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Preface

This guide describes how to download, install, configure, and run the Technology Compatibility

Kit (TCK) used to verify the compatibility of an implementation of JSR 349: Bean Validation 1.1.

The Bean Validation TCK is built atop Arquillian [http://www.jboss.org/arquillian.html], a portable

and configurable automated test suite for authoring unit and integration tests in a Java EE

environment.

The Bean Validation TCK is provided under the Apache Public License 2.0 [http://

www.apache.org/licenses/LICENSE-2.0].

1. Who Should Use This Guide

This guide is for implementors of the Bean Validation specification to assist in running the test

suite that verifies the compatibility of their implementation.

2. Before You Read This Guide

The Bean Validation TCK is based on the Bean Validation specification 1.1 (JSR 349). Information

about the specification can be found on the JSR-349 JCP page [http://jcp.org/en/jsr/detail?id=303].

3. How This Guide Is Organized

If you are running the Bean Validation TCK for the first time, read Chapter 1, Introduction

completely for the necessary background information about the TCK. Once you have reviewed

that material, perform the steps outlined in the remaining chapters.

• Chapter 1, Introduction gives an overview of the principles that apply generally to all Technology

Compatibility Kits (TCKs), outlines the appeals process and describes the Bean Validation TCK

architecture and components.

• Chapter 2, Appeals Process explains the process to be followed by an implementor should they

wish to challenge any test in the TCK.

• Chapter 3, Installation explains where to obtain the required software for the Bean Validation

TCK and how to install it.

• Chapter 4, Reports explains the test reports that are generated by the TCK test suite and

introduces the TCK audit report as a tool for measuring the completeness of the TCK in testing

the JSR 349 specification and in understanding how test cases relate to the specification.

• Chapter 5, Running the TCK test suite details the configuration of the test harness and

documents how to create a TCK runner for executing the TCK test suite, either in standalone

or container mode.

• Chapter 6, Running the Signature Test finally documents how to use the SigTest tool for

ensuring compatibility of types provided in the package javax.validation.* with the official API

signature defined by the specification.

http://www.jboss.org/arquillian.html
http://www.jboss.org/arquillian.html
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://jcp.org/en/jsr/detail?id=303
http://jcp.org/en/jsr/detail?id=303
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Introduction
This chapter explains the purpose of a TCK and identifies the foundation elements of the Bean

Validation TCK.

1.1. TCK Primer

A TCK, or Technology Compatibility Kit, is one of the three required pieces for any JSR (the other

two being the specification document and the reference implementation). The TCK is a set of

tools and tests to verify that an implementation of the technology conforms to the specification.

The tests are the primary component, but the tools serve an equally critical role of providing a

framework and/or set of SPIs for executing the tests.

The tests in the TCK are derived from assertions in the written specification document. The

assertions are itemized in an XML document (tck-audit.xml), where they each get assigned a

unique identifier, and materialize as a suite of automated tests that collectively validate whether an

implementation complies with the aforementioned assertions, and in turn the specification. For a

particular implementation to be certified, all of the required tests must pass (meaning the provided

test suite must be run unmodified).

A TCK is entirely implementation agnostic. It should validate assertions by consulting the

specification's public API.

1.2. Compatibility Testing

The goal of any specification is to eliminate portability problems so long as the program which

uses the implementation also conforms to the rules laid out in the specification.

Executing the TCK is a form of compatibility testing. It's important to understand that compatibility

testing is distinctly different from product testing. The TCK is not concerned with robustness,

performance or ease of use, and therefore cannot vouch for how well an implementation meets

these criteria. What a TCK can do is to ensure the exactness of an implementation as it relates

to the specification.

Compatibility testing of any feature relies on both a complete specification and a complete

reference implementation. The reference implementation demonstrates how each test can

be passed and provides additional context to the implementor during development for the

corresponding assertion.

1.2.1. Why Compatibility Is Important

Java platform compatibility is important to different groups involved with Java technologies for

different reasons:

• Compatibility testing is the means by which the JCP ensures that the Java platform does not

become fragmented as it is ported to different operating systems and hardware.
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• Compatibility testing benefits developers working in the Java programming language,

enabling them to write applications once and deploy them across heterogeneous computing

environments without porting.

• Compatibility testing enables application users to obtain applications from disparate sources

and deploy them with confidence.

• Conformance testing benefits Java platform implementors by ensuring the same extent of

reliability for all Java platform ports.

The Bean Validation specification goes to great lengths to ensure that programs written for Java

EE are compatible and the TCK is rigorous about enforcing the rules the specification lays down.

1.3. About the Bean Validation TCK

The Bean Validation TCK is designed as a portable, configurable and automated test suite for

verifying the compatibility of an implementation of JSR 349. The test suite is built atop TestNG

and provides a series of extensions that allow runtime packaging and deployment of JEE artifacts

for in-container testing (Arquillian).

Each test class in the suite acts as a deployable unit. The deployable units, or artifacts, are defined

in a declarative way using annotations.

The declarative approach allows many of the tests to be executed in a standalone implementation

of Bean Validation, accounting for a boost in developer productivity. However, an implementation

is only valid if all tests pass using the in-container execution mode. The standalone mode is merely

a developer convenience.

Note

The reason the Bean Validation TCK must pass running in a EE container is that

Bean Validation is part of Java EE 7 itself.

1.3.1. TCK Components

The Bean Validation TCK includes the following components:

• The test suite, which is a collection of TestNG tests, the TestNG test suite descriptor and

supplemental resources that configure Bean Validation and other software components.

• The TCK audit (tck-audit.xml) used to list out the assertions identified in the Bean Validation

specification. It matches the assertions to test cases in the test suite by unique identifier and

produces a coverage report.

The audit document is provided along with the TCK. Each assertion is defined with a reference

to a chapter, section and paragraph from the specification document, making it easy for the
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implementor to locate the language in the specification document that supports the feature

being tested.

• TCK documentation accompanied by release notes identifying updates between versions.

• TCK Container Adapter provided as a convenience for developers in order to run and debug

tests outside of the EE container.

• Setup examples demonstrating Maven and Ant setups to run the TCK test suite

1.3.2. Passing the Bean Validation TCK

In order to pass the Bean Validation TCK (which is one requirement for becoming a certified Bean

Validation provider), you need to:

• Pass the Bean Validation signature tests (see Chapter 6, Running the Signature Test) asserting

the correctness of the Bean Validation API used.

• Run and pass the test suite (see Chapter 5, Running the TCK test suite). The test must be run

within an EE 7 container and pass with an unmodified TestNG suite file.

Note

The designated reference runtime for compatibility testing of the Bean Validation

specification is the Sun Java Platform, Enterprise Edition (Java EE) 7 reference

implementation (RI), aka Glassfish 4.
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Appeals Process
While the Bean Validation TCK is rigourous about enforcing an implementation's conformance to

the JSR 349 specification, it's reasonable to assume that an implementor may discover new and/

or better ways to validate the assertions. This chapter covers the appeals process, defined by

the Specification Lead, Red Hat, Inc., which allows implementors of the JSR 349 specification to

challenge one or more tests defined by the Bean Validation TCK.

The appeals process identifies who can make challenges to the TCK, what challenges to the

TCK may be submitted, how these challenges are submitted, how and by whom challenges are

addressed and how accepted challenges to the TCK are managed.

Following the recent adoption of transparency in the JCP, implementors are encouraged to

make their appeals public, which this process facilitates. The JCP community should recognize

that issue reports are a central aspect of any good software and it's only natural to point out

shortcomings and strive to make improvements. Despite this good faith, not all implementors will

be comfortable with a public appeals process. Instructions about how to make a private appeal

are therefore provided.

2.1. Who can make challenges to the TCK?

Any implementor may submit an appeal to challenge one or more tests in the Bean Validation

TCK. In fact, members of the JSR 349 Expert Group (EG) encourage this level of participation.

2.2. What challenges to the TCK may be submitted?

Any test case (i.e. @Test method), test case configuration (e.g. @Deployment, validation.xml), test

entities, annotations and other resources may be challenged by an appeal.

What is generally not challengeable are the assertions made by the specification. The specification

document is controlled by a separate process and challenges to it should be handled through the

JSR 349 EG by sending an e-mail to beanvalidation-tck@redhat.com.

2.3. How these challenges are submitted?

To submit a challenge, a new issue of type Bug should be created against BVTCK [https://

hibernate.atlassian.net/browse/BVTCK] in the Hibernate JIRA instance. The appellant should

complete the Summary, Component (TCK Appeal), Environment and Description fields only. Any

communication regarding the issue should be added in the comments of the issue for accurate

record.

To submit an issue in the Hibernate JIRA, you must have a (free) JIRA member account. You

can create a member account using the on-line registration [https://hibernate.atlassian.net/secure/

Signup!default.jspa].

beanvalidation-tck@redhat.com
https://hibernate.atlassian.net/browse/BVTCK
https://hibernate.atlassian.net/browse/BVTCK
https://hibernate.atlassian.net/browse/BVTCK
https://hibernate.atlassian.net/secure/Signup!default.jspa
https://hibernate.atlassian.net/secure/Signup!default.jspa
https://hibernate.atlassian.net/secure/Signup!default.jspa
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If you wish to make a private challenge, you should follow the above procedure, setting the Security

Level to Private. Only the issue reporter, TCK Project Lead and designates will be able to view

the issue. Should there be need for clarification or discussions before actually entering a bug into

the issue tracker, an email can be sent to beanvalidation-tck@redhat.com [mailto:beanvalidation-

tck@redhat.com].

2.4. How and by whom challenges are addressed?

The challenges will be addressed in a timely fashion by the Bean Validation TCK Project Lead,

as designated by Specification Lead, Red Hat, Inc. or his/her designate. The appellant can also

monitor the process by watching the issue filed against BVTCK [https://hibernate.atlassian.net/

browse/BVTCK].

The current TCK Project Lead is listed on the BVTCK Project Summary Page [https://

hibernate.atlassian.net/browse/BVTCK].

2.5. How accepted challenges to the TCK are managed?

Accepted challenges will be acknowledged via the filed issue's comment section. Communication

between the Bean Validation TCK Project Lead and the appellant will take place via the issue

comments. The issue's status will be set to "Resolved" when the TCK project lead believes the

issue to be resolved. The appellant should, within 30 days, either close the issue if they agree, or

reopen the issue if they do not believe the issue to be resolved.

Resolved issue not addressed for 30 days will be closed by the TCK Project Lead. If the TCK

Project Lead and appellant are unable to agree on the issue resolution, it will be referred to the

JSR 349 specification lead or his/her designate.

mailto:beanvalidation-tck@redhat.com
mailto:beanvalidation-tck@redhat.com
mailto:beanvalidation-tck@redhat.com
https://hibernate.atlassian.net/browse/BVTCK
https://hibernate.atlassian.net/browse/BVTCK
https://hibernate.atlassian.net/browse/BVTCK
https://hibernate.atlassian.net/browse/BVTCK
https://hibernate.atlassian.net/browse/BVTCK
https://hibernate.atlassian.net/browse/BVTCK
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Installation
This chapter explains how to obtain the TCK and supporting software and provides

recommendations for how to install/extract it on your system.

3.1. Obtaining the Software

You can obtain a release of the Bean Validation TCK project via the official Bean Validation

home page [http://beanvalidation.org/1.1/tck/]. The Bean Validation TCK is distributed as a ZIP

file, which contains the TCK artifacts (the test suite binary and source, the test suite descriptor,

the audit source and report), the TCK library dependencies in /lib and documentation in /doc.

The contents should look like:

artifacts/

changelog.txt

docs/

lib/

license.txt

setup-examples/

src/

readme.md

You can also download the source code from GitHub - https://github.com/beanvalidation/

beanvalidation-tck.

The JSR 349 reference implementation (RI) project is named Hibernate Validator. You can obtain

the Hibernate Validator release used as reference implementation from the Hibernate Validator

download page [http://www.hibernate.org/subprojects/validator/download].

Note

Hibernate Validator is not required for running the Bean Validation TCK, but it can

be used as a reference for familiarizing yourself with the TCK before testing your

own Bean Validation implementation.

3.2. The TCK Environment

The TCK requires the following two Java runtime environments:

• Java 6 or better

• Java EE 7 or better (e.g. Glassfish 4)

You should refer to vendor instructions for how to install the runtime.

http://beanvalidation.org/1.1/tck/
http://beanvalidation.org/1.1/tck/
http://beanvalidation.org/1.1/tck/
https://github.com/beanvalidation/beanvalidation-tck
https://github.com/beanvalidation/beanvalidation-tck
http://www.hibernate.org/subprojects/validator/download
http://www.hibernate.org/subprojects/validator/download
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The rest of the TCK software can simply be extracted. It's recommended that you create a

dedicated folder to hold all of the jsr349-related artifacts. This guide assumes the folder is called

jsr349. Extract the src folder of the TCK distribution into a sub-folder named tck or use the

following git commands:

git clone git://github.com/beanvalidation/beanvalidation-tck tck

git checkout 1.1.0.Final

You can also check out the full Hibernate Validator source into a subfolder ri. This will allow you

to run the TCK against Hibernate Validator.

git clone git://github.com/hibernate/hibernate-validator.git ri

git checkout 5.0.0.Final

The resulting folder structure is shown here:

jsr349/

   ri/

   tck/

Now lets have a look at one concrete test of the TCK, namely ConstraintInheritanceTest

(found in tck/tests/src/main/java/org/hibernate/beanvalidation/tck/tests/

constraints/inheritance/ConstraintInheritanceTest.java):

package org.hibernate.beanvalidation.tck.tests.constraints.inheritance;

import java.lang.annotation.Annotation;

import java.util.ArrayList;

import java.util.List;

import java.util.Set;

import javax.validation.ConstraintViolation;

import javax.validation.Validator;

import javax.validation.constraints.DecimalMin;

import javax.validation.constraints.NotNull;

import javax.validation.constraints.Size;

import javax.validation.metadata.BeanDescriptor;

import javax.validation.metadata.ConstraintDescriptor;

import javax.validation.metadata.PropertyDescriptor;

import org.jboss.arquillian.container.test.api.Deployment;

import org.jboss.arquillian.testng.Arquillian;

import org.jboss.shrinkwrap.api.spec.WebArchive;

import org.jboss.test.audit.annotations.SpecAssertion;

import org.jboss.test.audit.annotations.SpecAssertions;

import org.jboss.test.audit.annotations.SpecVersion;

import org.testng.annotations.BeforeMethod;

import org.testng.annotations.Test;
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import org.hibernate.beanvalidation.tck.util.TestUtil;

import org.hibernate.beanvalidation.tck.util.shrinkwrap.WebArchiveBuilder;

import static org.hibernate.beanvalidation.tck.util.TestUtil.assertCorrectConstraintTypes;

import static org.testng.Assert.assertEquals;

import static org.testng.Assert.assertTrue;

/**

 * @author Hardy Ferentschik

 */

@SpecVersion(spec = "beanvalidation", version = "1.1.0")

public class ConstraintInheritanceTest extends Arquillian {

    private Validator validator;

    @Deployment

    public static WebArchive createTestArchive() {

        return new WebArchiveBuilder()

                .withTestClassPackage( ConstraintInheritanceTest.class )

                .build();

    }

    @BeforeMethod

    public void setupValidator() {

        validator = TestUtil.getValidatorUnderTest();

    }

    @Test

    @SpecAssertion(section = "4.3", id = "b")

    public void testConstraintsOnSuperClassAreInherited() {

        BeanDescriptor beanDescriptor = validator.getConstraintsForClass( Bar.class );

        String propertyName = "foo";

        assertTrue( beanDescriptor.getConstraintsForProperty( propertyName ) != null );

        PropertyDescriptor propDescriptor =

 beanDescriptor.getConstraintsForProperty( propertyName );

        Annotation constraintAnnotation = propDescriptor.getConstraintDescriptors()

                .iterator()

                .next().getAnnotation();

        assertTrue( constraintAnnotation.annotationType() == NotNull.class );

    }

    @Test

    @SpecAssertions({

            @SpecAssertion(section = "4.3", id = "a"),

            @SpecAssertion(section = "4.3", id = "b")

    })

    public void testConstraintsOnInterfaceAreInherited() {

        BeanDescriptor beanDescriptor = validator.getConstraintsForClass( Bar.class );

        String propertyName = "fubar";

        assertTrue( beanDescriptor.getConstraintsForProperty( propertyName ) != null );

        PropertyDescriptor propDescriptor =

 beanDescriptor.getConstraintsForProperty( propertyName );

        Annotation constraintAnnotation = propDescriptor.getConstraintDescriptors()

                .iterator()
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                .next().getAnnotation();

        assertTrue( constraintAnnotation.annotationType() == NotNull.class );

    }

    @Test

    @SpecAssertions({

            @SpecAssertion(section = "4.3", id = "a"),

            @SpecAssertion(section = "4.3", id = "c")

    })

    public void testConstraintsOnInterfaceAndImplementationAddUp() {

        BeanDescriptor beanDescriptor = validator.getConstraintsForClass( Bar.class );

        String propertyName = "name";

        assertTrue( beanDescriptor.getConstraintsForProperty( propertyName ) != null );

        PropertyDescriptor propDescriptor =

 beanDescriptor.getConstraintsForProperty( propertyName );

        List<Class<? extends Annotation>> constraintTypes =

 getConstraintTypes( propDescriptor.getConstraintDescriptors() );

        assertEquals( constraintTypes.size(), 2 );

        assertTrue( constraintTypes.contains( DecimalMin.class ) );

        assertTrue( constraintTypes.contains( Size.class ) );

    }

    @Test

    @SpecAssertions({

            @SpecAssertion(section = "4.3", id = "a"),

            @SpecAssertion(section = "4.3", id = "c")

    })

    public void testConstraintsOnSuperAndSubClassAddUp() {

        BeanDescriptor beanDescriptor = validator.getConstraintsForClass( Bar.class );

        String propertyName = "lastName";

        assertTrue( beanDescriptor.getConstraintsForProperty( propertyName ) != null );

        PropertyDescriptor propDescriptor =

 beanDescriptor.getConstraintsForProperty( propertyName );

        List<Class<? extends Annotation>> constraintTypes =

 getConstraintTypes( propDescriptor.getConstraintDescriptors() );

        assertEquals( constraintTypes.size(), 2 );

        assertTrue( constraintTypes.contains( DecimalMin.class ) );

        assertTrue( constraintTypes.contains( Size.class ) );

    }

    @Test

    @SpecAssertion(section = "4.6", id = "a")

    public void testValidationConsidersConstraintsFromSuperTypes() {

        Set<ConstraintViolation<Bar>> violations = validator.validate( new Bar() );

        assertCorrectConstraintTypes(

                violations,

                DecimalMin.class, DecimalMin.class, ValidBar.class, //Bar

                NotNull.class, Size.class, ValidFoo.class, //Foo

                NotNull.class, Size.class, ValidFubar.class //Fubar

        );

    }
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    private List<Class<? extends Annotation>> getConstraintTypes(Iterable<ConstraintDescriptor<?

>> descriptors) {

        List<Class<? extends Annotation>> constraintTypes = new ArrayList<Class<? extends

 Annotation>>();

        for ( ConstraintDescriptor<?> constraintDescriptor : descriptors ) {

            constraintTypes.add( constraintDescriptor.getAnnotation().annotationType() );

        }

        return constraintTypes;

    }

}

Each test class is treated as an individual artifact (hence the @Deployment annotation on

the class). In most tests the created artifact is a standard Web application Archive [http://

en.wikipedia.org/wiki/WAR_file_format_%28Sun%29] build via WebArchiveBuilder which in turn

is a helper class of the TCK itself alleviating the creation of of the artifact. All methods annotated

with @Test are actual tests which are getting run. Last but not least we see the use of the

@SpecAssertion annotation which creates the link between the tck-audit.xml document and the

actual test (see Section 1.1, “TCK Primer”).

Running the TCK against the Bean Validation RI (Hibernate

Validator) and JBoss AS 7

• Install Maven. You can find documentation on how to install Maven 2 in

the Maven: The Definitive Guide [http://www.sonatype.com/books/maven-book/

reference/installation-sect-maven-install.html] book published by Sonatype.

• Change to the ri/hibernate-validator-tck-runner directory.

• Next, instruct Maven to run the TCK:

mvn test -Dincontainer

• TestNG will report, via Maven, the outcome of the run, and report any

failures on the console. Details can be found in target/surefire-reports/

TestSuite.txt.

http://en.wikipedia.org/wiki/WAR_file_format_%28Sun%29
http://en.wikipedia.org/wiki/WAR_file_format_%28Sun%29
http://en.wikipedia.org/wiki/WAR_file_format_%28Sun%29
http://www.sonatype.com/books/maven-book/reference/installation-sect-maven-install.html
http://www.sonatype.com/books/maven-book/reference/installation-sect-maven-install.html
http://www.sonatype.com/books/maven-book/reference/installation-sect-maven-install.html
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Reports
This chapter covers the two types of reports that can be generated from the TCK, an assertion

coverage report and the test execution results.

4.1. Bean Validation TCK Coverage Report

A specification can be distilled into a collection of assertions that define the behavior of the

software. This section introduces the Bean Validation TCK coverage report, which documents

the relationship between the assertions that have been identified in the JSR 349 specification

document and the tests in the TCK test suite.

The structure of this report is controlled by the assertion document, so we'll start there.

4.1.1. Bean Validation TCK Assertions

The Bean Validation TCK developers have analyzed the JSR 349 specification document and

identified the assertions that are present in each chapter. Here's an example of one such assertion

found in section 2.1: “Every constraint annotation must define a message element of type String”

The assertions are listed in the XML file tck-audit.xml in the Bean Validation TCK distribution.

Each assertion is identified by the section of the specification document in which it resides and

assigned a unique paragraph identifier to narrow down the location of the assertion further. To

continue with the example, the assertion shown above is listed in the tck-audit.xml file using

this XML fragment:

<section id="2.1.1" title="Constraint definition properties">

  ...

   <assertion id="c">

      <text>Every constraint annotation must define a message element of type String</text>

   </assertion>

  ...

</section>

The strategy of the Bean Validation TCK is to write a test which validates this assertion when

run against an implementation. A test case (a method annotated with @Test) is correlated with

an assertion using the @org.jboss.test.audit.annotations.SpecAssertion annotation as

follows:

@Test

@SpecAssertion(section = "2.1.1", id = "c")

public void testConstraintDefinitionWithoutMessageParameter() {

   try {

       Validator validator = TestUtil.getValidatorUnderTest();

       validator.validate( new DummyEntityNoMessage() );

       fail( "The used constraint does not define a message parameter. The validation should

 have failed." );
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   }

   catch ( ConstraintDefinitionException e ) {

       // success

}

To help evaluate the distribution of coverage for these assertions, the TCK provides a detailed

coverage report. This report is also useful to help implementors match tests with the language in

the specification that supports the behavior being tested.

4.1.2. The Coverage Report

The coverage report is an HTML report generated as part of the TCK project build. Specifically,

it is generated by an annotation processor that attaches to the compilation of the classes in the

TCK test suite.

Tip

You can find the source code for this processor in the GitHub repository https://

github.com/jboss/jboss-test-audit

The report is written to the file target/coverage-report/coverage-beanvalidation.html.

The report itself has five sections:

1. Chapter Summary - List the chapters (that contain assertions) in the specification document

along with total assertions, tests and coverage percentage.

2. Section Summary - Lists the sections (that contain assertions) in the specification document

along with total assertions, tests and coverage percentage.

3. Coverage Detail - Each assertion and the test that covers it, if any.

4. Unmatched Tests - A list of tests for which there is no matching assertion (useful during TCK

development).

5. Unversioned Tests - A list of tests for which there is no @SpecVersion annotation on the test

class (useful during TCK development).

The coverage report is color coded to indicate the status of an assertion, or group of assertions.

The status codes are as follows:

• Covered - a test exists for this assertion

• Not covered - no test exists for this assertion

• Unimplemented - a test exists, but is unimplemented

https://github.com/jboss/jboss-test-audit
https://github.com/jboss/jboss-test-audit
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• Untestable - the assertion has been deemed untestable, a note, explaining why, is normally

provided

For reasons provided in the tck-audit.xml document and presented in the coverage report,

some assertions are not testable.

The coverage report does not give any indication as to whether the tests are passing. That's where

the TestNG reports come in.

4.2. The TestNG Report

As you by now know, the Bean Validation TCK test suite is really just a TestNG test suite. That

means an execution of the Bean Validation TCK test suite produces all the same reports that

TestNG produces. This section will go over those reports and show you were to go to find each

of them.

4.2.1. Maven 2, Surefire and TestNG

When the Bean Validation TCK test suite is executed during the Maven 2 test phase of the TCK

runner project, TestNG is invoked indirectly through the Maven Surefire plugin. Surefire is a test

execution abstraction layer capable of executing a mix of tests written for JUnit, TestNG, and other

supported test frameworks.

Why is this relevant? It means two things. First, it means that you are going to get a summary

of the test run on the commandline. Here's the output generated when the tests are run using

standalone mode.

-------------------------------------------------------

 T E S T S

-------------------------------------------------------

Running TestSuite

Tests run: 697, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 26.413 sec

Results :

Tests run: 697, Failures: 0, Errors: 0, Skipped: 0

Note

The number of tests executed, the execution time, and the output will differ when

you run the tests using in-container mode as the Bean Validation TCK requires.

If the Maven reporting plugin that compliments Surefire is configured properly, Maven will also

generate a generic HTML test result report. That report is written to the file test-report.html in the

target/surefire-reports directory of the TCK runner project. It shows how many tests were

run, how many failed and the success rate of the test run.
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Running the TCK test suite
This chapter lays out how to run and configure the TCK harness against a given Bean Validation

provider in a given Java EE container. If you have not by now made yourself familiar with the

Arquillian documentation [https://docs.jboss.org/author/display/ARQ/Reference+Guide], this is a

good time to do it. It will give you a deeper understanding of the different parts described in the

following sections.

5.1. Setup examples

The TCK distribution comes with a directory setup-examples which contains two example

projects for running the TCK. If you followed the instructions in Chapter 3, Installation you find

the directory under jsr349/tck/setup-examples. Both setups are using Hibernate Validator as

Bean Validation Provider and Glassfish 4 as EE constainer. However, one is using Maven [http://

maven.apache.org/] as build tool to run the TCK, the other Ant [http://ant.apache.org/]. Depending

which of the examples you want to use, you need to install the corresponding build tool.

Each example comes with a readme.md containing the prerequisites for using this setup, how

to run the TCK against Hibernate Validator and Glassfish. The readme in setup-examples itself

contains information about what needs to be changed to use a different Bean Validation provider

and EE container.

The following chapters contain some more information about the general structure of the TCK

which will give you a deeper understanding above the simple readme files.

5.2. Configuring TestNG to execute the TCK

The Bean Validation test harness is built atop TestNG, and it is TestNG that is responsible for

selecting the tests to execute, the order of execution, and reporting the results. Detailed TestNG

documentation can be found at testng.org [http://testng.org/doc/documentation-main.html].

The tck-tests.xml artifact provided in the TCK distribution must be run by TestNG (described

by the TestNG documentation as "with a testng.xml file") unmodified for an implementation to

pass the TCK. For testing purposes it is of course ok to modify the file (see also the TestNG

documentation [http://testng.org/doc/documentation-main.html#testng-xml])

<suite name="JSR-349-TCK" verbose="1">

    <test name="JSR-349-TCK">

        <method-selectors>

            <method-selector>

                <selector-class

 name="org.hibernate.beanvalidation.tck.util.IntegrationTestsMethodSelector"/>

            </method-selector>

        </method-selectors>

        <packages>

https://docs.jboss.org/author/display/ARQ/Reference+Guide
https://docs.jboss.org/author/display/ARQ/Reference+Guide
http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/
http://ant.apache.org/
http://ant.apache.org/
http://testng.org/doc/documentation-main.html
http://testng.org/doc/documentation-main.html
http://testng.org/doc/documentation-main.html#testng-xml
http://testng.org/doc/documentation-main.html#testng-xml
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            <package name="org.hibernate.beanvalidation.tck.tests"/>

        </packages>

    </test>

</suite>

TestNG provides extensive reporting information. Depending on the build tool or IDE you use,

the reporting will take a different format. Please consult the TestNG documentation and the tool

documentation for more information.

5.3. Selecting the ValidationProvider

The most important configuration you have make in order to run the Bean Validation TCK is

to specify your ValidationProvider you want to run your tests against. To do so you need

to set the Java system property validation.provider to the fully specified class name of your

ValidationProvider. In Maven this is done via the systemProperties configuration option of the

maven-surefire-plugin, whereas sysproperty is used in an Ant testng task. This system property

will be picked up by org.hibernate.beanvalidation.tck.util.TestUtil which will instantiate

the Validator under test. This means the test harness does not rely on the service provider

mechanism to instantiate the Bean Validation provider under test, partly because this selection

mechanism is under test as well.

5.4. Selecting the DeployableContainer

After setting the ValidationProvider you have to make a choice on the right

DeployableContainer. Arquillian picks which container it is going to use to deploy the test archive

and negotiate test execution using Java's service provider mechanism. Concretely Arquillian is

looking for an implementation of the DeployableContainer SPI on the classpath. The setup

examples use a remote Glassfish container adapter, which means that Arquillian tries to deploy

the test artifacts onto a specified remote Glassfish instance, run the tests remotely and report the

results back to the current JVM. The installation directory of the remote container is specified via

the container.home property in the example build files.

Tip

To make it easier to develop, debug or test the TCK, an in JVM adapter is

provided as part of the distribution (beanvalidation-standalone-container-

adapter-1.1.0.Final.jar). Using this adapter the tests are not executed in a

remote Java EE container, but in the current JVM. This allows for easy and fast

debugging. Some tests, however, are only runnable in a EE container and will fail

in this in JVM execution mode. By setting the property excludeIntegrationTests to

true these tests can be excluded.

The adapter is also available as Maven artifact under

the GAV org.hibernate.beanvalidation.tck:beanvalidation-standalone-container-

adapter:1.1.0.Final. You can refer to pom.xml in the tck-runner module of Hibernate
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Validator (in the directory jsr349/ri/tck-runner, if you followed the instruction

in Chapter 3, Installation) to see how it is used.

5.5. arquillian.xml

The next piece in the configuration puzzle is arquillian.xml. This xml file needs to be in the

root of the classpath and is used to pass additional options to the selected container. Let's look

at an example:

<arquillian xmlns="http://jboss.org/schema/arquillian" xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance"

            xsi:schemaLocation="http://jboss.org/schema/arquillian

        http://jboss.org/schema/arquillian/arquillian_1_0.xsd">

    <defaultProtocol type="Servlet 3.0"/>

    <engine>

        <property name="deploymentExportPath">target/artifacts</property>

    </engine>

    <container qualifier="incontainer" default="true">

        <configuration>

            <property name="glassFishHome">@CONTAINER.HOME@</property>

            <property name="adminHost">localhost</property>

            <property name="adminPort">4848</property>

            <property name="debug">true</property>

        </configuration>

    </container>

</arquillian>

The most important container configuration option is the protocol type which determines how

Arquillian communicates with the selected container. The most popular types are Servlet 3.0 and

Local. The former is used when connecting to a remote container whereas the latter is used for

the in JVM mode.

Another interesting property is deploymentExportPath which is optional and instructs Arquillian to

dump the test artifacts to the specified directory on disk. Inspection of the deployed artifacts can

be very useful when debugging test failures.
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Running the Signature Test
One of the requirements of an implementation passing the TCK is for it to pass the Bean Validation

signature test. This section describes how the signature file is generated and how to run it against

your implementation.

6.1. Obtaining the sigtest tool

You can obtain the Sigtest tool from the Sigtest home page [https://wiki.openjdk.java.net/

display/CodeTools/SigTest]. The TCK uses version 3_0-dev-bin-b09-24_apr_2013 which can

be obtained from the SigTest download page [http://download.java.net/sigtest/download.html].

The user guide can be found here [http://download.oracle.com/javame/test-tools/sigtest/2_2/

sigtest2_2_usersguide.pdf] (the latest published documentation version is 2.2 but this

documentation still applies to SigTest 3.0 in general). The downloadable package contains the

jar files used in the commands below.

6.2. Creating the signature file

The TCK package contains the files validation-api-java6.sig, validation-api-java7.sig

and validation-api-java8.sig (in the artifacts directory) which were created using the

following commands:

// using Java 6

java -jar sigtestdev.jar Setup -classpath $JAVA_HOME/jre/lib/rt.jar:validation-

api-1.1.0.Final.jar -package javax.validation -filename validation-api-java6.sig

// using Java 7

java -jar sigtestdev.jar Setup -classpath $JAVA_HOME/jre/lib/rt.jar:validation-

api-1.1.0.Final.jar -package javax.validation -filename validation-api-java7.sig

// using Java 8

java -jar sigtestdev.jar Setup -classpath $JAVA_HOME/jre/lib/rt.jar:validation-

api-1.1.0.Final.jar -package javax.validation -filename validation-api-java8.sig

In order to pass the Bean Validation TCK you have to make sure that your API passes the signature

tests against validation-api.sig.

6.3. Running the signature test

To run the signature test use:

java -jar sigtest.jar Test -classpath $JAVA_HOME/jre/lib/rt.jar:validation-api-1.1.0.Final.jar

 -static -package javax.validation -filename validation-api-java6.sig

https://wiki.openjdk.java.net/display/CodeTools/SigTest
https://wiki.openjdk.java.net/display/CodeTools/SigTest
https://wiki.openjdk.java.net/display/CodeTools/SigTest
http://download.java.net/sigtest/download.html
http://download.java.net/sigtest/download.html
http://download.oracle.com/javame/test-tools/sigtest/2_2/sigtest2_2_usersguide.pdf
http://download.oracle.com/javame/test-tools/sigtest/2_2/sigtest2_2_usersguide.pdf
http://download.oracle.com/javame/test-tools/sigtest/2_2/sigtest2_2_usersguide.pdf
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You have to chose the right version of the signature file depending on your Java version. In order

to run against your own Bean Validation API replace validation-api-1.1.0.Final.jar with your own

API jar. You should get the message "STATUS:Passed.".

6.4. Forcing a signature test failure

Just for fun (and to confirm that the signature test is working correctly), you can try the following:

1) Edit validation-api-java6.sig

2) Modify one of the class signatures - in the following example we change one of the constructors

for ValidationException - here's the original:

CLSS public javax.validation.ValidationException

cons public ValidationException()

cons public ValidationException(java.lang.String)

cons public ValidationException(java.lang.String,java.lang.Throwable)

cons public ValidationException(java.lang.Throwable)

supr java.lang.RuntimeException

Let's change the default (empty) constructor parameter to one with a java.lang.Integer

parameter instead:

CLSS public javax.validation.ValidationException

cons public ValidationException(java.lang.Integer)

cons public ValidationException(java.lang.String)

cons public ValidationException(java.lang.String,java.lang.Throwable)

cons public ValidationException(java.lang.Throwable)

supr java.lang.RuntimeException

3) Now when we run the signature test using the above command, we should get the following

errors:

Missing Constructors

--------------------

javax.validation.ValidationException:   constructor public

 javax.validation.ValidationException.ValidationException(java.lang.Integer)

Added Constructors

------------------

javax.validation.ValidationException:   constructor public

 javax.validation.ValidationException.ValidationException()

STATUS:Failed.2 errors
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