Drools Documentation

The JBoss Drools team [http://www.drools.org/community/team.html]

http://www.drools.org/community/team.html
http://www.drools.org/community/team.html

Drools Documentation
by
Version 7.0.0.Betal

IV = [o 4= PP 1
I 1 1 o To U o o1 I 2
0 OO 1o o o 0T i o 1o PP SPPPTTPPPIN 2
1.2. Getting INVOIVEAcooiiiiiiiiii e e 2
1.2.1. Sign UP t0 JDOSS.0IQ oevuriiiieiiiieiie e e e e e e e 3
1.2.2. Sign the Contributor Agreementcooooiiiiiiiiiii 3
1.2.3. Submitting isSUEs Via JIRAcoiiii i 4
1.2.4. FOrK GItHUD ooee e e 5
ST 1Y 11T T =) (= 5
1.2.6. Commit with Correct CONVENLIONScvvvviiiiiiieiiiee e 7
1.2.7. Submit PUll REQUESTEScvuiiiiciii e 8

1.3. Installation and Setup (Core and IDE)coveiiiiiiiiiiiiii e 10
1.3.1. Installing and USINGc.ooviiiiiiiiiecie e 10
1.3.2. BUilding from SOUICEociiiiiieiiii et 20
1.3.3. ECIPSE i 21

2. REIEASE NOLES .oouiiii i et 28
2.1. New and Noteworthy in KIE Workbench 7.0.0ccoooiiiiiiiii e 28
2.1.1. Authoring - Imports of EXamplesccoooiiiiiiiiiiii e, 28

2.2. What is New and Noteworthy in Drools 6.4.0cccoeeviieiiiniiiii e 30
2.2.1. Better Java 8 compatibilitycooeieiiiiiiiiii 30
2.2.2. More robust incremental compilationccccocoiiiiiieii i, 30
2.2.3. Improved multi-threading behaviourcccooiviiiiiiii 30
2.2.4. OOPath IMProVEMENLSuiiiiiieiiie e e e e 31

2.3. New and Noteworthy in KIE Workbench 6.4.0ccccooviiiiiiiiiiiiiiiic e, 32
2.3.1. New 100K and fEEIcccuuiiiiiiiii e 32
2.3.2. Various Ul iMProvEMENTSceeuiuieiiiiiieiiii et et e e 32
2.3.3. NEW 0CAIES ...vviiiiiii i 34
2.3.4. Authoring - Imports - Consistent terminologycccceevveievinneeennnn. 35
2.3.5. Disable automatic buildooiiiiiiiiiiii 37
2.3.6. Support for SCP style git Repository URLScccivieiiviiiiieiiieeennn, 38
2.3.7. Authoring - Duplicate GAV detectionccoevvviiiiiiieeiiiiecie e, 38
2.3.8. New Execution Server Management User Interfacecc...ccoouenne. 40
2.3.9. User and group Managementcveiuiieriiieeiieeeiieeeiieessneesnneennnens 41

2.4. What is New and Noteworthy in Drools 6.3.0ccccovviiiiiiiiiiiiiiinecii e 42
2.4.1. Browsing graphs of objects with OOPathccoooeiiiiiiinnn, 42
2.4.2. Kie Navigator View for EClIPSec.oiiiiiiiiiiiiii e 44

2.5. New and Noteworthy in KIE Workbench 6.3.0ccooooiiiiiiiiii i 44
2.5.1. Real Time Validation and Verification for the Decision Tables 44
2.5.2. Improved DRL EditOrocvuiiiiicie e 44
2.5.3. ASSEL IOCKING ..uiiiiiiee i 45
2.5.4. Data Modeller Tool WINAOWScooviiuiiieiiiiiiieiiiieneeeein e 46
2.5.5. Generation of JPA enabled Data Modelsccccoevveiiiiiniiiiiiinneenn, 48
2.5.6. Data Set AUNOMNGcooviiii e 51

Drools Documentation

2.6. What is New and Noteworthy in Drools 6.2.0ccccooveiiiiiiiiiiiiinieciiieeees 51
2.6.1. Propagation MOAEScccuiiiiiiiiiieeii e 51
2.7. New and Noteworthy in KIE Workbench 6.2.0ccccoooiiiiiiiiiiiiiiiieees 53
2.7.1. Download Repository or Part of the Repository as a ZIP 53
2.7.2. Project Editor PErMISSIONSciiiiinieiiiiiiee it e e e e e e e e 54
2.7.3. Unify validation style in Guided Decision Table Wizard. 55
2.7.4. IMProved WIZardsSoooeeuuioiiiiieee e 55
2.7.5. Consistent behaviour of XLS, Guided Decision Tables and Guided
TEMPIALES ..ot 56
2.7.6. Improved Metadata Tabccooevviiiiiiiii e 57
2.7.7. Improved Data Objects EditOrc.ooviiiiiiiiiiiiii e, 60
2.7.8. Execution Server Management Ulcccoooeiiiiiiiiiinciine e, 62
2.7.9. SOCIAl ACHVILIES ...eeeiiiiii e 63
2.7.10. Contributors Dashboardcccooviiiiiiiiiiiii e 65
2.7.11. Package SEIECIOrccouuuiiiiiii e 66
2.7.12. Improved visual CONSISIENCYuiviiiiiiiieiie e 67
2.7.13. Guided Decision Tree Editorccoovuiiiiiiiiiiiiiiiein e 69
2.7.14. Create Repository Wizardcccooeviiiiiiiiiiiii e 70
2.7.15. ReposSitory StruCtUIre SCIEENccuuuiiiiiiiieeiiii et e et 71
2.8. New and Noteworthy in Integration 6.2.0cccceiiiiiiiiiiiii e 73
2.8.1. KIE EXECULION SEIVEL ...uiiiiiiiiieii et 73
2.9. What is New and Noteworthy in Drools 6.1.0cccoeeviiiiiiineiiin e 75
2.9.1. IMX support for KieSCanNercocuuiiiiiiiiiieiiii e 75
2.10. New and Noteworthy in KIE Workbench 6.1.0cccocoiiiiiiiiiiiec e, 75
2.10.1. Data Modeler - round trip and source code preservation 75
2.10.2. Data Modeler - improved annotationsccooeeveeeiiiieeiiieeeineenn, 75
2.10.3. Standardization of the display of tabular datacccoeeeeeen. 75
2.10.4. Generation of modi fy(x) {...} bIOCKSccoivviiiiiiiiii e, 76
2.11. New and Noteworthy in KIE APl 6.0.0coooviiiiiiiiiiiii e 77
2.11.1. NeW KIE NAME ... 77
2.11.2. Maven aligned projects and modules and Maven Deployment........... 77
2.11.3. Configuration and convention based projectscccoccceveviiieeinnn, 78
2.11.4. KieBase INCIUSIONciiuniiiiiiiie e e e 78
2.11.5. KieModules, KieContainer and KIE-Clccccceiviiiiiiiniiiiiiineeceennn, 79
A G =S Yo T = 79
2.11.7. Hierarchical ClassLOoaderccouuiiiiiiiiiiiiiiiiieece e 80
2.11.8. Legacy APl APlc.uuiiiiiiieeci e 80
2.11.9. KIE DOCUMENTALION ...vuuiiiiiiiieiiiiiee e e e e e eeaenns 80
2.12. What is New and Noteworthy in Drools 6.0.0cccceeveiiiiiniiiiiinneeciinnnn. 81
2.12.1. PHREAK - Lazy rule matching algorithmccc.cooiiiiiiiiiins 81
2.12.2. Automatically firing timed rule in passive modecccceeveevennnnnn. 81
2.12.3. EXPression TIMEIScouiiiiiiiiii e e e e e e e aas 82
2.12.4. RuleFlowGroups and AgendaGroups are mergedccceuvnveeees 83
2.13. New and Noteworthy in KIE Workbench 6.0.0c..cciiiiiiiiiiiiecneen, 83

Drools Documentation

2.14. New and Noteworthy in Integration 6.0.0ccciiviiiiiiniiiiiiie e, 86
2140 CDI oo 86

2042, SPFING ceetieeeit et 87

2.14.3. ArieS BIUEPIINTS ...vuiiiiiiciie e e 87

A N B @ 1] T = LT To Y P 87

3. Compatibility MALriX ... e 88
R PR 89
N | PP 90
O O 1Y =Y T P 90
4.1.1. Anatomy Of Projectsccovuiiiiiiiiiic e 90

4.1.2. LIFECYCIES ..o 91

4.2. Build, Deploy, Utilize and RUNccoooiiiiiiiiceeee e 92
o T 1o o To 18 o3 1 T o PPN 92

4.2.2. BUIING ..o e 95

4.2.3. DEPIOYING ..ttt 112

A B = (U [o o1 Vo 118

4.2.5. Installation and Deployment Cheat Sheetscccceeiviiiiiinieiennnn, 132

4.2.6. Build, Deploy and Utilize EXamPIEescccvieiiiiiiiiiiiiieecieeeieeiis 133

.3, SECUNLY eneeieti ettt ettt ettt e e et e ettt e ettt e et e e e e aaee 144
4.3.1. SECUNtY MANAGETivvieiiiieeii e et e e e e e e e e e eeens 144

[Il. Drools RUNtime and LANQUAGEiiiiiuiiiiiiiieeieii ettt e et eeeb e e e 147
5. HybBrid REASONING .vuiiiiiii e e e e e e e e 148
5.1. Artificial INtelligeNCE ... oo 148
B5.1.1. A Little HIiSTONY ..oociviiiii e 148

5.1.2. Knowledge Representation and Reasoningccceevvvevevineennnnnnes 149

5.1.3. Rule Engines and Production Rule Systems (PRS)cccoecevn 150

5.1.4. Hybrid Reasoning Systems (HRS)cccooiiiiiiiiiiiiiiie e 152

5.1.5. EXPEIT SYSIIMS oottt 155

5.1.6. Recommended ReadiNgcoeeviiiiiiiiiiiiiieiiiie e 156

5.2. Rete AlGOrthm ... 159

5.3. ReteOO AlIGOItNM ...t 166

5.4. PHREAK AIGOMthIM ..ot 167

LT O T =T €U o = PP 176
B.1. THE BASICS ..evuiiiiiiiiiiee ettt e et e et e et aaae 176
6.1.1. Stateless Knowledge SESSIONcccuuiiiiiiiiiiiiiiiiieeiii e 176

6.1.2. Stateful Knowledge SeSSIONccoevviiiiiiiiiiii e 179

6.1.3. Methods VErsuS RUIESoiviuiiiieii e 184

6.1.4. CroSS PrOoUUCESuiiiiiiiieeiiii e e e e e e e 184

6.2. EXECULION CONIOI ...eviiiii ittt e e e e e ees 186
L T Vo =1 Vo - T 186

6.2.2. Rule Matches and Conflict Sets.ccoovviiiiiiiiiii e 187

6.3, INTEIENCE ... e 193
6.3.1. BUS Pass EXample ... 193

6.4. Truth Maintenance with Logical ObJECESccoevvviiiiiiiiiii e 195

Drools Documentation

B.4.1. OVEIVIEW ..vuiiniiiiii ettt e e e et e e e e e e e eans 195

6.5. Decision Tables in SpPreadsheetsccooveiiiiiiii i 200
6.5.1. When to Use Decision Tablesccccoiviiiiiiiiiiiiiieeeei 201
B.5.2. OVEIVIEBW ..uiiiiiiieeiiii ettt e e e e et e e e et e e e et e e e e ana s 201
6.5.3. How Decision Tables WOrKcccouoiiiiiiiiiiiiiiieeeee e 204
6.5.4. Spreadsheet SYNLAXcccceuiiiiiiieiiiiciie e 207
6.5.5. Creating and integrating Spreadsheet based Decision Tables 217
6.5.6. Managing Business Rules in Decision Tablesccccccoeveviiniinnnnns 218
6.5.7. RUlE TEMPIALES ...cooviiiiiii e 219

[S 20 0T T 11 Vo XN 222
T RUNNING ottt ettt e et e ettt e e et et e e e eebe e e e eetaaeaees 224
7.1, KIERUNLIME .uiiiiiiiii e e e et e e e eaenns 224
7. 0.1 ENIIYPOINT oottt e 224
7.1.2. RUIERUNEIME .ouiiiiiiiii e 226
7.1.3. StatefulRUIESESSIONcvveiei e 227

2 X =1 o o - PN 228
7.2.1. Conflict RESOIULIONcoeeiiiiei e 229
A2 Ao (=1 2 To F= 1] o 11] o ISP 229
7.2.3. ACHVALIONGIOUD ..eovtiiiiiiii ettt 230
7.2.4. RUIEFIOWGIOUP ...ovvniiiii i e 230

7.3. EVENE MOEI ..o e 231
7.4, StateleSSKIESESSIONuuiiiiiii it 232
7.4.1. Sequential MOdecooouiiiiiii 234

7.5. Propagation MOAESoiiiiiiiiiii e e e e e e e e 235
7.6. Commands and the CommandEXECULONovvevniiiiiiiiiiieei e e 236
8. Rule Language REfEIENCEccuiiiiii i e 242
8.1, OVEIVIEW ettt e e e et e e e et e et e eaeaens 242
8.LL A TUIE filE .o 242
8.1.2. What Mmakes @ FUIEoiieiiii e 243

S I (= Yo (o £ 243
8.3, COMIMENES ettt ettt e e e e e e et e et ean e anas 245
8.3.1. Single liNe COMMENLccoviiii i e 245
8.3.2. MUlti-line COMMENT ... e 246

8.4, EITOr MESSAGES . ouiiiiiiiii ittt 246
8.4.1. MeSSage TOIMMALccvvuiiiiiii et 246
8.4.2. Error Messages DeSCrptionccooviiiiiiiiiiii e 247
8.4.3. Other MESSAGESuuiiiiiiieieeii ettt e 251

TR T o= o3 - T [TP 251
8.5 1. IMPOIT et e 252
8.5.2. gIobal ... 252

S 2L T U o 1o o P 254
8.7. TYPE DECIArAtioNuiiiiieiii i e e e e e e 255
8.7.1. Declaring NEW TYPESuiiiiiiiieeieii ettt ettt 256
8.7.2. Declaring Metadatac.cceuiieiiiieiiiieiiee e 259

Vi

Drools Documentation

8.7.3. Declaring Metadata for EXiSting TYPEScoevviviiiieiiiiinieiiiiieeeeiie, 265
8.7.4. Parametrized constructors for declared typesccccccoeveviieeinnnnn, 266
8.7.5. Non Typesafe ClaSSEScccuuuiiiiiiiiiieiiiiii e 266
8.7.6. Accessing Declared Types from the Application Code 267
8.7.7. Type Declaration 'eXtends'ccuiieiiiiiiiiiiiiiiieee e 268

S A8 TR I - V1 TSRS 269

8.8, RUIE i 275
8.8.1. Rule ALHBULESuiiiiiii e 276
8.8.2. Timers and Calendarsccoovuiiiiiiiiiee e 280
8.8.3. Left Hand Side (When) SYNtaXxc.cccoveviiiiiiiiiiiii e 283
8.8.4. The Right Hand Side (then)ccooiiiiiiiiii e, 337
8.8.5. Conditional named CONSEQUENCESccevueiiieeiiiieiiieeeiiieeaineeains 339
8.8.6. A Note on Auto-boxing and Primitive TYpesccccoveveviiiiiiiiinnenennn, 341

S T O 10 1= SRR 342
8.10. Domain SPecific LANQUAGESuuiiiiiiiieieiii ettt 345
8.10.1. When t0 USE @ DSL ...ccuviiiiiiiiiiiiii e 345
8.10.2. DSL BASICS ...civvttieiiiiiiieeiii e e ettt e e e e e 345
8.10.3. Adding Constraints t0 FACLSccooeviiiiiiiiiiiii e, 348
8.10.4. DeVeloping @ DSLoiiiiiiieiiii e 349
8.10.5. DSL and DSLR REfEIeNCEcccvviiiiiiiiiieiiiiii e 350

9. CompleX EVENT PrOCESSING ...uiiiiiiiieiiiiie ettt 354
9.1. Complex EVENt ProCESSINGuuiiiuiiiiiiieii e e e 354
LS I B o Lo LS 1] T o 355
9.3, EVENE SEMANTICS ...iiiiiiiiiiiiii et e et e e 357
9.4. Event Processing MOUESciiiuiiiiiiiiiieieii e 358
9.4.1. CloUd MOUE ... 359
9.4.2. SIream MOEooeuiieiii i e 360

9.5, SESSION CIOCK ..uiiiiiiiiieiiiii e e e e e e et e e e ertnnaaees 362
9.5.1. Available Clock Implementationsccooeeviiiinieiiiiineeec e, 363

9.6. SIAING WINAOWSuiiiiiieii e e e e e e e e e e e 364
9.6.1. Sliding TiMe WINAOWSoiiiiiiiieiiiiieeei e 364
9.6.2. Sliding Length WINdOWScc.iiiiiiiiiiici e e 365
9.6.3. WIiNdow DecClarationccuoviiiiiiiiieiiiieei e 367

O.7. SrEAMS SUPPOI ..ititiitiit ittt e e e e e e 367
9.7.1. Declaring and Using Entry POINtScoooviiiiiiiiiiiiiciii e 368

9.8. Memory Management for EVENLScc.ooviiiiiiiici e 370
9.8.1. Explicit expiration OffSEtoeeviiiiiiiiiiiiei e 370
9.8.2. Inferred expiration offSetccooeiiiiiiiiii 371

9.9. Temporal REASONINGccuuniiiiiiiiiee e 371
9.9.1. Temporal OPEIALOrScccuuiiieinieiiieeiiiie e e e e e e e e e e e e eees 372

10. EXperimental FEAtUTESco.uuiiiiiiiieeee et 386
10.1. Declarative AQENAAuiiiiiieiiie e e 386
10.2. Browsing graphs of objects with OOPathcccoiviiiiiiiiiiii s 388
10.2.1. Reactive and Non-Reactive OOPathocoevviiiiiiiiiiieiiiiiiieeenenn, 390

Vi

Drools Documentation

[V. DroolS INTEGIALIONcouuiiiiiii ettt e et e e e e e b 392
5 B T Yo KSR @0 T .41 = U s Lo K= P 393
L L, AP e 393
0 O A €5 £ {7 o [T PTN 393
L1.0.2. JSON ot 393
L1113, JAXB e 393
11.2. Commands SUPPOITEAuuiiiiiiiieeiiii et 394
11.2.1. BatchExecutionCommandccccoveviiiiiiiineiiii e 396
11.2.2. InsertObjectComMMANduiiiiiiiiiieiiii e 397
11.2.3. RetractCommandoeeiuiiiiiii e e 399
11.2.4. MOdifyCOomMMANGuiiiiiiiieiiii et e 400
11.2.5. GetObjectCommandcccuiiiiiiiiiiie e 401
11.2.6. InsertElementsCommandccccoviiiiiiieiiiiiiee e 402
11.2.7. FireAlIRUIESCOMMANciiiiiiii e 404
11.2.8. StartProcessComMmMaNdcouviiiiiiiiiiieiiee e 405
11.2.9. SignalEventCommandccooouiiiiiiiiiiiieeie e 406
11.2.10. CompleteWorkltemCommandcoveiiiiiiieiiiiiineeei e 407
11.2.11. AbortWorkltemCommandcccoiiiiiiieiiiiici e 408
11.2.12. QUEIrYCOMMANGciiiiiiieiiiiee et 409
11.2.13. SetGlobalCommandcccouiiiiiiiiiiiee e 410
11.2.14. GetGlobalCommandccoiiiiiiiii e, 412
11.2.15. GetObjectsCommMaNdcccuiiiiiieiiiieiiiee e e e 413

L2, Ol et 415
22 I [11 o T [T o) o N 415
i N o aTo] = 11 o] 1T PTRPRR 415
12.2.1. @KREICASEIUceieviiiieiiii e 415
N (o)1 (0] 4] = 11 = N 415
12.2.3. @KBASE ...cvvneiiiiiiiii et 416
12.2.4. @KSesSion for KieSESSIONccviviiiiiiieiceeeeeee e, 417
12.2.5. @KSession for StatelessSKieSeSSIONc..cvvviniiiiiiiiiiiieieieineeaas 418
12.3. API Example COMPATISONcccuuuiiiiiiiieieiii ettt 419
13. Integration With SPring ..o e e 420
13.1. Important Changes for Drools 6.0ccoiviiiiiiiiiiiii e 420
13.2. Integration with Drools EXPErtccociuiiiiiiiiiiii e 420
13.2.1. KieMOAUIE . ..eoei e 420
13.2.2. KIEBASE ...uiiiiiieiiii et 421
13.2.3. IMPORTANT NOTE ..ottt 422
13.2.4. KIESESSIONS ..ovuiiiiieiiiieei et e e e e e e e e e e e e eens 423
13.2.5. Kie:ReleaSseldcovniiiiiiic 424
R T S TR Q= [121 o Yo o P 424
13.2.7. ANNOLALIONS ..ovuiiiii i 426
13.2.8. EVENL LISIENEIS .. civviiiiicii e e e 430
13.2.9. LOQUEIS ettt ettt 434
13.2.10. Defining Batch Commandsc.ccoeviiiiniiiiiecie e 435

viii

Drools Documentation

13.2.11. PEISISIENCE ..ovuiiiiiieiiie et e e e e 436

13.2.12. Leveraging Other Spring Featurescccoeevvieviiiiciiie e, 437

13.3. Integration with JBPM Human Taskcccoveiiiiiiiiiiiiiece e 439
13.3.1. How to configure Spring with JBPM Human task 439

14, ANAroid INTEGTALION ..ooeiiii it et e e ettt e e et e e eae e eees 443
14.1. Integration with Drools EXPErtcoociuiiiiiiiiiiii e 443
14.1.1. Pre-serialized RUIESoovuuiiiiiiiiii e 443

14.1.2. KieContainer API with drools-compiler dependency 445

14.2. Integration With RODOQUICEiiiiiiiiiiiiii e 447
14.2.1. Pre-serialized Rules with RObOQUICEc.coevviiiiiiiiiiiic e, 447

14.2.2. KieContainer with drools-compiler dependency and Roboguice 448

15. Apache Camel INtEgrationcocoiiiiii i e 451
T I - o = P 451

16. Drools CamMEl SEIVETiiiiiii i et e e 454
G0 I [110 T [T 1o] o PPN 454
T B =T o] [0)Y/ 14 1= o | PN 454
16.3. CONFIGUIALION .oiiiiiiii e 454
16.3.1. REST/Camel Services configurationcccocceovveiiiiiiiiieiiineeiinnens 454

17. IMX monitoring with RHQ/JONc.uiiiiiiiiiiiiii e 460
0 O 11 o T [o 1T o TP 460
17.1.1. Enabling JMX monitoring in a Drools application 460

17.1.2. Installing and running the RHQ/JON plugincccoeevviiiiiiiieiinenns 460

V. Drools WOIKDENCR ... e een s 462
18. WOrkbench (GENEral)cc.uveiiiiiiiii e 463
18.1. INSTANALION ...eeeiee e 463
18.1.1. War inStallationocoevuuiiiiiiiieeii e 463

18.1.2. WOrkbench datacovvueiiiiiiiiiiee e 463

18.1.3. SYSeM PrOPEILIES ..ovvuiiiiieii e e e e e 464

18.1.4. Trouble ShOOtING ...ccuuuiiiiii e 465

18.2. QUICK STAIT ..iiiiiiiee e e e et e e 466
18.2.1. Importing eXamplesoooiiiiiiiei e 466

18.2.2. Add rEPOSIEONY ..evuiiiiieiiii e e 468

18.2.3. Add PrOJECT c.vnniiiiiie e 471

18.2.4. Define Data MOdEluviiiiiiiiiiiiiiiie e 475

18.2.5. DEfiN@ RUIE ... 478

18.2.6. Build and DePIOYc.uuiiiiiiiiiieii e 481

18.3. AdMINISIIALIONuietie e e e e 482
18.3.1. AdMINIStration OVEIVIEWceeiiuiiiiiiiiiieeeiii e et e e et e e eeiine e 482

18.3.2. Organizational UNItcouuiiiiiiiiee e 482

18.3.3. REPOSIEOMES ...civieiii et e e e e e aa s 483

18.4. CONFIGUIALION ..eeiiiiiiii ettt 485
18.4.1. BasiC USEr ManagemMENteeiuuieiiiieeieeeieeesieeeeeeaneeereeeaneens 485

18.4.2. ROIES vt 485

18.4.3. Restricting access t0 repOSItONieScoevvuieiiiiiiiiiieiii e eeaiens 487

Drools Documentation

18.4.4. Command line config toolccciiiiiiiiiiii 487
RS RS T g1 oo [Tox 1T o PPN 488
18.5.1. Log in @nd 10g OULccouuiiiiiiiieeiii e 488
18.5.2. HOME SCIEEM ..ottt e e e e 489
18.5.3. WOrkbench CONCEPLSccoovuiiiiiiiiieiii e 489
18.5.4. Initial layouLoiiiiii e 489
18.6. Changing the aYOULcoiiiiiiiiiiii e 490
18.6.1. RESIZING .uuiiiiiiiii et e e e e e e e 491
18.6.2. REPOSIIONING .. eieitieeiiiiiee et 491
18.7. Authoring (GENETAI)ociiiiei e 493
18.7.1. Artifact REPOSIIONYoceeveiieiiiiii ettt 493
18.7.2. ASSEt EAIIOr ...oiiiiiiieie e 495
18.7.3. TAgS EdItOr ...covvniiiiiii e 499
18.7.4. Project EXPIOTErcvvvniiii e 501
18.7.5. Project EQItOrcccouuuiiiiiiiieeiii et 514
18.7.6. Validationcccevuniiiiiiiiee i 521
18.7.7. Data MOEIIEToiiiiee e 523
18.7.8. DALA SEIS ...cviiiiiiiiiii i 563
18.8. User and group ManagemMentuuieieeuuniereriieeeeiinaeeenin e e e e eenenes 577
18.8.1. INtrOAUCLION ..evveieiiiiie e e e e eaenas 577
18.8.2. Security management ProVidersc.ceveeeeiiiieeeiiiineeeee e 577
18.8.3. Installation and SETUPcoeeuiiiiiiiiii e 580
18.8.4. USAQE ..uieiiiiiii ettt 582
18.9. Embedding Workbench In Your Applicationccooviviiiiiniiiiineiieees 592
18.10. Asset ManAQEMENTcouuiiiiii it e 593
18.10.1. Asset Management OVEIVIEWcvevuuieiiiiieeiieeiieeeiieeaieesans 593
18.10.2. Managed vs Unmanaged RepoSitoriesccccvevveveiiinieieeiinnenens 594
18.10.3. Asset Management PrOCESSESccuivuiiuiiiiiiiiieiie e 594
18.10.4. USAQE FIOWuiiiiiiiiiiiii et 596
18.10.5. RePOSItOry SIIUCIUIEcvvviiiiiiciii e e 598
18.10.6. Managed Repositories Operationscccceevevirinneeiiiineeeeiinnnn. 599
18.11. Execution Server Management Ulccooiiiiiiiiiiiiiiin e, 605
18.11.1. Server TeMPIAESuiiiiiiieeeei e 605
200 I O o o 7= 11 1= SRR 607
18.11.3. REMOLE SEIVEN ..uiiiiiiiieiiei et eas 611

19. AULNOTING RUIE ASSEIS ..uuiiiiiiiiii e 613
19.1. Creating @ PACKAGEuuiiiiiiiiee ittt e e 613
19.1.1. EMPLY PACKAGE .. covniiiiieii e 614
19.1.2. Copy, Rename and Delete Packagescccocceviviiiviniiiiineiinenns 615
19.2. Business rules with the guided editorccoooeviiiiiiiiin e, 617
19.2.1. Parts of the Guided Rule Editorcccoovviiiiiiiiiiii i 617
19.2.2. The "WHEN" (left-hand side) of a Rulecccovviiiiiiiiiiiines 618
19.2.3. The "THEN" (right-hand side) of a Ruleooooiiiiiiiiiiiiinnnn, 622
19.2.4. Optional attributescoveiiiiiiii e 625

Drools Documentation

19.2.5. Pattern/Action toolbarc.oviiiiiiiii 625
19.2.6. User driven drop down liStSccooviiiiiiiiiiiiiicciieee e 625
19.2.7. Augmenting with DSL SENtENCEScccvviieiiiiiiieiiiiieeee e 626
19.2.8. A more complex eXample:cooiiiiiiiii 627
19.3. Templates of aSSEetS/IUIEScooiiiiiiiiiiii e 628
19.3.1. Creating a rule templatecooooiiiiiiiiii e 629
19.3.2. Define the templateooveiiiiiiiii 629
19.3.3. Defining the template dataccccooiveiiiiiii e, 630
19.3.4. Generated DRLoovvuiiiiiiiii et 634
19.4. Guided decision tables (web based)cccoooviiiiiiii 636
19.4.1. Types of decision tableooiiiiiiiiiii e 636
19.4.2. Main componentS\CONCEPLSivvueiiiieiiieeii e e e e e e 637
19.4.3. Defining a web based decision tableocoiiiiiiiiiin. 640
19.4.4. Rule definitionoiiiiiiiiiiii e 656
19.4.5. AUCIE LOQ ..oiiieiieiiiie e 657
19.4.6. Real Time Validation and Verificationcccceeveiviiiiiiiiiiiniennnns 659
19.5. Guided DECISION TIEESciutiiei ettt e e e e et eeen s 660
19.5.1. The initial editor [ayoutcccoviiiiiiiiiii e, 660
19.5.2. FIISt SEEPS ..ieiiiiiiiiiii ettt 662
19.5.3. Editing Data Object NOAEScc.ieiiiiiiii i 663
19.5.4. Editing Field Constraint NOAEScccouiiiiiiiiiiieiiiie e 664
19.5.5. Editing ACtiON NOAESccovniiiiiiiiiie e 665
19.5.6. Managing the treeo 668
19.6. Spreadsheet decision tablesccoooiiiiiiiiiii 670
SR S Tolo =T o= T o £ 671
19.7.1. (Q) Setup Parameterscccoeeiiiiiiiiiiiii e 672
19.7.2. (D) CharaCteriStiCSuiiiiiiiiiieiiii e 673
19.8. TESE SCENANO .vuuiiiiiiieieiii ettt e et e et e e et e e e e e e eaa s 675
19.8.1. Knowledge SesSion Selectorcccuuviiiiiiiiieiiiiiieiii e 677
19.8.2. GIVEN SECHON ...uuiiiiiiiiieiiii et et eeaans 678
19.8.3. EXPECE SECHION ..oevviiiiiiiiii e 678
19.8.4. Global SECHONiiiiiiiiieiii e 679
19.8.5. NEeW INPUL SECLIONcooviiiiiiiii e 679
IR TR U] o1 1o) o E PR 679
T O T B 1 = 1) (o P 680
19.11. Data enumerations (drop down list configurations)cccooeevviveinnns 681
19.11.1. Advanced enumeration CONCEPLSceuurerirrinieriiiinieeeiiineeeeiinnne 682
19.12. Technical rules (DRL) ..ccuuiiiiiieiii e e 683
20. Workbench INtegrationoooeeuiiiiii e 685
20,0, REST ottt ittt a e aae 685
20.1.1. JOD CaIlS ..uiieiieee e 685
20.1.2. RePOSIHOrY CallS ...covviiiiiiii e e 686
20.1.3. Organizational unit CallSocoeuiiiiiiiiii e 689
20.1.4. MAVEN CaIIS ...coeviiiiiii e e 690

Xi

Drools Documentation

20.1.5. REST SUMMAIY ...cetniiiiieiiieitiie et et e e e e e e e eaa e 691
20.2. Keycloak SSO iNtegrationcc.eeiiieiiiieeiie e e e e e e e e e eaneens 692
O I S Yot~ o - o PP 693
20.2.2. Install and setup a Keycloak Servercooccoeveviieiiiiieiineeeeeeenn, 694
20.2.3. Create and setup the demo realmcccooviiiiiiiiiiiiiini e, 694
20.2.4. Install and setup jBPM Workbenchc..ccooeiiiiiiiiiiiiieeenn, 696
20.2.5. Securing workbench remote services via Keycloakc.......... 699
20.2.6. EXECULION SEIVET ..evuuiiiiiiiiieieiie ettt e e e et e et e e et 700
20.2.7. CONSUMING rEMOLE SEIVICES ...ccivvuiiiiiiiieeieii e et e et e e eeni e 703

21. Workbench High Availabilityccocoiiiiiiii e, 705
2 O SPPR 705
40 0 I RV SR o1 U = 1 T P 705
21.1.2. [BPM CIUSLEIING ..eeviniiiiiiieieit ettt 708

[V I (L SRS V=T PP 709
22. KIE EXECULION SEIVEL .uiiiiiiiiiee ettt et e e et e e e e e e ean e 710
D B O YT 1= PP 710
22.1.0. GIOSSAIY oottt ettt 710
22.2. Installing the KIE SEIVETccuuiiiiiii e ea e 711
22.2.1. BOOLStrap SWItCNESc..uuiiiiiiiiieiiiii e 712
22.2.2. Installation details for different containersccccoovvviiiinieiiinnnnnn. 714
22.3. Ki@ SEIVEE SBIUPD .iittiiiiiiii ettt 716
22.3.1. Managed Ki€ SEIVETcciiiiiiiiiii e e 716
22.3.2. Unmanaged KIE EXECULION SEIVETc.uoiiiiiiiiiieiiiiiieeciiie e 718
22.4. Creating a Kie CONtAINETcciviiiiiiiciie e e 719
22.5. Managing CONAINEISuuiiiiiiiieee ettt 719
22.5.1. Starting @ CONLAINETccivuieiiieii e e e e 720
22.5.2. Stopping and Deleting @ CoNtaineroovevviiieiiiiineeiiiieeeeeiennn. 720
22.5.3. Updating @ CONtAINETocvviiiiiieeiii e e e 720
22.6. Kie Server REST APl ... 721
22.6.0. [GET] / eeeeiieiiiie et 721
22.6.2. [POST] /oot 721
22.6.3. [GET] /CONLAINEISucivieiiieii e e e 722
22.6.4. [GET] /containers/{id}coouiiiiiiiiiiii e 722
22.6.5. [PUT] /containers/{id}coooviiiiiiiiiiiiii e 723
22.6.6. [DELETE] /containers/{id}cccoiieiiiiiiiiiiii e 723
22.6.7. [POST] /containers/instances/{id}ccccciiiiiiiiiiiiieiii e 724
22.6.8. [GET] /containers/{id}/release-idcccoooeeiiiiiiiiiiiiiiiiiincieees 724
22.6.9. [POST] /containers/{id}/release-idcccocciveiiiiiiiiiiiiin e, 725
22.6.10. [GET] /containers/{id}/SCannerccoeiieiiiiiieiiiiieeci e, 725
22.6.11. [POST] /containers/{id}/SCanNerccoeevuiiiiiiiieiiieciiieeieeeeis 726
22.6.12. Native REST client for Execution Servercccooeveiiiviiinevinnennnn. 726
22.7. OptaPlanner REST APl ... e 727
22.7.1. [GET] /containers/{containerld}/SOIVErscccoooiieiiiiiiieiiiiinnenes 728
22.7.2. [PUT] /containers/{containerld}/solvers/{solverld} 729

Xii

Drools Documentation

22.7.3. [GET] /containers/{containerld}/solvers/{solverid}cc........ 730
22.7.4. [POST] /containers/{containerld}/solvers/{solverld} 731
22.7.5. [GET] /containers/{containerld}/solvers/{solverld}/bestsolution 733
22.7.6. [DELETE] /containers/{containerld}/solvers/{solverld} 734
22.8. Controller REST AP ...uniiiiiii s e e 734
22.8.1. [GET] /IManagement/SEIVEISccceuieiiieeiiieeeiiieeiieeeiiee e e e eens 734
22.8.2. [GET] /management/server/{id}ccooeoiiiiiiiiiniiiieceeeeees 735
22.8.3. [PUT] /management/server/{id}cccoeriiiiiiiiiiiie e 736
22.8.4. [DELETE] /management/server/{id}ccccooeveiniiiiiiinniiiiiinneeennn 737
22.8.5. [GET] /management/server/{id}/containersccccoceevevivnennnnnn. 737
22.8.6. [GET] /management/server/{id}/containers/{containerld} 737
22.8.7. [PUT] /management/server/{id}/containers/{containerld} 738
22.8.8. [DELETE] /management/server/{id}/containers/{containerld} 739
22.8.9. [POST] /management/server/{id}/containers/{containerld}/sta-
LU IS 53 =T (= o PP 739
22.8.10. [POST] /management/server/{id}/containers/{containerld}/sta-
TUS/STOPPEA ..ot e e 739
22.9. Kie Server Java Clent APliiiiiiiiiii e 739
22.9.1. Maven Configurationcceuuiieiiiiinieii e 739
22.9.2. Client Configurationccoceuieiiiiiiiiiiceie e e 740
22.9.3. Server RESPONSEcuuiiiiieiiiieii ettt e 741
22.9.4. Server CapabilitieScc.oiiiiiiiiii 741
22.9.5. Ki€ CONLAINEISiiitiieiiee ettt et e e e e e e ees 741
22.9.6. Managing CONtAINEIScoceuuieiiiieiiiieeeii e e e e e e e e eane e 742
22.9.7. Available Clients for the DeciSion Serverccccoeeevvviievineeinnnns 742
22.9.8. Sending commands to the Serverccooociiiiii i, 743
22.9.9. Listing available buSINeSS ProCeSSEScooevvvviiieiiiiiieeeiiiieeeeeiinnn. 744
RV BT Yo o ot 1 4 o] (= 745
23, EXAMPIES oo 746
23.1. Getting the EXamPIESsooiiiiiii e 746
b T o 11 To BT o ¢ o PP 746
23.3. State EXAmPIEcoiniii e 752
23.3.1. Understanding the State Exampleccooooiiiiiiiiiniiiii, 752
23.4. FIbONaCCi EXAMPIE ...coiiiiiii e 759
23.5. BanKing TULOFAIcooeuuiiiiiiiiee e 765
23.6. Pricing Rule Decision Table Exampleccocoiiiiiiiiiiiiciieciin e 778
23.6.1. Executing the example ..o 778
23.6.2. The deciSion tablecoooiiiiiiiiii e 779
23.7. Pet Store EXamMPIecoouiiiii e 781
23.8. Honest Politician EXamplecoooiiiiiiiiiii e 792
23.9. SUdOKU EXAMPIE ..o 796
23.9.1. SUAOKU OVEIVIEWuuiiiiiiiiieiiiii ettt e et e e e e eaenns 796
23.9.2. Running the EXample ..o 796
23.9.3. Java Source and RUleS OVEIVIEWccoveviviiiieiiiiineiiiiinee e 802

Xiii

Drools Documentation

23.9.4. Sudoku Validator Rules (validate.drl)ccoooveviiiiiiiiniiiiiinccene, 802
23.9.5. Sudoku Solving Rules (sudoku.drl)cccooovviiiiiiiiiiiin e, 803
23.10. NUMDBDEE GUESS ..uuiiiiiiiiieieie ettt e e e e e e e et e e et e e e e eenas 804
23.11. Conway's Game Of Lifecoiiiiiiiiii e 811
b T I 11V 7= Vo [T P 818
P I 2t B 1 01V 1o (= (=3 1Y - V1 o P 819
23.12.2. INVAAEIrS2MAUNieiiiiieei e 820
23.12.3. INVAAEIS3MAUN ...ceeveiieiiiiiie et eaanns 820
23.12.4. INVAAEIrSAMAINciiiiiii e 821
23.12.5. INVAAEISEMAIN .. .ceviieiiiii e 821
23.12.6. INVAdErSBMAaINccuuiiiiieiii e 821
23.12.7. INVAAEISAMAIN ...cceviiieiiiii e 822
23.13. Adventures With DIOOIScouuiiiiiiiiiiiee e e 822
23.13.1. USIiNg the game.oiiiiiii e 823
b 0 I 2 I o 1= oo o = 825
P22 I S = o T PSSP 827
23.15. WUMPUS WO <.ooiiiiii e 828
23.16. Miss Manners and Benchmarkingccooociiiiiiiiiiiin e 831
b2 30 G 0 I 10 T [T o) o PP 832
23.16.2. In depth DISCUSSIONccvvniiiiiieiiie e e e 835
23.16.3. OULIPUL SUMIMAIY ...ieriiiiiiierieeee et ee e e e e enes 841
23.17. Backward-Chainingccooiuiiiiiiiiii e e e e e e e e 844
23.17.1. Backward-Chaining SYSIEMScoceiiiiiieiiiiiieeiiiieeeei e 845
23.17.2. Cloning Transitive ClOSUIEScccciieiiieiiiieeiie e e e e 846
23.17.3. DefiniNng @ QUETY ...uiiiiiiieiiiii ettt 847
23.17.4. Transitive Closure EXamplecccoviiiiiiiiiieiiin e 848
23.17.5. Reactive Transitive QUEEScouuviiuuiiiiiieeiieeeee e 850
23.17.6. Queries with Unbound Argumentsccooveiiieiiieiineeeeees 851
23.17.7. Multiple Unbound ArgUMENTSveiiiiiniiiiiiiieeeei e 852

Xiv

(9Drools

Part I. Welcome

Welcome and Release Notes

Chapter 1. Introduction

1.1. Introduction

It's been a busy year since the last 5.x series release and so much has change.

One of the biggest complaints during the 5.x series was the lack of defined methodology for de-
ployment. The mechanism used by Drools and jBPM was very flexible, but it was too flexible. A
big focus for 6.0 was streamlining the build, deploy and loading(utilization) aspects of the system.
Building and deploying now align with Maven and the utilization is now convention and configura-
tion oriented, instead of programmatic, with sane default to minimise the configuration.

The workbench has been rebuilt from the ground up, inspired by Eclipse, to provide a flexible
and better integrated solution; with panels and perspectives via plugins. The base workbench
has been spun off into a standalone project called UberFire, so that anyone now can build high
quality web based workbenches. In the longer term it will facilitate user customised Drools and
jBPM installations.

Git replaces JCR as the content repository, offering a fast and scalable back-end storage for con-
tent that has strong tooling support. There has been a refocus on simplicity away from databases
with an aim of storing everything as text file, even meta data is just a file. The database is just
there to provide fast indexing and search via Lucene. This will allow repositories now to be synced
and published with established infrastructure, like GitHub.

jBPM has been dramatically beefed up, thanks to the Polymita acquisition, with human tasks, form
builders, class modellers, execution servers and runtime management. All fully integrated into the
new workbench.

OptaPlanner is now a top level project and getting full time attention.

A new umbrella name, KIE (Knowledge Is Everything), has been introduced to bring our related
technologies together under one roof. It also acts as the core shared around for our projects. So
expect to see it a lot.

1.2. Getting Involved

We are often asked "How do | get involved". Luckily the answer is simple, just write some code
and submit it :) There are no hoops you have to jump through or secret handshakes. We have
a very minimal "overhead" that we do request to allow for scalable project development. Below
we provide a general overview of the tools and "workflow" we request, along with some general
advice.

If you contribute some good work, don't forget to blog about it ;)

Introduction

1.2.1. Sign up to jboss.org

Signing to jboss.org will give you access to the JBoss wiki, forums and JIRA. Go to http:/

www.jboss.org/ and click "Register".

Log in | Register | Cool Stuff

Members Projects Products

LU Community UserGroups Events Elogs Articles Eooks
Choosing the right technology... stay connected: [@ED
JBoss Community JBoss Enterprise
Community d =i table, supported products _t%,\ "J 2 uhE k out the latest
featuring th ovations] 'l'||.|_| on multiple platforms A 5 tAsy audic padcasts

for cutting Pﬂgs- appﬁ Tor misson .'.rﬂ.'l.d| apps.

JBoss Developer

Webinar Series

Learn more about the Webinar Series»

Found a security issue with
a |Boss project or product?

Report it now.

April 4-5 : Tokye, Roppongi Hills

JavaOne Tokyo 2012
0 Join Red Har at the JavaOne conference in
e il Tokyo where you can hear talks on some of

has been teleased! - the latest JBoss projects.

B JUD(_;on 2012:Boston!

June 25-26 : Baston
(N] Tty T T B B = AT SN

1.2.2. Sign the Contributor Agreement

The only form you need to sign is the contributor agreement, which is fully automated via the web.
As the image below says "This establishes the terms and conditions for your contributions and

ensures that source code can be licensed appropriately"

https://cla.jboss.org/

http://www.jboss.org/
http://www.jboss.org/
https://cla.jboss.org/

Introduction

Sign CLA

If vou've submitted a patch that's been accepted, or been offered an invitation to commit directly into a project's source code repository, then please
login using vour jboss.org user account and sign an [ndividual or Corporate Contributor License Agreement (CLA).

This establishes the terms and conditions for your contributions and ensures that the source code can be licensed appropriatelv.

Username: | E|

Password:]

Login

Do not sign a CLA unless you've met the conditions above.

This helps to keep our systems tidv and prevents project leads from reviewing unnecessary agreements.

1.2.3. Submitting issues via JIRA

To be able to interact with the core development team you will need to use JIRA, the issue tracker.
This ensures that all requests are logged and allocated to a release schedule and all discussions
captured in one place. Bug reports, bug fixes, feature requests and feature submissions should
all go here. General questions should be undertaken at the mailing lists.

Minor code submissions, like format or documentation fixes do not need an associated JIRA issue
created.

https://issues.jboss.org/browse/JBRULES [https://issues.jboss.org/browse/JBRULES](Drools)
https://issues.jboss.org/browse/JBPM

https://issues.jboss.org/browse/GUVNOR

https://issues.jboss.org/browse/JBRULES
https://issues.jboss.org/browse/JBRULES
https://issues.jboss.org/browse/JBPM
https://issues.jboss.org/browse/GUVNOR

Introduction

Projects ! lssues -

Drools / JBRULES-3370
|- Array fields are not supported in declared facts

Log In

Details

Type Enhancement Status s Open (View Workflow)
Priority 4 Minor Resolution Unresolved

Affects Version/s None Fix Version/s Mone

Component/s drools-compiler, drools-core Security Level Public (Everyone can see)
Labels None

Similar Issues Show 10 results *

Description

it should be possible to do

declare Bean
arrayField : SomeObject[]
end

optionally,

declare Bean
arrayField : SomeObject]] = new SomeQObject[3]
end

1.2.4. Fork GitHub

With the contributor agreement signed and your requests submitted to JIRA you should now be
ready to code :) Create a GitHub account and fork any of the Drools, jBPM or Guvnor repositories.
The fork will create a copy in your own GitHub space which you can work on at your own pace.
If you make a mistake, don't worry blow it away and fork again. Note each GitHub repository
provides you the clone (checkout) URL, GitHub will provide you URLs specific to your fork.

https://github.com/droolsjbpm
@ droolsjbpm / drools # Admin | ©Watch & Fork b PullRequest 125 4 81

Code Network Pull Requests 10 Stats & Graphs

Drools Expert is the rule engine and Drools Fusion does complex event processing (CEP). — Read more
http:/fwww.jboss.org/drools

=1 ZIP S5H. HTTP Git Read-Only | git@github.com:droclsibpm/drools.git Read+Write access

A branch: master ~ Files Commits Branches 4 Tags 10 Downloads

1.2.5. Writing Tests

When writing tests, try and keep them minimal and self contained. We prefer to keep the DRL
fragments within the test, as it makes for quicker reviewing. If their are a large number of rules

https://github.com/droolsjbpm

Introduction

then using a String is not practical so then by all means place them in separate DRL files instead
to be loaded from the classpath. If your tests need to use a model, please try to use those that
already exist for other unit tests; such as Person, Cheese or Order. If no classes exist that have
the fields you need, try and update fields of existing classes before adding a new class.

There are a vast number of tests to look over to get an idea, MiscTest is a good place to start.

https://github.com/droolsjbpm/drools/blob/master/drools-compiler/src/test/java/org/drools/
integrationtests/MiscTest.java [https://github.com/droolsjbpm]

https://github.com/droolsjbpm
https://github.com/droolsjbpm
https://github.com/droolsjbpm

Introduction

ETest
public vold testEvalWithBigDecimal () throws Excepticon |
String str = "";

str += "package org.drools \n":

3tr += "import jeva.math.BigDecimal; “n":
str += "global javea.util.list list “\n":
str += "rule rulel “n";

Itr 4= " dialect “"Jjawvah"™ \n";

str += "when ‘n":

atr += " $bd : BigDecimal() “n™:

atr += " eval { $bd.compareTo(BigDecimal.ZERO § > 0) \n";
str += "then ‘n":

Str += " list.add{ sbkd }; n":

str += "end ‘\n";

EnowledgeBuilder kbuilder = EnowledgeBuilderFactory.newKnowledgeBuilder():

k¥builder.add(ResourceFactory.newByteArravBesocurce(str.getBytes()).,
ResourceType.DEL) :

if { kbuilder.hasErrcrs())} |
logger.warn({ kbuilder.getErrocrs().toString())
1

assertFalse(kbuilder.hasErrcra()):

EnowledgeBase kbase = KnowledgeBaseFactory.newkEnowledgeBase():
k¥base.addEnowledgePackages | kbuilder.getEnowledgePackages()):

StatefulKnowledgeSession ksession = createkKnowledgeSession(kbase) !
List list = new ArravList():
ksession.setGlckal("list",
list):
ksession.ingert{ new BigDecimal({ 1.5) }:

ksession.fireRl1Bules() ;

assertEquals(1,
list.zize()):
assertEquals(new BigDecimal({ 1.5),
list.gec{ 0)):

1.2.6. Commit with Correct Conventions

When you commit, make sure you use the correct conventions. The commit must start with the
JIRA issue id, such as JBRULES-220. This ensures the commits are cross referenced via JIRA,
so we can see all commits for a given issue in the same place. After the id the title of the issue
should come next. Then use a newline, indented with a dash, to provide additional information

Introduction

related to this commit. Use an additional new line and dash for each separate point you wish to
make. You may add additional JIRA cross references to the same commit, if it's appropriate. In
general try to avoid combining unrelated issues in the same commit.

Don't forget to rebase your local fork from the original master and then push your commits back
to your fork.

Drools / JBRULES-328 FactTemplates / JBRULES-329
' implement core handling of Templates for ObjectType

Log In

mark_proctor@jboss.com submitted changeset 5421 to trunk in JBossRules (20 files) - 02/Aug/06 &:14 PM

JBRULES 229 Refactor ObjectType to work with Templates
-This also involved refactor Evaluator to use Enums for ValueType and Qperatar

JBRULES220 implement core handling of Templates for ObjectType
-Initial commmit for FactTemplate work. still not integrated into parsers and builds, it also needs unit tests.

JEBRULES24E Allow & and | connectives for field constraints

-XmiReader is now fixed

-Xml and Drl Dumpers have been fixed
[trunk/draols-compiler/sro/mainjavalorg/droolsflang/DriDumperjava (+53-27) A B ® &
[trunk/drools-compilerisro/mainjavalorg/droolsfiang/descr/FieldConstraintDescrjava (+5-1) A B ® &
[trunk/dracls-compiler’sro/mainjavalorg/droolsflang/descriLiteralRestrictionDescrjava (+7-7) A B ® &
[trunk/drools-compilerisro/mainjavalorg/droolsfiang/descr/ReturnValueRestricionDescrjava (+7-9) A B @ &
[trunk/dracls-compiler’sro/mainjavalorg/drools/semantics/java/RuleBuilder java (+74-62) A B @ &
[trunk/drools-compiler’sro/mainjavalorg/droolsfxmliBoundvariableHandlerjava (+0-110) A B © &
[trunk/dracls-compiler’sro/mainjavalorg/droolsiimliFieldBindingHandlerjava (+2-6) AE @ &
trunk/drools-compilen’sroimainijavalorg/droolsixmliFieldConstraintHandlerjava (+95) A B O 4
[trunk/dracls-compiler’sro/mainjavalorg/droolsimliLiteralHandlerjava (+0-110) ABE © &
trunk/drools-compilen’sroimainijavalorg/droolsixmliLiteralRestricionHandlerjava (+103) AEBE © &

.19 more files in changeset

Mark Proctor <mdproctor@gmail.com:= submitted changeset b98d43508c91f1cb01d53b22395603ca87d69d5¢e to 5.2.x in
8:14 PM

JBRULES 220 Refactor ObjectType to work with Templates -This also involved refactor Evaluator to use Enums for Value
JBRULES 320 implement core handling of Templates for ObjectType
-Initial commmit for FactTemplate work, still not integrated into parsers and builds, it also needs unit tests.

JBRULES 21& Allow & and | connectives for field constraints
-XmiReader is now fixed
-Xml and Drl Dumpers have been fixed

1.2.7. Submit Pull Requests

With your code rebased from original master and pushed to your personal GitHub area, you can
now submit your work as a pull request. If you look at the top of the page in GitHub for your work
area their will be a "Pull Request" button. Selecting this will then provide a gui to automate the
submission of your pull request.

Introduction

The pull request then goes into a queue for everyone to see and comment on. Below you can see
a typical pull request. The pull requests allow for discussions and it shows all associated commits
and the diffs for each commit. The discussions typically involve code reviews which provide helpful
suggestions for improvements, and allows for us to leave inline comments on specific parts of the
code. Don't be disheartened if we don't merge straight away, it can often take several revisions
before we accept a pull request. Luckily GitHub makes it very trivial to go back to your code, do
some more commits and then update your pull request to your latest and greatest.

It can take time for us to get round to responding to pull requests, so please be patient. Submitted
tests that come with a fix will generally be applied quite quickly, where as just tests will often way
until we get time to also submit that with a fix. Don't forget to rebase and resubmit your request
from time to time, otherwise over time it will have merge conflicts and core developers will general
ignore those.

sotty wants someone to merge 5 commits into [EiEElmoEEEi=Sy from

Discussion #® | Commits <> |5 | Diff 3= |8

sotty opened this pull request 22 days ago
‘ JBRULES-3370 Array fields are not supported in declared facts

Mo one is assigned | £+ Mo milestone | £+

Well, not exactly a ground-breaking feature, but still useful -)
Also improves bean initialization with MVEL expression

, ‘ sotty and etirelli are participating in this pull request

*'I: etirelli commented 22 days ago

@sotty thanks for providing this. | was reviewing the code, and with a few changes it can also support multi-dimensional
arrays (e.g. Object[][], int[J{]{]. etc). Do you think you can change it for that?

1 etirelli started a discussion in the diff

drools-compiler/src/main/java/org/drools/lang/DRLParser. java View full changes
}
}
D 1
F YCIE N rceo colab 22 days ago

There is already a rule called type(). Please use that instead of creating a fieldType() rule. It supports multi-dimentional
arrays and generics, although | know MVEL does not support generics yet.

Add a line note

#90

+ 388 additions

- 60 deletions

All Pull Reguests

Introduction

1.3. Installation and Setup (Core and IDE)

1.3.1. Installing and using

Drools provides an Eclipse-based IDE (which is optional), but at its core only Java 1.5 (Java SE)
is required.

A simple way to get started is to download and install the Eclipse plug-in - this will also require the
Eclipse GEF framework to be installed (see below, if you don't have it installed already). This will
provide you with all the dependencies you need to get going: you can simply create a new rule
project and everything will be done for you. Refer to the chapter on the Rule Workbench and IDE
for detailed instructions on this. Installing the Eclipse plug-in is generally as simple as unzipping
a file into your Eclipse plug-in directory.

Use of the Eclipse plug-in is not required. Rule files are just textual input (or spreadsheets as the
case may be) and the IDE (also known as the Rule Workbench) is just a convenience. People
have integrated the rule engine in many ways, there is no "one size fits all".

Alternatively, you can download the binary distribution, and include the relevant JARs in your
projects classpath.

1.3.1.1. Dependencies and JARs

Drools is broken down into a few modules, some are required during rule development/compiling,
and some are required at runtime. In many cases, people will simply want to include all the de-
pendencies at runtime, and this is fine. It allows you to have the most flexibility. However, some
may prefer to have their "runtime" stripped down to the bare minimum, as they will be deploying
rules in binary form - this is also possible. The core runtime engine can be quite compact, and
only requires a few 100 kilobytes across 3 JAR files.

The following is a description of the important libraries that make up JBoss Drools

» knowledge-api.jar - this provides the interfaces and factories. It also helps clearly show what is
intended as a user API and what is just an engine API.

» knowledge-internal-api.jar - this provides internal interfaces and factories.

 drools-core.jar - this is the core engine, runtime component. Contains both the RETE engine
and the LEAPS engine. This is the only runtime dependency if you are pre-compiling rules (and
deploying via Package or RuleBase objects).

« drools-compiler.jar - this contains the compiler/builder components to take rule source, and build
executable rule bases. This is often a runtime dependency of your application, but it need not
be if you are pre-compiling your rules. This depends on drools-core.

« drools-jsr94.jar - this is the JSR-94 compliant implementation, this is essentially a layer over
the drools-compiler component. Note that due to the nature of the JSR-94 specification, not all

10

Introduction

features are easily exposed via this interface. In some cases, it will be easier to go direct to the
Drools API, but in some environments the JSR-94 is mandated.

« drools-decisiontables.jar - this is the decision tables ‘compiler' component, which uses the
drools-compiler component. This supports both excel and CSV input formats.

There are quite a few other dependencies which the above components require, most of which
are for the drools-compiler, drools-jsr94 or drools-decisiontables module. Some key ones to note
are "POI" which provides the spreadsheet parsing ability, and "antlr" which provides the parsing
for the rule language itself.

NOTE: if you are using Drools in J2EE or servlet containers and you come across classpath issues
with "JDT", then you can switch to the janino compiler. Set the system property "drools.compiler":
For example: -Ddrools.compiler=JANINO.

For up to date info on dependencies in a release, consult the released POMs, which can be found
on the Maven repository.

1.3.1.2. Use with Maven, Gradle, Ivy, Buildr or Ant

The JARs are also available in the central Maven repository [http://search.maven.org/#search|
galllorg.drools] (and also in the JBoss Maven repository [https://repository.jboss.org/nexus/
index.html#nexus-search;gav~org.drools~~~~]).

If you use Maven, add KIE and Drools dependencies in your project's pom xni like this:

<dependencyManagenent >
<dependenci es>
<dependency>
<gr oupl d>or g. dr ool s</ gr oupl d>
<artifactld>drool s-bonmx/artifact!|d>
<t ype>ponx/type>
<version>...</version>
<scope>i nport </ scope>
</ dependency>

</ dependenci es>
</ dependencyManagenent >
<dependenci es>
<dependency>
<gr oupl d>or g. ki e</ gr oupl d>
<artifactld>kie-api</artifactld>
</ dependency>
<dependency>
<groupl d>or g. dr ool s</ gr oupl d>
<artifactld>drool s-conpiler</artifactld>
<scope>runti me</ scope>
</ dependency>

<dependenci es>

This is similar for Gradle, Ivy and Buildr. To identify the latest version, check the Maven repository.

11

http://search.maven.org/#search|ga|1|org.drools
http://search.maven.org/#search|ga|1|org.drools
http://search.maven.org/#search|ga|1|org.drools
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.drools~~~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.drools~~~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.drools~~~~

Introduction

If you're still using Ant (without Ivy), copy all the JARs from the download zip's bi nar i es directory
and manually verify that your classpath doesn't contain duplicate JARSs.

1.3.1.3. Runtime

The "runtime" requirements mentioned here are if you are deploying rules as their binary form
(either as KnowledgePackage objects, or KnowledgeBase objects etc). This is an optional feature
that allows you to keep your runtime very light. You may use drools-compiler to produce rule
packages "out of process", and then deploy them to a runtime system. This runtime system only
requires drools-core.jar and knowledge-api for execution. This is an optional deployment pattern,
and many people do not need to "trim" their application this much, but it is an ideal option for
certain environments.

1.3.1.4. Installing IDE (Rule Workbench)

The rule workbench (for Eclipse) requires that you have Eclipse 3.4 or greater, as well as Eclipse
GEF 3.4 or greater. You can install it either by downloading the plug-in or using the update site.

Another option is to use the JBoss IDE, which comes with all the plug-in requirements pre pack-
aged, as well as a choice of other tools separate to rules. You can choose just to install rules from
the "bundle" that JBoss IDE ships with.

1.3.1.4.1. Installing GEF (arequired dependency)

GEF is the Eclipse Graphical Editing Framework, which is used for graph viewing components
in the plug-in.

If you don't have GEF installed, you can install it using the built in update mechanism (or down-
loading GEF from the Eclipse.org website not recommended). JBoss IDE has GEF already, as do
many other "distributions" of Eclipse, so this step may be redundant for some people.

Open the Help->Software updates...->Available Software->Add Site... from the help menu. Loca-
tion is:

http://downl oad. ecl i pse. or g/t ool s/ gef/ updat es/rel eases/

Next you choose the GEF plug-in:

12

Introduction

= [%] GEF Update Site -
> [J 000 GEF 5DK 3.2.2
b [000 GEF SDK 3.3.2
~ [=] 000 GEF SDK 3.4.2

O {tn Graphical Editing Framework Draw2d 3.4.2v20090218-1145-3317w311_12250244]

O &g Graphical Editing Framework Draw2d Developer Resour 3.4.2 v20090218-1145-3317w311_12250244]

O & Graphical Editing Framework Draw2d 5DK 3.42v20090218-1145-67738084A6665K366E

!ﬁ’- Graphical Editing Framework GEF 3.42w20090218-1145-67728084A56B412336]|

O &p Graphical Editing Framewaork GEF All-In-One SDK 3.4.2v20090218-1145-TF7I69NpWtnmMXBEpuUC

[J 4 Graphical Editing Framework GEF Developer Resources 3.4.2.v20090218-1145-67728084A56B4/12336!
[4 Graphical Editing Framework GEF Examples 3.4.1v20080806-7TETI0AQI99MORGC

O &g Graphical Editing Framewaork GEF SDK 3.4.2v20090218-1145-7BTES97TOKBd7QHQEH
O &g Graphical Editing Framework Zest Visualization Toolkit 1.0.0.v20080115-5318xB6CE899P233613552
[& Graphical Editing Framework Zest Visualization Toolkit D 1.0.0.w20080115-5318xB6CE899P233613552
O ke Graphical Editing Framework Zest Visualization Toolkit S 1.0.0.v20080115-5318_GCGFGJMZHOMaa6PM

(o]

Show only the latest versions of available software

Include items that have already been installed

Software Updates and Add-ons
Installed Software | Available Software

|type fiter text = Install...
Name Version E

Properties

Add Site...

Manage Sites...

IO

Refresh

Open the 'Automatic Updates' preference page to set up an autematic update schedule.

Close

Press next, and agree to install the plug-in (an Eclipse restart may be required). Once this is
completed, then you can continue on installing the rules plug-in.

1.3.1.4.2. Installing GEF from zip file

To install from the zip file, download and unzip the file. Inside the zip you will see a plug-in direc-
tory, and the plug-in JAR itself. You place the plug-in JAR into your Eclipse applications plug-in
directory, and restart Eclipse.

1.3.1.4.3. Installing Drools plug-in from zip file

Download the Drools Eclipse IDE plugin from the link below. Unzip the downloaded file in your
main eclipse folder (do not just copy the file there, extract it so that the feature and plugin JARs
end up in the features and plugin directory of eclipse) and (re)start Eclipse.

http://www.drools.org/download/download.html

To check that the installation was successful, try opening the Drools perspective: Click the 'Open
Perspective' button in the top right corner of your Eclipse window, select 'Other..." and pick the
Drools perspective. If you cannot find the Drools perspective as one of the possible perspectives,

13

http://www.drools.org/download/download.html

Introduction

the installation probably was unsuccessful. Check whether you executed each of the required
steps correctly: Do you have the right version of Eclipse (3.4.x)? Do you have Eclipse GEF installed
(check whether the org.eclipse.gef_3.4.* jar exists in the plugins directory in your eclipse root fold-
er)? Did you extract the Drools Eclipse plugin correctly (check whether the org.drools.eclipse_*.jar
exists in the plugins directory in your eclipse root folder)? If you cannot find the problem, try con-
tacting us (e.g. on irc or on the user mailing list), more info can be found no our homepage here:

http://www.drools.org/
1.3.1.4.4. Drools Runtimes

A Drools runtime is a collection of JARs on your file system that represent one specific release
of the Drools project JARs. To create a runtime, you must point the IDE to the release of your
choice. If you want to create a new runtime based on the latest Drools project JARs included in
the plugin itself, you can also easily do that. You are required to specify a default Drools runtime
for your Eclipse workspace, but each individual project can override the default and select the
appropriate runtime for that project specifically.

1.3.1.4.4.1. Defining a Drools runtime

You are required to define one or more Drools runtimes using the Eclipse preferences view. To
open up your preferences, in the menu Window select the Preferences menu item. A new prefer-
ences dialog should show all your preferences. On the left side of this dialog, under the Drools
category, select "Installed Drools runtimes". The panel on the right should then show the currently
defined Drools runtimes. If you have not yet defined any runtimes, it should like something like
the figure below.

14

http://www.drools.org/

S

Introduction

[pe filter text

P
P

General

Ant

=~ Drools

Installed Drools Runtimes

R e

Drools Flow nodes

Drools Task

Guvnor

Help

Install/lUpdate

Java

Maven

Plug-in Development
Run/Debug

Team

XML

Preferences b

@ Select a default Drools Runtime o -

Add, remove or edit Drools Runtime definitions. By default, the checked
Drools Runtime is added to the build path of newly created Drools
projects.

Installed Drools Runtimes

Name Location [Add. .. l

[| Cancel

To define a new Drools runtime, click on the add button. A dialog as shown below should pop up,
requiring the name for your runtime and the location on your file system where it can be found.

15

Introduction

Drools Runtime

Either select an existing Drools Runtime on your file system or create
a new one.

Mame:

Create a new Drools 5 Buntime ...

Cancel

In general, you have two options:

1. If you simply want to use the default JARs as included in the Drools Eclipse plugin, you can
create a new Drools runtime automatically by clicking the "Create a new Drools 5 runtime ..."
button. A file browser will show up, asking you to select the folder on your file system where
you want this runtime to be created. The plugin will then automatically copy all required depen-
dencies to the specified folder. After selecting this folder, the dialog should look like the figure
shown below.

2. If you want to use one specific release of the Drools project, you should create a folder on
your file system that contains all the necessary Drools libraries and dependencies. Instead of
creating a new Drools runtime as explained above, give your runtime a name and select the
location of this folder containing all the required JARs.

16

Introduction

Drools Runtime

Either select an existing Drools Runtime on your file system or create
a new one.

Mame: Drools 5.0.0 runtime

Fath: /NotBackedUp/development/drools-runtimes/drools-5.0.

Create a new Drools 5 Buntime |

| OK | | Cancel

After clicking the OK button, the runtime should show up in your table of installed Drools runtimes,
as shown below. Click on checkbox in front of the newly created runtime to make it the default
Drools runtime. The default Drools runtime will be used as the runtime of all your Drools project
that have not selected a project-specific runtime.

|' = Preferences =

[type filter text l Installed Drools Runtimes =t =

P General Add, remove or edit Drools Runtime definitions. By default, the checked Drools Runtime is added to the
b Ant build path of newly created Drools projects.

< Drools Installed Drools Runtimes

Drools Flow nodes Name Location Add...

Installed Drools Runtimes Drools 5.0.0 runtime /NotBackedUp/development/drools-runtimes/drools-5.0.0

Drools Task

Guwvnor

Help

Install/Update

Java

Maven

Plug-in Development
Run/Debug

Team

v vV vy v v v v v

XML

&3] oK I [Cancel

You can add as many Drools runtimes as you need. For example, the screenshot below shows
a configuration where three runtimes have been defined: a Drools 4.0.7 runtime, a Drools 5.0.0

17

Introduction

runtime and a Drools 5.0.0.SNAPSHOT runtime. The Drools 5.0.0 runtime is selected as the

default one.
Preferences
[l Installed Drools Runtimes o -
P General Add, remove or edit Drools Runtime definitions. By default, the checked Drools Runtime is added to the build path of
B Ant newly created Drools projects.
¥ Drools Installed Drools Runtimes

Drools Flow nodes Name Location

Installed Drools Runtimes

Drools 5.0.0 runtime /NotBackedUp/development/drools-runtimes/drools-5.0.0

Edit...

Drools Task [J Drools 4.0.7 runtime /MotBackedUp/development/drools-runtimes/drools-4.0.7

Guwvnor Remove

II>
o
=

[0 Drools 5.0.0.SNAPSHOT /NotBackedUp/development/drools-runtimes/drools-5.0.0 SNAPSHOT
Help

InstallfUpdate

Java

Maven

Flug-in Development
Run/Debug

Team

XML

R A A A S

@ | ok || cance |

Note that you will need to restart Eclipse if you changed the default runtime and you want to make
sure that all the projects that are using the default runtime update their classpath accordingly.

1.3.1.4.4.2. Selecting a runtime for your Drools project

Whenever you create a Drools project (using the New Drools Project wizard or by converting an
existing Java project to a Drools project using the "Convert to Drools Project" action that is shown
when you are in the Drools perspective and you right-click an existing Java project), the plugin
will automatically add all the required JARs to the classpath of your project.

When creating a new Drools project, the plugin will automatically use the default Drools runtime for
that project, unless you specify a project-specific one. You can do this in the final step of the New
Drools Project wizard, as shown below, by deselecting the "Use default Drools runtime" checkbox
and selecting the appropriate runtime in the drop-down box. If you click the "Configure workspace
settings ..." link, the workspace preferences showing the currently installed Drools runtimes will
be opened, so you can add new runtimes there.

18

Introduction

Drools Runtime @

Select a Drools Runtime

[] Use default Drools Runtime {currently Drools 5.0.0 runtime)

Drools Runtime: |Drcm|5 4.0.7 runtirme b
~onfi W Setti
@ < Back Finish] | Cancel

You can change the runtime of a Drools project at any time by opening the project properties
(right-click the project and select Properties) and selecting the Drools category, as shown below.
Check the "Enable project specific settings" checkbox and select the appropriate runtime from the
drop-down box. If you click the "Configure workspace settings ..." link, the workspace preferences
showing the currently installed Drools runtimes will be opened, so you can add new runtimes
there. If you deselect the "Enable project specific settings" checkbox, it will use the default runtime
as defined in your global preferences.

19

Introduction

Properties for Drools Project

[pe filter tex l Drools -

Resource Enable project specific settings
Builders

Drools Runtime: |Drools 5.0.0. SNAPSHOT runtime A
Guvnor

Java Build Path
[Java Code Style
I Java Compiler
[» Java Editor
Javadoc Location
Project References
Run/Debug Settings
Task Tags

[Restnre gefaultsl [Apply l

@ [OK H Cancel]

1.3.2. Building from source

1.3.2.1. Getting the sources

The source code of each Maven artifact is available in the JBoss Maven repository as a source
JAR. The same source JARs are also included in the download zips. However, if you want to build
from source, it's highly recommended to get our sources from our source control.

Drools and jBPM use Git [http://git-scm.com/] for source control. The blessed git repositories are
hosted on GitHub [https://github.com]:

* https://github.com/droolsjbpm

Git allows you to fork our code, independently make personal changes on it, yet still merge in our
latest changes regularly and optionally share your changes with us. To learn more about git, read
the free book Git Pro [http://progit.org/book/].

1.3.2.2. Building the sources

In essense, building from source is very easy, for example if you want to build the guvnor project:

20

http://git-scm.com/
http://git-scm.com/
https://github.com
https://github.com
https://github.com/droolsjbpm
http://progit.org/book/
http://progit.org/book/

Introduction

$ git clone git@ithub.com drool sj bpm guvnor. gi t

$ cd guvnor
$ nmvn clean install -DskipTests -Dfull

However, there are a lot potential pitfalls, so if you're serious about building from
source and possibly contributing to the project, follow the instructions in the README
file in droolsjbpm-build-bootstrap [https://github.com/droolsjbpm/droolsjbpm-build-boot-
strap/blob/master/README.md].

1.3.3. Eclipse

1.3.3.1. Importing Eclipse Projects

With the Eclipse project files generated they can now be imported into Eclipse. When starting
Eclipse open the workspace in the root of your subversion checkout.

& Workspace Launcher |§|

—

Select a workspace

Eclipse 50K stores wour projects in a Folder called a workspace,
Choose a workspace Folder ko use For this session,

Workspace: | slaERanlaeEE = Lj Browse. ..

[Use this as the default and do not ask again

(]9 iZancel

21

https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md

Introduction

& Java - Eclipse SDK

File Edit Source Refactor

Mavigate Search Proj

I -EHE | %9 %-0-Q- |

: Package Explorer X

Hierarchy g |

e

TG
Mew »

ﬁizﬁ Copy ChrlH4-C

' Paste Chrl+y

¥ Cclete Dielete
Eiild Path »

¢ 1 Impoark...

iy Export...,

q}{h Refresh F5

22

Introduction

& Import

Select

Create new projects From an archive file or directory,

Select an import source:

J kvpe Filker bexk

== General
L, archive File
QE‘ Breakpoints

Existing Projects inko WWorkspace
s {:L File Swstem
2L, Preferences

-2 CYS

-2 Plug-in Development
- Team
[+ = Other

23

Introduction

& Import

Import Projects

Select a directary ko search for existing Eclipse projects.,

{+ Select rook directory: |C:'|,|:Iev'|,jl:unssrules

(" select archive file: |

Projects:

drools-carnpiler Select Al
drools-core
drools-ide Deselect Al
drools-jsra4

arg.nexb,easyveclpse.drools, deployer

Refresh

g | Copy projects inko workspace

When calling mvn install all the project dependencies were downloaded and added to the local
Maven repository. Eclipse cannot find those dependencies unless you tell it where that repository
is. To do this setup an M2_REPO classpath variable.

24

Introduction

Project Run

Help

= I ﬁ Eﬁ} Mew Window h,

— gt
Mew Editor

Open Perspective L&
Shiow Wiew »

Zuskomize Perspective. ..
Save Perspective &4s...
Reset Perspective

iZlose Perspective

ilose All Perspectives

Mavigation r

ff.'?' Working Sets k

25

Introduction

& Preferences

] tyvpe filker text

+- eneral
+|- &nt
+-Help
+- Installflpdate
-|- Java
[+- Appearance
Build Path
spath Yariables
User Libraties
Code Skyle
Campiler
Debug
Editor
Installed JREs
JuUnik:
Properties Files Editor
+- Plug-in Development:
+- Run/Debug
+- Team

- -

(=13
Classpath V¥ariables =1

& classpath variable can be added to a project's class path. It can be used to define the location of a
JAR. file that isn't part of the workspace, The reserved class path wariables JRE_LIB, JRE_SR.C,
JRE_SRCROOT are set internally depending on the JRE setting.

Defined classpath variables:

[F=ECLIPSE_HOME - Du\javaleclpse Pew..,
EI JRE_LIE {reserved) - D:\javaljdkl . 5.0_0ahjre\liblrt.jar
& JRE_SRiC (reserved) - Dnijavaljdkl.5.0_08\src.zip

= IRE_SRCROOT (reserved) - (empky) e
(= JUNIT_HOME - Dn\javaleclipsepluginsiorg. junit_3.5.1 -
[= JUNIT_SRC_HOME - Dn\javalecipsepluginsorg. eclipse. jdt source_3.2.0,v200

Edit...

I

|

=

[oc]

& New Variable Entry

Ok Cancel

MName: | MZ_REPC
Path: | % /Docurnents and Settings/mproctar) . m2repository File. ..
Folder...
-:'E"_'] QK Zancel

26

Introduction

& Preferences

| tyvpe filker text

+- eneral
+- Ant
+-Help
|- Install/Update
-l Java
[+- Appearance
Build Path
Classpath Yariables
User Libraties
Code Skyle
Campiler
Debug
Editor
Installed JREs
JuUnik:
Properties Files Editor
+- Plug-in Development:
+- Run/Debug
+- Team

[+

oy O e O e e B

- B

Classpath V¥ariables =1

& classpath variable can be added to a project's class path. It can be used to define the location of a
JAR. file that isn't part of the workspace, The reserved class path wariables JRE_LIB, JRE_SR.C,
JRE_SRCROOT are set internally depending on the JRE setting.

Defined classpath variables:

[ECLIPSE_HOME - Dn\javaleclpse

;:. JRE_LIE {reserved) - D:\javaljdkl . 5.0_0ahjre\liblrt.jar
& JRE_SRiC (reserved) - Dnijavaljdkl.5.0_08\src.zip

= IRE_SRCROOT (reserved) - (empky) e
(= JUNIT_HOME - Dn\javaleclipsepluginsiorg. junit_3.5.1 -
[£= JUNIT_SRC_HOME - Dn\javalecipsepluginsorg. eclipse. jdt source_3.2.0,v200
[Z=-M2_REPQ - Dt\Docurments and Settingsimprockar.m2repasitory

Edit...

eS|
e

ok Cancel

27

Chapter 2. Release Notes

2.1. New and Noteworthy in KIE Workbench 7.0.0

2.1.1. Authoring - Imports of Examples

Prior to 7.x the Workbench used to install pre-defined examples at startup.

Version 7.x brings the ability to import examples from git repositories. The Authoring Perspective
contains a menu item for 'Examples’ clicking this launches a Wizard to guide you through the
import.

The Authoring Perspective contains a menu item for 'Examples’.

Home Perspectives v

Example Explore -~ MNew - Project ~ Repository
Drools Workbench

Project Explorer < || ¢ || Open Project Editor | | €

=S Y == W W

Figure 2.1. Import Examples - Menu item

Page 1 of the Wizard allows the User to select a pre-defined examples repository, or enter their
own URL.

28

Release Notes

Import Example

Select repository...
¥ Repository
https:/fgithub.com/guvnomgtestuseri /guvnomg-playground.git

O Project

O Organizational Unit

< Previous Next > Cancel + Finish

Figure 2.2. Import Examples - Wizard - Enter source Repository

Page 2 of the Wizard lists Projects available in the source repository.

Import Example

Projects
' Repository

& Project

O Organizational Unit

Example 'morigages’ project

¢ Previous Next » Cancel +" Finish

Figure 2.3. Import Examples - Wizard - Select Project(s)

Page 3 of the Wizard allows the User to enter a target Repository name and associate it with an
Organizational Unit.

29

Release Notes

Import Example

Target Repository
& Repository

example

' Project
Organizational Units

™ Organizational Unit example

Next Cancel + Finish

Figure 2.4. Import Examples - Wizard - Enter target Repository
2.2. What is New and Noteworthy in Drools 6.4.0

2.2.1. Better Java 8 compatibility

It is now possible to use Java 8 syntax (lambdas and method references) in the Right Hand Side
(then) part of a rule.

2.2.2. More robust incremental compilation

The incremental compilation (dynamic rule-base update) had some relevant flaws when one or
more rules with a subnetwork (rules with complex existential patterns) were involved, especially
when the same subnetwork was shared among different rules. This issue required a partial rewrit-
ing of the existing incremental compilation algorithm, followed by a complete audit that has also
been validated by brand new test suite made by more than 20,000 test cases only in this area.

2.2.3. Improved multi-threading behaviour

Engine's code dealing with multi-threading has been partially rewritten in order to remove a large
number of synchronisation points and improve stability and predictability. In particular this new
implementation allows a clearer separation and better interaction between the User thread (per-
forming the insert/update/delete actions on the session), the Engine thread (doing the proper rules
evaluation) and the Timer one (performing time-based actions like events expiration).

This improvement has been made possible by the new phreak algorithm introduced with Drools
6. In fact with in the ReteOO algorithm the network evaluation is performed during the User in-
sert/update/delete action, meaning that each user action locks the entire engine. Conversely with
phreak the insert/update/delete is separated and the network evaluation happens when fireAll-
Rules or fireUntilHalt is called.

30

Release Notes

More in detail this improvement has been made by 2 parts. First of all a new thread-safe queue has
been added to store all user actions as commands. This queue is populated by the User thread
while its entries are flushed and processed by the Engine thread during the rules evaluations
phase. The second part introduced a state machine coordinating the User, Timer and Engine
threads and then providing a clearer and self-documenting way to model their interactions.

2.2.4. OOPath improvements

Warning

This feature is experimental

OOPath has been introduced with Drools 6.3.0. In Drools 6.4.0 it has been enhanced to support
the following features:

« A constraint can also have a beckreference to an object of the graph traversed before the
currently iterated one. For example the following OOPath:

St udent ($grade: /plan/exans/grades{ result > ../averageResult })

will match only the grades having a result above the average for the passed exam.

» A constraint can also recursively be another OOPath as it follows:

Student ($exam /pl an/ exans{ /grades{ result > 20} })

« ltis also possible to use the ?/ separator instead of the / one. As in the following example:

Student ($grade: /pl an/exans{ course == "Big Data" }?/grades)

By doing so the engine will react to a change made to an exam, or if an exam is added to the
plan, but not if a new grade is added to an existing exam. Of course if a OOPath chunk is not
reactive, all remaining part of the OOPath from there till the end of the expression will be non-
reactive as well. For instance the following OOPath

Student ($grade: ?/pl an/ exans{ course == "Big Data" }/grades)

will be completely non-reactive. For this reason it is not allowed to use the ?/ separator more
than once in the same OOPath so an expression like:

31

Release Notes

Student ($grade: /pl an?/ exans{ course == "Big Data" }?/grades)

will cause a compile time error.

2.3. New and Noteworthy in KIE Workbench 6.4.0

2.3.1. New look and feel

The general look and feel in the entire workbench has been updated to adopt PatternFly [https://
www.patternfly.org/]. The update brings a cleaner, lightweight and more consistent user experi-
ence throughout every screen. Allowing users focus on the data and the tasks by removing all un-
cessary visual elements. Interactions and behaviors remain mostly unchanged, limiting the scope
of this change to visual updates.

KIE Workbench

Home ~ Authoring ~ Deploy ~ Process Management Tasks Dashboards Extensions ~

Project Explorer || © || Cpen Project Editor | | £ Project: [mortgages:mortgages:0.0.1) Save | Delete | Rename | Copy | Build -

demo « uf-playground maortgages « Project Settings: Project General Settings ~

Project General Settings

mortgages
Project Name
Project Deseription
I]
Group artifact version
Hetd
Group ID O
Hetl
Artifact 1D O
Version O
Messages

Figure 2.5. Workbench - New look and feel

2.3.2. Various Ul improvements

In addition to the PatternFly update described above which targeted the general look and feel,
many individual components in the workbench have been improved to create a better user expe-
rience. This involved making sure the default size of modal popup windows is appropriate to fit the

32

https://www.patternfly.org/
https://www.patternfly.org/
https://www.patternfly.org/

Release Notes

corresponding content, adjusting the size of text fields as well as aligning labels, and improving
the resize behaviour of various components when used on smaller screens.

Create Contalmer

MName

Group Name

Artifact Id

Version

Mame Path Last Maodified

EUVnOr-asset.. OrgfEuvnorg.. 2015 Now 30 ...

Buvnor-asset.. Org/Euvnor/g... 2015 MNov 30...

Figure 2.6. Workbench - Properly sized popup window

33

Release Notes

& kie-deployment-descriptor.xml - Deployment

Resclver type

Editor Source
[+dd
Work ltem handlers Value Value
W mivel
mvel
Service Task ¢ 3. askHa n, elassLoader) mivel
Hest news org.bpm.processworkitem. nest RES TWorkitemHandler(classLoager) mvel

Task event listeners Value Resolver type

Figure 2.7. Workbench - Properly sized text fields and aligned labels

KIE Workbench

.iLlﬂﬂOﬂﬂg b Deploy ~ ess Management ~

Para

Dashboards ~

MEtErs

ined
ned

Save | Validate

Parameters

Remave

Remaowve

Explore New ltem « Repository ~
Project Explorer |&| © Open Project Editor || € Save | Delete | Rename | Copy | Validate
Qve
r - yEround T —
o Ipica:
— Identifi.. Label Type
jmm| DRL -
= I
applica Drate

% | DATA OBJECTS .
| -

credith.,

‘Applicant’- general properties

f. DOMAIN SPECIFIC LANGUAGE DEFINITIONS + Identifier Applicant

Label
J ENUMERATION DEFINITIONS =

= Description
EJ GUIDED DECISION TABLES -

@ GUIDED RULES + Package orgmorgages

Superclass |avalang Ohject

[F.EJ GUIDED RULES (WITH D5L) -

(z | TEST SCENARIOS - Messages

Latest Version ~ || &

=+ add field

2]

Drools & jBPM
TypeSafe @
ClassReactive €
PropertyReactive
Role @
Timestamp €
Duration &
Expires €

Remotable @

Messages

Nothing selected

Nothing selected

MNothing selected

Nothing selected

Asset Search
2 <

-]

Figure 2.8. Workbench - Resized editor window with limited horizontal space

2.3.3. New locales

Locales r u (Russian) and zh_Tw(Chineses Traditional) have now been added.

34

Release Notes

The locales now supported are:

« Default English.

* es (Spanish)

e fr (French)

« de (German)

* j a (Japanese)

* pt _BR(Portuguese - Brazil)

e zh_CN(Chinese - Simplified)
* zh_TW(Chinese - Traditional)

e ru (Russian)

2.3.4. Authoring - Imports - Consistent terminology

The Workbench used to have a section in the Project Editor for "Import Suggestions" which was
really away for Users to register classes provided by the Java Runtime environment to be available
to Rule authoring. Furthermore Editors had a "Config" tab which was where Users were expected
to import classes from other packages to that in which the rule resides.

Neither term was clear and both were inconsistent with each other and other aspects of the Work-
bench.

We have changed these terms to (hopefully) be clearer in their meaning and to be consistent with
the "Data Object" term used in relation to authoring Java classes within the Workbench.

35

Release Notes

Project: [mortgages:mortgages:0.0.1]

| Project Settings: Project General Settings ~ |

PROJECT SETTINGS
Project General Settings gs
Dependencies

Metadata

KNOWLEDGE BASE SETTINGS
Knowledge bases and sessions
Metadata

IMPORTS

External Data Objects

Metadata b
PERSISTENCE SETTINGS

Persistence descriptor

Figure 2.9. Project Editor - External Data Objects

Imports: External Data Objects ~

o External Data Objects are Data Objects not explicitly defined within a Project or Project's dependencies that a
rule author may need available. They are usually provided by the Java runtime. For example java.util.List.

Type Remaove

No Imports defined

Figure 2.10. Project Editor - Defining External Data Objects

36

Release Notes

Bankruptcy history.rdrl - Guided Rules

Editor Overview Source Data Objects

EXTENDS Mone selected, .. [:'}

WHEN
1. Thereis a LoanApplication [a]

The following exists:
There is a Bankruptcy with:
any of the following:

yearOfOccurrence| greater than v |1990 |8 B4

amountOwed greater than v 10000 ==

Figure 2.11. Asset Editors - Data Objects

The Data Object screen lists all Data Objects in the same package as the asset and allows other
Data Objects from other packages to be imported.

Editor Overview Source Data Objects

o By default only Data Objects within the same package as the asset are available
for authoring. Additional Data Objects can be imported from other packages.

Type Remove
org.mortgages.Applicant

org.mortgages. Bankruptcy

org.mortgages. IncomeSource

org.mortgages. LoanApplication

java.lang.5tring

Figure 2.12. Asset Editors - Defining Data Objects available for authoring

2.3.5. Disable automatic build

When navigating Projects with the Project Explorer the workbench automatically builds the select-
ed project, displaying build messages in the Message Console. Whilst this is beneficial it can have
a detremental impact on performance of the workbench when authoring large projects. The auto-

37

Release Notes

matic build can now be disabled with the or g. ki e. bui | d. di sabl e- pr oj ect - expl orer System
Property. Set the value to t r ue to disable. The default value is f al se.

2.3.6. Support for scr style git Repository URLSs

When cloning git Repositories it is now possible to use SCP style URLS, for example
gi t @i t hub. com user/repository. git.Ifyour Operating System's public keystore is password
protected the passphrase can be provided with the org. uberfire. nio.git.ssh. passphrase
System Property.

2.3.7. Authoring - Duplicate GAV detection

When performing any of the following operations a check is now made against all Maven Reposi-
tories, resolved for the Project, for whether the Project's Groupld, Artifactld and Version pre-exist.
If a clash is found the operation is prevented; although this can be overridden by Users with the
adni n role.

@ Note
The feature can be disabled by setting the System Property
or g. guvnor. proj ect. gav. check. di sabl ed to t rue.

Resolved repositories are those discovered in:-

« The Project's POM<r eposi t or i es> section (or any parent POM).
» The Project's POM<di st ri but i onManagenent > section.
« Maven's global set ti ngs. xnml configuration file.

Affected operations:-

» Creation of new Managed Repositories.

» Saving a Project defintion with the Project Editor.

« Adding new Modules to a Managed Multi-Module Repository.
» Saving the pom xni file.

 Build & installing a Project with the Project Editor.

 Build & deploying a Project with the Project Editor.

« Asset Management operations building, installing or deloying Projects.

38

Release Notes

» REST operations creating, installing or deploying Projects.

Users with the Adni n role can override the list of Repositories checked using the "Repositories"
settings in the Project Editor.

Project Settings: Project General Settings ~ |

PROJECT SETTINGS
Froject General Settings
j g 1gS
Dependencies
Metadata

SETTI
Knowledge bases and sessions
Metadata

IMPORTS

External Data Objects
Metadata
REPOSITOR

|

Resolved repositories [3'

PERSISTENCE SETTINGS

Persistence descriptor

Figure 2.13. Project Editor - Viewing resolved Repositories

39

Release Notes

Repositories: Resolved repositories -

Include

Ld

td

Ld

td

o These are the Maven Repositories resolved for the Project from the Project's pom, the Project's Distribution
Management configuration and Maven's global settings.

Id URL

local /home/manstis/.m2frepository
jboss-developer-repository-group hitps:irepository. jboss.org/nexus/content/groups/developer/
jbass-origin-repository-group https:fiorigin-repository.jboss.org/nexus/contentigroupsiea/
jboss-public-repository-group hitp:firepository.jboss.org/nexus/content/groups/public/

Figure 2.14. Project Editor - The list of resolved Repositories

Conflicting Repositories

local

A The following Repositories already contain Artifact
"mortgages:mortgages:0.0.1".

URL

/home/manstis/.m2/repository

Source

Local
Maven settings
Maven settings

Maven settings

Source

Local

m Override

Figure 2.15. Duplicate GAV detected

2.3.8. New Execution Server Management User Interface

The KIE Execution Server Management Ul has been completely redesigned to adjust to major
improvements introduced recently. Besides the fact that new Ul has been built from scratch and
following best practices provided by PatternFly, the new interface expands previous features giv-
ing users more control of their servers.

40

Release Notes

KIE Workbench ? # € @ 2 adminv

Home v Authoring v Deploy v Process Management v Tasks Dashboards v Extensions v

SERVER TEMPLATES <

+ New Server Template

,(«

Get Started with Execution Servers

To get things started, you'll first need to create a new Server Template.

New Server Template

Figure 2.16. KIE Execution Server - New user interface

2.3.9. User and group management

Provides the backend services and an intuitive and friendly user interface that allows the work-
bench administrators to manage the application's users and groups.

KIE Workbench

Home v Authoring

Users explorer Create new user || | x Showing admin v 7 x
. admin
All users clresnis
Q Attributes
Name Value
admin user.id 0d7fc687-d326-4716-81c7-4e9710b0aaac
user.email admin@redhat.com
joe
user.isEmailVerified false
katy user.enabled true
user firstame The administrator
manager user lastName
roger ¢ < 160f6 » b

Groups Roles

offline_access

rest-all

This interface provides to the workbench administrators the ability to perform realm related oper-
ations such as create users, create groups, assign groups or roles to a given user, etc.

It comes by default with built-in implementations for the administration of Wildfly, EAP and Tomcat
default realms, and it's designed to be extensible - any third party realm management system can
be easily integrated into the workbench.

41

Release Notes

2.4. What is New and Noteworthy in Drools 6.3.0

2.4.1. Browsing graphs of objects with OOPath

A Warning

This feature is experimental

When the field of a fact is a collection it is possible to bind and reason over all the items in that
collection on by one using the f r omkeyword. Nevertheless, when it is required to browse a graph
of object the extensive use of the f r omconditional element may result in a verbose and cubersome
syntax like in the following example:

Example 2.1. Browsing a graph of objects with from

rule "Find all grades for Big Data exanl when $student: Student($plan: plan) $exam
Exam(course == "Big Data") from $pl an. exans $grade: Grade() from $exam gradesthen /*
RHS */ end

when $student: Student($plan: plan

) $exam Exan{ course == "Big Data") from

$pl an. exans $grade: Grade() from

$exam gradest hen /* RHS */

In this example it has been assumed to use a domain model consisting of a St udent who has a
Pl an of study: a Pl an can have zero or more Exans and an Examzero or more G- ades. Note that
only the root object of the graph (the St udent in this case) needs to be in the working memory
in order to make this works.

By borrowing ideas from XPath, this syntax can be made more succinct, as XPath has a com-
pact notation for navigating through related elements while handling collections and filtering con-
straints. This XPath-inspired notation has been called OOPat h since it is explictly intended to
browse graph of objects. Using this notation the former example can be rewritten as it follows:

Example 2.2. Browsing a graph of objects with OOPath

rule "Find all grades for Big Data exan when Student ($grade: /pl an/exans{course == "Big
Data"}/grades)then /* RHS */ end
when Student ($grade: /plan/exans{course == "Big Data"}/grades

Jthen /* RHS */

Formally, the core grammar of an OOPat h expression can be defined in EBNF notation in this way.

OOPExpr = "/" OOPSegnent { ("/" | ".") OOPSegnent } ;QOPSegnment = [ID (":" ":=")] ID
["[" Number "]"] ["{" Constraints "}"];

42

Release Notes

} ;OOPSegment = [ID (":" | ":=")] ID["[" Number "]"] ["{"

In practice an OOPat h expression has the following features.

« It has to start with / .
« It can dereference a single property of an object with the . operator

« |t can dereference a multiple property of an object using the / operator. If a collection is returned,
it will iterate over the values in the collection

« While traversing referenced objects it can filter away those not satisfying one or more con-
straints, written as predicate expressions between curly brackets like in:

Student ($grade: /pl an/exans{course == "Big Data"}/grades)

 Items can also be accessed by their index by putting it between square brackets like in:

St udent ($grade: /pl an/ exans[0]/grades)

To adhere to Java convention OOPath indexes are 0-based, compared to XPath 1-based

2.4.1.1. Reactive OOPath

At the moment Drools is not able to react to updates involving a deeply nested traversed during
the evaluation of an OOPat h expression. To make these objects reactive to changes at the moment
it is necessary to make them extend the class or g. dr ool s. core. phreak. React i veQbj ect . It is
planned to overcome this limitation by implementing a mechanism that automatically instruments
the classes belonging to a specific domain model.

Having extendend that class, the domain objects can notify the engine when one of its field has
been updated by invoking the inherited method not i f yModi fi cat i on as in the following example:

Example 2.3. Notifying the engine that an exam has been moved to a
different course

public void setCourse(String course) { this. course = course; notifyModification(this);}
{ this.course =

cour se;

noti fyModi fication(this);

In this way if an exam is moved to a different course, the rule is re-triggered and the list of grades
matching the rule recomputed.

43

Release Notes

2.4.2. Kie Navigator View for Eclipse

A new viewer has been added to the Eclipse Tooling. This Kie Navigator View is used to manage
Kie Server installations and projects.

Please read the chapter Kie Navigator View for more information about this new feature
2.5. New and Noteworthy in KIE Workbench 6.3.0

2.5.1. Real Time Validation and Verification for the Decision Ta-
bles

Decision tables used to have a Validation-button for validating the table. This is now removed and
the table is validated after each cell value change. The validation and verification checks include:

* Redundancy

Subsumption

Conflicts

Missing Columns

These checks are explained in detail in the workbench documentation.

2.5.2. Improved DRL Editor

The DRL Editor has undergone a face lift; moving from a plain TextArea to using ACE Editor and
a custom DRL syntax highlighter.

44

Release Notes

) - 1 package org.mortogages
Fact types:(hide) 2
i 3 rule "Dummy rule’
E@Drg.mongages.nppllcant 4 salience 1
) 5 enabled false
< this & when
T
& creditRating 8 / Jconditions
9 then
TS 18 ~ modify(Sa) {
& app 11 setX(10);
4 applicationDate %g setV(10);
14~ if(18 > 28) {
& name 15 System.out.println{"Hello™);
16
& age ig /factions
19 end

= @ org.mortgages.Bankrupicy
& this
@ yearOfOccumrence
4 amouniCwed
= @ org.mortgages.IncomeSource
@ this
< amount
& type
= @ org.mortgages. LoanApplication

& this .

Figure 2.17. ACE Editor

2.5.3. Asset locking

To avoid conflicts when editing assets, a new locking mechanism has been introduced that makes
sure that only one user at a time can edit an asset. When a user begins to edit an asset, a lock
will automatically be acquired. This is indicated by a lock symbol appearing on the asset title bar
as well as in the project explorer view. If a user starts editing an already locked asset a pop-up
notification will appear to inform the user that the asset can't currently be edited, as it is being
worked on by another user. As long as the editing user holds the lock, changes by other users
will be prevented. Locks will automatically be released when the editing user saves or closes the
asset, or logs out of the workbench. Every user further has the option to force a lock release in
the metadata tab, if required.

45

Release Notes

ﬁﬂﬂ”{:aﬂ[.ja‘fﬂ - Data DDJECIS Save || Delete Rename | Copy | Valdate | Labest Version ™ "
Applicant © add field 'age’ - general properties
identifier Label Identifier age
Integer
applicationDate Date
Description
approved Boolean b4
creditRating Siring ® Type Integer & List
nama Siring o

Editor Overview Source

Figure 2.18. Editing an asset automatically acquires a lock

a Applicant.java - Data Objects Sove | Delte Rename | Copy | Validate | LatestVersien ™ | | X

F'l.r.'l plIC This asset is cumently being edited by Bob. Once they commit their changes, you will be able 1o edit the asset

Idantifier Label Identifier age
applicationDate Date
Dascrption
approved Boolaan s
craditRating String * Type Integer s List
name String o

Editor Overview Source

Figure 2.19. Locked assets cannot be edited by other users

2.5.4. Data Modeller Tool Windows

Drools and jBPM configurations, Persistence (see Generation of JPA enabled Data Models) and
Advanced configurations were moved into "Tool Windows". "Tool Windows" are a hew concept
introduced in latest Uberfire version that enables the development of context aware screens. Each

46

Release Notes

"Tool Window" will contain a domain editor that will manage a set of related Data Object parame-

ters.

a Applicant.java - Data Objects

Applicant

Identifier Label
age

applicationDate

approved

creditRating

name

Type
Integer
Date
Boolean
String

String

© add field

Save

Delete

Rename | | Copy Validate

'Applicant' - general properties

Identifier

Label

Description

Package

Superclass

Applicant

org.mortgages

java.lang.Object

LatestVerson™ | % Y|~ |3 Drools

TypeSafe false
ClassReactive

PropertyReactive

i EVENT
Time: stamp

Duration

Expires

Remotable

Figure 2.20. Drools and jBPM domain tool window

Applicant.java - Data Objects

Applicant

Identifier Label
age

applicationDate

approved

creditRating

name

Type

Integer

Date

Boolean

String

String

© add field

Save

Delete

Rename | Copy | | Validate

'Applicant' - general properties

Identifier

Label

Description

Package

Superclass

Figure 2.21. Persistence tool window

Applicant

org.morigages

java.lang.Object

Latest Version ¥ | | % || T | A > JPA

Entity Properties

Persistable

Table name

Al

47

e © © & o0 ©

L]

L]

o [[v

)

Release Notes

a Applicant.java - Data Objects

Applicant
Identifier

age
applicationDate
approved
creditRating

name

Label

Type

Integer

Date

Boolean

String

String

© add field

Save | Delete | Rename Copy | Validate

'Applicant' - general properties

Identifier

Label

Description

Package

Superclass,

Applicant

org.morigages

java.lang.Object

LatestVersion ™ | x T A

o

Figure 2.22. Advanced configurations tool window

2.5.5. Generation of JPA enabled Data Models

> | Advanced

© add annotation

@org.kie.api.definition.type. TypeSafe

@org.kie.api.definition.type.ClassReactive

@org.kie.api.definition.type.Role

Data modeller was extended to support the generation of persistable Data Objects. The per-
sistable Data Objects are based on the JPA specification and all the underlying metadata are
automatically generated.

« "The New -> Data Object" Data Objects can be marked as persistable at creation time.

48

delete

delete

delete

B

Release Notes

Create new Data Object
* Data Object Invoice

Package org

#| Persistable @

& o

Figure 2.23. New Data Object

« The Persistence tool window contains the JPA Domain editors for both Data Object and Field.
Each editor will manage the by default generated JPA metadata

@ Invoice.java - Data Objects

Save Delete Rename Copy Validate | LatestVersion™ | x| ¥ | A > IPA
Invoice © add field 'Invoice’ - general properties)
Entity Properties
Identifier Label Type Identifier Invoice Persistable
id Leng x

Label

Table name INVOICE
Description

Package org.mortgages v o

Superciass java.lang.Object

Figure 2.24. Data Object level JPA domain editor

49

« [+ 0

Release Notes

@ Invoice.java - Data Objects Save || Delete || Rename || Copy || validate || Latestverson ¥ | | % || Y| A > 3pp ﬁ
x
Invoice © add field 'id' - general properties
Identifier Properties L]
Identifier Label Type Identifier id Is Identifier]
CEE N -
Generation AUTO (3
strategy
Description
Sequence INVOICE_ID_GENERATOF (&
Generator
Type Long v | List

Column Properties

Relationship Properties

Figure 2.25. Field level JPA domain editor

» Persistence configuration screen was added to the project editor.

& persistence.xml - Persistence descriptor Save || Delete || Rename || Copy || Validate | LatestVerson™ | | % || ¥ || A

Persistence Unit

mortgages:mortgages:0.0.1

Persistence Provider

org.hibernate.ejb.HibernatePersistence

Data Source

java:jboss/datasources/ExampleDS

Transactions Type
® JTA

Advanced properties
Project persistable Data Objects

Class name Action

org.mortgages. Invoice B Delete

H 4 1of1 »

enter a persistable class name Add class Add project persistable classes

Figure 2.26. Persistence configuration

50

Release Notes

2.5.6. Data Set Authoring

A new perspective for authoring data set definitions has been added. Data set definitions make
it possible to retrieve data from external systems like databases, CSV/Excel files or even use a
Java class to generate the data. Once the data is available it can be used, for instance, to create
charts and dashboards from the Perspective Editor just feeding the charts from any of the data
sets available.

KIE Workbench

Home ~ Autharing = Deploy

PlugIn Management

Apps

Data Sets

Data Set Explorer mewpataset % ~ ~ Data Set Authoring Home

@ Expense reports
@ World population There are 3 data sets available

[GIT Contributors Next steps:
1. Define a new data set to fetch your data from an external storage system
2. Create displayers to visualize data from your newly created data sets
3. Create new dashboards to organize and coordinate your data displayers

Figure 2.27. Data Sets Authoring Perspective
2.6. What is New and Noteworthy in Drools 6.2.0

2.6.1. Propagation modes

The introduction of PHREAK as default algorithm for the Drools engine made the rules' evaluation
lazy. This new Drools lazy behavior allowed a relevant performance boost but, in some very spe-
cific cases, breaks the semantic of a few Drools features.

More precisely in some circumstances it is necessary to propagate the insertion of new fact into th
session immediately. For instance Drools allows a query to be executed in pull only (or passive)
mode by prepending a '?' symbol to its invocation as in the following example:

Example 2.4. A passive query

query Q (Integer i)

51

Release Notes

String(this ==i.toString())
end
rul e R when
$i : Integer()
?2Q S$i;)
then
Systemout.println($i);
end

In this case, since the query is passive, it shouldn't react to the insertion of a String matching the
join condition in the query itself. In other words this sequence of commands

Ki eSessi on ksession = ...
ksession.insert(1);
ksession.insert("1");
ksession.fireA | Rul es();

shouldn't cause the rule R to fire because the String satisfying the query condition has been
inserted after the Integer and the passive query shouldn't react to this insertion. Conversely the
rule should fire if the insertion sequence is inverted because the insertion of the Integer, when the
passive query can be satisfied by the presence of an already existing String, will trigger it.

Unfortunately the lazy nature of PHREAK doesn't allow the engine to make any distinction regard-
ing the insertion sequence of the two facts, so the rule will fire in both cases. In circumstances like
this it is necessary to evaluate the rule eagerly as done by the old RETEOO-based engine.

In other cases it is required that the propagation is eager, meaning that it is not immedate, but
anyway has to happen before the engine/agenda starts scheduled evaluations. For instance this
is necessary when a rule has the no-loop or the lock-on-active attribute and in fact when this
happens this propagation mode is automatically enforced by the engine.

To cover these use cases, and in all other situations where an immediate or eager rule eval-
uation is required, it is possible to declaratively specify so by annotating the rule itself with
@Propagation(Propagation.Type), where Propagation.Type is an enumeration with 3 possible
values:

* IMMEDIATE means that the propagation is performed immediately.

* EAGER means that the propagation is performed lazily but eagerly evaluated before scheduled
evaluations.

« LAZY means that the propagation is totally lazy and this is default PHREAK behaviour

This means that the following drl:

Example 2.5. A data-driven rule using a passive query

query Q (Integer i)

52

Release Notes

String(this ==i.toString())
end
rul e R @ropagation(l MVEDI ATE) when
$i : Integer()
?2Q S$i;)
then
Systemout.println($i);
end

will make the rule R to fire if and only if the Integer is inserted after the String, thus behaving in
accordance with the semantic of the passive query.

2.7. New and Noteworthy in KIE Workbench 6.2.0

2.7.1. Download Repository or Part of the Repository as a ZIP

This feature makes it possible to download a repository or a folder from the repository as a ZIP file.

Project Explorer o
demo ~ = uf-playground —FProject View 5
% Repository View
mortgages
Sh Link
. - % Show as Links
Show as Folders
O pom.xml
o & Download Project
O projectimports

& Download Repository

Figure 2.28. Download current repository or project

53

Release Notes

Project Explorer o
demo = uf-playground = = mortgages - =
mortgages
[src A (=
0y pom.xml A ™
O project.imports A @

Figure 2.29. Download a folder

2.7.2. Project Editor permissions
The ability to configure role-based permissions for the Project Editor have been added.

Permissions can be configured using the WEB- I NF/ cl asses/ wor kbench- pol i cy. properties
file.

The following permissions are supported:

Save button

feature. wb_proj ect_aut hori ng_save
+ Delete button
feature.wb_project_authoring_delete
« Copy button
f eat ure. wb_proj ect _aut hori ng_copy
¢ Rename button

feature. wb_proj ect _aut hori ng_renane

54

Release Notes

 Build & Deploy button

feature.wb_project_authoring_buil dAndDepl oy

2.7.3. Unify validation style in Guided Decision Table Wizard.

All of our new screens use GWT-Bootstrap widgets and alert users to input errors in a consistent
way.

One of the most noticable differences was the Guided Decision Table Wizard that alerted errors
in a way inconsistent with our use of GWT-Bootstrap.

This Wizard has been updated to use the new look and feel.

OutputField

SclScoreCardData Fact binding

Facts that need to be referenced in
the actions need to be given an
identifier. If an identifier is not given
the systemn will create one.

Binding: | g5 | ?}

Duplicate bindings detected

Figure 2.30. New Guided Decision Table Wizard validation

2.7.4. Improved Wizards

During the re-work of the Guided Decision Table's Wizard to make it's validation consistent with
other areas of the application we took the opportunity to move the Wizard Framework to GWT-
Bootstrap too.

The resulting appearance is much more pleasing. We hope to migrate more legacy editors to
GWT-Bootstrap as time and priorities permit.

55

Release Notes

+f Summary

+f Imports

+7 Add Fact Patterns

4+ Add Constraints

+ Add Actions to update Facts
+ Add Actions to insert Facts

4 Columns to expand

Guided Decision Table Wizard

Define actions to insert new Facts\Pattemns.

Available patterns Chosen patterns

Applicant LoanApplication
Bankruptcy
DataField

>>
IncomeSource
LoanApplication =<
OutputField

SclScoreCardData

Binding (7]

Available fields

this : this

amount : Whole numb
approved : True or Fal
approvedRate : Whole
deposit : Whole numb
explanation : Text
insuranceCost : Whole

lengthYears : Whole n~
»

Chosen fields

[Amount loaned] amount

<<

Logically insert a fact - the fact will be deleted when the supporting evidence is removed. @

* Column header (description): | Amount loaned

(optional) value list:

Default value:

< Previous

Next >

Cancel

Figure 2.31. New Wizard Framework

2.7.5. Consistent behaviour of XLS, Guided Decision Tables
and Guided Templates

Consistency is a good thing for everybody. Users can expect different authoring metaphores to
produce the same rule behaviour (and developers know when something is a bug?).

There were a few inconsistencies in the way XLS Decision Tables, Guidied Decision Tables and
Guided Rule Templates generated the underlying rules for empty cells. These have been elimi-
nated making their operation consistent.

« If all constraints have null values (empty cells) the Pattern is not created.

Should you need the Pattern but no constraints; you will need to include the constraintt hi s !
= null.

This operation is consistent with how XLS and Guided Decision Tables have always worked.

« You can define a constraint on a String field for an empty String or white-space by delimiting it

with double-quotation marks. The enclosing quotation-marks are removed from the value when
generating the rules.

56

Release Notes

The use of quotation marks for other String values is not required and they can be omitted.
Their use is however essential to differentiate a constraint for an empty String from an empty
cell - in which case the constraint is omitted.

2.7.6. Improved Metadata Tab

The Metadata tab provided in previous versions was redesigned to provide a better asset version-
ing information browsing and recovery. Now every workbench editor will provide an "Overview
tab" that will enable the user to manage the following information.

) Droots Workbench x

o o YR : : ®0(iE =

U berFire Explore - New ~ Project ~ Repository ~

Project Explorer @ Underage.rdrl - Guided Rules Save | Delete | | Rename || Copy | Validate | | LatestVersion ™ | | x || ~

demo ~ / uf-playground ~ / mortgages v ¢ Type Guided Rules Comments. {Varzlon:1
Description s project refactoring to use mortgages package

& <default> Used . " 4 Version 2

sed in projects morigages
& org L o . admin: Applicant age changed to 22
& Last modified By/admin on 2014-09-02 17:58 e i be Glase oA

Created on By/Walter Medvedeo on 2013-08-18 15:54 oo] [

Version history Metadata Applicant age changed to 23

g DRL ~

Date Commit Message Author
(] bomam specirc LaNGUAGE DEFINITIONS -
Current Tuesday, 2014 Sep... Applicant age chan... admin
() enmerarion permimions «
Select Tuesday, 2014 Sep... ~ Applicant age chan... admin
&) cuwep deciion Tasies -
Select Wednesday, 2013 ... project refactoring t Walter Medvedeo
@) oupep rues ~
Bankruptcy history !
No bad credit checks
no NINJAs
ReglaRestored
Underage
(3| cuiDED RULES (WITH DSL) ~
&) () ¢ 13003 b

CreditApproval
RegexDslRule
Editor Overview Source Config

E JAVA SOURCE FILES ¥ %3
v
@] TesT scenamios ~ Problems Refresn | | x ||~
Level Text Flle Column Line

Figure 2.32. Improved Metadata Tab

 Versions history

The versions history shows a tabular view of the asset versions and provides a "Select" button
that will enable the user to load a previously created version.

57

Release Notes

Type: Guided Rules Comments
Description No ption yet - 0
#
Used in projects mortgages B
Last modified By/admin on 2014-09-02 17:58 “Age should be change to 23"
Created on: By/Walter Medvedeo on 2013-09-18 15:54

Version history Metadata

Date Commit Message Author
Current Tuesday, 2014 Sep... Applicant age chan... admin
Select Tuesday, 2014 Sep... = Applicant age chan... admin
Select Wednesday, 2013 ... project refactoringt... Walter Medvedeo

2044-05-02 1801

4 4 1-3of3 » » M

Figure 2.33. Versions history
* Metadata

The metadata section gets access to additional file attributes.

58

Release Notes

Type: Guided Rules Comments
Description No descripti
5 admin:
Used in projects mortgages "Age should be change to 23 "
Last modified By/admin on 2014-09-02 17:38 2014.09.02 1801
Created on: By/Walter Medvedeo on 2013-09-18 15:54

Version history ~ Metadata

Categories: L
Note: Applicant age changed to 23
URI:

git://master@uf-playground/mortgages/src/main/resources/org/mortgages/Underage. rdrl
Subject:
Type:

External link:

Source:

Figure 2.34. Metadata section
+ Comments area

The redesigned comments area enables much clearer discussions on a file.
 Version selection dropdown

The "Version selector dropdown" located at the menu bar provides the ability to load and restore
previous versions from the "Editor tab", without having to open the "Overview tab" to load the
"Version history".

59

Release Notes

Underage.rdrl - Guided Rules Save | Delete || Rename | Copy | Validate || LatestVersion™ | | x | ~
None selected |
EXTENDS Version 1
WHEN | project refactoring to use mortgages package &
1, Thereisa LoanA.pp\lcat\.on [application] | Version2 agedl|
- There is an Applicant with: = Applicant age changed to 22 -
. age less than v oa =
THEN Applicant age changed to 23 g
1. delete LoanApplication [application] agedl
Set value of LoanApplication [application] approved false ra a
2. gl
Set value of LoanApplication [application] explanation Underage =] =]
(show
options...)

Editor Overview Source Config

Figure 2.35. Version selection dropdown

2.7.7. Improved Data Objects Editor

The Java editor was unified to the standard workbench editors functioning. It means that and now
every data object is edited on his own editor window.

60

Release Notes

) KIE Workbench x

e+ (& [localhost P+ =

KIE Workbench

Explore ~ New Item ~ Repository ~ Q
Project Explorer & = ~ Applicant.java - Data Objects Save Delete || Rename Copy | Validate LlatestVerson™ | X ™| A
demo ~ | uf-playground ~ / mortgages ~
Create new field Data Object Field

T T BT *Id Label
en Pro itor
g 2 Identifier Applicant
Label
E DRL ~
org.mortgages.Applicant Description
g DATA OBJECTS ~
Identifier Label Type
Applicant Package org.mortgages v o
Bankruptcy
Superclass ava.lang.Object v
IncomeSource applicationDate Date I 9N
LoanApplication
approved Boolean Drools & JBPM parameters:
DOMAIN SPECIFIC LANGUAGE DEFINITIONS ~
g] creditRating String TypeSafe v @
E ENUMERATION DEFINITIONS ~ name String ClassReactive (-]
PropertyReactive (7]
@ GUIDED DECISION TABLES =
Role + @
@ GUIDED RULES ~ Timestamp v e
@ GUIDED RULES (WITH DSL) = Duration v e
Expires
@ TEST SCENARIOS ~ ©
Remotable @
Editor ~ Overview Source
»
Messages Refresh || Clear | | x| ™| A

Figure 2.36. Improved Data Object Editor

« "New -> Data Object" option was added to create the data objects.

« Overview tab was added for every file to manage the file metadata and have access to the file
versions history.

» Editable "Source Tab" tab was added. Now the Java code can be modified by administrators
using the workbench.

» "Editor" - "Source Tab" round trip is provided. This will let administrators to do manual changes
on the generated Java code and go back to the editor tab to continue working.

» Class usages detection. Whenever a Data Object is about to be deleted or renamed, the project
will be scanned for the class usages. If usages are found (e.g. in drl files, decision tables, etc.)
the user will receive an alert. This will prevent the user from breaking the project build.

61

Release Notes

) KIE Workbench x

$ W,>> & [localhost: w =

Usages Detected

Class: org.mortgages.Applicant is being used in the following files, do you still
want to delete it?

pproval.rasir

RegexDsIRule.rdslr

credit ratings

ApplicantDs!.ds!

No bad credit checks.rdrl

Underage.rarl

NINJAs scenario

©ves, e ey

Figure 2.37. Usages detection

2.7.8. Execution Server Management Ul

A new perspective called Management has been added under Servers top level menu. This per-
spective provides users the ability to manage multiple execution servers with multiple containers.
Available features includes connect to already deployed execution servers; create new, start, stop,
delete or upgrade containers.

62

Release Notes

8086 KIE Workbench e
alr |2 O] [L)| &) &][+ & ocalhost:3080 ¢ |uReade MO
KIE Workbench
Servers ~
Server Management Browser Container Info [mortgages] x
oe Filter... x ¥ Register Z Refresh .
nterval Start Scanner = Stop Scanner Scan Now @
oe MyServer +
oo mortgages - Endpaint
http://localhost:8081/kie-server-
services/services/rest/server/containers/mortgages
Release Id
I Group Id Artifact Id Version
mortgages mortgages LATEST Upgrade

Resolved Release Id

Group Id Artifact 1d Version

mortgages mortgages 0.01

Figure 2.38. Management perspective

Note

Current version of Execution Server just supports rule based execution.

2.7.9. Social Activities

A brand new feature called Social Activities has been added under a new top level menu item
group called Activity.

This new feature is divided in two different perspectives: Timeline Perspective and People Per-
spective.

The Timeline Perspective shows on left side the recent assets created or edited by the logged
user. In the main window there is the "Latest Changes" screen, showing all the recent updated
assets and an option to filter the recent updates by repository.

63

Release Notes

Recent Assets Latest Changes
Ef_-ig anotherDRL.drl edited today Showing updates for: | Latest Changes |

B Finance.java

—= . = i added 05/09/2014 11:48:52
HE‘:E sampleDrl.drl edited today [admin o)

1N

- = in edited 05/09/2014 11:49:35 "JIRA[1234]"
s) Finance.java added today E_‘..‘a admin /09/ []
& :
]
E‘i - Finance.java edited today = sampleDrl.drl
= 1 ﬂ director edited 05/09/2014 11:47:15 "JIRA[123]"
% anotherDRL.drl

admin edited 05/09/2014 11:46:38 "rule changed for X"

Figure 2.39. Timeline Perspective

The People Perspective is the home page of an user. Showing his infos (including a gravatar
picture from user e-mail), user connections (people that user follow) and user recent activities.
There is also a way to edit an user info. The search suggestion can be used to navigate to a user
profile, follow him and see his updates on your timeline.

Eder Ignatowicz's Profile " Eder Ignatowicz's Recent Activities

Connections:

]

= anotherDRL.drl edited today

- sampleDrl.drl edited today

-
i

W4

User name:admin

E-mail:ignatowicz@gmail.com

Edit my infos

Figure 2.40. People Perspective

64

Release Notes

Edit my infos

E-mail

ignatowicz@gmail.com

Real Name

Eder Ignatowicz

Figure 2.41. Edit User Info

2.7.10. Contributors Dashboard

A brand new perspective called Contributors has been added under a new top level menu item
group called Activity. The perspective itself is a dashboard which shows several indicators about
the contributions made to the managed organizations / repositories within the workbench. Every
time a organization/repository is added/removed from the workbench the dashboard itself is up-
dated accordingly.

This new perspective allows for the monitoring of the underlying activity on the managed repos-
itories.

65

Release Notes

KIE Workbench

Contributors

Commits per organization

Activity ~

Contributors

#Commits evolution

500 60
o 45
£ 400
£
3 30
5 30
o
b
£ demo. 18
S
£ 0 o
O T T T T T T T I
-, NN e‘q_n e&a e‘q_n e&a PR d‘ﬂ'“ A AN a® e&a e‘@ e&a
100 PEA s d@t 0% 0P ot e et Pt T S0 :?\90 Ry
1 2 3 P-%eg‘@ a0 e 3 ged P-QFO@ oo
#repositories
SUNDAY
- Select Organization - v P
- Select Repository - A ai TUESDAY
2012 maz WEDNESDAY
- Select Author - v f=po -
o4 THURSDAY
- Select Top Contributor - v
FRIDAY
SATURDAY

Author

Repository

Date

Commit

David Gutierrez

Administrator User

David Gutierrez

Administrator User

David Gutierrez

jopm-playground
jopm-playground
jbpm-playground
jbpm-playgreund

jbpm-playground

2013 Nov 22 17:22:35

2013 Nov 22 17:22:35

2013 Nov 22 17:22:35

2013 Nov 22 17:22:35

2013 Nov 22 17:22:35

delete {{Evaluation/.pom.xml}

hjk

delete {{Evaluation/src/main/resource. .
hjk

delete {{Evaluation/_project.imports}

M4 1501237 » » M

Figure 2.42. Contributors perspective

2.7.11. Package selector
The location of new assets whilst authoring was driven by the context of the Project Explorer.
This has been replaced with a Package Selector in the New Resource Popup.

The location defaults to the Project Explorer context but different packages can now be more
easily chosen.

66

Release Notes

* Resource Name

Location

Create new Guided Rule

resource name

org.mortgages

<default>
org

org.mortgages

urgpz

(DSL)

O Ok Cancel

Figure 2.43. Package selector

2.7.12. Improved visual consistency

All Popups have been refactored to use GWT-Bootstrap widgets.

Whilst a simple change it brings greater visual consistency to the application as a whole.

67

Release Notes

Condition column configuration

Pattern:LoanApplication [applicatinn
Calculation type:® Literal value) Formula® Predicate

Fielg: @mount ey

Operator.greater than g7

From Entry Point:

Column header (description); &mount min
(optional) value list:
Default value:

Binding:

Hide column:_

O Ok Cancel

Figure 2.44. Example Guided Decision Table Editor popup

68

Release Notes

Modify constraints for LoanApplication

_"'\1("

Modify constraints for LoanApplication

Add a restriction on a field ... ¥
Multiple field constraint ... v ©
Advanced options:
Add a new formula style expression New formula

Expression editor Expression editor

Variable name @ Set

Figure 2.45. Example Guided Rule Editor popup

2.7.13. Guided Decision Tree Editor

A new editor has been added to support modelling of simple decision trees.

See the applicable section within the User Guide for more information about usage.

dtl.tdrl - Guided Decision Trees

aaaaa

Applicant

Q- X
A
® 3 T 1 T $a : Applican:
age
[Y-
@ |
e creditRating == AA —— credifRating = OK — creditRating == Sub prim
. creditRating
""""""" Update $3 ——— Update 38 ——————— Update $3
Bankruptcy \/

IncomeSource

LoanApplication

Actions

Figure 2.46. Example Guided Decision Tree

69

Release Notes

2.7.14. Create Repository Wizard

A wizard has been created to guide the repository creation process. Now the user can decide
at repository creation time if it should be a managed or unmanaged repository and configure all
related parameters.

New Repository

+ Basic Settings

Managed Repository Settings Repository Name

DemoRepository

* In Organizational Unit

demo v

¥ Managed Repository

A managed repository provides project-level version control and project branches for managing the release cycle.

< Previous Next » Cancel & Finish

Figure 2.47. Create Repository Wizard 1/2

70

Release Notes

New Repository

+ Basic Settings
+ Managed Repository
Settings

Repository Type:

Single-project Repository

Create a single managed project in this repository. Use this option for simple or self-contained projects.

* Multi-project Repository

Integrate multiple projects to create a larger application. The projects in this repository will be managed

together, and will all increment version numbers together.

Project Branches:

¥ Automatically Configure Branches (master/devirelease)

Project Settings:
*Name

DemoRepository
Description

enter project description
* Group

demo
* Artifact

DemoRepository

* Version

1.0.0-SNAPSHOT

< Previous

Figure 2.48. Create Repository Wizard 2/2

2.7.15. Repository Structure Screen

Next »

The new Repository Structure Screen will let users to manage the projects for a given repository,
as well as other operations related to managed repositories like: branch creation, assets promotion

and project release.

71

Release Notes

@ KIE Workbench %\

&° »% (& | [localhost:8080/kie-wb-6.3.0-SNAPSHOT-eap6_4/kie-wb htmlitorg kie workbench.common.screens.messageconsole.MessageConsole s [=

KIE Workbench

Explore ~ New Item ~ Search Q

Project Explorer Repository Structure & |~ Repository Structure ManagedRepositoryExample (master) - > ManagedRepositoryExample:demo:1.0.0... confgure | Promote Release | | x | ™ | A

B IS ™
demo ~ ' ManagedRepositoryExample ~ / Module2 ~

master + Repository Groupld EET)
Repository Artifactld
Repository Version BRGS0

Open Project Editor

[Hodues

© Add Module

Module

Module1 © Deete

Module2 # Edit © Delete

Figure 2.49. Repository Structure Screen for a Managed Repository

72

Release Notes

@ KIE Workbench

& »» (& [localhost: ol @ =

KIE Workbench

Explore ~ New Item ~ Q
Project Explorer [© A~ Unmanaged Repository uf-playground (master) configure | | Promote | [Release | | x || ~ || A
demo ~ / uf-playground - ' mortgages -

Open Project Editor

© New Project
Module
"
Messages Refresh | Cear | | x| ¥ || A
Javascript:; Text Flle Column Line -

Figure 2.50. Repository Structure Screen for an Unmanaged Repository
2.8. New and Noteworthy in Integration 6.2.0

2.8.1. KIE Execution Server

A new KIE Execution Server was created with the goal of supporting the deployment of kjars and
the automatic creation of REST endpoints for remote rules execution. This initial implementation
supports provisioning and execution of kjars via REST without any glue code.

A user interface was also integrated into the workbench for remote provisioning. See the
workbench's New&Noteworthy for details.

@ath("/server")
public interface KieServer {

@ET
@°r oduces({Medi aType. APPLI CATI ON_XM., Medi aType. APPL| CATI ON_JSON})
public Response getlnfo();

@0osT

@onsumnes({ Medi aType. APPLI CATI ON_XM., Medi aType. APPLI CATI ON_JSON})
@°r oduces({Medi aType. APPLI CATI ON_XM., Medi aType. APPL| CATI ON_JSON})
publ i c Response execute(ConmmandScript comrand);

@ET

73

Release Notes

@at h("cont ai ners")
@°r oduces({ Medi aType. APPLI CATI ON_XM., Medi aType. APPLI CATI ON_JSON})
publ i c Response |istContainers();

@ET

@Pat h("containers/{id}")

@r oduces({Medi aType. APPLI CATI ON_XM., Medi aType. APPL| CATI ON_JSON})
publ i c Response get Containerlnfo(@PathParan("id") String id);

@ur
@Pat h("contai ners/{id}")
@Consunes({ Medi aType. APPLI CATI ON_XM., Medi aType. APPL| CATI ON_JSON})
@°r oduces({Medi aType. APPLI CATI ON_XM., Medi aType. APPL| CATI ON_JSON})
publ i ¢ Response creat eCont ai ner (@at hParan("id") String id, K eContainerResource container);

@ELETE

@ath("containers/{id}")

@°r oduces({ Medi aType. APPLI CATI ON_XM., Medi aType. APPLI CATI ON_JSON})
publ i c Response di sposeContai ner(@PathParan("id") String id);

@QosT

@Pat h("contai ners/{id}")

@onsumres({ Medi aType. APPLI CATI ON_XM., Medi aType. APPL| CATI ON_JSON})

@r oduces({Medi aType. APPLI CATI ON_XM., Medi aType. APPL| CATI ON_JSON})

public Response execute(@PathParam("id") String id, String cndPayl oad);

@ET

@Pat h("contai ners/{id}/rel ease-id")

@°r oduces({Medi aType. APPLI CATI ON_XM., Medi aType. APPL| CATI ON_JSON})
publ i c Response getRel easel d(@pat hParam("id") String id);

@osT

@ath("contai ners/{id}/rel ease-id")

@onsunes({ Medi aType. APPLI CATI ON_XM., Medi aType. APPLI CATI ON_JSON})

@°r oduces({Medi aType. APPLI CATI ON_XM., Medi aType. APPL| CATI ON_JSON})

publ i c Response updat eRel easel d(@Pat hParan("id") String id, Releaseld releaseld);

@sET

@rat h("cont ai ners/{id}/scanner")

@r oduces({Medi aType. APPLI CATI ON_XM., Medi aType. APPL| CATI ON_JSON})
public Response get Scanner|nfo(@athParan("id") String id);

@0osT

@pat h("cont ai ners/{id}/scanner")

@onsunes({ Medi aType. APPLI CATI ON_XM., Medi aType. APPL| CATI ON_JSON})

@°r oduces({Medi aType. APPLI CATI ON_XM., Medi aType. APPL| CATI ON_JSON})

publi c Response updateScanner(@athParan("id") String id, KieScannerResource resource);

Figure 2.51. Kie Server interface

74

Release Notes

2.9. What is New and Noteworthy in Drools 6.1.0

2.9.1. JMX support for KieScanner

Added support for IMX monitoring and management on KieScanner and KieContainer. To en-
able, set the property ki e. scanner . nbeans to enabl ed, for example via Java command line:
Dki e. scanner . nbeans=enabl ed .

KieScannerMBean will register under the name:

It exposes the following properties:

» Scanner Release Id: the release ID the scanner was configured with. May include maven range
versions and special keywords like LATEST, SNAPSHOT, etc.

* Current Release Id: the actual release ID the artifact resolved to.
* Status: STARTING, SCANNING, UPDATING, RUNNING, STOPPED, SHUTDOWN

It also exposes the following operations:

» scanNow(): forces an immediate scan of the maven repository looking for artifact updates

« start(): starts polling the maven repository for artifact updates based on the polling interval
parameter

« stop(): stops automatically polling the maven repository
2.10. New and Noteworthy in KIE Workbench 6.1.0

2.10.1. Data Modeler - round trip and source code preservation

Full round trip between Data modeler and Java source code is now supported. No matter where
the Java code was generated (e.g. Eclipse, Data modeller), data modeler will only update the
necessary code blocks to maintain the model updated.

2.10.2. Data Modeler - improved annotations

New annotations @TypeSafe, @ClassReactive, @PropertyReactive, @Timestamp, @Duration
and @Expires were added in order enrich current Drools annotations manged by the data modeler.

2.10.3. Standardization of the display of tabular data

We have standardized the display of tabular data with a new table widget.

The new table supports the following features:

» Selection of visible columns

* Resizable columns

75

Release Notes

* Moveable columns

— e |
= L=
Open Format Name Created Date
Open Dummy rule.drl 2014 Jun 10 14:50:34
Open ApplicantDsl.dsl 2014 Jun 10 14:50:35
=
Open credit ratings.enumeration 2014 Jun 10 14:50:36
o
Pricing loans.gdst 2014 Jun 10 14:50:37
Open
Open Bankruptcy history.rdri 2014 Jun 10 14:50:39

Figure 2.52. New table

The table is used in the following scenarios:

Inbox (Incoming changes)

* Inbox (Recently edited)

* Inbox (Recently opened)

» Project Problems summary

« Artifact Repository browser

 Project Editor Dependency grid

 Project Editor KSession grid

» Project Editor Work Item Handlers Configuration grid
» Project Editor Listeners Configuration grid

» Search Results grid

2.10.4. Generation of modify(x) {...} blocks

M W M »

The Guided Rule Editor, Guided Template Editor and Guided Decision Table Editor have been

changed to generate modi fy(x){...}

76

1-10 of 15

Release Notes

Historically these editors supported the older updat e(x) syntax and hence rules created within
the Workbench would not respond correctly to @r opert yReact i ve and associated annotations
within a model. This has now been rectified with the use of nodi fy(x){...} blocks.

2.11. New and Noteworthy in KIE API1 6.0.0

2.11.1. New KIE name

KIE is the new umbrella name used to group together our related projects; as the family continues
to grow. KIE is also used for the generic parts of unified API; such as building, deploying and
loading. This replaces the droolsjbpm and knowledge keywords that would have been used before.

/\

[OptaPIanner Drools UberFlre iBPM

[Guvnor

v v
[Drools-WB \(‘JBPM-WB

KIE-WB

Figure 2.53. KIE Anatomy

2.11.2. Maven aligned projects and modules and Maven Deploy-
ment
One of the biggest complaints during the 5.x series was the lack of defined methodology for de-

ployment. The mechanism used by Drools and jBPM was very flexible, but it was too flexible. A
big focus for 6.0 was streamlining the build, deploy and loading (utilization) aspects of the sys-

77

Release Notes

tem. Building and deploying activities are now aligned with Maven and Maven repositories. The
utilization for loading rules and processess is now convention and configuration oriented, instead
of programmatic, with sane defaults to minimise the configuration.

Projects can be built with Maven and installed to the local M2_REPO or remote Maven reposito-
ries. Maven is then used to declare and build the classpath of dependencies, for KIE to access.

2.11.3. Configuration and convention based projects

The 'kmodule.xml' provides declarative configuration for KIE projects. Conventions and defaults
are used to reduce the amount of configuration needed.

Example 2.6. Declare KieBases and KieSessions

<knodul e xm ns="http://ww. drool s. or g/ xsd/ knodul e" >
<kbase nanme="kbasel" packages="org. nypackages">
<ksessi on name="ksessi onl"/>
</ kbase>
</ knodul e>

Example 2.7. Utilize the KieSession

Ki eServi ces ks = Ki eServices. Factory.get();
Ki eCont ai ner kCont ai ner = ks. get Ki eCl asspat hCont ai ner () ;

Ki eSessi on kSession = kCont ai ner. newKi eSessi on("ksessi onl");
kSessi on. i nsert(new Message("Dave", "Hello, HAL. Do you read ne, HAL?"));
kSession.fireA |l Rul es();

2.11.4. KieBase Inclusion

It is possible to include all the KIE artifacts belonging to a KieBase into a second KieBase. This
means that the second KieBase, in addition to all the rules, function and processes directly defined
into it, will also contain the ones created in the included KieBase. This inclusion can be done
declaratively in the kmodule.xml file

Example 2.8. Including a KieBase into another declaratively

<kmodul e xm ns="http://ww. dr ool s. or g/ xsd/ knodul e" >
<kbase nanme="kbase2" includes="kbasel">
<ksessi on nanme="ksessi on2"/>
</ kbase>
</ kmodul e>

or programmatically using the Ki eMbdul eMbdel .

78

Release Notes

Example 2.9. Including a KieBase into another programmatically

Ki eMbdul eMbdel knodul e = Ki eServi ces. Factory. get (). newki eModul eMbdel () ;
Ki eBaseMdbdel ki eBaseMbdel 1 = knodul e. newKi eBaseMdel (" KBase2") . addl ncl ude("KBasel");

2.11.5. KieModules, KieContainer and KIE-CI

Any Maven produced JAR with a 'kmodule.xml' in it is considered a KieModule. This can be loaded
from the classpath or dynamically at runtime from a Resource location. If the kie-ci dependency
is on the classpath it embeds Maven and all resolving is done automatically using Maven and can
access local or remote repositories. Settings.xml is obeyed for Maven configuration.

The KieContainer provides a runtime to utilize the KieModule, versioning is built in throughout,
via Maven. Kie-ci will create a classpath dynamically from all the Maven declared dependencies
for the artifact being loaded. Maven LATEST, SNAPSHOT, RELEASE and version ranges are
supported.

Example 2.10. Utilize and Run - Java

Ki eServi ces ks = Ki eServices. Factory.get();
Ki eCont ai ner kCont ai ner = ks. newKi eCont ai ner (
ks. newRel easel d("org. nygroup", "nyartefact", "1.0"));

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi onl");
kSessi on. i nsert (new Message("Dave", "Hello, HAL. Do you read ne, HAL?"));
kSession.fireA | Rul es();

KieContainers can be dynamically updated to a specific version, and resolved through Maven
if KIE-CI is on the classpath. For stateful KieSessions the existing sessions are incrementally
updated.

Example 2.11. Dynamically Update - Java

Ki eCont ai ner kCont ai ner. updat eToVer si on(
ks. newRel easel d("org. nygroup", "nyartefact", "1.1"));

2.11.6. KieScanner

The Ki eScanner is a Maven-oriented replacement of the KnowledgeAgent present in Drools 5.
It continuously monitors your Maven repository to check if a new release of a Kie project has
been installed and if so, deploys it in the Ki eCont ai ner wrapping that project. The use of the
Ki eScanner requires kie-ci.jar to be on the classpath.

A Ki eScanner can be registered on a Ki eCont ai ner as in the following example.

79

Release Notes

Example 2.12. Registering and starting a KieScanner on a KieContainer

Ki eServi ces ki eServices = KieServices. Factory.get();

Rel easel d rel easel d = ki eServi ces. newRel easel d("org.acne", "nyartifact", "1.0- SNAPSHOT");
Ki eCont ai ner kCont ai ner = ki eServi ces. newKi eCont ai ner(rel easeld);

Ki eScanner kScanner = ki eServi ces. newKi eScanner (kCont ai ner);

/1 Start the KieScanner polling the Maven repository every 10 seconds
kScanner.start(10000L);

In this example the Ki eScanner is configured to run with a fixed time interval, but it is also pos-
sible to run it on demand by invoking the scanNow() method on it. If the Ki eScanner finds, in
the Maven repository, an updated version of the Kie project used by that Ki eCont ai ner it auto-
matically downloads the new version and triggers an incremental build of the new project. From
this moment all the new Ki eBases and Ki eSessi ons created from that Ki eCont ai ner will use the
new project version.

2.11.7. Hierarchical ClassLoader

The CompositeClassLoader is no longer used; as it was a constant source of performance prob-
lems and bugs. Traditional hierarchical classloaders are now used. The root classloader is at the
KieContext level, with one child ClassLoader per namespace. This makes it cleaner to add and
remove rules, but there can now be no referencing between namespaces in DRL files; i.e. func-
tions can only be used by the namespaces that declared them. The recommendation is to use
static Java methods in your project, which is visible to all namespaces; but those cannot (like other
classes on the root KieContainer ClassLoader) be dynamically updated.

2.11.8. Legacy API Adapter

The 5.x API for building and running with Drools and jBPM is still available through Maven de-
pendency "knowledge-api-legacy5-adapter”. Because the nature of deployment has significantly
changed in 6.0, it was not possible to provide an adapter bridge for the KnowledgeAgent. If any
other methods are missing or problematic, please open a JIRA, and we'll fix for 6.1

2.11.9. KIE Documentation

While a lot of new documentation has been added for working with the new KIE API, the entire
documentation has not yet been brought up to date. For this reason there will be continued ref-
erences to old terminologies. Apologies in advance, and thank you for your patience. We hope
those in the community will work with us to get the documentation updated throughout, for 6.1

80

Release Notes

2.12. What is New and Noteworthy in Drools 6.0.0

2.12.1. PHREAK - Lazy rule matching algorithm

The main work done for Drools in 6.0 involves the new PREAK algorithm. This is a lazy algorithm
that should enable Drools to handle a larger number of rules and facts. AngendaGroups can now
help improvement performance, as rules are not evaluated until it attempts to fire them.

Sequential mode continues to be supported for PHREAK but now ‘'modify’ is allowed. While there is
no 'inference' with sequential configuration, as rules are lazily evaluated, any rule not yet evaluated
will see the more recent data as a result of 'modify’. This is more inline with how people intuitively
think sequential works.

The conflict resolution order has been tweaked for PHREAK, and now is ordered by salience and
then rule order; based on the rule position in the file.. Prior to Drools 6.0.0, after salience, it was
considered arbitrary. When KieModules and updateToVersion are used for dynamic deployment,
the rule order in the file is preserved via the diff processing.

2.12.2. Automatically firing timed rule in passive mode

When the rule engine runs in passive mode (i.e.: using fireAllRules) by default it doesn't fire con-
sequences of timed rules unless fireAllRules isn't invoked again. Now it is possible to change this
default behavior by configuring the KieSession with a Ti medRul eExecti onOpti on as shown in
the following example.

Example 2.13. Configuring a KieSession to automatically execute timed
rules

Ki eSessi onConfi guration ksconf = KieServices. Factory. get().newKi eSessi onConfiguration();
ksconf . set Opti on(Ti nedRul eExectionOpti on. YES);
KSessi on ksession = kbase. newKi eSessi on(ksconf, null);

It is also possible to have a finer grained control on the timed rules that have to be automatically
executed. To do this it is necessary to set a FI LTERED Ti medRul eExect i onOpt i on that allows to
define a callback to filter those rules, as done in the next example.

Example 2.14. Configuring a filter to choose which timed rules should be
automatically executed

Ki eSessi onConfi gurati on ksconf = KieServices. Factory. get().newKi eSessi onConfiguration();
conf.set Opti on(new Ti nedRul eExecti onOpti on. FI LTERED(new Ti nedRul eExecutionFilter() {
publ i c bool ean accept (Rule[] rules) {
return rul es[0]. get Nane() . equal s("MRule");
}

81

Release Notes

2.12.3. Expression Timers

Itis now possible to define both the delay and interval of an interval timer as an expression instead
of a fixed value. To do that it is necessary to declare the timer as an expression one (indicated
by "expr:") as in the following example:

Example 2.15. An Expression Timer Example

decl are Bean
del ay : String = "30s"
period : long = 60000
end

rul e "Expression tinmer"
timer(expr: $d, $p)
when
Bean($d : delay, $p : period)
t hen
end

The expressions, $d and $p in this case, can use any variable defined in the pattern matching
part of the rule and can be any String that can be parsed in a time duration or any numeric value
that will be internally converted in a long representing a duration expressed in milliseconds.

Both interval and expression timers can have 3 optional parameters named "start", "end" and
"repeat-limit". When one or more of these parameters are used the first part of the timer definition
must be followed by a semicolon ';' and the parameters have to be separated by a comma ', as
in the following example:

Example 2.16. An Interval Timer with a start and an end
timer (int: 30s 10s; start=3-JAN- 2010, end=5-JAN 2010)

The value for start and end parameters can be a Date, a String representing a Date or a long,
or more in general any Number, that will be transformed in a Java Date applying the following
conversion:

new Date(((Nunber) n).longVal ue())

Conversely the repeat-limit can be only an integer and it defines the maximum number of repeti-
tions allowed by the timer. If both the end and the repeat-limit parameters are set the timer will
stop when the first of the two will be matched.

82

Release Notes

The using of the start parameter implies the definition of a phase for the timer, where the beginning
of the phase is given by the start itself plus the eventual delay. In other words in this case the
timed rule will then be scheduled at times:

start + delay + n*period

for up to repeat-limit times and no later than the end timestamp (whichever first). For instance the
rule having the following interval timer

timer (int: 30s 1m start="3-JAN- 2010")

will be scheduled at the 30th second of every minute after the midnight of the 3-JAN-2010. This
also means that if for example you turn the system on at midnight of the 3-FEB-2010 it won't be
scheduled immediately but will preserve the phase defined by the timer and so it will be scheduled
for the first time 30 seconds after the midnight. If for some reason the system is paused (e.qg.
the session is serialized and then deserialized after a while) the rule will be scheduled only once
to recover from missing activations (regardless of how many activations we missed) and subse-
quently it will be scheduled again in phase with the timer.

2.12.4. RuleFlowGroups and AgendaGroups are merged

These two groups have been merged and now RuleFlowGroups behave the same as Agenda-
Groups. The get methods have been left, for deprecation reasons, but both return the same un-
derlying data. When jBPM activates a group it now just calls setFocus. RuleFlowGroups and
AgendaGroups when used together was a continued source of errors. It also aligns the codebase,
towards PHREAK and the multi-core explotation that is planned in the future.

2.13. New and Noteworthy in KIE Workbench 6.0.0

The workbench has had a big overhaul using a new base project called UberFire. UberFire is
inspired by Eclipse and provides a clean, extensible and flexible framework for the workbench.
The end result is not only a richer experience for our end users, but we can now develop more
rapidly with a clean component based architecture. If you like he Workbench experience you can
use UberFire today to build your own web based dashboard and console efforts.

As well as the move to a UberFire the other biggest change is the move from JCR to Git; there
is an utility project to help with migration. Git is the most scalable and powerful source repository
bar none. JGit provides a solid OSS implementation for Git. This addresses the continued perfor-
mance problems with the various JCR implementations, which would slow down once the number
of files and number of versions become too high. There has been a big "low tech" drive, to remove
complexity. Everything is now stored as a file, including meta data. The database is only there
to provide fast indexing and search. So importing and exporting is all standard Git and external
sites, like GitHub, can be used to exchange repositories.

83

Release Notes

In 5.x developers would work with their own source repository and then push JCR, via the team
provider. This team provider was not full featured and not available outside Eclipse. Git enables
our repository to work any existing Git tool or team provider. While not yet supported in the Ul, this
will be added over time, it is possible to connect to the repo and tag and branch and restore things.

File Edit View History Bookmarks Tools Accessibility Help

3 KIE Drools wWorkbench

\;D %3 localhost +@| M- Q @ "» v g’o’f
Drools Workbench

Explore ~ Newltem ~ Tools = Q
Project Explorer @ Guided Editor [Bankruptcy history] Save || Delkete || Rename || Copy | Vaidate | | x ||~
EXTENDS Mone selected o
demo = uf-playground ~ mortgages ~ =
WHEN h
B <default> 1. Thereis a LoanApplication [a]

The following exists

& og There is a Bankruptcy with:
& morigages any ofthe following:
2. yearOfOccurrence greater than j 1990
amountOwed greater than j 10000
% DRL THEN
| 1. delete LoanApplication [a]
@DOMAIN SPECIFIC LANGUAGE DEFINITION . fals
Setvalue of LoanApplication [a] approved false jn

2' IR S S F—y =

(© ENUMERATION DEFINITION L

Edit Source Config Metadata
// GUIDED DECISION TABLE
@ GUIDED RULE Problems x| |-

Bankruptcy history Level Text File Column Line
No bad credit checks

[ERR 102] Line

no NINJAs 7:0 mismatched
a8 Dummy rule.drl 0 7
Underage input ‘then’ in rule

"Dummy rule”

Figure 2.54. Workbench

The Guvnor brand leaked too much from its intended role; such as the authoring metaphors,
like Decision Tables, being considered Guvnor components instead of Drools components. This
wasn't helped by the monolithic projects structure used in 5.x for Guvnor. In 6.0 Guvnor 's focus
has been narrowed to encapsulates the set of UberFire plugins that provide the basis for building
a web based IDE. Such as Maven integration for building and deploying, management of Maven
repositories and activity notifications via inboxes. Drools and jBPM build workbench distributions
using Uberfire as the base and including a set of plugins, such as Guvnor, along with their own
plugins for things like decision tables, guided editors, BPMN2 designer, human tasks.

The "Model Structure" diagram outlines the new project anatomy. The Drools workbench is called
KIE-Drools-WB. KIE-WB is the uber workbench that combines all the Guvnor, Drools and jBPM
plugins. The BPM-WB is ghosted out, as it doesn't actually exist, being made redundant by KIE-
WB.

84

Release Notes

s N
Uberfire
|ong.uberfire]
hitps gt comdneokibpeyutarfin L j
s N
* Maven Reposilory
Guvnor * Projact Sarvics
[org guvnorguynod * Inbo
* WarkNew
hitpegithu. comdnooisibpm guor [
A
7 ™y
. * Hame page
kig-wh-commaon * Projact Explonar
[rg lokex kig-wb-common] * Diata Madaller
* Mata Data
> * Search
g it ol =t l‘//—) e -
- {,.'
" -~
I — e e
* DAL : '; * JBPM Console
drools-wb " Guided Edilor i jbpm-wb y " IEPM Desigrer
[mrg.drools:droals-wh] 'H':;Hl Scenarnas : [org.opmijbom-wb] |
I
L — F
m:p..--uun.im:mhumiqln%b\\ e ,,.'-'"
~ % - .
i e = e
e J .
ST B
N] I s = I
kie-drools-wb kie-wb I kie-jopm-wb !
g e ka-drools-wh] forg.kie:kie-ath] : [org kiekie-bpm-wh] :
Y e e e o +
sie-wh-distrbusons | hitpsgthub comichooishpmikie-wh-istrioutions

p

o

Figure 2.55. Module Structure

Important

KIE Drools Workbench and KIE Workbench share a common set of components

for generic workbench functionality such as Project navigation, Project definitions,
Maven based Projects, Maven Artifact Repository. These common features are
described in more detail throughout this documentation.

The two primary distributions consist of:

 KIE Drools Workbench
 Drools Editors, for rules and supporting assets.
¢ jBPM Designer, for Rule Flow and supporting assets.

» KIE Workbench

85

Release Notes

Drools Editors, for rules and supporting assets.

jBPM Designer, for BPMN2 and supporting assets.

jBPM Console, runtime and Human Task support.

jBPM Form Builder.
* BAM.

Workbench highlights:

New flexible Workbench environment, with perspectives and panels.

* New packaging and build system following KIE API.

« Maven based projects.

» Maven Artifact Repository replaces Global Area, with full dependency support.

« New Data Modeller replaces the declarative Fact Model Editor; bringing authoring of Java class-
es to the authoring environment. Java classes are packaged into the project and can be used
within rules, processes etc and externally in your own applications.

* Virtual File System replaces JCR with a default Git based implementation.
» Default Git based implementation supports remote operations.
» External modifications appear within the Workbench.

* Incremental Build system showing, near real-time validation results of your project and assets.
The editors themselves are largely unchanged; however of note imports have moved from the
package definition to individual editors so you need only import types used for an asset and not
the package as a whole.

2.14. New and Noteworthy in Integration 6.0.0

2.14.1. CDI

CDI is now tightly integrated into the KIE API. It can be used to inject versioned KieSession and
KieBases.

@ nj ect

@Sessi on("kbasel")

@Rel easel d(groupld = "jarl", rtifactld = "art1", version = "1.0")
private Ki eBase kbaselv10;

@ nj ect
@Base("kbasel")

86

Release Notes

@Rel easel d(groupld = "jarl", rtifactld = "art1", version = "1.1")
private Ki eBase kbaselv10;

Figure 2.56. Side by side version loading for 'jarl.KBasel' KieBase

@ nj ect

@KSessi on("ksessi onl")

@KRel easel d(groupld = "jar1l", rtifactld
private KieSession ksessionv10;

"art1", version "1.0")

@ nj ect

@Sessi on("ksessi onl")

@Rel easel d(groupld = "jarl", rtifactld = "art1", version = "1.1")
private KieSession ksessionvll;

Figure 2.57. Side by side version loading for 'jarl.KBasel' KieBase

2.14.2. Spring

Spring has been revamped and now integrated with KIE. Spring can replace the 'kmodule.xml
with a more powerful spring version. The aim is for consistency with kmodule.xml

2.14.3. Aries Blueprints

Aries blueprints is now also supported, and follows the work done for spring. The aim is for con-
sistency with spring and kmodule.xml

2.14.4. OSGi Ready

All modules have been refactored to avoid package splitting, which was a problem in 5.x. Testing
has been moved to PAX.

87

Chapter 3. Compatibility matrix

Starting from KIE 6.0, Drools (including workbench), jBPM (including designer and console) and
OptaPlanner follow the same version numbering.

88

Part Il. KIE

KIE is the shared core for Drools and jBPM. It provides a unified methodology and programming
model for building, deploying and utilizing resources.

Chapter 4. KIE

4.1. Overview

4.1.1. Anatomy of Projects

The process of researching an integration knowledge solution for Drools and jBPM has simply
used the "droolsjbpm" group name. This name permeates GitHub accounts and Maven POMs.
As scopes broadened and new projects were spun KIE, an acronym for Knowledge Is Everything,
was chosen as the new group name. The KIE name is also used for the shared aspects of the
system; such as the unified build, deploy and utilization.

KIE currently consists of the following subprojects:

[OptaPlanner [Drools UberFlre] jBPM J

Y
[Drools-WBj/

Figure 4.1. KIE Anatomy

OptaPlanner, a local search and optimization tool, has been spun off from Drools Planner and is
now a top level project with Drools and jBPM. This was a natural evolution as Optaplanner, while
having strong Drools integration, has long been independant of Drools.

90

KIE

From the Polymita acquisition, along with other things, comes the powerful Dashboard Builder
which provides powerful reporting capabilities. Dashboard Builder is currently a temporary name
and after the 6.0 release a new name will be chosen. Dashboard Builder is completely independant
of Drools and jBPM and will be used by many projects at JBoss, and hopefully outside of JBoss :)

UberFire is the new base workbench project, spun off from the ground up rewrite. UberFire pro-
vides Eclipse-like workbench capabilities, with panels and perspectives from plugins. The project
is independant of Drools and jBPM and anyone can use it as a basis of building flexible and pow-
erful workbenches. UberFire will be used for console and workbench development throughout
JBoss.

It was determined that the Guvnor brand leaked too much from its intended role; such as the au-
thoring metaphors, like Decision Tables, being considered Guvnor components instead of Drools
components. This wasn't helped by the monolithic projects structure used in 5.x for Guvnor. In
6.0 Guvnor's focus has been narrowed to encapsulate the set of UberFire plugins that provide
the basis for building a web based IDE. Such as Maven integration for building and deploying,
management of Maven repositories and activity notifications via inboxes. Drools and jBPM build
workbench distributions using Uberfire as the base and including a set of plugins, such as Gu-
vnor, along with their own plugins for things like decision tables, guided editors, BPMN2 designer,
human tasks. The Drools workbench is called Drools-WB. KIE-WB is the uber workbench that
combined all the Guvnor, Drools and jBPM plugins. The jBPM-WB is ghosted out, as it doesn't
actually exist, being made redundant by KIE-WB.

4.1.2. Lifecycles

The different aspects, or life cycles, of working with KIE system, whether it's Drools or jBPM, can
typically be broken down into the following:

« Author

» Authoring of knowledge using a Ul metaphor, such as: DRL, BPMN2, decision table, class
models.

* Build

* Builds the authored knowledge into deployable units.

* For KIE this unitis a JAR.
* Test

» Test KIE knowedge before it's deployed to the application.
« Deploy

» Deploys the unit to a location where applications may utilize (consume) them.

91

KIE

» KIE uses Maven style repository.
« Utilize

» The loading of a JAR to provide a KIE session (KieSession), for which the application can
interact with.

» KIE exposes the JAR at runtime via a KIE container (KieContainer).

» KieSessions, for the runtime's to interact with, are created from the KieContainer.
* Run

» System interaction with the KieSession, via API.
* Work

» User interaction with the KieSession, via command line or UI.
* Manage

* Manage any KieSession or KieContainer.

4.2. Build, Deploy, Utilize and Run

4.2.1. Introduction

6.0 introduces a new configuration and convention approach to building knowledge bases, instead
of using the programmatic builder approach in 5.x. The builder is still available to fall back on, as
it's used for the tooling integration.

Building now uses Maven, and aligns with Maven practices. A KIE project or module is simply
a Maven Java project or module; with an additional metadata file META-INF/kmodule.xml. The
kmodule.xml file is the descriptor that selects resources to knowledge bases and configures those
knowledge bases and sessions. There is also alternative XML support via Spring and OSGi Blue-
Prints.

While standard Maven can build and package KIE resources, it will not provide validation at build
time. There is a Maven plugin which is recommended to use to get build time validation. The plugin
also generates many classes, making the runtime loading faster too.

The example project layout and Maven POM descriptor is illustrated in the screenshot

92

KIE

- e T
v [ldrools-examples-api
¥ [idefault-kiesession
v Clsrc
v Cmain
v [Cjava
v org.drools.example.api.defaultkiesession
e % DefaultKieSessionExample
o Message
¥ [Zresources
v defaultkiesession
Hall.drl
v META-INF
= kmodule.xml
= logback.xml
: test
v [java
v org.drools.example_api.defaultkiesession
& & DefaultkieSessionExampleTest
&4 DefaultKieSessionFromFSExampleTest
.gitignore
Il default-kiesession.im!
m pom.xml
¥ [ldefault-kiesession-from-file
v Osrc
> Bl main
¥ Cltest
v Bjava

<?xml version="1.8" encoding="UTF-8"7>
J=project xmlns="http://maven.apache.org/POM/4.0.08"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.8,@</modelVersion>
<parent>
<groupIld>org.drools</groupld>
<artifactId>drools-examples-api</artifactId-
<version=6.8.0%=/version>
</parent=>

<artifactId>default-kiesession</artifactId>
<name>Drools API examples - Default KieSession</name=>

<dependencies>
=dependency=
<groupld=org.drools</groupld=
<artifactld=drools-compiler</artifactId=
</dependency>
</dependencies>

<build>
<plugins=>
<plugin>
<groupld=org.drools</groupId=
<artifactId-drools-maven-plugin</artifactld>
<version=0.@.2</version=
<extensions>true</extensions>
</plugin>
</plugins=
</build=

</project>

Figure 4.2. Example project layout and Maven POM

KIE uses defaults to minimise the amount of configuration. With an empty kmodule.xml being the
simplest configuration. There must always be a kmodule.xml file, even if empty, as it's used for
discovery of the JAR and its contents.

Maven can either 'mvn install' to deploy a KieModule to the local machine, where all other appli-
cations on the local machine use it. Or it can 'mvn deploy' to push the KieModule to a remote
Maven repository. Building the Application will pull in the KieModule and populate the local Maven
repository in the process.

93

KIE

—_ —_
-,.,_‘_‘___-___-___._F,.,- 'H-._____________,_F-‘
Maven Maven
Repository [" Repository
(remote) " (local)

— — " — —

i
mvn deploy mvn install
Froject Application

Figure 4.3. Example project layout and Maven POM

JARs can be deployed in one of two ways. Either added to the classpath, like any other JAR
in a Maven dependency listing, or they can be dynamically loaded at runtime. KIE will scan the
classpath to find all the JARs with a kmodule.xml in it. Each found JAR is represented by the
KieModule interface. The terms classpath KieModule and dynamic KieModule are used to refer to
the two loading approaches. While dynamic modules supports side by side versioning, classpath
modules do not. Further once a module is on the classpath, no other version may be loaded
dynamically.

Detailed references for the API are included in the next sections, the impatient can jump straight
to the examples section, which is fairly self-explanatory on the different use cases.

94

KIE

4.2.2. Building

org.kie.api.builder

Include KieBuilder
KieFileSystem KieModule
KieRepository KieScanner
Message Releaseld
Results

Message.Level

yviworks UML Doclet

Figure 4.4. org.kie.api.core.builder

4.2.2.1. Creating and building a Kie Project

A Kie Project has the structure of a normal Maven project with the only peculiarity of including
a kmodule.xml file defining in a declaratively way the Ki eBases and Ki eSessi ons that can be
created from it. This file has to be placed in the resources/META-INF folder of the Maven project
while all the other Kie artifacts, such as DRL or a Excel files, must be stored in the resources
folder or in any other subfolder under it.

95

KIE

Since meaningful defaults have been provided for all configuration aspects, the simplest

kmodule.xml file can contain just an empty kmodule tag like the following:

Example 4.1. An empty kmodule.xml file

<?xm version="1.0" encodi ng="UTF-8"?>
<knodul e xm ns="http://ww. drool s. or g/ xsd/ knodul e"/ >

In this way the kmodule will contain one single default Ki eBase. All Kie assets stored under the
resources folder, or any of its subfolders, will be compiled and added to it. To trigger the building
of these artifacts it is enough to create a Ki eCont ai ner for them.

org.kie.api.runtime

b
%
o
b

LK A A S A O

KieContainer

getClassLoader() : ClassLoader

getkieBase() : KieBase

getkieBase(String) : KieBase

getReleaseld() : Releaseld

newKieBase(String, KieBaseConfiguration) : KieBase
newKieBase(KieBaseConfiguration) : KieBase

newkieSession(] : KieSession

newkieSession(5tring) : KieSession

newkieSession(String, Environment) ; KieSession

newKieSession(String, Environment, KieSessionConfiguration) : KieSession
newKieSession(String, KieSessionConfiguration) : KieSession
newkieSession{Environment) . KieSession
newkieSession(KieSessionConfiguration) : KieSession
newStatelesskieSession() : StatelesskKieSession
newStatelessKieSession(String) ; StatelessKieSession
newsStatelessKieSession(String, KieSessionConfiguration) : StatelessKieSession
newStatelesskieSession(KieSessionConfiguration) : StatelessKieSession
updateToVersion{Releaseid) : void

verify() : Results

yWorks UML Doclet

Figure 4.5. KieContainer

java.lang

ClasslLoader

String

org.kie.api
KieBase

KieBaseConfiguration

org.kie.api.builder

Releaseld

Results

org.kie.api.runtime

Environment
KieSession
KieSessionConfiguration

StatelessKieSession

For this simple case it is enough to create a Ki eCont ai ner that reads the files to be built from
the classpath:

Example 4.2. Creating a KieContainer from the classpath

Ki eServi ces ki eServices = KieServices. Factory.get();

96

KIE

Ki eCont ai ner kCont ai ner = ki eServi ces. get Ki eCl asspat hCont ai ner () ;

Ki eServi ces is the interface from where it possible to access all the Kie building and runtime
facilities:

97

KIE

org.kie.api java.io

KieServices File

“ getCommands(] : KieCommands
. getkieClasspathContainer(] : KieContainer

“ getloggers() : KieLoggers java.lang
% getMarshallers() : KieMarshallers
. getRepasitory(] : KieRepository ClassLoader
“ getResources(] : KleResources -
. getStoreServices() : KieStoreServices String
% newErvironment() : Environment
% newkKieBaseConfiguration() : KieBaseConfiguration
“ newkKieBaseConfiguration(Properties, ClassLoader] : KieBaseConfiguration java.util
‘. newkKieBuilder{File) : KieBuilder
. newkieBuilder(kKieFileSystem) : KieBuilder Properties
% newkKieContainer(Releaseld) : KieContainer
“ hewkKieFileSystemi) : KieFileSystem
“ newkKieMaduleModel() : KieModuleMode! org.kie.api
“ newkieScanner(KieContainer) : KieScanner
“ newkieSessionConfiguration() : KieSessionConfiguration KieBaseConfiguration
% newkKieSessionConfiguration(Properties) : KieSessionConfiguration
“ newReleaseld(String, String, String) : Releaseld
org.kie.api.builder
KieBuilder
KieFileSystem
KieRepository
KieScanner
Releaseld
org.kie.api.builder.model
KieModuleModel
org.kie.api.command
KieCommands
org.kie.api.io
KieResources
org.kie.api.logger
KieLoggers
org.kie.api.marshalling
KieMarshallers
Figure 4.6. KieServices org.kie.api.persistence.jpa

KieStoreServices

org.kie.api.runtime

Environment

KIE

In this way all the Java sources and the Kie resources are compiled and deployed into the KieCon-
tainer which makes its contents available for use at runtime.

4.2.2.2. The kmodule.xml file

As explained in the former section, the kmodule.xml file is the place where it is possible to declar-
atively configure the Ki eBase(s) and Ki eSessi on(s) that can be created from a KIE project.

In particular a Ki eBase is a repository of all the application's knowledge definitions. It will contain
rules, processes, functions, and type models. The Ki eBase itself does not contain data; instead,
sessions are created from the Ki eBase into which data can be inserted and from which process
instances may be started. Creating the Ki eBase can be heavy, whereas session creation is very
light, so it is recommended that Ki eBase be cached where possible to allow for repeated session
creation. However end-users usually shouldn't worry about it, because this caching mechanism
is already automatically provided by the Ki eCont ai ner .

99

KIE

org.kie.api.event.kiebase

KieBaseEventManager

org.kie.api java.lang

KieBase String

“ getEntryPoint!ds() : Set<String=>
“ getFactType(String, String) : FactType

‘. getkiePackage(String) : KiePackage java. util

% getKiePackages() : Collection=KiePackage=

. getkieSessions() : Collection=? extends KieSession= Collection<E=>
% getProcess(String) : Process

% getProcesses() : Collection<Process= Set<E>

“ getQuery(String, String) : Query
“ getRule(String, String) : Rule

“ newkieSessian() : KieSession org.kie.api.definition

“ newkieSession(KieSessionConfiguration, Environment)] : KieSession

. newStatelessKieSession() : StatelessKieSession KiePackage

% newstatelessKieSession(KieSessionConfiguration) : StatelessKieSession

% removeFunction(String, String) : void

% removeKiePackage(String) : void org.kie.api.definition.process
% removeProcess(String) : void

% removeQuery(String, String) : void Process

S

removeRule(String, String) : vaid

org.kie.api.definition.rule
Query

Rule

org.kie.api.definition.type

FactType

org.kie.api.runtime

Environment
KieSession
KieSessionConfiguration

StatelessKieSession

yWorks UML Doclet

Figure 4.7. KieBase

Conversely the Ki eSessi on stores and executes on the runtime data. It is created from the
Ki eBase or more easily can be created directly from the Ki eCont ai ner if it has been defined in
the kmodule.xml file

100

KIE

org.kie.api.runtime

' CommandExecutor | | KieRuntime |

B

B

org.kie.api.runtime.process

| statefulProcessSession |

L

org.kie.api.runtime.rule

| statefulRuleSession |

&

org.kie/api.runtime

KieSession

. destroy() : void
. dispose() : void
% getld(] . int

yWorks UML Doclet

Figure 4.8. KieSession

The kmodule.xml allows to define and configure one or more Ki eBases and for each Ki eBase all
the different Ki eSessi ons that can be created from it, as showed by the follwing example:

Example 4.3. A sample kmodule.xml file

<kmodul e xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns="http://ww. dr ool s. or g/ xsd/ knodul e" >

<configuration>

<propertykey="drool s. eval uat or. super set O "val ue="or g. myconpany. Super set O Eval uat or Defi ni ti on"/

>
</ confi gurati on>

<kbase name="KBasel" defaul t="true" eventProcessi nghbde="cl oud" equal sBehavi or="equal i ty" decl arati veAgenda="en:

<ksessi on nanme="KSession2_1" type="stateful" default="true"/>

<ksessi on nanme="KSession2_2" type="statel ess" default="fal se"

</ kbase>

bel i ef System="j tns"/ >

nelness KBd sel't ="dvand & ocessi ngvbde=" stquedisiBehavi or =" equiEdl tay'at i veAgenda=" ematuked/es="or g. domai n. pkg2
or g. donai n. pkg3" incl udes="KBasel">

<ksessi on nanme="KSession3_1" type="stateful" default="fal se" cl ockType="real ti ne">

<fileLogger file="drools.log" threaded="true" interval ="10"/>

<wor kI t enHandl er s>

<wor kI t enHandl er

</ wor kIl t enHandl er s>

<listeners>

name="nane" type="org.domai n. WrkltenHandl er"/>

<rul eRunti meEvent Li st ener type="org. domai n. Rul eRunti neLi stener"/>
<agendaEvent Li stener type="org. donain. Fi r st AgendalLi stener"/>
<agendaEvent Li stener type="org.donmai n. SecondAgendali st ener"/>
<processEvent Li stener type="org.domai n. ProcessLi stener"/>

</listeners>
</ ksessi on>
</ kbase>
</ kmodul e>

Here the <configuration> tag contains a list of key-value pairs that are the optional proper-
ties used to configure the Ki eBases building process. For instance this sample kmodule.xml

101

KIE

file defines an additional custom operator named superset™f and implemented by the
or g. nyconpany. Super set Of Eval uat or Def i ni ti on class.

After this 2 Ki eBases have been defined and it is possible to instance 2 different types of Ki eSes-
si ons from the first one, while only one from the second. A list of the attributes that can be defined
on the kbase tag, together with their meaning and default values follows:

Table 4.1. kbase Attributes

Attribute name Default value Admitted values Meaning

name none any The name with which
retrieve this KieBase
from the KieContain-
er. This is the only
mandatory attribute.

includes none any comma separated A comma separated
list list of other KieBas-

es contained in this

kmodule. The artifacts

of all these KieBases

will be also included in

this one.
packages all any comma separated By default all the
list Drools artifacts un-

der the resources
folder, at any lev-
el, are included into
the KieBase. This at-
tribute allows to lim-
it the artifacts that will
be compiled in this
KieBase to only the
ones belonging to the
list of packages.

default false true, false Defines if this KieBase
is the default one
for this module, so it
can be created from
the KieContainer with-
out passing any name
to it. There can be
at most one default
KieBase in each mod-
ule.

102

KIE

Attribute name Default value Admitted values

equalsBehavior identity identity, equality

Meaning

Defines the behav-
ior of Drools when
a new fact is insert-
ed into the Working
Memory. With identi-
ty it always create a
new FactHandle un-
less the same object
isn't already presentin
the Working Memory,
while with equality on-
ly if the newly insert-
ed object is not equal
(according to its equal
method) to an already
existing fact.

eventProcessing- cloud cloud, stream
Mode

When compiled in
cloud mode the
KieBase treats events
as normal facts, while
in stream mode allow
temporal reasoning on
them.

declarativeAgenda disabled disabled, enabled

Defines if the Declar-
ative Agenda is en-
abled or not.

Similarly all attributes of the ksession tag (except of course the name) have meaningful default.

They are listed and described in the following table:

Table 4.2. ksession Attributes

Attribute name Default value Admitted values

Meaning

name none any

Unique name of this
KieSession. Used to
fetch the KieSession
from the KieContain-
er. This is the only
mandatory attribute.

type stateful stateful, stateless

A stateful session
allows to iteratively
work with the Working
Memory, while a state-

103

KIE

Attribute name

default

Default value

false

Admitted values

true, false

Meaning

less one is a one-off
execution of a Work-
ing Memory with a pro-
vided data set.

Defines if this KieSes-
sion is the default one
for this module, so it
can be created from
the KieContainer with-
out passing any name
to it. In each module
there can be at most
one default KieSes-
sion for each type.

clockType

realtime

realtime, pseudo

Defines if events time-
stamps are deter-
mined by the system
clock or by a psuedo
clock controlled by the
application. This clock
is specially useful for
unit testing temporal
rules.

beliefSystem

simple

simple, jtms, defeasi-
ble

Defines the type of be-
lief system used by the
KieSession.

As outlined in the former kmodule.xml sample, it is also possible to declaratively create on each
Ki eSessi on a file (or a console) logger, one or more Wor kl t enHandl ers and some listeners
that can be of 3 different types: ruleRuntimeEventListener, agendaEventListener and processEv-

entListener

Having defined a kmodule.xml like the one in the former sample, it is now possible to simply
retrieve the KieBases and KieSessions from the KieContainer using their names.

Example 4.4. Retriving KieBases and KieSessions from the KieContainer

Ki eSer vi ces ki eServi ces
Ki eCont ai ner kCont ai ner

= Ki eServices. Factory.get();
= ki eServi ces. get Ki ed asspat hCont ai ner () ;

Ki eBase kBasel = kCont ai ner. get Ki eBase("KBasel");
Ki eSessi on ki eSessi onl = kCont ai ner. newKi eSessi on("KSessi on2_1");
St at el essKi eSessi on ki eSessi on2 = kCont ai ner. newSt at el essKi eSessi on("KSessi on2_2");

104

KIE

It has to be noted that since KSession2_1 and KSession2_2 are of 2 different types (the first
is stateful, while the second is stateless) it is necessary to invoke 2 different methods on the
Ki eCont ai ner according to their declared type. If the type of the Ki eSessi on requested to the
Ki eCont ai ner doesn't correspond with the one declared in the kmodule.xml file the Ki eCont ai ner
will throw a Runt i meExcept i on. Also since a Ki eBase and a Ki eSessi on have been flagged as
default is it possible to get them from the Ki eCont ai ner without passing any name.

Example 4.5. Retriving default KieBases and KieSessions from the
KieContainer

Ki eCont ai ner kContai ner = ..

Ki eBase kBasel = kContai ner. getKi eBase(); // returns KBasel
Ki eSessi on ki eSessi onl = kCont ai ner. newKi eSession(); // returns KSession2_1

Since a Kie project is also a Maven project the groupld, artifactld and version declared in the
pom.xml file are used to generate a Rel easel d that uniquely identifies this project inside your
application. This allows creation of a new KieContainer from the project by simply passing its
Rel easel d to the Ki eSer vi ces.

Example 4.6. Creating a KieContainer of an existing project by Releaseld

Ki eServi ces ki eServices = KieServices. Factory. get();
Rel easel d rel easel d = ki eServi ces. newRel easel d("org.acnme", "nyartifact", "1.0")
Ki eCont ai ner ki eCont ai ner = ki eServi ces. newKi eCont ai ner(rel easeld)

4.2.2.3. Building with Maven

The KIE plugin for Maven ensures that artifact resources are validated and pre-compiled, it is
recommended that this is used at all times. To use the plugin simply add it to the build section of
the Maven pom.xml and activate it by using packaging kj ar .

Example 4.7. Adding the KIE plugin to a Maven pom.xml and activating it

<packagi ng>kj ar </ packagi ng>

<bui | d>
<pl ugi ns>
<pl ugi n>
<groupl d>or g. ki e</ gr oupl d>
<artifactld>ki e-maven-plugin</artifactld>
<version>7. 0. 0. Bet al</ ver si on>
<ext ensi ons>t r ue</ ext ensi ons>
</ pl ugi n>
</ pl ugi ns>

105

KIE

</ bui | d>

The plugin comes with support for all the Drools/iBPM knowledge resources. However, in case you
are using specific KIE annotations in your Java classes, like for example @i e. api . Posi ti on, you
will need to add compile time dependency on ki e- api into your project. We recommend to use
the provided scope for all the additional KIE dependencies. That way the kjar stays as lightweight
as possible, and not dependant on any particular KIE version.

Building a KIE module without the Maven plugin will copy all the resources, as is, into the resulting
JAR. When that JAR is loaded by the runtime, it will attempt to build all the resources then. If there
are compilation issues it will return a null KieContainer. It also pushes the compilation overhead
to the runtime. In general this is not recommended, and the Maven plugin should always be used.

4.2.2.4. Defining a KieModule programmatically

It is also possible to define the Ki eBases and Ki eSessi ons belonging to a KieModule program-
matically instead of the declarative definition in the kmodule.xml file. The same programmatic API
also allows in explicitly adding the file containing the Kie artifacts instead of automatically read
them from the resources folder of your project. To do that it is necessary to create a Ki eFi | eSys-
t em a sort of virtual file system, and add all the resources contained in your project to it.

org.kie.api.builder java.lang

KieFileSystem string

% delete(String...) : void

generateAndWritePomXML(Releaseld) : KieFileSystem

read(String) : bytel] org.kie.api.builder
write(String, bytel]) : KieFileSystem

write(String, String) : KieFileSystem Releaseld
write(String, Resource) : KieFileSystem

write(Resource] : KieFlleSystem

writeKModuleXMLibytel]) : KieFileSystem org.kie.api.io
writeKModule XML{String) : KieFileSystem

writePomXML(bytel]) : KieFileSystem Resource
writePomXML(String) : KieFileSystem

A AR AR A AR A

ywWaorks UML Doclet

Figure 4.9. KieFileSystem

Like all other Kie core components you can obtain an instance of the Ki eFi | eSyst emfrom the
Ki eServi ces. The kmodule.xml configuration file must be added to the filesystem. This is a
mandatory step. Kie also provides a convenient fluent API, implemented by the Ki eMbdul eModel ,
to programmatically create this file.

106

KIE

org.kie.api.builder.model java.lang

KieModuleModel String

“ getkieBaseModels() : Map=5String, KieBaseModel=
“ newkieBaseModel(String) : KieBaseMaode!
. removekieBaseModel{String) : void java.util

% feXML() : String
Map<K, V>

org.kie.api.builder.model

KieBaseModel

yWorks LML Doclet

Figure 4.10. KieModuleModel

To do this in practice it is necessary to create a Ki eMbdul eModel from the Ki eSer vi ces, config-
ure it with the desired Ki eBases and Ki eSessi ons, convert it in XML and add the XML to the
Ki eFi | eSyst em This process is shown by the following example:

Example 4.8. Creating a kmodule.xm| programmatically and adding it to a
KieFileSystem

Ki eServi ces ki eServices = KieServices. Factory.get();
Ki eMbdul eMbdel ki eModul eMbdel = ki eServi ces. newKi eMbdul eMobdel () ;

Ki eBaseMbdel ki eBaseMbdel 1 = ki eMbdul eModel . newKki eBaseModel ("KBasel ")
.setDefault(true)
. set Equal sBehavi or (Equal i t yBehavi or Opti on. EQUALI TY)
. set Event Processi nghbde(Event Processi ngOpti on. STREAM) ;

Ki eSessi onMbdel ksessi onWbdel 1 = ki eBaseMddel 1. newKi eSessi onwbdel (" KSessi onl")
.setDefault(true)
.set Type(Ki eSessi onMbdel . Ki eSessi onType. STATEFUL)
.set O ockType(O ockTypeOption.get("realtinme"));

Ki eFi | eSystem kfs = ki eServi ces. newKi eFi | eSysten();
kfs.witeKMdul eXM (ki eModul eMbdel .t oXM.());

At this point it is also necessary to add to the Ki eFi | eSyst em through its fluent API, all others
Kie artifacts composing your project. These artifacts have to be added in the same position of a
corresponding usual Maven project.

107

KIE

Example 4.9. Adding Kie artifacts to a KieFileSystem

Ki eFil eSystem kfs = ...
kfs.wite("src/nmain/resources/KBasel/ruleSetl.drl", stringContainingAvali dDRL)
.write("src/main/resources/dtable.xls",
ki eSer vi ces. get Resour ces() . newl nput St r eanResour ce(dtabl eFileStream));

This example shows that it is possible to add the Kie artifacts both as plain Strings and as Re-
sour ces. In the latter case the Resour ces can be created by the Ki eResour ces factory, also
provided by the Ki eSer vi ces. The Ki eResour ces provides many convenient factory methods to
convertan I nput Stream a URL, a Fi | e, or a Stri ng representing a path of your file system to a
Resour ce that can be managed by the Ki eFi | eSyst em

108

KIE

org.kie.api
Service
org.kie.api.io java.io
KieResources File
. newBytedrrayResource(byte(]) : Resource
“ newClassPathResource(String) : Resource InputStream
“ newClassPathResource(String, Class=7=) : Resource e
% hewClassPathResource(String, ClassLoader) : Resource "
“ newClassPathResource(String, String) : Resource
“ newClassPathResource(String, String, Class<=P=) : Resource
“ newClassPathResource(String, String, ClassLoader) : Resource java.lang
% newDescrResource(KieDescr) : Resource
“. hewFileSystemAesource(File) : Resource Class<T>
newFileSystemResource(String) : Resource
- 4 g Classl oader
“ newlnputStreamResource(lnputStream) : Resource
% hewlnputStreamResource(inputStream, String) : Resource String
“ newReaderResource{Reader) : Resource
“ newReaderResource(Reader, String) : Resource
“ newlriResource(Stning) : Resource
“ newUrlResource(URL) : Resource Java.net
URL

org.kie.api.definition

KieDescr

org.kie,api.io

Resource

yWorks UML Doclet

Figure 4.11. KieResources

Normally the type of a Resource can be inferred from the extension of the name used to add
it to the Ki eFi | eSyst em However it also possible to not follow the Kie conventions about file
extensions and explicitly assign a specific Resour ceType to a Resour ce as shown below:

109

KIE

Example 4.10. Creating and adding a Resource with an explicit type

Ki eFil eSystem kfs = ...
kfs.wite("src/nain/resources/nyDrl.txt",
ki eServi ces. get Resources() . new nput St reanResource(drl Stream)
. set Resour ceType(Resour ceType. DRL));

Add all the resources to the Ki eFi | eSyst emand build it by passing the Ki eFi | eSystemto a
Ki eBui | der

org.kie.api.builder org.kie.api.builder

KieBuilder KieModule

& buildAlll) : KieBuilder

W getkieModule() : KieModule Results

“ getResults() : Results

. setDependencies(KieModule...) : KieBuilder

. setDependencies{Resource...) : KieBuilder org.kie.api.io

Resource

yWorks UML Doclet

Figure 4.12. KieBuilder

When the contents of a Ki eFi | eSyst emare successfully built, the resulting Ki eMbdul e is auto-
matically added to the Ki eReposi t ory. The Ki eReposi t ory is a singleton acting as a repository
for all the available Ki eMbdul es.

110

KIE

org.kie.api.builder org.kie.api.builder
KieRepository KieModule
. addkieModule(KieModule) : vaid
. addkieModule(Resource, Resource...) : KieModule Releaseld
. getDefaultReleaseld(] : Releasald
. getkieModule(Releaseld) : KieModule
org.kie.api.io
Resource

yWorks UML Doclet

Figure 4.13. KieRepository

After this it is possible to create through the Ki eSer vi ces anew Ki eCont ai ner for that Ki eMbdul e
using its Rel easel d. However, since in this case the Ki eFi | eSyst emdoesn't contain any pom.xml
file (it is possible to add one using the Ki eFi | eSyst em wri t ePomXM. method), Kie cannot deter-
mine the Rel easel d of the Ki eMbdul e and assign to it a default one. This default Rel easel d can
be obtained from the Ki eReposi t ory and used to identify the Ki eMbdul e inside the Ki eReposi -
t ory itself. The following example shows this whole process.

Example 4.11. Building the contents of a KieFileSystem and creating a
KieContainer

Ki eServi ces ki eServices = Ki eServices. Factory.get();

Ki eFil eSystem kfs = ...

ki eServi ces. newKi eBui | der (kfs).buildAIl();

Ki eCont ai ner ki eCont ai ner = ki eServi ces. newKi eCont ai ner (ki eServi ces. get Reposi tory().get Def aul t Rel easel d());

At this point it is possible to get Ki eBases and create new Ki eSessi ons from this Ki eCont ai ner
exactly in the same way as in the case of a Ki eCont ai ner created directly from the classpath.

It is a best practice to check the compilation results. The Ki eBui | der reports compilation results
of 3 different severities: ERROR, WARNING and INFO. An ERROR indicates that the compila-
tion of the project failed and in the case no Ki eMbdul e is produced and nothing is added to the
Ki eReposi t ory. WARNING and INFO results can be ignored, but are available for inspection.

Example 4.12. Checking that a compilation didn't produce any error

Ki eBui | der ki eBui |l der = ki eServi ces. newKi eBui | der(kfs).buildAII();
assert Equal s(0, kieBuil der.getResults().getMessages(Message. Level . ERROR). size());

111

KIE

4.2.2.5. Changing the Default Build Result Severity

In some cases, it is possible to change the default severity of a type of build result. For instance,
when a new rule with the same name of an existing rule is added to a package, the default behavior
is to replace the old rule by the new rule and report it as an INFO. This is probably ideal for most
use cases, but in some deployments the user might want to prevent the rule update and report
it as an error.

Changing the default severity for a result type, configured like any other option in Drools, can be
done by API calls, system properties or configuration files. As of this version, Drools supports
configurable result severity for rule updates and function updates. To configure it using system
properties or configuration files, the user has to use the following properties:

Example 4.13. Setting the severity using properties

/] sets the severity of rule updatesdrools.kbuilder.severity.duplicateRule = <INFQ WARNI NG
ERROR>// sets the severity of function updatesdrools. kbuil der. severity. duplicateFunction = <I NFQ
WARNI NG ERROR>

updat esdr ool s. kbui | der. severity. duplicateRule =
<I NFQ WARNI NG ERROR>// sets the severity of
function updat esdrool s. kbui | der. severity. duplicateFunction =

4.2.3. Deploying

4.2.3.1. KieBase

The Ki eBase is a repository of all the application's knowledge definitions. It will contain rules,
processes, functions, and type models. The Ki eBase itself does not contain data; instead, ses-
sions are created from the Ki eBase into which data can be inserted and from which process in-
stances may be started. The Ki eBase can be obtained from the Ki eCont ai ner containing the
Ki eMbdul e where the Ki eBase has been defined.

112

KIE

org.kie.api.event.kiebase

KieBaseEventManager

org.kie.api java.lang

KieBase String

“ getEntryPoint!ds() : Set<String=>
“ getFactType(String, String) : FactType

‘. getkiePackage(String) : KiePackage java. util

% getKiePackages() : Collection=KiePackage=

. getkieSessions() : Collection=? extends KieSession= Collection<E=>
% getProcess(String) : Process

% getProcesses() : Collection<Process= Set<E>

“ getQuery(String, String) : Query
“ getRule(String, String) : Rule

“ newkieSessian() : KieSession org.kie.api.definition

“ newkieSession(KieSessionConfiguration, Environment)] : KieSession

. newStatelessKieSession() : StatelessKieSession KiePackage

% newstatelessKieSession(KieSessionConfiguration) : StatelessKieSession

% removeFunction(String, String) : void

% removeKiePackage(String) : void org.kie.api.definition.process
% removeProcess(String) : void

% removeQuery(String, String) : void Process

S

removeRule(String, String) : vaid

org.kie.api.definition.rule
Query

Rule

org.kie.api.definition.type

FactType

org.kie.api.runtime

Environment
KieSession
KieSessionConfiguration

StatelessKieSession

yWorks UML Doclet

Figure 4.14. KieBase

Sometimes, for instance in a OSGi environment, the Ki eBase needs to resolve types that are not
in the default class loader. In this case it will be necessary to create a Ki eBaseConfi gurati on
with an additional class loader and pass it to Ki eCont ai ner when creating a new Ki eBase from it.

113

KIE

Example 4.14. Creating a new KieBase with a custom ClassLoader

Ki eServi ces ki eServices = KieServices. Factory.get();
Ki eBaseConfi gurati on kbaseConf = ki eServi ces. newKi eBaseConfiguration(null, MType.class.getC assLoader());
Ki eBase kbase = ki eCont ai ner. newKi eBase(kbaseConf);

4.2.3.2. KieSessions and KieBase Modifications

KieSessions will be discussed in more detail in section "Running”. The Ki eBase creates and re-
turns Ki eSessi on objects, and it may optionally keep references to those. When Ki eBase modi-
fications occur those modifications are applied against the data in the sessions. This reference is
a weak reference and it is also optional, which is controlled by a boolean flag.

4.2.3.3. KieScanner

The Ki eScanner allows continuous monitoring of your Maven repository to check whether a new
release of a Kie project has been installed. A new release is deployed in the Ki eCont ai ner wrap-
ping that project. The use of the Ki eScanner requires kie-ci.jar to be on the classpath.

org.kie.api.builder

KieScanner

% scanNowl() : void
% start(long) : void
% stop() : void

yWorks UML Doclet

Figure 4.15. KieScanner

A Ki eScanner can be registered on a Ki eCont ai ner as in the following example.

Example 4.15. Registering and starting a KieScanner on a KieContainer

Ki eServi ces ki eServices = KieServices. Factory.get();

Rel easel d rel easel d = ki eServi ces. newRel easel d("org.acne", "nyartifact", "1.0- SNAPSHOT");
Ki eCont ai ner kCont ai ner = ki eServi ces. newKi eCont ai ner(rel easeld);

Ki eScanner kScanner = ki eServi ces. newKi eScanner (kCont ai ner);

/1 Start the KieScanner polling the Maven repository every 10 seconds
kScanner.start(10000L);

114

KIE

In this example the Ki eScanner is configured to run with a fixed time interval, but it is also possi-
ble to run it on demand by invoking the scanNow() method on it. If the Ki eScanner finds, in the
Maven repository, an updated version of the Kie project used by that Ki eCont ai ner it automati-
cally downloads the new version and triggers an incremental build of the new project. At this point,
existing Ki eBases and Ki eSessi ons under the control of Ki eCont ai ner will get automatically up-
graded with it - specifically, those Ki eBases obtained with get Ki eBase() along with their relat-
ed Ki eSessi ons, and any Ki eSessi on obtained directly with Ki eCont ai ner . newKi eSessi on()
thus referencing the default Ki eBase. Additionally, from this moment on, all the new Ki eBases
and Ki eSessi ons created from that Ki eCont ai ner will use the new project version. Please notice
however any existing Ki eBase which was obtained via newki eBase() before the KieScanner up-
grade, and any of its related Ki eSessi ons, will not get automatically upgraded,; this is because
Ki eBases obtained via newKi eBase() are not under the direct control of the Ki eCont ai ner .

The Ki eScanner will only pickup changes to deployed jars if it is using a SNAPSHOT, version
range, the LATEST, or the RELEASE setting. Fixed versions will not automatically update at run-
time.

4.2.3.4. Maven Versions and Dependencies

Maven supports a number of mechanisms to manage versioning and dependencies within appli-
cations. Modules can be published with specific version numbers, or they can use the SNAPSHOT
suffix. Dependencies can specify version ranges to consume, or take avantage of SNAPSHOT
mechanism.

StackOverflow provides a very good description for this, which is reproduced below.

http://stackoverflow.com/questions/30571/how-do-i-tell-maven-to-use-the-latest-version-of-a-
dependency [http://stackoverflow.com/questions/30571/how-do-i-tell-maven-to-use-the-lat-
est-version-of-a-dependency]

If you always want to use the newest version, Maven has two keywords you can use as an alter-
native to version ranges. You should use these options with care as you are no longer in control
of the plugins/dependencies you are using.

When you depend on a plugin or a dependency, you can use the a version value of LATEST
or RELEASE. LATEST refers to the latest released or snapshot version of a particular artifact,
the most recently deployed artifact in a particular repository. RELEASE refers to the last non-
snapshot release in the repository. In general, it is not a best practice to design software which
depends on a non-specific version of an artifact. If you are developing software, you might want
to use RELEASE or LATEST as a convenience so that you don't have to update version numbers
when a new release of a third-party library is released. When you release software, you should
always make sure that your project depends on specific versions to reduce the chances of your
build or your project being affected by a software release not under your control. Use LATEST
and RELEASE with caution, if at all.

See the POM Syntax section of the Maven book for more details.

115

http://stackoverflow.com/questions/30571/how-do-i-tell-maven-to-use-the-latest-version-of-a-dependency
http://stackoverflow.com/questions/30571/how-do-i-tell-maven-to-use-the-latest-version-of-a-dependency
http://stackoverflow.com/questions/30571/how-do-i-tell-maven-to-use-the-latest-version-of-a-dependency
http://stackoverflow.com/questions/30571/how-do-i-tell-maven-to-use-the-latest-version-of-a-dependency

KIE

http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-pom-syntax.html
[http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-pom-syntax.html]

http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-project-
dependencies.html

Here's an example illustrating the various options. In the Maven repository, com.foo:my-foo has
the following metadata:

<net adat a>
<gr oupl d>com f oo</ gr oupl d>
<artifactld>ny-foo</artifactld>
<versi on>2. 0. 0</ ver si on>
<ver si oni ng>
<rel ease>1. 1. 1</ rel ease>
<ver si ons>
<ver si on>1. 0</ ver si on>
<versi on>1. 0. 1</ ver si on>
<ver si on>1. 1</ versi on>
<versi on>1. 1. 1</ ver si on>
<versi on>2. 0. 0</ ver si on>
</versions>
<l ast Updat ed>20090722140000</ | ast Updat ed>
</ ver si oni ng>
</ net adat a>

If a dependency on that artifact is required, you have the following options (other version ranges
can be specified of course, just showing the relevant ones here): Declare an exact version (will
always resolve to 1.0.1):

<version>[1.0. 1] </ versi on>

Declare an explicit version (will always resolve to 1.0.1 unless a collision occurs, when Maven
will select a matching version):

<version>1. 0. 1</ versi on>

Declare a version range for all 1.x (will currently resolve to 1.1.1):

<version>[1. 0.0, 2.0.0)</versi on>

Declare an open-ended version range (will resolve to 2.0.0):

116

http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-pom-syntax.html
http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-pom-syntax.html
http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-project-dependencies.html
http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-project-dependencies.html

KIE

<version>[1.0.0,)</version>

Declare the version as LATEST (will resolve to 2.0.0):

<ver si on>LATEST</ ver si on>

Declare the version as RELEASE (will resolve to 1.1.1):

<ver si on>RELEASE</ ver si on>

Note that by default your own deployments will update the "latest" entry in the Maven metadata,
but to update the "release" entry, you need to activate the "release-profile" from the Maven super
POM. You can do this with either "-Prelease-profile" or "-DperformRelease=true"

4.2.3.5. Settings.xml and Remote Repository Setup

The maven settings.xml is used to configure Maven execution. Detailed instructions can be found
at the Maven website:

http://maven.apache.org/settings.html

The settings.xml file can be located in 3 locations, the actual settings used is a merge of those
3 locations.

* The Maven install: $M2_HQOVE/ conf / setti ngs. xni
e Auser'sinstall: ${user. honme}/. n2/ setti ngs. xni
« Folder location specified by the system property ki e. maven. set ti ngs. cust om

The settings.xml is used to specify the location of remote repositories. It is important that you
activate the profile that specifies the remote repository, typically this can be done using "active-
ByDefault":

<profil es>
<profil e>
<i d>profile-1</id>
<activation>
<activeByDef aul t >t rue</acti veByDef aul t >
</ activation>

</profile>
</profil es>

117

http://maven.apache.org/settings.html

KIE

Maven provides detailed documentation on using multiple remote repositories:

http://maven.apache.org/guides/mini/guide-multiple-repositories.htmi

4.2.4. Running

4.2.4.1. KieBase

The Ki eBase is a repository of all the application's knowledge definitions. It will contain rules,
processes, functions, and type models. The Ki eBase itself does not contain data; instead, ses-
sions are created from the Ki eBase into which data can be inserted and from which process in-

stances may be started. The Ki eBase can be obtained from the Ki eCont ai ner containing the
Ki eModul e where the Ki eBase has been defined.

Example 4.16. Getting a KieBase from a KieContainer

Ki eBase kBase = kCont ai ner. get Ki eBase();

4.2.4.2. KieSession

The Ki eSessi on stores and executes on the runtime data. It is created from the Ki eBase.

org.kie.api.runtime org.kie.api.runtime.process org.kie.api.runtime.rule

CommandExecutor | | KieRuntime StatefulProcessSession StatefulRuleSession

org.kie,/api.runtime

KieSession

% destray() : void
. disposei) : void
& getld() : int

yWorks UML Doclet

Figure 4.16. KieSession

Example 4.17. Create a KieSession from a KieBase

Ki eSessi on ksessi on = kbase. newKi eSessi on();

118

http://maven.apache.org/guides/mini/guide-multiple-repositories.html

KIE

4.2.4.3. KieRuntime

4.2.4.3.1. KieRuntime

The Ki eRunt i me provides methods that are applicable to both rules and processes, such as setting
globals and registering channels. ("Exit point" is an obsolete synonym for "channel".)

org.kie.api.event org.kie.api.runtime,process org.kie.api.runtime.rule
KieRuntimeEventManager ProcessRuntime RuleRuntime
org.kie.api.runtime java.lang
KieRuntime Object

. getCalendars(] : Calendars

% getChannels() : Map<5String, Channel= String

% getEnvironment() : Environment

“ getGlobal(String) : Object

« getGlobals() : Globals java. util

. getKieBase() : KleBase

. getSessionClock() : =T extends SessionClock= T Map<K, V>

. getSessionCanfiguration() : KieSessionConfiguration
% registerChannel(String, Channel) : void
. setGlobal(String, Object] : void org.kie.api

% unregisterChannel(String) : void
KieBase

org.kie.api.runtime

Calendars
Channel
Environment
Globals

KieSessionConfiguration

yWorks UML Doclet

Figure 4.17. KieRuntime
4.2.4.3.1.1. Globals

Globals are named objects that are made visible to the rule engine, but in a way that is funda-
mentally different from the one for facts: changes in the object backing a global do not trigger
reevaluation of rules. Still, globals are useful for providing static information, as an object offering
services that are used in the RHS of a rule, or as a means to return objects from the rule engine.
When you use a global on the LHS of a rule, make sure it is immutable, or, at least, don't expect
changes to have any effect on the behavior of your rules.

119

KIE

A global must be declared in a rules file, and then it needs to be backed up with a Java object.

global java.util.List list

With the Knowledge Base now aware of the global identifier and its type, it is now possible to call
ksessi on. set A obal () with the global's name and an object, for any session, to associate the
object with the global. Failure to declare the global type and identifier in DRL code will result in
an exception being thrown from this call.

List list = new ArrayList();
ksession.setd obal ("list", list);

Make sure to set any global before it is used in the evaluation of a rule. Failure to do so results
in a Nul | Poi nt er Excepti on.

4.2.4.4. Event Model

The event package provides means to be notified of rule engine events, including rules firing,
objects being asserted, etc. This allows separation of logging and auditing activities from the main
part of your application (and the rules).

The Ki eRunti meEvent Manager interface is implemented by the Ki eRunti ne which provides
two interfaces, Rul eRunt i neEvent Manager and Pr ocessEvent Manager . We will only cover the
Rul eRunt i meEvent Manager here.

org.kie.api.event.process org.kie.api.event.rule
ProcessEventManager RuleRuntimeEventManager
org.kie.api.event org.kie.api.logger
KieRuntimeEventManager KieRuntimeLogger

w getlogger() : KieRuntimelogger

yWorks UML Doclet

Figure 4.18. KieRuntimeEventManager

120

KIE

The Rul eRunt i neEvent Manager allows for listeners to be added and removed, so that events for
the working memory and the agenda can be listened to.

org.kie.api.event.rule java.util

RuleRuntimeEventManager Collection<E=>

% addEventListener{AgendaEventlistener) . void
. addEventlistener(RuleRuntimeEventiListaner) : void

. getdgendaEventListeners() : Collection<=AgendaEventListener= org.kie.api.event.rule
% getRuleRuntimeEventListeners() : Collection<RuleRuntimeEventlistener=
. removeEventlistener(AgendaEventListener) : void AgendaEventListener

“ removeEventlistener(RuleRuntimeEventListener) : void . :
RuleRuntimeEventListener

yWorks UML Doclet

Figure 4.19. RuleRuntimeEventManager

The following code snippet shows how a simple agenda listener is declared and attached to a
session. It will print matches after they have fired.

Example 4.18. Adding an AgendaEventListener

ksessi on. addEvent Li st ener (new Def aul t AgendaEvent Li stener () {
public void afterMtchFired(AfterMatchFiredEvent event) {
super . af ter Mat chFi red(event);
Systemout. println(event);

b3

Drools also provides DebugRul eRunt i meEvent Li st ener and DebugAgendaEvent Li st ener which
implement each method with a debug print statement. To print all Working Memory events, you
add a listener like this:

Example 4.19. Adding a DebugRuleRuntimeEventListener

ksessi on. addEvent Li st ener (new DebugRul eRunti neEvent Li stener());

All emitted events implement the Ki eRunt i meEvent interface which can be used to retrieve the
actual Knowl egeRunt i ne the event originated from.

121

KIE

org.kie.api.event

KieRuntimeEvent

“ getkKieRuntime(] : KieRuntime

yWorks UML Doclet

Figure 4.20. KieRuntimeEvent

The events currently supported are:

* MatchCreatedEvent

» MatchCancelledEvent

» BeforeMatchFiredEvent

+ AfterMatchFiredEvent

» AgendaGroupPushedEvent
» AgendaGroupPoppedEvent
* ObjectinsertEvent

« ObjectDeletedEvent

* ObjectUpdatedEvent

» ProcessCompletedEvent

* ProcessNodeLeftEvent

» ProcessNodeTriggeredEvent

¢ ProcessStartEvent

4.2.4.5. KieRuntimeLogger

org.kie.api.runtime

KieRuntime

The KieRuntimeLogger uses the comprehensive event system in Drools to create an audit log
that can be used to log the execution of an application for later inspection, using tools such as

the Eclipse audit viewer.

122

KIE

org.kie.api.logger java.lang

KieLoggers String

. newConsoleLogger(KieRuntimeEventManager) : KieRuntimeLogger
“ newFileLogger(KieRuntimeEventManager, String) . KieRuntimelLogger
< newThreadedFileLogger(KieRuntimeEventManager, String, int) : KieRuntimelLogger org.kie.api.event

KieRuntimeEventManager

org.kie,api.logger

KieRuntimeLogger

yWorks UML Doclet

Figure 4.21. KieLoggers

Example 4.20. FileLogger

Ki eRunt i meLogger | ogger =
Ki eServi ces. Factory. get (). get Loggers(). newFi | eLogger (ksession, "logdir/nylogfile");

| ogger . cl ose();

4.2.4.6. Commands and the CommandExecutor

KIE has the concept of stateful or stateless sessions. Stateful sessions have already been cov-
ered, which use the standard KieRuntime, and can be worked with iteratively over time. Stateless
is a one-off execution of a KieRuntime with a provided data set. It may return some results, with
the session being disposed at the end, prohibiting further iterative interactions. You can think of
stateless as treating an engine like a function call with optional return results.

The foundation for this is the CommandExecut or interface, which both the stateful and stateless
interfaces extend. This returns an Execut i onResul ts:

org.kie.api.runtime org.kie.api.command

CommandExecutor Command<T=>

w execute(Command=T=) : <T>T

yWorks UML Doclet

Figure 4.22. CommandExecutor

123

KIE

org.kie.api.runtime java.lang

ExecutionResults Object
% getFactHandle(5tring) : Object

% getldentifiers() : Collection<Stning= String
“ getValue(String) : Object
java.util
Collection<E=>

yWorks UML Doclet

Figure 4.23. ExecutionResults

The ConmandExecut or allows for commands to be executed on those sessions, the only difference
being that the StatelessKieSession executes fireAl | Rul es() at the end before disposing the
session. The commands can be created using the ConmandExecut or .The Javadocs provide the
full list of the allowed comands using the CommandExecut or .

setGlobal and getGlobal are two commands relevant to both Drools and jBPM.

Set Global calls setGlobal underneath. The optional boolean indicates whether the command
should return the global's value as part of the Execut i onResul t s. If true it uses the same name
as the global name. A String can be used instead of the boolean, if an alternative name is desired.

Example 4.21. Set Global Command

St at el essKi eSessi on ksessi on = kbase. newSt at el essKi eSessi on();
Executi onResults bresults =

ksessi on. execut e(ConmandFact ory. newSet G obal ("stilton", new Cheese("stilton"), true);
Cheese stilton = bresults.getValue("stilton");

Allows an existing global to be returned. The second optional String argument allows for an alter-
native return name.

Example 4.22. Get Global Command

St at el essKi eSessi on ksessi on = kbase. newSt at el essKi eSessi on();
Executi onResults bresults =
ksessi on. execut e(ConmandFactory. getd obal ("stilton");

124

KIE

Cheese stilton = bresults.getValue("stilton");

All the above examples execute single commands. The Bat chExecut i on represents a composite
command, created from a list of commands. It will iterate over the list and execute each command
in turn. This means you can insert some objects, start a process, call fireAllRules and execute a
query, all in a single execut e(. . .) call, which is quite powerful.

The StatelessKieSession will execute fireAl | Rul es() automatically at the end. However the
keen-eyed reader probably has already noticed the Fi r eAl | Rul es command and wondered how
that works with a StatelessKieSession. The Fi r eAl | Rul es command is allowed, and using it will
disable the automatic execution at the end; think of using it as a sort of manual override function.

Any command, in the batch, that has an out identifier set will add its results to the returned Ex-
ecut i onResul t s instance. Let's look at a simple example to see how this works. The example
presented includes command from the Drools and jBPM, for the sake of illustration. They are
covered in more detail in the Drool and jBPM specific sections.

Example 4.23. BatchExecution Command

St at el essKi eSessi on ksessi on = kbase. newSt at el essKi eSessi on() ;

List cmds = new ArraylList();

cnds. add(CommandFact ory. newl nsert Obj ect (new Cheese("stilton", 1), "stilton"));

cnds. add(ConmandFact ory. newSt art Process("process cheeses"));

cnds. add(ConmandFact ory. newQuery("cheeses"));

Executi onResults bresults = ksession. execute(CommandFact ory. newBat chExecution(cnmds));
Cheese stilton = (Cheese) bresults.getValue("stilton");

QueryResults gresults = (QueryResults) bresults.getValue("cheeses");

In the above example multiple commands are executed, two of which populate the Execut i on-
Resul t s. The query command defaults to use the same identifier as the query name, but it can
also be mapped to a different identifier.

All commands support XML and jSON marshalling using XStream, as well as JAXB marshalling.
This is covered in section Commands API.

4.2.4.7. StatelessKieSession

The St at el essKi eSessi on wraps the Ki eSessi on, instead of extending it. Its main focus is on the
decision service type scenarios. It avoids the need to call di spose() . Stateless sessions do not
support iterative insertions and the method call f i r eAl | Rul es() from Java code; the act of calling
execut e() is a single-shot method that will internally instantiate a Ki eSessi on, add all the user
data and execute user commands, callfi r eAl | Rul es(), and then call di spose() . While the main
way to work with this class is via the Bat chExecut i on (a subinterface of Command) as supported by
the ConmandExecut or interface, two convenience methods are provided for when simple object
insertion is all that's required. The CommandExecut or and Bat chExecut i on are talked about in
detail in their own section.

125

KIE

org.kie.api.event

KieRuntimeEventManager

org.kie,api.runtime

StatelessKieSession
& getChannels() : Map<5tring, Channel>
. getGlobals() : Globals
 getKieBase() : KieBase
% registerChannel(String, Channel] : void
. setGlobal(String, Object) : void
& unregisterChannel(String) : void

yWorks UML Doclet

org.kie,api.runtime org.kie.api.runtime.process

CommandExecutor StatelessProcessSession

java.lang
Object

String

java.util

Map<K, V>

org.kie,api

KieBase

org.kie,api.runtime

Channel

Globals

Figure 4.24. StatelessKieSession

org.kie,api.runtime.rule

StatelessRuleSession

Our simple example shows a stateless session executing a given collection of Java objects using
the convenience API. It will iterate the collection, inserting each element in turn.

Example 4.24. Simple StatelessKieSession execution with a Collection

St at el essKi eSessi on ksession =
ksessi on. execute(collection);

kbase. newSt at el essKi eSessi on();

If this was done as a single Command it would be as follows:

Example 4.25. Simple StatelessKieSession execution with InsertElements

Command

ksessi on. execut e(CommandFact ory. new nsert El ements(col l ection));

If you wanted to insert the collection itself, and the collection's individual elements, then

ComandFact ory. newl nsert (col | ecti on) would do the job.

Methods of the CommandFact or y create the supported commands, all of which can be marshalled
using XStream and the Bat chExecut i onHel per . Bat chExecut i onHel per provides details on the

126

KIE

XML format as well as how to use Drools Pipeline to automate the marshalling of Bat chExecut i on
and Execut i onResul ts.

St at el essKi eSessi on supports globals, scoped in a number of ways. We cover the non-com-
mand way first, as commands are scoped to a specific execution call. Globals can be resolved
in three ways.

» The StatelessKieSession method get d obal s() returns a Globals instance which provides
access to the session's globals. These are shared for all execution calls. Exercise caution re-
garding mutable globals because execution calls can be executing simultaneously in different
threads.

Example 4.26. Session scoped global

St at el essKi eSessi on ksessi on = kbase. newSt at el essKi eSessi on() ;

/1l Set a gl obal hbnSession, that can be used for DB interactions in the rules.
ksessi on. set A obal ("hbnSessi on", hibernateSession);

/1 Execute while being able to resolve the "hbnSession" identifier.

ksessi on. execute(collection);

e Using a delegate is another way of global resolution. Assigning a value to a global (with
set @ obal (String, Object)) results in the value being stored in an internal collection map-
ping identifiers to values. Identifiers in this internal collection will have priority over any supplied
delegate. Only if an identifier cannot be found in this internal collection, the delegate global (if
any) will be used.

« The third way of resolving globals is to have execution scoped globals. Here, a Cormand to set
a global is passed to the CommandExecut or .

The CommandExecut or interface also offers the ability to export data via "out” parameters. Inserted
facts, globals and query results can all be returned.

Example 4.27. Out identifiers

/] Set up a list of comrands

Li st cmds = new ArrayList();

cnds. add(CommandFact ory. newSet d obal ("list1", new ArrayList(), true));
cnds. add(ConmandFact ory. newl nsert(new Person("jon", 102), "person"));
cnds. add(CommandFact ory. newQuery(" Get People" "getPeople");

/] Execute the list
Executi onResults results =
ksessi on. execut e(CommandFact ory. newBat chExecution(cnds));

/'l Retrieve the ArraylLi st

results.getValue("list1");

/'l Retrieve the inserted Person fact

resul ts. getVal ue("person");

/] Retrieve the query as a QueryResults instance.

127

KIE

resul ts. getVal ue("Get People");

4.2.4.8. Marshalling

The Ki eMar shal | er s are used to marshal and unmarshal KieSessions.

org.kie.api
Service
org.kie.api.marshalling java.lang
KieMarshallers String

< newClassFilterAcceptor(Stringl]) : ObjectMarshallingStrategyAcceptor
% newldentityMarshallingStrategy() : ObjectMarshallingStrategy

“ newldentityMarshallingStrategy(ObjectMarshallingStrategyAcceptor) : ObjectMarshallingStrategy org.kie.api
 newMarshaller{KieBase) : Marshaller -
“ newMarshaller{KieBase, ObjectMarshallingStrategyl]) : Marshaller KieBase

“ newSenializeMarshallingStrategy() : ObjectMarshallingStrategy
v newSerializeMarshallingStrategy(ObjectMarshallingStrategyAcceptor) : ObjectMarshallingStrategy

org.kie.api.marshalling
Marshaller
ObjectMarshallingStrategy

ObjectMarshallingStrategyAcceptor

yWorks UML Doclet

Figure 4.25. KieMarshallers

An instance of the Ki eMar shal | er s can be retrieved from the Ki eSer vi ces. A simple example
is shown below:

Example 4.28. Simple Marshaller Example

/] ksession is the KieSession

/'l kbase is the KieBase

Byt eAr r ayQut put St r eam baos = new Byt eArrayQut put Strean();

Marshal | er marshal l er = Ki eServices. Factory. get().getMarshall ers().newMarshaller(kbase);
mar shal | er. marshal | (baos, ksession);

baos. cl ose();

However, with marshalling, you will need more flexibility when dealing with referenced user data.
To achieve this use the Obj ect Mar shal | i ngSt r at egy interface. Two implementations are provid-
ed, but users can implement their own. The two supplied strategies are | dent i t yMar shal | i ngS-
trategy andSeri al i zeMarshal | i ngStrat egy. Seri al i zeMarshal | i ngSt r at egy is the default,
as shown in the example above, and it just calls the Seri al i zabl e or Ext er nal i zabl e methods
on a user instance. | denti t yMarshal | i ngStrat egy creates an integer id for each user object
and stores them in a Map, while the id is written to the stream. When unmarshalling it accesses
the I denti t ymar shal | i ngStrat egy map to retrieve the instance. This means that if you use the
I dentityMarshal | i ngStr at egy, itis stateful for the life of the Marshaller instance and will create

128

KIE

ids and keep references to all objects that it attempts to marshal. Below is the code to use an
Identity Marshalling Strategy.

Example 4.29. IdentityMarshallingStrategy

Byt eAr r ayQut put St r eam baos = new Byt eArrayQut put Strean();
Ki eMar shal | ers kMarshal l ers = Ki eServi ces. Factory. get().get Marshallers()
Obj ect Marshal 1 i ngStrategy onms = kMarshal | ers. newl denti tyMarshal i ngStrategy()
Marshal | er marshaller =

kMarshal | ers. newMar shal | er (kbase, new Cbj ect Marshal | i ngStrategy[]{ ons });
marshal | er. marshal | (baos, ksession);
baos. cl ose();

Im most cases, a single strategy is insufficient. For added flexibility, the Coj ect Mar shal | i ngS-
trat egyAccept or interface can be used. This Marshaller has a chain of strategies, and while
reading or writing a user object it iterates the strategies asking if they accept responsibility for
marshalling the user object. One of the provided implementations is Cl assFi | t er Accept or . This
allows strings and wild cards to be used to match class names. The default is "*.*", so in the above
example the Identity Marshalling Strategy is used which has a default "*.*" acceptor.

Assuming that we want to serialize all classes except for one given package, where we will use
identity lookup, we could do the following:

Example 4.30. IdentityMarshallingStrategy with Acceptor

Byt eArr ayQut put St r eam baos = new Byt eArrayQut put Strean();
Ki eMarshal | ers kMarshal l ers = Ki eServi ces. Factory. get().get Marshallers()
Obj ect Marshal | i ngStrat egyAcceptor identityAcceptor =

kMar shal | ers. newC assFi |l ter Acceptor(new String[] { "org.domain. pkgl.*" });
Obj ect Marshal I ingStrategy identityStrategy =

kMar shal | ers. newl denti tyMarshal | i ngStrategy(identityAcceptor);
Obj ect Marshal I i ngStrategy snms = kMarshal | ers. newSeri al i zeMarshal | i ngStrat egy();
Marshal | er marshaller =

kMar shal | ers. newMar shal | er (kbase,

new Obj ect Marshal lingStrategy[]{ identityStrategy, snms });

marshal | er. marshal | (baos, ksession);
baos. cl ose();

Note that the acceptance checking order is in the natural order of the supplied elements.

Also note that if you are using scheduled matches (i.e. some of your rules use timers or calendars)
they are marshallable only if, before you use it, you configure your KieSession to use a trackable
timer job factory manager as follows:

Example 4.31. Configuring a trackable timer job factory manager

Ki eSessi onConfi gurati on ksconf = KieServices. Factory. get().newKi eSessi onConfiguration();
ksconf . set Opti on(Ti ner JobFact oryOpti on. get ("trackabl e"));

129

KIE

KSessi on ksession = kbase. newKi eSessi on(ksconf, null);

4.2.4.9. Persistence and Transactions

Longterm out of the box persistence with Java Persistence API (JPA) is possible with Drools.
It is necessary to have some implementation of the Java Transaction API (JTA) installed. For
development purposes the Bitronix Transaction Manager is suggested, as it's simple to set up and
works embedded, but for production use JBoss Transactions is recommended.

Example 4.32. Simple example using transactions

Ki eServi ces ki eServices = KieServices. Factory. get();
Envi ronment env = ki eServi ces. newEnvi ronnent ();
env. set (Envi ronnent Nane. ENTI TY_MANAGER_FACTORY,
Per si st ence. creat eEnti t yManager Factory("enf-nane"));
env. set (Envi r onment Nane. TRANSACTI ON_MANAGER,
Transact i onManager Ser vi ces. get Tr ansact i onManager ());

/'l Ki eSessi onConfiguration may be null, and a default wll be used
Ki eSessi on ksession =
ki eServi ces. get St oreServi ces(). newKi eSessi on(kbase, null, env);

int sessionld = ksession.getld();

User Transaction ut =
(UserTransaction) new Initial Context ().l ookup("java: conp/ User Transaction");
ut . begin();
ksession.insert(datal);
ksession.insert(data2);
ksession. start Process("processl");
ut.commit();

To use a JPA, the Environment must be set with both the Ent i t yManager Fact ory and the Tr ans-
acti onManager . If rollback occurs the ksession state is also rolled back, hence it is possible to
continue to use it after a rollback. To load a previously persisted KieSession you'll need the id,
as shown below:

Example 4.33. Loading a KieSession

Ki eSessi on ksession =
ki eServi ces. get StoreServi ces() .| oadKi eSessi on(sessionld, kbase, null, env);

To enable persistence several classes must be added to your persistence.xml, as in the example
below:

Example 4.34. Configuring JPA

<persi stence-unit nane="org. drool s. persi stence.jpa" transaction-type="JTA">

130

KIE

<provi der >or g. hi ber nat e. ej b. Hi ber nat ePer si st ence</ provi der >
<j t a- dat a- sour ce>j dbc/ Bi t r oni xJTADat aSour ce</ j t a- dat a- sour ce>
<cl ass>org. drool s. persi stence. i nfo. Sessi onl nfo</cl ass>
<cl ass>org. drool s. persi stence. i nfo. Wrkltem nfo</cl ass>
<properties>
<property nane="hi bernate. di al ect" val ue="org. hi bernate. dial ect. H2Di al ect"/ >
<property name="hi bernate. max_fetch_depth" val ue="3"/>
<property name="hi bernate. hbnRddl . aut 0" val ue="update" />
<property nane="hi bernate. show_sql" val ue="true" />
<property nanme="hi bernate.transacti on. manager _| ookup_cl ass"
val ue="org. hi bernat e. transacti on. BTMIr ansact i onManager Lookup" />
</ properties>
</ per si st ence- uni t >

The jdbc JTA data source would have to be configured first. Bitronix provides a number of ways
of doing this, and its documentation should be consulted for details. For a quick start, here is the
programmatic approach:

Example 4.35. Configuring JTA DataSource

Pool i ngDat aSour ce ds = new Pool i ngDat aSour ce()
ds. set Uni queNane("j dbc/ Bitroni xJTADat aSour ce")
ds. set d assNane("org. h2.jdbcx. JdbcDat aSource")
ds. set MaxPool Si ze(3)

ds. set Al l owLocal Transactions(true)

ds. getDriverProperties().put("user", "sa")

ds. getDriverProperties().put("password", "sasa")

ds. getDriverProperties().put("URL", "jdbc:h2: nem nmydb")
ds.init();

Bitronix also provides a simple embedded JNDI service, ideal for testing. To use it, add a
jndi.properties file to your META-INF folder and add the following line to it:

Example 4.36. JNDI properties

java.nam ng.factory.initial=bitronix.tmjndi.Bitronixlnitial ContextFactory

131

KIE

4.2.5. Installation and Deployment Cheat Sheets

Content Structuring

There are 3 layers to structure your content.

-~

.

Organization Unit
LS

Projects
GIT GIT GIT
Reposiary Repository Haposiory

Useful GIT System Properties

Organizational Unit
This Is the top level. An installation may have
one ar more organisational units.

Repository

Each Unit can have one or more repositories.

A repository is a physical git repository, stored on disk.
Project

Each project can have one or more projects.

A project forms the deployable unit and compiles
down to a jar. A project can depend on one or more
other project.

org.uberfire.nio.git.dir: Location of the directory .niogit. Defaull: working directory
org.uberfire.nio.git.daemon.enabled: Enables/disables git daemon. Default: true
org.uberfire.nio.git.daemon.host: If daemon enabled, uses this property as local host identifier.

Default: localhost

org.uberfire.nio.git.daemon.port: Il daemon enabled, uses this property as port number. Default

9418

org.uberfire.nio.git.daemon.upload: If daemon enabled, uses this information to define if it's

possible to push (upload) data to git. Default: true
org.uberfire.metadata.index.dir: Place where lucene .index folder will be stored. Default: working

directory
ra !
"
Projecls Proge hm S m
—
3) .
Projects Frojecls Projects
GIT L "
Repository Regl ¢ =
Crgani2
- 9 GIT GIT Prajacts Projects
Repository Reposilary
\ Organization Unj
GIT GIT
Repositary Rapository
Organization Unit
. y,

KIE Installation

Figure 4.26. Installation Overview

132

KIE

s " s Ty
S
Maven Maven T Maven
Repository Repository H Repaository
(rermote) {local) (local)
& \ ;
mvn install R _ rriv install
1 w Y
v |deploy (i o
L Project Application
' Application Installation /
. KIE Installation J

Maven Repository - Server Side

Built projects are installed into the local maven repository.
Default location: <working-directory=/repositories/kie
Systemn property: org.guvnorm2repo.dir

The repository is exposed via httpd for applications to access.

URL: http:/Vlocalhost:B080/<app context=/maven?/

Example: httpi/flocalhost:B080/kie-drools-wb-6.0.0-5MNAPSHOT-boss-as7.0/
maven2/org/mydomain/prej1/1.0.0/proj1-1.0.0.jar

Maven Repository Location Configuration - Application Side
Applications may specify the remote repositories either in the applications porm.xmil
or via Maven settings.xml.

There are three locations where a settings.xml file may live:
The Maven install: $M2_HOME/conf/settings.xml

A user's install: ${userhome}/. m2/settings.xml
Systern Property for file location: kie.maven.settings.custom

Figure 4.27. Deployment Overview

4.2.6. Build, Deploy and Utilize Examples

The best way to learn the new build system is by example. The source project "drools-exam-
ples-api" contains a number of examples, and can be found at GitHub:

133

KIE

https://github.com/droolsjbpm/drools/tree/6.0.x/drools-examples-api

Each example is described below, the order starts with the simplest (most of the options are
defaulted) and working its way up to more complex use cases.

The Deploy use cases shown below all involve nvn i nstal | . Remote deployment of JARS in
Maven is well covered in Maven literature. Utilize refers to the initial act of loading the resources
and providing access to the KIE runtimes. Where as Run refers to the act of interacting with those
runtimes.

4.2.6.1. Default KieSession

» Project: default-kesession.

« Summary: Empty kmodule.xml KieModule on the classpath that includes all resources in a sin-
gle default KieBase. The example shows the retrieval of the default KieSession from the class-
path.

An empty kmodule.xml will produce a single KieBase that includes all files found under resources
path, be it DRL, BPMN2, XLS etc. That single KieBase is the default and also includes a single
default KieSession. Default means they can be created without knowing their names.

Example 4.37. Author - kmodule.xml

<kmodul e xm ns="http://ww. drool s. or g/ xsd/ knodul e" > </ knodul e>

Example 4.38. Build and Install - Maven

nmvn install

ks.getKieClasspathContainer() returns the KieContainer that contains the KieBases deployed on-
to the environment classpath. kContainer.newKieSession() creates the default KieSession. Notice
that you no longer need to look up the KieBase, in order to create the KieSession. The KieSession
knows which KieBase it's associated with, and use that, which in this case is the default KieBase.

Example 4.39. Utilize and Run - Java

Ki eServi ces ks = Ki eServices. Factory.get();
Ki eCont ai ner kCont ai ner = ks. get Ki ed asspat hCont ai ner () ;

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on() ;

134

https://github.com/droolsjbpm/drools/tree/6.0.x/drools-examples-api

KIE

kSessi on. set d obal ("out", out);
kSessi on. i nsert(new Message("Dave", "Hello, HAL. Do you read ne, HAL?"));
kSession.fireA | Rul es();

4.2.6.2. Named KieSession

» Project: named-kiesession.

e Summary: kmodule.xml that has one named KieBase and one named KieSession. The exam-
ples shows the retrieval of the named KieSession from the classpath.

kmodule.xml will produce a single named KieBase, 'kbasel' that includes all files found under re-
sources path, be it DRL, BPMN2, XLS etc. KieSession 'ksessionl' is associated with that KieBase
and can be created by name.

Example 4.40. Author - kmodule.xml

<knodul e xm ns="http://ww. drool s. or g/ xsd/ knodul e" >
<kbase nane="kbasel">
<ksessi on nane="ksessi onl"/>
</ kbase>
</ kmodul e>

Example 4.41. Build and Install - Maven

nvn install

ks.getKieClasspathContainer() returns the KieContainer that contains the KieBases deployed on-
to the environment classpath. This time the KieSession uses the name 'ksessionl'. You do not
need to lookup the KieBase first, as it knows which KieBase 'ksessionl' is assocaited with.

Example 4.42. Utilize and Run - Java

Ki eServi ces ks = Ki eServices. Factory. get();
Ki eCont ai ner kCont ai ner = ks. get Ki ed asspat hCont ai ner () ;

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi onl");

kSessi on. set d obal ("out", out);

kSession.insert(new Message("Dave", "Hello, HAL. Do you read ne, HAL?"));
kSession.fireA | Rul es();

135

KIE

4.2.6.3. KieBase Inheritence

» Project: kiebase-inclusion.

e Summary: 'kmodule.xml' demonstrates that one KieBase can include the resources from an-
other KieBase, from another KieModule. In this case it inherits the named KieBase from the
'name-kiesession' example. The included KieBase can be from the current KieModule or any
other KieModule that is in the pom.xml dependency list.

kmodule.xml will produce a single named KieBase, 'kbase2' that includes all files found under
resources path, be it DRL, BPMN2, XLS etc. Further it will include all the resources found from the
KieBase 'kbasel', due to the use of the 'includes' attribute. KieSession 'ksession?2' is associated
with that KieBase and can be created by name.

Example 4.43. Author - kmodule.xml

<kbase nane="kbase2" i ncl udes="kbasel">
<ksessi on nanme="ksessi on2"/>
</ kbase>

This example requires that the previous example, 'named-kiesession’, is built and installed to the
local Maven repository first. Once installed it can be included as a dependency, using the standard
Maven <dependencies> element.

Example 4.44. Author - pom.xml

<project xm ns="http://maven. apache. or g/ POM 4. 0. 0"
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http:// maven. apache. org/ POM 4. 0. 0 http:// maven. apache. or g/ xsd/
maven-4. 0. 0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<par ent >
<gr oupl d>or g. dr ool s</ gr oupl d>
<artifact!d>drool s-exanpl es-api </artifactld>
<version>6. 0. 0/ versi on>
</ par ent >

<artifact!|d>ki ebase-inclusion</artifactld>
<nane>Drool s APl exanples - KieBase | ncl usion</nane>

<dependenci es>

<dependency>
<groupl d>or g. dr ool s</ gr oupl d>
<artifact!|d>drool s-conpiler</artifactld>

</ dependency>

<dependency>
<gr oupl d>or g. dr ool s</ gr oupl d>
<artifact!|d>naned- ki esession</artifactl|d>
<ver si on>6. 0. 0</ ver si on>

</ dependency>

136

KIE

</ dependenci es>

</ proj ect >

Once 'named-kiesession' is built and installed this example can be built and installed as normal.
Again the act of installing, will force the unit tests to run, demonstrating the use case.

Example 4.45. Build and Install - Maven

mvn install

ks.getKieClasspathContainer() returns the KieContainer that contains the KieBases deployed on-
to the environment classpath. This time the KieSession uses the name 'ksession2'. You do not
need to lookup the KieBase first, as it knows which KieBase 'ksessionl' is assocaited with. No-
tice two rules fire this time, showing that KieBase 'kbase2' has included the resources from the
dependency KieBase 'kbasel'.

Example 4.46. Utilize and Run - Java

Ki eServi ces ks = Ki eServices. Factory.get();

Ki eCont ai ner kCont ai ner = ks. get Ki eC asspat hCont ai ner();

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi on2");
kSessi on. set d obal ("out", out);

kSessi on. i nsert (new Message("Dave", "Hello, HAL. Do you read ne, HAL?"));
kSession.fireAl |l Rul es();

kSessi on. i nsert(new Message("Dave", "Open the pod bay doors, HAL."));
kSession.fireA | Rul es();

4.2.6.4. Multiple KieBases

» Project: 'multiple-kbases.

« Summary: Demonstrates that the 'kmodule.xml' can contain any number of KieBase or KieSes-
sion declarations. Introduces the 'packages' attribute to select the folders for the resources to
be included in the KieBase.

kmodule.xml produces 6 different named KieBases. 'kbasel' includes all resources from the
KieModule. The other KieBases include resources from other selected folders, via the 'packages’
attribute. Note the use of wildcard *', to select this package and all packages below it.

Example 4.47. Author - kmodule.xml

<knodul e xm ns="http://ww. drool s. or g/ xsd/ knodul e" >

137

KIE

<kbase name="kbasel">
<ksessi on nanme="ksessi onl"/>
</ kbase>

<kbase name="kbase2" packages="org. sonme. pkg">
<ksessi on name="ksessi on2"/>
</ kbase>

<kbase nanme="kbase3" incl udes="kbase2" packages="org.sone. pkg2">
<ksessi on name="ksessi on3"/>
</ kbase>

<kbase name="kbase4" packages="org. sone. pkg, org.other.pkg">
<ksessi on nanme="ksessi on4"/>
</ kbase>

<kbase nanme="kbase5" packages="org.*">
<ksessi on name="ksessi on5"/>
</ kbase>

<kbase name="kbase6" packages="org.sone.*">
<ksessi on nanme="ksessi on6"/>
</ kbase>
</ knmodul e>

Example 4.48. Build and Install - Maven

nmvn instal

Only part of the example is included below, as there is a test method per KieSession, but each
one is a repetition of the other, with different list expectations.

Example 4.49. Utilize and Run - Java

@est
public void testSinpleKieBase() {
Li st<Integer> list = useKieSession("ksessionl");
/1 no packages inported nmeans inport everything
assert Equal s(4, list.size())
assertTrue(list.containsAll(asList(0, 1, 2, 3)))

/l.. other tests for ksession2 to ksession6 here

private List<lnteger> useKi eSession(String nane) {
Ki eServi ces ks = Ki eServices. Factory. get ()
Ki eCont ai ner kCont ai ner = ks. get Ki eC asspat hCont ai ner () ;
Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on(nane)

Li st<Integer> list = new Arrayli st<Integer>()
kSessi on.setd obal ("list", list);
kSession.insert(1)

138

KIE

kSession. fireAl |l Rul es();

return list;

4.2.6.5. KieContainer from KieRepository

* Project: kcontainer-from-repository

e Summary: The project does not contain a kmodule.xml, nor does the pom.xml have any depen-
dencies for other KieModules. Instead the Java code demonstrates the loading of a dynamic
KieModule from a Maven repository.

The pom.xml must include kie-ci as a depdency, to ensure Maven is available at runtime. As this
uses Maven under the hood you can also use the standard Maven settings.xml file.

Example 4.50. Author - pom.xml

<project xm ns="http://maven. apache. org/ POM 4. 0. 0"
xm ns: xsi ="http://ww.w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http://maven. apache. org/ POM 4. 0.0 http:// maven. apache. or g/ xsd/
maven-4. 0. 0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<par ent >
<groupl d>or g. dr ool s</ gr oupl d>
<artifact!|d>drool s-exanpl es-api </artifactl|d>
<versi on>6. 0. 0</ ver si on>
</ par ent >

<artifactld>ki econtainer-fromkierepo</artifact!d>
<nane>Drool s APl exanples - Ki eContainer from Ki eRepo</nane>

<dependenci es>
<dependency>
<gr oupl d>or g. ki e</ gr oupl d>
<artifactld>kie-ci</artifactld>
</ dependency>
</ dependenci es>

</ proj ect >

Example 4.51. Build and Install - Maven

mvn instal

In the previous examples the classpath KieContainer used. This example creates a dynamic
KieContainer as specified by the Releaseld. The Releaseld uses Maven conventions for group id,
artifact id and version. It also obeys LATEST and SNAPSHOT for versions.

139

KIE

Example 4.52. Utilize and Run - Java

Ki eServi ces ks = Ki eServices. Factory. get();
/'l Install exanplel in the |ocal Maven repo before to do this
Ki eCont ai ner kCont ai ner = ks. newKi eCont ai ner (ks. newRel easel d("or g. drool s", "naned-

ki esession", "6.0.0-SNAPSHOT"));

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi onl");
kSessi on. set d obal ("out", out);

Obj ect nsgl = createMessage(kContainer, "Dave", "Hello, HAL. Do you read ne, HAL?");

kSessi on. i nsert (nsgl);
kSession.fireAl |l Rul es();

4.2.6.6. Default KieSession from File

» Project: default-kiesession-from-file

« Summary: Dynamic KieModules can also be loaded from any Resource location. The loaded
KieModule provides default KieBase and KieSession definitions.

No kmodue.xml file exists. The project 'default-kiesession' must be built first, so that the resulting
JAR, in the target folder, can be referenced as a File.

Example 4.53. Build and Install - Maven

nvn install

Any KieModule can be loaded from a Resource location and added to the KieRepository. Once
deployed in the KieRepository it can be resolved via its Releaseld. Note neither Maven or kie-ci
are needed here. It will not set up a transitive dependency parent classloader.

Example 4.54. Utilize and Run - Java

Ki eServi ces ks = Ki eServices. Factory. get();
Ki eRepository kr = ks. get Repository();

Ki eMbdul e kMbdul e = kr. addKi eModul e(ks. get Resources(). newFi | eSyst enResource(get Fi | e("defaul t-
ki esession")));

Ki eCont ai ner kCont ai ner = ks. newKi eCont ai ner (kModul e. get Rel easel d());

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on();
kSessi on. set d obal ("out", out);

Obj ect nsgl = createMessage(kContainer, "Dave", "Hello, HAL. Do you read ne, HAL?");

140

KIE

kSessi on. i nsert (nsgl);
kSession.fireAl |l Rul es();

4.2.6.7. Named KieSession from File

» Project: named-kiesession-from-file

e Summary: Dynamic KieModules can also be loaded from any Resource location. The loaded
KieModule provides named KieBase and KieSession definitions.

No kmodue.xml file exists. The project 'named-kiesession' must be built first, so that the resulting
JAR, in the target folder, can be referenced as a File.

Example 4.55. Build and Install - Maven

nmvn install

Any KieModule can be loaded from a Resource location and added to the KieRepository. Once in
the KieRepository it can be resolved via its Releaseld. Note neither Maven or kie-ci are needed
here. It will not setup a transitive dependency parent classloader.

Example 4.56. Utilize and Run - Java

Ki eServi ces ks = Ki eServices. Factory.get();
Ki eReposi tory kr = ks. getRepository();

Ki eMbdul e kMbdule = kr.addKi eModul e(ks. get Resour ces(). newFi | eSyst enResour ce(get Fi | e(" nanmed-
ki esession")));

Ki eCont ai ner kCont ai ner = ks. newKi eCont ai ner (kModul e. get Rel easel d());

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi onl1");
kSessi on. set d obal ("out", out);

Obj ect msgl = createMessage(kContainer, "Dave", "Hello, HAL. Do you read ne, HAL?");
kSessi on. i nsert (nsgl);
kSession.fireA | Rul es();

4.2.6.8. KieModule with Dependent KieModule

* Project: kie-module-form-multiple-files

e Summary: Programmatically provide the list of dependant KieModules, without using Maven to
resolve anything.

141

KIE

No kmodue.xml file exists. The projects 'named-kiesession' and 'kiebase-include' must be built
first, so that the resulting JARs, in the target folders, can be referenced as Files.

Example 4.57. Build and Install - Maven

mvn install

Creates two resources. One is for the main KieModule ‘exResl' the other is for the dependency
‘exRes2'. Even though kie-ci is not present and thus Maven is not available to resolve the depen-
dencies, this shows how you can manually specify the dependent KieModules, for the vararg.

Example 4.58. Utilize and Run - Java

Ki eServi ces ks = Ki eServices. Factory.get();
Ki eRepository kr = ks.getRepository();

Resour ce ex1Res = ks. get Resources().newFil eSyst enResource(get Fi | e("ki ebase-inclusion"));
Resour ce ex2Res = ks. get Resources(). newFi | eSyst enResour ce(get Fi | e(" naned- ki esessi on"));

Ki eModul e kibdul e = kr. addKi eModul e(ex1Res, ex2Res);
Ki eCont ai ner kCont ai ner = ks. newKi eCont ai ner (kModul e. get Rel easel d());

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi on2");
kSessi on. set d obal ("out", out);

Obj ect nsgl = createMessage(kContai ner, "Dave", "Hello, HAL. Do you read ne, HAL?");
kSession. i nsert (nsgl);

kSession.fireA |l Rul es();

Obj ect nsg2 = createMessage(kContai ner, "Dave", "Open the pod bay doors, HAL.");

kSessi on. i nsert (nsg2);
kSession.fireAl |l Rul es();

4.2.6.9. Programmaticaly build a Simple KieModule with Defaults

* Project: kiemoduelmodel-example

e Summary: Programmaticaly buid a KieModule from just a single file. The POM and models are
all defaulted. This is the quickest out of the box approach, but should not be added to a Maven
repository.

Example 4.59. Build and Install - Maven

nmvn install

This programmatically builds a KieModule. It populates the model that represents the Releaseld
and kmodule.xml, and it adds the relevant resources. A pom.xml is generated from the Releaseld.

142

KIE

Example 4.60. Utilize and Run - Java

Ki eServi ces ks = Ki eServices. Factory. get();
Ki eRepository kr = ks. get Repository();
Ki eFi | eSystem kfs = ks. newKi eFi | eSysten();
kfs.wite("src/nain/resources/org/kiel exanpl e5/HAL5. drl ", getRule());
Ki eBui | der kb = ks. newKi eBui | der (kfs);
kb. bui I dAIl (); // kieMddule is automatically deployed to KieRepository if successfully built.
if (kb.getResults().hasMessages(Level . ERROR)) {
throw new Runti neException("Build Errors:\n" + kb.getResults().toString());

Ki eCont ai ner kCont ai ner = ks. newKi eCont ai ner (kr. get Def aul t Rel easel d());

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on();
kSessi on. set d obal ("out", out);

kSessi on. i nsert (new Message("Dave", "Hello, HAL. Do you read nme, HAL?"));
kSession.fireAl |l Rul es();

4.2.6.10. Programmaticaly build a KieModule using Meta Models

» Project: kiemoduelmodel-example

e Summary: Programmaticaly build a KieModule, by creating its kmodule.xml meta model re-
sources.

Example 4.61. Build and Install - Maven

nmvn install

This programmatically builds a KieModule. It populates the model that represents the Releaseld
and kmodule.xml, as well as add the relevant resources. A pom.xml is generated from the Re-
leaseld.

Example 4.62. Utilize and Run - Java

Ki eServi ces ks = Ki eServices. Factory. get();
Ki eFi | eSystem kfs = ks. newKi eFi | eSysten();

Resour ce ex1Res = ks. get Resources().newFi | eSyst enResour ce(get Fi | e("nanmed- ki esession"));
Resour ce ex2Res = ks. get Resour ces(). newFi | eSyst enResour ce(get Fi | e("ki ebase-inclusion"));

Rel easeld rid = ks.newRel easel d("org. drool s", "kienpdul enodel - exanpl e", "6.0.0- SNAPSHOT") ;
kfs. generat eAndWit ePonXM_(ri d);

143

KIE

Ki eMbdul eMbdel kMbdul eMbdel = ks. newKi eMbdul eModel () ;
kMbdul eMbdel . newKi eBaseModel (" ki enodul enodel ")

. addl ncl ude("ki ebasel")

. addl ncl ude("ki ebase2")

. newKi eSessi onMbdel ("ksessi on6");

kfs.witeKMdul eXM.(kMbdul eModel .t oXM_()) ;
kfs.wite("src/ main/resources/ ki enodul enodel / HAL6. drl", getRule());

Ki eBui | der kb = ks. newkKi eBui | der (kfs);
kb. set Dependenci es(ex1Res, ex2Res);
kb. bui IdAIl1 (); // kieMddule is automatically deployed to KieRepository if successfully built.
if (kb.getResults().hasMessages(Level . ERROR)) {
throw new Runti nmeException("Build Errors:\n" + kb.getResults().toString());

Ki eCont ai ner kCont ai ner = ks. newKi eCont ai ner(rid);

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi on6") ;
kSessi on. set d obal ("out", out);

Obj ect nsgl = createMessage(kContainer, "Dave", "Hello, HAL. Do you read ne, HAL?");
kSessi on. i nsert (nmsgl);
kSession.fireAl |l Rul es();

Obj ect nmsg2 = createMessage(kContai ner, "Dave", "Open the pod bay doors, HAL.");
kSessi on. i nsert (nsg2);
kSession.fireA |l Rul es();

Obj ect nsg3 = createMessage(kContai ner, "Dave", "Wat's the problenP");
kSessi on. i nsert (nsg3);
kSession.fireAl |l Rul es();

4.3. Security

4.3.1. Security Manager

The KIE engine is a platform for the modelling and execution of business behavior, using a mul-
titude of declarative abstractions and metaphores, like rules, processes, decision tables and etc.

Many times, the authoring of these metaphores is done by third party groups, be it a different group
inside the same company, a group from a partner company, or even anonymous third parties on
the internet.

Rules and Processes are designed to execute arbitrary code in order to do their job, but in such
cases it might be necessary to constrain what they can do. For instance, it is unlikely a rule should
be allowed to create a classloader (what could open the system to an attack) and certainly it
should not be allowed to make a call to System exit ().

The Java Platform provides a very comprehensive and well defined security framework that allows
users to define policies for what a system can do. The KIE platform leverages that framework
and allow application developers to define a specific policy to be applied to any execution of user
provided code, be it in rules, processes, work item handlers and etc.

144

KIE

4.3.1.1. How to define a KIE Policy

Rules and processes can run with very restrict permissions, but the engine itself needs to perform
many complex operations in order to work. Examples are: it needs to create classloaders, read
system properties, access the file system, etc.

Once a security manager is installed, though, it will apply restrictions to all the code executing
in the JVM according to the defined policy. For that reason, KIE allows the user to define two
different policy files: one for the engine itself and one for the assets deployed into and executed
by the engine.

One easy way to setup the enviroment is to give the engine itself a very permissive policy, while
providing a constrained policy for rules and processes.

Policy files follow the standard policy file syntax as described in the Java documentation. For more
details, see:

http://docs.oracle.com/javase/6/docs/technotes/guides/security/PolicyFiles.html#File Syntax

A permissive policy file for the engine can look like the following:

Example 4.63. A sample engine.policy file

grant {
perm ssion java.security. Al Perm ssion;

}

An example security policy for rules could be:

Example 4.64. A sample rules.policy file

grant {
perm ssion java.util.PropertyPerm ssion "*", "read";
perm ssion java. |l ang. Runti mePerni ssi on "accessDecl aredMenbers";

Please note that depending on what the rules and processes are supposed to do, many more
permissions might need to be granted, like accessing files in the filesystem, databases, etc.

In order to use these policy files, all that is necessary is to execute the application with these files
as parameters to the JVM. Three parameters are required:

Table 4.3. Parameters

Parameter Meaning

-Djava.security.manager Enables the security manager

145

KIE

Parameter Meaning

-Djava.security.policy=<jvm_policy_file> Defines the global policy file to be applied to
the whole application, including the engine

-Dkie.security.policy=<kie_policy_file> Defines the policy file to be applied to rules and
processes

For instance:

j ava - Dj ava. security. nanager -Dj ava. security. policy=gl obal . policy -

Dki e. security. policy=rul es.policy foo.bar. MApp

146

Part Ill. Drools
Runtime and Language

Drools is a powerful Hybrid Reasoning System.

Chapter 5. Hybrid Reasoning

5.1. Artificial Intelligence

5.1.1. A Little History

Over the last few decades artificial intelligence (Al) became an unpopular term, with the
well-known "Al Winter" [http://en.wikipedia.org/wiki/Al_winter]. There were large boasts from
scientists and engineers looking for funding, which never lived up to expectations, re-
sulting in many failed projects. Thinking Machines Corporation [http:/en.wikipedia.org/wi-
ki/Thinking_Machines_Corporation] and the 5th Generation Computer [http://en.wikipedia.org/wi-
ki/Fifth-generation_computer] (5GP) project probably exemplify best the problems at the time.

Thinking Machines Corporation was one of the leading Al firms in 1990, it had sales of nearly $65
million. Here is a quote from its brochure:

“Some day we will build a thinking machine. It will be a truly intelligent machine. One that can see
and hear and speak. A machine that will be proud of us.”

Yet 5 years later it filed for bankruptcy protection under Chapter 11. The site inc.com has
a fascinating article titled "The Rise and Fall of Thinking Machines" [http://www.inc.com/
magazine/19950915/2622.html]. The article covers the growth of the industry and how a cosy re-
lationship with Thinking Machines and DARPA [http://en.wikipedia.org/wikiiDARPA] over-heated
the market, to the point of collapse. It explains how and why commerce moved away from Al and
towards more practical number-crunching super computers.

The 5th Generation Computer project was a USD 400 million project in Japan to build a next
generation computer. Valves (or Tubes) was the first generation, transistors the second, integrated
circuits the third and finally microprocessors was the fourth. The fifth was intended to be a machine
capable of effective Artificial Intelligence. This project spurred an "arms" race with the UK and USA,
that caused much of the Al bubble. The 5GP would provide massive multi-cpu parallel processing
hardware along with powerful knowledge representation and reasoning software via Prolog; a
type of expert system. By 1992 the project was considered a failure and cancelled. It was the
largest and most visible commercial venture for Prolog, and many of the failures are pinned on
the problems of trying to run a logic based programming language concurrently on multi CPU
hardware with effective results. Some believe that the failure of the 5GP project tainted Prolog
and relegated it to academia, see "Whatever Happened to Prolog" [http://www.dvorak.org/blog/
whatever-happened-to-prolog/] by John C. Dvorak.

However while research funding dried up and the term Al became less used, many green shoots
where planted and continued more quietly under discipline specific names: cognitive systems, ma-
chine learning, intelligent systems, knowledge representation and reasoning. Offshoots of these
then made their way into commercial systems, such as expert systems in the Business Rules
Management System (BRMS) market.

148

http://en.wikipedia.org/wiki/AI_winter
http://en.wikipedia.org/wiki/AI_winter
http://en.wikipedia.org/wiki/Thinking_Machines_Corporation
http://en.wikipedia.org/wiki/Thinking_Machines_Corporation
http://en.wikipedia.org/wiki/Thinking_Machines_Corporation
http://en.wikipedia.org/wiki/Fifth-generation_computer
http://en.wikipedia.org/wiki/Fifth-generation_computer
http://en.wikipedia.org/wiki/Fifth-generation_computer
http://www.inc.com/magazine/19950915/2622.html
http://www.inc.com/magazine/19950915/2622.html
http://www.inc.com/magazine/19950915/2622.html
http://en.wikipedia.org/wiki/DARPA
http://en.wikipedia.org/wiki/DARPA
http://www.dvorak.org/blog/whatever-happened-to-prolog/
http://www.dvorak.org/blog/whatever-happened-to-prolog/
http://www.dvorak.org/blog/whatever-happened-to-prolog/

Hybrid Reasoning

Imperative, system based languages, languages such as C, C++, Java and C#/.Net have dom-
inated the last 20 years, enabled by the practicality of the languages and ability to run with
good performance on commodity hardware. However many believe there is a renaissance un-
derway in the field of Al, spurred by advances in hardware capabilities and Al research. In 2005
Heather Havenstein authored "Spring comes to Al winter" [http://www.computerworld.com/s/ar-
ticle/99691/Spring_comes_to_Al_winter] which outlines a case for this resurgence. Norvig and
Russel dedicate several pages to what factors allowed the industry to overcome it's problems and
the research that came about as a result:

Recent years have seen a revolution in both the content and the methodology
of work in artificial intelligence. It is now more common to build on existing the-
ories than to propose brand-new ones, to base claims on rigorous theorems or
hard experimental evidence rather than on intuition, and to show relevance to
real-world applications rather than toy examples.

—Atrtificial Intelligence: A Modern Approach

Computer vision, neural networks, machine learning and knowledge representation and reason-
ing (KRR) have made great strides towards becoming practical in commercial environments. For
example, vision-based systems can now fully map out and navigate their environments with strong
recognition skills. As a result we now have self-driving cars about to enter the commercial market.
Ontological research, based around description logic, has provided very rich semantics to repre-
sent our world. Algorithms such as the tableaux algorithm have made it possible to use those
rich semantics effectively in large complex ontologies. Early KRR systems, like Prolog in 5GP,
were dogged by the limited semantic capabilities and memory restrictions on the size of those
ontologies.

5.1.2. Knowledge Representation and Reasoning

In A Little History talks about Al as a broader subject and touches on Knowledge Representation
and Reasoning (KRR) and also Expert Systems, I'll come back to Expert Systems later.

KRR is about how we represent our knowledge in symbolic form, i.e. how we describe something.
Reasoning is about how we go about the act of thinking using this knowledge. System based
object-oriented languages, like C++, Java and C#, have data definitions called classes for de-
scribing the composition and behaviour of modeled entities. In Java we call exemplars of these
described things beans or instances. However those classification systems are limited to ensure
computational efficiency. Over the years researchers have developed increasingly sophisticated
ways to represent our world. Many of you may already have heard of OWL (Web Ontology Lan-
guage). There is always a gap between what can be theoretically represented and what can be
used computationally in practically timely manner, which is why OWL has different sub-languages
from Lite to Full. It is not believed that any reasoning system can support OWL Full. However,
algorithmic advances continue to narrow that gap and improve the expressiveness available to
reasoning engines.

There are also many approaches to how these systems go about thinking. You may have heard
discussions comparing the merits of forward chaining, which is reactive and data driven, with

149

http://www.computerworld.com/s/article/99691/Spring_comes_to_AI_winter
http://www.computerworld.com/s/article/99691/Spring_comes_to_AI_winter
http://www.computerworld.com/s/article/99691/Spring_comes_to_AI_winter

Hybrid Reasoning

backward chaining, which is passive and query driven. Many other types of reasoning techniques
exist, each of which enlarges the scope of the problems we can tackle declaratively. To list just a
few: imperfect reasoning (fuzzy logic, certainty factors), defeasible logic, belief systems, temporal
reasoning and correlation. You don't need to understand all these terms to understand and use
Drools. They are just there to give an idea of the range of scope of research topics, which is
actually far more extensive, and continues to grow as researchers push new boundaries.

KRR is often referred to as the core of Atrtificial Intelligence. Even when using biological approach-
es like neural networks, which model the brain and are more about pattern recognition than think-
ing, they still build on KRR theory. My first endeavours with Drools were engineering oriented, as
I had no formal training or understanding of KRR. Learning KRR has allowed me to get a much
wider theoretical background. Allowing me to better understand both what I've done and where
I'm going, as it underpins nearly all of the theoretical side to our Drools R&D. It really is a vast and
fascinating subject that will pay dividends for those who take the time to learn. | know it did and
still does for me. Bracham and Levesque have written a seminal piece of work, called "Knowledge
Representation and Reasoning" that is a must read for anyone wanting to build strong foundations.
I would also recommend the Russel and Norvig book "Artificial Intelligence, a modern approach”
which also covers KRR.

5.1.3. Rule Engines and Production Rule Systems (PRS)

We've now covered a brief history of Al and learnt that the core of Al is formed around KRR.
We've shown than KRR is a vast and fascinating subject which forms the bulk of the theory driving
Drools R&D.

The rule engine is the computer program that delivers KRR functionality to the developer. At a
high level it has three components:

* Ontology
* Rules
e Data

As previously mentioned the ontology is the representation model we use for our "things". It could
use records or Java classes or full-blown OWL based ontologies. The rules perform the reasoning,
i.e., they facilitate "thinking". The distinction between rules and ontologies blurs a little with OWL
based ontologies, whose richness is rule based.

The term "rules engine" is quite ambiguous in that it can be any system that uses rules, in any form,
that can be applied to data to produce outcomes. This includes simple systems like form validation
and dynamic expression engines. The book "How to Build a Business Rules Engine" (2004) by
Malcolm Chisholm exemplifies this ambiguity. The book is actually about how to build and alter
a database schema to hold validation rules. The book then shows how to generate Visual Basic
code from those validation rules to validate data entry. While perfectly valid, this is very different
to what we are talking about.

150

Hybrid Reasoning

Drools started life as a specific type of rule engine called a Production Rule System (PRS) and was
based around the Rete algorithm (usually pronounced as two syllables, e.g., REH-te or RAY-tay).
The Rete algorithm, developed by Charles Forgy in 1974, forms the brain of a Production Rule
System and is able to scale to a large number of rules and facts. A Production Rule is a two-part
structure: the engine matches facts and data against Production Rules - also called Productions
or just Rules - to infer conclusions which result in actions.

when

<condi tions>
t hen

<actions>;

The process of matching the new or existing facts against Production Rules is called pattern
matching, which is performed by the inference engine. Actions execute in response to changes
in data, like a database trigger; we say this is a data driven approach to reasoning. The actions
themselves can change data, which in turn could match against other rules causing them to fire;
this is referred to as forward chaining

Drools 5.x implements and extends the Rete algorithm. This extended Rete algorithm is named
ReteOO, signifying that Drools has an enhanced and optimized implementation of the Rete algo-
rithm for object oriented systems. Other Rete based engines also have marketing terms for their
proprietary enhancements to Rete, like RetePlus and Rete Ill. The most common enhancements
are covered in "Production Matching for Large Learning Systems" (1995) by Robert B. Dooren-
bos' thesis, which presents Rete/UL. Drools 6.x introduces a new lazy algorithm named PHREAK;
which is covered in more detail in the PHEAK algorithm section.

The Rules are stored in the Production Memory and the facts that the Inference Engine matches
against are kept in the Working Memory. Facts are asserted into the Working Memory where they
may then be modified or retracted. A system with a large number of rules and facts may result in
many rules being true for the same fact assertion; these rules are said to be in conflict. The Agenda
manages the execution order of these conflicting rules using a Conflict Resolution strategy.

151

Hybrid Reasoning

Inference Engine
{Rete0O0 / Leaps)

Pattern

ﬁ-
Matcher

mory

les)

Agenda

Figure 5.1. High-level View of a Production Rule System

5.1.4. Hybrid Reasoning Systems (HRS)

You may have read discussions comparing the merits of forward chaining (reactive and data
driven) or backward chaining (passive query). Here is a quick explanation of these two main types
of reasoning.

Forward chaining is "data-driven" and thus reactionary, with facts being asserted into working
memory, which results in one or more rules being concurrently true and scheduled for execution
by the Agenda. In short, we start with a fact, it propagates through the rules, and we end in a
conclusion.

152

Hybrid Reasoning

Fule
Base ““-.I
A Detarmine
- possible rules to
.-'f fire
Working '
Memory
Conflict Set
Y
Conflict
. Rule Selact ,
| Fire Rule |-'l Found @ Eg;gli::[gr?rn
Mo Fule
Found

¥
—Exit If specified by rule ';I et l

Figure 5.2. Forward Chaining

Backward chaining is "goal-driven”, meaning that we start with a conclusion which the engine
tries to satisfy. If it can't, then it searches for conclusions that it can satisfy. These are known as
subgoals, that will help satisfy some unknown part of the current goal. It continues this process
until either the initial conclusion is proven or there are no more subgoals. Prolog is an example
of a Backward Chaining engine. Drools can also do backward chaining, which we refer to as
derivation queries.

153

Hybrid Reasoning

Rule
Base “~1
l'-.\ Examine working memaory
e _| and goals to see if goals Working
e . are “"known’” true in Memmory
{ knowledge base
|
Gaal J
I 9
=
=]
|8
2l Retum Do goals
i o True ™ yes match?
R
3|o
=2 |
[M |
8|2 |
3|5 |
m —
| B | Retum
=] F=1 Palee [~ —————1 Mo
a False .
= | (retum false to recursive procedurs)
2 | v
w I
I
| Detarmine next possible
F_"?" each "“'9 | rules to fine by checking
condition, recursively 1 conclusions and goals
backchain with
condition as goal.
Conflict
Fiﬂl:d Resolution
Strategy
Mo Rule
Found
¥ Exit
All rec$
retums rua?

One or maore goals failed, Check next matching rule

als found to be true, axist, retuming true true

L

Figure 5.3. Backward Chaining

154

Hybrid Reasoning

Historically you would have to make a choice between systems like OPS5 (forward) or Prolog
(backward). Nowadays many modern systems provide both types of reasoning capabilities. There
are also many other types of reasoning techniques, each of which enlarges the scope of the
problems we can tackle declaratively. To list just a few: imperfect reasoning (fuzzy logic, certainty
factors), defeasible logic, belief systems, temporal reasoning and correlation. Modern systems
are merging these capabilities, and others not listed, to create hybrid reasoning systems (HRS).

While Drools started out as a PRS, 5.x introduced Prolog style backward chaining reasoning
as well as some functional programming styles. For this reason we now prefer the term Hybrid
Reasoning System when describing Drools.

Drools currently provides crisp reasoning, but imperfect reasoning is almost ready. Initially this
will be imperfect reasoning with fuzzy logic; later we'll add support for other types of uncertainty.
Work is also under way to bring OWL based ontological reasoning, which will integrate with our
traits system. We also continue to improve our functional programming capabilities.

5.1.5. Expert Systems

You will often hear the terms expert systems used to refer to production rule systems or Prolog-
like systems. While this is normally acceptable, it's technically incorrect as these are frameworks
to build expert systems with, rather than expert systems themselves. It becomes an expert system
once there is an ontological model to represent the domain and there are facilities for knowledge
acquisition and explanation.

Mycin is the most famous expert system, built during the 70s. It is still heavily covered in academic
literature, such as the recommended book "Expert Systems" by Peter Jackson.

155

Hybrid Reasoning

Dendral

1970s @@
[Teiresias]f: Emycin] [WM J
[Wheeze] [Clot]
1;805 [Neomycin] [Oncocin}

Figure 5.4. Early History of Expert Systems

5.1.6. Recommended Reading

General Al, KRR and Expert System Books

For those wanting to get a strong theoretical background in KRR and expert systems, I'd strongly
recommend the following books. "Atrtificial Intelligence: A Modern Approach” is a must have, for
anyone's bookshelf.

* Introduction to Expert Systems

» Peter Jackson

» Expert Systems: Principles and Programming

156

Hybrid Reasoning

» Joseph C. Giarratano, Gary D. Riley

» Knowledge Representation and Reasoning

* Ronald J. Brachman, Hector J. Levesque

« Artificial Intelligence : A Modern Approach.

» Stuart Russell and Peter Norvig

"~ Expert Systems

EXPERT BRI

| Feler bchrea |

KNOWLEDGE Artificial Inteligence
REPRESENTATION pireleindovien

AND REASONING

Frmald |. Brachman
Hector |. Lisvesque

itilacmal J||I|;||!.:-r|' -
% ik NPT

Figure 5.5. Recommended Reading

157

Hybrid Reasoning

Papers

Here are some recommended papers that cover interesting areas in rule engine research:

* Production Matching for Large Learning Systems: Rete/UL (1993)
* Robert B. Doorenbos
» Advances In Rete Pattern Matching

e Marshall Schor, Timothy P. Daly, Ho Soo Lee, Beth R. Tibbitts (AAAI 1986)

Collection-Oriented Match
e Anurag Acharya and Milind Tambe (1993)
* The Leaps Algorithm

« Don Batery (1990)

Gator: An Optimized Discrimination Network for Active Database Rule Condition Testing
e Eric Hanson , Mohammed S. Hasan (1993)
Drools Books

There are currently three Drools books, all from Packt Publishing.

» JBoss Drools Business Rules
» Paul Browne

» Drools JBoss Rules 5.0 Developers Guide
* Michal Bali

» Drools Developer's Cookbook

* Lucas Amador

158

Hybrid Reasoning

JBoss Drools Business Rules Drools JBoss Rules 3.0
Developer's Guide

Drools Developer's
Cookbook

Lucas Amador PACKY ot

Figure 5.6. Recommended Reading

5.2. Rete Algorithm

The Rete algorithm was invented by Dr. Charles Forgy and documented in his PhD thesis in
1978-79. A simplified version of the paper was published in 1982 (http://citeseer.ist.psu.edu/con-
text/505087/0). The latin word "rete" means "net" or "network". The Rete algorithm can be broken
into 2 parts: rule compilation and runtime execution.

159

http://citeseer.ist.psu.edu/context/505087/0
http://citeseer.ist.psu.edu/context/505087/0

Hybrid Reasoning

The compilation algorithm describes how the Rules in the Production Memory are processed to
generate an efficient discrimination network. In non-technical terms, a discrimination network is
used to filter data as it propagates through the network. The nodes at the top of the network would
have many matches, and as we go down the network, there would be fewer matches. At the very
bottom of the network are the terminal nodes. In Dr. Forgy's 1982 paper, he described 4 basic
nodes: root, 1-input, 2-input and terminal.

ObjectTypeNode ReteMNode

AlphaNode JoinNode

LeftinputAdapterNode

{ \ MotMode
EvalNode

 NON N

TerminalNode

Figure 5.7. Rete Nodes

The root node is where all objects enter the network. From there, it immediately goes to the Ob-
jectTypeNode. The purpose of the ObjectTypeNode is to make sure the engine doesn't do more
work than it needs to. For example, say we have 2 objects: Account and Order. If the rule engine
tried to evaluate every single node against every object, it would waste a lot of cycles. To make
things efficient, the engine should only pass the object to the nodes that match the object type.
The easiest way to do this is to create an ObjectTypeNode and have all 1-input and 2-input nodes
descend from it. This way, if an application asserts a new Account, it won't propagate to the nodes
for the Order object. In Drools when an object is asserted it retrieves a list of valid ObjectType-
sNodes via a lookup in a HashMap from the object's Class; if this list doesn't exist it scans all the
ObjectTypeNodes finding valid matches which it caches in the list. This enables Drools to match
against any Class type that matches with an i nst anceof check.

Hybrid Reasoning

ReteNode

Cheese T~ Person

-.f..

Figure 5.8. ObjectTypeNodes

ObjectTypeNodes can propagate to AlphaNodes, LeftinputAdapterNodes and BetaNodes. Al-
phaNodes are used to evaluate literal conditions. Although the 1982 paper only covers equality
conditions, many RETE implementations support other operations. For example, Account . nane
== "M Trout" is a literal condition. When a rule has multiple literal conditions for a single object
type, they are linked together. This means that if an application asserts an Account object, it must
first satisfy the first literal condition before it can proceed to the next AlphaNode. In Dr. Forgy's
paper, he refers to these as IntraElement conditions. The following diagram shows the AlphaNode
combinations for Cheese(name == "cheddar", strength == "strong"):

Cheese

name == “cheddar”

strength == "strong”

Figure 5.9. AlphaNodes

161

Hybrid Reasoning

Drools extends Rete by optimizing the propagation from ObjectTypeNode to AlphaNode using
hashing. Each time an AlphaNode is added to an ObjectTypeNode it adds the literal value as a key
to the HashMap with the AlphaNode as the value. When a new instance enters the ObjectType
node, rather than propagating to each AlphaNode, it can instead retrieve the correct AlphaNode
from the HashMap,thereby avoiding unnecessary literal checks.

There are two two-input nodes, JoinNode and NotNode, and both are types of BetaNodes. Be-
taNodes are used to compare 2 objects, and their fields, to each other. The objects may be the
same or different types. By convention we refer to the two inputs as left and right. The left input for
a BetaNode is generally a list of objects; in Drools this is a Tuple. The right input is a single object.
Two Nodes can be used to implement 'exists' checks. BetaNodes also have memory. The left
input is called the Beta Memory and remembers all incoming tuples. The right input is called the
Alpha Memory and remembers all incoming objects. Drools extends Rete by performing indexing
on the BetaNodes. For instance, if we know that a BetaNode is performing a check on a String
field, as each object enters we can do a hash lookup on that String value. This means when facts
enter from the opposite side, instead of iterating over all the facts to find valid joins, we do a lookup
returning potentially valid candidates. At any point a valid join is found the Tuple is joined with the
Object; which is referred to as a partial match; and then propagated to the next node.

162

Hybrid Reasoning

Cheese Person

name == "cheddar"

Person. favouriteCheese ==
Cheese.name

Figure 5.10. JoinNode
To enable the first Object, in the above case Cheese, to enter the network we use a LeftinputN-

odeAdapter - this takes an Object as an input and propagates a single Object Tuple.

Terminal nodes are used to indicate a single rule having matched all its conditions; at this point we
say the rule has a full match. A rule with an 'or' conditional disjunctive connective results in subrule

generation for each possible logically branch; thus one rule can have multiple terminal nodes.

Drools also performs node sharing. Many rules repeat the same patterns, and node sharing allows
us to collapse those patterns so that they don't have to be re-evaluated for every single instance.

The following two rules share the first pattern, but not the last:

rule
when

Cheese($cheddar : nane == "cheddar")

$person : Person(favouriteCheese == $cheddar)
then

163

Hybrid Reasoning

Systemout. println($person.getName() + " |ikes cheddar");
end
rule
when
Cheese($cheddar : nanme == "cheddar")
$person : Person(favouriteCheese != $cheddar)
then
System out. println($person.getName() + " does not |ike cheddar");
end

As you can see below, the compiled Rete network shows that the alpha node is shared, but the
beta nodes are not. Each beta node has its own TerminalNode. Had the second pattern been the
same it would have also been shared.

164

Hybrid Reasoning

Person

name == “cheddar”

Person. favouriteCheese == |
Cheese.name |
|

/

System.out.printin{ person.getName() + " likes cheddar")
/
)
/S
o
o~

—

Ferson.favouriteCheesea =
Cheesa.name

Figure 5.11. Node Sharing

System.out.printin{ person.getName() + " does not like
cheddar")

Hybrid Reasoning

5.3. ReteOO Algorithm

The ReteOO was developed throughout the 3, 4 and 5 series releases. It takes the RETE algorithm
and applies well known enhancements, all of which are covered by existing academic literature:

Node sharing
« Sharing is applied to both the alpha and beta network. The beta network sharing is always from
the root pattern.

Alpha indexing

» Alpha Nodes with many children use a hash lookup mechanism, to avoid testing each result.

Beta indexing

« Join, Not and Exist nodes indexing their memories using a hash. This reduces the join attempts
for equal checks. Recently range indexing was added to Not and Exists.

Tree based graphs

« Join matches did not contain any references to their parent or children matches. Deletions would
have to recalculate all join matches again, which involves recreating all those join match objects,
to be able to find the parts of the network where the tuples should be deleted. This is called
symmetrical propagation. A tree graph provides parent and children references, so a deletion
is just a matter of following those references. This is asymmetrical propagation. The result is
faster and less impact on the GC, and more robust because changes in values will not cause
memory leaks if they happen without the engine being notified.

Modify-in-place
« Traditional RETE implements a modify as a delete + insert. This causes all join tuples to be GC'd,

many of which are recreated again as part of the insert. Modify-in-place instead propagates as
a single pass, every node is inspected

Property reactive
« Also called "new trigger condition”. Allows more fine grained reactivity to updates. A Pattern can

react to changes to specific properties and ignore others. This alleviates problems of recursion
and also helps with performance.

Sub-networks

* Not, Exists and Accumulate can each have nested conditional elements, which forms sub net-
works.

166

Hybrid Reasoning

Backward Chaining

» Prolog style derivation trees for backward chaining are supported. The implementation is stack
based, so does not have method recursion issues for large graphs.

Lazy Truth Maintenance

« Truth maintenance has a runtime cost, which is incurred whether TMS is used or not. Lazy TMS
only turns it on, on first use. Further it's only turned on for that object type, so other object types
do not incur the runtime cost.

Heap based agenda

« The agenda uses a binary heap queue to sort rule matches by salience, rather than any linear
search or maintenance approach.

Dynamic Rules

* Rules can be added and removed at runtime, while the engine is still populated with data.

5.4. PHREAK Algorithm

Drools 6 introduces a new algorithm, that attempts to address some of the core issues of RETE.
The algorithm is not a rewrite form scratch and incorporates all of the existing code from ReteOO,
and all its enhancements. While PHREAK is an evolution of the RETE algorithm, it is no longer
classified as a RETE implementation. In the same way that once an animal evolves beyond a
certain point and key characteristics are changed, the animal becomes classified as new species.
There are two key RETE characteristics that strongly identify any derivative strains, regardless of
optimizations. That it is an eager, data oriented algorithm. Where all work is doing done the insert,
update or delete actions; eagerly producing all partial matches for all rules. PHREAK in contrast is
characterised as a lazy, goal oriented algorithm; where partial matching is aggressively delayed.

This eagerness of RETE can lead to a lot of churn in large systems, and much wasted work.
Where wasted work is classified as matching efforts that do not result in a rule firing.

PHREAK was heavily inspired by a number of algorithms; including (but not limited to) LEAPS,
RETE/UL and Collection-Oriented Match. PHREAK has all enhancements listed in the ReteOO
section. In addition it adds the following set of enhancements, which are explained in more detail
in the following paragraphs.

» Three layers of contextual memory; Node, Segment and Rule memories.

¢ Rule, segment and node based linking.

* Lazy (delayed) rule evaluation.

167

Hybrid Reasoning

« Isolated rule evaluation.
« Set oriented propagations.
» Stack based evaluations, with pause and resume.

When the PHREAK engine is started all rules are said to be unlinked, no rule evaluation can hap-
pen while rules are unlinked. The insert, update and deletes actions are queued before entering
the beta network. A simple heuristic, based on the rule most likely to result in firings, is used to
select the next rule for evaluation; this delays the evaluation and firing of the other rules. Only
once a rule has all right inputs populated will the rule be considered linked in, although no work
is yet done. Instead a goal is created, that represents the rule, and placed into a priority queue;
which is ordered by salience. Each queue itself is associated with an AgendaGroup. Only the
active AgendaGroup will inspect its queue, popping the goal for the rule with the highest salience
and submitting it for evaluation. So the work done shifts from the insert, update, delete phase to
the fireAllRules phase. Only the rule for which the goal was created is evaluated, other potential
rule evaluations from those facts are delayed. While individual rules are evaluated, node sharing
is still achieved through the process of segmentation, which is explained later.

Each successful join attempt in RETE produces a tuple (or token, or partial match) that will be
propagated to the child nodes. For this reason it is characterised as a tuple oriented algorithm.
For each child node that it reaches it will attempt to join with the other side of the node, again each
successful join attempt will be propagated straight away. This creates a descent recursion effect.
Thrashing the network of nodes as it ripples up and down, left and right from the point of entry
into the beta network to all the reachable leaf nodes.

PHREAK propagation is set oriented (or collection-oriented), instead of tuple oriented. For the rule
being evaluated it will visit the first node and process all queued insert, update and deletes. The
results are added to a set and the set is propagated to the child node. In the child node all queued
inset, update and deletes are processed, adding the results to the same set. Once finished that set
is propagated to the next child node, and so on until the terminal node is reached. This creates a
single pass, pipeline type effect, that is isolated to the current rule being evaluated. This creates a
batch process effect which can provide performance advantages for certain rule constructs; such
as sub-networks with accumulates. In the future it will leans itself to being able to exploit multi-core
machines in a number of ways.

The Linking and Unlinking uses a layered bit mask system, based on a network segmentation.
When the rule network is built segments are created for nodes that are shared by the same set
of rules. A rule itself is made up from a path of segments, although if there is no sharing that will
be a single segment. A bit-mask offset is assigned to each node in the segment. Also another
bit mask (the layering) is assigned to each segment in the rule's path. When there is at least
one input (data propagation) the node's bit is set to on. When each node has its bit set to on the
segment's bit is also set to on. Conversely if any node's bit is set to off, the segment is then also
set to off. If each segment in the rule's path is set to on, the rule is said to be linked in and a goal
is created to schedule the rule for evaluation. The same bit-mask technique is used to also track
dirty node, segments and rules; this allows for a rule already link in to be scheduled for evaluation
if it's considered dirty since it was last evaluated.

168

Hybrid Reasoning

This ensures that no rule will ever evaluate partial matches, if it's impossible for it to result in rule
instances because one of the joins has no data. This is possible in RETE and it will merrily churn
away producing martial match attempts for all nodes, even if the last join is empty.

While the incremental rule evaluation always starts from the root node, the dirty bit masks are

used to allow nodes and segments that are not dirty to be skipped.

Using the existence of at at least one items of data per node, is a fairly basic heuristic. Future
work would attempt to delay the linking even further; using techniques such as arc consistency to

determine whether or not matching will result in rule instance firings.

Where as RETE has just a singe unit of memory, the node memory, PHREAK has 3 levels of
memory. This allows for much more contextual understanding during evaluation of a Rule.

rHul»e Memory
r.'E‘.-.E-q:_;ment Memory
Node Node Node
Memory Memaory Memory
%
F.E‘.-.egment Memory
Node Node Node
Memory Memaory Memory
>
segment Memory
Node Node Node
Memory Memaory Memory

Figure 5.12. PHREAK 3 Layered memory system

Example 1 shows a single rule, with three patterns; A, B and C. It forms a single segment, with

bits 1, 2 and 4 for the nodes. The single segment has a bit offset of 1.

169

Hybrid Reasoning

R1=ABC

1

1

[
el

T N [T —

1

1

1

I
N S |

Figure 5.13. Examplel: Single rule, no sharing

Example 2 demonstrates what happens when another rule is added that shares the pattern A.
A is placed in its own segment, resulting in two segments per rule. Those two segments form a
path, for their respective rules. The first segment is shared by both paths. When A is linked the
segment becomes linked, it then iterates each path the segment is shared by, setting the bit 1 to
on. If B and C are later turned on, the second segment for path R1 is linked in; this causes bhit 2 to
be turned on for R1. With bit 1 and bit 2 set to on for R1, the rule is now linked and a goal created
to schedule the rule for later evaluation and firing.

When a rule is evaluated it is the segments that allow the results of matching to be shared. Each
segment has a staging memory to queue all insert, update and deletes for that segment. If R1 was
to evaluated it would process A and result in a set of tuples. The algorithm detects that there is a
segmentation split and will create peered tuples for each insert, update and delete in the set and
add them to R2's staging memory. Those tuples will be merged with any existing staged tuples
and wait for R2 to eventually be evaluated.

170

Hybrid Reasoning

R1=ABC
R2=ADE

1
[l
[

M) —————————

e m\] mmm————————————————

N —)

Figure 5.14. Example 2: Two rules, with sharing

Example 3 adds a third rule and demonstrates what happens when A and B are shared. Only
the bits for the segments are shown this time. Demonstrating that R4 has 3 segments, R3 has
3 segments and R1 has 2 segments. A and B are shared by R1, R3 and R4. While D is shared
by R3 and R4.

171

Hybrid Reasoning

R1=ABC
R3=ABDE
R4=ABDFG

e Y Y, T Y

Figure 5.15. Example 3: Three rules, with sharing

Sub-networks are formed when a Not, Exists or Accumulate node contain more than one element.
In Example 4 "B not(C)" forms the sub network, note that "not(C)" is a single element and does
not require a sub network and is merged inside of the Not node.

The sub network gets its own segment. R1 still has a path of two segments. The sub network
forms another "inner" path. When the sub network is linked in, it will link in the outer segment.

172

Hybrid Reasoning

Ri=Anot(Bnot(C))D
™
—

S I

T

Figure 5.16. Example 4 : Single rule, with sub-network and no sharing

Example 5 shows that the sub-network nodes can be shard by a rule that does not have a sub-
network. This results in the sub-network segment being split into two.

173

Hybrid Reasoning

v
.

Figure 5.17. Example 5: Two rules, one with a sub-network and sharing

4

(AL

Not nodes with constraints and accumulate nodes have special behaviour and can never unlink
a segment, and are always considered to have their bits on.

All rule evaluations are incremental, and will not waste work recomputing matches that it has
already produced.

The evaluation algorithm is stack based, instead of method recursion. Evaluation can be paused
and resumed at any time, via the use of a StackEntry to represent current node being evaluated.

When a rule evaluation reaches a sub-network a StackEntry is created for the outer path segment
and the sub-network segment. The sub-network segment is evaluated first, when the set reaches
the end of the sub-network path it is merged into a staging list for the outer node it feeds into. The
previous StackEntry is then resumed where it can process the results of the sub network. This
has the added benefit that all work is processed in a batch, before propagating to the child node;
which is much more efficient for accumulate nodes.

The same stack system can be used for efficient backward chaining. When a rule evaluation
reaches a query node it again pauses the current evaluation, by placing it on the stack. The query
is then evaluated which produces a result set, which is saved in a memory location for the resumed
StackEntry to pick up and propagate to the child node. If the query itself called other queries the

174

Hybrid Reasoning

process would repeat, with the current query being paused and a new evaluation setup for the
current query node.

One final point on performance. One single rule in general will not evaluate any faster with
PHREAK than it does with RETE. For a given rule and same data set, which using a root context
object to enable and disable matching, both attempt the same amount of matches and produce
the same number of rule instances, and take roughly the same time. Except for the use case with
subnetworks and accumulates.

PHREAK can however be considered more forgiving that RETE for poorly written rule bases and
with a more graceful degradation of performance as the number of rules and complexity increases.

RETE will also churn away producing partial machines for rules that do not have data in all the
joins; where as PHREAK will avoid this.

So it's not that PHREAK is faster than RETE, it just won't slow down as much as your system
grows :)

AgendaGroups did not help in RETE performance, as all rules where evaluated at all times, re-
gardless of the group. The same is true for salience. Which is why root context objects are often
used, to limit matching attempts. PHREAK only evaluates rules for the active AgendaGroup, and
within that group will attempt to avoid evaluation of rules (via salience) that do not result in rule
instance firings.

With PHREAK AgendaGroups and salience now become useful performance tools. The root con-
text objects are no longer needed and potentially counter productive to performance, as they force
the flushing and recreation of matches for rules.

175

Chapter 6. User Guide

6.1. The Basics

6.1.1. Stateless Knowledge Session

So where do we get started? There are so many use cases and so much functionality in a rule
engine such as Drools that it becomes beguiling. Have no fear my intrepid adventurer, the com-
plexity is layered and you can ease yourself in with simple use cases.

Stateless session, not utilising inference, forms the simplest use case. A stateless session can be
called like a function passing it some data and then receiving some results back. Some common
use cases for stateless sessions are, but not limited to:

 Validation
« Is this person eligible for a mortgage?
 Calculation
» Compute a mortgage premium.
» Routing and Filtering
* Filter incoming messages, such as emails, into folders.
* Send incoming messages to a destination.

So let's start with a very simple example using a driving license application.

public class Applicant {
private String nang;
private int age;
private bool ean vali d;
/] getter and setter nethods here

Now that we have our data model we can write our first rule. We assume that the application uses
rules to reject invalid applications. As this is a simple validation use case we will add a single rule
to disqualify any applicant younger than 18.

package com conpany.licenserule "Is of valid age"when $a : Applicant(age < 18)then
$a.setValid(false);end

com conpany. licenserule "Is of valid

176

User Guide

age"
when $a : Applicant(age < 18

)
t hen $a. setValid(fal se

)i

To make the engine aware of data, so it can be processed against the rules, we have to insert
the data, much like with a database. When the Applicant instance is inserted into the engine it
is evaluated against the constraints of the rules, in this case just two constraints for one rule.
We say two because the type Applicant is the first object type constraint, and age < 18 is the
second field constraint. An object type constraint plus its zero or more field constraints is referred
to as a pattern. When an inserted instance satisfies both the object type constraint and all the field
constraints, it is said to be matched. The $a is a binding variable which permits us to reference the
matched object in the consequence. There its properties can be updated. The dollar character ('$")
is optional, but it helps to differentiate variable names from field names. The process of matching
patterns against the inserted data is, not surprisingly, often referred to as pattern matching.

To use this rule it is necessary to put it a Drools file, just a plain text file with .drl extension , short
for "Drools Rule Language”. Let's call this file licenseApplication.drl, and store it in a Kie Project.
A Kie Project has the structure of a normal Maven project with an additional file (kmodule.xml)
defining the Ki eBases and Ki eSessi ons that can be created. This file has to be placed in the
resources/META-INF folder of the Maven project while all the other Drools artifacts, such as the
licenseApplication.drl containing the former rule, must be stored in the resources folder or in any
other subfolder under it.

Since meaningful defaults have been provided for all configuration aspects, the simplest
kmodule.xml file can contain just an empty kmodule tag like the following:

<?xm version="1.0" encodi ng="UTF-8"?>
<kmodul e xm ns="http://ww. drool s. or g/ xsd/ knodul e"/ >

At this point it is possible to create a Ki eCont ai ner that reads the files to be built, from the class-
path.

Ki eServi ces ki eServices = KieServices. Factory.get();
Ki eCont ai ner kCont ai ner = ki eServices. get Ki eCl asspat hCont ai ner () ;

The above code snhippet compiles all the DRL files found on the classpath and put the result of
this compilation, a Ki eMbdul e, in the Ki eCont ai ner . If there are no errors, we are now ready to
create our session from the Ki eCont ai ner and execute against some data:

St at el essKi eSessi on kSessi on = kCont ai ner. newsSt at el essKi eSessi on();
Applicant applicant = new Applicant("M John Smth", 16);
assert True(applicant.isValid());

ksessi on. execut e(applicant);

177

User Guide

assertFal se(applicant.isValid());

The preceding code executes the data against the rules. Since the applicant is under the age of
18, the application is marked as invalid.

So far we've only used a single instance, but what if we want to use more than one? We can
execute against any object implementing Iterable, such as a collection. Let's add another class
called Appl i cat i on, which has the date of the application, and we'll also move the boolean valid
field to the Appl i cati on class.

public class Applicant {
private String nang;
private int age;
/] getter and setter nethods here

public class Application {
private Date dateApplied;
private bool ean valid;
/'l getter and setter nethods here

We will also add another rule to validate that the application was made within a period of time.

package com conpany.licenserule "Is of valid age"when Applicant(age < 18) $a
Appl i cation() t hen $a.setValid(false);endrule "Application was made this year"when
$a : Application(dateApplied > "01-jan-2009") then $a. setValid(false);end

com conpany. licenserule "Is of valid
age"

when Applicant(age < 18

) $a : Application()

then $a. setValid(fal se

DE

endrul e "Application was nade this
year"
when $a : Application(dateApplied > "01-jan-2009")

then $a. setValid(fal se

DE

Unfortunately a Java array does not implementthe I t er abl e interface, so we have to use the JDK
converter method Arr ays. asLi st (...). The code shown below executes against an iterable list,
where all collection elements are inserted before any matched rules are fired.

St at el essKi eSessi on kSessi on = kCont ai ner. newsSt at el essKi eSessi on();
Applicant applicant = new Applicant("M John Smth", 16);

178

User Guide

Application application = new Application();

assert True(application.isValid());

ksessi on. execut e(Arrays. asList(new Object[] { application, applicant }));
assert Fal se(application.isValid());

The two execute methods execut e(Obj ect obj ect) and execute(lterabl e objects) are ac-
tually convenience methods for the interface Bat chExecut or's method execut e(Conmand com
mand) .

The Ki eCormands commands factory, obtainable from the Ki eSer vi ces like all other factories of
the KIE API, is used to create commands, so that the following is equivalent to execut e(I t er abl e

it):

ksessi on. execut e(ki eServi ces. get Commands() . new nsert El ement s(Arrays. asList(new Cbject[] { ap
plication, applicant }));

Batch Executor and Command Factory are particularly useful when working with multiple Com-
mands and with output identifiers for obtaining results.

Ki eConmmands ki eConmands = ki eServi ces. get Commands() ;

Li st <Command> cmds = new ArrayLi st <Conmand>();

cnds. add(ki eCommands. new nsert (new Person("M John Smith"), "mrSmith", true, null));
cnds. add(ki eCommands. new nsert (new Person("M John Doe"), "mrDoe", true, null));

Bat chExecuti onResul ts results = ksession. execute(ki eComrands. newBat chExecution(cnds));
assert Equal s(new Person("M John Smith"), results.getValue("nrSmith"));

ComandFact ory supports many other Commands that can be used in the Bat chExecut or like
St art Process, Query, and Set G obal .

6.1.2. Stateful Knowledge Session

Stateful Sessions are long lived and allow iterative changes over time. Some common use cases
for Stateful Sessions are, but not limited to:

* Monitoring

» Stock market monitoring and analysis for semi-automatic buying.
« Diagnostics

 Fault finding, medical diagnostics
* Logistics

» Parcel tracking and delivery provisioning

» Compliance

179

User Guide

* Validation of legality for market trades.

In contrast to a Stateless Session, the di spose() method must be called afterwards to ensure
there are no memory leaks, as the KieBase contains references to Stateful Knowledge Sessions
when they are created. Since Stateful Knowledge Session is the most commonly used session
type it is just named Ki eSessi on in the KIE API. Ki eSessi on also supports the Bat chExecut or
interface, like St at el essKi eSessi on, the only difference being that the Fi r eAl | Rul es command
is not automatically called at the end for a Stateful Session.

We illustrate the monitoring use case with an example for raising a fire alarm. Using just four
classes, we represent rooms in a house, each of which has one sprinkler. If a fire starts in a room,
we represent that with a single Fi r e instance.

public class Room {

private String nane

/] getter and setter nethods here
}
public class Sprinkler {

private Room room

private bool ean on;

/'l getter and setter nethods here
}
public class Fire {

private Room room

/] getter and setter nethods here
}

public class Alarm {

}

In the previous section on Stateless Sessions the concepts of inserting and matching against data
were introduced. That example assumed that only a single instance of each object type was ever
inserted and thus only used literal constraints. However, a house has many rooms, so rules must
express relationships between objects, such as a sprinkler being in a certain room. This is best
done by using a binding variable as a constraint in a pattern. This "join" process results in what
is called cross products, which are covered in the next section.

When a fire occurs an instance of the Fi r e class is created, for that room, and inserted into the
session. The rule uses a hinding on the r oomfield of the Fi re object to constrain matching to
the sprinkler for that room, which is currently off. When this rule fires and the consequence is
executed the sprinkler is turned on.

rule "When there is a fire turn on the sprinkl er"when Fire($room : room $sprinkl er
Sprinkler(room == $room on == false)then nodi fy($sprinkler) { setOn(true) };
Systemout. println("Turn on the sprinkler for room" + $room getNanme());end

kl er"

when Fi re($room :

room $sprinkler : Sprinkler(room== $room on == false

)

t hen nmodi fy($sprinkler) { setOn(true)

180

User Guide

}s Systemout.printin("Turn on the sprinkler for room" + $room get Nane()

Whereas the Stateless Session uses standard Java syntax to modify a field, in the above rule
we use the nodi fy statement, which acts as a sort of "with" statement. It may contain a series
of comma separated Java expressions, i.e., calls to setters of the object selected by the nodi fy
statement's control expression. This modifies the data, and makes the engine aware of those
changes so it can reason over them once more. This process is called inference, and it's essential
for the working of a Stateful Session. Stateless Sessions typically do not use inference, so the
engine does not need to be aware of changes to data. Inference can also be turned off explicitly
by using the sequential mode.

So far we have rules that tell us when matching data exists, but what about when it does not exist?
How do we determine that a fire has been extinguished, i.e., that there isn't a Fi r e object any
more? Previously the constraints have been sentences according to Propositional Logic, where
the engine is constraining against individual instances. Drools also has support for First Order
Logic that allows you to look at sets of data. A pattern under the keyword not matches when
something does not exist. The rule given below turns the sprinkler off as soon as the fire in that
room has disappeared.

rule "Wien the fire is gone turn off the sprinkler"when $room : Room() $spri nkl er
Sprinkl er(room== $room on == true) not Fire(room == $room)then nodi fy($sprinkler)
{ setOn(false) }; Systemout.printin("Turn off the sprinkler for room " +
$room get Nane()); end

kl er"

when $room : Room(

) $sprinkler : Sprinkler(room== $room on == true

) not Fire(room == $room

)
t hen modi fy($sprinkler) { setOn(false)
1 Systemout.printin("Turn off the sprinkler for room" + $room get Nane()

DE

While there is one sprinkler per room, there is just a single alarm for the building. An Al ar mobject
is created when a fire occurs, but only one Al ar mis needed for the entire building, no matter how
many fires occur. Previously not was introduced to match the absence of a fact; now we use its
complement exi st s which matches for one or more instances of some category.

rul e "Raise the al arm when we have one or nore fires"
when
exists Fire()
t hen
insert(new Alarn());
Systemout.println("Raise the alarn);
end

181

User Guide

Likewise, when there are no fires we want to remove the alarm, so the not keyword can be used
again.

rule "Cancel the alarmwhen all the fires have gone"when not Fire() $alarm: Alarn()then
delete($alarm); Systemout. println("Cancel the alarni);end

gone"

when not

Fire() $al arm :

Al ar ()

t hen del ete($al arm

); System out. println("Cancel the alarnt

)i

Finally there is a general health status message that is printed when the application first starts
and after the alarm is removed and all sprinklers have been turned off.

rule "Status output when things are ok"when not Al arn() not Sprinkler(on == true) then
Systemout.println("Everything is ok");end

ok" when not
Al arm() not Sprinkler(on == true

)
t hen Systemout.println("Everything is ok"

As we did in the Stateless Session example, the above rules should be placed in a single DRL
file and saved into the resouces folder of your Maven project or any of its subfolder. As before,
we can then obtain a Ki eSessi on from the Ki eCont ai ner. The only difference is that this time
we create a Stateful Session, whereas before we created a Stateless Session.

Ki eServi ces ki eServices = KieServices. Factory.get();
Ki eCont ai ner kCont ai ner = ki eServi ces. get Ki eC asspat hCont ai ner () ;
Ki eSessi on ksessi on = kCont ai ner. newKi eSessi on();

With the session created it is now possible to iteratively work with it over time. Four Roomobjects
are created and inserted, as well as one Spri nkl er object for each room. At this point the engine
has done all of its matching, but no rules have fired yet. Calling ksessi on. fireAl | Rul es() allows
the matched rules to fire, but without a fire that will just produce the health message.

String[] names = new String[]{"kitchen", "bedroont, "office", "livingroon};
Map<Stri ng, Room> name2r oom = new HashMap<Stri ng, Roon®();
for(String name: nanes){

Room room = new Room(nane);

name2r oom put (nane, room);

ksession.insert(room);

Sprinkler sprinkler = new Sprinkler(room);

182

User Guide

ksession.insert(sprinkler);

ksession.fireA | Rul es();

> Everything is ok

We now create two fires and insert them; this time a reference is kept for the returned Fact Handl e.
A Fact Handle is an internal engine reference to the inserted instance and allows instances to be
retracted or modified at a later point in time. With the fires now in the engine, oncefi r eAl | Rul es()
is called, the alarm is raised and the respective sprinklers are turned on.

Fire kitchenFire = new Fire(name2room get("kitchen'
Fire officeFire = new Fire(name2roomget("office")

)i

1

)
)

Fact Handl e kitchenFireHandl e = ksession.insert(kitchenFire);
Fact Handl e of ficeFireHandl e = ksession.insert(officeFire);

ksession.fireA | Rul es();

> Raise the alarm
> Turn on the sprinkler for roomkitchen
> Turn on the sprinkler for roomoffice

After a while the fires will be put out and the Fi r e instances are retracted. This results in the
sprinklers being turned off, the alarm being cancelled, and eventually the health message is printed
again.

ksessi on. del ete(kitchenFireHandl e);
ksession. del ete(officeFireHandl e);

ksession.fireA | Rul es();

> Cancel the alarn> Turn off the sprinkler for room office> Turn off the sprinkler for room
ki tchen> Everything is ok

alarn> Turn off the sprinkler for room

office> Turn off the sprinkler for room

ki tchen> Everything is

Everyone still with me? That wasn't so hard and already I'm hoping you can start to see the value
and power of a declarative rule system.

183

User Guide

6.1.3. Methods versus Rules

People often confuse methods and rules, and new rule users often ask, "How do | call a rule?"
After the last section, you are now feeling like a rule expert and the answer to that is obvious, but
let's summarize the differences nonetheless.

public void hell owrl d(Person person) {
if (person.getNane().equal s("Chuck")) {
Systemout.println("Hello Chuck");

}

* Methods are called directly.
» Specific instances are passed.
e One call results in a single execution.

rule "Hell o Worl d" when Person(nanme == "Chuck")then Systemout.println("Hello Chuck");end
when Person(nane == " Chuck"

)
t hen Systemout.println("Hello Chuck"

DE

* Rules execute by matching against any data as long it is inserted into the engine.
« Rules can never be called directly.
» Specific instances cannot be passed to a rule.

« Depending on the matches, a rule may fire once or several times, or not at all.

6.1.4. Cross Products

Earlier the term "cross product" was mentioned, which is the result of a join. Imagine for a moment
that the data from the fire alarm example were used in combination with the following rule where
there are no field constraints:

rule "Show Sprinklers" when $room : Room() $sprinkler : Sprinkler()then
Systemout.printin("room" + $room getName() + " sprinkler:" +
$sprinkl er. get Roon() . get Nane()); end

when $room :

Room() $sprinkler :

Sprinkler()

t hen Systemout.println("room" + $room get Nane()

+ " sprinkler:" + $sprinkler.get Roon(). get Nare()

Dk

184

User Guide

In SQL terms this would be like doing sel ect * from Room Sprinkl er and every row in the
Room table would be joined with every row in the Sprinkler table resulting in the following output:

roomof fice sprinkler:office

room of fice sprinkler:kitchen
roomof fice sprinkler:livingroom
room of fi ce sprinkler:bedroom
room kit chen sprinkler:office
room ki t chen sprinkl er:kitchen
room ki tchen sprinkler:Iivingroom
room ki t chen spri nkl er: bedroom
room | ivingroom sprinkler:office
room | i vi ngroom sprinkl er: ki tchen
room | i vi ngroom sprinkl er:1ivingroom
room | i vi ngroom spri nkl er: bedr oom
room bedr oom sprinkl er: of fice
room bedr oom spri nkl er: ki tchen
room bedroom sprinkler:1ivingroom
room bedroom spri nkl er: bedr oom

These cross products can obviously become huge, and they may very well contain spurious data.
The size of cross products is often the source of performance problems for new rule authors. From
this it can be seen that it's always desirable to constrain the cross products, which is done with
the variable constraint.

rule
when

$room : Roon()

$sprinkler : Sprinkler(room== $room)
then

Systemout.println("room" + $room getName() +

" sprinkler:" + $sprinkler.getRoon().getName());

end

This results in just four rows of data, with the correct Sprinkler for each Room. In SQL (actually
HQL) the corresponding query would be sel ect * from Room Sprinkler where Room ==
Spri nkl er.room

roomoffice sprinkler:office

room ki t chen sprinkl er:kitchen

room | i vi ngroom sprinkl er:1ivingroom
room bedr oom spri nkl er: bedr oom

185

User Guide

6.2. Execution Control

6.2.1. Agenda

The Agenda is a Rete feature. It maintains set of rules that are able to execute, its job is to schedule
that execution in a deterministic order.

During actions on the Rul eRunt i e, rules may become fully matched and eligible for execution;
a single Rule Runtime Action can result in multiple eligible rules. When a rule is fully matched a
Rule Match is created, referencing the rule and the matched facts, and placed onto the Agenda.
The Agenda controls the execution order of these Matches using a Conflict Resolution strategy.

The engine cycles repeatedly through two phases:

1. Rule Runtime Actions. This is where most of the work takes place, either in the Consequence
(the RHS itself) or the main Java application process. Once the Consequence has finished or
the main Java application process calls fi reAl | Rul es() the engine switches to the Agenda
Evaluation phase.

2. Agenda Evaluation. This attempts to select a rule to fire. If no rule is found it exits, otherwise it
fires the found rule, switching the phase back to Rule Runtime Actions.

Determine
possible rules to
fire

" Agenda Evaluation

. Working Memory Action

L
. Rule
Fire Rule | wto Fire

Mo Rule
Found

Figure 6.1. Two Phase Execution

186

User Guide

The process repeats until the agenda is clear, in which case control returns to the calling applica-
tion. When Rule Runtime Actions are taking place, no rules are being fired.

6.2.2. Rule Matches and Conflict Sets.

6.2.2.1. Cashflow Example

So far the data and the matching process has been simple and small. To mix things up a bit a
new example will be explored that handles cashflow calculations over date periods. The state of
the engine will be illustratively shown at key stages to help get a better understanding of what is
actually going on under the hood. Three classes will be used, as shown below. This will help us
grow our understanding of pattern matching and joins further. We will then use this to illustrate
different techniques for execution control.

public class CashFl ow {
private Date date;
private doubl e anmount;
private int type;
| ong account No;
/] getter and setter nethods here

}

public class Account {
private |ong account No;
private doubl e bal ance;
/'l getter and setter nethods here

}

public AccountPeriod {
private Date start;
private Date end,
/] getter and setter nethods here

By now you already know how to create KieBases and how to instantiate facts to populate the
Ki eSessi on, so tables will be used to show the state of the inserted data, as it makes things
clearer for illustration purposes. The tables below show that a single fact was inserted for the
Account . Also inserted are a series of debits and credits as CashFl ow objects for that account,
extending over two quarters.

187

User Guide

CashFlow Account
date amount type accountMo accountMo balance
12-Jan-07 100|CREDIT 1 1
2-Feb-07 200DEBIT 1
18-May-07 50|CREDIT 1
9-Mar-07 T5|CREDIT 1
Figure 6.2. CashFlows and Account
Two rules can be used to determine the debit and credit for that quarter and update the Account
balance. The two rules below constrain the cashflows for an account for a given time period. Notice
the "&&" which use short cut syntax to avoid repeating the field name twice.
rule "increase balance for credits"when ap : rule "decrease bal ance for deb
Account Period() acc : Account($accountNo : its" when ap : AccountPeriod() acc :
accountNo) CashFlow type == CREDIT, Account ($accountNo : account No)
account No == $account No, CashFl ow(type == DEBIT,
date >= ap.start && <= ap.end, account No == $account No, date >=
$anount amount)then acc.balance += ap.start && <= ap. end, $anount
$anount ; end anmount) then acc. bal ance -= $anount; end
debi ts"
credits"when ap when ap :
Account Period() acc : Account($account No Account Peri od() acc : Account($accountNo : account No
accountNo) CashFlow type) CashFl ow(type ==
== CREDI T, account No DEBI T, account No
== $account No, date >= ap.start & == $account No, date >= ap.start && <=
<= ap. end, $anount ap. end, $anount anount
anmount)
)then acc. bal ance t hen acc. bal ance -=

+=

Earlier we showed how rules would equate to SQL, which can often help people with an SQL
background to understand rules. The two rules above can be represented with two views and a

trigger for each view, as below:

Table 6.1.
select * from Account acc,
Cashfl ow cf, Account Peri od ap
wher e acc. account == cf.account No and
cf.type == CREDIT and cf.date >=
ap.start and cf.date <= ap.end
acc, Cashf | ow
cf, Account Peri od ap
wher e acc. account No == cf.account No
and cf.type == CREDI T
and cf.date >= ap.start
and cf.date <=

select * from Account acc,
Cashfl ow cf, Account Peri od
ap where acc.account No == cf.account No and

cf.type == DEBIT and cf.date >=

ap.start and cf.date <= ap.end

acc, Cashf | ow
cf, Account Peri od

ap where acc.account No == cf. account No

and cf.type == DEBIT
and cf.date >= ap.start

and cf.date <=

188

User Guide

trigger : acc. bal ance += cf. anmount trigger : acc.bal ance -= cf.anmount

If the Account Per i od is set to the first quarter we constrain the rule "increase balance for credits"
to fire on two rows of data and "decrease balance for debits" to act on one row of data.

Figure 6.3. AccountingPeriod, CashFlows and Account

The two cashflow tables above represent the matched data for the two rules. The data is matched
during the insertion stage and, as you discovered in the previous chapter, does not fire straight
away, butonly afterfi reAl | Rul es() is called. Meanwhile, the rule plus its matched data is placed
on the Agenda and referred to as an Rule Match or Rule Instance. The Agenda is a table of Rule
Matches that are able to fire and have their consequences executed, as soon as fireAllRules()
is called. Rule Matches on the Agenda are referred to as a conflict set and their execution is
determine by a conflict resolution strategy. Notice that the order of execution so far is considered
arbitrary.

Agenda
1 Increase balance
2 decrease balance arbitrary
3 Increase balance

Figure 6.4. CashFlows and Account

After all of the above activations are fired, the account has a balance of -25.

Account
accountMo balance
1 -25

Figure 6.5. CashFlows and Account

If the Account Peri od is updated to the second quarter, we have just a single matched row of
data, and thus just a single Rule Match on the Agenda.

189

AccountingP eriod
start end
01-Jan-07 31-M ar-07
CashFlow CashFlow
date amount type date amount type
12-Jan-07 TO0[CREDIT 2-Feb-07 200|DEBIT
O-Mar-07 THICREDIT

User Guide

The firing of that Activation results in a balance of 25.

AccountingPeriod
stan end
01-Apr-07 30-Jun-07
CashFlow
date amount type
18-May-07 ROICREDIT

Figure 6.6. CashFlows and Account

accountMo balance
1 25

Figure 6.7. CashFlows and Account

6.2.2.2. Conflict Resolution

What if you don't want the order of rule execution to be arbitrary? When there is one or more Rule
Match on the Agenda they are said to be in conflict, and a conflict resolution strategy is used to
determine the order of execution. The Drools strategy is very simple and based around a salience
value, which assigns a priority to a rule. Each rule has a default value of 0, the higher the value
the higher the priority.

As a general rule, it is a good idea not to count on rules firing in any particular order, and to author
the rules without worrying about a "flow". However when a flow is needed a number of possibilities
exist beyond salience: agenda groups, rule flow groups, activation groups and control/semaphore
facts.

As of Drools 6.0 rule definition order in the source file is used to set priority after salience.

6.2.2.3. Salience

To illustrate Salience we add a rule to print the account balance, where we want this rule to be
executed after all the debits and credits have been applied for all accounts. We achieve this by
assigning a negative salience to this rule so that it fires after all rules with the default salience 0.

Table 6.2.
rule "Print balance for AccountPeriod" sal i ence -50 when ap : Account Peri od()
acc : Account() t hen Systemout. println(acc.accountNo + "
" + acc. bal ance); end

Account Peri od"

190

User Guide

sal i ence -50

when
ap : Account Peri od() acc : Account ()
t hen Systemout.println(acc.accountNo + " : " + acc. bal ance

The table below depicts the resulting Agenda. The three debit and credit rules are shown to be in
arbitrary order, while the print rule is ranked last, to execute afterwards.

Agenda
1 Increase balance
2 decrease balance arbitrary
J Increase balance
4 print balance

Figure 6.8. CashFlows and Account

6.2.2.4. Agenda Groups

Agenda groups allow you to place rules into groups, and to place those groups onto a stack. The
stack has push/pop bevaviour. Calling "setFocus" places the group onto the stack:

ksessi on. get Agenda() . get AgendaG oup("G oup A").setFocus();

The agenda always evaluates the top of the stack. When all the rules have fired for a group, it is
poped from the stack and the next group is evaluated.

Table 6.3.
rule "increase balance for credits" agenda- rule "Print bal ance for AccountPeri
group "cal cul ati on"when ap : AccountPeriod() od" agenda-group "report"when ap :
acc : Account($accountNo : accountNo) Account Peri od() acc : Account()then
CashFl ow(type == CREDIT, Systemout. println(acc.accountNo +
account No == $account No, date >= " : " + acc. bal ance); end
ap.start && <= ap. end, $anount : Account Peri od"
amount)then acc. balance += $anount;end
credits" agenda- agenda- group "report"when
group ap : Account Peri od()
"cal cul ati on"when ap acc
. AccountPeriod() acc : Account($account No : Account ()then
accountNo) CashFlow(type Systemout. println(acc.accountNo +
== CREDI T, account No + acc. bal ance
== $account No, date >= ap.start &);
<= ap. end, $anount :
anount

)then acc. bal ance
+=

191

User Guide

First set the focus to the "report" group and then by placing the focus on "calculation" we ensure
that group is evaluated first.

Agenda agenda = ksessi on. get Agenda();

agenda. get AgendaG oup("report").setFocus();
agenda. get AgendaG oup("cal cul ati on").setFocus();
ksession.fireA | Rul es();

6.2.2.5. Rule Flow

Drools also features ruleflow-group attributes which allows workflow diagrams to declaratively
specify when rules are allowed to fire. The screenshot below is taken from Eclipse using the Drools
plugin. It has two ruleflow-group nodes which ensures that the calculation rules are executed
before the reporting rules.

a2 *hanking.tf 7

[::i Select

F=q
L Marquee

—t i_onneckion Creation

[~ Camponents -+

{3 Start

8 End calculation
[RuleFlowwEroup

2 split

=+ Jiin

(7) Milestone
ez SubFlow
Ackion

¥ End

The use of the ruleflow-group attribute in a rule is shown below.

Table 6.4.

rule "increase balance for credits” rule "Print bal ance for AccountPeri
rul efl ow-group "cal cul ati on"when ap : od" ruleflowgroup "report”"when ap :
Account Period() acc : Account($accountNo : Account Period() acc : Account()then

accountNo) CashFlow(type == CREDIT,

192

User Guide

account No == $account No, Systemout.println(acc.accountNo +
date >= ap.start &% <= ap. end, " ¢ " + acc.bal ance); end
$anount : armount)then acc.balance += Account Peri od"

$anount ; end

credits" ruleflow rul ef | owgroup "report"when
group ap : Account Peri od()

"cal cul ati on"when ap acc

Account Period() acc : Account($account No : Account ()then

accountNo) CashFlow type System out. println(acc.accountNo +
== CREDI T, account No + acc. bal ance
== $account No, date >= ap.start &);
<= ap. end, $anount
anount

)then acc. bal ance
+=

6.3. Inference

6.3.1. Bus Pass Example

Inference has a bad name these days, as something not relevant to business use cases and
just too complicated to be useful. It is true that contrived and complicated examples occur with
inference, but that should not detract from the fact that simple and useful ones exist too. But more
than this, correct use of inference can crate more agile and less error prone business rules, which
are easier to maintain.

So what is inference? Something is inferred when we gain knowledge of something from using
previous knowledge. For example, given a Person fact with an age field and a rule that provides
age policy control, we can infer whether a Person is an adult or a child and act on this.

rule "Infer Adult"when $p : Person(age >= 18)then insert(new IsAdult($p))end
Adul t"
when $p : Person(age >= 18

)
then insert(new IsAdult($p)

)

Due to the preceding rule, every Person who is 18 or over will have an instance of IsAdult inserted
for them. This fact is special in that it is known as a relation. We can use this inferred relation
in any rule:

$p : Person()IsAdult(person == $p)
son() | sAdult (person == $p

So now we know what inference is, and have a basic example, how does this facilitate good rule
design and maintenance?

193

User Guide

Let's take a government department that are responsible for issuing ID cards when children be-
come adults, henceforth referred to as ID department. They might have a decision table that in-
cludes logic like this, which says when an adult living in London is 18 or over, issue the card:

able [3 PO
CONDITION CONDITION ACTION
p ¢ Parson
kocation age == 51 BaueldCard =1)
Select Person Select Adults Issue ID Card
Issue ID Card to Adults London i8

However the ID department does not set the policy on who an adult is. That's done at a central
government level. If the central government were to change that age to 21, this would initiate a
change management process. Someone would have to liaise with the ID department and make
sure their systems are updated, in time for the law going live.

This change management process and communication between departments is not ideal for an
agile environment, and change becomes costly and error prone. Also the card department is
managing more information than it needs to be aware of with its "monolithic" approach to rules
management which is "leaking" information better placed elsewhere. By this | mean that it doesn't
care what explicit "age >= 18" information determines whether someone is an adult, only that they
are an adult.

In contrast to this, let's pursue an approach where we split (de-couple) the authoring responsibil-
ities, so that both the central government and the ID department maintain their own rules.

It's the central government's job to determine who is an adult. If they change the law they just
update their central repository with the new rules, which others use:

CONDITION ACTICN
p ¢ Person
e == 51 insert] £1)
Adult Age Policy Add Adult Relation
Infer Adult 18
new LsAdult(p)

The IsAdult fact, as discussed previously, is inferred from the policy rules. It encapsulates the
seemingly arbitrary piece of logic "age >= 18" and provides semantic abstractions for its meaning.
Now if anyone uses the above rules, they no longer need to be aware of explicit information that
determines whether someone is an adult or not. They can just use the inferred fact:

194

User Guide

aD|e 1 =gt
CONDITION CONDITION ACTION
p : Person Isfdult
location person == $1 issweldCand] %1]
Select Person Select Adults Issue ID Card
Issue ID Card to Adults London p 1]

While the example is very minimal and trivial it illustrates some important points. We started with a
monolithic and leaky approach to our knowledge engineering. We created a single decision table
that had all possible information in it and that leaks information from central government that the
ID department did not care about and did not want to manage.

We first de-coupled the knowledge process so each department was responsible for only what it
needed to know. We then encapsulated this leaky knowledge using an inferred fact IsAdult. The
use of the term IsAdult also gave a semantic abstraction to the previously arbitrary logic "age >=
18"

So a general rule of thumb when doing your knowledge engineering is:

* Bad
» Monolithic
* Leaky
» Good
» De-couple knowledge responsibilities
* Encapsulate knowledge

» Provide semantic abstractions for those encapsulations
6.4. Truth Maintenance with Logical Objects

6.4.1. Overview

After regular inserts you have to retract facts explicitly. With logical assertions, the fact that was
asserted will be automatically retracted when the conditions that asserted it in the first place are
no longer true. Actually, it's even cleverer then that, because it will be retracted only if there isn't
any single condition that supports the logical assertion.

Normal insertions are said to be stated, i.e., just like the intuitive meaning of "stating a fact" implies.
Using a HashMap and a counter, we track how many times a particular equality is stated; this
means we count how many different instances are equal.

195

User Guide

When we logically insert an object during a RHS execution we are said to justify it, and it is con-
sidered to be justified by the firing rule. For each logical insertion there can only be one equal
object, and each subsequent equal logical insertion increases the justification counter for this log-
ical assertion. A justification is removed by the LHS of the creating rule becoming untrue, and the
counter is decreased accordingly. As soon as we have no more justifications the logical object
is automatically retracted.

If we try to logically insert an object when there is an equal stated object, this will fail and return
null. If we state an object that has an existing equal object that is justified we override the Fact;
how this override works depends on the configuration setting Wv BEHAVI OR_PRESERVE. When the
property is set to discard we use the existing handle and replace the existing instance with the
new Object, which is the default behavior; otherwise we override it to stated but we create an
new Fact Handl e.

This can be confusing on a first read, so hopefully the flow charts below help. When it says that it
returns a new Fact Handl e, this also indicates the Obj ect was propagated through the network.

196

User Guide

Is there an
existing Equal
Object?

Return new
FactHandle

yes

Return new

FactHandle

JUSTIFIED

Crerride JUSTIFIED,
and set to STATED,
set existing handle to
fhe new Ohject,

Discard Logical
Assertion?

no

!

Cwemide JUSTIFIED
and set to STATED,
remove justifications
and return existing
FactHandle

Figure 6.9. Stated Insertion

yes

Is the Ofject
STATED or

JUSTIFED?

Return existing

STATED FactHandle.

JUSTIFIED

Override JUSTIFIED
and set to STATED,
resnove justifications
and retum existing
FactHandle

197

User Guide

Add first
justification and

Is there an
existing Equal
Object?

[oes the Object
already exist?

retunn mew
FactHandle

yES yes

Can't Justify a s tha Object g?'ltféﬁgcta
STATED faet, STATED or STATED e
return null. JUSTIFE? JUSTIFED? FactHandle,

JUSTIFIED JUSTIFIED

Add additional
justification and

Add first
justification and

retuUrm e
FactHandle

return existing
FactHandle

Figure 6.10. Logical Insertion

6.4.1.1. Bus Pass Example With Inference and TMS

The previous example was issuing ID cards to over 18s, in this example we now issue bus passes,
either a child or adult pass.

rule "lssue Child Bus Pass" when $p : Person(age < 16)then insert(new

Chi | dBusPass($p));end rule "lIssue Adult Bus Pass" when $p : Person(age >= 16)then
i nsert (new Adul t BusPass($p));end

when $p : Person(age < 16

)

t hen insert (new Chil dBusPass($p)

DE

end

rule "Issue Adult Bus Pass"

when $p : Person(age >= 16

)

t hen i nsert (new Adul t BusPass($p)

Dk

198

User Guide

As before the above example is considered monolithic, leaky and providing poor separation of
concerns.

As before we can provide a more robust application with a separation of concerns using inference.
Notice this time we don't just insert the inferred object, we use "insertLogical":

rule "Infer Child" when $p : Person(age < 16)then i nsertLogical (newlsChild($p))endrule
"I nfer Adult" when $p : Person(age >= 16)then i nsertLogical (new IsAdult($p))end
when $p : Person(age < 16

)
t hen insertLogical (new IsChild($p)

)

endrule "Infer Adult"
when $p : Person(age >= 16

)
t hen insertLogical (new I sAdult($p)

)

A "insertLogical" is part of the Drools Truth Maintenance System (TMS). When a fact is logically
inserted, this fact is dependant on the truth of the "when" clause. It means that when the rule
becomes false the fact is automatically retracted. This works particularly well as the two rules are
mutually exclusive. So in the above rules if the person is under 16 it inserts an IsChild fact, once
the person is 16 or over the IsChild fact is automatically retracted and the IsAdult fact inserted.

Returning to the code to issue bus passes, these two rules can + logically insert the ChildBusPass
and AdultBusPass facts, as the TMS + supports chaining of logical insertions for a cascading set
of retracts.

rule "lssue Child Bus Pass" when $p : Person() IsChild(person == $p)then
insertLogical (new Chil dBusPass($p));end rule "lssue Adult Bus Pass" when $p : Person(age
>= 16) I sAdul t (person =$p)then i nsert Logi cal (new Adul t BusPass($p));end

when $p @ Person(

) I sChil d(person == $p

)

t hen i nsertLogi cal (new Chil dBusPass($p)

NE

end

rule "lIssue Adult Bus Pass"
when $p : Person(age >= 16
) I sAdul t (person =$p
)

t hen i nsertLogi cal (new Adul t BusPass($p)

)i

Now when a person changes from being 15 to 16, not only is the IsChild fact automatically re-
tracted, so is the person's ChildBusPass fact. For bonus points we can combine this with the 'not'
conditional element to handle natifications, in this situation, a request for the returning of the pass.
So when the TMS automatically retracts the ChildBusPass object, this rule triggers and sends a
request to the person:

199

User Guide

rule "Return Chil dBusPass Request "when $p : Person() not (Chil dBusPass(person
== $p))then request Chi | dBusPass($p); end

Request "when $p :

Person() not (Chil dBusPass(person == $p

))then request Chi | dBusPass(

6.4.1.2. Important note: Equality for Java objects

It is important to note that for Truth Maintenance (and logical assertions) to work at all, your
Fact objects (which may be JavaBeans) must override equals and hashCode methods (from
java.lang.Object) correctly. As the truth maintenance system needs to know when two different
physical objects are equal in value, both equals and hashCode must be overridden correctly, as
per the Java standard.

Two objects are equal if and only if their equals methods return true for each other and if their
hashCode methods return the same values. See the Java API for more details (but do keep in
mind you MUST override both equals and hashCode).

TMS behaviour is not affected by theruntime configuration of Identity vs Equality, TMS is always
equality.

6.4.1.3. Deleting stated or logically asserted facts from the working
memory

By default when a fact is deleted from the working memory Drools attempts to remove it both from
the set of stated facts and also from the Truth Maintenance System in case it has been logically
asserted. However, using an overload of the delete method, it is also possible to remove it only
from one of the 2. For instance invoking:

ksessi on. del et e(factHandl e, FactHandl e. State. LOG CAL);

the fact is removed only if it has been logically asserted, but not if it is a stated fact. In this case,
if the fact has been stated its deletion fails silently and it is ignored.

6.5. Decision Tables in Spreadsheets

Decision tables are a "precise yet compact” (ref. Wikipedia) way of representing conditional logic,
and are well suited to business level rules.

Drools supports managing rules in a spreadsheet format. Supported formats are Excel (XLS),
and CSV, which means that a variety of spreadsheet programs (such as Microsoft Excel,
OpenOffice.org Calc amongst others) can be utilized. It is expected that web based decision table
editors will be included in a near future release.

200

User Guide

Decision tables are an old concept (in software terms) but have proven useful over the years. Very
briefly speaking, in Drools decision tables are a way to generate rules driven from the data entered
into a spreadsheet. All the usual features of a spreadsheet for data capture and manipulation can
be taken advantage of.

6.5.1. When to Use Decision Tables

Consider decision tables as a course of action if rules exist that can be expressed as rule templates
and data: each row of a decision table provides data that is combined with a template to generate
arule.

Many businesses already use spreadsheets for managing data, calculations, etc. If you are happy
to continue this way, you can also manage your business rules this way. This also assumes you are
happy to manage packages of rules in . x| s or . csv files. Decision tables are not recommended
for rules that do not follow a set of templates, or where there are a small number of rules (or if there
is a dislike towards software like Excel or OpenOffice.org). They are ideal in the sense that there
can be control over what parameters of rules can be edited, without exposing the rules directly.

Decision tables also provide a degree of insulation from the underlying object model.

6.5.2. Overview

Here are some examples of real world decision tables (slightly edited to protect the innocent).

201

User Guide

@ Microsoft Excel - TeamAllocationExample_TYPICAL_EXAMPLE.xls g@
: @J He Edit View Insert Format Tools Data Window Help Typeaquestionforhelp - - & x
: L = = = = R 9 0 | ZF | i1l 5 & - -
_d_Tahoma 7 |I-H|%=ﬁ|$ % 3 T8 | EE| B -)lvévi
B17 - # Catastrophic Claim
] &
11z B | C | D | E
=+ £
Type of New Claim Is case catastrophic Allocation code Claim 1
16
1 7 Catastrophic Claim v
MNew Claim with previous Accident num 2
18
Previous Open claim 1 P
19
20 Dependency Claim &
2 ‘] Dependency Claim |
22 Interstate Claim A
23 Interstate Claim D
24 Interstate Claim N |
25 Interstate Claim . 5]
M 4 » »\Tables Lists / ¢ i
Ready NUM

Figure 6.11. Using Excel to edit a decision table

rer Allocate to Team Stop processing Log reason

Team FHed _ . .
Stop processing The claim was catastrophic

Figure 6.12. Multiple actions for a rule row

202

User Guide

i TeamallocationExample_TYPICAL_EXAMPLE - OpenOffice. org Calc =JOEd
File Edit View Insert Format Tools Data Window Help x
Brelas ||| BSRIVE L RE ¢ S&HN S HoBaEQ | @ |
i bd |Tahoma >l |7 ¥»|B|J U ==== LG wles0-9-A-
B17 v| fu = = |Catastrophic Claim
:'| ~
z J
112 B [c D E F G
o 8
Ell
16 Type of New Claim 1s case catastrophic Allocation code Claim Type | Insurance Class |Date of accident is after Da
17 Catastrophic Claim v
18 Mew Claim with previous Accident 2
num
19 Previous Open claim 1 P
20 Dependency Claim 8
21 Dependency Claim 9
22 Interstate Claim A
23 Interstate Claim D
24 Interstate Claim N
25 Interstate Claim s
26 Interstate Claim T ™
\ Tables { Lists / IE |
Sheet1/2 PageStyle_Tables 100% STD Sum=0

Figure 6.13. Using OpenOffice.org

In the above examples, the technical aspects of the decision table have been collapsed away
(using a standard spreadsheet feature).

The rules start from row 17, with each row resulting in a rule. The conditions are in columns C, D,
E, etc., the actions being off-screen. The values in the cells are quite simple, and their meaning
is indicated by the headers in Row 16. Column B is just a description. It is customary to use color
to make it obvious what the different areas of the table mean.

Note

Note that although the decision tables look like they process top down, this is not
necessarily the case. Ideally, rules are authored without regard for the order of
rows, simply because this makes maintenance easier, as rows will not need to be
shifted around all the time.

As each row is a rule, the same principles apply. As the rule engine processes the facts, any rules
that match may fire. (Some people are confused by this. It is possible to clear the agenda when a
rule fires and simulate a very simple decision table where only the first match effects an action.)
Also note that you can have multiple tables on one spreadsheet. This way, rules can be grouped
where they share common templates, yet at the end of the day they are all combined into one rule
package. Decision tables are essentially a tool to generate DRL rules automatically.

203

User Guide

1 I H [3 I [I 5 &

Module
RuleSet Control Cajas[1]

1.validarAperturaCaja (Caja, Registro Estado Sucursal, Transacdon)

Prioridades de

ID_Caso de Uso| Caso de Uso Identificadores de las Reglas las Reghs Nombres de las Reglas Descripciones
1
Esta Regla tiene por Mision Validar que la sucursal de k
se encuentre abierta
ValidarAperturaCajasucursal
1 2000 P] Trabaja sobre la Caja que se intenta abrir, la Sucurs:

Abiert: .
era corresponde a esa caja y la Transaccion de Ca;

L] apertura
Esta Regla tiene por Mision Validar que en la sucursal

caja se encuentre abierta para la misma fecha de ape

5 2000 ValdarAperturaCajaMismaFe |de la caja.

cha Trabaja sobre la Caja que se intenta abrir, la Sucursz
corresponde a esa caja y la Transaccion de Ca
i apertura
6
7
[l 2.validarCierreCajasSucursal(Registro Estado Sucursal, TransaccionCaja)
ID_Caso de Uso| Caso de Uso Identificadores de las Reglas Pns;u:::;fsde Nombres de las Reglas Descripciones
2
Esta Regla tiene por Misidn Valdar que al moment
C_PRSC_503 efectuarse el Clerre Conta?le de una sucursal de FOI
C_PRSC_504 1 1000 ValidarCierreCajassucursal todas las Cajas de esta (iftima se encuentren en E
C_PRSC 513 Cerrado, es decir la Fecha de Cierre de Caja debe ser

a la Fecha de cierre de la entidad Registro_Cierre_Suc

3.validarTransaccionCaja(Caja, Transacdon_Caja)

RuleTable[3] ValidarTransaccdonCaja(CajaVO caja, MovimientoCajaVO movimientoCaja)
ID_Casode Uso Caso de Uso Identificador Nombre

Figure 6.14. A real world example using multiple tables for grouping like
rules

6.5.3. How Decision Tables Work

The key point to keep in mind is that in a decision table each row is a rule, and each column in
that row is either a condition or action for that rule.

3 T
11z B © D [E | F | G
Type of New Claim Is case catastrophic Allocation code Insurance Class Date of accident is after
16
Catastrophic Claim
17 ¥
New Claim with previous Accident num z
I
Each row results in a rule
. L
7
o
21 Dependency Claim
22 Interstate Claim
23 Interstate Claim
24 Interstate Claim
95 Interstate Claim i 4
M 4 » »]\Tables Lsts / J 2

Figure 6.15. Rows and columns

The spreadsheet looks for the RuleTable keyword to indicate the start of a rule table (both the
starting row and column). Other keywords are also used to define other package level attributes
(covered later). It is important to keep the keywords in one column. By convention the second
column ("B") is used for this, but it can be any column (convention is to leave a margin on the
left for notes). In the following diagram, C is actually the column where it starts. Everything to the
left of this is ignored.

204

User Guide

If we expand the hidden sections, it starts to make more sense how it works; note the keywords
in column C.

IntegrationExampleTest — OpenOffice.org Calc

File Edit View Insert Format Tools Data Window Help X
- B »»
B-pliaEEZ TY KB 2 D5 F 2 @ |
BH [Tahoma |v [7 |v &R RrE EEEE T e O R = I =):
G17 |~| o 2 = |
Al2| B | c | D E [=
7
]
ﬂ 9 RulaSet Some business rules
10 mp ort org.drools.decisiontable. Cheese, org.drools. decll |
. | S s !
2
= [13 RueTable Cheesefans | | |
14 CONDITION (CONDITICN ACTION]
15 Farson Cheese list
16
(descriptions) ane type add Fparam)
17 Case Persons age Cheese type Log |
18 O1d guy 42 stilton 0ld man stilton
19 Young guy
21 cheddar Young man cheddar
20
_'_I 21 hariahle; java.util List list]
22 <1
E] |
Tables { Lists 1] 4] [[+]
Sheet 1/ 2 PageStyle_Tables 100% STD Sum=0 Average=

Figure 6.16. Expanded for rule templates

Now the hidden magic which makes it work can be seen. The RuleSet keyword indicates the name
to be used in the rule package that will encompass all the rules. This name is optional, using a
default, but it must have the RuleSet keyword in the cell immediately to the right.

The other keywords visible in Column C are Import and Sequential which will be covered later. The
RuleTable keyword is important as it indicates that a chunk of rules will follow, based on some rule
templates. After the RuleTable keyword there is a name, used to prefix the names of the generated
rules. The sheet name and row numbers are appended to guarantee unique rule names.

Warning

The RuleTable name combined with the sheet name must be unique across all
spreadsheet files in the same KieBase. If that's not the case, some rules might
have the same name and only 1 of them will be applied. To show such ignored
rules, raise the severity of such rule name conflicts.

205

User Guide

The column of RuleTable indicates the column in which the rules start; columns to the left are
ignored.

@ Note
In general the keywords make up name-value pairs.

Referring to row 14 (the row immediately after RuleTable), the keywords CONDITION and AC-
TION indicate that the data in the columns below are for either the LHS or the RHS parts of a rule.
There are other attributes on the rule which can also be optionally set this way.

Row 15 contains declarations of ObjectTypes. The content in this row is optional, but if this option
is not in use, the row must be left blank; however this option is usually found to be quite useful.
When using this row, the values in the cells below (row 16) become constraints on that object type.
In the above case, it generates Per son(age=="42") and Cheese(type=="stilton"), where 42
and "stilton" come from row 18. In the above example, the "=="is implicit; if just a field name is
given the translator assumes that it is to generate an exact match.

@ Note
An ObjectType declaration can span columns (via merged cells), meaning that all
columns below the merged range are to be combined into one set of constraints
within a single pattern matching a single fact at a time, as opposed to non-merged
cells containing the same ObjectType, but resulting in different patterns, potentially
matching different or identical facts.

Row 16 contains the rule templates themselves. They can use the "$param" placeholder to indi-
cate where data from the cells below should be interpolated. (For multiple insertions, use "$1",
"$2", etc., indicating parameters from a comma-separated list in a cell below.) Row 17 is ignored;
it may contain textual descriptions of the column's purpose.

Rows 18 and 19 show data, which will be combined (interpolated) with the templates in row 15, to
generate rules. If a cell contains no data, then its template is ignored. (This would mean that some
condition or action does not apply for that rule row.) Rule rows are read until there is a blank row.
Multiple RuleTables can exist in a sheet. Row 20 contains another keyword, and a value. The row
positions of keywords like this do not matter (most people put them at the top) but their column
should be the same one where the RuleTable or RuleSet keywords should appear. In our case
column C has been chosen to be significant, but any other column could be used instead.

In the above example, rules would be rendered like the following (as it uses the "ObjectType" row):

/lrow 18
rul e "Cheese fans_ 18"
when

206

User Guide

Per son(age=="42")
Cheese(type=="stilton")
t hen
list.add("A d man stilton");
end

@ Note
The constraints age=="42" and type=="sti | ton" are interpreted as single con-
straints, to be added to the respective ObjectType in the cell above. If the cells
above were spanned, then there could be multiple constraints on one "column".

Warning

Very large decision tables may have very large memory requirements.

6.5.4. Spreadsheet Syntax

6.5.4.1. Spreadsheet Structure

There are two types of rectangular areas defining data that is used for generating a DRL file. One,
marked by a cell labelled Rul eSet , defines all DRL items except rules. The other one may occur
repeatedly and is to the right and below a cell whose contents begin with Rul eTabl e. These areas
represent the actual decision tables, each area resulting in a set of rules of similar structure.

A Rule Set area may contain cell pairs, one below the Rul eSet cell and containing a keyword
designating the kind of value contained in the other one that follows in the same row.

The columns of a Rule Table area define patterns and constraints for the left hand sides of the
rules derived from it, actions for the consequences of the rules, and the values of individual rule
attributes. Thus, a Rule Table area should contain one or more columns, both for conditions and
actions, and an arbitrary selection of columns for rule attributes, at most one column for each of
these. The first four rows following the row with the cell marked with Rul eTabl e are earmarked
as header area, mostly used for the definition of code to construct the rules. It is any additional
row below these four header rows that spawns another rule, with its data providing for variations
in the code defined in the Rule Table header.

All keywords are case insensitive.

Only the first worksheet is examined for decision tables.

6.5.4.2. Rule Set Entries

Entries in a Rule Set area may define DRL constructs (except rules), and specify rule attributes.
While entries for constructs may be used repeatedly, each rule attribute may be given at most

207

User Guide

once, and it applies to all rules unless it is overruled by the same attribute being defined within
the Rule Table area.

Entries must be given in a vertically stacked sequence of cell pairs. The first one contains a key-
word and the one to its right the value, as shown in the table below. This sequence of cell pairs
may be interrupted by blank rows or even a Rule Table, as long as the column marked by Rul eSet
is upheld as the one containing the keyword.

Table 6.5. Entries in the Rule Set area

Keyword Value Usage

RuleSet The package name for the | Must be First entry.
generated DRL file. Optional,
the defaultis rul e_t abl e.

Sequential "true" or "false". If "true", then | Optional, at most once. If omit-
salience is used to ensure that | ted, no firing order is imposed.
rules fire from the top down.

EscapeQuotes "true” or "false". If "true", then | Optional, at most once. If omit-
guotation marks are escaped | ted, quotation marks are es-
so that they appear literally in | caped.
the DRL.

Import A comma-separated list of Ja- = Optional, may be used repeat-
va classes to import. edly.

Variables Declarations of DRL globals, | Optional, may be used repeat-
i.e., a type followed by a vari- | edly.
able name. Multiple global de-
finitions must be separated
with a comma.

Functions One or more function defini- | Optional, may be used repeat-
tions, according to DRL syn- | edly.
tax.

Queries One or more query definitions, | Optional, may be used repeat-
according to DRL syntax. edly.

Declare One or more declarative | Optional, may be used repeat-
types, according to DRL syn- | edly.
tax.

Warning

In some locales, MS Office, LibreOffice and OpenOffice will encode a double quoth
" differently, which will cause a compilation error. The difference is often hard to
see. For example: “ A" will fail, but " A" will work.

208

User Guide

For defining rule attributes that apply to all rules in the generated DRL file you can use any of the
entries in the following table. Notice, however, that the proper keyword must be used. Also, each
of these attributes may be used only once.

Important

Rule attributes specified in a Rule Set area will affect all rule assets in the same
package (not only in the spreadsheet). Unless you are sure that the spreadsheet
is the only one rule asset in the package, the recommendation is to specify rule
attributes not in a Rule Set area but in a Rule Table columns for each rule instead.

Table 6.6. Rule attribute entries in the Rule Set area

Keyword Initial Value

PRIORITY P An integer defining the
"salience" value for the rule.
Overridden by the "Sequential"

flag.

DURATION D A long integer value defining
the "duration” value for the rule.

TIMER T A timer definition. See "Timers
and Calendars".

ENABLED B A Boolean value. "true" en-
ables the rule; "false" disables
the rule.

CALENDARS E A calendars definition. See

"Timers and Calendars".

NO-LOOP U A Boolean value. "true” inhibits
looping of rules due to changes
made by its consequence.

LOCK-ON-ACTIVE L A Boolean value. "true" in-
hibits additional activations of
all rules with this flag set with-
in the same ruleflow or agenda
group.

AUTO-FOCUS F A Boolean value. "true" for a
rule within an agenda group
causes activations of the rule to
automatically give the focus to
the group.

209

User Guide

Keyword Initial Value

ACTIVATION-GROUP X A string identifying an activa-
tion (or XOR) group. Only one
rule within an activation group
will fire, i.e., the first one to
fire cancels any existing activa-
tions of other rules within the
same group.

AGENDA-GROUP G A string identifying an agenda
group, which has to be acti-
vated by giving it the "focus",
which is one way of control-
ling the flow between groups of
rules.

RULEFLOW-GROUP R A string identifying a rule-flow
group.

6.5.4.3. Rule Tables

All Rule Tables begin with a cell containing "RuleTable", optionally followed by a string within the
same cell. The string is used as the initial part of the name for all rules derived from this Rule
Table, with the row number appended for distinction. (This automatic naming can be overridden
by using a NAME column.) All other cells defining rules of this Rule Table are below and to the
right of this cell.

The next row defines the column type, with each column resulting in a part of the condition or
the consequence, or providing some rule attribute, the rule name or a comment. The table below
shows which column headers are available; additional columns may be used according to the table
showing rule attribute entries given in the preceding section. Note that each attribute column may
be used at most once. For a column header, either use the keyword or any other word beginning
with the letter given in the "Initial" column of these tables.

Table 6.7. Column Headers in the Rule Table

Keyword Initial Value Usage

NAME N Provides the name At mostone column
for the rule generat-
ed from that row. The
default is constructed
from the text following
the RuleTable tag and
the row number.

210

User Guide

Keyword
DESCRIPTION

Initial

Value

A text, resulting in a

Usage

At most one column

comment within the
generated rule.

CONDITION C Code snippet and in- At least one per rule
terpolated values for table

constructing a con-

straint within a pattern

in a condition.

ACTION A Code snippet and in- At least one per rule
terpolated values for table

constructing an action

for the consequence

of the rule.

METADATA @ Code snippet and in- Optional, any number
terpolated values for of columns
constructing a meta-

data entry for the rule.

Given a column headed CONDITION, the cells in successive lines result in a conditional element.

» Text in the first cell below CONDITION develops into a pattern for the rule condition, with the
snippet in the next line becoming a constraint. If the cell is merged with one or more neighbours,
a single pattern with multiple constraints is formed: all constraints are combined into a paren-
thesized list and appended to the text in this cell. The cell may be left blank, which means that
the code snippet in the next row must result in a valid conditional element on its own.

To include a pattern without constraints, you can write the pattern in front of the text for another
pattern.

The pattern may be written with or without an empty pair of parentheses. A "from" clause may
be appended to the pattern.

If the pattern ends with "eval", code snippets are supposed to produce boolean expressions for
inclusion into a pair of parentheses after "eval".

Text in the second cell below CONDITION is processed in two steps.

1. The code snippet in this cell is modified by interpolating values from cells farther down in
the column. If you want to create a constraint consisting of a comparison using "==" with
the value from the cells below, the field selector alone is sufficient. Any other comparison
operator must be specified as the last item within the snippet, and the value from the cells
below is appended. For all other constraint forms, you must mark the position for including
the contents of a cell with the symbol $par am Multiple insertions are possible by using the
symbols $1, $2, etc., and a comma-separated list of values in the cells below.

211

User Guide

A text according to the pattern f or al | (delimiter) { snippet} is expanded by repeating the
snippet once for each of the values of the comma-separated list of values in each of the cells
below, inserting the value in place of the symbol $ and by joining these expansions by the
given delimiter. Note that the forall construct may be surrounded by other text.

2. If the cell in the preceding row is not empty, the completed code snippet is added to the
conditional element from that cell. A pair of parentheses is provided automatically, as well as
a separating comma if multiple constraints are added to a pattern in a merged cell.

If the cell above is empty, the interpolated result is used as is.

« Textin the third cell below CONDITION is for documentation only. It should be used to indicate
the column's purpose to a human reader.

« From the fourth row on, non-blank entries provide data for interpolation as described above. A
blank cell results in the omission of the conditional element or constraint for this rule.

Given a column headed ACTION, the cells in successive lines result in an action statement.

« Textin the first cell below ACTION is optional. If present, it is interpreted as an object reference.
» Text in the second cell below ACTION is processed in two steps.

1. The code snippet in this cell is modified by interpolating values from cells farther down in the
column. For a singular insertion, mark the position for including the contents of a cell with
the symbol $par am Multiple insertions are possible by using the symbols $1, $2, etc., and a
comma-separated list of values in the cells below.

A method call without interpolation can be achieved by a text without any marker symbols.
In this case, use any non-blank entry in a row below to include the statement.

The forall construct is available here, too.

2. If the first cell is not empty, its text, followed by a period, the text in the second cell and a
terminating semicolon are stringed together, resulting in a method call which is added as an
action statement for the consequence.

If the cell above is empty, the interpolated result is used as is.

« Textin the third cell below ACTION is for documentation only. It should be used to indicate the
column's purpose to a human reader.

« From the fourth row on, non-blank entries provide data for interpolation as described above. A
blank cell results in the omission of the action statement for this rule.

212

User Guide

@ Note

Using $1 instead of $par amworks in most cases, but it will fail if the replacement
text contains a comma: then, only the part preceding the first comma is inserted.
Use this "abbreviation" judiciously.

Given a column headed METADATA, the cells in successive lines result in a metadata annotation
for the generated rules.

Text in the first cell below METADATA is ignored.

« Textin the second cell below METADATA is subject to interpolation, as described above, using
values from the cells in the rule rows. The metadata marker character @is prefixed automatically,
and thus it should not be included in the text for this cell.

« Text in the third cell below METADATA is for documentation only. It should be used to indicate
the column's purpose to a human reader.

« From the fourth row on, non-blank entries provide data for interpolation as described above. A
blank cell results in the omission of the metadata annotation for this rule.

6.5.4.4. Examples

The various interpolations are illustrated in the following example.

Example 6.1. Interpolating cell data
If the template is Foo(bar == $paran) and the cell is 42, then the result is Foo(bar == 42).

If the template is Foo(bar < $1, baz == $2) and the cell contains 42, 43, the result will be
Foo(bar < 42, baz ==43).

The template foral | (&) {bar != $} with a cell containing 42, 43 results in bar = 42 &&
bar = 43.

The next example demonstrates the joint effect of a cell defining the pattern type and the code
shippet below it.

213

User Guide

RuleTable Cheese fans
16
lage ype
17 Persons age Cheese type
18]
42 stilton
15
21 cheddar

This spreadsheet section shows how the Per son type declaration spans 2 columns, and thus both
constraints will appear as Person(age == ..., type == ...). Since only the field names are
present in the snippet, they imply an equality test.

In the following example the marker symbol $par amis used.

[CONDITION
Person

|pge=="§param”

Persons age

The result of this column is the pattern Per son(age == "42")). You may have noticed that the
marker and the operator "==" are redundant.

The next example illustrates that a trailing insertion marker can be omitted.

214

User Guide

[CONDITION
Person

lage <

Persons age

42

Here, appending the value from the cell is implied, resulting in Per son(age < "42")).

You can provide the definition of a binding variable, as in the example below. .

W

c. Cheese

type

Cheese type

stilton

Here, the result is c: Cheese(type == "stilton"). Note that the quotes are provided auto-
matically. Actually, anything can be placed in the object type row. Apart from the definition of a
binding variable, it could also be an additional pattern that is to be inserted literally.

A simple construction of an action statement with the insertion of a single value is shown below.

215

User Guide

list.add("§ param®);

Log

Old man stilton

The cell below the ACTION header is left blank. Using this style, anything can be placed in the con-
sequence, not just a single method call. (The same technique is applicable within a CONDITION
column as well.)

Below is a comprehensive example, showing the use of various column headers. It is not an error
to have no value below a column header (as in the NO-LOOP column): here, the attribute will not
be applied in any of the rules.

RuleTable Qd Oriver | |
CONDITION CONDITION RULEFLOW-GROUP NO-LOGP ACTION ACTION

8 Sdriver: Driver

9 iptions) licenceYears priarClaims insertinew Aporave{"Sparam”ll; ystem.out prin
106 ase Persans age Frior Claims Inserting approvment Log

11 d guy 30 1 risk asssssment Safe and matura ©ld driver Approved

13
14
15
16

Figure 6.17. Example usage of keywords for imports, headers, etc.

And, finally, here is an example of Import, Variables and Functions.

216

User Guide

[Control Cajas[1]

Import foo.Bar, bar.Baz

Variables Parameters parametros, RulesResult resultado,
EvalDate fecha

Functions function boolean isRango(int iValor, int iRangoInicio, T

int iRangoFinal) {
if (iRangolnicio <= iValor && iValor <= iRangoFinal)
return true;
return false;

¥

function boolean isIgualTipo(TipoVO tipoVO, int
p_ftipo, boolean isMNull) {

if (tipovO == null)

return isMull;

return tipoV0.getSecuendia().intValue() == p_tipo;
¥

Figure 6.18. Example usage of keywords for functions, etc.

Multiple package names within the same cell must be separated by a comma. Also, the pairs of
type and variable names must be comma-separated. Functions, however, must be written as they
appear in a DRL file. This should appear in the same column as the "RuleSet" keyword; it could
be above, between or below all the rule rows.

@ Note
It may be more convenient to use Import, Variables, Functions and Queries repeat-
edly rather than packing several definitions into a single cell.

6.5.5. Creating and integrating Spreadsheet based Decision Ta-
bles

The API to use spreadsheet based decision tables is in the drools-decisiontables module. There
is really only one class to look at: Spr eadsheet Conpi | er. This class will take spreadsheets in
various formats, and generate rules in DRL (which you can then use in the normal way). The
Spr eadsheet Conpi | er can just be used to generate partial rule files if it is wished, and assemble
it into a complete rule package after the fact (this allows the separation of technical and non-
technical aspects of the rules if needed).

To get started, a sample spreadsheet can be used as a base. Alternatively, if the plug-in is being
used (Rule Workbench IDE), the wizard can generate a spreadsheet from a template (to edit it an
xls compatible spreadsheet editor will need to be used).

217

User Guide

Yrip-0o-ur |EHEE

| New Rule Project d
MNew Rule resource

Mew Domain Specific Language
New Decision Table

1 n LN b

Figure 6.19. Wizard in the IDE
6.5.6. Managing Business Rules in Decision Tables

6.5.6.1. Workflow and Collaboration

Spreadsheets are well established business tools (in use for over 25 years). Decision tables lend
themselves to close collaboration between IT and domain experts, while making the business
rules clear to business analysts, it is an ideal separation of concerns.

Typically, the whole process of authoring rules (coming up with a new decision table) would be
something like:

1. Business analyst takes a template decision table (from a repository, or from IT)
2. Decision table business language descriptions are entered in the table(s)
3. Decision table rules (rows) are entered (roughly)

4. Decision table is handed to a technical resource, who maps the business language (descrip-
tions) to scripts (this may involve software development of course, if it is a new application or
data model)

5. Technical person hands back and reviews the modifications with the business analyst.

6. The business analyst can continue editing the rule rows as needed (moving columns around
is also fine etc).

7. In parallel, the technical person can develop test cases for the rules (liaising with business
analysts) as these test cases can be used to verify rules and rule changes once the system
is running.

6.5.6.2. Using spreadsheet features

Features of applications like Excel can be used to provide assistance in entering data into spread-
sheets, such as validating fields. Lists that are stored in other worksheets can be used to provide
valid lists of values for cells, like in the following diagram.

<title> Wizard in the IDE </title>

218

User Guide

9
w

& ~
—0 |
—N -
15 |

T
—y |
j— 'III'III' —
— v‘ -
Figure 6.20.

Some applications provide a limited ability to keep a history of changes, but it is recommended to
use an alternative means of revision control. When changes are being made to rules over time,
older versions are archived (many open source solutions exist for this, such as Subversion or Git).

6.5.7. Rule Templates

Related to decision tables (but not necessarily requiring a spreadsheet) are "Rule Templates" (in
the drools-templates module). These use any tabular data source as a source of rule data - pop-
ulating a template to generate many rules. This can allow both for more flexible spreadsheets,
but also rules in existing databases for instance (at the cost of developing the template up front
to generate the rules).

With Rule Templates the data is separated from the rule and there are no restrictions on which
part of the rule is data-driven. So whilst you can do everything you could do in decision tables
you can also do the following:

 store your data in a database (or any other format)

conditionally generate rules based on the values in the data

use data for any part of your rules (e.g. condition operator, class name, property name)
« run different templates over the same data

As an example, a more classic decision table is shown, but without any hidden rows for the rule
meta data (so the spreadsheet only contains the raw data to generate the rules).

219

User Guide

Case PErsons age Cheese type Log
Qld
auy I 42 stilton Old man stilton
Young guy
21 cheddar Young man cheddar

Figure 6.21. Template data

See the Exanpl eCheese. x| s in the examples download for the above spreadsheet.

If this was a regular decision table there would be hidden rows before row 1 and between rows
1 and 2 containing rule metadata. With rule templates the data is completely separate from the
rules. This has two handy consequences - you can apply multiple rule templates to the same data
and your data is not tied to your rules at all. So what does the template look like?

© 00N O O WN B

NP R R R R R B R B
O © N UM WNER O

tenpl at e header
age

type

| og

package org. drool s. exanpl es. t enpl at es;

gl obal java.util.List list;

tenpl ate "cheesef ans”

rul e "Cheese fans_@row rowNunber}"
when

Person(age == @age})
Cheese(type == "@type}")
t hen
list.add(" @Il og}");
end

end tenpl ate

Annotations to the preceding program listing:

 Line 1: All rule templates start with t enpl at e header .

» Lines 2-4: Following the header is the list of columns in the order they appear in the data. In
this case we are calling the first column age, the second t ype and the third | og.

* Line 5: An empty line signifies the end of the column definitions.

220

User Guide

 Lines 6-9: Standard rule header text. This is standard rule DRL and will appear at the top of the
generated DRL. Put the package statement and any imports and global and function definitions
into this section.

« Line 10: The keyword t enpl at e signals the start of a rule template. There can be more than
one template in a template file, but each template should have a unique name.

e Lines 11-18: The rule template - see below for details.
 Line 20: The keywords end t enpl at e signify the end of the template.

The rule templates rely on MVEL to do substitution using the syntax @{token_name}. There is
currently one built-in expression, @{row.rowNumber} which gives a unique number for each row of
data and enables you to generate unique rule names. For each row of data a rule will be generated
with the values in the data substituted for the tokens in the template.

A rule template has to be included in a file with extension .drt and associated to the corresponding
decision table when defining the kbase in the kmodule.xml file as in the following example

<?xm version="1.0" encodi ng="UTF-8"?>
<kmodul e xm ns="http://drools. org/ xsd/ knodul e" >
<kbase nanme="Tenpl at esKB" packages="org. drool s. exanpl es. t enpl at es" >
<rul eTenpl at e dtabl e="or g/ dr ool s/ exanpl es/ t enpl at es/ Exanpl eCheese. x| s"
t enpl at e="or g/ dr ool s/ exanpl es/ t enpl at es/ Cheese. drt"
row="2" col ="2"/>
<ksessi on name="Tenpl at esKS"/ >
</ kbase>
</ knodul e>

With the example data above the following rule file would be generated:

package org. drool s. exanpl es. tenpl at es;
global java.util.List list;

rul e "Cheese fans_1"

when

Person(age == 42)

Cheese(type == "stilton")
then

list.add("dd nman stilton");
end

rul e "Cheese fans_2"

when

Person(age == 21)

Cheese(type == "cheddar")
then

l'i st.add("Young nan cheddar");
end

221

User Guide

At this point the Ki eSessi on named "TemplatesKS" and containing the rules generated from the
template can be simply created from the Ki eCont ai ner and used as any other Ki eSessi on.

Ki eSessi on ksessi on = kc. newKi eSessi on(" Tenpl at eskS")

/I now create sonme test data
ksession.insert(new Cheese("stilton", 42))

ksession.insert(new Person("michael", "stilton", 42))
final List<String> list = new ArraylList<String>()
ksession.setdobal ("list", list)

ksession.fireA | Rul es();

6.6. Logging

One way to illuminate the black box that is a rule engine, is to play with the logging level.

Everything is logged to SLF4J [http://www.slf4j.org/], which is a simple logging facade that can
delegate any log to Logback, Apache Commons Logging, Log4j or java.util.logging. Add a depen-
dency to the logging adaptor for your logging framework of choice. If you're not using any logging
framework yet, you can use Logback by adding this Maven dependency:

<dependency>
<groupl d>ch. gos. | ogback</ gr oupl d>
<artifactld>l ogback-classic</artifactld>
<ver si on>1. x</ ver si on>

</ dependency>

@ Note
If you're developing for an ultra light environment, use sl f 4j - nop or sl f 4j - si npl e
instead.

Configure the logging level on the package or g. dr ool s. For example:

In Logback, configure it in your | ogback. xm file:

<configuration>

<l ogger nane="org.drool s" |evel ="debug"/>

<configuration>

222

http://www.slf4j.org/
http://www.slf4j.org/

User Guide

In Log4J, configure it in your | og4j . xm file:

<l og4j :configuration xm ns:log4j="http://jakarta.apache.org/log4j/">
<cat egory nane="org. drool s">

<priority val ue="debug" />
</ cat egory>

</ 1 og4j : configuration>

223

Chapter 7. Running

Ths sections extends the KIE Running section, which should be read first, with specifics for the
Drools runtime.

7.1. KieRuntime

7.1.1. EntryPoint

The Ent ryPoi nt provides the methods around inserting, updating and deleting facts. The term
"entry point" is related to the fact that we have multiple partitions in a Working Memory and you
can choose which one you are inserting into. The use of multiple entry points is more common in
event processing use cases, but they can be used by pure rule applications as well.

The Ki eRunti ne interface provides the main interaction with the engine. It is available in rule
consequences and process actions. In this manual the focus is on the methods and interfaces
related to rules, and the methods pertaining to processes will be ignored for now. But you'll notice
that the Ki eRunt i ne inherits methods from both the Wr ki ngMenory and the ProcessRunt i ne,
thereby providing a unified API to work with processes and rules. When working with rules, three
interfaces form the Ki eRunt i me: Ent r yPoi nt, Wor ki ngMenor y and the Ki eRunt i ne itself.

Figure 7.1. EntryPoint

7.1.1.1. Insert

In order for a fact to be evaluated against the rules in a Ki eBase, it has to be inserted into the
session. This is done by calling the method i nsert (your Cbj ect) . When a fact is inserted into
the session, some of its properties might be immediately evaluated (eager evaluation) and some
might be deferred for later evaluation (lazy evaluation). The exact behaviour depends on the rules
engine algorithm being used.

@ Note
Expert systems typically use the term assert or assertion to refer to facts made
available to the system. However, due to "assert" being a keyword in most lan-
guages, we have decided to use the i nsert keyword; In this manual, the two terms
are used interchangeably.

When an Object is inserted it returns a Fact Handl e. This Fact Handl e is the token used to repre-
sent your inserted object within the Wor ki ngMenor y. It is also used for interactions with the Wor k-
i ngMenory when you wish to delete or modify an object.

224

Running

Cheese stilton = new Cheese("stilton");
Fact Handl e stiltonHandl e = ksession.insert(stilton);

As mentioned in the KieBase section, a Working Memory may operate in two assertion modes:
either equality or identity. Identity is the default.

Identity means that the Working Memory uses an | dent i t yHashMap to store all asserted objects.
New instance assertions always result in the return of new Fact Handl e, but if an instance is
asserted again then it returns the original fact handle, i.e., it ignores repeated insertions for the
same object.

Equality means that the Working Memory uses a HashMap to store all asserted objects. An object
instance assertion will only return a new Fact Handl e if the inserted object is not equal (according
to its equal () / hashcode() methods) to an already existing fact.

7.1.1.2. Delete

In order to remove a fact from the session, the method del et e() is used. When a fact is deleted,
any matches that are active and depend on that fact will be cancelled. Note that it is possible to
have rules that depend on the nonexistence of a fact, in which case deleting a fact may cause a
rule to activate. (See the not and exi st s keywords).

@ Note
Expert systems typically use the term retract or retraction to refer to the operation
of removing facts from the Working Memory. Drools prefers the keyword del et e
for symmetry with the keyword i nsert ; Drools also supports the keyword r et r act ,
but it was deprecated in favor of del et e. In this manual, the two terms are used
interchangeably.

Retraction may be done using the Fact Handl e that was returned by the insert call. On the right
hand side of a rule the del et e statement is used, which works with a simple object reference.

Cheese stilton = new Cheese("stilton");
Fact Handl e stiltonHandl e = ksession.insert(stilton);

ksession. del ete(stiltonHandl e);

7.1.1.3. Update

The Rule Engine must be notified of modified facts, so that they can be reprocessed. You must
use the updat e() method to notify the Wor ki ngMenor y of changed objects for those objects that
are not able to notify the Wor ki ngMenory themselves. Notice that updat e() always takes the
modified object as a second parameter, which allows you to specify new instances for immutable

225

Running

objects. On the right hand side of a rule the nodi fy statement is recommended, as it makes the
changes and notifies the engine in a single statement. Alternatively, after changing a fact object's
field values through calls of setter methods you must invoke updat e immediately, event before
changing another fact, or you will cause problems with the indexing within the rule engine. The
modify statement avoids this problem.

Cheese stilton = new Cheese("stilton");
Fact Handl e stiltonHandl e = worki ngMenory.insert(stilton);

stilton.setPrice(100);
wor ki ngMenory. update(stiltonHandle, stilton);

7.1.2. RuleRuntime

The RuleRuntime provides access to the Agenda, permits query executions, and lets you access
named Entry Points.

Figure 7.2. RuleRuntime

7.1.2.1. Query

Queries are used to retrieve fact sets based on patterns, as they are used in rules. Patterns may
make use of optional parameters. Queries can be defined in the Knowledge Base, from where
they are called up to return the matching results. While iterating over the result collection, any
identifier bound in the query can be used to access the corresponding fact or fact field by calling
the get method with the binding variable's name as its argument. If the binding refers to a fact
object, its FactHandle can be retrieved by calling get Fact Handl e, again with the variable's name
as the parameter.

Figure 7.3. QueryResults

Figure 7.4. QueryResultsRow

Example 7.1. Simple Query Example

QueryResults results =
ksessi on. get QueryResul ts("my query", new Object[] { "string" });
for (QueryResultsRow row : results) {

226

Running

Systemout. println(row get("varName"));

7.1.2.2. Live Queries

Invoking queries and processing the results by iterating over the returned set is not a good way
to monitor changes over time.

To alleviate this, Drools provides Live Queries, which have a listener attached instead of returning
an iterable result set. These live queries stay open by creating a view and publishing change
events for the contents of this view. To activate, you start your query with parameters and listen
to changes in the resulting view. The di spose method terminates the query and discontinues this
reactive scenario.

Example 7.2. Implementing ViewChangedEventListener

final List updated = new ArrayList();
final List removed = new ArrayList();
final List added = new ArraylList();

Vi ewChangedEvent Li stener |istener = new Vi ewChangedEvent Li stener() {
public void rowUpdat ed(Row row) {
updat ed. add(row. get("$price"));
}

public void rowRenpved(Row row) {
renmoved. add(row. get("$price"));

}

public void rowAdded(Row row) {
added. add(row. get(“"$price"));

}
be

/1 Open the LiveQuery

Li veQuery query = ksession. openLi veQuery("cheeses",
new oject[] { "cheddar", "stilton" },
listener);

query. di spose() // calling dispose to ternminate the |ive query

A Drools blog article contains an example of Glazed Lists integration for live queries:

http://blog.athico.com/2010/07/glazed-lists-examples-for-drools-live.html

7.1.3. StatefulRuleSession

The St at ef ul Rul eSessi on is inherited by the Ki eSessi on and provides the rule related methods
that are relevant from outside of the engine.

227

http://blog.athico.com/2010/07/glazed-lists-examples-for-drools-live.html

Running

Figure 7.5. StatefulRuleSession

7.1.3.1. Agenda Filters

Figure 7.6. AgendaFilters

AgendaFi | t er objects are optional implementations of the filter interface which are used to allow
or deny the firing of a match. What you filter on is entirely up to the implementation. Drools 4.0
used to supply some out of the box filters, which have not be exposed in drools 5.0 knowledge-api,
but they are simple to implement and the Drools 4.0 code base can be referred to.

To use a filter specify it while calling fi reAl | Rul es() . The following example permits only rules
ending in the string " Test " . All others will be filtered out.

ksession.fireA | Rul es(new Rul eNaneEndsW t hAgendaFi |l ter("Test"));

7.2. Agenda

The Agenda is a Rete feature. During actions on the Wor ki ngMenor y, rules may become fully
matched and eligible for execution; a single Working Memory Action can result in multiple eligible
rules. When a rule is fully matched a Match is created, referencing the rule and the matched facts,
and placed onto the Agenda. The Agenda controls the execution order of these Matches using
a Conflict Resolution strategy.

The engine cycles repeatedly through two phases:

1. Working Memory Actions. This is where most of the work takes place, either in the Conse-
qguence (the RHS itself) or the main Java application process. Once the Consequence has fin-
ished or the main Java application process calls fireAl | Rul es() the engine switches to the
Agenda Evaluation phase.

2. Agenda Evaluation. This attempts to select a rule to fire. If no rule is found it exits, otherwise it
fires the found rule, switching the phase back to Working Memory Actions.

Figure 7.7. Two Phase Execution

The process repeats until the agenda is clear, in which case control returns to the calling applica-
tion. When Working Memory Actions are taking place, no rules are being fired.

228

Running

Figure 7.8. Agenda

7.2.1. Conflict Resolution

Conflict resolution is required when there are multiple rules on the agenda. (The basics to this are
covered in chapter "Quick Start".) As firing a rule may have side effects on the working memory,
the rule engine needs to know in what order the rules should fire (for instance, firing ruleA may
cause ruleB to be removed from the agenda).

The default conflict resolution strategies employed by Drools are: Salience and LIFO (last in, first
out).

The most visible one is salience (or priority), in which case a user can specify that a certain rule
has a higher priority (by giving it a higher number) than other rules. In that case, the rule with
higher salience will be preferred. LIFO priorities are based on the assigned Working Memory
Action counter value, with all rules created during the same action receiving the same value. The
execution order of a set of firings with the same priority value is arbitrary.

As a general rule, it is a good idea not to count on rules firing in any particular order, and to
author the rules without worrying about a "flow". However when a flow is needed a number of
possibilities exist, including but not limited to: agenda groups, rule flow groups, activation groups,
control/semaphore facts. These are discussed in later sections.

Drools 4.0 supported custom conflict resolution strategies; while this capability still exists in Drools
it has not yet been exposed to the end user via knowledge-api in Drools 5.0.

7.2.2. AgendaGroup

Figure 7.9. AgendaGroup

Agenda groups are a way to partition rules (matches, actually) on the agenda. At any one time,
only one group has "focus" which means that matches for rules in that group only will take effect.
You can also have rules with "auto focus" which means that the focus is taken for its agenda group
when that rule's conditions are true.

Agenda groups are known as "modules” in CLIPS terminology. While it best to design rules that do
not need control flow, this is not always possible. Agenda groups provide a handy way to create
a "flow" between grouped rules. You can switch the group which has focus either from within the
rule engine, or via the API. If your rules have a clear need for multiple "phases"” or "sequences"
of processing, consider using agenda-groups for this purpose.

Each time set Focus() is called it pushes that Agenda Group onto a stack. When the focus group
is empty it is popped from the stack and the focus group that is now on top evaluates. An Agenda

229

Running

Group can appear in multiple locations on the stack. The default Agenda Group is "MAIN", with all
rules which do not specify an Agenda Group being in this group. It is also always the first group
on the stack, given focus initially, by default.

ksessi on. get Agenda() . get AgendaG oup("G oup A").setFocus();

The cl ear () method can be used to cancel all the activations generated by the rules belonging
to a given Agenda Group before one has had a chance to fire.

ksessi on. get Agenda() . get AgendaG oup("Group A").clear();

Note that, due to the lazy nature of the phreak algorithm used by Drools, the activations are by
default materialized only at firing time, but it is possible to anticipate the evaluation and then the
activation of a given rule at the moment when a fact is inserted into the session by annotating it
with @'r opagat i on(1 MVEDI ATE) as explained in the Propagation modes section.

7.2.3. ActivationGroup

Figure 7.10. ActivationGroup

An activation group is a set of rules bound together by the same "activation-group" rule attribute. In
this group only one rule can fire, and after that rule has fired all the other rules are cancelled from
the agenda. The cl ear () method can be called at any time, which cancels all of the activations
before one has had a chance to fire.

ksessi on. get Agenda() . get Acti vati onGroup("Goup B").clear();

7.2.4. RuleFlowGroup

Figure 7.11. RuleFlowGroup

A rule flow group is a group of rules associated by the "ruleflow-group" rule attribute. These rules
can only fire when the group is activate. The group itself can only become active when the elab-
oration of the ruleflow diagram reaches the node representing the group. Here too, the cl ear ()
method can be called at any time to cancels all matches still remaining on the Agenda.

ksessi on. get Agenda() . get Rul eFl owG oup("Group C').clear();

230

Running

7.3. Event Model

The event package provides means to be notified of rule engine events, including rules firing, ob-
jects being asserted, etc. This allows you, for instance, to separate logging and auditing activities
from the main part of your application (and the rules).

The Wor ki ngMenor yEvent Manager allows for listeners to be added and removed, so that events
for the working memory and the agenda can be listened to.

Figure 7.12. WorkingMemoryEventManager

The following code snippet shows how a simple agenda listener is declared and attached to a
session. It will print matches after they have fired.

Example 7.3. Adding an AgendaEventListener

ksessi on. addEvent Li st ener (new Def aul t AgendaEvent Li st ener () {
public void afterMatchFired(AfterMtchFiredEvent event) {
super. after Mat chFired(event);
Systemout. println(event);

1)

Drools also provides DebugRul eRunt i meEvent Li st ener and DebugAgendaEvent Li st ener which
implement each method with a debug print statement. To print all Working Memory events, you
add a listener like this:

Example 7.4. Adding a DebugRuleRuntimeEventListener

ksessi on. addEvent Li st ener (new DebugRul eRunt i meEvent Li stener ());

The events currently supported are:

* MatchCreatedEvent

» MatchCancelledEvent

» BeforeMatchFiredEvent

» AfterMatchFiredEvent

» AgendaGroupPushedEvent
* AgendaGroupPoppedEvent

* ObjectinsertEvent

231

Running

* ObjectDeletedEvent

» ObjectUpdatedEvent

* ProcessCompletedEvent

* ProcessNodeLeftEvent

» ProcessNodeTriggeredEvent

¢ ProcessStartEvent

7.4. StatelessKieSession

The St at el essKi eSessi on wraps the Ki eSessi on, instead of extending it. Its main focus is on
decision service type scenarios. It avoids the need to call di spose() . Stateless sessions do not
support iterative insertions and the method call f i r eAl | Rul es() from Java code; the act of calling
execut e() is a single-shot method that will internally instantiate a Ki eSessi on, add all the user
data and execute user commands, call fi r eAl | Rul es(), and then call di spose() . While the main
way to work with this class is via the Bat chExecut i on (a subinterface of Command) as supported by
the ConmandExecut or interface, two convenience methods are provided for when simple object
insertion is all that's required. The CommandExecut or and Bat chExecut i on are talked about in
detail in their own section.

Figure 7.13. StatelessKieSession

Our simple example shows a stateless session executing a given collection of Java objects using
the convenience API. It will iterate the collection, inserting each element in turn.

Example 7.5. Simple StatelessKieSession execution with a Collection

St at el essKi eSessi on ksessi on = kbase. newsSt at el essKi eSessi on() ;
ksessi on. execute(collection);

If this was done as a single Command it would be as follows:

Example 7.6. Simple StatelessKieSession execution with InsertElements
Command

ksessi on. execut e(CommandFact ory. newl nsert El enents(collection));

If you wanted to insert the collection itself, and the collection's individual elements, then
CommandFact ory. newl nsert (col | ecti on) would do the job.

232

Running

Methods of the CommandFact or y create the supported commands, all of which can be marshalled
using XStream and the Bat chExecut i onHel per . Bat chExecut i onHel per provides details on the
XML format as well as how to use Drools Pipeline to automate the marshalling of Bat chExecut i on
and Execut i onResul ts.

St at el essKi eSessi on supports globals, scoped in a number of ways. I'll cover the non-command
way first, as commands are scoped to a specific execution call. Globals can be resolved in three
ways.

The StatelessKieSession method get G obal s() returns a Globals instance which provides
access to the session's globals. These are shared for all execution calls. Exercise caution re-
garding mutable globals because execution calls can be executing simultaneously in different
threads.

Example 7.7. Session scoped global

St at el essKi eSessi on ksessi on = kbase. newst at el essKi eSessi on() ;

/1l Set a gl obal hbnSession, that can be used for DB interactions in the rules.
ksessi on. set A obal ("hbnSessi on", hibernateSession);

/'l Execute while being able to resolve the "hbnSession" identifier.

ksessi on. execute(collection);

Using a delegate is another way of global resolution. Assigning a value to a global (with
set @ obal (String, Object)) results in the value being stored in an internal collection map-
ping identifiers to values. Identifiers in this internal collection will have priority over any supplied
delegate. Only if an identifier cannot be found in this internal collection, the delegate global (if
any) will be used.

The third way of resolving globals is to have execution scoped globals. Here, a Conmand to set
a global is passed to the ConmandExecut or .

The CommandExecut or interface also offers the ability to export data via "out" parameters. Inserted
facts, globals and query results can all be returned.

Example 7.8. Out identifiers

Il

Set up a list of commands

Li st cmds = new ArrayList();

cnds. add(CommandFact ory. newSet d obal ("list1", new ArrayList(), true));
cnds. add(ConmandFact ory. newl nsert(new Person("jon", 102), "person"));
cnds. add(ConmandFact ory. newQuery("Get People" "get People");

11

Execute the i st

Executi onResults results =

/1

ksessi on. execut e(CommandFact ory. newBat chExecution(cnds));

Retrieve the Arrayli st

results.getValue("list1");

/11

Retrieve the inserted Person fact

233

Running

resul ts. getVal ue("person");
/'l Retrieve the query as a QueryResults instance.
resul ts. getVal ue("Get People");

7.4.1. Sequential Mode

With Rete you have a stateful session where objects can be asserted and modified over time,
and where rules can also be added and removed. Now what happens if we assume a stateless
session, where after the initial data set no more data can be asserted or modified and rules cannot
be added or removed? Certainly it won't be necessary to re-evaluate rules, and the engine will
be able to operate in a simplified way.

1. Order the Rules by salience and position in the ruleset (by setting a sequence attribute on the
rule terminal node).

2. Create an elements, one element for each possible rule match; element position indicates firing
order.

3. Turn off all node memories, except the right-input Object memory.

4. Disconnect the Left Input Adapter Node propagation, and let the Object plus the Node be refer-
enced in a Command object, which is added to a list on the Working Memory for later execution.

5. Assert all objects, and, when all assertions are finished and thus right-input node memories are
populated, check the Command list and execute each in turn.

6. All resulting Matches should be placed in the elements, based upon the determined sequence
number of the Rule. Record the first and last populated elements, to reduce the iteration range.

7. lterate the elements of Matches, executing populated element in turn.

8. If we have a maximum number of allowed rule executions, we can exit our network evaluations
early to fire all the rules in the elements.

The Lef t | nput Adapt er Node no longer creates a Tuple, adding the Object, and then propagate
the Tuple — instead a Command object is created and added to a list in the Working Memory. This
Command object holds a reference to the Left | nput Adapt er Node and the propagated object.
This stops any left-input propagations at insertion time, so that we know that a right-input propaga-
tion will never need to attempt a join with the left-inputs (removing the need for left-input memory).
All nodes have their memory turned off, including the left-input Tuple memory but excluding the
right-input object memory, which means that the only node remembering an insertion propagation
is the right-input object memory. Once all the assertions are finished and all right-input memories
populated, we can then iterate the list of Lef t | nput Adat per Node Command objects calling each
in turn. They will propagate down the network attempting to join with the right-input objects, but
they won't be remembered in the left input as we know there will be no further object assertions
and thus propagations into the right-input memory.

There is no longer an Agenda, with a priority queue to schedule the Tuples; instead, there is
simply an elements for the number of rules. The sequence number of the Rul eTer ni nal Node

234

Running

indicates the element within the elements where to place the Match. Once all Command objects
have finished we can iterate our elements, checking each element in turn, and firing the Matches
if they exist. To improve performance, we remember the first and the last populated cell in the
elements. The network is constructed, with each Rul eTer ni nal Node being given a sequence
number based on a salience number and its order of being added to the network.

Typically the right-input node memories are Hash Maps, for fast object deletion; here, as we know
there will be no object deletions, we can use a list when the values of the object are not indexed.
For larger numbers of objects indexed Hash Maps provide a performance increase; if we know
an object type has only a few instances, indexing is probably not advantageous, and a list can
be used.

Sequential mode can only be used with a Stateless Session and is off by default. To turn it
on, either call Rul eBaseConfi gurati on. set Sequenti al (true), or set the rulebase configura-
tion property dr ool s. sequenti al to true. Sequential mode can fall back to a dynamic agen-
da by calling set Sequent i al Agenda with Sequenti al Agenda. DYNAM C. You may also set the
"drools.sequential.agenda" property to "sequential” or "dynamic".

7.5. Propagation modes

The introduction of PHREAK as default algorithm for the Drools engine made the rules' evaluation
lazy. This new Drools lazy behavior allowed a relevant performance boost but, in some very spe-
cific cases, breaks the semantic of a few Drools features.

More precisely in some circumstances it is necessary to propagate the insertion of new fact into th
session immediately. For instance Drools allows a query to be executed in pull only (or passive)
mode by prepending a '?' symbol to its invocation as in the following example:

Example 7.9. A passive query

query Q (Integer i)

String(this ==1i.toString())
end
rul e R when
$i : Integer()
?2Q $i;)
then
Systemout.printin($i);
end

In this case, since the query is passive, it shouldn't react to the insertion of a String matching the
join condition in the query itself. In other words this sequence of commands

Ki eSessi on ksession = ...
ksession.insert(1);
ksession.insert("1");
ksession.fireA | Rul es();

235

Running

shouldn't cause the rule R to fire because the String satisfying the query condition has been
inserted after the Integer and the passive query shouldn't react to this insertion. Conversely the
rule should fire if the insertion sequence is inverted because the insertion of the Integer, when the
passive query can be satisfied by the presence of an already existing String, will trigger it.

Unfortunately the lazy nature of PHREAK doesn't allow the engine to make any distinction regard-
ing the insertion sequence of the two facts, so the rule will fire in both cases. In circumstances like
this it is necessary to evaluate the rule eagerly as done by the old RETEOO-based engine.

In other cases it is required that the propagation is eager, meaning that it is not immedate, but
anyway has to happen before the engine/agenda starts scheduled evaluations. For instance this
is necessary when a rule has the no-loop or the lock-on-active attribute and in fact when this
happens this propagation mode is automatically enforced by the engine.

To cover these use cases, and in all other situations where an immediate or eager rule eval-
uation is required, it is possible to declaratively specify so by annotating the rule itself with
@Propagation(Propagation.Type), where Propagation.Type is an enumeration with 3 possible
values:

« IMMEDIATE means that the propagation is performed immediately.

« EAGER means that the propagation is performed lazily but eagerly evaluated before scheduled
evaluations.

* LAZY means that the propagation is totally lazy and this is default PHREAK behaviour

This means that the following drl:

Example 7.10. A data-driven rule using a passive query

query Q (Integer i)
String(this == i.toString())
end
rul e R @ropagation(l MVEDI ATE) when
$i : Integer()
2Q $i;)
then
Systemout.println($i);
end

will make the rule R to fire if and only if the Integer is inserted after the String, thus behaving in
accordance with the semantic of the passive query.

7.6. Commands and the CommandExecutor

The CommandFact or y allows for commands to be executed on those sessions, the only difference
being that the Stateless Knowledge Session executes fi reAl | Rul es() atthe end before dispos-
ing the session. The currently supported commands are:

236

Running

 FireAllRules
» GetGlobal
» SetGlobal
 InsertObject

 InsertElements
* Query

» StartProcess

» BatchExecution

I nsert Qbj ect will insert a single object, with an optional "out" identifier. | nsert El ement s will
iterate an Iterable, inserting each of the elements. What this means is that a Stateless Knowledge
Session is no longer limited to just inserting objects, it can now start processes or execute queries,
and do this in any order.

Example 7.11. Insert Command

St at el essKi eSessi on ksessi on = kbase. newsSt at el essKi eSessi on() ;
Executi onResults bresults =

ksessi on. execut e(CommandFact ory. newl nsert(new Cheese("stilton"), "stilton_id"));
Stilton stilton = bresults.getValue("stilton_id");

The execute method always returns an Execut i onResul t s instance, which allows access to any
command results if they specify an out identifier such as the "stilton_id" above.

Example 7.12. InsertElements Command

St at el essKi eSessi on ksessi on = kbase. newSt at el essKi eSessi on();

Comrand cnd = CommandFact ory. newl nsert El ement s(Arrays. asList(Qoject[] {
new Cheese("stilton"),
new Cheese("brie"),
new Cheese("cheddar"),

1)

Executi onResults bresults = ksession.execute(cnd);

The execute method only allows for a single command. That's where Bat chExecuti on comes
in, which represents a composite command, created from a list of commands. Now, execute will
iterate over the list and execute each command in turn. This means you can insert some objects,
start a process, call fireAllRules and execute a query, all in a single execut e(...) call, which
is quite powerful.

As mentioned previosly, the StatelessKieSession will execute fi reAl | Rul es() automatically at
the end. However the keen-eyed reader probably has already noticed the Fi r eAl | Rul es com-

237

Running

mand and wondered how that works with a StatelessKieSession. The Fi r eAl | Rul es command
is allowed, and using it will disable the automatic execution at the end; think of using it as a sort
of manual override function.

A custom XStream marshaller can be used with the Drools Pipeline to achieve XML scripting,
which is perfect for services. Here are two simple XML samples, one for the BatchExecution and
one for the Execut i onResul t s.

Example 7.13. Simple BatchExecution XML

<bat ch- executi on>
<insert out-identifier="outStilton' >
<org. drool s. conpi |l er. Cheese>
<type>stilton</type>
<price>25</price>
<ol dPri ce>0</ ol dPri ce>
</ org. drool s. conpi |l er. Cheese>
</insert>
</ bat ch- executi on>

Example 7.14. Simple ExecutionResults XML

<execution-resul ts>
<result identifier="outStilton'>
<org. drool s. conpi |l er. Cheese>
<type>stilton</type>
<ol dPri ce>25</ ol dPri ce>
<price>30</price>
</ org. drool s. conpi |l er. Cheese>
</resul t>
</ execution-resul t s>

Spring and Camel, covered in the integrations book, facilitate declarative services.

Example 7.15. BatchExecution Marshalled to XML

<bat ch- executi on>
<insert out-identifier="stilton">
<or g. drool s. conpi | er. Cheese>
<type>stilton</type>
<price>l</price>
<ol dPri ce>0</ ol dPri ce>
</ org.drool s. conpil er. Cheese>
</insert>
<query out-identifier="cheeses2' nane='cheesesWthParans' >
<string>stilton</string>
<string>cheddar</string>
</ query>

238

Running

</ bat ch- executi on>

The CommandExecut or returns an Executi onResul ts, and this is handled by the pipeline code
snippet as well. A similar output for the <batch-execution> XML sample above would be:

Example 7.16. ExecutionResults Marshalled to XML

<execution-resul ts>
<result identifier="stilton">
<or g. drool s. conpi | er. Cheese>
<type>stilton</type>
<price>2</price>
</ org. drool s. conpi |l er. Cheese>
</resul t>
<result identifier='cheeses2'>
<query-resul ts>
<identifiers>
<identifier>cheese</identifier>
</identifiers>
<r ow>
<org.drool s. conpi |l er. Cheese>
<t ype>cheddar </t ype>
<price>2</price>
<ol dPri ce>0</ ol dPri ce>
</ org.drool s. compi | er. Cheese>
</row>
<r ow>
<org.drool s. conpil er. Cheese>
<t ype>cheddar </ t ype>
<price>1</price>
<ol dPri ce>0</ ol dPri ce>
</ org.drool s. conpi | er. Cheese>
</ r ow>
</ query-resul ts>
</resul t>
</ execution-resul t s>

The Bat chExecut i onHel per provides a configured XStream instance to support the marshalling
of Batch Executions, where the resulting XML can be used as a message format, as shown above.
Configured converters only exist for the commands supported via the Command Factory. The
user may add other converters for their user objects. This is very useful for scripting stateless or
stateful knowledge sessions, especially when services are involved.

There is currently no XML schema to support schema validation. The basic format is outlined
here, and the drools-pipeline module has an illustrative unit test in the XSt r eanBat chExecut i on-
Test unit test. The root element is <batch-execution> and it can contain zero or more commands
elements.

239

Running

Example 7.17. Root XML element

<bat ch- executi on>

</ bat ch- executi on>

This contains a list of elements that represent commands, the supported commands is limited
to those Commands provided by the Command Factory. The most basic of these is the <insert>
element, which inserts objects. The contents of the insert element is the user object, as dictated
by XStream.

Example 7.18. Insert

<bat ch- executi on>
<insert>
..<!-- any user object -->
</insert>
</ bat ch- executi on>

The insert element features an "out-identifier" attribute, demanding that the inserted object will
also be returned as part of the result payload.

Example 7.19. Insert with Out Identifier Command

<bat ch- executi on>
<insert out-identifier="userVar'>

</insert>
</ bat ch- executi on>

It's also possible to insert a collection of objects using the <insert-elements> element. This com-
mand does not support an out-identifier. The or g. donmi n. User d ass is just an illustrative user
object that XStream would serialize.

Example 7.20. Insert Elements command

<bat ch- executi on>
<insert-el enment s>
<or g. donmi n. User Cl ass>

</ org. domai n. User Gl ass>
<or g. domai n. User Cl ass>

</ or g. donmi n. User Cl ass>
<or g. donmi n. User Cl ass>

240

Running

</ org. dommi n. User C ass>
</insert-el ement s>
</ bat ch- executi on>

While the out attribute is useful in returning specific instances as a result payload, we often wish to
run actual queries. Both parameter and parameterless queries are supported. The nane attribute
is the name of the query to be called, and the out -i denti fi er is the identifier to be used for the
query results in the <execut i on-r esul t s> payload.

Example 7.21. Query Command

<bat ch- executi on>
<query out-identifier='"cheeses' nane='cheeses'/>
<query out-identifier=" cheeses2' nane='cheesesWthParans' >
<string>stilton</string>
<string>cheddar</string>
</ query>
</ bat ch- executi on>

241

Chapter 8. Rule Language
Reference

8.1. Overview

Drools has a "native" rule language. This format is very light in terms of punctuation, and supports
natural and domain specific languages via "expanders" that allow the language to morph to your
problem domain. This chapter is mostly concerted with this native rule format. The diagrams used
to present the syntax are known as "railroad" diagrams, and they are basically flow charts for the
language terms. The technically very keen may also refer to DRL. g which is the Antlr3 grammar
for the rule language. If you use the Rule Workbench, a lot of the rule structure is done for you with
content assistance, for example, type "ru" and press ctrl+space, and it will build the rule structure
for you.

8.1.1. A rule file

A rule file is typically a file with a .drl extension. In a DRL file you can have multiple rules, queries
and functions, as well as some resource declarations like imports, globals and attributes that
are assigned and used by your rules and queries. However, you are also able to spread your
rules across multiple rule files (in that case, the extension .rule is suggested, but not required) -
spreading rules across files can help with managing large numbers of rules. A DRL file is simply
a text file.

The overall structure of a rule file is:

Example 8.1. Rules file

package package- nane
i mports

gl obal s

functions

queries

rul es

The order in which the elements are declared is not important, except for the package name that,
if declared, must be the first element in the rules file. All elements are optional, so you will use
only those you need. We will discuss each of them in the following sections.

242

Rule Language Reference

8.1.2. What makes arule

For the impatient, just as an early view, a rule has the following rough structure:

rule "nane"
attributes
when
LHS
t hen
RHS
end

It's really that simple. Mostly punctuation is not needed, even the double quotes for "name" are
optional, as are newlines. Attributes are simple (always optional) hints to how the rule should
behave. LHS is the conditional parts of the rule, which follows a certain syntax which is covered
below. RHS is basically a block that allows dialect specific semantic code to be executed.

It is important to note that white space is not important, except in the case of domain specific
languages, where lines are processed one by one and spaces may be significant to the domain
language.

8.2. Keywords

Drools 5 introduces the concept of hard and soft keywords.

Hard keywords are reserved, you cannot use any hard keyword when naming your domain objects,
properties, methods, functions and other elements that are used in the rule text.

Here is the list of hard keywords that must be avoided as identifiers when writing rules:

e true
e fal se
e null

Soft keywords are just recognized in their context, enabling you to use these words in any other
place if you wish, although, it is still recommended to avoid them, to avoid confusions, if possible.
Here is a list of the soft keywords:

e | ock-on-active

date-effective
e date-expires

* no-| oop

243

Rule Language Reference

aut o- f ocus
activati on-group
agenda- gr oup
rul ef | ow group
entry- poi nt
duration
package

i mport

di al ect
sal i ence
enabl ed
attributes
rule

ext end

when

then

tenpl ate
query

decl are
function

gl obal

eval

not

or
and

exi sts

244

Rule Language Reference

e forall

e accumulate
e collect

e from

e action

e reverse

* result

* end

e over

e init

Of course, you can have these (hard and soft) words as part of a method name in camel case,
like notSomething() or accumulateSomething() - there are no issues with that scenario.

Although the 3 hard keywords above are unlikely to be used in your existing domain models, if
you absolutely need to use them as identifiers instead of keywords, the DRL language provides
the ability to escape hard keywords on rule text. To escape a word, simply enclose it in grave
accents, like this:

Hol iday(“true’ == "yes") // please note that Drools will resolve that reference to the nmethod
Hol i day. i sTrue()

8.3. Comments

Comments are sections of text that are ignored by the rule engine. They are stripped out when
they are encountered, except inside semantic code blocks, like the RHS of a rule.

8.3.1. Single line comment

To create single line comments, you can use '//'. The parser will ignore anything in the line after
the comment symbol. Example:

rule "Testing Comments"when /Il this is a single line comment eval (true) // this is a
comment in the sane |ine of a patternthen /1 this is a comment inside a semantic code bl ockend
Com

ment s"when /1 this is a single line
comment eval (true) // this is a cotmment in the sane line of a
patternthen /] this is a coment inside a senmantic code

245

Rule Language Reference

A Warning

'‘#' for comments has been removed.

8.3.2. Multi-line comment

O—»[Pl]—-[fext]—-[' l—O

Figure 8.1. Multi-line comment

Multi-line comments are used to comment blocks of text, both in and outside semantic code blocks.
Example:

rule "Test Milti-line Comrents"when /* this is a multi-line coment in the left hand
side of a rule */ eval (true)then /* and this is a multi-line coment in the
right hand side of a rule */end

Com

ment s" when /* this is a multi-line

comment in the left hand side of a rule

*/ eval (true

)then /* and this is a multi-line

comment in the right hand side of a rule

*/

8.4. Error Messages

Drools 5 introduces standardized error messages. This standardization aims to help users to find
and resolve problems in a easier and faster way. In this section you will learn how to identify and
interpret those error messages, and you will also receive some tips on how to solve the problems
associated with them.

8.4.1. Message format

The standardization includes the error message format and to better explain this format, let's use
the following example:

[ERR 101] Line :35% no viable alternative at input *)" in rule “test rule® in pattern WorkerPerformanceContext

1st 2nd

Block Block 3rd Block 4th Block sth Block

Figure 8.2. Error Message Format
1st Block: This area identifies the error code.

2nd Block: Line and column information.

246

Rule Language Reference

3rd Block: Some text describing the problem.

4th Block: This is the first context. Usually indicates the rule, function, template or query where
the error occurred. This block is not mandatory.

5th Block: Identifies the pattern where the error occurred. This block is not mandatory.
8.4.2. Error Messages Description

8.4.2.1. 101: No viable alternative

Indicates the most common errors, where the parser came to a decision point but couldn't identify
an alternative. Here are some examples:

Example 8.2.

1. rule one

2 when

3 exi sts Foo()
4: exits Bar()
5 then

6: end

The above example generates this message:

* [ERR 101] Line 4:4 no viable alternative at input 'exits' in rule one

At first glance this seems to be valid syntax, but it is not (exits != exists). Let's take a look at next
example:

Example 8.3.

1: package org.drool s. exanpl es; 2: rule3: when4: bj ect()5: then6: System out. println("A
RHS"); 7: end

or g. drool s. exanpl es; 2:

rul e3:

when4:

Obj ect () 5:

t hen6: System out . println("A

RHS") ; 7:

Now the above code generates this message:

* [ERR 101] Line 3:2 no viable alternative at input "WHEN'

This message means that the parser encountered the token WHEN, actually a hard keyword, but
it's in the wrong place since the the rule name is missing.

247

Rule Language Reference

The error "no viable alternative" also occurs when you make a simple lexical mistake. Here is a
sample of a lexical problem:

Example 8.4.

rule sinple_rule
when
Student (name == "Andy)
t hen
end

qF B

The above code misses to close the quotes and because of this the parser generates this error
message:

* [ERR 101] Line 0:-1 no viable alternative at input '<eof>' in rule simple_rule in pattern Student

8.4.2.2. 102: Mismatched input

This error indicates that the parser was looking for a particular symbol that it didn't #nd at the
current input position. Here are some samples:

Example 8.5.

1: rule sinple_rule
2: when
3: foo3 : Bar(

The above example generates this message:

« [ERR 102] Line 0:-1 mismatched input '<eof>' expecting ') in rule simple_rule in pattern Bar

To fix this problem, it is necessary to complete the rule statement.

248

Rule Language Reference

The following code generates more than one error message:

Example 8.6.

1. package org.drools.exanples;2:3: rule "Avoid NPE on wong syntax"4: whens:

not(Cheese((type == "stilton", price == 10) || (type == "brie", price == 15)) from
$cheeselLi st) 6: then7: Systemout.println("OK");8: end

org. drool s. exanpl es;
2:3: rule "Avoid NPE on wong

synt ax" 4:

whens5: not (Cheese((type == "stilton", price == 10) || (type == "brie", price == 15)
) from $cheeselLi st

) 6:

t hen7:

Systemout . println("CK"); 8:

These are the errors associated with this source:

* [ERR 102] Line 5:36 mismatched input '," expecting ' in rule "Avoid NPE on wrong syntax" in
pattern Cheese

* [ERR 101] Line 5:57 no viable alternative at input 'type' in rule "Avoid NPE on wrong syntax"
* [ERR 102] Line 5:106 mismatched input ')’ expecting 'then' in rule "Avoid NPE on wrong syntax"

Note that the second problem is related to the first. To fix it, just replace the commas (',") by AND
operator ('&&").

@ Note
In some situations you can get more than one error message. Try to fix one by
one, starting at the first one. Some error messages are generated merely as con-
sequences of other errors.

8.4.2.3. 103: Failed predicate

A validating semantic predicate evaluated to false. Usually these semantic predicates are used to
identify soft keywords. This sample shows exactly this situation:

Example 8.7.

1. package nesting; 2: dialect "nvel" 3: 4: inport org.drools.conpiler.Person 5: inport
org.drool s. conpil er. Address 6: 7:
nesting; 2: dialect
"mvel "
3: 4: inport
org. drool s. conpil er.Person 5: inport

249

Rule Language Reference

org. drool s. conpi | er. Addr ess
6: fdsfdsfds

8

9: rule "test sonething"

10: when

11: p: Person(nanme=="M chael ")
12: t hen

13: p.nane = "other";

14: System out. printl n(p. nane);
15: end

With this sample, we get this error message:

* [ERR 103] Line 7.0 rule ‘rule_key' failed predicate:
{(validateldentifierKey(DroolsSoftKeywords.RULE))}? in rule

The fdsfdsfds text is invalid and the parser couldn't identify it as the soft keyword r ul e.

: Note
1
This error is very similar to 102: Mismatched input, but usually involves soft key-
words.

8.4.2.4. 104: Trailing semi-colon not allowed

This error is associated with the eval clause, where its expression may not be terminated with
a semicolon. Check this example:

Example 8.8.

rule sinple_rule
when
eval (abc();)
t hen

9 eOPNE

end

Due to the trailing semicolon within eval, we get this error message:

* [ERR 104] Line 3:4 trailing semi-colon not allowed in rule simple_rule

This problem is simple to fix: just remove the semi-colon.
8.4.2.5. 105: Early Exit

The recognizer came to a subrule in the grammar that must match an alternative at least once,
but the subrule did not match anything. Simply put: the parser has entered a branch from where
there is no way out. This example illustrates it:

250

Rule Language Reference

Example 8.9.

1. tenplate test_error2: aa s 11;3: end
test_error2: aa s

11; 3:

This is the message associated to the above sample:

* [ERR 105] Line 2:2 required (...)+ loop did not match anything at input 'aa’ in template test_error

To fix this problem it is necessary to remove the numeric value as it is neither a valid data type
which might begin a new template slot nor a possible start for any other rule file construct.

8.4.3. Other Messages

Any other message means that something bad has happened, so please contact the development
team.

8.5. Package

A package is a collection of rules and other related constructs, such as imports and globals. The
package members are typically related to each other - perhaps HR rules, for instance. A package
represents a namespace, which ideally is kept unique for a given grouping of rules. The package
name itself is the namespace, and is not related to files or folders in any way.

Itis possible to assemble rules from multiple rule sources, and have one top level package config-
uration that all the rules are kept under (when the rules are assembled). Although, it is not possible
to merge into the same package resources declared under different names. A single Rulebase
may, however, contain multiple packages built on it. A common structure is to have all the rules
for a package in the same file as the package declaration (so that is it entirely self-contained).

The following railroad diagram shows all the components that may make up a package. Note that
a package must have a namespace and be declared using standard Java conventions for package
names; i.e., no spaces, unlike rule names which allow spaces. In terms of the order of elements,
they can appear in any order in the rule file, with the exception of the package statement, which
must be at the top of the file. In all cases, the semicolons are optional.

251

Rule Language Reference

-

£
H g

Figure 8.3. package

Notice that any rule attribute (as described the section Rule Attributes) may also be written at
package level, superseding the attribute's default value. The modified default may still be replaced
by an attribute setting within a rule.

8.5.1. import

Kl
I “

Ot) o J—— L0

Figure 8.4. import

e

Import statements work like import statements in Java. You need to specify the fully qualified paths
and type names for any objects you want to use in the rules. Drools automatically imports classes
from the Java package of the same name, and also from the package j ava. | ang.

8.5.2. global

O—-[‘global’ H class H name]——»O

Figure 8.5. global

252

Rule Language Reference

With gl obal you define global variables. They are used to make application objects available
to the rules. Typically, they are used to provide data or services that the rules use, especially
application services used in rule consequences, and to return data from the rules, like logs or
values added in rule consequences, or for the rules to interact with the application, doing callbacks.
Globals are not inserted into the Working Memory, and therefore a global should never be used to
establish conditions in rules except when it has a constantimmutable value. The engine cannot be
notified about value changes of globals and does not track their changes. Incorrect use of globals
in constraints may yield surprising results - surprising in a bad way.

If multiple packages declare globals with the same identifier they must be of the same type and
all of them will reference the same global value.

In order to use globals you must:

1. Declare your global variable in your rules file and use it in rules. Example:

global java.util.List nydoballList;rule "Using a global"when eval (true)then
myd obal Li st.add("Hello Wrld");end

nmyd obal Li st; rul e "Using
a gl obal "when eval (

true)then nmyd obal Li st.add("Hello

2. Set the global value on your working memory. It is a best practice to set all global values before
asserting any fact to the working memory. Example:

List list = new ArraylList();
Ki eSessi on ki eSessi on = ki ebase. newKi eSessi on();
ki eSessi on. set d obal ("nyd obal List", list);

Note that these are just named instances of objects that you pass in from your application to
the working memory. This means you can pass in any object you want: you could pass in a
service locator, or perhaps a service itself. With the new f r omelement it is now common to pass
a Hibernate session as a global, to allow f r omto pull data from a named Hibernate query.

One example may be an instance of a Email service. In your integration code that is calling the
rule engine, you obtain your emailService object, and then set it in the working memory. In the
DRL, you declare that you have a global of type EmailService, and give it the name "email". Then
in your rule consequences, you can use things like email.sendSMS(number, message).

Globals are not designed to share data between rules and they should never be used for that
purpose. Rules always reason and react to the working memory state, so if you want to pass data
from rule to rule, assert the data as facts into the working memory.

253

Rule Language Reference

Care must be taken when changing data held by globals because the rule engine is not aware of
those changes, hence cannot react to them.

8.6. Function

)

Le[‘function’ | re.:rum-q-pg-]
Lm0 —
O

Figure 8.6. function

Functions are a way to put semantic code in your rule source file, as opposed to in normal Java
classes. They can't do anything more than what you can do with helper classes. (In fact, the
compiler generates the helper class for you behind the scenes.) The main advantage of using
functions in a rule is that you can keep the logic all in one place, and you can change the functions
as needed (which can be a good or a bad thing). Functions are most useful for invoking actions
on the consequence (t hen) part of a rule, especially if that particular action is used over and over
again, perhaps with only differing parameters for each rule.

A typical function declaration looks like:

function String hello(String name) { return "Hello "+nane+"!";}
{ return "Hello "+nane
e

Note that the f unct i on keyword is used, even though its not really part of Java. Parameters to
the function are defined as for a method, and you don't have to have parameters if they are not
needed. The return type is defined just like in a regular method.

Alternatively, you could use a static method in a helper class, e.g., Foo. hel | o() . Drools supports
the use of function imports, so all you would need to do is:

inmport function ny.package. Foo. hel |l o

254

Rule Language Reference

Irrespective of the way the function is defined or imported, you use a function by calling it by its
name, in the consequence or inside a semantic code block. Example:

rule "using a static functi on"when eval (true)then System out. println(hello("Bob"));end
ic
function"when eval (

true)then Systemout. println(hello("Bob"

8.7. Type Declaration

I S G R g

Figure 8.7. meta_data

255

O

Rule Language Reference

—-[‘declars’]—-[name

.
F o Rt
I |

I

rmata_data

Figure 8.8. type_declaration

Type declarations have two main goals in the rules engine: to allow the declaration of new types,
and to allow the declaration of metadata for types.

Declaring new types: Drools works out of the box with plain Java objects as facts. Sometimes,
however, users may want to define the model directly to the rules engine, without worrying about
creating models in a lower level language like Java. At other times, there is a domain model
already built, but eventually the user wants or needs to complement this model with additional
entities that are used mainly during the reasoning process.

Declaring metadata: facts may have meta information associated to them. Examples of meta
information include any kind of data that is not represented by the fact attributes and is consistent
among all instances of that fact type. This meta information may be queried at runtime by the
engine and used in the reasoning process.

8.7.1. Declaring New Types

To declare a new type, all you need to do is use the keyword decl ar e, followed by the list of fields,
and the keyword end. A new fact must have a list of fields, otherwise the engine will look for an
existing fact class in the classpath and raise an error if not found.

256

Rule Language Reference

Example 8.10. Declaring a new fact type: Address

decl are Address nunber : int streetNanme : String city : String
dress nunber :

int street Nanme :

String city :

end

The previous example declares a new fact type called Addr ess. This fact type will have three
attributes: nunber, street Nane and ci ty. Each attribute has a type that can be any valid Java
type, including any other class created by the user or even other fact types previously declared.

For instance, we may want to declare another fact type Per son:

Example 8.11. declaring a new fact type: Person

decl are Person nanme : String dateOFBirth : java.util.Date address : Address
son nane :

String dateOBirth :

java.util.Date address :

end

As we can see on the previous example, dat eOf Bi rt h is of type j ava. uti | . Dat e, from the Java
API, while addr ess is of the previously defined fact type Address.

You may avoid having to write the fully qualified name of a class every time you write it by using
the i nport clause, as previously discussed.

Example 8.12. Avoiding the need to use fully qualified class names by using
import

inmport java.util.Date

decl are Person
nane : String
dateOfBirth : Date
address : Address
end

When you declare a new fact type, Drools will, at compile time, generate bytecode that implements
a Java class representing the fact type. The generated Java class will be a one-to-one Java Bean
mapping of the type definition. So, for the previous example, the generated Java class would be:

257

Rule Language Reference

Example 8.13. generated Java class for the previous Person fact type
declaration

public class Person inplenents Serializable {
private String nang;
private java.util.Date dateO'Birth;
private Address address;

/'l enpty constructor
public Person() {...}

[/ constructor with all fields
public Person(String name, Date dateO'Birth, Address address) {...}

/] if keys are defined, constructor with keys
public Person(...keys...) {...}

/] getters and setters
/'l equal s/ hashCode
/1 toString

Since the generated class is a simple Java class, it can be used transparently in the rules, like
any other fact.

Example 8.14. Using the declared types in rules

rule "Using a declared Type"
when
$p : Person(nanme == "Bob")
then
/!l Insert Mark, who is Bob's mate.
Person mark = new Person();
mar k. set Name(" Mar k") ;
insert(mark);
end

8.7.1.1. Declaring enumerative types
DRL also supports the declaration of enumerative types. Such type declarations require the ad-

ditional keyword enum, followed by a comma separated list of admissible values terminated by
a semicolon.

Example 8.15.

decl are enum DaysOf Week
SUN, MON, TUE, VD, THU, FRI, SAT;

258

Rule Language Reference

end
The compiler will generate a valid Java enum, with static methods valueOf() and values(), as well
as instance methods ordinal(), compareTo() and name().

Complex enums are also partially supported, declaring the internal fields similarly to a regular
type declaration. Notice that as of version 6.x, enum fields do NOT support other declared types
or enums

Example 8.16.

decl are enum DaysOf Week
SUN(" Sunday"), MON(" Monday"), TUE(" Tuesday"), VED("Wednesday"), THU(" Thur sday"), FRI (" Fri day"), SAT(" Sat urday") ;

full Nanme : String
end

Enumeratives can then be used in rules

Example 8.17. Using declarative enumerations in rules

rule "Using a declared Enunt
when

$p : Enpl oyee(dayOrf == DaysOf Week. MONDAY)
then

end

8.7.2. Declaring Metadata

Metadata may be assigned to several different constructions in Drools: fact types, fact attributes
and rules. Drools uses the at sign (@) to introduce metadata, and it always uses the form:

@ret adat a_key(netadata_val ue)

The parenthesized metadata_value is optional.

For instance, if you want to declare a metadata attribute like aut hor, whose value is Bob, you
could simply write:

259

Rule Language Reference

Example 8.18. Declaring a metadata attribute

@ut hor (Bob)

Drools allows the declaration of any arbitrary metadata attribute, but some will have special mean-
ing to the engine, while others are simply available for querying at runtime. Drools allows the
declaration of metadata both for fact types and for fact attributes. Any metadata that is declared
before the attributes of a fact type are assigned to the fact type, while metadata declared after an
attribute are assigned to that particular attribute.

Example 8.19. Declaring metadata attributes for fact types and attributes

inport java.util.Date

decl are Person
@ut hor (Bob)
@lat eOf Creati on(01- Feb-2009)

name : String @ey @maxLength(30)
dateOBirth : Date

address : Address
end

In the previous example, there are two metadata items declared for the fact type (@ut hor and
@lat eOX Cr eat i on) and two more defined for the name attribute (@xey and @maxLengt h). Please
note that the @ey metadata has no required value, and so the parentheses and the value were
omitted.:

8.7.2.1. Predefined class level annotations

Some annotations have predefined semantics that are interpreted by the engine. The following is
a list of some of these predefined annotations and their meaning.

8.7.2.1.1. @role(<fact | event>)

The @role annotation defines how the engine should handle instances of that type: either as
regular facts or as events. It accepts two possible values:

 fact : this is the default, declares that the type is to be handled as a regular fact.
« event : declares that the type is to be handled as an event.

The following example declares that the fact type StockTick in a stock broker application is to be
handled as an event.

260

Rule Language Reference

Example 8.20. declaring a fact type as an event

import sone. package. St ockTi ck

decl are St ockTi ck
@ol e(event)
end

The same applies to facts declared inline. If StockTick was a fact type declared in the DRL itself,
instead of a previously existing class, the code would be:

Example 8.21. declaring a fact type and assigning it the event role

decl are StockTi ck
@ol e(event)

datetine : java.util.Date
synbol : String
price : double

end

8.7.2.1.2. @typesafe(<boolean>)

By default all type declarations are compiled with type safety enabled; @typesafe(false) provides
a means to override this behaviour by permitting a fall-back, to type unsafe evaluation where all
constraints are generated as MVEL constraints and executed dynamically. This can be important
when dealing with collections that do not have any generics or mixed type collections.

8.7.2.1.3. @timestamp(<attribute name>)

Every event has an associated timestamp assigned to it. By default, the timestamp for a given
event is read from the Session Clock and assigned to the event at the time the event is inserted
into the working memory. Although, sometimes, the event has the timestamp as one of its own
attributes. In this case, the user may tell the engine to use the timestamp from the event's attribute
instead of reading it from the Session Clock.

@i mestanp(<attributeNane>)

To tell the engine what attribute to use as the source of the event's timestamp, just list the attribute
name as a parameter to the @timestamp tag.

Example 8.22. declaring the VoiceCall timestamp attribute

decl are Voi ceCal |

261

Rule Language Reference

Cal | @ol e(event)
@i nmestanp(cal | DateTinme)
end

8.7.2.1.4. @duration(<attribute name>)

Drools supports both event semantics: point-in-time events and interval-based events. A point-in-
time event is represented as an interval-based event whose duration is zero. By default, all events
have duration zero. The user may attribute a different duration for an event by declaring which
attribute in the event type contains the duration of the event.

@luration(<attributeName>)

So, for our VoiceCall fact type, the declaration would be:

Example 8.23. declaring the VoiceCall duration attribute

decl are Voi ceCal |
Cal | @ol e(event)
@i nmestanp(cal | DateTinme)
@luration(callDuration)
end

8.7.2.1.5. @expires(<time interval>)

Important

This tag is only considered when running the engine in STREAM mode. Also, ad-
ditional discussion on the effects of using this tag is made on the Memory Man-
agement section. It is included here for completeness.

Events may be automatically expired after some time in the working memory. Typically this hap-
pens when, based on the existing rules in the knowledge base, the event can no longer match
and activate any rules. Although, it is possible to explicitly define when an event should expire.

@xpires(<timeOfset>)

The value of timeOffset is a temporal interval in the form:

[#d] [#h] [#n] [#s] [#[ms]]

262

Rule Language Reference

Where [] means an optional parameter and # means a humeric value.

So, to declare that the VoiceCall facts should be expired after 1 hour and 35 minutes after they
are inserted into the working memory, the user would write:

Example 8.24. declaring the expiration offset for the VoiceCall events

decl are Voi ceCal |

Cal | @ol e(event)
@i mestanp(cal | DateTine)
@luration(callDuration)
@xpires(1h35m)

end

The @expires policy will take precedence and override the implicit expiration offset calculated
from temporal constraints and sliding windows in the knowledge base.

8.7.2.1.6. @propertyChangeSupport

Facts that implement support for property changes as defined in the Javabean(tm) spec, now can
be annotated so that the engine register itself to listen for changes on fact properties. The boolean
parameter that was used in the insert() method in the Drools 4 API is deprecated and does not
exist in the drools-api module.

Example 8.25. @propertyChangeSupport

decl are Person
son @r opertyChangeSupport
end

8.7.2.1.7. @propertyReactive
Make this type property reactive. See Fine grained property change listeners section for details.
8.7.2.2. Predefined attribute level annotations

As noted before, Drools also supports annotations in type attributes. Here is a list of predefined
attribute annotations.

8.7.2.2.1. @key

Declaring an attribute as a key attribute has 2 major effects on generated types:

1. The attribute will be used as a key identifier for the type, and as so, the generated class will
implement the equals() and hashCode() methods taking the attribute into account when com-
paring instances of this type.

263

Rule Language Reference

2. Drools will generate a constructor using all the key attributes as parameters.
For instance:

Example 8.26. example of @key declarations for atype

decl are Person firstName : String @ey lastNane : String @ey age : int
son firstName : String

@xey lastName : String

ey age :

end

For the previous example, Drools will generate equals() and hashCode() methods that will check
the firstName and lastName attributes to determine if two instances of Person are equal to each
other, but will not check the age attribute. It will also generate a constructor taking firstName and
lastName as parameters, allowing one to create instances with a code like this:

Example 8.27. creating an instance using the key constructor

Person person = new Person("John", "Doe");

8.7.2.2.2. @position

Patterns support positional arguments on type declarations.

Positional arguments are ones where you don't need to specify the field name, as the position
maps to a known named field. i.e. Person(name =="mark") can be rewritten as Person("mark";).
The semicolon ';' is important so that the engine knows that everything before it is a positional
argument. Otherwise we might assume it was a boolean expression, which is how it could be
interpreted after the semicolon. You can mix positional and named arguments on a pattern by
using the semicolon ;' to separate them. Any variables used in a positional that have not yet been
bound will be bound to the field that maps to that position.

decl are Cheese
name : String
shop : String
price : int
end

The default order is the declared order, but this can be overridden using @position

decl are Cheese
name : String @osition(1)
shop : String @osition(2)
price : int @osition(0)

264

Rule Language Reference

end

The @Position annotation, in the org.drools.definition.type package, can be used to annotate
original pojos on the classpath. Currently only fields on classes can be annotated. Inheritance of
classes is supported, but not interfaces of methods yet.

Example patterns, with two constraints and a binding. Remember semicolon ';' is used to differen-
tiate the positional section from the named argument section. Variables and literals and expres-
sions using just literals are supported in positional arguments, but not variables.

Cheese("stilton", "Cheese Shop", p;)

Cheese("stilton", "Cheese Shop"; p : price)

Cheese("stilton"; shop == "Cheese Shop", p : price)

Cheese(name == "stilton"; shop == "Cheese Shop", p : price)

@Position is inherited when beans extend each other; while not recommended, two fields may
have the same @position value, and not all consecutive values need be declared. If a @position
is repeated, the conflict is solved using inheritance (fields in the superclass have the precedence)
and the declaration order. If a @position value is missing, the first field without an explicit @ position
(if any) is selected to fill the gap. As always, conflicts are resolved by inheritance and declaration
order.

decl are Cheese
nane @ String
shop : String @osition(2)
price : int @osition(0)
end

decl are SeasonedCheese extends Cheese
year : Date @osition(0)
origin : String @osition(6)
country : String

end

In the example, the field order would be : price (@position 0 in the superclass), year (@position
0 in the subclass), name (first field with no @position), shop (@position 2), country (second field
without @position), origin.

8.7.3. Declaring Metadata for Existing Types

Drools allows the declaration of metadata attributes for existing types in the same way as when
declaring metadata attributes for new fact types. The only difference is that there are no fields
in that declaration.

For instance, if there is a class org.drools.examples.Person, and one wants to declare metadata
for it, it's possible to write the following code:

265

Rule Language Reference

Example 8.28. Declaring metadata for an existing type

inmport org.drools. exanpl es. Person

decl are Person

@ut hor (Bob)

@at ef Creati on(01- Feb- 2009)
end

Instead of using the import, it is also possible to reference the class by its fully qualified name,
but since the class will also be referenced in the rules, it is usually shorter to add the import and
use the short class nhame everywhere.

Example 8.29. Declaring metadata using the fully qualified class name

decl are org. drool s. exanpl es. Person
@ut hor (Bob)
@lat eOf Creati on(01- Feb-2009)
end

8.7.4. Parametrized constructors for declared types

Generate constructors with parameters for declared types.

Example: for a declared type like the following:

decl are Person firstName : String
son firstName : String@ey
lastName : String @ey
age : int
end

The compiler will implicitly generate 3 constructors: one without parameters, one with the @key
fields, and one with all fields.

Person() // paraneterless constructorPerson(String firstName, String |astNanme)Person(String
firstNanme, String |lastNane, int age)

nmet erl ess constructorPerson(String

firstName, String | astName)Person(String firstName, String

8.7.5. Non Typesafe Classes

@typesafe(<boolean>) has been added to type declarations. By default all type declarations are
compiled with type safety enabled; @typesafe(false) provides a means to override this behaviour

266

Rule Language Reference

by permitting a fall-back, to type unsafe evaluation where all constraints are generated as MVEL
constraints and executed dynamically. This can be important when dealing with collections that
do not have any generics or mixed type collections.

8.7.6. Accessing Declared Types from the Application Code

Declared types are usually used inside rules files, while Java models are used when sharing the
model between rules and applications. Although, sometimes, the application may need to access
and handle facts from the declared types, especially when the application is wrapping the rules
engine and providing higher level, domain specific user interfaces for rules management.

In such cases, the generated classes can be handled as usual with the Java Reflection API, but,
as we know, that usually requires a lot of work for small results. Therefore, Drools provides a
simplified API for the most common fact handling the application may want to do.

The first important thing to realize is that a declared fact will belong to the package
where it was declared. So, for instance, in the example below, Person will belong to the
org. drool s. exanpl es package, and so the fully qualified name of the generated class will be
org. drool s. exanpl es. Person.

Example 8.30. Declaring a type in the org.drools.examples package

package org. drool s. exanpl es
inport java.util.Date

decl are Person
nane : String
dateOfBirth : Date
address : Address
end

Declared types, as discussed previously, are generated at knowledge base compilation time, i.e.,
the application will only have access to them at application run time. Therefore, these classes are
not available for direct reference from the application.

Drools then provides an interface through which users can handle declared types from the ap-
plication code: or g. drool s. defi ni ti on. type. Fact Type. Through this interface, the user can
instantiate, read and write fields in the declared fact types.

Example 8.31. Handling declared fact types through the API

/1 get areference to a know edge base with a decl ared type: Ki eBase kbase = ...// get the decl ared
Fact TypeFact Type personType = kbase. get Fact Type("org. drool s. exanpl es",
"Person");// handle the type as necessary:// create instances: Object bob =

personType. new nstance();// set attributes val uespersonType. set(bob, "nanme",
"Bob"); personType. set(bob, "age", 42);// insert fact
into a sessionKi eSession ksession = ...ksession.insert(bob);ksession.fireAlRules();// read

attributesString name = personType. get(bob, "nanme");int age = personType.get(bob, "age");

267

Rule Language Reference

decl ared type: Ki eBase kbase

= ...// get the
decl ared Fact TypeFact Type personType =
kbase. get Fact Type("org. drool s. exanpl es",

"Person");// handle the type
as necessary://
create instances: Obj ect bob

= personType. new nstance();// set
attributes
val uesper sonType. set (bob,

name",
" Bob"
); personType. set (bob,
"age",

42);// insert fact into
a sessi onKi eSessi on ksession
= ...ksession.insert(

bob); ksession.fireA |l Rules();//
read attributesString name = personType. get(bob,
"name");int age = personType.get(bob,

The API also includes other helpful methods, like setting all the attributes at once, reading values

from a Map, or reading all attributes at once, into a Map.

Although the API is similar to Java reflection (yet much simpler to use), it does not use reflection
underneath, relying on much more performant accessors implemented with generated bytecode.

8.7.7. Type Declaration 'extends'

Type declarations now support 'extends' keyword for inheritance

In order to extend a type declared in Java by a DRL declared subtype, repeat the supertype in

a declare statement without any fields.

b org. peopl e. Per son
decl are Person end

decl are Student extends Person
school : String
end

decl are LongTer nSt udent extends Student
years : int
course : String

end

268

Rule Language Reference

8.7.8. Traits

WARNING : this feature is still experimental and subject to changes

The same fact may have multiple dynamic types which do not fit naturally in a class hierarchy.
Traits allow to model this very common scenario. A trait is an interface that can be applied (and
eventually removed) to an individual object at runtime. To create a trait rather than a traditional
bean, one has to declare them explicitly as in the following example:

Example 8.32.

declare trait Col denCust oner /1 fields will map to getters/setters code : String
bal ance : long di scount : int maxExpense : |ong

enCust oner /] fields will map to

getters/setters code

: String bal ance

: long di scount

©oint maxExpense

end

At runtime, this declaration results in an interface, which can be used to write patterns, but can
not be instantiated directly. In order to apply a trait to an object, we provide the new don keyword,
which can be used as simply as this:

Example 8.33.

when

$c : Customer()
then

CGol denCust omrer gc = don($c, Gol denCustoner.class);
end

when a core object dons a trait, a proxy class is created on the fly (one such class will be generated
lazily for each core/trait class combination). The proxy instance, which wraps the core object and
implements the trait interface, is inserted automatically and will possibly activate other rules. An
immediate advantage of declaring and using interfaces, getting the implementation proxy for free
from the engine, is that multiple inheritance hierarchies can be exploited when writing rules. The
core classes, however, need not implement any of those interfaces statically, also facilitating the
use of legacy classes as cores. In fact, any object can don a trait, provided that they are declared
as @Traitable. Notice that this annotation used to be optional, but now is mandatory.

Example 8.34.

inmport org.drools.core.factnodel .traits. Traitable;
decl are Custoner

269

Rule Language Reference

@raitable

code : String

bal ance : 1ong
end

The only connection between core classes and trait interfaces is at the proxy level: a trait is not
specifically tied to a core class. This means that the same trait can be applied to totally different
objects. For this reason, the trait does not transparently expose the fields of its core object. So,
when writing a rule using a trait interface, only the fields of the interface will be available, as usual.
However, any field in the interface that corresponds to a core object field, will be mapped by the
proxy class:

Example 8.35.
when
$o: Oderltem($p : price, $code : custCode)
$c: Gol denCust oner (code == $code, $a : bal ance, $d: discount)
t hen
$c. set Bal ance($a - $p*$d);
end

In this case, the code and balance would be read from the underlying Customer object. Likewise,
the setAccount will modify the underlying object, preserving a strongly typed access to the data
structures. A hard field must have the same name and type both in the core class and all donned
interfaces. The name is used to establish the mapping: if two fields have the same name, then they
must also have the same declared type. The annotation @org.drools.core.factmodel.traits.Alias
allows to relax this restriction. If an @Alias is provided, its value string will be used to resolve
mappings instead of the original field name. @Alias can be applied both to traits and core beans.

Example 8.36.

inmport org.drools.core.factnodel .traits.*
declare trait Col denCust oner

bal ance : long @\ ias("org.acne.foo.accountBal ance")
end

decl are Person

@raitable
name : String
savings : long @\ ias("org.acne.foo.accountBal ance")
end
when
Gol denCust onmer (bal ance > 1000) // wll react to new Person(2000)
then
end

270

Rule Language Reference

More work is being done on reaxing this constraint (see the experimental section on "logical"
traits later). Now, one might wonder what happens when a core class does NOT provide the
implementation for a field defined in an interface. We call hard fields those trait fields which are also
core fields and thus readily available, while we define soft those fields which are NOT provided
by the core class. Hidden fields, instead, are fields in the core class not exposed by the interface.

So, while hard field management is intuitive, there remains the problem of soft and hidden fields.
Hidden fields are normally only accessible using the core class directly. However, the "fields" Map
can be used on a trait interface to access a hidden field. If the field can't be resolved, null will be
returned. Notice that this feature is likely to change in the future.

Example 8.37.

when

$sc : Col denCustomer(fields["age"] > 18) // age is declared by the underlying core
class, but not by Gol denCust oner
t hen

Soft fields, instead, are stored in a Map-like data structure that is specific to each core object
and referenced by the proxy(es), so that they are effectively shared even when an object dons
multiple traits.

Example 8.38.

when
$sc : Col denCustoner($c : code, // hard getter
$maxExpense : maxExpense > 1000 // soft getter

)
then

$sc.setDiscount(...); // soft setter
end

A core object also holds a reference to all its proxies, so that it is possible to track which type(s)
have been added to an object, using a sort of dynamic "instanceof" operator, which we called isA.
The operator can accept a String, a class literal or a list of class literals. In the latter case, the
constraint is satisfied only if all the traits have been donned.

Example 8.39.

$sc : Col denCustoner ($maxExpense : maxExpense > 1000, this isA
"Seni orCustoner", this isA [National Custoner.class, OnlineCustoner.class])

maxExpense > 1000, this isA "SeniorCustoner",

this isA

[

271

Rule Language Reference

Eventually, the business logic may require that a trait is removed from a wrapped object. To this
end, we provide two options. The first is a "logical don", which will result in a logical insertion of
the proxy resulting from the traiting operation. The TMS will ensure that the trait is removed when
its logical support is removed in the first place.

Example 8.40.

t hen
don($x, // core object
Custoner.class, // trait class
true // optional flag for |ogical insertion

The second is the use of the "shed" keyword, which causes the removal of any type that is a
subtype (or equivalent) of the one passed as an argument. Notice that, as of version 5.5, shed
would only allow to remove a single specific trait.

Example 8.41.

then
Thing t = shed($x, ColdenCustoner.class) // also renpbves any trait that

This operation returns another proxy implementing the org.drools.core.factmodel.traits. Thing in-
terface, where the getFields() and getCore() methods are defined. Internally, in fact, all declared
traits are generated to extend this interface (in addition to any others specified). This allows to
preserve the wrapper with the soft fields which would otherwise be lost.

A trait and its proxies are also correlated in another way. Starting from version 5.6, whenever
a core object is "modified", its proxies are "modified" automatically as well, to allow trait-based
patterns to react to potential changes in hard fields. Likewise, whenever a trait proxy (mached by
a trait pattern) is modified, the modification is propagated to the core class and the other traits.
Morover, whenever a don operation is performed, the core object is also modified automatically,
to reevaluate any "isA" operation which may be triggered.

Potentially, this may result in a high number of modifications, impacting performance (and cor-
rectness) heavily. So two solutions are currently implemented. First, whenever a core object is
modified, only the most specific traits (in the sense of inheritance between trait interfaces) are
updated and an internal blocking mechanism is in place to ensure that each potentially matching
pattern is evaluated once and only once. So, in the following situation:

decl are trait Gol denCustoner end
declare trait National Gol denust oner extends Gol denCustoner end
decl are trait Senior Gol denCust oner extends CGol denCust omer end

272

Rule Language Reference

a modification of an object that is both a GoldenCustomer, a NationalGoldenCustomer and a Se-
niorGoldenCustomer wold cause only the latter two proxies to be actually modified. The first would
match any pattern for GoldenCustomer and NationalGoldenCustomer; the latter would instead
be prevented from rematching GoldenCustomer, but would be allowed to match SeniorGolden-
Customer patterns. It is not necessary, instead, to modify the GoldenCustomer proxy since it is
already covered by at least one other more specific trait.

The second method, up to the usr, is to mark traits as @PropertyReactive. Property reactivity is
trait-enabled and takes into account the trait field mappings, so to block unnecessary propaga-
tions.

8.7.8.1. Cascading traits

WARNING : This feature is extremely experimental and subject to changes

Normally, a hard field must be exposed with its original type by all traits donned by an object, to
prevent situations such as

Example 8.42.

declare Person @raitable nane : String id: String
son

@raitable nane :

String id:

end

declare trait Custoner
id: String
end

declare trait Patient
id: long // Person can't don Patient, or an exception will be thrown
end

Should a Person don both Customer and Patient, the type of the hard field id would be ambiguous.
However, consider the following example, where GoldenCustomers refer their best friends so that
they become Customers as well:

Example 8.43.

decl are Person @raitable(logical=true) bestFriend : Person
son @raitable(|ogical=true

) bestFriend :

end

declare trait Custoner end

declare trait Col denCustoner extends Custoner
refers : Custoner @\ ias("bestFriend")

273

Rule Language Reference

end

Aside from the @Alias, a Person-as-GoldenCustomer's best friend might be compatible with the
requirements of the trait GoldenCustomer, provided that they are some kind of Customer them-
selves. Marking a Person as "logically traitable" - i.e. adding the annotation @Traitable(logical =
true) - will instruct the engine to try and preserve the logical consistency rather than throwing an
exception due to a hard field with different type declarations (Person vs Customer). The following
operations would then work:

Example 8.44.
Person pl = new Person();Person p2 = new Person();pl.setBestFriend(p2);...Customer
c2 = don(p2, Cust oner. cl ass);...Col denCust oner gcl = don(pl,
CGol denCustomer.class);...pl.getBestFriend(); // returns p2gcl.getRefers(); // returns c2, a

Cust omer proxy w apping p2
Person(); Person p2 = new
Person(); pl. set Best Fri end(p2

);...Customer c2 = don(p2, Custoner.class
);...Gol denCustomer gcl = don(pl, Col denCustoner.cl ass

);...pl.getBestFriend(); // returns
p2gcl. getRefers(); // returns c2, a Custoner proxy w apping

Notice that, by the time p1 becomes GoldenCustomer, p2 must have already become a Customer
themselves, otherwise a runtime exception will be thrown since the very definition of GoldenCus-
tomer would have been violated.

In some cases, however, one might want to infer, rather than verify, that p2 is a Customer by virtue
that pl is a GoldenCustomer. This modality can be enabled by marking Customer as "logical",
using the annotation @org.drools.core.factmodel.traits. Trait(logical = true). In this case, should
p2 not be a Customer by the time that p1 becomes a GoldenCustomer, it will be automatically don
the trait Customer to preserve the logical integrity of the system.

Notice that the annotation on the core class enables the dynamic type management for its fields,
whereas the annotation on the traits determines whether they will be enforced as integrity con-
straints or cascaded dynamically.

Example 8.45.

inmport org.drools.factnodel.traits.*;

declare trait Custoner
@rait(logical = true)
end

274

Rule Language Reference

8.8. Rule

O
‘ATl) e]_)

o
!

(::

o LHS |

Figure 8.9. rule

A rule specifies that when a particular set of conditions occur, specified in the Left Hand Side
(LHS), then do what queryis specified as a list of actions in the Right Hand Side (RHS). A common
question from users is "Why use when instead of if?" "When" was chosen over "if" because "if"
is normally part of a procedural execution flow, where, at a specific point in time, a condition is
to be checked. In contrast, "when" indicates that the condition evaluation is not tied to a specific
evaluation sequence or point in time, but that it happens continually, at any time during the life
time of the engine; whenever the condition is met, the actions are executed.

A rule must have a name, unique within its rule package. If you define a rule twice in the same
DRL it produces an error while loading. If you add a DRL that includes a rule name already in the
package, it replaces the previous rule. If a rule name is to have spaces, then it will need to be
enclosed in double quotes (it is best to always use double quotes).

Attributes - described below - are optional. They are best written one per line.

The LHS of the rule follows the when keyword (ideally on a new line), similarly the RHS follows
the t hen keyword (again, ideally on a newline). The rule is terminated by the keyword end. Rules
cannot be nested.

275

Rule Language Reference

Example 8.46. Rule Syntax Overview

rul e "<nane>"
<attri but e>*

when

<condi tional el enent>*
t hen

<acti on>*
end

Example 8.47. A simple rule

rule "Approve if not rejected" salience -100 agenda- group "approval " when not
Rej ection() p : Policy(approved == fal se, policyState:status) exists Driver(age >
25) Process(status == policyState) t hen | og(" APPROVED: due to no objections.")

p. set Approved(true);end
rejected" salience
- 100 agenda-
group “"approval "

when not

Rej ection() p : Policy(approved ==
fal se, policyState: status) exists Driver(age
> 25) Process(st at us
== policyState)

t hen | og(" APPROVED: due to no

obj ections.");

8.8.1. Rule Attributes

Rule attributes provide a declarative way to influence the behavior of the rule. Some are quite
simple, while others are part of complex subsystems such as ruleflow. To get the most from Drools
you should make sure you have a proper understanding of each attribute.

276

Rule Language Reference

() 'no-loop’ value

—{ 'lock-on-active’ |——
—{ ‘agenda-group’ | —
o ‘audfocus’ |
— “ruleflow-group” |
—y ‘activation-group’ }—
— ‘dialect |
— 'date-effective’ ||
—{ ‘date-expires’ |
— ‘enabled’ |~
—.[“duration”]—.[duration-value (ms)]—

Figure 8.10. rule attributes

no- | oop
default value: f al se

type: Boolean

When a rule's consequence modifies a fact it may cause the rule to activate again, causing

an infinite loop. Setting no-loop to true will skip the creation of another Activation for the rule
with the current set of facts.

rul ef | ow group
default value: N/A

type: String

Ruleflow is a Drools feature that lets you exercise control over the firing of rules. Rules that
are assembled by the same ruleflow-group identifier fire only when their group is active.

277

Rule Language Reference

| ock-on-active
default value: f al se

type: Boolean

Whenever a ruleflow-group becomes active or an agenda-group receives the focus, any rule
within that group that has lock-on-active set to true will not be activated any more; irrespective
of the origin of the update, the activation of a matching rule is discarded. This is a stronger
version of no-loop, because the change could now be caused not only by the rule itself. It's
ideal for calculation rules where you have a number of rules that modify a fact and you don't
want any rule re-matching and firing again. Only when the ruleflow-group is no longer active or
the agenda-group loses the focus those rules with lock-on-active set to true become eligible
again for their activations to be placed onto the agenda.

sal i ence
default value: 0

type: integer

Each rule has an integer salience attribute which defaults to zero and can be negative or
positive. Salience is a form of priority where rules with higher salience values are given higher
priority when ordered in the Activation queue.

Drools also supports dynamic salience where you can use an expression involving bound
variables.

Example 8.48. Dynamic Salience

rule "Fire in rank order 1,2,.." sal i ence(-$rank) when El enent ($rank :
rank,...) t hen ...end

1,2,.." sal i ence(-$rank

)

when El ement ($rank : rank,...

)

then

agenda- gr oup
default value: MAIN

type: String

Agenda groups allow the user to partition the Agenda providing more execution control. Only
rules in the agenda group that has acquired the focus are allowed to fire.

aut o-f ocus
default value: f al se

type: Boolean

278

Rule Language Reference

When a rule is activated where the aut o- f ocus value is true and the rule's agenda group
does not have focus yet, then it is given focus, allowing the rule to potentially fire.

activati on-group
default value: N/A

type: String

Rules that belong to the same activation-group, identified by this attribute's string value, will
only fire exclusively. More precisely, the first rule in an activation-group to fire will cancel all
pending activations of all rules in the group, i.e., stop them from firing.

Note: This used to be called Xor group, but technically it's not quite an Xor. You may still hear
people mention Xor group; just swap that term in your mind with activation-group.

di al ect
default value: as specified by the package

type: String
possible values: "java" or "mvel"

The dialect species the language to be used for any code expressions in the LHS or the RHS
code block. Currently two dialects are available, Java and MVEL. While the dialect can be
specified at the package level, this attribute allows the package definition to be overridden
for arule.

date-effective
default value: N/A

type: String, containing a date and time definition
A rule can only activate if the current date and time is after date-effective attribute.

dat e- expires
default value: N/A

type: String, containing a date and time definition
A rule cannot activate if the current date and time is after the date-expires attribute.

duration
default value: no default value

type: long

The duration dictates that the rule will fire after a specified duration, if it is still true.

Example 8.49. Some attribute examples

rule "ny rule"

279

Rule Language Reference

sal i ence 42
agenda- group "nunber 1"
when ...

8.8.2. Timers and Calendars

Rules now support both interval and cron based timers, which replace the now deprecated duration
attribute.

Example 8.50. Sample timer attribute uses

timer (int: <initial delay> <repeat interval >?)
tinmer (int: 30s)
timer (int: 30s 5m)

timer (cron: <cron expression>)
timer (cron:* 0/15 * * * ?2)

Interval (indicated by "int:") timers follow the semantics of java.util. Timer objects, with an initial
delay and an optional repeat interval. Cron (indicated by "cron:") timers follow standard Unix cron
expressions:

Example 8.51. A Cron Example

rule "Send SMS every 15 m nutes"”
timer (cron:* 0/15 * * * ?2)

when

$a : Alarn(on == true)
t hen

channel s["sns"].insert(new Sns($a. nobi |l eNunber, "The alarmis still on");
end

A rule controlled by a timer becomes active when it matches, and once for each individual match.
Its consequence is executed repeatedly, according to the timer's settings. This stops as soon as
the condition doesn't match any more.

Consequences are executed even after control returns from a call to fireUntilHalt. Moreover, the
Engine remains reactive to any changes made to the Working Memory. For instance, removing
a fact that was involved in triggering the timer rule's execution causes the repeated execution to
terminate, or inserting a fact so that some rule matches will cause that rule to fire. But the Engine
is not continually active, only after a rule fires, for whatever reason. Thus, reactions to an insertion
done asynchronously will not happen until the next execution of a timer-controlled rule. Disposing
a session puts an end to all timer activity.

Conversely when the rule engine runs in passive mode (i.e.: using fireAllRules instead of fireUntil-
Halt) by default it doesn't fire consequences of timed rules unless fireAllRules isn't invoked again.

280

Rule Language Reference

However it is possible to change this default behavior by configuring the KieSession with a Ti me-
dRul eExect i onQpt i on as shown in the following example.

Example 8.52. Configuring a KieSession to automatically execute timed
rules

Ki eSessi onConfi guration ksconf = KieServices. Factory. get().newKi eSessi onConfiguration();
ksconf . set Opti on(Ti nedRul eExecti onOption. YES);
KSessi on ksessi on = kbase. newKi eSessi on(ksconf, null);

It is also possible to have a finer grained control on the timed rules that have to be automatically
executed. To do this it is necessary to set a FI LTERED Ti medRul eExect i onOpt i on that allows to
define a callback to filter those rules, as done in the next example.

Example 8.53. Configuring a filter to choose which timed rules should be
automatically executed

Ki eSessi onConfi gurati on ksconf = KieServices. Factory. get().newKi eSessi onConfi guration();
conf.set Option(new Ti medRul eExecti onOpti on. FI LTERED(new Ti medRul eExecutionFilter() {
public bool ean accept (Rule[] rules) {
return rul es[0].get Nane(). equal s("M/Rul e");

}
IDEDF

For what regards interval timers it is also possible to define both the delay and interval as an
expression instead of a fixed value. To do that it is necessary to use an expression timer (indicated
by "expr:") as in the following example:

Example 8.54. An Expression Timer Example

decl are Bean
del ay : String = "30s"
period : long = 60000
end

rul e "Expression tinmer"
timer(expr: $d, $p)
when
Bean($d : delay, $p : period)
then
end

The expressions, $d and $p in this case, can use any variable defined in the pattern matching
part of the rule and can be any String that can be parsed in a time duration or any numeric value
that will be internally converted in a long representing a duration expressed in milliseconds.

281

Rule Language Reference

Both interval and expression timers can have 3 optional parameters named "start", "end" and
"repeat-limit". When one or more of these parameters are used the first part of the timer definition
must be followed by a semicolon ';' and the parameters have to be separated by a comma ', as
in the following example:

Example 8.55. An Interval Timer with a start and an end

timer (int: 30s 10s; start=3-JAN 2010, end=5-JAN-2010)

The value for start and end parameters can be a Date, a String representing a Date or a long,
or more in general any Number, that will be transformed in a Java Date applying the following
conversion:

new Date(((Nunber) n).longVal ue())

Conversely the repeat-limit can be only an integer and it defines the maximum number of repeti-
tions allowed by the timer. If both the end and the repeat-limit parameters are set the timer will
stop when the first of the two will be matched.

The using of the start parameter implies the definition of a phase for the timer, where the beginning
of the phase is given by the start itself plus the eventual delay. In other words in this case the
timed rule will then be scheduled at times:

start + delay + n*period

for up to repeat-limit times and no later than the end timestamp (whichever first). For instance the
rule having the following interval timer

timer (int: 30s 1m start="3-JAN- 2010")

will be scheduled at the 30th second of every minute after the midnight of the 3-JAN-2010. This
also means that if for example you turn the system on at midnight of the 3-FEB-2010 it won't be
scheduled immediately but will preserve the phase defined by the timer and so it will be scheduled
for the first time 30 seconds after the midnight. If for some reason the system is paused (e.qg.
the session is serialized and then deserialized after a while) the rule will be scheduled only once
to recover from missing activations (regardless of how many activations we missed) and subse-
quently it will be scheduled again in phase with the timer.

Calendars are used to control when rules can fire. The Calendar API is modelled on Quartz [http://
www.quartz-scheduler.org/]:

282

http://www.quartz-scheduler.org/
http://www.quartz-scheduler.org/
http://www.quartz-scheduler.org/

Rule Language Reference

Example 8.56. Adapting a Quartz Calendar
Cal endar weekDayCal = QuartzHel per. quart zCal endar Adapt er (org. quartz. Cal endar quartzCal)

Calendars are registered with the KieSession:

Example 8.57. Registering a Calendar

ksessi on. get Cal endars().set("weekday", weekDayCal);

They can be used in conjunction with normal rules and rules including timers. The rule attribute
"calendars" may contain one or more comma-separated calendar names written as string literals.

Example 8.58. Using Calendars and Timers together

rul e "weekdays are high priority"
cal endars "weekday"
timer (int:0 1h)
when
Al arn()
then
send("priority high - we have an alarnt);
end

rule "weekend are low priority"
cal endars "weekend"
timer (int:0 4h)

when

Al ar ()
t hen

send("priority low - we have an alarnt);
end

8.8.3. Left Hand Side (when) syntax

8.8.3.1. What is the Left Hand Side?

The Left Hand Side (LHS) is a common name for the conditional part of the rule. It consists of zero
or more Conditional Elements. If the LHS is empty, it will be considered as a condition element
that is always true and it will be activated once, when a new WorkingMemory session is created.

O { c-:-.rrﬂ'ﬁra'c'n;fEn'ement _]—"l O

Figure 8.11. Left Hand Side

283

Rule Language Reference

Example 8.59. Rule without a Conditional Element

rule "no CEs"

when
/Il enpty
t hen
// actions (executed once)
end

/1 The above rule is internally rewitten as

rule "eval (true)"

when
eval (true)
t hen
/1 actions (executed once)
end

Conditional elements work on one or more patterns (which are described below). The most com-
mon conditional element is "and" . Therefore it is implicit when you have multiple patterns in the
LHS of a rule that are not connected in any way:

Example 8.60. Implicit and

rule "2 unconnected patterns"when Patternl() Pattern2()then ... Il actionsend// The
above rule is internally rewitten as:rule "2 and connected patterns"when Patterni()

and Pattern2()then ... Il actionsend
ed

pat t er ns"when
Patternil()

Pattern2()then

/'l actionsend// The above rule is internally
rewitten as:rule "2 and

connected patterns”"when
Patternil()

and Pattern2()then

Note

An "and" cannot have a leading declaration binding (unlike for example or). This
is obvious, since a declaration can only reference a single fact at a time, and when

284

Rule Language Reference

the "and" is satisfied it matches both facts - so which fact would the declaration

bind to?
/1 Conpile error$person : (Person(name == "Roneo") and Person(nanme == "Juliet"))
error$person : (Person(nane == "Roneo") and Person(nane ==

8.8.3.2. Pattern (conditional element)

8.8.3.2.1. What is a pattern?

A pattern element is the most important Conditional Element. It can potentially match on each fact
that is inserted in the working memory.

A pattern contains of zero or more constraints and has an optional pattern binding. The railroad
diagram below shows the syntax for this.

O o e S) i O G S

Figure 8.12. Pattern

In its simplest form, with no constraints, a pattern matches against a fact of the given type. In
the following case the type is Cheese, which means that the pattern will match against all Per son
objects in the Working Memory:

Per son()

The type need not be the actual class of some fact object. Patterns may refer to superclasses or
even interfaces, thereby potentially matching facts from many different classes.

Obj ect() // matches all objects in the working menory

Inside of the pattern parenthesis is where all the action happens: it defines the constraints for that
pattern. For example, with a age related constraint:

Person(age == 100)

285

Rule Language Reference

@ Note
For backwards compatibility reasons it's allowed to suffix patterns with the ; char-
acter. But it is not recommended to do that.

8.8.3.2.2. Pattern binding

For referring to the matched object, use a pattern binding variable such as $p.

Example 8.61. Pattern with a binding variable

rule ...
when
$p : Person()
then
Systemout.println("Person " + $p)
end

The prefixed dollar symbol ($) is just a convention; it can be useful in complex rules where it helps
to easily differentiate between variables and fields, but it is not mandatory.

8.8.3.3. Constraint (part of a pattern)

8.8.3.3.1. What is a constraint?

A constraint is an expression that returns t r ue or f al se. This example has a constraint that states
5 is smaller than 6:

Person(5 <6) // just an exanple, as constraints like this would be useless in a real pattern

In essence, it's a Java expression with some enhancements (such as property access) and a few
differences (such as equal s() semantics for ==). Let's take a deeper look.

8.8.3.3.2. Property access on Java Beans (POJO's)

Any bean property can be used directly. A bean property is exposed using a standard Java bean
getter: a method get MyProperty() (ori sMyProperty() for a primitive boolean) which takes no
arguments and return something. For example: the age property is written as age in DRL instead
of the getter get Age() :

Person(age == 50)// this is the sane as: Person(getAge() == 50)

)// this is the sanme
as: Person(getAge() == 50

286

Rule Language Reference

Drools uses the standard JDK I nt r ospect or class to do this mapping, so it follows the standard
Java bean specification.

a

Note

We recommend using property access (age) over using getters explicitly
(get Age()) because of performance enhancements through field indexing.

Warning

Property accessors must not change the state of the object in a way that may
effect the rules. Remember that the rule engine effectively caches the results of its
matching in between invocations to make it faster.

To solve this latter case, insert a fact that wraps the current date into working
memory and update that fact between fireAl | Rul es as needed.

Note

The following fallback applies: if the getter of a property cannot be found, the com-
piler will resort to using the property name as a method name and without argu-
ments:

Person(age == 50)// |f Person.getAge() does not exists, this falls back
to: Person(age() == 50)

)/ 1 1f Person.get Age() does not exists, this falls back
to: Person(age() == 50

Nested property access is also supported:

287

Rule Language Reference

Person(address. houseNunber == 50)// this is the sane as: Person(get Address(). get HouseNunber ()
== 50)

)// this is the sane
as: Person(get Address(). get HouseNunber () == 50

Nested properties are also indexed.

Warning

In a stateful session, care should be taken when using nested accessors as the
Working Memory is not aware of any of the nested values, and does not know when
they change. Either consider them immutable while any of their parent references
are inserted into the Working Memory. Or, instead, if you wish to modify a nested
value you should mark all of the outer facts as updated. In the above example,
when the houseNunber changes, any Per son with that Addr ess must be marked
as updated.

8.8.3.3.3. Java expression

You can use any Java expression that returns a bool ean as a constraint inside the parentheses of
a pattern. Java expressions can be mixed with other expression enhancements, such as property
access:

Person(age == 50)

It is possible to change the evaluation priority by using parentheses, as in any logic or mathemat-
ical expression:

Person(age > 100 && (age % 10 == 0))

It is possible to reuse Java methods:

Person(Math.round(weight / (height * height)) < 25.0)

Warning

As for property accessors, methods must not change the state of the object in a
way that may affect the rules. Any method executed on a fact in the LHS should
be a read only method.

288

Rule Language Reference

A Warning

The state of a fact should not change between rule invocations (unless those facts

are marked as updated to the working memory on every change):

Normal Java operator precedence applies, see the operator precedence list below.

Important

All operators have normal Java semantics except for == and ! =.

The == operator has null-safe equal s() semantics:

The ! = operator has null-safe ! equal s() semantics:

Type coercion is always attempted if the field and the value are of different types; exceptions will
be thrown if a bad coercion is attempted. For instance, if "ten" is provided as a string in a numeric
evaluator, an exception is thrown, whereas "10" would coerce to a numeric 10. Coercion is always
in favor of the field type and not the value type:

Person(age == "10") // "10" is coerced to 10

289

Rule Language Reference

8.8.3.3.4. Comma separated AND

The comma character (', ') is used to separate constraint groups. It has implicit AND connective
semantics.

/1 Person is at |least 50 and wei ghs at |east 80 kgPerson(age > 50, weight > 80)
kgPerson(age > 50, weight > 80

/1 Person is at least 50, weighs at least 80 kg and is taller than 2 neter.Person(age > 50,
wei ght > 80, height > 2)
meter. Person(age > 50, weight > 80, height > 2

The comma (,) operator cannot be embedded in a composite constraint expression, such as
parentheses:

Person((age > 50, weight > 80) || height > 2) // Do NOT do this: conpile error// Use this
i nst eadPerson((age > 50 & weight > 80) || height > 2)

error// Use
this insteadPerson((age > 50 &% weight > 80) || height >

8.8.3.3.5. Binding variables

A property can be bound to a variable:

/1 2 persons of the sane agePerson($firstAge : age) // bindingPerson(age == $firstAge) //
constraint expression

agePerson($firstAge : age) //

bi ndi ngPer son(age == $firstAge) // constraint

The prefixed dollar symbol ($) is just a convention; it can be useful in complex rules where it helps
to easily differentiate between variables and fields.

290

Rule Language Reference

/1 Not recommendedPerson($age
ommendedPer son($age : age * 2 <

age * 2 < 100)

/| Recommended (separates bindings and constraint expressions)Person(age * 2 <
100, $age : age)
and constraint expressions)Person(age * 2 <

Bound variable restrictions using the operator == provide for very fast execution as it use hash
indexing to improve performance.

8.8.3.3.6. Unification

Drools does not allow bindings to the same declaration. However this is an important aspect to
derivation query unification. While positional arguments are always processed with unification
a special unification symbol, :=', was introduced for named arguments named arguments. The
following "unifies" the age argument across two people.

Person($age := age) Person($age := age)
Person($age := age)

In essence unification will declare a binding for the first occurrence and constrain to the same
value of the bound field for sequence occurrences.

8.8.3.3.7. Grouped accessors for nested objects

Often it happens that it is necessary to access multiple properties of a nested object as in the
following example

Person(name == "nark", address.city == "london", address.country == "uk")

These accessors to nested objects can be grouped with a '.(...)' syntax providing more readable
rules as in

Person(name == "nmark", address.(city == "london", country == "uk"))

291

Rule Language Reference

Note the "." prefix, this is necessary to differentiate the nested object constraints from a method call.
8.8.3.3.8. Inline casts and coercion

When dealing with nested objects, it also quite common the need to cast to a subtype. Itis possible
to do that via the # symbol as in:

Person(nane == "mark", address#LongAddress.country == "uk")

This example casts Address to LongAddress, making its getters available. If the cast is not possible
(instanceof returns false), the evaluation will be considered false. Also fully qualified names are
supported:

Person(nane == "mark", address#org. donai n. LongAddress. country == "uk")

It is possible to use multiple inline casts in the same expression:

Person(nane == "nmark", address#LongAddress. country#Det ai |l edCountry. popul ati on > 10000000)

moreover, since we also support the instanceof operator, if that is used we will infer its results for
further uses of that field, within that pattern:

Person(nanme == "mark", address instanceof LongAddress, address.country == "uk")

8.8.3.3.9. Special literal support
Besides normal Java literals (including Java 5 enums), this literal is also supported:
8.8.3.3.9.1. Date literal

The date format dd- mmm yyyy is supported by default. You can customize this by providing an
alternative date format mask as the System property named dr ool s. dat ef or mat . If more control
is required, use a restriction.

Example 8.62. Date Literal Restriction

Cheese(bestBefore < "27-Cct-2009")

8.8.3.3.10. List and Map access

It's possible to directly access a Li st value by index:

292

Rule Language Reference

/1 Same as childList(0).getAge() == 18
Person(childList[0].age == 18)

It's also possible to directly access a Map value by key:

/1 Same as credential Map.get("jsmth").isValid()
Person(credential Map["jsmith"].valid)

8.8.3.3.11. Abbreviated combined relation condition

This allows you to place more than one restriction on a field using the restriction connectives &&
or | | . Grouping via parentheses is permitted, resulting in a recursive syntax pattern.

|—-[restriclion
O— =
|'-—|‘>I:rESfrﬁL‘HﬂﬂGrﬂup]—'—“’

Figure 8.13. Abbreviated combined relation condition

(O « | muttiRestriction }—{ v |—+{")

Figure 8.14. Abbreviated combined relation condition with parentheses

/1 Sinple abbreviated conbined relation condition using a single &Person(age > 30 & < 40)
dition using a single &Person(age

/1 Conpl ex abbreviated conbined relation using groupi ngsPerson(age ((> 30 && < 40) ||
(> 20 && < 25)))

rel ati on usi ng groupi ngsPerson(age ((>

30 && < 40) || (> 20

/1 M xing abbreviated conbined relation with constraint connectivesPerson(age > 30 && < 40
|| location == "london")
lation with constraint connectivesPerson(age > 30 && <

293

Rule Language Reference

8.8.3.3.12. Special DRL operators

| 'e=' | ' | ==t | ==t | 1= | 'contains' | 'not contains' |
‘memberct | ‘mot membercf’ | ‘'matches” | “not matches'

Figure 8.15. Operators

Coercion to the correct value for the evaluator and the field will be attempted.
8.8.3.3.12.1. The operators < <= > >=

These operators can be used on properties with natural ordering. For example, for Date fields, <
means before, for St ri ng fields, it means alphabetically lower.

Person(firstName < $ot herFirst Nane)

Person(birthDate < $otherBirthDate)

Only applies on Conpar abl e properties.
8.8.3.3.12.2. Null-safe dereferencing operator

The !. operator allows to derefencing in a null-safe way. More in details the matching algorithm
requires the value to the left of the !. operator to be not null in order to give a positive result for
pattern matching itself. In other words the pattern:

Person($streetNane : address!.street)

will be internally translated in:

Person(address != null, $streetNane : address.street)

8.8.3.3.12.3. The operator nat ches

Matches a field against any valid Java Regular Expression. Typically that regexp is a string literal,
but variables that resolve to a valid regexp are also allowed.

Example 8.63. Regular Expression Constraint

Cheese(type matches "(Buffal o) ?\\ S*Mozarella")

294

Rule Language Reference

@ Note
Like in Java, regular expressions written as string literals need to escape '\ ".

Only applies on St ri ng properties. Using mat ches against anul | value always evaluates to false.
8.8.3.3.12.4. The operator not mat ches

The operator returns true if the String does not match the regular expression. The same rules
apply as for the mat ches operator. Example:

Example 8.64. Regular Expression Constraint
Cheese(type not natches "(Buffulo)?\\S*Mzarella")

Only applies on St ri ng properties. Using not mat ches against a nul | value always evaluates
to true.

8.8.3.3.12.5. The operator cont ai ns

The operator cont ai ns is used to check whether a field that is a Collection or elements contains
the specified value.

Example 8.65. Contains with Collections

CheeseCount er (cheeses cont ai ns "stilton") /1 contains wth a String liter
al CheeseCount er (cheeses contains $var) // contains with a variable
String literal CheeseCounter(cheeses contains $var) // contains

Only applies on Col | ect i on properties.

The operator cont ai ns can also be used in place of Stri ng. cont ai ns() constraints checks.

Example 8.66. Contains with String literals

Cheese(nane contains "tilto")Person(full Nane contains "Jr")String(this contains "foo")
)Person(full Nane contains "Jr"
)String(this contains "foo"

8.8.3.3.12.6. The operator not cont ai ns

The operator not cont ai ns is used to check whether a field that is a Collection or elements does
not contain the specified value.

295

Rule Language Reference

Example 8.67. Literal Constraint with Collections

CheeseCounter(cheeses not contains "cheddar") // not contains with a String liter
al CheeseCount er (cheeses not contains $var) // not contains with a variable
String literal CheeseCounter(cheeses not contains $var) // not contains

Only applies on Col | ect i on properties.

@ Note

For backward compatibility, the excl udes operator is supported
as a synonym for not cont ai ns.

The operator not contains can also be used in place of the logical negation of
String. contai ns() for constraints checks - i.e.:! String. contains()

Example 8.68. Contains with String literals

Cheese(nane not contains "tilto")Person(full Nane not contains "Jr")String(this not contains
"foo")

)Person(full Nane not contains "Jr"

)String(this not contains "foo"

8.8.3.3.12.7. The operator nenber Of

The operator nenber O is used to check whether a field is a member of a collection or elements;
that collection must be a variable.

Example 8.69. Literal Constraint with Collections

CheeseCount er (cheese nenmber Of $mat ur eCheeses)

8.8.3.3.12.8. The operator not menber O

The operator not nmenber O is used to check whether a field is not a member of a collection or
elements; that collection must be a variable.

Example 8.70. Literal Constraint with Collections

CheeseCount er (cheese not nmenber OF $mat ur eCheeses)

296

Rule Language Reference

8.8.3.3.12.9. The operator soundsl i ke

This operator is similar to mat ches, but it checks whether a word has almost the same sound
(using English pronunciation) as the given value. This is based on the Soundex algorithm (see
http://en.wi ki pedi a. or g/ w ki / Soundex).

Example 8.71. Test with soundslike

/1 match cheese "fubar" or "foobar"Cheese(nanme soundslike 'foobar')
bar" Cheese(nanme soundsli ke 'foobar'

8.8.3.3.12.10. The operator str

This operator str is used to check whether a field that is a Stri ng starts with or ends with a
certain value. It can also be used to check the length of the String.

Message(routingValue str[startsWth] "R1")

Message(routingVal ue str[endsWth] "R2")

Message(routingVal ue str[length] 17)

8.8.3.3.12.11. The operators i n and not in (compound value restriction)

The compound value restriction is used where there is more than one possible value to match.
Currently only the i n and not i n evaluators support this. The second operand of this operator
must be a comma-separated list of values, enclosed in parentheses. Values may be given as
variables, literals, return values or qualified identifiers. Both evaluators are actually syntactic sugar,
internally rewritten as a list of multiple restrictions using the operators ! = and ==.

297

O

Rule Language Reference

|
(ot {0 |
variable —
- ratum\Value)
| qualifisdidentifier |— -f

+ qualifiedidentifier }—

g

Figure 8.16. compoundValueRestriction

Example 8.72. Compound Restriction using "in"

Person($cheese : favouriteCheese)Cheese(type in ("stilton", "cheddar", $cheese))
) Cheese(type in ("stilton", "cheddar", $cheese)

8.8.3.3.13. Inline eval operator (deprecated)

‘wvall’ BXPrEssion il

Figure 8.17. Inline Eval Expression

An inline eval constraint can use any valid dialect expression as long as it results to a primitive
boolean. The expression must be constant over time. Any previously bound variable, from the
current or previous pattern, can be used; autovivification is also used to auto-create field binding
variables. When an identifier is found that is not a current variable, the builder looks to see if the
identifier is a field on the current object type, if it is, the field binding is auto-created as a variable
of the same name. This is called autovivification of field variables inside of inline eval's.

This example will find all male-female pairs where the male is 2 years older than the female; the
variable age is auto-created in the second pattern by the autovivification process.

Example 8.73. Return Value operator

Person(girl Age : age, sex = "F")Person(eval (age == girlAge + 2), sex ='M) // eval()
is actually obsolete in this exanple
)Person(eval (age == girlAge + 2), sex ='M) // eval() is actually obsolete in this

298

Rule Language Reference

@ Note
Inline eval's are effectively obsolete as their inner syntax is now directly supported.
It's recommended not to use them. Simply write the expression without wrapping
eval() around it.

8.8.3.3.14. Operator precedence

The operators are evaluated in this precedence:

Table 8.1. Operator precedence

Operator type Operators Notes
(nested / null safe) property . !. Not normal Java semantics
access
List/Map access [] Not normal Java semantics
constraint binding : Not normal Java semantics
multiplicative *| %
additive +-
shift << >> >>>
relational < > <=>=j nst anceof
equality === Does not use normal Java (not)

same semantics: uses (not)
equals semantics instead.

non-short circuiting AND &

non-short circuiting exclusive | »
OR

non-short circuiting inclusive
OR

logical AND &&

logical OR |
ternary ?

Comma separated AND , Not normal Java semantics

8.8.3.4. Positional Arguments

Patterns now support positional arguments on type declarations.

Positional arguments are ones where you don't need to specify the field name, as the position
maps to a known named field. i.e. Person(name =="mark") can be rewritten as Person("mark";).
The semicolon '} is important so that the engine knows that everything before it is a positional

299

Rule Language Reference

argument. Otherwise we might assume it was a boolean expression, which is how it could be
interpreted after the semicolon. You can mix positional and named arguments on a pattern by
using the semicolon ;' to separate them. Any variables used in a positional that have not yet been
bound will be bound to the field that maps to that position.

decl are Cheese nanme : String shop : String price : intend
Cheese nane :

String shop :

String price :

int

Example patterns, with two constraints and a binding. Remember semicolon ';' is used to differen-
tiate the positional section from the named argument section. Variables and literals and expres-
sions using just literals are supported in positional arguments, but not variables. Positional argu-
ments are always resolved using unification.

Cheese("stilton", "Cheese Shop", p;) Cheese("stilton", "Cheese Shop"; p
price)Cheese("stilton"; shop == "Cheese Shop", p : price)Cheese(name == "stilton"; shop
== "Cheese Shop", p : price)

) Cheese("stilton", "Cheese Shop"; p : price

) Cheese("stilton"; shop == "Cheese Shop", p : price

) Cheese(name == "stilton"; shop == "Cheese Shop", p : price

Positional arguments that are given a previously declared binding will constrain against that using
unification; these are referred to as input arguments. If the binding does not yet exist, it will create
the declaration binding it to the field represented by the position argument; these are referred to
as output arguments.

8.8.3.5. Fine grained property change listeners

When you call modify() (see the modify statement section) on a given object it will trigger a reval-
uation of all patterns of the matching object type in the knowledge base. This can can lead to un-
wanted and useless evaluations and in the worst cases to infinite recursions. The only workaround
to avoid it was to split up your objects into smaller ones having a 1 to 1 relationship with the
original object.

This feature allows the pattern matching to only react to modification of properties actually con-
strained or bound inside of a given pattern. That will help with performance and recursion and
avoid artificial object splitting.

By default this feature is off in order to make the behavior of the rule engine backward compatible
with the former releases. When you want to activate it on a specific bean you have to annotate it
with @propertyReactive. This annotation works both on DRL type declarations:

decl are Person@ropertyReactive firstName : String last Nane : Stringend
Per

300

Rule Language Reference

son@r opertyReactive firstNane :
String | ast Nane :

and on Java classes:

@ropertyReacti ve public static class Person { private String firstNanmg; private
String | ast Nane; }

ertyReactive public static class

Person { private

String firstNang; private

In this way, for instance, if you have a rule like the following:

rule "Every person named Mario is a nale" when $person : Person(firstName == "Mario")then
nmodi fy ($person) { setMale(true) }end
when $person : Person(firstName == "Mario"

)
t hen nodi fy ($person) { setMale(true)

}

you won't have to add the no-loop attribute to it in order to avoid an infinite recursion because the
engine recognizes that the pattern matching is done on the 'firstName' property while the RHS of
the rule modifies the 'male’ one. Note that this feature does not work for update(), and this is one of
the reasons why we promote modify() since it encapsulates the field changes within the statement.
Moreover, on Java classes, you can also annotate any method to say that its invocation actually
modifies other properties. For instance in the former Person class you could have a method like:

@nbdifies({ "firstNanme", "lastNanme" })public void setNane(String nane) { String[] names =
name. split("\\s"); this.firstNane = nanes[O0]; this.lastNane = nanes[1];}

})public void set Name(String

nane) { String[] nanes

= nane.split("\\s"); this.firstName

= nanes[0] ; t his. | ast Nanme

That means that if a rule has a RHS like the following:

nodi fy($person) { setNane("Mario Fusco") }

it will correctly recognize that the values of both properties ‘firstName' and 'lastName' could have
potentially been modified and act accordingly, not missing of reevaluating the patterns constrained
on them. At the moment the usage of @Modifies is not allowed on fields but only on methods.

301

Rule Language Reference

This is coherent with the most common scenario where the @Modifies will be used for meth-
ods that are not related with a class field as in the Person.setName() in the former example. Al-
so note that @Modifies is not transitive, meaning that if another method internally invokes the
Person.setName() one it won't be enough to annotate it with @Modifies({ "name" }), but it is
necessary to use @Modifies({ "firstName", "lastName" }) even on it. Very likely @Modifies tran-
sitivity will be implemented in the next release.

For what regards nested accessors, the engine will be notified only for top level fields. In other
words a pattern matching like:

Person (address.city.nane == "London)

will be revaluated only for modification of the 'address' property of a Person object. In the same
way the constraints analysis is currently strictly limited to what there is inside a pattern. Another
example could help to clarify this. An LHS like the following:

$p : Person()Car(owner = $p.nane)
) Car (owner = $p. nane

will not listen on modifications of the person's name, while this one will do:

Person($name : name)Car(owner = $nane)
) Car (owner = $nane

To overcome this problem it is possible to annotate a pattern with @watch as it follows:

$p : Person() @watch (nane)Car(owner = $p.nane)
) Car (owner = $p. nane

Indeed, annotating a pattern with @watch allows you to modify the inferred set of properties for
which that pattern will react. Note that the properties named in the @watch annotation are actually
added to the ones automatically inferred, but it is also possible to explicitly exclude one or more
of them prepending their name with a ! and to make the pattern to listen for all or none of the
properties of the type used in the pattern respectively with the wildcrds * and '*. So, for example,
you can annotate a pattern in the LHS of a rule like:

/Il listens for changes on both firstNane (inferred) and |astNanmePerson(firstName ==
$expectedFirstNane) @watch(lastName)// listens for all the properties of the Person
beanPerson(firstNane == $expectedFirstName) @atch(*)// listens for changes on | astNane

and explicitly exclude firstNanePerson(firstNane == $expectedFirstNane) @watch(| astNane, !
firstNane)// listens for changes on all the properties except the age onePerson(firstName ==
$expectedFirstName) @watch(*, !age)

302

Rule Language Reference

and | ast NanePerson(firstNane == $expect edFirstNane) @atch(

lastNane)// listens for all the properties of the
Person beanPerson(firstNane == $expect edFirstNane) @t ch(

*)// listens for changes on | astName and explicitly
exclude firstNamePerson(firstNane == $expect edFirstNane) @atch(| astNane,

IfirstNane)// listens for changes on all the properties except the
age onePerson(firstName == $expect edFirstNane) @atch(*,

Since doesn't make sense to use this annotation on a pattern using a type not annotated with
@PropertyReactive the rule compiler will raise a compilation error if you try to do so. Also the
duplicated usage of the same property in @watch (for example like in: @watch(firstName, ! first-
Name)) will end up in a compilation error. In a next release we will make the automatic detection
of the properties to be listened smarter by doing analysis even outside of the pattern.

It also possible to enable this feature by default on all the types of your model or to completely
disallow it by using on option of the KnowledgeBuilderConfiguration. In particular this new Prop-
ertySpecificOption can have one of the following 3 values:

- DISABLED => the feature is turned off and all the other related annotations are just ignored-
ALLONED => this is the default behavior: types are not property reactive unless they are not
annotated with @PropertySpecific- ALWAYS => all types are property reactive by default

tions are just ignored- ALLOMNED => this is the default behavior: types are not property reactive
unl ess they are

not annotated with @ropertySpecific- ALWAYS => all types are

So, for example, to have a KnowledgeBuilder generating property reactive types by default you
could do:

Know edgeBui | der Confi guration config =

kbui I der = Knowl edgeBui | der Fact ory. newknow edgeBui | der (confi g);
tion
config = Know edgeBui | der Fact ory. newKnowl edgeBui | der Confi gurati on();

In this last case it will be possible to disable the property reactivity feature on a specific type by
annotating it with @ClassReactive.

8.8.3.6. Basic conditional elements

8.8.3.6.1. Conditional Element and

The Conditional Element "and" is used to group other Conditional Elements into a logical con-
junction. Drools supports both prefix and and infix and.

303

Rule Language Reference

Figure 8.18. infixAnd

Traditional infix and is supported:

//infixAndCheese(cheeseType : type) and Person(favouriteCheese == cheeseType)
fi xAndCheese(cheeseType : type) and Person(favouriteCheese == cheeseType

Explicit grouping with parentheses is also supported:

/linfixAnd wth grouping(Cheese(cheeseType : type) and (Person(favouriteCheese ==
cheeseType) or Person(favouriteCheese == cheeseType))

groupi ng(Cheese(cheeseType : type)

and (Person(favouriteCheese == cheeseType)

or Person(favouriteCheese == cheeseType)

E :] | |{| H:ﬂ

Figure 8.19. prefixAnd

Prefix and is also supported:

(and Cheese(cheeseType : type) Person(favouriteCheese == cheeseType))
) Person(favouriteCheese == cheeseType)

The root element of the LHS is an implicit prefix and and doesn't need to be specified:

Example 8.74. implicit root prefixAnd

when
Cheese(cheeseType : type)
Person(favouriteCheese == cheeseType)

304

Rule Language Reference

t hen

8.8.3.6.2. Conditional Element or

The Conditional Element or is used to group other Conditional Elements into a logical disjunction.
Drools supports both prefix or and infix or .

5 f_'lmmml_l

Figure 8.20. infixOr

Traditional infix or is supported:

/1infixOr Cheese(cheeseType : type) or Person(favouriteCheese == cheeseType)
fi xOr Cheese(cheeseType : type) or Person(favouriteCheese == cheeseType

Explicit grouping with parentheses is also supported:

/1infixO with groupi ng(Cheese(cheeseType : type) or (Person(favouriteCheese == cheeseType)

and Person(favouriteCheese == cheeseType))
groupi ng(Cheese(cheeseType : type)

or (Person(favouriteCheese == cheeseType)
and Person(favouriteCheese == cheeseType)

—
ofl av & -@—o

Figure 8.21. prefixOr

Prefix or is also supported:

(or Person(sex == "f", age > 60) Person(sex == "n{, age > 65)
) Person(sex == "n{, age > 65

305

Rule Language Reference

The Conditional Element or also allows for optional pattern binding. This means that each resulting
subrule will bind its pattern to the pattern binding. Each pattern must be bound separately, using
eponymous variables:

pensioner : (Person(sex == "f", age > 60) or Person(sex == "ni', age > 65))
(or pensioner : Person(sex == "f", age > 60) pensi oner : Person(sex == "ni, age > 65))
) pensioner : Person(sex == "nf, age > 65

Since the conditional element or results in multiple subrule generation, one for each possible
logically outcome, the example above would result in the internal generation of two rules. These
two rules work independently within the Working Memory, which means both can match, activate
and fire - there is no shortcutting.

The best way to think of the conditional element or is as a shortcut for generating two or more
similar rules. When you think of it that way, it's clear that for a single rule there could be multiple
activations if two or more terms of the disjunction are true.

8.8.3.6.3. Conditional Element not

Figure 8.22. not

The CE not is first order logic's non-existential quantifier and checks for the non-existence of
something in the Working Memory. Think of "not" as meaning "there must be none of...".

The keyword not may be followed by parentheses around the CEs that it applies to. In the simplest
case of a single pattern (like below) you may optionally omit the parentheses.

306

Rule Language Reference

Example 8.75. No Busses

not Bus()

Example 8.76. No red Busses

/1 Brackets are optional:not Bus(color == "red")// Brackets are optional:not (Bus(color ==
"red", nunber == 42))// "not" with nested infix
optional : not Bus(col or
== "red")// Brackets
are optional:not (Bus(color == "red", nunber ==
42))// "not" with nestedand - two patterns,
/'l brackets are requires:
not (Bus(color == "red") and
Bus(col or == "blue"))

8.8.3.6.4. Conditional Element exi sts

(O—o{(exists |~ {conditionalElement) 0

Figure 8.23. exists

The CE exi st s is first order logic's existential quantifier and checks for the existence of something
in the Working Memory. Think of "exists" as meaning "there is at least one..". It is different from
just having the pattern on its own, which is more like saying "for each one of...". If you use exi st s
with a pattern, the rule will only activate at most once, regardless of how much data there is in
working memory that matches the condition inside of the exi st s pattern. Since only the existence
matters, no bindings will be established.

The keyword exi st s must be followed by parentheses around the CEs that it applies to. In the
simplest case of a single pattern (like below) you may omit the parentheses.

Example 8.77. At least one Bus

exi sts Bus()

Example 8.78. At least one red Bus

exi sts Bus(color == "red")// brackets are optional:exists (Bus(color == "red", nunber == 42))//
"exists" with nested infix

307

Rule Language Reference

"red")// brackets are
optional :exists (Bus(color == "red", nunber == 42)
)// "exists" with nested infixand,
/'l brackets are required:
exists (Bus(color == "red") and
Bus(col or == "blue"))

8.8.3.7. Advanced conditional elements

8.8.3.7.1. Conditional Element foral |

O—(Toan)—{T)— o Tt - O

Figure 8.24. forall

The Conditional Element f or al | completes the First Order Logic support in Drools. The Condi-
tional Element f or al | evaluates to true when all facts that match the first pattern match all the
remaining patterns. Example:

rule "Al'l English buses are red"when forall ($bus : Bus(type == 'english')
Bus(this == $bus, color = ‘red"))then /1 all English buses are redend

red" when forall ($bus : Bus(type ==
"english') Bus(this == $bus, color = 'red")

)t hen /1 all English buses are

In the above rule, we "select" all Bus objects whose type is "english". Then, for each fact that
matches this pattern we evaluate the following patterns and if they match, the forall CE will eval-
uate to true.

To state that all facts of a given type in the working memory must match a set of constraints,
foral | can be written with a single pattern for simplicity. Example:

Example 8.79. Single Pattern Forall

rule "Al'l Buses are Red"when forall (Bus(color =="red"))then /1 all Bus facts are redend
Red"

when forall (Bus(color == "red")

)

then /1 all Bus facts are

red

Another example shows multiple patterns inside the foral | :

308

Rule Language Reference

Example 8.80. Multi-Pattern Forall

rule "all enployees have health and dental care prograns"when forall ($enmp : Enpl oyee()
Heal t hCare(enpl oyee == $enp) Dent al Care(enpl oyee == $enp)

)then /1 all enployees have health and dental careend
care

prograns"when forall ($enp

. Enpl oyee() Heal t hCare(enpl oyee ==

$enp) Dent al Care(enpl oyee ==

$enp)

)then /1 all enployees have health and

Forall can be nested inside other CEs. For instance, f or al I can be used inside a not CE. Note
that only single patterns have optional parentheses, so that with a nested f oral | parentheses
must be used:

Example 8.81. Combining Forall with Not CE

rule "not all enployees have health and dental care"when not (forall($enp : Enpl oyee()
Heal t hCare(enpl oyee == $enp) Dent al Care(enpl oyee == $enp))
)then /1 not all enployees have health and dental careend
t al
car e"when not (forall($emp
: Enpl oyee() Heal t hCare(enpl oyee ==
$enmp) Dent al Care(enpl oyee == $enp)
)
)then /1 not all enployees have health and
dent a

As a side note, foral | (p1 p2 p3...) is equivalent to writing:
not (pl and not (and p2 p3...))

Also, it is important to note that f or al | is a scope delimiter. Therefore, it can use any previously
bound variable, but no variable bound inside it will be available for use outside of it.

8.8.3.7.2. Conditional Element from

O o O

Figure 8.25. from

The Conditional Element f r omenables users to specify an arbitrary source for data to be matched
by LHS patterns. This allows the engine to reason over data not in the Working Memory. The data

309

Rule Language Reference

source could be a sub-field on a bound variable or the results of a method call. It is a powerful
construction that allows out of the box integration with other application components and frame-
works. One common example is the integration with data retrieved on-demand from databases
using hibernate named queries.

The expression used to define the object source is any expression that follows regular MVEL
syntax. Therefore, it allows you to easily use object property navigation, execute method calls and
access maps and collections elements.

Here is a simple example of reasoning and binding on another pattern sub-field:

rule "validate zipcode"when Person($personAddress : address) Address(zi pcode ==
"23920W) from $personAddress then /1 zip code is okend

zi pcode" when Person($personAddress : address
) Addr ess(zi pcode == "23920W) from
$per sonAddress then /'l zip code

is

With all the flexibility from the new expressiveness in the Drools engine you can slice and dice this
problem many ways. This is the same but shows how you can use a graph notation with the 'from":

rule "validate zipcode"when $p : Person() $a : Address(zipcode == "23920W) from
$p. address then /1 zip code is okend

zi pcode" when $p : Person(
) $a : Address(zipcode == "23920W) from

$p. address then /1 zip code
is

Previous examples were evaluations using a single pattern. The CE fromalso support object
sources that return a collection of objects. In that case, f romwill iterate over all objects in the
collection and try to match each of them individually. For instance, if we want a rule that applies
10% discount to each item in an order, we could do:

rule "apply 10% di scount to all itens over US$ 100,00 in an order"when $order : Order()
$item : Oderlten{ value > 100) from $order.itensthen /1 apply discount to $itenend

or der "when $or der
O der () $item : Oderlten(value > 100)
from
$order.itensthen /1 apply discount
to

310

Rule Language Reference

The above example will cause the rule to fire once for each item whose value is greater than 100
for each given order.

You must take caution, however, when using f r om especially in conjunction with the | ock- on-
act i ve rule attribute as it may produce unexpected results. Consider the example provided earlier,
but now slightly modified as follows:

rule "Assign people in North Carolina (NC) to sales region 1"rul efl owgroup "test"l ock-on-active

t ruewhen $p @ Person() $a : Address(state == "NC') from $p. address then nodi fy
($p) {} // Assign person to sales region 1 in a nodify bl ockendrule "Apply a discount to people
in the city of Raleigh"ruleflowgroup "test"lock-on-active truewhen $p : Person()

$a : Address(city == "Raleigh") from $p.address then nodi fy ($p) {} // Apply discount
to person in a nodify bl ockend

regi on
1"rul ef | ow-group "test"
| ock-
on-active truewhen $p :

Person() $a : Address(state == "NC')

from $p. address then nmodi fy ($p) {} // Assign person to sales region 1 in
a

nmodi fy bl ockendrule "Apply a discount to people in the
city of

Ral ei gh"rul ef | ow-group "test"

| ock-

on-active truewhen $p :

Person() $a : Address(city == "Ral eigh")

from $p. address then modi fy ($p) {} // Apply discount to person in
a

In the above example, persons in Raleigh, NC should be assigned to sales region 1 and receive
a discount; i.e., you would expect both rules to activate and fire. Instead you will find that only
the second rule fires.

If you were to turn on the audit log, you would also see that when the second rule fires, it deac-
tivates the first rule. Since the rule attribute | ock- on- acti ve prevents a rule from creating new
activations when a set of facts change, the first rule fails to reactivate. Though the set of facts
have not changed, the use of f romreturns a new fact for all intents and purposes each time it
is evaluated.

First, it's important to review why you would use the above pattern. You may have many rules
across different rule-flow groups. When rules modify working memory and other rules downstream
of your RuleFlow (in different rule-flow groups) need to be reevaluated, the use of modify is
critical. You don't, however, want other rules in the same rule-flow group to place activations on
one another recursively. In this case, the no- | oop attribute is ineffective, as it would only prevent
a rule from activating itself recursively. Hence, you resort to | ock- on- acti ve.

There are several ways to address this issue:

311

Rule Language Reference

« Avoid the use of fromwhen you can assert all facts into working memory or use nested object
references in your constraint expressions (shown below).

» Place the variable assigned used in the modify block as the last sentence in your condition
(LHS).

« Avoid the use of | ock-on-acti ve when you can explicitly manage how rules within the same
rule-flow group place activations on one another (explained below).

The preferred solution is to minimize use of f r omwhen you can assert all your facts into working
memory directly. In the example above, both the Person and Address instance can be asserted
into working memory. In this case, because the graph is fairly simple, an even easier solution is
to modify your rules as follows:

rule "Assign people in North Carolina (NC) to sales region 1"rul efl owgroup "test"l ock-on-active

t ruewhen $p : Person(address.state == "NC') then nodi fy ($p) {} // Assign person to sales
region 1 in a nodify blockendrule "Apply a discount to people in the city of Raleigh"rul efl ow
group "test"l ock-on-active truewhen $p : Person(address.city == "Raleigh") then nodi fy
($p) {} //Apply discount to person in a nodify bl ockend
regi on
1"rul ef | ow-group "test"
| ock-
on-active truewhen $p : Person(address.state ==
" NC

) then modi fy ($p) {} // Assign person to sales region 1 in

nodi fy bl ockendrule "Apply a discount to people in the

city of

Ral ei gh"rul ef | ow-group "test"

| ock-

on-active truewhen $p : Person(address.city ==
" Ral ei gh"

) then nodi fy ($p) {} //Apply discount to person in
a

Now, you will find that both rules fire as expected. However, it is not always possible to access
nested facts as above. Consider an example where a Person holds one or more Addresses and
you wish to use an existential quantifier to match people with at least one address that meets
certain conditions. In this case, you would have to resort to the use of fromto reason over the
collection.

There are several ways to use f r omto achieve this and not all of them exhibit an issue with the use
of | ock- on- act i ve. For example, the following use of f r omcauses both rules to fire as expected:

rule "Assign people in North Carolina (NC) to sales region 1"rul efl owgroup "test"l ock-on-active
truewhen $p : Person($addresses : addresses) exi sts (Address(state == "NC') from$addresses)
t hen nmodi fy ($p) {} // Assign person to sales region 1 in a nodify blockendrule "Apply a
di scount to people in the city of Raleigh"rul eflowgroup "test"lock-on-active truewhen $p
Per son($addresses : addresses) exists (Address(city == "Ral ei gh") from $addresses) then
modify ($p) {} // Apply discount to person in a nodify bl ockend

312

Rule Language Reference

regi on

1"rul efl ow-group "test"

| ock-

on-active truewhen $p

Per son($addresses : addresses) exi sts (Address(state == "NC")
from

$addresses) then nodi fy ($p) {} // Assign person to sales region 1 in
a

nodi fy bl ockendrule "Apply a discount to people in the

city of

Ral ei gh"rul ef | ow-group "test"

| ock-

on-active truewhen $p

Per son($addresses : addresses) exi sts (Address(city == "Ral ei gh")
from

$addresses) then nodify ($p) {} // Apply discount to person in
a

However, the following slightly different approach does exhibit the problem:

rul e "Assign people in North Carolina (NC) to sales region 1"rul efl owgroup "test"l ock-on-active
t ruewhen $assessnent : Assessment () $p : Person() $addresses : List() from $p. addresses
exists (Address(state == "NC') from $addresses) then nodi fy ($assessnment) {} // Modify
assessnent in a nodify bl ockendrul e "Apply a discount to people in the city of Raleigh"rul efl ow
group "test"l ock-on-active truewhen $assessnent : Assessnent () $p : Person() $addr esses

List() from $p. addresses exists (Address(city == "Ral ei gh") from $addresses)then nmodi fy
($assessnent) {} // Modify assessment in a nodify bl ockend

regi on

1"rul ef | ow-group "test"

| ock-

on-active truewhen
$assessnent : Assessnent ()

$p @ Person() $addr esses

List() from $p. addresses exi sts (Address(state == "NC")

from $addresses) then nodi fy ($assessnment) {} // Mdify assessnent in
a

nmodi fy bl ockendrule "Apply a discount to people in the
city of
Ral ei gh"rul ef | ow-group "test"
| ock-
on-active truewhen
$assessnment : Assessnent ()
$p : Person() $addresses : List()

from $p. addr esses exists (Address(city ==

"Ral ei gh")

from $addr esses)t hen nodi fy ($assessnment) {} // Mdify assessnent in
a

In the above example, the $addresses variable is returned from the use of f rom The example
also introduces a new object, assessment, to highlight one possible solution in this case. If the

313

Rule Language Reference

$assessment variable assigned in the condition (LHS) is moved to the last condition in each rule,
both rules fire as expected.

Though the above examples demonstrate how to combine the use of f r omwith | ock- on- acti ve
where no loss of rule activations occurs, they carry the drawback of placing a dependency on the
order of conditions on the LHS. In addition, the solutions present greater complexity for the rule
author in terms of keeping track of which conditions may create issues.

A better alternative is to assert more facts into working memory. In this case, a person's addresses
may be asserted into working memory and the use of f r omwould not be necessary.

There are cases, however, where asserting all data into working memory is not practical and we
need to find other solutions. Another option is to reevaluate the need for | ock- on-acti ve. An
alternative to | ock- on- acti ve is to directly manage how rules within the same rule-flow group
activate one another by including conditions in each rule that prevent rules from activating each
other recursively when working memory is modified. For example, in the case above where a
discount is applied to citizens of Raleigh, a condition may be added to the rule that checks whether
the discount has already been applied. If so, the rule does not activate.

8.8.3.7.3. Conditional Element col I ect

pattemn
|
|
o S g W o W g & |
: collect A
' accurmulata 4

Figure 8.26. collect

The Conditional Element col | ect allows rules to reason over a collection of objects obtained
from the given source or from the working memory. In First Oder Logic terms this is the cardinality
quantifier. A simple example:

inmport java.util.ArrayListrule "Raise priority if systemhas nore than 3 pendi ng al arns"when

$system: System() $alarms : ArrayList(size >= 3) fromcollect(Al arn(system
== $system status == 'pending’))then // Raise priority, because system $system has /1
3 or nore alarns pending. The pending al arns /1 are $al arns. end

java.util.ArrayListrule "Raise priority if systemhas nore than 3 pending

al arns"

when $system :

Syst en() $alarns : Arraylist(size >= 3

) fromcollect(Alarn(system == $system status == 'pending')

)

314

Rule Language Reference

t hen // Raise priority, because system $system
has /1 3 or nore alarnms pending. The pendi ng
al arns Il are

$al ar ms.

In the above example, the rule will look for all pending alarms in the working memory for each
given system and group them in ArrayLists. If 3 or more alarms are found for a given system,
the rule will fire.

The result pattern of collect can be any concrete class that implements the
java.util. Col | ecti on interface and provides a default no-arg public constructor. This means
that you can use Java collections like ArrayList, LinkedList, HashSet, etc., or your own class, as
long as it implements the j ava. util . Col | ecti on interface and provide a default no-arg public
constructor.

Both source and result patterns can be constrained as any other pattern.

Variables bound before the col | ect CE are in the scope of both source and result patterns and
therefore you can use them to constrain both your source and result patterns. But note that col -
| ect is a scope delimiter for bindings, so that any binding made inside of it is not available for
use outside of it.

Collect accepts nested f r omCEs. The following example is a valid use of "collect":

inmport java.util.LinkedList;rule "Send a nessage to all nothers"when $town : Town(name ==
"Paris') $mot hers : Li nkedLi st () from collect(Person(gender == '"F',
children > 0) from $t own. get Peopl e()
)then /1 send a nessage to all nothersend

java.util.LinkedList;rule "Send a message to all

not her s"
when $town : Town(nanme == 'Paris'
) $not hers : LinkedList()
fromcollect(Person(gender == "F', children > 0)
from $t own. get Peopl e()
)
then /1 send a nessage to all
not her s

315

Rule Language Reference

8.8.3.7.4. Conditional Element accumul ate

O—b[paﬂem]—h[“from’]—-[‘accumulate’ }7

,,l
--

accumwateFunclion]—

Figure 8.27. accumulate

The Conditional Element accunul at e is a more flexible and powerful form of col | ect , inthe sense
that it can be used to do what col | ect does and also achieve results that the CE col | ect is not
capable of achieving. Accumulate allows a rule to iterate over a collection of objects, executing
custom actions for each of the elements, and at the end, it returns a result object.

Accumulate supports both the use of pre-defined accumulate functions, or the use of inline custom
code. Inline custom code should be avoided though, as it is harder for rule authors to maintain,
and frequently leads to code duplication. Accumulate functions are easier to test and reuse.

The Accumulate CE also supports multiple different syntaxes. The preferred syntax is the top level
accumulate, as noted bellow, but all other syntaxes are supported for backward compatibility.

8.8.3.7.4.1. Accumulate CE (preferred syntax)
The top level accumulate syntax is the most compact and flexible syntax. The simplified syntax
is as follows:

accumul at e(<source pattern>; <functions> [;<constraints>])

For instance, a rule to calculate the minimum, maximum and average temperature reading for a
given sensor and that raises an alarm if the minimum temperature is under 20C degrees and the
average is over 70C degrees could be written in the following way, using Accumulate:

316

Rule Language Reference

rul e "Raise al arnt

when
$s : Sensor ()
accunul at e(Readi ng(sensor == $s, $tenp : tenperature);
$min : mn($tenp),
$max @ max($tenp),
$avg : average($tenp);
$min < 20, $avg > 70)
then

/] raise the alarm
end

In the above example, min, max and average are Accumulate Functions and will calculate the
minimum, maximum and average temperature values over all the readings for each sensor.

Drools ships with several built-in accumulate functions, including:

e average
* min

* max

e count

e sum

» collectList

collectSet

These common functions accept any expression as input. For instance, if someone wants to cal-
culate the average profit on all items of an order, a rule could be written using the average function:

rul e "Average profit"when $order : Order() accunul ate(Orderltem(order == $order, $cost :
cost, $price : price); $avgProfit : average(1 - $cost / $price))then
/'l average profit for $order is $avgProfitend

profit"when $or der

Order () accunul ate(Orderltem order == $order, $cost : cost, $price :
price); $avgProfit : average(1 - $cost / $price
)

)then /'l average profit for $order

317

Rule Language Reference

Accumulate Functions are all pluggable. That means that if needed, custom, domain specific func-
tions can easily be added to the engine and rules can start to use them without any restrictions.
To implement a new Accumulate Function all one needs to do is to create a Java class that im-
plements the or g. ki e. api . runti ne. rul e. Accunul at eFunct i on interface. As an example of an
Accumulate Function implementation, the following is the implementation of the aver age function:

/**
* An inplenmentation of an accunul ator capabl e of cal cul ati ng average val ues
=
public class AverageAccunul at eFunction i npl enents org. ki e. api.runtime. rul e. Accurmul at eFuncti on {

public void readExternal (Objectlnput in) throws | OException, C assNotFoundException {

public void witeExternal (ObjectQutput out) throws | COException {

public static class AverageData inplenents Externalizable {
public int count = 0;
public double total = 0;

public AverageData() {}

public void readExternal (Objectlnput in) throws | OException, C assNotFoundException {
count = in.readlnt();
t ot al = in.readDoubl e();

public void witeExternal (ObjectQutput out) throws | CException {
out.witelnt(count);
out.witeDoubl e(total);

/* (non-Javadoc)
* @ee org.kie.api.runtine.rule. Accunul at eFuncti on#cr eat eCont ext ()
*/
public Serializable createContext() {
return new AverageData();

/* (non-Javadoc)
* @ee org.kie.api.runtine.rule. Accunul at eFuncti on#i nit(java.io. Serializable)
*/
public void init(Serializable context) throws Exception {
Aver ageDat a data = (AverageData) context;
data. count = 0;
data.total = 0;

318

Rule Language Reference

/* (non-Javadoc)
* @ee org.kie.api.runtine.rule.Accumul at eFuncti on#accunul at e(j ava.io. Serializabl e,
java. |l ang. Obj ect)
*/
public void accunul ate(Seri alizabl e context,
oj ect value) {
Aver ageDat a data = (AverageData) context;
dat a. count ++;
data.total += ((Nunber) val ue). doubl eVal ue();

/* (non-Javadoc)
* @ee org.kie.api.runtinme.rule.Accunul ateFuncti on#reverse(java.io. Serializable,
java. | ang. Obj ect)
*/
public void reverse(Serializable context, Cbject value) throws Exception {
Aver ageDat a data = (AverageData) context;
dat a. count - - ;
data.total -= ((Nunber) val ue). doubl eVal ue();

/* (non-Javadoc)
* @ee org.kie.api.runtinme.rule.Accunul at eFuncti on#get Resul t (j ava.i o. Seri al i zabl e)
*/
public Qbject getResult(Serializable context) throws Exception {
Aver ageData data = (AverageData) context;
return new Doubl e(data.count == 0 ? 0 : data.total / data.count);

/* (non-Javadoc)
* @ee org.kie.api.runtinme.rule. Accunul at eFuncti on#support sRever se()
*/
publi c bool ean supportsReverse() {
return true;

/* (non-Javadoc)
* @ee org.kie.api.runtinme.rule. Accunul at eFuncti on#get Resul t Type()
*/
public dass< ? > getResultType() {
return Nunber.cl ass;

The code for the function is very simple, as we could expect, as all the "dirty" integration work
is done by the engine. Finally, to use the function in the rules, the author can import it using the
"import accumulate" statement:

import accumul ate <cl ass_name> <functi on_nane>

For instance, if one implements the class sone. package. Var i anceFunct i on function that imple-
ments the vari ance function and wants to use it in the rules, he would do the following:

319

Rule Language Reference

Example 8.82. Example of importing and using the custom "variance"
accumulate function

inmport accumul ate sone. package. Vari anceFunction vari ance

rule "Cal cul ate Variance"

when

accurul ate(Test($s : score), $v : variance($s))
then

/1 the variance of the test scores is $v
end

drool s. accunul at e. functi on. vari ance = sone. package. Vari anceFuncti on

8.8.3.7.4.2. Alternate Syntax: single function with return type

The accumulate syntax evolved over time with the goal of becoming more compact and expres-
sive. Nevertheless, Drools still supports previous syntaxes for backward compatibility purposes.

In case the rule is using a single accumulate function on a given accumulate, the author may
add a pattern for the result object and use the "from" keyword to link it to the accumulate resuilt.
Example: a rule to apply a 10% discount on orders over $100 could be written in the following way:

320

Rule Language Reference

rule "Apply 10% discount to orders over US$ 100, 00"when $order : Order() $t ot al
Nunber (doubl eVal ue > 100) fromaccumul ate(Orderltem order == $order, $val ue :
val ue), sun($value))then # apply discount to $orderend

$

100, 00" when $or der

: Order () $total : Nunber(doubl eVal ue > 100

) fromaccunul ate(Orderlten(order == $order, $val ue :
val ue), sun($val ue

)
)t hen # apply di scount
to

In the above example, the accumulate element is using only one function (sum), and so, the rules
author opted to explicitly write a pattern for the result type of the accumulate function (Number)
and write the constraints inside it. There are no problems in using this syntax over the compact
syntax presented before, except that is is a bit more verbose. Also note that it is not allowed to
use both the return type and the functions binding in the same accumulate statement.

8.8.3.7.4.3. Accumulate with inline custom code

Warning

The use of accumulate with inline custom code is not a good practice for several
reasons, including difficulties on maintaining and testing rules that use them, as
well as the inability of reusing that code. Implementing your own accumulate func-
tions is very simple and straightforward, they are easy to unit test and to use. This
form of accumulate is supported for backward compatibility only.

Another possible syntax for the accumulate is to define inline custom code, instead of using ac-
cumulate functions. As noted on the previous warned, this is discouraged though for the stated
reasons.

The general syntax of the accumul at e CE with inline custom code is:

<result pattern> from accunul ate(<source pattern>,
init(<init code>),
action(<action code>),
reverse(<reverse code>),
result(<result expression>))

The meaning of each of the elements is the following:

« <source pattern>: the source pattern is a regular pattern that the engine will try to match against
each of the source objects.

321

Rule Language Reference

<init code>: this is a semantic block of code in the selected dialect that will be executed once
for each tuple, before iterating over the source objects.

<action code>: this is a semantic block of code in the selected dialect that will be executed for
each of the source objects.

<reverse code>: this is an optional semantic block of code in the selected dialect that if present
will be executed for each source object that no longer matches the source pattern. The objective
of this code block is to undo any calculation done in the <action code> block, so that the engine
can do decremental calculation when a source object is modified or deleted, hugely improving
performance of these operations.

<result expression>: this is a semantic expression in the selected dialect that is executed after
all source objects are iterated.

<result pattern>: this is a regular pattern that the engine tries to match against the object re-
turned from the <result expression>. If it matches, the accunmul at e conditional element evalu-
ates to true and the engine proceeds with the evaluation of the next CE in the rule. If it does
not matches, the accunul at e CE evaluates to false and the engine stops evaluating CEs for
that rule.

It is easier to understand if we look at an example:

rule "Apply 10% di scount to orders over US$ 100, 00"when $order : Order() $t ot al
Nunber (doubl eVal ue > 100) fromaccumul ate(Orderltem(order == $order, $value :
val ue), init(double total = 0;),

action(total += $value;), reverse(total -= $value;),

result(total))then # apply discount to $orderend

$
100, 00" when $or der
: Order () $total : Nunber(doubl eval ue > 100

) from accunmul ate(O derltenm(order == $order, $value :
val ue), init(double total =

0;), action(total +=

$val ue;), reverse(total -=

$val ue;), result(total

)
)t hen # apply di scount
to

In the above example, for each Or der in the Working Memory, the engine will execute the init

code initializing the total variable to zero. Then it will iterate over all Or der | t emobjects for that
order, executing the action for each one (in the example, it will sum the value of all items into
the total variable). After iterating over all Or der | t emobjects, it will return the value corresponding
to the result expression (in the above example, the value of variable t ot al). Finally, the engine
will try to match the result with the Nunber pattern, and if the double value is greater than 100,
the rule will fire.

The example used Java as the semantic dialect, and as such, note that the usage of the semicolon
as statement delimiter is mandatory in the init, action and reverse code blocks. The result is an

322

Rule Language Reference

expression and, as such, it does not admit ';". If the user uses any other dialect, he must comply
to that dialect's specific syntax.

As mentioned before, the reverse code is optional, but it is strongly recommended that the user
writes it in order to benefit from the improved performance on update and delete.

The accunul at e CE can be used to execute any action on source objects. The following example
instantiates and populates a custom object:

rul e "Accumul at e usi ng cust om obj ect s"when $person : Person($likes : likes) $cheesery :
Cheesery(total Amount > 100) fromaccunul at e($cheese : Cheese(type == $likes),
init(Cheesery cheesery = new Cheesery();),
action(cheesery. addCheese($cheese);),
reverse(cheesery.renpoveCheese($cheese);),

resul t(cheesery));then /1 do sonet hi ngend
cust om obj ect s"when $per son . Person($likes
li kes) $cheesery : Cheesery(total Amount

> 100) from accunul ate($cheese : Cheese(type

== $likes), init(Cheesery cheesery =

new Cheesery();), action(cheesery. addCheese(
$cheese);), reverse(cheesery.renpveCheese(
$cheese);), resul t(

cheesery));then

8.8.3.8. Conditional Element eval

‘eval’ 1) BXDrassion §)

Figure 8.28. eval

The conditional element eval is essentially a catch-all which allows any semantic code (that re-
turns a primitive boolean) to be executed. This code can refer to variables that were bound in the
LHS of the rule, and functions in the rule package. Overuse of eval reduces the declarativeness
of your rules and can result in a poorly performing engine. While eval can be used anywhere in
the patterns, the best practice is to add it as the last conditional element in the LHS of a rule.

Evals cannot be indexed and thus are not as efficient as Field Constraints. However this makes
them ideal for being used when functions return values that change over time, which is not allowed
within Field Constraints.

For folks who are familiar with Drools 2.x lineage, the old Drools parameter and condition tags are
equivalent to binding a variable to an appropriate type, and then using it in an eval node.

pl : Paraneter()p2 : Parameter()eval (pl.getList().containsKey(p2.getlten()))
raneter()p2
Par anmet er () eval (pl.getlList().containsKey(p2.getltem()

323

Rule Language Reference

pl : Paraneter()p2 : Paraneter()// call function isValid in the LHSeval (isValid(pl, p2))
rameter()p2

. Paranmeter()// call function isValid in
the LHSeval (isValid(pl, p2

8.8.3.9. Railroad diagrams
AcounulateAdtion

E50

AccumulateClause

. .--@-.
R - — -

©

AccumulateFunction

P = n

Acoummlatelnit
@O
AcounmlsicResuli

Acounu] steReverse

=®

AccunmulateSteps

o

- . st L

©

.{ Accumubiie Reverse P_
~| Accumule Ini |1| Accumulue Action }— -| AccumubseResuk |

Accumulations

©

- Tdemsifier |®«| AccumulueFuncion |

324

Rule Language Reference

AdditiveExpr

Annotation
=]
___ O
Arguments

AurayC reatorR est

Rclc]

AmayInitializer
©

_ _‘-I\f:rnhklrun.'lmer If_ y @ i
o -©

325

Rule Language Reference

AssignmentOperator

®a®®@@@®®@®@

BindingPattcmn

Block
=
o0
BooleanLiteral
(Fatse)

CompilationUnit

(aage) [Quieitine |- -

-

Conditional And

326

Rule Language Reference

Conditional Element Accunmulate

((acomtate) () { Eomdimiind |-~ Accumebioms |3)
Conditional Elemeni Eval
{wnlj@»{fmﬂﬁnﬂp |J®a
Conditional ElementExisis

(O (T

Conditional ElementForall

(Eorall) (1) Dt |-—(7)>
Conditional ElementMiot

() (1)
Conditional Element
® o=

327

Rule Language Reference

Conditional OrExpr

iy

“ Primigive Type

Creator

r { MomWikdcard Type Argumenss | - [AraCreaniten |,
CreasedName —

Definition

328

Rule Language Reference

Drigit
ExplicitGenericinvocationSuffix

*{'“P“}i SuperSuffic | .
1 Tkt fier H Arguments |-

ExplicitCenericinyocation

{ ¥onWikicardType Arguments | { Asgumenss |-

Exponent

©

E}: P

.
.,
o

©
@

ExpressionList

-
i,

FromAcooumulsteClause

{Em}l AccumubieC o |

From{Clamse

A £rom }{ Condioma)eExge |+

FromColleaiClause

(=) (Fie=) (D) Fmrmm | (D)

329

Rule Language Reference

FunctionDrfinition

{ function].:-'f — :| Iddentifier HP‘an.mﬂ:n H Black |

Cilobal Definition

(globul)| Type |{ Tk |-
[dentifierSuffix

Sologelc)
S OE=IO

Impont Definition

[nExpr

-IRehli-:rnIEqr |-—x
[nlineListExpr
@,_."
[nlineMapEspr
, O 5
(O B () Epmessim } (1)

InnerCreator

{ ldensifier || Argamenss |-

[nstancefExpr

_e{mrtmfjl'i Type |— 1

'|1"EFr

330

Rule Language Reference

[ntLiteral
Literal

%
- E
Boalkean] seral

[EaT]
ModifyStatement
O
© O -

MonWildcard TypeArzuments

O
o=

OrRestriction

o ConditionalFxgr .
e Ee e o

Parameters

[] []

O}

-@

331

Rule Language Reference

Placehalders

QualificdName

io

332

Rule Language Reference

(uery Definition
I/-l Conditionalor h
{(query) Swingld [QueryOpsions |- O
CueryDptions

RealLiteral B -
@,_ 1ﬂ| E=h
|

Real TypeSuffix

@ ;
@’

Relational Expr

4

Relational perator

Slollolole

333

Rule Language Reference

RuleAtiribuies

O — g

i .

RuleAtiribute

(Lock-on-active)
{rentegorw)
| (i)
-{dnt:—effucuu:),
- t
|
'@@

(i) [Semai |

RuleDs=fimition

{(zule)| Seineld || RulOpions |- o TheaPant |-

RuleOptions

A ewtends H Swingld |- | Annomtion | | RuleAssibues

Selactor

O (aper) Frso |

AOLED, (e |

—_—

O;l Iekemmifier |-; e -

Oy L

334

Rule Language Reference

RingleRestriction

|Rth.h:l'nﬂp:ﬂl:l' HSInﬂEqr|-

Rol—2l0

EpurcePattem

IE‘-:n:I:IJ-:l'nI:tEq:l' |
=) -GW{D; |
(o) [Sewei |

SuperSuffix
) ~
Ickemtifier |~
ThenPar
RieSowement |
TypeArsuments

O
O ==} ©
TypeArgument

T -
— _._‘“ (-

©)

335

Rule Language Reference

TypeDefinition

{(declare }{ QualifiedName | TypeOpsions |:.-- = J| {ﬂ_ﬂ)

TypeCplions

Type
e {D{D
Y
oS

- -| Ickemtifier |-|-'. o ..'_-' - a.@@-' "

UnaryExprdotPlusMinus

336

Rule Language Reference

Variablelnitializer

Arraynitialeer
Engpression

‘WhenPar

@ CondiioralCr

8.8.4. The Right Hand Side (then)

8.8.4.1. Usage

The Right Hand Side (RHS) is a common name for the consequence or action part of the rule;
this part should contain a list of actions to be executed. It is bad practice to use imperative or
conditional code in the RHS of a rule; as a rule should be atomic in nature - "when this, then
do this", not "when this, maybe do this". The RHS part of a rule should also be kept small, thus
keeping it declarative and readable. If you find you need imperative and/or conditional code in the
RHS, then maybe you should be breaking that rule down into multiple rules. The main purpose of
the RHS is to insert, delete or modify working memory data. To assist with that there are a few
convenience methods you can use to modify working memory; without having to first reference
a working memory instance.

updat e(object, handle) ; will tell the engine that an object has changed (one that has been bound
to something on the LHS) and rules may need to be reconsidered.

updat e(object) ; can also be used; here the Knowledge Helper will look up the facthandle for you,
via an identity check, for the passed object. (Note that if you provide Property Change Listeners
to your Java beans that you are inserting into the engine, you can avoid the need to call updat e()
when the object changes.). After a fact's field values have changed you must call update before
changing another fact, or you will cause problems with the indexing within the rule engine. The
modify keyword avoids this problem.

i nsert (newSomething()); will place a new object of your creation into the Working Memory.

i nsert Logi cal (newSomething()); is similar to insert, but the object will be automatically delet-
ed when there are no more facts to support the truth of the currently firing rule.

del et e(handle) ; removes an object from Working Memory.

These convenience methods are basically macros that provide short cuts to the Know edgeHel per
instance that lets you access your Working Memory from rules files. The predefined variable
dr ool s of type Knowl edgeHel per lets you call several other useful methods. (Refer to the Know -
edgeHel per interface documentation for more advanced operations).

e The call drool s. hal t () terminates rule execution immediately. This is required for returning
control to the point whence the current session was put to work with fi reUnti | Hal t ().

337

Rule Language Reference

* Methods i nsert (Chj ect o), update(Obj ect o) and del et e(Cbj ect o) can be called on
dr ool s as well, but due to their frequent use they can be called without the object reference.

e drool s. get Wor ki ngMenor y() returns the Wor ki ngMenor y object.
e drool s. set Focus(String s) sets the focus to the specified agenda group.
e drool s. get Rul e(). get Nane(), called from a rule's RHS, returns the name of the rule.

e drool s. get Tupl e() returns the Tuple that matches the currently executing rule, and
drool s. get Activation() delivers the corresponding Activation. (These calls are useful for
logging and debugging purposes.)

The full Knowledge Runtime API is exposed through another predefined variable, kcont ext , of
type Ki eCont ext . Its method get Ki eRunt i me() delivers an object of type Ki eRunt i me, which, in
turn, provides access to a wealth of methods, many of which are quite useful for coding RHS logic.

e The call kcont ext . get Ki eRunti me() . hal t () terminates rule execution immediately.

» The accessor get Agenda() returns a reference to this session's Agenda, which in turn provides
access to the various rule groups: activation groups, agenda groups, and rule flow groups. A
fairly common paradigm is the activation of some agenda group, which could be done with the
lengthy call:

/1 give focus to the agenda group C eanUp
kcont ext . get Ki eRunti ne() . get Agenda() . get AgendaG oup("C eanUp"). set Focus();
(You can achieve the same using dr ool s. set Focus("C eanUp").)

e To run a query, you call get Quer yResul t s(Stri ng query), whereupon you may process the
results, as explained in section Query.

« A set of methods dealing with event management lets you, among other things, add and remove
event listeners for the Working Memory and the Agenda.

* Method get Ki eBase() returns the Ki eBase object, the backbone of all the Knowledge in your
system, and the originator of the current session.

« You can manage globals with set d obal (...), getd obal (...) and get d obal s().

» Method get Envi ronnent () returns the runtime's Envi ronment which works much like what
you know as your operating system's environment.

8.8.4.2. The nodi fy Statement

This language extension provides a structured approach to fact updates. It combines the update
operation with a number of setter calls to change the object's fields. This is the syntax schema
for the nodi f y statement:

338

Rule Language Reference

nodi fy (<fact-expression>) {
<expression> [, <expression>]*

The parenthesized <fact-expression> must yield a fact object reference. The expression list in
the block should consist of setter calls for the given object, to be written without the usual object
reference, which is automatically prepended by the compiler.

The example illustrates a simple fact modification.

Example 8.83. A modify statement

rule "nmodify stilton"when $stilton : Cheese(type == "stilton")then nodi fy($stilton){
setPrice(20), set Age("overripe") }end

stilton"when $stilton : Cheese(type

"stilton")then nmodi fy($stilton
){ set Price(

20), set Age(

"overripe")

The advantages in using the modify statment are particularly clear when used in conjuction with
fine grained property change listeners. See the corresponding section for more details.

8.8.5. Conditional named consequences

Sometimes the constraint of having one single consequence for each rule can be somewhat lim-
iting and leads to verbose and difficult to be maintained repetitions like in the following example:

rule "G ve 10%di scount to custoners ol der than 60"when $custoner : Custoner(age > 60)then
nodi fy($custoner) { setDiscount(0.1) };endrule "G ve free parking to custoners ol der than
60" when $custoner : Custonmer(age > 60) $car : Car (owner == S$customer)then
nodi fy($car) { setFreeParking(true) };end
t han
60" when $custoner : Custoner(age >
60

)t hen nodi fy($custoner) { setDi scount(0.1
)

};endrule "G ve free parking to custoners ol der

t han

60" when $custoner : Custoner(age >
60) $car : Car (owner ==
$cust oner

)t hen nodi fy($car) { setFreeParking(true
)

339

Rule Language Reference

It is already possible to partially overcome this problem by making the second rule extending the
first one like in:

rule "G ve 10%di scount to custoners ol der than 60"when $custoner : Custoner(age > 60)then
nmodi fy($custonmer) { setDiscount(0.1) };endrule "G ve free parking to custoners ol der than
60" extends "G ve 10% di scount to customers ol der than 60"when $car : Car (owner ==
$custoner)then nmodi fy($car) { setFreeParking(true) };end
t han
60" when $custoner : Custoner(age >
60
)t hen nodi fy($custoner) { setDiscount(0.1

)

};endrule "G ve free parking to customers ol der

than 60" extends "G ve 10% di scount to custoners ol der
t han

60" when $car : Car (owner ==

$cust oner

)t hen nodi fy($car) { setFreeParking(true
)

Anyway this feature makes it possible to define more labelled consequences other than the default
one in a single rule, so, for example, the 2 former rules can be compacted in only one like it follows:

rule "Gve 10% discount and free parking to custoners older than 60"when $cust oner
Cust oner (age > 60) do[gi veDi scount] $car : Car (owner == $custoner)then nodi fy($car)
{ setFreeParking(true) };then[giveD scount] nodi fy($custoner) { setDiscount(0.1) };end
than 60"when $custoner : Custoner(age >
60)

do[gi veDi scount] $car : Car (owner ==
$cust oner)then modi fy($car) { setFreeParking(true
) };then[giveDi scount] nodi fy($custoner) { setDiscount(0.1

This last rule has 2 consequences, the usual default one, plus another one named "giveDiscount"
that is activated, using the keyword do, as soon as a customer older than 60 is found in the
knowledge base, regardless of the fact that he owns a car or not. The activation of a named
consequence can be also guarded by an additional condition like in this further example:

rule "G ve free parking to custoners ol der than 60 and 10%di scount to gol den ones anong t heni when

$custoner : Custoner(age > 60) if (type == "Colden") do[giveD scount] $car
Car (owner == $customer)then nodi fy($car) { setFreeParking(true) };then[giveD scount]

nmodi fy($custoner) { setDiscount(0.1) };end

ones

anmong t henl when $custoner : Custoner(age

> 60) if (type ==

"Col den") do[gi veDi scount] $car : Car (owner

340

Rule Language Reference

$custoner)then nodi fy($car) { setFreeParki ng(
true

) };then[giveDi scount] nodi fy($custoner) { setDi scount (
0.1

The condition in the if statement is always evaluated on the pattern immediately preceding it. In
the end this last, a bit more complicated, example shows how it is possible to switch over different
conditions using a nested if/else statement:

rule "G ve free parking and 10% di scount to over 60 Col den customer and 5% to Silver ones"when

$custoner : Custoner(age > 60) if (type == "Golden") do[giveDi scount10]
else if (type == "Silver") break[giveD scount5] $car : Car (owner == $customer)then
nodi fy($car) { setFreeParking(true) };then[giveD scount10] nodi fy($cust oner)
{ setDiscount(0.1) };then[giveDi scount5] nodi fy($custoner) { setDiscount(0.05) };end
Si | ver ones"when $custoner : Custorer(age
> 60) if (type ==
"Col den") do[gi veDi scount 10] elseif (type ==
"Silver") break[giveDi scount5] $car : Car (owner

$cust omer)t hen nmodi fy($car) { setFreeParking(

true
) };then[giveD scount 10] nodi fy($custoner) { setDi scount (
0.1
) };then[gi veD scount 5] nmodi fy($custoner) { set D scount(
0. 05

Here the purpose is to give a 10% discount AND a free parking to Golden customers over 60, but
only a 5% discount (without free parking) to the Silver ones. This result is achieved by activating
the consequence named "giveDiscount5" using the keyword break instead of do. In fact do just
schedules a consequence in the agenda, allowing the remaining part of the LHS to continue of
being evaluated as per normal, while break also blocks any further pattern matching evaluation.
Note, of course, that the activation of a named consequence not guarded by any condition with
break doesn't make sense (and generates a compile time error) since otherwise the LHS part
following it would be never reachable.

8.8.6. A Note on Auto-boxing and Primitive Types

Drools attempts to preserve numbers in their primitive or object wrapper form, so a variable bound
to an int primitive when used in a code block or expression will no longer need manual unboxing;
unlike Drools 3.0 where all primitives were autoboxed, requiring manual unboxing. A variable
bound to an object wrapper will remain as an object; the existing JDK 1.5 and JDK 5 rules to
handle auto-boxing and unboxing apply in this case. When evaluating field constraints, the system
attempts to coerce one of the values into a comparable format; so a primitive is comparable to
an object wrapper.

341

Rule Language Reference

8.9. Query
O

._’[-quﬁ-r-_.‘r‘] ,[nam'ﬂ]— 1
—(Cpe (e }- {7

Figure 8.29. query

A query is a simple way to search the working memory for facts that match the stated conditions.
Therefore, it contains only the structure of the LHS of a rule, so that you specify neither "when"
nor "then". A query has an optional set of parameters, each of which can be optionally typed. If
the type is not given, the type Object is assumed. The engine will attempt to coerce the values
as needed. Query names are global to the KieBase; so do not add queries of the same name to
different packages for the same RuleBase.

To return the results use ksessi on. get Quer yResul t s(" nane"), where "name" is the query's
name. This returns a list of query results, which allow you to retrieve the objects that matched
the query.

The first example presents a simple query for all the people over the age of 30. The second one,
using parameters, combines the age limit with a location.

Example 8.84. Query People over the age of 30

query "peopl e over the age of 30" person : Person(age > 30)end
person : Person(age > 30

)

Example 8.85. Query People over the age of x, and who liveiny

query "peopl e over the age of x" (int x, Stringy) person : Person(age > x, location ==y)end

342

Rule Language Reference

y) person : Person(age > x, location ==y

)

We iterate over the returned QueryResults using a standard "for" loop. Each elementis a QueryRe-
sultsRow which we can use to access each of the columns in the tuple. These columns can be
accessed by bound declaration name or index position.

Example 8.86. Query People over the age of 30

QueryResul ts results = ksessi on. get Quer yResul t s("peopl e over t he age of

30");Systemout.println("we have " + results.size() + " people over the age of
30"); Systemout.println("These people are are over 30:");for (QueryResultsRowrow: results)

{ Person person = (Person) row. get("person"); System out. println(person. get Name()

+\n")5}

30");Systemout.printin("we have " + results.size() + " people over the age of
30");Systemout.println("These people are are over

30:");for (QueryResultsRow row : results

) { Person person = (Person) row. get(
"person"); System out. println(person.getNanme() +
"\

Support for positional syntax has been added for more compact code. By default the declared
type order in the type declaration matches the argument position. But it possible to override these
using the @position annotation. This allows patterns to be used with positional arguments, instead
of the more verbose named arguments.

decl are Cheese name : String @osition(1) shop : String @osition(2) price : int
@osi tion(0)end

Cheese nanme : String

@osition(1) shop : String

@osi tion(2) price : int

@osition(0)

The @Position annotation, in the org.drools.definition.type package, can be used to annotate
original pojos on the classpath. Currently only fields on classes can be annotated. Inheritance of
classes is supported, but not interfaces or methods. The isContainedIn query below demonstrates
the use of positional arguments in a pattern; Locati on(x, y;) instead of Location(thing ==
X, location ==y).

Queries can now call other queries, this combined with optional query arguments provides deriva-
tion query style backward chaining. Positional and named syntax is supported for arguments. It
is also possible to mix both positional and named, but positional must come first, separated by a
semi colon. Literal expressions can be passed as query arguments, but at this stage you cannot
mix expressions with variables. Here is an example of a query that calls another query. Note that

343

Rule Language Reference

'z' here will always be an 'out' variable. The '?' symbol means the query is pull only, once the
results are returned you will not receive further results as the underlying data changes.

decl are Location thing : String location : String endquery isContainedin(String x, String
y) Location(x, Vy;) or (Location(z, y;) and ?isContainedln(x, z;))end

Locati on thing :

String | ocation :

String endquery isContainedln(String x, String y
)

Location(x, V;)
or (Location(z, y;) and ?i sContai nedl n(x,

z;)

As previously mentioned you can use live "open" queries to reactively receive changes over time
from the query results, as the underlying data it queries against changes. Notice the "look" rule
calls the query without using '?'.

query isContainedln(String x, String y) Location(x, vy;) or (Location(z, y;)
and isContainedln(x, z;))endrule |ook when Person($I : likes) i sCont ai nedl n($I,
"office';)then insertLogical ($I 'is in the office');end

) Locati on(x,

yi)

or (Location(z, y;) and isContainedln(x, z;)

)endrul e | ook
when Person($I : likes
) i sContai nedln($I, 'office';

Jthen insertLogical($I 'is in the office

D

Drools supports unification for derivation queries, in short this means that arguments are option-
al. It is possible to call queries from Java leaving arguments unspecified using the static field
org.drools.core.runtime.rule.Variable.v - note you must use 'v' and not an alternative instance of
Variable. These are referred to as 'out' arguments. Note that the query itself does not declare at
compile time whether an argument is in or an out, this can be defined purely at runtime on each
use. The following example will return all objects contained in the office.

resul ts = ksessi on. get QueryResul ts("i sContai nedln", new Cbject[] { Variable.v, "office" });I =

new Arrayli st<List<String>>();for (QueryResultsRowr : results) { | .add(Arrays. asList(new
String[] { (String) r.get("x"), (String) r.get("y") })):}

fice" })l

= new Arraylist<List<String>>();for (QueryResultsRow r

results) { |.add(Arrays.asList(new String[] { (String) r.get("x"), (String) r.get("y")
1)

344

Rule Language Reference

The algorithm uses stacks to handle recursion, so the method stack will not blow up.

The following is not yet supported:

« List and Map unification
» Variables for the fields of facts

» Expression unification - pred(X, X + 1, X *Y /7))

8.10. Domain Specific Languages

Domain Specific Languages (or DSLs) are a way of creating a rule language that is dedicated to
your problem domain. A set of DSL definitions consists of transformations from DSL "sentences"
to DRL constructs, which lets you use of all the underlying rule language and engine features.
Given a DSL, you write rules in DSL rule (or DSLR) files, which will be translated into DRL files.

DSL and DSLR files are plain text files, and you can use any text editor to create and modify them.
But there are also DSL and DSLR editors, both in the IDE as well as in the web based BRMS,
and you can use those as well, although they may not provide you with the full DSL functionality.

8.10.1. When to Use a DSL

DSLs can serve as a layer of separation between rule authoring (and rule authors) and the tech-
nical intricacies resulting from the modelling of domain object and the rule engine's native lan-
guage and methods. If your rules need to be read and validated by domain experts (such as
business analysts, for instance) who are not programmers, you should consider using a DSL; it
hides implementation details and focuses on the rule logic proper. DSL sentences can also act as
"templates” for conditional elements and consequence actions that are used repeatedly in your
rules, possibly with minor variations. You may define DSL sentences as being mapped to these
repeated phrases, with parameters providing a means for accommodating those variations.

DSLs have no impact on the rule engine at runtime, they are just a compile time feature, requiring
a special parser and transformer.

8.10.2. DSL Basics

The Drools DSL mechanism allows you to customise conditional expressions and consequence
actions. A global substitution mechanism ("keyword") is also available.

Example 8.87. Example DSL mapping
[when] Sonet hi ng i s {col our}=Sonet hi ng(col our=="{col our}")

In the preceding example, [when] indicates the scope of the expression, i.e., whether it is valid
for the LHS or the RHS of a rule. The part after the bracketed keyword is the expression that you

345

Rule Language Reference

use in the rule; typically a natural language expression, but it doesn't have to be. The part to the
right of the equal sign ("=") is the mapping of the expression into the rule language. The form of
this string depends on its destination, RHS or LHS. If it is for the LHS, then it ought to be a term
according to the regular LHS syntax; if it is for the RHS then it might be a Java statement.

Whenever the DSL parser matches a line from the rule file written in the DSL with an expression in
the DSL definition, it performs three steps of string manipulation. First, it extracts the string values
appearing where the expression contains variable names in braces (here: {col our}). Then, the
values obtained from these captures are then interpolated wherever that name, again enclosed
in braces, occurs on the right hand side of the mapping. Finally, the interpolated string replaces
whatever was matched by the entire expression in the line of the DSL rule file.

Note that the expressions (i.e., the strings on the left hand side of the equal sign) are used as
regular expressions in a pattern matching operation against a line of the DSL rule file, matching all
or part of a line. This means you can use (for instance) a '?' to indicate that the preceding character
is optional. One good reason to use this is to overcome variations in natural language phrases of
your DSL. But, given that these expressions are regular expression patterns, this also means that
all "magic" characters of Java's pattern syntax have to be escaped with a preceding backslash ('\").

Itis important to note that the compiler transforms DSL rule files line by line. In the above example,
all the text after "Something is " to the end of the line is captured as the replacement value for
"{colour}", and this is used for interpolating the target string. This may not be exactly what you
want. For instance, when you intend to merge different DSL expressions to generate a composite
DRL pattern, you need to transform a DSLR line in several independent operations. The best way
to achieve this is to ensure that the captures are surrounded by characteristic text - words or even
single characters. As a result, the matching operation done by the parser plucks out a substring
from somewhere within the line. In the example below, quotes are used as distinctive characters.
Note that the characters that surround the capture are not included during interpolation, just the
contents between them.

As a rule of thumb, use quotes for textual data that a rule editor may want to enter. You can also
enclose the capture with words to ensure that the text is correctly matched. Both is illustrated by
the following example. Note that a single line such as Sonething is "green" and another
sol i d thing is now correctly expanded.

Example 8.88. Example with quotes

[when] sonething is "{col our}"=Sonet hi ng(col our=="{col our}")
[when] anot her {state} thing=CherThing(state=="{state})"

Itis a good idea to avoid punctuation (other than quotes or apostrophes) in your DSL expressions
as much as possible. The main reason is that punctuation is easy to forget for rule authors using
your DSL. Another reason is that parentheses, the period and the question mark are magic char-
acters, requiring escaping in the DSL definition.

346

Rule Language Reference

In a DSL mapping, the braces "{" and "}" should only be used to enclose a variable definition or
reference, resulting in a capture. If they should occur literally, either in the expression or within the
replacement text on the right hand side, they must be escaped with a preceding backslash ("\"):

[then]do sonmething= if (foo) \{ doSonething(); \}
\}

Note

If braces "{" and "}" should appear in the replacement string of a DSL definition,
escape them with a backslash ('\).

Example 8.89. Examples of DSL mapping entries

This is a conment to be i gnored. [when] There is a person wth name of
"{nane}" =Per son(nane=="{nane}") [when] Person is at least {age} years old and lives
in "{location}"= Person(age >= {age}, | ocati on=="{l ocation}")[then]Log

"{message}"=System out. println("{message}");[when] And = and
i gnored. [when] There is a person with name of
"{nane}" =Per son(nane=="{nane}") [when] Person is at |east {age} years old and lives in
"{location}"= Person(age >= {age},
| ocation=="{location}")[then]Log
"{nmessage}"=Systemout.println("{message}");[when] And =

Given the above DSL examples, the following examples show the expansion of various DSLR
snippets:

Example 8.90. Examples of DSL expansions

There is a person with nane of "Kitty" ==> Person(nane="Kitty")Person is at |east 42
years old and lives in "Atlanta" ==> Person(age >= 42, |ocation="Atlanta")Log "boo" ==>
System out. println("boo"); There is a person with name of "Bob" and Person is at |east 30 years
old and lives in "Utah" ==> Person(nane="Bob") and Person(age >= 30, |ocation="Utah")

"Kitty' ==>
Person(name="Kitty")Person is at |east 42 years old and lives in
"Atlanta" ==> Person(age >= 42,
| ocation="At| anta") Log
"boo" ==>

System out. println("boo"); There is a person with nane of "Bob" and Person is at |east 30 years old and lives in
" Ut ah" ==> Per son(nanme="Bob") and Person(age >= 30,

347

Rule Language Reference

@ Note
Don't forget that if you are capturing plain text from a DSL rule line and want to
use it as a string literal in the expansion, you must provide the quotes on the right
hand side of the mapping.

You can chain DSL expressions together on one line, as long as it is clear to the parser where
one ends and the next one begins and where the text representing a parameter ends. (Otherwise
you risk getting all the text until the end of the line as a parameter value.) The DSL expressions
are tried, one after the other, according to their order in the DSL definition file. After any match,
all remaining DSL expressions are investigated, too.

The resulting DRL text may consist of more than one line. Line ends are in the replacement text
are written as \ n.

8.10.3. Adding Constraints to Facts

A common requirement when writing rule conditions is to be able to add an arbitrary combination
of constraints to a pattern. Given that a fact type may have many fields, having to provide an
individual DSL statement for each combination would be plain folly.

The DSL facility allows you to add constraints to a pattern by a simple convention: if your DSL

expression starts with a hyphen (minus character, "-") it is assumed to be a field constraint and,
consequently, is is added to the last pattern line preceding it.

For an example, lets take look at class Cheese, with the following fields: type, price, age and
country. We can express some LHS condition in normal DRL like the following

Cheese(age < 5, price == 20, type=="stilton", country=="ch")

The DSL definitions given below result in three DSL phrases which may be used to create any
combination of constraint involving these fields.

[when] There is a Cheese wi th=Cheese()

[when] - age is |less than {age}=age<{age}

[when] - type is '{type}' =type=='{type}

[when] - country equal to '{country}'=country=="{country}'

You can then write rules with conditions like the following:

There is a Cheese with
- age is less than 42
- type is "stilton'

348

Rule Language Reference

The parser will pick up a line beginning with "-" and add it as a constraint to the preceding pattern,
inserting a comma when it is required. For the preceding example, the resulting DRL is:

Cheese(age<42, type=='stilton')

Combining all all numeric fields with all relational operators (according to the DSL expression "age
is less than..." in the preceding example) produces an unwieldy amount of DSL entries. But you
can define DSL phrases for the various operators and even a generic expression that handles
any field constraint, as shown below. (Notice that the expression definition contains a regular
expression in addition to the variable name.)

[when][]is less than or equal to=<=

[when][]is |ess than=<

[when][]is greater than or equal to=>=

[when][]is greater than=>

[when][]is equal to===

[when] [] equal s===

[when][] There is a Cheese wi t h=Cheese()

[when][]1- {field:\w} {operator} {value:\d*}={field} {operator} {val ue}

Given these DSL definitions, you can write rules with conditions such as:

There is a Cheese with
- age is less than 42
- rating is greater than 50
- type equals 'stilton

In this specific case, a phrase such as "is less than" is replaced by <, and then the line matches
the last DSL entry. This removes the hyphen, but the final result is still added as a constraint to
the preceding pattern. After processing all of the lines, the resulting DRL text is:

Cheese(age<42, rating > 50, type=="stilton")

@ Note
The order of the entries in the DSL is important if separate DSL expressions are
intended to match the same line, one after the other.

8.10.4. Developing a DSL

A good way to get started is to write representative samples of the rules your application requires,
and to test them as you develop. This will provide you with a stable framework of conditional

349

Rule Language Reference

elements and their constraints. Rules, both in DRL and in DSLR, refer to entities according to
the data model representing the application data that should be subject to the reasoning process
defined in rules. Notice that writing rules is generally easier if most of the data model's types are
facts.

Given an initial set of rules, it should be possible to identify recurring or similar code snippets and
to mark variable parts as parameters. This provides reliable leads as to what might be a handy
DSL entry. Also, make sure you have a full grasp of the jargon the domain experts are using, and
base your DSL phrases on this vocabulary.

You may postpone implementation decisions concerning conditions and actions during this first
design phase by leaving certain conditional elements and actions in their DRL form by prefixing a
line with a greater sign (">"). (This is also handy for inserting debugging statements.)

During the next development phase, you should find that the DSL configuration stabilizes pretty
quickly. New rules can be written by reusing the existing DSL definitions, or by adding a parameter
to an existing condition or consequence entry.

Try to keep the number of DSL entries small. Using parameters lets you apply the same DSL
sentence for similar rule patterns or constraints. But do not exaggerate: authors using the DSL
should still be able to identify DSL phrases by some fixed text.

8.10.5. DSL and DSLR Reference

A DSL file is a text file in a line-oriented format. Its entries are used for transforming a DSLR file
into a file according to DRL syntax.

« A line starting with "#" or "//" (with or without preceding white space) is treated as a comment.
A comment line starting with "#/" is scanned for words requesting a debug option, see below.

* Any line starting with an opening bracket ("[") is assumed to be the first line of a DSL entry
definition.

* Any other line is appended to the preceding DSL entry definition, with the line end replaced
by a space.

A DSL entry consists of the following four parts:

« A scope definition, written as one of the keywords "when" or "condition”, "then" or "conse-
guence", "*" and "keyword", enclosed in brackets ("[" and "]"). This indicates whether the DSL
entry is valid for the condition or the consequence of a rule, or both. A scope indication of "key-
word" means that the entry has global significance, i.e., it is recognized anywhere in a DSLR file.

« Atype definition, written as a Java class name, enclosed in brackets. This part is optional unless
the the next part begins with an opening bracket. An empty pair of brackets is valid, too.

« A DSL expression consists of a (Java) regular expression, with any number of embedded vari-
able definitions, terminated by an equal sign ("="). A variable definition is enclosed in braces

350

Rule Language Reference

("{" and "}"). It consists of a variable name and two optional attachments, separated by colons
(":"). If there is one attachment, it is a regular expression for matching text that is to be assigned
to the variable; if there are two attachments, the first one is a hint for the GUI editor and the
second one the regular expression.

Note that all characters that are "magic" in regular expressions must be escaped with a preced-
ing backslash ("\") if they should occur literally within the expression.

e The remaining part of the line after the delimiting equal sign is the replacement text for any
DSLR text matching the regular expression. It may contain variable references, i.e., a variable
name enclosed in braces. Optionally, the variable name may be followed by an exclamation
mark ("!") and a transformation function, see below.

Note that braces ("{" and "}") must be escaped with a preceding backslash ("\") if they should
occur literally within the replacement string.

Debugging of DSL expansion can be turned on, selectively, by using a comment line starting with
"#/" which may contain one or more words from the table presented below. The resulting output
is written to standard output.

Table 8.2. Debug options for DSL expansion

Word Description
result Prints the resulting DRL text, with line numbers.
steps Prints each expansion step of condition and

consequence lines.

keyword Dumps the internal representation of all DSL
entries with scope "keyword".

when Dumps the internal representation of all DSL
entries with scope "when" or "*",

then Dumps the internal representation of all DSL
entries with scope "then" or "*".

usage Displays a usage statistic of all DSL entries.

Below are some sample DSL definitions, with comments describing the language features they
illustrate.

Comment : DSL exanpl es#/ debug: display result and usage# keyword definition: replaces "regula"

by "rul e"[keyword] []regul a=rul e# conditional elenment: "T" or "t", "a" or "an", convert matched
word[when][][Tt]here is an? {entity:\wt}= ${entity!lc}: {entitylucfirst} ()# consequence
statenment: convert matched word, literal braces[then][]update {entity:\wt}=nodify(${entity

lc})\{ \}
exanpl es#/ debug: display result

and usage# keyword definition: replaces "regul a"
by

351

Rule Language Reference

"rul e"[keyword] []regul a=rul e# conditional elenment: "T" or "t", "a" or "an", convert
mat ched word[when][][Tt] here is an?
{entity:\w+}= ${entity!lc}: {entity!

ucfirst} ()# consequence statenent: convert natched word,
literal braces[then][]update {entity:\wt}=nodify(${entity!lc}

The transformation of a DSLR file proceeds as follows:

1. The text is read into memory.

2. Each of the "keyword" entries is applied to the entire text. First, the regular expression from the
keyword definition is modified by replacing white space sequences with a pattern matching any
number of white space characters, and by replacing variable definitions with a capture made
from the regular expression provided with the definition, or with the default (".*?"). Then, the
DSLR text is searched exhaustively for occurrences of strings matching the modified regular
expression. Substrings of a matching string corresponding to variable captures are extracted
and replace variable references in the corresponding replacement text, and this text replaces
the matching string in the DSLR text.

3. Sections of the DSLR text between "when" and "then", and "then" and "end", respectively, are
located and processed in a uniform manner, line by line, as described below.

For a line, each DSL entry pertaining to the line's section is taken in turn, in the order it appears
in the DSL file. Its regular expression part is modified: white space is replaced by a pattern
matching any number of white space characters; variable definitions with a regular expression
are replaced by a capture with this regular expression, its default being ".*?". If the resulting
regular expression matches all or part of the line, the matched part is replaced by the suitably
modified replacement text.

Modification of the replacement text is done by replacing variable references with the text cor-
responding to the regular expression capture. This text may be modified according to the string
transformation function given in the variable reference; see below for details.

If there is a variable reference naming a variable that is not defined in the same entry, the
expander substitutes a value bound to a variable of that name, provided it was defined in one
of the preceding lines of the current rule.

4. If a DSLR line in a condition is written with a leading hyphen, the expanded result is inserted
into the last line, which should contain a pattern CE, i.e., a type name followed by a pair of
parentheses. if this pair is empty, the expanded line (which should contain a valid constraint)
is simply inserted, otherwise a comma (",") is inserted beforehand.

Ifa DSLR line in a consequence is written with a leading hyphen, the expanded result is inserted
into the last line, which should contain a "modify" statement, ending in a pair of braces ("{" and
"I"). If this pair is empty, the expanded line (which should contain a valid method call) is simply

inserted, otherwise a comma (",") is inserted beforehand.

352

Rule Language Reference

@ Note
It is currently not possible to use a line with a leading hyphen to insert text into
other conditional element forms (e.g., "accumulate") or it may only work for the first
insertion (e.g., "eval").

All string transformation functions are described in the following table.

Table 8.3. String transformation functions

Name Description

uc Converts all letters to upper case.

Ic Converts all letters to lower case.

ucfirst Converts the first letter to upper case, and all

other letters to lower case.

num Extracts all digits and "-" from the string. If the
last two digits in the original string are preceded
by "." or ",", a decimal period is inserted in the
corresponding position.

a?b/c Compares the string with string a, and if they
are equal, replaces it with b, otherwise with c.
But ¢ can be another triplet a, b, ¢, so that the

entire structure is, in fact, a translation table.

The following DSL examples show how to use string transformation functions.

definitions for conditions[when][]There is an? {entity}=${entity!lc}: {entity!ucfirst}()[when]
[1- with an? {attr} greater than {amount}={attr} <= {anpunt!nun}[when][]- with a {what}
{attr}={attr} {what!positive?>0/negative?%t; 0/ zero?==0/ ERROR}

tions for conditions[when][]There is an?

{entity}=${entity!lc}: {entitylucfirst}()[when][]- with an? {attr} greater than
{amount}={attr} <= {ambunt!nun}[when][]- with a {what} {attr}={attr} {what!

A file containing a DSL definition has to be put under the resources folder or any of its subfolders
like any other drools artifact. It must have the extension . dsl, or alternatively be marked with
type Resour ceType. DSL. when programmatically added to a Ki eFi | eSyst em For a file using DSL
definition, the extension . dsl r should be used, while it can be added to a Ki eFi | eSyst emwith
type Resour ceType. DSLR.

For parsing and expanding a DSLR file the DSL configuration is read and supplied to the parser.
Thus, the parser can "recognize" the DSL expressions and transform them into native rule lan-
guage expressions.

353

Chapter 9. Complex Event
Processing

9.1. Complex Event Processing

There is no broadly accepted definition on the term Complex Event Processing. The term Event
by itself is frequently overloaded and used to refer to several different things, depending on the
context it is used. Defining terms is not the goal of this guide and as so, lets adopt a loose definition
that, although not formal, will allow us to proceed with a common understanding.

So, in the scope of this guide:

Important

Event, is a record of a significant change of state in the application domain at a
given point in time.

For instance, on a Stock Broker application, when a sale operation is executed, it causes a change
of state in the domain. This change of state can be observed on several entities in the domain,
like the price of the securities that changed to match the value of the operation, the ownership of
the traded assets that changed from the seller to the buyer, the balance of the accounts from both
seller and buyer that are credited and debited, etc. Depending on how the domain is modelled, this
change of state may be represented by a single event, multiple atomic events or even hierarchies
of correlated events. In any case, in the context of this guide, Event is the record of the change
of a particular piece of data in the domain.

Events are processed by computer systems since they were invented, and throughout the history,
systems responsible for that were given different names and different methodologies were em-
ployed. It wasn't until the 90's though, that a more focused work started on EDA (Event Driven
Architecture) with a more formal definition on the requirements and goals for event processing.
Old messaging systems started to change to address such requirements and new systems started
to be developed with the single purpose of event processing. Two trends were born under the
names of Event Stream Processing and Complex Event Processing.

In the very beginnings, Event Stream Processing was focused on the capabilities of processing
streams of events in (near) real time, while the main focus of Complex Event Processing was
on the correlation and composition of atomic events into complex (compound) events. An impor-
tant (maybe the most important) milestone was the publishing of Dr. David Luckham's book "The
Power of Events" in 2002. In the book, Dr Luckham introduces the concept of Complex Event
Processing and how it can be used to enhance systems that deal with events. Over the years,
both trends converged to a common understanding and today these systems are all referred to
as CEP systems.

354

Complex Event Processing

This is a very simplistic explanation to a really complex and fertile field of research, but sets a high
level and common understanding of the concepts that this guide will introduce.

The current understanding of what Complex Event Processing is may be briefly described as the
following quote from Wikipedia:

Important

"Complex Event Processing, or CEP, is primarily an event pro-
cessing concept that deals with the task of processing multiple
events with the goal of identifying the meaningful events within
the event cloud. CEP employs techniques such as detection of
complex patterns of many events, event correlation and abstrac-
tion, event hierarchies, and relationships between events such as
causality, membership, and timing, and event-driven processes."
—Wikipedia [http://en.wikipedia.org/wi-
ki/Complex_event_processing]

In other words, CEP is about detecting and selecting the interesting events (and only them) from
an event cloud, finding their relationships and inferring new data from them and their relationships.

@ Note
For the remaining of this guide, we will use the terms Complex Event Processing
and CEP as a broad reference for any of the related technologies and techniques,
including but not limited to, CEP, Complex Event Processing, ESP, Event Stream
Processing and Event Processing in general.

9.2. Drools Fusion

Event Processing use cases, in general, share several requirements and goals with Business
Rules use cases. These overlaps happen both on the business side and on the technical side.

On the Business side:
» Business rules are frequently defined based on the occurrence of scenarios triggered by events.
Examples could be:

» On an algorithmic trading application: take an action if the security price increases X% com-
pared to the day opening price, where the price increases are usually denoted by events on
a Stock Trade application.

» On a monitoring application: take an action if the temperature on the server room increases
X degrees in Y minutes, where sensor readings are usually denoted by events.

355

http://en.wikipedia.org/wiki/Complex_event_processing
http://en.wikipedia.org/wiki/Complex_event_processing
http://en.wikipedia.org/wiki/Complex_event_processing

Complex Event Processing

« Both business rules and event processing queries change frequently and require immediate
response for the business to adapt itself to new market conditions, new regulations and new
enterprise policies.

From a technical perspective:

« Both require seamless integration with the enterprise infrastructure and applications, specially
on autonomous governance, including, but not limited to, lifecycle management, auditing, se-
curity, etc.

« Both have functional requirements like pattern matching and non-functional requirements like
response time and query/rule explanation.

Even sharing requirements and goals, historically, both fields were born appart and although the
industry evolved and one can find good products on the market, they either focus on event pro-
cessing or on business rules management. That is due not only because of historical reasons but
also because, even overlapping in part, use cases do have some different requirements.

Important

Drools was also born as a rules engine several years ago, but following the vision
of becoming a single platform for behavioral modelling, it soon realized that it could
only achieve this goal by crediting the same importance to the three complementary
business modelling techniques:

e Business Rules Management
» Business Processes Management

» Complex Event Processing

In this context, Drools Fusion is the module responsible for adding event processing capabilities
into the platform.

Supporting Complex Event Processing, though, is much more than simply understanding what an
event is. CEP scenarios share several common and distinguishing characteristics:

 Usually required to process huge volumes of events, but only a small percentage of the events
are of real interest.

» Events are usually immutable, since they are a record of state change.

« Usually the rules and queries on events must run in reactive modes, i.e., react to the detection
of event patterns.

356

Complex Event Processing

» Usually there are strong temporal relationships between related events.

« Individual events are usually not important. The system is concerned about patterns of related
events and their relationships.

« Usually, the system is required to perform composition and aggregation of events.

Based on this general common characteristics, Drools Fusion defined a set of goals to be achieved
in order to support Complex Event Processing appropriately:

» Support Events, with their proper semantics, as first class citizens.

« Allow detection, correlation, aggregation and composition of events.

» Support processing of Streams of events.

» Support temporal constraints in order to model the temporal relationships between events.
» Support sliding windows of interesting events.

» Support a session scoped unified clock.

« Support the required volumes of events for CEP use cases.

» Support to (re)active rules.

« Support adapters for event input into the engine (pipeline).

The above list of goals are based on the requirements not covered by Drools Expert itself, since
in a unified platform, all features of one module are leveraged by the other modules. This way,
Drools Fusion is born with enterprise grade features like Pattern Matching, that is paramount to a
CEP product, but that is already provided by Drools Expert. In the same way, all features provided
by Drools Fusion are leveraged by Drools Flow (and vice-versa) making process management
aware of event processing and vice-versa.

For the remaining of this guide, we will go through each of the features Drools Fusion adds to the
platform. All these features are available to support different use cases in the CEP world, and the
user is free to select and use the ones that will help him model his business use case.

9.3. Event Semantics

An event is a fact that present a few distinguishing characteristics:

« Usually immutables: since, by the previously discussed definition, events are a record of a
state change in the application domain, i.e., a record of something that already happened, and
the past can not be "changed", events are immutables. This constraint is an important require-

357

Complex Event Processing

ment for the development of several optimizations and for the specification of the event lifecy-
cle. This does not mean that the Java object representing the object must be immutable. Quite
the contrary, the engine does not enforce immutability of the object model, because one of the
most common use cases for rules is event data enrichment.

E] Note
As a best practice, the application is allowed to populate un-populated event
attributes (to enrich the event with inferred data), but already populated attributes
should never be changed.

» Strong temporal constraints: rules involving events usually require the correlation of multiple
events, specially temporal correlations where events are said to happen at some point in time
relative to other events.

* Managed lifecycle: due to their immutable nature and the temporal constraints, events usually
will only match other events and facts during a limited window of time, making it possible for
the engine to manage the lifecycle of the events automatically. In other words, one an event is
inserted into the working memory, it is possible for the engine to find out when an event can no
longer match other facts and automatically delete it, releasing its associated resources.

« Use of sliding windows: since all events have timestamps associated to them, it is possible
to define and use sliding windows over them, allowing the creation of rules on aggregations of
values over a period of time. Example: average of an event value over 60 minutes.

Drools supports the declaration and usage of events with both semantics: point-in-time events
and interval-based events.

@ Note
A simplistic way to understand the unitification of the semantics is to consider a
point-in-time event as an interval-based event whose duration is zero.

9.4. Event Processing Modes

Rules engines in general have a well known way of processing data and rules and provide the
application with the results. Also, there is not many requirements on how facts should be presented
to the rules engine, specially because in general, the processing itself is time independent. That
is a good assumption for most scenarios, but not for all of them. When the requirements include
the processing of real time or near real time events, time becomes and important variable of the
reasoning process.

The following sections will explain the impact of time on rules reasoning and the two modes pro-
vided by Drools for the reasoning process.

358

Complex Event Processing

9.4.1. Cloud Mode

The CLOUD processing mode is the default processing mode. Users of rules engine are familiar
with this mode because it behaves in exactly the same way as any pure forward chaining rules
engine, including previous versions of Drools.

When running in CLOUD mode, the engine sees all facts in the working memory, does not matter
if they are regular facts or events, as a whole. There is no notion of flow of time, although events
have a timestamp as usual. In other words, although the engine knows that a given event was
created, for instance, on January 1st 2009, at 09:35:40.767, it is not possible for the engine to
determine how "old" the event is, because there is no concept of "now".

In this mode, the engine will apply its usual many-to-many pattern matching algorithm, using the
rules constraints to find the matching tuples, activate and fire rules as usual.

This mode does not impose any kind of additional requirements on facts. So for instance:

« There is no notion of time. No requirements clock synchronization.

e There is no requirement on event ordering. The engine looks at the events as an unordered
cloud against which the engine tries to match rules.

On the other hand, since there is no requirements, some benefits are not available either. For
instance, in CLOUD mode, it is not possible to use sliding windows, because sliding windows are
based on the concept of "now" and there is no concept of "now" in CLOUD mode.

Since there is no ordering requirement on events, it is not possible for the engine to determine
when events can no longer match and as so, there is no automatic life-cycle management for
events. l.e., the application must explicitly delete events when they are no longer necessary, in
the same way the application does with regular facts.

Cloud mode is the default execution mode for Drools, but in any case, as any other configuration
in Drools, it is possible to change this behavior either by setting a system property, using config-
uration property files or using the API. The corresponding property is:

Ki eBaseConfiguration config = KieServices. Factory. get().newKi eBaseConfiguration();
config.setOption(EventProcessi ngOpti on. CLOUD);

The equivalent property is:

dr ool s. event Processi ngMbde = cl oud

359

Complex Event Processing

9.4.2. Stream Mode

The STREAM processing mode is the mode of choice when the application needs to process
streams of events. It adds a few common requirements to the regular processing, but enables a
whole lot of features that make stream event processing a lot simpler.

The main requirements to use STREAM mode are:

« Events in each stream must be time-ordered. l.e., inside a given stream, events that happened
first must be inserted first into the engine.

» The engine will force synchronization between streams through the use of the session clock,
so, although the application does not need to enforce time ordering between streams, the use
of non-time-synchronized streams may result in some unexpected results.

Given that the above requirements are met, the application may enable the STREAM mode using
the following API:

Ki eBaseConfi gurati on config = Ki eServices. Factory. get().newKi eBaseConfiguration();
config.setOption(EventProcessi ngOpti on. STREAM) ;

Or, the equivalent property:

dr ool s. event Processi ngvbde = stream

When using the STREAM, the engine knows the concept of flow of time and the concept of "now",
i.e., the engine understands how old events are based on the current timestamp read from the
Session Clock. This characteristic allows the engine to provide the following additional features
to the application:

« Sliding Window support
« Automatic Event Lifecycle Management
» Automatic Rule Delaying when using Negative Patterns

All these features are explained in the following sections.
9.4.2.1. Role of Session Clock in Stream mode

When running the engine in CLOUD mode, the session clock is used only to time stamp the
arriving events that don't have a previously defined timestamp attribute. Although, in STREAM
mode, the Session Clock assumes an even more important role.

In STREAM mode, the session clock is responsible for keeping the current timestamp, and based
on it, the engine does all the temporal calculations on event's aging, synchronizes streams from
multiple sources, schedules future tasks and so on.

360

Complex Event Processing

Check the documentation on the Session Clock section to know how to configure and use different
session clock implementations.

9.4.2.2. Negative Patterns in Stream Mode

Negative patterns behave different in STREAM mode when compared to CLOUD mode. In
CLOUD mode, the engine assumes that all facts and events are known in advance (there is no
concept of flow of time) and so, negative patterns are evaluated immediately.

When running in STREAM mode, negative patterns with temporal constraints may require the
engine to wait for a time period before activating a rule. The time period is automatically calculated
by the engine in a way that the user does not need to use any tricks to achieve the desired result.

For instance:

Example 9.1. arule that activates immediately upon matching

rule "Sound the al arnt
when
$f : FireDetected()
not (SprinklerActivated())
t hen
/1 sound the alarm
end

The above rule has no temporal constraints that would require delaying the rule, and so, the rule
activates immediately. The following rule on the other hand, must wait for 10 seconds before
activating, since it may take up to 10 seconds for the sprinklers to activate:

Example 9.2. a rule that automatically delays activation due to temporal
constraints

rule "Sound the alarnt
when
$f : FireDetected()
not (SprinklerActivated(this after[0Os, 10s] $f))
t hen
/1 sound the alarm
end

This behaviour allows the engine to keep consistency when dealing with negative patterns and
temporal constraints at the same time. The above would be the same as writing the rule as below,
but does not burden the user to calculate and explicitly write the appropriate duration parameter:

Example 9.3. same rule with explicit duration parameter

rul e "Sound the alarnf

361

Complex Event Processing

duration(10s)
when

$f : FireDetected()

not (SprinklerActivated(this after[O0s, 10s] $f))
then

/1 sound the alarm
end

The following rule expects every 10 seconds at least one “Heartbeat” event, if not the rule fires.
The special case in this rule is that we use the same type of the object in the first pattern and in
the negative pattern. The negative pattern has the temporal constraint to wait between 0 to 10
seconds before firing and it excludes the Heartbeat bound to $h. Excluding the bound Heartbeat
is important since the temporal constraint [0s, ...] does not exclude by itself the bound event $h
from being matched again, thus preventing the rule to fire.

Example 9.4. excluding bound events in negative patterns

rule "Sound the alarnt
when
$h: Heartbeat() fromentry-point "MonitoringStreant
not(Heartbeat(this != $h, this after[0s,10s] $h) fromentry-point "MonitoringStreant)
then
/1 Sound the alarm
end

9.5. Session Clock

Reasoning over time requires a reference clock. Just to mention one example, if a rule reasons
over the average price of a given stock over the last 60 minutes, how the engine knows what stock
price changes happened over the last 60 minutes in order to calculate the average? The obvious
response is: by comparing the timestamp of the events with the "current time". How the engine
knows what time is now? Again, obviously, by querying the Session Clock.

The session clock implements a strategy pattern, allowing different types of clocks to be plugged
and used by the engine. This is very important because the engine may be running in an elements
of different scenarios that may require different clock implementations. Just to mention a few:

* Rules testing: testing always requires a controlled environment, and when the tests include
rules with temporal constraints, it is necessary to not only control the input rules and facts, but
also the flow of time.

* Regular execution: usually, when running rules in production, the application will require a real
time clock that allows the rules engine to react immediately to the time progression.

* Special environments: specific environments may have specific requirements on time control.
Cluster environments may require clock synchronization through heart beats, or JEE environ-
ments may require the use of an AppServer provided clock, etc.

362

Complex Event Processing

* Rules replay or simulation: to replay scenarios or simulate scenarios it is necessary that the
application also controls the flow of time.

9.5.1. Available Clock Implementations

Drools 5 provides 2 clock implementations out of the box. The default real time clock, based on
the system clock, and an optional pseudo clock, controlled by the application.

9.5.1.1. Real Time Clock

By default, Drools uses a real time clock implementation that internally uses the system clock to
determine the current timestamp.

To explicitly configure the engine to use the real time clock, just set the session configuration
parameter to real time:

Ki eSessi onConfiguration config = KieServices. Factory. get().newKi eSessi onConfi guration();
config.setOption(C ockTypeOption.get("realtine"));

9.5.1.2. Pseudo Clock

Drools also offers out of the box an implementation of a clock that is controlled by the application
that is called Pseudo Clock. This clock is specially useful for unit testing temporal rules since it
can be controlled by the application and so the results become deterministic.

To configure the pseudo session clock, do:

Ki eSessi onConfi guration config = KieServices. Factory. get().newKi eSessi onConfi guration();
config.setOption(O ockTypeOption. get("pseudo"));

As an example of how to control the pseudo session clock:

Ki eSessi onConfi guration config = KieServices. Factory. get().newKi eSessi onConfi guration();
conf.set Opti on(O ockTypeOption.get("pseudo"”));
Ki eSessi on sessi on = kbase. newKi eSessi on(conf, null);

Sessi onPseudoCl ock cl ock = session. get Sessi onC ock();

/1 then, while inserting facts, advance the clock as necessary:
Fact Handl e handl el = session.insert(tickl);

cl ock. advanceTi me(10, Ti neUnit.SECONDS);

Fact Handl e handl e2 = session.insert(tick2);

cl ock. advanceTi me(30, Ti nmeUnit.SECONDS);

Fact Handl e handl e3 = session.insert(tick3);

363

Complex Event Processing

9.6. Sliding Windows

Sliding Windows are a way to scope the events of interest by defining a window that is constantly
moving. The two most common types of sliding window implementations are time based windows
and length based windows.

The next sections will detail each of them.

Important

Sliding Windows are only available when running the engine in STREAM mode.
Check the Event Processing Mode section for details on how the STREAM mode
works.

Important

Sliding windows start to match immediately and defining a sliding window does
not imply that the rule has to wait for the sliding window to be "full* in order to
match. For instance, a rule that calculates the average of an event property on a
window:length(10) will start calculating the average immediately, and it will start at
0 (zero) for no-events, and will update the average as events arrive one by one.

9.6.1. Sliding Time Windows

Sliding Time Windows allow the user to write rules that will only match events occurring in the
last X time units.

For instance, if the user wants to consider only the Stock Ticks that happened in the last 2 minutes,
the pattern would look like this:

St ockTi ck() over wi ndow tine(2m)

Drools uses the "over" keyword to associate windows to patterns.

On a more elaborate example, if the user wants to sound an alarm in case the average temperature
over the last 10 minutes read from a sensor is above the threshold value, the rule would look like:

Example 9.5. aggregating values over time windows

rule " Sound t he alarm in case tenperature ri ses above threshol d"when
Tenper at ureThreshol d($max : max) Nunber (doubl eVal ue > $nax) from accunul at e(
Sensor Readi ng($tenp : tenperature) over w ndow tinme(10m), average($tenp))then

/1 sound the al arnmend

364

Complex Event Processing

above threshol d"when Tenper at ur eThr eshol d($max

D omax) Nunber (doubl eVal ue > $max

) from accumnul at e(Sensor Readi ng($tenp : tenperature) over
wi ndow: ti me(10m), aver age(

$tenmp

))then 11

sound

The engine will automatically disregard any SensorReading older than 10 minutes and keep the
calculated average consistent.

Important

Please note that time based windows are considered when calculating the interval
an event remains in the working memaory before being expired, but an event falling
off a sliding window does not mean by itself that the event will be discarded from
the working memory, as there might be other rules that depend on that event. The
engine will discard events only when no other rules depend on that event and the
expiration policy for that event type is fulfilled.

9.6.2. Sliding Length Windows

Sliding Length Windows work the same way as Time Windows, but consider events based on
order of their insertion into the session instead of flow of time.

For instance, if the user wants to consider only the last 10 RHT Stock Ticks, independent of how

old they are, the pattern would look like this:

St ockTi ck(conpany == "RHT") over wi ndow | ength(10)
As you can see, the pattern is similar to the one presented in the previous section, but instead of
using window:time to define the sliding window, it uses window:length.

Using a similar example to the one in the previous section, if the user wants to sound an alarm
in case the average temperature over the last 100 readings from a sensor is above the threshold
value, the rule would look like:

Example 9.6. aggregating values over length windows

rule "Sound the alarm in case tenperature rises above threshol d"when
Tenper atureThreshol d($max : max) Number (doubl eVal ue > $max) from accunul at e(
Sensor Readi ng($tenp : tenperature) over w ndow |ength(100), average($tenp))then

/1 sound the al armend

365

Complex Event Processing

above threshol d"when Tenper at ur eThr eshol d($max

©omax) Number (doubl eVal ue > $max

) from accumnul at e(Sensor Readi ng($tenp : tenperature) over
wi ndow: | engt h(100), aver age(

$tenp

))then 11

sound

The engine will keep only consider the last 100 readings to calculate the average temperature.

Important

Please note that falling off a length based window is not criteria for event expiration
in the session. The engine disregards events that fall off a window when calculat-
ing that window, but does not remove the event from the session based on that
condition alone as there might be other rules that depend on that event.

Important

Please note that length based windows do not define temporal constraints for event
expiration from the session, and the engine will not consider them. If events have
no other rules defining temporal constraints and no explicit expiration policy, the
engine will keep them in the session indefinitely.

When using a sliding window, alpha constraints are evaluated before the window is considered,
but beta (join) constraints are evaluated afterwards. This usually doesn't make a difference when
time windows are concerned, but it's important when using a length window. For example this
pattern:

St ockTi ck(conpany == "RHT") over wi ndow | ength(10)

defines a window of (at most) 10 StockTicks all having company equal to "RHT", while the following
one:

$s : String()
St ockTi ck(conpany == $s) over wi ndow | ength(10)

first creates a window of (at most) 10 StockTicks regardless of the value of their company attribute
and then filters among them only the ones having the company equal to the String selected from
the working memory.

366

Complex Event Processing

9.6.3. Window Declaration

The engine also supports the declaration of Windows. This promotes a clear separation between
what are the filters applied to the window and what are the constraints applied to the result of
window. It also allows easy reuse of windows among multiple rules.

Another benefit is a new implementation of the basic window support in the engine, increasing the
overall performance of the rules that use sliding windows.

The simplified EBNF to declare a window is:

wi ndowDecl aration : = DECLARE WNDOW I D annot ati on* | hsPatternBi nd END

For example a window containing only the last 10 stock ticks from a given source can be defined
like:

decl are wi ndow Ti cks St ockTi ck(source == "NYSE") over w ndow: | ength(10)
fromentry-point STStreanmend
Ti cks St ockTi ck(source == "NYSE"
) over wi ndow: | ength(10
) from entry- point

Rules can then use this declared window by using it as a source for a FROM as in:

rule "RHT ticks in the w ndow' when accunul ate(StockTi ck(conmpany == "RHT") from
wi ndow Ti cks, $cnt : count(1)) then /1 there has been $cnt
RHT ticks over the last 10 ticksend

dow"

when accunul at e(St ockTi ck(conpany == "RHT") from w ndow

Ti cks, $cnt : count (1)

)

t hen // there has been $cnt RHT ticks over the last 10

ticks

Note that this example also demonstrates how the window declaration allows to separate the
constraints applied to the window (only the StockTicks having "NYSE" as source are among the
10 events included into window) and the constraints applied to the window result (among the last
10 events having "NYSE" as source only the ones with company equal to "RHT" are selected).

9.7. Streams Support

Most CEP use cases have to deal with streams of events. The streams can be provided to the
application in various forms, from JMS queues to flat text files, from database tables to raw sockets
or even through web service calls. In any case, the streams share a common set of characteristics:

367

Complex Event Processing

« events in the stream are ordered by a timestamp. The timestamp may have different semantics
for different streams but they are always ordered internally.

» volumes of events are usually high.

« atomic events are rarely useful by themselves. Usually meaning is extracted from the correlation
between multiple events from the stream and also from other sources.

« streams may be homogeneous, i.e. contain a single type of events, or heterogeneous, i.e. con-
tain multiple types of events.

Drools generalized the concept of a stream as an "entry point" into the engine. An entry point is for
drools a gate from which facts come. The facts may be regular facts or special facts like events.

In Drools, facts from one entry point (stream) may join with facts from any other entry point or
event with facts from the working memory. Although, they never mix, i.e., they never lose the
reference to the entry point through which they entered the engine. This is important because one
may have the same type of facts coming into the engine through several entry points, but one
fact that is inserted into the engine through entry point A will never match a pattern from a entry
point B, for example.

9.7.1. Declaring and Using Entry Points

Entry points are declared implicitly in Drools by directly making use of them in rules. l.e. referencing
an entry point in a rule will make the engine, at compile time, to identify and create the proper
internal structures to support that entry point.

So, for instance, lets imagine a banking application, where transactions are fed into the system
coming from streams. One of the streams contains all the transactions executed in ATM machines.
So, if one of the rules says: a withdraw is authorized if and only if the account balance is over the
requested withdraw amount, the rule would look like:

Example 9.7. Example of Stream Usage

rul e "authorize wi thdraw'when Wt hdrawRequest ($ai : accountld, $am: anount) fromentry- point
"ATM St r eant' Checki ngAccount (accountld == $ai, bal ance > $am)then // authorize w thdrawend

wi t hdr aw' when W t hdrawRequest ($ai : accountld, $am: amount) from entry-point
"ATM St reant Checki ngAccount (accountld == $ai, bal ance >
$am
)t hen /1
aut hori ze

In the previous example, the engine compiler will identify that the pattern is tied to the entry point
"ATM Stream" and will both create all the necessary structures for the rulebase to support the
"ATM Stream" and will only match WithdrawRequests coming from the "ATM Stream". In the
previous example, the rule is also joining the event from the stream with a fact from the main
working memory (CheckingAccount).

368

Complex Event Processing

Now, lets imagine a second rule that states that a fee of $2 must be applied to any account for
which a withdraw request is placed at a bank branch:

Example 9.8. Using a different Stream

rule "apply fee on withdraws on branches"when W t hdr awRequest ($ai : accountld, processed
== true) from entry-point "Branch Streant Checki ngAccount (accountld == $ai)then 11
apply a $2 fee on the accountend

br anches" when W t hdr awRequest ($ai : accountld, processed == true) from entry-point
"Branch Streant Checki ngAccount (accountld ==

$ai

)then /] apply a $2 fee on

t he

The previous rule will match events of the exact same type as the first rule (WithdrawRequest),
but from two different streams, so an event inserted into "ATM Stream" will never be evaluated
against the pattern on the second rule, because the rule states that it is only interested in patterns
coming from the "Branch Stream".

So, entry points, besides being a proper abstraction for streams, are also a way to scope facts
in the working memory, and a valuable tool for reducing cross products explosions. But that is a
subject for another time.

Inserting events into an entry point is equally simple. Instead of inserting events directly into the
working memory, insert them into the entry point as shown in the example below:

Example 9.9. Inserting facts into an entry point

/'l create your rul ebase and your session as usual
Ki eSessi on session = ...

/] get a reference to the entry point
Ent ryPoi nt at nfStream = sessi on. get EntryPoi nt ("ATM Streant);

/1 and start inserting your facts into the entry point
atnStream insert(aWthdrawRequest);

The previous example shows how to manually insert facts into a given entry point. Although,
usually, the application will use one of the many adapters to plug a stream end point, like a IMS
queue, directly into the engine entry point, without coding the inserts manually. The Drools pipeline
API has several adapters and helpers to do that as well as examples on how to do it.

369

Complex Event Processing

9.8. Memory Management for Events

Important

The automatic memory management for events is only performed when running
the engine in STREAM mode. Check the Event Processing Mode section for details
on how the STREAM mode works.

One of the benefits of running the engine in STREAM mode is that the engine can detect when
an event can no longer match any rule due to its temporal constraints. When that happens, the
engine can safely delete the event from the session without side effects and release any resources
used by that event.

There are basically 2 ways for the engine to calculate the matching window for a given event:

« explicitly, using the expiration policy

« implicitly, analyzing the temporal constraints on events

9.8.1. Explicit expiration offset

The first way of allowing the engine to calculate the window of interest for a given event type is
by explicitly setting it. To do that, just use the declare statement and define an expiration for the
fact type:

Example 9.10. explicitly defining an expiration offset of 30 minutes for
StockTick events

decl are StockTick @xpires(30m)end
St ockTi ck @xpires(30m

The above example declares an expiration offset of 30 minutes for StockTick events. After that
time, assuming no rule still needs the event, the engine will expire and remove the event from
the session automatically.

Important

An explicit expiration policy for a given event type overrides any inferred expiration
offset for that same type.

370

Complex Event Processing

9.8.2. Inferred expiration offset

Another way for the engine to calculate the expiration offset for a given event is implicitly, by
analyzing the temporal constraints in the rules. For instance, given the following rule:

Example 9.11. example rule with temporal constraints

rule "correl ate orders"when $bo : BuyOrderEvent($id : id) $ae : AckEvent(id == $id,
this after[0,10s] $bo)then // do sonethi ngend

or der s"when $bo : BuyOrderEvent($id : id

) $ae : AckEvent(id == $id, this after[O0, 10s]
$bo

)then 11

do

Analyzing the above rule, the engine automatically calculates that whenever a BuyOrderEvent
matches, it needs to store it for up to 10 seconds to wait for matching AckEvent's. So, the implicit
expiration offset for BuyOrderEvent will be 10 seconds. AckEvent, on the other hand, can only
match existing BuyOrderEvent's, and so its expiration offset will be zero seconds.

The engine will make this analysis for the whole rulebase and find the offset for every event type.

Important

An explicit expiration policy for a given event type overrides any inferred expiration
offset for that same type.

9.9. Temporal Reasoning

Temporal reasoning is another requirement of any CEP system. As discussed previously, one of
the distinguishing characteristics of events is their strong temporal relationships.

Temporal reasoning is an extensive field of research, from its roots on Temporal Modal Logic to its
more practical applications in business systems. There are hundreds of papers and thesis written
and approaches are described for several applications. Drools once more takes a pragmatic and
simple approach based on several sources, but specially worth noting the following papers:

[ALLENS1] Allen, J.F.. An Interval-based Representation of Temporal Knowledge. 1981.
[ALLENS3] Allen, J.F.. Maintaining knowledge about temporal intervals. 1983.

[BENNEOQ] Bennet, Brandon and Galton, Antony P.. A Unifying Semantics for Time and Events.
2005.

[YONEKO5] Yoneki, Eiko and Bacon, Jean. Unified Semantics for Event Correlation Over Time
and Space in Hybrid Network Environments. 2005.

371

Complex Event Processing

Drools implements the Interval-based Time Event Semantics described by Allen, and represents
Point-in-Time Events as Interval-based evens with duration 0 (zero).

@ Note

For all temporal operator intervals, the "*" (star) symbol is used to indicate positive
infinity and the "-*" (minus star) is used to indicate negative infinity.
9.9.1. Temporal Operators

Drools implements all 13 operators defined by Allen and also their logical complement (negation).
This section details each of the operators and their parameters.

9.9.1.1. After

The after evaluator correlates two events and matches when the temporal distance from the cur-
rent event to the event being correlated belongs to the distance range declared for the operator.

Lets look at an example:

$event A : EventA(this after[3nmB0s, 4m] $eventB)

The previous pattern will match if and only if the temporal distance between the time when $eventB
finished and the time when $eventA started is between (3 minutes and 30 seconds) and (4
minutes). In other words:

3nB0s <= $event A start Ti nestanp - $event B. endTi meStanp <= 4m

The temporal distance interval for the after operator is optional:

* If two values are defined (like in the example below), the interval starts on the first value and
finishes on the second.

« If only one value is defined, the interval starts on the value and finishes on the positive infinity.

« If no value is defined, it is assumed that the initial value is 1ms and the final value is the positive
infinity.

@ Note

It is possible to define negative distances for this operator. Example:

372

Complex Event Processing

$event A : EventA(this after[-3nBOs, -2m] $eventB)

$event A : EventA(this after[-3nB0s, -2m] $eventB) $eventA : EventA(this
after[-2m -3nBOs] $eventB)

) $eventA : EventA(this after[-2m -3n80s | $eventB

Event A(this after $soneDate)

9.9.1.2. Before

The before evaluator correlates two events and matches when the temporal distance from the
event being correlated to the current correlated belongs to the distance range declared for the
operator.

Lets look at an example:

$event A : EventA(this before[3nmB0s, 4m] $eventB)

The previous pattern will match if and only if the temporal distance between the time when $eventA
finished and the time when $eventB started is between (3 minutes and 30 seconds) and (4
minutes). In other words:

3nB0s <= $eventB.start Ti nestanp - $event A endTi meStanp <= 4m

373

Complex Event Processing

The temporal distance interval for the before operator is optional:

« If two values are defined (like in the example below), the interval starts on the first value and
finishes on the second.

« If only one value is defined, then the interval starts on the value and finishes on the positive
infinity.

« If no value is defined, it is assumed that the initial value is 1ms and the final value is the positive
infinity.

$event A . EventA(this before[-3nB0s, -2m] $eventB)

$event A : EventA(this before[-3nBOs, -2m] $eventB) S$eventA : EventA(this
before[-2m -3nB0s] $eventB)
) $eventA : EventA(this before[-2m -3nB0s] $eventB

Event A(this after $sonmeDate)

9.9.1.3. Coincides

The coincides evaluator correlates two events and matches when both happen at the same time.
Optionally, the evaluator accept thresholds for the distance between events' start and finish time-
stamps.

374

Complex Event Processing

Lets look at an example:

$event A : Event A(this coincides $eventB)

The previous pattern will match if and only if the start timestamps of both $eventA and $eventB
are the same AND the end timestamp of both $eventA and $eventB also are the same.

Optionally, this operator accepts one or two parameters. These parameters are the thresholds for
the distance between matching timestamps.

« If only one parameter is given, it is used for both start and end timestamps.

* If two parameters are given, then the first is used as a threshold for the start timestamp and the
second one is used as a threshold for the end timestamp.

In other words:

$event A : Event A(this coincides[15s, 10s] $eventB)

Above pattern will match if and only if:

abs($event A startTimestanp - $eventB.startTinestanp) <= 15s &&
abs($event A. endTi mestanp - $event B. endTi mestanp) <= 10s

Warning

It makes no sense to use negative interval values for the parameters and the engine
will raise an error if that happens.

@ Note

The after, before and coincides operators can be used to define constraints be-
tween events, java.util.Date attributes, and long attributes (interpreted as time-
stamps since epoch) in any combination. Example:

Event A(this after $sonmeDate)

375

Complex Event Processing

9.9.1.4. During

The during evaluator correlates two events and matches when the current event happens during
the occurrence of the event being correlated.

Lets look at an example:

$event A : EventA(this during $eventB)

The previous pattern will match if and only if the $eventA starts after $eventB starts and finishes
before $eventB finishes.

In other words:

$event B.start Ti nestanp < $event A. start Ti mestanp <= $event A. endTi nest anp < $event B. endTi nest anp

The during operator accepts 1, 2 or 4 optional parameters as follow:

« If one value is defined, this will be the maximum distance between the start timestamp of both
event and the maximum distance between the end timestamp of both events in order to operator
match. Example:

$event A : EventA(this during[5s] $eventB)

Will match if and only if:

0 < $eventA startTinestanp - $eventB.startTi nestanp <= 5s &&
0 < $event B. endTi nestanp - $event A. endTi nestanp <= 5s

« If two values are defined, the first value will be the minimum distance between the timestamps
of both events, while the second value will be the maximum distance between the timestamps
of both events. Example:

$event A : EventA(this during[5s, 10s] $eventB)

Will match if and only if:

5s <= $event A startTi mestanp - $eventB.startTi nestanp <= 10s &&

376

Complex Event Processing

5s <= $event B. endTi nestanp - $event A endTi mestanp <= 10s

« If four values are defined, the first two values will be the minimum and maximum distances
between the start timestamp of both events, while the last two values will be the minimum and
maximum distances between the end timestamp of both events. Example:

$event A : EventA(this during[2s, 6s, 4s, 10s] $eventB)

Will match if and only if:

2s <= $event A startTimestanp - $eventB.startTi nestanp <= 6s &&
4s <= $event B. endTi nestanp - $event A endTi mestanp <= 10s

9.9.1.5. Finishes

The finishes evaluator correlates two events and matches when the current event's start time-
stamp happens after the correlated event's start timestamp, but both end timestamps occur at
the same time.

Lets look at an example:

$event A . Event A(this finishes $eventB)

The previous pattern will match if and only if the $eventA starts after $eventB starts and finishes
at the same time $eventB finishes.

In other words:

$event B. start Ti nestanp < $event A. start Ti nestanp &&
$event A. endTi mest anp == $event B. endTi nest anp

The finishes evaluator accepts one optional parameter. If it is defined, it determines the maximum
distance between the end timestamp of both events in order for the operator to match. Example:

$event A . Event A(this finishes[5s] $eventB)

Will match if and only if:

$event B. start Ti mestanp < $event A start Ti mnestanmp &&
abs($event A endTi nestanp - $eventB. endTi mestanmp) <= 5s

377

Complex Event Processing

A Warning

It makes no sense to use a negative interval value for the parameter and the engine
will raise an exception if that happens.

9.9.1.6. Finished By

The finishedby evaluator correlates two events and matches when the current event start time-
stamp happens before the correlated event start timestamp, but both end timestamps occur at the
same time. This is the symmetrical opposite of finishes evaluator.

Lets look at an example:

$event A : Event A(this finishedby $eventB)

The previous pattern will match if and only if the $eventA starts before $eventB starts and finishes
at the same time $eventB finishes.

In other words:

$event A. start Ti nestanp < $eventB. start Ti nestanp &&
$event A. endTi mest anp == $event B. endTi nest anp

The finishedby evaluator accepts one optional parameter. If it is defined, it determines the maxi-
mum distance between the end timestamp of both events in order for the operator to match. Ex-
ample:

$event A . Event A(this finishedby[5s] $eventB)

Will match if and only if:

$event A. start Ti nestanp < $eventB. start Ti nest anp &&
abs($event A endTi mestanp - $event B. endTi nestanp) <= 5s

A Warning

It makes no sense to use a negative interval value for the parameter and the engine
will raise an exception if that happens.

378

Complex Event Processing

9.9.1.7. Includes

The includes evaluator correlates two events and matches when the event being correlated hap-
pens during the current event. It is the symmetrical opposite of during evaluator.

Lets look at an example:

$event A : EventA(this includes $eventB)

The previous pattern will match if and only if the $eventB starts after $eventA starts and finishes
before $eventA finishes.

In other words:

$event A. start Ti nestanp < $event B. start Ti mestanp <= $event B. endTi nest anp < $event A. endTi nest anp

The includes operator accepts 1, 2 or 4 optional parameters as follow:

« If one value is defined, this will be the maximum distance between the start timestamp of both
event and the maximum distance between the end timestamp of both events in order to operator
match. Example:

$event A : EventA(this includes[5s] $eventB)

Will match if and only if:

0 < $eventB.startTinestanp - $event A startTi nestanp <= 5s &&
0 < $event A endTi nestanp - $event B. endTi nestanp <= 5s

« If two values are defined, the first value will be the minimum distance between the timestamps
of both events, while the second value will be the maximum distance between the timestamps
of both events. Example:

$event A : EventA(this includes[5s, 10s] $eventB)

Will match if and only if:

5s <= $eventB.startTi mestanp - $event A startTi nestanp <= 10s &&

379

Complex Event Processing

5s <= $event A. endTi nestanp - $event B. endTi mestanp <= 10s

« If four values are defined, the first two values will be the minimum and maximum distances
between the start timestamp of both events, while the last two values will be the minimum and
maximum distances between the end timestamp of both events. Example:

$event A : EventA(this includes[2s, 6s, 4s, 10s] $eventB)

Will match if and only if:

2s <= $eventB.startTi mestanp - $event A startTi nestanp <= 6s &&
4s <= $event A endTi nestanp - $event B. endTi mest anp <= 10s

9.9.1.8. Meets

The meets evaluator correlates two events and matches when the current event's end timestamp
happens at the same time as the correlated event's start timestamp.

Lets look at an example:

$event A . Event A(this neets $eventB)

The previous pattern will match if and only if the $eventA finishes at the same time $eventB starts.

In other words:

abs(S$eventB.startTi mestanp - $event A endTi nestanp) == 0

The meets evaluator accepts one optional parameter. If it is defined, it determines the maximum
distance between the end timestamp of current event and the start timestamp of the correlated
event in order for the operator to match. Example:

$event A : Event A(this neets[5s] $eventB)

Will match if and only if:

abs($eventB.startTi mestanp - $event A endTi nestanp) <= 5s

380

Complex Event Processing

A Warning

It makes no sense to use a negative interval value for the parameter and the engine
will raise an exception if that happens.

9.9.1.9. Met By

The metby evaluator correlates two events and matches when the current event's start timestamp
happens at the same time as the correlated event's end timestamp.

Lets look at an example:

$event A : EventA(this metby $eventB)

The previous pattern will match if and only if the $eventA starts at the same time $eventB finishes.

In other words:

abs($event A startTi mestanp - $eventB. endTi nestanp) == 0

The metby evaluator accepts one optional parameter. If it is defined, it determines the maximum
distance between the end timestamp of the correlated event and the start timestamp of the current
event in order for the operator to match. Example:

$event A . EventA(this netby[5s] $eventB)

Will match if and only if:

abs($event A startTi mestanp - $event B. endTi mest anp) <= 5s

A Warning

It makes no sense to use a negative interval value for the parameter and the engine
will raise an exception if that happens.

381

Complex Event Processing

9.9.1.10. Overlaps

The overlaps evaluator correlates two events and matches when the current event starts before
the correlated event starts and finishes after the correlated event starts, but before the correlated
event finishes. In other words, both events have an overlapping period.

Lets look at an example:

$event A . Event A(this overlaps $eventB)

The previous pattern will match if and only if:

$event A. start Ti nestanp < $eventB. start Ti mestanp < $event A endTi nestanp < $event B. endTi nest anp

The overlaps operator accepts 1 or 2 optional parameters as follow:

 If one parameter is defined, this will be the maximum distance between the start timestamp of
the correlated event and the end timestamp of the current event. Example:

$event A : EventA(this overlaps[5s] $eventB)

Will match if and only if:

$event A. start Ti mestanp < $event B. start Ti mest anp < $event A. endTi nest anp < $event B. endTi nest anp
&&
0 <= $event A endTi mestanp - $eventB. startTi nestanp <= 5s

 If two values are defined, the first value will be the minimum distance and the second value
will be the maximum distance between the start timestamp of the correlated event and the end
timestamp of the current event. Example:

$event A : Event A(this overlaps[5s, 10s] $eventB)

Will match if and only if:

$event A start Ti nestanp < $event B. start Ti mest anp < $event A. endTi nest anp < $event B. endTi nest anp
&&
5s <= $event A endTi nestanp - $eventB.start Ti nestanp <= 10s

382

Complex Event Processing

9.9.1.11. Overlapped By

The overlappedby evaluator correlates two events and matches when the correlated event starts
before the current event starts and finishes after the current event starts, but before the current
event finishes. In other words, both events have an overlapping period.

Lets look at an example:

$event A . Event A(this overl appedby $eventB)

The previous pattern will match if and only if:

$event B.start Ti mestanp < $event A. start Ti mestanp < $event B. endTi mest anp < $event A endTi nest anp

The overlappedby operator accepts 1 or 2 optional parameters as follow:

* If one parameter is defined, this will be the maximum distance between the start timestamp of
the current event and the end timestamp of the correlated event. Example:

$event A : Event A(this overl appedby[5s] $eventB)

Will match if and only if:

$event B. start Ti nestanp < $event A. start Ti nestanp < $event B. endTi nest anp < $event A. endTi mest anp
&&
0 <= $event B. endTi mestanp - $event A startTi mestanp <= 5s

 If two values are defined, the first value will be the minimum distance and the second value
will be the maximum distance between the start timestamp of the current event and the end
timestamp of the correlated event. Example:

$event A : Event A(this overl appedby[5s, 10s] $eventB)

Will match if and only if:

$event B. start Ti nestanp < $event A. start Ti nestanp < $event B. endTi nest anp < $event A. endTi mest anp
&&
5s <= $event B. endTi nestanp - $event A start Ti mestanp <= 10s

383

Complex Event Processing

9.9.1.12. Starts

The starts evaluator correlates two events and matches when the current event's end timestamp
happens before the correlated event's end timestamp, but both start timestamps occur at the
same time.

Lets look at an example:

$event A : EventA(this starts $eventB)

The previous pattern will match if and only if the $eventA finishes before $eventB finishes and
starts at the same time $eventB starts.

In other words:

$event A. start Ti nestanp == $event B.start Ti nestanp &&
$event A. endTi mest anp < $event B. endTi nest anp

The starts evaluator accepts one optional parameter. If it is defined, it determines the maximum
distance between the start timestamp of both events in order for the operator to match. Example:

$event A : EventA(this starts[5s] $eventB)

Will match if and only if:

abs($event A startTinmestanp - $eventB.startTinestanp) <= 5s &&
$event A. endTi mest anp < $event B. endTi nest anp

A Warning

It makes no sense to use a negative interval value for the parameter and the engine
will raise an exception if that happens.

9.9.1.13. Started By

The startedby evaluator correlates two events and matches when the correlating event's end
timestamp happens before the current event's end timestamp, but both start timestamps occur at
the same time. Lets look at an example:

384

Complex Event Processing

$event A . Event A(this startedby $eventB)

The previous pattern will match if and only if the $eventB finishes before $eventA finishes and
starts at the same time $eventB starts.

In other words:

$event A. start Ti nestanp == $event B. start Ti nestanp &&
$event A. endTi mest anp > $event B. endTi nest anp

The startedby evaluator accepts one optional parameter. If it is defined, it determines the maximum
distance between the start timestamp of both events in order for the operator to match. Example:

$event A . EventA(this starts[5s] $eventB)

Will match if and only if:

abs($event A startTinmestanp - $eventB.startTinestanp) <= 5s &&
$event A endTi mest anp > $event B. endTi nest anp

Warning

It makes no sense to use a negative interval value for the parameter and the engine
will raise an exception if that happens.

385

Chapter 10. Experimental Features

10.1. Declarative Agenda

Warning

Declarative Agenda is experimental, and all aspects are highly likely to change in
the future. @Eager and @Direct are temporary annotations to control the behav-
iour of rules, which will also change as Declarative Agenda evolves. Annotations
instead of attributes where chosen, to reflect their experimental nature.

The declarative agenda allows to use rules to control which other rules can fire and when. While
this will add a lot more overhead than the simple use of salience, the advantage is it is declarative
and thus more readable and maintainable and should allow more use cases to be achieved in
a simpler fashion.

This feature is off by default and must be explicitly enabled, that is because it is considered high-
ly experimental for the moment and will be subject to change, but can be activated on a given
KieBase by adding the declarativeAgenda='enabled' attribute in the corresponding kbase tag of
the kmodule.xml file as in the following example.

Example 10.1. Enabling the Declarative Agenda

<kmodul e xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns="http://ww. drool s. or g/ xsd/ knodul e" >
<kbase name="Decl arati veKBase" decl arati veAgenda="enabl ed" >
<ksessi on name="KSessi on">
</ kbase>
</ knodul e>

The basic idea is:

« Allrule's Matches are inserted into WorkingMemory as facts. So you can now do pattern match-
ing against a Match. The rule's metadata and declarations are available as fields on the Match
object.

« You can use the kcontext.blockMatch(Match match) for the current rule to block the selected
match. Only when that rule becomes false will the match be eligible for firing. If it is already
eligible for firing and is later blocked, it will be removed from the agenda until it is unblocked.

« A match may have multiple blockers and a count is kept. All blockers must became false for the
counter to reach zero to enable the Match to be eligible for firing.

 kcontext.unblockAllMatches(Match match) is an over-ride rule that will remove all blockers
regardless

386

Experimental Features

* An activation may also be cancelled, so it never fires with cancelMatch

« An unblocked Match is added to the Agenda and obeys normal salience, agenda groups, rule-
flow groups etc.

* The @Direct annotations allows a rule to fire as soon as it's matched, this is to be used for rules
that block/unblock matches, it is not desirable for these rules to have side effects that impact
else where.

Example 10.2. New RuleContext methods

voi d bl ockMat ch(Mat ch natch);
voi d unbl ockAl | Mat ches(Match mat ch);
voi d cancel Mat ch(Mat ch nat ch);

Here is a basic example that will block all matches from rules that have metadata
@department('sales'’). They will stay blocked until the blockerAllSalesRules rule becomes false,
i.e. "go2" is retracted.

Example 10.3. Block rules based on rule metadata

rule rulel @ager @lepartnent (' sales') when $s : String(this == 'gol') t hen
l'ist.add(kcontext.rule.name +':' + $s); end rule rul e2 @ager @lepartnent (' sales')
when $s : String(this == 'gol') then l'ist.add(kcontext.rule.nane + ':' +
$s); end rul e bl ockerAll Sal esRul es @i rect @tager when $s : String(this ==
''go2') $i : Match(departnent == 'sales') t hen list.add($i.rule.nane + ':'
+ $s); kcont ext . bl ockMatch($i); end

when $s : String(this == "'gol

)

t hen list.add(kcontext.rule.nanme + ':' + $s

NE

end rule rul e2 @ager @lepartnent (' sales')

when $s : String(this == 'gol'

)

then list.add(kcontext.rule.nane + ':' + $s

DE

end rul e bl ocker Al'l Sal esRul es @i rect @tager

when $s : String(this == 'go2'

) $i : Match(department == 'sal es'

)

then list.add($i.rule.name + ':' + $s

) kcont ext . bl ockMat ch($i

A Warning

Further than annotate the blocking rule with @Direct, it is also necessary to anno-
tate all the rules that could be potentially blocked by it with @Eager. This is be-

387

Experimental Features

cause, since the Match has to be evaluated by the pattern matching of the blocking
rule, the potentially blocked ones cannot be evaluated lazily, otherwise won't be

any Match to be evaluated.

This example shows how you can use active property to count the number of active or inactive
(already fired) matches.

Example 10.4. Count the number of active/inactive Matches

rule rulel @ager @lepartnent (' sales') when $s : String(this == 'gol") t hen
list.add(kcontext.rule.nane + ':' + $s); end rule rul e2 @ager @lepartnent('sales')
when $s : String(this =="'gol") t hen list.add(kcontext.rule.name + ':' + $s);
end rule rul e3 @ager @lepartment (' sales') when $s : String(this == "gol')
t hen list.add(kcontext.rule.nane + ':' + $s); end rul e countActivatel nActive
@i rect @ager when $s : String(this == 'go2') $active : Nunber(this == 1) from
accumul ate($a : Match(department == 'sales', active == true), count($a)) $i nActive :
Number(this == 2) from accunulate($a : Match(department == 'sales', active == false),
count($a)) then kcontext.halt(); end
when $s : String(this == "'gol'
)
then list.add(kcontext.rule.nane + ':' + $s
DE
end rule rul e2 @ager @lepartment (' sales')
when $s : String(this == 'gol'
)
t hen list.add(kcontext.rule.name + ':' + $s
DE
end rule rul e3 @ager @lepartnent (' sales')
when $s : String(this == 'gol
)
then list.add(kcontext.rule.nane + ':' + $s
)
end rul e countActivatel nActive @irect @tager
when $s : String(this == "'go2'
) $active : Nunber(this == 1) fromaccurmul ate($a : Match(departnent == 'sales',
active == true), count($a)
) $inActive : Nunber(this == 2) from accunulate($a : Match(departnment ==
'sales', active == false), count($a)
)
then kcont ext . hal t (
) end

10.2. Browsing graphs of objects with OOPath

When the field of a fact is a collection it is possible to bind and reason over all the items in that
collection on by one using the f r omkeyword. Nevertheless, when it is required to browse a graph
of object the extensive use of the f r omconditional element may resultin a verbose and cubersome
syntax like in the following example:

388

Experimental Features

Example 10.5. Browsing a graph of objects with from

rule "Find all grades for Big Data exanl when $student: Student($plan: plan)

$exam Exan(course == "Big Data") from $pl an. exans $grade: G ade() from $exam grades
then /* RHS */ end

when $student: Student($plan: plan

) $exam Exanm(course == "Big Data") from

$pl an. exans $grade: Grade() from

$exam gr ades then /* RHS */

In this example it has been assumed to use a domain model consisting of a St udent who has a
Pl an of study: a Pl an can have zero or more Exans and an Examzero or more G ades. Note that
only the root object of the graph (the St udent in this case) needs to be in the working memory
in order to make this works.

By borrowing ideas from XPath, this syntax can be made more succinct, as XPath has a com-
pact notation for navigating through related elements while handling collections and filtering con-
straints. This XPath-inspired notation has been called OOPat h since it is explictly intended to
browse graph of objects. Using this notation the former example can be rewritten as it follows:

Example 10.6. Browsing a graph of objects with OOPath

rule "Find all grades for Big Data exani when Student ($grade: /plan/exams{course == "Big
Data"}/ grades) then /* RHS */ end

when St udent ($grade: /plan/exams{course == "Big Data"}/grades

) then /* RHS */

Formally, the core grammar of an QOPat h expression can be defined in EBNF notation in this way.

OOPEXpr = ("/" | "?2/") OOPSegnment { ("/" | "2/" | ".") OOPSegnent } ; OOPSegnent = [ID
(":" | ":=")] ID["[" Nunber "]"] ["{" Constraints "}"];
} o ooPSegment = [ID (":" | ":=")] ID["[" Number "]"] ["{"

In practice an OOPat h expression has the following features.

* It has to start with / or with a ?/ in case of a completely non-reactive OOPath (see below).
« It can dereference a single property of an object with the . operator

« It can dereference a multiple property of an object using the / operator. If a collection is returned,
it will iterate over the values in the collection

« While traversing referenced objects it can filter away those not satisfying one or more con-
straints, written as predicate expressions between curly brackets like in:

389

Experimental Features

Student ($grade: /pl an/exans{ course == "Big Data" }/grades)

« A constraint can also have a beckreference to an object of the graph traversed before the
currently iterated one. For example the following OOPath:

Student ($grade: /pl an/ exans/grades{ result > ../averageResult })

will match only the grades having a result above the average for the passed exam.

« A constraint can also recursively be another OOPath as it follows:

Student ($exam /plan/exans{ /grades{ result > 20} })

 Items can also be accessed by their index by putting it between square brackets like in:

St udent ($grade: /pl an/ exans[0]/ grades)

To adhere to Java convention OOPath indexes are 0-based, compared to XPath 1-based

10.2.1. Reactive and Non-Reactive OOPath

At the moment Drools is not able to react to updates involving a deeply nested object traversed
during the evaluation of an OOPat h expression. To make these objects reactive to changes it is
then necessary to make them extend the class or g. dr ool s. cor e. phr eak. Reacti veQbj ect . Itis
planned to overcome this limitation by implementing a mechanism that automatically instruments
the classes belonging to a specific domain model.

Having extendend that class, the domain objects can notify the engine when one of its field has
been updated by invoking the inherited method not i f yModi fi cat i on as in the following example:

Example 10.7. Notifying the engine that an exam has been moved to a
different course

public voi d set Course(String course) { this. course = course; noti fyModification(this);

}
{ this.course =
cour se;
noti fyModification(this);

In this way when using an OOPath like the following:

390

Experimental Features

Student ($grade: /plan/exans{ course == "Big Data" }/grades)

if an exam is moved to a different course, the rule is re-triggered and the list of grades matching
the rule recomputed.

It is also possible to have reactivity only in one subpart of the OOPath as in:

St udent ($grade: /plan/exans{ course == "Big Data" }?/grades)

Here, using the ?/ separator instead of the / one, the engine will react to a change made to an
exam, or if an exam is added to the plan, but not if a new grade is added to an existing exam. Of
course if a OOPath chunk is not reactive, all remaining part of the OOPath from there till the end
of the expression will be non-reactive as well. For instance the following OOPath

St udent ($grade: ?/pl an/exans{ course == "Big Data" }/grades)

will be completely non-reactive. For this reason it is not allowed to use the ?/ separator more than
once in the same OOPath so an expression like:

St udent ($grade: /plan?/exans{ course == "Big Data" }?/grades)

will cause a compile time error.

391

Part IV. Drools Integration

Integration Documentation

Chapter 11. Drools Commands

11.1. API

XML marshalling/unmarshalling of the Drools Commands requires the use of special classes,
which are going to be described in the following sections.

The following urls show sample script examples for jaxb, xstream and json marshalling using:

« http://ffisheye.jboss.org/browse/JBossRules/trunk/drools-camel/src/test/resources/org/drools/
camel/component/jaxb.mvt?r=HEAD

« http://ffisheye.jboss.org/browse/JBossRules/trunk/drools-camel/src/test/resources/org/drools/
camel/component/jaxb.mvt?r=HEAD

* http://fisheye.jboss.org/browse/JBossRules/trunk/drools-camel/src/test/resources/org/drools/
camel/component/xstream.mvt?r=HEAD

11.1.1. XStream

To use the XStream commands marshaller you need to use the DroolsHelperProvider to obtain
an XStream instance. We need to use this because it has the commands converters registered.

« Marshalling
BatchExecutionHelperProviderimpl.newXStreamMarshaller().toXML(command);
* Unmarshalling

BatchExecutionHelperProviderimpl.newXStreamMarshaller().fromXML(xml)

11.1.2. JSON

JSON API to marshalling/unmarshalling is similar to XStream API:

« Marshalling
BatchExecutionHelper.newJSonMarshaller().toXML(command);
* Unmarshalling

BatchExecutionHelper.newJSonMarshaller().fromXML(xml)

11.1.3. JAXB

There are two options for using JAXB, you can define your model in an XSD file or you can have
a POJO model. In both cases you have to declare your model inside JAXBContext, and in order

393

Drools Commands

to do that you need to use Drools Helper classes. Once you have the JAXBContext you need to
create the Unmarshaller/Marshaller as needed.

11.1.3.1. Using an XSD file to define the model

With your model defined in a XSD file you need to have a KnowledgeBase that has your XSD
model added as a resource.

To do this, the XSD file must be added as a XSD ResourceType into the KnowledgeBuilder. Finally
you can create the JAXBContext using the KnowledgeBase created with the KnowledgeBuilder

Options xjcOpts = new Options();

Xj cOpt s. set SchemaLanguage(Language. XMLSCHEMA,) ;

JaxbConfiguration jaxbConfigurati on = Know edgeBui | der Fact ory. newJaxbConfi guration(xjcOpts, "xsd');

kbui | der . add(Resour ceFact ory. newd assPat hResour ce(" person. xsd", getd ass()), ResourceType. XSD, jaxbConfi guration);
Know edgeBase kbase = kbui | der. newkKnow edgeBase();

List<String> classesName = new ArrayList<String>();
cl assesNane. add("org. drool s. conpi | er. test. Person");

JAXBCont ext j axbCont ext = Know edgeBui | der Hel per. newJAXBCont ext (cl assesNane. t oArray(new String[cl assesNane. si ze()]

11.1.3.2. Using a POJO model

In this case you need to use DroolsJaxbHelperProviderimpl to create the JAXBContext. This class
has two parameters:

1. classNames: A List with the canonical name of the classes that you want to use in the mar-

shalling/unmarshalling process.

2. properties: JAXB custom properties

Li st<String> classNames = new Arraylist<String>();

cl assNanes. add("org. drool s. conpi | er. test. Person");

JAXBCont ext j axbCont ext = Drool sJaxbHel per Provi der | npl . creat eDr ool sJaxbCont ext (cl assNanmes, null);
Marshal | er marshall er = jaxbContext.createMarshaller();

11.2. Commands supported

Currently, the following commands are supported:

+ BatchExecutionCommand

* InsertObjectCommand

394

Drools Commands

RetractCommand

ModifyCommand

GetObjectCommand

InsertElementsCommand

FireAllRulesCommand

StartProcessCommand

SignalEventCommand

CompleteWorkltemCommand

AbortWorkltemCommand

QueryCommand

SetGlobalCommand

GetGlobalCommand

GetObjectsCommand

o

String xml = BatchExecuti onHel per. newXsSt r eamvar shal | er ().t oXM_(command) ;

395

Drools Commands

String xm = BatchExecuti onHel per. newJSonMarshal | er ().t oXM.(conmmand) ;

* JAXB

Marshal | er marshal |l er = jaxbContext.createMarshaller();
StringWiter xm = new StringWiter();

mar shal | er. set Property(Marshal | er. JAXB_FORMATTED _OUTPUT, true);
mar shal | er. mar shal (command, xm);

11.2.1. BatchExecutionCommand

 Description: The command that contains a list of commands, which will be sent and executed.

» Attributes

Table 11.1. BatchExecutionCommand attributes

Name Description required

lookup Sets the knowledge session | true
id on which the commands
are going to be executed

commands List of commands to be exe- | false
cuted

« Command creation

Bat chExecut i onCommand conmand = new Bat chExecuti onCommrand() ;

comand. set Lookup(" ksessi onl");

I nsert Obj ect Command i nsert Obj ect Cormand = new | nsert Obj ect Conmand(new Person("j ohn", 25));
FireAl | Rul esCommand fireAll Rul esCommand = new FireAl | Rul esConmand();

comand. get Commands() . add(i nsert Obj ect Cormand) ;

comand. get Comrands() . add(fireAl | Rul esComand) ;

¢ XML output

e XStream

<bat ch- executi on | ookup="ksessi onl">
<insert>
<org.drool s. conpi |l er.test. Person>

396

Drools Commands

<name>j ohn</ nane>
<age>25</ age>
</ org.drool s.conpiler.test.Person>
</insert>
<fire-all-rules/>
</ bat ch- executi on>

+ JSON

{"bat ch-execution": {"| ookup": "ksessi onl", " commands"
[{"insert":{"object":{"org.drools.conpiler.test.Person":{"name":"john", "age": 25}}}}
{"fire-all-rules":""}]}}

* JAXB

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<bat ch- executi on | ookup="ksessi onl">
<insert>
<obj ect xsi:type="person" xm ns:xsi="http://ww.w3. org/ 2001/ XM_Schena-i nst ance" >
<age>25</ age>
<nane>j ohn</ nane>
</ obj ect >
</insert>
<fire-all-rules max="-1"/>
</ bat ch- execut i on>

11.2.2. InsertObjectCommand

 Description: Insert an object in the knowledge session.

» Attributes

Table 11.2. InsertObjectCommand attributes

Name Description required
object The object to be inserted true
outldentifier Id to identify the FactHandle | false

created in the object insertion
and added to the execution
results

returnObject Boolean to establish if the ob- | false
ject must be returned in the

397

Drools Commands

Name Description required

execution results. Default val-
ue: true

entryPoint Entrypoint for the insertion false

Command creation

Li st <Conrmand> cnds = ArraylLi st <Conmand>()

Command i nsert Obj ect Command = CommandFact ory. newl nsert (new Person("john", 25), "john", false
cmds. add(i nsert Cbj ect Conmand)

Bat chExecuti onCommand conmand = CommandFact ory. cr eat eBat chExecuti on(cnds, "ksessionl")

XML output

e XStream

<bat ch- executi on | ookup="ksessi onl">
<insert out-identifier="john" entry-point="ny streant’ return-object="false">
<org.drool s. conpi |l er.test. Person>
<nane>j ohn</ nane>
<age>25</ age>
</ org.drools. conpiler.test.Person>
</insert>
</ bat ch- executi on>

+ JSON

{"bat ch-execution": {"l ookup": "ksessi onl", "commands": {"insert":{"entry-point":"nmy streant

{"org.drool s. conpi |l er.test. Person":{"nanme":"john", "age":25}}}}}}

* JAXB

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<bat ch- executi on | ookup="ksessi onl">
<insert out-identifier="john" entry-point="ny streanm >
<obj ect xsi:type="person" xmns:xsi="http://ww.w3. org/ 2001/ XM_Schena-i nst ance" >
<age>25</ age>
<nane>j ohn</ nane>
</ obj ect >
</insert>
</ bat ch- executi on>

398

null);

Drools Commands

11.2.3. RetractCommand

« Description: Retract an object from the knowledge session.

» Attributes

Table 11.3. RetractCommand attributes

Name Description required

handle The FactHandle associated | true
to the object to be retracted

« Command creation: we have two options, with the same output result:

1. Create the Fact Handle from a string

Bat chExecut i onCommand conmand = new Bat chExecut i onConmmand()
command. set Lookup(" ksessi onl")

Retract Command retract Conmand = new Retract Conmand()

retract Coomand. set Fact Handl eFronBtri ng("123: 234: 345: 456: 567")
comand. get Commands() . add(retract Comrand) ;

2. Set the Fact Handle that you received when the object was inserted

Bat chExecut i onCommrand conmand = new Bat chExecut i onConmmand()
comand. set Lookup(" ksessi onl")

Ret ract Command retract Conmand = new Retract Command(f act Handl e)
command. get Commands() . add(r et r act Command)

« XML output

e XStream

<bat ch- executi on | ookup="ksessi onl">
<retract fact-handl e="0:234: 345: 456: 567"/ >
</ bat ch- executi on>

* JSON

{"bat ch-execution": {"l ookup": "ksessi onl", "comrands": {"retract": {"fact-
handl e": " 0: 234: 345: 456: 567"}}}}

399

Drools Commands

+ JAXB

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<bat ch- executi on | ookup="ksessi onl">

<retract fact-handl e="0:234: 345: 456: 567"/ >
</ bat ch- execut i on>

11.2.4. ModifyCommand

 Description: Allows you to modify a previously inserted object in the knowledge session.

» Attributes

Table 11.4. ModifyCommand attributes

Name Description required

handle The FactHandle associated | true
to the object to be retracted

setters List of setters object's modifi- | true
cations

« Command creation

Bat chExecut i onCommand conmand = new Bat chExecut i onCommand() ;
comand. set Lookup(" ksessi onl");

Modi f yCommand nodi f yCommand = new Modi f yCommand() ;

nodi f yCommand. set Fact Handl eFronSt ri ng(" 123: 234: 345: 456: 567") ;
Li st<Setter> setters = new ArrayList<Setter>();
setters.add(new Setterlnpl ("age", "30"));

nodi f yConmand. set Setters(setters);

comand. get Commands() . add(nodi f yConmmand) ;

e XML output

e XStream

<bat ch- executi on | ookup="ksessi onl">
<nodi fy fact-handl e="0: 234: 345: 456: 567" >
<set accessor="age" val ue="30"/>
</ modi fy>
</ bat ch- execut i on>

400

Drools Commands

+ JSON

{"bat ch-execution": {"| ookup": "ksessi onl", "commands": {"nodi fy": {"fact -
handl e": " 0: 234: 345: 456: 567", "setters": {"accessor": "age", "val ue":30}}}}}

* JAXB

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<bat ch- executi on | ookup="ksessi onl">
<nodi fy fact-handl e="0: 234: 345: 456: 567" >
<set val ue="30" accessor="age"/>
</ nodi fy>
</ bat ch- executi on>

11.2.5. GetObjectCommand

« Description: Used to get an object from a knowledge session

« Attributes

Table 11.5. GetObjectCommand attributes

Name Description required

factHandle The FactHandle associated | true
to the object to be retracted

outldentifier Id to identify the FactHandle | false
created in the object insertion
and added to the execution
results

« Command creation

Bat chExecuti onCommand conmand = new Bat chExecut i onConmand() ;
command. set Lookup("ksessi onl");

Get Obj ect Conmand get Obj ect Command = new Get Obj ect Command() ;

get Obj ect Conmand. set Fact Handl eFronSt ri ng(" 123: 234: 345: 456: 567") ;
get Obj ect Conmand. set Qut I denti fier("john");

comand. get Commands() . add(get Obj ect Comrand) ;

« XML output

401

Drools Commands

e XStream

<bat ch- executi on | ookup="ksessi onl">

<get-obj ect fact-handl e="0:234: 345: 456: 567" out-identifier="john"/>

</ bat ch- execut i on>

* JSON

{"bat ch-execution": {"l ookup": "ksessi onl", "commands": {"get-object": {"fact-
handl e": " 0: 234: 345: 456: 567", "out-identifier":"john"}}}}

* JAXB

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<bat ch- executi on | ookup="ksessi onl">
<get -obj ect out-identifier="john" fact-handl e="0:234: 345: 456: 567"/ >

</ bat ch- executi on>

11.2.6. InsertElementsCommand

» Description: Used to insert a list of objects.

» Attributes

Table 11.6. InsertElementsCommand attributes

Name Description required
objects The list of objects to be insert- | true
ed on the knowledge session
outldentifier Id to identify the FactHandle | false
created in the object insertion
and added to the execution
results
returnObject Boolean to establish if the ob- | false
ject must be returned in the
execution results. Default val-
ue: true
entryPoint Entrypoint for the insertion false

402

Drools Commands

Command creation

Li st <Command> cnds = Arrayli st <Command>()

Li st <Cbj ect > obj ects = new ArrayLi st <Obj ect >()
obj ect s. add(new Person("john", 25))
obj ect s. add(new Person("sarah", 35))

Command i nsert El enent sCommand = CommandFact ory. newl nsert El enent s(obj ects)
cnds. add(i nsert El enent sConmmand)

Bat chExecut i onCommand conmmand = CommandFact ory. cr eat eBat chExecution(cnds, "ksessionl")

XML output

* XStream

<bat ch- executi on | ookup="ksessi onl">
<insert-el ement s>
<org.drool s.conpiler.test.Person>
<nane>j ohn</ nane>
<age>25</ age>
</ org.drool s. conpiler.test.Person>
<org.drool s. conpi |l er.test. Person>
<nane>sar ah</ nane>
<age>35</ age>
</ org.drools. conpiler.test.Person>
</insert-el ement s>
</ bat ch- executi on>

» JSON

{"bat ch-execution": {"l| ookup": "ksessi onl", "comrands"

{"insert-elements": {"objects":[{"contai nedCb

ject":{"@l ass":"org. drool s. conpi |l er.test.Person", "nane":"john", "age": 25}}
{"contai nedCbj ect": {" @l ass": "Person", "nanme": "sarah", "age":35}}]1}}}}

* JAXB

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<bat ch- executi on | ookup="ksessi onl">
<insert-el ements return-objects="true">
<list>
<el ement xsi:type="person" xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schema- i nst ance" >
<age>25</ age>
<name>j ohn</ nane>
</ el enent >
<el ement xsi:type="person" xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance" >
<age>35</ age>

403

Drools Commands

<nanme>sar ah</ nane>
</ el enent >
<list>
</insert-el ement s>
</ bat ch- execut i on>

11.2.7. FireAllRulesCommand

» Description: Allow execution of the rules activations created.

» Attributes

Table 11.7. FireAllRulesCommand attributes

Name Description required

max The max number of rules ac- | false
tivations to be executed. de-
fault is -1 and will not put any
restriction on execution

outldentifier Add the number of rules acti- | false
vations fired on the execution
results

agendaFilter Allow the rules execution us- | false

ing an Agenda Filter

« Command creation

Bat chExecut i onCommand conmand = new Bat chExecut i onCommrand() ;
comand. set Lookup(" ksessi onl");

FireAl | Rul esCommand fireAll Rul esCommand = new FireAl | Rul esConmand();
fireAl | Rul esCommand. set Max(10) ;

fireAl | Rul esComrand. set Qut I dentifier("firedActivations");

command. get Commands() . add(fireAl | Rul esConmand) ;

« XML output

* XStream

<bat ch- executi on | ookup="ksessi onl">
<fire-all-rules max="10" out-identifier="firedActivations"/>
</ bat ch- execut i on>

* JSON

404

Drools Commands

{"bat ch-execution": {"l ookup": "ksessi onl", "commands": {"fire-all-rul es":{"max": 10, "out -
identifier":"firedActivations"}}}}

+ JAXB

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<bat ch- executi on | ookup="ksessi onl">

<fire-all-rules out-identifier="firedActivations" max="10"/>
</ bat ch- execut i on>

11.2.8. StartProcessCommand

» Description: Allows you to start a process using the ID. Also you can pass parameters and initial
data to be inserted.

» Attributes

Table 11.8. StartProcessCommand attributes

Name Description required
processlid The ID of the process to be | true
started
parameters A Map<String, Object> to | false

pass parameters in the
process startup

data A list of objects to be inserted | false
in the knowledge session be-
fore the process startup

« Command creation

Bat chExecut i onCommrand conmand = new Bat chExecut i onCommrand() ;
comand. set Lookup("ksessi onl");

St art ProcessCommand st art ProcessCommand = new Start ProcessComrand() ;
start ProcessCommand. set Process! d("org. drool s. t ask. processOne");
command. get Commands() . add(st art ProcessConmand) ;

* XML output

e XStream

405

Drools Commands

<bat ch- executi on | ookup="ksessi onl">
<start-process processld="org.drools.task.processOne"/>
</ bat ch- executi on>

+ JSON

{"bat ch-execution": {"| ookup": "ksessi onl", "commuands": {"start-process": {"process-
id"':"org.drool s.task. processOne"}}}}

* JAXB

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<bat ch- executi on | ookup="ksessi onl">
<start-process processld="org.drools.task.processOne">
<par aneter/ >
</start-process>
</ bat ch- executi on>

11.2.9. SignalEventCommand

» Description: Send a signal event.

« Attributes

Table 11.9. SignalEventCommand attributes

Name Description required
event-type true
processinstanceld false
event false

« Command creation

Bat chExecut i onCommand conmand = new Bat chExecut i onCommrand() ;
comand. set Lookup("ksessi onl");

Si gnal Event Command si gnal Event Conmand = new Si gnal Event Conmand() ;
si gnal Event Command. set Processl nst ancel d(1001) ;

si gnal Event Command. set Event Type("start");

si gnal Event Command. set Event (new Person("john", 25));

command. get Commands() . add(si gnal Event Conmand) ;

* XML output

406

Drools Commands

e XStream

<bat ch- executi on | ookup="ksessi onl">
<signal -event process-instance-id="1001" event-type="start">
<org. drool s. pi pel i ne. canel . Per son>
<nane>j ohn</ nane>
<age>25</ age>
</ org. drool s. pi peline. canel . Per son>
</ si gnal - event >
</ bat ch- execut i on>

JSON

{"bat ch-execution":{"l ookup": "ksessi onl", "conmrands": {"si gnal -event": {"process-

i nstance-id": 1001, "@uvent-type":"start","event-type":"start", "object"

{"org.drool s. pi pel i ne. canel . Person": {"nane":"j ohn", "age": 25}}}}}}
JAXB

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<bat ch- executi on | ook