HIBERNATE - Relational
Persistence for Idiomatic Java

1

Hibernate Reference
Documentation

3.5.6-Final

by Gavin King, Christian Bauer, Max Rydahl Andersen, Emmanuel Bernard, and Steve Ebersole

and thanks to James Cobb (Graphic Design) and Cheyenne Weaver (Graphic Design)

=Y 7= o <N Xi

I I 1 - PP 1
1.1. Part 1 - The first Hibernate Applicationccooiiiiiiiiiii e 1
ST = (] o PP PP 1
1.1.2. The firSt CIASS ..ovvuiiiiii e e 3
1.1.3. The mapping file ..o e 4
1.1.4. Hibernate configurationcooiiuiiiiiiiiiiii e 7
1.1.5. BUilding With MaVEeNcooiiiiiiiii e 9
1.1.6. Startup and hEIPEIScoouniiii e 9
1.1.7. Loading and Storing ODJECESvciiiiiiieiiiii e 10

1.2. Part 2 - Mapping aSSOCIALIONScvuuuiiiieieiieeie e e e e e e e e e e e e et e e eeens 13
1.2.1. Mapping the Person Classcoocoiuiiiiiiiiii e 13
1.2.2. A unidirectional Set-based associationccceeiiiiiiiiniiiiin 14
1.2.3. Working the assoCiationc..iiiiiiiiiiiiiii e 15
1.2.4. ColleCtion Of VAIUESuuiiiiiiiiieiiiii et e e 17
1.2.5. Bi-directional aSSOCIAtIONSiiiuiiiiiieii e 19
1.2.6. Working bi-directional linksccoooiiiiiii e, 19

1.3. Part 3 - The EventManager web applicationcooveveiiiniiiiiiinieiiii e 20
1.3.1. Writing the basiC SErvietoooiiiiii e 20
1.3.2. Processing and reNderingoveeeeuiieiieii e 22
1.3.3. Deploying and teSINGcccvvuieiiieii e 23

T4, SUMMIBIY oottt ettt ettt et e ettt et e e et et et e e et e e e et e eaneee 24
A N o 11 (=T o] AU = PP 25
N O 1YY 4T P 25
2.2, INSLANCE SAESiieeieiiii ettt et ettt et e e e e 28
2.3. IMX INTEGIALION ...eieiti ettt e e e e et e et e e e 28
N [@ NS 1 U o] [0 o S P 29
2.5, CONEXIUAL SESSIONSuiiieiiieeii et e e e e e e e et e et e e e e e et e e e e een s 29
G T 10 11 To [V 1= Lo I 31
3.1. Programmatic CONfIQUIALIONuuuiiiiiieieii ettt 31
3.2. Obtaining @ SESSIONFACIONYcivviiiiii e e 32
3.3. IDBC CONNECLIONS ...t e ettt e e e e e e et e e et e e et e e e e e eneeeens 32
3.4. Optional configuration ProPertieSccvuiiiiieiiie e e e s 34
O 1 @ T I I -1 £ P 41
3.4.2. Outer JOiN FELCNINGcovviiii e 42
3.4.3. BINAIY SIMEAMSuiiiiiiii ettt ettt e eaeans 42
3.4.4. Second-level and qUEry Cachecooovviiiiii i 42
3.4.5. Query Language SUDSHILULIONcoouuiiiiiiiiiiii e 42
3.4.6. Hibernate StatiStiCSoviiiiiiiiiiii e 42

3. LOGOING - teitieet ettt et 43
3.6. Implementing a NamingSIrategyecvuuieiiiiieiii e e e 43
3.7. XML configuration fileoiiieiiiiii e 44
3.8. J2EE Application Server integrationcc.oieiiiiiiiiiieiie e 45
3.8.1. Transaction strategy CONfIQUIAtioNcoouuiiiiiiiiinieiiii e 46

HIBERNATE - Relational Persis...

3.8.2. INDI-bound SeSSIONFACIONYcc.uiiiiiieiiiieee e e 47
3.8.3. Current Session context management with JTA ..o, 47
3.8.4. IMX dePIOYMENT ...ouiiiiii e 48

A, PerSiStENT ClaSSES ..ouiiiiiiiii ettt ettt e e e eaa s 51
4.1, A SiIMple POJO EXAaMPIEoveiiiiiiei e e 51
4.1.1. Implement a No-argument CONSIIUCTONiiiiuuneiiiii e 52
4.1.2. Provide an identifier property (Optional)ccooevviieiiiiiiiiiice e, 52
4.1.3. Prefer non-final classes (0ptional)cooouuiiiiiiiiiiiii e 53
4.1.4. Declare accessors and mutators for persistent fields (optional) 53

4.2, Implementing INNEHTANCEiiiiii e 53
4.3. Implementing equals() and hashCode()covvviiiiiiiiiiie e 54
4.4, DYNAMIC MOUEIS ...ttt ettt 55
T U o] =Y 57
4.6. EntityNaAmMERESOIVEIS ... oot e e 58
T S 1Y (ol @ L= 1Y F= T o 11 o 61
5.1. Mapping deCIArationuuiiiiiuiieieii e 61
LS IO T 5 To T 1Y/ o L= PP PP 62
5.1.2. Hibernate-mappingu oo 63
B.L.3. ClBSS ettt 64
L0 0 S T PP 67
5.1.5. Enhanced identifier generatorscoveviieiiiiieiiie e 71
5.1.6. Identifier generator Optimizationccoovieiiiiiiieiii e 72
L0 oo 1] o0 1= 1 £ o 73
5.1.8. DISCHMINGLOLuiitiieii e e e e e et e et e e e e eeenns 74
5.1.9. Version (OPLtiONAI)coeeniiiiiiii e 75
5.1.10. Timestamp (OPtIONAl)coeeiiniiiii e 76
L0 O o 0] o 1= 4 Y PP 77
5.1.12. MANY-T0-0NE ...ttt ettt 79
L0 0 G O @ T = (0 o [TP 81
51,14, NAUFAI-IA «.eeneee e e 83
5.1.15. Component and dynamiC-COMPONENtcc.cveviiieeiiiieiiieeeiie e ee e e 84
B5.1L16. PIOPEITIES ...ttt ettt 85
B.LLAT. SUDCIBSS ...oniiiiiiiee e 86
5.1.18. JOINEA-SUBCIASSuiiiiiei e 87
5.1.19. UNION-SUDCIASSvuiiiiiiiiiiiii et e e e 88
L0 02 0 TR o T o PP 89

LS 2 O 1= Y PR 90
5.1.22. Column and formula elementscooiiiiiiiiiiii e 91

D 23, IMIPOIT e 92

L 2 S N 3 PP 92

oI o 11 T= 0 F= L (=R 1Y/ 01 93
5.2.1. Entities @nd VAIUEScoouiiiiiiiiee e 93
5.2.2. BASIC VAIUB tYPES ...ciiiiiiii et 94
5.2.3. CUSIOM VAIUE TYPES ...eeiieiiiiieeeee ettt e 95

5.3. Mapping a class more than ONCEcoovuiiiiiii i 97

5.4. SQL quoted identifierscoouuuiiiiiiiie it 97
5.5. Metadata alternatiVEScooeiuiiieiiiii e 98
5.5.1. Using XDocClet MArkUpccouuuiiiiiiiiiiiiii e 98
5.5.2. Using JDK 5.0 ANNOLAtIONScovuuiiiiiiii e e e e e e e e e e e e e eaneens 100

5.6. Generated PrOPEITIESccouuuiiiiii ettt 101
5.7. Column read and WIite EXPreSSIONScouuiiiiiieiiieeiiiee e e e e e e e e eaeas 101
5.8. Auxiliary database ODJECTScooiiiiiiiii 101
LS Ote] 1T=Toa dTo Y T 4 -1 o o 112 Yo [103
6.1. Persistent COIECIONScoeuiiiiiie e e e e 103
(S IZ2 O1e]1[=Tox 1 To] o T ¢ g F=] 0] o 1= 104
6.2.1. Collection fOreign KEYSccouuuiiiiiiiiei e 105
6.2.2. COllECtiON ElEMENLS .. .ciiiiieee e 106
6.2.3. Indexed COlIECHIONSoouiiiii e 106
6.2.4. Collections of values and many-to-many associationscccc.cc.uue..e. 107
6.2.5. ONe-to-Many aSSOCIALIONSccuuuuiiiiiiiieieiii ettt eeanns 110

6.3. Advanced collection MapPPINgScccuuveiiieiiiier e e e 111
6.3.1. Sorted COIECONS .. .ceniiii i e 111
6.3.2. Bidirectional aSSOCIAtIONSuiiiiiiiiiieiiiiiie et e s 112
6.3.3. Bidirectional associations with indexed collectionsccccooviieeenn. 113
6.3.4. Ternary asSOCIAtIONSiiiuuieiiiieiiiiee e e e e e e e e e e e e e e eanas 114
6.3.5. USING @n <idbag™ccoovuiiiiiiiiicic e 115

6.4. COlIECtION EXAMPIES ..ovuiiiii e e e e e e e e e e e 115
7. ASSOCIAION MBPPINGS oertniiiiiii ettt ettt e ettt e e et et e e e eab e e eera e aeen 119
4% T T 1 (o To 11Tt o) o ISP 119
7.2. Unidirectional asSSOCIAtIONSccuuiiiiiiiiiiei e e 119
T.2.1, MANY-T0-0NE ouitiiiii e e e 119
A © L = (o R o] [PTP 119
T7.2.3. ONE-TO-MANY .ttt ettt e e e e e e 120

7.3. Unidirectional associations with join tablescccoooii 121
7.3. 1. ONE-TO-MANY .ttt et e e e 121
7.3.2. MANY-T0-0NE ..ottt ettt e 122
S TS T @ T = (0 o [PP 122
7.3.4. MaNY-T0-MANY ..ottt et e e e et e 123

7.4. Bidirectional aSSOCIAtIONScciiiuiiiiiiii e 124
7.4.1. one-to-mMany / ManY-10-0NE€iiiiuiiieiiiii ettt 124
A @ L = (0 o [PP 125

7.5. Bidirectional associations with join tables ... 126
7.5.1. one-to-many / MaNY-t0-0NEieiuuieeiiieieiieeei e e e e e e e e e e eaes 126
T.5.2. ONE 10 ONE oottt e e ettt eas 127
7.5.3. MaNY-TO-IMANY ...oiiiii e e aa e 127

7.6. More complex association MapPiNgScccuuuiereuiiieriiie e 128
ST OteY o] oTo T aT=T o a1, =T o« 11 o Yo [P 131
8.1. Dependent ODJECLSociiiiiieiiii et 131

HIBERNATE - Relational Persis...

8.2. Collections of dependent ObJECESccvvviiiiiiii e 133
8.3. Components as Map INAICESoiiiiiiiiieiii e 134
8.4. Components as composite identifierscooviiiiiiiiiii 134
8.5. DYNAMIC COMPONENTSiiiiiiieeeiiti ettt e e ettt e e et ettt e e e e e e e e eananns 136
L I oY o L=T g = Ve LoT I 4 =T o] o X1 o [P 139
9.1. The thre@ SErat@gIESuuiiiiii ettt e eeneas 139
9.1.1. Table per class hierarchyc.cccoiiiiiiiiii e, 139
9.1.2. Table per SUDCIASSccoouuiiiiii e 140
9.1.3. Table per subclass: using a disCriminatorcccciiieiiieeiiiiecie e, 140
9.1.4. Mixing table per class hierarchy with table per subclassc............. 141
9.1.5. Table per CONCrete ClasScccuuiiiiiiiie e 142
9.1.6. Table per concrete class using implicit polymorphismcccceeeieeene. 143
9.1.7. Mixing implicit polymorphism with other inheritance mappings 144

1S I I o 11 7= U1 T 1P 144
10. WOrking With OBJECTS ..iiuiii i e 147
10.1. Hibernate 0ObJECE STAESiiiiiiieiiii e 147
10.2. Making ObJECES PEIrSISIENTiiiii i e 147
10.3. LoAdING AN ODJECT ..oeuiiiiiii et 148
O @ VT oY/ T o PP 150
10.4.1. EXECULING QUETIES ..euueiiiii ettt ettt ettt eenaens 150
10.4.2. Filtering COIECLIONSiiiiieiiie e e 154
10.4.3. Criteria QUETIES ...ttt e e 155
10.4.4. Queries iN NAtIVE SQLiiiiiieiii e e 155
10.5. Modifying persistent ODJECESooiiiiiiiiii 155
10.6. Modifying detached ObJECESccovviiiiiii 156
10.7. Automatic state deteCtionoviieiiiiiii e 157
10.8. Deleting persistent ObJECESciiiiiii e 158
10.9. Replicating object between two different datastorescc.oceiveiiiiiiiiennnenn. 158
10.10. FIusShing the SESSIONuiiiiiiiiie e e e e e 159
10.11. TranSitive PEISISTENCEc.uuuiiiiiiiiieeii ettt eeeas 160
O 2 U T g T 41 = o = - 162
11. REAA-0NIY ENLITIES ..ottt et ebe s 163
11.1. Making persistent entities read-0nlyccoooeiiiiiiiiiii e 163
11.1.1. Entities of immutable ClasSescocouviiiiiiiiii 164
11.1.2. Loading persistent entities as read-onlyccooeoviiiiiiiiiniii e 164
11.1.3. Loading read-only entities from an HQL query/criteriaccccceveeennnn. 165
11.1.4. Making a persistent entity read-onlycccooeviiiiiiiiiiiin i 166
11.2. Read-only affect on Property tyPeocoeerii e 167
11.2.1. SIMPIE PrOPEITIES ..evniiiieii et e e e e 168
11.2.2. Unidirectional assoCIatioNSooieuiiiiiiiiiieeieee e 169
11.2.3. Bidirectional assoCiationsc.oiieiiiiiiiiiiin e 170

12. Transactions and CONCUITENCY ..ccoeuuuiiiiii ettt e et e s 173
12.1. Session and tranSaCtiON SCOPESuueiuueriieeiieeeiieeeie e et e e e eetaeeaaeeetaeaanaaeas 173
2 R I U 1o 1 o) LYo P 173

vi

12.1.2. LONQG CONVEISALIONSivvuiiiiieiiii eaes 174

12.1.3. Considering object IdeNntityccouuiiiiiiiiiiiii e 175
12.2.4. COMMON ISSUBS ..eevuiieiiiiiieeeiiti e e ettt e e e et e e e et e e e et e e e et e e e e et e eeeenennas 176
12.2. Database transaction demarCationooveeuiieiiiioiin e 177
12.2.1. Non-managed enVIrONMENToieiiiiiiiieei e e e e 178
12.2.2, USING JT A ittt e e e e 179
12.2.3. Exception handlingcoooiiiiiiii e 180
12.2.4. Transaction tIMEOULcc.uiiiiiii e 181
12.3. Optimistic CONCUITENCY CONEIOIivviiii e e 182
12.3.1. Application version ChecCkKingc.iveiiiiiiiiiiiiiee e 182
12.3.2. Extended session and automatic Versioningc.ccccceeeeiviievineeinnennnn. 183
12.3.3. Detached objects and automatic Versioningccceeveeeeviineeiininneeens 184
12.3.4. Customizing automatiC VErSiONINGcceeevvviiieiiieeiiii e e eeieeeaneens 184
12.4. PeSSIMISHC I0CKINGiiiiiieiiii e 185
12.5. ConNection release MOUEScoeuuiiiiiiii e e 186
13. INtErceptors AnNd EVENTS ...ttt et e 189
I T B 1 (=T (o =T o] (0] £ PP PRPIPRPPR 189
13.2. BEVENE SYSIEM L.ttt 191
13.3. Hibernate declarative SECUNILYoeiiiiiiiiiieiie e e e 192
14, BACh PrOCESSING ..iiiiiiiiiiii ettt e 195
I O -1 (o o BT Y=Y PO 195
14.2. BACh UPUALES ...t 196
14.3. The StatelessSession INterfacecoooueiiiiiiiiiiiiii e 196
14.4. DML-StYle OPEIAtiONSiiiiiiiiieiiii et eees 197
15. HQL: The Hibernate QUery LanQUAagecccuveviuieiiieiiiieeiie e eee e e e et e e e eaneees 201
15.1. CASE SENSILIVILY ..eevuuiiiiiiiee ittt e e 201
15.2. The frOM CIAUSEoeeeiici e 201
15.3. ASSOCIAtIONS AN JOINS .. .ceiitiiiiiiiii et 202
15.4. FOrms Of JOIN SYNTAX ...ivuuiiiiiieiie et e e e e e e e e e e e eaens 203
15.5. Referring to identifier Propertyoocoeuii i 204
15.6. The SEIECE CIAUSE ...c.uuiiiiiii et 204
15.7. Aggregate fUNCHONSiiiiiii e 206
15.8. POlYMOIPNIC QUEIIES ...ovniiiiicii et e e e e e e e aaas 206
15.9. The WHEIE CIAUSEceuieiiiiei et e e e e et eeanaeees 207
ST O R o] 1SS (o] PN 209
15.11. The order DY ClAUSEcoouuiiiiiiiii e 213
15.12. The group BY ClaUSEciiiiiii e 213
15.13. SUDQUETIES ...ttt ettt e e ettt e et e e et et eeeeba e aeee 214
15.14. HQL @XAMPIES ..ovniiiiieiii ettt e e e et e e e e e e e e eaaees 215
15.15. Bulk update and deleteoooiiiiiiiiii e 217
15.16. TIPS & THICKS ouuiiiiiiii et et e e e e e e e e e e e e eaaaas 217
15.17. COMPONENES ..eeieiiieiei ettt ettt e e et e e e e e e eeens 218
15.18. ROW Vvalue CONSIIUCION SYNEAXivvueiiieiiiieeiieeiii e e e e et e e e et e e e e e e eanaeeees 219
R O g1 (=T - RO U =T g = P 221

Vii

HIBERNATE - Relational Persis...

16.1. Creating @ Criteria INSTANCEcvvuieiiiie it e e e e e e e e ees 221
16.2. Narrowing the reSuUlt SETooouiii i 221
16.3. Ordering the FESUILScccvniii e 222
G =T Toi - o] PP 223
16.5. Dynamic association fetChingcccoiiiiii i, 224
16.6. EXAMPIE QUEIIES ...ttt ettt et et e e e e e eaaes 224
16.7. Projections, aggregation and groUpiNgccuveeuieriieeiineeie e erieeeieeeaneeanns 225
16.8. Detached queries and SUDQUENESccouuiiiiiiiiiiiiii e 227
16.9. Queries by natural identifierccoeviiiiiii i 227
17, NAEIVE SQL iiiiiiiiiiiiee et e e e e e e e e e e et e e e et e e e e e e e e et e aaaataaaaane 229
17.1. USING @ SQLQUETY ..ceiniiiiiie et e e et eee e e e e e e e e e e e e e e et e e aanaees 229
17.0.1. SCAlAr QUETIESvuiiiiiiii ettt ettt ettt e et e eeeab e eees 229
17.1.2. ENLLY QUEBIIES ..ovviiiii et e e e e e e e e aens 230
17.1.3. Handling associations and COlleCtioNSccccoiiiiiiiiiiiiiiiii e 230
17.1.4. Returning multiple entitiescooviiiiiiiiii e 231
17.1.5. Returning non-managed entitiesoooeuiiiiiiiinieeiieeee e 233
17.1.6. Handling INNEIANCEcevuiiiiii e 233
R G e T =10 1< = £ S PP 233
17.2. Named SQL QUETIES ...cuuueiiiieiiii et e e e e e e e e e e et e e e e e aaeeaens 234
17.2.1. Using return-property to explicitly specify column/alias names 235
17.2.2. Using stored procedures for qQUENYINGovevvueeiiiieiiiieiiieeciieeiiieeaias 236
17.3. Custom SQL for create, update and deletecooiiiiiiiiiiiiiii e, 237
17.4. Custom SQL fOr 10adingccccuuiiiiiiiiii e 239
18. FIlEEIING GALA ..eeeviiieiii e et 241
18.1. HIbernate fillerso.u i 241
19, XML MAPPING cettneiiiiiiie ettt ettt ettt e e e e et e 245
19.1. Working With XIML datalcovvuiiiiieiii e e e e e e 245
19.1.1. Specifying XML and class mapping togethercccoooveiiiiiiiiiiiineeenn. 245
19.1.2. Specifying only an XML Mappingcceeeuieriiieeiiieeiiiieeiieeeiieseieeeneeeens 246
19.2. XML mMapping Metadatalccuuuiiiimiieiii e 246
19.3. Manipulating XML Aatac.ueviiiiiiiieiii e e e e e e e e e 248
20. IMProving PerfOrManCEeuu i et eeees 251
20.1. FetChing SIrategIESiiiviieiiieiii et e e e e e e e e e e e e s 251
20.1.1. Working with lazy asSOCIatioNSoceeeuiieiiiiiieeeii e 252
20.1.2. Tuning fetCh Strategiescccvvniiiiiiiiie e 252
20.1.3. Single-ended assoCiation PrOXIEScc.uuiieiiiriiieiiiiiie et 253
20.1.4. Initializing collections and ProXi€scceeveviieeiiiieiiiie e e e eaieens 255
20.1.5. Using batch fetChingooooiiiiiiii e 257
20.1.6. Using subselect fetChingcccoviiiiiiiiiii e 257
20.1.7. Fetch Profiles ..o 258
20.1.8. Using lazy property fetChingccooviiiiiiii e 259
20.2. The Second Level CaChe ..o 260
20.2.1. CaChe MAPPINGS .uuiiiiiieii et e e e e e e e eaneee 261
20.2.2. Strategy: read ONIYoiiiiiiie e 261

viii

20.2.3. Strategy: reAA/WIILEiiii e e 262

20.2.4. Strategy: NONSIICE FEA/WITLEuuiiiiiiiieei e 262
20.2.5. Strategy: transactionalcoveiiiiiiii i 262
20.2.6. Cache-provider/concurrency-strategy compatibilitycccccoeeeeennnnnee. 262
20.3. Managing the CAChEScooiiiii e 263
20.4. The QUENY CaChe ... e 264
20.4.1. Enabling query Cachingcoooiiiiiiiiiiii e 264
20.4.2. QUETY CACNE TBOIONSciiiitiieeeeii ettt e et ettt e e e e eeeai e aees 265
20.5. Understanding Collection performancec.ooviiiiieiiiieiiii e 266
20.5.1. TAXONOIMY ..oitiiiiietii ettt ettt e et e e e e e e eeaneees 266
20.5.2. Lists, maps, idbags and sets are the most efficient collections to update... 267
20.5.3. Bags and lists are the most efficient inverse collections 267
20.5.4. ONE ShOt dElBLEuiiiiiiii e 267
20.6. MONItOriNg PEIOIMENCEuuuiiiiii et eeees 268
20.6.1. Monitoring @ SESSIONFACIONYoiviviieiiieei e e e 268

B I Y/ 1 1 o P 269

b2 e Yo £=Y=) A €1 0T Lo = RSP 271
21.1. Automatic SChema geNEratioNuiiiiiiuiieieiiie e 271
21.1.1. Customizing the SChemacoiiiii i 271
21.1.2. RUNNING the TOO0] ...t 274
40 S I T 0] 1= 4 1= 275
2104, USING AN ettt 275
21.1.5. Incremental schema UPAatesccouveiiiiiiiiiieii e 276
21.1.6. Using Ant for incremental schema updatesccccoeviiiiiiiiieiiiineeenns 276
21.1.7. Schema validationcooeuiiiiiiii e 277
21.1.8. Using Ant for schema validationcoooiiiiiiiiini e 277

22. Example: Parent/Childco.iiiiiii e e 279
22.1. A note about COIIECLIONSccun it 279
22.2. Bidirectional One-t0-Manycccouiiiiiiiiiiii e e 279
22.3. Cascading life CYCIE ... 281
22.4. Cascades and UNSaVed-VAlUEcooeiiiiiieiiiiiie e 282
2 T O] o Tor 11] T o I PPN 283
23. Example: Weblog AppliCationccoouiiiii e 285
23.1. PersiStENt ClaSSESuuiiieiiiiieii ettt 285
23.2. HIibernate MappinNgScovuueiiiieiiiiee e e e e e e e e e e 286
23.3. HIbernate Code ... 288
24. Example: Various MapPingS ..uciui e ioiiiieeiiee e e e e e e e e e e e e e e e e e e et e e e e eens 293
24.1. EMPIOYEITEMPIOYEE ...ttt ettt e 293
24.2. AULNOIIWOTK ..ooueiiiii et e et e 295
24.3. Customer/Order/ProdUCTccouiiiieee e e 297
24.4. Miscellaneous example MapPiNgS ...ccvviiirieiiierii e e e e e e 299
24.4.1. "Typed" 0ne-t0-0Ne aSSOCIALIONoeiivuiieiiiiie et 299
24.4.2. Composite KEY eXamPIEcouuiiiiieiiie e 299
24.4.3. Many-to-many with shared composite key attributecc....coiiieees 301

HIBERNATE - Relational Persis...

24.4.4. Content based diSCriminationccoveviiiiiieiiiiiii e 302

24.4.5. Associations on alternate KeYscooeuiiiiiiiiiiiiiice e 303

S 2 1= T B o - ol { o = PP 305
26. Database Portability ConSiderationscooviieiiiiiiiiiiii e 309
26.1. Portability BASICSuuiiiviieiiiieiiiee e e 309
B 1 - 1= o P 309
26.3. DialeCt rESOIULION ...evuiiiiiiii e 309
26.4. Identifier gENEIAtiONcouuuiiiiiiii e 310
26.5. Database fUNCLONSoiouiiiiii e e 311
26.6. TYPE MAPPINGS -..neeentneeeiiti ettt et et e e e et et eat et eaa e e eat e e e eaa e e eenan s 311

S (=] (=] o1 SRR 313

Preface

Working with object-oriented software and a relational database can be cumbersome and time
consuming in today's enterprise environments. Hibernate is an Object/Relational Mapping tool
for Java environments. The term Object/Relational Mapping (ORM) refers to the technique of
mapping a data representation from an object model to a relational data model with a SQL-based
schema.

Hibernate not only takes care of the mapping from Java classes to database tables (and from
Java data types to SQL data types), but also provides data query and retrieval facilities. It can
also significantly reduce development time otherwise spent with manual data handling in SQL
and JDBC.

Hibernate's goal is to relieve the developer from 95 percent of common data persistence related
programming tasks. Hibernate may not be the best solution for data-centric applications that
only use stored-procedures to implement the business logic in the database, it is most useful
with object-oriented domain models and business logic in the Java-based middle-tier. However,
Hibernate can certainly help you to remove or encapsulate vendor-specific SQL code and will help
with the common task of result set translation from a tabular representation to a graph of objects.

If you are new to Hibernate and Object/Relational Mapping or even Java, please follow these
steps:

1. Read Chapter 1, Tutorial for a tutorial with step-by-step instructions. The source code for the
tutorial is included in the distribution in the doc/ r ef erence/ t ut ori al / directory.

2. Read Chapter 2, Architecture to understand the environments where Hibernate can be used.

3. View the eg/ directory in the Hibernate distribution. It contains a simple standalone application.
Copy your JDBC driver to the | i b/ directory and edit et ¢/ hi ber nat e. properti es, specifying
correct values for your database. From a command prompt in the distribution directory, type
ant eg (using Ant), or under Windows, type bui | d eg.

4. Use this reference documentation as your primary source of information. Consider reading
[JPwH]if you need more help with application design, or if you prefer a step-by-step tutorial. Also
visit http://caveatemptor.hibernate.org and download the example application from [JPwH].

5. FAQs are answered on the Hibernate website.
6. Links to third party demos, examples, and tutorials are maintained on the Hibernate website.

7. The Community Area on the Hibernate website is a good resource for design patterns and
various integration solutions (Tomcat, JBoss AS, Struts, EJB, etc.).

If you have questions, use the user forum linked on the Hibernate website. We also provide a
JIRA issue tracking system for bug reports and feature requests. If you are interested in the
development of Hibernate, join the developer mailing list. If you are interested in translating this
documentation into your language, contact us on the developer mailing list.

Xi

http://caveatemptor.hibernate.org

Preface

Commercial development support, production support, and training for Hibernate is available
through JBoss Inc. (see http://www.hibernate.org/SupportTraining/). Hibernate is a Professional
Open Source project and a critical component of the JBoss Enterprise Middleware System (JEMS)
suite of products.

Xii

Chapter 1.

Tutorial

Intended for new users, this chapter provides an step-by-step introduction to Hibernate, starting
with a simple application using an in-memory database. The tutorial is based on an earlier tutorial
developed by Michael Gloegl. All code is contained in the t ut ori al s/ web directory of the project
source.

Important

This tutorial expects the user have knowledge of both Java and SQL. If you have
a limited knowledge of JAVA or SQL, it is advised that you start with a good
introduction to that technology prior to attempting to learn Hibernate.

@ Note

The distribution contains another example application under the tutori al / eg
project source directory.

1.1. Part 1 - The first Hibernate Application

For this example, we will set up a small database application that can store events we want to
attend and information about the host(s) of these events.

@ Note

Although you can use whatever database you feel comfortable using, we will use
[http://hsqldb.org/] (an in-memory, Java database) to avoid describing
installation/setup of any particular database servers.

1.1.1. Setup

The first thing we need to do is to set up the development environment. We will be using
the "standard layout” advocated by alot of build tools such as Maven [http://maven.org].
Maven, in particular, has a good resource describing this layout [http://maven.apache.org/guides/
introduction/introduction-to-the-standard-directory-layout.html]. As this tutorial is to be a web
application, we will be creating and making use of src/ mai n/j ava, src/ mai n/ resources and
src/ mai n/ webapp directories.

We will be using Maven in this tutorial, taking advantage of its transitive dependency management
capabilities as well as the ability of many IDEs to automatically set up a project for us based on
the maven descriptor.

http://hsqldb.org/
http://hsqldb.org/
http://maven.org
http://maven.org
http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html

Chapter 1. Tutorial

<project xm ns="http://maven. apache. org/ POM 4. 0. 0"
xm ns: xsi ="http://ww.w3. or g/ 2001/ XM_Schen®- i nst ance"
xsi : schenalLocati on="http://maven. apache. org/ POM 4. 0. 0 http://maven. apache. or g/ xsd/
maven-4. 0. 0. xsd" >

<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<groupl d>org. hi bernate. tutorial s</ groupl d>
<artifactld>hi bernate-tutorial </artifactld>
<versi on>1. 0. 0- SNAPSHOT</ ver si on>
<nanme>First Hi bernate Tutorial </ nane>

<bui | d>
<I-- we dont want the version to be part of the generated war file nane -->
<final Name>${artifactld}</final Nane>

</ bui | d>

<dependenci es>
<dependency>
<groupl d>or g. hi ber nat e</ gr oupl d>
<artifactld>hi bernate-core</artifactld>
</ dependency>

<l-- Because this is a web app, we al so have a dependency on the servlet api. -->
<dependency>

<gr oupl d>j avax. ser vl et </ gr oupl d>

<artifactld>servlet-api</artifactld>
</ dependency>

<I-- Hibernate uses slf4j for |ogging, for our purposes here use the sinple backend -->
<dependency>

<groupl d>org. sl f 4j </ gr oupl d>

<artifactld>slf4j-sinmple</artifactld>
</ dependency>

<l-- Hibernate gives you a choice of bytecode provi ders between cglib and javassist -->
<dependency>
<gr oupl d>j avassi st </ gr oupl d>
<artifactld>javassist</artifactld>
</ dependency>
</ dependenci es>

</ proj ect >

Tip

It is not a requirement to use Maven. If you wish to use something else to build
this tutorial (such as Ant), the layout will remain the same. The only change is
that you will need to manually account for all the needed dependencies. If you
use something like Ivy [http://ant.apache.org/ivy/] providing transitive dependency
management you would still use the dependencies mentioned below. Otherwise,
you'd need to grab all dependencies, both explicit and transitive, and add them
to the project's classpath. If working from the Hibernate distribution bundle, this

http://ant.apache.org/ivy/
http://ant.apache.org/ivy/

The first class

would mean hi ber nat e3. j ar, all artifacts in the | i b/ r equi r ed directory and all
files from either the | i b/ byt ecode/ cgli b orli b/ byt ecode/ j avassi st directory;

additionally you will need both the servlet-api jar and one of the slIf4j logging
backends.

Save this file as pom xn in the project root directory.

1.1.2. The first class

Next, we create a class that represents the event we want to store in the database; it is a simple
JavaBean class with some properties:

package org. hi bernate.tutorial.domain;
inport java.util.Date;

public class Event {
private Long id;

private String title;
private Date date;

public Event() {}

public Long getld() {
return id;

}

private void setld(Long id) {
this.id =id;
}

public Date getDate() {
return date;

}

public void setDate(Date date) {
this.date = date;

}

public String getTitle() {
return title;

}

public void setTitle(String title) {
this.title = title;
}

This class uses standard JavaBean naming conventions for property getter and setter methods,
as well as private visibility for the fields. Although this is the recommended design, it is not

Chapter 1. Tutorial

required. Hibernate can also access fields directly, the benefit of accessor methods is robustness
for refactoring.

The i d property holds a unique identifier value for a particular event. All persistent entity classes
(there are less important dependent classes as well) will need such an identifier property if we want
to use the full feature set of Hibernate. In fact, most applications, especially web applications, need
to distinguish objects by identifier, so you should consider this a feature rather than a limitation.
However, we usually do not manipulate the identity of an object, hence the setter method should
be private. Only Hibernate will assign identifiers when an object is saved. Hibernate can access
public, private, and protected accessor methods, as well as public, private and protected fields
directly. The choice is up to you and you can match it to fit your application design.

The no-argument constructor is a requirement for all persistent classes; Hibernate has to create
objects for you, using Java Reflection. The constructor can be private, however package or public
visibility is required for runtime proxy generation and efficient data retrieval without bytecode
instrumentation.

Save this file to the src/ mai n/ j ava/ or g/ hi ber nat e/ t ut ori al / domai n directory.

1.1.3. The mapping file

Hibernate needs to know how to load and store objects of the persistent class. This is where
the Hibernate mapping file comes into play. The mapping file tells Hibernate what table in the
database it has to access, and what columns in that table it should use.

The basic structure of a mapping file looks like this:

<?xm version="1.0"?>

<! DOCTYPE hi ber nat e- mappi ng PUBLI C
"-// Hi bernat e/ H bernate Mappi ng DID 3. 0//EN'
"http://hibernate. sourceforge. net/hi bernate-nmappi ng-3.0.dtd">

<hi ber nat e- mappi ng package="org. hi bernate. tutorial.domain">

[...1

</ hi ber nat e- mappi ng>

Hibernate DTD is sophisticated. You can use it for auto-completion of XML mapping elements
and attributes in your editor or IDE. Opening up the DTD file in your text editor is the easiest
way to get an overview of all elements and attributes, and to view the defaults, as well as some
comments. Hibernate will not load the DTD file from the web, but first look it up from the classpath
of the application. The DTD file is included in hi ber nat e-core. jar (it is also included in the
hi ber nat e3. j ar, if using the distribution bundle).

The mapping file

e | Important

We will omit the DTD declaration in future examples to shorten the code. It is, of
course, not optional.

Between the two hi ber nat e- mappi ng tags, include a cl ass element. All persistent entity classes
(again, there might be dependent classes later on, which are not first-class entities) need a
mapping to a table in the SQL database:

<hi ber nat e- mappi ng package="org. hi bernate. tutorial.domain">
<cl ass name="Event" tabl e="EVENTS">
</ cl ass>

</ hi ber nat e- mappi ng>

So far we have told Hibernate how to persist and load object of class Event to the table EVENTS.
Each instance is now represented by a row in that table. Now we can continue by mapping the
unigue identifier property to the tables primary key. As we do not want to care about handling
this identifier, we configure Hibernate's identifier generation strategy for a surrogate primary key
column:

<hi ber nat e- mappi ng package="or g. hi bernate.tutorial.domai n">

<cl ass nane="Event" tabl e="EVENTS">
<id nane="id" col um="EVENT_I D'>
<generator class="native"/>
</id>
</ cl ass>

</ hi ber nat e- mappi ng>

The i d element is the declaration of the identifier property. The name="i d" mapping attribute
declares the name of the JavaBean property and tells Hibernate to use the get 1 d() and set I d()
methods to access the property. The column attribute tells Hibernate which column of the EVENTS
table holds the primary key value.

The nested gener at or element specifies the identifier generation strategy (aka how are identifier
values generated?). In this case we choose nat i ve, which offers a level of portability depending
on the configured database dialect. Hibernate supports database generated, globally unique, as
well as application assigned, identifiers. Identifier value generation is also one of Hibernate's many
extension points and you can plugin in your own strategy.

Chapter 1. Tutorial

Tip

Q

nati ve is no longer consider the best strategy in terms of portability. for further
discussion, see Section 26.4, “Identifier generation”

Lastly, we need to tell Hibernate about the remaining entity class properties. By default, no
properties of the class are considered persistent:

<hi ber nat e- mappi ng package="org. hi bernate. tutorial . donai n">

<cl ass nane="Event" tabl e="EVENTS">
<id nane="id" col um="EVENT_I D"'>
<generator class="native"/>
</id>
<property nanme="date" type="tinestanp" col um="EVENT_DATE"/>
<property name="title"/>
</ cl ass>

</ hi ber nat e- mappi ng>

Similar to the i d element, the nanme attribute of the property element tells Hibernate which
getter and setter methods to use. In this case, Hibernate will search for get Dat e(), set Dat e(),
getTitle() andsetTitle() methods.

(3

Thetitl e mapping also lacks a t ype attribute. The types declared and used in the mapping files
are not Java data types; they are not SQL database types either. These types are called Hibernate
mapping types, converters which can translate from Java to SQL data types and vice versa. Again,
Hibernate will try to determine the correct conversion and mapping type itself if the t ype attribute
is not present in the mapping. In some cases this automatic detection using Reflection on the
Java class might not have the default you expect or need. This is the case with the dat e property.
Hibernate cannot know if the property, which is of j ava. uti | . Dat e, should map to a SQL dat e,
ti mest anp, or ti me column. Full date and time information is preserved by mapping the property
with a ti mest anp converter.

Hibernate configuration

Tip

Hibernate makes this mapping type determination using reflection when the
mapping files are processed. This can take time and resources, so if startup
performance is important you should consider explicitly defining the type to use.

Save this mapping file as src/main/resources/org/ hibernate/tutorial/domain/
Event. hbm xm .

1.1.4. Hibernate configuration

At this point, you should have the persistent class and its mapping file in place. It is now time to
configure Hibernate. First let's set up HSQLDB to run in "server mode"

(3

We will utilize the Maven exec plugin to launch the HSQLDB server by running: nvn exec: j ava
- Dexec. mai nCl ass="org. hsql db. Server" -Dexec. args="-database. 0 file:target/datal
tutorial" You will see it start up and bind to a TCP/IP socket; this is where our application will
connect later. If you want to start with a fresh database during this tutorial, shutdown HSQLDB,
delete all files in the t ar get / dat a directory, and start HSQLDB again.

Hibernate will be connecting to the database on behalf of your application, so it needs to know
how to obtain connections. For this tutorial we will be using a standalone connection pool (as
opposed to a j avax. sql . Dat aSour ce). Hibernate comes with support for two third-party open
source JDBC connection pools: c3p0 [https://sourceforge.net/projects/c3p0] and proxool [http://
proxool.sourceforge.net/]. However, we will be using the Hibernate built-in connection pool for
this tutorial.

¥

For Hibernate's configuration, we can use a simple hibernate. properties file, a more
sophisticated hi ber nat e. cf g. xn1 file, or even complete programmatic setup. Most users prefer
the XML configuration file:

<?xm version='"1.0" encoding='utf-8" ?>
<! DOCTYPE hi ber nat e-confi gurati on PUBLIC
"-//Hi bernate/H bernate Configuration DID 3.0//EN'

https://sourceforge.net/projects/c3p0
https://sourceforge.net/projects/c3p0
http://proxool.sourceforge.net/
http://proxool.sourceforge.net/
http://proxool.sourceforge.net/

Chapter 1. Tutorial

"http://hibernate. sourceforge. net/hi bernate-configuration-3.0.dtd">
<hi ber nat e- confi guration>
<session-factory>
<!-- Database connection settings -->
<property nanme="connection.driver_class">org. hsql db.jdbcDriver</property>
<property nanme="connection. url">jdbc: hsql db: hsql : / /1 ocal host </ property>
<property nanme="connecti on. user nane" >sa</ property>

<property nanme="connection. password"></ property>

<!-- JDBC connection pool (use the built-in) -->
<property name="connecti on. pool _si ze">1</property>

<l-- SQ dialect -->
<property nanme="di al ect">org. hi bernat e. di al ect. HSQLDi al ect </ property>

<!-- Enable Hibernate's autonmatic session context managenent -->
<property nanme="current_sessi on_context_cl ass">t hread</ property>

<!-- Disable the second-|evel cache -->
<property nanme="cache. provi der _cl ass">or g. hi ber nat e. cache. NoCachePr ovi der </ property>

<l-- Echo all executed SQ. to stdout -->
<property nanme="show_sql " >true</property>

<!-- Drop and re-create the database schema on startup -->
<property nanme="hbnRddl . aut 0" >updat e</ property>

<mappi ng resource="org/ hi bernate/tutorial/donain/Event. hbm xm "/>

</ sessi on-factory>

</ hi ber nat e- confi gurati on>

(3

You configure Hibernate's Sessi onFact ory. SessionFactory is a global factory responsible for
a particular database. If you have several databases, for easier startup you should use several
<sessi on- f act or y> configurations in several configuration files.

The first four property elements contain the necessary configuration for the JDBC connection.
The dialect pr operty element specifies the particular SQL variant Hibernate generates.

Tip

Q

In most cases, Hibernate is able to properly determine which dialect to use. See
Section 26.3, “Dialect resolution” for more information.

Building with Maven

Hibernate's automatic session management for persistence contexts is particularly useful in this
context. The hbnfddl . aut o option turns on automatic generation of database schemas directly
into the database. This can also be turned off by removing the configuration option, or redirected
to a file with the help of the SchemaExport Ant task. Finally, add the mapping file(s) for persistent
classes to the configuration.

Save this file as hi ber nat e. cf g. xml into the src/ mai n/ r esour ces directory.

1.1.5. Building with Maven

We will now build the tutorial with Maven. You will need to have Maven installed; it is available
from the Maven download page [http://maven.apache.org/download.html]. Maven will read the /
pom xmi file we created earlier and know how to perform some basic project tasks. First, lets run
the conpi | e goal to make sure we can compile everything so far:

[hi bernateTutorial]$ mvn conpile
[INFQ Scanning for projects...

[O I L LR T T
[INFQ Building First Hibernate Tutorial

[I NFQ task-segnment: [conpil €]
[I e LR e T

[INFQ [resources:resources]

[INFQ Using default encoding to copy filtered resources.

[INFQ [conpiler:conpile]

[INFQ Conpiling 1 source file to /home/steve/projects/sandbox/ hi bernateTutorial/target/classes

[INFG) ===s=sssessssscsssccasscasssasssassssssacssssassssasasacaassaaasaascaaaas
[INFQ BU LD SUCCESSFUL

[B R
[INFQ Total time: 2 seconds

[INFQ Finished at: Tue Jun 09 12:25:25 CDT 2009

[INFQ Final Menory: 5M 547M

[INEG] cccococcaccanononnonaacanonanneo0000a00a6056000000008600605000009000000

1.1.6. Startup and helpers

It is time to load and store some Event objects, but first you have to complete the
setup with some infrastructure code. You have to startup Hibernate by building a global
or g. hi ber nat e. Sessi onFactory object and storing it somewhere for easy access in
application code. A or g. hi ber nat e. Sessi onFact ory is used to obtain or g. hi ber nat e. Sessi on
instances. A org. hi bernate. Sessi on represents a single-threaded unit of work. The
or g. hi ber nat e. Sessi onFact ory is a thread-safe global object that is instantiated once.

We will create a Hi ber nat eUt i | helper class that takes care of startup and makes accessing the
or g. hi ber nat e. Sessi onFact ory more convenient.

package org. hibernate.tutorial.util;

i nport org.hibernate. Sessi onFactory;
inport org. hi bernate.cfg. Configuration;

http://maven.apache.org/download.html
http://maven.apache.org/download.html

Chapter 1. Tutorial

public class Hi bernateUtil {
private static final SessionFactory sessionFactory = buil dSessi onFactory();

private static SessionFactory buil dSessi onFactory() {

try {
/| Create the SessionFactory from hi bernate.cfg.xm
return new Configuration().configure().buil dSessionFactory();

}

catch (Throwabl e ex) {
/| Make sure you log the exception, as it mght be swall owed
Systemerr.println("Initial SessionFactory creation failed." + ex);
throw new ExceptionlnlnitializerError(ex);

}

public static SessionFactory get SessionFactory() {
return sessionFactory;

}

Save this code as src/ mai n/ java/ org/ hi bernate/tutorial /util/H bernateltil.java

This class not only produces the global or g. hi ber nat e. Sessi onFact ory reference in its static
initializer; it also hides the fact that it uses a static singleton. We might just as well have looked up
the or g. hi ber nat e. Sessi onFact ory reference from JNDI in an application server or any other
location for that matter.

If you give the or g. hi ber nat e. Sessi onFact ory a hame in your configuration, Hibernate will try
to bind it to JNDI under that name after it has been built. Another, better option is to use a JMX
deployment and let the JMX-capable container instantiate and bind a Hi ber nat eSer vi ce to JNDI.
Such advanced options are discussed later.

You now need to configure a logging system. Hibernate uses commons logging and provides two
choices: Log4j and JDK 1.4 logging. Most developers prefer Log4j: copy | og4j . properti es from
the Hibernate distribution in the et ¢/ directory to your sr ¢ directory, next to hi ber nat e. cf g. xm .
If you prefer to have more verbose output than that provided in the example configuration, you
can change the settings. By default, only the Hibernate startup message is shown on stdout.

The tutorial infrastructure is complete and you are now ready to do some real work with Hibernate.
1.1.7. Loading and storing objects
We are now ready to start doing some real work with Hibernate. Let's start by writing an

Event Manager class with a mai n() method:

package org. hibernate.tutorial;

i nport org.hi bernate. Sessi on;

10

Loading and storing objects

inmport java.util.*;

inmport org. hibernate.tutorial.donain. Event;
inport org.hibernate.tutorial.util.H bernateltil;

public class Event Manager {

public static void main(String[] args) {
Event Manager ngr = new Event Manager () ;

if (args[0].equal s("store")) {
ngr. cr eat eAndSt or eEvent ("My Event", new Date());
}

Hi bernateUtil . get Sessi onFactory().close();
}

private void createAndStoreEvent(String title, Date theDate) {
Sessi on session = HibernateUtil.getSessi onFactory().getCurrentSession();
sessi on. begi nTransacti on();

Event theEvent = new Event();
theEvent.setTitle(title);

t heEvent . set Dat e(t heDat e) ;
sessi on. save(t heEvent);

session. get Transaction().comit();

In cr eat eAndSt or eEvent () we created a new Event object and handed it over to Hibernate. At
that point, Hibernate takes care of the SQL and executes an | NSERT on the database.

A org.hibernate.Session is designed to represent a single unit of work (a single atomic piece of
work to be performed). For now we will keep things simple and assume a one-to-one granularity
between a Hibernate org.hibernate.Session and a database transaction. To shield our code from
the actual underlying transaction system we use the Hibernate or g. hi ber nat e. Transacti on
API. In this particular case we are using JDBC-based transactional semantics, but it could also
run with JTA.

What does sessi onFact ory. get Current Sessi on() do? First, you can call it as many times
and anywhere you like once you get hold of your org. hi bernate. Sessi onFactory. The
get Current Sessi on() method always returns the "current" unit of work. Remember that we
switched the configuration option for this mechanism to "thread" in our src/ mai n/ r esour ces/
hi ber nat e. cf g. xnml ? Due to that setting, the context of a current unit of work is bound to the
current Java thread that executes the application.

o | Important

Hibernate offers three methods of current session tracking. The "thread" based
method is not intended for production use; it is merely useful for prototyping and

11

Chapter 1. Tutorial

tutorials such as this one. Current session tracking is discussed in more detail later

on.

A org.hibernate.Session begins when the first call to get Current Sessi on() is made for the
current thread. It is then bound by Hibernate to the current thread. When the transaction ends,
either through commit or rollback, Hibernate automatically unbinds the org.hibernate.Session
from the thread and closes it for you. If you call get Cur r ent Sessi on() again, you get a new
org.hibernate.Session and can start a new unit of work.

Related to the unit of work scope, should the Hibernate org.hibernate.Session be used to execute
one or several database operations? The above example uses one org.hibernate.Session for one
operation. However this is pure coincidence; the example is just not complex enough to show
any other approach. The scope of a Hibernate org.hibernate.Session is flexible but you should
never design your application to use a new Hibernate org.hibernate.Session for every database
operation. Even though it is used in the following examples, consider session-per-operation an
anti-pattern. A real web application is shown later in the tutorial which will help illustrate this.

See Chapter 12, Transactions and Concurrency for more information about transaction handling
and demarcation. The previous example also skipped any error handling and rollback.

To run this, we will make use of the Maven exec plugin to call
our class with the necessary classpath setup: nwn exec: java -
Dexec. mai nCl ass="org. hi bernate. tutorial . Event Manager"” -Dexec.args="store"

@ Note

You may need to perform nvn conpi | e first.

You should see Hibernate starting up and, depending on your configuration, lots of log output.
Towards the end, the following line will be displayed:

[java] Hi bernate: insert into EVENTS (EVENT_DATE, title, EVENT_ID) values (?, ?, ?)

This is the | NSERT executed by Hibernate.

To list stored events an option is added to the main method:

if (args[0].equal s("store")) {
ngr. creat eAndSt oreEvent ("My Event", new Date());
}
else if (args[0].equals("list")) {
Li st events = ngr.listEvents();
for (int i =0; i < events.size(); i++) {
Event theEvent = (Event) events.get(i);
System out . printl n(
"Event: " + theEvent.getTitle() + " Time: " + theEvent.getDate()

12

Part 2 - Mapping associations

AnewlistEvents() nethod is al so added:

private List listEvents() {
Sessi on session = Hibernateltil.getSessi onFactory().getCurrent Session();
sessi on. begi nTransaction();
List result = session.createQuery("fromEvent").list();
session. get Transaction().comit();
return result;

Here, we are using a Hibernate Query Language (HQL) query to load all existing Event objects
from the database. Hibernate will generate the appropriate SQL, send it to the database and
populate Event objects with the data. You can create more complex queries with HQL. See
Chapter 15, HQL: The Hibernate Query Language for more information.

Now we can call our new functionality, again using the Maven exec plugin: nvn exec:java -

Dexec. mai nCl ass="org. hi bernate. tutorial . Event Manager" -Dexec.args="list"

1.2. Part 2 - Mapping associations

So far we have mapped a single persistent entity class to a table in isolation. Let's expand on that
a bit and add some class associations. We will add people to the application and store a list of
events in which they patrticipate.

1.2.1. Mapping the Person class

The first cut of the Per son class looks like this:

package org. hibernate.tutorial.domain;
public class Person {

private Long id;

private int age;

private String firstnane;

private String | astnane;

public Person() {}

/1 Accessor nethods for all properties, private setter for 'id'

Save this to a file named src/ mai n/ j ava/ or g/ hi bernat e/ t ut ori al / donai n/ Per son. j ava

13

Chapter 1. Tutorial

Next, create the new mapping file as sr ¢/ mai n/ r esour ces/ or g/ hi bernat e/ t ut ori al / donai n/
Per son. hbm xni

<hi ber nat e- mappi ng package="org. hi bernate.tutorial.domai n">

<cl ass name="Person" tabl e="PERSON' >

<id nanme="id" col um="PERSON | D'>
<generator class="native"/>

</id>
<property name="age"/>
<property name="firstname"/>
<property nanme="| ast nane"/ >

</ cl ass>

</ hi ber nat e- mappi ng>

Finally, add the new mapping to Hibernate's configuration:

<mappi ng resource="events/Event. hbm xm "/>
<mappi ng resource="event s/ Person. hbm xm "/ >

Create an association between these two entities. Persons can participate in events, and events
have participants. The design questions you have to deal with are: directionality, multiplicity, and
collection behavior.

1.2.2. A unidirectional Set-based association

By adding a collection of events to the Per son class, you can easily navigate to the events for a
particular person, without executing an explicit query - by calling Per son#get Event s. Multi-valued
associations are represented in Hibernate by one of the Java Collection Framework contracts;
here we choose aj ava. util . Set because the collection will not contain duplicate elements and
the ordering is not relevant to our examples:

public class Person {
private Set events = new HashSet();
public Set getEvents() {

return events;

public void setEvents(Set events) {
this.events = events;

14

Working the association

Before mapping this association, let's consider the other side. We could just keep this
unidirectional or create another collection on the Event , if we wanted to be able to navigate it from
both directions. This is not necessary, from a functional perspective. You can always execute an
explicit query to retrieve the participants for a particular event. This is a design choice left to you,
but what is clear from this discussion is the multiplicity of the association: "many" valued on both
sides is called a many-to-many association. Hence, we use Hibernate's many-to-many mapping:

<cl ass nanme="Person" tabl e=" PERSON' >
<id name="id" col um="PERSON | D'>
<generator class="native"/>
</id>
<property nanme="age"/>
<property name="firstname"/>
<property name="| ast name"/>

<set name="events" tabl e="PERSON_EVENT" >

<key col um="PERSON_| D"/ >

<many-to-many col um="EVENT_I D' cl ass="Event"/>
</ set>

</ cl ass>

Hibernate supports a broad range of collection mappings, a set being most common. For a many-
to-many association, or n:m entity relationship, an association table is required. Each row in this
table represents a link between a person and an event. The table name is decalred using the t abl e
attribute of the set element. The identifier column name in the association, for the person side, is
defined with the key element, the column name for the event's side with the col um attribute of
the many-t o- many. You also have to tell Hibernate the class of the objects in your collection (the
class on the other side of the collection of references).

The database schema for this mapping is therefore:

I I

| EVENTS | | PERSON_EVENT | | |
— I I I PERSON |
I					
*EVENT_ID	<-->	*EVENT_	D		
EVENT_DATE		*PERSON_I D	<-->	*PERSON_ID	
TITLE				AGE	
]	FIRSTNAME				
LASTNAME					

I

1.2.3. Working the association

Now we will bring some people and events together in a new method in Event Manager :

15

Chapter 1. Tutorial

private voi d addPer sonToEvent (Long personld, Long eventld) {
Session session = HibernateUtil.getSessionFactory().getCurrentSession();
sessi on. begi nTransaction();

Person aPerson = (Person) session.|oad(Person.class, personld);
Event anEvent = (Event) session.|oad(Event.class, eventld);
aPer son. get Event s() . add(anEvent);

sessi on. get Transaction().comit();

After loading a Per son and an Event, simply modify the collection using the normal collection
methods. There is no explicit call to updat e() or save() ; Hibernate automatically detects that the
collection has been modified and needs to be updated. This is called automatic dirty checking. You
can also try it by modifying the name or the date property of any of your objects. As long as they are
in persistent state, that is, bound to a particular Hibernate or g. hi ber nat e. Sessi on, Hibernate
monitors any changes and executes SQL in a write-behind fashion. The process of synchronizing
the memory state with the database, usually only at the end of a unit of work, is called flushing. In
our code, the unit of work ends with a commit, or rollback, of the database transaction.

You can load person and event in different units of work. Or you can modify an object outside of
aorg. hi bernat e. Sessi on, when it is not in persistent state (if it was persistent before, this state
is called detached). You can even modify a collection when it is detached:

private void addPer sonToEvent (Long personld, Long eventld) {
Session session = HibernateUtil.getSessionFactory().getCurrentSession();
sessi on. begi nTransaction();

Person aPerson = (Person) session
.createQuery("select p fromPerson p left join fetch p.events where p.id = :pid")
.set Paraneter("pid', personld)
.uniqueResult(); // Eager fetch the collection so we can use it detached
Event anEvent = (Event) session.|oad(Event.class, eventld);
session. get Transaction().comit();
/1 End of first unit of work
aPer son. get Event s() . add(anEvent); // aPerson (and its collection) is detached
/1 Begin second unit of work
Session session2 = HibernateUtil.get Sessi onFactory().getCurrent Session();
sessi on2. begi nTransaction();

sessi on2. updat e(aPerson); // Reattachment of aPerson

session2. get Transaction().comit();

16

Collection of values

The call to updat e makes a detached object persistent again by binding it to a new unit of work,
so any modifications you made to it while detached can be saved to the database. This includes
any modifications (additions/deletions) you made to a collection of that entity object.

This is not much use in our example, but it is an important concept you can incorporate into
your own application. Complete this exercise by adding a new action to the main method of the
Event Manager and call it from the command line. If you need the identifiers of a person and an
event - the save() method returns it (you might have to modify some of the previous methods
to return that identifier):

else if (args[0].equal s("addpersontoevent")) {
Long eventld = ngr.createAndStoreEvent ("My Event", new Date());
Long personld = ngr.creat eAndSt or ePer son("Foo", "Bar");
ngr . addPer sonToEvent (personld, eventld);
System out. println("Added person " + personld + " to event " + eventld);

This is an example of an association between two equally important classes : two entities. As
mentioned earlier, there are other classes and types in a typical model, usually "less important".
Some you have already seen, like anint or ajava.l ang. String. We call these classes value
types, and their instances depend on a particular entity. Instances of these types do not have
their own identity, nor are they shared between entities. Two persons do not reference the same
first name object, even if they have the same first name. Value types cannot only be found in the
JDK, but you can also write dependent classes yourself such as an Addr ess or Monet ar yAmount
class. In fact, in a Hibernate application all JDK classes are considered value types.

You can also design a collection of value types. This is conceptually different from a collection of
references to other entities, but looks almost the same in Java.

1.2.4. Collection of values

Let's add a collection of email addresses to the Per son entity. This will be represented as a
java. util.Set ofjava. |l ang. Stri ng instances:

private Set email Addresses = new HashSet ();

public Set getEmail Addresses() {
return email Addr esses;

}

public void setEnmail Addresses(Set emai | Addresses) {
this.emil| Addresses = emai | Addr esses;

}

The mapping of this Set is as follows:

17

Chapter 1. Tutorial

<set name="enmi | Addresses" tabl e="PERSON_EMAI L_ADDR' >
<key col um="PERSON_| D"/ >
<el enent type="string" colum="EMAI L_ADDR"'/>

</ set>

The difference compared with the earlier mapping is the use of the el ement part which tells
Hibernate that the collection does not contain references to another entity, but is rather a collection
whose elements are values types, here specifically of type st ri ng. The lowercase name tells you
it is a Hibernate mapping type/converter. Again the t abl e attribute of the set element determines
the table name for the collection. The key element defines the foreign-key column name in the
collection table. The col um attribute in the el enent element defines the column name where the
email address values will actually be stored.

Here is the updated schema:

| |

| EVENTS | | PERSON_EVENT | | |
— | | | PERSON | | [
]	PERSON_EMAI L_ADDR		
*EVENT ID	<-->	*EVENT_ID				
EVENT_DATE		*PERSON_I D	<-->	*PERSON.ID	<-->	*PERSON_ID
TITLE				AGE		*EMAIL_ADDR
	FIRSTNAME					

| LASTNAME |

|

You can see that the primary key of the collection table is in fact a composite key that uses both
columns. This also implies that there cannot be duplicate email addresses per person, which is
exactly the semantics we need for a set in Java.

You can now try to add elements to this collection, just like we did before by linking persons and
events. It is the same code in Java:

private void addEnai |l ToPer son(Long personld, String enmil Address) {
Sessi on session = Hibernateltil.getSessi onFactory().getCurrentSession();
sessi on. begi nTransaction();

Person aPerson = (Person) session.|oad(Person.class, personld);
/1 adding to the emil Address collection mght trigger a lazy |oad of the collection

aPer son. get Emai | Addr esses() . add(enai | Addr ess) ;

session. get Transaction().comit();

18

Bi-directional associations

This time we did not use a fetch query to initialize the collection. Monitor the SQL log and try to
optimize this with an eager fetch.

1.2.5. Bi-directional associations

Next you will map a bi-directional association. You will make the association between person and
event work from both sides in Java. The database schema does not change, so you will still have
many-to-many multiplicity.

@ Note

A relational database is more flexible than a network programming language, in
that it does not need a navigation direction; data can be viewed and retrieved in
any possible way.

First, add a collection of participants to the Event class:

private Set participants = new HashSet ();

public Set getParticipants() {
return participants;

}

public void setParticipants(Set participants) {
this.participants = participants;

}
Now map this side of the association in Event . hbm xm .

<set name="participants" tabl e="PERSON EVENT" inverse="true">
<key colum="EVENT_I D"/ >
<many-to-many col um="PERSON_|I D' cl ass="events. Person"/>
</ set>

These are normal set mappings in both mapping documents. Notice that the column names in
key and many-t o- many swap in both mapping documents. The most important addition here is
the i nverse="true" attribute in the set element of the Event 's collection mapping.

What this means is that Hibernate should take the other side, the Per son class, when it needs to
find out information about the link between the two. This will be a lot easier to understand once
you see how the bi-directional link between our two entities is created.

1.2.6. Working bi-directional links

First, keep in mind that Hibernate does not affect normal Java semantics. How did we create
a link between a Person and an Event in the unidirectional example? You add an instance of

19

Chapter 1. Tutorial

Event to the collection of event references, of an instance of Per son. If you want to make this
link bi-directional, you have to do the same on the other side by adding a Per son reference to
the collection in an Event . This process of "setting the link on both sides" is absolutely necessary
with bi-directional links.

Many developers program defensively and create link management methods to correctly set both
sides (for example, in Per son):

protected Set getEvents() {
return events;

}

protected void set Events(Set events) {
this.events = events;

}

public void addToEvent (Event event) {
this.get Events().add(event);
event.getPartici pants().add(this);
}

public void renmoveFronEvent (Event event) {
this.getEvents().renpve(event);
event.getParticipants().renmove(this);

The get and set methods for the collection are now protected. This allows classes in the same
package and subclasses to still access the methods, but prevents everybody else from altering
the collections directly. Repeat the steps for the collection on the other side.

What about the i nver se mapping attribute? For you, and for Java, a bi-directional link is simply
a matter of setting the references on both sides correctly. Hibernate, however, does not have
enough information to correctly arrange SQL | NSERT and UPDATE statements (to avoid constraint
violations). Making one side of the association i nver se tells Hibernate to consider it a mirror
of the other side. That is all that is necessary for Hibernate to resolve any issues that arise
when transforming a directional navigation model to a SQL database schema. The rules are
straightforward: all bi-directional associations need one side as i nverse. In a one-to-many
association it has to be the many-side, and in many-to-many association you can select either side.

1.3. Part 3 - The EventManager web application

A Hibernate web application uses Sessi on and Tr ansact i on almost like a standalone application.
However, some common patterns are useful. You can now write an Event Manager Ser vl et . This
servlet can list all events stored in the database, and it provides an HTML form to enter new events.

1.3.1. Writing the basic servlet

First we need create our basic processing servlet. Since our servlet only handles HTTP GET
requests, we will only implement the doGet () method:

20

Writing the basic servlet

package org. hi bernate.tutorial.web;
/1 1nports
public class Event Manager Servl et extends HttpServlet {

protected void doCet (
Htt pSer vl et Request request,
Ht t pSer vl et Response response) throws Servl et Exception, | OException {

Si npl eDat eFor mat dat eFormatter = new Si npl eDat eFor mat ("dd. MM yyyy");

try {
/1 Begin unit of work

Hi bernateUti | . get Sessi onFactory(). get Current Sessi on() . begi nTransacti on();
/'l Process request and render page...

/1 End unit of work
Hi bernateUtil . get Sessi onFactory().get Current Session().getTransaction().conmit();

}
catch (Exception ex) {

Hi bernateUtil . get Sessi onFactory().get Current Session().getTransaction().rollback();
if (ServletException.class.islnstance(ex)) {
throw (Servl et Exception) ex;

}
el se {
throw new Servl et Exception(ex);

Save this servlet as src/ mai n/ j aval or g/ hi bernat e/ tutori al / web/
Event Manager Servl et . j ava

The pattern applied here is called session-per-request. When a request hits the servlet, a
new Hibernate Session is opened through the first call to get Current Session() on the
Sessi onFact ory. A database transaction is then started. All data access occurs inside a
transaction irrespective of whether the data is read or written. Do not use the auto-commit mode
in applications.

Do not use a new Hibernate Sessi on for every database operation. Use one Hibernate Sessi on
that is scoped to the whole request. Use get Cur r ent Sessi on(), so that it is automatically bound
to the current Java thread.

Next, the possible actions of the request are processed and the response HTML is rendered. We
will get to that part soon.

Finally, the unit of work ends when processing and rendering are complete. If any problems
occurred during processing or rendering, an exception will be thrown and the database transaction
rolled back. This completes the sessi on-per-request pattern. Instead of the transaction

21

Chapter 1. Tutorial

demarcation code in every servlet, you could also write a servlet filter. See the Hibernate website
and Wiki for more information about this pattern called Open Session in View. You will need it as
soon as you consider rendering your view in JSP, not in a servlet.

1.3.2. Processing and rendering

Now you can implement the processing of the request and the rendering of the page.

/1 Wite HTML header
PrintWiter out = response.getWiter();
out.println("<htn ><head><title>Event Manager</title></head><body>");

/] Handl e actions
if ("store".equal s(request.getParaneter("action"))) {

String eventTitle = request.getParaneter("eventTitle");
String eventDate = request. getParaneter("eventDate");

if ("".equals(eventTitle) || "".equal s(eventDate)) {
out.println("<i>Pl ease enter event title and date.</i>");

}

el se {
creat eAndSt or eEvent (event Titl e, dateFormatter. parse(eventDate));
out. println("<i >Added event.</i>");

}

/1 Print page
print Event Forn{out);
|'i st Events(out, dateFormatter);

/1 Wite HTM. footer

out. println("</body></htm >");
out. flush();

out.close();

This coding style, with a mix of Java and HTML, would not scale in a more complex application-
keep in mind that we are only illustrating basic Hibernate concepts in this tutorial. The code prints
an HTML header and a footer. Inside this page, an HTML form for event entry and a list of all
events in the database are printed. The first method is trivial and only outputs HTML:

private void printEventForm(PrintWiter out) {
out.println("<h2>Add new event: </ h2>");
out.println("<fornp");
out.println("Title: <input nane='eventTitle' |ength="50"/>
");
out.println("Date (e.g. 24.12.2009): <input nane='eventDate' |ength="10"'/>
");
out.println("<input type='subnmit' nane='action' value= store'/>");
out.println("</fornp");

22

Deploying and testing

The |i st Event s() method uses the Hibernate Sessi on bound to the current thread to execute

a query:

private void listEvents(PrintWiter out,

List result

if (result.size() > 0) {
<h2>Events in database: </ h2>");
<tabl e border="1">");

out .
out .
out .
out.
out .
out .

println("
println("
println("
println("
println("
println("

Iterator it
while (it.hasNext()) {

Event event = (Event)
out.println("<tr>");

}

out.println("
out.println("

<tr>");

<th>Event title</th>");
<t h>Event date</th>");

</[tr>");

out.println("</tr>");

out.println("</table>");

=result.iterator();

it.next();

= Hi bernateUtil.get Sessi onFactory()
.getCurrent Session().createCriteria(Event.class).list();

<td>" + event.getTitle() + "</td>");
<td>" + dateFornatter.format(event.getDate()) + "</td>");

Si npl eDat eFor nat dateFormatter) {

Finally, the st or e action is dispatched to the cr eat eAndSt or eEvent () method, which also uses
the Sessi on of the current thread:

protected void createAndStoreEvent (String title,

Event theEvent =
theEvent.setTitle(title);
theEvent . set Dat e(t heDat e) ;

new Event();

Hi bernatelUtil . get Sessi onFactory()

. get Current Sessi on() . save(theEvent);

Date theDate) {

The servlet is now complete. A request to the servlet will be processed in a single Sessi on and
Transacti on. As earlier in the standalone application, Hibernate can automatically bind these
objects to the current thread of execution. This gives you the freedom to layer your code and
access the Sessi onFactory in any way you like. Usually you would use a more sophisticated
design and move the data access code into data access objects (the DAO pattern). See the
Hibernate Wiki for more examples.

1.3.3. Deploying and testing

To deploy this application for testing we must create a Web ARchive (WAR). First we must define
the WAR descriptor as sr ¢/ mai n/ webapp/ VEB- | NF/ web. xm

23

Chapter 1. Tutorial

<?xm version="1.0" encodi ng="UTF-8"?>
<web- app version="2.4"
xm ns="http://java. sun. conf xm / ns/ j 2ee"
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schema- i nst ance"
xsi :schemaLocation="http://java.sun.com xm /ns/j2ee http://java.sun.conm xm /ns/j2eel/ web-
app_2_4. xsd" >

<servl et>

<servl et-name>Event Manager </ servl et - nane>

<servl et-class>org. hibernate. tutorial.web. Event Manager Servl et </ servl et -cl ass>
</servlet>

<servl et - mappi ng>
<servl et - nane>Event Manager </ servl et - nane>
<url - pattern>/event manager</url -pattern>
</ servl et - nappi ng>
</ web- app>

To build and deploy call mvn package in your project directory and copy the hi ber nat e-
tutorial.war file into your Tomcat webapps directory.

http://tomcat.apache.org/

Once deployed and Tomcat is running, access the application at http://1 ocal host: 8080/
hi ber nate-tutorial / event manager. Make sure you watch the Tomcat log to see Hibernate
initialize when the first request hits your servlet (the static initializer in Hi ber nateUt i | is called)
and to get the detailed output if any exceptions occurs.

1.4. Summary

This tutorial covered the basics of writing a simple standalone Hibernate application and a small
web application. More tutorials are available from the Hibernate website [http://hibernate.org].

24

http://tomcat.apache.org/
http://hibernate.org
http://hibernate.org

Chapter 2.

Architecture

2.1. Overview

The diagram below provides a high-level view of the Hibernate architecture:

Application

Persistent Objects

HIBERNATE

hi . ,
pr aper t1 65 AL R TR

Database

We do not have the scope in this document to provide a more detailed view of all the runtime
architectures available; Hibernate is flexible and supports several different approaches. We will,
however, show the two extremes: "minimal" architecture and "comprehensive" architecture.

This next diagram illustrates how Hibernate utilizes database and configuration data to provide
persistence services, and persistent objects, to the application.

The "minimal" architecture has the application provide its own JDBC connections and manage its
own transactions. This approach uses a minimal subset of Hibernate's APIs:

25

Chapter 2. Architecture

The "comprehensive" architecture abstracts the application away from the underlying JDBC/JTA
APIs and allows Hibernate to manage the details.

Here are some definitions of the objects depicted in the diagrams:

26

Overview

SessionFactory (or g. hi ber nat e. Sessi onFact ory)
A threadsafe, immutable cache of compiled mappings for a single database. A factory
for Sessi on and a client of Connecti onProvi der, Sessi onFactory can hold an optional
(second-level) cache of data that is reusable between transactions at a process, or cluster,
level.

Session (or g. hi ber nat e. Sessi on)
A single-threaded, short-lived object representing a conversation between the application and
the persistent store. It wraps a JDBC connection and is a factory for Tr ansacti on. Sessi on
holds a mandatory first-level cache of persistent objects that are used when navigating the
object graph or looking up objects by identifier.

Persistent objects and collections
Short-lived, single threaded objects containing persistent state and business function. These
can be ordinary JavaBeans/POJOs. They are associated with exactly one Sessi on. Once the
Sessi on is closed, they will be detached and free to use in any application layer (for example,
directly as data transfer objects to and from presentation).

Transient and detached objects and collections
Instances of persistent classes that are not currently associated with a Sessi on. They may
have been instantiated by the application and not yet persisted, or they may have been
instantiated by a closed Sessi on.

Transaction (or g. hi ber nat e. Tr ansact i on)
(Optional) A single-threaded, short-lived object used by the application to specify atomic
units of work. It abstracts the application from the underlying JDBC, JTA or CORBA
transaction. A Sessi on might span several Transactions in some cases. However,
transaction demarcation, either using the underlying API or Tr ansact i on, is never optional.

ConnectionProvider (or g. hi ber nat e. connect i on. Connect i onProvi der)
(Optional) A factory for, and pool of, JDBC connections. It abstracts the application from
underlying Dat asour ce or Dri ver Manager. It is not exposed to application, but it can be
extended and/or implemented by the developer.

TransactionFactory (or g. hi ber nat e. Transact i onFact ory)
(Optional) A factory for Tr ansact i on instances. It is not exposed to the application, but it can
be extended and/or implemented by the developer.

Extension Interfaces
Hibernate offers a range of optional extension interfaces you can implement to customize the
behavior of your persistence layer. See the APl documentation for details.

Given a "minimal" architecture, the application bypasses the Tr ansact i on/Tr ansacti onFact ory
and/or Connect i onProvi der APIs to communicate with JTA or JDBC directly.

27

Chapter 2. Architecture

2.2. Instance states

An instance of a persistent class can be in one of three different states. These states are defined
in relation to a persistence context. The Hibernate Sessi on object is the persistence context. The
three different states are as follows:

transient
The instance is not associated with any persistence context. It has no persistent identity or
primary key value.

persistent
The instance is currently associated with a persistence context. It has a persistent identity
(primary key value) and can have a corresponding row in the database. For a particular
persistence context, Hibernate guarantees that persistent identity is equivalent to Java identity
in relation to the in-memory location of the object.

detached
The instance was once associated with a persistence context, but that context was closed,
or the instance was serialized to another process. It has a persistent identity and can have
a corresponding row in the database. For detached instances, Hibernate does not guarantee
the relationship between persistent identity and Java identity.

2.3. JMX Integration

JMX is the J2EE standard for the management of Java components. Hibernate can be
managed via a JMX standard service. AN MBean implementation is provided in the distribution:
org. hi bernate. j nx. H ber nat eServi ce.

For an example of how to deploy Hibernate as a JMX service on the JBoss Application Server,
please see the JBoss User Guide. JBoss AS also provides these benefits if you deploy using JIMX:

« Session Management: the Hibernate Sessi on's life cycle can be automatically bound to the
scope of a JTA transaction. This means that you no longer have to manually open and close
the Sessi on; this becomes the job of a JBoss EJB interceptor. You also do not have to worry
about transaction demarcation in your code (if you would like to write a portable persistence
layer use the optional Hibernate Transacti on API for this). You call the Hi ber nat eCont ext
to access a Sessi on.

* HAR deployment: the Hibernate JMX service is deployed using a JBoss service deployment
descriptor in an EAR and/or SAR file, as it supports all the usual configuration options of a
Hibernate Sessi onFact ory. However, you still need to name all your mapping files in the
deployment descriptor. If you use the optional HAR deployment, JBoss will automatically detect
all mapping files in your HAR file.

Consult the JBoss AS user guide for more information about these options.

28

JCA Support

Another feature available as a JMX service is runtime Hibernate statistics. See Section 3.4.6,
“Hibernate statistics” for more information.

2.4. JCA Support

Hibernate can also be configured as a JCA connector. Please see the website for more
information. Please note, however, that at this stage Hibernate JCA support is under development.

2.5. Contextual sessions

Most applications using Hibernate need some form of "contextual” session, where a given session
is in effect throughout the scope of a given context. However, across applications the definition
of what constitutes a context is typically different; different contexts define different scopes to
the notion of current. Applications using Hibernate prior to version 3.0 tended to utilize either
home-grown Thr eadLocal -based contextual sessions, helper classes such as Hi ber nat el i | , or
utilized third-party frameworks, such as Spring or Pico, which provided proxy/interception-based
contextual sessions.

Starting with version 3.0.1, Hibernate added the SessionFactory. get Current Sessi on()
method. Initially, this assumed usage of JTA transactions, where the JTA transaction defined both
the scope and context of a current session. Given the maturity of the numerous stand-alone
JTA Transacti onManager implementations, most, if not all, applications should be using JTA
transaction management, whether or not they are deployed into a J2EE container. Based on that,
the JTA-based contextual sessions are all you need to use.

However, as of version 3.1, the processing behind Sessi onFact ory. get Cur r ent Sessi on()
is now pluggable. To that end, a new extension interface,
or g. hi ber nat e. cont ext . Current Sessi onContext, and a new configuration parameter,
hi ber nat e. current _sessi on_cont ext _cl ass, have been added to allow pluggability of the
scope and context of defining current sessions.

See the Javadocs for the org. hi ber nat e. cont ext. Current Sessi onCont ext interface for a
detailed discussion of its contract. It defines a single method, current Sessi on(), by which
the implementation is responsible for tracking the current contextual session. Out-of-the-box,
Hibernate comes with three implementations of this interface:

e org. hi bernat e. cont ext. JTASessi onCont ext : current sessions are tracked and scoped by a
JTA transaction. The processing here is exactly the same as in the older JTA-only approach.
See the Javadocs for details.

e org. hi bernate. cont ext. ThreadLocal Sessi onCont ext :current sessions are tracked by
thread of execution. See the Javadocs for details.

e org. hi bernat e. cont ext . ManagedSessi onCont ext : current sessions are tracked by thread of
execution. However, you are responsible to bind and unbind a Sessi on instance with static
methods on this class: it does not open, flush, or close a Sessi on.

29

Chapter 2. Architecture

The first two implementations provide a "one session - one database transaction" programming
model. This is also known and used as session-per-request. The beginning and end of a Hibernate
session is defined by the duration of a database transaction. If you use programmatic transaction
demarcation in plain JSE without JTA, you are advised to use the Hibernate Transacti on API
to hide the underlying transaction system from your code. If you use JTA, you can utilize the
JTA interfaces to demarcate transactions. If you execute in an EJB container that supports CMT,
transaction boundaries are defined declaratively and you do not need any transaction or session
demarcation operations in your code. Refer to Chapter 12, Transactions and Concurrency for
more information and code examples.

The hibernate. current_sessi on_context_cl ass configuration parameter defines which
or g. hi ber nat e. cont ext . Current Sessi onCont ext implementation should be used. For
backwards compatibility, if this configuration parameter is not set but a
or g. hi bernate. transacti on. Transact i onManager Lookup is configured, Hibernate will use the
or g. hi ber nat e. cont ext . JTASessi onCont ext . Typically, the value of this parameter would just
name the implementation class to use. For the three out-of-the-box implementations, however,
there are three corresponding short names: "jta", "thread", and "managed".

30

Chapter 3.

Configuration

Hibernate is designed to operate in many different environments and, as such, there is a broad
range of configuration parameters. Fortunately, most have sensible default values and Hibernate
is distributed with an example hi ber nate. properties file in etc/ that displays the various
options. Simply put the example file in your classpath and customize it to suit your needs.

3.1. Programmatic configuration

An instance of org. hi bernate. cfg. Confi gurati on represents an entire set of mappings of
an application's Java types to an SQL database. The or g. hi ber nate. cf g. Confi guration is
used to build an immutable or g. hi ber nat e. Sessi onFact ory. The mappings are compiled from
various XML mapping files.

You can obtain a or g. hi ber nat e. cf g. Confi gur ati on instance by instantiating it directly and
specifying XML mapping documents. If the mapping files are in the classpath, use addResour ce() .
For example:

Configuration cfg = new Configuration()
.addResource("ltem hbm xm ")
. addResour ce("Bi d. hbm xm ") ;

An alternative way is to specify the mapped class and allow Hibernate to find the mapping
document for you:

Configuration cfg = new Configuration()
.addC ass(org. hi bernate. auction.|temcl ass)
.addd ass(org. hi bernate. aucti on. Bi d. cl ass);

Hibernate will then search for mapping files named / or g/ hi ber nat e/ aucti on/ It em hbm xm
and / or g/ hi ber nat e/ aucti on/ Bi d. hbm xnl in the classpath. This approach eliminates any
hardcoded filenames.

A org. hi bernate. cfg. Confi guration also allows you to specify configuration properties. For
example:

Configuration cfg = new Configuration()
.addd ass(org. hi bernate. auction.|tem cl ass)
.addd ass(org. hi bernate. aucti on. Bi d. cl ass)

.setProperty("hibernate.dialect", "org.hibernate. di al ect. M/SQLI nnoDBDi al ect")
. set Property("hibernate. connection. datasource", "java:conp/env/jdbc/test")
.set Property("hibernate.order_updates", "true");

31

Chapter 3. Configuration

This is not the only way to pass configuration properties to Hibernate. Some alternative options
include:

1. Pass an instance of j ava. uti | . Properties to Confi gurati on. set Properties().
2. Place a file named hi ber nat e. proper ti es in a root directory of the classpath.

3. Set Syst emproperties using j ava - Dpr operty=val ue.

4. Include <pr oper t y> elements in hi ber nat e. cf g. xm (this is discussed later).

If you want to get started quicklyhi ber nat e. properti es is the easiest approach.

The org. hi bernate. cfg. Configuration is intended as a startup-time object that will be
discarded once a Sessi onFact ory is created.

3.2. Obtaining a SessionFactory

When all mappings have been parsed by the org. hi bernate.cfg. Configuration, the
application must obtain a factory for or g. hi ber nat e. Sessi on instances. This factory is intended
to be shared by all application threads:

Sessi onFactory sessions = cfg. buil dSessi onFactory();

Hibernate does allow your application to instantiate more than one
or g. hi ber nat e. Sessi onFact ory. This is useful if you are using more than one database.

3.3. JDBC connections

It is advisable to have the or g. hi ber nat e. Sessi onFact ory create and pool JDBC connections
for you. If you take this approach, opening a or g. hi ber nat e. Sessi on is as simple as:

Sessi on session = sessions.openSession(); // open a new Session

Once you start a task that requires access to the database, a JDBC connection will be obtained
from the pool.

Before you can do this, you first need to pass some JDBC connection properties
to Hibernate. All Hibernate property names and semantics are defined on the class
org. hi bernate. cfg. Environment. The most important settings for JDBC connection
configuration are outlined below.

Hibernate will obtain and pool connections using j ava. sql . Dri ver Manager if you set the
following properties:

32

JDBC connections

Table 3.1. Hibernate JDBC Properties

Property name Purpose
hibernate.connection.driver_class JDBC driver class
hibernate.connection.url JDBC URL
hibernate.connection.username database user
hibernate.connection.password database user password
hibernate.connection.pool_size maximum number of pooled connections

Hibernate's own connection pooling algorithm is, however, quite rudimentary. It is intended to
help you get started and is not intended for use in a production system, or even for performance
testing. You should use a third party pool for best performance and stability. Just replace the
hibernate.connection.pool_size property with connection pool specific settings. This will turn off
Hibernate's internal pool. For example, you might like to use c3p0.

C3PO0 is an open source JDBC connection pool distributed along with Hibernate in the lib
directory. Hibernate will use its org. hi ber nat e. connecti on. C3P0Connect i onPr ovi der for
connection pooling if you set hibernate.c3p0.* properties. If you would like to use Proxool, refer to
the packaged hi ber nat e. properti es and the Hibernate web site for more information.

The following is an example hi ber nat e. properti es file for c3p0:

hi ber nat e. connection. driver_class = org. postgresql.Driver

hi ber nat e. connection.url = jdbc: postgresql://Iocal host/nydatabase
hi ber nat e. connecti on. user name = nyuser

hi ber nat e. connecti on. password = secret

hi ber nat e. c3p0. m n_si ze=5

hi ber nat e. ¢3p0. nax_si ze=20

hi ber nat e. ¢c3p0. ti nmeout =1800

hi ber nat e. ¢3p0. max_st at enent s=50

hi bernat e. di al ect = org. hi bernate. di al ect. PostgreSQ.Di al ect

For use inside an application server, you should almost always configure Hibernate to obtain
connections from an application server j avax. sql . Dat asour ce registered in JNDI. You will need
to set at least one of the following properties:

Table 3.2. Hibernate Datasource Properties

Property name Purpose

hibernate.connection.datasource datasource JNDI name

hibernate.jndi.url URL of the JNDI provider (optional)

hibernate.jndi.class class of the IJNDI Initial ContextFactory
(optional)

hibernate.connection.username database user (optional)

hibernate.connection.password database user password (optional)

33

Chapter 3. Configuration

Here is an example hibernate. properties file for an application server provided JNDI
datasource:

hi ber nat e. connecti on. dat asource = j ava:/conp/ env/jdbc/test
hi bernate. transaction.factory_class =\

or g. hi bernate. transacti on. JTATr ansacti onFact ory
hi bernat e. transacti on. manager _| ookup_cl ass =\

org. hi bernate. transacti on. JBossTr ansact i onManager Lookup
hi bernat e. di al ect = org. hi bernate. di al ect. PostgreSQ.Di al ect

JDBC connections obtained from a JNDI datasource will automatically participate in the container-
managed transactions of the application server.

Arbitrary connection properties can be given by prepending "hi ber nat e. connecti on" to the
connection property hame. For example, you can specify a charSet connection property using
hibernate.connection.charSet.

You can define your own plugin strategy for obtaining JDBC connections by implementing
the interface or g. hi ber nat e. connecti on. Connecti onProvi der, and specifying your custom
implementation via the hibernate.connection.provider_class property.

3.4. Optional configuration properties

There are a number of other properties that control the behavior of Hibernate at runtime. All are
optional and have reasonable default values.

Warning

Some of these properties are "system-level" only. System-level properties can be
setonly viaj ava - Dpropert y=val ue or hi ber nat e. properti es. They cannot be
set by the other techniques described above.

Table 3.3. Hibernate Configuration Properties

Property name Purpose
hibernate.dialect The classname of a Hibernate
org. hi bernate. di al ect. Di al ect which

allows Hibernate to generate SQL optimized
for a particular relational database.

e.g.full.classnane. of. D al ect

In most cases Hibernate will
actually be able to choose the
correct org. hi bernate. di al ect. D al ect

34

Optional configuration properties

Property name

Purpose

implementation based on the JDBC net adat a
returned by the JDBC driver.

hibernate.show_sq|

Write all SQL statements to console. This
is an alternative to setting the log category
or g. hi bernat e. SQL to debug.

e.g.true|fal se

hibernate.format_sql

Pretty print the SQL in the log and console.

e.g.true|fal se

hibernate.default_schema

hibernate.default_catalog

Qualify unqualified table names with the given
schemal/tablespace in generated SQL.

e.g. SCHEMA_NAMVE

Qualifies unqualified table names with the
given catalog in generated SQL.

e.g. CATALOG NAME

hibernate.session_factory _name

The or g. hi ber nat e. Sessi onFact ory will be
automatically bound to this name in JNDI after
it has been created.

e.g.jndi/conposite/name

hibernate.max_fetch_depth

hibernate.default_batch_fetch_size

Sets a maximum "depth" for the outer join fetch
tree for single-ended associations (one-to-one,
many-to-one). A 0 disables default outer join
fetching.

e.g. recommended values between 0 and 3

Sets a default size for Hibernate batch fetching
of associations.

e.g. recommended values 4, 8, 16

hibernate.default_entity _mode

Sets a default mode for entity representation
for all sessions opened from this
Sessi onFact ory

dynani c- map, domdj , poj o

hibernate.order_updates

Forces Hibernate to order SQL updates by the
primary key value of the items being updated.
This will result in fewer transaction deadlocks
in highly concurrent systems.

35

Chapter 3. Configuration

Property name

Purpose

hibernate.generate_statistics

e.g.true|fal se

If enabled, Hibernate will collect statistics
useful for performance tuning.

e.g.true|fal se

hibernate.use_identifier_rollback

If enabled, generated identifier properties will
be reset to default values when objects are
deleted.

e.g.true|fal se

hibernate.use_sql_comments

If turned on, Hibernate will generate comments
inside the SQL, for easier debugging, defaults
to fal se.

e.g.true|fal se

Table 3.4. Hibernate JDBC and Connection Properties

Property name

hibernate.jdbc.fetch_size

hibernate.jdbc.batch_size

Purpose

A non-zero value determines the JDBC fetch
size (calls St at ement . set Fet chSi ze()).

A non-zero value enables use of JDBC2 batch
updates by Hibernate.

e.g. recommended values between 5 and 30

hibernate.jdbc.batch_versioned_data

hibernate.jdbc.factory_class

Set this property to true if your JDBC
driver returns correct row counts from
execut eBat ch() . It is usually safe to turn this
option on. Hibernate will then use batched DML
for automatically versioned data. Defaults to
fal se.

e.g.true|fal se

Select a custom
org. hi bernate. j dbc. Bat cher. Most
applications will not need this configuration

property.

e.g. cl assnane. of . Bat cher Factory

hibernate.jdbc.use_scrollable_resultset

Enables use of JDBC2 scrollable resultsets
by Hibernate. This property is only
necessary when using user-supplied JDBC

36

Optional configuration properties

Property name Purpose

connections. Hibernate uses connection
metadata otherwise.

e.g.true|fal se

hibernate.jdbc.use_streams_for_binary Use streams when writing/reading bi nary or
seri al i zabl e types to/from JDBC. *system-
level property*

e.g.true|false

hibernate.jdbc.use_get_generated_keys Enables use of JDBC3
Pr epar edSt at ement . get Gener at edKeys()
to retrieve natively generated keys after insert.
Requires JDBC3+ driver and JRE1.4+, set
to false if your driver has problems with the
Hibernate identifier generators. By default, it
tries to determine the driver capabilities using
connection metadata.

e.g.true| fal se

hibernate.connection.provider_class The classname of a custom
or g. hi bernat e. connecti on. Connecti onProvi der
which provides JDBC connections to
Hibernate.

e.g. cl assnane. of . Connecti onPr ovi der

hibernate.connection.isolation Sets the JDBC transaction isolation level.
Check j ava. sqgl . Connecti on for meaningful
values, but note that most databases do not
support all isolation levels and some define
additional, non-standard isolations.

eg.1, 2, 4, 8

hibernate.connection.autocommit Enables autocommit for JDBC pooled
connections (it is not recommended).

eg.true|false

hibernate.connection.release_mode Specifies when Hibernate should release
JDBC connections. By default, a JDBC
connection is held until the session is
explicitly closed or disconnected. For an
application server JTA datasource, use
after_statenent to aggressively release
connections after every JDBC call. For a

37

Chapter 3. Configuration

Property name

Purpose

non-JTA connection, it often makes sense to
release the connection at the end of each
transaction, by using after_transaction.
auto will choose after_statenent for the
JTA and CMT transaction strategies and
after_transacti on for the JDBC transaction
strategy.

e.g. auto (default) |

after_transaction|after_statenment

on_close |

This setting only affects Sessions
returned from Sessi onFact ory. openSessi on.
For Sessi ons obtained through

Sessi onFact ory. get Current Sessi on, the
implementation
configured for use controls the connection
release mode for See
Section 2.5, “Contextual sessions”

Curr ent Sessi onCont ext

those Sessi ons.

hibernate.connection.<propertyName>

Pass the JDBC property <propertyName> to
Dri ver Manager . get Connecti on().

hibernate.jndi.<propertyName>

Pass the property <propertyName> to the JNDI
I nitial ContextFactory.

Table 3.5. Hibernate Cache Properties

Property name

Purpose

hi ber nat e. cache. provi der_cl ass

The classname of a custom CachePr ovi der .

e.g. cl assnane. of . CachePr ovi der

hi ber nat e. cache. use_mi ni nmal _puts

hi ber nat e. cache. use_query_cache

Optimizes second-level cache operation to
minimize writes, at the cost of more frequent
reads. This setting is most useful for clustered
caches and, in Hibernate3, is enabled by
default for clustered cache implementations.

e.g.true| fal se

Enables the query cache. Individual queries
still have to be set cachable.

e.g.true| fal se

hi ber nat e. cache. use_second_| evel _cache

Can be used to completely disable the second
level cache, which is enabled by default for
classes which specify a <cache> mapping.

38

Optional configuration properties

Property name

Purpose

hi ber nat e. cache. query_cache_factory

hi ber nat e. cache. regi on_prefix

e.g.true|fal se

The classname of a custom QueryCache
interface, defaults to the built-in
St andar dQuer yCache.

e.g. cl assnane. of . QueryCache

A prefix to use for second-level cache region
names.

e.g.prefix

hi ber nat e. cache. use_structured_entries

Forces Hibernate to store data in the second-
level cache in a more human-friendly format.

e.g.true| fal se

Table 3.6. Hibernate Transaction Properties

Property name

Purpose

hi ber nat e. transaction. factory_cl ass

The classname of a Transacti onFactory to
use with Hibernate Tr ansact i on API (defaults
to JDBCTr ansact i onFact ory).

e.g. cl assnane. of . Transacti onFact ory

jta. User Transaction

A JNDI used by
JTATr ansact i onFactory to obtain the JTA

User Tr ansact i on from the application server.

name

e.g.jndi/ conposite/ name

hi ber nat e. t ransacti on. manager _| ookup_cl ad%

classname of a
Transact i onManager Lookup. It is required
when JVM-level caching is enabled or when
using hilo generator in a JTA environment.

eg.
cl assnane. of . Transact i onManager Lookup

hi bernat e. transacti on. fl ush_bef or e_conpllttdrabled, the session will be automatically

flushed during the before completion phase
of the transaction. Built-in and automatic
session context management is preferred, see
Section 2.5, “Contextual sessions”.

e.g.true|fal se

hi bernat e. transacti on. aut o_cl ose_sessi orf enabled, the session will be automatically

closed during the after completion phase

39

Chapter 3. Configuration

Property name

Purpose

of the transaction. Built-in and automatic
session context management is preferred, see
Section 2.5, “Contextual sessions”.

e.g.true|fal se

Table 3.7. Miscellaneous Properties

Property name

hi bernat e. current _sessi on_context cl ass

Purpose

Supply a custom strategy for the scoping
of the "current" Session. See Section 2.5,
“Contextual sessions” for more information
about the built-in strategies.

e.g.jta|thread | managed | cust om C ass

hi ber nat e. query. factory_cl ass

hi ber nat e. query. substitutions

Chooses the HQL parser implementation.

e.g.
org. hi bernate. hql . ast. ASTQuer yTr ansl at or Fact ory
or

org. hi bernate. hqgl . cl assi c. C assi cQueryTr ansl at or Fact or

Is used to map from tokens in Hibernate
queries to SQL tokens (tokens might be
function or literal names, for example).

e.g. hqgl Li teral =SQL_LI TERAL,
hgl Funct i on=SQLFUNC

hi ber nat e. hbnRddl . aut o

Automatically validates or exports schema
DDL to the database when the
Sessi onFactory is created. With create-
dr op, the database schema will be dropped
when the Sessi onFact ory is closed explicitly.

e.g. validate | update | create | create-
dr op

hi ber nat e. byt ecode. use_refl ection_opti nizeables the use of bytecode manipulation

instead of runtime reflection. This s
a System-level property and cannot be
set in hibernate.cfg.xnl . Reflection can
sometimes be useful when troubleshooting.
Hibernate always requires either CGLIB or
javassist even if you turn off the optimizer.

e.g.true|fal se

40

SQL Dialects

Property name Purpose

hi ber nat e. byt ecode. provi der Both javassist or cglib can be used as
byte manipulation engines; the default is
j avassi st.

e.g.javassist |cglib

3.4.1. SQL Dialects

Always set the hi ber nat e. di al ect property to the correct or g. hi ber nat e. di al ect . Di al ect
subclass for your database. If you specify a dialect, Hibernate will use sensible defaults for some
of the other properties listed above. This means that you will not have to specify them manually.

Table 3.8. Hibernate SQL Dialects (hi ber nat e. di al ect)

RDBMS Dialect

DB2 org. hi bernate. di al ect. DB2Di al ect

DB2 AS/400 org. hi bernate. di al ect. DB2400Di al ect

DB2 OS390 org. hi bernate. di al ect. DB2390Di al ect
PostgreSQL org. hi bernate. di al ect. Post greSQLDi al ect
MySQL org. hi bernate. di al ect. \ySQLDi al ect
MySQL with InnoDB or g. hi bernate. di al ect. M\ySQLI nnoDBDi al ect
MySQL with MylISAM or g. hi bernate. di al ect. M\ySQLMyI SAMDI al ect
Oracle (any version) org. hi bernate. di al ect. Oracl eDi al ect
Oracle 9i org. hi bernate. di al ect. Oracl e9i Di al ect
Oracle 10g or g. hi bernat e. di al ect. Oracl e10gDi al ect
Sybase org. hi bernat e. di al ect. SybaseDi al ect
Sybase Anywhere or g. hi bernate. di al ect. SybaseAnywher eDi al ect
Microsoft SQL Server or g. hi bernate. di al ect. SQLSer ver Di al ect
SAP DB or g. hi bernate. di al ect. SAPDBDI al ect
Informix or g. hi bernate. di al ect. | nform xDi al ect
HypersonicSQL or g. hi bernate. di al ect. HSQLD al ect

Ingres org. hi bernate. di al ect. | ngresDi al ect
Progress org. hi bernate. di al ect. ProgressbDi al ect
Mckoi SQL or g. hi bernate. di al ect. Mckoi Di al ect
Interbase org. hi bernate. di al ect. | nterbasebi al ect
Pointbase or g. hi ber nat e. di al ect. Poi nt baseDi al ect
FrontBase or g. hi bernate. di al ect. Front baseDi al ect
Firebird org. hi bernate. di al ect. Fi rebi rdDi al ect

41

Chapter 3. Configuration

3.4.2. Outer Join Fetching

If your database supports ANSI, Oracle or Sybase style outer joins, outer join fetching will often
increase performance by limiting the number of round trips to and from the database. This is,
however, at the cost of possibly more work performed by the database itself. Outer join fetching
allows a whole graph of objects connected by many-to-one, one-to-many, many-to-many and one-
to-one associations to be retrieved in a single SQL SELECT.

Outer join fetching can be disabled globally by setting the property hi ber nat e. max_f et ch_dept h
to 0. A setting of 1 or higher enables outer join fetching for one-to-one and many-to-one
associations that have been mapped with f et ch="j oi n".

See Section 20.1, “Fetching strategies” for more information.
3.4.3. Binary Streams

Oracle limits the size of byte arrays that can be passed to and/or from its JDBC driver.
If you wish to use large instances of binary or serializable type, you should enable
hi ber nat e. j dbc. use_streans_f or _bi nary. This is a system-level setting only.

3.4.4. Second-level and query cache
The properties prefixed by hi ber nat e. cache allow you to use a process or cluster scoped second-
level cache system with Hibernate. See the Section 20.2, “The Second Level Cache” for more

information.

3.4.5. Query Language Substitution

You can define new Hibernate query tokens using hi bernate. query. substitutions. For
example:

hi ber nat e. query. substitutions true=1, false=0

This would cause the tokens t rue and f al se to be translated to integer literals in the generated
SQL.

hi ber nat e. query. substitutions toLowercase=LONER

This would allow you to rename the SQL LOAER function.

3.4.6. Hibernate statistics

If you enable hi ber nat e. generat e_st ati sti cs, Hibernate exposes a number of metrics that
are useful when tuning a running system via Sessi onFact ory. get Stati sti cs() . Hibernate can

42

Logging

even be configured to expose these statistics via JMX. Read the Javadoc of the interfaces in
or g. hi ber nat e. st at s for more information.

3.5. Logging

Hibernate utilizes Simple Logging Facade for Java [http://www.slf4].org/] (SLF4J) in order to log
various system events. SLF4J can direct your logging output to several logging frameworks (NOP,
Simple, log4j version 1.2, JDK 1.4 logging, JCL or logback) depending on your chosen binding. In
order to setup logging you will need sl f 4j - api . j ar in your classpath together with the jar file for
your preferred binding - s| f 4j -1 og4j 12. j ar in the case of Log4J. See the SLF4J documentation
[http://lwww.slf4j.org/manual.html] for more detail. To use Log4j you will also need to place a
| og4j . properti es file in your classpath. An example properties file is distributed with Hibernate
in the src/ directory.

It is recommended that you familiarize yourself with Hibernate's log messages. A lot of work has
been put into making the Hibernate log as detailed as possible, without making it unreadable. It
is an essential troubleshooting device. The most interesting log categories are the following:

Table 3.9. Hibernate Log Categories

Category Function
or g. hi bernate. SQL Log all SQL DML statements as they are executed
org. hi bernate. type Log all IDBC parameters

or g. hi ber nat e. t ool . hbnddaly all SQL DDL statements as they are executed

org. hibernate. pretty |Log the state of all entities (max 20 entities) associated with the
session at flush time

or g. hi ber nat e. cache Log all second-level cache activity

or g. hi ber nat e. t r ansact|iloyg transaction related activity

org. hi bernate. j dbc Log all JIDBC resource acquisition

or g. hi bernat e. hql . ast .| A3y HQL and SQL ASTs during query parsing

org. hi bernate. secure | Log all JAAS authorization requests

org. hi bernate Log everything. This is a lot of information but it is useful for
troubleshooting

When developing applications with Hibernate, you should almost always work with debug enabled
for the category org. hi bernate. SQL, or, alternatively, the property hi ber nate. show_sql
enabled.

3.6. Implementing A Nani ngSt r at egy

The interface or g. hi ber nat e. cf g. Nam ngSt r at egy allows you to specify a "naming standard"
for database objects and schema elements.

43

http://www.slf4j.org/
http://www.slf4j.org/
http://www.slf4j.org/manual.html
http://www.slf4j.org/manual.html

Chapter 3. Configuration

You can provide rules for automatically generating database identifiers from Java identifiers or
for processing "logical" column and table names given in the mapping file into "physical" table
and column names. This feature helps reduce the verbosity of the mapping document, eliminating
repetitive noise (TBL_ prefixes, for example). The default strategy used by Hibernate is quite
minimal.

You can specify a different strategy by calling Confi gur ati on. set Nami ngStrat egy() before
adding mappings:

SessionFactory sf = new Configuration()
. set Nam ngStrat egy(| nprovedNani ngSt r at egy. | NSTANCE)
.addFil e("Item hbm xni ")
. addFi | e("Bi d. hbm xmi ")
. bui | dSessi onFactory();

or g. hi bernate. cfg. | nprovedNanmi ngStrat egy is a built-in strategy that might be a useful
starting point for some applications.

3.7. XML configuration file

An alternative approach to configuration is to specify a full configuration in a file named
hi ber nat e. cf g. xnl . This file can be used as a replacement for the hi ber nat e. properti es file
or, if both are present, to override properties.

The XML configuration file is by default expected to be in the root of your CLASSPATH. Here is
an example:

<?xm version='1.0" encoding="utf-8" ?>

<! DOCTYPE hi ber nat e-confi gurati on PUBLI C
"-// Hi bernat e/ H bernate Configuration DTD//EN'
"http://hibernate.sourceforge. net/hi bernate-configuration-3.0.dtd">

<hi ber nat e- confi gurati on>

<I-- a SessionFactory instance listed as /jndi/nane -->
<session-factory
name="j ava: hi ber nat e/ Sessi onFact ory" >

<!-- properties -->
<property nanme="connecti on. dat asource">j ava: / conp/ env/j dbc/ MyDB</ property>
<property name="di al ect">org. hi bernat e. di al ect. My\SQLDi al ect </ property>
<property name="show_sql " >f al se</ property>
<property nanme="transaction.factory_class">
or g. hi bernat e. transacti on. JTATr ansacti onFact ory
</ property>
<property nanme="jta.UserTransaction">j ava: conp/ User Transacti on</ property>

<!-- nmapping files -->
<mappi ng resource="or g/ hi bernat e/ auction/Item hbm xm "/ >
<mappi ng resource="or g/ hi bernate/auction/Bi d. hbm xm "/ >

44

J2EE Application Server integration

<l-- cache settings -->

<cl ass-cache cl ass="org. hi bernate. auction.|ten' usage="read-wite"/>

<cl ass-cache cl ass="org. hi bernate. auction. Bi d" usage="read-only"/>

<col | ection-cache coll ection="org. hi bernate. auction.|tem bids" usage="read-wite"/>

</ session-factory>

</ hi ber nat e- confi gurati on>

The advantage of this approach is the externalization of the mapping file names to configuration.
The hi ber nat e. cf g. xnl is also more convenient once you have to tune the Hibernate cache. It
is your choice to use either hi ber nat e. properti es or hi ber nat e. cf g. xm . Both are equivalent,
except for the above mentioned benefits of using the XML syntax.

With the XML configuration, starting Hibernate is then as simple as:

Sessi onFactory sf = new Configuration().configure().buildSessionFactory();

You can select a different XML configuration file using:

SessionFactory sf = new Configuration()
.configure("catdb.cfg.xm")
. bui | dSessi onFactory();

3.8. J2EE Application Server integration

Hibernate has the following integration points for J2EE infrastructure:

« Container-managed datasources: Hibernate can use JDBC connections managed by the
container and provided through JNDI. Usually, a JTA compatible Tr ansacti onManager and
a ResourceManager take care of transaction management (CMT), especially distributed
transaction handling across several datasources. You can also demarcate transaction
boundaries programmatically (BMT), or you might want to use the optional Hibernate
Transact i on API for this to keep your code portable.

» Automatic JNDI binding: Hibernate can bind its Sessi onFact ory to JNDI after startup.

« JTA Session binding: the Hibernate Sessi on can be automatically bound to the scope of JTA
transactions. Simply lookup the Sessi onFact ory from JNDI and get the current Sessi on. Let
Hibernate manage flushing and closing the Sessi on when your JTA transaction completes.
Transaction demarcation is either declarative (CMT) or programmatic (BMT/UserTransaction).

« JMX deployment: if you have a JMX capable application server (e.g. JBoss AS), you can choose
to deploy Hibernate as a managed MBean. This saves you the one line startup code to build your

45

Chapter 3. Configuration

Sessi onFact ory from a Confi gur ati on. The container will startup your H ber nat eSer vi ce
and also take care of service dependencies (datasource has to be available before Hibernate
starts, etc).

Depending on your environment, you might have to set the configuration option
hi ber nat e. connecti on. aggressi ve_rel ease to true if your application server shows
"connection containment" exceptions.

3.8.1. Transaction strategy configuration

The Hibernate Sessi on API is independent of any transaction demarcation system in your
architecture. If you let Hibernate use JDBC directly through a connection pool, you can begin
and end your transactions by calling the JDBC API. If you run in a J2EE application server, you
might want to use bean-managed transactions and call the JTA APl and User Tr ansact i on when
needed.

To keep your code portable between these two (and other) environments we recommend the
optional Hibernate Tr ansact i on API, which wraps and hides the underlying system. You have to
specify a factory class for Tr ansact i on instances by setting the Hibernate configuration property

hi bernat e. transacti on.factory_cl ass.

There are three standard, or built-in, choices:

org. hi bernate.transacti on. JDBCTr ansact i onFact ory
delegates to database (JDBC) transactions (default)

org. hi bernate.transacti on. JTATransacti onFactory
delegates to container-managed transactions if an existing transaction is underway in this
context (for example, EJB session bean method). Otherwise, a new transaction is started and
bean-managed transactions are used.

org. hi bernate.transacti on. CMITr ansact i onFact ory
delegates to container-managed JTA transactions

You can also define your own transaction strategies (for a CORBA transaction service, for
example).

Some features in Hibernate (i.e., the second level cache, Contextual Sessions with JTA, etc.)
require access to the JTA Transacti onManager in a managed environment. In an application
server, since J2EE does not standardize a single mechanism, you have to specify how Hibernate
should obtain a reference to the Tr ansact i onManager :

Table 3.10. JTA TransactionManagers

Transaction Factory Application Server
org. hi bernate.transacti on. JBossTransacti onManager Lookup JBoss
or g. hi bernate. transacti on. Wbl ogi cTr ansact i onManager Lookup Weblogic

46

JNDI-bound SessionFactory

Transaction Factory Application Server
org. hi bernate. transacti on. WebSpher eTr ansact i onManager Lookup ~ WebSphere

or g. hi bernat e. transacti on. WebSpher eExt endedJTATr ansact i onLookMgebSphere 6
org. hi bernate.transacti on. Ori onTransact i onManager Lookup Orion

org. hi bernate.transacti on. Resi nTransact i onManager Lookup Resin

org. hi bernate.transacti on. JOTMIr ansact i onManager Lookup JOTM

org. hi bernate.transacti on. JOnASTr ansact i onManager Lookup JONnAS

org. hi bernate.transacti on. JRun4Tr ansact i onManager Lookup JRun4

org. hi bernate. transacti on. BESTr ansact i onManager Lookup Borland ES

3.8.2. INDI-bound sessi onFact ory

A JNDI-bound Hibernate Sessi onFact ory can simplify the lookup function of the factory and
create new Sessi ons. This is not, however, related to a JNDI bound Dat asour ce; both simply
use the same registry.

If you wish to have the Sessi onFactory bound to a JNDI namespace, specify a nhame (e.g.
j ava: hi ber nat e/ Sessi onFact ory) using the property hi ber nat e. sessi on_f actory_nane. If
this property is omitted, the Sessi onFact ory will not be bound to JNDI. This is especially useful
in environments with a read-only JNDI default implementation (in Tomcat, for example).

When binding the SessionFactory to JNDI, Hibernate will use the values of
hi bernate.jndi.url, hibernate.jndi.class to instantiate an initial context. If they are not
specified, the default I ni ti al Cont ext will be used.

Hibernate will automatically place the SessionFactory in JNDI after you call
cf g. bui | dSessi onFact or y() . This means you will have this call in some startup code, or utility
class in your application, unless you use JMX deployment with the Hi ber nat eSer vi ce (this is
discussed later in greater detail).

If you use a JNDI SessionFactory, an EJB or any other class, you can obtain the
Sessi onFact ory using a JNDI lookup.

It is recommended that you bind the Sessi onFact ory to JNDI in a managed environment and
use a st ati c singleton otherwise. To shield your application code from these details, we also
recommend to hide the actual lookup code for a Sessi onFactory in a helper class, such as
Hi bernat elti| . get Sessi onFactory(). Note that such a class is also a convenient way to
startup Hibernate—see chapter 1.

3.8.3. Current Session context management with JTA

The easiest way to handle Sessi ons and transactions is Hibernate's automatic "current" Sessi on
management. For a discussion of contextual sessions see Section 2.5, “Contextual sessions”.
Using the "j ta" session context, if there is no Hibernate Sessi on associated with the current

47

Chapter 3. Configuration

JTA transaction, one will be started and associated with that JTA transaction the first time you call
sessi onFact ory. get Current Sessi on() . The Sessi ons retrieved via get Cur r ent Sessi on() in
the "jta" context are set to automatically flush before the transaction completes, close after
the transaction completes, and aggressively release JDBC connections after each statement.
This allows the Sessi ons to be managed by the life cycle of the JTA transaction to which it
is associated, keeping user code clean of such management concerns. Your code can either
use JTA programmatically through User Tr ansact i on, or (recommended for portable code) use
the Hibernate Transacti on API to set transaction boundaries. If you run in an EJB container,
declarative transaction demarcation with CMT is preferred.

3.8.4. IMX deployment

The line cfg. buil dSessionFactory() still has to be executed somewhere to get a
Sessi onFact ory into JNDI. You can do this either in a st ati c initializer block, like the one in
Hi bernatelti |, or you can deploy Hibernate as a managed service.

Hibernate is distributed with org. hi ber nat e. j mx. Hi ber nat eSer vi ce for deployment on an
application server with JMX capabilities, such as JBoss AS. The actual deployment and
configuration is vendor-specific. Here is an example j boss- servi ce. xml for JBoss 4.0.x:

<?xm version="1.0"?>
<server>

<nbean code="org. hi bernate.jnx. H bernat eService"
name="j boss. j ca: servi ce=Hi ber nat eFact ory, nane=H ber nat eFact ory" >

<!-- Required services -->
<depends>j boss. j ca: servi ce=RARDepl oyer </ depends>
<depends>j boss. j ca: servi ce=Local TxCM nane=Hsql DS</ depends>

<!-- Bind the H bernate service to JNDI -->
<attribute nanme="Jndi Nane" >j ava: / hi ber nat e/ Sessi onFactory</attri bute>

<!-- Datasource settings -->
<attribute nane="Datasource">j ava: Hsql DS</ attri but e>
<attribute name="Di al ect">org. hi bernate. di al ect. HSQLDi al ect </ attri bute>

<l-- Transaction integration -->
<attribute nanme="Transacti onStrategy">

org. hi bernate. transacti on. JTATransacti onFactory</attri bute>
<attribute name="Transacti onManager LookupStr at egy" >

org. hi bernate. transacti on. JBossTr ansact i onManager Lookup</ attri but e>
<attribute nanme="Fl ushBef or eConpl eti onEnabl ed" >t rue</ attri but e>
<attribute name="Aut oC oseSessi onEnabl ed">true</attri bute>

<!-- Fetching options -->
<attribute nanme="Maxi munfet chDept h" >5</attri but e>

<!-- Second-|evel caching -->

<attribute name="SecondLevel CacheEnabl ed">true</attri bute>

<attribute nane="CacheProvi der Cl ass">org. hi ber nat e. cache. EhCacheProvi der</attri bute>
<attribute name="QueryCacheEnabl ed">true</attribute>

48

JMX deployment

<!-- Logging -->
<attri bute nanme="ShowSql Enabl ed">true</attri bute>

<!-- Mapping files -->
<attribute name="MapResources">auction/|tem hbm xml , aucti on/ Cat egory. hbm xm </ attri bute>

</ mbean>

</ server >

This file is deployed in a directory called META- | NF and packaged in a JAR file with the extension
. sar (service archive). You also need to package Hibernate, its required third-party libraries, your
compiled persistent classes, as well as your mapping files in the same archive. Your enterprise
beans (usually session beans) can be kept in their own JAR file, but you can include this EJB
JAR file in the main service archive to get a single (hot-)deployable unit. Consult the JBoss AS
documentation for more information about JMX service and EJB deployment.

49

50

Chapter 4.

Persistent Classes

Persistent classes are classes in an application that implement the entities of the business problem
(e.g. Customer and Order in an E-commerce application). Not all instances of a persistent class
are considered to be in the persistent state. For example, an instance can instead be transient
or detached.

Hibernate works best if these classes follow some simple rules, also known as the Plain Old Java
Object (POJO) programming model. However, none of these rules are hard requirements. Indeed,
Hibernate3 assumes very little about the nature of your persistent objects. You can express a
domain model in other ways (using trees of Map instances, for example).

4.1. A simple POJO example

Most Java applications require a persistent class representing felines. For example:

package eg;
inport java.util.Set;
inport java.util.Date;

public class Cat {
private Long id; // identifier

private Date birthdate;
private Col or color;
private char sex;
private float weight;
private int litterld;

private Cat nother;
private Set kittens = new HashSet();

private void setld(Long id) {
this.id=id;

}

public Long getld() {
return id;

void setBirthdate(Date date) {
birthdate = date;

}
public Date getBirthdate() {

return birthdate;

voi d set Wei ght (fl oat wei ght) {
this.wei ght = weight;

}

public float getWight() {
return weight;

51

Chapter 4. Persistent Classes

public Color getColor() {
return col or;

}
voi d set Col or (Col or color) {
this.color = color;

}

voi d set Sex(char sex) {
t hi s. sex=sex;

}
public char getSex() {
return sex;

}

void setLitterld(int id) {
this.litterld = id;

}

public int getLitterld() {
return litterld;

}

voi d set Mbt her(Cat nother) {
t hi s. not her = not her;

}
public Cat getMther() {
return not her;

}
void setKittens(Set kittens) {
this.kittens = kittens;

}
public Set getKittens() {
return kittens;

}

/] addKitten not needed by Hi bernate

public void addKitten(Cat kitten) {
kitten. set Mot her (this);

kitten.setLitterld(kittens.size());
kittens. add(kitten);

}

The four main rules of persistent classes are explored in more detail in the following sections.

4.1.1. Implement a no-argument constructor

Cat has a no-argument constructor. All persistent classes must have a default constructor (which
can be non-public) so that Hibernate can instantiate them using Const r uct or. newl nst ance().
It is recommended that you have a default constructor with at least package visibility for runtime
proxy generation in Hibernate.

4.1.2. Provide an identifier property (optional)

Cat has a property called i d. This property maps to the primary key column of a database table.
The property might have been called anything, and its type might have been any primitive type,

52

Prefer non-final classes (optional)

any primitive "wrapper" type, java.lang. String or j ava. util. Date. If your legacy database
table has composite keys, you can use a user-defined class with properties of these types (see
the section on composite identifiers later in the chapter.)

The identifier property is strictly optional. You can leave them off and let Hibernate keep track of
object identifiers internally. We do not recommend this, however.

In fact, some functionality is available only to classes that declare an identifier property:

« Transitive reattachment for detached objects (cascade update or cascade merge) - see
Section 10.11, “Transitive persistence”

* Session. saveO Updat e()

e Session. merge()

We recommend that you declare consistently-named identifier properties on persistent classes
and that you use a nullable (i.e., non-primitive) type.

4.1.3. Prefer non-final classes (optional)

A central feature of Hibernate, proxies, depends upon the persistent class being either non-final,
or the implementation of an interface that declares all public methods.

You can persist fi nal classes that do not implement an interface with Hibernate. You will not,
however, be able to use proxies for lazy association fetching which will ultimately limit your options
for performance tuning.

You should also avoid declaring publi ¢ final methods on the non-final classes. If you want
to use a class with a public final method, you must explicitly disable proxying by setting

| azy="fal se".

4.1.4. Declare accessors and mutators for persistent fields
(optional)

Cat declares accessor methods for all its persistent fields. Many other ORM tools directly persist
instance variables. It is better to provide an indirection between the relational schema and
internal data structures of the class. By default, Hibernate persists JavaBeans style properties
and recognizes method names of the form get Foo, i sFoo and set Foo. If required, you can switch
to direct field access for particular properties.

Properties need not be declared public - Hibernate can persist a property with a default, pr ot ect ed
or privat e get/ set pair.

4.2. Implementing inheritance

A subclass must also observe the first and second rules. It inherits its identifier property from the
superclass, Cat . For example:

53

Chapter 4. Persistent Classes

package eg;

public class DomesticCat extends Cat {
private String nang;

public String getNane() {
return name;

}

protected void setNanme(String nane) {
t hi s. nanme=nane;

}

4.3. Implementing equais() @nd hashcode()

You have to override the equal s() and hashCode() methods if you:

« intend to put instances of persistent classes in a Set (the recommended way to represent many-
valued associations); and
* intend to use reattachment of detached instances

Hibernate guarantees equivalence of persistent identity (database row) and Java identity only
inside a particular session scope. When you mix instances retrieved in different sessions, you
must implement equal s() and hashCode() if you wish to have meaningful semantics for Set s.

The most obvious way is to implement equal s() /hashCode() by comparing the identifier value
of both objects. If the value is the same, both must be the same database row, because they are
equal. If both are added to a Set, you will only have one element in the Set). Unfortunately, you
cannot use that approach with generated identifiers. Hibernate will only assign identifier values to
objects that are persistent; a newly created instance will not have any identifier value. Furthermore,
if an instance is unsaved and currently in a Set , saving it will assign an identifier value to the object.
If equal s() and hashCode() are based on the identifier value, the hash code would change,
breaking the contract of the Set . See the Hibernate website for a full discussion of this problem.
This is not a Hibernate issue, but normal Java semantics of object identity and equality.

It is recommended that you implement equal s() and hashCode() using Business key equality.
Business key equality means that the equal s() method compares only the properties that form
the business key. It is a key that would identify our instance in the real world (a natural candidate
key):

public class Cat {

publ i c bool ean equal s(Obj ect other) {
if (this == other) return true,
if (!(other instanceof Cat)) return false;

final Cat cat = (Cat) other;

54

Dynamic models

if (lcat.getLitterld().equals(getLitterld())) return false;
if (!cat.getMther().equals(getMther())) return false;

return true;

}

public int hashCode() {
int result;
result = get Mot her().hashCode();
result = 29 * result + getLitterld();
return result;

A business key does not have to be as solid as a database primary key candidate (see
Section 12.1.3, “Considering object identity”). Immutable or unique properties are usually good
candidates for a business key.

4.4. Dynamic models

Note

The following features are currently considered experimental and may change in
the near future.

Persistent entities do not necessarily have to be represented as POJO classes or as JavaBean
objects at runtime. Hibernate also supports dynamic models (using Maps of Maps at runtime) and
the representation of entities as DOM4J trees. With this approach, you do not write persistent
classes, only mapping files.

By default, Hibernate works in normal POJO mode. You can set a default entity representation
mode for a particular Sessi onFact ory using the def aul t _ent i t y_node configuration option (see
Table 3.3, “Hibernate Configuration Properties”).

The following examples demonstrate the representation using Maps. First, in the mapping file an
entity-nane has to be declared instead of, or in addition to, a class name:

<hi ber nat e- mappi ng>
<cl ass entity-nane="_Custoner">

<id name="id"

type="1ong"

colum="1D">

<generator class="sequence"/>
</id>

55

Chapter 4. Persistent Classes

<property nanme="nane"
col umm=" NAME"
type="string"/>

<property nane="address"
col um=" ADDRESS"
type="string"/>

<many-t o-one name="organi zati on"
col um=" ORGANI ZATI ON_I D"
cl ass="0Organi zation"/>

<bag nanme="orders"
inverse="true"
lazy="fal se"
cascade="al | ">
<key col um="CUSTOMER | D'/ >
<one-to-nmany cl ass="Order"/>
</ bag>

</cl ass>

</ hi ber nat e- mappi ng>

Even though associations are declared using target class names, the target type of associations
can also be a dynamic entity instead of a POJO.

After setting the default entity mode to dynani c- map for the Sessi onFact or y, you can, at runtime,
work with Maps of Maps:

Session s = openSession();
Transaction tx = s.begi nTransaction();

/] Create a custoner
Map david = new HashMap();
davi d. put ("nane", "David");

/'l Create an organi zation
Map foobar = new HashMap();
f oobar. put ("name", "Foobar Inc.");

/1 Link both
davi d. put ("organi zation", foobar);

/| Save both
s. save("Custoner", david);
s. save("Organi zation", foobar);

tx.commt();
s.close();

One of the main advantages of dynamic mapping is quick turnaround time for prototyping, without
the need for entity class implementation. However, you lose compile-time type checking and
will likely deal with many exceptions at runtime. As a result of the Hibernate mapping, the

56

Tuplizers

database schema can easily be normalized and sound, allowing to add a proper domain model
implementation on top later on.

Entity representation modes can also be set on a per Sessi on basis:

Sessi on dynam cSessi on = poj oSessi on. get Sessi on(Enti tyMode. MAP) ;

/1 Create a custoner

Map david = new HashMap();

davi d. put ("nane", "David");

dynani cSessi on. save(" Custoner”, david);

dynani cSessi on. fl ush();
dynani cSessi on. cl ose()

/1 Continue on pojoSession

Please note that the call to get Sessi on() using an EntityMde is on the Sessi on API, not
the SessionFactory. That way, the new Sessi on shares the underlying JDBC connection,
transaction, and other context information. This means you do not have to call flush() and
cl ose() on the secondary Sessi on, and also leave the transaction and connection handling to
the primary unit of work.

More information about the XML representation capabilities can be found in Chapter 19, XML
Mapping.

4.5. Tuplizers

org. hi bernate.tuple. Tuplizer, and its sub-interfaces, are responsible for managing
a particular representation of a piece of data given that representation's
or g. hi bernate. Enti t yMode. If a given piece of data is thought of as a data structure, then a
tuplizer is the thing that knows how to create such a data structure and how to extract values
from and inject values into such a data structure. For example, for the POJO entity mode, the
corresponding tuplizer knows how create the POJO through its constructor. It also knows how to
access the POJO properties using the defined property accessors.

There are two high-level types of Tuplizers, represented by the
org. hibernate.tuple.entity. EntityTuplizer and
or g. hi bernat e. t upl e. conponent . Conponent Tupl i zer interfaces. EntityTuplizers are
responsible for managing the above mentioned contracts in regards to entities, while
Conponent Tupl i zer s do the same for components.

Users can also plug in their own tuplizers. Perhaps you require that a java.util.Mp
implementation other than j ava. uti | . HashMap be used while in the dynamic-map entity-mode.
Or perhaps you need to define a different proxy generation strategy than the one used by default.
Both would be achieved by defining a custom tuplizer implementation. Tuplizer definitions are
attached to the entity or component mapping they are meant to manage. Going back to the
example of our customer entity:

57

Chapter 4. Persistent Classes

<hi ber nat e- mappi ng>
<cl ass entity-nanme="Cust oner">

==
Override the dynam c-nmap entity-node
tuplizer for the customer entity

-->

<tuplizer entity-node="dynamn c-nap"

cl ass="Cust onVapTupl i zer | npl "/ >

<id nanme="id" type="long" colum="|D">
<gener at or cl ass="sequence"/>
</id>

<l-- other properties -->
</ cl ass>
</ hi ber nat e- mappi ng>

public class CustomvapTupli zerl npl
extends org. hibernate.tuple.entity.Dynam cMapEntityTuplizer {
/Il override the buildlnstantiator() nethod to plug in our custom map...
protected final Instantiator buildlnstantiator(
or g. hi ber nat e. mappi ng. Per si st ent d ass mappi ngl nfo) {
return new CustomVapl nstanti ator(mappinglnfo);

private static final class CustonVapl nstanti ator
extends org. hi bernate.tuple. Dynam cMapl nstantitor {
/1 override the generateMap() nmethod to return our custom nap...
protected final Map generateMap() {
return new Custonmvap();

4.6. EntityNameResolvers

The org. hi bernat e. Enti t yNameResol ver interface is a contract for resolving the entity name
of a given entity instance. The interface defines a single method r esol veEnt i t yName which is
passed the entity instance and is expected to return the appropriate entity name (null is allowed
and would indicate that the resolver does not know how to resolve the entity name of the given
entity instance). Generally speaking, an or g. hi ber nat e. Ent i t yNaneResol ver is going to be
most useful in the case of dynamic models. One example might be using proxied interfaces as
your domain model. The hibernate test suite has an example of this exact style of usage under
the org.hibernate.test.dynamicentity.tuplizer2. Here is some of the code from that package for
illustration.

| **

* Avery trivial JDK Proxy |nvocationHandl er inplenmentation where we proxy an interface as
* the donmain nodel and sinply store persistent state in an internal Map. This is an extrenely

58

EntityNameResolvers

* trivial exanple neant only for illustration.

*/

public final class DataProxyHandl er inplenents |nvocationHandl er {
private String entityName;
private HashMap data = new HashMap();

publ i c Dat aProxyHandl er (String entityNanme, Serializable id) {
this.entityName = entityNang;
data.put("Id", id);

public Object invoke(Object proxy, Method nethod, Object[] args) throws Throwable {

String nmet hodNane = net hod. get Nane() ;

if (nethodNane.startsWth("set")) {
String propertyNane = net hodNane. substring(3);
dat a. put (propertyNane, args[0]);

}

else if (methodNane.startsWth("get")) {
String propertyNane = net hodNane. substring(3);
return data.get(propertyName);

}

else if ("toString".equals(nethodName)) {
return entityName + "#" + data.get("1d");

}

else if ("hashCode".equal s(nethodNanme)) {
return new I nteger(this.hashCode());

}

return null;

public String getEntityNanme() {
return entityNaneg;

public HashMap getData() {
return data;

/**
*
*/
public class ProxyHel per {
public static String extractEntityName(Object object) {
/1 Qur customjava.lang.reflect.Proxy instances actually bundle
/1 their appropriate entity name, so we sinply extract it fromthere
[/l if this represents one of our proxies; otherwise, we return null
if (Proxy.isProxyd ass(object.getClass())) {
I nvocati onHandl er handl er = Proxy.getlnvocati onHandl er (object);
if (DataProxyHandl er.cl ass. i sAssignabl eFron{ handl er.getC ass())) {
Dat aPr oxyHandl er myHandl er = (Dat aProxyHandl er) handl er;
return nyHandl er. get EntityNane();

}

return null;

[/ various other utility methods

59

Chapter 4. Persistent Classes

/**
* The EntityNaneResol ver inplenentation.
* | MPL NOTE : An EntityNaneResol ver really defines a strategy for how entity nanmes shoul d be
* resolved. Since this particular inpl can handle resolution for all of our entities we want to
* take advantage of the fact that SessionFactorylnpl keeps these in a Set so that we only ever
* have one instance registered. Wwy? WeIlIl, when it conmes tinme to resolve an entity naneg,
* Hi bernate nust iterate over all the registered resolvers. So keeping that nunber down
* hel ps that process be as speedy as possible. Hence the equals and hashCode inpls
*/
public class MyEntityNanmeResol ver inplenents EntityNaneResol ver {
public static final MyEntityNaneResol ver | NSTANCE = new MyEntityNaneResol ver();

public String resolveEntityNane(Object entity) {
return ProxyHel per.extractEntityNane(entity);

publ i c bool ean equal s(Obj ect obj) {
return getC ass().equal s(obj.getd ass());

public int hashCode() {
return getd ass().hashCode();

public class MyEntityTuplizer extends PojoEntityTuplizer {
public MyEntityTuplizer(EntityMetanodel entityMetanodel, Persistentd ass mappedEntity) {
super (entityMetanodel, mappedEntity);

public EntityNarmeResol ver[] getEntityNanmeResol vers() {
return new EntityNaneResol ver[] { M/EntityNaneResol ver. | NSTANCE };

public String determ neConcreteSubcl assEntityName(Object entitylnstance, SessionFactorylnplenentor factory) {
String entityNane = ProxyHel per.extractEntityName(entitylnstance);
if (entityName == null) {
entityNane = super.determ neConcreteSubcl assEntityNane(entitylnstance, factory);

}

return entityNane;

In order to register an or g. hi ber nat e. Enti t yNameResol ver users must either:

1. Implement a custom Tuplizer, implementing the get Ent i t yNaneResol ver s method.

2. Register it with the or g. hi ber nat e. i npl . Sessi onFact oryl npl (which is the implementation
class for org. hi bernate. Sessi onFactory) using the registerEntityNaneResol ver
method.

60

Chapter 5.

Basic O/R Mapping

5.1. Mapping declaration

Object/relational mappings are usually defined in an XML document. The mapping document is
designed to be readable and hand-editable. The mapping language is Java-centric, meaning that
mappings are constructed around persistent class declarations and not table declarations.

Please note that even though many Hibernate users choose to write the XML by hand, a number of
tools exist to generate the mapping document. These include XDoclet, Middlegen and AndroMDA.

Here is an example mapping:

<?xm version="1.0"?>
<! DOCTYPE hi ber nat e- mappi ng PUBLI C
"-// Hi bernat e/ H bernate Mapping DTD 3. 0//EN'
"http://hibernate. sourceforge. net/hi bernat e- mappi ng-3. 0. dtd">

<hi ber nat e- mappi ng package="eg">

<cl ass nane="Cat"
t abl e="cat s"
di scri m nator-val ue="C'>

<id name="id">
<generator class="native"/>
</id>

<di scri m nat or col um="subcl ass"
type="character"/>

<property name="wei ght"/>

<property nanme="birt hdate"
type="dat e"
not-nul I ="true"
updat e="f al se"/ >

<property nanme="col or"
type="eg. types. Col or User Type"
not-nul I ="true"
updat e="fal se"/ >

<property nanme="sex"
not-nul | ="true"
updat e="f al se"/ >

<property name="litterld"
colum="litterld"
updat e="fal se"/ >

<many-t o-one name="not her"
col um="not her _i d"
updat e="f al se"/ >

61

Chapter 5. Basic O/R Mapping

<set nane="kittens"
inverse="true"
order-by="litter_id">
<key col um="not her _id"/>
<one-to-nmany class="Cat"/>
</ set>

<subcl ass nanme="Donesti cCat"
di scrim nator-val ue="D">

<property nanme="name"
type="string"/>

</ subcl ass>
</ cl ass>

<cl ass nane="Dog" >
<!'-- mapping for Dog could go here -->
</ cl ass>

</ hi ber nat e- mappi ng>

We will now discuss the content of the mapping document. We will only describe, however, the
document elements and attributes that are used by Hibernate at runtime. The mapping document
also contains some extra optional attributes and elements that affect the database schemas
exported by the schema export tool (for example, the not - nul | attribute).

5.1.1. Doctype

All XML mappings should declare the doctype shown. The actual DTD can be found at the
URL above, in the directory hi ber nat e- x. x. x/ src/ or g/ hi bernate , or in hi bernate3.jar.
Hibernate will always look for the DTD in its classpath first. If you experience lookups of the DTD
using an Internet connection, check the DTD declaration against the contents of your classpath.

5.1.1.1. EntityResolver

Hibernate will first attempt to resolve DTDs in its classpath. It does this is by registering a custom
org. xm . sax. Entit yResol ver implementation with the SAXReader it uses to read in the xml
files. This custom Ent i t yResol ver recognizes two different systemld namespaces:

« ahi bernat e nanespace is recognized whenever the resolver encounters a systemld starting
with ht t p: // hi ber nat e. sour cef or ge. net/. The resolver attempts to resolve these entities
via the classloader which loaded the Hibernate classes.

* a user namespace is recognized whenever the resolver encounters a systemld using a
cl asspath: // URL protocol. The resolver will attempt to resolve these entities via (1) the
current thread context classloader and (2) the classloader which loaded the Hibernate classes.

The following is an example of utilizing user namespacing:

62

Hibernate-mapping

<?xm version="1.0"?>

<! DOCTYPE hi ber nate-mapping PUBLIC '-//Hi bernate/H bernate Mpping DID 3.0//EN 'http://
hi ber nat e. sour cef or ge. net/ hi ber nat e- mappi ng-3. 0. dtd" [

<IENTITY version "3.5.6-Final">

<IENTI TY today "Septenber 15, 2010">

<IENTITY types SYSTEM "cl asspath://your/domai n/types. xm ">
1>

<hi ber nat e- mappi ng package="your . domai n" >
<cl ass nane="MEntity">
<id nane="id" type="ny-customid-type">

</id>
<cl ass>
&t ypes;
</ hi ber nat e- mappi ng>

Where t ypes. xnl is a resource in the your . domai n package and contains a custom typedef.

5.1.2. Hibernate-mapping

This element has several optional attributes. The schenma and cat al og attributes specify that
tables referred to in this mapping belong to the named schema and/or catalog. If they are
specified, tablenames will be qualified by the given schema and catalog names. If they are
missing, tablenames will be unqualified. The def aul t - cascade attribute specifies what cascade
style should be assumed for properties and collections that do not specify a cascade attribute.
By default, the aut o-i nport attribute allows you to use unqualified class names in the query
language.

<hi ber nat e- mappi ng
schema="schemaNane"
cat al og="cat al ogNane"
def aul t - cascade="cascade_styl e"
defaul t-access="fi el d| property| d assNane"
defaul t-1azy="true| fal se"

aut o-i nport="true| fal se"

I~ R

package="package. nanme"
/>

€ schena (optional): the name of a database schema.
@ catal og (optional): the name of a database catalog.

€ default-cascade (optional - defaults to none): a default cascade style.

63

Chapter 5. Basic O/R Mapping

@) default-access (optional - defaults to property): the strategy Hibernate should use for
accessing all properties. It can be a custom implementation of Pr opert yAccessor .
€ default-1azy (optional - defaults to t r ue): the default value for unspecified | azy attributes

of class and collection mappings.

© auto-inport (optional - defaults to t r ue): specifies whether we can use unqualified class
names of classes in this mapping in the query language.
€ package (optional): specifies a package prefix to use for unqualified class names in the

mapping document.

If you have two persistent classes with the same unqualified name, you should set aut o-
i mport ="fal se". An exception will result if you attempt to assign two classes to the same

"imported" name.

The hi ber nat e- mappi ng element allows you to nest several persistent <cl ass> mappings, as
shown above. It is, however, good practice (and expected by some tools) to map only a single
persistent class, or a single class hierarchy, in one mapping file and name it after the persistent
superclass. For example, Cat . hbm xm , Dog. hbm xmi , or if using inheritance, Ani mal . hbm xni .

5.1.3. Class

You can declare a persistent class using the cl ass element. For example:

<cl ass

name="C assNane"

t abl e="t abl eNane"

di scri m nator-val ue="di scri m nat or _val ue"

mut abl e="true| f al se"

schema="owner"

cat al og="cat al og"

proxy="Proxyl nterface"

dynani c- updat e="true| fal se"
dynamic-insert="true|fal se"

sel ect - bef ore-update="true| f al se"

pol ynor phi sm="inplicit|explicit"
where="arbitrary sql where condition"
persi ster="Persisterd ass"

bat ch-si ze="N

optim stic-1ock="none|version|dirty|all"

lazy="true| fal se"
entity-nane="EntityNane"
check="arbitrary sql check condition"
rowi d="row d"

subsel ect =" SQL expr essi on"
abstract="true|fal se"
node="el enent - nanme"

5060 MPOHBO0OQ0ODODOODOS

64

Class

®

6 0 © QO o

® e

EE® © &

nane (optional): the fully qualified Java class name of the persistent class or interface. If this
attribute is missing, it is assumed that the mapping is for a non-POJO entity.
t abl e (optional - defaults to the unqualified class name): the name of its database table.

di scri mi nat or - val ue (optional - defaults to the class name): a value that distinguishes
individual subclasses that is used for polymorphic behavior. Acceptable values include nul |
and not nul | .

nut abl e (optional - defaults to t r ue): specifies that instances of the class are (not) mutable.

schena (optional): overrides the schema name specified by the root <hi ber nat e- mappi ng>
element.

cat al og (optional): overrides the catalog name specified by the root <hi ber nat e- mappi ng>
element.

proxy (optional): specifies an interface to use for lazy initializing proxies. You can specify
the name of the class itself.

dynami c- updat e (optional - defaults to fal se): specifies that UPDATE SQL should be
generated at runtime and can contain only those columns whose values have changed.
dynami c-i nsert (optional - defaults to fal se): specifies that | NSERT SQL should be
generated at runtime and contain only the columns whose values are not null.

sel ect - bef or e- updat e (optional - defaults to f al se): specifies that Hibernate should never
perform an SQL UPDATE unless it is certain that an object is actually modified. Only when
a transient object has been associated with a new session using updat e(), will Hibernate
perform an extra SQL SELECT to determine if an UPDATE is actually required.

pol ynor phi sm(optional - defaultstoi npl i ci t): determines whether implicit or explicit query
polymorphism is used.

wher e (optional): specifies an arbitrary SQL WHERE condition to be used when retrieving
objects of this class.

per si st er (optional): specifies a custom Cl assPersi ster.

bat ch- si ze (optional - defaults to 1): specifies a "batch size" for fetching instances of this
class by identifier.
optimistic-1ock (optional - defaultsto ver si on): determines the optimistic locking strategy.

| azy (optional): lazy fetching can be disabled by setting | azy="f al se".

entity-name (optional - defaults to the class name): Hibernate3 allows a class to be
mapped multiple times, potentially to different tables. It also allows entity mappings that
are represented by Maps or XML at the Java level. In these cases, you should provide an
explicit arbitrary name for the entity. See Section 4.4, “Dynamic models” and Chapter 19,
XML Mapping for more information.

check (optional): an SQL expression used to generate a multi-row check constraint for
automatic schema generation.

rowi d (optional): Hibernate can use ROWIDs on databases. On Oracle, for example,
Hibernate can use the row d extra column for fast updates once this option has been set
to rowi d. A ROWID is an implementation detail and represents the physical location of a
stored tuple.

65

Chapter 5. Basic O/R Mapping

subsel ect (optional): maps an immutable and read-only entity to a database subselect. This
is useful if you want to have a view instead of a base table. See below for more information.

abstract (optional): is used to mark abstract superclasses in <union-subcl ass>
hierarchies.

It is acceptable for the named persistent class to be an interface. You can declare implementing
classes of that interface using the <subcl ass> element. You can persist any static inner class.
Specify the class name using the standard form i.e. e. g. Foo$Bar .

Immutable classes, mut abl e="f al se", cannot be updated or deleted by the application. This
allows Hibernate to make some minor performance optimizations.

The optional proxy attribute enables lazy initialization of persistent instances of the class.
Hibernate will initially return CGLIB proxies that implement the named interface. The persistent
object will load when a method of the proxy is invoked. See "Initializing collections and proxies"
below.

Implicit polymorphism means that instances of the class will be returned by a query that names
any superclass or implemented interface or class, and that instances of any subclass of the class
will be returned by a query that names the class itself. Explicit polymorphism means that class
instances will be returned only by queries that explicitly name that class. Queries that hame
the class will return only instances of subclasses mapped inside this <cl ass> declaration as a
<subcl ass> or <j oi ned- subcl ass>. For most purposes, the default pol ynor phi sm="i nplicit"
is appropriate. Explicit polymorphism is useful when two different classes are mapped to the same
table This allows a "lightweight" class that contains a subset of the table columns.

The persister attribute lets you customize the persistence strategy used
for the class. You can, for example, specify your own subclass of
org. hi bernate. persister. EntityPersister, or you can even provide a completely new
implementation of the interface or g. hi ber nat e. persi st er. C assPer si st er that implements,
for example, persistence via stored procedure calls, serialization to flat files or LDAP. See
or g. hi bernate. t est. Cust onPer si st er for a simple example of "persistence" to a Hasht abl e.

The dynani c- updat e and dynani c-i nsert settings are not inherited by subclasses, so they can
also be specified on the <subcl ass> or <j oi ned- subcl ass> elements. Although these settings
can increase performance in some cases, they can actually decrease performance in others.

Use of sel ect - bef ore-updat e will usually decrease performance. It is useful to prevent a
database update trigger being called unnecessarily if you reattach a graph of detached instances
to a Sessi on.

If you enable dynani c- updat e, you will have a choice of optimistic locking strategies:

 ver si on: check the version/timestamp columns

e al | : check all columns

66

« dirty: check the changed columns, allowing some concurrent updates
* none: do not use optimistic locking

It is strongly recommended that you use version/timestamp columns for optimistic locking with
Hibernate. This strategy optimizes performance and correctly handles modifications made to
detached instances (i.e. when Sessi on. mer ge() is used).

There is no difference between a view and a base table for a Hibernate mapping. This is
transparent at the database level, although some DBMS do not support views properly, especially
with updates. Sometimes you want to use a view, but you cannot create one in the database (i.e.
with a legacy schema). In this case, you can map an immutable and read-only entity to a given
SQL subselect expression:

<cl ass name="Summary" >

<subsel ect >
sel ect item name, max(bid.anmount), count(*)
fromitem
join bid on bid.itemid =itemid
group by item nane

</ subsel ect >

<synchroni ze table="iten'/>

<synchroni ze tabl e="bi d"/>

<i d nane="nane"/>

</ cl ass>
Declare the tables to synchronize this entity with, ensuring that auto-flush happens correctly and

that queries against the derived entity do not return stale data. The <subsel ect > is available both
as an attribute and a nested mapping element.

5.14.id

Mapped classes must declare the primary key column of the database table. Most classes will also
have a JavaBeans-style property holding the unique identifier of an instance. The <i d> element
defines the mapping from that property to the primary key column.

<id
nanme="pr opertyNanme" 0
type="typenane" 9
col um="col um_nange" 3]
unsaved- val ue="nul I | any| none| undef i ned| i d_val ue" 4]
access="fi el d| property| Cl assNane" > (5]
node="el enent - nane| @ttribute-nane| el ement/ @ttribute|."
<generator class="generatorC ass"/>

</id>

67

Chapter 5. Basic O/R Mapping

name (optional): the name of the identifier property.
t ype (optional): a name that indicates the Hibernate type.

col umm (optional - defaults to the property name): the name of the primary key column.

Q0 0e

unsaved- val ue (optional - defaults to a "sensible" value): an identifier property value
that indicates an instance is newly instantiated (unsaved), distinguishing it from detached
instances that were saved or loaded in a previous session.

© access (optional - defaults to property): the strategy Hibernate should use for accessing
the property value.

If the name attribute is missing, it is assumed that the class has no identifier property.
The unsaved- val ue attribute is almost never needed in Hibernate3.

There is an alternative <conposite-i d> declaration that allows access to legacy data with
composite keys. Its use is strongly discouraged for anything else.

5.1.4.1. Generator

The optional <gener at or > child element names a Java class used to generate unique identifiers
for instances of the persistent class. If any parameters are required to configure or initialize the
generator instance, they are passed using the <par am> element.

<id nane="id" type="long" colum="cat_id">
<generat or class="org. hi bernate.id. Tabl eH LoGenerat or">
<par am nane="t abl e" >ui d_t abl e</ par an>
<par am nane="col uim" >next _hi _val ue_col um</ par an®>
</ gener at or >
</id>

All generators implement the interface or g. hi bernate. i d. | denti fi er Generat or. Thisis a very
simple interface. Some applications can choose to provide their own specialized implementations,
however, Hibernate provides a range of built-in implementations. The shortcut names for the built-
in generators are as follows:

i ncrement
generates identifiers of type | ong, short ori nt that are unique only when no other process
is inserting data into the same table. Do not use in a cluster.

identity
supports identity columns in DB2, MySQL, MS SQL Server, Sybase and HypersonicSQL. The
returned identifier is of type | ong, short orint.

sequence
uses a sequence in DB2, PostgreSQL, Oracle, SAP DB, McKaoi or a generator in Interbase.
The returned identifier is of type | ong, short ori nt

68

hilo
uses a hi/lo algorithm to efficiently generate identifiers of type | ong, short ori nt, given atable
and column (by default hi ber nat e_uni que_key and next _hi respectively) as a source of hi
values. The hi/lo algorithm generates identifiers that are unique only for a particular database.

seghilo
uses a hi/lo algorithm to efficiently generate identifiers of type | ong, short orint, given a
named database sequence.

uui d
uses a 128-bit UUID algorithm to generate identifiers of type string that are unique within a
network (the IP address is used). The UUID is encoded as a string of 32 hexadecimal digits
in length.

guid
uses a database-generated GUID string on MS SQL Server and MySQL.

native
selects i dentity, sequence or hil o depending upon the capabilities of the underlying
database.

assi gned
lets the application assign an identifier to the object before save() is called. This is the default
strategy if no <gener at or > element is specified.

sel ect
retrieves a primary key, assigned by a database trigger, by selecting the row by some unique
key and retrieving the primary key value.

foreign
uses the identifier of another associated object. It is usually used in conjunction with a <one-
t 0- one> primary key association.

sequence-identity
a specialized sequence generation strategy that utilizes a database sequence for the actual
value generation, but combines this with JIDBC3 getGeneratedKeys to return the generated
identifier value as part of the insert statement execution. This strategy is only supported on
Oracle 10g drivers targeted for JDK 1.4. Comments on these insert statements are disabled
due to a bug in the Oracle drivers.

5.1.4.2. Hi/lo algorithm

The hi | o and seqghi | o generators provide two alternate implementations of the hi/lo algorithm.
The first implementation requires a "special” database table to hold the next available "hi" value.
Where supported, the second uses an Oracle-style sequence.

<id nane="id" type="long" colum="cat_id">
<generator class="hilo">
<par am nane="t abl e" >hi _val ue</ par an»

69

Chapter 5. Basic O/R Mapping

<par am nane="col uim" >next _val ue</ par an»
<par am nanme="max_| 0" >100</ par an®>
</ gener at or >
</id>

<id name="id" type="long" colum="cat_id">
<generator class="seqghil 0">
<par am nane="sequence" >hi _val ue</ par an»
<par am nane="nax_| 0" >100</ par an®>
</ gener at or >
</id>

Unfortunately, you cannot use hi | o when supplying your own Connect i on to Hibernate. When
Hibernate uses an application server datasource to obtain connections enlisted with JTA, you
must configure the hi ber nat e. t ransact i on. manager _| ookup_cl ass.

5.1.4.3. UUID algorithm

The UUID contains: IP address, startup time of the JVM that is accurate to a quarter second,
system time and a counter value that is unique within the JVM. It is not possible to obtain a MAC
address or memory address from Java code, so this is the best option without using JNI.

5.1.4.4. Identity columns and sequences

For databases that support identity columns (DB2, MySQL, Sybase, MS SQL), you can use
i dentity key generation. For databases that support sequences (DB2, Oracle, PostgreSQL,
Interbase, McKoi, SAP DB) you can use sequence style key generation. Both of these strategies
require two SQL queries to insert a new object. For example:

<id nane="id" type="long" col um="person_id">
<gener at or cl ass="sequence">
<par am nanme="sequence" >per son_i d_sequence</ par an>
</ gener at or >
</id>

<id nane="id" type="long" col um="person_id" unsaved-val ue="0">
<generator class="identity"/>
</id>

For cross-platform development, the nat i ve strategy will, depending on the capabilities of the
underlying database, choose from the i denti ty, sequence and hi | o strategies.

5.1.4.5. Assigned identifiers

If you want the application to assign identifiers, as opposed to having Hibernate generate them,
you can use the assi gned generator. This special generator uses the identifier value already

70

Enhanced identifier generators

assigned to the object's identifier property. The generator is used when the primary key is a natural
key instead of a surrogate key. This is the default behavior if you do not specify a <gener at or >
element.

The assigned generator makes Hibernate use unsaved-val ue="undefined". This forces
Hibernate to go to the database to determine if an instance is transient or detached, unless there
is a version or timestamp property, or you define | nt er cept or . i sUnsaved().

5.1.4.6. Primary keys assigned by triggers

Hibernate does not generate DDL with triggers. It is for legacy schemas only.

<id nane="id" type="long" col um="person_id">
<generator class="select">
<par am name="key" >soci al SecurityNunmber </ par an>
</ gener at or >
</id>

In the above example, there is a unique valued property named soci al Securi t yNunber. It is
defined by the class, as a natural key and a surrogate key named per son_i d, whose value is
generated by a trigger.

5.1.5. Enhanced identifier generators

Starting with release 3.2.3, there are 2 new generators which represent a re-thinking of 2 different
aspects of identifier generation. The first aspect is database portability; the second is optimization
Optimization means that you do not have to query the database for every request for a new
identifier value. These two new generators are intended to take the place of some of the named
generators described above, starting in 3.3.x. However, they are included in the current releases
and can be referenced by FOQN.

The first of these new generators is or g. hi bernat e. i d. enhanced. SequenceSt yl eGener at or
which is intended, firstly, as a replacement for the sequence generator and, secondly, as a better
portability generator than nat i ve. This is because nat i ve generally chooses between i denti ty
and sequence which have largely different semantics that can cause subtle issues in applications
eyeing portability. or g. hi ber nat e. i d. enhanced. SequenceSt yl eGener at or , however, achieves
portability in a different manner. It chooses between a table or a sequence in the database to store
its incrementing values, depending on the capabilities of the dialect being used. The difference
between this and nat i ve is that table-based and sequence-based storage have the same exact
semantic. In fact, sequences are exactly what Hibernate tries to emulate with its table-based
generators. This generator has a number of configuration parameters:

* sequence_nane (optional, defaults to hi ber nat e_sequence): the name of the sequence or table
to be used.

e initial_val ue (optional, defaults to 1): the initial value to be retrieved from the sequence/table.
In sequence creation terms, this is analogous to the clause typically named "STARTS WITH".

71

Chapter 5. Basic O/R Mapping

e increment _si ze (optional - defaults to 1): the value by which subsequent calls to the sequence/
table should differ. In sequence creation terms, this is analogous to the clause typically named
"INCREMENT BY".

e force_tabl e_use (optional - defaults to f al se): should we force the use of a table as the
backing structure even though the dialect might support sequence?

» val ue_col umm (optional - defaults to next _val): only relevant for table structures, it is the name
of the column on the table which is used to hold the value.

« optim zer (optional - defaults to none): See Section 5.1.6, “Identifier generator optimization”

The second of these new generators is or g. hi ber nat e. i d. enhanced. Tabl eGener at or, which
is intended, firstly, as a replacement for the t abl e generator, even though it actually functions
much more like or g. hi bernat e. i d. Mil ti pl eHi LoPer Tabl eGener at or, and secondly, as a re-
implementation of or g. hi bernate. i d. Mul ti pl eHi LoPer Tabl eGener at or that utilizes the notion
of pluggable optimizers. Essentially this generator defines a table capable of holding a number of
different increment values simultaneously by using multiple distinctly keyed rows. This generator
has a number of configuration parameters:

« tabl e_name (optional - defaults to hi ber nat e_sequences): the name of the table to be used.

 val ue_col um_nane (optional - defaults to next _val): the name of the column on the table that
is used to hold the value.

* segnent _col utm_nane (optional - defaults to sequence_nane): the name of the column on the
table that is used to hold the "segment key". This is the value which identifies which increment
value to use.

* segnent _val ue (optional - defaults to def aul t): The "segment key" value for the segment from
which we want to pull increment values for this generator.

» segnent _val ue_l engt h (optional - defaults to 255): Used for schema generation; the column
size to create this segment key column.

e initial_val ue (optional - defaults to 1): The initial value to be retrieved from the table.

e increnment_size (optional - defaults to 1): The value by which subsequent calls to the table
should differ.

* optimni zer (optional - defaults to): See Section 5.1.6, “Identifier generator optimization”

5.1.6. Identifier generator optimization

For identifier generators that store values in the database, it is inefficient for them to hit the
database on each and every call to generate a new identifier value. Instead, you can group a bunch
of them in memory and only hit the database when you have exhausted your in-memory value
group. This is the role of the pluggable optimizers. Currently only the two enhanced generators
(Section 5.1.5, “Enhanced identifier generators” support this operation.

* none (generally this is the default if no optimizer was specified): this will not perform any
optimizations and hit the database for each and every request.

72

composite-id

e hilo: applies a hi/lo algorithm around the database retrieved values. The values from the
database for this optimizer are expected to be sequential. The values retrieved from the
database structure for this optimizer indicates the "group number". The i ncrenent _si ze is
multiplied by that value in memory to define a group "hi value".

» pool ed: as with the case of hi | o, this optimizer attempts to minimize the number of hits to
the database. Here, however, we simply store the starting value for the "next group” into the
database structure rather than a sequential value in combination with an in-memory grouping
algorithm. Here, i ncr enent _si ze refers to the values coming from the database.

5.1.7. composite-id

<conposite-id
nanme="propertyNanme"
cl ass="C assNane"
mapped="true]| fal se"
access="fi el d| property| Cl assNane" >
node="el enent - nang| . "

<key- property name="propertyNane" type="typenane" col um="col unm_nane"/>
<key- many-to-one nanme="propertyNane" cl ass="0C assNanme" col um="col unm_nane"/ >

</ conposi te-id>

A table with a composite key can be mapped with multiple properties of the class as identifier
properties. The <conposite-id> element accepts <key-property> property mappings and
<key- many-t 0- one> mappings as child elements.

<conposite-id>
<key- property name="nedi car eNunber"/>
<key- property name="dependent"/>

</ conposi te-id>

The persistent class must override equal s() and hashCode() to implement composite identifier
equality. It must also implement Seri al i zabl e.

Unfortunately, this approach means that a persistent object is its own identifier. There is no
convenient "handle" other than the object itself. You must instantiate an instance of the persistent
class itself and populate its identifier properties before you can | oad() the persistent state
associated with a composite key. We call this approach an embedded composite identifier, and
discourage it for serious applications.

A second approach is what we call a mapped composite identifier, where the identifier properties
named inside the <conposi t e-i d> element are duplicated on both the persistent class and a
separate identifier class.

<conposite-id class="Mdi carel d" napped="true">

73

Chapter 5. Basic O/R Mapping

<key-property nanme="medi careNunber"/ >
<key- property name="dependent"/>
</ conposi te-id>

In this example, both the composite identifier class, Medi car el d, and the entity class itself have
properties named nedi car eNunber and dependent . The identifier class must override equal s()
and hashCode() and implement Seri al i zabl e. The main disadvantage of this approach is code
duplication.

The following attributes are used to specify a mapped composite identifier:

» mapped (optional - defaults to f al se): indicates that a mapped composite identifier is used, and
that the contained property mappings refer to both the entity class and the composite identifier
class.

 cl ass (optional - but required for a mapped composite identifier): the class used as a composite
identifier.

We will describe a third, even more convenient approach, where the composite identifier is
implemented as a component class in Section 8.4, “Components as composite identifiers”. The
attributes described below apply only to this alternative approach:

e nane (optional - required for this approach): a property of component type that holds the
composite identifier. Please see chapter 9 for more information.

» access (optional - defaults to pr oper t y): the strategy Hibernate uses for accessing the property
value.

» cl ass (optional - defaults to the property type determined by reflection): the component class
used as a composite identifier. Please see the next section for more information.

The third approach, an identifier component, is recommended for almost all applications.

5.1.8. Discriminator

The <di scri ni nat or > element is required for polymorphic persistence using the table-per-class-
hierarchy mapping strategy. It declares a discriminator column of the table. The discriminator
column contains marker values that tell the persistence layer what subclass to instantiate for a
particular row. A restricted set of types can be used: stri ng, character, i nt eger, byte, short,
bool ean, yes_no, true_fal se.

<di scri m nat or
col um="di scri m nat or _col um"
type="di scri m nat or _type"

force="true|fal se"

Q00O

insert="true|fal se"

74

Version (optional)

formul a="arbitrary sqgl expression” 9
/>
€ col um (optional - defaults to cl ass): the name of the discriminator column.
@ type (optional - defaults to st ri ng): a name that indicates the Hibernate type
© force (optional - defaults to f al se): "forces" Hibernate to specify the allowed discriminator

values, even when retrieving all instances of the root class.
© insert (optional - defaults to t r ue): set this to f al se if your discriminator column is also part
of a mapped composite identifier. It tells Hibernate not to include the column in SQL | NSERTs.
© formula (optional): an arbitrary SQL expression that is executed when a type has to be
evaluated. It allows content-based discrimination.

Actual values of the discriminator column are specified by the di scri ni nat or - val ue attribute of
the <cl ass> and <subcl ass> elements.

The f or ce attribute is only useful if the table contains rows with "extra" discriminator values that
are not mapped to a persistent class. This will not usually be the case.

The fornmul a attribute allows you to declare an arbitrary SQL expression that will be used to
evaluate the type of a row. For example:

<di scri m nat or
formul a="case when CLASS TYPE in ('a', 'b', '"c') then O else 1 end"
type="integer"/>

5.1.9. Version (optional)

The <ver si on> element is optional and indicates that the table contains versioned data. This is
particularly useful if you plan to use long transactions. See below for more information:

<version
col um="ver si on_col um"
nanme="propertyNane"
type="typenane"
access="fi el d| property| C assNane"
unsaved- val ue="nul I | negati ve| undef i ned"

gener at ed="never | al ways"

Q00000

insert="true|fal se"
node="el enent - nane| @ttribute-nane| el ement/ @ttribute|."
/>

€ col um (optional - defaults to the property name): the name of the column holding the version
number.

75

Chapter 5. Basic O/R Mapping

®© 000

name: the name of a property of the persistent class.
t ype (optional - defaults to i nt eger): the type of the version number.

access (optional - defaults to pr oper t y): the strategy Hibernate uses to access the property
value.

unsaved- val ue (optional - defaults to undefi ned): a version property value that indicates
that an instance is newly instantiated (unsaved), distinguishing it from detached instances
that were saved or loaded in a previous session. Undefi ned specifies that the identifier
property value should be used.

gener at ed (optional - defaults to never): specifies that this version property value is
generated by the database. See the discussion of generated properties for more information.
i nsert (optional - defaults to t r ue): specifies whether the version column should be included
in SQL insert statements. It can be set to f al se if the database column is defined with a
default value of 0.

Version numbers can be of Hibernate type | ong, i nt eger, short, ti mest anp or cal endar.

A version or timestamp property should never be null for a detached instance. Hibernate will detect
any instance with a null version or timestamp as transient, irrespective of what other unsaved-
val ue strategies are specified. Declaring a nullable version or timestamp property is an easy way
to avoid problems with transitive reattachment in Hibernate. It is especially useful for people using
assigned identifiers or composite keys.

5.1.10. Timestamp (optional)

The optional <ti mest anp> element indicates that the table contains timestamped data. This
provides an alternative to versioning. Timestamps are a less safe implementation of optimistic
locking. However, sometimes the application might use the timestamps in other ways.

<ti mest anp

/>

col um="ti nest anp_col um"
nanme="propertyNanme"

access="fi el d| property| Cl assNane"
unsaved- val ue="nul | | undefi ned"

sour ce="vnj db"

Q0000®O

gener at ed="never | al ways"
node="el enent - nane| @ttribute-nane| el ement/ @ttribute|."

col umm (optional - defaults to the property name): the name of a column holding the
timestamp.

nane: the name of a JavaBeans style property of Java type Date or Ti mestanp of the
persistent class.

access (optional - defaults to property): the strategy Hibernate uses for accessing the
property value.

76

Property

unsaved- val ue (optional - defaults to nul I): a version property value that indicates that an
instance is newly instantiated (unsaved), distinguishing it from detached instances that were
saved or loaded in a previous session. Undef i ned specifies that the identifier property value
should be used.

sour ce (optional - defaults to vm): Where should Hibernate retrieve the timestamp value
from? From the database, or from the current JVM? Database-based timestamps incur an
overhead because Hibernate must hit the database in order to determine the "next value". It
is safer to use in clustered environments. Not all Di al ect s are known to support the retrieval
of the database's current timestamp. Others may also be unsafe for usage in locking due to
lack of precision (Oracle 8, for example).

gener at ed (optional - defaults to never): specifies that this timestamp property value is
actually generated by the database. See the discussion of generated properties for more
information.

@ Note

<Ti mest anp> is equivalent to <versi on type="ti nmestanp">. And <ti mest anp
sour ce="db" > is equivalent to <ver si on t ype="dbti nest anp" >

5.1.11. Property

The <pr opert y> element declares a persistent JavaBean style property of the class.

<property

/>

nanme="propertyNanme"

col um="col unm_nange"

type="t ypenane"

updat e="true]| f al se"
insert="true|fal se"

formul a="arbitrary SQ. expression”
access="fiel d| property| O assNane"
lazy="true| fal se"

uni que="true] fal se"
not-nul I ="true| fal se"

optimstic-lock="true|fal se"

0606000 OO00000OFO

gener at ed="never | i nsert| al ways"

node="el ement - nane| @ttri bute-nane| el ement/ @ttribute|."
i ndex="i ndex_nane"

uni que_key="uni que_key_i d"

| engt h="1L"

preci si on="P"

scal e="S"

77

Chapter 5. Basic O/R Mapping

€ nane: the name of the property, with an initial lowercase letter.
2]

col unm (optional - defaults to the property name): the name of the mapped database table
column. This can also be specified by nested <col um> element(s).
t ype (optional): a name that indicates the Hibernate type.

®

update, insert (optional - defaults to t r ue): specifies that the mapped columns should
be included in SQL UPDATE and/or | NSERT statements. Setting both to f al se allows a pure
"derived" property whose value is initialized from some other property that maps to the same
column(s), or by a trigger or other application.

© formula (optional): an SQL expression that defines the value for a computed property.
Computed properties do not have a column mapping of their own.

access (optional - defaults to property): the strategy Hibernate uses for accessing the
property value.

| azy (optional - defaults to f al se): specifies that this property should be fetched lazily when
the instance variable is first accessed. It requires build-time bytecode instrumentation.

uni que (optional): enables the DDL generation of a unique constraint for the columns. Also,
allow this to be the target of a property-ref.

not - nul I (optional): enables the DDL generation of a nullability constraint for the columns.

(=}

@

60 © O

optimistic-1ock (optional - defaults to t r ue): specifies that updates to this property do or
do not require acquisition of the optimistic lock. In other words, it determines if a version
increment should occur when this property is dirty.

@ generated (optional - defaults to never): specifies that this property value is actually
generated by the database. See the discussion of generated properties for more information.

typename could be:

1. The name of a Hibernate basic type: i nteger, string, character, date, tinestanp,
float, binary, serializable, object, blobetc.
2. The name of a Java class with a default basic type: i nt, float, char, java.lang. String,

java.util.Date, java.lang.|nteger, java.sql.d ob etc.
3. The name of a serializable Java class.

4. The class name of a custom type: com i | | f1 ow. t ype. MyCust oniType etc.

If you do not specify a type, Hibernate will use reflection upon the named property and guess
the correct Hibernate type. Hibernate will attempt to interpret the name of the return class of the
property getter using, in order, rules 2, 3, and 4. In certain cases you will need the t ype attribute.
For example, to distinguish between Hi ber nat e. DATE and Hi ber nat e. TI MESTAMP, or to specify
a custom type.

The access attribute allows you to control how Hibernate accesses the property at runtime. By
default, Hibernate will call the property get/set pair. If you specify access="fi el d", Hibernate
will bypass the get/set pair and access the field directly using reflection. You can specify
your own strategy for property access by naming a class that implements the interface
org. hi bernate. property. PropertyAccessor.

78

Many-to-one

A powerful feature is derived properties. These properties are by definition read-only. The property
value is computed at load time. You declare the computation as an SQL expression. This then
translates to a SELECT clause subquery in the SQL query that loads an instance:

<property name="total Price"
formul a="(SELECT SUM (li.quantity*p.price) FROM Lineltemli, Product p
VWHERE |i.productld = p.productld
AND |i.custonerld = custonerld
AND | i . order Nunber = order Nunber)"/>

You can reference the entity table by not declaring an alias on a particular column. This would be
cust oner | d in the given example. You can also use the nested <f or mul a> mapping element if
you do not want to use the attribute.

5.1.12. Many-to-one

An ordinary association to another persistent class is declared using a many- t o- one element. The
relational model is a many-to-one association; a foreign key in one table is referencing the primary
key column(s) of the target table.

<many-t o- one
nanme="propertyNanme"
col um="col unm_nange"
cl ass="C assNane"
cascade="cascade_styl e"
fetch="join|select"
updat e="true]| f al se"
insert="true|fal se"
property-ref="propertyNanmeFromissoci at edd ass"
access="fi el d| property| C assNane"
uni que="true] fal se"
not-nul | ="true| fal se"
optimstic-lock="true|fal se"
| azy="pr oxy| no- proxy| f al se"
not - f ound="i gnor e| excepti on"

entity-name="EntityNanme"

0P OHBO0HOOOOOOODOO

formul a="arbitrary SQL expression"
node="el emrent - nane| @ttri bute-nane| el ement/ @ttribute|."
enbed- xm ="true| fal se"
i ndex="i ndex_nane"
uni que_key="uni que_key_i d"
forei gn-key="forei gn_key_nane"
/>

79

Chapter 5. Basic O/R Mapping

€ nane: the name of the property.

col um (optional): the name of the foreign key column. This can also be specified by nested
<col um> element(s).

© cl ass (optional - defaults to the property type determined by reflection): the name of the
associated class.

€ cascade (optional): specifies which operations should be cascaded from the parent object
to the associated object.

© fetch (optional - defaults to sel ect): chooses between outer-join fetching or sequential
select fetching.

© update, insert (optional - defaults to true): specifies that the mapped columns should
be included in SQL UPDATE and/or | NSERT statements. Setting both to f al se allows a pure
"derived" association whose value is initialized from another property that maps to the same
column(s), or by a trigger or other application.

© property-ref (optional): the name of a property of the associated class that is joined to this
foreign key. If not specified, the primary key of the associated class is used.

) access (optional - defaults to property): the strategy Hibernate uses for accessing the
property value.

© uni que (optional): enables the DDL generation of a unique constraint for the foreign-key
column. By allowing this to be the target of a property-ref, you can make the association
multiplicity one-to-one.

i not-null (optional): enables the DDL generation of a nullability constraint for the foreign
key columns.

@ optinistic-lock (optional - defaults to t r ue): specifies that updates to this property do or
do not require acquisition of the optimistic lock. In other words, it determines if a version
increment should occur when this property is dirty.

i |azy (optional - defaults to proxy): by default, single point associations are proxied.
| azy="no- proxy" specifies that the property should be fetched lazily when the instance
variable is first accessed. This requires build-time bytecode instrumentation. | azy="f al se"
specifies that the association will always be eagerly fetched.

#® not-found (optional - defaults to excepti on): specifies how foreign keys that reference
missing rows will be handled. i gnor e will treat a missing row as a null association.

@ entity-nane (optional): the entity name of the associated class.

i& formul a (optional): an SQL expression that defines the value for a computed foreign key.

Setting a value of the cascade attribute to any meaningful value other than none will propagate
certain operations to the associated object. The meaningful values are divided into three
categories. First, basic operations, which include: persi st, merge, delete, save-update,
evict, replicate, lock and refresh; second, special values: del et e- or phan; and third,
al | comma-separated combinations of operation names: cascade="persi st, nerge, evi ct"
or cascade="al |, del ete-orphan". See Section 10.11, “Transitive persistence” for a full
explanation. Note that single valued, many-to-one and one-to-one, associations do not support
orphan delete.

Here is an example of a typical many-t o- one declaration:

80

One-to-one

<many-to-one nane="product" class="Product" col utm="PRODUCT_I D"/ >

The property-ref attribute should only be used for mapping legacy data where a foreign key
refers to a unique key of the associated table other than the primary key. This is a complicated
and confusing relational model. For example, if the Product class had a unique serial number
that is not the primary key. The uni que attribute controls Hibernate's DDL generation with the
SchemaExport tool.

<property nanme="serial Nunber" uni que="true" type="string" col unm="SERI AL_NUVBER'/ >

Then the mapping for Or der | t emmight use:

<many-to-one nane="product" property-ref="serial Nunber" col utm="PRODUCT_SERI AL_NUMBER"/ >

This is not encouraged, however.

If the referenced unique key comprises multiple properties of the associated entity, you should
map the referenced properties inside a named <pr oper ti es> element.

If the referenced unique key is the property of a component, you can specify a property path:

<many-to-one nane="owner" property-ref="identity.ssn" col um="0OANER SSN'/>

5.1.13. One-to-one

A one-to-one association to another persistent class is declared using a one-t o- one element.

<one-to-one
nanme="propertyNane"
cl ass="C assNane"
cascade="cascade_styl e"
constrai ned="true| fal se"
fetch="join|select"
property-ref="propertyNanmeFromAssoci at edd ass"
access="fi el d| property| C assNane"
formul a="any SQL expression"

| azy="pr oxy| no- proxy| f al se"

800Q0O0OO00ODOSO

entity-nane="EntityName"
node="el ement - nane| @ttri bute-nane| el ement/ @ttribute|."
enbed- xm ="true| fal se"

81

Chapter 5. Basic O/R Mapping

©

forei gn-key="foreign_key_nane"

nane: the name of the property.

cl ass (optional - defaults to the property type determined by reflection): the name of the
associated class.

cascade (optional): specifies which operations should be cascaded from the parent object
to the associated object.

const rai ned (optional): specifies that a foreign key constraint on the primary key of the
mapped table and references the table of the associated class. This option affects the order
in which save() and del et e() are cascaded, and determines whether the association can
be proxied. It is also used by the schema export tool.

fetch (optional - defaults to sel ect): chooses between outer-join fetching or sequential
select fetching.

property-ref (optional): the name of a property of the associated class that is joined to the
primary key of this class. If not specified, the primary key of the associated class is used.
access (optional - defaults to property): the strategy Hibernate uses for accessing the
property value.

f or mul a (optional): almost all one-to-one associations map to the primary key of the owning
entity. If this is not the case, you can specify another column, columns or expression to join
on using an SQL formula. See or g. hi ber nat e. t est . onet oonef or mul a for an example.

| azy (optional - defaults to proxy): by default, single point associations are proxied.
| azy="no- proxy" specifies that the property should be fetched lazily when the
instance variable is first accessed. It requires build-time bytecode instrumentation.
| azy="f al se" specifies that the association will always be eagerly fetched. Note that
if constrained="fal se", proxying is impossible and Hibernate will eagerly fetch the
association.

entity-name (optional): the entity name of the associated class.

There are two varieties of one-to-one associations:

e primary key associations

 unique foreign key associations

Primary key associations do not need an extra table column. If two rows are related by the
association, then the two table rows share the same primary key value. To relate two objects by
a primary key association, ensure that they are assigned the same identifier value.

For a primary key association, add the following mappings to Enpl oyee and Per son respectively:

<one-to-one name="person" cl ass="Person"/>

82

Natural-id

<one-to-one nane="enpl oyee" cl ass="Enpl oyee" constrai ned="true"/>

Ensure that the primary keys of the related rows in the PERSON and EMPLOYEE tables are
equal. You use a special Hibernate identifier generation strategy called f or ei gn:

<cl ass nanme="person" tabl e=" PERSON' >
<id name="id" col um="PERSON_| D' >
<generator class="foreign">
<par am nane="property">enpl oyee</ par an»
</ gener at or >
</id>

<one-to-one name="enpl oyee"
cl ass="Enpl oyee"
constrai ned="true"/>
</cl ass>

A newly saved instance of Person is assigned the same primary key value as the Enpl oyee
instance referred with the enpl oyee property of that Per son.

Alternatively, a foreign key with a unique constraint, from Enpl oyee to Per son, can be expressed
as:

<many-to-one nanme="person" cl ass="Person" col um="PERSON_|I D' uni que="true"/>

This association can be made bidirectional by adding the following to the Per son mapping:

<one-to-one nane="enpl oyee" cl ass="Enpl oyee" property-ref="person"/>

5.1.14. Natural-id

<natural -id nmutable="true|fal se"/>
<property ... />
<many-to-one ... />

</natural -id>

Although we recommend the use of surrogate keys as primary keys, you should try to identify
natural keys for all entities. A natural key is a property or combination of properties that is unique
and non-null. It is also immutable. Map the properties of the natural key inside the <nat ural -i d>
element. Hibernate will generate the necessary unique key and nullability constraints and, as a
result, your mapping will be more self-documenting.

83

Chapter 5. Basic O/R Mapping

It is recommended that you implement equal s() and hashCode() to compare the natural key
properties of the entity.

This mapping is not intended for use with entities that have natural primary keys.

* mut abl e (optional - defaults to f al se): by default, natural identifier properties are assumed to
be immutable (constant).

5.1.15. Component and dynamic-component

The <conponent > element maps properties of a child object to columns of the table of a parent
class. Components can, in turn, declare their own properties, components or collections. See the
"Component" examples below:

<conponent

nanme="propertyNanme"

cl ass="cl assNane"
insert="true|fal se"

updat e="true]| f al se"
access="fi el d| property| C assNane"
lazy="true|fal se"

optim stic-lock="true|false"

290920000 8O

uni que="true] fal se"
node="el enent - nane| . "

<property />
<many-to-one />

</ conponent >

@ 000 ©o0@°

o

name: the name of the property.

cl ass (optional - defaults to the property type determined by reflection): the name of the
component (child) class.
i nsert: do the mapped columns appear in SQL | NSERTs?

updat e: do the mapped columns appear in SQL UPDATEs?

access (optional - defaults to property): the strategy Hibernate uses for accessing the
property value.

| azy (optional - defaults to f al se): specifies that this component should be fetched lazily
when the instance variable is first accessed. It requires build-time bytecode instrumentation.
optim stic-1ock (optional - defaults to true): specifies that updates to this component
either do or do not require acquisition of the optimistic lock. It determines if a version
increment should occur when this property is dirty.

uni que (optional - defaults to f al se): specifies that a unique constraint exists upon all
mapped columns of the component.

84

Properties

The child <pr oper t y> tags map properties of the child class to table columns.

The <conponent > element allows a <par ent > subelement that maps a property of the component
class as a reference back to the containing entity.

The <dynani c- conponent > element allows a Map to be mapped as a component, where the
property names refer to keys of the map. See Section 8.5, “Dynamic components” for more
information.

5.1.16. Properties

The <properti es> element allows the definition of a named, logical grouping of the properties
of a class. The most important use of the construct is that it allows a combination of properties
to be the target of a property-ref. It is also a convenient way to define a multi-column unique
constraint. For example:

<properties
nane="| ogi cal Nane"
insert="true|fal se"
updat e="true| f al se"

optimstic-lock="true|fal se"

2000®O

uni que="true| f al se"

<property />
<many-to-one />

</ properties>

nane: the logical name of the grouping. It is not an actual property name.
i nsert: do the mapped columns appear in SQL | NSERTs?
updat e: do the mapped columns appear in SQL UPDATES?

o000 e

optim stic-1ock (optional - defaults to t r ue): specifies that updates to these properties
either do or do not require acquisition of the optimistic lock. It determines if a version
increment should occur when these properties are dirty.

© uni que (optional - defaults to f al se): specifies that a unique constraint exists upon all
mapped columns of the component.

For example, if we have the following <pr operti es> mapping:

<cl ass nane="Person">
<i d nane="personNunber"/>

<properties nane="nane"
uni que="true" update="fal se">

85

Chapter 5. Basic O/R Mapping

<property nanme="firstName"/>
<property name="initial"/>
<property name="| ast Name"/ >
</ properties>
</ cl ass>

You might have some legacy data association that refers to this unique key of the Per son table,
instead of to the primary key:

<many-t o- one name="person"
cl ass="Person" property-ref="nane">
<col um nanme="first Name"/ >
<col um nanme="initial"/>
<col um nane="1 ast Nane"/ >
</ many-t o- one>

The use of this outside the context of mapping legacy data is not recommended.

5.1.17. Subclass

Polymorphic persistence requires the declaration of each subclass of the root persistent class. For
the table-per-class-hierarchy mapping strategy, the <subcl ass> declaration is used. For example:

<subcl ass
name="Cl assNane"
di scri m nator-val ue="di scri m nat or _val ue"

proxy="Proxyl nterface"

Q00O

lazy="true| fal se"

dynani c- updat e="true| fal se"
dynani c-insert="true| fal se"
entity-name="EntityNanme"
node="el enent - nane"

ext ends=" Super cl assNane" >

<property />

</ subcl ass>

© nane: the fully qualified class name of the subclass.

@ discrimnator-val ue (optional - defaults to the class name): a value that distinguishes
individual subclasses.
€ proxy (optional): specifies a class or interface used for lazy initializing proxies.

@ | azy (optional - defaults to t r ue): setting | azy="f al se" disables the use of lazy fetching.

Each subclass declares its own persistent properties and subclasses. <versi on> and <i d>
properties are assumed to be inherited from the root class. Each subclass in a hierarchy must

86

Joined-subclass

define a unique di scri m nat or - val ue. If this is not specified, the fully qualified Java class name
is used.

For information about inheritance mappings see Chapter 9, Inheritance mapping.

5.1.18. Joined-subclass

Each subclass can also be mapped to its own table. This is called the table-per-subclass mapping
strategy. An inherited state is retrieved by joining with the table of the superclass. To do this you
use the <j oi ned- subcl ass> element. For example:

<j oi ned- subcl ass
name="C assNane"
t abl e="t abl enane"

proxy="Proxyl nterface"

o0 0®

lazy="true| fal se"

dynami c-update="true| f al se"
dynamic-insert="true|fal se"
schema="schema"

cat al og="cat al og"

ext ends="Super cl assNane"
persi st er="Cl assNange"
subsel ect =" SQL expressi on"
entity-name="EntityNanme"
node="el ement - nane" >

<key >
<property [>

</ j oi ned- subcl ass>

nane: the fully qualified class name of the subclass.

t abl e: the name of the subclass table.

®© 00

pr oxy (optional): specifies a class or interface to use for lazy initializing proxies.

© | azy (optional, defaults to t r ue): setting | azy="f al se" disables the use of lazy fetching.

A discriminator column is not required for this mapping strategy. Each subclass must, however,
declare a table column holding the object identifier using the <key> element. The mapping at the
start of the chapter would then be re-written as:

<?xm version="1.0"?>

<! DOCTYPE hi ber nat e- mappi ng PUBLI C
"-// Hi bernat e/ H bernate Mappi ng DTD/ / EN'
"http://hibernate.sourceforge. net/hi bernate-nmappi ng-3.0.dtd">

<hi ber nat e- mappi ng package="eg">

<cl ass nane="Cat" tabl e="CATS">

87

Chapter 5. Basic O/R Mapping

<id nane="id" colum="uid" type="long">
<generator class="hilo"/>

</id>

<property nanme="birthdate" type="date"/>
<property nane="color" not-null="true"/>

<property name="sex"

not-nul | ="true"/>

<property name="wei ght"/>
<many-to-one name="mate"/>
<set name="kittens">

<key col um="MOTHER"/ >
<one-to-many class="Cat"/>

</set>

<j oi ned- subcl ass nanme="Donesti cCat" tabl e="DOVESTI C_CATS" >

<key col um="CAT"/ >

<property nanme="nane" type="string"/>

</ j oi ned- subcl ass>
</ cl ass>

<cl ass nane="eg. Dog" >

<!'-- mapping for Dog could go here -->

</cl ass>

</ hi ber nat e- mappi ng>

For information about inheritance mappings see Chapter 9, Inheritance mapping.

5.1.19. Union-subclass

A third option is to map only the concrete classes of an inheritance hierarchy to tables. This is
called the table-per-concrete-class strategy. Each table defines all persistent states of the class,
including the inherited state. In Hibernate, it is not necessary to explicitly map such inheritance
hierarchies. You can map each class with a separate <cl ass> declaration. However, if you wish
use polymorphic associations (e.g. an association to the superclass of your hierarchy), you need

to use the <uni on- subcl ass> mapping. For example:

<uni on- subcl ass

nane="C assNane"
tabl e="t abl enanme"
proxy="Proxyl nterface"

lazy="true|fal se"

dynami c- updat e="true| fal se"
dynami c-insert="true| fal se"
schema="schema"

cat al og="cat al og"

ext ends="Super cl assNane"
abstract="true| fal se"

persi ster="Cl assNane"
subsel ect =" SQL expressi on"
entity-nane="EntityNane"
node="el emrent - nane" >

<property [>

00O

88

Join

</ uni on- subcl ass>

o009

nane: the fully qualified class name of the subclass.
t abl e: the name of the subclass table.
pr oxy (optional): specifies a class or interface to use for lazy initializing proxies.

| azy (optional, defaults to t r ue): setting | azy="f al se" disables the use of lazy fetching.

No discriminator column or key column is required for this mapping strategy.

For information about inheritance mappings see Chapter 9, Inheritance mapping.

5.1.20. Join

Using the <j oi n> element, it is possible to map properties of one class to several tables that have
a one-to-one relationship. For example:

<join
tabl e="t abl enane" 1
schema="owner" (2]
cat al og="cat al og" e
fetch="join|select" 4]
inverse="true|fal se" (5]
optional ="true|fal se"> (6
<key ... [>
<property ... />
</joi n>
€ tabl e: the name of the joined table.
schema (optional): overrides the schema name specified by the root <hi ber nat e- mappi ng>
element.
€ catal og (optional): overrides the catalog name specified by the root <hi ber nat e- mappi ng>
element.
& fetch (optional - defaults to j oi n): if set to j oi n, the default, Hibernate will use an inner
join to retrieve a <j oi n> defined by a class or its superclasses. It will use an outer join for
a <j oi n> defined by a subclass. If set to sel ect then Hibernate will use a sequential select
for a <j oi n> defined on a subclass. This will be issued only if a row represents an instance
of the subclass. Inner joins will still be used to retrieve a <j oi n> defined by the class and
its superclasses.
© inverse (optional - defaults to f al se): if enabled, Hibernate will not insert or update the

properties defined by this join.

89

Chapter 5. Basic O/R Mapping

€ optional (optional - defaults to f al se): if enabled, Hibernate will insert a row only if the
properties defined by this join are non-null. It will always use an outer join to retrieve the
properties.

For example, address information for a person can be mapped to a separate table while preserving
value type semantics for all properties:

<cl ass nane="Person"
t abl e=" PERSON" >

<id nane="id" colum="PERSON_ID'>...</id>

<j oin tabl e=" ADDRESS" >
<key col umm="ADDRESS | D'/ >
<property nanme="address"/>
<property nanme="zip"/>
<property name="country"/>
</j oi n>

This feature is often only useful for legacy data models. We recommend fewer tables than classes
and a fine-grained domain model. However, it is useful for switching between inheritance mapping
strategies in a single hierarchy, as explained later.

5.1.21. Key

The <key> element has featured a few times within this guide. It appears anywhere the parent
mapping element defines a join to a new table that references the primary key of the original table.
It also defines the foreign key in the joined table:

<key
col um="col umnang"
on- del et e="noacti on| cascade"
property-ref="propertyNanme"
not-nul | ="true| fal se"

updat e="true] f al se"

Q0000®O

uni que="true] fal se"

€ col um (optional): the name of the foreign key column. This can also be specified by nested
<col utm> element(s).

on-del et e (optional - defaults to noact i on): specifies whether the foreign key constraint has
database-level cascade delete enabled.

© property-ref (optional): specifies that the foreign key refers to columns that are not the
primary key of the original table. It is provided for legacy data.

90

Column and formula elements

@ not-null (optional): specifies that the foreign key columns are not nullable. This is implied
whenever the foreign key is also part of the primary key.

€ update (optional): specifies that the foreign key should never be updated. This is implied
whenever the foreign key is also part of the primary key.

© uni que (optional): specifies that the foreign key should have a unique constraint. This is
implied whenever the foreign key is also the primary key.

For systems where delete performance is important, we recommend that all keys should be
defined on- del et e="cascade" . Hibernate uses a database-level ON CASCADE DELETE constraint,
instead of many individual DELETE statements. Be aware that this feature bypasses Hibernate's
usual optimistic locking strategy for versioned data.

The not-nul |l and update attributes are useful when mapping a unidirectional one-to-many
association. If you map a unidirectional one-to-many association to a non-nullable foreign key,
you must declare the key column using <key not-nul | ="true">.

5.1.22. Column and formula elements

Mapping elements which accept a col utm attribute will alternatively accept a <col utm>
subelement. Likewise, <f or nul a> is an alternative to the f or mul a attribute. For example:

<col um
nane="col um_nane"
| engt h="N"
preci sion="N'
scal e="N'
not - nul | ="true| fal se"
uni que="true]| fal se"
uni que- key="nul ti col unm_uni que_key_nane"
i ndex="i ndex_nane"
sqgl -type="sql _t ype_nane"
check="SQ. expression"
def aul t ="SQ. expression"
read="SQL expression"
wite="SQ. expression"/>

<f ornul a>SQ@. expr essi on</f or mul a>

Most of the attributes on col urm provide a means of tailoring the DDL during automatic schema
generation. The read and wri t e attributes allow you to specify custom SQL that Hibernate will
use to access the column's value. For more on this, see the discussion of column read and write
expressions.

The col urm and f or mul a elements can even be combined within the same property or association
mapping to express, for example, exotic join conditions.

<many-t o- one nanme="honeAddress" cl ass="Address"

91

Chapter 5. Basic O/R Mapping

insert="fal se" update="fal se">
<col um name="person_i d" not-null="true" | ength="10"/>
<f ornul a>" MAI LI NG </ f or mul a>
</ many-t o- one>

5.1.23. Import

If your application has two persistent classes with the same name, and you do not want to specify
the fully qualified package name in Hibernate queries, classes can be "imported" explicitly, rather
than relying upon aut o-i nport ="t rue". You can also import classes and interfaces that are not
explicitly mapped:

<inmport class="java.lang. Qbj ect" renanme="Universe"/>

<i nport
cl ass="d assNane" 0

r enane=" Shor t Nare" 9

€ cl ass: the fully qualified class name of any Java class.

@ renane (optional - defaults to the unqualified class nhame): a nhame that can be used in the
guery language.

5.1.24. Any

There is one more type of property mapping. The <any> mapping element defines a polymorphic
association to classes from multiple tables. This type of mapping requires more than one column.
The first column contains the type of the associated entity. The remaining columns contain the
identifier. It is impossible to specify a foreign key constraint for this kind of association. This is not
the usual way of mapping polymorphic associations and you should use this only in special cases.
For example, for audit logs, user session data, etc.

The net a-t ype attribute allows the application to specify a custom type that maps database
column values to persistent classes that have identifier properties of the type specified by i d-
t ype. You must specify the mapping from values of the meta-type to class names.

<any nanme="being" id-type="long" neta-type="string">
<net a- val ue val ue="TBL_ANI MAL" cl ass="Ani mal "/>
<net a- val ue val ue="TBL_HUMAN' cl ass="Human"/>
<nmet a-val ue val ue="TBL_ALI EN' cl ass="Alien"/>
<col um nane="t abl e_nane"/ >
<col um name="id"/>

</ any>

92

Hibernate types

<any
name="pr opert yNane"
id-type="idtypenange"
met a- t ype="net at ypenane"
cascade="cascade_styl e"

access="fi el d| property| Cl assNane"

Q000080O

optimstic-lock="true|fal se"

<nmeta-value ... />
<nmeta-value ... />
<colum />
<colum />

nane: the property name.

© e

i d-type: the identifier type.

®

met a-t ype (optional - defaults to string): any type that is allowed for a discriminator
mapping.

cascade (optional- defaults to none): the cascade style.

access (optional - defaults to property): the strategy Hibernate uses for accessing the
property value.

optim stic-1ock (optional - defaults to t r ue): specifies that updates to this property either
do or do not require acquisition of the optimistic lock. It defines whether a version increment
should occur if this property is dirty.

@ 09

5.2. Hibernate types

5.2.1. Entities and values

In relation to the persistence service, Java language-level objects are classified into two groups:

An entity exists independently of any other objects holding references to the entity. Contrast this
with the usual Java model, where an unreferenced object is garbage collected. Entities must be
explicitly saved and deleted. Saves and deletions, however, can be cascaded from a parent entity
to its children. This is different from the ODMG model of object persistence by reachability and
corresponds more closely to how application objects are usually used in large systems. Entities
support circular and shared references. They can also be versioned.

An entity's persistent state consists of references to other entities and instances of value types.
Values are primitives: collections (not what is inside a collection), components and certain
immutable objects. Unlike entities, values in particular collections and components, are persisted
and deleted by reachability. Since value objects and primitives are persisted and deleted along

93

Chapter 5. Basic O/R Mapping

with their containing entity, they cannot be independently versioned. Values have no independent
identity, so they cannot be shared by two entities or collections.

Until now, we have been using the term "persistent class" to refer to entities. We will continue to
do that. Not all user-defined classes with a persistent state, however, are entities. A component is
a user-defined class with value semantics. A Java property of type j ava. | ang. Stri ng also has
value semantics. Given this definition, all types (classes) provided by the JDK have value type
semantics in Java, while user-defined types can be mapped with entity or value type semantics.
This decision is up to the application developer. An entity class in a domain model will normally
have shared references to a single instance of that class, while composition or aggregation usually
translates to a value type.

We will revisit both concepts throughout this reference guide.

The challenge is to map the Java type system, and the developers' definition of entities and
value types, to the SQL/database type system. The bridge between both systems is provided
by Hibernate. For entities, <cl ass>, <subcl ass> and so on are used. For value types we use
<pr opert y>, <conponent >etc., that usually have a t ype attribute. The value of this attribute is
the name of a Hibernate mapping type. Hibernate provides a range of mappings for standard
JDK value types out of the box. You can write your own mapping types and implement your own
custom conversion strategies.

With the exception of collections, all built-in Hibernate types support null semantics.

5.2.2. Basic value types

The built-in basic mapping types can be roughly categorized into the following:

i nteger, long, short, float, double, character, byte, bool ean, yes_no, true_fal se
Type mappings from Java primitives or wrapper classes to appropriate (vendor-specific) SQL
column types. bool ean, yes_no and true_f al se are all alternative encodings for a Java
bool ean or j ava. | ang. Bool ean.

string
A type mapping from j ava. | ang. Stri ng to VARCHAR (or Oracle VARCHAR?).

date, tine, timestanp
Type mappings from java. util.Date and its subclasses to SQL types DATE, TI ME and
TI MESTAMP (0Or equivalent).

cal endar, cal endar_date
Type mappings fromj ava. uti | . Cal endar to SQL types TI MESTAMP and DATE (or equivalent).

bi g_deci mal, bi g_integer
Type mappings from j ava. mat h. Bi gDeci nal and j ava. mat h. Bi gl nt eger to NUMERI C (or
Oracle NUVBER).

94

Custom value types

| ocal e, tinmezone, currency
Type mappings from j ava. util.Local e, java. util.Ti meZone and j ava. util. Currency
to VARCHAR (or Oracle VARCHAR?). Instances of Local e and Cur r ency are mapped to their ISO
codes. Instances of Ti neZone are mapped to their | D.

cl ass
A type mapping fromj ava. | ang. O ass to VARCHAR (or Oracle VARCHAR?). A d ass is mapped
to its fully qualified name.

bi nary
Maps byte arrays to an appropriate SQL binary type.

t ext
Maps long Java strings to a SQL CLOB or TEXT type.

serializable
Maps serializable Java types to an appropriate SQL binary type. You can also indicate the
Hibernate type seri al i zabl e with the name of a serializable Java class or interface that does
not default to a basic type.

cl ob, bl ob
Type mappings for the JDBC classes j ava. sql . C ob and j ava. sql . Bl ob. These types can
be inconvenient for some applications, since the blob or clob object cannot be reused outside
of a transaction. Driver support is patchy and inconsistent.

i mm _dat e, immtine, i mm_tinestanp, i mm_cal endar, i mm_cal endar _dat e,
i mm serializable, immbinary
Type mappings for what are considered mutable Java types. This is where Hibernate makes
certain optimizations appropriate only for immutable Java types, and the application treats
the object as immutable. For example, you should not call Dat e. set Ti me() for an instance
mapped asi nm ti mest anp. To change the value of the property, and have that change made
persistent, the application must assign a new, nonidentical, object to the property.

Unique identifiers of entities and collections can be of any basic type except bi nary, bl ob and
cl ob. Composite identifiers are also allowed. See below for more information.

The basic value types have corresponding Type constants defined on
or g. hi ber nat e. Hi ber nat e. For example, H ber nat e. STRI NG represents the st ri ng type.

5.2.3. Custom value types

It is relatively easy for developers to create their own value types. For example, you might want
to persist properties of type j ava. | ang. Bi gl nt eger to VARCHAR columns. Hibernate does not
provide a built-in type for this. Custom types are not limited to mapping a property, or collection
element, to a single table column. So, for example, you might have a Java property get Name() /
set Name() of type java. |l ang. String that is persisted to the columns FI RST_NAME, | NI Tl AL,
SURNAME.

95

Chapter 5. Basic O/R Mapping

To implement a custom type, implement either org.hibernate.UserType or
or g. hi ber nat e. Conposi t eUser Type and declare properties using the fully qualified classname
of the type. View or g. hi bernat e. t est. Doubl eStri ngType to see the kind of things that are
possible.

<property name="twoStrings" type="org.hibernate.test.DoubleStringType">
<col um nanme="first_string"/>
<col um nanme="second_string"/>

</ property>

Notice the use of <col utm> tags to map a property to multiple columns.

The ConpositeUser Type, EnhancedUser Type, User Col | ecti onType, and User Ver si onType
interfaces provide support for more specialized uses.

You can even supply parameters to a User Type in the mapping file. To do this, your User Type must
implement the or g. hi ber nat e. usert ype. Par anet eri zedType interface. To supply parameters
to your custom type, you can use the <t ype> element in your mapping files.

<property name="priority">
<type nane="com nyconpany. usertypes. Def aul t Val uel nt eger Type" >
<par am nane="def aul t " >0</ par an»
</type>
</ property>

The User Type can now retrieve the value for the parameter named def aul t from the Properti es
object passed to it.

If you regularly use a certain User Type, it is useful to define a shorter name for it. You can do this
using the <t ypedef > element. Typedefs assigh a name to a custom type, and can also contain a
list of default parameter values if the type is parameterized.

<t ypedef class="com nyconpany. usertypes. Def aul t Val uel nt eger Type" nane="defaul t _zero">
<par am nanme="def aul t " >0</ par an®
</ typedef >

<property name="priority" type="default_zero"/>

It is also possible to override the parameters supplied in a typedef on a case-by-case basis by
using type parameters on the property mapping.

Even though Hibernate's rich range of built-in types and support for components means you will
rarely need to use a custom type, it is considered good practice to use custom types for non-
entity classes that occur frequently in your application. For example, a Monet ar yAnount class is a

96

Mapping a class more than once

good candidate for a Conposi t eUser Type, even though it could be mapped as a component. One
reason for this is abstraction. With a custom type, your mapping documents would be protected
against changes to the way monetary values are represented.

5.3. Mapping a class more than once

It is possible to provide more than one mapping for a particular persistent class. In this case, you
must specify an entity name to disambiguate between instances of the two mapped entities. By
default, the entity name is the same as the class name. Hibernate lets you specify the entity name
when working with persistent objects, when writing queries, or when mapping associations to the
named entity.

<cl ass nane="Contract" tabl e="Contracts"
entity-name="CurrentContract">

<set name="history" inverse="true"
order-by="effecti veEndDat e desc">
<key col um="current Contractld"/>
<one-to-nmany entity-nane="H storical Contract"/>
</ set>
</ cl ass>

<cl ass nane="Contract" tabl e="ContractH story"
entity-nane="Hi storical Contract">

<many-t o- one name="current Contract"
col um="current Contract|d"
entity-name="CurrentContract"/>
</ cl ass>

Associations are now specified using enti t y- nane instead of cl ass.

5.4. SQL quoted identifiers

You can force Hibernate to quote an identifier in the generated SQL by enclosing the table or
column name in backticks in the mapping document. Hibernate will use the correct quotation style
for the SQL Di al ect . This is usually double quotes, but the SQL Server uses brackets and MySQL
uses backticks.

<cl ass nane="Linelten! table=""Line Item">

<id name="id" colum=""Item |d "/><generator class="assigned"/></id>
<property nanme="itemNunber" colum=""Item# "/>
</ cl ass>

97

Chapter 5. Basic O/R Mapping

5.5. Metadata alternatives

XML does not suit all users so there are some alternative ways to define O/R mapping metadata
in Hibernate.

5.5.1. Using XDoclet markup

Many Hibernate users prefer to embed mapping information directly in sourcecode using XDoclet
@i ber nat e. t ags. We do not cover this approach in this reference guide since it is considered part
of XDoclet. However, we include the following example of the Cat class with XDoclet mappings:

package eg;
inport java.util.Set;
inport java.util.Date;

| **

* .cl ass
* tabl e="CATS"
*/

public class Cat {
private Long id; // identifier
private Date birthdate;
private Cat nother;
private Set kittens
private Col or color;
private char sex;
private float weight;

/*
* @i bernate.id
* generator-class="native"
* col um="CAT_I D'

*/
public Long getld() {
return id;
}
private void setld(Long id) {
this.id=id;
}
/*k*
S . many-t o- one
* col utm="PARENT_| D"
=

public Cat getMther() {
return nother;

}

voi d set Mot her (Cat mot her) {
t hi s. not her = not her;

}
/**
* . property
* col um="BI RTH_DATE"
*
/

98

Using XDoclet markup

pub

}

Voi

}

| **
*

*

*/

lic Date getBirthdate() {
return birthdate;

d setBirthdate(Date date) {

bi rthdate = date;

@i bernat e. property
col utm="\El GHT"

public float getWight() {

}

Voi

| **
*
*

*

*/

return weight;

d set Wi ght (float weight) {
this.wei ght = weight;

@i ber nat e. property
col um="COLOR"
not - nul I ="true"

public Col or getColor() {

}

voi

}

| **

*

*

*

*/

return col or;

d set Col or (Col or color) {
this.color = color;

@i ber nat e. set
i nverse="true"
or der - by=" Bl RTH_DATE"
@i ber nat e. col | ecti on-key
col um="PARENT_| D"
@i bernat e. col | ecti on-one-to- many

public Set getKittens() {

}

Voi

}
11

return kittens;

d setKittens(Set kittens) {
this.kittens = kittens;

addKi tten not needed by Hi bernate

public void addKitten(Cat kitten) {

| **
*
*
*

*

*/

kittens.add(kitten);

@i ber nat e. property
col um=" SEX"
not - nul | ="true"
updat e="f al se"

public char getSex() {

}

Voi

return sex;

d set Sex(char sex) {
t hi s. sex=sex;

99

Chapter 5. Basic O/R Mapping

See the Hibernate website for more examples of XDoclet and Hibernate.

5.5.2. Using JDK 5.0 Annotations

JDK 5.0 introduced XDaoclet-style annotations at the language level that are type-safe and checked
at compile time. This mechanism is more powerful than XDoclet annotations and better supported
by tools and IDEs. IntelliJ IDEA, for example, supports auto-completion and syntax highlighting
of JDK 5.0 annotations. The new revision of the EJB specification (JSR-220) uses JDK 5.0
annotations as the primary metadata mechanism for entity beans. Hibernate3 implements the
Entit yManager of JSR-220 (the persistence API). Support for mapping metadata is available
via the Hibernate Annotations package as a separate download. Both EJB3 (JSR-220) and
Hibernate3 metadata is supported.

This is an example of a POJO class annotated as an EJB entity bean:

@ntity(access = AccessType. FlI ELD)
public class Custoner inplenents Serializable {

@d;
Long id;

String firstNane;
String | ast Nane;
Dat e birthday;

@r ansi ent
I nt eger age;

@nbedded
private Address honeAddress;

@neToMany(cascade=CascadeType. ALL)
@oi nCol um(nane="CUSTOMVER | D")
Set <Order > orders;

/] Cetter/setter and busi ness nethods

@ Note

Support for JDK 5.0 Annotations (and JSR-220) is currently under development.
Please refer to the Hibernate Annotations module for more details.

100

Generated properties

5.6. Generated properties

Generated properties are properties that have their values generated by the database. Typically,
Hibernate applications needed to refresh objects that contain any properties for which the
database was generating values. Marking properties as generated, however, lets the application
delegate this responsibility to Hibernate. When Hibernate issues an SQL INSERT or UPDATE
for an entity that has defined generated properties, it immediately issues a select afterwards to
retrieve the generated values.

Properties marked as generated must additionally be non-insertable and non-updateable. Only
versions, timestamps, and simple properties, can be marked as generated.

never (the default): the given property value is not generated within the database.

i nsert: the given property value is generated on insert, but is not regenerated on subsequent
updates. Properties like created-date fall into this category. Even though version and timestamp
properties can be marked as generated, this option is not available.

al ways: the property value is generated both on insert and on update.

5.7. Column read and write expressions

Hibernate allows you to customize the SQL it uses to read and write the values of columns mapped
to simple properties. For example, if your database provides a set of data encryption functions,
you can invoke them for individual columns like this:

<property nanme="credit Car dNunber" >
<col um
nanme="credit_card_nunf
read="decrypt (credit_card_num"
write="encrypt(?)"/>
</ property>

Hibernate applies the custom expressions automatically whenever the property is referenced in a
query. This functionality is similar to a derived-property f or mul a with two differences:

» The property is backed by one or more columns that are exported as part of automatic schema
generation.
» The property is read-write, not read-only.

The wri t e expression, if specified, must contain exactly one '?' placeholder for the value.

5.8. Auxiliary database objects

Auxiliary database objects allow for the CREATE and DROP of arbitrary database objects.
In conjunction with Hibernate's schema evolution tools, they have the ability to fully define a

101

Chapter 5. Basic O/R Mapping

user schema within the Hibernate mapping files. Although designed specifically for creating and
dropping things like triggers or stored procedures, any SQL command that can be run via a
j ava. sgl . St at enent . execut e() method is valid (for example, ALTERS, INSERTS, etc.). There
are essentially two modes for defining auxiliary database objects:

The first mode is to explicitly list the CREATE and DROP commands in the mapping file:

<hi ber nat e- mappi ng>

<dat abase- obj ect >
<creat e>CREATE TRI GGER ny_trigger ...</create>
<dr op>DROP TRI GCER ny_tri gger</drop>
</ dat abase- obj ect >
</ hi ber nat e- mappi ng>

The second mode is to supply a custom class that constructs the CREATE and DROP commands.
This custom class must implement the or g. hi ber nat e. mappi ng. Auxi | i ar yDat abaseCbj ect
interface.

<hi ber nat e- mappi ng>

<dat abase- obj ect >
<definition class="MTriggerDefinition"/>
</ dat abase- obj ect >
</ hi ber nat e- mappi ng>

Additionally, these database objects can be optionally scoped so that they only apply when certain
dialects are used.

<hi ber nat e- mappi ng>

<dat abase- obj ect >
<definition class="MTriggerDefinition"/>
<di al ect - scope nane="org. hi bernate. di al ect. Oracl e9i Di al ect"/>
<di al ect - scope nane="org. hi bernate. di al ect. Oracl e10gDi al ect"/ >
</ dat abase- obj ect >
</ hi ber nat e- mappi ng>

102

Chapter 6.

Collection mapping

6.1. Persistent collections

Hibernate requires that persistent collection-valued fields be declared as an interface type. For
example:

public class Product {
private String serial Nunber;
private Set parts = new HashSet();

public Set getParts() { return parts; }

void setParts(Set parts) { this.parts = parts; }

public String getSerial Nunmber() { return serial Nunber; }
void set Serial Nunber(String sn) { serial Nunber = sn; }

The actual interface might be java.util.Set, java.util.Collection, java.util.List,
java.util.Map, java.util.SortedSet, java.util.SortedMap or anything you like
("anything you like" means you will have to write an implementation of
or g. hi bernat e. usertype. User Col | ecti onType.)

Notice how the instance variable was initialized with an instance of HashSet . This is the best way
to initialize collection valued properties of newly instantiated (non-persistent) instances. When you
make the instance persistent, by calling per si st () for example, Hibernate will actually replace
the HashSet with an instance of Hibernate's own implementation of Set . Be aware of the following
errors:

Cat cat = new DonesticCat();
Cat kitten = new DonesticCat();

Set kittens = new HashSet ();

kittens. add(kitten);

cat.setKittens(kittens);

session. persist(cat);

kittens = cat.getKittens(); // Okay, kittens collection is a Set
(HashSet) cat.getKittens(); // Error!

The persistent collections injected by Hibernate behave like HashMap, HashSet , Tr eeMap, Tr eeSet
or ArraylLi st, depending on the interface type.

Collections instances have the usual behavior of value types. They are automatically persisted
when referenced by a persistent object and are automatically deleted when unreferenced. If a
collection is passed from one persistent object to another, its elements might be moved from one
table to another. Two entities cannot share a reference to the same collection instance. Due to

103

Chapter 6. Collection mapping

the underlying relational model, collection-valued properties do not support null value semantics.
Hibernate does not distinguish between a null collection reference and an empty collection.

Use persistent collections the same way you use ordinary Java collections. However, please
ensure you understand the semantics of bidirectional associations (these are discussed later).

6.2. Collection mappings

Tip

There are quite a range of mappings that can be generated for collections that
cover many common relational models. We suggest you experiment with the
schema generation tool so that you understand how various mapping declarations
translate to database tables.

The Hibernate mapping element used for mapping a collection depends upon the type of interface.
For example, a <set > element is used for mapping properties of type Set .

<cl ass name="Product ">
<id name="seri al Nunber" col um="product Seri al Nunber"/>
<set name="parts">

<key col um="product Seri al Nunber" not-nul | ="true"/>
<one-to-many class="Part"/>
</set>
</ cl ass>

Apart from <set >, thereis also <l i st >, <map>, <bag>, <array>and <pri m ti ve- ar ray>mapping
elements. The <map> element is representative:

<map
name="pr opert yNane"
t abl e="t abl e_nane"
schema="schenma_nane"
| azy="true| extral fal se"
inverse="true|fal se"
cascade="al | | none| save-updat e| del et e| al | - del et e- or phan| del et e- or phan"
sort="unsorted| nat ural | conpar at or Cl ass"
or der - by="col um_nane asc| desc"
where="arbitrary sqgl where condition"
fetch="join|sel ect|subsel ect"
bat ch-si ze="N'

access="fi el d| property| d assNane"

BPOB6000Q0O000O0OCS

optimstic-lock="true|fal se"

104

Collection foreign keys

nmut abl e="true| f al se" m’
node="el enent - nane| . "
enbed-xm ="t rue| f al se"

<key />

<map-key [>

<elenment />
</ map>

e © 90 o e

® ® o 86

14

nane: the collection property name

t abl e (optional - defaults to property name): the name of the collection table. It is not used
for one-to-many associations.

schema (optional): the name of a table schema to override the schema declared on the root
element

| azy (optional - defaults to t r ue): disables lazy fetching and specifies that the association
is always eagerly fetched. It can also be used to enable "extra-lazy" fetching where most
operations do not initialize the collection. This is suitable for large collections.

i nverse (optional - defaults to fal se): marks this collection as the "inverse" end of a
bidirectional association.

cascade (optional - defaults to none): enables operations to cascade to child entities.

sort (optional): specifies a sorted collection with nat ur al sort order or a given comparator
class.

or der - by (optional, JDK1.4 only): specifies a table column or columns that define the
iteration order of the Map, Set or bag, together with an optional asc or desc.

wher e (optional): specifies an arbitrary SQL WHERE condition that is used when retrieving or
removing the collection. This is useful if the collection needs to contain only a subset of the
available data.

fetch (optional, defaults to sel ect): chooses between outer-join fetching, fetching by
sequential select, and fetching by sequential subselect.

bat ch- si ze (optional, defaults to 1): specifies a "batch size" for lazily fetching instances of
this collection.

access (optional - defaults to property): the strategy Hibernate uses for accessing the
collection property value.

optim stic-1ock (optional - defaults to true): specifies that changes to the state of the
collection results in increments of the owning entity's version. For one-to-many associations
you may want to disable this setting.

mut abl e (optional - defaults to true): a value of f al se specifies that the elements of the
collection never change. This allows for minor performance optimization in some cases.

6.2.1. Collection foreign keys

Collection instances are distinguished in the database by the foreign key of the entity that owns the
collection. This foreign key is referred to as the collection key column, or columns, of the collection
table. The collection key column is mapped by the <key> element.

105

Chapter 6. Collection mapping

There can be a nullability constraint on the foreign key column. For most collections, this is implied.
For unidirectional one-to-many associations, the foreign key column is nullable by default, so you
may need to specify not - nul | ="true".

<key col um="product Seri al Nunber" not-nul |l ="true"/>

The foreign key constraint can use ON DELETE CASCADE.

<key col umm="product Seri al Nunber" on-del et e="cascade"/ >

See the previous chapter for a full definition of the <key> element.

6.2.2. Collection elements

Collections can contain almost any other Hibernate type, including: basic types, custom types,
components and references to other entities. This is an important distinction. An object in a
collection might be handled with "value" semantics (its life cycle fully depends on the collection
owner), or it might be a reference to another entity with its own life cycle. In the latter case, only
the "link" between the two objects is considered to be a state held by the collection.

The contained type is referred to as the collection element type. Collection elements are mapped
by <el ement > or <conposi t e- el ement >, or in the case of entity references, with <one- t o- many>
or <many- t o- many>. The first two map elements with value semantics, the next two are used to
map entity associations.

6.2.3. Indexed collections

All collection mappings, except those with set and bag semantics, need an index column in the
collection table. An index column is a column that maps to an array index, or Li st index, or Map
key. The index of a Map may be of any basic type, mapped with <map- key>. It can be an entity
reference mapped with <map- key- many-t o- many>, or it can be a composite type mapped with
<conposi t e- map- key>. The index of an array or list is always of type i nt eger and is mapped
using the <l i st-index> element. The mapped column contains sequential integers that are
numbered from zero by default.

<list-index

col um="col utm_nane" "
base="0[1]..."/>

€ col um_nane (required): the name of the column holding the collection index values.

€ base (optional - defaults to 0): the value of the index column that corresponds to the first
element of the list or array.

106

Collections of values and many-to-many associations

<nmap- key
col um="col unm_nange"

formul a="any SQL expression"

00

type="t ype_nane"
node="@ttri but e- nane"
| engt h="N"/>

€ col um (optional): the name of the column holding the collection index values.
@ formul a (optional): a SQL formula used to evaluate the key of the map.

€ type (required): the type of the map keys.

<map- key- many-t o- many
col um="col utm_nange" "

formul a="any SQ. expression" 213
cl ass="C assNange"

€ col um (optional): the name of the foreign key column for the collection index values.
€ formul a (optional): a SQ formula used to evaluate the foreign key of the map key.

© cl ass (required): the entity class used as the map key.

If your table does not have an index column, and you still wish to use Li st as the property type,
you can map the property as a Hibernate <bag>. A bag does not retain its order when it is retrieved
from the database, but it can be optionally sorted or ordered.

6.2.4. Collections of values and many-to-many associations

Any collection of values or many-to-many associations requires a dedicated collection table with
a foreign key column or columns, collection element column or columns, and possibly an index
column or columns.

For a collection of values use the <el enent > tag. For example:
<el enent

col um="col unm_nange"

formul a="any SQL expression"

00

type="typenane"

| engt h="L"
preci si on="P"

scal e="S"
not-nul | ="true| fal se"
uni que="true] fal se"
node="el ement - nane"

107

Chapter 6. Collection mapping

€ col um (optional): the name of the column holding the collection element values.
@ formul a (optional): an SQL formula used to evaluate the element.

© type (required): the type of the collection element.

A many-to-many association is specified using the <many- t o- many> element.

<many-t o- nany
col um="col um_nange"
formul a="any SQL expression"
cl ass="C assNane"
fetch="sel ect|join"
uni que="true| f al se"
not - f ound="1i gnor e| excepti on"

entity-nane="EntityNane"

002000080

property-ref="propertyNanmeFromissoci at edd ass"
node="el ement - nane"
enbed-xm ="true| fal se"

/>

col unm (optional): the name of the element foreign key column.
f or mul a (optional): an SQL formula used to evaluate the element foreign key value.

cl ass (required): the name of the associated class.

Q0 0e

f et ch (optional - defaults to j oi n): enables outer-join or sequential select fetching for this

association. This is a special case; for full eager fetching in a single SELECT of an entity and

its many-to-many relationships to other entities, you would enable j oi n fetching,not only of

the collection itself, but also with this attribute on the <many- t o- many> nested element.

© uni que (optional): enables the DDL generation of a unique constraint for the foreign-key
column. This makes the association multiplicity effectively one-to-many.

€ not-found (optional - defaults to excepti on): specifies how foreign keys that reference
missing rows will be handled: i gnor e will treat a missing row as a null association.

€ entity-nane (optional): the entity name of the associated class, as an alternative to cl ass.

© property-ref (optional): the name of a property of the associated class that is joined to this
foreign key. If not specified, the primary key of the associated class is used.

Here are some examples.

A set of strings:

<set nanme="nanes" tabl e="person_nanes">
<key col um="person_id"/>
<el enent col umm="per son_nane" type="string"/>

108

Collections of values and many-to-many associations

</ set>

A bag containing integers with an iteration order determined by the or der - by attribute:

<bag nanme="si zes"
tabl e="item si zes"
order - by="si ze asc">
<key colum="item.id"/>
<el enent col um="si ze" type="integer"/>
</ bag>

An array of entities, in this case, a many-to-many association:

<array nane="addresses"
t abl e=" Per sonAddr ess"
cascade="persist">
<key col um="personl d"/>
<list-index colum="sortOrder"/>
<many-to-many col um="addressl d" cl ass="Address"/>
</array>

A map from string indices to dates:

<map nanme="hol i days"
tabl e="hol i days"
schenma="dbo"
or der - by="hol _nane asc">
<key col um="id"/>
<map- key col um="hol _nanme" type="string"/>
<el enent col um="hol _date" type="date"/>
</ map>

A list of components (this is discussed in the next chapter):

<l'i st name="car Conponent s"
t abl e=" Car Conponent s" >
<key colum="carld"/>
<list-index colum="sortOrder"/>
<conposi te-el ement cl ass="Car Conponent ">
<property name="price"/>
<property name="type"/>
<property nanme="serial Nunber" col um="seri al Nunm'/>
</ conposi te-el ement >
</[list>

109

Chapter 6. Collection mapping

6.2.5. One-to-many associations

A one-to-many association links the tables of two classes via a foreign key with no intervening
collection table. This mapping loses certain semantics of nhormal Java collections:

« An instance of the contained entity class cannot belong to more than one instance of the
collection.

« An instance of the contained entity class cannot appear at more than one value of the collection
index.

An association from Pr oduct to Part requires the existence of a foreign key column and possibly
an index column to the Part table. A <one-to- many> tag indicates that this is a one-to-many
association.

<one-t o- many
cl ass="d assNane"

not - f ound="i gnor e| excepti on"

o0 e

entity-nane="EntityNane"

node="el ement - nane"

enbed- xm ="true| f al se"
/>

© cl ass (required): the name of the associated class.

@ not-found (optional - defaults to except i on): specifies how cached identifiers that reference
missing rows will be handled. i gnor e will treat a missing row as a null association.
€ entity-nane (optional): the entity name of the associated class, as an alternative to cl ass.

The <one-t o- many> element does not need to declare any columns. Nor is it necessary to specify
the t abl e name anywhere.

Warning

If the foreign key column of a <one-t o- many> association is declared NOT NULL,
you must declare the <key> mapping not - nul | ="true" or use a bidirectional
association with the collection mapping marked inverse="true". See the
discussion of bidirectional associations later in this chapter for more information.

The following example shows a map of Part entities by name, where part Name is a persistent
property of Part . Notice the use of a formula-based index:

<map name="parts"
cascade="al | ">
<key col um="product!ld" not-null="true"/>
<map- key fornul a="part Nanme"/ >
<one-to-nmany class="Part"/>

110

Advanced collection mappings

</ map>

6.3. Advanced collection mappings

6.3.1. Sorted collections

Hibernate supports collections implementingj ava. uti |l . SortedMap andj ava. util . Sort edSet .
You must specify a comparator in the mapping file:

<set nanme="al i ases"
tabl e="person_al i ases"
sort="natural ">
<key col um="person"/>
<el enent col um="nane" type="string"/>
</ set>

<map name="hol i days" sort="ny.custom Hol i dayConpar at or " >
<key col um="year _id"/>
<map- key col um="hol _name" type="string"/>
<el enent col um="hol _date" type="date"/>

</ map>

Allowed values of the sor t attribute are unsort ed, nat ur al and the name of a class implementing
java. util . Conparator.

Sorted collections actually behave like j ava. util . TreeSet orjava. util.TreeMap.

If you want the database itself to order the collection elements, use the or der - by attribute of set,
bag or map mappings. This solution is only available under JDK 1.4 or higher and is implemented
using Li nkedHashSet or Li nkedHashMap. This performs the ordering in the SQL query and not
in the memory.

<set nane="al i ases" tabl e="person_aliases" order-by="|ower(nanme) asc">
<key col uim="person"/>
<el enent col um="nane" type="string"/>

</ set>

<map nanme="hol i days" order-by="hol _date, hol _nane">
<key colum="year _id"/>
<map- key col um="hol _name" type="string"/>
<el enent col um="hol _date type="date"/>

</ map>

Note

The value of the or der - by attribute is an SQL ordering, not an HQL ordering.

111

Chapter 6. Collection mapping

Associations can even be sorted by arbitrary criteria at runtime using a collection fil ter():

sortedUsers = s.createFilter(group.getUsers(), "order by this.name").list();

6.3.2. Bidirectional associations

A bidirectional association allows navigation from both "ends" of the association. Two kinds of
bidirectional association are supported:

one-to-many
set or bag valued at one end and single-valued at the other

many-to-many
set or bag valued at both ends

You can specify a bidirectional many-to-many association by mapping two many-to-many
associations to the same database table and declaring one end as inverse. You cannot select
an indexed collection.

Here is an example of a bidirectional many-to-many association that illustrates how each category
can have many items and each item can be in many categories:

<cl ass nane="Cat egory" >
<id nanme="id" col um="CATEGORY_I D'/ >

<bag nanme="itens" tabl e="CATEGORY_| TEM >
<key col um="CATEGORY_I D'/ >
<many-to-many class="Itenl colum="1TEM ID"'/>
</ bag>
</cl ass>

<cl ass nane="Itent>
<id nane="id" colum="I1TEM ID'/>

<l-- inverse end -->
<bag nane="cat egories" tabl e=" CATEGORY_I TEM' inverse="true">
<key colum="|TEM | D'/ >
<many-to-many cl ass="Category" col um="CATEGORY_| D'/ >
</ bag>
</ cl ass>

Changes made only to the inverse end of the association are not persisted. This means that
Hibernate has two representations in memory for every bidirectional association: one link from A
to B and another link from B to A. This is easier to understand if you think about the Java object
model and how a many-to-many relationship in Javais created:

112

Bidirectional associations with indexed collections

category.getltens().add(item;
item get Cat egori es().add(cat egory)

session. persist(item;
sessi on. persi st (category);

The non-inverse side is used to save the

/] The category now "knows" about the relationship
/1 The item now "knows" about the relationship

[/ The relationship won't be saved
/1 The relationship will be saved

in-memory representation to the database.

You can define a bidirectional one-to-many association by mapping a one-to-many association
to the same table column(s) as a many-to-one association and declaring the many-valued end

i nverse="true".

<cl ass name="Parent">
<id name="id" col um="parent_id"/>

<set nanme="children" inverse="true">
<key col um="parent_id"/>
<one-to-many class="Child"/>
</ set>
</cl ass>

<cl ass nane="Chil d">
<id nanme="id" colum="child_id"/>

<many-to- one name="parent"
cl ass="Parent"
col um="parent _i d"
not-nul I ="true"/>
</cl ass>

Mapping one end of an association w
cascades as these are orthogonal conce

ith i nverse="true" does not affect the operation of
pts.

6.3.3. Bidirectional associations with indexed collections

A bidirectional association where one en

d is represented as a <l i st > or <map>, requires special

consideration. If there is a property of the child class that maps to the index column you can use

i nverse="true" on the collection mapping:

<cl ass name="Parent">
<id name="id" colum="parent_id"/>

<map nanme="children" inverse="true">
<key col um="parent _id"/>
<map- key col utm="nane"
type="string"/>
<one-to-nmany class="Child"/>
</ map>
</cl ass>

<cl ass nane="Chil d">

113

Chapter 6. Collection mapping

<id nane="id" colum="child_id"/>

<property nanme="name"
not-null="true"/>
<many-to- one nanme="parent"
cl ass="Parent"
col um="parent _i d"
not-null="true"/>
</ cl ass>

If there is no such property on the child class, the association cannot be considered truly
bidirectional. That is, there is information available at one end of the association that is not
available at the other end. In this case, you cannot map the collection i nver se="true" . Instead,
you could use the following mapping:

<cl ass nane="Parent">
<id nane="id" colum="parent_id"/>

<map name="chil dren">
<key col um="parent _i d"
not-nul I ="true"/>
<map- key col um="nanme"
type="string"/>
<one-to-nmany class="Child"/>
</ map>
</cl ass>

<cl ass nane="Chil d">
<id nanme="id" colum="child_id"/>

<many-to- one name="parent"
cl ass="Parent"
col um="parent _i d"
insert="fal se"
updat e="f al se"
not-null ="true"/>
</ cl ass>

Note that in this mapping, the collection-valued end of the association is responsible for updates
to the foreign key.

6.3.4. Ternary associations

There are three possible approaches to mapping a ternary association. One approach is to use
a Map with an association as its index:

<map name="contracts">
<key col um="enpl oyer _id" not-null="true"/>
<map- key- many-t o- nany col um="enpl oyee_i d" cl ass="Enpl oyee"/>
<one-to-nmany cl ass="Contract"/>

114

Using an <idbag>

</ map>

<map nanme="connections">
<key col um="i ncom ng_node_i d"/>
<map- key- many-t o- nany col utm="out goi ng_node_i d" cl ass="Node"/>
<many-to- many col um="connection_i d" class="Connection"/>

</ map>

A second approach is to remodel the association as an entity class. This is the most common
approach.

A final alternative is to use composite elements, which will be discussed later.

6.3.5. usi ng an <i dbag>

The majority of the many-to-many associations and collections of values shown previously all map
to tables with composite keys, even though it has been have suggested that entities should have
synthetic identifiers (surrogate keys). A pure association table does not seem to benefit much
from a surrogate key, although a collection of composite values might. It is for this reason that
Hibernate provides a feature that allows you to map many-to-many associations and collections
of values to a table with a surrogate key.

The <i dbag> element lets you map a Li st (or Col | ect i on) with bag semantics. For example:

<i dbag nane="I overs" tabl e="LOVERS">
<col l ection-id colum="1D" type="Iong">
<generator class="sequence"/>
</col | ection-id>
<key col utm="PERSONL"/ >
<many-to- many col um="PERSON2" cl| ass="Person" fetch="join"/>
</ i dbag>

An <i dbag> has a synthetic id generator, just like an entity class. A different surrogate key
is assigned to each collection row. Hibernate does not, however, provide any mechanism for
discovering the surrogate key value of a particular row.

The update performance of an <i dbag> supersedes a regular <bag>. Hibernate can locate
individual rows efficiently and update or delete them individually, similar to a list, map or set.

In the current implementation, the nati ve identifier generation strategy is not supported for
<i dbag> collection identifiers.

6.4. Collection examples

This section covers collection examples.

The following class has a collection of Chi | d instances:

115

Chapter 6. Collection mapping

package eg
inport java.util.Set;

public class Parent {
private long id;
private Set children

public long getld() { returnid; }
private void setld(long id) { this.id=id; }

private Set getChildren() { return children; }
private void setChildren(Set children) { this.children=children; }

If each child has, at most, one parent, the most natural mapping is a one-to-many association:

<hi ber nat e- mappi ng>

<cl ass nane="Parent">
<id name="id">
<generator class="sequence"/>
</id>
<set name="chil dren">
<key col um="parent _id"/>
<one-to-many class="Child"/>
</ set>
</ cl ass>

<cl ass nanme="Chil d">
<id name="id">
<generator class="sequence"/>
</id>
<property name="nanme"/>
</ cl ass>

</ hi ber nat e- mappi ng>

This maps to the following table definitions:

create table parent (id bigint not null primary key)
create table child (id bigint not null primary key, nane varchar(255), parent_id bigint)
alter table child add constraint childfkO (parent_id) references parent

If the parent is required, use a bidirectional one-to-many association:

<hi ber nat e- mappi ng>

116

Collection examples

<cl ass nane="Parent">
<id nane="id">
<generator class="sequence"/>
</id>
<set name="children" inverse="true">
<key col um="parent _id"/>
<one-to-nmany class="Child"/>
</ set>
</ cl ass>

<cl ass nane="Child">
<id nane="id">
<gener at or cl ass="sequence"/>

</id>

<property nanme="nanme"/>

<many-to-one nanme="parent" class="Parent" columm="parent_id" not-null="true"/>
</ cl ass>

</ hi ber nat e- mappi ng>

Notice the NOT NULL constraint:

create table parent (id bigint not null primry key)
create table child (id bigint not nul
primary key
name var char (255)
parent _id bigint not null)
alter table child add constraint childfkO (parent_id) references parent

Alternatively, if this association must be unidirectional you can declare the NOT NULL constraint
on the <key> mapping:

<hi ber nat e- mappi ng>

<cl ass nanme="Parent">
<id name="id">
<generator class="sequence"/>

</id>
<set nane="children">
<key columm="parent _id" not-null="true"/>
<one-to-nmany cl ass="Child"/>
</set>
</ cl ass>

<cl ass name="Chi | d">
<id name="id">
<generator class="sequence"/>
</id>
<property name="nane"/>
</ cl ass>

</ hi ber nat e- mappi ng>

117

Chapter 6. Collection mapping

On the other hand, if a child has multiple parents, a many-to-many association is appropriate:

<hi ber nat e- mappi ng>

<cl ass nane="Parent">
<id nane="id">
<gener at or cl ass="sequence"/>
</id>
<set nanme="children" table="chil dset">
<key col um="parent _id"/>
<many-to-many cl ass="Child" colum="child_id"/>
</ set>
</cl ass>

<cl ass nanme="Chil d">
<id name="id">
<gener at or cl ass="sequence"/>
</id>
<property name="nanme"/>
</ cl ass>

</ hi ber nat e- mappi ng>

Table definitions:

create table parent (id bigint not null primary key)
create table child (id bigint not null primary key, nane varchar(255))
create table childset (parent_id bigint not null,

child_id bigint not null,

primary key (parent_id, child_id))
alter table childset add constraint childsetfkO (parent_id) references parent
alter table childset add constraint childsetfkl (child_id) references child

For more examples and a complete explanation of a parent/child relationship mapping, see
Chapter 22, Example: Parent/Child for more information.

Even more complex association mappings are covered in the next chapter.

118

Chapter 7.

Association Mappings

7.1. Introduction

Association mappings are often the most difficult thing to implement correctly. In this section
we examine some canonical cases one by one, starting with unidirectional mappings and then
bidirectional cases. We will use Per son and Addr ess in all the examples.

Associations will be classified by multiplicity and whether or not they map to an intervening join
table.

Nullable foreign keys are not considered to be good practice in traditional data modelling, so
our examples do not use nullable foreign keys. This is not a requirement of Hibernate, and the
mappings will work if you drop the nullability constraints.

7.2. Unidirectional associations

7.2.1. Many-to-one

A unidirectional many-to-one association is the most common kind of unidirectional association.

<cl ass nane="Person">
<id nane="id" col um="personld">
<generator class="native"/>
</id>
<nmany-t o- one nane="address"
col um="addr essl d"
not-null ="true"/>
</ cl ass>

<cl ass nanme="Address" >
<id nane="id" col um="addressld">
<generator class="native"/>
</id>

</ cl ass>

create table Person (personld bigint not null primary key, addresslid bigint not null)
create table Address (addressld bigint not null primary key)

7.2.2. One-to-one

A unidirectional one-to-one association on a foreign key is almost identical. The only difference
is the column unique constraint.

119

Chapter 7. Association Mappings

<cl ass nane="Person">
<id name="id" col um="personld">
<generator class="native"/>
</id>
<many-t o-one name="address"
col um="addr essl| d"
uni que="true"
not-nul I ="true"/>
</cl ass>

<cl ass nane="Address" >
<id nane="id" col um="addressld">
<generator class="native"/>
</id>
</cl ass>

create table Person (personld bigint not null primary key, addressld bigint not null unique)
create tabl e Address (addressld bigint not null primry key)

A unidirectional one-to-one association on a primary key usually uses a special id generator In
this example, however, we have reversed the direction of the association:

<cl ass nane="Person">
<id nane="id" col um="personld">
<generator class="native"/>
</id>
</ cl ass>

<cl ass nane="Address">
<id name="id" col um="personld">
<generator class="foreign">
<par am nane="property" >per son</ par an»
</ gener at or >
</id>
<one-to-one name="person" constrai ned="true"/>
</cl ass>

create table Person (personld bigint not null primry key)
create tabl e Address (personld bigint not null primry key)

7.2.3. One-to-many

A unidirectional one-to-many association on a foreign key is an unusual case, and is not
recommended.

120

Unidirectional associations with join tables

<cl ass nane="Person">
<id name="id" col um="personld">
<generator class="native"/>
</id>
<set name="addresses">
<key col umm="personl d"
not-null="true"/>
<one-to-many class="Address"/>
</set>
</ cl ass>

<cl ass nane="Address" >
<id nane="id" col um="addressld">
<generator class="native"/>
</id>
</cl ass>

create tabl e Person (personld bigint not null primary key)
create tabl e Address (addressld bigint not null primary key, personld bigint not null)

You should instead use a join table for this kind of association.
7.3. Unidirectional associations with join tables

7.3.1. One-to-many

A unidirectional one-to-many association on a join table is the preferred option. Specifying
uni que="true", changes the multiplicity from many-to-many to one-to-many.

<cl ass nane="Person">
<id nane="id" col um="personld">
<generator class="native"/>
</id>
<set nanme="addresses" tabl e="PersonAddress">
<key col um="personl d"/>
<many-t o- many col um="addr essl d"
uni que="true"
cl ass="Address"/ >
</ set>
</ cl ass>

<cl ass nanme="Address">
<id name="id" col um="addressld">
<generator class="native"/>
</id>

</ cl ass>

121

Chapter 7. Association Mappings

create table Person (personld bigint not null primary key)
create table PersonAddress (personld not null, addresslid bigint not null primry key)
create table Address (addressld bigint not null primary key)

7.3.2. Many-to-one

A unidirectional many-to-one association on a join table is common when the association is
optional. For example:

<cl ass nanme="Person">
<id nane="id" col um="personld">
<generator class="native"/>
</id>
<j oin tabl e="PersonAddr ess"
optional ="true">
<key col um="personl d" uni que="true"/>
<many-t o- one nane="address"
col um="addr essl| d"
not-nul I ="true"/>
</j oi n>
</ cl ass>

<cl ass nanme="Address">
<id name="id" col um="addressld">
<generator class="native"/>
</id>
</ cl ass>

create table Person (personld bigint not null primary key)
create table PersonAddress (personld bigint not null prinary key, addressld bigint not null)
create table Address (addresslid bigint not null primary key)

7.3.3. One-to-one

A unidirectional one-to-one association on a join table is possible, but extremely unusual.

<cl ass nanme="Person">

<id nane="id" col um="personld">
<generator class="native"/>

</id>

<j oi n tabl e="PersonAddr ess"
optional ="true">
<key col um="personl d"

uni que="true"/>

<many-t o- one nane="address"

122

Many-to-many

col um="addr essl d"
not-nul I ="true"
uni que="true"/>
</j oi n>
</cl ass>

<cl ass nane="Address">
<id nane="id" col um="addressld">
<generator class="native"/>
</id>
</cl ass>

create table Person (personld bigint not null primry key)

create table PersonAddress (personld bigint not null primary key, addresslid bigint not nul
uni que)

create table Address (addressld bigint not null primary key)

7.3.4. Many-to-many

Finally, here is an example of a unidirectional many-to-many association.

<cl ass nane="Person">
<id nane="id" col um="personld">
<generator class="native"/>
</id>
<set nanme="addresses" tabl e="PersonAddress">
<key col um="personl d"/>
<many-t o- many col um="addr essl d"
cl ass="Address"/ >
</ set>
</ cl ass>

<cl ass nanme="Address">
<id name="id" col um="addressld">
<gener ator class="native"/>
</id>
</ cl ass>

create table Person (personld bigint not null primary key)

create table PersonAddress (personld bigint not null, addresslid bigint not null, primary key
(personld, addresslid))

create table Address (addressld bigint not null primary key)

123

Chapter 7. Association Mappings

7.4. Bidirectional associations

7.4.1. one-to-many / many-to-one

A bidirectional many-to-one association is the most common kind of association. The following
example illustrates the standard parent/child relationship.

<cl ass nane="Person">
<id nane="id" col um="personld">
<generator class="native"/>
</id>
<many-to-one nanme="address"
col um="addr essl d"
not-null ="true"/>
</ cl ass>

<cl ass name="Address">
<id name="id" col um="addressld">
<generator class="native"/>
</id>
<set nanme="peopl e" inverse="true">
<key col um="addressl d"/>
<one-to-many cl ass="Person"/>
</ set>
</ cl ass>

create table Person (personld bigint not null primary key, addresslid bigint not null)
create table Address (addressld bigint not null primary key)

If you use a Li st , or other indexed collection, set the key column of the foreign key to not nul I .
Hibernate will manage the association from the collections side to maintain the index of each
element, making the other side virtually inverse by setting updat e="f al se" andi nsert="fal se":

<cl ass nane="Person">
<id nane="id"/>

<many-to-one nane="address"
col um="addr essl| d"
not-nul | ="true"
insert="fal se"
updat e="fal se"/ >
</ cl ass>

<cl ass nane="Address" >
<id nane="id"/>

<list name="peopl e">
<key col um="addressld" not-null="true"/>

124

One-to-one

<l ist-index colum="peopl el dx"/>
<one-to-many cl ass="Person"/>
</list>

</cl ass>

If the underlying foreign key column is NOT NULL, it is important that you define not - nul | ="t r ue"
on the <key> element of the collection mapping. Do not only declare not-nul | ="true" on a
possible nested <col utm> element, but on the <key> element.

7.4.2. One-to-one

A bidirectional one-to-one association on a foreign key is common:

<cl ass nane="Person">
<id name="id" col um="personld">
<generator class="native"/>
</id>
<many-t o-one nane="address"
col um="addr essl| d"
uni que="true"
not-null="true"/>
</cl ass>

<cl ass nane="Address">
<id nane="id" col um="addressld">
<generator class="native"/>
</id>
<one-to-one nane="person"
property-ref="address"/>
</cl ass>

create table Person (personld bigint not null primary key, addresslid bigint not null unique)
create tabl e Address (addressld bigint not null primry key)

A bidirectional one-to-one association on a primary key uses the special id generator:

<cl ass nane="Person">
<id name="id" col um="personld">
<generator class="native"/>
</id>
<one-to-one name="address"/>
</ cl ass>

<cl ass name="Address">
<id nane="id" col um="personld">
<generator class="foreign">
<par am nane="property" >per son</ par an»
</ gener at or >

125

Chapter 7. Association Mappings

</id>
<one-to-one nane="person"
constrai ned="true"/>

</cl ass>

create table Person (personld bigint not null primry key)
create tabl e Address (personld bigint not null primry key)

7.5. Bidirectional associations with join tables

7.5.1. one-to-many / many-to-one

The following is an example of a bidirectional one-to-many association on a join table. The
i nver se="true" can go on either end of the association, on the collection, or on the join.

<cl ass nane="Person">
<id nane="id" col um="personld">
<generator class="native"/>
</id>
<set nane="addresses"
t abl e="Per sonAddr ess" >
<key col um="personl d"/>
<many-to- many col um="addr essl| d"
uni que="true"
cl ass="Address"/ >
</set>
</ cl ass>

<cl ass nanme="Address">
<id name="id" col um="addressld">
<generator class="native"/>
</id>
<j oi n tabl e="PersonAddr ess"
inverse="true"
optional ="true">
<key col um="addressl d"/>
<many-to-one name="person"”
col um="per sonl d"
not-nul I ="true"/>
</j oi n>
</ cl ass>

create table Person (personld bigint not null primary key)
create table PersonAddress (personld bigint not null, addressld bigint not null primary key)
create table Address (addressld bigint not null primary key)

126

one to one

7.5.2. one to one

A bidirectional one-to-one association on a join table is possible, but extremely unusual.

<cl ass nane="Person">
<id name="id" col um="personld">
<generator class="native"/>
</id>
<j oi n tabl e="PersonAddress"
optional ="true">
<key col utm="personl d"
uni que="true"/>
<nmany-t o-one nane="address"
col um="addr essl| d"
not-nul I ="true"
uni que="true"/>
</j oi n>
</ cl ass>

<cl ass name="Address">
<id name="id" col um="addressld">
<generator class="native"/>
</id>
<j oin tabl e="PersonAddress"
optional ="true"
inverse="true">
<key col um="addressl| d"
uni que="true"/>
<many-to-one name="person"
col um="per sonl d"
not-nul I ="true"
uni que="true"/>
</j oi n>
</ cl ass>

create table Person (personld bigint not null primary key)

create table PersonAddress (personld bigint not null prinmary key, addressld bigint not nul
uni que)

create tabl e Address (addressld bigint not null primry key)

7.5.3. Many-to-many

Here is an example of a bidirectional many-to-many association.

<cl ass nane="Person">
<id nane="id" col um="personld">
<generator class="native"/>
</id>
<set nane="addresses" tabl e="PersonAddress">

127

Chapter 7. Association Mappings

<key col um="personl d"/>
<many-to- many col um="addr essl d"
cl ass="Address"/ >
</set>
</ cl ass>

<cl ass nanme="Address">
<id name="id" col um="addressld">
<generator class="native"/>
</id>
<set name="people" inverse="true" tabl e="PersonAddress">
<key col um="addressl d"/>
<many-t o- many col um="personld"
cl ass="Person"/ >
</ set>
</ cl ass>

create table Person (personld bigint not null primry key)

create table PersonAddress (personld bigint not null, addresslid bigint not null, primary key
(personld, addresslid))

create tabl e Address (addressld bigint not null primry key)

7.6. More complex association mappings

More complex association joins are extremely rare. Hibernate handles more complex situations
by using SQL fragments embedded in the mapping document. For example, if a table
with historical account information data defines account Nunber, effectiveEndDate and
ef f ecti veSt art Dat ecolumns, it would be mapped as follows:

<properties name="currentAccount Key">
<property nanme="account Nunber" type="string" not-null="true"/>
<property nanme="currentAccount"” type="bool ean">
<fornul a>case when effectiveEndDate is null then 1 else 0 end</fornula>
</ property>
</ properties>
<property name="effectiveEndDate" type="date"/>
<property nanme="effectiveStateDate" type="date" not-null="true"/>

You can then map an association to the current instance, the one with null ef f ect i veEndDat e,
by using:

<nmany-t o-one name="current Account | nf 0"
property-ref="current Account Key"
cl ass="Account | nf 0" >

<col umm nane="account Nunber"/ >
<fornul a>' 1' </ f or nul a>

128

More complex association mappings

</ many-t o- one>

In a more complex example, imagine that the association between Enpl oyee and Or gani zat i on
is maintained in an Enpl oynent table full of historical employment data. An association to the
employee's most recent employer, the one with the most recent st art Dat e, could be mapped in
the following way:

<j oi n>
<key col um="enpl oyeel d"/ >
<subsel ect >
sel ect enpl oyeeld, orgld
from Enpl oynent s
group by orgld
havi ng startDate = nax(startDate)
</ subsel ect >
<many-t o-one name="nost Recent Enpl oyer"
cl ass="0Organi zati on"
colum="orgld"/>
</join>

This functionality allows a degree of creativity and flexibility, but it is more practical to handle these
kinds of cases using HQL or a criteria query.

129

130

Chapter 8.

Component Mapping

The notion of a component is re-used in several different contexts and purposes throughout
Hibernate.

8.1. Dependent objects

A component is a contained object that is persisted as a value type and not an entity reference.
The term "component" refers to the object-oriented notion of composition and not to architecture-
level components. For example, you can model a person like this:

public class Person {
private java.util.Date birthday;
private Name nane,;
private String key;
public String getKey() {
return key;

}

private void setKey(String key) {
t hi s. key=key;

}

public java.util.Date getBirthday() {
return birthday;

}

public void setBirthday(java.util.Date birthday) {
this.birthday = birthday;

}

public Nane get Name() {
return nang;

}

public void set Nane(Nanme nane) {
t hi s. name = nane;

public class Name {

char initial;

String first;

String |ast;

public String getFirst() {
return first;

}

void setFirst(String first) {
this.first = first;

}

public String getlLast() {
return |l ast;

}

void setLast(String last) {

131

Chapter 8. Component Mapping

this.last = | ast

}
public char getlnitial () {
return initial

}

void setlnitial (char initial) {
this.initial = initial

Now Nare can be persisted as a component of Per son. Nane defines getter and setter methods
for its persistent properties, but it does not need to declare any interfaces or identifier properties.

Our Hibernate mapping would look like this:
<cl ass nane="eg. Person" tabl e="person">

<i d nane="Key" colum="pid" type="string">
<generator class="uuid"/>

</id>
<property nanme="birthday" type="date"/>
<conponent nane="Nanme" class="eg. Name"> <!-- class attribute optional -->

<property name="initial"/>
<property name="first"/>
<property name="|ast"/>
</ conponent >
</ cl ass>

The person table would have the columns pi d, bi rt hday, initial,first and| ast.

Like value types, components do not support shared references. In other words, two persons
could have the same name, but the two person objects would contain two independent name
objects that were only "the same" by value. The null value semantics of a component are ad hoc.
When reloading the containing object, Hibernate will assume that if all component columns are
null, then the entire component is null. This is suitable for most purposes.

The properties of a component can be of any Hibernate type (collections, many-to-one
associations, other components, etc). Nested components should not be considered an exotic
usage. Hibernate is intended to support a fine-grained object model.

The <conponent > element allows a <par ent > subelement that maps a property of the component
class as a reference back to the containing entity.

<cl ass nane="eg. Person" tabl e="person">

<i d nane="Key" colum="pid" type="string">
<generator class="uuid"/>

</id>

<property nanme="birthday" type="date"/>

<conponent nanme="Nane" class="eg. Name" uni que="true">
<parent name="nanedPerson"/> <!-- reference back to the Person -->
<property nanme="initial"/>
<property name="first"/>

132

Collections of dependent objects

<property name="l|ast"/>
</ conponent >
</ cl ass>

8.2. Collections of dependent objects

Collections of components are supported (e.g. an array of type Nane). Declare your component
collection by replacing the <el ement > tag with a <conposi t e- el enent > tag:

<set nane="soneNanes" tabl e="sone_nanes" |azy="true">
<key colum="id"/>
<conposite-el ement class="eg.Nane"> <!-- class attribute required -->
<property name="initial"/>
<property name="first"/>
<property name="l|ast"/>
</ conposi t e- el enent >
</ set>

o Important

If you define a Set of composite elements, it is important to implement equal s()
and hashCode() correctly.

Composite elements can contain components but not collections. If your composite element
contains components, use the <nest ed- conposi t e- el enent > tag. This case is a collection of
components which themselves have components. You may want to consider if a one-to-many
association is more appropriate. Remodel the composite element as an entity, but be aware that
even though the Java model is the same, the relational model and persistence semantics are still
slightly different.

A composite element mapping does not support null-able properties if you are using a <set >.
There is no separate primary key column in the composite element table. Hibernate uses each
column's value to identify a record when deleting objects, which is not possible with null values.
You have to either use only not-null properties in a composite-element or choose a <l i st >, <map>,
<bag> or <i dbag>.

A special case of a composite element is a composite element with a nested <many-t o- one>
element. This mapping allows you to map extra columns of a many-to-many association table to
the composite element class. The following is a many-to-many association from Order to I tem
where pur chaseDat e, pri ce and quant i ty are properties of the association:

<cl ass nane="eg. Order" >

<set nanme="purchasedltens" tabl e="purchase_itens" |azy="true">
<key col um="order_id">

133

Chapter 8. Component Mapping

<conposi te-el ement cl ass="eg. Purchase">
<property nanme="purchaseDate"/>
<property name="price"/>
<property name="quantity"/>
<many-to-one nane="item' class="eg.ltenl'/> <!-- class attribute is optional -->

</ conposi t e- el ement >

</ set>
</ cl ass>

There cannot be a reference to the purchase on the other side for bidirectional association
navigation. Components are value types and do not allow shared references. A single Pur chase
can be in the set of an O der, but it cannot be referenced by the I t emat the same time.

Even ternary (or quaternary, etc) associations are possible:

<cl ass nane="eg. Order" >

<set name="purchasedltens" tabl e="purchase_itens" |azy="true">
<key col um="order _id">
<conposi te-el ement cl ass="eg. OrderLine">
<many-to-one name="purchaseDetails class="eg. Purchase"/>
<many-to-one nanme="itenl' class="eg.lten/>
</ conposi t e- el ement >
</ set>
</cl ass>

Composite elements can appear in queries using the same syntax as associations to other entities.

8.3. Components as Map indices

The <conposi t e- map- key> element allows you to map a component class as the key of a Map.
Ensure that you override hashCode() and equal s() correctly on the component class.

8.4. Components as composite identifiers

You can use a component as an identifier of an entity class. Your component class must satisfy
certain requirements:

e It mustimplementj ava.io. Seri al i zabl e.

e It must re-implement equal s() and hashCode() consistently with the database's notion of
composite key equality.

Note

In Hibernate3, although the second requirement is not an absolutely hard
requirement of Hibernate, it is recommended.

134

Components as composite identifiers

You cannot use an | denti fi er Generat or to generate composite keys. Instead the application
must assign its own identifiers.

Use the <conposite-id> tag, with nested <key- property> elements, in place of the usual
<i d> declaration. For example, the O der Li ne class has a primary key that depends upon the
(composite) primary key of Or der .

<cl ass nane="OrderLi ne">

<conposite-id nane="id" class="OrderlLineld">
<key- property name="lineld"/>
<key- property name="orderld"/>
<key-property nane="custonerld"/>

</ conposite-id>

<property name="nane"/>

<many-to-one name="order" class="0Order"
insert="fal se" update="fal se">
<col um nane="orderld"/>
<col um nane="cust onmer!d"/>
</ many-t o- one>

</ cl ass>

Any foreign keys referencing the OrderLi ne table are now composite. Declare this in your
mappings for other classes. An association to Or der Li ne is mapped like this:

<many-to-one name="orderLine" class="OrderLine">
<I-- the "class" attribute is optional, as usual -->
<col um nanme="1ineld"/>
<col um nane="orderld"/>
<col um nane="custoner!d"/>
</ many-t o- one>

Tip

The col um element is an alternative to the col um attribute everywhere. Using
the col unm element just gives more declaration options, which are mostly useful
when utilizing hbn2ddl

A many-t o- rany association to Or der Li ne also uses the composite foreign key:

<set nanme="undel i ver edOr der Li nes" >
<key col umm nanme="war ehousel d"/ >
<many-to-many cl ass="0OrderLi ne">

135

Chapter 8. Component Mapping

<col um nane="1ineld"/>
<col um nanme="orderld"/>
<col um nane="custoner!d"/>
</ many-t o- many>
</set>

The collection of Or der Li nes in Or der would use:

<set nanme="orderLines" inverse="true">
<key>
<col um name="orderld"/>
<col um nane="custonmer|d"/>
</ key>
<one-to-nmany cl ass="0OrderLine"/>
</ set>

The <one-t o- many> element declares no columns.

If O der Li ne itself owns a collection, it also has a composite foreign key.

<cl ass nanme="OrderLi ne">

<list name="deliveryAttenpts">

<key> <l-- a collection inherits the conposite key type -->
<col um nane="1inel d"/>
<col um nane="order|d"/>
<col um name="cust onmer|d"/>

</ key>

<list-index colum="attenptld" base="1"/>

<conposi te-el ement class="DeliveryAttenpt">

</ conposi t e- el ement >
</ set>
</ cl ass>

8.5. Dynamic components

You can also map a property of type Map:

<dynami c- conponent nane="userAttri butes">
<property nanme="foo" colum="FOO"' type="string"/>
<property nanme="bar" col um="BAR"' type="integer"/>
<many-to-one name="baz" class="Baz" colum="BAZ_| D'/ >
</ dynami c- conponent >

The semantics of a <dynani c- conponent > mapping are identical to <conponent >. The advantage
of this kind of mapping is the ability to determine the actual properties of the bean at deployment

136

Dynamic components

time just by editing the mapping document. Runtime manipulation of the mapping document is
also possible, using a DOM parser. You can also access, and change, Hibernate's configuration-
time metamodel via the Confi gur at i on object.

137

138

Chapter 9.

Inheritance mapping

9.1. The three strategies
Hibernate supports the three basic inheritance mapping strategies:

* table per class hierarchy
« table per subclass
« table per concrete class

In addition, Hibernate supports a fourth, slightly different kind of polymorphism:
« implicit polymorphism

It is possible to use different mapping strategies for different branches of the same inheritance
hierarchy. You can then make use of implicit polymorphism to achieve polymorphism across the
whole hierarchy. However, Hibernate does not support mixing <subcl ass>, <j oi ned- subcl ass>
and <uni on- subcl ass> mappings under the same root <cl ass> element. It is possible to mix
together the table per hierarchy and table per subclass strategies under the the same <cl ass>
element, by combining the <subcl ass> and <j oi n> elements (see below for an example).

It is possible to define subcl ass, uni on- subcl ass, and j oi ned- subcl ass mappings in separate
mapping documents directly beneath hi ber nat e- mappi ng. This allows you to extend a class
hierarchy by adding a new mapping file. You must specify an ext ends attribute in the subclass
mapping, naming a previously mapped superclass. Previously this feature made the ordering of
the mapping documents important. Since Hibernate3, the ordering of mapping files is irrelevant
when using the extends keyword. The ordering inside a single mapping file still needs to be defined
as superclasses before subclasses.

<hi ber nat e- mappi ng>
<subcl ass nane="DonesticCat" extends="Cat" discrimnator-val ue="D"'>
<property nanme="nanme" type="string"/>
</ subcl ass>
</ hi ber nat e- mappi ng>

9.1.1. Table per class hierarchy

Suppose we have an interface Paynment with the implementors Credit CardPaynent,
CashPaynent , and ChequePaynent . The table per hierarchy mapping would display in the following
way:

<cl ass name="Paynent" tabl e="PAYMENT" >
<id name="id" type="long" col um="PAYMENT_| D' >
<generator class="native"/>

139

Chapter 9. Inheritance mapping

</id>
<di scrim nator col um="PAYMENT_TYPE" type="string"/>
<property name="anount" col umm="AMOUNT" />

<subcl ass nanme="Credit CardPaynent" discrinm nator-val ue="CREDI T" >
<property nanme="credit CardType" col um="CCTYPE"/>

</ subcl ass>
<subcl ass nanme="CashPaynment" di scri m nator-val ue="CASH"'>

</ subcl ass>
<subcl ass name="ChequePaynent" discrim nator-val ue=" CHEQUE" >

</ subcl ass>
</ cl ass>

Exactly one table is required. There is a limitation of this mapping strategy: columns declared by
the subclasses, such as CCTYPE, cannot have NOT NULL constraints.

9.1.2. Table per subclass

A table per subclass mapping looks like this:

<cl ass name="Paynent" tabl e="PAYMENT" >
<id name="id" type="long" col um="PAYMENT_| D" >
<generator class="native"/>
</id>
<property nanme="anount" col utm="AMOUNT"/ >

<j ol ned- subcl ass nane="Credi t Car dPaynent" tabl e=" CREDI T_PAYMENT" >
<key col um="PAYMENT_I D"/ >
<property nanme="creditCardType" col um="CCTYPE"/>

</ j oi ned- subcl ass>
<j oi ned- subcl ass nanme="CashPaynent" tabl e=" CASH PAYMENT" >
<key col umm="PAYMENT_I D'/ >

</ j oi ned- subcl ass>
<j ol ned- subcl ass nane="ChequePaynent" tabl e=" CHEQUE_PAYMENT" >
<key col um="PAYMENT_I D"/ >

</ j oi ned- subcl ass>
</ cl ass>

Four tables are required. The three subclass tables have primary key associations to the
superclass table so the relational model is actually a one-to-one association.

9.1.3. Table per subclass: using a discriminator

Hibernate's implementation of table per subclass does not require a discriminator column. Other
object/relational mappers use a different implementation of table per subclass that requires a type
discriminator column in the superclass table. The approach taken by Hibernate is much more

140

Mixing table per class hierarchy with table per subclass

difficult to implement, but arguably more correct from a relational point of view. If you want to use a
discriminator column with the table per subclass strategy, you can combine the use of <subcl ass>
and <j oi n>, as follows:

<cl ass nane="Paynent" tabl e=" PAYMENT" >
<id nane="id" type="long" col umm="PAYMENT_|I D"'>
<generator class="native"/>
</id>
<di scrim nator col um="PAYMENT_TYPE" type="string"/>
<property nanme="anount" col utm="AMOUNT"/ >

<subcl ass nane="Credit CardPaynent" di scri m nator-val ue="CREDI T" >
<j oi n tabl e=" CREDI T_PAYMENT" >
<key col um="PAYMENT_I D'/ >
<property nanme="creditCardType" col um="CCTYPE"/>

</join>
</ subcl ass>
<subcl ass nanme="CashPaynment" di scri m nator-val ue="CASH"'>
<j oi n tabl e=" CASH_PAYMENT" >
<key col umm="PAYMENT_I D'/ >

</j oi n>
</ subcl ass>
<subcl ass nanme="ChequePaynent" di scrim nator-val ue=" CHEQUE" >
<j oi n tabl e=" CHEQUE_PAYMENT" fetch="sel ect">
<key col umm="PAYMENT_| D'/ >

</j oi n>
</ subcl ass>
</cl ass>

The optional fetch="sel ect" declaration tells Hibernate not to fetch the ChequePaynent
subclass data using an outer join when querying the superclass.

9.1.4. Mixing table per class hierarchy with table per subclass

You can even mix the table per hierarchy and table per subclass strategies using the following
approach:

<cl ass nane="Paynent" tabl e=" PAYMENT" >
<id name="id" type="long" col um="PAYMENT_| D' >
<generator class="native"/>
</id>
<di scrim nat or col um="PAYMENT_TYPE" type="string"/>
<property nanme="anmount" col utm="AMOUNT"/ >

<subcl ass nanme="Credit CardPaynent" di scri m nator-val ue="CREDI T" >
<join tabl e=" CREDI T_PAYMENT" >
<property nanme="credit CardType" col um="CCTYPE"/>

</j oi n>
</ subcl ass>

141

Chapter 9. Inheritance mapping

<subcl ass nanme="CashPaynment" di scri m nator-val ue="CASH">

</ subcl ass>
<subcl ass name="ChequePaynent" discrim nator-val ue=" CHEQUE" >

</ subcl ass>
</ cl ass>

For any of these mapping strategies, a polymorphic association to the root Payment class is
mapped using <many- t o- one>.

<many-to-one name="paynent" col um="PAYMENT_I D' cl ass="Paynent"/>

9.1.5. Table per concrete class

There are two ways we can map the table per concrete class strategy. First, you can use <uni on-
subcl ass>.

<cl ass nanme="Paynent ">
<id name="id" type="long" col um="PAYMENT_| D' >
<generator class="sequence"/>
</id>
<property nanme="anount" col utm="AMOUNT"/ >

<uni on-subcl ass nane="Credi t CardPaynent" tabl e="CREDI T_PAYMENT" >
<property nanme="creditCardType" col um="CCTYPE"/>

</ uni on- subcl ass>
<uni on-subcl ass nane="CashPaynent" tabl e=" CASH_PAYMENT" >

</ uni on- subcl ass>
<uni on-subcl ass nanme="ChequePaynent " tabl e=" CHEQUE_PAYMENT" >

</ uni on- subcl ass>
</cl ass>

Three tables are involved for the subclasses. Each table defines columns for all properties of the
class, including inherited properties.

The limitation of this approach is that if a property is mapped on the superclass, the column name
must be the same on all subclass tables. The identity generator strategy is not allowed in union
subclass inheritance. The primary key seed has to be shared across all unioned subclasses of
a hierarchy.

If your superclass is abstract, map it with abst ract ="t rue". If it is not abstract, an additional table
(it defaults to PAYMENT in the example above), is needed to hold instances of the superclass.

142

Table per concrete class using implicit polymorphism

9.1.6. Table per concrete class using implicit polymorphism

An alternative approach is to make use of implicit polymorphism:

<cl ass name="Credit CardPaynent" tabl e="CRED T_PAYMENT" >
<id name="id" type="long" col um="CREDI T_PAYMENT_| D'>
<generator class="native"/>
</id>
<property nanme="anmount" col utmm="CREDI T_AMOUNT"/ >

</cl ass>

<cl ass name="CashPaynent" tabl e=" CASH_PAYMENT" >
<id name="id" type="long" col um="CASH PAYMENT_| D' >
<generator class="native"/>
</id>
<property nanme="anount" col utmm="CASH AMOUNT"/ >

</cl ass>

<cl ass nanme="ChequePaynent" tabl e=" CHEQUE_PAYMENT" >
<id name="id" type="long" col um="CHEQUE_PAYMENT | D' >
<generator class="native"/>
</id>
<property nanme="anmount" col utm="CHEQUE_AMOUNT"/ >

</cl ass>

Notice that the Paynent interface is not mentioned explicitly. Also notice that properties of Payment
are mapped in each of the subclasses. If you want to avoid duplication, consider using XML entities
(for example, [<!ENTITY all properties SYSTEM "al | properties.xm ">] in the DOCTYPE
declaration and &al | properti es; inthe mapping).

The disadvantage of this approach is that Hibernate does not generate SQL UNI ONs when
performing polymorphic queries.

For this mapping strategy, a polymorphic association to Paynent is usually mapped using <any>.

<any nanme="paynment" neta-type="string" id-type="Iong">
<nmet a- val ue val ue="CREDI T" cl ass="Credi t Car dPaynment "/ >
<nmet a- val ue val ue="CASH' cl ass="CashPaynment"/>
<nmet a- val ue val ue="CHEQUE" cl ass="ChequePaynent"/>
<col umm nane="PAYMENT_CLASS"/ >
<col um nanme="PAYMENT_I D'/ >

</ any>

143

Chapter 9. Inheritance mapping

9.1.7. Mixing implicit polymorphism with other inheritance
mappings

Since the subclasses are each mapped in their own <cl ass> element, and since Paynent is just
an interface), each of the subclasses could easily be part of another inheritance hierarchy. You
can still use polymorphic queries against the Paynent interface.

<cl ass nane="Credit CardPaynment" tabl e=" CREDI T_PAYMENT" >
<id nane="id" type="long" col um="CREDI T_PAYMENT_| D' >
<generator class="native"/>
</id>
<di scrim nator colum="CRED T_CARD" type="string"/>
<property nanme="anmount" col uim="CREDI T_AMOUNT"/ >

<subcl ass nane="Mast er Car dPaynent " di scri m nat or - val ue="MDC"/ >
<subcl ass nane="Vi saPaynment" di scri m nator-val ue="VI SA"/ >
</ cl ass>

<cl ass name="Nonel ectroni cTransacti on" tabl e=" NONELECTRONI C_TXN' >
<id name="id" type="long" colum="TXN_|D'>
<generator class="native"/>
</id>

<j ol ned- subcl ass nane="CashPaynent" tabl e=" CASH PAYMENT" >
<key col um="PAYMENT_I D'/ >
<property nanme="anount" col urm="CASH AMOUNT"/ >

</ j oi ned- subcl ass>

<j oi ned- subcl ass nanme="ChequePaynent" tabl e=" CHEQUE PAYMENT" >
<key col umm="PAYMENT_| D'/ >
<property nanme="anmount" col utm="CHEQUE_AMOUNT"/ >

</ j oi ned- subcl ass>
</cl ass>

Once again, Payment is not mentioned explicitly. If we execute a query against the
Paynent interface, for example from Paynent, Hibernate automatically returns instances of
Credi t Car dPayment (and its subclasses, since they also implement Paynent), CashPaynent and
ChequePaynent , but not instances of Nonel ect r oni cTr ansact i on.

9.2. Limitations

There are limitations to the "implicit polymorphism"” approach to the table per concrete-
class mapping strategy. There are somewhat less restrictive limitations to <uni on- subcl ass>
mappings.

The following table shows the limitations of table per concrete-class mappings, and of implicit
polymorphism, in Hibernate.

144

Limitations

Table 9.1. Features of inheritance mappings

Inheritan: Polymorg Polymorg Polymorg Polymory Polymorg Polymorg Polymorg Outer
strategy many- one-to- Hone-to- | many- |load()/ queries joins join
to-one one many to-many get () fetching

table per <many- <one- <one- <many- | s. get (Payiheom. cl ads,om supported
class- t o-one> to-one> to- to- id) Payment Order
hierarchy nany> many> p 0 join

0. payment

p
table per <many- <one- <one- <many- | s. get (Payheom. cl afs,om supported
subclass to-one> to-one> to- t o- id) Paynent Order

many> many> p ojoin

0. payment

p
table per <many- <one- <one- <many- | s. get (Payiheom. cl afs,om supported
concrete- to-one> to-one> |to- to- i d) Payment Order
class many> many> p o join
(union- (for 0. payment
subclass) i nverse="true" p

only)

table per <any> not not <many- s. creat eCri omr i a(Pegtnent . clnads) . add(Restrictions.
concrete supported supported t o- any> Paynent supported supported
class p
(implicit
polymorphism)

145

146

Chapter 10.

Working with objects

Hibernate is a full object/relational mapping solution that not only shields the developer from
the details of the underlying database management system, but also offers state management
of objects. This is, contrary to the management of SQL st at enments in common JDBC/SQL
persistence layers, a natural object-oriented view of persistence in Java applications.

In other words, Hibernate application developers should always think about the state of their
objects, and not necessarily about the execution of SQL statements. This part is taken care of
by Hibernate and is only relevant for the application developer when tuning the performance of
the system.

10.1. Hibernate object states

Hibernate defines and supports the following object states:

« Transient - an object is transient if it has just been instantiated using the new operator, and it
is not associated with a Hibernate Sessi on. It has no persistent representation in the database
and no identifier value has been assigned. Transient instances will be destroyed by the garbage
collector if the application does not hold a reference anymore. Use the Hibernate Sessi on to
make an object persistent (and let Hibernate take care of the SQL statements that need to be
executed for this transition).

» Persistent - a persistent instance has a representation in the database and an identifier value.
It might just have been saved or loaded, however, it is by definition in the scope of a Sessi on.
Hibernate will detect any changes made to an object in persistent state and synchronize the
state with the database when the unit of work completes. Developers do not execute manual
UPDATE statements, or DELETE statements when an object should be made transient.

» Detached - a detached instance is an object that has been persistent, but its Sessi on has been
closed. The reference to the object is still valid, of course, and the detached instance might
even be modified in this state. A detached instance can be reattached to a new Sessi on at a
later point in time, making it (and all the modifications) persistent again. This feature enables
a programming model for long running units of work that require user think-time. We call them
application transactions, i.e., a unit of work from the point of view of the user.

We will now discuss the states and state transitions (and the Hibernate methods that trigger a
transition) in more detail.

10.2. Making objects persistent

Newly instantiated instances of a persistent class are considered transient by Hibernate. We can
make a transient instance persistent by associating it with a session:

DonesticCat fritz = new DonesticCat ();

147

Chapter 10. Working with objects

fritz.setCol or(Col or. G NGER) ;
fritz.setSex('M);

fritz. setName("Fritz");

Long generatedld = (Long) sess.save(fritz);

If Cat has a generated identifier, the identifier is generated and assigned to the cat when save()
is called. If Cat has an assi gned identifier, or a composite key, the identifier should be assigned
to the cat instance before calling save(). You can also use per si st () instead of save(), with
the semantics defined in the EJB3 early draft.

» persist() makes a transient instance persistent. However, it does not guarantee that the
identifier value will be assigned to the persistent instance immediately, the assignment might
happen at flush time. per si st () also guarantees that it will not execute an | NSERT statement
if it is called outside of transaction boundaries. This is useful in long-running conversations with
an extended Session/persistence context.

« save() does guarantee to return an identifier. If an INSERT has to be executed to get the
identifier (e.g. "identity" generator, not "sequence"), this INSERT happens immediately, no
matter if you are inside or outside of a transaction. This is problematic in a long-running
conversation with an extended Session/persistence context.

Alternatively, you can assign the identifier using an overloaded version of save() .

DonesticCat pk = new DonesticCat();
pk. set Col or (Col or. TABBY) ;

pk.set Sex(' F');

pk. set Nanme(" PK") ;

pk.setKittens(new HashSet ());

pk. addKitten(fritz);

sess. save(pk, new Long(1234));

If the object you make persistent has associated objects (e.g. the ki ttens collection in the
previous example), these objects can be made persistent in any order you like unless you have
a NOT NULL constraint upon a foreign key column. There is never a risk of violating foreign key
constraints. However, you might violate a NOT NULL constraint if you save() the objects in the
wrong order.

Usually you do not bother with this detail, as you will normally use Hibernate's transitive
persistence feature to save the associated objects automatically. Then, even NOT NULL constraint
violations do not occur - Hibernate will take care of everything. Transitive persistence is discussed
later in this chapter.

10.3. Loading an object

The | oad() methods of Sessi on provide a way of retrieving a persistent instance if you know its
identifier. | oad() takes a class object and loads the state into a newly instantiated instance of
that class in a persistent state.

148

Loading an object

Cat fritz = (Cat) sess.load(Cat.class, generatedld);

/1 you need to wap primtive identifiers
long id = 1234;
Donesti cCat pk = (DonesticCat) sess.load(DonesticCat.class, new Long(id));

Alternatively, you can load state into a given instance:

Cat cat = new DonesticCat();

/1 load pk's state into cat

sess. |l oad(cat, new Long(pkld));
Set kittens = cat.getKittens();

Be aware that | oad() will throw an unrecoverable exception if there is no matching database
row. If the class is mapped with a proxy, | oad() just returns an uninitialized proxy and does not
actually hit the database until you invoke a method of the proxy. This is useful if you wish to create
an association to an object without actually loading it from the database. It also allows multiple
instances to be loaded as a batch if bat ch- si ze is defined for the class mapping.

If you are not certain that a matching row exists, you should use the get () method which hits the
database immediately and returns null if there is no matching row.

Cat cat = (Cat) sess.get(Cat.class, id);
if (cat==null) {

cat = new Cat();

sess. save(cat, id);

}

return cat;

You can even load an object using an SQL SELECT ... FOR UPDATE, using a LockMde. See
the API documentation for more information.

Cat cat = (Cat) sess.get(Cat.class, id, LockMbde. UPGRADE);

Any associated instances or contained collections will not be selected FOR UPDATE, unless you
decide to specify | ock or al | as a cascade style for the association.

It is possible to re-load an object and all its collections at any time, using the r ef resh() method.

This is useful when database triggers are used to initialize some of the properties of the object.

sess. save(cat);
sess. flush(); //force the SQL | NSERT

149

Chapter 10. Working with objects

sess.refresh(cat); //re-read the state (after the trigger executes)

How much does Hibernate load from the database and how many SQL SELECTs will it use? This
depends on the fetching strategy. This is explained in Section 20.1, “Fetching strategies”.

10.4. Querying

If you do not know the identifiers of the objects you are looking for, you need a query. Hibernate
supports an easy-to-use but powerful object oriented query language (HQL). For programmatic
query creation, Hibernate supports a sophisticated Criteria and Example query feature (QBC and
QBE). You can also express your query in the native SQL of your database, with optional support
from Hibernate for result set conversion into objects.

10.4.1. Executing queries

HQL and native SQL queries are represented with an instance of or g. hi ber nat e. Query. This
interface offers methods for parameter binding, result set handling, and for the execution of the
actual query. You always obtain a Quer y using the current Sessi on:

Li st cats = session.createQuery(
"from Cat as cat where cat.birthdate < ?")
.setDate(0, date)
dist();

Li st nothers = session. createQuery(
"sel ect nother from Cat as cat join cat.nother as nother where cat.nane = ?")
.setString(0, nane)
ist();

Li st kittens = session.createQuery(
"from Cat as cat where cat.nother = ?")
.setEntity(0, pk)
list();

Cat nother = (Cat) session.createQuery(
"sel ect cat.nother from Cat as cat where cat = ?")
.setEntity(0, izi)
.uni queResul t();]]

Query nothersWthKittens = (Cat) session.createQuery(
"sel ect nother from Cat as nother left join fetch nother.kittens");
Set uni queMdt hers = new HashSet (nothersWthKittens.list());

A query is usually executed by invoking I i st () . The result of the query will be loaded completely
into a collection in memory. Entity instances retrieved by a query are in a persistent state. The
uni queResul t () method offers a shortcut if you know your query will only return a single object.
Queries that make use of eager fetching of collections usually return duplicates of the root objects,
but with their collections initialized. You can filter these duplicates through a Set .

150

Executing queries

10.4.1.1. Iterating results

Occasionally, you might be able to achieve better performance by executing the query using the
i terate() method. This will usually be the case if you expect that the actual entity instances
returned by the query will already be in the session or second-level cache. If they are not already
cached, i t erat e() will be slower than i st () and might require many database hits for a simple
query, usually 1 for the initial select which only returns identifiers, and n additional selects to
initialize the actual instances.

/] fetch ids
Iterator iter = sess.createQuery("fromeg. Qux q order by qg.likeliness").iterate();
while (iter.hasNext()) {
Qux qux = (Qux) iter.next(); // fetch the object
/| sonething we coul dnt express in the query
if (qux.cal cul ateConplicatedAl gorithm)) {
/1l delete the current instance
iter.renove();
/] dont need to process the rest
br eak;

10.4.1.2. Queries that return tuples

Hibernate queries sometimes return tuples of objects. Each tuple is returned as an array:

Iterator kittensAndMbt hers = sess. createQuery(
"select kitten, nother fromCat kitten join kitten.nother nother")
Llist()
.iterator();

while (kittensAndMdthers. hasNext()) {
Object[] tuple = (Qbject[]) kittensAndMdt hers. next();
Cat kitten = (Cat) tuple[O0];
Cat nother = (Cat) tuple[1];

10.4.1.3. Scalar results

Queries can specify a property of a class in the sel ect clause. They can even call SQL aggregate
functions. Properties or aggregates are considered "scalar" results and not entities in persistent
state.

Iterator results = sess.createQuery(
"sel ect cat.color, mn(cat.birthdate), count(cat) from Cat cat " +
"group by cat.color")
Clist()

151

Chapter 10. Working with objects

.iterator();

while (results.hasNext()) {
Obj ect[] row = (Cbject[]) results.next();
Col or type = (Color) row0];
Date ol dest = (Date) row 1];
Integer count = (Integer) row 2];

10.4.1.4. Bind parameters

Methods on Query are provided for binding values to named parameters or JDBC-style ?
parameters. Contrary to JDBC, Hibernate numbers parameters from zero. Named parameters
are identifiers of the form : name in the query string. The advantages of named parameters are
as follows:

« named parameters are insensitive to the order they occur in the query string
 they can occur multiple times in the same query
« they are self-documenting

/I named paraneter (preferred)
Query q = sess.createQery("from DonmesticCat cat where cat.nanme = :nane");
g.setString("nane", "Fritz");
Iterator cats = qg.iterate();

/I positional paraneter

Query q = sess.createQery("from DonesticCat cat where cat.nanme = ?");
g.setString(0, "lzi");

Iterator cats = g.iterate();

/I naned paraneter i st

Li st names = new ArrayList();

names. add("1zi");

nanes. add("Fritz");

Query q = sess.createQuery("from DonesticCat cat where cat.nane in (:namesList)");
g. set Par anmet er Li st (" namesLi st", nanes);

List cats = g.list();

10.4.1.5. Pagination

If you need to specify bounds upon your result set, that is, the maximum number of rows you want
to retrieve and/or the first row you want to retrieve, you can use methods of the Query interface:

Query q = sess.createQuery("from DonmesticCat cat");
g. set First Resul t (20);

152

Executing queries

g. set MaxResul t s(10) ;
List cats = qg.list();

Hibernate knows how to translate this limit query into the native SQL of your DBMS.

10.4.1.6. Scrollable iteration

If your JDBC driver supports scrollable Resul t Set s, the Query interface can be used to obtain a
Scrol | abl eResul t s object that allows flexible navigation of the query results.

Query q = sess.createQery("select cat.nane, cat from DonesticCat cat " +
"order by cat.nane");

Scrol | abl eResults cats = g.scroll();

if (cats.first()) {

/1 find the first name on each page of an al phabetical Iist of cats by nane
firstNamesOf Pages = new ArraylList();
do {

String name = cats.getString(0);
firstNanesOf Pages. add(nane) ;

}
while (cats.scroll (PAGE_SIZE));

/1 Now get the first page of cats

pageOf Cats = new ArraylList();

cats. beforeFirst();

int i=0;

while((PAGE_SIZE > i++) && cats.next()) page™f Cats.add(cats.get(1l));

}

cats. close()

Note that an open database connection and cursor is required for this functionality. Use
set MaxResul t () /set Fi r st Resul t () if you need offline pagination functionality.

10.4.1.7. Externalizing named queries

You can also define named queries in the mapping document. Remember to use a CDATA section
if your query contains characters that could be interpreted as markup.

<query name="ByNaneAndMaxi numAgi ght " ><! [CDATA[
from eg. DonmesticCat as cat
where cat.nane = ?
and cat.weight > ?
1 1></query>

Parameter binding and executing is done programatically:

Query q = sess. get NanedQuer y(" ByNaneAndMaxi mumAéi ght ") ;

153

Chapter 10. Working with objects

g.setString(0, nane);
g.setInt(1, m nWight);
List cats = qg.list();

The actual program code is independent of the query language that is used. You can also define
native SQL queries in metadata, or migrate existing queries to Hibernate by placing them in
mapping files.

Also note that a query declaration inside a <hi ber nat e- mappi ng> element requires a global
unigue name for the query, while a query declaration inside a <cl ass> element is made
unigue automatically by prepending the fully qualified name of the class. For example
eg. Cat . ByNanmeAndMaxi numiéi ght .

10.4.2. Filtering collections

A collection filter is a special type of query that can be applied to a persistent collection or array.
The query string can refer to t hi s, meaning the current collection element.

Col I ection blackKittens = session.createFilter(
pk.getKittens(),
"where this.color = ?")
.set Paranet er (Col or. BLACK, Hibernate. custon(Col orUser Type. cl ass))
Clist()

The returned collection is considered a bag that is a copy of the given collection. The original
collection is not modified. This is contrary to the implication of the name "filter", but consistent
with expected behavior.

Observe that filters do not require a f r omclause, although they can have one if required. Filters
are not limited to returning the collection elements themselves.

Col | ection bl ackKittenMates = session.createFilter(
pk.getKittens(),
"select this.mate where this.color = eg.Col or. BLACK. i nt Val ue")
dist();

Even an empty filter query is useful, e.g. to load a subset of elements in a large collection:

Col l ection tenKittens = session.createFilter(
not her. getKittens(), "")
.setFirstResult(0).set MaxResul t s(10)
dist();

154

Criteria queries

10.4.3. Criteria queries

HQL is extremely powerful, but some developers prefer to build queries dynamically using an
object-oriented API, rather than building query strings. Hibernate provides an intuitive Criteria
query API for these cases:

Criteria crit = session.createCriteria(Cat.class);
crit.add(Restrictions.eq("color", eg.Color.BLACK));
crit.set MaxResul t s(10);

List cats = crit.list();

The Cri t eri a and the associated Exanpl e API are discussed in more detail in Chapter 16, Criteria
Queries.

10.4.4. Queries in native SQL

You can express a query in SQL, using createSQLQuery() and let Hibernate manage the
mapping from result sets to objects. You can at any time call sessi on. connection() and use
the JDBC Connecti on directly. If you choose to use the Hibernate API, you must enclose SQL
aliases in braces:

Li st cats = session.createSQQuery("SELECT {cat.*} FROM CAT {cat} WHERE ROWNUM<10")
.addEntity("cat", Cat.class)
ist();

Li st cats = session. createSQQuery(
"SELECT {cat}.ID AS {cat.id}, {cat}.SEX AS {cat.sex}, " +
"{cat}. MATE AS {cat.nmate}, {cat}.SUBCLASS AS {cat.class}, ... " +
"FROM CAT {cat} WHERE ROMNUM<10")
.addEntity("cat", Cat.class)
Llist()

SQL queries can contain named and positional parameters, just like Hibernate queries. More
information about native SQL queries in Hibernate can be found in Chapter 17, Native SQL.

10.5. Modifying persistent objects

Transactional persistent instances (i.e. objects loaded, saved, created or queried by the Sessi on)
can be manipulated by the application, and any changes to persistent state will be persisted when
the Sessi on is flushed. This is discussed later in this chapter. There is no need to call a particular
method (like updat e() , which has a different purpose) to make your modifications persistent. The
most straightforward way to update the state of an object is to | oad() it and then manipulate it
directly while the Sessi on is open:

155

Chapter 10. Working with objects

Donesti cCat cat = (DonesticCat) sess.load(Cat.class, new Long(69));
cat.set Nane("PK");
sess.flush(); // changes to cat are automatically detected and persisted

Sometimes this programming model is inefficient, as it requires in the same session both an SQL
SELECT to load an object and an SQL UPDATE to persist its updated state. Hibernate offers an
alternate approach by using detached instances.

Important

Hibernate does not offer its own API for direct execution of UPDATE or DELETE
statements. Hibernate is a state management service, you do not have to think
in statements to use it. JDBC is a perfect API for executing SQL statements,
you can get a JDBC Connect i on at any time by calling sessi on. connecti on().
Furthermore, the notion of mass operations conflicts with object/relational
mapping for online transaction processing-oriented applications. Future versions
of Hibernate can, however, provide special mass operation functions. See
Chapter 14, Batch processing for some possible batch operation tricks.

10.6. Modifying detached objects

Many applications need to retrieve an object in one transaction, send it to the Ul layer for
manipulation, then save the changes in a new transaction. Applications that use this kind of
approach in a high-concurrency environment usually use versioned data to ensure isolation for
the "long" unit of work.

Hibernate supports this model by providing for reattachment of detached instances using the
Sessi on. updat e() or Sessi on. ner ge() methods:

/] in the first session

Cat cat = (Cat) firstSession.load(Cat.class, catld);
Cat potential Mate = new Cat ();
firstSession.save(potential Mate);

/1 in a higher |ayer of the application
cat.set Mate(potential Mate);

[/l later, in a new session
secondSessi on. update(cat); // update cat
secondSessi on. update(mate); // update mate

If the Cat with identifier cat | d had already been loaded by secondSessi on when the application
tried to reattach it, an exception would have been thrown.

156

Automatic state detection

Use updat e() if you are certain that the session does not contain an already persistent instance
with the same identifier. Use ner ge() if you want to merge your modifications at any time without
consideration of the state of the session. In other words, updat e() is usually the first method you
would call in a fresh session, ensuring that the reattachment of your detached instances is the
first operation that is executed.

The application should individually updat e() detached instances that are reachable from the given
detached instance only if it wants their state to be updated. This can be automated using transitive
persistence. See Section 10.11, “Transitive persistence” for more information.

The 1 ock() method also allows an application to reassociate an object with a new session.
However, the detached instance has to be unmaodified.

/1just reassociate:

sess. lock(fritz, LockMbde. NONE);

//do a version check, then reassoci ate:

sess. |l ock(izi, LockMdde. READ);

//do a version check, using SELECT ... FOR UPDATE, then reassoci ate:
sess. | ock(pk, LockMdde. UPGRADE);

Note that | ock() can be used with various LockMbdes. See the APl documentation and the
chapter on transaction handling for more information. Reattachment is not the only usecase for
I ock() .

Other models for long units of work are discussed in Section 12.3, “Optimistic concurrency control”.

10.7. Automatic state detection

Hibernate users have requested a general purpose method that either saves a transient instance
by generating a new identifier or updates/reattaches the detached instances associated with its
current identifier. The saveOr Updat e() method implements this functionality.

/1 in the first session
Cat cat = (Cat) firstSession.load(Cat.class, catlD);

/1 in a higher tier of the application
Cat mate = new Cat();
cat.setMate(mate);

/] later, in a new session
secondSessi on. saveOr Updat e(cat) ; /] update existing state (cat has a non-null id)
secondSessi on. saveOr Update(mate); // save the new instance (nate has a null id)

The usage and semantics of saveOr Updat e() seems to be confusing for new users. Firstly, so
long as you are not trying to use instances from one session in another new session, you should
not need to use updat e() , saveOr Updat e(), or mer ge() . Some whole applications will never use
either of these methods.

157

Chapter 10. Working with objects

Usually updat e() or saveOr Updat e() are used in the following scenario:

« the application loads an object in the first session

« the object is passed up to the Ul tier

« some modifications are made to the object

« the object is passed back down to the business logic tier

« the application persists these modifications by calling updat e() in a second session

saveOr Updat e() does the following:

« if the object is already persistent in this session, do nothing

« if another object associated with the session has the same identifier, throw an exception

« if the object has no identifier property, save() it

« if the object's identifier has the value assigned to a newly instantiated object, save() it

« ifthe object is versioned by a <ver si on> or <t i mest anp>, and the version property value is the
same value assigned to a newly instantiated object, save() it

» otherwise updat e() the object

and mer ge() is very different:

« if there is a persistent instance with the same identifier currently associated with the session,
copy the state of the given object onto the persistent instance

« if there is no persistent instance currently associated with the session, try to load it from the
database, or create a new persistent instance

* the persistent instance is returned

« the given instance does not become associated with the session, it remains detached

10.8. Deleting persistent objects

Sessi on. del et e() will remove an object's state from the database. Your application, however,
can still hold a reference to a deleted object. It is best to think of del et e() as making a persistent
instance, transient.

sess. del ete(cat);

You can delete objects in any order, without risk of foreign key constraint violations. It is still
possible to violate a NOT NULL constraint on a foreign key column by deleting objects in the wrong
order, e.g. if you delete the parent, but forget to delete the children.

10.9. Replicating object between two different

datastores

It is sometimes useful to be able to take a graph of persistent instances and make them persistent
in a different datastore, without regenerating identifier values.

158

Flushing the Session

/lretrieve a cat from one database

Session sessionl = factoryl. openSession();
Transaction tx1l = sessionl. begi nTransaction();
Cat cat = sessionl.get(Cat.class, catld);
txl.commt();

sessionl. cl ose();

//reconcile with a second dat abase

Session session2 = factory2. openSession();

Transaction tx2 = session2.begi nTransaction();
session2.replicate(cat, Replicationhde. LATEST VERSI ON);
tx2.commt();

session2. cl ose();

The Repl i cati onMbde determines how r epl i cat e() will deal with conflicts with existing rows in
the database:

* Replicati onMbde. | GNORE: ignores the object when there is an existing database row with the
same identifier

* ReplicationMbde. OVERWRI TE: overwrites any existing database row with the same identifier

e Replicati onMode. EXCEPTI ON: throws an exception if there is an existing database row with
the same identifier

e ReplicationMde. LATEST VERSI ON: overwrites the row if its version number is earlier than the
version number of the object, or ignore the object otherwise

Usecases for this feature include reconciling data entered into different database instances,
upgrading system configuration information during product upgrades, rolling back changes made
during non-ACID transactions and more.

10.10. Flushing the Session

Sometimes the Sessi on will execute the SQL statements needed to synchronize the JDBC
connection's state with the state of objects held in memory. This process, called flush, occurs by
default at the following points:

» before some query executions
« from or g. hi bernat e. Transacti on. conmi t ()
» from Sessi on. fl ush()

The SQL statements are issued in the following order:

1. all entity insertions in the same order the corresponding objects were saved using
Sessi on. save()

. all entity updates

. all collection deletions

. all collection element deletions, updates and insertions

. all collection insertions

ga b~ W0N

159

Chapter 10. Working with objects

6. all entity deletions in the same order the corresponding objects were deleted using
Sessi on. del et e()

An exception is that objects using nat i ve ID generation are inserted when they are saved.

Except when you explicitly f | ush() , there are absolutely no guarantees about when the Sessi on
executes the JDBC calls, only the order in which they are executed. However, Hibernate does
guarantee that the Query. I'i st (..) will never return stale or incorrect data.

It is possible to change the default behavior so that flush occurs less frequently. The FI ushMbde
class defines three different modes: only flush at commit time when the Hibernate Tr ansacti on
APlis used, flush automatically using the explained routine, or never flush unless f | ush() is called
explicitly. The last mode is useful for long running units of work, where a Sessi on is kept open and
disconnected for a long time (see Section 12.3.2, “Extended session and automatic versioning”).

sess = sf.openSession();
Transaction tx = sess. begi nTransaction();
sess. set Fl ushMbde(Fl ushMbode. COWM T); // allow queries to return stale state

Cat izi = (Cat) sess.load(Cat.class, id);
izi.setNane(iznizi);

/] mght return stale data
sess.find("fromCat as cat left outer join cat.kittens kitten");

// change to izi is not flushed!

tx.commt(); // flush occurs
sess. cl ose();

During flush, an exception might occur (e.g. if a DML operation violates a constraint). Since
handling exceptions involves some understanding of Hibernate's transactional behavior, we
discuss it in Chapter 12, Transactions and Concurrency.

10.11. Transitive persistence

It is quite cumbersome to save, delete, or reattach individual objects, especially if you deal with a
graph of associated objects. A common case is a parent/child relationship. Consider the following
example:

If the children in a parent/child relationship would be value typed (e.g. a collection of addresses
or strings), their life cycle would depend on the parent and no further action would be required
for convenient "cascading" of state changes. When the parent is saved, the value-typed child
objects are saved and when the parent is deleted, the children will be deleted, etc. This works for
operations such as the removal of a child from the collection. Since value-typed objects cannot
have shared references, Hibernate will detect this and delete the child from the database.

Now consider the same scenario with parent and child objects being entities, not value-types (e.g.
categories and items, or parent and child cats). Entities have their own life cycle and support

160

Transitive persistence

shared references. Removing an entity from the collection does not mean it can be deleted), and
there is by default no cascading of state from one entity to any other associated entities. Hibernate
does not implement persistence by reachability by default.

For each basic operation of the Hibernate session - including persist(), nerge(),
saveOr Update(), delete(), lock(), refresh(), evict(), replicate() - there is a
corresponding cascade style. Respectively, the cascade styles are named create, nerge,
save-update, delete, lock, refresh, evict, replicate. If youwant an operation to be
cascaded along an association, you must indicate that in the mapping document. For example:

<one-to-one nane="person" cascade="persist"/>

Cascade styles my be combined:

<one-to-one nanme="person" cascade="persist, del ete, | ock"/>

You can even use cascade="al | " to specify that all operations should be cascaded along the
association. The default cascade="none" specifies that no operations are to be cascaded.

A special cascade style, del et e- or phan, applies only to one-to-many associations, and indicates
that the del et e() operation should be applied to any child object that is removed from the
association.

Recommendations:

« It does not usually make sense to enable cascade on a <nmany-t o- one> Or <many-t o- many>
association. Cascade is often useful for <one- t 0- one> and <one-t o- many> associations.

« If the child object's lifespan is bounded by the lifespan of the parent object, make it a life cycle
object by specifying cascade="al | , del et e- or phan".

» Otherwise, you might not need cascade at all. But if you think that you will often be working with
the parent and children together in the same transaction, and you want to save yourself some
typing, consider using cascade="per si st, ner ge, save- updat e" .

Mapping an association (either a single valued association, or a collection) with cascade="al | "
marks the association as a parent/child style relationship where save/update/delete of the parent
results in save/update/delete of the child or children.

Furthermore, a mere reference to a child from a persistent parent will result in save/update of the
child. This metaphor is incomplete, however. A child which becomes unreferenced by its parent
is not automatically deleted, except in the case of a <one-t o- many> association mapped with
cascade="del et e- or phan". The precise semantics of cascading operations for a parent/child
relationship are as follows:

 If a parent is passed to persi st (), all children are passed to persi st ()

161

Chapter 10. Working with objects

 If a parent is passed to ner ge(), all children are passed to mer ge()

« If a parent is passed to save(), update() or saveOr Update(), all children are passed to
saveOr Updat e()

« If a transient or detached child becomes referenced by a persistent parent, it is passed to
saveOr Updat e()

 If a parent is deleted, all children are passed to del et e()

« Ifachildis dereferenced by a persistent parent, nothing special happens - the application should
explicitly delete the child if necessary - unless cascade="del et e- or phan", in which case the
"orphaned" child is deleted.

Finally, note that cascading of operations can be applied to an object graph at call time or at flush
time. All operations, if enabled, are cascaded to associated entities reachable when the operation
is executed. However, save- updat e and del et e- or phan are transitive for all associated entities
reachable during flush of the Sessi on.

10.12. Using metadata

Hibernate requires a rich meta-level model of all entity and value types. This model can be useful to
the application itself. For example, the application might use Hibernate's metadata to implement a
"smart" deep-copy algorithm that understands which objects should be copied (eg. mutable value
types) and which objects that should not (e.g. immutable value types and, possibly, associated
entities).

Hibernate exposes metadata via the C assMetadata and Col | ecti onMet adat a interfaces
and the Type hierarchy. Instances of the metadata interfaces can be obtained from the
Sessi onFact ory.

Cat fritz = :
C assMet adata cat Meta = sessionfactory. get Cl assMet adat a(Cat . cl ass);

Obj ect[] propertyVal ues = cat Meta. get PropertyVal ues(fritz);
String[] propertyNanes = cat Meta. get PropertyNanes();
Type[] propertyTypes = cat Meta. get PropertyTypes();

/] get a Map of all properties which are not collections or associations
Map nanmedVal ues = new HashMap();
for (int i=0; i<propertyNanmes.length; i++) {
if (!propertyTypes[i].isEntityType() && !propertyTypes[i].isCollectionType()) {
namedVal ues. put (propertyNanmes[i], propertyValues[i]);
}

162

Chapter 11.

Read-only entities

I | Important

Hibernate's treatment of read-only entities may differ from what you may have
encountered elsewhere. Incorrect usage may cause unexpected results.

When an entity is read-only:

» Hibernate does not dirty-check the entity's simple properties or single-ended associations;
 Hibernate will not update simple properties or updatable single-ended associations;

» Hibernate will not update the version of the read-only entity if only simple properties or single-
ended updatable associations are changed;

In some ways, Hibernate treats read-only entities the same as entities that are not read-only:

» Hibernate cascades operations to associations as defined in the entity mapping.
» Hibernate updates the version if the entity has a collection with changes that dirties the entity;
» A read-only entity can be deleted.

Even if an entity is not read-only, its collection association can be affected if it contains a read-
only entity.

For details about the affect of read-only entities on different property and association types, see
Section 11.2, “Read-only affect on property type”.

For details about how to make entities read-only, see Section 11.1, “Making persistent entities
read-only”

Hibernate does some optimizing for read-only entities:

* It saves execution time by not dirty-checking simple properties or single-ended associations.

« It saves memory by deleting database snapshots.

11.1. Making persistent entities read-only

Only persistent entities can be made read-only. Transient and detached entities must be put in
persistent state before they can be made read-only.

Hibernate provides the following ways to make persistent entities read-only:

e you can map an entity class as immutable; when an entity of an immutable class is
made persistent, Hibernate automatically makes it read-only. see Section 11.1.1, “Entities of
immutable classes” for details

163

Chapter 11. Read-only entities

« you can change a default so that entities loaded into the session by Hibernate are automatically
made read-only; see Section 11.1.2, “Loading persistent entities as read-only” for details

« you can make an HQL query or criteria read-only so that entities loaded when the query or
criteria executes, scrolls, or iterates, are automatically made read-only; see Section 11.1.3,
“Loading read-only entities from an HQL query/criteria” for details

e you can make a persistent entity that is already in the in the session read-only; see
Section 11.1.4, “Making a persistent entity read-only” for details

11.1.1. Entities of immutable classes

When an entity instance of an immutable class is made persistent, Hibernate automatically makes
it read-only.

An entity of an immutable class can created and deleted the same as an entity of a mutable class.

Hibernate treats a persistent entity of an immutable class the same way as a read-only persistent
entity of a mutable class. The only exception is that Hibernate will not allow an entity of an
immutable class to be changed so it is not read-only.

11.1.2. Loading persistent entities as read-only

Note

Entities of immutable classes are automatically loaded as read-only.

To change the default behavior so Hibernate loads entity instances of mutable classes into the
session and automatically makes them read-only, call:

Sessi on. set Def aul t ReadOnl y(true);

To change the default back so entities loaded by Hibernate are not made read-only, call:
Sessi on. set Def aul t ReadOnl y(fal se);

You can determine the current setting by calling:

Sessi on. i sDef aul t ReadOnl y() ;

If Session.isDefaultReadOnly() returns true, entities loaded by the following are automatically
made read-only:

164

Loading read-only entities from an HQL query/criteria

» Session.load()
» Session.get()
» Session.merge()

« executing, scrolling, or iterating HQL queries and criteria; to override this setting for a particular
HQL query or criteria see Section 11.1.3, “Loading read-only entities from an HQL query/criteria”

Changing this default has no effect on:

 persistent entities already in the session when the default was changed

 persistent entities that are refreshed via Session.refresh(); a refreshed persistent entity will only
be read-only if it was read-only before refreshing

» persistent entities added by the application via Session.persist(), Session.save(), and
Session.update() Session.saveOrUpdate()

11.1.3. Loading read-only entities from an HQL query/criteria

Note

Entities of immutable classes are automatically loaded as read-only.
If Session.isDefaultReadOnly() returns false (the default) when an HQL query or criteria executes,
then entities and proxies of mutable classes loaded by the query will not be read-only.

You can override this behavior so that entities and proxies loaded by an HQL query or criteria are
automatically made read-only.

For an HQL query, call:
Query. set ReadOnl y(true);

Query. set ReadOnl y(true) must be called before Query. list(), Query. uni queResul t (),
Query.scroll(),orQuery.iterate()

For an HQL criteria, call:

Criteria.setReadOnly(true);

Criteria. set ReadOnl y(true) must be called before Citeria.list(),
Criteria.uniqueResult(),orCriteria.scroll ()

165

Chapter 11. Read-only entities

Entities and proxies that exist in the session before being returned by an HQL query or criteria
are not affected.

Uninitialized persistent collections returned by the query are not affected. Later, when
the collection is initialized, entities loaded into the session will be read-only if
Session.isDefaultReadOnly() returns true.

Using Query. set ReadOnly(true) or Criteria.set ReadOnly(true) works well when a
single HQL query or criteria loads all the entities and intializes all the proxies and collections that
the application needs to be read-only.

When it is not possible to load and initialize all necessary entities in a single query or criteria,
you can temporarily change the session default to load entities as read-only before the query is
executed. Then you can explicitly initialize proxies and collections before restoring the session
default.

Sessi on session = factory. openSession();
Transaction tx = session. begi nTransaction();

set Def aul t ReadOnl y(true);
Contract contract =
(Contract) session.createQuery(

"from Contract where custonmerNane = ' Shernan'")
.uni queResul t ();

Hi bernate.initialize(contract.getPlan());

Hi bernate.initialize(contract.getVariations());

Hi bernate.initialize(contract.getNotes());

set Def aul t ReadOnl y(fal se);

tx.commt();
session. cl ose();

If Session.isDefaultReadOnly() returns true, then you can use Query.setReadOnly(false) and
Criteria.setReadOnly(false) to override this session setting and load entities that are not read-
only.

11.1.4. Making a persistent entity read-only

Note

Persistent entities of immutable classes are automatically made read-only.
To make a persistent entity or proxy read-only, call:

Sessi on. set ReadOnl y(entityOr Proxy, true)

166

Read-only affect on property type

To change a read-only entity or proxy of a mutable class so it is no longer read-only, call:

Sessi on. set ReadOnl y(entityOr Proxy, false)

Important

When a read-only entity or proxy is changed so it is no longer read-only, Hibernate
assumes that the current state of the read-only entity is consistent with its database
representation. If this is not true, then any non-flushed changes made before or
while the entity was read-only, will be ignored.

To throw away non-flushed changes and make the persistent entity consistent with its database
representation, call:

session.refresh(entity);

To flush changes made before or while the entity was read-only and make the database
representation consistent with the current state of the persistent entity:

/'l evict the read-only entity so it is detached
session.evict(entity);

/1 make the detached entity (with the non-flushed changes) persistent
session.update(entity);

/1 now entity is no |longer read-only and its changes can be flushed
s. flush();

11.2. Read-only affect on property type

The following table summarizes how different property types are affected by making an entity
read-only.

Table 11.1. Affect of read-only entity on property types

Property/Association Type Changes flushed to DB?

Simple no*

(Section 11.2.1, “Simple properties”)

Unidirectional one-to-one no*

Unidirectional many-to-one no*

167

Chapter 11. Read-only entities

Property/Association Type Changes flushed to DB?

(Section 11.2.2.1, “Unidirectional one-to-one
and many-to-one”)

Unidirectional one-to-many yes
Unidirectional many-to-many yes

(Section 11.2.2.2, “Unidirectional one-to-many
and many-to-many”)

Bidirectional one-to-one only if the owning entity is not read-only*

(Section 11.2.3.1, “Bidirectional one-to-one”)

Bidirectional one-to-many/many-to-one
only added/removed entities that are not read-

inverse collection only*
non-inverse collection yes

(Section 11.2.3.2, “Bidirectional one-to-many/
many-to-one”)
Bidirectional many-to-many yes

(Section 11.2.3.3, “Bidirectional many-to-
many”)

* Behavior is different when the entity having the property/association is read-only, compared to
when it is not read-only.

11.2.1. Simple properties

When a persistent object is read-only, Hibernate does not dirty-check simple properties.

Hibernate will not synchronize simple property state changes to the database. If you have
automatic versioning, Hibernate will not increment the version if any simple properties change.

Sessi on session = factory. openSession();
Transaction tx = session. begi nTransaction();

/1 get a contract and make it read-only
Contract contract = (Contract) session.get(Contract.class, contractld);
sessi on. set ReadOnl y(contract, true);

/] contract.getCustonerNane() is "Shernan"
contract . set Cust onmer Nane("Yogi");

tx.commt();

tx = session. begi nTransaction();

168

Unidirectional associations

contract = (Contract) session.get(Contract.class, contractld);
/] contract.getCustonerNane() is still "Sherman"

tx.commt();
session. cl ose();

11.2.2. Unidirectional associations

11.2.2.1. Unidirectional one-to-one and many-to-one

Hibernate treats unidirectional one-to-one and many-to-one associations in the same way when
the owning entity is read-only.

We use the term unidirectional single-ended association when referring to functionality that is
common to unidirectional one-to-one and many-to-one associations.

Hibernate does not dirty-check unidirectional single-ended associations when the owning entity
is read-only.

If you change a read-only entity's reference to a unidirectional single-ended association to null, or
to refer to a different entity, that change will not be flushed to the database.

@ Note

If an entity is of an immutable class, then its references to unidirectional single-
ended associations must be assigned when that entity is first created. Because the
entity is automatically made read-only, these references can not be updated.

If automatic versioning is used, Hibernate will not increment the version due to local changes to
unidirectional single-ended associations.

In the following examples, Contract has a unidirectional many-to-one association with Plan.
Contract cascades save and update operations to the association.

The following shows that changing a read-only entity's many-to-one association reference to null
has no effect on the entity's database representation.

// get a contract with an existing plan;

/1 make the contract read-only and set its plan to null

tx = session. begi nTransaction();

Contract contract = (Contract) session.get(Contract.class, contractld);
sessi on. set ReadOnl y(contract, true);

contract.setPlan(null);

tx.commt();

/] get the sane contract
tx = session. begi nTransaction();

169

Chapter 11. Read-only entities

contract = (Contract) session.get(Contract.class, contractld);
[/ contract.getPlan() still refers to the original plan;

tx.commt();
session.close();

The following shows that, even though an update to a read-only entity's many-to-one association
has no affect on the entity's database representation, flush still cascades the save-update
operation to the locally changed association.

/1 get a contract with an existing plan;

/1 make the contract read-only and change to a new pl an

tx = session. begi nTransaction();

Contract contract = (Contract) session.get(Contract.class, contractld);
sessi on. set ReadOnl y(contract, true);

Pl an newPl an = new Pl an("new pl an"

contract.setPlan(newPl an);

tx.commt();

/1 get the sane contract

tx = session. begi nTransaction();

contract = (Contract) session.get(Contract.class, contractld);
newPlan = (Contract) session.get(Plan.class, newPl an.getld());
/1 contract.getPlan() still refers to the original plan;

/1 newPl an is non-null because it was persisted when

/] the previous transaction was committed;

tx.commit();
session.close();

11.2.2.2. Unidirectional one-to-many and many-to-many

Hibernate treats unidirectional one-to-many and many-to-many associations owned by a read-
only entity the same as when owned by an entity that is not read-only.

Hibernate dirty-checks unidirectional one-to-many and many-to-many associations;
The collection can contain entities that are read-only, as well as entities that are not read-only.
Entities can be added and removed from the collection; changes are flushed to the database.

If automatic versioning is used, Hibernate will update the version due to changes in the collection
if they dirty the owning entity.

11.2.3. Bidirectional associations

11.2.3.1. Bidirectional one-to-one

If a read-only entity owns a bidirectional one-to-one association:

170

Bidirectional associations

« Hibernate does not dirty-check the association.

« updates that change the association reference to null or to refer to a different entity will not be
flushed to the database.

« If automatic versioning is used, Hibernate will not increment the version due to local changes
to the association.

@ Note

If an entity is of an immutable class, and it owns a bidirectional one-to-one
association, then its reference must be assigned when that entity is first created.
Because the entity is automatically made read-only, these references cannot be
updated.

When the owner is not read-only, Hibernate treats an association with a read-only entity the same
as when the association is with an entity that is not read-only.

11.2.3.2. Bidirectional one-to-many/many-to-one

A read-only entity has no impact on a bidirectional one-to-many/many-to-one association if;

« the read-only entity is on the one-to-many side using an inverse collection;
« the read-only entity is on the one-to-many side using a non-inverse collection;
 the one-to-many side uses a non-inverse collection that contains the read-only entity

When the one-to-many side uses an inverse collection:

 aread-only entity can only be added to the collection when it is created;

» aread-only entity can only be removed from the collection by an orphan delete or by explicitly
deleting the entity.

11.2.3.3. Bidirectional many-to-many

Hibernate treats bidirectional many-to-many associations owned by a read-only entity the same
as when owned by an entity that is not read-only.

Hibernate dirty-checks bidirectional many-to-many associations.

The collection on either side of the association can contain entities that are read-only, as well as
entities that are not read-only.

Entities are added and removed from both sides of the collection; changes are flushed to the
database.

171

Chapter 11. Read-only entities

If automatic versioning is used, Hibernate will update the version due to changes in both sides of
the collection if they dirty the entity owning the respective collections.

172

Chapter 12.

Transactions and Concurrency

The most important point about Hibernate and concurrency control is that it is easy to understand.
Hibernate directly uses JDBC connections and JTA resources without adding any additional
locking behavior. It is recommended that you spend some time with the JDBC, ANSI, and
transaction isolation specification of your database management system.

Hibernate does not lock objects in memory. Your application can expect the behavior as defined
by the isolation level of your database transactions. Through Sessi on, which is also a transaction-
scoped cache, Hibernate provides repeatable reads for lookup by identifier and entity queries and
not reporting queries that return scalar values.

In addition to versioning for automatic optimistic concurrency control, Hibernate also offers,
using the SELECT FOR UPDATE syntax, a (minor) API for pessimistic locking of rows. Optimistic
concurrency control and this API are discussed later in this chapter.

The discussion of concurrency control in Hibernate begins with the granularity of Conf i gur ati on,
Sessi onFact ory, and Sessi on, as well as database transactions and long conversations.

12.1. Session and transaction scopes

A Sessi onFact ory is an expensive-to-create, threadsafe object, intended to be shared by all
application threads. It is created once, usually on application startup, from a Confi gurati on
instance.

A Sessi on is an inexpensive, non-threadsafe object that should be used once and then discarded
for: a single request, a conversation or a single unit of work. A Sessi on will not obtain a JDBC
Connect i on, or a Dat asour ce, unless it is needed. It will not consume any resources until used.

In order to reduce lock contention in the database, a database transaction has to be as short
as possible. Long database transactions will prevent your application from scaling to a highly
concurrent load. It is not recommended that you hold a database transaction open during user
think time until the unit of work is complete.

What is the scope of a unit of work? Can a single Hibernate Sessi on span several database
transactions, or is this a one-to-one relationship of scopes? When should you open and close a
Sessi on and how do you demarcate the database transaction boundaries? These questions are
addressed in the following sections.

12.1.1. Unit of work

First, let's define a unit of work. A unit of work is a design pattern described by Martin Fowler as
“ [maintaining] a list of objects affected by a business transaction and coordinates the writing out
of changes and the resolution of concurrency problems. "[POEAA] In other words, its a series of
operations we wish to carry out against the database together. Basically, it is a transaction, though
fulfilling a unit of work will often span multiple physical database transactions (see Section 12.1.2,

173

Chapter 12. Transactions and ...

“Long conversations”). So really we are talking about a more abstract notion of a transaction. The
term "business transaction” is also sometimes used in lieu of unit of work.

Do not use the session-per-operation antipattern: do not open and close a Sessi on for every
simple database call in a single thread. The same is true for database transactions. Database calls
in an application are made using a planned sequence; they are grouped into atomic units of work.
This also means that auto-commit after every single SQL statement is useless in an application as
this mode is intended for ad-hoc SQL console work. Hibernate disables, or expects the application
server to disable, auto-commit mode immediately. Database transactions are never optional.
All communication with a database has to occur inside a transaction. Auto-commit behavior for
reading data should be avoided, as many small transactions are unlikely to perform better than
one clearly defined unit of work. The latter is also more maintainable and extensible.

The most common pattern in a multi-user client/server application is session-per-request. In this
model, a request from the client is sent to the server, where the Hibernate persistence layer runs.
A new Hibernate Sessi on is opened, and all database operations are executed in this unit of work.
On completion of the work, and once the response for the client has been prepared, the session
is flushed and closed. Use a single database transaction to serve the clients request, starting and
committing it when you open and close the Sessi on. The relationship between the two is one-to-
one and this model is a perfect fit for many applications.

The challenge lies in the implementation. Hibernate provides built-in management of the "current
session" to simplify this pattern. Start a transaction when a server request has to be processed,
and end the transaction before the response is sent to the client. Common solutions are
Servl et Fi | t er, AOP interceptor with a pointcut on the service methods, or a proxy/interception
container. An EJB container is a standardized way to implement cross-cutting aspects such as
transaction demarcation on EJB session beans, declaratively with CMT. If you use programmatic
transaction demarcation, for ease of use and code portability use the Hibernate Tr ansact i on API
shown later in this chapter.

Your application code can access a "current session" to process the request by calling
sessi onFact ory. get Current Sessi on() . You will always get a Sessi on scoped to the current
database transaction. This has to be configured for either resource-local or JTA environments,
see Section 2.5, “Contextual sessions”.

You can extend the scope of a Sessi on and database transaction until the "view has been
rendered”. This is especially useful in servlet applications that utilize a separate rendering phase
after the request has been processed. Extending the database transaction until view rendering,
is achieved by implementing your own interceptor. However, this will be difficult if you rely on
EJBs with container-managed transactions. A transaction will be completed when an EJB method
returns, before rendering of any view can start. See the Hibernate website and forum for tips and
examples relating to this Open Session in View pattern.

12.1.2. Long conversations

The session-per-request pattern is not the only way of designing units of work. Many business
processes require a whole series of interactions with the user that are interleaved with database

174

Considering object identity

accesses. In web and enterprise applications, it is not acceptable for a database transaction to
span a user interaction. Consider the following example:

« The first screen of a dialog opens. The data seen by the user has been loaded in a particular
Sessi on and database transaction. The user is free to modify the objects.

« The user clicks "Save" after 5 minutes and expects their modifications to be made persistent.
The user also expects that they were the only person editing this information and that no
conflicting modification has occurred.

From the point of view of the user, we call this unit of work a long-running conversation or
application transaction. There are many ways to implement this in your application.

A first naive implementation might keep the Sessi on and database transaction open during user
think time, with locks held in the database to prevent concurrent modification and to guarantee
isolation and atomicity. This is an anti-pattern, since lock contention would not allow the application
to scale with the number of concurrent users.

You have to use several database transactions to implement the conversation. In this case,
maintaining isolation of business processes becomes the partial responsibility of the application
tier. A single conversation usually spans several database transactions. It will be atomic if only one
of these database transactions (the last one) stores the updated data. All others simply read data
(for example, in a wizard-style dialog spanning several request/response cycles). This is easier
to implement than it might sound, especially if you utilize some of Hibernate's features:

« Automatic Versioning: Hibernate can perform automatic optimistic concurrency control for you.
It can automatically detect if a concurrent modification occurred during user think time. Check
for this at the end of the conversation.

» Detached Objects: if you decide to use the session-per-request pattern, all loaded instances
will be in the detached state during user think time. Hibernate allows you to reattach the objects
and persist the modifications. The pattern is called session-per-request-with-detached-objects.
Automatic versioning is used to isolate concurrent modifications.

« Extended (or Long) Session: the Hibernate Sessi on can be disconnected from the underlying
JDBC connection after the database transaction has been committed and reconnected when a
new client request occurs. This pattern is known as session-per-conversation and makes even
reattachment unnecessary. Automatic versioning is used to isolate concurrent modifications
and the Sessi on will not be allowed to be flushed automatically, but explicitly.

Both session-per-request-with-detached-objects and session-per-conversation have advantages
and disadvantages. These disadvantages are discussed later in this chapter in the context of
optimistic concurrency control.

12.1.3. Considering object identity

An application can concurrently access the same persistent state in two different Sessi ons.
However, an instance of a persistent class is never shared between two Sessi on instances. It is
for this reason that there are two different notions of identity:

175

Chapter 12. Transactions and ...

Database Identity
foo.getld().equal s(bar.getld())

JVM Identity
f oo==bar

For objects attached to a particular Sessi on (i.e., in the scope of a Sessi on), the two notions
are equivalent and JVM identity for database identity is guaranteed by Hibernate. While the
application might concurrently access the "same" (persistent identity) business object in two
different sessions, the two instances will actually be "different" (JVM identity). Conflicts are
resolved using an optimistic approach and automatic versioning at flush/commit time.

This approach leaves Hibernate and the database to worry about concurrency. It also provides
the best scalability, since guaranteeing identity in single-threaded units of work means that it does
not need expensive locking or other means of synchronization. The application does not need to
synchronize on any business object, as long as it maintains a single thread per Sessi on. Within
a Sessi on the application can safely use == to compare objects.

However, an application that uses == outside of a Sessi on might produce unexpected results. This
might occur even in some unexpected places. For example, if you put two detached instances into
the same Set , both might have the same database identity (i.e., they represent the same row). JVM
identity, however, is by definition not guaranteed for instances in a detached state. The developer
has to override the equal s() and hashCode() methods in persistent classes and implement their
own notion of object equality. There is one caveat: never use the database identifier to implement
equality. Use a business key that is a combination of unique, usually immutable, attributes. The
database identifier will change if a transient object is made persistent. If the transient instance
(usually together with detached instances) is held in a Set, changing the hashcode breaks the
contract of the Set . Attributes for business keys do not have to be as stable as database primary
keys; you only have to guarantee stability as long as the objects are in the same Set. See the
Hibernate website for a more thorough discussion of this issue. Please note that this is not a
Hibernate issue, but simply how Java object identity and equality has to be implemented.

12.1.4. Common issues

Do not use the anti-patterns session-per-user-session or session-per-application (there are,
however, rare exceptions to this rule). Some of the following issues might also arise within the
recommended patterns, so ensure that you understand the implications before making a design
decision:

* ASessi on is not thread-safe. Things that work concurrently, like HTTP requests, session beans,
or Swing workers, will cause race conditions if a Sessi on instance is shared. If you keep your
Hibernate Sessi on in your Ht t pSessi on (this is discussed later in the chapter), you should
consider synchronizing access to your Http session. Otherwise, a user that clicks reload fast
enough can use the same Sessi on in two concurrently running threads.

« An exception thrown by Hibernate means you have to rollback your database transaction and
close the Sessi on immediately (this is discussed in more detail later in the chapter). If your

176

Database transaction demarcation

Sessi on is bound to the application, you have to stop the application. Rolling back the database
transaction does not put your business objects back into the state they were at the start of the
transaction. This means that the database state and the business objects will be out of sync.
Usually this is not a problem, because exceptions are not recoverable and you will have to start
over after rollback anyway.

« The Sessi on caches every object that is in a persistent state (watched and checked for dirty
state by Hibernate). If you keep it open for a long time or simply load too much data, it will
grow endlessly until you get an OutOfMemoryException. One solution is to call cl ear () and
evi ct () to manage the Sessi on cache, but you should consider a Stored Procedure if you need
mass data operations. Some solutions are shown in Chapter 14, Batch processing. Keeping a
Sessi on open for the duration of a user session also means a higher probability of stale data.

12.2. Database transaction demarcation

Database, or system, transaction boundaries are always necessary. No communication with the
database can occur outside of a database transaction (this seems to confuse many developers
who are used to the auto-commit mode). Always use clear transaction boundaries, even for read-
only operations. Depending on your isolation level and database capabilities this might not be
required, but there is no downside if you always demarcate transactions explicitly. Certainly, a
single database transaction is going to perform better than many small transactions, even for
reading data.

A Hibernate application can run in non-managed (i.e., standalone, simple Web- or Swing
applications) and managed J2EE environments. In a non-managed environment, Hibernate
is usually responsible for its own database connection pool. The application developer has
to manually set transaction boundaries (begin, commit, or rollback database transactions)
themselves. A managed environment usually provides container-managed transactions (CMT),
with the transaction assembly defined declaratively (in deployment descriptors of EJB session
beans, for example). Programmatic transaction demarcation is then no longer necessary.

However, it is often desirable to keep your persistence layer portable between non-managed
resource-local environments, and systems that can rely on JTA but use BMT instead of CMT.
In both cases use programmatic transaction demarcation. Hibernate offers a wrapper API called
Tr ansact i on that translates into the native transaction system of your deployment environment.
This API is actually optional, but we strongly encourage its use unless you are in a CMT session
bean.

Ending a Sessi on usually involves four distinct phases:

flush the session
commit the transaction
close the session

* handle exceptions

We discussed Flushing the session earlier, so we will now have a closer look at transaction
demarcation and exception handling in both managed and non-managed environments.

177

Chapter 12. Transactions and ...

12.2.1. Non-managed environment

If a Hibernate persistence layer runs in a non-managed environment, database connections are
usually handled by simple (i.e., non-DataSource) connection pools from which Hibernate obtains
connections as needed. The session/transaction handling idiom looks like this:

/1 Non-managed environnment idiom
Session sess = factory. openSession();
Transaction tx = null;

try {
tx = sess. begi nTransaction();

/] do sonme work

tx.commt();

}
catch (RuntimeException e) {

if (tx !'= null) tx.rollback();
throw e; // or display error nessage

}
finally {
sess. cl ose();

}

You do not have to f | ush() the Sessi on explicitly: the call to conmi t () automatically triggers the
synchronization depending on the FlushMode for the session. A call to cl ose() marks the end of
a session. The main implication of cl ose() is that the JDBC connection will be relinquished by
the session. This Java code is portable and runs in both non-managed and JTA environments.

As outlined earlier, a much more flexible solution is Hibernate's built-in "current session" context
management:

/1 Non- managed environnment idiomwi th getCurrent Session()

try {
factory. get Current Sessi on() . begi nTransaction();

// do some work

factory. get Current Sessi on().get Transaction().commt();

}

catch (Runti meException e) {
factory. get Current Sessi on() . get Transacti on(). rol | back();
throw e; // or display error nessage

You will not see these code snippets in a regular application; fatal (system) exceptions should
always be caught at the "top". In other words, the code that executes Hibernate calls in the
persistence layer, and the code that handles Runt i meExcepti on (and usually can only clean up

178

Using JTA

and exit), are in different layers. The current context management by Hibernate can significantly
simplify this design by accessing a Sessi onFact or y. Exception handling is discussed later in this
chapter.

You should select org.hibernate.transaction.JDBCTransacti onFactory, which is
the default, and for the second example select "thread" as your
hi bernat e. current _sessi on_cont ext _cl ass.

12.2.2. Using JTA

If your persistence layer runs in an application server (for example, behind EJB session beans),
every datasource connection obtained by Hibernate will automatically be part of the global JTA
transaction. You can also install a standalone JTA implementation and use it without EJB.
Hibernate offers two strategies for JTA integration.

If you use bean-managed transactions (BMT), Hibernate will tell the application server to start and
end a BMT transaction if you use the Transacti on API. The transaction management code is
identical to the non-managed environment.

/1 BMT idiom
Session sess = factory. openSession();
Transaction tx = null;

try {
tx = sess. begi nTransaction();

/] do sonme work

tx.commt();

}

catch (Runti meException e) {
if (tx !'= null) tx.rollback();
throw e; // or display error nessage
}
finally {
sess. cl ose();

}

If you want to use a transaction-bound Sessi on, that is, the get Current Sessi on() functionality
for easy context propagation, use the JTA User Tr ansact i on API directly:

/1 BMT idiomwth getCurrent Session()
try {
User Transaction tx = (UserTransaction)new | nitial Context()
.l ookup("j ava: conp/ User Tr ansacti on");

tx. begin();
/1 Do sone work on Session bound to transaction

factory.getCurrent Session().load(...);
factory. get Current Session().persist(...);

179

Chapter 12. Transactions and ...

tx.commt();

}
catch (Runti meException e) {
tx. rol | back();
throw e; // or display error nessage

With CMT, transaction demarcation is completed in session bean deployment descriptors, not
programmatically. The code is reduced to:

/1 CMI idiom
Sessi on sess = factory. get Current Session();

/1 do sone work

In a CMT/EJB, even rollback happens automatically. An unhandled Runt i neExcept i on thrown
by a session bean method tells the container to set the global transaction to rollback. You do
not need to use the Hibernate Tr ansacti on API at all with BMT or CMT, and you get automatic
propagation of the "current" Session bound to the transaction.

When configuring Hibernate's transaction factory, choose
or g. hi bernate. transacti on. JTATransacti onFactory if you use JTA directly (BMT),
and org. hibernate.transacti on. CMI'Transacti onFactory in a CMT session bean.
Remember to also set hi bernate. transacti on. manager _| ookup_cl ass. Ensure that your
hi ber nat e. current _sessi on_cont ext _cl ass is either unset (backwards compatibility), or is set
to"jta".

The get Current Sessi on() operation has one downside in a JTA environment. There is one
caveat to the use of af t er _st at enent connection release mode, which is then used by default.
Due to a limitation of the JTA spec, it is not possible for Hibernate to automatically clean up
any unclosed Scrol | abl eResul ts or I terat or instances returned by scrol | () oriterate().
You must release the underlying database cursor by calling Scrol | abl eResul ts. cl ose() or
Hi ber nat e. cl ose(lterator) explicitly fromafi nal | y block. Most applications can easily avoid
using scrol I () oriterate() fromthe JTA or CMT code.)

12.2.3. Exception handling

If the Session throws an exception, including any SQLExcepti on, immediately rollback the
database transaction, call Sessi on. cl ose() and discard the Sessi on instance. Certain methods
of Sessi on will not leave the session in a consistent state. No exception thrown by Hibernate
can be treated as recoverable. Ensure that the Sessi on will be closed by calling cl ose() in a
final |y block.

The Hi ber nat eExcepti on, which wraps most of the errors that can occur in a Hibernate
persistence layer, is an unchecked exception. It was not in older versions of Hibernate. In our

180

Transaction timeout

opinion, we should not force the application developer to catch an unrecoverable exception at a
low layer. In most systems, unchecked and fatal exceptions are handled in one of the first frames
of the method call stack (i.e., in higher layers) and either an error message is presented to the
application user or some other appropriate action is taken. Note that Hibernate might also throw
other unchecked exceptions that are not a Hi ber nat eExcept i on. These are not recoverable and
appropriate action should be taken.

Hibernate wraps SQ.Exceptions thrown while interacting with the database in a
JDBCException. In fact, Hibernate will attempt to convert the exception into a more
meaningful subclass of JDBCExcepti on. The underlying SQLExcepti on is always available
via JDBCExcept i on. get Cause(). Hibernate converts the SQLExcepti on into an appropriate
JDBCExcept i on subclass using the SQLExcept i onConverter attached to the Sessi onFact ory.
By default, the SQ.ExceptionConverter is defined by the configured dialect. However,
it is also possible to plug in a custom implementation. See the javadocs for the
SQLExcept i onConvert er Fact or y class for details. The standard JDBCExcept i on subtypes are:

» JDBCConnect i onExcept i on: indicates an error with the underlying JDBC communication.

* SQLG anmar Excepti on: indicates a grammar or syntax problem with the issued SQL.

e ConstraintViol ati onExcepti on: indicates some form of integrity constraint violation.

» LockAcqui siti onExcepti on: indicates an error acquiring a lock level necessary to perform the
requested operation.

* Generi cJDBCExcepti on: a generic exception which did not fall into any of the other categories.

12.2.4. Transaction timeout

An important feature provided by a managed environment like EJB, that is never provided for
non-managed code, is transaction timeout. Transaction timeouts ensure that no misbehaving
transaction can indefinitely tie up resources while returning no response to the user. Outside a
managed (JTA) environment, Hibernate cannot fully provide this functionality. However, Hibernate
can at least control data access operations, ensuring that database level deadlocks and queries
with huge result sets are limited by a defined timeout. In a managed environment, Hibernate can
delegate transaction timeout to JTA. This functionality is abstracted by the Hibernate Tr ansact i on
object.

Session sess = factory. openSession();

try {
//set transaction tinmeout to 3 seconds

sess. get Transaction(). set Ti neout (3);
sess. get Transaction(). begi n();

/1 do sone work

sess. get Transaction().comit ()

181

Chapter 12. Transactions and ...

catch (Runti meException e) {
sess. get Transaction().rol | back();
throw e; // or display error nessage

}
finally {

sess. cl ose();

}

set Ti meout () cannot be called in a CMT bean, where transaction timeouts must be defined
declaratively.

12.3. Optimistic concurrency control

The only approach that is consistent with high concurrency and high scalability, is optimistic
concurrency control with versioning. Version checking uses version numbers, or timestamps,
to detect conflicting updates and to prevent lost updates. Hibernate provides three possible
approaches to writing application code that uses optimistic concurrency. The use cases we
discuss are in the context of long conversations, but version checking also has the benefit of
preventing lost updates in single database transactions.

12.3.1. Application version checking

In an implementation without much help from Hibernate, each interaction with the database occurs
in a new Sessi on and the developer is responsible for reloading all persistent instances from
the database before manipulating them. The application is forced to carry out its own version
checking to ensure conversation transaction isolation. This approach is the least efficient in terms
of database access. It is the approach most similar to entity EJBs.

/1 foo is an instance | oaded by a previous Session
session = factory. openSession();
Transaction t = session. begi nTransacti on();

int ol dVersion = foo. getVersion();

session.load(foo, foo.getKey()); // load the current state

if (oldVersion != foo.getVersion()) throw new Stal eCbj ect St at eException();
f oo. set Property("bar");

t.commit();
session. cl ose();

The ver si on property is mapped using <ver si on>, and Hibernate will automatically increment it
during flush if the entity is dirty.

If you are operating in a low-data-concurrency environment, and do not require version checking,
you can use this approach and skip the version check. In this case, last commit wins is the default
strategy for long conversations. Be aware that this might confuse the users of the application,
as they might experience lost updates without error messages or a chance to merge conflicting
changes.

182

Extended session and automatic versioning

Manual version checking is only feasible in trivial circumstances and not practical for most
applications. Often not only single instances, but complete graphs of modified objects, have to
be checked. Hibernate offers automatic version checking with either an extended Sessi on or
detached instances as the design paradigm.

12.3.2. Extended session and automatic versioning

A single Sessi on instance and its persistent instances that are used for the whole conversation are
known as session-per-conversation. Hibernate checks instance versions at flush time, throwing
an exception if concurrent modification is detected. It is up to the developer to catch and handle
this exception. Common options are the opportunity for the user to merge changes or to restart
the business conversation with non-stale data.

The Session is disconnected from any underlying JDBC connection when waiting for user
interaction. This approach is the most efficient in terms of database access. The application does
not version check or reattach detached instances, nor does it have to reload instances in every
database transaction.

/1 foo is an instance | oaded earlier by the old session
Transaction t = session. begi nTransaction(); // Obtain a new JDBC connection, start transaction

f oo. set Property("bar");

session. flush(); /1 Only for last transaction in conversation
t.commit(); /] Al so return JDBC connection
session. cl ose(); /] Only for last transaction in conversation

The f oo object knows which Sessi on it was loaded in. Beginning a new database transaction
on an old session obtains a new connection and resumes the session. Committing a database
transaction disconnects a session from the JDBC connection and returns the connection to
the pool. After reconnection, to force a version check on data you are not updating, you can
call Session. | ock() with LockMode. READ on any objects that might have been updated by
another transaction. You do not need to lock any data that you are updating. Usually you would
set Fl ushMbde. MANUAL on an extended Sessi on, so that only the last database transaction
cycle is allowed to actually persist all modifications made in this conversation. Only this last
database transaction will include the f1 ush() operation, and then cl ose() the session to end
the conversation.

This pattern is problematic if the Sessi on is too big to be stored during user think time (for example,
an Ht t pSessi on should be kept as small as possible). As the Sessi on is also the first-level cache
and contains all loaded objects, we can probably use this strategy only for a few request/response
cycles. Use a Sessi on only for a single conversation as it will soon have stale data.

183

Chapter 12. Transactions and ...

@ Note

Earlier versions of Hibernate required explicit disconnection and reconnection of a
Sessi on. These methods are deprecated, as beginning and ending a transaction
has the same effect.

Keep the disconnected Sessi on close to the persistence layer. Use an EJB stateful session bean
to hold the Sessi on in a three-tier environment. Do not transfer it to the web layer, or even serialize
it to a separate tier, to store it in the Ht t pSessi on.

The extended session pattern, or session-per-conversation, is more difficult to implement with
automatic current session context management. You need to supply your own implementation of
the Cur r ent Sessi onCont ext for this. See the Hibernate Wiki for examples.

12.3.3. Detached objects and automatic versioning

Each interaction with the persistent store occurs in a new Sessi on. However, the same persistent
instances are reused for each interaction with the database. The application manipulates the
state of detached instances originally loaded in another Sessi on and then reattaches them using
Sessi on. updat e(), Sessi on. saveOr Updat e(), or Sessi on. nerge() .

/1 foo is an instance | oaded by a previous Session

f oo. set Property("bar");

session = factory. openSession();

Transaction t = session. begi nTransacti on();

sessi on. saveOr Update(foo); // Use nmerge() if "foo" might have been | oaded already
t.commit();

session. cl ose();

Again, Hibernate will check instance versions during flush, throwing an exception if conflicting
updates occurred.

You can also call | ock() instead of updat e(), and use LockMyde. READ (performing a version
check and bypassing all caches) if you are sure that the object has not been modified.

12.3.4. Customizing automatic versioning

You can disable Hibernate's automatic version increment for particular properties and collections
by setting the optimistic-1ock mapping attribute to fal se. Hibernate will then no longer
increment versions if the property is dirty.

Legacy database schemas are often static and cannot be modified. Or, other applications might
access the same database and will not know how to handle version numbers or even timestamps.
In both cases, versioning cannot rely on a particular column in a table. To force a version check
with a comparison of the state of all fields in a row but without a version or timestamp property
mapping, turnon opt i m sti c-1 ock="al | " inthe <cl ass> mapping. This conceptually only works

184

Pessimistic locking

if Hibernate can compare the old and the new state (i.e., if you use a single long Sessi on and not
session-per-request-with-detached-objects).

Concurrent modification can be permitted in instances where the changes that have been made
do not overlap. If you set opt i i sti c- 1 ock="di rty" when mapping the <cl ass>, Hibernate will
only compare dirty fields during flush.

In both cases, with dedicated version/timestamp columns or with a full/dirty field comparison,
Hibernate uses a single UPDATE statement, with an appropriate WHERE clause, per entity to execute
the version check and update the information. If you use transitive persistence to cascade
reattachment to associated entities, Hibernate may execute unnecessary updates. This is usually
not a problem, but on update triggers in the database might be executed even when no changes
have been made to detached instances. You can customize this behavior by setting sel ect -
bef or e-updat e="true" in the <cl ass> mapping, forcing Hibernate to SELECT the instance to
ensure that changes did occur before updating the row.

12.4. Pessimistic locking

Itis notintended that users spend much time worrying about locking strategies. Itis usually enough
to specify an isolation level for the JDBC connections and then simply let the database do all the
work. However, advanced users may wish to obtain exclusive pessimistic locks or re-obtain locks
at the start of a new transaction.

Hibernate will always use the locking mechanism of the database; it never lock objects in memory.

The LockMode class defines the different lock levels that can be acquired by Hibernate. A lock is
obtained by the following mechanisms:

* LockMode. VRI TE is acquired automatically when Hibernate updates or inserts a row.

» LockMode. UPGRADE can be acquired upon explicit user request using SELECT ... FOR UPDATE
on databases which support that syntax.

» LockMode. UPGRADE_NOWAI T can be acquired upon explicit user request using a SELECT ...
FOR UPDATE NOWAI T under Oracle.

» LockMode. READ is acquired automatically when Hibernate reads data under Repeatable Read
or Serializable isolation level. It can be re-acquired by explicit user request.

» LockMode. NONE represents the absence of a lock. All objects switch to this lock mode at
the end of a Transacti on. Objects associated with the session via a call to update() or
saveOr Updat e() also start out in this lock mode.

The "explicit user request"” is expressed in one of the following ways:

e Acall to Sessi on. | oad(), specifying a LockMbde.
e Acallto Sessi on. | ock().
» Acallto Query. set LockMvde().

If Sessi on. | oad() is called with UPGRADE or UPGRADE_NOWAI T, and the requested object was not
yet loaded by the session, the object is loaded using SELECT ... FOR UPDATE. If | oad() is called

185

Chapter 12. Transactions and ...

for an object that is already loaded with a less restrictive lock than the one requested, Hibernate
calls | ock() for that object.

Sessi on. | ock() performs a version number check if the specified lock mode is READ, UPGRADE or
UPGRADE_NOWAI T. In the case of UPGRADE or UPGRADE_NOWAI T, SELECT ... FOR UPDATE is used.

If the requested lock mode is not supported by the database, Hibernate uses an appropriate
alternate mode instead of throwing an exception. This ensures that applications are portable.

12.5. Connection release modes

One of the legacies of Hibernate 2.x JDBC connection management meant that a Sessi on would
obtain a connection when it was first required and then maintain that connection until the session
was closed. Hibernate 3.x introduced the notion of connection release modes that would instruct
a session how to handle its JDBC connections. The following discussion is pertinent only to
connections provided through a configured Connecti onProvi der. User-supplied connections
are outside the breadth of this discussion. The different release modes are identified by the
enumerated values of or g. hi ber nat e. Connect i onRel easeMode:

e ON_CLOsSE: is the legacy behavior described above. The Hibernate session obtains a connection
when it first needs to perform some JDBC access and maintains that connection until the session
is closed.

e AFTER_TRANSACTI ON: releases connections after a or g. hi ber nat e. Transacti on has been
completed.

* AFTER_STATEMENT (also referred to as aggressive release): releases connections after every
statement execution. This aggressive releasing is skipped if that statement leaves open
resources associated with the given session. Currently the only situation where this occurs is
through the use of or g. hi bernat e. Scrol | abl eResul t s.

The configuration parameter hi ber nat e. connecti on. rel ease_node is used to specify which
release mode to use. The possible values are as follows:

e auto (the default): this choice delegates to the release mode returned by the
org. hi bernate. transaction. Transacti onFact ory. get Def aul t Rel easeMbde() method.
For JTATransactionFactory, this returns ConnectionReleaseMode.AFTER_STATEMENT,; for
JDBCTransactionFactory, this returns ConnectionReleaseMode. AFTER_TRANSACTION. Do
not change this default behavior as failures due to the value of this setting tend to indicate bugs
and/or invalid assumptions in user code.

* on_cl ose: uses ConnectionReleaseMode.ON_CLOSE. This setting is left for backwards
compatibility, but its use is discouraged.

e after_transaction: uses ConnectionReleaseMode.AFTER_TRANSACTION. This setting
should not be used in JTA environments. Also note that with
ConnectionReleaseMode.AFTER_TRANSACTION, if a session is considered to be in auto-
commit mode, connections will be released as if the release mode were AFTER_STATEMENT.

e after_statenent: uses ConnectionReleaseMode. AFTER_STATEMENT. Additionally,
the configured ConnectionProvider is consulted to see if it supports this

186

Connection release modes

setting (supportsAggressi veRel ease()). If not, the release mode is reset to
ConnectionReleaseMode. AFTER_TRANSACTION. This setting is only safe in environments
where we can either re-acquire the same underlying JDBC connection each time you make
a call into Connecti onProvi der . get Connect i on() or in auto-commit environments where it
does not matter if we re-establish the same connection.

187

188

Chapter 13.

Interceptors and events

It is useful for the application to react to certain events that occur inside Hibernate. This allows for
the implementation of generic functionality and the extension of Hibernate functionality.

13.1. Interceptors

The I nt er cept or interface provides callbacks from the session to the application, allowing the
application to inspect and/or manipulate properties of a persistent object before it is saved,
updated, deleted or loaded. One possible use for this is to track auditing information. For example,
the following | nt er cept or automatically sets the creat eTi mest anp when an Auditabl e is
created and updates the | ast Updat eTi mest anp property when an Audi t abl e is updated.

You can either implement I nt er cept or directly or extend Enpt yI nt er cept or .

package org. hi bernate.test;

inport java.io.Serializable;
inport java.util.Date;
inport java.util.lterator;

inmport org. hi bernate. Enptyl nterceptor;
inmport org. hi bernate. Transacti on;
inmport org. hi bernate.type. Type;

public class Auditlnterceptor extends Enptylnterceptor {

private int updates;
private int creates;
private int |oads;

public void onDel ete(Object entity,
Serializable id,
oj ect[] state,
String[] propertyNanes,
Type[] types) {
/1 do not hi ng

publ i c bool ean onFlushDi rty(Cbject entity,
Serializable id,
Obj ect[] current State,
Obj ect[] previousState,
String[] propertyNanes,
Type[] types) {

if (entity instanceof Auditable) {
updat es++;
for (int i=0; i < propertyNanes.|ength; i++) {
if ("lastUpdateTi nestanp". equal s(propertyNanes[i])) {
currentState[i] = new Date();
return true;

189

Chapter 13. Interceptors and ...

}

return fal se;

publ i c bool ean onLoad(Object entity,
Serializable id,
oj ect[] state,
String[] propertyNanes,
Type[] types) {
if (entity instanceof Auditable) {
| oads++;

}

return fal se;

publ i c bool ean onSave(Object entity,
Serializable id,
oj ect[] state,
String[] propertyNanes,
Type[] types) {

if (entity instanceof Auditable) {
creat es++;
for (int i=0; i<propertyNanes.length; i++) {
if ("createTi mestanp".equal s(propertyNames[i])) {
state[i] = new Date();
return true;

}

return false;

public void afterTransacti onConpl eti on(Transaction tx) {
if (tx.wasConmmitted()) {
Systemout.printin("Creations: " + creates +", Updates: " + updates, "Loads: " + | oads);

}

updat es=0;
creat es=0;
| oads=0;

There are two kinds of inteceptors: Sessi on-scoped and Sessi onFact or y-scoped.

A Sessi on-scoped interceptor is specified when a session is opened using one of the overloaded
SessionFactory.openSession() methods accepting an | nt er cept or.

Sessi on session = sf.openSession(new Auditlnterceptor());

A Sessi onFact or y-scoped interceptor is registered with the Confi gurati on object prior to
building the Sessi onFact ory. Unless a session is opened explicitly specifying the interceptor to

190

Event system

use, the supplied interceptor will be applied to all sessions opened from that Sessi onFactory.
Sessi onFact or y-scoped interceptors must be thread safe. Ensure that you do not store session-
specific states, since multiple sessions will use this interceptor potentially concurrently.

new Configuration().setlnterceptor(new Auditlnterceptor());

13.2. Event system

If you have to react to particular events in your persistence layer, you can also use the Hibernate3
event architecture. The event system can be used in addition, or as a replacement, for interceptors.

All the methods of the Sessi on interface correlate to an event. You have a LoadEvent, a
Fl ushEvent, etc. Consult the XML configuration-file DTD or the or g. hi ber nat e. event package
for the full list of defined event types. When a request is made of one of these methods, the
Hibernate Sessi on generates an appropriate event and passes it to the configured event listeners
for that type. Out-of-the-box, these listeners implement the same processing in which those
methods always resulted. However, you are free to implement a customization of one of the
listener interfaces (i.e., the LoadEvent is processed by the registered implementation of the
LoadEvent Li st ener interface), in which case their implementation would be responsible for
processing any | oad() requests made of the Sessi on.

The listeners should be considered singletons. This means they are shared between requests,
and should not save any state as instance variables.

A custom listener implements the appropriate interface for the event it wants to process and/or
extend one of the convenience base classes (or even the default event listeners used by Hibernate
out-of-the-box as these are declared non-final for this purpose). Custom listeners can either be
registered programmatically through the Confi gurati on object, or specified in the Hibernate
configuration XML. Declarative configuration through the properties file is not supported. Here is
an example of a custom load event listener:

public class MyLoadLi stener inplenents LoadEventListener {
/1 this is the single nmethod defined by the LoadEventListener interface
public void onLoad(LoadEvent event, LoadEventLi stener.LoadType | oadType)
throws Hi bernat eException {
if (!'MSecurity.isAuthorized(event.getEntityd assName(), event.getEntityld())) {
throw MySecurityException("Unaut hori zed access");
}

You also need a configuration entry telling Hibernate to use the listener in addition to the default
listener:

<hi ber nat e- confi gurati on>

191

Chapter 13. Interceptors and ...

<session-factory>

<event type="|oad">
<l istener class="com eg. M/LoadLi stener"/>
<l istener class="org.hibernate.event.def. Defaul t LoadEventListener"/>
</ event >
</ sessi on-factory>
</ hi ber nat e- confi gurati on>

Instead, you can register it programmatically:

Configuration cfg = new Configuration();
LoadEvent Li stener[] stack = { new MyLoadLi stener (), new DefaultLoadEventListener() };
cfg. Event Li steners().setLoadEvent Li st ener s(st ack);

Listeners registered declaratively cannot share instances. If the same class name is used in
multiple <l i st ener/ > elements, each reference will result in a separate instance of that class.
If you need to share listener instances between listener types you must use the programmatic
registration approach.

Why implement an interface and define the specific type during configuration? A listener
implementation could implement multiple event listener interfaces. Having the type additionally
defined during registration makes it easier to turn custom listeners on or off during configuration.

13.3. Hibernate declarative security

Usually, declarative security in Hibernate applications is managed in a session facade layer.
Hibernate3 allows certain actions to be permissioned via JACC, and authorized via JAAS. This is
an optional functionality that is built on top of the event architecture.

First, you must configure the appropriate event listeners, to enable the use of JAAS authorization.

<l istener type="pre-delete" class="org.hibernate.secure. JACCPreDel et eEvent Li stener"/>
<listener type="pre-update" class="org.hibernate.secure. JACCPreUpdat eEvent Li stener"/>
<listener type="pre-insert" class="org.hibernate.secure. JACCPrel nsertEventListener"/>
<listener type="pre-load" class="org.hibernate.secure. JACCPreLoadEventLi stener"/>

Note that <listener type="..." class="..."/> is shorthand for <event
type="..."><listener class="..."/></event> when there is exactly one listener for a
particular event type.

Next, while still in hi ber nat e. cf g. xm , bind the permissions to roles:

<grant role="adm n" entity-nane="User" actions="insert, update, read"/>
<grant role="su" entity-nane="User" actions="*"/>

192

Hibernate declarative security

The role names are the roles understood by your JACC provider.

193

194

Chapter 14.

Batch processing

A naive approach to inserting 100,000 rows in the database using Hibernate might look like this:

Sessi on session = sessi onFactory. openSessi on()
Transaction tx = session. begi nTransaction();
for (int i=0; i<100000; i++) {
Custoner custonmer = new Custoner(.....)
sessi on. save(cust oner)

}

tx.commt();
session. cl ose();

This would fall over with an Qut Of Menor yExcept i on somewhere around the 50,000th row. That is
because Hibernate caches all the newly inserted Cust oner instances in the session-level cache.
In this chapter we will show you how to avoid this problem.

If you are undertaking batch processing you will need to enable the use of JDBC batching. This
is absolutely essential if you want to achieve optimal performance. Set the JDBC batch size to a
reasonable number (10-50, for example):

hi ber nat e. j dbc. bat ch_si ze 20
Hibernate disables insert batching at the JDBC level transparently if you use ani dent i t y identifier
generator.

You can also do this kind of work in a process where interaction with the second-level cache is
completely disabled:

hi ber nat e. cache. use_second_| evel _cache fal se

However, this is not absolutely necessary, since we can explicitly set the CacheMde to disable
interaction with the second-level cache.

14.1. Batch inserts

When making new objects persistent f | ush() and then cl ear () the session regularly in order to
control the size of the first-level cache.

Sessi on session = sessi onFactory. openSessi on()
Transaction tx = session. begi nTransaction();

for (int i=0; i<100000; i++) {

195

Chapter 14. Batch processing

Cust oner customer = new Custoner(.....);

sessi on. save(custoner);

if (i %20 ==0) { //20, sane as the JDBC batch size
/1flush a batch of inserts and rel ease nmenory:
session. flush();
session.clear();

}

tx.commt();
session. cl ose();

14.2. Batch updates

For retrieving and updating data, the same ideas apply. In addition, you need to use scrol | () to
take advantage of server-side cursors for queries that return many rows of data.

Sessi on session = sessi onFactory. openSessi on();
Transaction tx = session. begi nTransaction();

Scrol | abl eResul ts custonmers = sessi on. get NanedQuer y(" Get Cust oners")
. set CacheMbde(CacheMode. | GNORE)
.scroll (Scrol | Mode. FORWARD_ONLY) ;
int count=0;
while (custoners.next()) {
Cust oner customer = (Customer) custoners.get(0);
custoner. updateStuff(...);
if (++count %20 == 0) {
//flush a batch of updates and rel ease nenory:
session. flush();
session.clear();

}

tx.commit();
session.close();

14.3. The StatelessSession interface

Alternatively, Hibernate provides a command-oriented API that can be used for streaming data to
and from the database in the form of detached objects. A St at el essSessi on has no persistence
context associated with it and does not provide many of the higher-level life cycle semantics.
In particular, a stateless session does not implement a first-level cache nor interact with any
second-level or query cache. It does not implement transactional write-behind or automatic dirty
checking. Operations performed using a stateless session never cascade to associated instances.
Collections are ignored by a stateless session. Operations performed via a stateless session
bypass Hibernate's event model and interceptors. Due to the lack of a first-level cache, Stateless
sessions are vulnerable to data aliasing effects. A stateless session is a lower-level abstraction
that is much closer to the underlying JDBC.

196

DML-style operations

St at el essSessi on sessi on = sessi onFactory. openSt at el essSessi on();
Transaction tx = session. begi nTransaction();

Scrol | abl eResul ts customers = sessi on. get NanedQuer y(" Get Cust oners")
.scroll (Scrol | Mode. FORWARD_ONLY) ;
while (custoners.next()) {
Cust oner customer = (Customer) custoners.get(0);
custoner. updateStuff(...);
sessi on. updat e(cust oner) ;

}

tx.commit();
session. cl ose();

In this code example, the Cust ormer instances returned by the query are immediately detached.
They are never associated with any persistence context.

Theinsert(), update() and del et e() operations defined by the St at el essSessi on interface
are considered to be direct database row-level operations. They result in the immediate execution
of a SQL | NSERT, UPDATE or DELETE respectively. They have different semantics to the save(),
saveOr Updat e() and del et e() operations defined by the Sessi on interface.

14.4. DML-style operations

As already discussed, automatic and transparent object/relational mapping is concerned with
the management of the object state. The object state is available in memory. This means that
manipulating data directly in the database (using the SQL Dat a Mani pul ati on Language (DML)
the statements: | NSERT, UPDATE, DELETE) will not affect in-memory state. However, Hibernate
provides methods for bulk SQL-style DML statement execution that is performed through the
Hibernate Query Language (HQL).

The pseudo-syntax for UPDATE and DELETE statements is: (UPDATE | DELETE) FROW?
EntityNanme (WHERE where_conditions)?.

Some points to note:

« In the from-clause, the FROM keyword is optional

» There can only be a single entity named in the from-clause. It can, however, be aliased. If the
entity name is aliased, then any property references must be qualified using that alias. If the
entity name is not aliased, then it is illegal for any property references to be qualified.

« No joins, either implicit or explicit, can be specified in a bulk HQL query. Sub-queries can be
used in the where-clause, where the subqueries themselves may contain joins.

« The where-clause is also optional.

As an example, to execute an HQL UPDATE, use the Query. execut eUpdat e() method. The
method is named for those familiar with JDBC's Pr epar edSt at ement . execut eUpdat e() :

197

Chapter 14. Batch processing

Session session = sessionFactory. openSession();
Transaction tx = session. begi nTransaction();

String hgl Update = "update Custoner c set c.nane = :newNane where c.nane : ol dNane";
/1 or String hql Update = "update Custoner set nanme = :newNane where nane = : ol dNane";
int updatedEntities = s.createQuery(hgl Update)

.setString("newNanme", newNane)

.setString("ol dNanme", ol dNanme)

. execut eUpdat e() ;
tx.commt();
session. cl ose();

In keeping with the EJB3 specification, HQL UPDATE statements, by default, do not effect the
version or the timestamp property values for the affected entities. However, you can force
Hibernate to reset the versi on or ti mest anp property values through the use of a ver si oned
updat e. This is achieved by adding the VERSI ONED keyword after the UPDATE keyword.

Sessi on session = sessionFactory. openSessi on();
Transaction tx = session. begi nTransaction();
String hgl Versi onedUpdat e = "updat e versi oned Cust oner set nane = : newNane where nane = : ol dNanme";
int updatedEntities = s.createQuery(hgl Update)
.setString("newNanme", newNane)
.setString("ol dName", ol dNane)
. execut eUpdat e() ;
tx.commt();
session. cl ose();

Custom version types, org. hi bernate. usertype. User Versi onType, are not allowed in
conjunction with a updat e ver si oned statement.

To execute an HQL DELETE, use the same Query. execut eUpdat e() method:

Sessi on session = sessi onFactory. openSessi on();
Transaction tx = session. begi nTransaction();

String hqgl Delete = "del ete Custoner ¢ where c.nanme = :ol dNane";
/1 or String hqlDelete = "del ete Custonmer where nane = :ol dNanme";
int deletedEntities = s.createQuery(hqgl Delete)

.setString("ol dNanme", ol dNanme)

. execut eUpdat e() ;
tx.commt();
session. close();

The i nt value returned by the Query. execut eUpdat e() method indicates the number of entities
effected by the operation. This may or may not correlate to the number of rows effected in the
database. An HQL bulk operation might result in multiple actual SQL statements being executed
(for joined-subclass, for example). The returned number indicates the number of actual entities
affected by the statement. Going back to the example of joined-subclass, a delete against one

198

DML-style operations

of the subclasses may actually result in deletes against not just the table to which that subclass
is mapped, but also the "root" table and potentially joined-subclass tables further down the
inheritance hierarchy.

The pseudo-syntax for | NSERT statements is: | NSERT | NTO EntityNanme properties_|ist
sel ect _st at ement . Some points to note:

e Only the INSERT INTO ... SELECT ... form is supported; not the INSERT INTO ... VALUES ...
form.

The properties_list is analogous to the col unm speci fi cati on in the SQL | NSERT statement.
For entities involved in mapped inheritance, only properties directly defined on that given
class-level can be used in the properties_list. Superclass properties are not allowed and
subclass properties do not make sense. In other words, | NSERT statements are inherently non-
polymorphic.

» select_statement can be any valid HQL select query, with the caveat that the return types must
match the types expected by the insert. Currently, this is checked during query compilation
rather than allowing the check to relegate to the database. This might, however, cause problems
between Hibernate Types which are equivalent as opposed to equal. This might cause issues
with mismatches between a property defined as a org. hi bernate. t ype. Dat eType and a
property defined as a or g. hi ber nat e. t ype. Ti nest anpType, even though the database might
not make a distinction or might be able to handle the conversion.

« Forthe id property, the insert statement gives you two options. You can either explicitly specify
the id property in the properties_list, in which case its value is taken from the corresponding
select expression, or omit it from the properties_list, in which case a generated value is used.
This latter option is only available when using id generators that operate in the database;
attempting to use this option with any "in memory" type generators will cause an exception
during parsing. For the purposes of this discussion, in-database generators are considered
to be org. hi bernate. i d. SequenceGener at or (and its subclasses) and any implementers of
org. hibernate.id. PostlnsertldentifierGenerator. The most notable exception here is
org. hi bernate. i d. Tabl eHi LoGener at or, which cannot be used because it does not expose
a selectable way to get its values.

» For properties mapped as either versi on or ti nest anp, the insert statement gives you two
options. You can either specify the property in the properties_list, in which case its value is
taken from the corresponding select expressions, or omit it from the properties_list, in which
case the seed val ue defined by the or g. hi ber nat e. t ype. Ver si onType is used.

The following is an example of an HQL | NSERT statement execution:

Sessi on session = sessi onFactory. openSessi on();
Transaction tx = session. begi nTransaction();

String hgllnsert = "insert into DelinquentAccount (id, nane) select c.id, c.nane from Custoner
c where ...";
int createdEntities = s.createQuery(hgllnsert)
. execut eUpdat e() ;
tx.commt();

199

Chapter 14. Batch processing

session. cl ose();

200

Chapter 15.

HQL: The Hibernate Query Language

Hibernate uses a powerful query language (HQL) that is similar in appearance to SQL. Compared
with SQL, however, HQL is fully object-oriented and understands notions like inheritance,
polymorphism and association.

15.1. Case Sensitivity

With the exception of names of Java classes and properties, queries are case-insensitive. So
SeLeCT is the same as sELEct is the same as SELECT, but org. hi ber nat e. eg. FOO is not
or g. hi ber nat e. eg. Foo, and f oo. bar Set is not f oo. BARSET.

This manual uses lowercase HQL keywords. Some users find queries with uppercase keywords
more readable, but this convention is unsuitable for queries embedded in Java code.

15.2. The from clause

The simplest possible Hibernate query is of the form:

from eg. Cat

This returns all instances of the class eg. Cat . You do not usually need to qualify the class name,
since aut o-i nport is the default. For example:

from Cat
In order to refer to the Cat in other parts of the query, you will need to assign an alias. For example:
from Cat as cat

This query assigns the alias cat to Cat instances, so you can use that alias later in the query.
The as keyword is optional. You could also write:

from Cat cat

Multiple classes can appear, resulting in a cartesian product or "cross" join.

from Fornul a, Paraneter

201

Chapter 15. HQL: The Hibernat...

fromFornula as form Paranmeter as param

It is good practice to name query aliases using an initial lowercase as this is consistent with Java
naming standards for local variables (e.g. donesti cCat).

15.3. Associations and joins

You can also assign aliases to associated entities or to elements of a collection of values using
aj oi n. For example:

from Cat as cat
inner join cat.mate as mate
left outer join cat.kittens as kitten

fromCat as cat left join cat. mate.kittens as kittens

fromFormula formfull join form paranmeter param
The supported join types are borrowed from ANSI SQL:

e inner join

e |eft outer join

e right outer join

e full join (notusually useful)

Theinner join,left outer joinandright outer join constructs may be abbreviated.

from Cat as cat
join cat.nmate as nate
left join cat.kittens as kitten

You may supply extra join conditions using the HQL wi t h keyword.

from Cat as cat
left join cat.kittens as kitten
with kitten. bodyWeight > 10.0

A "fetch" join allows associations or collections of values to be initialized along with their parent
objects using a single select. This is particularly useful in the case of a collection. It effectively

202

Forms of join syntax

overrides the outer join and lazy declarations of the mapping file for associations and collections.
See Section 20.1, “Fetching strategies” for more information.

from Cat as cat
inner join fetch cat.mte
left join fetch cat.kittens

A fetch join does not usually need to assign an alias, because the associated objects should not
be used in the wher e clause (or any other clause). The associated objects are also not returned
directly in the query results. Instead, they may be accessed via the parent object. The only reason
you might need an alias is if you are recursively join fetching a further collection:

from Cat as cat
inner join fetch cat.nmate
left join fetch cat.kittens child
left join fetch child. kittens

The f et ch construct cannot be used in queries called using i terat e() (though scroll () can
be used). Fet ch should be used together with set MaxResul t s() or set Fi rst Resul t (), as these
operations are based on the result rows which usually contain duplicates for eager collection
fetching, hence, the number of rows is not what you would expect. Fet ch should also not be
used together with impromptu wi t h condition. It is possible to create a cartesian product by join
fetching more than one collection in a query, so take care in this case. Join fetching multiple
collection roles can produce unexpected results for bag mappings, so user discretion is advised
when formulating queries in this case. Finally, note thatful | join fetchandright join fetch
are not meaningful.

If you are using property-level lazy fetching (with bytecode instrumentation), it is possible to force
Hibernate to fetch the lazy properties in the first query immediately using f et ch al | properti es.

from Docunent fetch all properties order by name

from Docunent doc fetch all properties where | ower(doc. nane) |ike '%ats%

15.4. Forms of join syntax

HQL supports two forms of association joining: i nplicit and explicit.

The queries shown in the previous section all use the explicit form, that is, where the join
keyword is explicitly used in the from clause. This is the recommended form.

203

Chapter 15. HQL: The Hibernat...

The i nplicit form does not use the join keyword. Instead, the associations are "dereferenced"
using dot-notation. i npl i ci t joins can appear in any of the HQL clauses. i npl i ci t join result in
inner joins in the resulting SQL statement.

fromCat as cat where cat.nmte.nane |like ' %%

15.5. Referring to identifier property

There are 2 ways to refer to an entity's identifier property:

» The special property (lowercase) i d may be used to reference the identifier property of an entity
provided that the entity does not define a non-identifier property named id.
« If the entity defines a named identifier property, you can use that property name.

References to composite identifier properties follow the same naming rules. If the entity has a non-
identifier property named id, the composite identifier property can only be referenced by its defined
named. Otherwise, the special i d property can be used to reference the identifier property.

Important

Please note that, starting in version 3.2.2, this has changed significantly. In
previous versions, i d always referred to the identifier property regardless of its
actual name. A ramification of that decision was that non-identifier properties
named i d could never be referenced in Hibernate queries.

15.6. The select clause

The sel ect clause picks which objects and properties to return in the query result set. Consider
the following:

select mate
from Cat as cat
inner join cat.mate as mate

The query will select mat es of other Cat s. You can express this query more compactly as:

select cat.mate from Cat cat

Queries can return properties of any value type including properties of component type:

sel ect cat.name from DonesticCat cat

204

The select clause

where cat.nane like "fri%

sel ect cust.nane.firstNanme from Custoner as cust

Queries can return multiple objects and/or properties as an array of type Qoj ect[] :

sel ect nother, offspr, mate.nane
from Donmesti cCat as not her
inner join nmother.nmate as mate
left outer join nother.kittens as offspr

Orasalist:

sel ect new |ist(nmother, offspr, mate.nane)
from DonesticCat as not her

inner join nmother.mate as mate

left outer join nother.kittens as offspr

Or - assuming that the class Fani | y has an appropriate constructor - as an actual typesafe Java

object:

sel ect new Family(nother, mate, offspr)
from DonesticCat as not her

join nother.mate as mate

left join mother.kittens as of fspr

You can assign aliases to selected expressions using as:

sel ect max(bodyWei ght) as max, m n(bodyWight) as mn, count(*) as n
from Cat cat

This is most useful when used together with sel ect new map:

sel ect new map(max(bodyWei ght) as max, mi n(bodyWight) as min, count(*) as n)
from Cat cat

This query returns a Map from aliases to selected values.

205

Chapter 15. HQL: The Hibernat...

15.7. Aggregate functions

HQL queries can even return the results of aggregate functions on properties:

sel ect avg(cat.weight), sum(cat.weight), max(cat.weight), count(cat)
from Cat cat

The supported aggregate functions are:

e avg(...), sum...), mn(...), max(...)
e count(*)

e count(...), count(distinct ...), count(all...)

You can use arithmetic operators, concatenation, and recognized SQL functions in the select
clause:

sel ect cat.weight + sun(kitten.weight)
from Cat cat

join cat.kittens kitten
group by cat.id, cat.weight

select firstName||"' "||initial]]|" "||upper(lastNane) from Person

The di stinct and al | keywords can be used and have the same semantics as in SQL.

sel ect distinct cat.nanme from Cat cat

sel ect count(distinct cat.nane), count(cat) from Cat cat

15.8. Polymorphic queries

A query like:
fromCat as cat

returns instances not only of Cat, but also of subclasses like Donesti cCat . Hibernate queries
can name any Java class or interface in the f romclause. The query will return instances of all
persistent classes that extend that class or implement the interface. The following query would
return all persistent objects:

206

The where clause

fromjava.lang. Object o

The interface Named might be implemented by various persistent classes:

from Naned n, Naned m where n.nane = m nane

These last two queries will require more than one SQL SELECT. This means that the or der by
clause does not correctly order the whole result set. It also means you cannot call these queries
using Query. scrol | ().

15.9. The where clause

The wher e clause allows you to refine the list of instances returned. If no alias exists, you can
refer to properties by name:

from Cat where nanme='Fritz'

If there is an alias, use a qualified property hame:

fromCat as cat where cat.nane="Fritz'

This returns instances of Cat named 'Fritz'.

The following query:

sel ect foo
from Foo foo, Bar bar
where foo.startDate = bar.date

returns all instances of Foo with an instance of bar with a dat e property equal to the st art Dat e
property of the Foo. Compound path expressions make the wher e clause extremely powerful.
Consider the following:

from Cat cat where cat.mate.nane is not null

This query translates to an SQL query with a table (inner) join. For example:

from Foo foo

207

Chapter 15. HQL: The Hibernat...

wher e foo. bar.baz. custoner. address.city is not null

would result in a query that would require four table joins in SQL.

The = operator can be used to compare not only properties, but also instances:

fromCat cat, Cat rival where cat.nmate = rival.mte

sel ect cat, mate
fromCat cat, Cat mate
where cat.nmate = mate

The special property (lowercase) i d can be used to reference the unique identifier of an object.
See Section 15.5, “Referring to identifier property” for more information.

fromCat as cat where cat.id = 123

fromCat as cat where cat.mate.id = 69

The second query is efficient and does not require a table join.

Properties of composite identifiers can also be used. Consider the following example where
Per son has composite identifiers consisting of count ry and nedi car eNunber ;

from bank. Person person
where person.id.country = "'AU
and person.id. nedi careNunber = 123456

from bank. Account account
where account.owner.id.country = "'AU
and account. owner. i d. nedi careNunber = 123456

Once again, the second query does not require a table join.

See Section 15.5, “Referring to identifier property” for more information regarding referencing
identifier properties)

The special property cl ass accesses the discriminator value of an instance in the case of
polymorphic persistence. A Java class nhame embedded in the where clause will be translated to
its discriminator value.

208

Expressions

from Cat cat where cat.class = DonesticCat

You can also use components or composite user types, or properties of said component types.
See Section 15.17, “Components” for more information.

An "any" type has the special properties i d and cl ass that allows you to express a join in the
following way (where Audi t Log. i t emis a property mapped with <any>):

from AuditLog | og, Paynent paynent
where log.itemclass = 'Paynent' and log.itemid = paynent.id

The I og.itemclass and paynent.cl ass would refer to the values of completely different
database columns in the above query.

15.10. Expressions

Expressions used in the wher e clause include the following:

- mathematical operators: +, -, *, /

e binary comparison operators: =, >=, <=, <> = like
* logical operations and, or, not

» Parentheses () that indicates grouping

e in,not in, between,is null,is not null,is enpty,is not enpty, menber of and
not nenber of

e "Simple" case, case ... when ... then ... else ... end, and "searched" case, case
when ... then ... else ... end

« string concatenation ... ||... orconcat(...,...)

e current_date(),current_tine(),andcurrent _timestanp()

e second(...),minute(...),hour(...),day(...),month(...),andyear(...)

» Any function or operator defined by EJB-QL 3.0: substring(), trim(), |lower(), upper(),
length(), locate(), abs(), sqrt(), bit_length(), nod()

e coal esce() and nul lif ()

« str() for converting numeric or temporal values to a readable string

e cast(... as ...), where the second argument is the name of a Hibernate type, and
extract(... from ...) if ANSI cast() and extract() is supported by the underlying
database

« the HQL i ndex() function, that applies to aliases of a joined indexed collection

« HQL functions that take collection-valued path expressions: size(), minelenent(),
maxel ement (), minindex(), maxindex(), along with the special el enent s() and i ndi ces
functions that can be quantified using sone, all, exists, any, in.

« Any database-supported SQL scalar function like si gn(), trunc(),rtrin(), and si n()

» JDBC-style positional parameters ?

e named parameters : nane, : start_date, and : x1

209

Chapter 15. HQL: The Hibernat...

e SQL literals ' f 00", 69, 6. 66E+2, ' 1970-01-01 10: 00: 01. 0
e Javapublic static final constants eg. Col or. TABBY

i n and bet ween can be used as follows:

from Donmesti cCat cat where cat.nane between 'A" and 'B

from Donmesti cCat cat where cat.nane in ('Foo', 'Bar', 'Baz')

The negated forms can be written as follows:

from Donmesti cCat cat where cat.nane not between 'A" and 'B'

from DonesticCat cat where cat.nane not in ('Foo', 'Bar', 'Baz')

Similarly,is null andis not null can be used to test for null values.

Booleans can be easily used in expressions by declaring HQL query substitutions in Hibernate
configuration:

<property nanme="hi bernate. query. substitutions">true 1, fal se 0</property>

This will replace the keywords true and f al se with the literals 1 and 0 in the translated SQL
from this HQL.:

fromCat cat where cat.alive = true

You can test the size of a collection with the special property si ze or the special si ze() function.

fromCat cat where cat.kittens.size >0

from Cat cat where size(cat.kittens) > 0

For indexed collections, you can refer to the minimum and maximum indices using m ni ndex
and maxi ndex functions. Similarly, you can refer to the minimum and maximum elements of a
collection of basic type using the nm nel ement and naxel ement functions. For example:

210

Expressions

from Cal endar cal where naxel enent (cal . holidays) > current_date

from Order order where maxi ndex(order.itens) > 100

from Order order where mnel enent(order.itens) > 10000

The SQL functions any, some, all, exists, in aresupported when passed the element or
index set of a collection (el enment s and i ndi ces functions) or the result of a subquery (see below):

sel ect nother from Cat as nother, Cat as kit
where kit in elenents(foo.kittens)

select p from NaneList list, Person p
where p.nane = sone el enents(list.nanes)

from Cat cat where exists elenents(cat.kittens)

fromPlayer p where 3 > all el ements(p. scores)

from Show show where 'fizard' in indices(show acts)
Note that these constructs - size, el ements, indi ces, m ni ndex, maxi ndex, m nel enent,
maxel enent - can only be used in the where clause in Hibernate3.

Elements of indexed collections (arrays, lists, and maps) can be referred to by index in a where
clause only:

from Order order where order.itens[0].id = 1234

sel ect person from Person person, Cal endar cal endar
wher e cal endar. hol i days[' nati onal day'] = person. birthDay
and person.nationality.cal endar = cal endar

211

Chapter 15. HQL: The Hibernat...

select itemfromlitemitem Order order
where order.itens[order.deliveredltem ndices[0]] = itemand order.id = 11

select itemfromltemitem Order order
where order.itens[maxi ndex(order.itens)] = itemand order.id = 11

The expression inside [] can even be an arithmetic expression:

select itemfromltemitem Order order
where order.itens[size(order.itens) - 1] = item

HQL also provides the built-in i ndex() function for elements of a one-to-many association or
collection of values.

select item index(item) from O der order
join order.itens item
where index(item < 5

Scalar SQL functions supported by the underlying database can be used:

from Donmesti cCat cat where upper(cat.nane) |ike 'FRI %

Consider how much longer and less readable the following query would be in SQL:

sel ect cust
from Product prod,
Store store
inner join store.customers cust
where prod. nane = 'w dget"’
and store.location.name in ('Melbourne', 'Sydney')
and prod = all el enents(cust.currentOder.lineltens)

Hint: something like

SELECT cust. name, cust.address, cust.phone, cust.id, cust.current_order
FROM cust onmers cust,

stores store,

| ocations | oc,

store_custoners sc,

product prod
VWHERE prod. nane = 'wi dget'

AND store.loc_id = loc.id

212

The order by clause

AND | oc. name IN (' Mel bourne', 'Sydney')
AND sc.store_id = store.id
AND sc.cust_id = cust.id
AND prod.id = ALL(

SELECT item prod_id

FROM line_itens item orders o

WHERE itemorder_id = o.id

AND cust.current _order = o.id

15.11. The order by clause

The list returned by a query can be ordered by any property of a returned class or components:

from DonesticCat cat
order by cat.nane asc, cat.weight desc, cat.birthdate

The optional asc or desc indicate ascending or descending order respectively.

15.12. The group by clause

A query that returns aggregate values can be grouped by any property of a returned class or
components:

sel ect cat.color, sun(cat.weight), count(cat)
from Cat cat
group by cat. col or

sel ect foo.id, avg(nane), max(nane)
from Foo foo join foo.names nane
group by foo.id

A havi ng clause is also allowed.

sel ect cat.color, sun(cat.weight), count(cat)

from Cat cat

group by cat. col or

havi ng cat.color in (eg.Color. TABBY, eg. Col or.BLACK)

SQL functions and aggregate functions are allowed in the havi ng and or der by clauses if they
are supported by the underlying database (i.e., not in MySQL).

sel ect cat

213

Chapter 15. HQL: The Hibernat...

from Cat cat
join cat.kittens kitten
group by cat.id, cat.name, cat.other, cat.properties
havi ng avg(kitten.weight) > 100
order by count(kitten) asc, sun{kitten.weight) desc

Neither the group by clause nor the order by clause can contain arithmetic expressions.
Hibernate also does not currently expand a grouped entity, so you cannot write gr oup by cat if
all properties of cat are non-aggregated. You have to list all non-aggregated properties explicitly.

15.13. Subqueries

For databases that support subselects, Hibernate supports subqueries within queries. A subquery
must be surrounded by parentheses (often by an SQL aggregate function call). Even correlated
subqueries (subqueries that refer to an alias in the outer query) are allowed.

fromCat as fatcat
where fatcat.weight > (
sel ect avg(cat.weight) from DonesticCat cat

from Domesti cCat as cat
where cat.nane = sone (
sel ect nane. ni ckNane from Nane as nane

fromCat as cat
where not exists (
fromCat as nate where mate. mate = cat

from Domesti cCat as cat
where cat.nane not in (
sel ect nane. ni ckNanme from Nane as nane

select cat.id, (select max(kit.weight) fromcat.kitten kit)
fromCat as cat
Note that HQL subqueries can occur only in the select or where clauses.

Note that subqueries can also utilize r ow val ue constructor syntax. See Section 15.18, “Row
value constructor syntax” for more information.

214

HQL examples

15.14. HQL examples

Hibernate queries can be quite powerful and complex. In fact, the power of the query language is
one of Hibernate's main strengths. The following example queries are similar to queries that have
been used on recent projects. Please note that most queries you will write will be much simpler
than the following examples.

The following query returns the order id, number of items, the given minimum total value and the
total value of the order for all unpaid orders for a particular customer. The results are ordered
by total value. In determining the prices, it uses the current catalog. The resulting SQL query,
against the ORDER, ORDER LI NE, PRODUCT, CATALOG and PRI CE tables has four inner joins and an
(uncorrelated) subselect.

select order.id, sunm(price.anount), count(itemn
from Order as order
join order.lineltems as item
join itemproduct as product,
Cat al og as catal og
join catal og. prices as price
where order.paid = fal se
and order.custonmer = :custoner
and price. product = product
and catal og. effectiveDate < sysdate
and catal og. effectiveDate >= all (
sel ect cat.effectiveDate
from Catal og as cat
where cat.effectiveDate < sysdate
)
group by order
havi ng sum(price. anount) > :m nAnount
order by sum(price.anmount) desc

What a monster! Actually, in real life, I'm not very keen on subqueries, so my query was really
more like this:

select order.id, sunm(price.anount), count(itemn
from Order as order

join order.lineltems as item

join item product as product,

Cat al og as catal og

join catal og. prices as price
where order.paid = fal se

and order.customer = :customer
and price. product = product
and catal og = :currentCatal og

group by order
havi ng sum(price. anount) > :m nAnount
order by sum(price.anmount) desc

215

Chapter 15. HQL: The Hibernat...

The next query counts the number of payments in each status, excluding all payments in the
AWAI TI NG_APPROVAL status where the most recent status change was made by the current user.
It translates to an SQL query with two inner joins and a correlated subselect against the PAYMENT,
PAYMENT _STATUS and PAYMENT _STATUS_CHANGE tables.

sel ect count(paynent), status.nane
from Paynent as paynent
join paynent.currentStatus as status
join paynent.statusChanges as statusChange
wher e paynent. status. nane <> Paynent St at us. AWAI TI NG_APPROVAL
or (
statusChange. ti neStanmp = (
sel ect max(change. ti meSt anp)
from Paynent St at usChange change
wher e change. paynent = paynent
)
and st atusChange. user <> :currentUser
)
group by status.nane, status.sortOrder
order by status.sortOr der

If the st at usChanges collection was mapped as a list, instead of a set, the query would have
been much simpler to write.

sel ect count(paynent), status.nane
from Paynment as paynent
join payment.currentStatus as status
wher e paynent.status. nane <> Paynent St at us. AWAI TI NG_APPROVAL
or paynent. st at usChanges[maxl ndex(paynent. statusChanges)].user <> :currentUser
group by status.nane, status.sortOrder
order by status.sortOrder

The next query uses the MS SQL Serveri sNul | () function to return all the accounts and unpaid
payments for the organization to which the current user belongs. It translates to an SQL query with
three inner joins, an outer join and a subselect against the ACCOUNT, PAYMENT, PAYMENT_STATUS,
ACCOUNT_TYPE, ORGANI ZATI ON and ORG_USER tables.

sel ect account, paynent
from Account as account
| eft outer join account.paynments as payment
where :currentUser in el enents(account. hol der. users)
and Paynent St atus. UNPAI D = i sNul | (paynent. current St atus. name, Paynent St at us. UNPAI D)
order by account.type.sortOder, account.accountNunber, paynent.dueDate

For some databases, we would need to do away with the (correlated) subselect.

sel ect account, paynent

216

Bulk update and delete

from Account as account

join account. hol der. users as user

| eft outer join account.paynments as paynment
where :currentUser = user

and Paynent St atus. UNPAI D = i sNul | (paynent. current Status. name, Paynent St at us. UNPAI D)
order by account.type.sortOrder, account.accountNunber, paynent.dueDate

15.15. Bulk update and delete

HQL now supports updat e, del ete andinsert ... select ... statements. See Section 14.4,
“DML-style operations” for more information.

15.16. Tips & Tricks

You can count the number of query results without returning them:

((I'nteger) session.createQuery("select count(*) from....").iterate().next()).intValue()

To order a result by the size of a collection, use the following query:

sel ect usr.id, usr.nane
from User as usr
left join usr.nmessages as nsg
group by usr.id, usr.name
order by count(nsg)

If your database supports subselects, you can place a condition upon selection size in the where
clause of your query:

from User usr where size(usr.nessages) >= 1
If your database does not support subselects, use the following query:

sel ect usr.id, usr.nane
from User usr

join usr.nessages nsg
group by usr.id, usr.name
havi ng count(nsg) >= 1

As this solution cannot return a User with zero messages because of the inner join, the following
form is also useful:

sel ect usr.id, usr.nane

217

Chapter 15. HQL: The Hibernat...

from User as usr

left join usr.nmessages as nsg
group by usr.id, usr.name
havi ng count (nmsg) = 0

Properties of a JavaBean can be bound to named query parameters:

Query q = s.createQuery("fromfoo Foo as foo where foo.nane=: nanme and foo. si ze=:size");
g. set Properti es(fooBean); // fooBean has get Nane() and getSi ze()
List foos = qg.list();

Collections are pageable by using the Query interface with a filter:

Query q = s.createFilter(collection, ""); // the trivial filter
g. set MaxResul t s(PAGE_SI ZE) ;

g. set First Resul t (PAGE_SI ZE * pageNunber);

Li st page = qg.list();

Collection elements can be ordered or grouped using a query filter:

Col | ection orderedCol | ection = s.filter(collection, "order by this.anmount");
Col | ection counts = s.filter(collection, "select this.type, count(this) group by this.type");

You can find the size of a collection without initializing it:
((I'nteger) session.createQuery("select count(*) from....").iterate().next()).intValue();

15.17. Components

Components can be used similarly to the simple value types that are used in HQL queries. They
can appear in the sel ect clause as follows:

sel ect p.name from Person p

sel ect p.nanme.first from Person p

where the Person's name property is a component. Components can also be used in the wher e
clause:

218

Row value constructor syntax

from Person p where p.name = :nane

from Person p where p.nane.first = :firstNane

Components can also be used in the or der by clause:

from Person p order by p.nane

from Person p order by p.nane.first

Another common use of components is in row value constructors.

15.18. Row value constructor syntax

HQL supports the use of ANSI SQL row val ue constructor syntax, sometimes referred to AS
t upl e syntax, even though the underlying database may not support that notion. Here, we are
generally referring to multi-valued comparisons, typically associated with components. Consider
an entity Person which defines a name component:

from Person p where p.nane.first="John' and p.nane.| ast="Jingl ehei mer-Schmn dt'

That is valid syntax although it is a little verbose. You can make this more concise by using r ow
val ue constructor syntax:

from Person p where p.name=('John', 'Jingleheiner-Schmdt')
It can also be useful to specify this in the sel ect clause:
sel ect p.name from Person p

Using row val ue construct or syntax can also be beneficial when using subqueries that need
to compare against multiple values:

fromCat as cat
where not (cat.name, cat.color) in (
sel ect cat.nane, cat.color from DonesticCat cat

219

Chapter 15. HQL: The Hibernat...

One thing to consider when deciding if you want to use this syntax, is that the query will be
dependent upon the ordering of the component sub-properties in the metadata.

220

Chapter 16.

Criteria Queries

Hibernate features an intuitive, extensible criteria query API.

16.1. Creating a citeria inStance

The interface or g. hi bernate. Cri t eri a represents a query against a particular persistent class.
The Sessi on is a factory for Cri t eri a instances.

Criteria crit = sess.createCriteria(Cat.class);
crit.set MaxResul t s(50);
List cats = crit.list();

16.2. Narrowing the result set

An individual query criterion is an instance of the interface
org. hibernate.criterion.Criterion. The class org. hi bernate.criterion.Restrictions
defines factory methods for obtaining certain built-in Cri t eri on types.

List cats = sess.createCriteria(Cat.class)
.add(Restrictions.like("nane", "Fritz®%))
.add(Restrictions.between("wei ght", mnWeight, naxWeight))
dist();

Restrictions can be grouped logically.

List cats = sess.createCriteria(Cat.class)
.add(Restrictions.like("name", "Fritz®%))
.add(Restrictions.or(
Restrictions.eq("age", new Integer(0)),
Restrictions.isNull("age")
))
ist();

List cats = sess.createCriteria(Cat.class)
.add(Restrictions.in("nane", new String[] { "Fritz", "lzi", "Pk" }))
.add(Restrictions.disjunction()
.add(Restrictions.isNull("age"))
.add(Restrictions.eq("age", new Integer(0)))
.add(Restrictions.eq("age", new Integer(1)))
.add(Restrictions.eq("age", new Integer(2)))
))
list();

221

Chapter 16. Criteria Queries

There are a range of built-in criterion types (Rest ri cti ons subclasses). One of the most useful
allows you to specify SQL directly.

List cats = sess.createCriteria(Cat.class)
.add(Restrictions.sqgl Restriction("lower({alias}.nane) like lower(?)", "Fritz
% , Hi bernate.STRING)
dist();

The {al i as} placeholder with be replaced by the row alias of the queried entity.

You can also obtain a criterion from a Pr oper ty instance. You can create a Pr operty by calling
Property. forNane():

Property age = Property. forNanme("age");
List cats = sess.createCriteria(Cat.class)
.add(Restrictions.disjunction()
.add(age.isNull())
.add(age.eq(new Integer(0)))
.add(age.eq(new Integer(1l)))
.add(age.eq(new Integer(2)))
))
.add(Property.forName("nane").in(new String[] { "Fritz", "lzi", "Pk" }))
ist();

16.3. Ordering the results

You can order the results using or g. hi bernate. criterion. Order.

List cats = sess.createCriteria(Cat.class)
.add(Restrictions.like("nane", "F%')
.addOrder (Order.asc("nane"))
.addOrder (Order. desc("age"))

. set MaxResul t s(50)
dist();

Li st cats = sess.createCriteria(Cat.class)
.add(Property.forNanme("nane").like("F%))
.addOrder (Property.forNane("nanme").asc())
.addOrder(Property.forNane("age").desc())
. set MaxResul t s(50)
ist();

222

Associations

16.4. Associations

By navigating associations using createCriteri a() you can specify constraints upon related
entities:

List cats = sess.createCriteria(Cat.class)
.add(Restrictions.like("nane", "F%))
.createCriteria("kittens")

.add(Restrictions.like("nane", "F%))
ist();

The second createCriteri a() returns a new instance of Cri t eri a that refers to the elements
of the ki t t ens collection.

There is also an alternate form that is useful in certain circumstances:

List cats = sess.createCriteria(Cat.class)
.createAlias("kittens", "kt")
.createAlias("mte", "nt")
.add(Restrictions.eqProperty("kt.nane", "nt.nane"))
dist();

(createAl i as() does not create a new instance of Criteri a.)

The kittens collections held by the Cat instances returned by the previous two queries are not
pre-filtered by the criteria. If you want to retrieve just the kittens that match the criteria, you must
use a Resul t Tr ansf or ner .

List cats = sess.createCriteria(Cat.class)
.createCriteria("kittens", "kt")
.add(Restrictions.eq("nane", "F%))
.setResul t Transformer(Criteria. ALI AS TO ENTI TY_MAP)
dist();
Iterator iter = cats.iterator();
while (iter.hasNext()) {
Map map = (Map) iter.next();
Cat cat = (Cat) map.get(Criteria. ROOT_ALIAS);
Cat kitten = (Cat) map.get("kt");

Additionally you may manipulate the result set using a left outer join:

Li st cats = session.createCriteria(Cat.class)
.createAlias("mate", "nt", Criteria.LEFT_JON, Restrictions.like("nt.nane",
"good%))
.addOr der (Order. asc("nt.age"))

223

Chapter 16. Criteria Queries

ist();

This will return all of the Cat s with a mate whose name starts with "good" ordered by their mate's
age, and all cats who do not have a mate. This is useful when there is a need to order or limit
in the database prior to returning complex/large result sets, and removes many instances where
multiple queries would have to be performed and the results unioned by java in memory.

Without this feature, first all of the cats without a mate would need to be loaded in one query.

A second query would need to retreive the cats with mates who's name started with "good" sorted
by the mates age.

Thirdly, in memory; the lists would need to be joined manually.

16.5. Dynamic association fetching

You can specify association fetching semantics at runtime using set Fet chibde() .

List cats = sess.createCriteria(Cat.class)
.add(Restrictions.like("nanme", "Fritz%))
. set Fet chMbde(" mat e", Fet chMbde. EAGER)
. set Fet chMbde("ki ttens", FetchMde. EAGER)
list();

This query will fetch both mat e and ki t t ens by outer join. See Section 20.1, “Fetching strategies”
for more information.

16.6. Example queries

The class or g. hi bernate. criterion. Exanpl e allows you to construct a query criterion from a
given instance.

Cat cat = new Cat();

cat.setSex('F);

cat . set Col or (Col or. BLACK) ;

List results = session.createCriteria(Cat.class)
.add(Exanple.create(cat))
ist();

Version properties, identifiers and associations are ignored. By default, null valued properties are
excluded.

You can adjust how the Exanpl e is applied.

Exanpl e exanpl e = Exanpl e. create(cat)

224

Projections, aggregation and grouping

. excl udeZer oes() /l excl ude zero val ued properties

.excl udeProperty(“color") //exclude the property nanmed "col or"
.ignoreCase() /I performcase insensitive string conparisons
. enabl eLi ke(); /luse like for string conparisons

List results = session.createCriteria(Cat.class)
. add(exanpl e)
dist();

You can even use examples to place criteria upon associated objects.

List results = session.createCriteria(Cat.class)
.add(Exanple.create(cat))
.createCriteria("mate")

.add(Exanple.create(cat.getMate()))
dist();

16.7. Projections, aggregation and grouping

The class or g. hi bernate. criterion. Projections is afactory for Proj ecti on instances. You
can apply a projection to a query by calling set Pr oj ecti on().

List results = session.createCriteria(Cat.class)
.setProjection(Projections. rowCount())
.add(Restrictions.eq("color", Color.BLACK))
list();

List results = session.createCriteria(Cat.class)
.setProjection(Projections.projectionList()
.add(Projections.rowCount())
.add(Projections.avg("weight"))
.add(Projections. max("weight"))
.add(Projections.groupProperty(“"color"))

)
dist();

There is no explicit "group by" necessary in a criteria query. Certain projection types are defined
to be grouping projections, which also appear in the SQL gr oup by clause.

An alias can be assigned to a projection so that the projected value can be referred to in restrictions
or orderings. Here are two different ways to do this:

List results = session.createCriteria(Cat.class)
.setProjection(Projections.alias(Projections.groupProperty(“color"), "colr"))
.addOrder(Order.asc("colr"))
ist();

225

Chapter 16. Criteria Queries

List results = session.createCriteria(Cat.class)
.setProjection(Projections.groupProperty("color").as("colr"))
.addOrder(Order.asc("colr"))
dist();

The al i as() and as() methods simply wrap a projection instance in another, aliased, instance of
Pr oj ect i on. As a shortcut, you can assign an alias when you add the projection to a projection list:

List results = session.createCriteria(Cat.class)

.setProjection(Projections.projectionList()
.add(Projections.rowCount (), "catCountByColor")
.add(Projections.avg("weight"), "avgWeight")
.add(Projections. max("weight"), "maxWeight")
.add(Projections.groupProperty("color"), "color")

)

.addOr der (Order. desc("cat Count ByCol or"))

.addOrder (Order. desc("avgWight"))

list();

List results = session.createCriteria(Donestic.class, "cat")

.createAlias("kittens", "kit")

.setProjection(Projections.projectionList()
.add(Projections.property("cat.nane"), "catNanme")
.add(Projections.property("kit.nanme"), "kitNanme")

)

.addOrder (Order. asc("cat Nane"))

.addOrder (Order.asc("kitNane"))

list();

You can also use Property. f or Nane() to express projections:

List results = session.createCriteria(Cat.class)
.setProjection(Property.forName("nane"))
.add(Property.forNanme("col or").eq(Col or. BLACK))
dist();

List results = session.createCriteria(Cat.class)

.setProjection(Projections.projectionList()
.add(Projections.rowCount().as("catCountByCol or"))
.add(Property.forNanme("weight").avg().as("avgWight"))
.add(Property.forName("weight"). max().as("maxWei ght"))
.add(Property.forName("color").group().as("color")

)

.addOrder (Order. desc("cat Count ByCol or"))

.addOrder (Order.desc("avgWeight"))

dist();

226

Detached queries and subqueries

16.8. Detached queries and subqueries

The Det achedCriteri a class allows you to create a query outside the scope of a session and
then execute it using an arbitrary Sessi on.

DetachedCriteria query = DetachedCriteria.forC ass(Cat.class)
.add(Property.forName("sex").eq('F));

Session session =;

Transaction txn = session. begi nTransaction();

List results = query.get Executabl eCriteria(session).set MaxResults(100).list();
txn.commt();

session. cl ose();

A DetachedCriteria can also be used to express a subquery. Criterion instances involving
subqueries can be obtained via Subqueri es or Property.

Det achedCriteria avgWei ght = DetachedCriteria.ford ass(Cat. class)
.setProjection(Property.forName("weight").avg());
session.createCriteria(Cat.class)
.add(Property.forNanme("wei ght").gt(avgWei ght))
dist();

DetachedCriteria weights = DetachedCriteria.ford ass(Cat. cl ass)
.setProjection(Property.forNanme("weight"));
session.createCriteria(Cat.class)
.add(Subqueries.geA | ("weight", weights))
ist();

Correlated subqueries are also possible:

Det achedCriteria avgWi ght For Sex = DetachedCriteria.forC ass(Cat.class, "cat2")
.setProjection(Property.forName("weight").avg())
.add(Property.forNanme("cat2.sex").eqProperty("cat.sex"));
session.createCriteria(Cat.class, "cat")
.add(Property.forNane("wei ght"). gt (avgWei ght For Sex))
ist();

16.9. Queries by natural identifier

For most queries, including criteria queries, the query cache is not efficient because query cache
invalidation occurs too frequently. However, there is a special kind of query where you can optimize
the cache invalidation algorithm: lookups by a constant natural key. In some applications, this kind
of query occurs frequently. The criteria API provides special provision for this use case.

227

Chapter 16. Criteria Queries

First, map the natural key of your entity using <nat ur al -i d> and enable use of the second-level
cache.

<cl ass nane="User">
<cache usage="read-wite"/>
<id nanme="id">
<generator class="increment"/>
</id>
<natural -i d>
<property name="nane"/>
<property name="org"/>
</natural -id>
<property nanme="password"/>
</ cl ass>

This functionality is not intended for use with entities with mutable natural keys.

Once you have enabled the Hibernate query cache, the Restri cti ons. natural I d() allows you
to make use of the more efficient cache algorithm.

session.createCriteria(User.cl ass)
.add(Restrictions.naturalld()
.set("nane", "gavin")
.set("org", "hb")
) . set Cacheabl e(true)
. uni queResul t ();

228

Chapter 17.

Native SQL

You can also express queries in the native SQL dialect of your database. This is useful if you want
to utilize database-specific features such as query hints or the CONNECT keyword in Oracle. It also
provides a clean migration path from a direct SQL/JDBC based application to Hibernate.

Hibernate3 allows you to specify handwritten SQL, including stored procedures, for all create,
update, delete, and load operations.

17.1. Using a sqa query

Execution of native SQL queries is controlled via the SQLQuery interface, which is obtained by
calling Sessi on. creat eSQLQuery(). The following sections describe how to use this API for

querying.
17.1.1. Scalar queries

The most basic SQL query is to get a list of scalars (values).

sess. creat eSQLQuery(" SELECT * FROM CATS").list();
sess. creat eSQLQuery(" SELECT | D, NAME, BI RTHDATE FROM CATS").list();

These will return a List of Object arrays (Object[]) with scalar values for each column in the CATS
table. Hibernate will use ResultSetMetadata to deduce the actual order and types of the returned
scalar values.

To avoid the overhead of using Resul t Set Met adat a, or simply to be more explicit in what is
returned, one can use addScal ar () :

sess. creat eSQLQuer y(" SELECT * FROM CATS")
.addScal ar ("1 D', Hibernate. LONG
.addScal ar ("NAVE", Hi bernate. STRI NG
. addScal ar ("Bl RTHDATE", Hi ber nat e. DATE)

This query specified:

» the SQL query string
« the columns and types to return

This will return Object arrays, but now it will not use Resul t Set Met adat a but will instead explicitly
get the ID, NAME and BIRTHDATE column as respectively a Long, String and a Short from the
underlying resultset. This also means that only these three columns will be returned, even though
the query is using * and could return more than the three listed columns.

229

Chapter 17. Native SQL

It is possible to leave out the type information for all or some of the scalars.

sess. creat eSQLQuery(" SELECT * FROM CATS")
.addScal ar ("1 D", Hibernate. LONG
. addScal ar (" NAVE")
. addScal ar (" Bl RTHDATE")

This is essentially the same query as before, but now Resul t Set Met aDat a is used to determine
the type of NAME and BIRTHDATE, where as the type of ID is explicitly specified.

How the java.sqgl.Types returned from ResultSetMetaData is mapped to Hibernate types is
controlled by the Dialect. If a specific type is not mapped, or does not result in the expected type,
it is possible to customize it via calls to r egi st er H ber nat eType in the Dialect.

17.1.2. Entity queries

The above queries were all about returning scalar values, basically returning the "raw" values
from the resultset. The following shows how to get entity objects from a native sql query via
addEntity().

sess. creat eSQLQuery(" SELECT * FROM CATS"). addEntity(Cat.cl ass);
sess. creat eSQLQuery(" SELECT | D, NAME, Bl RTHDATE FROM CATS"). addEntity(Cat.cl ass);

This query specified:

« the SQL query string
« the entity returned by the query

Assuming that Cat is mapped as a class with the columns ID, NAME and BIRTHDATE the above
queries will both return a List where each element is a Cat entity.

If the entity is mapped with a many- t o- one to another entity it is required to also return this when
performing the native query, otherwise a database specific "column not found" error will occur.
The additional columns will automatically be returned when using the * notation, but we prefer to
be explicit as in the following example for a nany-t o- one to a Dog:

sess. creat eSQLQuery(" SELECT |1 D, NAME, BI RTHDATE, DOG_ | D FROM CATS"). addEntity(Cat. cl ass);

This will allow cat.getDog() to function properly.

17.1.3. Handling associations and collections

Itis possible to eagerly join in the Dog to avoid the possible extra roundtrip for initializing the proxy.
This is done via the addJoi n() method, which allows you to join in an association or collection.

230

Returning multiple entities

sess. creat eSQLQuery("SELECT c.|1D, NAME, BIRTHDATE, DOG ID, D_ID D NAME FROM CATS c, DOGS d
WHERE ¢.DOG ID = d. D I D")
.addEntity("cat", Cat.class)
.addJoi n("cat.dog");

In this example, the returned Cat 's will have their dog property fully initialized without any extra
roundtrip to the database. Notice that you added an alias name ("cat") to be able to specify the
target property path of the join. It is possible to do the same eager joining for collections, e.g. if
the Cat had a one-to-many to Dog instead.

sess. creat eSQLQuery("SELECT | D, NAME, BI RTHDATE, D I D, D _NAME, CAT_ID FROM CATS c, DOGS d WHERE
c.ID = d.CAT_ID")
.addEntity("cat", Cat.class)
.addJoi n("cat . dogs");

At this stage you are reaching the limits of what is possible with native queries, without starting to
enhance the sgl queries to make them usable in Hibernate. Problems can arise when returning
multiple entities of the same type or when the default alias/column names are not enough.

17.1.4. Returning multiple entities

Until now, the result set column names are assumed to be the same as the column names
specified in the mapping document. This can be problematic for SQL queries that join multiple
tables, since the same column names can appear in more than one table.

Column alias injection is needed in the following query (which most likely will fail):

sess. creat eSQLQuery("SELECT c.*, m* FROM CATS ¢, CATS m WHERE c. MOTHER_ID = c.|D")
.addEntity("cat", Cat.class)
.addEntity("nother", Cat.class)

The query was intended to return two Cat instances per row: a cat and its mother. The query will,
however, fail because there is a conflict of names; the instances are mapped to the same column
names. Also, on some databases the returned column aliases will most likely be on the form “c.ID",
"c.NAME", etc. which are not equal to the columns specified in the mappings ("ID" and "NAME").

The following form is not vulnerable to column name duplication:

sess. creat eSQLQuery(" SELECT {cat.*}, {mother.*} FROM CATS c, CATS m WHERE c. MOTHER ID = c. |1 D")
.addEntity("cat", Cat.class)
.addentity("nother", Cat.class)

This query specified:

231

Chapter 17. Native SQL

 the SQL query string, with placeholders for Hibernate to inject column aliases
« the entities returned by the query

The {cat.*} and {mother.*} notation used above is a shorthand for "all properties". Alternatively,
you can list the columns explicitly, but even in this case Hibernate injects the SQL column aliases
for each property. The placeholder for a column alias is just the property name qualified by the
table alias. In the following example, you retrieve Cats and their mothers from a different table
(cat_log) to the one declared in the mapping metadata. You can even use the property aliases
in the where clause.

String sql = "SELECT ID as {c.id}, NAME as {c.nane}, " +
"Bl RTHDATE as {c.birthDate}, MOTHER ID as {c.nother}, {nother.*} " +
"FROM CAT_LOG ¢, CAT_LOG m WHERE {c.nother} = c.ID";

Li st | oggedCats = sess.createSQ.Query(sql)
.addEntity("cat", Cat.class)
.addEntity("nother", Cat.class).list()

17.1.4.1. Alias and property references

In most cases the above alias injection is needed. For queries relating to more complex mappings,
like composite properties, inheritance discriminators, collections etc., you can use specific aliases
that allow Hibernate to inject the proper aliases.

The following table shows the different ways you can use the alias injection. Please note that the
alias names in the result are simply examples; each alias will have a unique and probably different
name when used.

Table 17.1. Alias injection names

Description Syntax Example

A simple property {[al i asnane] . A NAME as {item nane}
[propertynane]

A composite {[al i asnane] . CURRENCY as {item anpunt.currency}, VALUE
property [conponent nane]. |as {item anmount. val ue}
[propertynane] }

Discriminator of an {[al i asnane].clasd)l SC as {item cl ass}

entity

All properties of an {[al i asname].*} |{item *}

entity

A collection key {[al i asnane].key} ORA D as {coll.key}

The id of an {[aliasnane].id} | EMPID as {coll.id}
collection

232

Returning non-managed entities

Description Syntax Example

The element of an {[aliasnane].el eneXitD as {coll.el enent}
collection

property of the {[aliasnane].el emeANE as {col|.el ement. nane}
element in the [propertynane]}
collection

All properties of {[aliasnane]. el endraal4}. el enent . *}
the element in the
collection

All properties of the {[aliasname].*} |{coll.*}
collection

17.1.5. Returning non-managed entities

It is possible to apply a ResultTransformer to native SQL queries, allowing it to return non-
managed entities.

sess. creat eSQLQuer y(" SELECT NAME, BI RTHDATE FROM CATS")
. set Resul t Tr ansf or mer (Tr ansf or mer s. al i asToBean(Cat DTO. cl ass))

This query specified:

» the SQL query string
* aresult transformer

The above query will return a list of Cat DTOwhich has been instantiated and injected the values
of NAME and BIRTHNAME into its corresponding properties or fields.

17.1.6. Handling inheritance

Native SQL queries which query for entities that are mapped as part of an inheritance must include
all properties for the baseclass and all its subclasses.

17.1.7. Parameters

Native SQL queries support positional as well as named parameters:

Query query = sess.createSQ.Query("SELECT * FROM CATS WHERE NAME |i ke ?").addEntity(Cat.class);
Li st pusList = query.setString(0, "Pus%).list();

query = sess. createSQ.Query("SELECT * FROM CATS WHERE NAME |i ke :nane").addEntity(Cat.class);
Li st pusList = query.setString("nane", "Pus%).list();

233

Chapter 17. Native SQL

17.2. Named SQL queries

Named SQL queries can be defined in the mapping document and called in exactly the same way
as a named HQL query. In this case, you do not need to call addEntity().

<sql - query nane="persons">
<return alias="person" class="eg.Person"/>
SELECT person. NAME AS {person. nane},
person. AGE AS {person. age},
person. SEX AS {person. sex}
FROM PERSON per son
VWHERE per son. NAME LI KE : nanePattern
</ sql - query>

Li st peopl e = sess. get NanedQuery(" persons")
.setString("nanePattern", nanePattern)
. set MaxResul t s(50)
dist();

The <r et ur n-j oi n> element is use to join associations and the <| oad- col | ecti on> element is
used to define queries which initialize collections,

<sql - query nane="personsWth">
<return alias="person" class="eg.Person"/>
<return-join alias="address" property="person. nailingAddress"/>
SELECT person. NAME AS {person. nane},
person. AGE AS {person. age},
person. SEX AS {person. sex},
address. STREET AS {address. street},
address. CI TY AS {address. city},
addr ess. STATE AS {address. state},
address. ZI P AS {address. zi p}
FROM PERSON per son
JO N ADDRESS addr ess
ON person. | D = address. PERSON_| D AND addr ess. TYPE=" MAI LI NG
WHERE per son. NAME LI KE : nanmePattern
</ sql - query>

A named SQL query may return a scalar value. You must declare the column alias and Hibernate
type using the <r et ur n- scal ar > element:

<sql - query nanme="nySql Query">
<return-scal ar col um="nane" type="string"/>
<return-scal ar col um="age" type="long"/>
SELECT p. NAME AS nane,
p. AGE AS age,
FROM PERSON p WHERE p. NAME LI KE ' Hi ber %

234

Using return-property to explicitly specify column/alias hames

</ sql - query>

You can externalize the resultset mapping information in a <r esul t set > element which will allow
you to either reuse them across several named queries or through the set Resul t Set Mappi ng()
API.

<resul t set nanme="personAddress" >

<return alias="person" class="eg.Person"/>

<return-join alias="address" property="person. nailingAddress"/>
</resul tset>

<sql - query name="personsWth" resultset-ref="personAddress">
SELECT person. NAME AS {person. nane},
per son. AGE AS {person. age},
per son. SEX AS {person. sex},
address. STREET AS {address. street},
address. CI TY AS {address. city},
addr ess. STATE AS {address. st ate},
address. ZI P AS {address. zi p}
FROM PERSON per son
JO N ADDRESS addr ess
ON person. | D = address. PERSON_| D AND addr ess. TYPE=" MAI LI NG
VWHERE per son. NAME LI KE : nanePattern
</ sql - query>

You can, alternatively, use the resultset mapping information in your hbm files directly in java code.

Li st cats = sess. createSQQuery(
"select {cat.*}, {kitten.*} fromcats cat, cats kitten where kitten.nother = cat.id"
)
. set Resul t Set Mappi ng("cat AndKi tten")
dist();

17.2.1. Using return-property to explicitly specify column/alias
names

You can explicitly tell Hibernate what column aliases to use with <r et ur n- pr oper t y>, instead of
using the {} -syntax to let Hibernate inject its own aliases.For example:

<sql - query nanme="nySql Query">
<return alias="person" class="eg. Person">
<return-property name="nane" col um="nyNane"/>
<return-property name="age" colum="nyAge"/>
<return-property name="sex" col um="rnySex"/>
</return>
SELECT person. NAVME AS nyNane,
person. ACE AS nyAge,
person. SEX AS nySex,
FROM PERSON per son WHERE person. NAME LI KE : nane

235

Chapter 17. Native SQL

</ sql - query>

<r et ur n- pr oper t y> also works with multiple columns. This solves a limitation with the {} -syntax
which cannot allow fine grained control of multi-column properties.

<sgl - query nane="organi zati onCurrent Enpl oynent s" >
<return alias="enp" class="Enpl oynent">
<return-property name="sal ary">
<return-col um nane="VALUE"/ >
<r et ur n-col um nane="CURRENCY"/ >
</return-property>
<return-property name="endDate" col um="nyEndDate"/>
</return>
SELECT EMPLOYEE AS {enp. enpl oyee}, EMPLOYER AS {enp. enpl oyer},
STARTDATE AS {enp.startDate}, ENDDATE AS {enp.endDate},
REG ONCCODE as {enp.regi onCode}, EID AS {enp.id}, VALUE, CURRENCY
FROM EMPLOYMENT
WHERE EMPLOYER = :id AND ENDDATE | S NULL
ORDER BY STARTDATE ASC
</ sql - query>

In this example <r et ur n- property> was used in combination with the {}-syntax for injection.
This allows users to choose how they want to refer column and properties.

If your mapping has a discriminator you must use <ret urn-di scri mi nat or > to specify the
discriminator column.

17.2.2. Using stored procedures for querying

Hibernate3 provides support for queries via stored procedures and functions. Most of the following
documentation is equivalent for both. The stored procedure/function must return a resultset as
the first out-parameter to be able to work with Hibernate. An example of such a stored function
in Oracle 9 and higher is as follows:

CREATE OR REPLACE FUNCTI ON sel ect Al | Enpl oynent s
RETURN SYS_REFCURSOR
AS
st _cursor SYS_REFCURSOR;
BEG N
OPEN st _cursor FOR
SELECT EMPLOYEE, EMPLOYER,
STARTDATE, ENDDATE,
REG ONCCDE, EI D, VALUE, CURRENCY
FROM EMPLOYMENT;
RETURN st _cursor;
END;

To use this query in Hibernate you need to map it via a named query.

236

Custom SQL for create, update and delete

<sql - query nane="sel ect Al | Enpl oyees_SP" cal | abl e="true">
<return alias="enp" class="Enpl oyment">
<return-property name="enpl oyee" col utm="EMPLOYEE"/ >
<return-property name="enpl oyer" col utm="EMPLOYER'/ >
<return-property nane="startDate" col um="STARTDATE"/ >
<return-property name="endDate" col utm="ENDDATE"/ >
<return-property name="regi onCode" col utm="REG ONCODE"/ >
<return-property name="id" colum="ElID"/>
<return-property name="sal ary">
<r et ur n-col um nane="VALUE"/ >
<return-col um nane="CURRENCY"/ >
</return-property>
</return>
{ ? = call selectAllEnploynments() }
</ sql - query>

Stored procedures currently only return scalars and entities. <return-joi n> and <l oad-
col | ecti on> are not supported.

17.2.2.1. Rules/limitations for using stored procedures

You cannot use stored procedures with Hibernate unless you follow some procedure/function
rules. If they do not follow those rules they are not usable with Hibernate. If you still want to use
these procedures you have to execute them via sessi on. connect i on(). The rules are different
for each database, since database vendors have different stored procedure semantics/syntax.

Stored procedure queries cannot be paged with set Fi rst Resul t () / set MaxResul ts() .

The recommended call form is standard SQL92:{ ? = call functionNane(<paraneters>) }
or{ ? = call procedureNanme(<paraneters>}. Native call syntax is not supported.

For Oracle the following rules apply:

« A function must return a result set. The first parameter of a procedure must be an QUT that
returns a result set. This is done by using a SYS_REFCURSCR type in Oracle 9 or 10. In Oracle
you need to define a REF CURSOR type. See Oracle literature for further information.

For Sybase or MS SQL server the following rules apply:

« The procedure must return a result set. Note that since these servers can return multiple result
sets and update counts, Hibernate will iterate the results and take the first result that is a result
set as its return value. Everything else will be discarded.

 If you can enable SET NOCOUNT ONin your procedure it will probably be more efficient, but this
is not a requirement.

17.3. Custom SQL for create, update and delete

Hibernate3 can use custom SQL for create, update, and delete operations. The SQL can be
overridden at the statement level or inidividual column level. This section describes statement
overrides. For columns, see Section 5.7, “Column read and write expressions”.

237

Chapter 17. Native SQL

The class and collection persisters in Hibernate already contain a set of configuration time
generated strings (insertsql, deletesql, updatesql etc.). The mapping tags <sql -i nsert >, <sqgl -
del et e>, and <sql - updat e> override these strings:

<cl ass name="Person">
<id nane="id">
<generator class="increment"/>
</id>
<property name="nane" not-null="true"/>
<sql -insert>I NSERT | NTO PERSON (NAME, |D) VALUES (UPPER(?), ?)</sql-insert>
<sql - updat e>UPDATE PERSON SET NAME=UPPER(?) WHERE | D=?</sql - updat e>
<sql - del et e>DELETE FROM PERSON WHERE | D=?</ sql - del et e>
</ cl ass>

The SQL is directly executed in your database, so you can use any dialect you like. This will
reduce the portability of your mapping if you use database specific SQL.

Stored procedures are supported if the cal | abl e attribute is set:

<cl ass nane="Person">

<id name="id">

<generator class="increment"/>

</id>

<property name="nane" not-null="true"/>

<sqgl-insert callable="true">{call createPerson (?, ?)}</sql-insert>

<sql -delete callable="true">{? = call deletePerson (?)}</sql-delete>

<sql -update cal | abl e="true">{? = call updatePerson (?, ?)}</sql-update>
</ cl ass>

The order of the positional parameters is vital, as they must be in the same sequence as Hibernate
expects them.

You <can view the expected order by enabling debug logging for the
org. hi bernate. persister.entity level. With this level enabled, Hibernate will print out the
static SQL that is used to create, update, delete etc. entities. To view the expected sequence, do
not include your custom SQL in the mapping files, as this will override the Hibernate generated
static SQL.

The stored procedures are in most cases required to return the number of rows inserted, updated
and deleted, as Hibernate has some runtime checks for the success of the statement. Hibernate
always registers the first statement parameter as a numeric output parameter for the CUD
operations:

CREATE OR REPLACE FUNCTI ON updat ePerson (uid I N NUMBER, unanme | N VARCHAR2)
RETURN NUMBER | S
BEG N

updat e PERSON

238

Custom SQL for loading

set

NAMVE = uname
wher e

ID = uid;

return SQLYRONCOUNT;

END updat ePer son;

17.4. Custom SQL for loading

You can also declare your own SQL (or HQL) queries for entity loading. As with inserts, updates,
and deletes, this can be done at the individual column level as described in Section 5.7, “Column
read and write expressions” or at the statement level. Here is an example of a statement level
override:

<sql - query nane="person">
<return alias="pers" class="Person" |ock-node="upgrade"/>
SELECT NAME AS {pers.nane}, |ID AS {pers.id}
FROM PERSON
WHERE | D=?
FOR UPDATE
</ sql - query>

This is just a named query declaration, as discussed earlier. You can reference this named query
in a class mapping:

<cl ass nanme="Person">
<id name="id">
<generator class="increment"/>
</id>
<property name="nanme" not-null="true"/>
<l oader query-ref="person"/>
</ cl ass>

This even works with stored procedures.

You can even define a query for collection loading:

<set name="enpl oynents" inverse="true">
<key/ >
<one-to- many cl ass="Enpl oynent"/>
<l oader query-ref="enpl oynents"/>
</ set>

<sql - query nane="enpl oynment s" >

239

Chapter 17. Native SQL

<l oad-col | ection alias="enmp" rol e="Person. enpl oynents"/>
SELECT {enp. *}

FROM EMPLOYMENT enp

WHERE EMPLOYER = :id

ORDER BY STARTDATE ASC, EMPLOYEE ASC

</ sql - query>

You can also define an entity loader that loads a collection by join fetching:

<sql - query nane="person">

<return alias="pers" class="Person"/>
<return-join alias="enmp" property="pers.enploynments"/>
SELECT NAME AS {pers.*}, {enmp.*}
FROM PERSON pers
LEFT QUTER JO N EMPLOYMENT enp
ON pers.| D = enp. PERSON_I D
WHERE | D=7

</ sql - query>

240

Chapter 18.

Filtering data

Hibernate3 provides an innovative new approach to handling data with "visibility" rules. A
Hibernate filter is a global, named, parameterized filter that can be enabled or disabled for a
particular Hibernate session.

18.1. Hibernate filters

Hibernate3 has the ability to pre-define filter criteria and attach those filters at both a class level
and a collection level. A filter criteria allows you to define a restriction clause similar to the existing
"where" attribute available on the class and various collection elements. These filter conditions,
however, can be parameterized. The application can then decide at runtime whether certain filters
should be enabled and what their parameter values should be. Filters can be used like database
views, but they are parameterized inside the application.

In order to use filters, they must first be defined and then attached to the appropriate mapping
elements. To define a filter, use the <fil t er - def / > element within a <hi ber nat e- mappi ng/ >
element:

<filter-def name="nyFilter">
<filter-param nane="nyFilterParan type="string"/>
</filter-def>

This filter can then be attached to a class:

<cl ass nane="nyd ass" ...>

<filter name="nyFilter" condition=":nyFilterParam = MY_FI LTERED COLUWN"/ >
</ cl ass>

Or, to a collection:

<set ...>
<filter name="nyFilter" condition=":nyFilterParam = MY_FI LTERED COLUWN'/ >
</ set>

Or, to both or multiples of each at the same time.

The methods on Sessi on are: enabl eFilter(String filterNane),
get Enabl edFilter(String filterNane), and disableFilter(String filterName). By
default, filters are not enabled for a given session. Filters must be enabled through use of the
Sessi on. enabl eFi | t er () method, which returns an instance of the Fi | t er interface. If you used
the simple filter defined above, it would look like this:

241

Chapter 18. Filtering data

session.enabl eFilter("nyFilter").setParaneter("nyFilterParant, "sone-value");

Methods on the org.hibernate.Filter interface do allow the method-chaining common to much of
Hibernate.

The following is a full example, using temporal data with an effective record date pattern:

<filter-def name="effectiveDate">
<filter-param name="asCf Date" type="date"/>
</[filter-def>

<cl ass name="Enpl oyee" ...>

<many-to-one nanme="departnent" colum="dept_id" class="Departnent"/>
<property nanme="effectiveStartDate" type="date" colum="eff_start_dt"/>
<property nanme="effectiveEndDate" type="date" colum="eff_end_dt"/>

<I--
Note that this assunes non-termnal records have an eff_end_dt set to
a max db date for sinplicity-sake
==
<filter name="effectiveDate"
condi tion=":asOf Date BETWEEN eff_start_dt and eff_end_dt"/>
</ cl ass>

<cl ass name="Departnment" ...>

<set name="enpl oyees" |azy="true">
<key col um="dept _id"/>
<one-to-many cl ass="Enpl oyee"/>
<filter name="effectiveDate"
condi tion=":asOf Date BETWEEN eff_start_dt and eff_end_dt"/>
</ set>
</cl ass>

In order to ensure that you are provided with currently effective records, enable the filter on the
session prior to retrieving employee data:

Session session = ...;

session.enabl eFilter("effectiveDate").setParaneter("asOf Date", new Date());

List results = session.createQuery("from Enpl oyee as e where e.salary > :targetSalary")
.setLong("target Sal ary", new Long(1000000))
dist();

Even though a salary constraint was mentioned explicitly on the results in the above HQL, because
of the enabled filter, the query will return only currently active employees who have a salary greater
than one million dollars.

242

Hibernate filters

If you want to use filters with outer joining, either through HQL or load fetching, be careful of
the direction of the condition expression. It is safest to set this up for left outer joining. Place the
parameter first followed by the column name(s) after the operator.

After being defined, a filter might be attached to multiple entities and/or collections each with
its own condition. This can be problematic when the conditions are the same each time. Using
<filter-def/> allows you to definine a default condition, either as an attribute or CDATA:

<filter-def name="nyFilter" condition="abc > xyz">...</filter-def>
<filter-def name="nyQ herFilter">abc=xyz</filter-def>

This default condition will be used whenever the filter is attached to something without specifying
a condition. This means you can give a specific condition as part of the attachment of the filter
that overrides the default condition in that particular case.

243

244

Chapter 19.

XML Mapping

XML Mapping is an experimental feature in Hibernate 3.0 and is currently under active
development.

19.1. Working with XML data

Hibernate allows you to work with persistent XML data in much the same way you work with
persistent POJOs. A parsed XML tree can be thought of as another way of representing the
relational data at the object level, instead of POJOs.

Hibernate supports dom4j as API for manipulating XML trees. You can write queries that retrieve
domdj trees from the database and have any modification you make to the tree automatically
synchronized to the database. You can even take an XML document, parse it using dom4j, and
write it to the database with any of Hibernate's basic operations: persi st (), saveO Update(),
merge(), delete(), replicate() (merging is not yet supported).

This feature has many applications including data import/export, externalization of entity data via
JMS or SOAP and XSLT-based reporting.

A single mapping can be used to simultaneously map properties of a class and nodes of an XML
document to the database, or, if there is no class to map, it can be used to map just the XML.

19.1.1. Specifying XML and class mapping together

Here is an example of mapping a POJO and XML simultaneously:

<cl ass nane="Account"
t abl e=" ACCOUNTS"
node="account ">

<i d nane="account|d"
col utm="ACCOUNT_I D"
node="@d"/ >

<many-t o- one nanme="custoner"
col um="CUSTOVER_| D"
node="cust oner/ @d"
enbed- xm ="f al se"/ >

<property nanme="bal ance"

col utm="BALANCE"
node="bal ance"/ >

</ cl ass>

245

Chapter 19. XML Mapping

19.1.2. Specifying only an XML mapping

Here is an example where there is no POJO class:

<cl ass entity-nane="Account"
t abl e=" ACCOUNTS"
node="account" >

<id name="id"
col utmm="ACCOUNT_I| D"
node="@d"
type="string"/>

<many-t o-one name="custoner|d"
col um="CUSTOVER_| D"
node="cust oner/ @d"
enbed- xnm ="f al se"
entity-name="Custoner"/>

<property nanme="bal ance"
col utm=" BALANCE"
node="bal ance"
type="bi g_deci mal "/ >

</ cl ass>

This mapping allows you to access the data as a dom4j tree, or as a graph of property name/
value pairs or java Maps. The property hames are purely logical constructs that can be referred
to in HQL queries.

19.2. XML mapping metadata

A range of Hibernate mapping elements accept the node attribute. This lets you specify the name
of an XML attribute or element that holds the property or entity data. The format of the node
attribute must be one of the following:

"el ement - nane" : map to the named XML element

"@ttribute-name": map to the named XML attribute
e ".":map to the parent element

e "el ement - nane/ @t tri but e- nane": map to the named attribute of the named element

For collections and single valued associations, there is an additional enbed- xnl attribute. If
enbed- xm ="t rue", the default, the XML tree for the associated entity (or collection of value type)
will be embedded directly in the XML tree for the entity that owns the association. Otherwise, if
enbed- xm ="f al se", then only the referenced identifier value will appear in the XML for single
point associations and collections will not appear at all.

246

XML mapping metadata

Do not leave enbed- xm ="true" for too many associations, since XML does not deal well with
circularity.

<cl ass nane="Cust oner"
t abl e=" CUSTOVER"
node="cust oner " >

<id nanme="id"
col um="CUST_I D'
node="@d"/ >

<map name="accounts"
node="."
enbed- xm ="true">
<key col um="CUSTOMVER | D'
not-null="true"/>
<map- key col utm="SHORT_DESC"
node=" @hort-desc"
type="string"/>
<one-to-many entity-name="Account"
enbed- xnl ="f al se"
node="account"/ >
</ map>

<conponent nanme="name"
node="nane" >
<property nanme="firstName"
node="first-nane"/>
<property name="initial"
node="initial"/>
<property nanme="| ast Nane"
node="| ast - name"/ >
</ conponent >

</ cl ass>

In this case, the collection of account ids is embedded, but not the actual account data. The
following HQL query:

from Custoner c left join fetch c.accounts where c.lastNane |ike :|astNane

would return datasets such as this:

<custoner id="123456789">
<account short-desc="Savi ngs">987632567</ account >
<account short-desc="Credit Card">985612323</account >
<name>
<first-nane>Gavi n</first-nanme>
<initial >A</initial>
<l ast - nane>Ki ng</ | ast - nane>

247

Chapter 19. XML Mapping

</ nanme>

</ cust oner >
If you set enbed- xnl ="t rue" on the <one- t o- many> mapping, the data might look more like this:

<custoner id="123456789" >

<account id="987632567" short-desc="Savi ngs">
<custoner id="123456789"/>
<bal ance>100. 29</ bal ance>

</ account >

<account id="985612323" short-desc="Credit Card">
<custoner id="123456789"/>
<bal ance>- 2370. 34</ bal ance>

</ account >

<nane>
<first-nanme>Gavi n</first-nanme>
<initial >A</initial>
<l ast - name>Ki ng</ | ast - name>

</ nanme>

</ cust oner >

19.3. Manipulating XML data

You can also re-read and update XML documents in the application. You can do this by obtaining
a dom4j session:

Docunent doc =;

Sessi on session = factory. openSession();
Sessi on don¥j Sessi on = sessi on. get Sessi on(EntityMdde. DOWAJ) ;
Transaction tx = session. begi nTransaction();

List results = domdj Sessi on
.createQuery("from Custoner c left join fetch c.accounts where c.lastNane |ike :|astNane")
dist();
for (int i=0; i<results.size(); i++) {
//add the custonmer data to the XM. document
El ement custoner = (Elenent) results.get(i);
doc. add(cust oner) ;

tx.commt();
session. cl ose();

Sessi on session = factory. openSession();
Sessi on don¥j Sessi on = sessi on. get Sessi on(EntityMdde. DOWAJ) ;
Transaction tx = session. begi nTransaction();

248

Manipulating XML data

El ement cust = (El ement) domdj Session. get("Custoner", custonerld);
for (int i=0; i<results.size(); i++) {

El ement custonmer = (Elenent) results.get(i);

/I change the custonmer nane in the XML and dat abase

El ement nane = custoner. el enent ("nane");

nane. el ement ("first-name").set Text (firstNane);

nanme. el enent ("initial").setText(initial);

nane. el enent ("1 ast - nane") . set Text (| ast Nane) ;

tx.commt();
session. cl ose();

When implementing XML-based data import/export, it is useful to combine this feature with
Hibernate's repl i cat e() operation.

249

250

Chapter 20.

Improving performance

20.1. Fetching strategies

Hibernate uses a fetching strategy to retrieve associated objects if the application needs to
navigate the association. Fetch strategies can be declared in the O/R mapping metadata, or over-
ridden by a particular HQL or Cri t eri a query.

Hibernate3 defines the following fetching strategies:

« Join fetching: Hibernate retrieves the associated instance or collection in the same SELECT,
using an QUTER JO N.

» Select fetching: a second SELECT is used to retrieve the associated entity or collection. Unless
you explicitly disable lazy fetching by specifying | azy="f al se", this second select will only be
executed when you access the association.

» Subselect fetching: a second SELECT is used to retrieve the associated collections for all entities
retrieved in a previous query or fetch. Unless you explicitly disable lazy fetching by specifying
| azy="f al se", this second select will only be executed when you access the association.

« Batch fetching: an optimization strategy for select fetching. Hibernate retrieves a batch of entity
instances or collections in a single SELECT by specifying a list of primary or foreign keys.

Hibernate also distinguishes between:

« Immediate fetching: an association, collection or attribute is fetched immediately when the
owner is loaded.

« Lazy collection fetching: a collection is fetched when the application invokes an operation upon
that collection. This is the default for collections.

» "Extra-lazy" collection fetching: individual elements of the collection are accessed from the
database as needed. Hibernate tries not to fetch the whole collection into memory unless
absolutely needed. It is suitable for large collections.

» Proxy fetching: a single-valued association is fetched when a method other than the identifier
getter is invoked upon the associated object.

« "No-proxy" fetching: a single-valued association is fetched when the instance variable is
accessed. Compared to proxy fetching, this approach is less lazy; the association is fetched
even when only the identifier is accessed. It is also more transparent, since no proxy is visible
to the application. This approach requires buildtime bytecode instrumentation and is rarely
necessary.

« Lazy attribute fetching: an attribute or single valued association is fetched when the instance
variable is accessed. This approach requires buildtime bytecode instrumentation and is rarely
necessary.

251

Chapter 20. Improving performance

We have two orthogonal notions here: when is the association fetched and how is it fetched. It is
important that you do not confuse them. We use f et ch to tune performance. We can use | azy to
define a contract for what data is always available in any detached instance of a particular class.

20.1.1. Working with lazy associations

By default, Hibernate3 uses lazy select fetching for collections and lazy proxy fetching for
single-valued associations. These defaults make sense for most associations in the majority of
applications.

If you set hibernate.default_batch_fetch_size, Hibernate will use the batch fetch
optimization for lazy fetching. This optimization can also be enabled at a more granular level.

Please be aware that access to a lazy association outside of the context of an open Hibernate
session will result in an exception. For example:

s = sessi ons. openSession();
Transaction tx = s.beginTransaction();

User u = (User) s.createQuery("from User u where u.nanme=:user Nane")
.setString("userName", userNane).uni queResult();
Map perm ssions = u.get Perni ssions();

tx.commit();
s.close();

I nteger accesslLevel = (Integer) pernissions.get("accounts"); [// Error!

Since the permissions collection was not initialized when the Sessi on was closed, the collection
will not be able to load its state. Hibernate does not support lazy initialization for detached objects.
This can be fixed by moving the code that reads from the collection to just before the transaction
is committed.

Alternatively, you can use a non-lazy collection or association, by specifying | azy="f al se" for
the association mapping. However, it is intended that lazy initialization be used for almost all
collections and associations. If you define too many non-lazy associations in your object model,
Hibernate will fetch the entire database into memory in every transaction.

On the other hand, you can use join fetching, which is non-lazy by nature, instead of select
fetching in a particular transaction. We will now explain how to customize the fetching strategy.
In Hibernate3, the mechanisms for choosing a fetch strategy are identical for single-valued
associations and collections.

20.1.2. Tuning fetch strategies

Select fetching (the default) is extremely vulnerable to N+1 selects problems, so we might want
to enable join fetching in the mapping document:

252

Single-ended association proxies

<set nane="perm ssions"
fetch="join">
<key col um="user|d"/>
<one-to-nmany cl ass="Perm ssi on"/>
</ set

<many-to-one name="not her" class="Cat" fetch="join"/>

The f et ch strategy defined in the mapping document affects:

* retrieval via get () or | oad()

* retrieval that happens implicitly when an association is navigated
e Criteriaqueries

» HQL queries if subsel ect fetching is used

Irrespective of the fetching strategy you use, the defined non-lazy graph is guaranteed to be loaded
into memory. This might, however, result in several immediate selects being used to execute a
particular HQL query.

Usually, the mapping document is not used to customize fetching. Instead, we keep the default
behavior, and override it for a particular transaction, using | eft join fetch in HQL. This tells
Hibernate to fetch the association eagerly in the first select, using an outer join. Inthe Criteri a
query API, you would use set Fet chMbde(Fet chMbde. JO N) .

If you want to change the fetching strategy used by get () orl oad(), you canuse a Criteria
query. For example:

User user = (User) session.createCriteria(User.class)
. set Fet chMode(" per m ssi ons", FetchMbde.JO N)
.add(Restrictions.idEg(userld))
. uni queResul t () ;

This is Hibernate's equivalent of what some ORM solutions call a "fetch plan”.

A completely different approach to problems with N+1 selects is to use the second-level cache.

20.1.3. Single-ended association proxies

Lazy fetching for collections is implemented using Hibernate's own implementation of persistent
collections. However, a different mechanism is needed for lazy behavior in single-ended
associations. The target entity of the association must be proxied. Hibernate implements lazy
initializing proxies for persistent objects using runtime bytecode enhancement which is accessed
via the CGLIB library.

253

Chapter 20. Improving performance

At startup, Hibernate3 generates proxies by default for all persistent classes and uses them to
enable lazy fetching of many-t o- one and one- t o- one associations.

The mapping file may declare an interface to use as the proxy interface for that class, with
the proxy attribute. By default, Hibernate uses a subclass of the class. The proxied class must
implement a default constructor with at least package visibility. This constructor is recommended
for all persistent classes.

There are potential problems to note when extending this approach to polymorphic classes.For
example:

<cl ass nanme="Cat" proxy="Cat">

</ subcl ass>
</ cl ass>

Firstly, instances of Cat will never be castable to Domest i cCat, even if the underlying instance
is an instance of Donest i cCat :

Cat cat = (Cat) session.load(Cat.class, id); // instantiate a proxy (does not hit the db)
if (cat.isDonesticCat()) { /1 hit the db to initialize the proxy
DonesticCat dc = (DonmesticCat) cat; /'l Error!

Secondly, it is possible to break proxy ==:

Cat cat = (Cat) session.load(Cat.class, id); /] instantiate a Cat proxy
DonesticCat dc =

(DomesticCat) session.|oad(DonesticCat.class, id); // acquire new DonesticCat proxy!
System out . printl n(cat==dc); /1 false

However, the situation is not quite as bad as it looks. Even though we now have two references
to different proxy objects, the underlying instance will still be the same object:

cat.setWight(11.0); // hit the db to initialize the proxy
Systemout.println(dc.getWight()); // 11.0

Third, you cannot use a CGLIB proxy for afi nal class or a class with any fi nal methods.

Finally, if your persistent object acquires any resources upon instantiation (e.g. in initializers or
default constructor), then those resources will also be acquired by the proxy. The proxy class is
an actual subclass of the persistent class.

254

Initializing collections and proxies

These problems are all due to fundamental limitations in Java's single inheritance model. To
avoid these problems your persistent classes must each implement an interface that declares
its business methods. You should specify these interfaces in the mapping file where Cat I npl
implements the interface Cat and Donesti cCat | npl implements the interface Dorrest i cCat . For
example:

<cl ass nane="Catlnpl" proxy="Cat">
<subcl ass nanme="DonesticCatlnpl" proxy="DonesticCat">

</ subcl ass>
</cl ass>

Then proxies for instances of Cat and Donest i cCat can be returned by | oad() oriterate().

Cat cat = (Cat) session.load(Catlnpl.class, catid);
Iterator iter = session.createQuery("from Catlnpl as cat where cat.nanme="fritz'").iterate();
Cat fritz = (Cat) iter.next();

@ Note

li st() does not usually return proxies.
Relationships are also lazily initialized. This means you must declare any properties to be of type
Cat , not Cat | npl .

Certain operations do not require proxy initialization:

» equal s() : if the persistent class does not override equal s()
» hashCode() : if the persistent class does not override hashCode()
» The identifier getter method

Hibernate will detect persistent classes that override equal s() or hashCode() .

By choosing | azy="no- proxy" instead of the default | azy="proxy", you can avoid problems
associated with typecasting. However, buildtime bytecode instrumentation is required, and all
operations will result in immediate proxy initialization.

20.1.4. Initializing collections and proxies

A LazylnitializationException will be thrown by Hibernate if an uninitialized collection or
proxy is accessed outside of the scope of the Sessi on, i.e., when the entity owning the collection
or having the reference to the proxy is in the detached state.

255

Chapter 20. Improving performance

Sometimes a proxy or collection needs to be initialized before closing the Sessi on. You can force
initialization by calling cat . get Sex() orcat. getKittens().size(), for example. However, this
can be confusing to readers of the code and it is not convenient for generic code.

The static methods Hi bernate.initialize() and Hi bernate.islnitialized(), provide the
application with a convenient way of working with lazily initialized collections or proxies.
Hi bernate.initialize(cat) will force the initialization of a proxy, cat , as long as its Sessi on is
still open. Hi bernate.initialize(cat.getKittens()) has a similar effect for the collection
of kittens.

Another option is to keep the Sessi on open until all required collections and proxies have
been loaded. In some application architectures, particularly where the code that accesses data
using Hibernate, and the code that uses it are in different application layers or different physical
processes, it can be a problem to ensure that the Sessi on is open when a collection is initialized.
There are two basic ways to deal with this issue:

* In a web-based application, a servlet filter can be used to close the Sessi on only at the end of
a user request, once the rendering of the view is complete (the Open Session in View pattern).
Of course, this places heavy demands on the correctness of the exception handling of your
application infrastructure. It is vitally important that the Sessi on is closed and the transaction
ended before returning to the user, even when an exception occurs during rendering of the view.
See the Hibernate Wiki for examples of this "Open Session in View" pattern.

« In an application with a separate business tier, the business logic must "prepare" all collections
that the web tier needs before returning. This means that the business tier should load all the
data and return all the data already initialized to the presentation/web tier that is required for a
particular use case. Usually, the application calls Hi ber nate. i niti al i ze() for each collection
that will be needed in the web tier (this call must occur before the session is closed) or retrieves
the collection eagerly using a Hibernate query with a FETCH clause or a Fet chMbde. JO N in
Criteri a. Thisis usually easier if you adopt the Command pattern instead of a Session Facade.

* You can also attach a previously loaded object to a new Sessi on with mer ge() orl ock() before
accessing uninitialized collections or other proxies. Hibernate does not, and certainly should
not, do this automatically since it would introduce impromptu transaction semantics.

Sometimes you do not want to initialize a large collection, but still need some information about
it, like its size, for example, or a subset of the data.

You can use a collection filter to get the size of a collection without initializing it:

((Integer) s.createFilter(collection, "select count(*)").list().get(0)).intValue()

The createFil ter() method is also used to efficiently retrieve subsets of a collection without
needing to initialize the whole collection:

256

Using batch fetching

s.createFilter(lazyCollection, "").setFirstResult(0).setMaxResults(10).list()

20.1.5. Using batch fetching

Using batch fetching, Hibernate can load several uninitialized proxies if one proxy is accessed.
Batch fetching is an optimization of the lazy select fetching strategy. There are two ways you can
configure batch fetching: on the class level and the collection level.

Batch fetching for classes/entities is easier to understand. Consider the following example: at
runtime you have 25 Cat instances loaded in a Sessi on, and each Cat has areference to its owner,
a Person. The Person class is mapped with a proxy, | azy="true". If you now iterate through
all cats and call get Oaner () on each, Hibernate will, by default, execute 25 SELECT statements
to retrieve the proxied owners. You can tune this behavior by specifying a bat ch-si ze in the
mapping of Per son:

<cl ass nane="Person" batch-size="10">...</cl ass>

Hibernate will now execute only three queries: the pattern is 10, 10, 5.

You can also enable batch fetching of collections. For example, if each Per son has a lazy collection
of Cat s, and 10 persons are currently loaded in the Sessi on, iterating through all persons will
generate 10 SELECTS, one for every call to get Cat s() . If you enable batch fetching for the cat s
collection in the mapping of Per son, Hibernate can pre-fetch collections:

<cl ass nane="Person">
<set nanme="cats" batch-size="3">

</set>

</cl ass>

With a bat ch- si ze of 3, Hibernate will load 3, 3, 3, 1 collections in four SELECTs. Again, the value
of the attribute depends on the expected number of uninitialized collections in a particular Sessi on.

Batch fetching of collections is particularly useful if you have a nested tree of items, i.e. the typical
bill-of-materials pattern. However, a nested set or a materialized path might be a better option
for read-mostly trees.

20.1.6. Using subselect fetching

If one lazy collection or single-valued proxy has to be fetched, Hibernate will load all of them,
re-running the original query in a subselect. This works in the same way as batch-fetching but
without the piecemeal loading.

257

Chapter 20. Improving performance

20.1.7. Fetch profiles

Another way to affect the fetching strategy for loading associated objects is through
something called a fetch profile, which is a named configuration associated with the
or g. hi ber nat e. Sessi onFactory but enabled, by name, on the org. hi bernat e. Sessi on.
Once enabled on a org. hi bernate. Sessi on, the fetch profile wull be in affect for that
or g. hi ber nat e. Sessi on until it is explicitly disabled.

So what does that mean? Well lets explain that by way of an example. Say we have the following
mappings:

<hi ber nat e- mappi ng>
<cl ass nane="Cust oner">

<set nanme="orders" inverse="true">
<key col um="cust _id"/>
<one-to-nmany cl ass="Order"/>
</set>
</cl ass>
<cl ass name="Order">

</ cl ass>
</ hi ber nat e- mappi ng>

Now normally when you get a reference to a particular customer, that customer's set of orders
will be lazy meaning we will not yet have loaded those orders from the database. Normally this
is a good thing. Now lets say that you have a certain use case where it is more efficient to load
the customer and their orders together. One way certainly is to use "dynamic fetching" strategies
via an HQL or criteria queries. But another option is to use a fetch profile to achieve that. Just
add the following to your mapping:

<hi ber nat e- mappi ng>

<fetch-profil e name="custoner-wth-orders">
<fetch entity="Custoner" association="orders" style="join"/>
</fetch-profile>
</ hi ber nat e- mappi ng>

or even:

<hi ber nat e- mappi ng>
<cl ass nane="Cust oner" >

<fetch-profile name="custoner-with-orders">
<fetch association="orders" style="join"/>
</fetch-profile>
</ cl ass>

258

Using lazy property fetching

</ hi ber nat e- mappi ng>

Now the following code will actually load both the customer and their orders:

Sessi on session = ...;
sessi on. enabl eFetchProfil e("custoner-wi th-orders"); // nanme natches from mappi ng
Cust oner custonmer = (Custoner) session.get(Custoner.class, custonerld);

Currently only join style fetch profiles are supported, but they plan is to support additional
styles. See HHH-3414 [http://opensource.atlassian.com/projects/hibernate/browse/HHH-3414]
for details.

20.1.8. Using lazy property fetching

Hibernate3 supports the lazy fetching of individual properties. This optimization technique is also
known as fetch groups. Please note that this is mostly a marketing feature; optimizing row reads is
much more important than optimization of column reads. However, only loading some properties
of a class could be useful in extreme cases. For example, when legacy tables have hundreds of
columns and the data model cannot be improved.

To enable lazy property loading, set the | azy attribute on your particular property mappings:
<cl ass name="Docunent ">

<id nane="id">
<generator class="native"/>

</id>

<property nanme="nane" not-null="true" |ength="50"/>

<property nanme="summary" not-null="true" |ength="200" |azy="true"/>

<property name="text" not-null="true" |ength="2000" |azy="true"/>
</ cl ass>

Lazy property loading requires buildtime bytecode instrumentation. If your persistent classes are
not enhanced, Hibernate will ignore lazy property settings and return to immediate fetching.

For bytecode instrumentation, use the following Ant task:

<target name="instrunent" depends="conpile">
<taskdef name="instrument" classname="org. hi bernate.tool.instrunment.|nstrunmentTask">
<cl asspath path="${jar.path}"/>
<cl asspath path="${cl asses.dir}"/>
<cl asspath refid="Ilib.class. path"/>
</t askdef >

<instrunent verbose="true">
<fileset dir="%${testcl asses.dir}/org/ hibernate/auction/nodel ">
<include name="*.cl ass"/>
</[fileset>

259

http://opensource.atlassian.com/projects/hibernate/browse/HHH-3414
http://opensource.atlassian.com/projects/hibernate/browse/HHH-3414

Chapter 20. Improving performance

</instrunent >
</target>

A different way of avoiding unnecessary column reads, at least for read-only transactions, is to
use the projection features of HQL or Criteria queries. This avoids the need for buildtime bytecode
processing and is certainly a preferred solution.

You can force the usual eager fetching of properties using fetch al | properties in HQL.

20.2. The Second Level Cache

A Hibernate Sessi on is a transaction-level cache of persistent data. It is possible to configure
a cluster or JVM-level (Sessi onFact ory-level) cache on a class-by-class and collection-by-
collection basis. You can even plug in a clustered cache. Be aware that caches are not aware of
changes made to the persistent store by another application. They can, however, be configured
to regularly expire cached data.

You have the option to tell Hibernate which caching implementation to use by specifying the
name of a class that implements or g. hi ber nat e. cache. CachePr ovi der using the property
hi ber nat e. cache. provi der _cl ass. Hibernate is bundled with a number of built-in integrations
with the open-source cache providers that are listed below. You can also implement your own
and plug it in as outlined above. Note that versions prior to 3.2 use EhCache as the default cache
provider.

Table 20.1. Cache Providers

Cache Provider class Type Cluster Query
Safe Cache
Supported
Hashtable org. hi ber nat e. cache. Hasht abl eCachefPesmoder yes
(not
intended
for
production
use)
EHCache or g. hi ber nat e. cache. EnCachePr ovi dememory, yes
disk
OSCache or g. hi ber nat e. cache. 0SCachePr ovi dememory, yes
disk
SwarmCacheor g. hi ber nat e. cache. Swar nCachePr ovtldstered yes
(ip (clustered
multicast) invalidation)
JBoss or g. hi ber nat e. cache. Tr eeCachePr ovj destered yes yes (clock
Cache 1.x (ip (replication) | sync req.)

260

Cache mappings

Cache Provider class Type Cluster Query
Safe Cache
Supported
multicast),
transactional
JBoss or g. hi ber nat e. cache. j bc. JBossCacheflegteneact oygs yes (clock
Cache 2 (ip (replication | sync req.)
multicast), | or
transactional invalidation)

20.2.1. Cache mappings

The <cache> element of a class or collection mapping has the following form:

<cache
usage="transactional |[read-wite|nonstrict-read-wite|read-only"

regi on="Regi onNane"

00

i nclude="al | | non-I| azy"

€ usage (required) specifies the caching strategy: t ransacti onal , read-wite, nonstrict-
read-witeorread-only

€ region (optional: defaults to the class or collection role name): specifies the name of the
second level cache region

© incl ude (optional: defaults to al |) non- | azy: specifies that properties of the entity mapped
with | azy="true" cannot be cached when attribute-level lazy fetching is enabled

Alternatively, you can specify <class-cache> and <collection-cache> elements in
hi bernat e. cfg. xm .

The usage attribute specifies a cache concurrency strategy.

20.2.2. Strategy: read only

If your application needs to read, but not modify, instances of a persistent class, a read-only
cache can be used. This is the simplest and optimal performing strategy. It is even safe for use
in a cluster.

<cl ass name="eg. | mut abl e" nut abl e="f al se">
<cache usage="read-only"/>

</cl ass>

261

Chapter 20. Improving performance

20.2.3. Strategy: read/write

If the application needs to update data, a read-wite cache might be appropriate.
This cache strategy should never be used if serializable transaction isolation level is
required. If the cache is used in a JTA environment, you must specify the property
hi ber nat e. transacti on. manager _| ookup_cl ass and naming a strategy for obtaining the JTA
Transact i onManager . In other environments, you should ensure that the transaction is completed
when Sessi on. cl ose() or Sessi on. di sconnect () is called. If you want to use this strategy in a
cluster, you should ensure that the underlying cache implementation supports locking. The built-
in cache providers do not support locking.

<cl ass nane="eg.Cat" >
<cache usage="read-wite"/>

<set name="kittens" ... >
<cache usage="read-wite"/>

</ set>
</ cl ass>

20.2.4. Strategy: nonstrict read/write

If the application only occasionally needs to update data (i.e. if it is extremely unlikely that two
transactions would try to update the same item simultaneously), and strict transaction isolation
is not required, a nonstri ct-read-wite cache might be appropriate. If the cache is used in a
JTA environment, you must specify hi ber nat e. t ransact i on. manager _| ookup_cl ass. In other
environments, you should ensure that the transaction is completed when Sessi on. cl ose() or
Sessi on. di sconnect () is called.

20.2.5. Strategy: transactional
The transacti onal cache strategy provides support for fully transactional cache providers such

as JBoss TreeCache. Such a cache can only be used in a JTA environment and you must specify
hi ber nat e. transacti on. manager _| ookup_cl ass.

20.2.6. Cache-provider/concurrency-strategy compatibility

S | Important

None of the cache providers support all of the cache concurrency strategies.

The following table shows which providers are compatible with which concurrency strategies.

262

Managing the caches

Table 20.2. Cache Concurrency Strategy Support

Cache read-only nonstrict-read- read-write transactional
write
Hashtable (not yes yes yes

intended for
production use)

EHCache yes yes yes

OSCache yes yes yes

SwarmCache yes yes

JBoss Cache 1.x | yes yes
JBoss Cache 2 | yes yes

20.3. Managing the caches

Whenever you pass an object to save(), update() or saveO Update(), and whenever you
retrieve an object using | oad(), get(),list(),iterate() orscroll (), that object is added to
the internal cache of the Sessi on.

When flush() is subsequently called, the state of that object will be synchronized with the
database. If you do not want this synchronization to occur, or if you are processing a huge number
of objects and need to manage memory efficiently, the evi ct () method can be used to remove
the object and its collections from the first-level cache.

Scrol | abl eResult cats = sess.createQuery("from Cat as cat").scroll(); //a huge result set
while (cats.next()) {

Cat cat = (Cat) cats.get(0);

doSonet hi ngW t hACat (cat) ;

sess.evict(cat);

The Sessi on also provides a cont ai ns() method to determine if an instance belongs to the
session cache.

To evict all objects from the session cache, call Sessi on. cl ear ()

For the second-level cache, there are methods defined on Sessi onFact ory for evicting the
cached state of an instance, entire class, collection instance or entire collection role.

sessi onFactory. evict(Cat.class, catld); //evict a particular Cat
sessionFactory.evict(Cat.class); //evict all Cats

sessionFactory.evictColl ection("Cat.kittens", catld); //evict a particular collection of kittens
sessionFactory.evictCollection("Cat.kittens"); //evict all kitten collections

263

Chapter 20. Improving performance

The CacheMde controls how a particular session interacts with the second-level cache:

* CacheMode. NORMAL: will read items from and write items to the second-level cache

* CacheMode. GET: will read items from the second-level cache. Do not write to the second-level
cache except when updating data

¢ CacheMode. PUT: will write items to the second-level cache. Do not read from the second-level
cache

* CacheModde. REFRESH: will write items to the second-level cache. Do not read from the second-
level cache. Bypass the effect of hi ber nat e. cache. use_ni ni mal _put s forcing a refresh of the
second-level cache for all items read from the database

To browse the contents of a second-level or query cache region, use the St ati stics API:

Map cacheEntries = sessionFactory.getStatistics()
. get SecondLevel CacheStati sti cs(regi onNane)
.getEntries();

You will need to enable statistics and, optionally, force Hibernate to keep the cache entries in a
more readable format:

hi ber nat e. generate_statistics true
hi ber nat e. cache. use_structured_entries true

20.4. The Query Cache

Query result sets can also be cached. This is only useful for queries that are run frequently with
the same parameters.

20.4.1. Enabling query caching

Caching of query results introduces some overhead in terms of your applications normal
transactional processing. For example, if you cache results of a query against Person Hibernate
will need to keep track of when those results should be invalidated because changes have been
committed against Person. That, coupled with the fact that most applications simply gain no benefit
from caching query results, leads Hibernate to disable caching of query results by default. To use
query caching, you will first need to enable the query cache:

hi ber nat e. cache. use_query_cache true

This setting creates two new cache regions:

264

Query cache regions

* org. hi bernat e. cache. St andar dQuer yCache, holding the cached query results

e org. hi bernat e. cache. Updat eTi mest anpsCache, holding timestamps of the most recent
updates to queryable tables. These are used to validate the results as they are served from
the query cache.

e | Important

If you configure your underlying cache implementation to use expiry or timeouts
is very important that the cache timeout of the underlying cache region for the
UpdateTimestampsCache be set to a higher value than the timeouts of any of the
query caches. In fact, we recommend that the the Update TimestampsCache region
not be configured for expiry at all. Note, in particular, that an LRU cache expiry
policy is never appropriate.

As mentioned above, most queries do not benefit from caching or their results. So by default,
individual queries are not cached even after enabling query caching. To enable results caching for
a particular query, call or g. hi ber nat e. Query. set Cacheabl e(true). This call allows the query
to look for existing cache results or add its results to the cache when it is executed.

@ Note

The query cache does not cache the state of the actual entities in the cache; it
caches only identifier values and results of value type. For this reaso, the query
cache should always be used in conjunction with the second-level cache for those
entities expected to be cached as part of a query result cache (just as with collection
caching).

20.4.2. Query cache regions

If you require fine-grained control over query cache expiration policies, you can specify a named
cache region for a particular query by calling Query. set CacheRegi on() .

Li st bl ogs = sess.createQuery("from Bl og bl og where bl og. bl ogger = : bl ogger")
.setEntity("bl ogger", blogger)
. set MaxResul t s(15)
. set Cacheabl e(true)
. set CacheRegi on("front pages")
dist();

If you want to force the query cache to refresh one of its regions (disregard any cached
results it finds there) you can use or g. hi ber nat e. Query. set CacheMbde(CacheMode. REFRESH) .
In conjunction with the region you have defined for the given query, Hibernate will selectively force
the results cached in that particular region to be refreshed. This is particularly useful in cases

265

Chapter 20. Improving performance

where underlying data may have been updated via a separate process and is a far more efficient
alternative to bulk eviction of the region via or g. hi ber nat e. Sessi onFactory. evi ct Queri es().

20.5. Understanding Collection performance

In the previous sections we have covered collections and their applications. In this section we
explore some more issues in relation to collections at runtime.

20.5.1. Taxonomy

Hibernate defines three basic kinds of collections:

« collections of values
* one-to-many associations
¢ many-to-many associations

This classification distinguishes the various table and foreign key relationships but does not tell
us quite everything we need to know about the relational model. To fully understand the relational
structure and performance characteristics, we must also consider the structure of the primary
key that is used by Hibernate to update or delete collection rows. This suggests the following
classification:

* indexed collections
* sets
* bags

All indexed collections (maps, lists, and arrays) have a primary key consisting of the <key> and
<i ndex> columns. In this case, collection updates are extremely efficient. The primary key can be
efficiently indexed and a particular row can be efficiently located when Hibernate tries to update
or delete it.

Sets have a primary key consisting of <key> and element columns. This can be less efficient for
some types of collection element, particularly composite elements or large text or binary fields, as
the database may not be able to index a complex primary key as efficiently. However, for one-to-
many or many-to-many associations, particularly in the case of synthetic identifiers, it is likely to
be just as efficient. If you want SchemaExport to actually create the primary key of a <set >, you
must declare all columns as not - nul | ="t rue".

<i dbag> mappings define a surrogate key, so they are efficient to update. In fact, they are the
best case.

Bags are the worst case since they permit duplicate element values and, as they have no index
column, no primary key can be defined. Hibernate has no way of distinguishing between duplicate

266

Lists, maps, idbags and sets are the most efficient collections to update

rows. Hibernate resolves this problem by completely removing in a single DELETE and recreating
the collection whenever it changes. This can be inefficient.

For a one-to-many association, the "primary key" may not be the physical primary key of the
database table. Even in this case, the above classification is still useful. It reflects how Hibernate
"locates" individual rows of the collection.

20.5.2. Lists, maps, idbags and sets are the most efficient
collections to update

From the discussion above, it should be clear that indexed collections and sets allow the most
efficient operation in terms of adding, removing and updating elements.

There is, arguably, one more advantage that indexed collections have over sets for many-to-many
associations or collections of values. Because of the structure of a Set , Hibernate does not UPDATE
a row when an element is "changed". Changes to a Set always work via | NSERT and DELETE of
individual rows. Once again, this consideration does not apply to one-to-many associations.

After observing that arrays cannot be lazy, you can conclude that lists, maps and idbags are the
most performant (non-inverse) collection types, with sets not far behind. You can expect sets to be
the most common kind of collection in Hibernate applications. This is because the "set" semantics
are most natural in the relational model.

However, in well-designed Hibernate domain models, most collections are in fact one-to-many
associations with i nver se="t r ue". For these associations, the update is handled by the many-
to-one end of the association, and so considerations of collection update performance simply do
not apply.

20.5.3. Bags and lists are the most efficient inverse collections

There is a particular case, however, in which bags, and also lists, are much more performant than
sets. For a collection with i nver se="t rue", the standard bidirectional one-to-many relationship
idiom, for example, we can add elements to a bag or list without needing to initialize (fetch) the
bag elements. This is because, unlike a set, Col | ecti on. add() or Col | ecti on. addAl | () must
always return true for a bag or Li st . This can make the following common code much faster:

Parent p = (Parent) sess.|oad(Parent.class, id);

Child ¢ = new Child();

c.setParent(p);

p.getChildren().add(c); //no need to fetch the collection!
sess. flush();

20.5.4. One shot delete

Deleting collection elements one by one can sometimes be extremely inefficient. Hibernate knows
not to do that in the case of an newly-empty collection (if you called | i st . cl ear (), for example).
In this case, Hibernate will issue a single DELETE.

267

Chapter 20. Improving performance

Suppose you added a single element to a collection of size twenty and then remove two elements.
Hibernate will issue one | NSERT statement and two DELETE statements, unless the collection is
a bag. This is certainly desirable.

However, suppose that we remove eighteen elements, leaving two and then add thee new
elements. There are two possible ways to proceed

 delete eighteen rows one by one and then insert three rows
* remove the whole collection in one SQL DELETE and insert all five current elements one by one

Hibernate cannot know that the second option is probably quicker. It would probably be
undesirable for Hibernate to be that intuitive as such behavior might confuse database triggers,
etc.

Fortunately, you can force this behavior (i.e. the second strategy) at any time by discarding (i.e.
dereferencing) the original collection and returning a newly instantiated collection with all the
current elements.

One-shot-delete does not apply to collections mapped i nver se="true".

20.6. Monitoring performance

Optimization is not much use without monitoring and access to performance numbers. Hibernate
provides a full range of figures about its internal operations. Statistics in Hibernate are available
per Sessi onFact ory.

20.6.1. Monitoring a SessionFactory

You can access SessionFactory metrics in two ways. Your first option is to call
sessi onFactory. get Stati stics() and read or display the St ati sti cs yourself.

Hibernate can also use JMX to publish metrics if you enable the St ati sti csServi ce MBean.
You can enable a single MBean for all your Sessi onFact ory or one per factory. See the following
code for minimalistic configuration examples:

/1 MBean service registration for a specific SessionFactory

Hashtabl e tb = new Hashtabl e();

tb. put ("type", "statistics");

tb. put ("sessi onFactory", "nyFinancial App");

Obj ect Nane on = new Obj ect Name(" hi bernate", tb); // MBean object nane

StatisticsService stats = new StatisticsService(); // Mean inplenentation

stats. set Sessi onFactory(sessionFactory); // Bind the stats to a SessionFactory
server.registerMBean(stats, on); // Register the Mean on the server

/| MBean service registration for all SessionFactory's

268

Metrics

Hashtabl e tb = new Hashtabl e();

tb. put ("type", "statistics");

tb. put ("sessi onFactory", "all");

Obj ect Nane on = new Obj ect Name(" hi bernate", tb); // MBean object nane

StatisticsService stats = new StatisticsService(); // Mean inplenentation
server.regi sterMBean(stats, on); // Register the MBean on the server

You can activate and deactivate the monitoring for a Sessi onFact ory:

« at configuration time, set hi ber nat e. generate_stati stics tofal se

e at runtime: sf.getStatistics().setStatisticsEnabl ed(true) or

hi ber nat eSt at sBean. set St ati sti csEnabl ed(true)

Statistics can be reset programmatically using the cl ear () method. A summary can be sent to
a logger (info level) using the | ogSummar y() method.

20.6.2. Metrics

Hibernate provides a number of metrics, from basic information to more specialized information
that is only relevant in certain scenarios. All available counters are described in the St ati sti cs
interface API, in three categories:

» Metrics related to the general Sessi on usage, such as number of open sessions, retrieved
JDBC connections, etc.

» Metrics related to the entities, collections, queries, and caches as a whole (aka global metrics).
» Detailed metrics related to a particular entity, collection, query or cache region.

For example, you can check the cache hit, miss, and put ratio of entities, collections and queries,
and the average time a query needs. Be aware that the number of milliseconds is subject to
approximation in Java. Hibernate is tied to the JVM precision and on some platforms this might
only be accurate to 10 seconds.

Simple getters are used to access the global metrics (i.e. not tied to a particular entity, collection,
cache region, etc.). You can access the metrics of a particular entity, collection or cache region
through its name, and through its HQL or SQL representation for queries. Please refer to the
Statistics,EntityStatistics,CollectionStatistics,SecondLevel CacheStati stics,and
QueryStati stics API Javadoc for more information. The following code is a simple example:

Statistics stats = Hibernateltil.sessionFactory.getStatistics();

doubl e queryCacheHit Count = stats.getQueryCacheHitCount();
doubl e queryCacheM ssCount = stats.get QueryCacheM ssCount () ;
doubl e queryCacheHitRatio =
queryCacheHi t Count / (queryCacheHitCount + queryCacheM ssCount);

269

Chapter 20. Improving performance

log.info("Query Hit ratio:" + queryCacheHitRatio);

EntityStatistics entityStats =
stats.getEntityStatistics(Cat.class.getNane());
I ong changes =
entityStats. getlnsertCount()
+ entityStats. get Updat eCount ()
+ entityStats. get Del eteCount();
| og.info(Cat.class.getNane() + " changed " + changes + "tines");

You can work on all entities, collections, queries and region caches, by retrieving the list of names
of entities, collections, queries and region caches using the following methods: get Queri es(),
get EntityNames(), get Col | ecti onRol eNanmes(), and get SecondLevel CacheRegi onNames() .

270

Chapter 21.

Toolset Guide

Roundtrip engineering with Hibernate is possible using a set of Eclipse plugins, commandline
tools, and Ant tasks.

Hibernate Tools currently include plugins for the Eclipse IDE as well as Ant tasks for reverse
engineering of existing databases:

« Mapping Editor: an editor for Hibernate XML mapping files that supports auto-completion and
syntax highlighting. It also supports semantic auto-completion for class names and property/
field names, making it more versatile than a normal XML editor.

» Console: the console is a new view in Eclipse. In addition to a tree overview of your console
configurations, you are also provided with an interactive view of your persistent classes and
their relationships. The console allows you to execute HQL queries against your database and
browse the result directly in Eclipse.

« Development Wizards: several wizards are provided with the Hibernate Eclipse tools. You can
use a wizard to quickly generate Hibernate configuration (cfg.xml) files, or to reverse engineer
an existing database schema into POJO source files and Hibernate mapping files. The reverse
engineering wizard supports customizable templates.

Please refer to the Hibernate Tools package documentation for more information.

However, the Hibernate main package comes bundled with an integrated tool : SchemaExport
aka hbn2ddl .1t can even be used from "“inside" Hibernate.

21.1. Automatic schema generation

DDL can be generated from your mapping files by a Hibernate utility. The generated schema
includes referential integrity constraints, primary and foreign keys, for entity and collection tables.
Tables and sequences are also created for mapped identifier generators.

You must specify a SQL Di al ect via the hi ber nat e. di al ect property when using this tool, as
DDL is highly vendor-specific.

First, you must customize your mapping files to improve the generated schema. The next section
covers schema customization.

21.1.1. Customizing the schema

Many Hibernate mapping elements define optional attributes named | engt h, preci si on and
scal e. You can set the length, precision and scale of a column with this attribute.

<property name="zip" |ength="5"/>

271

Chapter 21. Toolset Guide

<property nanme="bal ance" precision="12" scal e="2"/>

Some tags also accept a not-nul | attribute for generating a NOT NULL constraint on table
columns, and a uni que attribute for generating UNI QUE constraint on table columns.

<nmany-to-one name="bar" col um="barld" not-null="true"/>

<el enent col um="seri al Nunber" type="long" not-null="true" uni que="true"/>

A uni que- key attribute can be used to group columns in a single, unique key constraint. Currently,
the specified value of the uni que- key attribute is not used to name the constraint in the generated
DDL. Itis only used to group the columns in the mapping file.

<many-to-one name="org" colum="orgld" uni que-key="0O gEnpl oyeel d"/ >
<property nanme="enpl oyeel d" uni que-key="0r gEnpl oyee"/ >

An i ndex attribute specifies the name of an index that will be created using the mapped column
or columns. Multiple columns can be grouped into the same index by simply specifying the same
index name.

<property nanme="| ast Nanme" i ndex="Cust Nanme"/>
<property nanme="firstName" index="CustNanme"/>

Af or ei gn- key attribute can be used to override the name of any generated foreign key constraint.

<many-to-one name="bar" col urm="bar!d" foreign-key="FKFooBar"/>

Many mapping elements also accept a child <col um> element. This is particularly useful for
mapping multi-column types:

<property name="nane" type="ny.custontypes. Nane"/>
<col um nane="last" not-null="true" index="bar _idx" |ength="30"/>
<col um nane="first" not-null="true" index="bar _idx" |ength="20"/>
<colum name="initial"/>

</ property>

The def aul t attribute allows you to specify a default value for a column.You should assign the
same value to the mapped property before saving a new instance of the mapped class.

272

Customizing the schema

<property name="credits" type="integer" insert="false">
<col um nane="credits" default="10"/>
</ property>

<versi on name="version" type="integer" insert="false">
<col um nane="versi on" defaul t="0"/>
</ property>

The sql -t ype attribute allows the user to override the default mapping of a Hibernate type to
SQL datatype.

<property nanme="bal ance" type="float">
<col umm nane="bal ance" sql -type="deci mal (13,3)"/>
</ property>

The check attribute allows you to specify a check constraint.

<property nanme="foo" type="integer">
<col um name="foo" check="foo > 10"/>
</ property>

<cl ass nane="Foo" table="foos" check="bar < 100.0">

<property name="bar" type="float"/>
</ cl ass>

The following table summarizes these optional attributes.

Table 21.1. Summary

Attribute Values Interpretation

| engt h number column length

preci si on number column decimal precision

scal e number column decimal scale

not - nul | true|fal se specifies that the column should be non-nullable

uni que true| fal se specifies that the column should have a unique
constraint

i ndex i ndex_nane specifies the name of a (multi-column) index

uni que- key uni que_key_name | specifies the name of a multi-column unique

constraint

273

Chapter 21. Toolset Guide

Attribute Values Interpretation

f or ei gn- key f orei gn_key_nane | specifies the name of the foreign key constraint
generated for an association, for a <one-to-
one>, <nmny-t 0-one>, <key>, Or <many-t o- many>
mapping element. Note that i nver se="true" sides
will not be considered by SchemaExport .

sql -type SQ. columm type | overrides the default column type (attribute of
<col utm> element only)

def aul t SQL expression specify a default value for the column
check SQL expression create an SQL check constraint on either column or
table

The <comment > element allows you to specify comments for the generated schema.

<cl ass nane="Custoner" tabl e="CurCust">
<comment >Current custoners onl y</ conment >

</ cl ass>

<property nanme="bal ance">
<col um nane="bal ">
<coment >Bal ance i n USD</ commrent >
</ col um>
</ property>

This results in a conment on tabl e or conment on col unm statement in the generated DDL
where supported.

21.1.2. Running the tool
The SchemaExport tool writes a DDL script to standard out and/or executes the DDL statements.
The following table displays the SchemaExport command line options

java -cp hibernate_classpaths org. hi bernate. t ool . hbn2ddl . SchemaExport options
mapping_files

Table 21.2. schemakxport Command Line Options

Option Description

--qui et do not output the script to stdout
--drop only drop the tables

--create only create the tables

274

Properties

Option Description

--text do not export to the database

- -out put =ny_schena. ddl output the ddl script to a file

- - nam ng=eg. MyNani ngSt r at egy select a Nani ngSt r at egy

- -confi g=hi ber nat e. cf g. xni read Hibernate configuration from an XML file

-- read database properties from a file
properties=hi bernate. properties

--for mat format the generated SQL nicely in the script

--delimter=; set an end of line delimiter for the script

You can even embed SchemaExport in your application:

Configuration cfg =;
new SchemaExport (cfg).create(false, true)

21.1.3. Properties

Database properties can be specified:

* as system properties with - D<property>
* inhi bernate. properties
* in a named properties file with - - properti es

The needed properties are:

Table 21.3. SchemaExport Connection Properties

Property Name Description

hi ber nat e. connecti on. dri ver_cl ass jdbc driver class

hi ber nat e. connecti on. ur| jdbc url
hi ber nat e. connect i on. user nane database user
hi ber nat e. connect i on. passwor d user password
hi ber nat e. di al ect dialect

21.1.4. Using Ant

You can call SchenaExport from your Ant build script:

<target name="schenmexport">
<t askdef name="schenaexport"
cl assname="or g. hi ber nat e. t ool . hbn2ddl . SchemaExpor t Task"

275

Chapter 21. Toolset Guide

cl asspat href ="cl ass. path"/ >

<schenmexport
properties="hi bernate. properties"”
qui et ="no"
t ext =" no"
dr op="no"
delimter=";"
out put ="schema- export.sqgl ">
<fileset dir="src">

<include name="**/*_hbm xm "/ >

</fileset>

</ schenmaexport >

</target>

21.1.5. Incremental schema updates

The SchenaUpdate tool will update an existing schema with "incremental" changes. The
SchemaUpdat e depends upon the JDBC metadata APl and, as such, will not work with all JDBC
drivers.

java -cp hibernate_classpaths org. hi bernate. t ool . hbn2ddl . SchemaUpdat e options
mapping_files

Table 21.4. schemaupdate Command Line Options

Option Description

--qui et do not output the script to stdout
--text do not export the script to the database
- - nam ng=eg. MyNami ngSt r at egy select a Nani ngSt r at egy

-- read database properties from a file
properti es=hi bernate. properties

- -confi g=hi ber nat e. cf g. xni specify a . cfg. xnm file

You can embed SchemaUpdat e in your application:

Configuration cfg =;
new SchemaUpdat e(cf g). execut e(fal se)

21.1.6. Using Ant for incremental schema updates

You can call SchenaUpdat e from the Ant script:

<target name="schenaupdate" >
<t askdef name="schenaupdate"
cl assnanme="or g. hi ber nat e. t ool . hbn2ddl . SchemaUpdat eTask"

276

Schema validation

cl asspat href ="cl ass. path"/ >

<schenaupdat e
properties="hi bernate. properties"”
qui et ="no" >
<fileset dir="src">

<i ncl ude name="**/*_hbm xm "/>
</[fileset>

</ schenmaupdat e>

</target>

21.1.7. Schema validation

The SchenmVal i dator tool will validate that the existing database schema "matches" your
mapping documents. The SchenaVal i dat or depends heavily upon the JDBC metadata API and,
as such, will not work with all JDBC drivers. This tool is extremely useful for testing.

java -cp hibernate_classpaths org. hi ber nat e. t ool . hbn2ddl . SchemaVal i dat or options
mapping_files

The following table displays the SchenaVal i dat or command line options:

Table 21.5. schemaval i dat or Command Line Options

Option Description

- - nam ng=eg. MyNani ngSt r at egy select a Nami ngSt r at egy

-- read database properties from a file

properti es=hi bernate. properties

- -confi g=hi ber nat e. cf g. xni specify a . cf g. xm file

You can embed SchenaVal i dat or in your application:

Configuration cfg =
new SchemaVal i dator (cfg).validate();

21.1.8. Using Ant for schema validation

You can call SchemaVal i dat or from the Ant script:

<target nanme="schenmaval i date">
<t askdef name="schenaval i dator"
cl assnane="or g. hi ber nat e. t ool . hbn2ddl . SchenaVal i dat or Task"
cl asspat href ="cl ass. path"/ >

<schenaval i dat or
properties="hi bernate. properties">
<fileset dir="src">
<include name="**/*_hbm xm "/ >

277

Chapter 21. Toolset Guide

</fil eset>
</ schenaval i dat or >
</target>

278

Chapter 22.

Example: Parent/Child

One of the first things that new users want to do with Hibernate is to model a parent/child
type relationship. There are two different approaches to this. The most convenient approach,
especially for new users, is to model both Par ent and Chi | d as entity classes with a <one-t o-
many> association from Par ent to Chi | d. The alternative approach is to declare the Child as
a <conposi t e- el enent >. The default semantics of a one-to-many association in Hibernate are
much less close to the usual semantics of a parent/child relationship than those of a composite
element mapping. We will explain how to use a bidirectional one-to-many association with
cascades to model a parent/child relationship efficiently and elegantly.

22.1. A note about collections

Hibernate collections are considered to be a logical part of their owning entity and not of the
contained entities. Be aware that this is a critical distinction that has the following consequences:

« When you remove/add an object from/to a collection, the version number of the collection owner
is incremented.

« If an object that was removed from a collection is an instance of a value type (e.g. a composite
element), that object will cease to be persistent and its state will be completely removed from
the database. Likewise, adding a value type instance to the collection will cause its state to be
immediately persistent.

» Conversely, if an entity is removed from a collection (a one-to-many or many-to-many
association), it will not be deleted by default. This behavior is completely consistent; a change
to the internal state of another entity should not cause the associated entity to vanish. Likewise,
adding an entity to a collection does not cause that entity to become persistent, by default.

Adding an entity to a collection, by default, merely creates a link between the two entities.
Removing the entity will remove the link. This is appropriate for all sorts of cases. However, it is
not appropriate in the case of a parent/child relationship. In this case, the life of the child is bound
to the life cycle of the parent.

22.2. Bidirectional one-to-many

Suppose we start with a simple <one- t o- many> association from Par ent to Chi | d.

<set name="children">
<key colum="parent_id"/>
<one-to-nmany cl ass="Child"/>
</set>

If we were to execute the following code:

279

Chapter 22. Example: Parent/Child

Parent p = ;
Child ¢ = new Child()
p. get Chi I dren(). add(c)
sessi on. save(c);
session. flush();

Hibernate would issue two SQL statements:

e an | NSERT to create the record for ¢
e an UPDATE to create the link from p to ¢

This is not only inefficient, but also violates any NOT NULL constraint on the parent _i d column.
You can fix the nullability constraint violation by specifying not - nul | ="t rue" in the collection

mapping:

<set name="children">
<key colum="parent _id" not-null="true"/>
<one-to-many class="Child"/>

</ set>

However, this is not the recommended solution.

The underlying cause of this behavior is that the link (the foreign key parent _i d) from p to c is
not considered part of the state of the Chi | d object and is therefore not created in the | NSERT.
The solution is to make the link part of the Chi | d mapping.

<many-to-one nane="parent" colum="parent_id" not-null="true"/>

You also need to add the par ent property to the Chi | d class.

Now that the Chi | d entity is managing the state of the link, we tell the collection not to update the
link. We use the i nver se attribute to do this:

<set name="children" inverse="true">
<key col um="parent _id"/>
<one-to-nmany class="Child"/>
</set>

The following code would be used to add a new Chi | d:

Parent p = (Parent) session.|oad(Parent.class, pid);
Child ¢ = new Child()
c.setParent(p);

280

Cascading life cycle

p. get Chil dren(). add(c)
sessi on. save(c);
session. flush();

Only one SQL | NSERT would now be issued.

You could also create an addcChi | d() method of Par ent .

public void addChild(Child c) {
c.setParent (this);
chil dren. add(c);

The code to add a Chi | d looks like this:

Parent p = (Parent) session.load(Parent.class, pid);
Child ¢ = new Child()

p. addChi l d(c);

sessi on. save(c);

session. flush();

22.3. Cascading life cycle

You can address the frustrations of the explicit call to save() by using cascades.

<set name="children" inverse="true" cascade="all">
<key col um="parent _id"/>
<one-to-nmany class="Child"/>

</ set>

This simplifies the code above to:

Parent p = (Parent) session.|oad(Parent.class, pid);
Child ¢ = new Child()

p. addChi l d(c);

session. flush();

Similarly, we do not need to iterate over the children when saving or deleting a Parent. The
following removes p and all its children from the database.

Parent p = (Parent) session.load(Parent.class, pid);
sessi on. del et e(p)
session. flush();

281

Chapter 22. Example: Parent/Child

However, the following code:

Parent p = (Parent) session.load(Parent.class, pid);
Child ¢ = (Child) p.getChildren().iterator().next();
p. get Children().renove(c);

c.setParent(null);

session. flush();

will not remove ¢ from the database. In this case, it will only remove the link to p and cause a NOT
NULL constraint violation. You need to explicitly del et e() the Chi | d.

Parent p = (Parent) session.|oad(Parent.class, pid);
Child ¢ = (Child) p.getChildren().iterator().next();
p. get Children().renove(c);

session. del ete(c);

session. flush();

In our case, a Chi | d cannot exist without its parent. So if we remove a Chi | d from the collection,
we do want it to be deleted. To do this, we must use cascade="al | - del et e- or phan".

<set nanme="children" inverse="true" cascade="all -del ete-orphan">
<key colum="parent_id"/>
<one-to-many class="Child"/>

</set>

Even though the collection mapping specifies i nver se="t rue", cascades are still processed by
iterating the collection elements. If you need an object be saved, deleted or updated by cascade,
you must add it to the collection. It is not enough to simply call set Parent ().

22.4. Cascades and unsaved-val ue

Suppose we loaded up a Par ent in one Sessi on, made some changes in a Ul action and wanted
to persist these changes in a new session by calling updat e() . The Par ent will contain a collection
of children and, since the cascading update is enabled, Hibernate needs to know which children
are newly instantiated and which represent existing rows in the database. We will also assume
that both Par ent and Chi | d have generated identifier properties of type Long. Hibernate will use
the identifier and version/timestamp property value to determine which of the children are new.
(See Section 10.7, “Automatic state detection”.) In Hibernate3, it is no longer necessary to specify
an unsaved- val ue explicitly.

The following code will update par ent and chi | d and insert newChi | d:
[/ parent and child were both | oaded in a previ ous session

parent.addChil d(child);
Child newchild = new Child();

282

Conclusion

par ent . addChi | d(newChi | d) ;
sessi on. updat e(parent);
session. flush();

This may be suitable for the case of a generated identifier, but what about assigned identifiers
and composite identifiers? This is more difficult, since Hibernate cannot use the identifier property
to distinguish between a newly instantiated object, with an identifier assigned by the user, and
an object loaded in a previous session. In this case, Hibernate will either use the timestamp or
version property, or will actually query the second-level cache or, worst case, the database, to
see if the row exists.

22.5. Conclusion

The sections we have just covered can be a bit confusing. However, in practice, it all works out
nicely. Most Hibernate applications use the parent/child pattern in many places.

We mentioned an alternative in the first paragraph. None of the above issues exist in the case of
<conposi t e- el ement > mappings, which have exactly the semantics of a parent/child relationship.
Unfortunately, there are two big limitations with composite element classes: composite elements
cannot own collections and they should not be the child of any entity other than the unique parent.

283

284

Chapter 23.

Example: Weblog Application

23.1. Persistent Classes

The persistent classes here represent a weblog and an item posted in a weblog. They are to be
modelled as a standard parent/child relationship, but we will use an ordered bag, instead of a set:

package eg;
inport java.util.List;

public class Blog {
private Long _id;
private String _nane;
private List _itens;

public Long getld() {
return _id;

}

public List getltens() {
return _itens;

}

public String getNane() {
return _name;

}

public void setld(Long |ongl) {
_id = 1longl;

}

public void setltens(List list) {
_items = list;

}

public void setNane(String string) {
_name = string;

package eg;

inmport java.text.DateFormat;
inmport java.util.Cal endar;

public class Blogltem{
private Long _id;
private Cal endar _datetine;
private String _text;
private String _title;
private Blog _bl og;

public Blog getBlog() {
return _bl og;

}
public Cal endar getDatetinme() {

285

Chapter 23. Example: Weblog A...

return _dateting;

}

public Long getld() {
return _id;

}

public String getText() {
return _text;

}

public String getTitle() {
return _title;

}

public void setBlog(Blog blog) {
_blog = bl og;

}

public void setDatetine(Cal endar cal endar) {
_datetinme = cal endar;

}

public void setld(Long |ongl) {
_id = longl,;

}

public void setText(String string) {
_text = string;

}

public void setTitle(String string) {
_title = string;

23.2. Hibernate Mappings

The XML mappings are now straightforward. For example:

<?xm version="1.0"?>

<! DOCTYPE hi ber nat e- mappi ng PUBLI C
"-// Hi bernat e/ H bernate Mappi ng DTD 3. 0//EN"
"http://hibernate.sourceforge. net/hi bernate-nappi ng-3.0.dtd">

<hi ber nat e- mappi ng package="eg">
<cl ass

name="Bl og"
t abl e="BLOGS" >

<id
nane="i d"
col um="BLOG_| D' >
<generator class="native"/>
</id>
<property

nane="nane"

col utm=" NAVE"
not-nul I ="true"
uni que="true"/>

286

Hibernate Mappings

<bag
name="itens"
inverse="true"
or der - by="DATE_TI ME"
cascade="al |l ">

<key colum="BLOG | D'/ >
<one-to-nmany cl ass="Bl ogltent/>

</ bag>

</cl ass>

</ hi ber nat e- mappi ng>

<?xm version="1.0"?>

<! DOCTYPE hi ber nat e- mappi ng PUBLI C
"-// Hi bernat e/ H bernate Mappi ng DTD 3. 0//EN"
"http://hibernate. sourceforge. net/hi bernate-nmappi ng-3.0.dtd">

<hi ber nat e- mappi ng package="eg">

<cl ass
nanme="Bl ogl t ent
t abl e="BLOG | TEMS"
dynani c-updat e="true">

<id
name="i d"
col um="BLOG_ | TEM | D' >
<generator class="native"/>
</id>
<property

name="title"
col um="TI TLE"

not-null="true"/>
<property

name="text"

col um="TEXT"

not-null ="true"/>
<property

nanme="dat eti me"
col um="DATE_TI ME"
not-null="true"/>

<many-t o-one

name="bl og"

col um="BLOG_| D'

not-null ="true"/>
</ cl ass>

287

Chapter 23. Example: Weblog A...

</ hi ber nat e- mappi ng>

23.3. Hibernate Code

The following class demonstrates some of the kinds of things we can do with these classes using
Hibernate:

package eg;

inport java.util.Arraylist;
inport java.util.Cal endar;
inport java.util.lterator;
inport java.util.List;

inmport org. hi bernate. H bernat eExcepti on;

import org. hi bernate. Query;

import org. hi bernate. Sessi on;

i nport org. hi bernate. Sessi onFactory;

i nport org.hibernate. Transacti on;

inport org. hi bernate.cfg. Configuration;

inmport org. hi bernate.tool.hbn2ddl . SchemaExport ;

public class Bl ogMain {
private SessionFactory _sessions;

public void configure() throws Hi bernateException {
_sessions = new Configuration()
. addd ass(Bl og. cl ass)
.addd ass(Bl ogltem cl ass)
. bui | dSessi onFactory();

public void exportTabl es() throws Hi bernateException {
Configuration cfg = new Configuration()
. addd ass(Bl og. cl ass)
.addd ass(Bl ogltem cl ass);
new SchemaExport (cfg).create(true, true);

public Blog createBlog(String nane) throws Hi bernateException {
Bl og bl og = new Bl og();

bl og. set Nane(nane) ;
bl og. setltems(new ArrayList());

Sessi on session = _sessi ons. openSessi on();
Transaction tx = null;
try {

tx = session. begi nTransaction();
sessi on. persi st (bl og);
tx.commit();

}
catch (H bernateException he) {

288

Hibernate Code

if (tx!'=null) tx.rollback();

throw he;
}
finally {

sessi on. cl ose();
}

return bl og;

public BlogltemcreateBl oglten(Blog blog, String title, String text)
throws Hi bernat eException {

Bl ogltemitem = new Bl oglten();
itemsetTitle(title);

item set Text (text);

i tem set Bl og(bl og);

itemsetDateti me(Cal endar. getlnstance());
bl og. getltens().add(itemn);

Sessi on session = _sessions. openSession();
Transaction tx = null;
try {

tx = session. begi nTransaction();
sessi on. updat e(bl 0g) ;
tx.commt();

}

catch (Hi bernateException he) {
if (tx!'=null) tx.rollback();

t hrow he;
}
finally {

session. cl ose();
}

return item

public BlogltemcreateBl oglten(Long blogid, String title, String text)
throws Hi bernat eException {

Bl ogltemitem = new Bl oglten();
itemsetTitle(title);

item set Text (text);

item setDateti me(Cal endar. getlnstance());

Sessi on session = _sessi ons. openSession();
Transaction tx = null;
try {

tx = session. begi nTransaction();
Bl og bl og = (Bl og) session.load(Bl og.class, blogid);
i tem set Bl og(bl og);
bl og. getltens().add(itemn);
tx.commt();

}

catch (Hi bernateException he) {
if (tx!'=null) tx.rollback();
t hrow he;

}

finally {
session. close();

289

Chapter 23. Example: Weblog A...

}

return item

public void updateBl oglten(Blogltemitem String text)
throws Hi bernat eException {

item set Text (text);

Sessi on session = _sessi ons. openSessi on();
Transaction tx = null;
try {

tx = session. begi nTransaction();
sessi on. update(iten);
tx.commit();

}

catch (Hi bernateException he) {
if (tx!'=null) tx.rollback();

throw he;
}
finally {

sessi on. cl ose();
}

public void updateBloglten(Long itemd, String text)
throws Hi bernateException {

Sessi on session = _sessi ons. openSession();
Transaction tx = null;
try {

tx = session. begi nTransaction();
Blogltemitem = (Bloglten) session.load(Blogltemclass, itemd);
item set Text (text);
tx.commt();
}
catch (HibernateException he) {
if (tx!'=null) tx.rollback();

t hrow he;
}
finally {

session. cl ose();
}

public List IistAllBl ogNanmesAndltenmCounts(int max)
throws Hi bernat eException {

Sessi on session = _sessi ons. openSessi on();
Transaction tx = null;
List result = null;
try {
tx = session. begi nTransaction();
Query q = session. createQuery(
"sel ect blog.id, blog.nanme, count(blogltem " +
"fromBlog as blog " +
"left outer join blog.itens as blogltem" +
"group by bl og.nane, blog.id " +
"order by max(bl ogltem datetine)"

290

Hibernate Code

DE
g. set MaxResul t s(nax) ;
result = qg.list();
tx.commt();

}

catch (Hi bernateException he) {
if (tx!'=null) tx.rollback();

t hrow he;
}
finally {

sessi on. cl ose();
}

return result;

public Blog getBl ogAndAl | | t ens(Long bl ogi d)
throws Hi bernat eException {

Sessi on session = _sessions. openSession();
Transaction tx = null;
Bl og blog = null;
try {
tx = session. begi nTransaction();
Query q = session.createQuery(
"fromBlog as blog " +
"left outer join fetch blog.itens " +
"where blog.id = :blogid"
)
g. set Paranet er (" bl ogi d", bl ogid);
blog = (Blog) g.uniqueResult();
tx.commit();
}
catch (Hi bernateException he) {
if (tx!'=null) tx.rollback();

throw he;
}
finally {

sessi on. cl ose();
}

return bl og;

public List |istBlogsAndRecentltens() throws Hi bernateException {

Sessi on session = _sessi ons. openSession();
Transaction tx = null;
List result = null;
try {
tx = session. begi nTransaction();
Query q = session.createQuery(
"fromBlog as blog " +
"“inner join blog.items as blogltem" +
"where bl ogltemdatetinme > :mnDate"

DE

Cal endar cal = Cal endar. getlnstance();
cal .rol | (Cal endar. MONTH, fal se);
g. set Cal endar ("m nDate", cal);

291

Chapter 23. Example: Weblog A...

result = qg.list();
tx.commt();

}

catch (Hi bernateException he) {
if (tx!'=null) tx.rollback();

t hrow he;
}
finally {

session. cl ose();
}

return result;

292

Chapter 24.

Example: Various Mappings

This chapters explores some more complex association mappings.

24.1. Employer/Employee

The following model of the relationship between Enpl oyer and Enpl oyee uses an entity class
(Enpl oynent) to represent the association. You can do this when there might be more than one
period of employment for the same two parties. Components are used to model monetary values
and employee names.

Employer

-id : long

+employer 0.

Employment

-startDate : Date

-hame : 5tring

+getldd : lang
+setldi_id:lang
+getMamen : String
+setlame(_name:String

-endDate : Date
-id : lang

0.+

Employee

Name

+getstartbatel : Date
+setStartDatel_startDate:Date)
+getEndDated : Date
+setEndDatel_endDate:Date)
+getHourlyRated : ManetoryAmount
+setHourlyRatelrate:Monetorydmaunt)
+getldd ; long

+setldi_id:long

+getEmployerd ; Employer
+:setEmployeriemp: Employen
+getEmployeed ; Employes
+:zetEmployeelemp:Employee)

+employes

-id : lang
—taxfileNumber : String

+gethamen : Mame
+setlameiname:Hamel
+getldd : long
+setldi_id:lang
+getTaxfileMumberd : String

+setTaxfileNumberi_taxfileMumbersString

Here is a possible mapping document:

<hi ber nat e- mappi ng>

+hourlyRate

<cl ass nane="Enpl oyer" tabl e="enpl oyers">

<id nane="id">

<generator class="sequence">
<par am name="sequence" >enpl oyer _i d_seq</ par an»

</ gener at or >

</id>

<property nanme="nanme"/>

</ cl ass>

Monetargdmount

—amount : Bighecimal
-currency - Currency

+getAmounti : Bighecimal
+setAmounti_amaount:BigDhecimah
+getiCurrencyl : Currency
+setCurrency_currency Currencyl

<cl ass nane="Enpl oynent" tabl e="enpl oynment _peri ods">

<id name="id">
<gener at or cl ass="sequence">
<par am nanme="sequence" >enpl oynent _i d_seq</ par an>

</ gener
</id>

ator >

<property nanme="startDate" colum="start_date"/>
<property nanme="endDate" col um="end_date"/>

<conponent
<pr oper

name="hour | yRate" cl ass="Mnet ar yAnount" >

ty name="anount">

<col um nane="hourly_rate" sql-type="NUMERI C(12, 2)"/>
</ property>

+hame

~firstName : String
-initial : char
-lastMame : 5tring

+getFirstlamed : String
+setFirstNamel_firstName:String
+getinitiald : char
+setlnitialinitial:chan
+getlastNamed : String
+setlastMamel_lastMame:String

293

Chapter 24. Example: Various ...

<property name="currency" |ength="12"/>
</ conponent >

<many-to-one name="enpl oyer" colum="enpl oyer _id" not-null="true"/>
<many-to-one nane="enpl oyee" col um="enpl oyee_i d" not-null="true"/>
</ cl ass>

<cl ass nane="Enpl oyee" tabl e="enpl oyees" >
<id name="id">
<generator class="sequence">
<par am nane="sequence" >enpl oyee_i d_seq</ par an»
</ gener at or >
</id>
<property nanme="taxfil eNunber"/>
<conponent nanme="nanme" cl ass="Nane">
<property nanme="firstName"/>
<property name="initial"/>
<property name="| ast Name"/ >
</ conponent >
</cl ass>

</ hi ber nat e- mappi ng>

Here is the table schema generated by SchenaExport .

create table enployers (
id BIGA NT not null,
name VARCHAR(255),
primary key (id)

create table enpl oynent _periods (
id BPANT not null,
hourly_rate NUMERI C(12, 2),
currency VARCHAR(12),
enpl oyee_id BIG NT not null,
enpl oyer _id BI G NT not null,
end_dat e Tl MESTAMP,
start_date TI MESTAWP,
primary key (id)

create table enpl oyees (
id BIA@NT not null,
firstName VARCHAR(255),
initial CHAR(1),
| ast Nane VARCHAR(255) ,
taxfil eNunmber VARCHAR(255),
primary key (id)

alter table enpl oynent_periods

add constraint enploynent_peri odsFKO foreign key (enployer_id)

alter table enploynent_periods

add constraint enploynent_periodsFK1l foreign key (enployee_id)

ref erences enpl oyers

ref erences enpl oyees

294

Author/Work

create sequence enpl oyee_id_seq
create sequence enploynent _i d_seq
create sequence enpl oyer_id_seq

24.2. Author/Work

Consider the following model of the relationships between Werk, Author and Person. In
the example, the relationship between Work and Aut hor is represented as a many-to-many
association and the relationship between Aut hor and Person is represented as one-to-one
association. Another possibility would be to have Aut hor extend Per son.

Wark: Authar Parson

-id : long -id : lang -id : lang
—title : String 0.* 0.%) _alias : String —name : String
+getldn : long lwaorks +authord taetldd :long +persof |F0etldd s long
+setldi_id:long +setldi_id:long) +setldi_id:long
+getAutharsd ; Set +getiarksl ; Set +qgetMamed ; 5tring
+sethuthorsiemployees:Set) +setWarksliemployersSet) +setlamel_name>String)
+qgetTitled : String +getPersand ; Person
+ietTitlel_title:string) +setPersoniperson:Persan)

+getiliash : 5tring

+setAliasi_aliaz:string

sang Baook
-tempao : float —text :int
-genre : 3tring

+getTexth :int

+aetGenrel : String +setTexti_textint
+ietQenrei_genrestring

+getTempod : float
+setTempol_tempofloat

The following mapping document correctly represents these relationships:

<hi ber nat e- mappi ng>
<cl ass nane="Work" table="works" discrimnator-val ue="W >

<id name="id" colum="id">
<generator class="native"/>
</id>
<di scrim nator colum="type" type="character"/>

<property name="title"/>
<set nanme="aut hors" tabl e="aut hor_work">
<key col umm nanme="work_i d"/>
<many-to-nmany class="Author" col umm nanme="aut hor _i d"/>

</ set>

<subcl ass nanme="Book" di scri m nator-val ue="B">
<property name="text"/>
</ subcl ass>

295

Chapter 24. Example: Various ...

<subcl ass nanme="Song" di scri nm nator-val ue="S">
<property name="tenpo"/>
<property name="genre"/>

</ subcl ass>

</ cl ass>
<cl ass nane="Aut hor" tabl e="authors">

<id nane="id" colum="id">
<l-- The Author nust have the sane identifier as the Person -->
<generator class="assigned"/>

</id>

<property nanme="alias"/>
<one-to-one name="person" constrai ned="true"/>

<set nanme="works" tabl e="author_work" inverse="true">
<key col um="aut hor _i d"/>
<many-to-nany cl ass="Work" col um="work_id"/>
</set>

</ cl ass>

<cl ass nane="Person" tabl e="persons">
<id name="id" colum="id">
<generator class="native"/>
</id>
<property name="nanme"/>
</cl ass>

</ hi ber nat e- mappi ng>

There are four tables in this mapping: wor ks, aut hor s and per sons hold work, author and person
data respectively. aut hor _wor k is an association table linking authors to works. Here is the table
schema, as generated by SchemaExport :

create table works (
id BPANT not null generated by default as identity,
tenmpo FLOAT,
genre VARCHAR(255),
text | NTEGER
title VARCHAR(255),
type CHAR(1) not null,
primary key (id)

create table author_work (
author _id BIG NT not null,
work_id BIG NT not null,
primary key (work_id, author_id)

create table authors (
id BPANT not null generated by default as identity,

296

Customer/Order/Product

al i as VARCHAR(255),
primary key (id)

create table persons (
id BIG NT not null generated by default as identity,
nanme VARCHAR(255),
primary key (id)

alter table authors

add constraint authorsFKO foreign key (id) references persons
alter table author_work

add constraint author_workFKO foreign key (author_id) references authors
alter table author_work

add constraint author_workFK1 foreign key (work_id) references works

24.3. Customer/Order/Product

In this section we consider a model of the relationships between Cust omer, Order, Line Item
and Pr oduct . There is a one-to-many association between Cust oner and Or der , but how can you
represent Order / Li nel t em/ Product ? In the example, Li nel t emis mapped as an association
class representing the many-to-many association between Or der and Pr oduct . In Hibernate this

is called a composite element.

Customer arder Lineltem Product
- 0. — [- - 0.* -
-id : lang -id : lang —quantity : int -id : lang
-name : 5tring +customer +orders [-date : Date +Iine|terﬁ’sf +getQuantityd int +pr0dec’tr -serialMumber : String
+qetldd : lang +qgetldd : long +setQuantityi_quantity.int +getldd: long

+setld_id:long)
+getMamen ; String
+setMamei_name:String
+getOrderst ; Set
+setOrdersiorders:Sets

+setldid:long

+getlineltemso ; List
+setlineltemsiineltems:List
+getCustomerd : Customer
+setCustomericustomer:Customer
+gethatel : Date
+setDatel_date:Date)

+getProductd : Product
+:setProductiproduct:Product)

The mapping document will look like this:

<hi ber nat e- mappi ng>

<cl ass nane="Custoner"

<id nane="id">

<gener at or

</id>

class="native"/>

<property nanme="nane"/>

<set nanme="orders" inverse="true">
<key col um="custoner _id"/>
<one-to-nmany cl ass="Order"/>
</ set>
</ cl ass>

<cl ass nanme="Order" table="orders">
<id nane="id">

<gener at or

</id>

class="native"/>

t abl e="cust oners’

">

+setldid:long
+getterialMumberd ; String
+setserialMumberi_serialNumberString

297

Chapter 24. Example: Various ...

<property name="date"/>

<many-to-one name="custoner" col um="custoner_id"/>

<list nane="lineltens" table="line_itens">
<key columm="order_id"/>
<list-index colum="Iline_nunmber"/>

<conposi te-el ement class="Lineltent>
<property name="quantity"/>

<many-t o-one name="product" col um="product _id"/>

</ conposi t e- el ement >
</list>
</cl ass>

<cl ass name="Product" tabl e="products">
<id name="id">
<generator class="native"/>
</id>
<property name="seri al Nunber"/>
</ cl ass>

</ hi ber nat e- mappi ng>

customers, orders,line_itens and product s hold customer, order, order line item and product
data respectively. | i ne_i t ens also acts as an association table linking orders with products.

create table custoners (
id BIGNT not null generated by default as identity,
nanme VARCHAR(255),
primary key (id)

create table orders (
id BIPANT not null generated by default as identity,
custoner _id Bl G NT,
date TI MESTAMP,
primary key (id)

create table line_itens (
|'i ne_nunber | NTEGER not null,
order_id BIG NT not null,
product _i d Bl G NT,
quantity | NTEGER
primary key (order_id, |ine_nunber)

create table products (
id BPANT not null generated by default as identity,
seri al Number VARCHAR(255),
primary key (id)

alter table orders

add constraint ordersFKO foreign key (custoner_id) references custoners

alter table line_itens
add constraint line_itensFKO foreign key (product_id)
alter table line_itens

ref erences products

298

Miscellaneous example mappings

add constraint line_itensFK1 foreign key (order_id) references orders

24.4. Miscellaneous example mappings

These examples are available from the Hibernate test suite. You will find many other useful
example mappings there by searching in the t est folder of the Hibernate distribution.

24.4.1. "Typed" one-to-one association

<cl ass nane="Person">
<id nanme="nane"/>
<one-to-one nanme="address"
cascade="al | ">
<f or nul a>name</ f or nul a>
<f or mul a>' HOVE' </ f or nul a>
</ one-t o- one>
<one-to-one nane="nuil i ngAddr ess"
cascade="al |l ">
<f or mul a>name</ f or mul a>
<f ornmul a>" MAI LI NG </ f or mul a>
</ one-t o- one>
</ cl ass>

<cl ass name="Address" batch-size="2"
check="addressType in ('MAILING, 'HOVE, 'BUSINESS)">
<conposi te-id>
<key- many-t o- one name="person"
col utm="per sonNane"/ >
<key- property name="type"
col um="addr essType"/ >
</ conposi te-id>
<property name="street" type="text"/>
<property name="state"/>
<property name="zip"/>
</ cl ass>

24.4.2. Composite key example

<cl ass nane="Cust oner" >

<i d name="custoner|d"

| engt h="10">

<gener at or cl ass="assigned"/>
</id>
<property nanme="nane" not-null="true" |ength="100"/>
<property nanme="address" not-null="true" |ength="200"/>

<li st name="orders"
inverse="true"
cascade="save- updat e" >

299

Chapter 24. Example: Various ...

<key col um="custonerld"/>

<i ndex col um="or der Nunber"/ >

<one-to-nmany cl ass="Order"/>
</list>

</ cl ass>

<cl ass nane="Order" tabl e="CustonerOrder" lazy="true">
<synchroni ze tabl e="Li neltent/>
<synchroni ze tabl e="Product"/>

<conposi te-id nanme="id"
cl ass="Order $1 d" >
<key- property name="customnerld" |ength="10"/>
<key- property nane="order Nunber"/>
</ conposite-id>

<property nane="order Dat e"
type="cal endar _dat e"
not-null="true"/>

<property name="total ">
<for mul a>
(select sunm(li.quantity*p.price)
fromLineltemli, Product p
where |i.productld = p.productld
and |i.custonmerld = custonerld
and |i.orderNunber = orderNunber)
</ forml a>
</ property>

<many-to- one name="customner"
col um="cust oner | d"
insert="fal se"
updat e="f al se"
not-null="true"/>

<bag nane="lineltens"
fetch="join"
inverse="true"
cascade="save- updat e" >
<key>
<col um name="cust oner|d"/>
<col umm name="or der Nurmber"/ >
</ key>
<one-to-many cl ass="Lineltent/>
</ bag>

</ cl ass>

<cl ass nane="Linelten>

<conposi te-id name="id"
cl ass="Li nel t ensl d" >
<key-property nane="custonerld" |ength="10"/>
<key- property name="order Number"/>
<key- property nanme="productld" |ength="10"/>
</ conposi te-id>

300

Many-to-many with shared composite key attribute

<property name="quantity"/>

<many-to-one name="order"
insert="fal se"
updat e="f al se"
not-null ="true">
<col um nane="custoner!d"/>
<col urmm nane="or der Nunber "/ >
</ many-t o- one>

<many-t o-one name="product"
insert="fal se"
updat e="f al se"
not-nul I ="true"
col um="product | d"/>

</ cl ass>

<cl ass name="Product">
<synchroni ze tabl e="Li neltent/>

<i d nanme="product|d"

| engt h="10">

<gener at or cl ass="assigned"/>
</id>

<property nanme="descri ption"
not-nul I ="true"
| engt h="200"/ >
<property name="price" |ength="3"/>
<property nanme="nunber Avail abl e"/ >

<property nanme="nunber O der ed" >
<f ormul a>
(select sun(li.quantity)
fromLineltemli
where |i.productld = productld)
</ fornmul a>
</ property>

</ cl ass>

24.4.3. Many-to-many with shared composite key attribute

<cl ass name="User" tabl e=""User ">
<conposi te-id>
<key- property name="nane"/>
<key- property nanme="org"/>
</ conposite-id>
<set nanme="groups" table="User G oup">
<key>
<col um nane="user Nanme"/ >
<col um nane="org"/>
</ key>
<many-to- many cl ass="G oup">
<col utmm nane="gr oupNane"/ >

301

Chapter 24. Example: Various ...

<f or nul a>or g</ f or nul a>
</ many-t o- many>
</ set>
</cl ass>

<cl ass name="G oup" table=""Goup ">
<conposite-id>
<key- property name="nane"/>
<key- property nanme="org"/>
</ conposi te-id>
<property name="description"/>
<set nanme="users" table="User G oup" inverse="true">
<key>
<col um nane="gr oupNane"/ >
<col um nanme="org"/>
</ key>
<many-to- many cl ass="User">
<col um name="user Nane"/ >
<f or nul a>or g</ f or nul a>
</ many-t o- many>
</ set>
</ cl ass>

24.4.4. Content based discrimination

<cl ass nane="Person"
di scri m nator-val ue="pP">

<id name="id"
col um="person_i d"
unsaved- val ue="0">
<generator class="native"/>
</id>

<di scri m nat or
type="character">
<f or mul a>
case
when title is not null then 'E
when sal esperson is not null then
else ' P

Q

end
</ forml a>
</ di scri m nat or >

<property nanme="nane"
not-nul I ="true"
| engt h="80"/ >

<property nanme="sex"
not-nul | ="true"
updat e="f al se"/ >

<conponent nane="address">
<property nanme="address"/>

302

Associations on alternate keys

<property name="zip"/>
<property name="country"/>
</ conponent >

<subcl ass nanme="Enpl oyee"
di scri m nator-val ue="E">
<property name="title"
| engt h="20"/ >
<property name="sal ary"/>
<many-t o-one name="nanager"/>
</ subcl ass>

<subcl ass nane="Cust oner"
di scri m nator-val ue="C'>
<property nanme="coments"/>
<many-t o-one name="sal esperson"/>
</ subcl ass>

</ cl ass>

24.4.5. Associations on alternate keys

<cl ass nane="Person">

<id name="id">
<generator class="hilo"/>
</id>

<property nanme="nane" | ength="100"/>

<one-to-one nanme="address"
property-ref="person"
cascade="al I "
fetch="join"/>

<set name="accounts"
inverse="true">
<key col um="user|d"
property-ref="userld"/>
<one-to-nmany cl ass="Account"/>
</ set>

<property name="userld" |ength="8"/>
</cl ass>
<cl ass nane="Address">

<id name="id">

<generator class="hilo"/>

</id>

<property nanme="address" |ength="300"/>

<property name="zip" |ength="5"/>

<property nanme="country" |ength="25"/>
<many-t o-one name="person" uni que="true" not-null="true"/>

303

Chapter 24. Example: Various ...

</ cl ass>

<cl ass name="Account">
<id nanme="account|d" |ength="32">
<generator class="uuid"/>
</id>

<many-to- one name="user"
col um="user | d"
property-ref="userld"/>

<property name="type" not-null="true"/>

</ cl ass>

304

Chapter 25.

Best Practices

Write fine-grained classes and map them using <conponent >:
Use an Addr ess class to encapsulate street, subur b, st ate, post code. This encourages
code reuse and simplifies refactoring.

Declare identifier properties on persistent classes:
Hibernate makes identifier properties optional. There are a range of reasons why you should
use them. We recommend that identifiers be 'synthetic', that is, generated with no business
meaning.

Identify natural keys:
Identify natural keys for all entities, and map them using <nat ur al - i d>. Implement equal s()
and hashCode() to compare the properties that make up the natural key.

Place each class mapping in its own file:
Do not use a single monolithic mapping document. Map com eg. Foo in the file conl eg/
Foo. hbm xm . This makes sense, particularly in a team environment.

Load mappings as resources:
Deploy the mappings along with the classes they map.

Consider externalizing query strings:
This is recommended if your queries call non-ANSI-standard SQL functions. Externalizing the
query strings to mapping files will make the application more portable.

Use bind variables.
As in JDBC, always replace non-constant values by "?". Do not use string manipulation to
bind a non-constant value in a query. You should also consider using named parameters in
queries.

Do not manage your own JDBC connections:
Hibernate allows the application to manage JDBC connections, but his approach should be
considered a last-resort. If you cannot use the built-in connection providers, consider providing
your own implementation of or g. hi ber nat e. connect i on. Connect i onPr ovi der .

Consider using a custom type:
Suppose you have a Java type from a library that needs to be persisted but does not
provide the accessors needed to map it as a component. You should consider implementing
or g. hi bernat e. User Type. This approach frees the application code from implementing
transformations to/from a Hibernate type.

Use hand-coded JDBC in bottlenecks:
In performance-critical areas of the system, some kinds of operations might benefit from
direct JDBC. Do not assume, however, that JDBC is necessarily faster. Please wait until you
know something is a bottleneck. If you need to use direct JDBC, you can open a Hibernate

305

Chapter 25. Best Practices

Sessi on, wrap your JDBC operation as a or g. hi ber nat e. j dbc. Wr k object and using that
JDBC connection. This way you can still use the same transaction strategy and underlying
connection provider.

Understand Sessi on flushing:
Sometimes the Session synchronizes its persistent state with the database. Performance
will be affected if this process occurs too often. You can sometimes minimize unnecessary
flushing by disabling automatic flushing, or even by changing the order of queries and other
operations within a particular transaction.

In a three tiered architecture, consider using detached objects:
When using a servlet/session bean architecture, you can pass persistent objects loaded in
the session bean to and from the servlet/JSP layer. Use a new session to service each
request. Use Sessi on. mer ge() or Sessi on. saveOr Updat e() to synchronize objects with the
database.

In a two tiered architecture, consider using long persistence contexts:

Database Transactions have to be as short as possible for best scalability. However, it is
often necessary to implement long running application transactions, a single unit-of-work from
the point of view of a user. An application transaction might span several client request/
response cycles. Itis common to use detached objects to implement application transactions.
An appropriate alternative in a two tiered architecture, is to maintain a single open persistence
contact session for the whole life cycle of the application transaction. Then simply disconnect
from the JDBC connection at the end of each request and reconnect at the beginning of
the subsequent request. Never share a single session across more than one application
transaction or you will be working with stale data.

Do not treat exceptions as recoverable:
This is more of a necessary practice than a "best" practice. When an exception occurs,
roll back the Transacti on and close the Sessi on. If you do not do this, Hibernate cannot
guarantee that in-memory state accurately represents the persistent state. For example, do
not use Sessi on. | oad() to determine if an instance with the given identifier exists on the
database; use Sessi on. get () or a query instead.

Prefer lazy fetching for associations:
Use eager fetching sparingly. Use proxies and lazy collections for most associations to classes
that are not likely to be completely held in the second-level cache. For associations to cached
classes, where there is an a extremely high probability of a cache hit, explicitly disable eager
fetching using | azy="f al se". When join fetching is appropriate to a particular use case, use
aquerywithaleft join fetch.

Use the open session in view pattern, or a disciplined assembly phase to avoid problems with
unfetched data:
Hibernate frees the developer from writing tedious Data Transfer Objects (DTO). In a
traditional EJB architecture, DTOs serve dual purposes: first, they work around the problem
that entity beans are not serializable; second, they implicitly define an assembly phase where
all data to be used by the view is fetched and marshalled into the DTOs before returning control

306

to the presentation tier. Hibernate eliminates the first purpose. Unless you are prepared to
hold the persistence context (the session) open across the view rendering process, you will
still need an assembly phase. Think of your business methods as having a strict contract
with the presentation tier about what data is available in the detached objects. This is not a
limitation of Hibernate. It is a fundamental requirement of safe transactional data access.

Consider abstracting your business logic from Hibernate:
Hide Hibernate data-access code behind an interface. Combine the DAO and Thread Local
Session patterns. You can even have some classes persisted by handcoded JDBC associated
to Hibernate via a User Type. This advice is, however, intended for "sufficiently large"
applications. It is not appropriate for an application with five tables.

Do not use exotic association mappings:
Practical test cases for real many-to-many associations are rare. Most of the time you need
additional information stored in the "link table". In this case, it is much better to use two one-
to-many associations to an intermediate link class. In fact, most associations are one-to-
many and many-to-one. For this reason, you should proceed cautiously when using any other
association style.

Prefer bidirectional associations:
Unidirectional associations are more difficult to query. In a large application, almost all
associations must be navigable in both directions in queries.

307

308

Chapter 26.

Database Portability Considerations

26.1. Portability Basics

One of the selling points of Hibernate (and really Object/Relational Mapping as a whole) is the
notion of database portability. This could mean an internal IT user migrating from one database
vendor to another, or it could mean a framework or deployable application consuming Hibernate to
simultaneously target multiple database products by their users. Regardless of the exact scenario,
the basic idea is that you want Hibernate to help you run against any number of databases without
changes to your code, and ideally without any changes to the mapping metadata.

26.2. Dialect

The first line of portability for Hibernate is the dialect, which is a specialization of the
org. hi bernate. di al ect. Di al ect contract. A dialect encapsulates all the differences in how
Hibernate must communicate with a particular database to accomplish some task like getting a
sequence value or structuring a SELECT query. Hibernate bundles a wide range of dialects for
many of the most popular databases. If you find that your particular database is not among them,
it is not terribly difficult to write your own.

26.3. Dialect resolution

Originally, Hibernate would always require that users specify which dialect to use. In the case of
users looking to simultaneously target multiple databases with their build that was problematic.
Generally this required their users to configure the Hibernate dialect or defining their own method
of setting that value.

Starting with version 3.2, Hibernate introduced the notion of automatically detecting the dialect to
use based on the j ava. sql . Dat abaseMet aDat a obtained from a j ava. sql . Connect i on to that
database. This was much better, expect that this resolution was limited to databases Hibernate
know about ahead of time and was in no way configurable or overrideable.

Starting with version 3.3, Hibernate has a fare more powerful way to automatically determine
which dialect to should be used by relying on a series of delegates which implement the
org. hi bernate. di al ect. resol ver. Di al ect Resol ver which defines only a single method:

public Dialect resolveD al ect (Dat abaseMet aData nmet aData) t hrows JDBCConnecti onExcepti on

. The basic contract here is that if the resolver 'understands' the given database metadata then
it returns the corresponding Dialect; if not it returns null and the process continues to the next
resolver. The signature also identifies or g. hi ber nat e. except i on. JDBCConnect i onExcept i on
as possibly being thrown. A JDBCConnectionException here is interpreted to imply a "non
transient" (aka non-recoverable) connection problem and is used to indicate an immediate stop to
resolution attempts. All other exceptions result in a warning and continuing on to the next resolver.

309

Chapter 26. Database Portabil...

The cool part about these resolvers is that users can also register their own custom resolvers
which will be processed ahead of the built-in Hibernate ones. This might be useful in a number
of different situations: it allows easy integration for auto-detection of dialects beyond those
shipped with Hlbernate itself; it allows you to specify to use a custom dialect when a particular
database is recognized; etc. To register one or more resolvers, simply specify them (seperated
by commas, tabs or spaces) using the 'hibernate.dialect_resolvers' configuration setting (see the
DI ALECT_RESOLVERS constant on or g. hi ber nat e. cf g. Envi r onnent).

26.4. ldentifier generation

When considering portability between databases, another important decision is selecting the
identifier generation stratagy you want to use. Originally Hibernate provided the native generator
for this purpose, which was intended to select between a sequence, identity, or table strategy
depending on the capability of the underlying database. However, an insidious implication of this
approach comes about when targtetting some databases which support identity generation and
some which do not. identity generation relies on the SQL definition of an IDENTITY (or auto-
increment) column to manage the identifier value; it is what is known as a post-insert generation
strategy becauase the insert must actually happen before we can know the identifier value.
Because Hibernate relies on this identifier value to uniquely reference entities within a persistence
context it must then issue the insert immediately when the users requests the entitiy be associated
with the session (like via save() e.g.) regardless of current transactional semantics.

@ Note

Hibernate was changed slightly once the implication of this was better understood
so that the insert is delayed in cases where that is feasible.

The underlying issue is that the actual semanctics of the application itself changes in these cases.

Starting with version 3.2.3, Hibernate comes with a set of enhanced [http://in.relation.to/2082.lace]
identifier generators targetting portability in a much different way.

@ Note

There are specifically 2 bundled enhancedgenerators:

e org. hi bernate.id. enhanced. SequenceSt yl eGener at or

* org. hi bernate.id. enhanced. Tabl eGener at or

The idea behind these generators is to port the actual semantics of
the identifer value generation to the different databases. For example, the
or g. hi bernate. i d. enhanced. SequenceSt yl eGener at or mimics the behavior of a sequence on
databases which do not support sequences by using a table.

310

http://in.relation.to/2082.lace
http://in.relation.to/2082.lace

Database functions

26.5. Database functions

Warning

This is an area in Hibernate in need of improvement. In terms of portability
concerns, this function handling currently works pretty well from HQL; however, it
is quite lacking in all other aspects.

SQL functions can be referenced in many ways by users. However, not all databases support
the same set of functions. Hibernate, provides a means of mapping a logical function name to a
delegate which knows how to render that particular function, perhaps even using a totally different
physical function call.

Important

Technically this function registration is handled through the
or g. hi bernate. di al ect. functi on. SQLFuncti onRegi stry class which s
intended to allow users to provide custom function definitions without having to

provide a custom dialect. This specific behavior is not fully completed as of yet.

It is sort of implemented such that users can programatically register functions with
the or g. hi ber nat e. cf g. Confi gur ati on and those functions will be recognized
for HQL.

26.6. Type mappings

This section scheduled for completion at a later date...

311

312

References

[POEAA] Patterns of Enterprise Application Architecture. 0-321-12742-0. by Martin Fowler.
Copyright © 2003 Pearson Education, Inc.. Addison-Wesley Publishing Company.

[JPwH] Java Persistence with Hibernate. Second Edition of Hibernate in Action. 1-932394-88-5.
http://www.manning.com/bauer2 . by Christian Bauer and Gavin King. Copyright © 2007
Manning Publications Co.. Manning Publications Co..

313

http://www.manning.com/bauer2

314

	HIBERNATE - Relational Persistence for Idiomatic Java
	Table of Contents
	Preface
	Chapter 1. Tutorial
	1.1. Part 1 - The first Hibernate Application
	1.1.1. Setup
	1.1.2. The first class
	1.1.3. The mapping file
	1.1.4. Hibernate configuration
	1.1.5. Building with Maven
	1.1.6. Startup and helpers
	1.1.7. Loading and storing objects

	1.2. Part 2 - Mapping associations
	1.2.1. Mapping the Person class
	1.2.2. A unidirectional Set-based association
	1.2.3. Working the association
	1.2.4. Collection of values
	1.2.5. Bi-directional associations
	1.2.6. Working bi-directional links

	1.3. Part 3 - The EventManager web application
	1.3.1. Writing the basic servlet
	1.3.2. Processing and rendering
	1.3.3. Deploying and testing

	1.4. Summary

	Chapter 2. Architecture
	2.1. Overview
	2.2. Instance states
	2.3. JMX Integration
	2.4. JCA Support
	2.5. Contextual sessions

	Chapter 3. Configuration
	3.1. Programmatic configuration
	3.2. Obtaining a SessionFactory
	3.3. JDBC connections
	3.4. Optional configuration properties
	3.4.1. SQL Dialects
	3.4.2. Outer Join Fetching
	3.4.3. Binary Streams
	3.4.4. Second-level and query cache
	3.4.5. Query Language Substitution
	3.4.6. Hibernate statistics

	3.5. Logging
	3.6. Implementing a NamingStrategy
	3.7. XML configuration file
	3.8. J2EE Application Server integration
	3.8.1. Transaction strategy configuration
	3.8.2. JNDI-bound SessionFactory
	3.8.3. Current Session context management with JTA
	3.8.4. JMX deployment

	Chapter 4. Persistent Classes
	4.1. A simple POJO example
	4.1.1. Implement a no-argument constructor
	4.1.2. Provide an identifier property (optional)
	4.1.3. Prefer non-final classes (optional)
	4.1.4. Declare accessors and mutators for persistent fields (optional)

	4.2. Implementing inheritance
	4.3. Implementing equals() and hashCode()
	4.4. Dynamic models
	4.5. Tuplizers
	4.6. EntityNameResolvers

	Chapter 5. Basic O/R Mapping
	5.1. Mapping declaration
	5.1.1. Doctype
	5.1.1.1. EntityResolver

	5.1.2. Hibernate-mapping
	5.1.3. Class
	5.1.4. id
	5.1.4.1. Generator
	5.1.4.2. Hi/lo algorithm
	5.1.4.3. UUID algorithm
	5.1.4.4. Identity columns and sequences
	5.1.4.5. Assigned identifiers
	5.1.4.6. Primary keys assigned by triggers

	5.1.5. Enhanced identifier generators
	5.1.6. Identifier generator optimization
	5.1.7. composite-id
	5.1.8. Discriminator
	5.1.9. Version (optional)
	5.1.10. Timestamp (optional)
	5.1.11. Property
	5.1.12. Many-to-one
	5.1.13. One-to-one
	5.1.14. Natural-id
	5.1.15. Component and dynamic-component
	5.1.16. Properties
	5.1.17. Subclass
	5.1.18. Joined-subclass
	5.1.19. Union-subclass
	5.1.20. Join
	5.1.21. Key
	5.1.22. Column and formula elements
	5.1.23. Import
	5.1.24. Any

	5.2. Hibernate types
	5.2.1. Entities and values
	5.2.2. Basic value types
	5.2.3. Custom value types

	5.3. Mapping a class more than once
	5.4. SQL quoted identifiers
	5.5. Metadata alternatives
	5.5.1. Using XDoclet markup
	5.5.2. Using JDK 5.0 Annotations

	5.6. Generated properties
	5.7. Column read and write expressions
	5.8. Auxiliary database objects

	Chapter 6. Collection mapping
	6.1. Persistent collections
	6.2. Collection mappings
	6.2.1. Collection foreign keys
	6.2.2. Collection elements
	6.2.3. Indexed collections
	6.2.4. Collections of values and many-to-many associations
	6.2.5. One-to-many associations

	6.3. Advanced collection mappings
	6.3.1. Sorted collections
	6.3.2. Bidirectional associations
	6.3.3. Bidirectional associations with indexed collections
	6.3.4. Ternary associations
	6.3.5. Using an <idbag>

	6.4. Collection examples

	Chapter 7. Association Mappings
	7.1. Introduction
	7.2. Unidirectional associations
	7.2.1. Many-to-one
	7.2.2. One-to-one
	7.2.3. One-to-many

	7.3. Unidirectional associations with join tables
	7.3.1. One-to-many
	7.3.2. Many-to-one
	7.3.3. One-to-one
	7.3.4. Many-to-many

	7.4. Bidirectional associations
	7.4.1. one-to-many / many-to-one
	7.4.2. One-to-one

	7.5. Bidirectional associations with join tables
	7.5.1. one-to-many / many-to-one
	7.5.2. one to one
	7.5.3. Many-to-many

	7.6. More complex association mappings

	Chapter 8. Component Mapping
	8.1. Dependent objects
	8.2. Collections of dependent objects
	8.3. Components as Map indices
	8.4. Components as composite identifiers
	8.5. Dynamic components

	Chapter 9. Inheritance mapping
	9.1. The three strategies
	9.1.1. Table per class hierarchy
	9.1.2. Table per subclass
	9.1.3. Table per subclass: using a discriminator
	9.1.4. Mixing table per class hierarchy with table per subclass
	9.1.5. Table per concrete class
	9.1.6. Table per concrete class using implicit polymorphism
	9.1.7. Mixing implicit polymorphism with other inheritance mappings

	9.2. Limitations

	Chapter 10. Working with objects
	10.1. Hibernate object states
	10.2. Making objects persistent
	10.3. Loading an object
	10.4. Querying
	10.4.1. Executing queries
	10.4.1.1. Iterating results
	10.4.1.2. Queries that return tuples
	10.4.1.3. Scalar results
	10.4.1.4. Bind parameters
	10.4.1.5. Pagination
	10.4.1.6. Scrollable iteration
	10.4.1.7. Externalizing named queries

	10.4.2. Filtering collections
	10.4.3. Criteria queries
	10.4.4. Queries in native SQL

	10.5. Modifying persistent objects
	10.6. Modifying detached objects
	10.7. Automatic state detection
	10.8. Deleting persistent objects
	10.9. Replicating object between two different datastores
	10.10. Flushing the Session
	10.11. Transitive persistence
	10.12. Using metadata

	Chapter 11. Read-only entities
	11.1. Making persistent entities read-only
	11.1.1. Entities of immutable classes
	11.1.2. Loading persistent entities as read-only
	11.1.3. Loading read-only entities from an HQL query/criteria
	11.1.4. Making a persistent entity read-only

	11.2. Read-only affect on property type
	11.2.1. Simple properties
	11.2.2. Unidirectional associations
	11.2.2.1. Unidirectional one-to-one and many-to-one
	11.2.2.2. Unidirectional one-to-many and many-to-many

	11.2.3. Bidirectional associations
	11.2.3.1. Bidirectional one-to-one
	11.2.3.2. Bidirectional one-to-many/many-to-one
	11.2.3.3. Bidirectional many-to-many

	Chapter 12. Transactions and Concurrency
	12.1. Session and transaction scopes
	12.1.1. Unit of work
	12.1.2. Long conversations
	12.1.3. Considering object identity
	12.1.4. Common issues

	12.2. Database transaction demarcation
	12.2.1. Non-managed environment
	12.2.2. Using JTA
	12.2.3. Exception handling
	12.2.4. Transaction timeout

	12.3. Optimistic concurrency control
	12.3.1. Application version checking
	12.3.2. Extended session and automatic versioning
	12.3.3. Detached objects and automatic versioning
	12.3.4. Customizing automatic versioning

	12.4. Pessimistic locking
	12.5. Connection release modes

	Chapter 13. Interceptors and events
	13.1. Interceptors
	13.2. Event system
	13.3. Hibernate declarative security

	Chapter 14. Batch processing
	14.1. Batch inserts
	14.2. Batch updates
	14.3. The StatelessSession interface
	14.4. DML-style operations

	Chapter 15. HQL: The Hibernate Query Language
	15.1. Case Sensitivity
	15.2. The from clause
	15.3. Associations and joins
	15.4. Forms of join syntax
	15.5. Referring to identifier property
	15.6. The select clause
	15.7. Aggregate functions
	15.8. Polymorphic queries
	15.9. The where clause
	15.10. Expressions
	15.11. The order by clause
	15.12. The group by clause
	15.13. Subqueries
	15.14. HQL examples
	15.15. Bulk update and delete
	15.16. Tips & Tricks
	15.17. Components
	15.18. Row value constructor syntax

	Chapter 16. Criteria Queries
	16.1. Creating a Criteria instance
	16.2. Narrowing the result set
	16.3. Ordering the results
	16.4. Associations
	16.5. Dynamic association fetching
	16.6. Example queries
	16.7. Projections, aggregation and grouping
	16.8. Detached queries and subqueries
	16.9. Queries by natural identifier

	Chapter 17. Native SQL
	17.1. Using a SQLQuery
	17.1.1. Scalar queries
	17.1.2. Entity queries
	17.1.3. Handling associations and collections
	17.1.4. Returning multiple entities
	17.1.4.1. Alias and property references

	17.1.5. Returning non-managed entities
	17.1.6. Handling inheritance
	17.1.7. Parameters

	17.2. Named SQL queries
	17.2.1. Using return-property to explicitly specify column/alias names
	17.2.2. Using stored procedures for querying
	17.2.2.1. Rules/limitations for using stored procedures

	17.3. Custom SQL for create, update and delete
	17.4. Custom SQL for loading

	Chapter 18. Filtering data
	18.1. Hibernate filters

	Chapter 19. XML Mapping
	19.1. Working with XML data
	19.1.1. Specifying XML and class mapping together
	19.1.2. Specifying only an XML mapping

	19.2. XML mapping metadata
	19.3. Manipulating XML data

	Chapter 20. Improving performance
	20.1. Fetching strategies
	20.1.1. Working with lazy associations
	20.1.2. Tuning fetch strategies
	20.1.3. Single-ended association proxies
	20.1.4. Initializing collections and proxies
	20.1.5. Using batch fetching
	20.1.6. Using subselect fetching
	20.1.7. Fetch profiles
	20.1.8. Using lazy property fetching

	20.2. The Second Level Cache
	20.2.1. Cache mappings
	20.2.2. Strategy: read only
	20.2.3. Strategy: read/write
	20.2.4. Strategy: nonstrict read/write
	20.2.5. Strategy: transactional
	20.2.6. Cache-provider/concurrency-strategy compatibility

	20.3. Managing the caches
	20.4. The Query Cache
	20.4.1. Enabling query caching
	20.4.2. Query cache regions

	20.5. Understanding Collection performance
	20.5.1. Taxonomy
	20.5.2. Lists, maps, idbags and sets are the most efficient collections to update
	20.5.3. Bags and lists are the most efficient inverse collections
	20.5.4. One shot delete

	20.6. Monitoring performance
	20.6.1. Monitoring a SessionFactory
	20.6.2. Metrics

	Chapter 21. Toolset Guide
	21.1. Automatic schema generation
	21.1.1. Customizing the schema
	21.1.2. Running the tool
	21.1.3. Properties
	21.1.4. Using Ant
	21.1.5. Incremental schema updates
	21.1.6. Using Ant for incremental schema updates
	21.1.7. Schema validation
	21.1.8. Using Ant for schema validation

	Chapter 22. Example: Parent/Child
	22.1. A note about collections
	22.2. Bidirectional one-to-many
	22.3. Cascading life cycle
	22.4. Cascades and unsaved-value
	22.5. Conclusion

	Chapter 23. Example: Weblog Application
	23.1. Persistent Classes
	23.2. Hibernate Mappings
	23.3. Hibernate Code

	Chapter 24. Example: Various Mappings
	24.1. Employer/Employee
	24.2. Author/Work
	24.3. Customer/Order/Product
	24.4. Miscellaneous example mappings
	24.4.1. "Typed" one-to-one association
	24.4.2. Composite key example
	24.4.3. Many-to-many with shared composite key attribute
	24.4.4. Content based discrimination
	24.4.5. Associations on alternate keys

	Chapter 25. Best Practices
	Chapter 26. Database Portability Considerations
	26.1. Portability Basics
	26.2. Dialect
	26.3. Dialect resolution
	26.4. Identifier generation
	26.5. Database functions
	26.6. Type mappings

	References

