HIBERNATE - Relational
Persistence for Idiomatic Java

1

Hibernate Reference
Documentation

3.6.10.Final

by Gavin King, Christian Bauer, Max Rydahl Andersen,
Emmanuel Bernard, Steve Ebersole, and Hardy Ferentschik

and thanks to James Cobb (Graphic Design) and Cheyenne Weaver (Graphic Design)

[l (=] = Vo7 < T Xi

I T (0] - S SPP 1
1.1. Part 1 - The first Hibernate Applicationcooviiiiiiiiiiiiin e 1
N O T T U] o PP PP 1
B I = {1) o =T 3
1.1.3. The Mapping file ..o e e 4
1.1.4. Hibernate configurationoovciiiuiiiiiiiiice e 7
1.1.5. Building With MavVENoiiiiiiii e 9
1.1.6. Startup and hEIPEIS ... 9
1.1.7. Loading and storing ODJECESoiiiiiiiiiie e 10

1.2. Part 2 - Mapping aSSOCIALIONScciuuuieiiiiiie et 13
1.2.1. Mapping the Person Classcccciiiiiiiiiii i 13
1.2.2. A unidirectional Set-based assocCiationcccoeviiiiiiiiiiinii s 14
1.2.3. Working the asS0Ciationcccccuiiiiiiiiiiiici e 15
1.2.4. Collection Of VAIUESiiiiiiiiieei e 17
1.2.5. Bi-directional aSSOCIAtIONSuvieiiiiiiieeiiiiie et e e 19
1.2.6. Working bi-directional linksScccoiiiiiiiii e 19

1.3. Part 3 - The EventManager web applicationccccooiiiiiiiiiiiiiciiie e, 20
1.3.1. Writing the basiC SEIVIEtiiiiiiiiii e 20
1.3.2. Processing and renNderingcc.ceeiuuieiiiieeiii e e e e e e 22
1.3.3. Deploying and tESTINGccuuuiiiiiiieieiii et 23

Jid. SUMIMIAIY ittt et e e e et e e e e e e e e e e e e e e e et an 24
B AN o] o 1 (=T o] AU = 25
N T O Y= o T PP 25
2.1.1. Minimal arChit@CtUreccuuiiiiieii e e 25
2.1.2. Comprehensive arChiteCtUreccoiiiiiiiiii e 26
2.1.3. BASIC APIS oo 27

b Y) G] (=T [= LT o 28
A T ©0] 01 1) ([= ST =211 o] o 28
G T 0 1 To [U1 = Lo I 31
3.1. Programmatic CONfIQUIALIONuuuiiiiiiieiiii et 31
3.2. Obtaining @ SeSSIONFACIONYcivviiiiiiciie e 32
3.3. IDBC CONMNECLIONS ...iiiiiiitieei et e et e e e e e e et e e e e e et neean e e eneeeens 32
3.4. Optional configuration ProPertieScccuuiiiiiieiiii e e e e e 34
O 1 @ R I =1 £ 42
3.4.2. Outer JOiN FELCNINGcovviiii e e 43
3.4.3. BINAIY SIMEAMS ...uuiiiiiii ettt et e e e e e eaeans 43
3.4.4. Second-level and qUEry Cachecooviiiiiiii i 43
3.4.5. Query Language SUDSHILULIONcoeuuiiiiiiiiieii e 43
3.4.6. Hibernate StatiStiCSviiiiiiiiiiii e 44

I ST Moo o111 HE PSP SPPPTPPN 44
3.6. Implementing a NamiNgSIrategyceevuuiiiiiiieiiiieiii e e e e e e 45
3.7. Implementing a PersisterClassProvidercooviiiiiiiiiiii e 45
3.8. XML configuration fil@cooouiiiiiii e 46

HIBERNATE - Relational Persis...

3.9. Java EE Application Server integrationcoooveeuiiieiiiinieiiisee e 47
3.9.1. Transaction strategy configurationccooeeviieiiiieiiii e e a7
3.9.2. INDI-bound SeSSIONFACIOIYcccuuiiiiiiiiieiiii e 49
3.9.3. Current Session context management with JTAcoociiiiiiiiineeieeeeenn, 49
3.9.4. IMX dePIOYMENT ...ttt 50

A, PerSISTENT ClAaSSES ..iiiiiiiiiiiiii ettt ettt e et e et e e e e e e e e et e e e e et 53

4.1. A simple POJO eXamMPIEcoouuiiiiiiiiei e 53
4.1.1. Implement a no-argument CONSITUCTONivviiiiii e e e e e 54
4.1.2. Provide an identifier Propertycoouuoi oo 55
4.1.3. Prefer non-final classes (semi-optional)cccoooiiiiiiiiiiiii e, 55
4.1.4. Declare accessors and mutators for persistent fields (optional) 56

4.2, Implementing INNEMTANCEoouiiiii e 56

4.3. Implementing equals() and hashCode()oveiiiiiiiiiiii e 57

N V7 = Va1 ol 4T Yo 1= £ PP 58

A5, TUPHZELS oot 60

4.6. EntityNAmMERESOIVEIS ... ccviiiiii et e e e 61

5. BaSIC O/R MAPPING ..ieeiiiiiiiiii ettt ettt e 65

5.1. Mapping decClarationcccouiiiiiiiiiii e 65
L 0 O 1 1] PP 68
Lo 2 o 1= o 1= SRR 73
5.1.3. Optimistic locking properties (OPtioNaAl)covvevuiiriiiiiiiiei e 91
D i, PO PIY ettt 94
5.1.5. Embedded objects (aka COMPONENLS)ccuuuiiiiiiiieiiiiiiieeiii e 103
5.1.6. INNEMLANCE SIrAtEOYuiivvniiiii i e e e e e e e e e e 106
5.1.7. Mapping one to one and one to many associationscccovevvvevennnnnn. 117
L R T - LT] = | T PR 126
L0 TR L o SRR 127
LN O = o] 1= 3 1= 129
5.1.11. Some hbm.Xxml SPECIfiCItIEScc.uiiiiiiiiiiiii e 130

5.2, HIDEINALE tYPES ...ieiniiii e 134
5.2.1. ENtitiesS @nd VAIUESoiieieiiii e 134
5.2.2. BASIC VAIUE tYPES ..ueiiiiiiiii it 135
5.2.3. CUSIOM VAIUE TYPES ..ovenieiiiiiii et 137

5.3. Mapping a class more than ONCEecciiiiiii i 138

5.4. SQL quoted identifierscooouuiiiiiiiiee e 139

5.5. Generated PrOPEITIESccuuiiiiiieiiiei e et e e e e e e e e e e et e et e e e e eeas 139

5.6. Column transformers: read and Write €XPreSSIONScccevuvveeiiiiieeeiiiiieeeeiineeeens 140

5.7. Auxiliary database ODJECESiiiiiiiiii e 141

LT IV 012 S PPN 143

B.1. VaAlUB Y PES iittiiiii it 143
6.1.1. BASIC VAIUE TYPES ..eeiiiieiiiiii ettt ettt 143
6.1.2. COMPOSITE TYPES ovvuiiiiieii e e e e e e e et e e e eanaees 149
6.1.3. COlIECLION LYPES ...ttt eaaans 149

LS = 01112 1/ = PN 150

6.3. Significance of type CALEQOIIESc.uui i 150

B.4. CUSTOM LY DS ouitiiitiit ettt e e e e et e e e e 150
6.4.1. Custom types using org.hibernate.type.Typeccoeveeviiiiiiiiiiiiiiineeeenen, 150
6.4.2. Custom types using org.hibernate.usertype.USerTypeccocevevevinnennnnns 152
6.4.3. Custom types using org.hibernate.usertype.CompositeUserType 153

LSRR T Y/ o L= (= To 1) {5 PN 155

7. COllECtiON MAPPING «etuiiiiitiiee ittt e et e e et e e e et e e e eet e e eenbnaaeees 157

7.1. Persistent COIECLIONSoiiieiiiiiiiii e e eaens 157

7.2. HOW t0 Map COIIECLIONSiiiiiiiiiieii e 158
7.2.1. Collection fOreign KEYSuiiiiiiiiiii i e 162
7.2.2. Indexed COIECHIONScveveiiiiie e e 162
7.2.3. Collections of basic types and embeddable objectsccooveviiiennnns 168

7.3. Advanced colleCtion MAaPPINGScccuuuuereriieieii e 170
7.3.1. Sorted COlIECHIONSiiiiiii e 170
7.3.2. Bidirectional assoCIatioNSoviiiiiiiieiie e 171
7.3.3. Bidirectional associations with indexed collectionscccooveviiiniens 176
7.3.4. Ternary asSOCIAtIONSccuuuiiiiiuiieeiiiiee et e e e ettt e e e e e 177
7.3.5. USING AN <idDag>oiiiniiiiiciie e 178

7.4. ColleCtion eXaMPIES ...t 179

8. ASSOCIAION MAPPINGS oiiiiiiiieiiii e e e e e e e et e e e e e et e et e eaaaaa 185

S 200 I 1o o To 11 o3 1T o I PPN 185

8.2. Unidirectional aSSOCIAtIONSccuuuiiiiiiiiieiiii e 185
8.2. 1. MANY-T0-0NE ..ottt e 185
I @ L 1= (0 o] o [P TPTPT 185
8.2.3. ONE-LO-MANY .ittieiieiit et ettt et e 186

8.3. Unidirectional associations with join tablescc.cccoiiiiiiiii 187
8.3. 1. ONE-LO-MANY irtiieiieiit ettt ettt e e e e e 187
8.3.2. MaANY-T0-0NE ittt 188
ST TG T @ T =T (0 Eo] [PTP 188
8.3.4, MaANY-TO-TNANY ...iiiiiiii e 189

8.4. Bidirectional aSSOCIAtIONSc.uiiiiiieiiiee i 190
8.4.1. one-to-many / MaNY-t0-0NEieiuuieeiiieeiiie e ee e e e e e e ean e enes 190
S R @ T = (0 R o] [PP 191

8.5. Bidirectional associations with join tablescc.ccoiiiiiii 192
8.5.1. one-to-many / Many-10-0NE€oiiiiuiiiieiiiii et 192
8.5.2. ONE 10 ONE oot e e 193
8.5.3. MaNY-t0-MANY ...eoniiiiieii e 193

8.6. More complex association MAPPINGS ...ccuueierieiieeriiieriee e e e e e e raaeeanaens 194

9. COMPONENT MAPPING tertnetiiiteieii ettt et ettt e et e et et e e e e e eaa s 197

9.1. Dependent ODJECLSiiiiiiii i 197

9.2. Collections of dependent ODJECEScoiiiiiiiiiiii 199

9.3. Components as Map INAICESccvuiiiiiieiiiii e e e e 200

9.4. Components as composite Identifiersoooooiiiiiiiii e 200

9.5. DYNAMIC COMPONENES ...uuiiiiiiiiiiiii e et e et e e e e e e et e e e e et e e et e e e e e s ta e e aaneeennaas 202

HIBERNATE - Relational Persis...

10. INNEritANCEe MAPPING oeiriniiiiii e e ettt e ettt e e ettt e e e e eat e e eeraaeaeen 205
10.1. The three Strategiesccvvuiiiiii e e 205
10.1.1. Table per class hierarChyccooiiiiiiiiiiii e 205
10.1.2. Table per SUDCIASSccouuieiiiiiii e 206
10.1.3. Table per subclass: using a disCriminatorcccovveviiiiiieiiiiinneeeeninnn. 206
10.1.4. Mixing table per class hierarchy with table per subclass 207
10.1.5. Table per CoNCrete Classcccouiiiiiiiiiiiii e 208
10.1.6. Table per concrete class using implicit polymorphismcccooceevn 209
10.1.7. Mixing implicit polymorphism with other inheritance mappings 210

0 2 I 1 g = o 1 PRSP 210
11. Working With ODJECIS ..o e 213
11.1. Hibernate ODJECE StAtESccuuiiiiiiiiie e e e e e 213
11.2. Making 0DjJECtS PEISISIENTvuniiiiiiiii e 213
11.3. Loading @n ODJECT ...vviiii i 214
R S @ TH =T oY/ o Vo PSP SPPRTR 216
11.4.1. EXECULING QUEIIES ..cevuiiiii et e et e e e e e e e e et e et r e et e e et e e et e e s e e eaneees 216
11.4.2. Filtering COIECLIONS ...coouuniiiiiii e 220
I TR O 11 =T T T [0 1= 1= 221
11.4.4. Queries iN NAtIVE SQLuuiiiiieii e e 221
11.5. Modifying Persistent ODJECScciiuiiiiiiiii e 222
11.6. Modifying detached ODJECESoouuiiiiii e 222
11.7. AUtOmMALIC State AELECHIONiieveiiiieiie e e 223
11.8. Deleting persistent ODJECESoouuuiiiiiii e 224
11.9. Replicating object between two different datastorescccccoeveviiiiiineeinnennnn. 225
11.20. Flushing the SESSIONoiiiiiiiii e 225
11.11. TranSitive PEISISIENCE ...c.uuiiiiiiiii e e e 226
11.22. USING METAGALA .. .eevveneiiitieeeiiie ettt ettt ettt ettt e e e e eaaa e e eanans 229
R =T Lo o a1 YA =T o T 231
12.1. Making persistent entities read-0nlyccooooiiiiiniiiii 231
12.1.1. Entities of immutable ClasSesccoviviiiiiiiiii 232
12.1.2. Loading persistent entities as read-onlycccoooveiiiiiiiiiiiineiiee 232
12.1.3. Loading read-only entities from an HQL query/criteriacccocceuuveees 233
12.1.4. Making a persistent entity read-onlyccoooviiiiiiiiiiiii 234
12.2. Read-only affect on Property tyPe ... eeei i 235
12.2.1. SIMPIE PIrOPEITIES .vuieiiiii e 236
12.2.2. Unidirectional assoCIatioNSoveeiiiiiieeiiiiiieeeiiiine e 237
12.2.3. Bidirectional assSoCIiatiONsc.uiviiuiiiiiiiiiiie e 238

13. Transactions and CONCUITENCY ...ccuuieiiiieiiiieeiiiee e e e e e e e e e e e e e e et e e aaeeaanaas 241
13.1. Session and tranSaCtioN SCOPESccvuuivieiiiieiiii ettt 241
1301, UNQt OF WOTK o 241
13.1.2. LONQG CONVEISALIONS .. .cevvuieiiiii it e ettt e e et e et e e e e e e 242
13.1.3. Considering object IdeNntitycccuieiiiieiiiie e 243
13.1.4. COMMON ISSUES ...etuietiietiieeii ettt e e e e e et s e et e e et e e et ae e e eeenaeeeneeenneeennss 244
13.2. Database transaction demarCationcooeeveueiieeriiinneeiiiiie e e e e e e 245

Vi

13.2.1. Non-managed enVIFONMENTcceuuuiiiieiiieeeiiie e 246

R B U T oo T N I NPT 247
13.2.3. Exception handlingooveieeiiiiiiii e 248
13.2.4. Transaction tIMEOULoovvuuiieiiiiii ettt r e e e eae s 249
13.3. Optimistic CONCUITENCY CONLIONciiiiiieiiiii et 250
13.3.1. Application version Checkingccooiiiiiiiiiiiiii e 250
13.3.2. Extended session and automatic VErsioningccooeveevineeiiiinneeeninnnnn. 251
13.3.3. Detached objects and automatic Versioningcccccoevevvieeviiieviiieennnnens 252
13.3.4. Customizing automatic VErSioNiNGcccuuuvererrinieiiiineeeeiiineeeeeiineeeeens 252
13.4. PeSSIMISHIC IOCKING ..covuiiiiiiiiieei e e e e e e e e e aaeees 253
13.5. Connection release MOAESvieuiiiiieie e een 254
14, INTErCEPLOrS ANU EVENTS ..uiiiiiiiii e e e e e e e e e e et e e et e ean s 257
I I [01 (=T (o] =T] (o] = PP 257
T4.2. EVENE SYSBIM ettt ettt e e 259
14.3. Hibernate declarative SECUNLYc..uiiiiiiiiieiii e 260
15, BatCh PrOCESSING ovuiiiiii e e e e 263
T 2 7= (o o T TS o P 263
15.2. BatCh UPAALES ...ovniiiiiii e e e 264
15.3. The StatelessSession iNterfacec.cooviiiiiiiiiii e 264
15.4. DML-StYlE OPEIatiONSuuiiiiiiiii et e e e e e e e et e e e e eaas 265
16. HQL: The Hibernate QUery LanQUAageccc.uuiiiiiiiniieiiiiieeeiii e et et e e e e e 269
16.1. CASE SENSIIVILY t.uiiiiiiiii e e e e e e e e e e e e e e e e et e e et e e anaees 269
16.2. The frOM ClAUSEuniiiiiie et e e ean e 269
16.3. ASSOCIAtIONS AN JOINS ...civiiiiiiieiiii e e e e e e e e e e aaas 270
16.4. FOrMS Of JOIN SYNTAX ..ciiitiiieiiiiii ettt 271
16.5. Referring to identifier Propertycocveuiiiiii i 272
16.6. The SEIECTE CIAUSEceviiiiieeeie e e e e e e eanaees 272
16.7. Aggregate fUNCHIONSc..uiiiiii i e e e e e e e e e aaeees 274
16.8. POlyMOIPhiC QUETIESiiiiiiii et 274
16.9. The WRHEIE ClAUSEvuniiiiiii e 275
16.20. EXPIrESSIONS ...iiiitiieeteii ettt e e ettt e ettt e et e et e e e e bt e et e et e 277
16.11. The order DY CIAUSEccuuiiiiicii e e 281
16.12. The group DY CIAUSEoouuiiiiii e 281
T ST o To [1= =P 282
16.14. HQL ©XAMPIES ...ttt ettt e et e e e s 283
16.15. Bulk update and deletecooouiiiiiiiiii 285
16.16. TIPS & THCKS oeeiiiiiii et e 285
G T A e ¢ 0 o To] 1= o | £ R 286
16.18. ROW Value CONSIIUCLON SYNTAXcevvvinieiiiiieeeiiis e et e 287
R O 41 (=T - RO 11 =T g = P 289
17.1. Creating a Criteria iNStANCEccocuuiiiiiiiii e 289
17.2. Narrowing the result Setcciiiii i 289
17.3. Ordering the FESUILSociiiiiiiiii e 290
17.4. ASSOCIALIONS ...iiiiitiieeeii e ettt e et e et e e e et e e e e et e e e e et e e e eeteaeeeart e aaees 291

Vii

HIBERNATE - Relational Persis...

17.5. Dynamic association fetChingooviiiiiiiii 292
17.6. EXAMPIE QUEIIES ...ouiiiii i e e 292
17.7. Projections, aggregation and groUpingc..uoveeierineeierinneeieine et e i 293
17.8. Detached queries and SUDQUETIEScoouiiiiiiiiiiicie e 295
17.9. Queries by natural iIdentifierooooiiiiiiii 295
18, NALIVE SQL oiiiiiiiiiie i e e et e e et e e e e et e e e et e e et e e e ar e aanes 297
18.1. USING @ SQLQUETY .ouuiiiiiiii ettt ettt e e e et e et e e e e s 297
S S o | = T o [1= =P 297
18.1.2. BNt QUETIES ... 298
18.1.3. Handling associations and collectionsccccoviiiiiiiiiiieiiiieee e 298
18.1.4. Returning multiple entitiesooiiiiiiiiiiii e 299
18.1.5. Returning non-managed entitieSccooeiuiiiiiiiiiiii e 301
18.1.6. Handling iNNErtaNCecoouuiiiiiiiiie e 301
18.1.7. PAr@mMELEIS ...cuiieiiiiiei ettt et e 301
18.2. Named SQL QUETIESuuiiiiiiieiiiii ettt e ettt e e et e e et e e e et e e eeni e eeees 302
18.2.1. Using return-property to explicitly specify column/alias names 308
18.2.2. Using stored procedures for QUEIYINGcccouuvveiiiiinieiiiiiieeeeeineeeeiineeees 309
18.3. Custom SQL for create, update and deletecooveiiiiiiiiiiiin e, 310
18.4. Custom SQL fOr 108diNgcocuuniiiiiiieei e 313
S 1) (=Y T g Yo o = 315
19.1. HIbernate filtersooeu i 315
b2 TG\ IRV F= T o 11 o 319
20.1. Working wWith XIML dataooieiiiiiiiiiiieiii e 319
20.1.1. Specifying XML and class mapping togetherccoccoeveiiiiiiiineinne, 319
20.1.2. Specifying only an XML MapPing «....ccoeeveieiiiiieeeiineeeee e 320
20.2. XML mapping Metadatalccuuiiiiiieiiiieiiii e e e e 320
20.3. Manipulating XML ALccovutiiieiiiie e 322
21. IMProving PerfOrMaNCEuuiiii e e e e e e e e e e e eaaeees 325
21.1. FetChing SHrAatEOIESuuiiiiiiietiii ettt et eaeans 325
21.1.1. Working with lazy assocCiationsccoceuiiieiiieeiiiiecii e e 326
21.1.2. Tuning fetCh Srategiesoveiiiiiiiieiii e 326
21.1.3. Single-ended assOCiation ProXi€Sccccuieiiiieeiiieeeiiieriiee e e eeenns 327
21.1.4. Initializing collections and ProXiesccoveveeuiiieiiiinieniii e 329
21.1.5. Using batch fetChingcccooiiiiiiii e 331
21.1.6. Using subselect fetchingccoouiiiiiii e 331
21.1.7. Fetch ProfileSsc..ociiiiii e 332
21.1.8. Using lazy property fetChingccooviiiiiiiiiiii e, 334
21.2. The Second LeVel CAChEciiiiiiiiiiiiii e 334
21.2.1. CaCh@ MAPPINGS - .ieetinieiiitie ettt et e e et e et e e et eeeeaa e eeees 335
21.2.2. Strategy: read ONIYcoiiiiiii e 338
21.2.3. Strategy: read/WIEovoiiiiii e 338
21.2.4. Strategy: NONStriCt read/WItecocoviiiiiiiiii e 338
21.2.5. Strategy: transactionalcooveiiiiiiiiiiii 338
21.2.6. Cache-provider/concurrency-strategy compatibilityccooeevneennnn. 338

viii

21.3. Managing the Caches ... 339

21.4. The QUEIY CaAChEuiiiiiii e e aens 340
21.4.1. Enabling quUEry CAChINGuiiiiiiiiieiiiie e 341

21.4.2. QUErY CaChe IBUIONSiviiiiii e e e e e e e 342

21.5. Understanding Collection performanceoooouuiiieiiiiiiieiiiiineci e 342

A IS 0 R = V(o (o] 1 1)V PP 342

21.5.2. Lists, maps, idbags and sets are the most efficient collections to update... 343

21.5.3. Bags and lists are the most efficient inverse collections 343

21.5.4. ONe SOt deleteuoveeiiiiie e 344

21.6. MONItoring PErfOrMANCEuuiiiiiieiii i e e e aeaas 344
21.6.1. Monitoring @ SESSIONFACIONYc..uiiiiiiiiieiiiii et 344

21.8.2. MELIICS .unieeiiiiie ettt e e e 345

72 o Yo £=Y=] Al €U [o = 347
22.1. Automatic SChema generationccccuuiiiiiiieiii e e eaaas 347
22.1.1. Customizing the SChEeM@ccoiiiiiiiiiii e 347

22.1.2. RUNNING the 100iiiii e 350

22.1.3. PIOPEITIES .uieiiiiiie ettt ettt e e e 351

b S U L= g o A o | 351

22.1.5. Incremental schema UPdatescooviviiiiiiiiiiiiee e 352

22.1.6. Using Ant for incremental schema updatesc.cccoeviiiiiiiiiecineeenns 352

22.1.7. Schema validationoooeuiiiiiiiii e 353

22.1.8. Using Ant for schema validationcccooveiiiiiiiiiin e, 353

23. Additional MOAUIES ...cvuiiiiee e e 355
23.1. BeaN Validationcccouuiiiiiiiiiei i 355
23.1.1. Adding Bean Validationccoouuiiiiiiiiieiiec e 355

b T N @do 110 [-1 1o o I 355

23.1.3. Catching VIOIAtIONSoiiiiiiiiiiiii e 357

23.1.4. Database SChEMAoiiiiiiiiiii e 357

23.2. HIbernate SearChco.oiiiiiiii e 358

G T T B 1= Yo o] o T o S 358

23.2.2. Integration with Hibernate ANNOtationsccooevvviiiiiiiiiniiiii e, 358

24, Example: Parent/Child ... e 359
24.1. A note about COIIECLIONSieuiiiiiiee e 359
24.2. Bidirectional One-t0-ManYcccouiiiiiiiiiiiiie e e e e e 359
24.3. Cascading life CYCIEiiii e 361
24.4. Cascades and UNSaVed-VAlUEcooeviiiiiiiiiiiiie e 362
T @] o Tor 11T o I PN 363

25. Example: Weblog AppliCation ..o 365
25.1. PersiStENt ClASSESuuiiieiiiiiiieii et 365
25.2. HIibernate MappinNgScouueiiiieiiiiieei e e e e e e e e e e an s 366
25.3. HIDErnate Codeuiiiiiiiiii e 368

26. Example: Various MappingS ..o eiiieiiiiieii e e e e e e e e e e et e e et e e e eeens 373
26.1. EMPIOYEITEMPIOYEE ...ttt 373
26.2. AULNOIIWOTK ..oveiciii et e et eeaa s 375

HIBERNATE - Relational Persis...

26.3. CustomMer/Order/ProAUCToouuiiiiiiee e e e e e e e e ees 377
26.4. Miscellaneous example MapPiNgScccuiieiiiieiiiierii e e e e e 379
26.4.1. "Typed" 0ne-t0-0Ne aSSOCIALIONccevvviieiiiiie e 379

26.4.2. Composite KeY eXamMPIEcovniiiiiiiii e 379

26.4.3. Many-to-many with shared composite key attributecc.c.occiiiiies 381

26.4.4. Content based diSCriminationccoveviiiiiieiiiiinie e 382

26.4.5. Associations on alternate KeYscooeuiiiiiiiiiiiiiiiie e 383

P = 1= T B o - ol £ o = PP 385
28. Database Portability ConSiderationscooviiiiiiiiiiiiiie e 389
28.1. Portability BASICSuuiiiinieiiiieiiiei et 389

B2 T 1 - 1= o S P 389
28.3. DialeCt TESOIULION ...evviiiiiiii e e e e 389
28.4. Identifier geNEIAtiONcouuuiiiiiiii e 390
28.5. Database fUNCLIONScouuiiiiiii et e e 391
28.6. TYPE MAPPINGS -..neeeetneetieti ettt et e e et e e e e e e et e e et e e e eab e e eeaa e e eenanns 391
RETEIEINCES ... ettt et 393

Preface

Working with both Object-Oriented software and Relational Databases can be cumbersome
and time consuming. Development costs are significantly higher due to a paradigm mismatch
between how data is represented in objects versus relational databases. Hibernate is an Object/
Relational Mapping solution for Java environments. The term Object/Relational Mapping refers
to the technique of mapping data from an object model representation to a relational data model
representation (and visa versa). See http://en.wikipedia.org/wiki/Object-relational_mapping for a
good high-level discussion.

@ Note

While having a strong background in SQL is not required to use Hibernate, having
a basic understanding of the concepts can greatly help you understand Hibernate
more fully and quickly. Probably the single best background is an understanding of
data modeling principles. You might want to consider these resources as a good
starting point:

Hibernate not only takes care of the mapping from Java classes to database tables (and from
Java data types to SQL data types), but also provides data query and retrieval facilities. It can
significantly reduce development time otherwise spent with manual data handling in SQL and
JDBC. Hibernate’s design goal is to relieve the developer from 95% of common data persistence-
related programming tasks by eliminating the need for manual, hand-crafted data processing
using SQL and JDBC. However, unlike many other persistence solutions, Hibernate does not hide
the power of SQL from you and guarantees that your investment in relational technology and
knowledge is as valid as always.

Hibernate may not be the best solution for data-centric applications that only use stored-
procedures to implement the business logic in the database, it is most useful with object-
oriented domain models and business logic in the Java-based middle-tier. However, Hibernate
can certainly help you to remove or encapsulate vendor-specific SQL code and will help with the
common task of result set translation from a tabular representation to a graph of objects.

If you are new to Hibernate and Object/Relational Mapping or even Java, please follow these
steps:

1. Read Chapter 1, Tutorial for a tutorial with step-by-step instructions. The source code for the
tutorial is included in the distribution in the doc/ ref erence/ tut ori al / directory.

2. Read Chapter 2, Architecture to understand the environments where Hibernate can be used.

Xi

http://en.wikipedia.org/wiki/Object-relational_mapping
http://www.agiledata.org/essays/dataModeling101.html
http://en.wikipedia.org/wiki/Data_modeling

Preface

. View the eg/ directory in the Hibernate distribution. It contains a simple standalone application.

Copy your JDBC driver to the | i b/ directory and edit et ¢/ hi ber nat e. properti es, specifying
correct values for your database. From a command prompt in the distribution directory, type
ant eg (using Ant), or under Windows, type bui | d eg.

. Use this reference documentation as your primary source of information. Consider reading

[JPwH]if you need more help with application design, or if you prefer a step-by-step tutorial. Also
visit http://caveatemptor.hibernate.org and download the example application from [JPwH].

. FAQs are answered on the Hibernate website.
. Links to third party demos, examples, and tutorials are maintained on the Hibernate website.

. The Community Area on the Hibernate website is a good resource for design patterns and

various integration solutions (Tomcat, JBoss AS, Struts, EJB, etc.).

There are a number of ways to become involved in the Hibernate community, including

Trying stuff out and reporting bugs. See http://hibernate.org/issuetracker.html details.

Trying your hand at fixing some bugs or implementing enhancements. Again, see http://
hibernate.org/issuetracker.html details.

http://hibernate.org/community.html list a few ways to engage in the community.
» There are forums for users to ask questions and receive help from the community.

* There are also IRC [http://en.wikipedia.org/wiki/Internet_Relay Chat] channels for both user
and developer discussions.

Helping improve or translate this documentation. Contact us on the developer mailing list if you
have interest.

Evangelizing Hibernate within your organization.

Xii

http://caveatemptor.hibernate.org
http://hibernate.org/issuetracker.html
http://hibernate.org/issuetracker.html
http://hibernate.org/issuetracker.html
http://hibernate.org/community.html
http://en.wikipedia.org/wiki/Internet_Relay_Chat
http://en.wikipedia.org/wiki/Internet_Relay_Chat

Chapter 1.

Tutorial

Intended for new users, this chapter provides an step-by-step introduction to Hibernate, starting
with a simple application using an in-memory database. The tutorial is based on an earlier tutorial
developed by Michael Gloegl. All code is contained in the t ut ori al s/ web directory of the project
source.

e | Important

This tutorial expects the user have knowledge of both Java and SQL. If you have
a limited knowledge of JAVA or SQL, it is advised that you start with a good
introduction to that technology prior to attempting to learn Hibernate.

@ Note

The distribution contains another example application under the tutori al / eg
project source directory.

1.1. Part 1 - The first Hibernate Application

For this example, we will set up a small database application that can store events we want to
attend and information about the host(s) of these events.

@ Note

Although you can use whatever database you feel comfortable using, we will use
[http://hsqldb.org/] (an in-memory, Java database) to avoid describing
installation/setup of any particular database servers.

1.1.1. Setup

The first thing we need to do is to set up the development environment. We will be using
the "standard layout" advocated by alot of build tools such as Maven [http://maven.org].
Maven, in particular, has a good resource describing this layout [http://maven.apache.org/guides/
introduction/introduction-to-the-standard-directory-layout.html]. As this tutorial is to be a web
application, we will be creating and making use of src/ mai n/j ava, src/ mai n/ resources and
src/ mai n/ webapp directories.

We will be using Maven in this tutorial, taking advantage of its transitive dependency management
capabilities as well as the ability of many IDEs to automatically set up a project for us based on
the maven descriptor.

http://hsqldb.org/
http://hsqldb.org/
http://maven.org
http://maven.org
http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html

Chapter 1. Tutorial

<proj ect xm ns="http://maven. apache. or g/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schen®- i nst ance"
xsi : schemaLocati on="http://maven. apache. org/ POM 4. 0.0 http:// maven. apache. or g/ xsd/
maven-4. 0. 0. xsd" >

<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<groupl d>or g. hi bernate. tutorial s</ groupl d>
<artifact!ld>hibernate-tutorial</artifactld>
<versi on>1. 0. 0- SNAPSHOT</ ver si on>
<name>Fi rst Hi bernate Tutorial </ nane>

<bui | d>
<l-- we dont want the version to be part of the generated war file name -->
<final Nane>${artifactld}</final Name>

</ bui | d>

<dependenci es>
<dependency>
<groupl d>or g. hi ber nat e</ gr oupl d>
<artifactld>hi bernate-core</artifactld>
</ dependency>

<l-- Because this is a web app, we al so have a dependency on the servlet api. -->
<dependency>

<gr oupl d>j avax. ser vl et </ gr oupl d>

<artifactld>servlet-api</artifactld>
</ dependency>

<!-- Hibernate uses slf4j for |ogging, for our purposes here use the sinple backend -->
<dependency>

<groupl d>org. sl f 4j </ gr oupl d>

<artifactld>slf4j-sinple</artifactld>
</ dependency>

<!-- Hibernate gives you a choice of bytecode providers between cglib and javassist -->
<dependency>
<gr oupl d>j avassi st </ gr oupl d>
<artifactld>j avassist</artifactld>
</ dependency>
</ dependenci es>

</ proj ect>

Tip

It is not a requirement to use Maven. If you wish to use something else to build
this tutorial (such as Ant), the layout will remain the same. The only change is
that you will need to manually account for all the needed dependencies. If you
use something like Ivy [http://ant.apache.org/ivy/] providing transitive dependency
management you would still use the dependencies mentioned below. Otherwise,
you'd need to grab all dependencies, both explicit and transitive, and add them
to the project's classpath. If working from the Hibernate distribution bundle, this

http://ant.apache.org/ivy/
http://ant.apache.org/ivy/

The first class

would mean hi ber nat 3. j ar, all artifacts in the I i b/ r equi r ed directory and all
files from either the | i b/ byt ecode/ cgli b orli b/ byt ecode/ j avassi st directory;

additionally you will need both the servlet-api jar and one of the slf4j logging
backends.

Save this file as pom xm in the project root directory.

1.1.2. The first class

Next, we create a class that represents the event we want to store in the database; it is a simple
JavaBean class with some properties:

package org. hi bernate.tutorial.donain;
inport java.util.Date;

public class Event {
private Long id;

private String title;
private Date date;

public Event() {}

public Long getld() {
return id;

}

private void setld(Long id) {
this.id =id;
}

public Date getDate() {
return date;

}

public void setDate(Date date) {
this.date = date;

}

public String getTitle() {
return title;

}

public void setTitle(String title) {
this.title = title;
}

This class uses standard JavaBean naming conventions for property getter and setter methods,
as well as private visibility for the fields. Although this is the recommended design, it is not

Chapter 1. Tutorial

required. Hibernate can also access fields directly, the benefit of accessor methods is robustness
for refactoring.

The i d property holds a unique identifier value for a particular event. All persistent entity classes
(there are less important dependent classes as well) will need such an identifier property if we want
to use the full feature set of Hibernate. In fact, most applications, especially web applications, need
to distinguish objects by identifier, so you should consider this a feature rather than a limitation.
However, we usually do not manipulate the identity of an object, hence the setter method should
be private. Only Hibernate will assign identifiers when an object is saved. Hibernate can access
public, private, and protected accessor methods, as well as public, private and protected fields
directly. The choice is up to you and you can match it to fit your application design.

The no-argument constructor is a requirement for all persistent classes; Hibernate has to create
objects for you, using Java Reflection. The constructor can be private, however package or public
visibility is required for runtime proxy generation and efficient data retrieval without bytecode
instrumentation.

Save this file to the src/ mai n/ j ava/ or g/ hi ber nat e/ t ut ori al / domai n directory.

1.1.3. The mapping file

Hibernate needs to know how to load and store objects of the persistent class. This is where
the Hibernate mapping file comes into play. The mapping file tells Hibernate what table in the
database it has to access, and what columns in that table it should use.

The basic structure of a mapping file looks like this:

<?xm version="1.0"?>
<! DOCTYPE hi ber nat e- mappi ng PUBLI C
"-// Hi bernat e/ H bernate Mappi ng DTD 3. 0//EN"
"http://ww. hi bernate. org/ dt d/ hi ber nat e- mappi ng- 3. 0. dt d" >

<hi ber nat e- mappi ng package="org. hi bernate. tutorial.domain">

[...]

</ hi ber nat e- mappi ng>

Hibernate DTD is sophisticated. You can use it for auto-completion of XML mapping elements
and attributes in your editor or IDE. Opening up the DTD file in your text editor is the easiest
way to get an overview of all elements and attributes, and to view the defaults, as well as some
comments. Hibernate will not load the DTD file from the web, but first look it up from the classpath
of the application. The DTD file is included in hi bernate-core.jar (it is also included in the
hi ber nat e3. j ar, if using the distribution bundle).

The mapping file

£ Important

We will omit the DTD declaration in future examples to shorten the code. It is, of
course, not optional.

Between the two hi ber nat e- mappi ng tags, include a cl ass element. All persistent entity classes
(again, there might be dependent classes later on, which are not first-class entities) need a
mapping to a table in the SQL database:

<hi ber nat e- mappi ng package="org. hi bernate.tutorial.domai n">
<cl ass nane="Event" tabl e="EVENTS">
</ cl ass>

</ hi ber nat e- mappi ng>

So far we have told Hibernate how to persist and load object of class Event to the table EVENTS.
Each instance is now represented by a row in that table. Now we can continue by mapping the
unique identifier property to the tables primary key. As we do not want to care about handling
this identifier, we configure Hibernate's identifier generation strategy for a surrogate primary key
column:

<hi ber nat e- mappi ng package="org. hi bernate. tutorial.domain">

<cl ass nane="Event" tabl e="EVENTS">
<id name="id" col um="EVENT_| D">
<generator class="native"/>

</id>

</ cl ass>

</ hi ber nat e- mappi ng>

The i d element is the declaration of the identifier property. The name="i d" mapping attribute
declares the name of the JavaBean property and tells Hibernate to use the get 1 d() and set 1 d()
methods to access the property. The column attribute tells Hibernate which column of the EVENTS
table holds the primary key value.

The nested gener at or element specifies the identifier generation strategy (aka how are identifier
values generated?). In this case we choose nat i ve, which offers a level of portability depending
on the configured database dialect. Hibernate supports database generated, globally unique, as
well as application assigned, identifiers. Identifier value generation is also one of Hibernate's many
extension points and you can plugin in your own strategy.

Chapter 1. Tutorial

Tip

Q

nati ve is no longer consider the best strategy in terms of portability. for further
discussion, see Section 28.4, “Identifier generation”

Lastly, we need to tell Hibernate about the remaining entity class properties. By default, no
properties of the class are considered persistent:

<hi ber nat e- mappi ng package="org. hi bernate. tutorial.donmain">

<cl ass nane="Event" tabl e="EVENTS">
<id name="id" col um="EVENT_I D'>
<generator class="native"/>
</id>
<property nanme="date" type="tinestanp" col um="EVENT_DATE"/>
<property name="title"/>
</ cl ass>

</ hi ber nat e- mappi ng>

Similar to the i d element, the nane attribute of the property element tells Hibernate which
getter and setter methods to use. In this case, Hibernate will search for get Dat e() , set Dat e(),
getTitle() andsetTitle() methods.

(3

The titl e mapping also lacks a t ype attribute. The types declared and used in the mapping files
are not Java data types; they are not SQL database types either. These types are called Hibernate
mapping types, converters which can translate from Java to SQL data types and vice versa. Again,
Hibernate will try to determine the correct conversion and mapping type itself if the t ype attribute
is not present in the mapping. In some cases this automatic detection using Reflection on the
Java class might not have the default you expect or need. This is the case with the dat e property.
Hibernate cannot know if the property, which is of j ava. uti | . Dat e, should map to a SQL dat e,
ti mest anp, orti me column. Full date and time information is preserved by mapping the property
with a ti mest anp converter.

Hibernate configuration

Tip

Hibernate makes this mapping type determination using reflection when the
mapping files are processed. This can take time and resources, so if startup
performance is important you should consider explicitly defining the type to use.

Save this mapping file as src/main/resources/org/ hibernate/tutorial/domain/
Event . hbm xm .

1.1.4. Hibernate configuration

At this point, you should have the persistent class and its mapping file in place. It is now time to
configure Hibernate. First let's set up HSQLDB to run in "server mode"

(3

We will utilize the Maven exec plugin to launch the HSQLDB server by running: mvn exec: j ava
- Dexec. mai nCl ass="org. hsql db. Server" -Dexec. args="-database.0 file:target/data/
tutorial" You will see it start up and bind to a TCP/IP socket; this is where our application will
connect later. If you want to start with a fresh database during this tutorial, shutdown HSQLDB,
delete all files in the t ar get / dat a directory, and start HSQLDB again.

Hibernate will be connecting to the database on behalf of your application, so it needs to know
how to obtain connections. For this tutorial we will be using a standalone connection pool (as
opposed to a j avax. sql . Dat aSour ce). Hibernate comes with support for two third-party open
source JDBC connection pools: c3p0 [https://sourceforge.net/projects/c3p0] and proxool [http://
proxool.sourceforge.net/]. However, we will be using the Hibernate built-in connection pool for
this tutorial.

¥

For Hibernate's configuration, we can use a simple hi bernate. properties file, a more
sophisticated hi ber nat e. cf g. xm file, or even complete programmatic setup. Most users prefer
the XML configuration file:

<?xm version='"1.0" encoding="utf-8" ?>
<! DOCTYPE hi ber nat e-confi gurati on PUBLI C
"-// H bernate/ H bernate Configuration DID 3.0//EN'

https://sourceforge.net/projects/c3p0
https://sourceforge.net/projects/c3p0
http://proxool.sourceforge.net/
http://proxool.sourceforge.net/
http://proxool.sourceforge.net/

Chapter 1. Tutorial

"http://ww. hi bernate. org/dtd/ hi bernate-configuration-3.0.dtd">
<hi ber nat e- confi gurati on>
<sessi on-factory>
<!-- Database connection settings -->
<property nanme="connection. driver_cl ass">org. hsql db. jdbcDriver</property>
<property nanme="connection. url">jdbc: hsql db: hsql : //1 ocal host </ property>
<property name="connection. user name">sa</ property>

<property nanme="connecti on. password"></ property>

<I'-- JDBC connection pool (use the built-in) -->
<property nanme="connecti on. pool _si ze">1</ property>

<l-- SQ dialect -->
<property nanme="di al ect " >org. hi bernat e. di al ect. HSQLDi al ect </ property>

<!-- Enabl e Hibernate's automatic session context managenent -->
<property nanme="current_sessi on_context_cl ass">t hread</ property>

<!-- Disable the second-level cache -->
<property nane="cache. provi der _cl ass" >or g. hi ber nat e. cache. NoCachePr ovi der </ property>

<!-- Echo all executed SQ. to stdout -->
<property name="show_sql ">t rue</property>

<l-- Drop and re-create the database schemn on startup -->
<property nanme="hbnRddl . aut 0" >updat e</ pr operty>

<mappi ng resource="org/ hi bernate/tutorial/donmain/Event.hbm xm "/ >

</ session-factory>

</ hi ber nat e- confi gurati on>

(3

You configure Hibernate's Sessi onFact ory. SessionFactory is a global factory responsible for
a particular database. If you have several databases, for easier startup you should use several
<sessi on- f act or y> configurations in several configuration files.

The first four pr operty elements contain the necessary configuration for the JDBC connection.
The dialect property element specifies the particular SQL variant Hibernate generates.

Tip

Q

In most cases, Hibernate is able to properly determine which dialect to use. See
Section 28.3, “Dialect resolution” for more information.

Building with Maven

Hibernate's automatic session management for persistence contexts is particularly useful in this
context. The hbn2ddl . aut o option turns on automatic generation of database schemas directly
into the database. This can also be turned off by removing the configuration option, or redirected
to a file with the help of the SchemaExport Ant task. Finally, add the mapping file(s) for persistent
classes to the configuration.

Save this file as hi ber nat e. cf g. xnl into the src/ mai n/ r esour ces directory.

1.1.5. Building with Maven

We will now build the tutorial with Maven. You will need to have Maven installed; it is available
from the Maven download page [http://maven.apache.org/download.html]. Maven will read the /
pom xm file we created earlier and know how to perform some basic project tasks. First, lets run
the conpi | e goal to make sure we can compile everything so far:

[hi bernateTutorial]$ nmvn conpile
[INFQ Scanning for projects...

LA O e R R LT T
[INFQ Building First H bernate Tutorial

[I NFQ task-segnent: [conpile]

Y 0 e T

[INFQ [resources:resources]

[INFQ Using default encoding to copy filtered resources.

[INFQ [conpiler:conpile]

[INFQ Conpiling 1 source file to /home/stevel/projects/sandbox/ hi bernateTutorial/target/classes

[INEG] ===c====sc=sssccssccssscssssesssssssscsssssssssssscsasscasssaasoaoscanoas
[INFO BU LD SUCCESSFUL

N e, P S S S S
[INFQ Total tine: 2 seconds

[INFQ Finished at: Tue Jun 09 12:25:25 CDT 2009
[INFQ Final Menory: 5M 547M

[INEG) ===c==sss=sssccssccmescssssesscssssscssssssssscosasasscaassaassaasaaaoas

1.1.6. Startup and helpers

It is time to load and store some Event objects, but first you have to complete the
setup with some infrastructure code. You have to startup Hibernate by building a global
or g. hi ber nat e. Sessi onFactory object and storing it somewhere for easy access in
application code. A or g. hi ber nat e. Sessi onFact ory is used to obtain or g. hi ber nat e. Sessi on
instances. A org. hi bernate. Sessi on represents a single-threaded unit of work. The
or g. hi ber nat e. Sessi onFact ory is a thread-safe global object that is instantiated once.

We will create a Hi ber nat eUt i | helper class that takes care of startup and makes accessing the
or g. hi ber nat e. Sessi onFact ory more convenient.

package org. hibernate.tutorial.util;

inmport org. hi bernate. Sessi onFactory;
inmport org. hi bernate. cfg. Configuration;

http://maven.apache.org/download.html
http://maven.apache.org/download.html

Chapter 1. Tutorial

public class HibernateUtil {
private static final SessionFactory sessionFactory = buil dSessi onFactory();

private static SessionFactory buil dSessi onFactory() {

try {
/| Create the SessionFactory from hi bernate.cfg.xm
return new Configuration().configure().buil dSessionFactory();

}

catch (Throwabl e ex) {
/1 Make sure you log the exception, as it m ght be swal |l owed
Systemerr.println("Initial SessionFactory creation failed." + ex);
throw new ExceptionlnlnitializerError(ex);

}

public static SessionFactory getSessionFactory() {
return sessionFactory;

}

Save this code as src/ mai n/ j ava/ org/ hi bernate/tutorial /util/H bernateltil.java

This class not only produces the global or g. hi ber nat e. Sessi onFact ory reference in its static
initializer; it also hides the fact that it uses a static singleton. We might just as well have looked up
the or g. hi ber nat e. Sessi onFact ory reference from JNDI in an application server or any other
location for that matter.

If you give the or g. hi ber nat e. Sessi onFact ory a hame in your configuration, Hibernate will try
to bind it to JNDI under that name after it has been built. Another, better option is to use a JMX
deployment and let the JMX-capable container instantiate and bind a Hi ber nat eSer vi ce to JNDI.
Such advanced options are discussed later.

You now need to configure a logging system. Hibernate uses commons logging and provides two
choices: Log4j and JDK 1.4 logging. Most developers prefer Log4j: copy | og4j . properti es from
the Hibernate distribution in the et ¢/ directory to your sr ¢ directory, next to hi ber nat e. cf g. xm .
If you prefer to have more verbose output than that provided in the example configuration, you
can change the settings. By default, only the Hibernate startup message is shown on stdout.

The tutorial infrastructure is complete and you are now ready to do some real work with Hibernate.
1.1.7. Loading and storing objects
We are now ready to start doing some real work with Hibernate. Let's start by writing an

Event Manager class with a mai n() method:

package org. hibernate.tutorial;

import org. hi bernate. Sessi on;

10

Loading and storing objects

inport java.util.*;

inmport org.hibernate.tutorial.donain.Event;
inport org.hibernate.tutorial.util.H bernateltil;

public class Event Manager {

public static void main(String[] args) {
Event Manager ngr = new Event Manager () ;

if (args[0].equal s("store")) {
ngr. creat eAndSt or eEvent ("My Event", new Date());
}

Hi bernateUtil . get Sessi onFactory().close();
}

private void createAndStoreEvent(String title, Date theDate) {
Session session = HibernateUtil.getSessionFactory().getCurrentSession();
sessi on. begi nTransaction();

Event theEvent = new Event();
theEvent.setTitle(title);

t heEvent . set Dat e(t heDat e) ;
sessi on. save(theEvent);

sessi on. get Transaction().commt();

In cr eat eAndSt or eEvent () we created a new Event object and handed it over to Hibernate. At
that point, Hibernate takes care of the SQL and executes an | NSERT on the database.

A org.hibernate.Session is designed to represent a single unit of work (a single atomic piece of
work to be performed). For now we will keep things simple and assume a one-to-one granularity
between a Hibernate org.hibernate.Session and a database transaction. To shield our code from
the actual underlying transaction system we use the Hibernate or g. hi ber nat e. Transacti on
API. In this particular case we are using JDBC-based transactional semantics, but it could also
run with JTA.

What does sessi onFact ory. get Current Sessi on() do? First, you can call it as many times
and anywhere you like once you get hold of your org. hi bernat e. Sessi onFactory. The
get Current Sessi on() method always returns the "current" unit of work. Remember that we
switched the configuration option for this mechanism to "thread" in our src/ mai n/ r esour ces/
hi ber nat e. cf g. xm ? Due to that setting, the context of a current unit of work is bound to the
current Java thread that executes the application.

e | Important

Hibernate offers three methods of current session tracking. The "thread" based
method is not intended for production use; it is merely useful for prototyping and

11

Chapter 1. Tutorial

tutorials such as this one. Current session tracking is discussed in more detail later

on.

A org.hibernate.Session begins when the first call to get Current Sessi on() is made for the
current thread. It is then bound by Hibernate to the current thread. When the transaction ends,
either through commit or rollback, Hibernate automatically unbinds the org.hibernate.Session
from the thread and closes it for you. If you call get Cur r ent Sessi on() again, you get a new
org.hibernate.Session and can start a new unit of work.

Related to the unit of work scope, should the Hibernate org.hibernate.Session be used to execute
one or several database operations? The above example uses one org.hibernate.Session for one
operation. However this is pure coincidence; the example is just not complex enough to show
any other approach. The scope of a Hibernate org.hibernate.Session is flexible but you should
never design your application to use a new Hibernate org.hibernate.Session for every database
operation. Even though it is used in the following examples, consider session-per-operation an
anti-pattern. A real web application is shown later in the tutorial which will help illustrate this.

See Chapter 13, Transactions and Concurrency for more information about transaction handling
and demarcation. The previous example also skipped any error handling and rollback.

To run this, we will make use of the Maven exec plugin to call
our class with the necessary classpath setup: nwn exec: j ava -
Dexec. mai nCl ass="org. hi bernate. tutorial . Event Manager" -Dexec.args="store"

@ Note

You may need to perform mvn conpi | e first.

You should see Hibernate starting up and, depending on your configuration, lots of log output.
Towards the end, the following line will be displayed:

[java] Hibernate: insert into EVENTS (EVENT_DATE, title, EVENT_ID) values (?, ?, ?)

This is the | NSERT executed by Hibernate.

To list stored events an option is added to the main method:

if (args[0].equal s("store")) {
ngr . cr eat eAndSt or eEvent ("My Event", new Date());
}
else if (args[0].equals("list")) {
Li st events = ngr.listEvents();
for (int i =0; i < events.size(); i++) {
Event theEvent = (Event) events.get(i);
System out . printl n(
"Event: " + theEvent.getTitle() + " Time: " + theEvent.getDate()

12

Part 2 - Mapping associations

AnewlistEvents() nethod is al so added:

private List listEvents() {
Sessi on session = HibernateUtil.getSessionFactory().getCurrentSession();
sessi on. begi nTransaction();
List result = session.createQuery("fromEvent").list();
sessi on. get Transaction().comit();
return result;

Here, we are using a Hibernate Query Language (HQL) query to load all existing Event objects
from the database. Hibernate will generate the appropriate SQL, send it to the database and
populate Event objects with the data. You can create more complex queries with HQL. See
Chapter 16, HQL: The Hibernate Query Language for more information.

Now we can call our new functionality, again using the Maven exec plugin: mvn exec:java -
Dexec. mai nC ass="org. hi bernate. tutorial . Event Manager" -Dexec.args="list"

1.2. Part 2 - Mapping associations

So far we have mapped a single persistent entity class to a table in isolation. Let's expand on that
a bit and add some class associations. We will add people to the application and store a list of
events in which they participate.

1.2.1. Mapping the Person class

The first cut of the Per son class looks like this:

package org. hi bernate.tutorial.donain;
public class Person {

private Long id;

private int age;

private String firstname;

private String |astnane;

public Person() {}

d"

/| Accessor nethods for all properties, private setter for '

Save this to a file named sr c/ mai n/ j ava/ or g/ hi ber nat e/ t ut ori al / donai n/ Per son. j ava

13

Chapter 1. Tutorial

Next, create the new mapping file as sr c/ mai n/ r esour ces/ or g/ hi ber nat e/ t ut ori al / donai n/
Per son. hbm xni

<hi ber nat e- mappi ng package="org. hi bernate. tutorial.donmain">

<cl ass nane="Person" tabl e=" PERSON' >

<id name="id" col um="PERSON_| D' >
<generator class="native"/>

</id>
<property nanme="age"/>
<property nanme="firstname"/>
<property nanme="| ast nane"/ >

</ cl ass>

</ hi ber nat e- mappi ng>

Finally, add the new mapping to Hibernate's configuration:

<mappi ng resource="org/ hi bernate/tutorial/domain/Event. hbm xm "/ >
<mappi ng resource="org/ hi bernate/tutorial/donain/Person. hbm xm "/ >

Create an association between these two entities. Persons can participate in events, and events
have participants. The design questions you have to deal with are: directionality, multiplicity, and
collection behavior.

1.2.2. A unidirectional Set-based association

By adding a collection of events to the Per son class, you can easily navigate to the events for a
particular person, without executing an explicit query - by calling Per son#get Event s. Multi-valued
associations are represented in Hibernate by one of the Java Collection Framework contracts;
here we choose aj ava. util. Set because the collection will not contain duplicate elements and
the ordering is not relevant to our examples:

public class Person {
private Set events = new HashSet();
public Set getEvents() {

return events;

public void setEvents(Set events) {
this.events = events;

14

Working the association

Before mapping this association, let's consider the other side. We could just keep this
unidirectional or create another collection on the Event , if we wanted to be able to navigate it from
both directions. This is not necessary, from a functional perspective. You can always execute an
explicit query to retrieve the participants for a particular event. This is a design choice left to you,
but what is clear from this discussion is the multiplicity of the association: "many" valued on both
sides is called a many-to-many association. Hence, we use Hibernate's many-to-many mapping:

<cl ass name="Person" tabl e="PERSON' >
<id name="id" col um="PERSON_| D' >
<generator class="native"/>
</id>
<property name="age"/>
<property nanme="firstname"/>
<property nanme="| ast nane"/ >

<set nanme="events" tabl e="PERSON_EVENT" >

<key col utm="PERSON_I| D"/ >

<many-to-many col um="EVENT_I D" cl ass="Event"/>
</set>

</cl ass>

Hibernate supports a broad range of collection mappings, a set being most common. For a many-
to-many association, or n:m entity relationship, an association table is required. Each row in this
table represents a link between a person and an event. The table name is decalred using thet abl e
attribute of the set element. The identifier column name in the association, for the person side, is
defined with the key element, the column name for the event's side with the col um attribute of
the nany-t o- many. You also have to tell Hibernate the class of the objects in your collection (the
class on the other side of the collection of references).

The database schema for this mapping is therefore:

| |

| EVENTS [| PERSON EVENT | | |
[| | | | PERSON |
	[[
*EVENT_ID	<-->	*EVENT_ID		
EVENT_DATE		*PERSON I D	<-->	*PERSON_ID
TITLE				AGE [
[l		FIRSTNAME		
LASTNAME				

|

1.2.3. Working the association

Now we will bring some people and events together in a new method in Event Manager :

15

Chapter 1. Tutorial

private void addPer sonToEvent (Long personld, Long eventld) {
Sessi on session = Hibernateltil.getSessi onFactory().getCurrentSession();
sessi on. begi nTransaction();

Person aPerson = (Person) session.|oad(Person.class, personld);
Event anEvent = (Event) session.|oad(Event.class, eventld);
aPer son. get Event s() . add(anEvent);

session. get Transaction().comit();

After loading a Person and an Event, simply modify the collection using the normal collection
methods. There is no explicit call to updat e() or save() ; Hibernate automatically detects that the
collection has been modified and needs to be updated. This is called automatic dirty checking. You
can also try it by modifying the name or the date property of any of your objects. As long as they are
in persistent state, that is, bound to a particular Hibernate or g. hi ber nat e. Sessi on, Hibernate
monitors any changes and executes SQL in a write-behind fashion. The process of synchronizing
the memory state with the database, usually only at the end of a unit of work, is called flushing. In
our code, the unit of work ends with a commit, or rollback, of the database transaction.

You can load person and event in different units of work. Or you can modify an object outside of
aorg. hi ber nat e. Sessi on, when it is not in persistent state (if it was persistent before, this state
is called detached). You can even modify a collection when it is detached:

private voi d addPer sonToEvent (Long personld, Long eventld) {
Sessi on session = Hibernateltil.getSessi onFactory().getCurrentSession();
sessi on. begi nTransaction();

Person aPerson = (Person) session
.createQuery("select p fromPerson p left join fetch p.events where p.id = :pid")
.set Paraneter ("pid", personld)
.uniqueResult(); // Eager fetch the collection so we can use it detached
Event anEvent = (Event) session.|oad(Event.class, eventld);
session. get Transaction().comit();
/1 End of first unit of work
aPer son. get Event s(). add(anEvent); // aPerson (and its collection) is detached
/1 Begin second unit of work
Sessi on session2 = Hi bernateltil.getSessi onFactory().getCurrent Session();
sessi on2. begi nTransacti on();

session2. updat e(aPerson); // Reattachnent of aPerson

session2. get Transaction().comit();

16

Collection of values

The call to updat e makes a detached object persistent again by binding it to a new unit of work,
so any modifications you made to it while detached can be saved to the database. This includes
any modifications (additions/deletions) you made to a collection of that entity object.

This is not much use in our example, but it is an important concept you can incorporate into
your own application. Complete this exercise by adding a new action to the main method of the
Event Manager and call it from the command line. If you need the identifiers of a person and an
event - the save() method returns it (you might have to modify some of the previous methods
to return that identifier):

else if (args[O0].equal s("addpersontoevent")) {
Long eventld = ngr.creat eAndSt oreEvent ("My Event", new Date());
Long personld = ngr.creat eAndSt or ePer son(" Foo", "Bar");
ngr . addPer sonToEvent (personld, eventld);
Systemout. println("Added person " + personld + " to event " + eventld);

This is an example of an association between two equally important classes : two entities. As
mentioned earlier, there are other classes and types in a typical model, usually "less important".
Some you have already seen, like an i nt or ajava.l ang. String. We call these classes value
types, and their instances depend on a particular entity. Instances of these types do not have
their own identity, nor are they shared between entities. Two persons do not reference the same
first name object, even if they have the same first name. Value types cannot only be found in the
JDK, but you can also write dependent classes yourself such as an Addr ess or Monet ar y Amount
class. In fact, in a Hibernate application all JDK classes are considered value types.

You can also design a collection of value types. This is conceptually different from a collection of
references to other entities, but looks almost the same in Java.

1.2.4. Collection of values

Let's add a collection of email addresses to the Person entity. This will be represented as a
java.util.Set ofjava.lang. String instances:

private Set enmil Addresses = new HashSet ();

public Set getEmail Addresses() {
return email Addr esses;

}

public void setEmail Addresses(Set email Addresses) {
this. emni | Addresses = emai | Addr esses;

}

The mapping of this Set is as follows:

17

Chapter 1. Tutorial

<set nanme="enmi | Addresses" tabl e=" PERSON_EMAI L_ADDR' >
<key col um="PERSON_I| D"/ >
<el enent type="string" col um="EMAI L_ADDR"/>
</set>

The difference compared with the earlier mapping is the use of the el ement part which tells
Hibernate that the collection does not contain references to another entity, but is rather a collection
whose elements are values types, here specifically of type st ri ng. The lowercase name tells you
it is a Hibernate mapping type/converter. Again the t abl e attribute of the set element determines
the table name for the collection. The key element defines the foreign-key column name in the
collection table. The col unm attribute in the el enent element defines the column name where the
email address values will actually be stored.

Here is the updated schema:

| |

| EVENTS | | PERSON_EVENT | | |
| | | | PERSON | | [
I				PERSON_ENAI L_ADDR		
*EVENT ID	<-->	*EVENT_ID				
EVENT_DATE		*PERSON_I D	<-->	*PERSON_ID	<-->	*PERSON_ID
TITLE				AGE		*EMAI L_ADDR
1 | FIRSTNAME | [|

| LASTNAME |

|

You can see that the primary key of the collection table is in fact a composite key that uses both
columns. This also implies that there cannot be duplicate email addresses per person, which is
exactly the semantics we need for a set in Java.

You can now try to add elements to this collection, just like we did before by linking persons and
events. It is the same code in Java:

private void addEnail ToPerson(Long personld, String enail Address) {
Session session = HibernateUtil.getSessionFactory().getCurrentSession();
sessi on. begi nTransaction();

Person aPerson = (Person) session. | oad(Person.class, personld);
/1 adding to the emnil Address collection might trigger a lazy |load of the collection

aPer son. get Emai | Addr esses() . add(enai | Addr ess) ;

session. get Transaction().comit();

18

Bi-directional associations

This time we did not use a fetch query to initialize the collection. Monitor the SQL log and try to
optimize this with an eager fetch.

1.2.5. Bi-directional associations

Next you will map a bi-directional association. You will make the association between person and
event work from both sides in Java. The database schema does not change, so you will still have
many-to-many multiplicity.

@ Note

A relational database is more flexible than a network programming language, in
that it does not need a navigation direction; data can be viewed and retrieved in
any possible way.

First, add a collection of participants to the Event class:

private Set participants = new HashSet ();

public Set getParticipants() {
return participants;

}

public void setParticipants(Set participants) {
this.participants = participants;

}
Now map this side of the association in Event . hbm xm .

<set name="partici pants" tabl e="PERSON _EVENT" inverse="true">
<key colum="EVENT_I D'/ >
<many-to- many col um="PERSON_| D' cl ass="Person"/>

</ set>

These are normal set mappings in both mapping documents. Notice that the column names in
key and many-t o- many swap in both mapping documents. The most important addition here is
the i nverse="true" attribute in the set element of the Event's collection mapping.

What this means is that Hibernate should take the other side, the Per son class, when it needs to
find out information about the link between the two. This will be a lot easier to understand once
you see how the bi-directional link between our two entities is created.

1.2.6. Working bi-directional links

First, keep in mind that Hibernate does not affect normal Java semantics. How did we create
a link between a Person and an Event in the unidirectional example? You add an instance of

19

Chapter 1. Tutorial

Event to the collection of event references, of an instance of Per son. If you want to make this
link bi-directional, you have to do the same on the other side by adding a Per son reference to
the collection in an Event . This process of "setting the link on both sides" is absolutely necessary
with bi-directional links.

Many developers program defensively and create link management methods to correctly set both
sides (for example, in Per son):

protected Set getEvents() {
return events;

}

protected void set Events(Set events) {
this.events = events;

}

public void addToEvent (Event event) {
this.getEvents().add(event);
event.getPartici pants().add(this);
}

public void renmoveFronEvent (Event event) {
this. get Events().renove(event);
event.getPartici pants().renove(this);

The get and set methods for the collection are now protected. This allows classes in the same
package and subclasses to still access the methods, but prevents everybody else from altering
the collections directly. Repeat the steps for the collection on the other side.

What about the i nver se mapping attribute? For you, and for Java, a bi-directional link is simply
a matter of setting the references on both sides correctly. Hibernate, however, does not have
enough information to correctly arrange SQL | NSERT and UPDATE statements (to avoid constraint
violations). Making one side of the association i nver se tells Hibernate to consider it a mirror
of the other side. That is all that is necessary for Hibernate to resolve any issues that arise
when transforming a directional navigation model to a SQL database schema. The rules are
straightforward: all bi-directional associations need one side as inverse. In a one-to-many
association it has to be the many-side, and in many-to-many association you can select either side.

1.3. Part 3 - The EventManager web application

A Hibernate web application uses Sessi on and Tr ansact i on almost like a standalone application.
However, some common patterns are useful. You can now write an Event Manager Ser vl et . This
servlet can list all events stored in the database, and it provides an HTML form to enter new events.

1.3.1. Writing the basic servlet

First we need create our basic processing servlet. Since our servlet only handles HTTP GET
requests, we will only implement the doGet () method:

20

Writing the basic servlet

package org. hibernate.tutorial.web;
/] 1nports
public class Event Manager Servl et extends H tpServlet {

protected void doGet (
Ht t pSer vl et Request request,
Ht t pSer vl et Response response) throws Servl et Exception, | CException {

Si npl eDat eFor mat dat eFormatter = new Si npl eDat eFor mat ("dd. MM yyyy");

try {
/1 Begin unit of work
Hi bernateUtil . get Sessi onFactory().get Current Session(). begi nTransaction();

/] Process request and render page...

/1 End unit of work
Hi bernateUtil . get Sessi onFactory().get Current Session().getTransaction().conmit();

}
catch (Exception ex) {
Hi bernatelUtil . get Sessi onFactory().get Current Session().getTransaction().rollback();
if (ServletException.class.islnstance(ex)) {
throw (Servl et Exception) ex;

}
el se {
throw new Servl et Exception(ex);

Save this servlet as src/ mai n/j aval or g/ hi bernat e/ tutori al / web/
Event Manager Servl et . j ava

The pattern applied here is called session-per-request. When a request hits the servlet, a
new Hibernate Session is opened through the first call to get Current Sessi on() on the
Sessi onFactory. A database transaction is then started. All data access occurs inside a
transaction irrespective of whether the data is read or written. Do not use the auto-commit mode
in applications.

Do not use a new Hibernate Sessi on for every database operation. Use one Hibernate Sessi on
that is scoped to the whole request. Use get Cur r ent Sessi on(), So that it is automatically bound
to the current Java thread.

Next, the possible actions of the request are processed and the response HTML is rendered. We
will get to that part soon.

Finally, the unit of work ends when processing and rendering are complete. If any problems
occurred during processing or rendering, an exception will be thrown and the database transaction
rolled back. This completes the sessi on-per-request pattern. Instead of the transaction

21

Chapter 1. Tutorial

demarcation code in every servlet, you could also write a servlet filter. See the Hibernate website
and Wiki for more information about this pattern called Open Session in View. You will need it as
soon as you consider rendering your view in JSP, not in a servlet.

1.3.2. Processing and rendering

Now you can implement the processing of the request and the rendering of the page.

/1 Wite HTM. header
PrintWiter out = response.getWiter();
out. println("<htm ><head><titl e>Event Manager</titl e></head><body>");

/] Handl e actions
if ("store".equal s(request.getParanmeter("action"))) {

String eventTitle = request.getParaneter("eventTitle");
String eventDate = request. getParanmeter("eventDate");

if ("".equals(eventTitle) || "".equal s(eventDate)) {
out.println("<i >Pl ease enter event title and date.</i>");

}

el se {
creat eAndSt or eEvent (event Titl e, dateFormatter. parse(eventDate));
out. println("<i >Added event.</i>");

/1 Print page
print Event For n{out);
|'i st Events(out, dateFornatter);

/'l Wite HTM. footer

out. println("</body></htm >");
out. flush();

out.close();

This coding style, with a mix of Java and HTML, would not scale in a more complex application-
keep in mind that we are only illustrating basic Hibernate concepts in this tutorial. The code prints
an HTML header and a footer. Inside this page, an HTML form for event entry and a list of all
events in the database are printed. The first method is trivial and only outputs HTML:

private void printEventForm(PrintWiter out) {

out.println("<h2>Add new event: </ h2>");

out.println("<forns");

out.println("Title: <input nane="eventTitle' |ength="50"/>
");
out.println("Date (e.g. 24.12.2009): <input nane='eventDate' |ength="10"/>
");
out.println("<input type='subnmit' nanme='action' value='store'/>");
out.println("</fornp");

22

Deploying and testing

The |i st Event s() method uses the Hibernate Sessi on bound to the current thread to execute
a query:

private void listEvents(PrintWiter out, SinpleDateFornat dateFornatter) {

List result = HibernateUtil.getSessionFactory()
.getCurrent Session().createCriteria(Event.class).list();
if (result.size() > 0) {
out.println("<h2>Events in database: </ h2>");
out.println("<table border="1">");
out.println("<tr>");
out.println("<th>Event title</th>");
out.println("<th>Event date</th>");
out.println("</tr>");
Iterator it = result.iterator();
while (it.hasNext()) {
Event event = (Event) it.next();
out.println("<tr>");
out.println("<td>" + event.getTitle() + "</td>");
out.println("<td>" + dateFormatter.format(event.getDate()) + "</td>");
out.println("</tr>");
}

out.println("</table>");

Finally, the st or e action is dispatched to the cr eat eAndSt or eEvent () method, which also uses
the Sessi on of the current thread:

protected void createAndStoreEvent(String title, Date theDate) {
Event theEvent = new Event();
theEvent.setTitle(title);
t heEvent . set Dat e(t heDat e) ;

Hi bernateUti | . get Sessi onFactory()
. get Current Sessi on() . save(theEvent);

The servlet is now complete. A request to the servlet will be processed in a single Sessi on and
Transacti on. As earlier in the standalone application, Hibernate can automatically bind these
objects to the current thread of execution. This gives you the freedom to layer your code and
access the Sessi onFactory in any way you like. Usually you would use a more sophisticated
design and move the data access code into data access objects (the DAO pattern). See the
Hibernate Wiki for more examples.

1.3.3. Deploying and testing

To deploy this application for testing we must create a Web ARchive (WAR). First we must define
the WAR descriptor as sr ¢/ mai n/ webapp/ VEB- | NF/ web. xm

23

Chapter 1. Tutorial

<?xm version="1.0" encodi ng="UTF-8"?>
<web- app version="2.4"
xm ns="http://java. sun. com xnm / ns/j 2ee"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http://java. sun.com xm /ns/j2ee http://java.sun.com xm /ns/j2eel web-
app_2_4. xsd">

<servlet>

<servl et - name>Event Manager </ servl et - nane>

<servl et-cl ass>org. hi bernate. tutorial.web. Event Manager Servl et </ servl et -cl ass>
</ servlet>

<servl et - nappi ng>
<servl et - name>Event Manager </ servl et - nane>
<url - patt ern>/ event manager </ ur| - pattern>
</ servl et - mappi ng>
</ web- app>

To build and deploy call mvn package in your project directory and copy the hi ber nat e-
tutorial . war file into your Tomcat webapps directory.

http://tomcat.apache.org/

Once deployed and Tomcat is running, access the application at http:/ /| ocal host: 8080/
hi bernat e-tut ori al / event manager. Make sure you watch the Tomcat log to see Hibernate
initialize when the first request hits your servlet (the static initializer in Hi ber natelti | is called)
and to get the detailed output if any exceptions occurs.

1.4. Summary

This tutorial covered the basics of writing a simple standalone Hibernate application and a small
web application. More tutorials are available from the Hibernate website [http://hibernate.org].

24

http://tomcat.apache.org/
http://hibernate.org
http://hibernate.org

Chapter 2.

Architecture

2.1. Overview

The diagram below provides a high-level view of the Hibernate architecture:

Application

Persistent Objects

HIBERNATE

hi ber nat e. :
properties AL LRIl
Database

Unfortunately we cannot provide a detailed view of all possible runtime architectures. Hibernate is
sufficiently flexible to be used in a number of ways in many, many architectures. We will, however,
illustrate 2 specifically since they are extremes.

2.1.1. Minimal architecture

The "minimal” architecture has the application manage its own JDBC connections and provide
those connections to Hibernate; additionally the application manages transactions for itself. This
approach uses a minimal subset of Hibernate APIs.

25

Chapter 2. Architecture

2.1.2. Comprehensive architecture

The "comprehensive" architecture abstracts the application away from the underlying JDBC/JTA
APIs and allows Hibernate to manage the details.

26

Basic APIs

2.1.3. Basic APIs

Here are quick discussions about some of the API objects depicted in the preceding diagrams
(you will see them again in more detail in later chapters).

SessionFactory (or g. hi ber nat e. Sessi onFact ory)
A thread-safe, immutable cache of compiled mappings for a single
database. A factory for org. hibernate.Session instances. A client of
or g. hi bernat e. connecti on. Connect i onProvi der. Optionally maintains a second | evel
cache of data that is reusable between transactions at a process or cluster level.

Session (or g. hi ber nat e. Sessi on)
A single-threaded, short-lived object representing a conversation between the
application and the persistent store. Wraps a JDBC j ava. sqgl . Connecti on. Factory
for org. hi bernate. Transacti on. Maintains a first |evel cache of persistent the
application's persistent objects and collections; this cache is used when navigating the object
graph or looking up objects by identifier.

Persistent objects and collections
Short-lived, single threaded objects containing persistent state and business function.
These can be ordinary JavaBeans/POJOs. They are associated with exactly one
or g. hi ber nat e. Sessi on. Once the org. hi bernate. Session is closed, they will be
detached and free to use in any application layer (for example, directly as data transfer objects
to and from presentation). Chapter 11, Working with objects discusses transient, persistent
and detached object states.

Transient and detached objects and collections
Instances of persistent classes that are not currently associated with a
or g. hi ber nat e. Sessi on. They may have been instantiated by the application and not
yet persisted, or they may have been instantiated by a closed or g. hi ber nat e. Sessi on.
Chapter 11, Working with objects discusses transient, persistent and detached object states.

Transaction (or g. hi ber nat e. Tr ansact i on)
(Optional) A single-threaded, short-lived object used by the application to specify atomic
units of work. It abstracts the application from the underlying JDBC, JTA or CORBA
transaction. A or g. hi ber nat e. Sessi on might span several or g. hi ber nat e. Transact i ons
in some cases. However, transaction demarcation, either using the underlying API or
or g. hi ber nat e. Transacti on, is never optional.

ConnectionProvider (or g. hi ber nat e. connect i on. Connect i onProvi der)
(Optional) A factory for, and pool of, JDBC connections. It abstracts the application from
underlying j avax. sql . Dat aSource or java.sql.DriverManager. It is not exposed to
application, but it can be extended and/or implemented by the developer.

TransactionFactory (or g. hi ber nat e. Transact i onFact ory)
(Optional) A factory for org. hi ber nat e. Transacti on instances. It is not exposed to the
application, but it can be extended and/or implemented by the developer.

27

Chapter 2. Architecture

Extension Interfaces
Hibernate offers a range of optional extension interfaces you can implement to customize the
behavior of your persistence layer. See the APl documentation for details.

2.2. JMX Integration

JMX is the J2EE standard for the management of Java components. Hibernate can be
managed via a JMX standard service. AN MBean implementation is provided in the distribution:
or g. hi bernnate. j nx. Hi ber nat eServi ce.

Another feature available as a JMX service is runtime Hibernate statistics. See Section 3.4.6,
“Hibernate statistics” for more information.

2.3. Contextual sessions

Most applications using Hibernate need some form of "contextual” session, where a given session
is in effect throughout the scope of a given context. However, across applications the definition
of what constitutes a context is typically different; different contexts define different scopes to
the notion of current. Applications using Hibernate prior to version 3.0 tended to utilize either
home-grown Thr eadLocal -based contextual sessions, helper classes such as Hi ber natelUti | , or
utilized third-party frameworks, such as Spring or Pico, which provided proxy/interception-based
contextual sessions.

Starting with version 3.0.1, Hibernate added the SessionFact ory. get Current Sessi on()
method. Initially, this assumed usage of JTA transactions, where the JTA transaction defined both
the scope and context of a current session. Given the maturity of the numerous stand-alone
JTA Transacti onManager implementations, most, if not all, applications should be using JTA
transaction management, whether or not they are deployed into a J2EE container. Based on that,
the JTA-based contextual sessions are all you need to use.

However, as of version 3.1, the processing behind Sessi onFact ory. get Curr ent Sessi on()
is now pluggable. To that end, a new extension interface,
or g. hi ber nat e. cont ext . Current Sessi onContext, and a new configuration parameter,
hi ber nat e. current _sessi on_cont ext _cl ass, have been added to allow pluggability of the
scope and context of defining current sessions.

See the Javadocs for the org. hi ber nat e. cont ext. Current Sessi onCont ext interface for a
detailed discussion of its contract. It defines a single method, current Sessi on(), by which
the implementation is responsible for tracking the current contextual session. Out-of-the-box,
Hibernate comes with three implementations of this interface:

e org. hi bernat e. cont ext. JTASessi onCont ext : current sessions are tracked and scoped by a
JTA transaction. The processing here is exactly the same as in the older JTA-only approach.
See the Javadocs for details.

e org. hi bernat e. cont ext. ThreadLocal Sessi onCont ext :current sessions are tracked by
thread of execution. See the Javadocs for details.

28

Contextual sessions

e org. hi bernat e. cont ext . ManagedSessi onCont ext : current sessions are tracked by thread of
execution. However, you are responsible to bind and unbind a Sessi on instance with static
methods on this class: it does not open, flush, or close a Sessi on.

The first two implementations provide a "one session - one database transaction" programming
model. This is also known and used as session-per-request. The beginning and end of a Hibernate
session is defined by the duration of a database transaction. If you use programmatic transaction
demarcation in plain JSE without JTA, you are advised to use the Hibernate Tr ansacti on API
to hide the underlying transaction system from your code. If you use JTA, you can utilize the
JTA interfaces to demarcate transactions. If you execute in an EJB container that supports CMT,
transaction boundaries are defined declaratively and you do not need any transaction or session
demarcation operations in your code. Refer to Chapter 13, Transactions and Concurrency for
more information and code examples.

The hibernate. current_session_context_class configuration parameter defines which
org. hi bernat e. cont ext . Current Sessi onCont ext implementation should be used. For
backwards compatibility, if this configuration parameter is not set but a
or g. hi bernat e. transacti on. Transact i onManager Lookup is configured, Hibernate will use the
or g. hi ber nat e. cont ext . JTASessi onCont ext . Typically, the value of this parameter would just
name the implementation class to use. For the three out-of-the-box implementations, however,
there are three corresponding short names: "jta", "thread", and "managed".

29

30

Chapter 3.

Configuration

Hibernate is designed to operate in many different environments and, as such, there is a broad
range of configuration parameters. Fortunately, most have sensible default values and Hibernate
is distributed with an example hi ber nate. properties file in etc/ that displays the various
options. Simply put the example file in your classpath and customize it to suit your needs.

3.1. Programmatic configuration

An instance of org. hi bernat e. cf g. Confi gur ati on represents an entire set of mappings of
an application's Java types to an SQL database. The or g. hi bernate. cf g. Confi guration is
used to build an immutable or g. hi ber nat e. Sessi onFact ory. The mappings are compiled from
various XML mapping files.

You can obtain a or g. hi ber nat e. cf g. Confi gur ati on instance by instantiating it directly and
specifying XML mapping documents. If the mapping files are in the classpath, use addResour ce() .
For example:

Configuration cfg = new Configuration()
.addResource("Item hbm xm ")
. addResour ce("Bi d. hbm xm ") ;

An alternative way is to specify the mapped class and allow Hibernate to find the mapping
document for you:

Configuration cfg = new Configuration()
.addC ass(org. hi bernate. auction.|tem cl ass)
.addd ass(org. hi bernate. auction. Bi d. cl ass);

Hibernate will then search for mapping files named / or g/ hi ber nat e/ aucti on/ 1t em hbm xni
and / or g/ hi ber nat e/ aucti on/ Bi d. hbom xm in the classpath. This approach eliminates any
hardcoded filenames.

A org. hi bernate. cfg. Configuration also allows you to specify configuration properties. For
example:

Configuration cfg = new Configuration()
.addd ass(org. hi bernate. auction.|tem cl ass)
.addd ass(org. hi bernate. auction. Bi d. cl ass)

.setProperty("hibernate.dialect", "org.hibernate.dial ect. MySQLI nnoDBDi al ect")
.set Property("hibernate. connection.datasource", "java:conp/env/jdbc/test")
.setProperty("hibernate. order_updates", "true");

31

Chapter 3. Configuration

This is not the only way to pass configuration properties to Hibernate. Some alternative options
include:

1. Pass an instance of j ava. uti | . Properti es to Confi guration. set Properties().
2. Place a file named hi ber nat e. properti es in a root directory of the classpath.

3. Set Syst emproperties using j ava - Dpr oper t y=val ue.

4. Include <pr oper t y> elements in hi ber nat e. cf g. xn (this is discussed later).

If you want to get started quicklyhi ber nat e. properti es is the easiest approach.

The org. hi bernate. cfg. Configuration is intended as a startup-time object that will be
discarded once a Sessi onFact ory is created.

3.2. Obtaining a SessionFactory

When all mappings have been parsed by the org. hi bernate.cfg. Configuration, the
application must obtain a factory for or g. hi ber nat e. Sessi on instances. This factory is intended
to be shared by all application threads:

Sessi onFactory sessions = cfg. buil dSessi onFactory();

Hibernate does allow your application to instantiate more than one
or g. hi ber nat e. Sessi onFact ory. This is useful if you are using more than one database.

3.3. JDBC connections

It is advisable to have the or g. hi ber nat e. Sessi onFact ory create and pool JDBC connections
for you. If you take this approach, opening a or g. hi ber nat e. Sessi on is as simple as:

Sessi on session = sessions.openSession(); // open a new Session

Once you start a task that requires access to the database, a JDBC connection will be obtained
from the pool.

Before you can do this, you first need to pass some JDBC connection properties
to Hibernate. All Hibernate property names and semantics are defined on the class
org. hi bernate. cfg. Environment. The most important settings for JDBC connection
configuration are outlined below.

Hibernate will obtain and pool connections using j ava. sql . Dri ver Manager if you set the
following properties:

32

JDBC connections

Table 3.1. Hibernate JDBC Properties

Property name Purpose
hibernate.connection.driver_class JDBC driver class
hibernate.connection.url JDBC URL
hibernate.connection.username database user
hibernate.connection.password database user password
hibernate.connection.pool_size maximum number of pooled connections

Hibernate's own connection pooling algorithm is, however, quite rudimentary. It is intended to
help you get started and is not intended for use in a production system, or even for performance
testing. You should use a third party pool for best performance and stability. Just replace the
hibernate.connection.pool_size property with connection pool specific settings. This will turn off
Hibernate's internal pool. For example, you might like to use c3p0.

C3PO0 is an open source JDBC connection pool distributed along with Hibernate in the lib
directory. Hibernate will use its org. hi ber nat e. connecti on. C3P0Connect i onPr ovi der for
connection pooling if you set hibernate.c3p0.* properties. If you would like to use Proxool, refer to
the packaged hi ber nat e. properti es and the Hibernate web site for more information.

The following is an example hi ber nat e. pr operti es file for c3p0:

hi ber nat e. connection. driver_class = org. postgresql.Driver

hi ber nat e. connection.url = jdbc:postgresql://Ilocal host/nydatabase
hi ber nat e. connecti on. user name = nyuser

hi ber nat e. connecti on. password = secret

hi ber nat e. ¢3p0. m n_si ze=5

hi ber nat e. ¢3p0. max_si ze=20

hi ber nat e. ¢c3p0. ti meout =1800

hi ber nat e. ¢3p0. max_st at enment s=50

hi ber nat e. di al ect = org. hi bernate. di al ect. Post greSQ.Di al ect

For use inside an application server, you should almost always configure Hibernate to obtain
connections from an application server j avax. sql . Dat asour ce registered in JNDI. You will need
to set at least one of the following properties:

Table 3.2. Hibernate Datasource Properties

Property name Purpose

hibernate.connection.datasource datasource JNDI nhame

hibernate.jndi.url URL of the JNDI provider (optional)

hibernate.jndi.class class of the JNDI Initial ContextFactory
(optional)

hibernate.connection.username database user (optional)

hibernate.connection.password database user password (optional)

33

Chapter 3. Configuration

Here is an example hi bernate. properties file for an application server provided JNDI
datasource:

hi ber nat e. connecti on. dat asource = java:/conp/env/jdbc/test
hi bernate.transaction.factory_class =\

org. hi bernate. transacti on. JTATransacti onFactory
hi bernat e. transacti on. manager _| ookup_cl ass =\

or g. hi bernate. transacti on. JBossTr ansact i onManager Lookup
hi ber nat e. di al ect = org. hi bernate. di al ect. Post greSQ.Di al ect

JDBC connections obtained from a JNDI datasource will automatically participate in the container-
managed transactions of the application server.

Arbitrary connection properties can be given by prepending "hi ber nat e. connecti on" to the
connection property name. For example, you can specify a charSet connection property using
hibernate.connection.charSet.

You can define your own plugin strategy for obtaining JDBC connections by implementing
the interface or g. hi ber nat e. connecti on. Connecti onPr ovi der, and specifying your custom
implementation via the hibernate.connection.provider_class property.

3.4. Optional configuration properties

There are a number of other properties that control the behavior of Hibernate at runtime. All are
optional and have reasonable default values.

Warning

Some of these properties are "system-level" only. System-level properties can be
setonly viaj ava - Dpropert y=val ue or hi ber nat e. pr operti es. They cannot be
set by the other techniques described above.

Table 3.3. Hibernate Configuration Properties

Property name Purpose
hibernate.dialect The classname of a Hibernate
org. hi bernate. di al ect. Di al ect which

allows Hibernate to generate SQL optimized
for a particular relational database.

e.g.full.classnane. of. Di al ect

In most cases Hibernate will
actually be able to choose the
correct org. hi bernate. di al ect. Di al ect

34

Optional configuration properties

Property name

hibernate.show_sql

hibernate.format_sq|

hibernate.default_schema

Purpose

implementation based on the JDBC net adat a
returned by the JDBC driver.

Write all SQL statements to console. This
is an alternative to setting the log category
or g. hi ber nat e. SQL to debug.
eg.true|false

Pretty print the SQL in the log and console.

eg.true|false

Qualify unqualified table names with the given
schemal/tablespace in generated SQL.

e.g. SCHEMA_NAVE

hibernate.default_catalog

hibernate.session_factory_name

hibernate.max_fetch_depth

Qualifies unqualified table names with the
given catalog in generated SQL.

e.g. CATALOG_NAME

The or g. hi ber nat e. Sessi onFact ory will be
automatically bound to this name in JNDI after
it has been created.

e.g.j ndi / conposi t e/ nane

Sets a maximum "depth" for the outer join fetch
tree for single-ended associations (one-to-one,
many-to-one). A 0 disables default outer join
fetching.

e.g. recommended values between 0 and 3

hibernate.default_batch_fetch_size

hibernate.default_entity _mode

hibernate.order_updates

Sets a default size for Hibernate batch fetching
of associations.

e.g. recommended values 4, 8, 16

Sets a default mode for entity representation
for all sessions opened from this
Sessi onFactory

dynani c- map, domdj , poj o

Forces Hibernate to order SQL updates by the
primary key value of the items being updated.
This will result in fewer transaction deadlocks
in highly concurrent systems.

35

Chapter 3. Configuration

Property name

Purpose

eg.true|false

hibernate.generate_statistics

hibernate.use_identifier_rollback

hibernate.use_sql_comments

hibernate.id.new_generator_mappings

If enabled, Hibernate will collect statistics
useful for performance tuning.

eg.true|false

If enabled, generated identifier properties will
be reset to default values when objects are
deleted.

eg.true|false

If turned on, Hibernate will generate comments
inside the SQL, for easier debugging, defaults
to f al se.

eg.true|false

Setting is relevant when using
@=neratedVal ue. It indicates whether
or not the new IdentifierGenerator
implementations are used for
j avax. per si st ence. Gener ati onType. AUTQ,
j avax. persi st ence. Gener ati onType. TABLE
and

j avax. persi st ence. Gener at i onType. SEQUENCE.

Default to false to keep backward
compatibility.

e.g.true|false

Table 3.4. Hibernate JDBC and Connection Properties

Property name

Purpose

hibernate.jdbc.fetch_size

A non-zero value determines the JDBC fetch
size (calls St at enent . set Fet chSi ze()).

36

Optional configuration properties

Property name Purpose

hibernate.jdbc.batch_size A non-zero value enables use of JDBC2 batch
updates by Hibernate.

e.g. recommended values between 5 and 30

hibernate.jdbc.batch_versioned_data Set this property to true if your JDBC
driver returns correct row counts from
execut eBat ch() . It is usually safe to turn this
option on. Hibernate will then use batched DML
for automatically versioned data. Defaults to
fal se.

eg.true|false

hibernate.jdbc.factory_class Select a custom
or g. hi bernate. j dbc. Bat cher. Most
applications will not need this configuration
property.

e.g. cl assnane. of . Bat cher Factory

hibernate.jdbc.use_scrollable_resultset Enables use of JDBC2 scrollable resultsets
by Hibernate. This property is only
necessary when using user-supplied JDBC
connections. Hibernate uses connection
metadata otherwise.

e.g.true|fal se

hibernate.jdbc.use_streams_for_binary Use streams when writing/reading bi nary or
seri al i zabl e types to/from JDBC. *system-
level property*

e.g.true|fal se

hibernate.jdbc.use_get_generated_keys Enables use of JDBC3
Pr epar edSt at ement . get Gener at edKeys()
to retrieve natively generated keys after insert.
Requires JDBC3+ driver and JRE1.4+, set
to false if your driver has problems with the
Hibernate identifier generators. By default, it
tries to determine the driver capabilities using
connection metadata.

e.g.true|fal se

hibernate.connection.provider_class The classname of a custom
or g. hi ber nat e. connecti on. Connecti onProvi der

37

Chapter 3. Configuration

Property name

Purpose

which provides JDBC connections to
Hibernate.

e.g. cl assnane. of . Connecti onPr ovi der

hibernate.connection.isolation

Sets the JDBC transaction isolation level.
Check j ava. sqgl . Connecti on for meaningful
values, but note that most databases do not
support all isolation levels and some define
additional, non-standard isolations.

eg.1, 2, 4, 8

hibernate.connection.autocommit

Enables autocommit for JDBC pooled
connections (it is not recommended).

eg.true|false

hibernate.connection.release_mode

Specifies when Hibernate should release
JDBC connections. By default, a JDBC
connection is held until the session is
explicitly closed or disconnected. For an
application server JTA datasource, use
after_statenent to aggressively release
connections after every JDBC call. For a
non-JTA connection, it often makes sense to
release the connection at the end of each
transaction, by using after_transaction.
auto will choose after_statenent for the
JTA and CMT transaction strategies and
after_transaction for the JDBC transaction
strategy.

e.g. auto (default) | on_close |
after_transaction|after_statenent

This setting only affects Sessions
returned from Sessi onFact ory. openSessi on.
For Sessi ons obtained through
Sessi onFact ory. get Current Sessi on, the
Cur r ent Sessi onCont ext implementation
configured for use controls the connection
release mode for those Sessions. See
Section 2.3, “Contextual sessions”

hibernate.connection.<propertyName>

Pass the JDBC property <propertyName> to
Dri ver Manager . get Connecti on().

38

Optional configuration properties

Property name Purpose

hibernate.jndi.<propertyName> Pass the property <propertyName> to the JNDI
I nitial ContextFactory.

Table 3.5. Hibernate Cache Properties

Property name Purpose

hi ber nat e. cache. provi der _cl ass The classname of a custom CachePr ovi der .

e.g. cl assnane. of . CachePr ovi der

hi ber nat e. cache. use_ni ni mal _puts Optimizes second-level cache operation to
minimize writes, at the cost of more frequent
reads. This setting is most useful for clustered
caches and, in Hibernate3, is enabled by
default for clustered cache implementations.

e.g.true|fal se

hi ber nat e. cache. use_query_cache Enables the query cache. Individual queries
still have to be set cachable.

e.g.true|fal se

hi ber nat e. cache. use_second_I| evel _cache Can be used to completely disable the second
level cache, which is enabled by default for
classes which specify a <cache> mapping.

e.g.true| fal se

hi ber nat e. cache. query_cache_factory The classname of a custom QueryCache
interface, defaults to the built-in
St andar dQuer yCache.

e.g. cl assnane. of . QueryCache

hi ber nat e. cache. r egi on_prefi x A prefix to use for second-level cache region
names.

e.g.prefix

hi ber nat e. cache. use_structured_entries Forces Hibernate to store data in the second-
level cache in a more human-friendly format.

e.g.true|fal se

hi ber nat e. cache. def aul t _cache_concur r enSettingatisgg to give the name of the default
or g. hi bernat e. annot at i ons. CacheConcurrencyStr at egy
to use when either @acheabl e or @ache
is used. @ache(strategy="..") is used to
override this default.

39

Chapter 3. Configuration

Table 3.6. Hibernate Transaction Properties

Property name

Purpose

hi ber nat e. transaction. factory_cl ass

The classname of a Transacti onFactory to
use with Hibernate Tr ansact i on API (defaults
to JDBCTr ansact i onFact ory).

e.g. cl assnane. of . Transacti onFactory

jta. User Transaction

A JNDI name used by
JTATr ansacti onFactory to obtain the JTA
User Tr ansact i on from the application server.

e.g.j ndi/ conposi t e/ nanme

hi ber nat e. t ransacti on. manager _| ookup_cl adse

classname of a
Transact i onManager Lookup. It is required
when JVM-level caching is enabled or when
using hilo generator in a JTA environment.

e.g.
cl assnane. of . Transact i onManager Lookup

hi bernat e. transacti on. fl ush_bef or e_conpllttar@bled, the session will be automatically

flushed during the before completion phase
of the transaction. Built-in and automatic
session context management is preferred, see
Section 2.3, “Contextual sessions”.

e.g.true|fal se

hi bernat e. transacti on. aut o_cl ose_sessi of enabled, the session will be automatically

closed during the after completion phase
of the transaction. Built-in and automatic
session context management is preferred, see
Section 2.3, “Contextual sessions”.

e.g.true|fal se

Table 3.7. Miscellaneous Properties

Property name

Purpose

hi ber nat e. current _sessi on_cont ext _cl ass

hi ber nat e. query. factory_cl ass

Supply a custom strategy for the scoping
of the "current" Session. See Section 2.3,
“Contextual sessions” for more information
about the built-in strategies.

e.g.jta|thread | managed | cust om C ass

Chooses the HQL parser implementation.

40

Optional configuration properties

Property name Purpose
e.g.
org. hi bernate. hqgl . ast. ASTQuer yTr ansl at or Fact ory
or
org. hi bernate. hqgl . cl assi c. d assi cQueryTr ansl at or Fact or\

hi ber nat e. query. substitutions Is used to map from tokens in Hibernate
queries to SQL tokens (tokens might be
function or literal names, for example).

e.g. hqgl Li t eral =SQL_LI TERAL,
hgl Funct i on=SQLFUNC

hi ber nat e. hbn2ddI . aut o Automatically validates or exports schema
DDL to the database when the
Sessi onFactory is created. With create-
dr op, the database schema will be dropped
when the Sessi onFact ory is closed explicitly.

e.g. validate | update | create | create-
dr op

hi ber nat e. hbn2dd! . i nport _files Comma-separated names of the optional files
containing SQL DML statements executed
during the SessionFactory creation. This
is useful for testing or demoing: by adding
INSERT statements for example you can
populate your database with a minimal set of
data when it is deployed.

File order matters, the statements of a give
file are executed before the statements of
the following files. These statements are
only executed if the schema is created ie if
hi ber nat e. hbnR2ddl . aut o is set to creat e or
create-drop.

e.g./ humans. sql , / dogs. sql

hi ber nat e. byt ecode. use_refl ecti on_opti nizeables the use of bytecode manipulation
instead of runtime reflection. This is
a System-level property and cannot be
set in hibernate.cfg.xnl . Reflection can
sometimes be useful when troubleshooting.
Hibernate always requires either CGLIB or
javassist even if you turn off the optimizer.

eg.true|false

41

Chapter 3. Configuration

Property name Purpose

hi ber nat e. byt ecode. pr ovi der Both javassist or cglib can be used as
byte manipulation engines; the default is
j avassi st.

e.g.javassist |cglib

3.4.1. SQL Dialects

Always set the hi ber nat e. di al ect property to the correct or g. hi ber nat e. di al ect . Di al ect
subclass for your database. If you specify a dialect, Hibernate will use sensible defaults for some
of the other properties listed above. This means that you will not have to specify them manually.

Table 3.8. Hibernate SQL Dialects (hi ber nat e. di al ect)

RDBMS Dialect

DB2 org. hi bernate. di al ect. DB2Di al ect

DB2 AS/400 org. hi bernate. di al ect. DB2400Di al ect

DB2 OS390 org. hi bernate. di al ect. DB2390Di al ect
PostgreSQL org. hi bernate. di al ect. Post greSQLDi al ect
MySQL5 org. hi bernate. di al ect. \ySQ.5Di al ect
MySQLS5 with InnoDB or g. hi bernate. di al ect. MySQL5I nnoDBDi al ect
MySQL with MyISAM or g. hi bernate. di al ect. MySQLMyI SAMDI al ect
Oracle (any version) org. hi bernate. di al ect. O acl eDi al ect

Oracle 9i org. hi bernate. di al ect. Oracl e9i Di al ect
Oracle 10g org. hi bernate. di al ect. Oracl el0gDi al ect
Oracle 11g org. hi bernate. di al ect. Oracl e10gDi al ect
Sybase org. hi bernate. di al ect. SybaseASE15Di al ect
Sybase Anywhere or g. hi bernat e. di al ect. SybaseAnywher eDi al ect
Microsoft SQL Server 2000 org. hi bernate. di al ect. SQLSer ver Di al ect
Microsoft SQL Server 2005 or g. hi bernate. di al ect. SQLSer ver 2005Di al ect
Microsoft SQL Server 2008 or g. hi bernate. di al ect. SQLSer ver 2008Di al ect
SAP DB or g. hi bernate. di al ect. SAPDBDI al ect

Informix org. hi bernate. di al ect.|nforni xDi al ect
HypersonicSQL org. hi bernate. di al ect. HSQLDi al ect

H2 Database org. hi bernate. di al ect. H2Di al ect

Ingres org. hi bernate. di al ect. | ngresDi al ect
Progress org. hi bernate. di al ect. ProgressbDi al ect
Mckoi SQL or g. hi bernat e. di al ect. Mckoi Di al ect

42

Outer Join Fetching

RDBMS Dialect

Interbase org. hi bernate. di al ect. | nterbaseDi al ect
Pointbase or g. hi ber nat e. di al ect. Poi nt baseDi al ect
FrontBase or g. hi bernnate. di al ect. Front baseDi al ect
Firebird org. hi bernate. di al ect. FirebirdDi al ect

3.4.2. Outer Join Fetching

If your database supports ANSI, Oracle or Sybase style outer joins, outer join fetching will often
increase performance by limiting the number of round trips to and from the database. This is,
however, at the cost of possibly more work performed by the database itself. Outer join fetching
allows a whole graph of objects connected by many-to-one, one-to-many, many-to-many and one-
to-one associations to be retrieved in a single SQL SELECT.

Outer join fetching can be disabled globally by setting the property hi ber nat e. max_f et ch_dept h
to 0. A setting of 1 or higher enables outer join fetching for one-to-one and many-to-one
associations that have been mapped with f et ch="j oi n".

See Section 21.1, “Fetching strategies” for more information.
3.4.3. Binary Streams

Oracle limits the size of byte arrays that can be passed to and/or from its JDBC driver.
If you wish to use large instances of binary or serializable type, you should enable
hi ber nat e. j dbc. use_streans_f or _bi nary. This is a system-level setting only.

3.4.4. Second-level and query cache

The properties prefixed by hi ber nat e. cache allow you to use a process or cluster scoped second-
level cache system with Hibernate. See the Section 21.2, “The Second Level Cache” for more
information.

3.4.5. Query Language Substitution

You can define new Hibernate query tokens using hi ber nate. query. substitutions. For
example:

hi ber nat e. query. substitutions true=1, false=0

This would cause the tokens t rue and f al se to be translated to integer literals in the generated
SQL.

hi ber nat e. query. substitutions toLowercase=LONER

43

Chapter 3. Configuration

This would allow you to rename the SQL LOAER function.

3.4.6. Hibernate statistics

If you enable hi ber nat e. generate_stati stics, Hibernate exposes a number of metrics that
are useful when tuning a running system via Sessi onFact ory. get St ati sti cs() . Hibernate can
even be configured to expose these statistics via JMX. Read the Javadoc of the interfaces in
or g. hi ber nat e. st at s for more information.

3.5. Logging

Hibernate utilizes Simple Logging Facade for Java [http://www.slIf4].org/] (SLF4J) in order to log
various system events. SLF4J can direct your logging output to several logging frameworks (NOP,
Simple, log4j version 1.2, JDK 1.4 logging, JCL or logback) depending on your chosen binding. In
order to setup logging you will need sl f 4j - api . j ar in your classpath together with the jar file for
your preferred binding - s| f 4j -1 og4j 12. j ar in the case of Log4J. See the SLF4J documentation
[http://www.slf4j.org/manual.html] for more detail. To use Log4j you will also need to place a
| og4j . properti es file in your classpath. An example properties file is distributed with Hibernate
in the src/ directory.

It is recommended that you familiarize yourself with Hibernate's log messages. A lot of work has
been put into making the Hibernate log as detailed as possible, without making it unreadable. It
is an essential troubleshooting device. The most interesting log categories are the following:

Table 3.9. Hibernate Log Categories

Category Function
or g. hi ber nat e. SQL Log all SQL DML statements as they are executed
org. hi bernate. type Log all JDBC parameters

or g. hi ber nat e. t ool . hbnildaly all SQL DDL statements as they are executed

org. hibernate.pretty |Log the state of all entities (max 20 entities) associated with the
session at flush time

or g. hi bernat e. cache Log all second-level cache activity

or g. hi ber nat e. t r ansact|iloyg transaction related activity

or g. hi bernate. j dbc Log all IDBC resource acquisition
or g. hi bernat e. hgl . ast .|A®g HQL and SQL ASTs during query parsing

org. hi bernate. secure | Log all JAAS authorization requests

org. hi bernate Log everything. This is a lot of information but it is useful for
troubleshooting

When developing applications with Hibernate, you should almost always work with debug enabled
for the category org. hi bernate. SQL, or, alternatively, the property hi ber nate. show_sq|l
enabled.

44

http://www.slf4j.org/
http://www.slf4j.org/
http://www.slf4j.org/manual.html
http://www.slf4j.org/manual.html

Implementing a NamingStrategy

3.6. Implementing a naningstrat egy

The interface or g. hi ber nat e. cf g. Nami ngSt r at egy allows you to specify a "naming standard"
for database objects and schema elements.

You can provide rules for automatically generating database identifiers from Java identifiers or
for processing "logical" column and table names given in the mapping file into "physical” table
and column names. This feature helps reduce the verbosity of the mapping document, eliminating
repetitive noise (TBL_ prefixes, for example). The default strategy used by Hibernate is quite
minimal.

You can specify a different strategy by calling Confi gur ati on. set Nami ngStrat egy() before
adding mappings:

Sessi onFactory sf = new Configuration()
. set Nam ngStrat egy (| mprovedNam ngStr at egy. | NSTANCE)
.addFil e("Item hbm xnml ")
.addFi |l e("Bi d. hbm xm ")
. bui | dSessi onFactory();

org. hi bernate. cfg. I nprovedNanmi ngStrat egy is a built-in strategy that might be a useful
starting point for some applications.

3.7. Implementing a PersisterClassProvider

You can configure the persister implementation used to persist your entities and collections:

« by default, Hibernate uses persisters that make sense in a relational model and follow Java
Persistence's specification

« you can define a Per si st er O assProvi der implementation that provides the persister class
used of a given entity or collection

« finally, you can override them on a per entity and collection basis in the mapping using
@er si st er or its XML equivalent

The latter in the list the higher in priority.

You can pass the Per si st er O assPr ovi der instance to the Confi gur ati on object.

Sessi onFactory sf = new Configuration()
. set Persi st er Cl assProvi der (cust onPer si st er Cl assProvi der)
. addAnnot at edd ass(Or der. cl ass)
. bui | dSessi onFactory();

45

Chapter 3. Configuration

The persister class provider methods, when returning a non null persister class, override the
default Hibernate persisters. The entity name or the collection role are passed to the methods.
It is a nice way to centralize the overriding logic of the persisters instead of spreading them on
each entity or collection mapping.

3.8. XML configuration file

An alternative approach to configuration is to specify a full configuration in a file named
hi ber nat e. cf g. xnl . This file can be used as a replacement for the hi ber nat e. properti es file
or, if both are present, to override properties.

The XML configuration file is by default expected to be in the root of your CLASSPATH. Here is
an example:

<?xm version='"1.0" encoding='utf-8" ?>
<! DOCTYPE hi ber nat e-confi gurati on PUBLI C
"-// Hi bernat e/ H bernate Configuration DID//EN'
"http://ww. hi bernat e. or g/ dt d/ hi bernat e-confi gurati on-3.0.dtd">

<hi ber nat e- confi gurati on>

<I-- a SessionFactory instance |listed as /jndi/nanme -->
<session-factory
nane="j ava: hi ber nat e/ Sessi onFactory">

<l-- properties -->
<property nane="connecti on. dat asource">j ava: / conp/ env/j dbc/ MyDB</ pr operty>
<property nanme="di al ect">org. hi bernate. di al ect. \ySQLD al ect </ property>
<property name="show_sql ">f al se</ property>
<property name="transaction.factory_class">
or g. hi bernate. transacti on. JTATransacti onFactory
</ property>
<property nanme="jta.UserTransaction">j ava: conp/ User Transacti on</ property>

<I-- mapping files -->
<mappi ng resource="or g/ hi bernate/auction/Item hbm xm "/>
<mappi ng resource="or g/ hi bernat e/ aucti on/ Bi d. hbm xm "/ >

<I-- cache settings -->

<cl ass-cache class="org. hi bernate. auction.|ten usage="read-wite"/>

<cl ass-cache cl ass="org. hi bernate. aucti on. Bi d* usage="read-only"/>

<col | ection-cache coll ection="org. hi bernate. auction.|tem bids" usage="read-wite"/>

</ sessi on-factory>

</ hi ber nat e- confi gurati on>

The advantage of this approach is the externalization of the mapping file names to configuration.
The hi ber nat e. cf g. xnl is also more convenient once you have to tune the Hibernate cache. It
is your choice to use either hi ber nat e. properti es or hi ber nat e. cf g. xm . Both are equivalent,
except for the above mentioned benefits of using the XML syntax.

46

Java EE Application Server integration

With the XML configuration, starting Hibernate is then as simple as:

Sessi onFactory sf = new Configuration().configure().buil dSessionFactory();

You can select a different XML configuration file using:

Sessi onFactory sf = new Configuration()

.configure("catdb.cfg.xnm™")
. bui | dSessi onFactory();

3.9. Java EE Application Server integration

Hibernate has the following integration points for J2EE infrastructure:

Container-managed datasources: Hibernate can use JDBC connections managed by the
container and provided through JNDI. Usually, a JTA compatible Tr ansacti onManager and
a ResourceManager take care of transaction management (CMT), especially distributed
transaction handling across several datasources. You can also demarcate transaction
boundaries programmatically (BMT), or you might want to use the optional Hibernate
Transact i on API for this to keep your code portable.

Automatic JNDI binding: Hibernate can bind its Sessi onFact ory to JNDI after startup.

JTA Session binding: the Hibernate Sessi on can be automatically bound to the scope of JTA
transactions. Simply lookup the Sessi onFact ory from JNDI and get the current Sessi on. Let
Hibernate manage flushing and closing the Sessi on when your JTA transaction completes.
Transaction demarcation is either declarative (CMT) or programmatic (BMT/UserTransaction).

JMX deployment: if you have a JMX capable application server (e.g. JBoss AS), you can choose
to deploy Hibernate as a managed MBean. This saves you the one line startup code to build your
Sessi onFact ory from a Confi gur ati on. The container will startup your H ber nat eSer vi ce
and also take care of service dependencies (datasource has to be available before Hibernate
starts, etc).

Depending on your environment, you might have to set the configuration option
hi ber nat e. connecti on. aggressi ve_rel ease to true if your application server shows
"connection containment" exceptions.

3.9.1. Transaction strategy configuration

The Hibernate Sessi on API is independent of any transaction demarcation system in your

architecture. If you let Hibernate use JDBC directly through a connection pool, you can begin
and end your transactions by calling the JDBC API. If you run in a J2EE application server, you

47

Chapter 3. Configuration

might want to use bean-managed transactions and call the JTA APl and User Tr ansact i on when
needed.

To keep your code portable between these two (and other) environments we recommend the
optional Hibernate Tr ansact i on API, which wraps and hides the underlying system. You have to
specify a factory class for Tr ansact i on instances by setting the Hibernate configuration property
hi bernate.transaction.factory_cl ass.

There are three standard, or built-in, choices:

org. hi bernate.transacti on. JDBCTr ansacti onFactory
delegates to database (JDBC) transactions (default)

org. hi bernate. transacti on. JTATransacti onFact ory
delegates to container-managed transactions if an existing transaction is underway in this
context (for example, EJB session bean method). Otherwise, a new transaction is started and
bean-managed transactions are used.

org. hi bernate.transacti on. CMI Tr ansact i onFact ory
delegates to container-managed JTA transactions

You can also define your own transaction strategies (for a CORBA transaction service, for
example).

Some features in Hibernate (i.e., the second level cache, Contextual Sessions with JTA, etc.)
require access to the JTA Transacti onManager in a managed environment. In an application
server, since J2EE does not standardize a single mechanism, you have to specify how Hibernate
should obtain a reference to the Tr ansact i onManager :

Table 3.10. JTA TransactionManagers

Transaction Factory Application Server
org. hi bernate. transacti on. JBossTransact i onManager Lookup JBoss AS
org. hi bernate. transacti on. Wbl ogi cTr ansact i onManager Lookup Weblogic

or g. hi bernat e. t ransacti on. WebSpher eTr ansact i onManager Lookup ~ WebSphere

or g. hi bernat e. t ransacti on. WebSpher eExt endedJTATr ansact i onLook¥MgebSphere 6

org. hi bernate.transacti on. Ori onTransacti onManager Lookup Orion
org. hi bernate.transacti on. Resi nTransact i onManager Lookup Resin
org. hi bernate. transacti on. JOTMIr ansact i onManager Lookup JOTM
org. hi bernate.transacti on. JOnASTr ansact i onManager Lookup JONnAS
org. hi bernate. transacti on. JRun4Tr ansact i onManager Lookup JRun4
org. hi bernate. transacti on. BESTr ansact i onManager Lookup Borland ES

org. hi bernate. transacti on. JBossTSSt andal oneTr ansact i onManagerlBossuig S used
standalone (ie. outside

48

JNDI-bound SessionFactory

Transaction Factory Application Server
JBoss AS and a JNDI
environment generally).
Known to work for
org.j boss.jbossts:jbossjta: 4.11. 0. Fi nal

3.9.2. INDI-bound sessi onFact ory

A JNDI-bound Hibernate Sessi onFact ory can simplify the lookup function of the factory and
create new Sessi ons. This is not, however, related to a JNDI bound Dat asour ce; both simply
use the same registry.

If you wish to have the Sessi onFactory bound to a JNDI namespace, specify a nhame (e.g.
j ava: hi ber nat e/ Sessi onFact ory) using the property hi ber nat e. sessi on_factory_nane. If
this property is omitted, the Sessi onFact or y will not be bound to JNDI. This is especially useful
in environments with a read-only JNDI default implementation (in Tomcat, for example).

When binding the SessionFactory to JNDI, Hibernate will use the values of
hi bernate.jndi.url, hibernate.jndi.class to instantiate an initial context. If they are not
specified, the default I ni ti al Cont ext will be used.

Hibernate will automatically place the SessionFactory in JNDI after you call
cf g. bui | dSessi onFact or y() . This means you will have this call in some startup code, or utility
class in your application, unless you use JMX deployment with the Hi ber nat eServi ce (this is
discussed later in greater detail).

If you use a JNDI SessionFactory, an EJB or any other class, you can obtain the
Sessi onFact ory using a JNDI lookup.

It is recommended that you bind the Sessi onFact ory to JNDI in a managed environment and
use a st ati ¢ singleton otherwise. To shield your application code from these details, we also
recommend to hide the actual lookup code for a Sessi onFactory in a helper class, such as
Hi bernatelti | . get Sessi onFact ory(). Note that such a class is also a convenient way to
startup Hibernate—see chapter 1.

3.9.3. Current Session context management with JTA

The easiest way to handle Sessi ons and transactions is Hibernate's automatic "current” Sessi on
management. For a discussion of contextual sessions see Section 2.3, “Contextual sessions”.
Using the "j ta" session context, if there is no Hibernate Sessi on associated with the current
JTA transaction, one will be started and associated with that JTA transaction the first time you call
sessi onFact ory. get Current Sessi on() . The Sessi ons retrieved via get Cur r ent Sessi on() in
the "jta" context are set to automatically flush before the transaction completes, close after
the transaction completes, and aggressively release JDBC connections after each statement.
This allows the Sessi ons to be managed by the life cycle of the JTA transaction to which it
is associated, keeping user code clean of such management concerns. Your code can either

49

Chapter 3. Configuration

use JTA programmatically through User Tr ansact i on, or (recommended for portable code) use
the Hibernate Transacti on API to set transaction boundaries. If you run in an EJB container,
declarative transaction demarcation with CMT is preferred.

3.9.4. JIMX deployment

The line cfg. buil dSessionFactory() still has to be executed somewhere to get a
Sessi onFact ory into JNDI. You can do this either in a st ati ¢ initializer block, like the one in
Hi bernat elUti |, or you can deploy Hibernate as a managed service.

Hibernate is distributed with org. hi ber nat e. j nx. Hi ber nat eSer vi ce for deployment on an
application server with JMX capabilities, such as JBoss AS. The actual deployment and
configuration is vendor-specific. Here is an example j boss- servi ce. xml for JBoss 4.0.x:

<?xm version="1.0"?>
<server>

<nmbean code="org. hi bernate. j nx. H ber nat eServi ce"
nane="j boss. j ca: servi ce=Hi ber nat eFact ory, nane=Hi ber nat eFact ory" >

<!-- Required services -->
<depends>j boss. j ca: ser vi ce=RARDepl oyer </ depends>
<depends>j boss. j ca: servi ce=Local TxCM nanme=Hsql DS</ depends>

<!-- Bind the H bernate service to JNDI -->
<attribute name="Jndi Name" >j ava: / hi ber nat e/ Sessi onFactory</attribute>

<!-- Datasource settings -->
<attribute nanme="Dat asource">j ava: Hsql DS</ attri but e>
<attribute nanme="Di al ect">org. hi bernate. di al ect. HSQLDi al ect </ attri but e>

<!-- Transaction integration -->
<attribute name="Transacti onStrategy">

org. hi bernate. transacti on. JTATr ansacti onFactory</attri bute>
<attribute nanme="Transacti onManager LookupStrat egy" >

or g. hi bernat e. transacti on. JBossTr ansact i onManager Lookup</ attri but e>
<attribute nanme="Fl ushBef or eConpl eti onEnabl ed">true</attri bute>
<attribute name="Aut oC oseSessi onEnabl ed">true</attribute>

<!-- Fetching options -->
<attribute name="Maxi munfFet chDept h">5</attri bute>

<I-- Second-|evel caching -->

<attribute name="SecondLevel CacheEnabl ed">true</attri bute>

<attribute nanme="CacheProvi der C ass" >or g. hi ber nat e. cache. EhCacheProvi der </ attri but e>
<attribute name="QueryCacheEnabl ed">true</attri bute>

<!-- Logging -->
<attribute name="ShowSqgl Enabl ed">true</attri bute>

<l-- Mapping files -->
<attribute nanme="MapResour ces">auction/|tem hbm xm , aucti on/ Cat egory. hbm xm </ attri but e>

</ mbean>

50

JMX deployment

</ server>

This file is deployed in a directory called META- | NF and packaged in a JAR file with the extension
. sar (service archive). You also need to package Hibernate, its required third-party libraries, your
compiled persistent classes, as well as your mapping files in the same archive. Your enterprise
beans (usually session beans) can be kept in their own JAR file, but you can include this EJB
JAR file in the main service archive to get a single (hot-)deployable unit. Consult the JBoss AS
documentation for more information about JMX service and EJB deployment.

51

52

Chapter 4.

Persistent Classes

Persistent classes are classes in an application that implement the entities of the business problem
(e.g. Customer and Order in an E-commerce application). The term "persistent" here means that
the classes are able to be persisted, not that they are in the persistent state (see Section 11.1,
“Hibernate object states” for discussion).

Hibernate works best if these classes follow some simple rules, also known as the Plain Old
Java Object (POJO) programming model. However, none of these rules are hard requirements.
Indeed, Hibernate assumes very little about the nature of your persistent objects. You can express
a domain model in other ways (using trees of j ava. uti | . Map instances, for example).

4.1. A simple POJO example

Example 4.1. Simple POJO representing a cat

package eg;
inport java.util. Set;
inmport java.util.Date;

public class Cat {
private Long id; // identifier

private Date birthdate;
private Col or color;
private char sex;
private float weight;
private int litterld,;

private Cat nother;
private Set kittens = new HashSet();

private void setld(Long id) {
this.id=id;

}

public Long getld() {
return id,;

}

void setBirthdate(Date date) {
birthdate = date;

}

public Date getBirthdate() {
return birthdate;

}

voi d set Wi ght (fl oat wei ght) {
this.weight = weight;

}

public float getWight() {
return weight;

}

53

Chapter 4. Persistent Classes

public Col or getColor() {
return color;

}
voi d set Col or (Col or color) {
this.color = color;

voi d set Sex(char sex) {
t hi s. sex=sex;

}

public char getSex() {
return sex;

void setLitterld(int id) {
this.litterld = id;

}

public int getLitterld() {
return litterld;

voi d set Mbt her (Cat nother) {
this. mother = nother;

}
public Cat getMther() {

return nother;

}
void setKittens(Set kittens) {
this.kittens = kittens;

}
public Set getKittens() {

return kittens;

/] addKitten not needed by Hi bernate

public void addKitten(Cat kitten) {
kitten. set Mot her(this);

kitten.setLitterld(kittens.size());
kittens. add(kitten);

The four main rules of persistent classes are explored in more detail in the following sections.

4.1.1. Implement a no-argument constructor

Cat has a no-argument constructor. All persistent classes must have a default
constructor (which can be non-public) so that Hibernate can instantiate them using
java.l ang. reflect. Constructor.new nstance(). It is recommended that this constructor be
defined with at least package visibility in order for runtime proxy generation to work properly.

54

Provide an identifier property

4.1.2. Provide an identifier property

(3

Cat has a property named i d. This property maps to the primary key column(s) of the underlying
database table. The type of the identifier property can be any "basic" type (see ??77?). See
Section 9.4, “Components as composite identifiers” for information on mapping composite (multi-
column) identifiers.

(3

We recommend that you declare consistently-named identifier properties on persistent classes
and that you use a nullable (i.e., non-primitive) type.

4.1.3. Prefer non-final classes (semi-optional)

A central feature of Hibernate, proxies (lazy loading), depends upon the persistent class being
either non-final, or the implementation of an interface that declares all public methods. You can
persist fi nal classes that do not implement an interface with Hibernate; you will not, however,
be able to use proxies for lazy association fetching which will ultimately limit your options for
performance tuning. To persistafi nal class which does not implement a "full" interface you must
disable proxy generation. See Example 4.2, “Disabling proxies in hbm.xml|” and Example 4.3,
“Disabling proxies in annotations”.

Example 4.2. Disabling proxies in hbm xm

<class nane="Cat" |azy="false"...> ..</class>

Example 4.3. Disabling proxies in annotations

@ntity @roxy(lazy=false) public class Cat { ... }

55

Chapter 4. Persistent Classes

If the fi nal class does implement a proper interface, you could alternatively tell Hibernate to use
the interface instead when generating the proxies. See Example 4.4, “Proxying an interface in
hbm.xml” and Example 4.5, “Proxying an interface in annotations”.

Example 4.4. Proxying an interface in hbm xni

<cl ass nane="Cat" proxy="ICat"...>...</class>

Example 4.5. Proxying an interface in annotations

@ntity @°roxy(proxyC ass=lCat.class) public class Cat inplenents ICat { ... }

You should also avoid declaring public final methods as this will again limit the ability to
generate proxies from this class. If you want to use a class with public final methods, you
must explicitly disable proxying. Again, see Example 4.2, “Disabling proxies in hbm.xml” and
Example 4.3, “Disabling proxies in annotations”.

4.1.4. Declare accessors and mutators for persistent fields
(optional)

Cat declares accessor methods for all its persistent fields. Many other ORM tools directly persist
instance variables. It is better to provide an indirection between the relational schema and
internal data structures of the class. By default, Hibernate persists JavaBeans style properties
and recognizes method names of the form get Foo, i sFoo and set Foo. If required, you can switch
to direct field access for particular properties.

Properties need not be declared public. Hibernate can persist a property declared with package,
prot ect ed or pri vat e visibility as well.

4.2. Implementing inheritance

A subclass must also observe the first and second rules. It inherits its identifier property from the
superclass, Cat . For example:

package eg;

public class DomesticCat extends Cat {
private String nane;

public String getName() {
return nane;

}

protected void setNane(String nane) {
t hi s. nane=nane;

}

56

Implementing equals() and hashCode()

4.3. Implementing equais() and nashcode()

You have to override the equal s() and hashCode() methods if you:

« intend to put instances of persistent classes in a Set (the recommended way to represent many-
valued associations); and
* intend to use reattachment of detached instances

Hibernate guarantees equivalence of persistent identity (database row) and Java identity only
inside a particular session scope. When you mix instances retrieved in different sessions, you
must implement equal s() and hashCode() if you wish to have meaningful semantics for Set s.

The most obvious way is to implement equal s() /hashCode() by comparing the identifier value
of both objects. If the value is the same, both must be the same database row, because they are
equal. If both are added to a Set , you will only have one element in the Set). Unfortunately, you
cannot use that approach with generated identifiers. Hibernate will only assign identifier values to
objects that are persistent; a newly created instance will not have any identifier value. Furthermore,
if an instance is unsaved and currently in a Set , saving it will assign an identifier value to the object.
If equal s() and hashCode() are based on the identifier value, the hash code would change,
breaking the contract of the Set . See the Hibernate website for a full discussion of this problem.
This is not a Hibernate issue, but normal Java semantics of object identity and equality.

It is recommended that you implement equal s() and hashCode() using Business key equality.
Business key equality means that the equal s() method compares only the properties that form
the business key. It is a key that would identify our instance in the real world (a natural candidate
key):

public class Cat {

publ i c bool ean equal s(Obj ect other) {
if (this == other) return true,
if (!(other instanceof Cat)) return fal se;

final Cat cat = (Cat) other;

if (lcat.getLitterld().equals(getLitterld())) return false;
if (!cat.getMther().equals(getMther())) return false;

return true;

}

public int hashCode() {
int result;
result = get Mother().hashCode();
result = 29 * result + getLitterld();
return result;

57

Chapter 4. Persistent Classes

A business key does not have to be as solid as a database primary key candidate (see
Section 13.1.3, “Considering object identity”). Immutable or unique properties are usually good
candidates for a business key.

4.4. Dynamic models

Note

The following features are currently considered experimental and may change in
the near future.

Persistent entities do not necessarily have to be represented as POJO classes or as JavaBean
objects at runtime. Hibernate also supports dynamic models (using Maps of Maps at runtime) and
the representation of entities as DOM4J trees. With this approach, you do not write persistent
classes, only mapping files.

By default, Hibernate works in normal POJO mode. You can set a default entity representation
mode for a particular Sessi onFact ory using the def aul t _ent i t y_node configuration option (see
Table 3.3, “Hibernate Configuration Properties”).

The following examples demonstrate the representation using Maps. First, in the mapping file an
enti ty-nane has to be declared instead of, or in addition to, a class name:

<hi ber nat e- mappi ng>
<cl ass entity-nane="Custoner">

<id name="id"

type="1ong"

col um="1D">

<gener at or cl ass="sequence"/>
</id>

<property nanme="name"
col um=" NAME"
type="string"/>

<property nanme="address"
col um=" ADDRESS"
type="string"/>

<many-to-one nane="organi zati on"
col utm="ORGANI ZATI ON_I| D"
cl ass="Organi zation"/ >

58

Dynamic models

<bag name="orders"
inverse="true"
lazy="fal se"
cascade="al | ">
<key col um="CUSTOMVER | D'/ >
<one-to-nmany cl ass="Order"/>
</ bag>

</cl ass>

</ hi ber nat e- mappi ng>

Even though associations are declared using target class names, the target type of associations
can also be a dynamic entity instead of a POJO.

After setting the default entity mode to dynani c- map for the Sessi onFact or y, you can, at runtime,
work with Maps of Maps:

Session s = openSession();
Transaction tx = s.beginTransaction();

/] Create a custoner
Map david = new HashMap();
davi d. put ("nane", "David");

/] Create an organi zation
Map foobar = new HashMap();
f oobar. put ("name", "Foobar Inc.");

/1 Link both
davi d. put ("organi zation", foobar);

/| Save both
s. save("Custoner", david);
s.save("Organi zation", foobar);

tx.commit();
s.close();

One of the main advantages of dynamic mapping is quick turnaround time for prototyping, without
the need for entity class implementation. However, you lose compile-time type checking and
will likely deal with many exceptions at runtime. As a result of the Hibernate mapping, the
database schema can easily be normalized and sound, allowing to add a proper domain model
implementation on top later on.

Entity representation modes can also be set on a per Sessi on basis:

Sessi on dynani cSessi on = poj oSessi on. get Sessi on(Entit yMode. MAP) ;

/] Create a custoner
Map davi d = new HashMap();
davi d. put ("nane", "David");

59

Chapter 4. Persistent Classes

dynami cSessi on. save(" Custoner", david)

dynami cSessi on. fl ush()
dynani cSessi on. cl ose()

/] Continue on pojoSession

Please note that the call to get Sessi on() using an EntityMde is on the Sessi on API, not
the Sessi onFact ory. That way, the new Sessi on shares the underlying JDBC connection,
transaction, and other context information. This means you do not have to call flush() and
cl ose() on the secondary Sessi on, and also leave the transaction and connection handling to
the primary unit of work.

More information about the XML representation capabilities can be found in Chapter 20, XML
Mapping.

4.5. Tuplizers

org. hibernate.tuple. Tuplizer and its sub-interfaces are responsible for managing
a particular representation of a piece of data given that representation's
or g. hi bernat e. Enti t yMbde. If a given piece of data is thought of as a data structure, then a
tuplizer is the thing that knows how to create such a data structure, how to extract values from such
a data structure and how to inject values into such a data structure. For example, for the POJO
entity mode, the corresponding tuplizer knows how create the POJO through its constructor. It
also knows how to access the POJO properties using the defined property accessors.

There are two (high-level) types of Tuplizers:

e org. hibernate.tuple.entity.EntityTuplizer whichisresponsible for managing the above
mentioned contracts in regards to entities

e org. hi bernate. tupl e. conponent . Conponent Tupl i zer which does the same for
components

Users can also plug in their own tuplizers. Perhaps you require that java.util.Mp
implementation other than j ava. uti | . HashMap be used while in the dynamic-map entity-mode.
Or perhaps you need to define a different proxy generation strategy than the one used by default.
Both would be achieved by defining a custom tuplizer implementation. Tuplizer definitions are
attached to the entity or component mapping they are meant to manage. Going back to the
example of our Cust omer entity, Example 4.6, “Specify custom tuplizers in annotations” shows
how to specify a custom org. hi bernate.tuple.entity.EntityTuplizer using annotations
while Example 4.7, “Specify custom tuplizers in hbm.xml” shows how to do the same in hbm xni

Example 4.6. Specify custom tuplizers in annotations

@ntity

60

EntityNameResolvers

@uplizer(inpl = DynanicEntityTuplizer.class)
public interface Cuisine {

@d

@xner at edVal ue

public Long getld();

public void setld(Long id)

public String getNane();
public void setNane(String name);

@uplizer (i npl = Dynami cConponent Tupli zer. cl ass)
public Country getCountry();
public void setCountry(Country country)

Example 4.7. Specify custom tuplizers in hbm xm

<hi ber nat e- mappi ng>
<cl ass entity-nane="Custoner">
<lf-=
Override the dynam c-nmap entity-node

tuplizer for the customer entity
-->

<tuplizer entity-node="dynam c- map"
cl ass="Cust onVapTupl i zerl npl "/ >

<id name="id" type="long" colum="ID">
<gener at or cl ass="sequence"/>
</id>

<l-- other properties -->
</ cl ass>
</ hi ber nat e- mappi ng>

4.6. EntityNameResolvers

or g. hi bernate. Entit yNameResol ver is a contract for resolving the entity name of a given
entity instance. The interface defines a single method resol veEntityName which is passed
the entity instance and is expected to return the appropriate entity name (null is allowed and
would indicate that the resolver does not know how to resolve the entity name of the given
entity instance). Generally speaking, an or g. hi ber nat e. Ent i t yNameResol ver is going to be
most useful in the case of dynamic models. One example might be using proxied interfaces as
your domain model. The hibernate test suite has an example of this exact style of usage under
the org.hibernate.test.dynamicentity.tuplizer2. Here is some of the code from that package for
illustration.

/**
* A very trivial JDK Proxy |InvocationHandl er inplenentation where we proxy an
* interface as the domain nodel and sinply store persistent state in an interna

61

Chapter 4. Persistent Classes

* Map. This is an extrenely trivial exanple neant only for illustration.
*/
public final class DataProxyHandl er inplenents |nvocationHandl er {

private String entityName;

private HashMap data = new HashMap();

publ i c Dat aProxyHandl er (String entityName, Serializable id) {
this.entityName = entityName;
data.put("Id", id);

public Object invoke(Object proxy, Method nethod, Object[] args) throws Throwable {

String net hodNanme = net hod. get Nane();

if (nethodNane.startsWth("set")) {
String propertyNane = met hodNane. substring(3);
dat a. put (propertyNane, args[0]);

}

else if (methodNane.startsWth("get")) {
String propertyNane = net hodNane. substring(3);
return data.get(propertyName);

}

else if ("toString".equals(nmethodNanme)) {
return entityName + "#" + data.get("1d");

}

else if ("hashCode".equal s(nethodNanme)) {
return new I nteger(this.hashCode());

}

return null;

public String getEntityNanme() {
return entityName;

public HashMap getData() {
return data;

public class ProxyHel per {
public static String extractEntityNane(Cbject object) {
/1 Qur customjava.lang.reflect.Proxy instances actually bundle
// their appropriate entity nane, so we sinply extract it fromthere
/] if this represents one of our proxies; otherwi se, we return null
if (Proxy.isProxyd ass(object.getClass())) {
I nvocati onHandl er handl er = Proxy.getlnvocati onHandl er (object);
if (DataProxyHandl er.cl ass. i sAssignabl eFron{ handl er.getC ass())) {
Dat aPr oxyHandl er nyHandl er = (DataProxyHandl er) handl er;
return nmyHandl er. get EntityNane();

}

return null;

/1l various other utility methods

| **

62

EntityNameResolvers

* The EntityNameResol ver inpl enmentation.

* | MPL NOTE : An EntityNanmeResol ver really defines a strategy for how entity nanes
* shoul d be resolved. Since this particular inpl can handle resolution for all of our
* entities we want to take advantage of the fact that SessionFactorylnpl keeps these
* in a Set so that we only ever have one instance registered. Wiy? Well, when it
* cones tinme to resolve an entity name, Hibernate nust iterate over all the registered
* resolvers. So keeping that nunber down hel ps that process be as speedy as possible.
* Hence the equal s and hashCode i nplenentations as is
*/
public class MyEntityNameResol ver inplenments EntityNanmeResol ver {

public static final M/EntityNaneResol ver | NSTANCE = new M/EntityNanmeResol ver();

public String resolveEntityNane(Object entity) {
return ProxyHel per.extractEntityNane(entity);

publi c bool ean equal s(oj ect obj) {
return getC ass().equal s(obj.getd ass());

public int hashCode() {
return getC ass().hashCode();

public class MyEntityTuplizer extends PojoEntityTuplizer {
public MyEntityTuplizer(EntityMetanpdel entityMetanodel, Persistentd ass mappedEntity) {
super (entityMetanodel, mappedEntity);

public EntityNameResol ver[] getEntityNameResol vers() {
return new EntityNameResol ver[] { M/EntityNaneResol ver. | NSTANCE };

public String determ neConcreteSubcl assEntityName(Obj ect entitylnstance, SessionFactorylnplenentor factory) {
String entityName = ProxyHel per.extractEntityName(entitylnstance);
if (entityName == null) {
entityNane = super.determ neConcreteSubcl assEntityNanme(entitylnstance, factory);

}

return entityNane;

In order to register an or g. hi ber nat e. Enti t yNameResol ver users must either:

1. Implement a custom tuplizer (see Section 4.5, *“Tuplizers”), implementing the
get Enti t yNameResol ver s method

2. Register it with the or g. hi ber nat e. i npl . Sessi onFact oryl npl (which is the implementation
class for org. hi bernate. Sessi onFactory) using the registerEntityNaneResol ver
method.

63

64

Chapter 5.

Basic O/R Mapping

5.1. Mapping declaration

Object/relational mappings can be defined in three approaches:

» using Java 5 annotations (via the Java Persistence 2 annotations)
 using JPA 2 XML deployment descriptors (described in chapter XXX)
 using the Hibernate legacy XML files approach known as hbm.xml

Annotations are split in two categories, the logical mapping annotations (describing the object
model, the association between two entities etc.) and the physical mapping annotations
(describing the physical schema, tables, columns, indexes, etc). We will mix annotations from
both categories in the following code examples.

JPA annotations are in the j avax. persi st ence. * package. Hibernate specific extensions are
in or g. hi ber nat e. annot ati ons. *. You favorite IDE can auto-complete annotations and their
attributes for you (even without a specific "JPA" plugin, since JPA annotations are plain Java 5
annotations).

Here is an example of mapping

package eg;

@ntity

@abl e(nane="cats") @nheritance(strategy=SI NGLE_TABLE)

@i scrim natorValue("C') @i scrini natorCol um(nane="subcl ass", discrin natorType=CHAR)
public class Cat {

@d @zener at edVal ue

public Integer getld() { returnid; }

public void setld(Integer id) { this.id =id; }
private Integer id;

public BigDeci mal getWight() { return weight; }
public void set Wi ght(Bi gDeci mal weight) { this.weight = weight; }
private BigDecinal weight;

@enpor al (DATE) @Not Nul I @Col utm(updat abl e=f al se)

public Date getBirthdate() { return birthdate; }

public void setBirthdate(Date birthdate) { this.birthdate = birthdate; }
private Date birthdate;

@r g. hi bernate. annot ati ons. Type(type="eg. types. Col or User Type")
@\ot Nul | @Col um(updat abl e=f al se)

public Col or Type getColor() { return color; }

public void setCol or (Col or Type color) { this.color = color; }
private Col or Type col or;

65

Chapter 5. Basic O/R Mapping

@\ot Nul | @Col um(updat abl e=f al se)

public String getSex() { return sex; }

public void setSex(String sex) { this.sex = sex; }
private String sex;

@Not Nul | @Col umm(updat abl e=f al se)

public Integer getLitterld() { return litterld; }

public void setLitterld(Integer litterld) { this.litterld =litterld; }
private Integer litterld;

@manyToOne @oi nCol um(nane="not her _i d*, updat abl e=f al se)
public Cat getMther() { return nother; }

public void setMther(Cat nmother) { this.nother = nother; }
private Cat nother;

@neToMany(mappedBy="not her") @rderBy("litterld")

public Set<Cat> getKittens() { return kittens; }

public void setKittens(Set<Cat> kittens) { this.kittens = kittens; }
private Set<Cat> kittens = new HashSet <Cat >();

@ntity @iscrimnatorValue("D")
public class DomesticCat extends Cat {

public String getName() { return name; }
public void setName(String nane) { this.nane = nane }
private String nane;

@ntity
public class Dog { ... }

The legacy hbm.xml approach uses an XML schema designed to be readable and hand-editable.
The mapping language is Java-centric, meaning that mappings are constructed around persistent
class declarations and not table declarations.

Please note that even though many Hibernate users choose to write the XML by hand, a number of
tools exist to generate the mapping document. These include XDoclet, Middlegen and AndroMDA.

Here is an example mapping:

<?xm version="1.0""?>
<! DOCTYPE hi ber nat e- mappi ng PUBLI C
"-//H bernate/H bernate Mapping DID 3.0//EN'
"http://ww. hi bernate. org/ dtd/ hi ber nat e- mappi ng-3. 0. dt d" >

<hi ber nat e- mappi ng package="eg">

<cl ass nane="Cat"
tabl e="cat s"
di scrim nator-val ue="C"'>

<id name="id">
<generator class="native"/>
</id>

66

Mapping declaration

<di scri m nat or col um="subcl ass"
type="character"/>

<property name="wei ght"/>

<property nanme="birthdate"
type="dat e"
not-nul | ="true"
updat e="f al se"/ >

<property nanme="col or"
type="eg. types. Col or User Type"
not-nul I ="true"
updat e="fal se"/ >

<property nane="sex"
not-nul | ="true"
updat e="fal se"/ >

<property name="litterld"
colum="litterld"
updat e="fal se"/ >

<nmany-t o-one name="not her"
col um="not her _i d"
updat e="fal se"/ >

<set nane="kittens"
inverse="true"
order-by="litter_id">
<key col um="not her _i d"/>
<one-to-nany cl ass="Cat"/>
</set>

<subcl ass nanme="Donesti cCat"
di scri m nator-val ue="D"'>

<property nanme="name"
type="string"/>

</ subcl ass>
</ cl ass>

<cl ass nane="Dog" >
<!'-- napping for Dog could go here -->
</cl ass>

</ hi ber nat e- mappi ng>

We will now discuss the concepts of the mapping documents (both annotations and XML). We
will only describe, however, the document elements and attributes that are used by Hibernate at
runtime. The mapping document also contains some extra optional attributes and elements that
affect the database schemas exported by the schema export tool (for example, the not - nul |
attribute).

67

Chapter 5. Basic O/R Mapping

5.1.1. Entity

An entity is a regular Java object (aka POJO) which will be persisted by Hibernate.

To mark an object as an entity in annotations, use the @nt i t y annotation.

@Entity
public class Flight inplenents Serializable {
Long id;

@d
public Long getld() { returnid; }

public void setld(Long id) { this.id =id; }

That's pretty much it, the rest is optional. There are however any options to tweak your entity
mapping, let's explore them.

@rabl e lets you define the table the entity will be persisted into. If undefined, the table name is
the unqualified class name of the entity. You can also optionally define the catalog, the schema
as well as unique constraints on the table.

@Entity
@rabl e(nanme="TBL_FLI GHT",
schema="Al R_COMAND",
uni queConstrai nt s=
@Jni queConstrai nt (
name="f | i ght _nunber",
col umNanmes={"conp_prefix", "flight_nunber"}))
public class Flight inplenments Serializable {
@col um(nanme="conp_prefix")
public String get ConpagnyPrefix() { return conpanyPrefix; }

@Col um(nanme="f1i ght _nunber")
public String getNunber() { return nunber; }

The constraint name is optional (generated if left undefined). The column names composing the
constraint correspond to the column names as defined before the Hibernate Nani ngSt r at egy is
applied.

@ntity. name lets you define the shortcut name of the entity you can used in JP-QL and HQL
queries. It defaults to the unqualified class name of the class.

Hibernate goes beyond the JPA specification and provide additional configurations. Some of them
are hosted on @r g. hi bernat e. annot ati ons. Entity:

e dynani cl nsert /dynani cUpdat e (defaults to false): specifies that | NSERT / UPDATE SQL should
be generated at runtime and contain only the columns whose values are not null. The dynani c-

68

Entity

updat e and dynani c-i nsert settings are not inherited by subclasses. Although these settings
can increase performance in some cases, they can actually decrease performance in others.

sel ect Bef or eUpdat e (defaults to false): specifies that Hibernate should never perform an SQL
UPDATE unless it is certain that an object is actually modified. Only when a transient object
has been associated with a new session using updat e() , will Hibernate perform an extra SQL
SELECT to determine if an UPDATE is actually required. Use of sel ect - bef or e- updat e will
usually decrease performance. It is useful to prevent a database update trigger being called
unnecessarily if you reattach a graph of detached instances to a Sessi on.

pol ynor phi sns (defaults to 1 MPLI CI T): determines whether implicit or explicit query
polymorphisms is used. Implicit polymorphisms means that instances of the class will be
returned by a query that names any superclass or implemented interface or class, and that
instances of any subclass of the class will be returned by a query that names the class
itself. Explicit polymorphisms means that class instances will be returned only by queries that
explicitly name that class. Queries that name the class will return only instances of subclasses
mapped. For most purposes, the default pol ynor phi sms=I MPLI CI T is appropriate. Explicit
polymorphisms is useful when two different classes are mapped to the same table This allows
a "lightweight" class that contains a subset of the table columns.

per si st er : specifies a custom C assPer si st er. The persi st er attribute lets you customize
the persistence strategy used for the class. You can, for example, specify your own
subclass of org. hi bernate. persister.EntityPersister, or you can even provide a
completely new implementation of the interface or g. hi ber nat e. persi ster. Cl assPer si st er
that implements, for example, persistence via stored procedure calls, serialization to flat files
or LDAP. See org. hi ber nat e. t est . Cust onPer si st er for a simple example of "persistence"
to a Hasht abl e.

opti m sticLock (defaults to VERSI ON): determines the optimistic locking strategy. If you enable
dynanm cUpdat e, you will have a choice of optimistic locking strategies:

¢ versi on: check the version/timestamp columns

e al | : check all columns

 di rty: check the changed columns, allowing some concurrent updates
¢ none: do not use optimistic locking

It is strongly recommended that you use version/timestamp columns for optimistic locking with
Hibernate. This strategy optimizes performance and correctly handles modifications made to
detached instances (i.e. when Sessi on. mer ge() is used).

Tip

Be sure to import @ avax. per si st ence. Enti ty to mark a class as an entity. It's a
common mistake to import @r g. hi ber nat e. annot at i ons. Enti ty by accident.

69

Chapter 5. Basic O/R Mapping

Some entities are not mutable. They cannot be updated or deleted by the application. This allows
Hibernate to make some minor performance optimizations.. Use the @ nmut abl e annotation.

You can also alter how Hibernate deals with lazy initialization for this class. On @ oxy, use
| azy=false to disable lazy fetching (not recommended). You can also specify an interface to use
for lazy initializing proxies (defaults to the class itself): use pr oxyd ass on @r oxy. Hibernate will
initially return proxies (Javassist or CGLIB) that implement the named interface. The persistent
object will load when a method of the proxy is invoked. See "Initializing collections and proxies"
below.

@Bat chSi ze specifies a "batch size" for fetching instances of this class by identifier. Not yet loaded
instances are loaded batch-size at a time (default 1).

You can specific an arbitrary SQL WHERE condition to be used when retrieving objects of this
class. Use @er e for that.

In the same vein, @heck lets you define an SQL expression used to generate a multi-row check
constraint for automatic schema generation.

There is no difference between a view and a base table for a Hibernate mapping. This is
transparent at the database level, although some DBMS do not support views properly, especially
with updates. Sometimes you want to use a view, but you cannot create one in the database (i.e.
with a legacy schema). In this case, you can map an immutable and read-only entity to a given
SQL subselect expression using @r g. hi ber nat e. annot at i ons. Subsel ect :

@ntity
@ubsel ect ("sel ect item nane, max(bid.anount), count(*) "
+ "fromitem"
+ "join bid on bid.itemid =itemid "
+ "group by item nane")
@ynchronize({"iten¥, "bid"}) //tables inpacted
public class Sumary {
@d
public String getld() { returnid; }

Declare the tables to synchronize this entity with, ensuring that auto-flush happens correctly and
that queries against the derived entity do not return stale data. The <subsel ect > is available both
as an attribute and a nested mapping element.

We will now explore the same options using the hbm.xml structure. You can declare a persistent
class using the cl ass element. For example:

<cl ass
nane="C assNane"

t abl e="t abl eNane"

@0 e

di scri m nator-val ue="di scri m nat or _val ue"

70

Entity

/>

® o

© © 9O ©

e

nut abl e="true| fal se" 4]
schema="owner" (3
cat al og="cat al og" (6]
proxy="Proxyl nterface" ‘i
dynami c- updat e="true| fal se" (}
dynami c-insert="true| fal se" ()
sel ect - bef ore-updat e="true| fal se" i0]
pol ynor phi sm="inplicit|explicit" fD
where="arbitrary sqgl where condition" Ga
persi ster="Persisterd ass" ®
bat ch-si ze="N' m’
optim stic-1ock="none|version|dirty|all" ﬂ?
lazy="true| fal se" (16)
entity-name="EntityNane" (17)
check="arbitrary sql check condition" (18)
row d="row d" (19)
subsel ect =" SQL expressi on" (20)
abstract="true|fal se" (21)

node="el enent - nane"

nane (optional): the fully qualified Java class name of the persistent class or interface. If this
attribute is missing, it is assumed that the mapping is for a non-POJO entity.
t abl e (optional - defaults to the unqualified class hame): the name of its database table.

di scri mi nator-val ue (optional - defaults to the class name): a value that distinguishes
individual subclasses that is used for polymorphic behavior. Acceptable values include nul |
and not nul | .

nut abl e (optional - defaults to t r ue): specifies that instances of the class are (not) mutable.

schena (optional): overrides the schema name specified by the root <hi ber nat e- mappi ng>
element.

cat al og (optional): overrides the catalog name specified by the root <hi ber nat e- mappi ng>
element.

pr oxy (optional): specifies an interface to use for lazy initializing proxies. You can specify
the name of the class itself.

dynami c- updat e (optional - defaults to fal se): specifies that UPDATE SQL should be
generated at runtime and can contain only those columns whose values have changed.
dynami c-i nsert (optional - defaults to fal se): specifies that | NSERT SQL should be
generated at runtime and contain only the columns whose values are not null.

sel ect - bef or e- updat e (optional - defaults to f al se): specifies that Hibernate should never
perform an SQL UPDATE unless it is certain that an object is actually modified. Only when
a transient object has been associated with a new session using updat e(), will Hibernate
perform an extra SQL SELECT to determine if an UPDATE is actually required.

pol ynor phi sns (optional - defaults to i nplicit): determines whether implicit or explicit
guery polymorphisms is used.

71

Chapter 5. Basic O/R Mapping

EE® 86 6

B
0

wher e (optional): specifies an arbitrary SQL WHERE condition to be used when retrieving
objects of this class.
per si st er (optional): specifies a custom Cl assPersi ster.

bat ch- si ze (optional - defaults to 1): specifies a "batch size" for fetching instances of this
class by identifier.
optimistic-1ock (optional - defaultsto ver si on): determines the optimistic locking strategy.

I azy (optional): lazy fetching can be disabled by setting | azy="f al se".

entity-nanme (optional - defaults to the class name): Hibernate3 allows a class to be
mapped multiple times, potentially to different tables. It also allows entity mappings that
are represented by Maps or XML at the Java level. In these cases, you should provide an
explicit arbitrary name for the entity. See Section 4.4, “Dynamic models” and Chapter 20,
XML Mapping for more information.

check (optional): an SQL expression used to generate a multi-row check constraint for
automatic schema generation.

rowi d (optional): Hibernate can use ROWIDs on databases. On Oracle, for example,
Hibernate can use the r owi d extra column fo