoid bugs. After implementing a custom Myve, make sure to turn on
envi ronnment Mode FULL_ASSERT to check for score corruptions.

7.7.3. The interface wve

Your custom moves must implement the Move interface:

public interface Mwve {
bool ean i sMoveDoabl e(Scorebi rector scorebDirector);

Move creat eUndoMove(ScoreDirector scoreDirector);
voi d doMove(ScoreDirector scoreDirector);

Col | ecti on<? extends nbject> getPl anni ngEntities();
Col | ecti on<? extends Object> get Pl anni ngVal ues();

Let's take a look at the Move implementation for 4 queens which moves a queen to a different row:

178

The interface Move

public class RowChangeMove inpl enents Myve {

private Queen queen;
private Row t oRow,

publ i ¢ RowChangeMove(Queen queen, Row toRow) {
thi s. queen = queen;
this.toRow = t oRow;

/1l ... see bel ow

An instance of RowChangeMove moves a queen from its current row to a different row.

Planner calls the doMove(Scor eDi rect or) method to do a move. The Mve implementation must
notify the Scor eDi r ect or of any changes it make to planning entity's variables:

public void dovbve(ScoreDirector scoreDirector) {
scoreDi rect or. bef oreVari abl eChanged(queen, "row'); // before changes
are made to the queen.row
gueen. set Row(t oRow) ;
scoreDirector. afterVari abl eChanged(queen, "row'); // after changes are
made to the queen.row

}

You need to call the methods scor eDi r ect or . bef or eVari abl eChanged(Cbj ect, String) and
scoreDirector. afterVari abl eChanged(oj ect, String) directly before and after modifying
the entity.

@ Note

You can alter multiple entities in a single move and effectively create a big move
(also known as a coarse-grained move).

Warning

A Move can only change/add/remove planning entities, it must not change any of
the problem facts.

179

Chapter 7. Move and neighborh...

Planner automatically filters out non doable moves by calling the i sMoveDoabl e(Scor eDi r ect or)
method on a move. A non doable move is:

« A move that changes nothing on the current solution. For example, moving queen BO to row 0
is not doable, because it is already there.

* A move that is impossible to do on the current solution. For example, moving queen BO to row
10 is not doable because it would move it outside the board limits.

In the n queens example, a move which moves the queen from its current row to the same row
isn't doable:

publi ¢ bool ean i sMbveDoabl e(ScoreDi rector scoreDirector) ({
return !QojectUtils. equal s(queen. getRow(), toRow);

Because we won't generate a move which can move a queen outside the board limits, we don't
need to check it. A move that is currently not doable could become doable on the working
Sol ut i on of a later step.

Each move has an undo move: a move (normally of the same type) which does the exact opposite.
In the example above the undo move of CO to C2 would be the move C2 to CO. An undo move is
created from a Move, before the Move has been done on the current solution.

public Move createUndoMove(ScoreDirector scoreDirector) {
return new RowChangeMove(queen, queen. get Row());

Notice that if CO would have already been moved to C2, the undo move would create the move
C2 to C2, instead of the move C2 to CO.

A solver phase might do and undo the same Move more than once. In fact, many solver phases
will iteratively do an undo a number of moves to evaluate them, before selecting one of those and
doing that move again (without undoing it this time).

A Move mustimplement the get Pl anni ngEnti ti es() and get Pl anni ngVal ues() methods. They
are used by entity tabu and value tabu respectively. When they are called, the Move has already
been done.

public List<? extends Object> getPlanningEntities() {
return Col | ections. singl etonLi st (queen);

public Coll ection<? extends Object> getPl anni ngVal ues() {

180

The interface Move

return Col |l ections. singletonList(toRow);

If your Move changes multiple planning entities, return all of them in get Pl anni ngEnti ti es() and
return all their values (to which they are changing) in get Pl anni ngVal ues() .

public Collection<? extends Object> getPlanni ngEntities() {
return Arrays. asList(leftd oudProcess, rightC oudProcess);

public Collection<? extends Object> getPl anni ngVal ues() {
return Arrays. asList(leftC oudProcess. get Conputer(), rightd oudProcess. getConputer());

A Move must implement the equal s() and hashCode() methods. 2 moves which make the same
change on a solution, should be equal.

public bool ean equal s(Obj ect 0) {

if (this == 0) {
return true;

} else if (o instanceof RowChangeMove) {
RowChangeMove ot her = (RowChangeMove) o;
return new Equal sBui |l der ()

. append(queen, other. queen)
. append(t oRow, other.toRow)
. i sEqual s();

} else {

return false;

public int hashCode() {
return new HashCodeBui | der ()
. append(queen)
. append(t oRow)
.t oHashCode();

Notice that it checks if the other move is an instance of the same move type. This i nst anceof
check is important because a move will be compared to a move with another move type if you're
using more then 1 move type.

It's also recommended to implement the t oSt ri ng() method as it allows you to read Planner's
logging more easily:

181

Chapter 7. Move and neighborh...

public String toString() {
return queen + " =>" + toRow

Now that we can implement a single custom Mve, let's take a look at generating such custom
moves.

7.7.4. wvelistractory: the easy way to generate custom moves

The easiest way to generate custom moves is by implementing the interface Moveli st Fact ory:

public interface MveLi st Factory<S extends Sol uti on> {

Li st <Move> creat eMovelLi st (S sol ution);

For example:

public class RowChangeMoveFactory inpl enents MovelLi st Fact ory<NQueens> {

publ i c List<Mwve> creat eMvelLi st (NQueens nQueens) {
Li st <Move> noveli st = new ArraylLi st <Move>();
for (Queen queen : nQueens. get QueenList()) {
for (Row toRow : nQueens. get RowList()) {
noveli st . add(new RowChangeMove(queen, toRow));

}

return noveLi st;

Simple configuration (which can be nested in a uni onMbveSel ector just like any other
MoveSel ect or):

<noveli st Fact ory>
rg. opt apl anner . exanpl es. nqueens. sol ver. nove. f act ory. RowChangeMveFact or y</

nmoveli st Fact oryCl ass>
</ moveli st Fact ory>

182

MovelteratorFactory: generate custom moves just in time

Advanced configuration:

<noveli st Fact ory>
<l-- Nornal noveSel ector properties -->
r g. opt apl anner . exanpl es. nqueens. sol ver. nove. f act ory. RowChangeMveFact or y</

noveli st Fact oryCl ass>
</ noveli st Fact ory>

Because the Moveli st Fact ory generates all moves at once in a List<Move>, it does not support
cacheType JUST_I N_TI ME. Therefore, novelLi st Fact ory uses cacheType STEP by default and it
scales badly in memory footprint.

7.7.5. mvelteratorFactory: generate custom moves just in time

Use this advanced form to generate custom moves by implementing the interface
Movel t er at or Fact ory:
public interface MywvelteratorFactory {

| ong get Si ze(ScoreDirector scoreDirector);

It erat or<Move> createOrigi nal Movel terator(ScoreDirector scoreDirector);

|t erat or<Move> creat eRandomiVbvel t er at or (ScorebDi rector scorebDirector, Random wor ki ngRandom) ;

The method get Si ze() must give an estimation of the size. It doesn't need to be correct.
The method creat eOri gi nal Movel terator is called if the sel ecti onOrder is ORI G NAL or
if it is cached. The method cr eat eRandomivbvel t er at or is called for sel ecti onOr der RANDOM
combined with cacheType JUST_I N_TI ME.

Important

Don't create a collection (list, array, map, set) of Moves when creating
the Iterator<Mve>: the whole purpose of MvelteratorFactory over
MovelLi st Fact ory is giving you the ability to create a Move just in time in the
It erator's method next ().

Simple configuration (which can be nested in a uni onMoveSel ector just like any other
MoveSel ect or):

183

Chapter 7. Move and neighborh...

<novel t er at or Fact ory>
<movel t erat or Fact oryCd ass>. .. </ novel t er at or Fact oryCl ass>
</ movel t er at or Fact ory>

Advanced configuration:

<nmovel t er at or Fact ory>
<I-- Nornal noveSel ector properties -->
<nmovel t erat or Fact oryd ass>. .. </ novel t er at or Fact or yCl ass>
</ novel t er at or Fact ory>

184

Chapter 8.

Chapter 8. Construction heuristics

8.1. Overview

A construction heuristic builds a pretty good initial solution in a finite length of time. Its solution
isn't always feasible, but it finds it fast so metaheuristics can finish the job.

Construction heuristics terminate automatically, so there's usually no need to configure a
Ter mi nat i on on the construction heuristic phase specifically.

8.2. First Fit

8.2.1. Algorithm description

The First Fit algorithm cycles through all the planning entities (in default order), initializing 1
planning entity at a time. It assigns the planning entity to the best available planning value, taking
the already initialized planning entities into account. It terminates when all planning entities have
been initialized. It never changes a planning entity after it has been assigned.

A B C D
1 entity o Construction heuristic: n: <= n"n iterations
per step 1 . . 4:4'4=16
ordered > FlrSt flt 8:8"8 = 64
arbitrary 3 N queens (n = 4) 64: 64*64 = 4096
0
) Step 0 0
“momlC
by [
i [
0 —_—
ﬁlepﬂ —
Eg) il | 0y iy b
%
m_mRT
i
2 Jop—tc—
Stepg T
s I g 7 A ity g
i
B julig iy g julig
i iy
8
Step3 4
] el 1|
¥
g g
|

The end

9 10

infeasible

11

12

185

Chapter 8. Construction heuri...

Notice that it starts with putting Queen A into row 0 (and never moving it later), which makes it
impossible to reach the optimal solution. Suffixing this construction heuristic with metaheuristics
can remedy that.

8.2.2. Configuration

Configure this solver phase:

<constructionHeuristic>
<constructionHeuri sti cType>Fl RST_FI T</ constructi onHeuri sti cType>
</ constructi onHeuristic>

InitializingScoreTrend

For advanced configuration, see Advanced Greedy Fit.
8.3. First Fit Decreasing

8.3.1. Algorithm description

Like First Fit, but assigns the more difficult planning entities first, because they are less likely to
fit in the leftovers. So it sorts the planning entities on decreasing difficulty.

Requires the model to support planning entity difficulty comparison.

186

Configuration

A B C
1 entity] Construction heuristic: n: <= n'n iterations
per step B . . 4:4*4 =16
orderedin | [[| First fit decreasing 8:8'8 = 64
decreasing] N queens (n = 4) 64: 64764 = 4096
difficulty t’ .
Step 0
H BEEE Middle queens are
R i more difficult to place,
. . iy so we place them first
O~z [
.';.i,;' llllll .i. c@,
BN
H I
BN
O] —
i []| B | || [
I
infeasil:lz

The end

8.3.2. Configuration

Configure this solver phase:

<constructionHeuristic>
<constructionHeuristi cType>FI RST_FI T_DECREASI NG</ constructi onHeuri sti cType>
</ constructionHeuristic>

187

Chapter 8. Construction heuri...

.

InitializingScoreTrend

For advanced configuration, see Advanced Greedy Fit.
8.4. Best Fit

8.4.1. Algorithm description

Like First Fit, but uses the weaker planning values first, because the strong planning values are
more likely to be able to accommodate later planning entities. So it sorts the planning values on
increasing strength.

Requires the model to support planning value strength comparison.

™

8.4.2. Configuration

Configure this solver phase:

<constructionHeuristic>
<constructionHeuristicType>BEST_FI T</ constructi onHeuri sti cType>
</ constructi onHeuri stic>

-

InitializingScoreTrend

For advanced configuration, see Advanced Greedy Fit.

188

Best Fit Decreasing

8.5. Best Fit Decreasing

8.5.1. Algorithm description

Combines First Fit Decreasing and Best Fit. So it sorts the planning entities on decreasing difficulty
and the planning values on increasing strength.

Requires the model to support planning entity difficulty comparison and planning value strength

comparison.

8.5.2. Configuration

Configure this solver phase:

<constructionHeuristic>
<constructionHeuri sticType>BEST_FI T_DECREASI NG</ constructi onHeuri sticType>
</ constructionHeuri stic>

InitializingScoreTrend

For advanced configuration, see Advanced Greedy Fit.

8.6. Advanced Greedy Fit

8.6.1. Algorithm description

Advanced Greedy Fit is a versatile, generic form of First Fit, First Fit Decreasing, Best Fit and
Best Fit Decreasing.

8.6.2. Configuration

A Best Fit Decreasing configuration for a single entity class with a single variable (which
is the verbose version of the simple constructionHeuristicType BEST_FI T_DECREASI NG
configuration):

189

Chapter 8. Construction heuri...

<constructionHeuristic>
<queuedEnti tyPl acer >
<entitySel ector id="placerEntitySelector">
<cacheType>PHASE</ cacheType>
<sel ecti onOr der >SORTED</ sel ecti onOr der >
<sorter Manner >DECREASI NG_DI FFI CULTY</ sor t er Manner >
</entitySel ector>
<changeMoveSel ect or >
<entitySel ector m m cSel ector Ref ="pl acerEntitySel ector"/>
<val ueSel ect or >
<cacheType>PHASE</ cacheType>
<sel ecti onOr der >SORTED</ sel ecti onOr der >
<sort er Manner > NCREASI NG_STRENGTH</ sor t er Manner >
</val ueSel ect or >
</ changeMbveSel ect or >
</ queuedEnti tyPl acer >
</ constructi onHeuri stic>

Per step, the QueuedEnt i t yPl acer selects 1 uninitialized entity from the EntitySel ect or and
applies the winning Move (out of all the moves for that entity generated by the MoveSel ect or).
The mimic selection ensures that the winning Move changes (only) the selected entity.

To customize the entity or value sorting, see sorted selection. Other Sel ect or customization (such
as filtering and limiting) is supported too.

8.6.3. Multiple variables

There are 2 ways to deal with multiple variables, depending on how their ChangeMoves are
combined:

» Cartesian product of the ChangeMyves (default): All variables of the selected entity are assigned
together. Has far better results (especially for timetabling use cases).

» Sequential ChangeMves: One variable is assigned at a time. Scales much better, especially
for 3 or more variables.

For example, presume a course scheduling example with 200 rooms and 40 periods.

This First Fit configuration for a single entity class with 2 variables, using a cartesian product of
their ChangeMves, will select 8000 moves per entity:

<constructionHeuristic>
<queuedEnti tyPl acer >
<entitySel ector id="placerEntitySelector">
<cacheType>PHASE</ cacheType>
</entitySel ector>
<cart esi anPr oduct MbveSel ect or >

190

Multiple variables

<changeMoveSel ect or >
<entitySel ector m m cSel ect or Ref ="pl acerEntitySel ector"/>
<val ueSel ect or >
<vari abl eName>r oonx/ vari abl eNane>
</ val ueSel ect or >
</ changeMbveSel ect or >
<changeMoveSel ect or >
<entitySel ector m m cSel ector Ref ="pl acerEntitySel ector"/>
<val ueSel ect or >
<vari abl eName>peri od</ vari abl eNane>
</ val ueSel ect or >
</ changeMbveSel ect or >
</ cart esi anProduct MoveSel ect or >
</ queuedEnti tyPl acer >

</ constructionHeuristic>

Warning

With 3 variables of 1000 values each, a cartesian product selects 1000000000
values per entity, which will take far too long.

This First Fit configuration for a single entity class with 2 variables, using sequential ChangeMves,
will select 240 moves per entity:

<constructionHeuristic>
<queuedEnti tyPl acer >
<entitySel ector id="placerEntitySelector">
<cacheType>PHASE</ cacheType>
</entitySel ector>
<changeMoveSel ect or >
<entitySel ector m m cSel ect or Ref ="pl acerEntitySel ector"/>
<val ueSel ect or >
<vari abl eNane>peri od</ vari abl eName>
</ val ueSel ect or >
</ changeMbveSel ect or >
<changeMoveSel ect or >
<entitySel ector m mi cSel ectorRef ="pl acerEntitySel ector"/>
<val ueSel ect or >
<vari abl eNane>r oonx/ vari abl eNanme>
</val ueSel ect or >
</ changeMbveSel ect or >
</ queuedEnti t yPl acer >

</ constructionHeuristic>

191

Chapter 8. Construction heuri...

Important

Especially for sequential ChangeMoves, the order of the variables is important.
In the example above, it's better to select the period first (instead of the other
way around), because there are more hard constraints that do not involve the
room (for example: no teacher should teach 2 lectures at the same time). Let the
Benchmarker guide you.

With 3 or more variables, it's possible to combine the cartesian product and sequential techniques:

<constructionHeuristic>
<queuedEnti tyPl acer >

<cart esi anProduct MoveSel ect or >
<changeMoveSel ect or >. . . </ changeMveSel ect or >
<changeMoveSel ect or >. . . </ changeMbveSel ect or >
</ cart esi anProduct MoveSel ect or >
<changeMoveSel ect or >. . . </ changeMoveSel ect or >
</ queuedEnti tyPl acer>

</ constructi onHeuristic>

8.6.4. Multiple entity classes

The easiest way to deal with multiple entity classes is to run a separate construction heuristic for
each entity class:

<constructionHeuristic>
<queuedEnti tyPl acer >
<entitySel ector id="placerEntitySelector">
<cacheType>PHASE</ cacheType>
<entityC ass>...DogEntity</entityC ass>
</entitySel ector>
<changeMoveSel ect or >
<entitySel ector m m cSel ector Ref ="pl acerEntitySel ector"/>
</ changeMoveSel ect or >
</ queuedEnti tyPl acer >

</ constructi onHeuri stic>
<constructionHeuristic>
<queuedEnti tyPl acer >
<entitySel ector id="placerEntitySelector">
<cacheType>PHASE</ cacheType>
<entityC ass>...CatEntity</entityC ass>

192

Pick early type

</ entitySel ector>
<changeMoveSel ect or >
<entitySel ector m m cSel ect or Ref ="pl acerEntitySel ector"/>
</ changeMbveSel ect or >
</ queuedEnti tyPl acer >

</ constructionHeuristic>

8.6.5. Pick early type

There are 2 pick early types for Construction Heuristics:

e NEVER: Evaluate all the selected moves to initialize the variable(s). This is the default if the
InitializingScoreTrend is not ONLY_DOWN.

<constructionHeuristic>
<f or ager >
<pi ckEar | yType>NEVER</ pi ckEar| yType>

</ f orager >
</ constructionHeuristic>

e FI RST_NON_DETERI ORATI NG_SCORE: Initialize the variable(s) with the first move that doesn't
deteriorate the score, ignore the remaining selected moves. This is the default if the
InitializingScoreTrend is ONLY_DOWN.

<constructionHeuristic>
<f orager >
<pi ckEar | yType>FI RST_NON _DETERI ORATI NG_SCORE</ pi ckEar | yType>

</ forager>
</ constructionHeuristic>

If there are only negative constraints, but the InitializingScoreTrend is strictly not ONLY_DOWN, it can
make sense to apply FIRST_NON_DETERIORATING_SCORE. Use the Benchmarker to decide
if the score quality loss is worth the time gain.

8.7. Cheapest Insertion

8.7.1. Algorithm description

The Cheapest Insertion algorithm cycles through all the planning values for all the planning
entities, initializing 1 planning entity at a time. It assigns a planning entity to the best available
planning value (out of all the planning entities and values), taking the already initialized planning

193

Chapter 8. Construction heuri...

entities into account. It terminates when all planning entities have been initialized. It never changes
a planning entity after it has been assigned.

8.7.2. Configuration

Simplest configuration of Cheapest Insertion:

<constructionHeuristic>
<constructionHeuri sti cType>CHEAPEST | NSERTI ON</ const ructi onHeuri sti cType>
</ constructi onHeuri stic>

InitializingScoreTrend

For advanced configuration, see Advanced Constructive Insertion.

8.8. Regret Insertion

8.8.1. Algorithm description
TODO
8.8.2. Configuration

TODO Not implemented yet.

8.9. Advanced Constructive Insertion

8.9.1. Algorithm description

Advanced Constructive Insertion is a versatile, generic form of Cheapest Insertion and Regret
Insertion.

8.9.2. Configuration

TODO

194

Chapter 9.

Chapter 9. Local search

9.1. Overview

Local Search starts from an initial solution and evolves that single solution into a mostly better
and better solution. It uses a single search path of solutions, not a search tree. At each solution
in this path it evaluates a number of moves on the solution and applies the most suitable move to
take the step to the next solution. It does that for a high number of iterations until it's terminated
(usually because its time has run out).

Local Search acts a lot like a human planner: it uses a single search path and moves facts around
to find a good feasible solution. Therefore it's pretty natural to implement.

Local Search usually needs to start from an initialized solution, therefore it's usually required
to configure a construction heuristic solver phase before it.

9.2. Local Search concepts

9.2.1. Taking steps

A step is the winning Move. The local search solver tries every move on the current solution and
picks the best accepted move as the step:

A B C D
Y 8 8

Score -6

Ww N H O

i

Score -4 Score -4 Score -3 Score -4

Figure 9.1. Decide the next step at step 0 (4 queens example)

195

Chapter 9. Local search

Because the move BO to B3 has the highest score (- 3), it is picked as the next step. If multiple
moves have the same highest score, one is picked randomly, in this case BO to B3. Note that CO
to C3 (not shown) could also have been picked because it also has the score - 3.

The step is applied on the solution. From that new solution, the local search solver tries every move
again, to decide the next step after that. It continually does this in a loop, and we get something
like this:

196

Taking steps

Score -6

Ww N B O

W

Score -4

Score -3

Score -4

Step O
8
Step 1 L
Score -4
g
Step 2 L
iy
Score -1
iy
Step 3 L

i

g

Score 0

Score -3

Figure 9.2. All steps (4 queens example)

Score -3

Score -4

Notice that the local search solver doesn't use a search tree, but a search path. The search path
is highlighted by the green arrows. At each step it tries all possible moves, but unless it's the
step, it doesn't investigate that solution further. This is one of the reasons why local search is

very scalable.

197

Chapter 9. Local search

As you can see, Local Search solves the 4 queens problem by starting with the starting solution
and make the following steps sequentially:

1. BOto B3
2. DOto B2
3. A0Oto B1

If we turn on debug logging for the category or g. opt apl anner, then those steps are shown into
the log:

INFO Solving started: tine spent (0), best score (-6), random (JDK with seed 0).
DEBUG LS step (0), tinme spent (20), score (-3), new best score (-3), accepted/
sel ected nmove count (12/12), picked nove (col 1@ow0 => rowd).

DEBUG LS step (1), time spent (31), score (-1), new best score (-1), accepted/
sel ected nove count (12/12), picked nove (col 0@ow0 => rowl).

DEBUG LS step (2), tine spent (40), score (0), new best score (0), accepted/
sel ected nove count (12/12), picked nove (col 3@ow0 => row2).

I NFO Local Search phase (0) ended: step total (3), time spent (41), best score
(0).

INFO Solving ended: tine spent (41), best score (0), average cal cul ate count
per second (1780).

Notice that the logging uses the t oSt ri ng() method of the Move implementation: col 1@ ow0 =>
r ows.

A naive Local Search configuration solves the 4 queens problem in 3 steps, by evaluating only
37 possible solutions (3 steps with 12 moves each + 1 starting solution), which is only fraction
of all 256 possible solutions. It solves 16 queens in 31 steps, by evaluating only 7441 out of
18446744073709551616 possible solutions. Note: with construction heuristics it's even a lot more
efficient.

9.2.2. Deciding the next step

The local search solver decides the next step with the aid of 3 configurable components:

« A MoveSel ect or which selects the possible moves of the current solution. See the chapter
move and neighborhood selection.

e An Accept or which filters out unacceptable moves.
« A For ager which gathers accepted moves and picks the next step from them.

The solver phase configuration looks like this:

<l ocal Sear ch>

198

Deciding the next step

<uni onMoveSel ect or >

</ uni onMbveSel ect or >
<accept or >

</ accept or >
<f or ager >

</ forager>
</ | ocal Search>

In the example below, the MoveSel ect or generated the moves shown with the blue lines, the
Accept or accepted all of them and the For ager picked the move BO to B3.

A B C D

i g g

Score -6

Ww N H O

i

Score -4 Score -4 Score -3 Score -4

Turn on trace logging to show the decision making in the log:

INFO Sol ver started: tine spent (0), score (-6), new best score (-6), random
(JDK with seed 0).

TRACE Move index (0) not doable, ignoring nove (col 0@ow0 => rowQ).

TRACE Move i ndex (1), score (-4), accepted (true), nove (col 0@ow0 => rowl).
TRACE Move i ndex (2), score (-4), accepted (true), nove (col 0@ow0 => row2).
TRACE Move i ndex (3), score (-4), accepted (true), nove (col 0@ow0 => row3).
TRACE Move i ndex (6), score (-3), accepted (true), nove (col 1@ow0 => row3).
TRACE Move i ndex (9), score (-3), accepted (true), nove (col 2@ow0 => row3) .

199

Chapter 9. Local search

TRACE Move index (12), score (-4), accepted (true), nove (col 3@ ow0
=> row3).

DEBUG LS step (0), tine spent (6), score (-3), new best score (-3), accepted/
sel ected nove count (12/12), picked nove (col 1@ow0 => row3).

Because the last solution can degrade (for example in Tabu Search), the Sol ver remembers the
best solution it has encountered through the entire search path. Each time the current solution is
better than the last best solution, the current solution is cloned and referenced as the new best
solution.

9.2.3. Acceptor

An Accept or is used (together with a For ager) to active Tabu Search, Simulated Annealing, Late
Acceptance, ... For each move it checks whether it is accepted or not.

By changing a few lines of configuration, you can easily switch from Tabu Search to Simulated
Annealing or Late Acceptance and back.

You can implement your own Accept or, but the build-in acceptors should suffice for most needs.
You can also combine multiple acceptors.

9.2.4. Forager

A For ager gathers all accepted moves and picks the move which is the next step. Normally it picks
the accepted move with the highest score. If several accepted moves have the highest score, one
is picked randomly.

You can implement your own For ager , but the build-in forager should suffice for most needs.

9.2.4.1. Accepted count limit

When there are many possible moves, it becomes inefficient to evaluate all of them at every step.
To evaluate only a random subset of all the moves, use:

e An accept edCount Li mi t integer, which specifies how many accepted moves should be
evaluated during each step. By default, all accepted moves are evaluated at every step.

<f or ager >
<accept edCount Li m t >1000</ accept edCount Li m t >
</ f or ager >

Unlike the n queens problem, real world problems require the use of accept edCount Li mi t . Start
from an accept edCount Li ni t that takes a step in less then 2 seconds. Turn on INFO logging to
see the step times. Use the Benchmarker to tweak the value.

200

Hill Climbing (Simple Local Search)

Important

With a low acceptedCountLinmt it is recommended to avoid using
sel ecti onOrder SHUFFLED because the shuffling generates a random number
for every element in the selector, taking up a lot of time, but only a few elements
are actually selected.

9.2.4.2. Pick early type

A forager can pick a move early during a step, ignoring subsequent selected moves. There are
3 pick early types for Local Search:

* NEVER: A move is never picked early: all accepted moves are evaluated that the selection allows.
This is the default.

<f or ager >
<pi ckEar | yType>NEVER</ pi ckEar | yType>
</ f or ager >

e FI RST_BEST_SCORE_| MPROVI NG. Pick the first accepted move that improves the best score. If
none improve the best score, it behaves exactly like the pickEarlyType NEVER.

<f or ager >
<pi ckEar | yType>FI RST_BEST_SCORE_| MPROVI NG</ pi ckEar | yType>
</ f orager>

e FIRST_LAST_STEP_SCORE | MPROVI NG. Pick the first accepted move that improves the last step
score. If none improve the last step score, it behaves exactly like the pickEarlyType NEVER.

<f or ager >
<pi ckEar | yType>FI RST_LAST_STEP_SCORE_| MPROVI NG</ pi ckEar | yType>
</ f orager>

9.3. Hill Climbing (Simple Local Search)

9.3.1. Algorithm description

Hill Climbing tries all selected moves and then takes the best move, which is the move which
leads to the solution with the highest score. That best move is called the step move. From that
new solution, it again tries all selected moves and takes the best move and continues like that

201

Chapter 9. Local search

iteratively. If multiple selected moves tie for the best move, one of them is randomly chosen as
the best move.

A B C D
Selected N ey Loca| seaq rch: n: <= s * n"2 iterations
moves 1 . . .
for each 2 Hill Cllmblng
step 3 N queens (n = 4)
Step 0 e —
tep — -
5|9 L g Tl [88
B BT E i
°) A ([
3 2 i g i
7__7__;:_55 el *""T-’::_::(_a:_,___’_ lost tie 8 12
Step 1 _
A g O O
FIHIEE | |
19
Step 2
&)
JEI3E!
1> I
L9}
Uses a search path, not a search tree
=> highly scalable

Notice that one a queen has moved, it can be moved again later. This is a good thing, because
in an NP-complete problem it's impossible to predict what will be the optimal final value for a
planning variable.

9.3.2. Getting stuck in local optima

Hill Climbing always takes improving moves. This may seem like a good thing, but it's not: Hill
Climbing can easily get stuck in a local optimum. This happens when it reaches a solution for
which all the moves deteriorate the score. Even if it picks one of those moves, the next step might
go back to the original solution and which case chasing it's own tail:

202

Configuration

A B C D
Selected s o H||| C||mb|ng gets StUCk n: <= s * n"2 iterations
moves Wi |1] .
for each @ . in local optima
step 3 N queens (n = 4)
_
Step 0 - -_
AR iy Tl Ly L Ly
E | 8 W W | i R o Al
Al | ool [(e o e e e @
b | Hidr | e W idr
Step 1 __7___7——*—__7__7_ — e
7 | L L [L | [
Bl % W | | v W b iy
s 4l - % % i
B [Ly L 18| i
-2 lost tie 12 16 17 18 lost tie 21 lost tie 22
Step 2
| Solution already encountered:

same as starting solution
=> possibly stuck

LD |5
ST
[B3
E]

]
EN

28
Step 3
7 |6 iy
JE ﬂ@% L
s 4l iy %
) |
39

Improvements upon Hill Climbing (such as Tabu Search, Simulated Annealing and Late
Acceptance) address the problem of being stuck in local optima. Therefore, it's recommend to
never use Hill Climbing, unless you're absolutely sure there are no local optima in your planning
problem.

9.3.3. Configuration

Configure this solver phase:

<l ocal Sear ch>

<accept or >
<accept or Type>HI LL_CLI MBI NG</ accept or Type>
</ accept or >
<f or ager >
<accept edCount Li m t >1</ accept edCount Li mi t >
</ f or ager >
</l ocal Sear ch>

203

Chapter 9. Local search

9.4. Tabu Search

9.4.1. Algorithm description

Tabu Search works like Hill Climbing, but it maintains a tabu list to avoid getting stuck in local
optima. The tabu list holds recently used objects that are taboo to use for now. Moves that involve
an object in the tabu list, are not accepted. The tabu list objects can be anything related to the
move, such as the planning entity, planning value, move, solution, ... Here's an example with entity
tabu for 4 queens, so the queens are put in the tabu list:

A B C D
Selected ity) Tabu Search: n: <= s * n*2 jterations
moves W |1 .
foreach Tabu T, 2 entlty tabu
step list iliy| 3 N queens (n = 4, entityTabuSize = 2)
—i
Step 0
9
3F L

ST

L

%H

1
(]

Ste

=
-

B
B

W BT
v ‘P%J
el b

L]

Step

=

i
=)
B
[=]°]
NSRS

Step 3

ity

%&L
LA
L
2
E
s N
g
E
5
< N8

Scientific paper: Tabu Search - Part 1 and Part 2 by Fred Glover (1989 - 1990)

9.4.2. Configuration

When Tabu Search takes steps it creates one or more tabu's. For a number of steps, it does not
accept a move if that move breaks tabu. That number of steps is the tabu size.

<l ocal Sear ch>

204

Configuration

<accept or >
<entityTabuSi ze>7</entityTabuSi ze>
</ accept or >
<f or ager >
<accept edCount Li m t >1000</ accept edCount Li mi t >
</ f or ager >
</l ocal Sear ch>

Important

A Tabu Search acceptor should be combined with a high accept edCount Li mi t,
such as 1000.

OptaPlanner implements several tabu types:

« Planning entity tabu makes the planning entities of recent steps tabu. For example, for N queens
it makes the recently moved queens tabu. It's recommended to start with this tabu type.

<accept or>
<entityTabuSi ze>7</entityTabuSi ze>
</ accept or >

To avoid hard coding the tabu size, configure a tabu ratio, relative to the number of entities,
for example 2%:

<accept or>

<entityTabuRati 0>0. 02</entityTabuRati o>
</ accept or >

« Planning value tabu makes the planning values of recent steps tabu. For example, for N queens
it makes the recently moved to rows tabu.

<accept or >

<val ueTabuSi ze>7</ val ueTabuSi ze>
</ accept or >

To avoid hard coding the tabu size, configure a tabu ratio, relative to the number of values, for
example 2%:

<accept or >

205

Chapter 9. Local search

<val ueTabuRat i 0>0. 02</ val ueTabuRat i 0>
</ accept or >

» Move tabu makes recent steps tabu. It does not accept a move equal to one of those steps.

<accept or >
<noveTabuSi ze>7</ noveTabuSi ze>
</ accept or >

« Undo move tabu makes the undo move of recent steps tabu.

<accept or >
<undoMbveTabuSi ze>7</ undoMoveTabuSi ze>
</ accept or >

» Solution tabu makes recently visited solutions tabu. It does not accept a move that leads to
one of those solutions. It requires that the Sol uti on implements equal s() and hashCode()
properly. If you can spare the memory, don't be cheap on the tabu size.

<accept or>
<sol uti onTabuSi ze>1000</ sol uti onTabuSi ze>
</ accept or >

For non-trivial cases, it's usually useless because the search space size makes it statistically
almost impossible to reach the same solution twice.

You can even combine tabu types:

<accept or >
<entityTabuSi ze>7</entityTabuSi ze>
<val ueTabuSi ze>3</ val ueTabuSi ze>
</ accept or >

If you pick a too small tabu size, your solver can still get stuck in a local optimum. On the other
hand, with the exception of solution tabu, if you pick a too large tabu size, your solver can get
stuck by bouncing of the walls. Use the Benchmarker to fine tweak your configuration.

206

Simulated Annealing

9.5. Simulated Annealing

9.5.1. Algorithm description

Simulated Annealing evaluates only a few moves per step, so it steps quickly. In the classic
implementation, the first accepted move is the winning step. A move is accepted if it doesn't
decrease the score or - in case it does decrease the score - if passes a random check. The chance
that a decreasing move passes the random check decreases relative to the size of the score
decrement and the time the phase has been running (which is represented as the temperature).

Simulated Annealing
(Time Gradiant aware)

N queens (n = 4, startingTemperature = 2)

n: <= s * m iterations

max § = eBt

A B C D
Temperature (il o
decreases @ (1
for each step g 2
]
Step 0
e8] [, i
20| any i |
1| 0.61] !
2| 0a7 i TR |
3| 022 1 2
il ?ﬂju_u >0.37 ¢ =1u.5_t_:__7 £0.61
Step 1 ~_
]| [max@] | iy 88 , B
=0 =y i iy f(i
T oss o oo
2| o028 T ' i
3] 015 3 4 5
2| oos A=-1 A=-2 A=+2
@-vss >o054 @=031 >020 @=na| =any
Step 2 - - — _7_-7-_
e] [T3 o] fo
| e o |
1| 043 iy iy /}
2| 019 | [t .
3| 0.8 6 7
2| 004 A=-1 A=-2
@@-074 =043 @=018 =0.19

9.5.2. Configuration

I
i

Step 3
o[mo @] [S
20| any I
1 0.29 w ll;;f
2| o008
-4 | 0.01 -

=nla
Step‘i _--7_-7-_-7-_7_-_7
Cewl | w @ @
<= | I =
1| oos 1 L -
2| 0.01 w igw w
e i
4| 000 I?0220.97 > 0.01 ?0210_11 =008 ?ﬂj”’a -

Simulated Annealing does not always pick the move with the highest score, neither does it
evaluate many moves per step. At least at first. Instead, it gives non improving moves also a
chance to be picked, depending on its score and the time gradient of the Ter nmi nati on. In the

end, it gradually turns into Hill Climbing, only accepting improving moves.

Start with a si nul at edAnneal i ngSt art i ngTenper at ur e set to the maximum score delta a single
move can cause. Use the Benchmarker to tweak the value.

207

Chapter 9. Local search

<l ocal Sear ch>

<accept or >
<si mul at edAnneal i ngSt arti ngTenper at ur e>2har d/ 100sof t </
si mul at edAnneal i ngSt arti ngTenper at ur e>
</ accept or >
<f or ager >
<accept edCount Li mi t >1</ accept edCount Li nmi t >
</ forager>
</l ocal Sear ch>

Simulated Annealing should use a low accept edCount Li nmi t. The classic algorithm uses an
accept edCount Li m t of 1, but often 4 performs better.

You can even combine it with a tabu acceptor at the same time. That gives Simulated Annealing
salted with a bit of Tabu. Use a lower tabu size than in a pure Tabu Search configuration.

<l ocal Sear ch>

<accept or >
<si mul at edAnneal i ngSt arti ngTenper at ur e>2har d/ 100sof t </
si mul at edAnneal i ngSt arti ngTenper at ur e>
<entityTabuSi ze>5</entityTabuSi ze>
</ accept or >
<f or ager >
<accept edCount Li m t >1</ accept edCount Li m t >
</ forager>
</l ocal Sear ch>

9.6. Late Acceptance

9.6.1. Algorithm description

Late Acceptance (also known as Late Acceptance Hill Climbing) also evaluates only a few moves
per step. A move is accepted if does not decrease the score, or if it leads to a score that is at least
the late score (which is the winning score of a fixed number of steps ago).

208

Configuration

A B C D
Late o Late Accepta nce n: <= s * m iterations
acceptance W |1
list g >
iy g E N queens (n = 4, lateAcceptanceSize = 3)
4]
Step 0 D
J 0

IR
= anly 1
Step 1 D Step 4
o L [
S 7 < 7
LI @ | Bl i
i

[}
o

-
M
@
o
o
@

@
g @

(-]
AT A
E
L]
AT A
El
E

Step 3 — Step 6
N by o i N W) i
S i < e
B i] e e pes] e ps],
< 80 | i W < 5 L
< 2 5 {_2 6 D) 2 7 {_1 1" <_1 12 D,_1

Scientific paper: The Late Acceptance Hill-Climbing Heuristic by Edmund K. Burke, Yuri Bykov
(2012) [www.cs.stir.ac.uk/research/publications/techreps/pdf/TR192.pdf]

9.6.2. Configuration

Late Acceptance accepts any move that has a score which is higher than the best score of a
number of steps ago. That number of steps is the | at eAccept anceSi ze.

<l ocal Sear ch>

<accept or >
<l at eAccept anceSi ze>400</ | at eAccept anceSi ze>
</ accept or >
<f or ager >
<accept edCount Li m t >1</ accept edCount Li m t >
</ forager>
</l ocal Sear ch>

209

Chapter 9. Local search

You can even combine it with a tabu acceptor at the same time. That gives Late Acceptance salted
with a bit of Tabu. Use a lower tabu size than in a pure Tabu Search configuration.

<l ocal Sear ch>

<accept or >
<l at eAccept anceSi ze>400</ | at eAccept anceSi ze>
<entityTabuSi ze>5</entityTabuSi ze>

</ accept or >

<f or ager >
<accept edCount Li m t >1</ accept edCount Li nmi t >

</ forager>

</l ocal Sear ch>

Late Acceptance should use a low accept edCount Li mi t.
9.7. Step Counting Hill Climbing

9.7.1. Algorithm description

Step Counting Hill Climbing also evaluates only a few moves per step. For a number of steps, it
keeps the step score as a threshold. A move is accepted if does not decrease the score, or if it
leads to a score that is at least the threshold score.

Scientific paper: An initial study of a novel Step Counting Hill Climbing heuristic applied to
timetabling problems by Yuri Bykov, Sanja Petrovic (2013) [https://www.cs.nott.ac.uk/~yxb/SCHC/
SCHC_mista2013_79.pdf]

9.7.2. Configuration

Step Counting Hill Climbing accepts any move that has a score which is higher than a threshold
score. Every number of steps (specified by st epCounti ngHi | | O i nbi ngSi ze), the threshold
score is set to the step score.

<l ocal Sear ch>

<accept or >
<st epCountingHi || C i nbi ngSi ze>400</ st epCount i ngHi | I C i mbi ngSi ze>
</ accept or >
<f or ager >
<accept edCount Li mi t >1</ accept edCount Li nmi t >
</ forager>
</l ocal Sear ch>

210

Using a custom Termination, MoveSelector, EntitySelector, ValueSelector or Acceptor

You can even combine it with a tabu acceptor at the same time, similar as shown in the Late
Acceptance section.

Step Counting Hill Climbing should use a low accept edCount Li mi t.

9.8. Using a custom Termination, MoveSelector,
EntitySelector, ValueSelector or Acceptor

You can plug in a custom Ter i nati on, MoveSel ector, EntitySel ect or, Val ueSel ect or or
Accept or by extending the abstract class and also the related * Conf i g class.

For example, to use a custom MoveSel ect or, extend the Abstract MoveSel ect or class, extend
the MoveSel ect or Confi g class and configure it in the solver configuration.

If you build a better implementation that's not domain specific, consider contributing it back as a
pull request on github: we'll optimize it and take it along in future refactors.

211

212

Chapter 10.

Chapter 10. Evolutionary
algorithms

10.1. Overview

Evolutionary algorithms work on a population of solutions and evolve that population.

10.2. Evolutionary Strategies

This algorithm has not been implemented yet.

10.3. Genetic Algorithms

This algorithm has not been implemented yet.

Local Search

213

214

Chapter 11.

Chapter 11. Hyperheuristics

11.1. Overview

A hyperheuristic automates the decision which heuristic(s) to use on a specific data set.

A future version of Planner will have native support for hyperheuristics. Meanwhile, it's pretty easy
to implement it yourself: Based on the size or difficulty of a data set (which is a criterion), use a
different Solver configuration (or adjust the default configuration using the Solver configuration
API). The Benchmarker can help to identify such criteria.

215

216

Chapter 12.

Chapter 12. Exhaustive search

12.1. Overview

Exact methods will always find the global optimum and recognize it too. That being said, they don't
scale (not even beyond toy data sets) and are therefore mostly useless.

12.2. Brute Force

12.2.1. Algorithm description

The Brute Force algorithm creates and evaluates every possible solution.

A B C D

w N HF ©

Bl (]
[
ﬁ
[
I

Brute Force

N queens (n =4)

-

e,

n: <= n" iterations

4: 4% = 256
8:8%=16777216 ~ 10’
B4: 64% ~10"°

?LWW-/

i
0 6_4 infgésibl-e
solutions
i
iy
KT i
| @] = el [@ "
g w =
@ i —
i L -
e = = N B O

feasible 1

feas

ble 2

Notice that it creates a search tree that explodes exponentially as the problem size increases, so

it hits a scalability wall.

217

Chapter 12. Exhaustive search

Important

Brute Force is mostly unusable for a real-world problem due to time
limitations, as shown in scalability of Exhaustive Search.

12.2.2. Configuration

Simplest configuration of Brute Force:

<sol ver >

<exhausti veSear ch>
<exhausti veSear chType>BRUTE_FORCE</ exhaust i veSear chType>
</ exhausti veSear ch>
</ sol ver >

12.3. Branch And Bound

12.3.1. Algorithm description

Branch And Bound also explores nodes in an exponential search tree, but it investigates more
promising nodes first and prunes away worthless nodes.

For each node, Branch And Bound calculates the optimistic bound: the best possible score to
which that node can lead to. If the optimistic bound of a node is lower or equal to the global
pessimistic bound, then it prunes away that node (including the entire branch of all its subnodes).

@ Note

Academic papers use the term lower bound instead of optimistic bound (and the
term upper bound instead of pessimistic bound), because they minimize the score.

OptaPlanner maximizes the score (because it supports combining negative and
positive constraints). Therefore, for clarity, OptaPlanner uses different terms, as it
would be confusing to use the term lower bound for a bound which is always higher.

For example: at index 15, it can prune away all unvisited solutions with queen A on row 0, because
none will be better than the solution of index 14 with a score of - 1.

218

Configuration

A B C D

o Depth First n: <= n"? iterations

1

2 Branch And Bound

3 N queens (n =4)
Ol —
w ——— —

|
g
@ ﬁ‘?‘%':::__,_f___*———f—_f___i 2 @ Pruned 3 @ Pruned 4
w@ el]]l @ 458
L i
B
Pruned 5 Pruned 6 0} "“T-:f_—::??:,__i___i__i
o] w] | [0
i
] L] iy g
]
12_7__
] i "
L
g]]
i L
_4 First bound 13 -2 New bound 14 21 -1 New bound 22 New bound 43
. . @ feasible 1

Notice that Branch And Bound (much like Brute Force) creates a search tree that explodes
exponentially as the problem size increases. So it hits the same scalability wall, only a little bit later.

Important

Branch And Bound is mostly unusable for a real-world problem due to time

limitations, as shown in scalability of Exhaustive Search.

12.3.2. Configuration

Simplest configuration of Branch And Bound:

<sol ver >

<exhaust i veSear ch>

<exhausti veSear chType>BRANCH_AND_BOUND</ exhausti veSear chType>

</ exhaust i veSear ch>

219

Chapter 12. Exhaustive search

</ sol ver >

Important

For the pruning to work with the default Scor eBounder , the InitializingScoreTrend
should be set. Especially an InitializingScoreTrend of ONLY_DON (or at least has
ONLY_DOWN in the leading score levels) prunes a lot.

Advanced configuration:

<exhausti veSear ch>
<exhausti veSear chType>BRANCH AND BOUND</ exhausti veSear chType>
<nodeExpl or at i onType>DEPTH_FI RST</ nodeExpl or ati onType>
<entitySorter Manner >DECREASI NG DI FFI CULTY_I| F_AVAI LABLE</ enti t ySort er Manner >
<val ueSort er Manner > NCREASI NG_STRENGTH_| F_AVAI LABLE</ val ueSort er Manner >
</ exhaust i veSear ch>

The nodeExpl or ati onType options are:

» DEPTH_FI RST (default): Explore deeper nodes first (and then a better score and then a better
optimistic bound). Deeper nodes (especially leaf nodes) often improve the pessimistic bound.
A better pessimistic bound allows pruning more nodes to reduce the search space.

<exhausti veSear ch>
<exhausti veSear chType>BRANCH_AND_BOUND</ exhaust i veSear chType>
<nodeExpl or at i onType>DEPTH_FI RST</ nodeExpl or ati onType>

</ exhaust i veSear ch>

* BREADTH_FI RST (not recommended): Explore nodes layer by layer (and then a better score and
then a better optimistic bound). Scales terribly in memory (and usually in performance too).

<exhaust i veSear ch>
<exhausti veSear chType>BRANCH AND BOUND</ exhaust i veSear chType>
<nodeExpl or at i onType>BREADTH_FI RST</ nodeExpl or ati onType>

</ exhaust i veSear ch>

e SCORE_FI RST: Explore nodes with a better score first (and then a better optimistic bound and
then deeper nodes first). Might scale as terribly as BREADTH_FI RST in some cases.

<exhaust i veSear ch>

220

Scalability of Exhaustive Search

<exhaust i veSear chType>BRANCH_AND_ BOUND</ exhaust i veSear chType>
<nodeExpl or at i onType>SCORE_FI RST</ nodeExpl or ati onType>
</ exhaust i veSear ch>

e OPTI M STI C_BOUND_FI RST: Explore nodes with a better optimistic bound first (and then a better
score and then deeper nodes first). Might scale as terribly as BREADTH_FI RST in some cases.

<exhausti veSear ch>
<exhaust i veSear chType>BRANCH_AND_ BOUND</ exhaust i veSear chType>
<nodeExpl or ati onType>0PTI M STI C_BOUND_FI RST</ nodeExpl or ati onType>
</ exhaust i veSear ch>

The enti t ySort er Manner options are:

e DECREASI NG DI FFI CULTY: Initialize the more difficult planning entities first. This usually
increases pruning (and therefore improves scalability). Requires the model to support planning
entity difficulty comparison.

e DECREASI NG DI FFI CULTY_I F_AVAI LABLE (default): If the model supports planning entity
difficulty comparison, behave like DECREASI NG DI FFI CULTY, else like NONE.

* NONE: Initialize the planning entities in original order.

The val ueSor t er Manner options are:

* | NCREASI NG_STRENGTH: Try the planning values in increasing strength. Requires the model to
support planning value strength comparison.

* | NCREASI NG_STRENGTH_| F_AVAI LABLE (default): If the model supports planning value strength
comparison, behave like | NCREASI NG_STRENGTH, else like NONE.

* NONE: Try the planning values in original order.

12.4. Scalability of Exhaustive Search

Exhaustive Search variants suffer from 2 big scalability issues:

e They scale terribly memory wise.
» They scale horribly performance wise.

As shown in these time spent graphs from the Benchmarker, Brute Force and Branch And Bound
both hit a performance scalability wall. For example, on N queens it hits wall at a few dozen queens:

221

Chapter 12. Exhaustive search

Time spent summary (lower time is better)

1hlm40s ? ?
1h
5Bm20s

56m40s
55m
53m20s
51m40s
50m

50m33s321

48m20s
45m40s

34s5385ms

45m
43m20s
41m40s
40m
3Bm20s
36m40s
35m
33m20s

Exhaustive Search
hits the scalability wall...

31m40s
30m

Time spent

2Bm20s
26mA40s
25m
23m20s
21m40s
20m
18m20s
16m40s
e 15m4slem:|
13m20s
11m40s
10m
B8m20s

Em40s Srml6s488

3rm20s 2rn20s742rr)
1m40s

2m3s8THFREo 22T

1ml14s876ms
ms 57ms 63ms103ms93ms 44msl 26ns 5028w 65TsR05HRBI5asE 0TS - 2031 75ms 775351 ms

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
of queens

18mis 40rms261mEe3rkas 7 46ms

|l Brute Force M Branch And Bound|

In most use cases, such as Cloud Balancing, the wall appears out of thin air:

222

Scalability of Exhaustive Search

Time spent summary (lower time is better)

1hlm40s
1h
5Bm20s

?

Il

56m40s
55m
53m20s
51m40s
50m
48m20s
45m40s
45m
43m20s
41m40s
40m
3Bm20s
36m40s
35m

E 33m20s
o 31";:"’ Exhaustive Search
S— hits the scalability wall...
26mA40s
25m
23m20s
21m40s
20m
18m20s
16m40s
15m
13m20s
11m40s
10m
8m20s
&Bm40s
= 3m55s116ms
3m20s
1m40: 21lms 1lms 537ms 32ms S5lms S585ms 1s227ms 4s512ms
2 computers 3 computers 4 computers 5 computers 6 computers 7 computers 8 computers
6 processes 9 processes 12 processes 15 processes 18 processes 21 processes 24 processes
|l Brute Force M Branch and bound|

Exhaustive Search hits this wall on small datasets already, so in production these
optimizations algorithms are mostly useless. Use Construction Heuristics with Local Search
instead: those can handle thousands of queens/computers easily.

223

224

Chapter 13.

Chapter 13. Benchmarking and
tweaking

13.1. Finding the best soiver configuration

OptaPlanner supports several optimization algorithms, but you're probably wondering which is the
best one? Although some optimization algorithms generally perform better than others, it really
depends on your problem domain. Most solver phases have parameters which can be tweaked.
Those parameters can influence the results a lot, even though most solver phases work pretty
well out-of-the-box.

Luckily, OptaPlanner includes a benchmarker, which allows you to play out different solver phases
with different settings against each other, so you can pick the best configuration for your planning
problem.

Benchmark overview

Problem datasets

dataset A dataset B dataset C dataset D

100 computers 200 computars 400 computars 800 computers
300 pr B0 pr

Solver configurations

anlityTabuSize: 7

Tabu Search ‘

JL

[Simulated Annealing J
startingTemperature: Ohard/d M0soft

:{> Benchmarker

JL

A B [D

Favorite: Late Acceptance

225

Chapter 13. Benchmarking and ...

13.2. Doing a benchmark

13.2.1. Adding a dependency on optaplanner-benchmark

The benchmarker is in a separate artifact called opt apl anner - benchnar k.

If you use Maven, add a dependency in your pom xmi file:

<dependency>
<gr oupl d>or g. opt apl anner </ gr oupl d>
<artifact|d>optapl anner-benchmark</artifact!d>
</ dependency>

This is similar for Gradle, Ivy and Buildr. The version must be exactly the same as the
opt apl anner - cor e version used (which is automatically the case if you import opt apl anner -

bom).

If you use ANT, you've probably already copied the required jars from the download zip's bi nari es
directory.

13.2.2. Building and running a pi anner Benchmar k

Build a Pl anner Benchmar k instance with a Pl anner Benchmar kFact ory. Configure it with a
benchmark configuration XML file, provided as a classpath resource:

Pl anner Benchmar kFact ory pl anner Benchmar kFact ory = Pl anner Benchmar kFact ory. cr eat eFr omXni
"or g/ opt apl anner/ exanpl es/ nqueens/ benchmar k/
nqueensBenchmar kConfi g. xm ") ;
Pl anner Benchrar k pl anner Benchmar k = benchmar kFact ory. bui | dPl anner Benchnar k() ;
pl anner Benchmar k. benchmar k() ;

A basic benchmark configuration file looks something like this:

<?xm version="1.0" encodi ng="UTF-8"?>

<pl anner Benchmar k>
<benchmar kDi r ect or y>| ocal / dat a/ nqueens</ benchmar kDi r ect or y>
<! --<paral | el Benchnmar kCount >AUTC</ par al | el Benchnar kCount >- - >
<war mJpSecondsSpent Li m t >30</ war nlJpSecondsSpent Li mi t >

<i nherit edSol ver Benchmar k>
<pr obl enBenchmar ks>
<xSt r eamAnnot at edCl ass>or g. opt apl anner . exanpl es. nqueens. donai n. NQueens</
xSt r eamAnnot at edd ass>
<i nput Sol uti onFi | e>dat a/ nqueens/ unsol ved/ 32queens. xm </ i nput Sol uti onFi | e>
<i nput Sol uti onFi | e>dat a/ nqueens/ unsol ved/ 64queens. xm </ i nput Sol uti onFi | e>

226

Building and running a PlannerBenchmark

<probl enSt ati sti cType>BEST_SCORE</ pr obl enfSt ati sti cType>
</ pr obl enBenchmar ks>
<sol ver >
<sol uti onCl ass>or g. opt apl anner . exanpl es. nqueens. domai n. NQueens</
sol utionCl ass>
<pl anni ngEnti t yCl ass>or g. opt apl anner . exanpl es. nqueens. donai n. Queen</
pl anni ngEnti tyC ass>
<scoreDi rect or Fact ory>
<scor eDefinitionType>S|I MPLE</ scor eDefi ni ti onType>
<scor eDr | >or g/ opt apl anner/ exanpl es/ nqueens/ sol ver/ nQueensScor eRul es. dr | </
scorebDr| >
<initializingScoreTrend>ONLY_DOW/initializingScoreTrend>
</ scoreDirectorFactory>
<term nati on>
<secondsSpent Li m t >20</ secondsSpent Li m t >
</term nation>
<constructionHeuristic>
<constructionHeuristicType>FI RST_FI T_DECREASI NG</
constructionHeuristicType>
</ constructionHeuristic>
</ sol ver >
</inheritedSol ver Benchmar k>

<sol ver Benchnar k>
<name>Entity tabu</nane>
<sol ver >
<l ocal Sear ch>
<changeMoveSel ect or >
<sel ecti onOrder >ORI A NAL</ sel ecti onOr der >
</ changeMbveSel ect or >
<accept or >
<entityTabuSi ze>5</entityTabuSi ze>
</ accept or >
<f or ager >
<pi ckEar | yType>NEVER</ pi ckEar | yType>
</ forager>
</l ocal Sear ch>
</ sol ver >
</ sol ver Benchmar k>
<sol ver Benchmar k>
<nanme>Val ue tabu</nane>
<sol ver >
<l ocal Sear ch>
<changeMoveSel ect or >
<sel ecti onOrder >ORI A NAL</ sel ecti onOr der >
</ changeMbveSel ect or >
<accept or >
<val ueTabuSi ze>5</ val ueTabuSi ze>
</ accept or >

227

Chapter 13. Benchmarking and ...

<f orager >
<pi ckEar | yType>NEVER</ pi ckEar | yType>
</ f or ager >
</l ocal Sear ch>
</ sol ver >
</ sol ver Benchmar k>
<sol ver Benchmar k>
<name>Move tabu</nane>
<sol ver >
<l ocal Sear ch>
<changeMveSel ect or >
<sel ecti onOrder >ORI A NAL</ sel ecti onOr der >
</ changeMoveSel ect or >
<accept or >
<noveTabuSi ze>5</ noveTabuSi ze>
</ accept or >
<f orager >
<pi ckEar | yType>NEVER</ pi ckEar | yType>
</ f or ager >
</l ocal Sear ch>
</ sol ver >
</ sol ver Benchmar k>
</ pl anner Benchmar k>

This PI anner Benchnar k will try 3 configurations (1 move tabu, 1 entity tabu and 1 value tabu) on
2 data sets (32 and 64 queens), so it will run 6 solvers.

Every <sol ver Benchmar k> element contains a solver configuration (for example with a local
search solver phase) and one or more <i nput Sol uti onFi | e> elements. It will run the solver
configuration on each of those unsolved solution files. The element nane is optional, because it is
generated if absent. The inputSolutionFile is read by a ProblemIO.

To lower verbosity, the common part of multiple <sol ver Benchmar k> elements can be
extracted to the <inheritedSol ver Benchmar k> element. Yet, every property can still be
overwritten per <sol ver Benchnmar k> element. Note that inherited solver phases such as
<constructionHeuri stic> or <l ocal Sear ch> are not overwritten but instead are added to the
tail of the solver phases list.

228

ProblemIO: input and output of Solution files

You need to specify a <benchmar kDi r ect ory> element (relative to the working directory). A
benchmark report will be written in that directory.

@ Note

It's recommended that the benchmar kDi r ect ory is a directory ignored for source
control and not cleaned by your build system. This way the generated files are not
bloating your source control and they aren't lost when doing a build. Usually that
directory is called | ocal .

If an Exception or Error occurs in a single benchmark, the entire Benchmarker will not fail-
fast (unlike everything else in OptaPlanner). Instead, the Benchmarker will continue to run all
other benchmarks, write the benchmark report and then fail (if there is at least 1 failing single
benchmark). The failing benchmarks will be clearly marked in the benchmark report.

13.2.3. ProblemlO: input and output of Solution files

13.2.3.1. probl em 0 interface

The benchmarker needs to be able to read the input files to contain a Sol ut i on write the best
Sol uti on of each benchmark to an output file. For that it uses a class that implements the
Pr obl em Ointerface:
public interface Problem O {

String getFil eExtension();

Sol ution read(File inputSolutionFile);

void wite(Solution solution, File outputSolutionFile);

A Warning

Your input files need to have been written with the same Pr obl enl Oclass as they
are being read by the benchmarker.

13.2.3.2. xstreanProbl eni 0. the default probl em 0

By default, a benchmarker uses a XSt r eanPr obl eml Oinstance to read and write solutions.

229

Chapter 13. Benchmarking and ...

You need to tell the benchmarker about your Sol uti on class which is annotated with XStream
annotations:

<pr obl emBenchnmar ks>
<xSt reamAnnot at edCl ass>or g. opt apl anner . exanpl es. nqueens. domai n. NQueens</
xSt reamAnnot at edCl ass>
<i nput Sol uti onFi | e>dat a/ nqueens/ unsol ved/ 32queens. xm </ i nput Sol uti onFi | e>

</ pr obl emBenchmar ks>

Your input files need to have been written with a XSt r eanPr obl em O instance, not just any
XSt r eaminstance, because the XSt r eanPr obl enrl Ouses a customized XSt r eaminstance.

Warning

XStream (and XML in general) is a very verbose format. Reading or writing
large datasets in this format can cause an Qut O Menor yErr or and performance
degradation.

13.2.3.3. Custom Problem O

Alternatively, you can implement your own Pr obl enl O implementation and configure it with the
probl em OO ass element:

<pr obl emBenchmar ks>
npl es. nachi ner eassi gnnent . per si st ence. Machi neReassi gnment Pr obl em O</
probl em OCl ass>
<i nput Sol uti onFi | e>dat a/ machi ner eassi gnment /i nport/ nodel _al_1.txt </

i nput Sol uti onFi | e>

</ pr obl emBenchmar ks>

A Warning

A Probl enl Oimplementation must be thread-safe.

13.2.4. Warming up the HotSpot compiler

Without awarm up, the results of the first (or first few) benchmarks are not reliable, because
they will have lost CPU time on HotSpot JIT compilation (and possibly DRL compilation too).

230

Writing the output solution of the benchmark runs

The avoid that distortion, the benchmarker can run some of the benchmarks for a specified amount
of time, before running the real benchmarks. Generally, a warm up of 30 seconds suffices:

<pl anner Benchmar k>
<war mJpSecondsSpent Li mi t >30</ war mpSecondsSpent Li i t >

</ pl anner Benchmar k>

13.2.5. Writing the output solution of the benchmark runs

The best solution of each benchmark run can be written to the in the benchmar kDi rect ory. By
default, this is disabled, because the files are rarely used and considered bloat. Also, on large
datasets, writing the best solution of each single benchmark can take quite some time and memory
(causing an Qut OF Menor yEr r or), especially in a verbose format like XStream.

You can enable to write the output solution in the benchmarkDirectory with
wr i t eQut put Sol ut i onEnabl ed:
<pr obl emBenchmar ks>
<wr i t eQut put Sol uti onEnabl ed>t rue</ wri t eCut put Sol ut i onEnabl ed>

</ pr obl enBenchmar ks>

13.3. Benchmark report

13.3.1. HTML report

After the running a benchmark, a HTML report will be written in the benchnar kDi r ect or y with the
filename i ndex. ht m . Openitin your browser. It has a nice overview of your benchmark including:

« Summary statistics: graphs and tables
* Problem statistics per i nput Sol uti onFi | e: graphs and CSV
« Each solver configuration (ranked): Handy to copy and paste

« Benchmark information: settings, hardware, ...

@ Note
Graphs are generated by the excellent [http://www.jfree.org/jfreechart/]
library.

231

http://www.jfree.org/jfreechart/
http://www.jfree.org/jfreechart/

Chapter 13. Benchmarking and ...

The HTML report will use your default locale to format numbers. If you share the benchmark report
with people from another country, consider overwriting the | ocal e accordingly:

<pl anner Benchmar k>

<benchmar kReport >
<l ocal e>en_US</ | ocal e>
</ benchmar kReport >

</ pl anner Benchmar k>

13.3.2. Ranking the solverS

The benchmark report automatically ranks the solvers. The Sol ver with rank 0 is called the favorite
Sol ver : it performs best overall, but it might not be the best on every problem. It's recommended
to use that favorite Sol ver in production.

However, there are different ways of ranking the solvers. Configure it like this:

<pl anner Benchnmar k>

<benchnar kRepor t >
<sol ver Ranki ngType>TOTAL_SCORE</ sol ver Ranki ngType>
</ benchmar kRepor t >

</ pl anner Benchmar k>

The following sol ver Ranki ngTypes are supported:

e TOTAL_SCORE (default): Maximize the overall score, so minimize the overall cost if all solutions
would be executed.

* WORST_SCORE: Minimize the worst case scenario.

* TOTAL_RANKI NG Maximize the overall ranking. Use this if your datasets differ greatly in size or
difficulty, producing a difference in Scor e magnitude.

You can also use a custom ranking, by implementing a Conpar at or :

<benchmar kReport >
<sol ver Ranki ngConpar at or Cl ass>. .. Tot al Scor eSol ver Ranki ngConpar at or </
sol ver Ranki ngConpar at or Cl ass>
</ benchmar kReport >

232

Summary statistics

Or by implementing a weight factory:

<benchnmar kReport >
<sol ver Ranki ng\Wéi ght Fact or yCl ass>. . . Tot al RankSol ver Ranki ng\Wei ght Fact or y</
sol ver Ranki ng\Wei ght Fact or yCl ass>
</ benchmar kRepor t >

13.4. Summary statistics

13.4.1. Best score summary (graph and table)

Shows the best score per i nput Sol uti onFi | e for each solver configuration.

Useful for visualizing the best solver configuration.

Best score summary (higher score is better)

Score

medium0l.xml medium02,xml mediurn_hint01.xml medium_hint02.xml
Data

|l tabuSearch-moveTabu mtabuSearch-propertyTabu m simulatedannealing (winner)

Figure 13.1. Best score summary statistic

233

Chapter 13. Benchmarking and ...

13.4.2. Best score scalability summary (graph)

Shows the best score per problem scale for each solver configuration.

Useful for visualizing the scalability of each solver configuration.

13.4.3. Winning score difference summary (graph and table)

Shows the winning score difference score per i nput Sol ut i onFi | e for each solver configuration.
The winning score difference is the score difference with the score of the winning solver
configuration for that particular i nput Sol uti onFi | e.

Useful for zooming in on the results of the best score summary.

13.4.4. Worst score difference percentage (ROI) summary
(graph and table)

Shows the return on investment (ROI) per i nput Sol uti onFi | e for each solver configuration if
you'd upgrade from the worst solver configuration for that particular i nput Sol uti onFi | e.

Useful for visualizing the return on investment (ROI) to decision makers.

13.4.5. Average calculation count summary (graph and table)

Shows the score calculation speed: the average calculation count per second per problem scale
for each solver configuration.

Useful for comparing different score calculators and/or score rule implementations (presuming
that the solver configurations do not differ otherwise). Also useful to measure the scalability cost
of an extra constraint.

13.4.6. Time spent summary (graph and table)

Shows the time spent per i nput Sol uti onFi | e for each solver configuration. This is pointless if
it's benchmarking against a fixed time limit.

Useful for visualizing the performance of construction heuristics (presuming that no other solver
phases are configured).

13.4.7. Time spent scalability summary (graph)

Shows the time spent per problem scale for each solver configuration. This is pointless if it's
benchmarking against a fixed time limit.

Useful for extrapolating the scalability of construction heuristics (presuming that no other solver
phases are configured).

234

Best score per time spent summary (graph)

13.4.8. Best score per time spent summary (graph)

Shows the best score per time spent for each solver configuration. This is pointless if it's
benchmarking against a fixed time limit.

Useful for visualizing trade-off between the best score versus the time spent for construction
heuristics (presuming that no other solver phases are configured).

13.5. Statistic per dataset (graph and CSV)

13.5.1. Enabling a problem statistic

The benchmarker supports outputting problem statistics as graphs and CSV (comma separated
values) files to the benchmar kDi r ect ory.

To configure graph and CSV output of a statistic, just add a pr obl enfSt ati sti cType line:

<pl anner Benchnmar k>
<benchmar kDi r ect or y>l ocal / dat a/ nqueens/ sol ved</ benchmar kDi r ect or y>
<i nherit edSol ver Benchmar k>
<pr obl enmBenchmar ks>

<probl entt ati sti cType>BEST_SCORE</ pr obl enfSt ati sti cType>
<probl entt ati sti cType>CALCULATE_COUNT_PER_SECOND</ pr obl enf5t ati sti cType>
</ pr obl emBenchmar ks>

</ i nheritedSol ver Benchmar k>

</ pl anner Benchmar k>

Multiple probl enBt ati sticType elements are allowed. Some statistic types might influence
performance and benchmark results noticeably.

The following types are supported:

13.5.2. Best score over time statistic (graph and CSV)

To see how the best score evolves over time, add:

235

Chapter 13. Benchmarking and ...

<pr obl emBenchnmar ks>

<probl enSt ati sti cType>BEST_SCORE</ pr obl enfst ati sti cType>
</ pr obl enBenchmar ks>

cb-0400comp-1200proc best score level 1 statistic

-440,000

-445,000

-450,000

-455,000

-460,000

-465,000

-470,000

-475,000

-480,000

-485,000

-490,000

-495,000

-500,000

Best score level 1

-505,000
-510,000
-515,000
-520,000
525,000 1
-530,000
-535,000
-540,000

-545,000 ®

4] 255 50s 1ml5s 1m40s 2m5s 2m30s 2m55s 3m20s 3m45s 4ml0s 4m35s
Time spend

|-- First Fit -e-First Fit Decreasing — Tabu Search Simulated Annealing (favorite) — Late acceptance

Figure 13.2. Best score over time statistic

The best score over time statistic is very useful to detect abnormalities, such as a potential
score trap.

236

5m

Step score over time statistic (graph and CSV)

13.5.3. Step score over time statistic (graph and CSV)

To see how the step score evolves over time, add:

<pr obl emBenchnmar ks>

<probl enSt ati sti cType>STEP_SCORE</ pr obl enfSt ati sti cType>
</ pr obl enBenchmar ks>

cb-0400comp-1200proc step score level 1 statistic
-440,000
-445,000
-450,000
-455,000
-4&60,000
-4&85,000
-470,000
-475,000
-480,000
-485,000
-430,000

-495,000

Step score level 1

-500,000

-505,000

-510,000

-515,000

-520,000

-525,000

-530,000 1 *

-535,000

-540,000

-545,000

4] 255 50s 1ml5s 1m40s 2m5s 2m30s 2m55s 3m20s 3m45s 4ml0s 4m35s
Time spend

|-- First Fit -» First Fit Decreasing — Tabu Search Simulated Annealing (favorite) — Late acceptance

Figure 13.3. Step score over time statistic

Compare the step score statistic with the best score statistic (especially on parts for which the
best score flatlines). If it hits a local optima, the solver should take deteriorating steps to escape
it. But it shouldn't deteriorate too much either.

237

5m

Chapter 13. Benchmarking and ...

Warning

The step score statistic has been seen to slow down the solver noticeably due to
GC stress, especially for fast stepping algorithms (such as Simulated Annealing
and Late Acceptance).

13.5.4. Calculate count per second statistic (graph and CSV)

To see how fast the scores are calculated, add:

<pr obl enBenchmar ks>

<probl entst ati sti cType>CALCULATE COUNT_PER _SECOND</ pr obl enfSt ati sti cType>
</ pr obl emBenchmar ks>

cbh-0400comp-1200proc calculate count statistic
112500

110,000
107,500
105,000 ||
102,500
100,000 f

97,500
95,000
52,500
50,000
87,500
85,000
82,500

80,000
77.500
75,000
72,500
70,000
67,500
65,000

Calculate count per second

62,500
50,000
57,500
55,000
52,500
50,000
47,500 r oy g, T oo
45,000 = L \
42,500 % -
40,000{ = -

37,500 { '

35,000
32,500

4] 255 50s 1ml5s 1m40s 2m5s 2m30s 2m55s 3m20s 3m45s 4ml0s 4m35s 5m
Time spend

|-I— First Fit - First Fit Decreasing —+ Tabu Search Simulated Annealing (favorite) = Late acceptance

Figure 13.4. Calculate count per second statistic

238

Best solution mutation over time statistic (graph and CSV)

13.5.5. Best solution mutation over time statistic (graph and
CSV)

To see how much each new best solution differs from the previous best solution, by counting the
number of planning variables which have a different value (not including the variables that have
changed multiple times but still end up with the same value), add:

<pr obl emBenchnmar ks>

<probl enSt ati sti cType>BEST_SOLUTI ON_MJTATI ON</ pr obl enfSt at i sti cType>
</ pr obl enBenchmar ks>

239

Chapter 13. Benchmarking and ...

cbh-0200comp-0600proc best solution mutation statistic

00

" /
500 |y
475 o
b
450
| -
425 |
1LE
4
400 ||
375 I

350 I

325

300

275

1

250

|
|

200 |

Best solution mutation count

175 l

150 4)

125|| -

100 i
]
sl

o il

254}

| M 1

4] 255 50s 1ml5s 1m40s 2m5s 2m30s 2m55s 3m20s 3m45s 4ml0s 4m35s
Time spend

|-I— First Fit - First Fit Decreasing —+ Tabu Search Simulated Annealing = Late acceptance (favorite)

Figure 13.5. Best solution mutation over time statistic

Use Tabu Search - an algorithm that behaves like a human - to get an estimation on how difficult
it would be for a human to improve the previous best solution to that new best solution.

13.5.6. Move count per step statistic (graph and CSV)

To see how the selected and accepted move count per step evolves over time, add:

<pr obl emBenchmar ks>

<probl entt ati sti cType>MWNE_COUNT_PER_STEP</ pr obl enfst ati sti cType>
</ pr obl enBenchmar ks>

240

5m

Memory use statistic (graph and CSV)

cbh-0400comp-1200proc move count per step statistic

1,050
1,000
50
200
850
800
750
F00
650
600
550
500
450

400

Accepted/selected moves per step

350
300
250
200
150

- i ,;AIQM' }:'aill _LAQ

50

k&.w i Jgﬁ;iilw%% tk.u:mﬂw!n’u‘ Jawm»,fw

0 e e T P R e S ey

4] 255 50s 1ml5s 1m40s 2m5s 2m30s 2m55s 3m20s 3m45s 4ml0s 4m35s 5m
Time spend

— First Fit accepted - - First Fit selected — First Fit Decreasing accepted - - First Fit Decreasing selected — Tabu Search accepted - - Tabu Search selected
Simulated Annealing accepted Simulated Annealing selected — Late acceptance (favorite) accepted - - Late acceptance (favorite) selected

Late Simulated Annealing accepted - - Late Simulated Annealing selected

Figure 13.6. Move count per step statistic

Warning

This statistic has been seen to slow down the solver noticeably due to GC stress,
especially for fast stepping algorithms (such as Simulated Annealing and Late
Acceptance).

13.5.7. Memory use statistic (graph and CSV)

To see how much memory is used, add:

<pr obl emBenchmar ks>

<pr obl entst ati sti cType>MEMORY_USE</ probl enfSt ati sti cType>
</ pr obl emBenchmar ks>

241

Chapter 13. Benchmarking and ...

cbh-0400comp-1200proc memory use statistic

150,000,000
185,000,000
180,000,000
175,000,000
170,000,000
165,000,000
160,000,000
155,000,000
150,000,000
145,000,000
140,000,000
135,000,000
130,000,000
125,000,000
120,000,000
115,000,000
110,000,000
105,000,000

£' 100,000,000

£ 35,000,000

= 50,000,000

85,000,000
80,000,000
75,000,000
70,000,000
£5,000,000
60,000,000
55,000,000
50,000,000
45,000,000
40,000,000
35,000,000
30,000,000
25,000,000
20,000,000
15,000,000
10,000,000
5,000,000
0

ey Ty

4] 25s 50s 1ml5s 1m40s 2rmSs 2m30s 2m55s 3m20s 3m45s 4ml0s 4m35s
Time spend

|-I— First Fit used -e- First Fit Decreasing used —+ Tabu Search used Simulated Annealing (favorite) used = Late acceptance used

Figure 13.7. Memory use statistic

A Warning

The memory use statistic has been seen to affect the solver noticeably.

13.6. Advanced benchmarking

13.6.1. Benchmarking performance tricks

13.6.1.1. Parallel benchmarking on multiple threads

If you have multiple processors available on your computer, you can run multiple benchmarks in
parallel on multiple threads to get your benchmarks results faster:

<pl anner Benchmar k>

242

Benchmarking performance tricks

<par al | el Benchmar kCount >AUTO</ par al | el Benchmar kCount >

</ pl anner Benchmar k>

Warning

Running too many benchmarks in parallel will affect the results of benchmarks
negatively. Leave some processors unused for garbage collection and other
processes.

We tweak parall el Benchmar kCount AUTO to maximize the reliability and
efficiency of the benchmark results.

The following par al | el Benchmar kCount s are supported:

1 (default): Run all benchmarks sequentially.

AUTC: Let Planner decide how many benchmarks to run in parallel. This formula is based on
experience. It's recommended to prefer this over the other parallel enabling options.

Static number: The number of benchmarks to run in parallel.

<par al | el Benchmar kCount >2</ par al | el Benchmar kCount >

JavaScript formula: Formula for the number of benchmarks to run in parallel. It can use the
variable avai | abl ePr ocessor Count . For example:

<par al | el Benchmar kCount >(avai | abl ePr ocessor Count / 2) + 1</
par al | el Benchmar kCount >

a
a

Note

The paral | el Benchmar kCount is always limited to the number of available
processors. If it's higher, it will be automatically decreased.

Note

In the future, we will also support multi-JVM benchmarking. This feature
is independent of [https://issues.jboss.org/browse/
PLANNER-76] or multi-JVM solving.

243

https://issues.jboss.org/browse/PLANNER-76
https://issues.jboss.org/browse/PLANNER-76
https://issues.jboss.org/browse/PLANNER-76

Chapter 13. Benchmarking and ...

13.6.2. Template based benchmarking and matrix
benchmarking

Matrix benchmarking is benchmarking a combination of value sets. For example: benchmark 4
entityTabuSi ze values (5, 7, 11 and 13) combined with 3 accept edCount Li ni t values (500,
1000 and 2000), resulting in 12 solver configurations.

To reduce the verbosity of such a benchmark configuration, you can use a Freemarker [http://
freemarker.sourceforge.net/] template for the benchmark configuration instead:

<pl anner Benchmar k>

<i nherit edSol ver Benchmar k>
</inheritedSol ver Benchmar k>

<#list [5, 7, 11, 13] as entityTabuSi ze>
<#list [500, 1000, 2000] as acceptedCountLimt>
<sol ver Benchmar k>

<nanme>entityTabuSi ze${entityTabuSi ze}accept edCount Li m t ${ accept edCount Li m t} </
name>
<sol ver >
<l ocal Sear ch>
<uni onMoveSel ect or >
<changeMoveSel ect or/ >
<swapMoveSel ect or/ >
</ uni onMoveSel ect or >
<accept or >
<entityTabuSi ze>${enti tyTabuSi ze} </ entityTabuSi ze>
</ accept or >
<f or ager >
<accept edCount Li m t >${ accept edCount Li mi t} </ accept edCount Li mi t >
</ forager>
</l ocal Sear ch>
</ sol ver >
</ sol ver Benchmar k>
</ #list>
</ #list>
</ pl anner Benchmar k>

And build it with the class Pl anner Benchmar kFact ory:

Pl anner Benchmar kFact ory pl anner Benchmar kFact ory = Pl anner Benchmar kFact ory. cr eat eFr onfr e

244

http://freemarker.sourceforge.net/
http://freemarker.sourceforge.net/
http://freemarker.sourceforge.net/

Benchmark report aggregation

"or g/ opt apl anner/ exanpl es/ cl oudbal anci ng/ benchmar k/
cl oudBal anci ngBenchmar kConf i gTenpl ate. xm . ftl");
Pl anner Benchmar k pl anner Benchmar k = benchmar kFact ory. bui | dPl anner Benchmar k() ;

13.6.3. Benchmark report aggregation

The Benchmar kAggr egat or takes 1 or more existing benchmarks and merges them into new
benchmark report, without actually running the benchmarks again. This is useful to generate a:

« Code changes impact report: Run the same benchmark configuration before and after the
code changes, then aggregate a report.

« Dependency upgrade impact report: Run the same benchmark configuration before and after
upgrading the dependency, then aggregate a report.

« Condense a too verbose report: Select only the interesting solver benchmarks from the
existing report. This especially useful on template reports to make the graphs readable.

« Partial rerun: Rerun part of an existing report (for example only the failed or invalid solvers),
then recreate the original report with the new values.

To use it, provide a Pl anner Benchmar kFact ory to the Benchmar kAggr egat or Fr ame to display
the GUI:

public static void main(String[] args) {
Pl anner Benchmar kFact ory pl anner Benchmar kFact ory = Pl anner Benchnar kFact ory. cr eat eFr omXmi
"or g/ opt apl anner/ exanpl es/ nqueens/ benchmar k/
ngueensBenchmar kConfi g. xm ") ;
Benchmar kAggr egat or Fr ane. cr eat eAndDi spl ay(pl anner Benchmar kFact ory) ;

Warning

Despite that it uses a benchmark configuration as input, it ignores all elements
of that configuration, except for the elements <benchmarkDirect ory> and
<benchmar kReport >.

In the GUI, select the interesting benchmarks and click the button to generate the report.

245

246

Chapter 14.

Chapter 14. Repeated planning

14.1. Introduction to repeated planning

The world constantly changes. The planning facts used to create a solution, might change before
or during the execution of that solution. There are 3 types of situations:

» Unforeseen fact changes: For example: an employee assigned to a shift calls in sick, an airplane
scheduled to take off has a technical delay, one of the machines or vehicles break down, ...
Use backup planning.

« Unknown long term future facts: For example: The hospital admissions for the next 2 weeks are
reliable, but those for week 3 and 4 are less reliable and for week 5 and beyond are not worth
planning yet. Use continuous planning.

« Constantly changing planning facts: Use real-time planning.

Waiting to start planning - to lower the risk of planning facts changing - usually isn't a good way
to deal with that. More CPU time means a better planning solution. An incomplete plan is better
than no plan.

Luckily, the optimization algorithms support planning a solution that's already (partially) planned,
known as repeated planning.

14.2. Backup planning

Backup planning is the technique of adding extra score constraints to create space in the planning
for when things go wrong. That creates a backup plan in the plan. For example: try to assign an
employee as the spare employee (1 for every 10 shifts at the same time), keep 1 hospital bed
open in each department, ...

Then, when things go wrong (one of the employees calls in sick), change the planning facts on
the original solution (delete the sick employee leave his/her shifts unassigned) and just restart the
planning, starting from that solution, which has a different score now. The construction heuristics
will fill in the newly created gaps (probably with the spare employee) and the metaheuristics will
even improve it further.

14.3. Continuous planning (windowed planning)

Continuous planning is the technique of planning one or more upcoming planning windows at the
same time and repeating that process monthly, weekly, daily or hourly. Because time is infinite,
there are infinite future windows, so planning all future windows is impossible. Instead, plan only
a fixed number of upcoming planning windows.

Past planning windows are immutable. The first upcoming planning window is considered stable
(unlikely to change), while later upcoming planning windows are considered draft (likely to change
during the next planning effort). Distant future planning windows are not planned at all.

247

Chapter 14. Repeated planning

Past planning windows have only immovable planning entities: the planning entities can no longer
be changed (they are unable to move), but some of them are still needed in the score calculation,
as they might affect some of the score constraints that apply on the upcoming planning entities.
For example: when an employee should not work more than 5 days in a row, he shouldn't work
today and tomorrow if he worked the past 4 days already.

Sometimes some planning entities are semi-immovable: they can be changed, but occur a certain
score penalty if they differ from their original place. For example: avoid rescheduling hospital beds
less than 2 days before the patient arrives (unless it's really worth it), avoid changing the airplane
gate during the 2 hours before boarding (unless there is no alternative), ...

November 1th
Room 11 bed 1

Room 11 bed 2

Room 21 bed 1

November 5th
Room 11 bed 1

Room 11 bed 2

Room 21 bed 1

Continuous planning

November
1 2 3 4 5 6 7 8 g9
| | | | | | | |
stable ‘ draft
C E
2-4 4-7
|
backup planning: empty bed
—cancelled

stable

& immovable

Notice the difference between the original planning of November 1th and the new planning of
November 5th: some planning facts (F, H, I, J, K) changed, which results in unrelated planning

entities (G) changing too.

14.3.1. Immovable planning entities

To make some planning entities immovable, simply add an entity Sel ecti onFi | t er that returns
t rue if an entity is movable and f al se if it is immovable.

248

Real-time planning (event based planning)

public class Mvabl eShi ft Assi gnnent Sel ectionFilter inplenents Sel ectionFilter<ShiftAssignnent>

publ i ¢ bool ean accept (ScoreDirector scorebDirector, ShiftAssignment shiftAssignnent) {
ShiftDate shiftDate = shiftAssignment. getShift().getShiftDate();
Nur seRost er nurseRoster = (NurseRoster) scoreDirector.get WrkingSol ution();
return nurseRoster.get NurseRosterlnfo().islnPlanni ngW ndow(shi ftDate);

And configure it like this:

@l anni ngEnti ty(nmovabl eEntitySel ectionFilter = Movabl eShift Assi gnnent Sel ecti onFilter.cl ass)
public class ShiftAssignnent {

A Warning

Custom Moveli st Factory and Movel t erat or Fact ory implementations must
make sure that they don't move immovable entities.

14.4. Real-time planning (event based planning)

To do real-time planning, first combine backup planning and continuous planning with short
planning windows to lower the burden of real-time planning. As time passes, the problem itself
changes:

249

Chapter 14. Repeated planning

Real-time planning

When the problem changes in real-time, the plan is adjusted in real-time.

Nightly planning Customer visit Vehicles depart Customer visit Yellow vehicle Customer visit
added from depot added visits customer added
S > \"& . \“& . *& \"&
: | ! P .
Time
| | |
| | [
07:30 08:00 08:30

In the example above, 3 customers are added at different times (07: 56, 08: 02 and 08: 45),
after the original customer set finished solving at 07: 55 and in some cases after the vehicles
already left. OptaPlanner can handle such scenario's with Pr obl enFact Change (in combination
with immovable planning entities).

14.4.1. probl enfact Change

While the Sol ver is solving, an outside event might want to change one of the problem facts,
for example an airplane is delayed and needs the runway at a later time. Do not change the
problem fact instances used by the Sol ver while it is solving (from another thread or even in the
same thread), as that will corrupt it. Instead, add a Pr obl enfFact Change to the Sol ver which it
will execute in the solver thread as soon as possible.

public interface Solver {

bool ean addPr obl enfact Change(Pr obl enfact Change pr obl enfact Change) ;

250

ProblemFactChange

bool ean i sEver yPr obl enfact ChangePr ocessed() ;

public interface Probl enfFact Change {

voi d doChange(ScoreDirector scoreDirector);

Here's an example:

public void del eteConputer(final C oudConputer conputer) {
sol ver. addPr obl enfact Change(new Probl enfact Change() {
public void doChange(ScoreDirector scorebDirector) ({

Cl oudBal ance cl oudBal ance = (C oudBal ance) scorebDirector.getWrkingSol ution();

/'l First renove the planning fact fromall planning entities

that use it
for (Cl oudProcess process : cloudBal ance. get ProcessList()) {
if (ObjectUils.equal s(process. getConputer(), conputer)) {
scoreDi rect or. bef oreVari abl eChanged(process, "conputer");
process. set Conput er (nul I');
scoreDirector. aft er Vari abl eChanged(process, "computer");

/1 A Sol utionCl oner does not clone problem fact lists (such
as conputerList)
/1 Shallow clone the conputerList so only workingSolution is
af fected, not best Sol ution or gui Sol ution
cl oudBal ance. set Conput er Li st (new ArrayLi st <C oudConput er >(cl oudBal ance. get Conpt
/1 Next renove it the planning fact itself
for (lterator<C oudConputer> it = cloudBal ance. get ConputerList().iterator(); it
Cl oudConput er wor ki ngConputer = it.next();
if (pjectUils.equal s(workingConputer, conputer)) {
scoreDi rect or. bef or ePr obl enfact Renoved(wor ki ngConput er) ;
it.renmove(); // renmove fromli st
scoreDi rect or. bef or ePr obl enfact Renoved(wor ki ngConput er) ;
br eak;

1)

251

Chapter 14. Repeated planning

Warning

Any change on the problem facts or planning entities in a Probl enfact Change
must be told to the Scor eDi rect or .

Important

To write a Pr obl enfact Change correctly, it's important to understand the behaviour
of a planning clone:

Any change in a Probl enfFact Change must be done on the Sol ution
instance of scor eDi r ect or . get Wor ki ngSol ut i on() . The wor ki ngSol uti on is
a planning clone of the Best Sol uti onChangedEvent's best Sol uti on. So the
wor ki ngSol uti on in the Sol ver is never the same instance as the Sol uti on in
the rest of your application.

A planning clone also clones the planning entities and planning entity collections.
So any change on the planning entities must happen on the instances hold by
scoreDi rect or. get Wor ki ngSol uti on() .

A planning clone does not clone the problem facts, nor the problem fact
collections. Therefore the wor ki ngSol uti on and the best Sol uti on share the
same problem fact instances and the same problem fact list instances.

Any problem fact or problem fact list changed by a Pr obl enFact Change must be
problem cloned first (which can imply rerouting references in other problem facts
and planning entities). Otherwise, if the wor ki ngSol ut i on and best Sol ut i on
are used in different threads (for example a solver thread and a GUI event
thread), a race condition can occur.

@ Note

Many types of changes can leave a planning entity uninitialized, resulting in a
partially initialized solution. That's fine, as long as the first solver phase can handle
it. All construction heuristics solver phases can handle that, so it's recommended
to configure such a solver phase as the first phase.

In essence, the Sol ver stops, runs the Probl enfFact Change and restarts. Each solver phase
runs again. This implies the construction heuristic runs again, but because little or no planning
variables are uninitialized (unless you have a nullable planning variable), this doesn't take long.

252

Daemon: solve() does not return

Each configured phase Termination resets, but each solver Termination (including
t er mi nat eEar | y) does not reset. Normally however, you won't configure any Ter mi nat i on, just
call Sol ver.term nateEarly() when the results are needed. Alternatively, use the daemon
mode in combation with Best Sol ut i onChangedEvent as described below.

14.4.2. Daemon: sol ve() dOoes not return

In real-time planning, it's often useful to have a solver thread wait when it runs out of work, and
immediately solve a problem once problem fact changes are added. Putting the Solver in daemon
mode has these effects:

« If the Sol ver's Ter mi nati on terminates, it does not return from sol ve() but waits instead
(freeing up CPU).

» Except for terminateEarly(), which does make it return from sol ve(), freeing up system
resources (and allowing the application to shutdown gracefully).

» If a Sol ver starts with an empty planning entity collection, it goes to the waiting state
immediately.

 If a Probl enfFact Change is added, it's processed and the Sol ver runs again.
To configure the daemon mode:
<sol ver >

<daenon>t r ue</ daenon>

</ sol ver >

A Warning

Don't forget to call Sol ver.terni nat eEarly() when your application needs to
shutdown to avoid killing the solver thread unnaturally.

Subscribe to the Best Sol uti onChangedEvent to process new best solutions found by the
solver thread. A Best Sol uti onChangedEvent doesn't guarantee that every Pr obl enfFact Change
has been processed already, nor that the solution is initialized and feasible. To ignore
Best Sol ut i onChangedEvent s with such invalid solutions, do this:

publi c voi d best Sol uti onChanged(Best Sol uti onChangedEvent <Cl oudBal ance> event) {
/1 lgnore invalid solutions
if (event.isEveryProbl enfFact ChangeProcessed()
&& event.i sNewBest Sol utionlnitialized()
&& event . get NewBest Sol uti on().get Score().isFeasible()) {

253

Chapter 14. Repeated planning

254

Chapter 15.

Chapter 15. Integration

15.1. Overview

OptaPlanner's input and output data (the planning problem and the best solution) are plain old
JavaBeans (POJO's), so integration with other Java technologies is straightforward. For example:

« To read a planning problem from the database (and store the best solution in it), annotate the
domain POJO's with JPA annotations.

e To read a planning problem from an XML file (and store the best solution in it), annotate the
domain POJO's with XStream or JAXB annotations.

« To expose the Solver as a REST Service that reads the planning problem and responds with
the best solution, annotate the domain POJO's with XStream or JAXB annotations and hook
the Sol ver in Camel or RESTEasy.

Integration overview

OptaPlanner combines easily with other Java and JEE technologies.

7 XML file
OptaPlanner@
xstream <cloudBalance>
@Planning Entity <computerList>
class Process { <computer id="1">__ <lcomputer=
@XStreamAlias(...)

class Process { <icomputerList=
<processlist=

<process®

@PlanningVariable
Computer getComputer()
{3

<name=A<hname=
Computer getComputer() {...} <computer raf="1"t>

} <lprocesss

<iprocesslists

Java beans /!9[JAXB]%;_'l/ff—\i

N ProcessB)
.->‘::--_
t Computer } Process D

"~ ProcessE)

JPA Relational Database
¥, HIBER —

(Computerz) ProcessF) —~— 0@ —
e @Entity Table PROCESS
clasa Proress { process id| process name | computer id
1 A 1 (%)

. . @ManyToOne 2 B
Inflnlspan ' JAX'R’S: Computer getComputer() {...} i E .1.
Hadoop, ... Camel, ...) s =

ar [F 3 (z)
. T G 3z
Data Grid REST/SOAP JDBC]
-—

255

Chapter 15. Integration

15.2. Persistent storage

15.2.1. Database: JPA and Hibernate

Enrich the domain POJO's (solution, entities and problem facts) with JPA annotations to store
them in a database.

15.2.2. XML: XStream

Enrich the domain POJO's (solution, entities and problem facts) with XStream annotations to
serialize them to/from XML.

15.2.3. XML: JAXB

Enrich the domain POJQO's (solution, entities and problem facts) with JAXB annotations to serialize
them to/from XML.

15.3. SOA and ESB

15.3.1. Camel and Karaf

Camel [http://camel.apache.org/] is an enterprise integration framework which includes support
for OptaPlanner (starting from Camel 2.13). It can expose OptaPlanner as a REST service, a
SOAP service, a JMS service, ...

Read the documentation for the camel-optaplanner component. [http://camel.apache.org/
optaplanner.html] That component works in Karaf too.

15.4. Other environments

15.4.1. OSGi

OptaPlanner's jars include OSGi metadata to function properly in an OSGi environment too.

http://camel.apache.org/
http://camel.apache.org/
http://camel.apache.org/optaplanner.html
http://camel.apache.org/optaplanner.html
http://camel.apache.org/optaplanner.html

Android

15.4.2. Android

OptaPlanner does not work out-of-the-box on Android yet, because it is not a complete
JVM. For more information and workarounds, see this issue [https://issues.jboss.org/browse/
PLANNER-146].

15.5. Integration with human planners (politics)

A good OptaPlanner implementation beats any good human planner for non-trivial datasets. Many
human planners fail to accept this, often because they feel threatened by an automated system.

But despite that, OptaPlanner can benefit from a human planner as supervisor:

e The human planner defines and validates the score function of OptaPlanner.

» Some examples expose a * Par anet ri zat i on object, which defines the weight for each score
constraint. The human planner can then tweak those weights at runtime.

» When the business changes, the score function often needs to change too. The human
planner can notify the developers to add, change or remove score constraints.

* The human planner is always in control of OptaPlanner.

» As shown in the course scheduling example, the human planner can lock 1 or more
planning variables to a specific planning value and make those immovable. Because they
are immovable, OptaPlanner does not change them: it optimizes the planning around the
enforcements made by the human. If the human planner locks all planning variables, he/she
sidelines OptaPlanner completely.

» In a prototype implementation, the human planner might use this occasionally. But as the
implementation matures, it must become obsolete. But do keep the feature alive: as a
reassurance for the humans. Or in case that one day the business changes dramatically
before the score constraints can be adjusted.

Therefore, it's often a good idea to involve the human planner in your project.

257

https://issues.jboss.org/browse/PLANNER-146
https://issues.jboss.org/browse/PLANNER-146
https://issues.jboss.org/browse/PLANNER-146

258

	OptaPlanner User Guide
	Table of Contents
	
	Chapter 1. Planner introduction
	1.1. What is OptaPlanner?
	1.2. What is a planning problem?
	1.2.1. A planning problem is NP-complete
	1.2.2. A planning problem has (hard and soft) constraints
	1.2.3. A planning problem has a huge search space

	1.3. Download and run the examples
	1.3.1. Get the release zip and run the examples
	1.3.2. Run the examples in an IDE (IntelliJ, Eclipse, NetBeans)
	1.3.3. Use OptaPlanner with Maven, Gradle, Ivy, Buildr or ANT
	1.3.4. Build OptaPlanner from source

	1.4. Status of OptaPlanner
	1.5. Compatibility
	1.6. Relationship with Drools and jBPM
	1.7. Questions, issues and blog

	Chapter 2. Quick start
	2.1. Cloud balancing tutorial
	2.1.1. Problem statement
	2.1.2. Problem size
	2.1.3. Domain model diagram
	2.1.4. Main method
	2.1.5. Solver configuration
	2.1.6. Domain model implementation
	2.1.6.1. The class Computer
	2.1.6.2. The class Process
	2.1.6.3. The class CloudBalance

	2.1.7. Score configuration
	2.1.7.1. Easy Java score configuration
	2.1.7.2. Drools score configuration

	2.1.8. Beyond this tutorial

	Chapter 3. Use cases and examples
	3.1. Examples overview
	3.2. Basic examples
	3.2.1. N queens
	3.2.1.1. Problem statement
	3.2.1.2. Problem size
	3.2.1.3. Domain model

	3.2.2. Cloud balancing
	3.2.3. Traveling salesman (TSP - Traveling salesman problem)
	3.2.3.1. Problem statement
	3.2.3.2. Problem size

	3.2.4. Dinner party
	3.2.4.1. Problem statement
	3.2.4.2. Problem size

	3.2.5. Tennis club scheduling
	3.2.5.1. Problem statement
	3.2.5.2. Problem size

	3.3. Real examples
	3.3.1. Course timetabling (ITC 2007 track 3 - Curriculum course scheduling)
	3.3.1.1. Problem statement
	3.3.1.2. Problem size
	3.3.1.3. Domain model

	3.3.2. Machine reassignment (Google ROADEF 2012)
	3.3.2.1. Problem statement
	3.3.2.2. Problem size
	3.3.2.3. Domain model

	3.3.3. Vehicle routing
	3.3.3.1. Problem statement
	3.3.3.2. Problem size
	3.3.3.3. Domain model

	3.3.4. Project job scheduling
	3.3.4.1. Problem statement
	3.3.4.2. Problem size

	3.3.5. Hospital bed planning (PAS - Patient admission scheduling)
	3.3.5.1. Problem statement
	3.3.5.2. Problem size

	3.4. Difficult examples
	3.4.1. Exam timetabling (ITC 2007 track 1 - Examination)
	3.4.1.1. Problem statement
	3.4.1.2. Problem size
	3.4.1.3. Domain model

	3.4.2. Employee rostering (INRC 2010 - Nurse rostering)
	3.4.2.1. Problem statement
	3.4.2.2. Problem size

	3.4.3. Traveling tournament problem (TTP)
	3.4.3.1. Problem statement
	3.4.3.2. Problem size

	Chapter 4. Planner configuration
	4.1. Overview
	4.2. Solver configuration
	4.2.1. Solver configuration by XML file
	4.2.2. Solver configuration by Java API

	4.3. Model your planning problem
	4.3.1. Is this class a problem fact or planning entity?
	4.3.2. Problem fact
	4.3.3. Planning entity
	4.3.3.1. Planning entity annotation
	4.3.3.2. Planning entity difficulty

	4.3.4. Planning variable
	4.3.4.1. Planning variable annotation
	4.3.4.2. Nullable planning variable
	4.3.4.3. When is a planning variable considered initialized?

	4.3.5. Planning value and planning value ranges
	4.3.5.1. Planning value
	4.3.5.2. Planning value range provider
	4.3.5.2.1. Introduction
	4.3.5.2.2. ValueRangeProvider on the Solution
	4.3.5.2.3. ValueRangeProvider on the planning entity
	4.3.5.2.4. ValueRangeFactory
	4.3.5.2.5. Combining ValueRangeProviders

	4.3.5.3. Planning value strength
	4.3.5.4. Chained planning variable (TSP, VRP, ...)
	4.3.5.5. Bi-directional variable
	4.3.5.6. Variable listener that updates shadow variables

	4.3.6. Planning problem and planning solution
	4.3.6.1. Planning problem instance
	4.3.6.2. The Solution interface
	4.3.6.3. The getScore() and setScore() methods
	4.3.6.4. The getProblemFacts() method
	4.3.6.5. Cached problem fact
	4.3.6.6. Cloning a Solution
	4.3.6.6.1. FieldAccessingSolutionCloner
	4.3.6.6.2. Custom cloning: Make Solution implement PlanningCloneable

	4.3.6.7. Build an uninitialized solution

	4.4. Use the Solver
	4.4.1. The Solver interface
	4.4.2. Solving a problem
	4.4.3. Environment mode: Are there bugs in my code?
	4.4.3.1. FULL_ASSERT
	4.4.3.2. NON_INTRUSIVE_FULL_ASSERT
	4.4.3.3. FAST_ASSERT
	4.4.3.4. REPRODUCIBLE (default)
	4.4.3.5. PRODUCTION

	4.4.4. Logging level: What is the Solver doing?
	4.4.5. Random number generator

	Chapter 5. Score calculation
	5.1. Score terminology
	5.1.1. What is a score?
	5.1.2. Score constraint signum (positive or negative)
	5.1.3. Score constraint weight
	5.1.4. Score level
	5.1.5. Pareto scoring (AKA multi-objective optimization scoring)
	5.1.6. Combining score techniques
	5.1.7. The Score interface
	5.1.8. Avoid floating point numbers in score calculation

	5.2. Choose a Score definition
	5.2.1. SimpleScore
	5.2.2. HardSoftScore (recommended)
	5.2.3. HardMediumSoftScore
	5.2.4. BendableScore
	5.2.5. Implementing a custom Score

	5.3. Calculate the Score
	5.3.1. Score calculation types
	5.3.2. Easy Java score calculation
	5.3.3. Incremental Java score calculation
	5.3.4. Drools score calculation
	5.3.4.1. Overview
	5.3.4.2. Drools score rules configuration
	5.3.4.2.1. A scoreDrl resource on the classpath
	5.3.4.2.2. A scoreDrlFile
	5.3.4.2.3. A KieBase (possibly defined by Drools Workbench)

	5.3.4.3. Implementing a score rule
	5.3.4.4. Weighing score rules

	5.3.5. InitializingScoreTrend
	5.3.6. Invalid score detection

	5.4. Score calculation performance tricks
	5.4.1. Overview
	5.4.2. Average calculation count per second
	5.4.3. Incremental score calculation (with delta's)
	5.4.4. Avoid calling remote services during score calculation
	5.4.5. Pointless constraints
	5.4.6. Build-in hard constraint
	5.4.7. Other performance tricks
	5.4.8. Score trap
	5.4.9. stepLimit benchmark
	5.4.10. Fairness score constraints

	5.5. Reusing the score calculation outside the Solver

	Chapter 6. Optimization algorithms
	6.1. Search space size in the real world
	6.2. Does Planner find the optimal solution?
	6.3. Architecture overview
	6.4. Optimization algorithms overview
	6.5. Which optimization algorithms should I use?
	6.6. Solver phase
	6.7. Scope overview
	6.8. Termination
	6.8.1. TimeMillisSpentTermination
	6.8.2. UnimprovedTimeMillisSpentTermination
	6.8.3. BestScoreTermination
	6.8.4. BestScoreFeasibleTermination
	6.8.5. StepCountTermination
	6.8.6. UnimprovedStepCountTermination
	6.8.7. Combining multiple Terminations
	6.8.8. Asynchronous termination from another thread

	6.9. SolverEventListener
	6.10. Custom solver phase

	Chapter 7. Move and neighborhood selection
	7.1. Move and neighborhood introduction
	7.1.1. What is a Move?
	7.1.2. What is a MoveSelector?
	7.1.3. Subselecting of entities, values and other moves

	7.2. Generic MoveSelectors
	7.2.1. changeMoveSelector
	7.2.2. swapMoveSelector
	7.2.3. pillarChangeMoveSelector
	7.2.4. pillarSwapMoveSelector
	7.2.5. subChainChangeMoveSelector
	7.2.6. subChainSwapMoveSelector

	7.3. Combining multiple MoveSelectors
	7.3.1. unionMoveSelector
	7.3.2. cartesianProductMoveSelector

	7.4. EntitySelector
	7.5. ValueSelector
	7.6. General Selector features
	7.6.1. CacheType: Create moves ahead of time or Just In Time
	7.6.2. SelectionOrder: original, sorted, random, shuffled or probabilistic
	7.6.3. Recommended combinations of CacheType and SelectionOrder
	7.6.3.1. Just in time random selection (default)
	7.6.3.2. Cached shuffled selection
	7.6.3.3. Cached random selection

	7.6.4. Filtered selection
	7.6.5. Sorted selection
	7.6.5.1. Sorted selection by SorterManner
	7.6.5.2. Sorted selection by Comparator
	7.6.5.3. Sorted selection by SelectionSorterWeightFactory
	7.6.5.4. Sorted selection by SelectionSorter

	7.6.6. Probabilistic selection
	7.6.7. Limited selection
	7.6.8. Mimic selection (record/replay)

	7.7. Custom moves
	7.7.1. Which move types might be missing in my implementation?
	7.7.2. Custom moves introduction
	7.7.3. The interface Move
	7.7.4. MoveListFactory: the easy way to generate custom moves
	7.7.5. MoveIteratorFactory: generate custom moves just in time

	Chapter 8. Construction heuristics
	8.1. Overview
	8.2. First Fit
	8.2.1. Algorithm description
	8.2.2. Configuration

	8.3. First Fit Decreasing
	8.3.1. Algorithm description
	8.3.2. Configuration

	8.4. Best Fit
	8.4.1. Algorithm description
	8.4.2. Configuration

	8.5. Best Fit Decreasing
	8.5.1. Algorithm description
	8.5.2. Configuration

	8.6. Advanced Greedy Fit
	8.6.1. Algorithm description
	8.6.2. Configuration
	8.6.3. Multiple variables
	8.6.4. Multiple entity classes
	8.6.5. Pick early type

	8.7. Cheapest Insertion
	8.7.1. Algorithm description
	8.7.2. Configuration

	8.8. Regret Insertion
	8.8.1. Algorithm description
	8.8.2. Configuration

	8.9. Advanced Constructive Insertion
	8.9.1. Algorithm description
	8.9.2. Configuration

	Chapter 9. Local search
	9.1. Overview
	9.2. Local Search concepts
	9.2.1. Taking steps
	9.2.2. Deciding the next step
	9.2.3. Acceptor
	9.2.4. Forager
	9.2.4.1. Accepted count limit
	9.2.4.2. Pick early type

	9.3. Hill Climbing (Simple Local Search)
	9.3.1. Algorithm description
	9.3.2. Getting stuck in local optima
	9.3.3. Configuration

	9.4. Tabu Search
	9.4.1. Algorithm description
	9.4.2. Configuration

	9.5. Simulated Annealing
	9.5.1. Algorithm description
	9.5.2. Configuration

	9.6. Late Acceptance
	9.6.1. Algorithm description
	9.6.2. Configuration

	9.7. Step Counting Hill Climbing
	9.7.1. Algorithm description
	9.7.2. Configuration

	9.8. Using a custom Termination, MoveSelector, EntitySelector, ValueSelector or Acceptor

	Chapter 10. Evolutionary algorithms
	10.1. Overview
	10.2. Evolutionary Strategies
	10.3. Genetic Algorithms

	Chapter 11. Hyperheuristics
	11.1. Overview

	Chapter 12. Exhaustive search
	12.1. Overview
	12.2. Brute Force
	12.2.1. Algorithm description
	12.2.2. Configuration

	12.3. Branch And Bound
	12.3.1. Algorithm description
	12.3.2. Configuration

	12.4. Scalability of Exhaustive Search

	Chapter 13. Benchmarking and tweaking
	13.1. Finding the best Solver configuration
	13.2. Doing a benchmark
	13.2.1. Adding a dependency on optaplanner-benchmark
	13.2.2. Building and running a PlannerBenchmark
	13.2.3. ProblemIO: input and output of Solution files
	13.2.3.1. ProblemIO interface
	13.2.3.2. XStreamProblemIO: the default ProblemIO
	13.2.3.3. Custom ProblemIO

	13.2.4. Warming up the HotSpot compiler
	13.2.5. Writing the output solution of the benchmark runs

	13.3. Benchmark report
	13.3.1. HTML report
	13.3.2. Ranking the Solvers

	13.4. Summary statistics
	13.4.1. Best score summary (graph and table)
	13.4.2. Best score scalability summary (graph)
	13.4.3. Winning score difference summary (graph and table)
	13.4.4. Worst score difference percentage (ROI) summary (graph and table)
	13.4.5. Average calculation count summary (graph and table)
	13.4.6. Time spent summary (graph and table)
	13.4.7. Time spent scalability summary (graph)
	13.4.8. Best score per time spent summary (graph)

	13.5. Statistic per dataset (graph and CSV)
	13.5.1. Enabling a problem statistic
	13.5.2. Best score over time statistic (graph and CSV)
	13.5.3. Step score over time statistic (graph and CSV)
	13.5.4. Calculate count per second statistic (graph and CSV)
	13.5.5. Best solution mutation over time statistic (graph and CSV)
	13.5.6. Move count per step statistic (graph and CSV)
	13.5.7. Memory use statistic (graph and CSV)

	13.6. Advanced benchmarking
	13.6.1. Benchmarking performance tricks
	13.6.1.1. Parallel benchmarking on multiple threads

	13.6.2. Template based benchmarking and matrix benchmarking
	13.6.3. Benchmark report aggregation

	Chapter 14. Repeated planning
	14.1. Introduction to repeated planning
	14.2. Backup planning
	14.3. Continuous planning (windowed planning)
	14.3.1. Immovable planning entities

	14.4. Real-time planning (event based planning)
	14.4.1. ProblemFactChange
	14.4.2. Daemon: solve() does not return

	Chapter 15. Integration
	15.1. Overview
	15.2. Persistent storage
	15.2.1. Database: JPA and Hibernate
	15.2.2. XML: XStream
	15.2.3. XML: JAXB

	15.3. SOA and ESB
	15.3.1. Camel and Karaf

	15.4. Other environments
	15.4.1. OSGi
	15.4.2. Android

	15.5. Integration with human planners (politics)

