
Hibernate EntityManager

1

User guide
3.5.6-Final

by Emmanuel Bernard, Steve Ebersole, and Gavin King

iii

Introducing JPA Persistence ... vii

1. Architecture ... 1

1.1. Definitions .. 1

1.2. In container environment (eg. EJB 3) ... 2

1.2.1. Container-managed entity manager ... 2

1.2.2. Application-managed entity manager ... 2

1.2.3. Persistence context scope .. 2

1.2.4. Persistence context propagation ... 3

1.3. Java SE environments .. 4

2. Setup and configuration .. 5

2.1. Setup ... 5

2.2. Configuration and bootstrapping .. 6

2.2.1. Packaging .. 6

2.2.2. Bootstrapping ... 11

2.3. Event listeners .. 14

2.4. Obtaining an EntityManager in a Java SE environment .. 15

2.5. Various ... 16

3. Working with objects ... 17

3.1. Entity states .. 17

3.2. Making objects persistent .. 17

3.3. Loading an object ... 17

3.4. Querying objects ... 18

3.4.1. Executing queries ... 18

3.5. Modifying persistent objects ... 24

3.6. Detaching a object .. 24

3.7. Modifying detached objects ... 24

3.8. Automatic state detection .. 25

3.9. Deleting managed objects ... 26

3.10. Flush the persistence context .. 26

3.10.1. In a transaction .. 26

3.10.2. Outside a transaction .. 28

3.11. Transitive persistence .. 28

3.12. Locking ... 29

3.13. Caching .. 30

3.14. Checking the state of an object ... 30

3.15. Native Hibernate API ... 31

4. Metamodel ... 33

4.1. Static metamodel .. 33

5. Transactions and Concurrency ... 37

5.1. Entity manager and transaction scopes .. 37

5.1.1. Unit of work ... 37

5.1.2. Long units of work ... 38

5.1.3. Considering object identity .. 40

5.1.4. Common concurrency control issues ... 40

Hibernate EntityManager

iv

5.2. Database transaction demarcation ... 41

5.2.1. Non-managed environment ... 42

5.2.2. Using JTA .. 43

5.2.3. Exception handling ... 44

5.3. EXTENDED Persistence Context ... 46

5.3.1. Container Managed Entity Manager .. 46

5.3.2. Application Managed Entity Manager ... 46

5.4. Optimistic concurrency control ... 47

5.4.1. Application version checking ... 47

5.4.2. Extended entity manager and automatic versioning 48

5.4.3. Detached objects and automatic versioning ... 49

6. Entity listeners and Callback methods .. 51

6.1. Definition .. 51

6.2. Callbacks and listeners inheritance .. 53

6.3. XML definition ... 53

7. Batch processing ... 55

7.1. Bulk update/delete .. 55

8. JP-QL: The Object Query Language .. 57

8.1. Case Sensitivity .. 57

8.2. The from clause .. 57

8.3. Associations and joins ... 58

8.4. The select clause .. 59

8.5. Aggregate functions .. 60

8.6. Polymorphic queries .. 61

8.7. The where clause ... 62

8.8. Expressions .. 64

8.9. The order by clause .. 68

8.10. The group by clause ... 68

8.11. Subqueries ... 69

8.12. JP-QL examples ... 70

8.13. Bulk UPDATE & DELETE Statements .. 72

8.14. Tips & Tricks .. 72

9. Criteria Queries ... 75

9.1. Typed criteria queries .. 76

9.1.1. Selecting an entity .. 76

9.1.2. Selecting a value ... 76

9.1.3. Selecting multiple values .. 77

9.1.4. Selecting a wrapper ... 78

9.2. Tuple criteria queries .. 79

9.2.1. Accessing tuple elements ... 80

9.3. FROM clause ... 81

9.3.1. Roots ... 81

9.3.2. Joins ... 82

9.3.3. Fetches ... 82

v

9.4. Path expressions .. 83

9.5. Using parameters .. 83

10. Native query ... 85

10.1. Expressing the resultset .. 85

10.2. Using native SQL Queries ... 86

10.3. Named queries ... 86

References .. 87

vi

vii

Introducing JPA Persistence

The JPA specification recognizes the interest and the success of the transparent object/

relational mapping paradigm. It standardizes the basic APIs and the metadata needed for any

object/relational persistence mechanism. Hibernate EntityManager implements the programming

interfaces and lifecycle rules as defined by the JPA 2.0 specification. Together with Hibernate

Annotations, this wrapper implements a complete (and standalone) JPA persistence solution on

top of the mature Hibernate Core. You may use a combination of all three together, annotations

without JPA programming interfaces and lifecycle, or even pure native Hibernate Core, depending

on the business and technical needs of your project. You can at all times fall back to Hibernate

native APIs, or if required, even to native JDBC and SQL.

viii

Chapter 1.

1

Architecture

1.1. Definitions

JPA 2 is part of the Java EE 6.0 platform. Persistence in JPA is available in containers like EJB

3 or the more modern CDI (Java Context and Dependency Injection), as well as in standalone

Java SE applications that execute outside of a particular container. The following programming

interfaces and artifacts are available in both environments.

EntityManagerFactory

An entity manager factory provides entity manager instances, all instances are configured to

connect to the same database, to use the same default settings as defined by the particular

implementation, etc. You can prepare several entity manager factories to access several data

stores. This interface is similar to the SessionFactory in native Hibernate.

EntityManager

The EntityManager API is used to access a database in a particular unit of work. It is used

to create and remove persistent entity instances, to find entities by their primary key identity,

and to query over all entities. This interface is similar to the Session in Hibernate.

Persistence context

A persistence context is a set of entity instances in which for any persistent entity identity

there is a unique entity instance. Within the persistence context, the entity instances and their

lifecycle is managed by a particular entity manager. The scope of this context can either be

the transaction, or an extended unit of work.

Persistence unit

The set of entity types that can be managed by a given entity manager is defined by a

persistence unit. A persistence unit defines the set of all classes that are related or grouped

by the application, and which must be collocated in their mapping to a single data store.

Container-managed entity manager

An Entity Manager whose lifecycle is managed by the container

Application-managed entity manager

An Entity Manager whose lifecycle is managed by the application.

JTA entity manager

Entity manager involved in a JTA transaction

Resource-local entity manager

Entity manager using a resource transaction (not a JTA transaction).

Chapter 1. Architecture

2

1.2. In container environment (eg. EJB 3)

1.2.1. Container-managed entity manager

The most common and widely used entity manager in a Java EE environment is the container-

managed entity manager. In this mode, the container is responsible for the opening and

closing of the entity manager (this is transparent to the application). It is also responsible for

transaction boundaries. A container-managed entity manager is obtained in an application through

dependency injection or through JNDI lookup, A container-managed entity manger requires the

use of a JTA transaction.

1.2.2. Application-managed entity manager

An application-managed entity manager allows you to control the entity manager in application

code. This entity manager is retrieved through the EntityManagerFactory API. An application

managed entity manager can be either involved in the current JTA transaction (a JTA entity

manager), or the transaction may be controlled through the EntityTransaction API (a resource-

local entity manager). The resource-local entity manager transaction maps to a direct resource

transaction (i. e. in Hibernate's case a JDBC transaction). The entity manager type (JTA or

resource-local) is defined at configuration time, when setting up the entity manager factory.

1.2.3. Persistence context scope

An entity manager is the API to interact with the persistence context. Two common strategies can

be used: binding the persistence context to the transaction boundaries, or keeping the persistence

context available across several transactions.

The most common case is to bind the persistence context scope to the current transaction scope.

This is only doable when JTA transactions are used: the persistence context is associated with

the JTA transaction life cycle. When an entity manager is invoked, the persistence context is

also opened, if there is no persistence context associated with the current JTA transaction.

Otherwise, the associated persistence context is used. The persistence context ends when the

JTA transaction completes. This means that during the JTA transaction, an application will be able

to work on managed entities of the same persistence context. In other words, you don't have to

pass the entity manager's persistence context across your managed beans (CDI) or EJBs method

calls, but simply use dependency injection or lookup whenever you need an entity manager.

You can also use an extended persistence context. This can be combined with stateful session

beans, if you use a container-managed entity manager: the persistence context is created when

an entity manager is retrieved from dependency injection or JNDI lookup , and is kept until the

container closes it after the completion of the Remove stateful session bean method. This is a

perfect mechanism for implementing a "long" unit of work pattern. For example, if you have to deal

with multiple user interaction cycles as a single unit of work (e.g. a wizard dialog that has to be fully

completed), you usually model this as a unit of work from the point of view of the application user,

and implement it using an extended persistence context. Please refer to the Hibernate reference

manual or the book Hibernate In Action for more information about this pattern.

Persistence context propagation

3

JBoss Seam 3 is built on top of CDI and has at it's core concept the notion of conversation and unit

of work. For an application-managed entity manager the persistence context is created when the

entity manager is created and kept until the entity manager is closed. In an extended persistence

context, all modification operations (persist, merge, remove) executed outside a transaction are

queued until the persistence context is attached to a transaction. The transaction typically occurs

at the user process end, allowing the whole process to be committed or rollbacked. For application-

managed entity manager only support the extended persistence context.

A resource-local entity manager or an entity manager created with

EntityManagerFactory.createEntityManager() (application-managed) has a one-to-one

relationship with a persistence context. In other situations persistence context propagation occurs.

1.2.4. Persistence context propagation

Persistence context propagation occurs for container-managed entity managers.

In a transaction-scoped container managed entity manager (common case in a Java EE

environment), the JTA transaction propagation is the same as the persistence context resource

propagation. In other words, container-managed transaction-scoped entity managers retrieved

within a given JTA transaction all share the same persistence context. In Hibernate terms, this

means all managers share the same session.

Important: persistence context are never shared between different JTA transactions or between

entity manager that do not came from the same entity manager factory. There are some

noteworthy exceptions for context propagation when using extended persistence contexts:

• If a stateless session bean, message-driven bean, or stateful session bean with a transaction-

scoped persistence context calls a stateful session bean with an extended persistence context

in the same JTA transaction, an IllegalStateException is thrown.

• If a stateful session bean with an extended persistence context calls as stateless session bean

or a stateful session bean with a transaction-scoped persistence context in the same JTA

transaction, the persistence context is propagated.

• If a stateful session bean with an extended persistence context calls a stateless or stateful

session bean in a different JTA transaction context, the persistence context is not propagated.

• If a stateful session bean with an extended persistence context instantiates another stateful

session bean with an extended persistence context, the extended persistence context is

inherited by the second stateful session bean. If the second stateful session bean is called with

a different transaction context than the first, an IllegalStateException is thrown.

• If a stateful session bean with an extended persistence context calls a stateful session bean with

a different extended persistence context in the same transaction, an IllegalStateException

is thrown.

Chapter 1. Architecture

4

1.3. Java SE environments

In a Java SE environment only extended context application-managed entity managers are

available. You can retrieve an entity manger using the EntityManagerFactory API. Only

resource-local entity managers are available. In other words, JTA transactions and persistence

context propagation are not supported in Java SE (you will have to propagate the persistence

context yourself, e.g. using the thread local session pattern popular in the Hibernate community).

Extended context means that a persistence context is created when the entity manager is

retrieved (using EntityManagerFactory.createEntityManager(...)) and closed when the

entity manager is closed. Many resource-local transaction share the same persistence context,

in this case.

Chapter 2.

5

Setup and configuration

2.1. Setup

The JPA 2.0 compatible Hibernate EntityManager is built on top of the core of Hibernate

and Hibernate Annotations. Starting from version 3.5, we have bundled in a single Hibernate

distribution all the necessary modules:

• Hibernate Core: the native Hibernate APIs and core engine

• Hibernate Annotations: the annotation-based mapping

• Hibernate EntityManager: the JPA 2.0 APIs and livecycle semantic implementation

Download the Hibernate Core distribution. Set up your classpath (after you have created a new

project in your favorite IDE):

• Copy hibernate3.jar and the required 3rd party libraries available in lib/required.

• Copy lib/jpa/hibernate-jpa-2.0-api-1.0.0.Final.jar to your classpath as well.

What is hibernate-jpa-2.0-api-x.y.z.jar?

This is the JAR containing the JPA 2.0 API, it provides all the interfaces and

concrete classes that the specification defines as public API. Said otherwise, you

can use this JAR to bootstrap any JPA provider implementation. Note that you

typically don't need it when you deploy your application in a Java EE 6 application

server (like JBoss AS 6 for example).

Alternatively, if you use Maven, add the following dependencies

<project ...>

 ...

 <dependencies>

 <dependency>

 <groupId>org.hibernate</groupId>

 <artifactId>hibernate-entitymanager</artifactId>

 <version>${hibernate-core-version}</version>

 </dependency>

 </dependencies>

</project>

All the required dependencies like hibernate-core and hibernate-annotations will be dragged

transitively.

We recommend you use Hibernate Validator [http://validator.hibernate.org] and the Bean

Validation specification capabilities as its integration with Java Persistence 2 has been

http://validator.hibernate.org
http://validator.hibernate.org

Chapter 2. Setup and configur...

6

standardized. Download Hibernate Validator 4 or above from the Hibernate website and add

hibernate-validator.jar and validation-api.jar in your classpath. Alternatively add the

following dependency in your pom.xml.

<project>

 ...

 <dependencies>

 <dependency>

 <groupId>org.hibernate</groupId>

 <artifactId>hibernate-validator</artifactId>

 <version>${hibernate-validator-version}</version>

 </dependency>

 ...

 </dependencies>

 ...

</project>

If you wish to use Hibernate Search [http://search.hibernate.org] (full-text search for Hibernate

aplications), download it from the Hibernate website and add hibernate-search.jar and its

dependencies in your classpath. Alternatively add the following dependency in your pom.xml.

<project>

 ...

 <dependencies>

 <dependency>

 <groupId>org.hibernate</groupId>

 <artifactId>hibernate-search</artifactId>

 <version>${hibernate-search-version}</version>

 </dependency>

 ...

 </dependencies>

 ...

</project>

2.2. Configuration and bootstrapping

2.2.1. Packaging

The configuration for entity managers both inside an application server and in a standalone

application reside in a persistence archive. A persistence archive is a JAR file which must define a

persistence.xml file that resides in the META-INF folder. All properly annotated classes included

in the archive (ie. having an @Entity annotation), all annotated packages and all Hibernate

hbm.xml files included in the archive will be added to the persistence unit configuration, so by

default, your persistence.xml will be quite minimalist:

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

http://search.hibernate.org
http://search.hibernate.org

Packaging

7

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://java.sun.com/

xml/ns/persistence/persistence_2_0.xsd"

 version="2.0">

 <persistence-unit name="sample">

 <jta-data-source>java:/DefaultDS</jta-data-source>

 <properties>

 <property name="hibernate.dialect" value="org.hibernate.dialect.HSQLDialect"/>

 <property name="hibernate.hbm2ddl.auto" value="create-drop"/>

 </properties>

 </persistence-unit>

</persistence>

Here's a more complete example of a persistence.xml file

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://java.sun.com/

xml/ns/persistence/persistence_2_0.xsd"

 version="2.0">

 <persistence-unit name="manager1" transaction-type="JTA">

 <provider>org.hibernate.ejb.HibernatePersistence</provider>

 <jta-data-source>java:/DefaultDS</jta-data-source>

 <mapping-file>ormap.xml</mapping-file>

 <jar-file>MyApp.jar</jar-file>

 <class>org.acme.Employee</class>

 <class>org.acme.Person</class>

 <class>org.acme.Address</class>

 <shared-cache-mode>ENABLE_SELECTOVE</shared-cache-mode>

 <validation-mode>CALLBACK</validation-mode>

 <properties>

 <property name="hibernate.dialect" value="org.hibernate.dialect.HSQLDialect"/>

 <property name="hibernate.hbm2ddl.auto" value="create-drop"/>

 </properties>

 </persistence-unit>

</persistence>

name

(attribute) Every entity manager must have a name.

transaction-type

(attribute) Transaction type used. Either JTA or RESOURCE_LOCAL (default to JTA in a

JavaEE environment and to RESOURCE_LOCAL in a JavaSE environment). When a jta-

datasource is used, the default is JTA, if non-jta-datasource is used, RESOURCE_LOCAL

is used.

provider

The provider is a fully-qualified class name of the EJB Persistence provider. You do not have

to define it if you don't work with several EJB3 implementations. This is needed when you are

using multiple vendor implementations of EJB Persistence.

Chapter 2. Setup and configur...

8

jta-data-source, non-jta-data-source

This is the JNDI name of where the javax.sql.DataSource is located. When running without

a JNDI available Datasource, you must specify JDBC connections with Hibernate specific

properties (see below).

mapping-file

The class element specifies a EJB3 compliant XML mapping file that you will map. The file has

to be in the classpath. As per the EJB3 specification, Hibernate EntityManager will try to load

the mapping file located in the jar file at META_INF/orm.xml. Of course any explicit mapping

file will be loaded too. As a matter of fact, you can provides any XML file in the mapping file

element ie. either hbm files or EJB3 deployment descriptor.

jar-file

The jar-file elements specifies a jar to analyse. All properly annotated classes, annotated

packages and all hbm.xml files part of this jar file will be added to the persistence unit

configuration. This element is mainly used in Java EE environment. Use of this one in Java

SE should be considered as non portable, in this case a absolute url is needed. You can

alternatively point to a directory (This is especially useful when in your test environment, the

persistence.xml file is not under the same root directory or jar than your domain model).

 <jar-file>file:/home/turin/work/local/lab8/build/classes</jar-file>

exclude-unlisted-classes

Do not check the main jar file for annotated classes. Only explicit classes will be part of the

persistence unit.

class

The class element specifies a fully qualified class name that you will map. By default all

properly annotated classes and all hbm.xml files found inside the archive are added to the

persistence unit configuration. You can add some external entity through the class element

though. As an extension to the specification, you can add a package name in the <class>

element (eg <class>org.hibernate.eg</class>). Caution, the package will include the

metadata defined at the package level (ie in package-info.java), it will not include all the

classes of a given package.

shared-cache-mode

By default, entities are elected for second-level cache if annotated with @Cacheable. You can

however:

• ALL: force caching for all entities

• NONE: disable caching for all entities (useful to take second-level cache out of the equation)

• ENABLE_SELECTIVE (default): enable caching when explicitly marked

• DISABLE_SELECTIVE: enable caching unless explicitly marked as @Cacheable(false) (not

recommended)

Packaging

9

See Hibernate Annotation's documentation for more details.

validation-mode

By default, Bean Validation (and Hibernate Validator) is activated. When an entity is created,

updated (and optionally deleted), it is validated before being sent to the database. The

database schema generated by Hibernate also reflects the constraints declared on the entity.

You can fine-tune that if needed:

• AUTO: if Bean Validation is present in the classpath, CALLBACK and DDL are activated.

• CALLBACK: entities are validated on creation, update and deletion. If no Bean Validation

provider is present, an exception is raised at initialization time.

• DDL: (not standard, see below) database schemas are entities are validated on creation,

update and deletion. If no Bean Validation provider is present, an exception is raised at

initialization time.

• NONE: Bean Validation is not used at all

Unfortunately, DDL is not standard mode (though extremely useful) and you will not be able to

put it in <validation-mode>. To use it, add a regular property

<property name="javax.persistence.validation.mode">

 ddl

</property>

With this approach, you can mix ddl and callback modes:

<property name="javax.persistence.validation.mode">

 ddl, callback

</property>

properties

The properties element is used to specify vendor specific properties. This is where you will

define your Hibernate specific configurations. This is also where you will have to specify JDBC

connection information as well.

Here is a list of JPA 2 standard properties. Be sure to also Hibernate Core's documentation

to see Hibernate specific properties.

• javax.persistence.lock.timeout pessimistic lock timeout in milliseconds (Integer or

String), this is a hint used by Hibernate but requires support by your underlying database.

• javax.persistence.query.timeout query timeout in milliseconds (Integer or String),

this is a hint used by Hibernate but requires support by your underlying database (TODO

is that 100% true or do we use some other tricks).

Chapter 2. Setup and configur...

10

• javax.persistence.validation.mode corresponds to the validation-mode element.

Use it if you wish to use the non standard DDL value.

• javax.persistence.validation.group.pre-persist defines the group or list of

groups to validate before persisting an entity. This is a comma separated fully

qualified class name string (eg com.acme.groups.Common or com.acme.groups.Common,

javax.validation.groups.Default). Defaults to the Bean Validation default group.

• javax.persistence.validation.group.pre-update defines the group or list of

groups to validate before updating an entity. This is a comma separated fully

qualified class name string (eg com.acme.groups.Common or com.acme.groups.Common,

javax.validation.groups.Default). Defaults to the Bean Validation default group.

• javax.persistence.validation.group.pre-remove defines the group or list of

groups to validate before persisting an entity. This is a comma separated fully

qualified class name string (eg com.acme.groups.Common or com.acme.groups.Common,

javax.validation.groups.Default). Defaults to no group.

Note

To know more about Bean Validation and Hibernate Validator, check

out Hibernate Validator's reference documentation as well as Hibernate

Annotations's documentation on Bean Validation.

The following properties can only be used in a SE environment where no datasource/JNDI

is available:

• javax.persistence.jdbc.driver: the fully qualified class name of the driver class

• javax.persistence.jdbc.url: the driver specific URL

• javax.persistence.jdbc.user the user name used for the database connection

• javax.persistence.jdbc.password the password used for the database connection

Be sure to define the grammar definition in the persistence element since the JPA specification

requires schema validation. If the systemId ends with persistence_2_0.xsd, Hibernate

entityManager will use the version embedded in the hibernate-entitymanager.jar. It won't fetch the

resource from the internet.

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://java.sun.com/

xml/ns/persistence/persistence_2_0.xsd"

 version="2.0">

Bootstrapping

11

2.2.2. Bootstrapping

The JPA specification defines a bootstrap procedure to access the EntityManagerFactory and

the EntityManager. The bootstrap class is javax.persistence.Persistence, e.g.

EntityManagerFactory emf = Persistence.createEntityManagerFactory("manager1");

//or

Map<String, Object> configOverrides = new HashMap<String, Object>();

configOverrides.put("hibernate.hbm2ddl.auto", "create-drop");

EntityManagerFactory programmaticEmf =

 Persistence.createEntityManagerFactory("manager1", configOverrides);

The first version is equivalent to the second with an empty map. The map version is a set

of overrides that will take precedence over any properties defined in your persistence.xml

files. All the properties defined in Section 2.2.1, “Packaging” can be passed to the

createEntityManagerFactory method and there are a few additional ones:

• javax.persistence.provider to define the provider class used

• javax.persistence.transactionType to define the transaction type used (either JTA or

RESOURCE_LOCAL)

• javax.persistence.jtaDataSource to define the JTA datasource name in JNDI

• javax.persistence.nonJtaDataSource to define the non JTA datasource name in JNDI

• javax.persistence.lock.timeout pessimistic lock timeout in milliseconds (Integer or

String)

• javax.persistence.query.timeout query timeout in milliseconds (Integer or String)

• javax.persistence.sharedCache.mode corresponds to the share-cache-mode element

defined in Section 2.2.1, “Packaging”.

• javax.persistence.validation.mode corresponds to the validation-mode element

defined in Section 2.2.1, “Packaging”.

When Persistence.createEntityManagerFactory() is called, the persistence implementation

will search your classpath for any META-INF/persistence.xml files using

the ClassLoader.getResource("META-INF/persistence.xml") method. Actually the

Persistence class will look at all the Persistence Providers available in the classpath and ask

each of them if they are responsible for the creation of the entity manager factory manager1. Each

provider, from this list of resources, it will try to find an entity manager that matches the name you

specify in the command line with what is specified in the persistence.xml file (of course the provider

element must match the current persistent provider). If no persistence.xml with the correct name

are found or if the expected persistence provider is not found, a PersistenceException is raised.

Chapter 2. Setup and configur...

12

Apart from Hibernate system-level settings, all the properties available in Hibernate can be set

in properties element of the persistence.xml file or as an override in the map you pass to

createEntityManagerFactory(). Please refer to the Hibernate reference documentation for a

complete listing. There are however a couple of properties available in the EJB3 provider only.

Table 2.1. Hibernate Entity Manager specific properties

Property name Description

hibernate.ejb.classcache.<classname>class cache strategy [comma cache region]

of the class Default to no cache, and

default region cache to fully.qualified.classname

(eg. hibernate.ejb.classcache.com.acme.Cat read-write

or hibernate.ejb.classcache.com.acme.Cat read-write,

MyRegion).

hibernate.ejb.collectioncache.<collectionrole>collection cache strategy [comma cache region]

of the class Default to no cache, and

default region cache to fully.qualified.classname.role

(eg. hibernate.ejb.classcache.com.acme.Cat read-write

or hibernate.ejb.classcache.com.acme.Cat read-write,

MyRegion).

hibernate.ejb.cfgfile XML configuration file to use to configure Hibernate (eg. /

hibernate.cfg.xml).

hibernate.archive.autodetection Determine which element is auto discovered by Hibernate

Entity Manager while parsing the .par archive. (default to

class,hbm).

hibernate.ejb.interceptor An optional Hibernate interceptor. The interceptor instance

is shared by all Session instances. This interceptor has

to implement org.hibernate.Interceptor and have a no-

arg constructor. This property can not be combined with

hibernate.ejb.interceptor.session_scoped.

hibernate.ejb.interceptor.session_scopedAn optional Hibernate interceptor. The interceptor instance

is specific to a given Session instance (and hence

can be non thread-safe). This interceptor has to

implement org.hibernate.Interceptor and have a no-

arg constructor. This property can not be combined with

hibernate.ejb.interceptor.

hibernate.ejb.naming_strategy An optional naming strategy. The default naming strategy used

is EJB3NamingStrategy. You also might want to consider the

DefaultComponentSafeNamingStrategy.

hibernate.ejb.event.<eventtype>Event listener list for a given eventtype. The list of event

listeners is a comma separated fully qualified class name list

(eg. hibernate.ejb.event.pre-load com.acme.SecurityListener,

com.acme.AuditListener)

Bootstrapping

13

Property name Description

hibernate.ejb.use_class_enhancerWhether or not use Application server class enhancement at

deployment time (default to false)

hibernate.ejb.discard_pc_on_closeIf true, the persistence context will be discarded (think clear()

when the method is called. Otherwise the persistence context

will stay alive till the transaction completion: all objects will

remain managed, and any change will be synchronized with the

database (default to false, ie wait the transaction completion)

hibernate.ejb.resource_scannerBy default, Hibernate EntityManager scans itself the list of

resources for annotated classes and persistence deployment

descriptors (like orm.xml and hbm.xml files).

You can customize this scanning strategy by implementing

org.hibernate.ejb.packaging.Scanner. This property is

used by container implementors to improve integration with

Hibernate.

Accepts an instance of Scanner or the file name of a no-arg

constructor class implementing Scanner.

Note that you can mix XML <class> declaration and hibernate.ejb.cfgfile usage in the same

configuration. Be aware of the potential clashed. The properties set in persistence.xml will

override the one in the defined hibernate.cfg.xml.

Note

It is important that you do not override hibernate.transaction.factory_class,

Hibernate EntityManager automatically set the appropriate transaction factory

depending on the EntityManager type (ie JTA versus RESOURSE_LOCAL). If

you are working in a Java EE environment, you might want to set the

hibernate.transaction.manager_lookup_class though.

Here is a typical configuration in a Java SE environment

<persistence>

 <persistence-unit name="manager1" transaction-type="RESOURCE_LOCAL">

 <class>org.hibernate.ejb.test.Cat</class>

 <class>org.hibernate.ejb.test.Distributor</class>

 <class>org.hibernate.ejb.test.Item</class>

 <properties>

 <property name="javax.persistence.jdbc.driver" value="org.hsqldb.jdbcDriver"/>

 <property name="javax.persistence.jdbc.user" value="sa"/>

 <property name="javax.persistence.jdbc.password" value=""/>

 <property name="javax.persistence.jdbc.url" value="jdbc:hsqldb:."/>

 <property name="hibernate.dialect" value="org.hibernate.dialect.HSQLDialect"/

 <property name="hibernate.max_fetch_depth" value="3"/>

Chapter 2. Setup and configur...

14

 <!-- cache configuration -->

 <property name="hibernate.ejb.classcache.org.hibernate.ejb.test.Item" value="read-

write"/>

 <property name="hibernate.ejb.collectioncache.org.hibernate.ejb.test.Item.distributors" value="read-

write, RegionName"/>

 <!-- alternatively to <class> and <property> declarations, you can use a regular

 hibernate.cfg.xml file -->

 <!-- property name="hibernate.ejb.cfgfile" value="/org/hibernate/ejb/test/

hibernate.cfg.xml"/ -->

 </properties>

 </persistence-unit>

</persistence>

To ease the programmatic configuration, Hibernate Entity Manager provide a proprietary API. This

API is very similar to the Configuration API and share the same concepts: Ejb3Configuration.

Refer to the JavaDoc and the Hibernate reference guide for more detailed informations on how

to use it.

TODO: me more descriptive on some APIs like setDatasource()

Ejb3Configuration cfg = new Ejb3Configuration();

EntityManagerFactory emf =

 cfg.addProperties(properties) //add some properties

 .setInterceptor(myInterceptorImpl) // set an interceptor

 .addAnnotatedClass(MyAnnotatedClass.class) //add a class to be mapped

 .addClass(NonAnnotatedClass.class) //add an hbm.xml file using the Hibernate convention

 .addRerousce("mypath/MyOtherCLass.hbm.xml) //add an hbm.xml file

 .addRerousce("mypath/orm.xml) //add an EJB3 deployment descriptor

 .configure("/mypath/hibernate.cfg.xml") //add a regular hibernate.cfg.xml

 .buildEntityManagerFactory(); //Create the entity manager factory

2.3. Event listeners

Hibernate Entity Manager needs to enhance Hibernate core to implements all the JPA semantics.

It does that through the event listener system of Hibernate. Be careful when you use the event

system yourself, you might override some of the JPA semantics. A safe way is to add your event

listeners to the list given below.

Table 2.2. Hibernate Entity Manager default event listeners

Event Listeners

flush org.hibernate.ejb.event.EJB3FlushEventListener

auto-flush org.hibernate.ejb.event.EJB3AutoFlushEventListener

delete org.hibernate.ejb.event.EJB3DeleteEventListener

flush-entity org.hibernate.ejb.event.EJB3FlushEntityEventListener

Obtaining an EntityManager in a Java SE environment

15

Event Listeners

merge org.hibernate.ejb.event.EJB3MergeEventListener

create org.hibernate.ejb.event.EJB3PersistEventListener

create-onflush org.hibernate.ejb.event.EJB3PersistOnFlushEventListener

save org.hibernate.ejb.event.EJB3SaveEventListener

save-update org.hibernate.ejb.event.EJB3SaveOrUpdateEventListener

pre-insert org.hibernate.secure.JACCPreInsertEventListener

pre-insert org.hibernate.secure.JACCPreUpdateEventListener

pre-delete org.hibernate.secure.JACCPreDeleteEventListener

pre-load org.hibernate.secure.JACCPreLoadEventListener

post-delete org.hibernate.ejb.event.EJB3PostDeleteEventListener

post-insert org.hibernate.ejb.event.EJB3PostInsertEventListener

post-load org.hibernate.ejb.event.EJB3PostLoadEventListener

post-update org.hibernate.ejb.event.EJB3PostUpdateEventListener

Note that the JACC*EventListeners are removed if the security is not enabled.

You can configure the event listeners either through the properties (see Configuration and

bootstrapping) or through the ejb3configuration.getEventListeners() API.

2.4. Obtaining an EntityManager in a Java SE

environment

An entity manager factory should be considered as an immutable configuration holder, it is defined

to point to a single datasource and to map a defined set of entities. This is the entry point to

create and manage EntityManagers. The Persistence class is bootstrap class to create an

entity manager factory.

// Use persistence.xml configuration

EntityManagerFactory emf = Persistence.createEntityManagerFactory("manager1")

EntityManager em = emf.createEntityManager(); // Retrieve an application managed entity manager

// Work with the EM

em.close();

...

emf.close(); //close at application end

An entity manager factory is typically create at application initialization time and closed at

application end. It's creation is an expensive process. For those who are familiar with Hibernate,

an entity manager factory is very much like a session factory. Actually, an entity manager factory

is a wrapper on top of a session factory. Calls to the entityManagerFactory are thread safe.

Chapter 2. Setup and configur...

16

Thanks to the EntityManagerFactory, you can retrieve an extended entity manager. The

extended entity manager keep the same persistence context for the lifetime of the entity

manager: in other words, the entities are still managed between two transactions (unless you call

entityManager.clear() in between). You can see an entity manager as a small wrapper on top

of an Hibernate session.

TODO explains emf.createEntityManager(Map)

2.5. Various

Hibernate Entity Manager comes with Hibernate Validator configured out of the box. You don't

have to override any event yourself. If you do not use Hibernate Validator annotations in your

domain model, there will be no performance cost. For more information on Hibernate Validator,

please refer to the Hibernate Annotations reference guide.

Chapter 3.

17

Working with objects

3.1. Entity states

Like in Hibernate (comparable terms in parentheses), an entity instance is in one of the following

states:

• New (transient): an entity is new if it has just been instantiated using the new operator, and it is

not associated with a persistence context. It has no persistent representation in the database

and no identifier value has been assigned.

• Managed (persistent): a managed entity instance is an instance with a persistent identity that

is currently associated with a persistence context.

• Detached: the entity instance is an instance with a persistent identity that is no longer associated

with a persistence context, usually because the persistence context was closed or the instance

was evicted from the context.

• Removed: a removed entity instance is an instance with a persistent identity, associated with a

persistence context, but scheduled for removal from the database.

The EntityManager API allows you to change the state of an entity, or in other words, to load

and store objects. You will find persistence with JPA easier to understand if you think about object

state management, not managing of SQL statements.

3.2. Making objects persistent

Once you've created a new entity instance (using the common new operator) it is in new state. You

can make it persistent by associating it to an entity manager:

DomesticCat fritz = new DomesticCat();

fritz.setColor(Color.GINGER);

fritz.setSex('M');

fritz.setName("Fritz");

em.persist(fritz);

If the DomesticCat entity type has a generated identifier, the value is associated to the instance

when persist() is called. If the identifier is not automatically generated, the application-assigned

(usually natural) key value has to be set on the instance before persist() is called.

3.3. Loading an object

Load an entity instance by its identifier value with the entity manager's find() method:

cat = em.find(Cat.class, catId);

Chapter 3. Working with objects

18

// You may need to wrap the primitive identifiers

long catId = 1234;

em.find(Cat.class, new Long(catId));

In some cases, you don't really want to load the object state, but just having a reference to it (ie

a proxy). You can get this reference using the getReference() method. This is especially useful

to link a child to its parent without having to load the parent.

child = new Child();

child.SetName("Henry");

Parent parent = em.getReference(Parent.class, parentId); //no query to the DB

child.setParent(parent);

em.persist(child);

You can reload an entity instance and it's collections at any time using the em.refresh()

operation. This is useful when database triggers are used to initialize some of the properties of

the entity. Note that only the entity instance and its collections are refreshed unless you specify

REFRESH as a cascade style of any associations:

em.persist(cat);

em.flush(); // force the SQL insert and triggers to run

em.refresh(cat); //re-read the state (after the trigger executes)

3.4. Querying objects

If you don't know the identifier values of the objects you are looking for, you need a query. The

Hibernate EntityManager implementation supports an easy-to-use but powerful object-oriented

query language (JP-QL) which has been inspired by HQL (and vice-versa). HQL is strictly speaking

a superset of JP-QL. Both query languages are portable across databases, the use entity and

property names as identifiers (instead of table and column names). You may also express your

query in the native SQL of your database, with optional support from JPA for result set conversion

into Java business objects.

3.4.1. Executing queries

JP-QL and SQL queries are represented by an instance of javax.persistence.Query. This

interface offers methods for parameter binding, result set handling, and for execution of the query.

Queries are always created using the current entity manager:

List<?> cats = em.createQuery(

 "select cat from Cat as cat where cat.birthdate < ?1")

 .setParameter(1, date, TemporalType.DATE)

 .getResultList();

List<?> mothers = em.createQuery(

Executing queries

19

 "select mother from Cat as cat join cat.mother as mother where cat.name = ?1")

 .setParameter(1, name)

 .getResultList();

List<?> kittens = em.createQuery(

 "from Cat as cat where cat.mother = ?1")

 .setEntity(1, pk)

 .getResultList();

Cat mother = (Cat) em.createQuery(

 "select cat.mother from Cat as cat where cat = ?1")

 .setParameter(1, izi)

 .getSingleResult();

A query is usually executed by invoking getResultList(). This method loads the resulting

instances of the query completely into memory. Entity instances retrieved by a query are in

persistent state. The getSingleResult() method offers a shortcut if you know your query will

only return a single object.

JPA 2 provides more type-safe approaches to queries. The truly type-safe approach is the Criteria

API explained in Chapter 9, Criteria Queries.

CriteriaQuery<Cat> criteria = builder.createQuery(Cat.class);

Root<Cat> cat = criteria.from(Cat.class);

criteria.select(cat);

criteria.where(builder.lt(cat.get(Cat_.birthdate), catDate));

List<Cat> cats = em.createQuery(criteria).getResultList(); //notice no downcasting is necessary

But you can benefit form some type-safe convenience even when using JP-QL (note that it's not

as type-safe as the compiler has to trust you with the return type.

//No downcasting since we pass the return type

List<Cat> cats = em.createQuery(

 "select cat from Cat as cat where cat.birthdate < ?1", Cat.class)

 .setParameter(1, date, TemporalType.DATE)

 .getResultList();

Note

We highly recommend the Criteria API approach. While more verbose, it provides

compiler-enforced safety (including down to property names) which will pay off

when the application will move to maintenance mode.

Chapter 3. Working with objects

20

3.4.1.1. Projection

JPA queries can return tuples of objects if projection is used. Each result tuple is returned as an

object array:

Iterator kittensAndMothers = sess.createQuery(

 "select kitten, mother from Cat kitten join kitten.mother mother")

 .getResultList()

 .iterator();

while (kittensAndMothers.hasNext()) {

 Object[] tuple = (Object[]) kittensAndMothers.next();

 Cat kitten = (Cat) tuple[0];

 Cat mother = (Cat) tuple[1];

}

Note

The criteria API provides a type-safe approach to projection results. Check out

Section 9.2, “Tuple criteria queries”.

3.4.1.2. Scalar results

Queries may specify a particular property of an entity in the select clause, instead of an entity alias.

You may call SQL aggregate functions as well. Returned non-transactional objects or aggregation

results are considered "scalar" results and are not entities in persistent state (in other words, they

are considered "read only"):

Iterator results = em.createQuery(

 "select cat.color, min(cat.birthdate), count(cat) from Cat cat " +

 "group by cat.color")

 .getResultList()

 .iterator();

while (results.hasNext()) {

 Object[] row = results.next();

 Color type = (Color) row[0];

 Date oldest = (Date) row[1];

 Integer count = (Integer) row[2];

}

3.4.1.3. Bind parameters

Both named and positional query parameters are supported, the Query API offers several methods

to bind arguments. The JPA specification numbers positional parameters from one. Named

Executing queries

21

parameters are identifiers of the form :paramname in the query string. Named parameters should

be preferred, they are more robust and easier to read and understand:

// Named parameter (preferred)

Query q = em.createQuery("select cat from DomesticCat cat where cat.name = :name");

q.setParameter("name", "Fritz");

List cats = q.getResultList();

// Positional parameter

Query q = em.createQuery("select cat from DomesticCat cat where cat.name = ?1");

q.setParameter(1, "Izi");

List cats = q.getResultList();

// Named parameter list

List names = new ArrayList();

names.add("Izi");

names.add("Fritz");

Query q = em.createQuery("select cat from DomesticCat cat where cat.name in (:namesList)");

q.setParameter("namesList", names);

List cats = q.list();

3.4.1.4. Pagination

If you need to specify bounds upon your result set (the maximum number of rows you want to

retrieve and/or the first row you want to retrieve), use the following methods:

Query q = em.createQuery("select cat from DomesticCat cat");

q.setFirstResult(20);

q.setMaxResults(10);

List cats = q.getResultList(); //return cats from the 20th position to 29th

Hibernate knows how to translate this limit query into the native SQL of your DBMS.

3.4.1.5. Externalizing named queries

You may also define named queries through annotations:

@javax.persistence.NamedQuery(name="eg.DomesticCat.by.name.and.minimum.weight",

 query="select cat from eg.DomesticCat as cat where cat.name = ?1 and cat.weight > ?2")

Parameters are bound programmatically to the named query, before it is executed:

Query q = em.createNamedQuery("eg.DomesticCat.by.name.and.minimum.weight");

q.setString(1, name);

q.setInt(2, minWeight);

List<?> cats = q.getResultList();

Chapter 3. Working with objects

22

You can also use the slightly more type-safe approach:

Query q = em.createNamedQuery("eg.DomesticCat.by.name.and.minimum.weight", Cat.class);

q.setString(1, name);

q.setInt(2, minWeight);

List<Cat> cats = q.getResultList();

Note that the actual program code is independent of the query language that is used, you may

also define native SQL queries in metadata, or use Hibernate's native facilities by placing them

in XML mapping files.

3.4.1.6. Native queries

You may express a query in SQL, using createNativeQuery() and let Hibernate take care

mapping from JDBC result sets to business objects. Use the @SqlResultSetMapping (please see

the Hibernate Annotations reference documentation on how to map a SQL resultset mapping) or

the entity mapping (if the column names of the query result are the same as the names declared

in the entity mapping; remember that all entity columns have to be returned for this mechanism

to work):

@SqlResultSetMapping(name="getItem", entities =

 @EntityResult(entityClass=org.hibernate.ejb.test.Item.class, fields= {

 @FieldResult(name="name", column="itemname"),

 @FieldResult(name="descr", column="itemdescription")

 })

)

Query q = em.createNativeQuery("select name as itemname, descr as itemdescription from

 Item", "getItem");

item = (Item) q.getSingleResult(); //from a resultset

Query q = em.createNativeQuery("select * from Item", Item.class);

item = (Item) q.getSingleResult(); //from a class columns names match the mapping

Note

For more information about scalar support in named queries, please refers to the

Hibernate Annotations documentation

3.4.1.7. Query lock and flush mode

You can adjust the flush mode used when executing the query as well as define the lock mode

used to load the entities.

Adjusting the flush mode is interesting when one must guaranty that a query execution will not

trigger a flush operation. Most of the time you don't need to care about this.

Executing queries

23

Adjusting the lock mode is useful if you need to lock the objects returns by the query to a certain

level.

query.setFlushMode(FlushModeType.COMMIT)

 .setLockMode(LockModeType.PESSIMISTIC_READ);

Note

If you want to use FlushMode.MANUAL (ie the Hibernate specific flush mode), you

will need to use a query hint. See below.

3.4.1.8. Query hints

Query hints (for performance optimization, usually) are implementation specific. Hints are

declared using the query.setHint(String name, Object value) method, or through

the @Named(Native)Query(hints) annotation Note that these are not SQL query hints! The

Hibernate EJB3 implementation offers the following query hints:

Table 3.1. Hibernate query hints

Hint Description

org.hibernate.timeout Query timeout in seconds (eg. new

Integer(10))

org.hibernate.fetchSize Number of rows fetched by the JDBC driver per

roundtrip (eg. new Integer(50))

org.hibernate.comment Add a comment to the SQL query, useful for

the DBA (e.g. new String("fetch all orders in 1

statement"))

org.hibernate.cacheable Whether or not a query is cacheable (eg. new

Boolean(true)), defaults to false

org.hibernate.cacheMode Override the cache mode for this query (eg.

CacheMode.REFRESH)

org.hibernate.cacheRegion Cache region of this query (eg. new

String("regionName"))

org.hibernate.readOnly Entities retrieved by this query will be loaded in

a read-only mode where Hibernate will never

dirty-check them or make changes persistent

(eg. new Boolean(true)), default to false

org.hibernate.flushMode Flush mode used for this query (useful to pass

Hibernate specific flush modes, in particular

MANUAL).

Chapter 3. Working with objects

24

Hint Description

org.hibernate.cacheMode Cache mode used for this query

The value object accept both the native type or its string equivalent (eg. CaheMode.REFRESH or

“REFRESH”). Please refer to the Hibernate reference documentation for more information.

3.5. Modifying persistent objects

Transactional managed instances (ie. objects loaded, saved, created or queried by the entity

manager) may be manipulated by the application and any changes to persistent state will be

persisted when the Entity manager is flushed (discussed later in this chapter). There is no need to

call a particular method to make your modifications persistent. A straightforward wayt to update

the state of an entity instance is to find() it, and then manipulate it directly, while the persistence

context is open:

Cat cat = em.find(Cat.class, new Long(69));

cat.setName("PK");

em.flush(); // changes to cat are automatically detected and persisted

Sometimes this programming model is inefficient since it would require both an SQL SELECT (to

load an object) and an SQL UPDATE (to persist its updated state) in the same session. Therefore

Hibernate offers an alternate approach, using detached instances.

3.6. Detaching a object

An object when loaded in the persistence context is managed by Hibernate. You can force an

object to be detached (ie. no longer managed by Hibernate) by closing the EntityManager or in a

more fine-grained approach by calling the detach() method.

Cat cat = em.find(Cat.class, new Long(69));

...

em.detach(cat);

cat.setName("New name"); //not propatated to the database

3.7. Modifying detached objects

Many applications need to retrieve an object in one transaction, send it to the presentation layer for

manipulation, and later save the changes in a new transaction. There can be significant user think

and waiting time between both transactions. Applications that use this kind of approach in a high-

concurrency environment usually use versioned data to ensure isolation for the "long" unit of work.

The JPA specifications supports this development model by providing for persistence of

modifications made to detached instances using the EntityManager.merge() method:

Automatic state detection

25

// in the first entity manager

Cat cat = firstEntityManager.find(Cat.class, catId);

Cat potentialMate = new Cat();

firstEntityManager.persist(potentialMate);

// in a higher layer of the application

cat.setMate(potentialMate);

// later, in a new entity manager

secondEntityManager.merge(cat); // update cat

secondEntityManager.merge(mate); // update mate

The merge() method merges modifications made to the detached instance into the corresponding

managed instance, if any, without consideration of the state of the persistence context. In other

words, the merged objects state overrides the persistent entity state in the persistence context, if

one is already present. The application should individually merge() detached instances reachable

from the given detached instance if and only if it wants their state also to be persistent. This can

be cascaded to associated entities and collections, using transitive persistence, see Transitive

persistence.

3.8. Automatic state detection

The merge operation is clever enough to automatically detect whether the merging of the detached

instance has to result in an insert or update. In other words, you don't have to worry about passing

a new instance (and not a detached instance) to merge(), the entity manager will figure this out

for you:

// In the first entity manager

Cat cat = firstEntityManager.find(Cat.class, catID);

// In a higher layer of the application, detached

Cat mate = new Cat();

cat.setMate(mate);

// Later, in a new entity manager

secondEntityManager.merge(cat); // update existing state

secondEntityManager.merge(mate); // save the new instance

The usage and semantics of merge() seems to be confusing for new users. Firstly, as long as

you are not trying to use object state loaded in one entity manager in another new entity manager,

you should not need to use merge() at all. Some whole applications will never use this method.

Usually merge() is used in the following scenario:

• the application loads an object in the first entity manager

• the object is passed up to the presentation layer

Chapter 3. Working with objects

26

• some modifications are made to the object

• the object is passed back down to the business logic layer

• the application persists these modifications by calling merge() in a second entity manager

Here is the exact semantic of merge():

• if there is a managed instance with the same identifier currently associated with the persistence

context, copy the state of the given object onto the managed instance

• if there is no managed instance currently associated with the persistence context, try to load it

from the database, or create a new managed instance

• the managed instance is returned

• the given instance does not become associated with the persistence context, it remains

detached and is usually discarded

Merging vs. saveOrUpdate/saveOrUpdateCopy

Merging in JPA is similar to the saveOrUpdateCopy() method in native Hibernate.

However, it is not the same as the saveOrUpdate() method, the given instance is

not reattached with the persistence context, but a managed instance is returned

by the merge() method.

3.9. Deleting managed objects

EntityManager.remove() will remove an objects state from the database. Of course, your

application might still hold a reference to a deleted object. You can think of remove() as making

a persistent instance new (aka transient) again. It is not detached, and a merge would result in

an insertion.

3.10. Flush the persistence context

From time to time the entity manager will execute the SQL DML statements needed to synchronize

the data store with the state of objects held in memory. This process is called flushing.

3.10.1. In a transaction

Flush occurs by default (this is Hibernate specific and not defined by the specification) at the

following points:

• before query execution*

In a transaction

27

• from javax.persistence.EntityTransaction.commit()*

• when EntityManager.flush() is called*

(*) if a transaction is active

The SQL statements are issued in the following order

• all entity insertions, in the same order the corresponding objects were saved using

EntityManager.persist()

• all entity updates

• all collection deletions

• all collection element deletions, updates and insertions

• all collection insertions

• all entity deletions, in the same order the corresponding objects were deleted using

EntityManager.remove()

(Exception: entity instances using application-assigned identifiers are inserted when they are

saved.)

Except when you explicitly flush(), there are no guarantees about when the entity manager

executes the JDBC calls, only the order in which they are executed. However, Hibernate does

guarantee that the Query.getResultList()/Query.getSingleResult() will never return stale

data; nor will they return wrong data if executed in an active transaction.

It is possible to change the default behavior so that flush occurs less frequently. The

FlushModeType for an entity manager defines two different modes: only flush at commit time or

flush automatically using the explained routine unless flush() is called explicitly.

em = emf.createEntityManager();

Transaction tx = em.getTransaction().begin();

em.setFlushMode(FlushModeType.COMMIT); // allow queries to return stale state

Cat izi = em.find(Cat.class, id);

izi.setName(iznizi);

// might return stale data

em.createQuery("from Cat as cat left outer join cat.kittens kitten").getResultList();

// change to izi is not flushed!

...

em.getTransaction().commit(); // flush occurs

During flush, an exception might happen (e.g. if a DML operation violates a constraint). TODO:

Add link to exception handling.

Chapter 3. Working with objects

28

Hibernate provides more flush modes than the one described in the JPA specification. In particular

FlushMode.MANUAL for long running conversation. Please refer to the Hibernate core reference

documentation for more informations.

3.10.2. Outside a transaction

In an EXTENDED persistence context, all read only operations of the entity manager can be

executed outside a transaction (find(), getReference(), refresh(), and read queries). Some

modifications operations can be executed outside a transaction, but they are queued until the

persistence context join a transaction. This is the case of persist(), merge(), remove(). Some

operations cannot be called outside a transaction: flush(), lock(), and update/delete queries.

3.11. Transitive persistence

It is quite cumbersome to save, delete, or reattach individual objects, especially if you deal with a

graph of associated objects. A common case is a parent/child relationship. Consider the following

example:

If the children in a parent/child relationship would be value typed (e.g. a collection of addresses

or strings), their lifecycle would depend on the parent and no further action would be required

for convenient "cascading" of state changes. When the parent is persisted, the value-typed child

objects are persisted as well, when the parent is removed, the children will be removed, etc.

This even works for operations such as the removal of a child from the collection; Hibernate will

detect this and, since value-typed objects can't have shared references, remove the child from

the database.

Now consider the same scenario with parent and child objects being entities, not value-types (e.g.

categories and items, or parent and child cats). Entities have their own lifecycle, support shared

references (so removing an entity from the collection does not mean it can be deleted), and there

is by default no cascading of state from one entity to any other associated entities. The EJB3

specification does not require persistence by reachability. It supports a more flexible model of

transitive persistence, as first seen in Hibernate.

For each basic operation of the entity manager - including persist(), merge(), remove(),

refresh() - there is a corresponding cascade style. Respectively, the cascade styles are named

PERSIST, MERGE, REMOVE, REFRESH, DETACH. If you want an operation to be cascaded to associated

entity (or collection of entities), you must indicate that in the association annotation:

@OneToOne(cascade=CascadeType.PERSIST)

Cascading options can be combined:

@OneToOne(cascade= { CascadeType.PERSIST, CascadeType.REMOVE, CascadeType.REFRESH })

Locking

29

You may even use CascadeType.ALL to specify that all operations should be cascaded for a

particular association. Remember that by default, no operation is cascaded.

There is an additional cascading mode used to describe orphan deletion (ie an object

no longer linked to an owning object should be removed automatically by Hibernate.

Use orphanRemoval=true on @OneToOne or @OneToMany. Check Hibernate Annotations's

documentation for more information.

Hibernate offers more native cascading options, please refer to the Hibernate Annotations manual

and the Hibernate reference guide for more informations.

Recommendations:

• It doesn't usually make sense to enable cascade on a @ManyToOne or @ManyToMany association.

Cascade is often useful for @OneToOne and @OneToMany associations.

• If the child object's lifespan is bounded by the lifespan of the parent object,

make the parent a full lifecycle object by specifying CascadeType.ALL and

org.hibernate.annotations.CascadeType.DELETE_ORPHAN (please refer to the Hibernate

reference guide for the semantics of orphan delete)

• Otherwise, you might not need cascade at all. But if you think that you will often be working with

the parent and children together in the same transaction, and you want to save yourself some

typing, consider using cascade={PERSIST, MERGE}. These options can even make sense for

a many-to-many association.

3.12. Locking

You can define various levels of locking strategies. A lock can be applied in several ways:

• via the explicit entityManager.lock() method

• via lookup methods on EntityManager: find(), refresh()

• on queries: query.setLockMode()

You can use various lock approaches:

• OPTIMISTIC (previously READ): use an optimistic locking scheme where the version number

is compared: the version number is compared and has to match before the transaction is

committed.

• OPTIMISTIC_FORCE_INCREMENT (previously WRITE): use an optimistic locking scheme but force

a version number increase as well: the version number is compared and has to match before

the transaction is committed.

• PESSIMISTIC_READ: apply a database-level read lock when the lock operation is requested:

roughly concurrent readers are allowed but no writer is allowed.

Chapter 3. Working with objects

30

• PESSIMISTIC_WRITE: apply a database-level write lock when the lock operation is requested:

roughly no reader nor writer is allowed.

All these locks prevent dirty reads and non-repeatable reads on a given entity. Optimistic locks

enforce the lock as late as possible hoping nobody changes the data underneath while pessimistic

locks enforce the lock right away and keep it till the transaction is committed.

3.13. Caching

When the second-level cache is activated (see Section 2.2.1, “Packaging” and the Hibernate

Annotations reference documentation), Hibernate ensures it is used and properly updated. You

can however adjust these settings by passing two properties:

• javax.persistence.cache.retrieveMode which accepts CacheRetrieveMode values

• javax.persistence.cache.storeMode which accepts CacheStoreMode values

CacheRetrieveMode controls how Hibernate accesses information from the second-level cache:

USE which is the default or BYPASS which means ignore the cache. CacheStoreMode controls how

Hibernate pushes information to the second-level cache: USE which is the default and push data

in the cache when reading from and writing to the database, BYPASS which does not insert new

data in the cache (but can invalidate obsolete data) and REFRESH which does like default but also

force data to be pushed to the cache on database read even if the data is already cached.

You can set these properties:

• on a particular EntityManager via the setProperty method

• on a query via a query hint (setHint method)

• when calling find() and refresh() and passing the properties in the appropriate Map

JPA also introduces an API to interrogate the second-level cache and evict data manually.

Cache cache = entityManagerFactory.getCache();

if (cache.contains(User.class, userId)) {

 //load it as we don't hit the DB

}

cache.evict(User.class, userId); //manually evict user form the second-level cache

cache.evict(User.class); //evict all users from the second-level cache

cache.evictAll(); //purge the second-level cache entirely

3.14. Checking the state of an object

You can check whether an object is managed by the persistence context

Native Hibernate API

31

entityManager.get(Cat.class, catId);

...

boolean isIn = entityManager.contains(cat);

assert isIn;

You can also check whether an object, an association or a property is lazy or not. You can do that

independently of the underlying persistence provider:

PersistenceUtil jpaUtil = Persistence.getPersistenceUtil();

if (jpaUtil.isLoaded(customer.getAddress()) {

 //display address if loaded

}

if (jpaUtil.isLoaded(customer.getOrders)) {

 //display orders if loaded

}

if (jpaUtil.isLoaded(customer, "detailedBio")) {

 //display property detailedBio if loaded

}

However, if you have access to the entityManagerFactory, we recommend you to use:

PersistenceUnitUtil jpaUtil = entityManager.getEntityManagerFactory().getPersistenceUnitUtil();

Customer customer = entityManager.get(Customer.class, customerId);

if (jpaUtil.isLoaded(customer.getAddress()) {

 //display address if loaded

}

if (jpaUtil.isLoaded(customer.getOrders)) {

 //display orders if loaded

}

if (jpaUtil.isLoaded(customer, "detailedBio")) {

 //display property detailedBio if loaded

}

log.debug("Customer id {}", jpaUtil.getIdentifier(customer));

The performances are likely to be slightly better and you can get the identifier value from an object

(using getIdentifier()).

Note

These are roughly the counterpart methods of Hibernate.isInitialize.

3.15. Native Hibernate API

You can always fall back to the underlying Session API from a given EntityManager:

Chapter 3. Working with objects

32

Session session = entityManager.unwrap(Session.class);

Chapter 4.

33

Metamodel

Note

The Metamodel itself is described in Chapter 5 Metamodel API of the [JPA 2

Specification]. Chapter 6 Criteria API of the [JPA 2 Specification] describes and

shows uses of the metamodel in criteria queries, as does Chapter 9, Criteria

Queries.

The metamodel is a set of objects that describe your domain model.

javax.persistence.metamodel.Metamodel acts as a repository of these metamodel

objects and provides access to them, and can be obtained from either the

javax.persistence.EntityManagerFactory or the javax.persistence.EntityManager via

their getMetamodel method.

This metamodel is important in 2 ways. First, it allows providers and frameworks a generic way

to deal with an application's domain model. Persistence providers will already have some form of

metamodel that they use to describe the domain model being mapped. This API however defines

a single, independent access to that existing information. A validation framework, for example,

could use this information to understand associations; a marshaling framework might use this

information to decide how much of an entity graph to marshal. This usage is beyond the scope

of this documentation.

Important

As of today the JPA 2 metamodel does not provide any facility for accessing

relational information pertaining to the physical model. It is expected this will be

addressed in a future release of the specification.

Second, from an application writer's perspective, it allows very fluent expression of completely

type-safe criteria queries, especially the Static Metamodel approach. The [JPA 2 Specification]

defines a number of ways the metamodel can be accessed and used, including the Static

Metamodel approach, which we will look at later. The Static Metamodel approach is wonderful

when the code has a priori knowledge [http://en.wikipedia.org/wiki/A_priori_and_a_posteriori] of

the domain model. Chapter 9, Criteria Queries uses this approach exclusively in its examples.

4.1. Static metamodel

A static metamodel is a series of classes that "mirror" the entities and embeddables in the domain

model and provide static access to the metadata about the mirrored class's attributes. We will

exclusively discuss what the [JPA 2 Specification] terms a Canonical Metamodel:

http://en.wikipedia.org/wiki/A_priori_and_a_posteriori
http://en.wikipedia.org/wiki/A_priori_and_a_posteriori

Chapter 4. Metamodel

34

• For each managed class X in package p, a metamodel class X_ in package p

is created.

• The name of the metamodel class is derived from the name of the managed

class by appending "_" to the name of the managed class.

• The metamodel class X_ must be annotated with the

javax.persistence.StaticMetamodelannotation 1

• If class X extends another class S, where S is the most derived managed class

(i.e., entity or mapped superclass) extended by X, then class X_ must extend

class S_, where S_ is the metamodel class created for S.

• For every persistent non-collection-valued attribute y declared by class X,

where the type of y is Y, the metamodel class must contain a declaration as

follows:

public static volatile SingularAttribute<X, Y> y;

• For every persistent collection-valued attribute z declared by class X, where

the element type of z is Z, the metamodel class must contain a declaration as

follows:

• if the collection type of z is java.util.Collection, then

public static volatile CollectionAttribute<X, Z> z;

• if the collection type of z is java.util.Set, then

public static volatile SetAttribute<X, Z> z;

• if the collection type of z is java.util.List, then

public static volatile ListAttribute<X, Z> z;

• if the collection type of z is java.util.Map, then

public static volatile MapAttribute<X, K, Z> z;

1 (from the original) If the class was generated, the javax.annotation.Generated annotation should

be used to annotate the class. The use of any other annotations on static metamodel classes is undefined.

Static metamodel

35

where K is the type of the key of the map in class X

Import statements must be included for the needed

javax.persistence.metamodel types as appropriate (e.g.,

javax.persistence.metamodel.SingularAttribute,

javax.persistence.metamodel.CollectionAttribute,

javax.persistence.metamodel.SetAttribute,

javax.persistence.metamodel.ListAttribute,

javax.persistence.metamodel.MapAttribute) and all classes X, Y, Z, and K.

— [JPA 2 Specification, section 6.2.1.1, pp 198-199]

Example 4.1. Static metamodel example

For the Person entity

package org.hibernate.jpa2.metamodel.example;

import java.util.Set;

import javax.persistence.Entity;

@Entity

public class Person {

 @Id private Long id;

 private String name;

 private int age;

 private Address address;

 @OneToMany private Set<Order> orders;

}

The corresponding canonical metamodel class, Person_ would look like

package org.hibernate.jpa2.metamodel.example;

import javax.persistence.metamodel.SingularAttribute;

import javax.persistence.metamodel.SetAttribute;

import javax.persistence.metamodel.StaticMetamodel;

@StaticMetamodel(Person.class)

public class Person_ {

 public static volatile SingularAttribute<Person, Long> id;

 public static volatile SingularAttribute<Person, String> name;

 public static volatile SingularAttribute<Person, Integer> age;

 public static volatile SingularAttribute<Person, Address> address;

 public static volatile SetAttribute<Person, Order> orders;

}

Chapter 4. Metamodel

36

Note

These canonical metamodel classes can be generated manually if you

wish though it is expected that most developers will prefer use of an

annotation processor [http://java.sun.com/javase/6/docs/technotes/tools/solaris/

javac.html#processing]. Annotation processors themselves are beyond the scope

of this document. However, the Hibernate team does develop an annotation

processor tool for generating a canonical metamodel. See Hibernate Metamodel

Generator.

When the Hibernate EntityManagerFactory is being built, it will look for a canonical metamodel

class for each of the managed typed is knows about and if it finds any it will inject the appropriate

metamodel information into them, as outlined in [JPA 2 Specification, section 6.2.2, pg 200]

http://java.sun.com/javase/6/docs/technotes/tools/solaris/javac.html#processing
http://java.sun.com/javase/6/docs/technotes/tools/solaris/javac.html#processing
http://java.sun.com/javase/6/docs/technotes/tools/solaris/javac.html#processing

Chapter 5.

37

Transactions and Concurrency
The most important point about Hibernate Entity Manager and concurrency control is that it is very

easy to understand. Hibernate Entity Manager directly uses JDBC connections and JTA resources

without adding any additional locking behavior. We highly recommend you spend some time with

the JDBC, ANSI, and transaction isolation specification of your database management system.

Hibernate Entity Manager only adds automatic versioning but does not lock objects in memory or

change the isolation level of your database transactions. Basically, use Hibernate Entity Manager

like you would use direct JDBC (or JTA/CMT) with your database resources.

We start the discussion of concurrency control in Hibernate with the granularity of

EntityManagerFactory, and EntityManager, as well as database transactions and long units

of work..

In this chapter, and unless explicitly expressed, we will mix and match the concept of entity

manager and persistence context. One is an API and programming object, the other a definition of

scope. However, keep in mind the essential difference. A persistence context is usually bound to

a JTA transaction in Java EE, and a persistence context starts and ends at transaction boundaries

(transaction-scoped) unless you use an extended entity manager. Please refer to Section 1.2.3,

“Persistence context scope” for more information.

5.1. Entity manager and transaction scopes

A EntityManagerFactory is an expensive-to-create, threadsafe object intended to be shared by

all application threads. It is created once, usually on application startup.

An EntityManager is an inexpensive, non-threadsafe object that should be used once, for a single

business process, a single unit of work, and then discarded. An EntityManager will not obtain

a JDBC Connection (or a Datasource) unless it is needed, so you may safely open and close

an EntityManager even if you are not sure that data access will be needed to serve a particular

request. (This becomes important as soon as you are implementing some of the following patterns

using request interception.)

To complete this picture you also have to think about database transactions. A database

transaction has to be as short as possible, to reduce lock contention in the database. Long

database transactions will prevent your application from scaling to highly concurrent load.

What is the scope of a unit of work? Can a single Hibernate EntityManager span several database

transactions or is this a one-to-one relationship of scopes? When should you open and close a

Session and how do you demarcate the database transaction boundaries?

5.1.1. Unit of work

First, don't use the entitymanager-per-operation antipattern, that is, don't open and close an

EntityManager for every simple database call in a single thread! Of course, the same is true for

database transactions. Database calls in an application are made using a planned sequence, they

are grouped into atomic units of work. (Note that this also means that auto-commit after every

Chapter 5. Transactions and C...

38

single SQL statement is useless in an application, this mode is intended for ad-hoc SQL console

work.)

The most common pattern in a multi-user client/server application is entitymanager-per-request.

In this model, a request from the client is send to the server (where the JPA persistence layer

runs), a new EntityManager is opened, and all database operations are executed in this unit of

work. Once the work has been completed (and the response for the client has been prepared),

the persistence context is flushed and closed, as well as the entity manager object. You would

also use a single database transaction to serve the clients request. The relationship between the

two is one-to-one and this model is a perfect fit for many applications.

This is the default JPA persistence model in a Java EE environment (JTA bounded, transaction-

scoped persistence context); injected (or looked up) entity managers share the same persistence

context for a particular JTA transaction. The beauty of JPA is that you don't have to care about

that anymore and just see data access through entity manager and demarcation of transaction

scope on session beans as completely orthogonal.

The challenge is the implementation of this (and other) behavior outside an EJB3 container: not

only has the EntityManager and resource-local transaction to be started and ended correctly,

but they also have to be accessible for data access operations. The demarcation of a unit of

work is ideally implemented using an interceptor that runs when a request hits the non-EJB3

container server and before the response will be send (i.e. a ServletFilter if you are using

a standalone servlet container). We recommend to bind the EntityManager to the thread that

serves the request, using a ThreadLocal variable. This allows easy access (like accessing

a static variable) in all code that runs in this thread. Depending on the database transaction

demarcation mechanism you chose, you might also keep the transaction context in a ThreadLocal

variable. The implementation patterns for this are known as ThreadLocal Session and Open

Session in View in the Hibernate community. You can easily extend the HibernateUtil shown

in the Hibernate reference documentation to implement this pattern, you don't need any external

software (it's in fact very trivial). Of course, you'd have to find a way to implement an interceptor

and set it up in your environment. See the Hibernate website for tips and examples. Once again,

remember that your first choice is naturally an EJB3 container - preferably a light and modular

one such as JBoss application server.

5.1.2. Long units of work

The entitymanager-per-request pattern is not the only useful concept you can use to design units

of work. Many business processes require a whole series of interactions with the user interleaved

with database accesses. In web and enterprise applications it is not acceptable for a database

transaction to span a user interaction with possibly long waiting time between requests. Consider

the following example:

• The first screen of a dialog opens, the data seen by the user has been loaded in a particular

EntityManager and resource-local transaction. The user is free to modify the detached objects.

Long units of work

39

• The user clicks "Save" after 5 minutes and expects his modifications to be made persistent;

he also expects that he was the only person editing this information and that no conflicting

modification can occur.

We call this unit of work, from the point of view of the user, a long running application transaction.

There are many ways how you can implement this in your application.

A first naive implementation might keep the EntityManager and database transaction open

during user think time, with locks held in the database to prevent concurrent modification, and to

guarantee isolation and atomicity. This is of course an anti-pattern, a pessimistic approach, since

lock contention would not allow the application to scale with the number of concurrent users.

Clearly, we have to use several database transactions to implement the application transaction.

In this case, maintaining isolation of business processes becomes the partial responsibility of the

application tier. A single application transaction usually spans several database transactions. It

will be atomic if only one of these database transactions (the last one) stores the updated data, all

others simply read data (e.g. in a wizard-style dialog spanning several request/response cycles).

This is easier to implement than it might sound, especially if you use JPA entity manager and

persistence context features:

• Automatic Versioning - An entity manager can do automatic optimistic concurrency control for

you, it can automatically detect if a concurrent modification occurred during user think time

(usually by comparing version numbers or timestamps when updating the data in the final

resource-local transaction).

• Detached Entities - If you decide to use the already discussed entity-per-request pattern,

all loaded instances will be in detached state during user think time. The entity manager

allows you to merge the detached (modified) state and persist the modifications, the pattern

is called entitymanager-per-request-with-detached-entities. Automatic versioning is used to

isolate concurrent modifications.

• Extended Entity Manager - The Hibernate Entity Manager may be disconnected from the

underlying JDBC connection between two client calls and reconnected when a new client

request occurs. This pattern is known as entitymanager-per-application-transaction and makes

even merging unnecessary. An extend persistence context is responsible to collect and retain

any modification (persist, merge, remove) made outside a transaction. The next client call made

inside an active transaction (typically the last operation of a user conversation) will execute all

queued modifications. Automatic versioning is used to isolate concurrent modifications.

Both entitymanager-per-request-with-detached-objects and entitymanager-per-application-

transaction have advantages and disadvantages, we discuss them later in this chapter in the

context of optimistic concurrency control.

TODO: This note should probably come later.

Chapter 5. Transactions and C...

40

5.1.3. Considering object identity

An application may concurrently access the same persistent state in two different persistence

contexts. However, an instance of a managed class is never shared between two persistence

contexts. Hence there are two different notions of identity:

Database Identity

foo.getId().equals(bar.getId())

JVM Identity

foo==bar

Then for objects attached to a particular persistence context (i.e. in the scope of an

EntityManager) the two notions are equivalent, and JVM identity for database identity is

guaranteed by the Hibernate Entity Manager. However, while the application might concurrently

access the "same" (persistent identity) business object in two different persistence contexts, the

two instances will actually be "different" (JVM identity). Conflicts are resolved using (automatic

versioning) at flush/commit time, using an optimistic approach.

This approach leaves Hibernate and the database to worry about concurrency; it also provides

the best scalability, since guaranteeing identity in single-threaded units of work only doesn't need

expensive locking or other means of synchronization. The application never needs to synchronize

on any business object, as long as it sticks to a single thread per EntityManager. Within a

persistence context, the application may safely use == to compare entities.

However, an application that uses == outside of a persistence context might see unexpected

results. This might occur even in some unexpected places, for example, if you put two detached

instances into the same Set. Both might have the same database identity (i.e. they represent

the same row), but JVM identity is by definition not guaranteed for instances in detached state.

The developer has to override the equals() and hashCode() methods in persistent classes and

implement his own notion of object equality. There is one caveat: Never use the database identifier

to implement equality, use a business key, a combination of unique, usually immutable, attributes.

The database identifier will change if a transient entity is made persistent (see the contract of the

persist() operation). If the transient instance (usually together with detached instances) is held

in a Set, changing the hashcode breaks the contract of the Set. Attributes for good business keys

don't have to be as stable as database primary keys, you only have to guarantee stability as long

as the objects are in the same Set. See the Hibernate website for a more thorough discussion

of this issue. Also note that this is not a Hibernate issue, but simply how Java object identity and

equality has to be implemented.

5.1.4. Common concurrency control issues

Never use the anti-patterns entitymanager-per-user-session or entitymanager-per-application

(of course, there are rare exceptions to this rule, e.g. entitymanager-per-application might be

acceptable in a desktop application, with manual flushing of the persistence context). Note that

Database transaction demarcation

41

some of the following issues might also appear with the recommended patterns, make sure you

understand the implications before making a design decision:

• An entity manager is not thread-safe. Things which are supposed to work concurrently,

like HTTP requests, session beans, or Swing workers, will cause race conditions if an

EntityManager instance would be shared. If you keep your Hibernate EntityManager in your

HttpSession (discussed later), you should consider synchronizing access to your Http session.

Otherwise, a user that clicks reload fast enough may use the same EntityManager in two

concurrently running threads. You will very likely have provisions for this case already in place,

for other non-threadsafe but session-scoped objects.

• An exception thrown by the Entity Manager means you have to rollback your database

transaction and close the EntityManager immediately (discussed later in more detail). If your

EntityManager is bound to the application, you have to stop the application. Rolling back the

database transaction doesn't put your business objects back into the state they were at the start

of the transaction. This means the database state and the business objects do get out of sync.

Usually this is not a problem, because exceptions are not recoverable and you have to start

over your unit of work after rollback anyway.

• The persistence context caches every object that is in managed state (watched and

checked for dirty state by Hibernate). This means it grows endlessly until you get an

OutOfMemoryException, if you keep it open for a long time or simply load too much data.

One solution for this is some kind batch processing with regular flushing of the persistence

context, but you should consider using a database stored procedure if you need mass data

operations. Some solutions for this problem are shown in Chapter 7, Batch processing. Keeping

a persistence context open for the duration of a user session also means a high probability of

stale data, which you have to know about and control appropriately.

5.2. Database transaction demarcation

Database (or system) transaction boundaries are always necessary. No communication with the

database can occur outside of a database transaction (this seems to confuse many developers

who are used to the auto-commit mode). Always use clear transaction boundaries, even for read-

only operations. Depending on your isolation level and database capabilities this might not be

required but there is no downside if you always demarcate transactions explicitly. You'll have to do

operations outside a transaction, though, when you'll need to retain modifications in an EXTENDED

persistence context.

A JPA application can run in non-managed (i.e. standalone, simple Web- or Swing

applications) and managed Java EE environments. In a non-managed environment, an

EntityManagerFactory is usually responsible for its own database connection pool. The

application developer has to manually set transaction boundaries, in other words, begin, commit,

or rollback database transactions itself. A managed environment usually provides container-

managed transactions, with the transaction assembly defined declaratively through annotations

of EJB session beans, for example. Programmatic transaction demarcation is then no longer

necessary, even flushing the EntityManager is done automatically.

Chapter 5. Transactions and C...

42

Usually, ending a unit of work involves four distinct phases:

• commit the (resource-local or JTA) transaction (this automatically flushes the entity manager

and persistence context)

• close the entity manager (if using an application-managed entity manager)

• handle exceptions

We'll now have a closer look at transaction demarcation and exception handling in both managed-

and non-managed environments.

5.2.1. Non-managed environment

If an JPA persistence layer runs in a non-managed environment, database connections are usually

handled by Hibernate's pooling mechanism behind the scenes. The common entity manager and

transaction handling idiom looks like this:

// Non-managed environment idiom

EntityManager em = emf.createEntityManager();

EntityTransaction tx = null;

try {

 tx = em.getTransaction();

 tx.begin();

 // do some work

 ...

 tx.commit();

}

catch (RuntimeException e) {

 if (tx != null && tx.isActive()) tx.rollback();

 throw e; // or display error message

}

finally {

 em.close();

}

You don't have to flush() the EntityManager explicitly - the call to commit() automatically

triggers the synchronization.

A call to close() marks the end of an EntityManager. The main implication of close() is the

release of resources - make sure you always close and never outside of guaranteed finally block.

You will very likely never see this idiom in business code in a normal application; fatal (system)

exceptions should always be caught at the "top". In other words, the code that executes entity

manager calls (in the persistence layer) and the code that handles RuntimeException (and

usually can only clean up and exit) are in different layers. This can be a challenge to design

yourself and you should use J2EE/EJB container services whenever they are available. Exception

handling is discussed later in this chapter.

Using JTA

43

5.2.1.1. EntityTransaction

In a JTA environment, you don't need any extra API to interact with the transaction in your

environment. Simply use transaction declaration or the JTA APIs.

If you are using a RESOURCE_LOCAL entity manager, you need to demarcate your transaction

boundaries through the EntityTransaction API. You can get an EntityTransaction

through entityManager.getTransaction(). This EntityTransaction API provides the regular

begin(), commit(), rollback() and isActive() methods. It also provide a way to mark a

transaction as rollback only, ie force the transaction to rollback. This is very similar to the JTA

operation setRollbackOnly(). When a commit() operation fail and/or if the transaction is marked

as setRollbackOnly(), the commit() method will try to rollback the transaction and raise a

javax.transaction.RollbackException.

In a JTA entity manager, entityManager.getTransaction() calls are not permitted.

5.2.2. Using JTA

If your persistence layer runs in an application server (e.g. behind EJB3 session beans), every

datasource connection obtained internally by the entity manager will automatically be part of the

global JTA transaction. Hibernate offers two strategies for this integration.

If you use bean-managed transactions (BMT), the code will look like this:

// BMT idiom

@Resource public UserTransaction utx;

@Resource public EntityManagerFactory factory;

public void doBusiness() {

 EntityManager em = factory.createEntityManager();

 try {

 // do some work

 ...

 utx.commit();

}

catch (RuntimeException e) {

 if (utx != null) utx.rollback();

 throw e; // or display error message

}

finally {

 em.close();

}

With Container Managed Transactions (CMT) in an EJB3 container, transaction demarcation

is done in session bean annotations or deployment descriptors, not programatically. The

EntityManager will automatically be flushed on transaction completion (and if you have injected

or lookup the EntityManager, it will be also closed automatically). If an exception occurs during

the EntityManager use, transaction rollback occurs automatically if you don't catch the exception.

Chapter 5. Transactions and C...

44

Since EntityManager exceptions are RuntimeExceptions they will rollback the transaction as

per the EJB specification (system exception vs. application exception).

It is important to let Hibernate EntityManager define the

hibernate.transaction.factory_class (ie not overriding this value). Remember to also set

org.hibernate.transaction.manager_lookup_class.

If you work in a CMT environment, you might also want to use the same entity manager

in different parts of your code. Typically, in a non-managed environment you would use a

ThreadLocal variable to hold the entity manager, but a single EJB request might execute in

different threads (e.g. session bean calling another session bean). The EJB3 container takes care

of the persistence context propagation for you. Either using injection or lookup, the EJB3 container

will return an entity manager with the same persistence context bound to the JTA context if any,

or create a new one and bind it (see Section 1.2.4, “Persistence context propagation” .)

Our entity manager/transaction management idiom for CMT and EJB3 container-use is reduced

to this:

//CMT idiom through injection

@PersistenceContext(name="sample") EntityManager em;

Or this if you use Java Context and Dependency Injection (CDI).

@Inject EntityManager em;

In other words, all you have to do in a managed environment is to inject the EntityManager,

do your data access work, and leave the rest to the container. Transaction boundaries are set

declaratively in the annotations or deployment descriptors of your session beans. The lifecycle of

the entity manager and persistence context is completely managed by the container.

Due to a silly limitation of the JTA spec, it is not possible for Hibernate to automatically clean up

any unclosed ScrollableResults or Iterator instances returned by scroll() or iterate().

You must release the underlying database cursor by calling ScrollableResults.close() or

Hibernate.close(Iterator) explicitly from a finally block. (Of course, most applications can

easily avoid using scroll() or iterate() at all from the CMT code.)

5.2.3. Exception handling

If the EntityManager throws an exception (including any SQLException), you should immediately

rollback the database transaction, call EntityManager.close() (if createEntityManager() has

been called) and discard the EntityManager instance. Certain methods of EntityManager will

not leave the persistence context in a consistent state. No exception thrown by an entity manager

can be treated as recoverable. Ensure that the EntityManager will be closed by calling close()

in a finally block. Note that a container managed entity manager will do that for you. You just

have to let the RuntimeException propagate up to the container.

Exception handling

45

The Hibernate entity manager generally raises exceptions which encapsulate the Hibernate core

exception. Common exceptions raised by the EntityManager API are

• IllegalArgumentException: something wrong happen

• EntityNotFoundException: an entity was expected but none match the requirement

• NonUniqueResultException: more than one entity is found when calling getSingleResult()

• NoResultException: when getSingleResult() does not find any matching entity

• EntityExistsException: an existing entity is passed to persist()

• TransactionRequiredException: this operation has to be in a transaction

• IllegalStateException: the entity manager is used in a wrong way

• RollbackException: a failure happens during commit()

• QueryTimeoutException: the query takes longer than the specified timeout (see

javax.persistence.query.timeout - this property is a hint and might not be followed)

• PessimisticLockException: when a lock cannot be acquired

• OptimisticLockException: an optimistic lock is failing

• LockTimeoutException: when a lock takes longer than the expected time to be acquired

(javax.persistence.lock.timeout in milliseconds)

• TransactionRequiredException: an operation requiring a transaction is executed outside of

a transaction

The HibernateException, which wraps most of the errors that can occur in a Hibernate

persistence layer, is an unchecked exception. Note that Hibernate might also throw other

unchecked exceptions which are not a HibernateException. These are, again, not recoverable

and appropriate action should be taken.

Hibernate wraps SQLExceptions thrown while interacting with the database in a

JDBCException. In fact, Hibernate will attempt to convert the exception into a more

meaningful subclass of JDBCException. The underlying SQLException is always available

via JDBCException.getCause(). Hibernate converts the SQLException into an appropriate

JDBCException subclass using the SQLExceptionConverter attached to the SessionFactory.

By default, the SQLExceptionConverter is defined by the configured dialect; however,

it is also possible to plug in a custom implementation (see the javadocs for the

SQLExceptionConverterFactory class for details). The standard JDBCException subtypes are:

• JDBCConnectionException - indicates an error with the underlying JDBC communication.

• SQLGrammarException - indicates a grammar or syntax problem with the issued SQL.

• ConstraintViolationException - indicates some form of integrity constraint violation.

Chapter 5. Transactions and C...

46

• LockAcquisitionException - indicates an error acquiring a lock level necessary to perform

the requested operation.

• GenericJDBCException - a generic exception which did not fall into any of the other categories.

5.3. EXTENDED Persistence Context

All application managed entity manager and container managed persistence contexts defined as

such are EXTENDED. This means that the persistence context type goes beyond the transaction

life cycle. We should then understand what happens to operations made outside the scope of a

transaction.

In an EXTENDED persistence context, all read only operations of the entity manager can be executed

outside a transaction (find(), getReference(), refresh(), detach() and read queries). Some

modifications operations can be executed outside a transaction, but they are queued until the

persistence context join a transaction: this is the case of persist(), merge(), remove(). Some

operations cannot be called outside a transaction: flush(), lock(), and update/delete queries.

5.3.1. Container Managed Entity Manager

When using an EXTENDED persistence context with a container managed entity manager, the

lifecycle of the persistence context is binded to the lifecycle of the Stateful Session Bean. Plus

if the entity manager is created outside a transaction, modifications operations (persist, merge,

remove) are queued in the persistence context and not executed to the database.

When a method of the stateful session bean involved or starting a transaction is later called, the

entity manager join the transaction. All queued operation will then be executed to synchronize the

persistence context.

This is perfect to implement the entitymanager-per-conversation pattern. A stateful session

bean represents the conversation implementation. All intermediate conversation work will be

processed in methods not involving transaction. The end of the conversation will be processed

inside a JTA transaction. Hence all queued operations will be executed to the database and

committed. If you are interested in the notion of conversation inside your application, have a look at

JBoss Seam. JBoss Seam emphasizes the concept of conversation and entity manager lifecycle

and bind EJB3 and JSF together.

5.3.2. Application Managed Entity Manager

Application-managed entity manager are always EXTENDED. When you create an entity manager

inside a transaction, the entity manager automatically join the current transaction. If the entity

manager is created outside a transaction, the entity manager will queue the modification

operations. When

• entityManager.joinTransaction() is called when a JTA transaction is active for a JTA entity

manager

• entityManager.getTransaction().begin() is called for a RESOURCE_LOCAL entity manager

Optimistic concurrency control

47

the entity manager join the transaction and all the queued operations will then be executed to

synchronize the persistence context.

It is not legal to call entityManager.joinTransaction() if no JTA transaction is involved.

5.4. Optimistic concurrency control

The only approach that is consistent with high concurrency and high scalability is optimistic

concurrency control with versioning. Version checking uses version numbers, or timestamps, to

detect conflicting updates (and to prevent lost updates). Hibernate provides for three possible

approaches to writing application code that uses optimistic concurrency. The use cases we show

are in the context of long application transactions but version checking also has the benefit of

preventing lost updates in single database transactions.

5.4.1. Application version checking

In an implementation without much help from the persistence mechanism, each interaction with

the database occurs in a new EntityManager and the developer is responsible for reloading

all persistent instances from the database before manipulating them. This approach forces the

application to carry out its own version checking to ensure application transaction isolation. This

approach is the least efficient in terms of database access. It is the approach most similar to EJB2

entities:

// foo is an instance loaded by a previous entity manager

em = factory.createEntityManager();

EntityTransaction t = em.getTransaction();

t.begin();

int oldVersion = foo.getVersion();

Foo dbFoo = em.find(foo.getClass(), foo.getKey()); // load the current state

if (dbFoo.getVersion()!=foo.getVersion) throw new StaleObjectStateException();

dbFoo.setProperty("bar");

t.commit();

em.close();

The version property is mapped using @Version, and the entity manager will automatically

increment it during flush if the entity is dirty.

Of course, if you are operating in a low-data-concurrency environment and don't require version

checking, you may use this approach and just skip the version check. In that case, last commit

wins will be the default strategy for your long application transactions. Keep in mind that this

might confuse the users of the application, as they might experience lost updates without error

messages or a chance to merge conflicting changes.

Clearly, manual version checking is only feasible in very trivial circumstances and not practical for

most applications. Often not only single instances, but complete graphs of modified objects have

to be checked. Hibernate offers automatic version checking with either detached instances or an

extended entity manager and persistence context as the design paradigm.

Chapter 5. Transactions and C...

48

5.4.2. Extended entity manager and automatic versioning

A single persistence context is used for the whole application transaction. The entity manager

checks instance versions at flush time, throwing an exception if concurrent modification is

detected. It's up to the developer to catch and handle this exception (common options are the

opportunity for the user to merge his changes or to restart the business process with non-stale

data).

In an EXTENDED persistence context, all operations made outside an active transaction are queued.

The EXTENDED persistence context is flushed when executed in an active transaction (at worse

at commit time).

The Entity Manager is disconnected from any underlying JDBC connection when waiting for

user interaction. In an application-managed extended entity manager, this occurs automatically

at transaction completion. In a stateful session bean holding a container-managed extended

entity manager (i.e. a SFSB annotated with @PersistenceContext(EXTENDED)), this occurs

transparently as well. This approach is the most efficient in terms of database access. The

application need not concern itself with version checking or with merging detached instances, nor

does it have to reload instances in every database transaction. For those who might be concerned

by the number of connections opened and closed, remember that the connection provider should

be a connection pool, so there is no performance impact. The following examples show the idiom

in a non-managed environment:

// foo is an instance loaded earlier by the extended entity manager

em.getTransaction.begin(); // new connection to data store is obtained and tx started

foo.setProperty("bar");

em.getTransaction().commit(); // End tx, flush and check version, disconnect

The foo object still knows which persistence context it was loaded in. With

getTransaction.begin(); the entity manager obtains a new connection and resumes the

persistence context. The method getTransaction().commit() will not only flush and check

versions, but also disconnects the entity manager from the JDBC connection and return the

connection to the pool.

This pattern is problematic if the persistence context is too big to be stored during user think

time, and if you don't know where to store it. E.g. the HttpSession should be kept as small as

possible. As the persistence context is also the (mandatory) first-level cache and contains all

loaded objects, we can probably use this strategy only for a few request/response cycles. This is

indeed recommended, as the persistence context will soon also have stale data.

It is up to you where you store the extended entity manager during requests, inside an EJB3

container you simply use a stateful session bean as described above. Don't transfer it to the web

layer (or even serialize it to a separate tier) to store it in the HttpSession. In a non-managed, two-

tiered environment the HttpSession might indeed be the right place to store it.

Detached objects and automatic versioning

49

5.4.3. Detached objects and automatic versioning

With this paradigm, each interaction with the data store occurs in a new persistence context.

However, the same persistent instances are reused for each interaction with the database. The

application manipulates the state of detached instances originally loaded in another persistence

context and then merges the changes using EntityManager.merge():

// foo is an instance loaded by a non-extended entity manager

foo.setProperty("bar");

entityManager = factory.createEntityManager();

entityManager.getTransaction().begin();

managedFoo = session.merge(foo); // discard foo and from now on use managedFoo

entityManager.getTransaction().commit();

entityManager.close();

Again, the entity manager will check instance versions during flush, throwing an exception if

conflicting updates occurred.

50

Chapter 6.

51

Entity listeners and Callback

methods

6.1. Definition

It is often useful for the application to react to certain events that occur inside the persistence

mechanism. This allows the implementation of certain kinds of generic functionality, and extension

of built-in functionality. The JPA specification provides two related mechanisms for this purpose.

A method of the entity may be designated as a callback method to receive notification of a

particular entity life cycle event. Callbacks methods are annotated by a callback annotation. You

can also define an entity listener class to be used instead of the callback methods defined directly

inside the entity class. An entity listener is a stateless class with a no-arg constructor. An entity

listener is defined by annotating the entity class with the @EntityListeners annotation:

@Entity

@EntityListeners(class=Audit.class)

public class Cat {

 @Id private Integer id;

 private String name;

 private Calendar dateOfBirth;

 @Transient private int age;

 private Date lastUpdate;

 //getters and setters

 /**

 * Set my transient property at load time based on a calculation,

 * note that a native Hibernate formula mapping is better for this purpose.

 */

 @PostLoad

 public void calculateAge() {

 Calendar birth = new GregorianCalendar();

 birth.setTime(dateOfBirth);

 Calendar now = new GregorianCalendar();

 now.setTime(new Date());

 int adjust = 0;

 if (now.get(Calendar.DAY_OF_YEAR) - birth.get(Calendar.DAY_OF_YEAR) < 0) {

 adjust = -1;

 }

 age = now.get(Calendar.YEAR) - birth.get(Calendar.YEAR) + adjust;

 }

}

public class LastUpdateListener {

 /**

 * automatic property set before any database persistence

 */

 @PreUpdate

 @PrePersist

 public void setLastUpdate(Cat o) {

 o.setLastUpdate(new Date());

Chapter 6. Entity listeners a...

52

 }

}

The same callback method or entity listener method can be annotated with more than one callback

annotation. For a given entity, you cannot have two methods being annotated by the same callback

annotation whether it is a callback method or an entity listener method. A callback method is a no-

arg method with no return type and any arbitrary name. An entity listener has the signature void

<METHOD>(Object) where Object is of the actual entity type (note that Hibernate Entity Manager

relaxed this constraint and allows Object of java.lang.Object type (allowing sharing of listeners

across several entities.)

A callback method can raise a RuntimeException. The current transaction, if any, must be rolled

back. The following callbacks are defined:

Table 6.1. Callbacks

Type Description

@PrePersist Executed before the entity manager persist

operation is actually executed or cascaded.

This call is synchronous with the persist

operation.

@PreRemove Executed before the entity manager remove

operation is actually executed or cascaded.

This call is synchronous with the remove

operation.

@PostPersist Executed after the entity manager persist

operation is actually executed or cascaded.

This call is invoked after the database INSERT

is executed.

@PostRemove Executed after the entity manager remove

operation is actually executed or cascaded.

This call is synchronous with the remove

operation.

@PreUpdate Executed before the database UPDATE

operation.

@PostUpdate Executed after the database UPDATE

operation.

@PostLoad Executed after an entity has been loaded into

the current persistence context or an entity has

been refreshed.

A callback method must not invoke EntityManager or Query methods!

Callbacks and listeners inheritance

53

6.2. Callbacks and listeners inheritance

You can define several entity listeners per entity at different level of the hierarchy. You can also

define several callbacks at different level of the hierarchy. But you cannot define two listeners for

the same event in the same entity or the same entity listener.

When an event is raised, the listeners are executed in this order:

• @EntityListeners for a given entity or superclass in the array order

• Entity listeners for the superclasses (highest first)

• Entity Listeners for the entity

• Callbacks of the superclasses (highest first)

• Callbacks of the entity

You can stop the entity listeners inheritance by using the @ExcludeSuperclassListeners, all

superclasses @EntityListeners will then be ignored.

6.3. XML definition

The JPA specification allows annotation overriding through JPA deployment descriptors. There is

also an additional feature that can be useful: default event listeners.

<?xml version="1.0" encoding="UTF-8"?>

<entity-mappings xmlns="http://java.sun.com/xml/ns/persistence/orm"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence/orm orm_2_0.xsd"

 version="2.0"

 >

 <persistence-unit-metadata>

 <persistence-unit-defaults>

 <entity-listeners>

 <entity-listener class="org.hibernate.ejb.test.pack.defaultpar.IncrementListener">

 <pre-persist method-name="increment"/>

 </entity-listener>

 </entity-listeners>

 </persistence-unit-defaults>

 </persistence-unit-metadata>

 <package>org.hibernate.ejb.test.pack.defaultpar</package>

 <entity class="ApplicationServer">

 <entity-listeners>

 <entity-listener class="OtherIncrementListener">

 <pre-persist method-name="increment"/>

 </entity-listener>

 </entity-listeners>

 <pre-persist method-name="calculate"/>

Chapter 6. Entity listeners a...

54

 </entity>

</entity-mappings>

You can override entity listeners on a given entity. An entity listener correspond to a given class

and one or several event fire a given method call. You can also define event on the entity itself

to describe the callbacks.

Last but not least, you can define some default entity listeners that will apply first on the entity

listener stack of all the mapped entities of a given persistence unit. If you don't want an entity

to inherit the default listeners, you can use @ExcludeDefaultListeners (or <exclude-default-

listeners/>).

Chapter 7.

55

Batch processing
Batch processing has traditionally been difficult in full object/relational mapping. ORM is all about

object state management, which implies that object state is available in memory. However,

Hibernate has some features to optimize batch processing which are discussed in the Hibernate

reference guide, however, EJB3 persistence differs slightly.

7.1. Bulk update/delete

As already discussed, automatic and transparent object/relational mapping is concerned with the

management of object state. This implies that the object state is available in memory, hence

updating or deleting (using SQL UPDATE and DELETE) data directly in the database will not affect

in-memory state. However, Hibernate provides methods for bulk SQL-style UPDATE and DELETE

statement execution which are performed through JP-QL (Chapter 8, JP-QL: The Object Query

Language).

The pseudo-syntax for UPDATE and DELETE statements is: (UPDATE | DELETE) FROM?

ClassName (WHERE WHERE_CONDITIONS)?. Note that:

• In the from-clause, the FROM keyword is optional.

• There can only be a single class named in the from-clause, and it cannot have an alias (this is

a current Hibernate limitation and will be removed soon).

• No joins (either implicit or explicit) can be specified in a bulk JP-QL query. Sub-queries may

be used in the where-clause.

• The where-clause is also optional.

As an example, to execute an JP-QL UPDATE, use the Query.executeUpdate() method:

EntityManager entityManager = entityManagerFactory.createEntityManager();

entityManager.getTransaction().begin();

String jpqlUpdate = "update Customer set name = :newName where name = :oldName"

int updatedEntities = entityManager.createQuery(jpqlUpdate)

 .setParameter("newName", newName)

 .setParameter("oldName", oldName)

 .executeUpdate();

entityManager.getTransaction().commit();

entityManager.close();

To execute an JP-QL DELETE, use the same Query.executeUpdate() method (the method is

named for those familiar with JDBC's PreparedStatement.executeUpdate()):

EntityManager entityManager = entityManagerFactory.createEntityManager();

entityManager.getTransaction().begin();

Chapter 7. Batch processing

56

String hqlDelete = "delete Customer where name = :oldName";

int deletedEntities = entityManager.createQuery(hqlDelete)

 .setParameter("oldName", oldName)

 .executeUpdate();

entityManager.getTransaction().commit();

entityManager.close();

The int value returned by the Query.executeUpdate() method indicate the number of entities

effected by the operation. This may or may not correlate with the number of rows effected in

the database. A JP-QL bulk operation might result in multiple actual SQL statements being

executed, for joined-subclass, for example. The returned number indicates the number of actual

entities affected by the statement. Going back to the example of joined-subclass, a delete against

one of the subclasses may actually result in deletes against not just the table to which that

subclass is mapped, but also the "root" table and potentially joined-subclass tables further down

the inheritance hierarchy.

Chapter 8.

57

JP-QL: The Object Query Language
The Java Persistence Query Language (JP-QL) has been heavily inspired by HQL, the native

Hibernate Query Language. Both are therefore very close to SQL, but portable and independent

of the database schema. People familiar with HQL shouldn't have any problem using JP-QL. In

fact HQL is a strict superset of JP-QL and you use the same query API for both types of queries.

Portable JPA applications however should stick to JP-QL.

Note

For a type-safe approach to query, we highly recommend you to use the Criteria

query, see Chapter 9, Criteria Queries.

8.1. Case Sensitivity

Queries are case-insensitive, except for names of Java classes and properties. So SeLeCT

is the same as sELEct is the same as SELECT but org.hibernate.eg.FOO is not

org.hibernate.eg.Foo and foo.barSet is not foo.BARSET.

This manual uses lowercase JP-QL keywords. Some users find queries with uppercase keywords

more readable, but we find this convention ugly when embedded in Java code.

8.2. The from clause

The simplest possible JP-QL query is of the form:

select c from eg.Cat c

which simply returns all instances of the class eg.Cat. Unlike HQL, the select clause is not optional

in JP-QL. We don't usually need to qualify the class name, since the entity name defaults to the

unqualified class name (@Entity). So we almost always just write:

select c from Cat c

As you may have noticed you can assign aliases to classes, the as keywork is optional. An alias

allows you to refer to Cat in other parts of the query.

select cat from Cat as cat

Multiple classes may appear, resulting in a cartesian product or "cross" join.

Chapter 8. JP-QL: The Object ...

58

select from, param from Formula as form, Parameter as param

It is considered good practice to name query aliases using an initial lowercase, consistent with

Java naming standards for local variables (eg. domesticCat).

8.3. Associations and joins

You may also assign aliases to associated entities, or even to elements of a collection of values,

using a join.

select cat, mate, kitten from Cat as cat

 inner join cat.mate as mate

 left outer join cat.kittens as kitten

select cat from Cat as cat left join cat.mate.kittens as kittens

The supported join types are borrowed from ANSI SQL

• inner join

• left outer join

The inner join, left outer join constructs may be abbreviated.

select cat, mate, kitten from Cat as cat

 join cat.mate as mate

 left join cat.kittens as kitten

In addition, a "fetch" join allows associations or collections of values to be initialized along with

their parent objects, using a single select. This is particularly useful in the case of a collection.

It effectively overrides the fetching options in the associations and collection mapping metadata.

See the Performance chapter of the Hibernate reference guide for more information.

select cat from Cat as cat

 inner join fetch cat.mate

 left join fetch cat.kittens

A fetch join does not usually need to assign an alias, because the associated objects should not

be used in the where clause (or any other clause). Also, the associated objects are not returned

directly in the query results. Instead, they may be accessed via the parent object. The only reason

we might need an alias is if we are recursively join fetching a further collection:

The select clause

59

select cat from Cat as cat

 inner join fetch cat.mate

 left join fetch cat.kittens child

 left join fetch child.kittens

Note that the fetch construct may not be used in queries called using scroll() or iterate().

Nor should fetch be used together with setMaxResults() or setFirstResult(). It is possible to

create a cartesian product by join fetching more than one collection in a query (as in the example

above), be careful the result of this product isn't bigger than you expect. Join fetching multiple

collection roles gives unexpected results for bag mappings as it is impossible for Hibernate to

differentiate legit duplicates of a given bag from artificial duplicates created by the multi-table

cartesian product.

If you are using property-level lazy fetching (with bytecode instrumentation), it is possible to

force Hibernate to fetch the lazy properties immediately (in the first query) using fetch all

properties. This is Hibernate specific option:

select doc from Document doc fetch all properties order by doc.name

select doc from Document doc fetch all properties where lower(doc.name) like '%cats%'

8.4. The select clause

The select clause picks which objects and properties to return in the query result set. Consider:

select mate

from Cat as cat

 inner join cat.mate as mate

The query will select mates of other Cats. Actually, you may express this query more compactly as:

select cat.mate from Cat cat

Queries may return properties of any value type including properties of component type:

select cat.name from DomesticCat cat

where cat.name like 'fri%'

Chapter 8. JP-QL: The Object ...

60

select cust.name.firstName from Customer as cust

Queries may return multiple objects and/or properties as an array of type Object[],

select mother, offspr, mate.name

from DomesticCat as mother

 inner join mother.mate as mate

 left outer join mother.kittens as offspr

or as a List (HQL specific feature)

select new list(mother, offspr, mate.name)

from DomesticCat as mother

 inner join mother.mate as mate

 left outer join mother.kittens as offspr

or as an actual type-safe Java object (often called a view object),

select new Family(mother, mate, offspr)

from DomesticCat as mother

 join mother.mate as mate

 left join mother.kittens as offspr

assuming that the class Family has an appropriate constructor.

You may assign aliases to selected expressions using as:

select max(bodyWeight) as max, min(bodyWeight) as min, count(*) as n

from Cat cat

This is most useful when used together with select new map (HQL specific feature):

select new map(max(bodyWeight) as max, min(bodyWeight) as min, count(*) as n)

from Cat cat

This query returns a Map from aliases to selected values.

8.5. Aggregate functions

HQL queries may even return the results of aggregate functions on properties:

Polymorphic queries

61

select avg(cat.weight), sum(cat.weight), max(cat.weight), count(cat)

from Cat cat

The supported aggregate functions are

• avg(...), avg(distinct ...), sum(...), sum(distinct ...), min(...), max(...)

• count(*)

• count(...), count(distinct ...), count(all...)

You may use arithmetic operators, concatenation, and recognized SQL functions in the select

clause (dpending on configured dialect, HQL specific feature):

select cat.weight + sum(kitten.weight)

from Cat cat

 join cat.kittens kitten

group by cat.id, cat.weight

select firstName||' '||initial||' '||upper(lastName) from Person

The distinct and all keywords may be used and have the same semantics as in SQL.

select distinct cat.name from Cat cat

select count(distinct cat.name), count(cat) from Cat cat

8.6. Polymorphic queries

A query like:

select cat from Cat as cat

returns instances not only of Cat, but also of subclasses like DomesticCat. Hibernate queries may

name any Java class or interface in the from clause (portable JP-QL queries should only name

mapped entities). The query will return instances of all persistent classes that extend that class

or implement the interface. The following query would return all persistent objects:

from java.lang.Object o // HQL only

The interface Named might be implemented by various persistent classes:

Chapter 8. JP-QL: The Object ...

62

from Named n, Named m where n.name = m.name // HQL only

Note that these last two queries will require more than one SQL SELECT. This means that the

order by clause does not correctly order the whole result set. (It also means you can't call these

queries using Query.scroll().)

8.7. The where clause

The where clause allows you to narrow the list of instances returned. If no alias exists, you may

refer to properties by name:

select cat from Cat cat where cat.name='Fritz'

returns instances of Cat named 'Fritz'.

select foo

from Foo foo, Bar bar

where foo.startDate = bar.date

will return all instances of Foo for which there exists an instance of bar with a date property

equal to the startDate property of the Foo. Compound path expressions make the where clause

extremely powerful. Consider:

select cat from Cat cat where cat.mate.name is not null

This query translates to an SQL query with a table (inner) join. If you were to write something like

select foo from Foo foo

where foo.bar.baz.customer.address.city is not null

you would end up with a query that would require four table joins in SQL.

The = operator may be used to compare not only properties, but also instances:

select cat, rival from Cat cat, Cat rival where cat.mate = rival.mate

select cat, mate

from Cat cat, Cat mate

The where clause

63

where cat.mate = mate

The special property (lowercase) id may be used to reference the unique identifier of an object.

(You may also use its mapped identifer property name.). Note that this keyword is specific to HQL.

select cat from Cat as cat where cat.id = 123

select cat from Cat as cat where cat.mate.id = 69

The second query is efficient. No table join is required!

Properties of composite identifiers may also be used. Suppose Person has a composite identifier

consisting of country and medicareNumber.

select person from bank.Person person

where person.id.country = 'AU'

 and person.id.medicareNumber = 123456

select account from bank.Account account

where account.owner.id.country = 'AU'

 and account.owner.id.medicareNumber = 123456

Once again, the second query requires no table join.

Likewise, the special property class accesses the discriminator value of an instance in the case

of polymorphic persistence. A Java class name embedded in the where clause will be translated

to its discriminator value. Once again, this is specific to HQL.

select cat from Cat cat where cat.class = DomesticCat

You may also specify properties of components or composite user types (and of components

of components, etc). Never try to use a path-expression that ends in a property of component

type (as opposed to a property of a component). For example, if store.owner is an entity with

a component address

store.owner.address.city // okay

store.owner.address // error!

An "any" type has the special properties id and class, allowing us to express a join in the following

way (where AuditLog.item is a property mapped with <any>). Any is specific to Hibernate

Chapter 8. JP-QL: The Object ...

64

from AuditLog log, Payment payment

where log.item.class = 'Payment' and log.item.id = payment.id

Notice that log.item.class and payment.class would refer to the values of completely different

database columns in the above query.

8.8. Expressions

Expressions allowed in the where clause include most of the kind of things you could write in SQL:

• mathematical operators +, -, *, /

• binary comparison operators =, >=, <=, <>, !=, like

• logical operations and, or, not

• Parentheses (), indicating grouping

• in, not in, between, is null, is not null, is empty, is not empty, member of and

not member of

• exists, all, any, some (taking subqueries)

• "Simple" case, case ... when ... then ... else ... end, and "searched" case, case

when ... then ... else ... end

• string concatenation ...||... or concat(...,...) (use concat() for portable JP-QL

queries)

• current_date(), current_time(), current_timestamp()

• second(...), minute(...), hour(...), day(...), month(...), year(...), (specific to HQL)

• Any function or operator: substring(), trim(), lower(), upper(), length(), locate(),

abs(), sqrt(), bit_length()

• coalesce() and nullif()

• TYPE ... in ..., where the first argument is an identifier variable and the second argument

is the subclass to restrict polymorphism to (or a list of subclasses surrounded by parenthesis)

• cast(... as ...), where the second argument is the name of a Hibernate type, and

extract(... from ...) if ANSI cast() and extract() is supported by the underlying

database

• Any database-supported SQL scalar function like sign(), trunc(), rtrim(), sin()

• JDBC IN parameters ?

• named parameters :name, :start_date, :x1

• SQL literals 'foo', 69, '1970-01-01 10:00:01.0'

• JDBC escape syntax for dates (dependent on your JDBC driver support) (eg. where date =

{d '2008-12-31'})

• Java public static final constants eg.Color.TABBY

in and between may be used as follows:

select cat from DomesticCat cat where cat.name between 'A' and 'B'

Expressions

65

select cat from DomesticCat cat where cat.name in ('Foo', 'Bar', 'Baz')

and the negated forms may be written

select cat from DomesticCat cat where cat.name not between 'A' and 'B'

select cat from DomesticCat cat where cat.name not in ('Foo', 'Bar', 'Baz')

Likewise, is null and is not null may be used to test for null values.

Booleans may be easily used in expressions by declaring HQL query substitutions in Hibernate

configuration:

hibernate.query.substitutions true 1, false 0

This will replace the keywords true and false with the literals 1 and 0 in the translated SQL

from this HQL:

select cat from Cat cat where cat.alive = true

You may test the size of a collection with the special property size, or the special size() function

(HQL specific feature).

select cat from Cat cat where cat.kittens.size > 0

select cat from Cat cat where size(cat.kittens) > 0

For indexed collections, you may refer to the minimum and maximum indices using minindex

and maxindex functions. Similarly, you may refer to the minimum and maximum elements of a

collection of basic type using the minelement and maxelement functions. These are HQL specific

features.

select cal from Calendar cal where maxelement(cal.holidays) > current date

Chapter 8. JP-QL: The Object ...

66

select order from Order order where maxindex(order.items) > 100

select order from Order order where minelement(order.items) > 10000

The SQL functions any, some, all, exists, in are supported when passed the element or

index set of a collection (elements and indices functions) or the result of a subquery (see below).

While subqueries are supported by JP-QL, elements and indices are specific HQL features.

select mother from Cat as mother, Cat as kit

where kit in elements(foo.kittens)

select p from NameList list, Person p

where p.name = some elements(list.names)

select cat from Cat cat where exists elements(cat.kittens)

select cat from Player p where 3 > all elements(p.scores)

select cat from Show show where 'fizard' in indices(show.acts)

Note that these constructs - size, elements, indices, minindex, maxindex, minelement,

maxelement - may only be used in the where clause in Hibernate.

JP-QL lets you access the key or the value of a map by using the KEY() and VALUE() operations

(even access the Entry object using ENTRY())

SELECT i.name, VALUE(p) FROM Item i JOIN i.photos p WHERE KEY(p) LIKE ‘%egret’

In HQL, elements of indexed collections (arrays, lists, maps) may be referred to by index (in a

where clause only):

select order from Order order where order.items[0].id = 1234

select person from Person person, Calendar calendar

Expressions

67

where calendar.holidays['national day'] = person.birthDay

 and person.nationality.calendar = calendar

select item from Item item, Order order

where order.items[order.deliveredItemIndices[0]] = item and order.id = 11

select item from Item item, Order order

where order.items[maxindex(order.items)] = item and order.id = 11

The expression inside [] may even be an arithmetic expression.

select item from Item item, Order order

where order.items[size(order.items) - 1] = item

HQL also provides the built-in index() function, for elements of a one-to-many association or

collection of values.

select item, index(item) from Order order

 join order.items item

where index(item) < 5

Scalar SQL functions supported by the underlying database may be used

select cat from DomesticCat cat where upper(cat.name) like 'FRI%'

If you are not yet convinced by all this, think how much longer and less readable the following

query would be in SQL:

select cust

from Product prod,

 Store store

 inner join store.customers cust

where prod.name = 'widget'

 and store.location.name in ('Melbourne', 'Sydney')

 and prod = all elements(cust.currentOrder.lineItems)

Hint: something like

SELECT cust.name, cust.address, cust.phone, cust.id, cust.current_order

FROM customers cust,

Chapter 8. JP-QL: The Object ...

68

 stores store,

 locations loc,

 store_customers sc,

 product prod

WHERE prod.name = 'widget'

 AND store.loc_id = loc.id

 AND loc.name IN ('Melbourne', 'Sydney')

 AND sc.store_id = store.id

 AND sc.cust_id = cust.id

 AND prod.id = ALL(

 SELECT item.prod_id

 FROM line_items item, orders o

 WHERE item.order_id = o.id

 AND cust.current_order = o.id

)

8.9. The order by clause

The list returned by a query may be ordered by any property of a returned class or components:

select cat from DomesticCat cat

order by cat.name asc, cat.weight desc, cat.birthdate

The optional asc or desc indicate ascending or descending order respectively.

8.10. The group by clause

A query that returns aggregate values may be grouped by any property of a returned class or

components:

select cat.color, sum(cat.weight), count(cat)

from Cat cat

group by cat.color

select foo.id, avg(name), max(name)

from Foo foo join foo.names name

group by foo.id

A having clause is also allowed.

select cat.color, sum(cat.weight), count(cat)

from Cat cat

group by cat.color

having cat.color in (eg.Color.TABBY, eg.Color.BLACK)

Subqueries

69

SQL functions and aggregate functions are allowed in the having and order by clauses, if

supported by the underlying database (eg. not in MySQL).

select cat

from Cat cat

 join cat.kittens kitten

group by cat

having avg(kitten.weight) > 100

order by count(kitten) asc, sum(kitten.weight) desc

Note that neither the group by clause nor the order by clause may contain arithmetic

expressions.

8.11. Subqueries

For databases that support subselects, JP-QL supports subqueries within queries. A subquery

must be surrounded by parentheses (often by an SQL aggregate function call). Even correlated

subqueries (subqueries that refer to an alias in the outer query) are allowed.

select fatcat from Cat as fatcat

where fatcat.weight > (

 select avg(cat.weight) from DomesticCat cat

)

select cat from DomesticCat as cat

where cat.name = some (

 select name.nickName from Name as name

)

select cat from Cat as cat

where not exists (

 from Cat as mate where mate.mate = cat

)

select cat from DomesticCat as cat

where cat.name not in (

 select name.nickName from Name as name

)

For subqueries with more than one expression in the select list, you can use a tuple constructor:

select cat from Cat as cat

where not (cat.name, cat.color) in (

Chapter 8. JP-QL: The Object ...

70

 select cat.name, cat.color from DomesticCat cat

)

Note that on some databases (but not Oracle or HSQLDB), you can use tuple constructors in other

contexts, for example when querying components or composite user types:

select cat from Person where name = ('Gavin', 'A', 'King')

Which is equivalent to the more verbose:

select cat from Person where name.first = 'Gavin' and name.initial = 'A' and name.last = 'King')

There are two good reasons you might not want to do this kind of thing: first, it is not completely

portable between database platforms; second, the query is now dependent upon the ordering of

properties in the mapping document.

8.12. JP-QL examples

Hibernate queries can be quite powerful and complex. In fact, the power of the query language

is one of Hibernate's main selling points (and now JP-QL). Here are some example queries very

similar to queries that I used on a recent project. Note that most queries you will write are much

simpler than these!

The following query returns the order id, number of items and total value of the order for all unpaid

orders for a particular customer and given minimum total value, ordering the results by total value.

In determining the prices, it uses the current catalog. The resulting SQL query, against the ORDER,

ORDER_LINE, PRODUCT, CATALOG and PRICE tables has four inner joins and an (uncorrelated)

subselect.

select order.id, sum(price.amount), count(item)

from Order as order

 join order.lineItems as item

 join item.product as product,

 Catalog as catalog

 join catalog.prices as price

where order.paid = false

 and order.customer = :customer

 and price.product = product

 and catalog.effectiveDate < sysdate

 and catalog.effectiveDate >= all (

 select cat.effectiveDate

 from Catalog as cat

 where cat.effectiveDate < sysdate

)

group by order

having sum(price.amount) > :minAmount

JP-QL examples

71

order by sum(price.amount) desc

What a monster! Actually, in real life, I'm not very keen on subqueries, so my query was really

more like this:

select order.id, sum(price.amount), count(item)

from Order as order

 join order.lineItems as item

 join item.product as product,

 Catalog as catalog

 join catalog.prices as price

where order.paid = false

 and order.customer = :customer

 and price.product = product

 and catalog = :currentCatalog

group by order

having sum(price.amount) > :minAmount

order by sum(price.amount) desc

The next query counts the number of payments in each status, excluding all payments in the

AWAITING_APPROVAL status where the most recent status change was made by the current user.

It translates to an SQL query with two inner joins and a correlated subselect against the PAYMENT,

PAYMENT_STATUS and PAYMENT_STATUS_CHANGE tables.

select count(payment), status.name

from Payment as payment

 join payment.currentStatus as status

 join payment.statusChanges as statusChange

where payment.status.name <> PaymentStatus.AWAITING_APPROVAL

 or (

 statusChange.timeStamp = (

 select max(change.timeStamp)

 from PaymentStatusChange change

 where change.payment = payment

)

 and statusChange.user <> :currentUser

)

group by status.name, status.sortOrder

order by status.sortOrder

If I would have mapped the statusChanges collection as a list, instead of a set, the query would

have been much simpler to write.

select count(payment), status.name

from Payment as payment

 join payment.currentStatus as status

where payment.status.name <> PaymentStatus.AWAITING_APPROVAL

 or payment.statusChanges[maxIndex(payment.statusChanges)].user <> :currentUser

group by status.name, status.sortOrder

Chapter 8. JP-QL: The Object ...

72

order by status.sortOrder

However the query would have been HQL specific.

The next query uses the MS SQL Server isNull() function to return all the accounts and unpaid

payments for the organization to which the current user belongs. It translates to an SQL query with

three inner joins, an outer join and a subselect against the ACCOUNT, PAYMENT, PAYMENT_STATUS,

ACCOUNT_TYPE, ORGANIZATION and ORG_USER tables.

select account, payment

from Account as account

 join account.holder.users as user

 left outer join account.payments as payment

where :currentUser = user

 and PaymentStatus.UNPAID = isNull(payment.currentStatus.name, PaymentStatus.UNPAID)

order by account.type.sortOrder, account.accountNumber, payment.dueDate

8.13. Bulk UPDATE & DELETE Statements

Hibernate now supports UPDATE and DELETE statements in HQL/JP-QL. See Section 7.1, “Bulk

update/delete” for details.

8.14. Tips & Tricks

To order a result by the size of a collection, use the following query:

select usr.id, usr.name

from User as usr

 left join usr.messages as msg

group by usr.id, usr.name

order by count(msg)

If your database supports subselects, you can place a condition upon selection size in the where

clause of your query:

from User usr where size(usr.messages) >= 1

If your database doesn't support subselects, use the following query:

select usr.id, usr.name

from User usr.name

 join usr.messages msg

group by usr.id, usr.name

having count(msg) >= 1

Tips & Tricks

73

As this solution can't return a User with zero messages because of the inner join, the following

form is also useful:

select usr.id, usr.name

from User as usr

 left join usr.messages as msg

group by usr.id, usr.name

having count(msg) = 0

74

Chapter 9.

75

Criteria Queries
Criteria queries are a programmatic, type-safe way to express a query. They are type-safe in terms

of using interfaces and classes to represent various structural parts of a query such as the query

itself, or the select clause, or an order-by, etc. They can also be type-safe in terms of referencing

attributes as we will see in a bit. Users of the older Hibernate org.hibernate.Criteria query API

will recognize the general approach, though we believe the JPA API to be superior as it represents

a clean look at the lessons learned from that API.

Criteria queries are essentially an object graph, where each part of the graph represents an

increasing (as we navigate down this graph) more atomic part of query. The first step in performing

a criteria query is building this graph. The javax.persistence.criteria.CriteriaBuilder

interface is the first thing with which you need to become acquainted to begin using criteria

queries. Its role is that of a factory for all the individual pieces of the criteria. You obtain a

javax.persistence.criteria.CriteriaBuilder instance by calling the getCriteriaBuilder

method of the javax.persistence.EntityManagerFactory

CriteriaBuilder builder = entityManagerFactory.getCriteriaBuilder();

The next step is to obtain a javax.persistence.criteria.CriteriaQuery. You do this by one

of the 3 methods on javax.persistence.criteria.CriteriaBuilder for this purpose.

CriteriaQuery<T> createQuery(Class<T>)

CriteriaQuery<Tuple> createTupleQuery()

CriteriaQuery<Object> createQuery()

Each serves a different purpose depending on the expected type of the query results.

Note

Chapter 6 Criteria API of the [JPA 2 Specification] already contains a decent

amount of reference material pertaining to the various parts of a criteria query. So

rather than duplicate all that content here, lets instead look at some of the more

widely anticipated usages of the API.

Chapter 9. Criteria Queries

76

9.1. Typed criteria queries

CriteriaQuery<T> createQuery(Class<T>)

The type of the criteria query (aka the <T>) indicates the expected types in the query result. This

might be an entity, an Integer, or any other object.

9.1.1. Selecting an entity

This the most used form of query in Hibernate Query Language (HQL) and Hibernate Criteria

Queries. You have an entity and you want to select one or more of that entity based on some

condition.

Example 9.1. Selecting the root entity

CriteriaQuery<Person> criteria = builder.createQuery(Person.class);

Root<Person> personRoot = criteria.from(Person.class);

criteria.select(personRoot);

criteria.where(builder.equal(personRoot.get(Person_.eyeColor), "brown"));

List<Person> people = em.createQuery(criteria).getResultList();

for (Person person : people) { ... }

We use the form createQuery(Person.class) here because the expected returns are in fact

Person entities as we see when we begin processing the results.

personCriteria.select(personRoot) here is completely unneeded in this specific case

because of the fact that personRoot will be the implied selection since we have only a single

root. It was done here only for completeness of an example

Person_.eyeColor is an example of the static form of metamodel reference. We will use that

form exclusively in this chapter. See Section 4.1, “Static metamodel” for details.

9.1.2. Selecting a value

The simplest form of selecting a value is selecting a particular attribute from an entity. But this

might also be an aggregation, a mathematical operation, etc.

Example 9.2. Selecting an attribute

CriteriaQuery<Integer> criteria = builder.createQuery(Integer.class);

Root<Person> personRoot = criteria.from(Person.class);

criteria.select(personRoot.get(Person_.age));

criteria.where(builder.equal(personRoot.get(Person_.eyeColor), "brown"));

List<Integer> ages = em.createQuery(criteria).getResultList();

Selecting multiple values

77

for (Integer age : ages) { ... }

Notice again the typing of the query based on the anticipated result type(s). Here

we are specifying java.lang.Integer as the type of the Person#age attribute is

java.lang.Integer.

We need to bind the fact that we are interested in the age associated with the personRoot.

We might have multiple references to the Person entity in the query so we need to identify

(aka qualify) which Person#age we mean.

Example 9.3. Selecting an expression

CriteriaQuery<Integer> criteria = builder.createQuery(Integer.class);

Root<Person> personRoot = criteria.from(Person.class);

criteria.select(builder.max(personRoot.get(Person_.age)));

criteria.where(builder.equal(personRoot.get(Person_.eyeColor), "brown"));

Integer maxAge = em.createQuery(criteria).getSingleResult();

Here we see javax.persistence.criteria.CriteriaBuilder used to

obtain a MAX expression. These expression building methods return

javax.persistence.criteria.Expression instances typed according to various rules.

The rule for a MAX expression is that the expression type is the same as that of the underlying

attribute.

9.1.3. Selecting multiple values

There are actually a few different ways to select multiple values using criteria queries. We will

explore 2 options here, but an alternative recommended approach is to use tuples as described

in Section 9.2, “Tuple criteria queries”

Example 9.4. Selecting an array

CriteriaQuery<Object[]> criteria = builder.createQuery(Object[].class);

Root<Person> personRoot = criteria.from(Person.class);

Path<Long> idPath = personRoot.get(Person_.id);

Path<Integer> agePath = personRoot.get(Person_.age);

criteria.select(builder.array(idPath, agePath));

criteria.where(builder.equal(personRoot.get(Person_.eyeColor), "brown"));

List<Object[]> valueArray = em.createQuery(criteria).getResultList();

for (Object[] values : valueArray) {

 final Long id = (Long) values[0];

 final Integer age = (Integer) values[1];

 ...

}

Chapter 9. Criteria Queries

78

Technically this is classified as a typed query, but as you can see in handling the results that

is sort of misleading. Anyway, the expected result type here is an array.

Here we see the use of the array method of the

javax.persistence.criteria.CriteriaBuilder which explicitly combines individual

selections into a javax.persistence.criteria.CompoundSelection.

Example 9.5. Selecting an array (2)

CriteriaQuery<Object[]> criteria = builder.createQuery(Object[].class);

Root<Person> personRoot = criteria.from(Person.class);

Path<Long> idPath = personRoot.get(Person_.id);

Path<Integer> agePath = personRoot.get(Person_.age);

criteria.multiselect(idPath, agePath);

criteria.where(builder.equal(personRoot.get(Person_.eyeColor), "brown"));

List<Object[]> valueArray = em.createQuery(criteria).getResultList();

for (Object[] values : valueArray) {

 final Long id = (Long) values[0];

 final Integer age = (Integer) values[1];

 ...

}

Just as we saw in Example 9.4, “Selecting an array” we have a "typed" criteria query returning

an Object array.

This actually functions exactly the same as what we saw in Example 9.4, “Selecting an array”.

The multiselect method behaves slightly differently based on the type given when the

criteria query was first built, but in this case it says to select and return an Object[].

9.1.4. Selecting a wrapper

Another alternative to Section 9.1.3, “Selecting multiple values” is to instead select an object that

will "wrap" the multiple values. Going back to the example query there, rather than returning an

array of [Person#id, Person#age] instead declare a class that holds these values and instead

return that.

Example 9.6. Selecting an wrapper

public class PersonWrapper {

 private final Long id;

 private final Integer age;

 public PersonWrapper(Long id, Integer age) {

 this.id = id;

 this.age = age;

 }

 ...

}

...

CriteriaQuery<PersonWrapper> criteria = builder.createQuery(PersonWrapper.clas s);

Tuple criteria queries

79

Root<Person> personRoot = criteria.from(Person.class);

criteria.select(

 builder.construct(

 PersonWrapper.class,

 personRoot.get(Person_.id),

 personRoot.get(Person_.age)

)

);

criteria.where(builder.equal(personRoot.get(Person_.eyeColor), "brown"));

List<PersonWrapper> people = em.createQuery(criteria).getResultList();

for (PersonWrapper person : people) { ... }

First we see the simple definition of the wrapper object we will be using to wrap our result

values. Specifically notice the constructor and its argument types.

Since we will be returning PersonWrapper objects, we use PersonWrapper as the type of

our criteria query.

Here we see another new javax.persistence.criteria.CriteriaBuilder method,

construct, which is used to builder a wrapper expression. Basically for every row in the result

we are saying we would like a PersonWrapper instantiated by the matching constructor. This

wrapper expression is then passed as the select.

9.2. Tuple criteria queries

A better approach to Section 9.1.3, “Selecting multiple values” is to either use a wrapper (which we

just saw in Section 9.1.4, “Selecting a wrapper”) or using the javax.persistence.Tuple contract.

Example 9.7. Selecting a tuple

CriteriaQuery<Tuple> criteria = builder.createTupleQuery();

Root<Person> personRoot = criteria.from(Person.class);

Path<Long> idPath = personRoot.get(Person_.id);

Path<Integer> agePath = personRoot.get(Person_.age);

criteria.multiselect(idPath, agePath);

criteria.where(builder.equal(personRoot.get(Person_.eyeColor), "brown"));

List<Tuple> tuples = em.createQuery(criteria).getResultList();

for (Tuple tuple : valueArray) {

 assert tuple.get(0) == tuple.get(idPath);

 assert tuple.get(1) == tuple.get(agePath);

 ...

}

Here we see the use of a new javax.persistence.criteria.CriteriaBuilder

javax.persistence.criteria.CriteriaQuery building method, createTupleQuery. This

is exactly equivalent to calling builder.createQuery(Tuple.class). It signifies that we want to

access the results through the javax.persistence.Tuple contract.

Chapter 9. Criteria Queries

80

Again we see the use of the multiselect method, just like in

Example 9.5, “Selecting an array (2)”. The difference here is that the

type of the javax.persistence.criteria.CriteriaQuery was defined as

javax.persistence.Tuple so the compound selections in this case are interpreted to be

the tuple elements.

Here we see javax.persistence.Tuple allowing different types of access to the results,

which we will expand on next.

9.2.1. Accessing tuple elements

The javax.persistence.Tuple contract provides 3 basic forms of access to the underlying

elements:

typed

<X> X get(TupleElement<X> tupleElement)

This allows typed access to the underlying tuple elements. We see this in Example 9.7,

“Selecting a tuple” in the tuple.get(idPath) and tuple.get(agePath) calls. Just about

everything is a javax.persistence.TupleElement.

positional

Object get(int i)

<X> X get(int i, Class<X> type)

Very similar to what we saw in Example 9.4, “Selecting an array” and Example 9.5, “Selecting

an array (2)” in terms of positional access. Only the second form here provides typing, because

the user explicitly provides the typing on access. We see this in Example 9.7, “Selecting a

tuple” in the tuple.get(0) and tuple.get(1) calls.

aliased

Object get(String alias)

<X> X get(String alias, Class<X> type)

Again, only the second form here provides typing, because the user explicitly provides the

typing on access. We have not seen an example of using this, but its trivial. We would

FROM clause

81

simply, for example, have applies an alias to either of the paths like idPath.alias("id") and/

or agePath.alias("age") and we could have accessed the individual tuple elements by those

specified aliases.

9.3. FROM clause

A CriteriaQuery object defines a query over one or more entity, embeddable, or

basic abstract schema types. The root objects of the query are entities, from which

the other types are reached by navigation.

—[JPA 2 Specification, section 6.5.2 Query Roots, pg 262]

Note

All the individual parts of the FROM clause (roots, joins, paths) implement the

javax.persistence.criteria.From interface.

9.3.1. Roots

Roots define the basis from which all joins, paths and attributes are available in the query. In

a criteria query, a root is always an entity. Roots are defined and added to the criteria by the

overloaded from methods on javax.persistence.criteria.CriteriaQuery:

<X> Root<X> from(Class<X>)

<X> Root<X> from(EntityType<X>)

Example 9.8. Adding a root

CriteriaQuery<Person> personCriteria = builder.createQuery(Person.class);

// create and add the root

person.from(Person.class);

...

Criteria queries may define multiple roots, the effect of which is to create a cartesian product [http://

en.wikipedia.org/wiki/Cartesian_product] between the newly added root and the others. Here is

an example matching all single men and all single women:

CriteriaQuery query = builder.createQuery();

Root<Person> men = query.from(Person.class);

Root<Person> women = query.from(Person.class);

Predicate menRestriction = builder.and(

http://en.wikipedia.org/wiki/Cartesian_product
http://en.wikipedia.org/wiki/Cartesian_product
http://en.wikipedia.org/wiki/Cartesian_product

Chapter 9. Criteria Queries

82

 builder.equal(men.get(Person_.gender), Gender.MALE),

 builder.equal(men.get(Person_.relationshipStatus), RelationshipStatus.SINGLE)

);

Predicate womenRestriction = builder.and(

 builder.equal(women.get(Person_.gender), Gender.FEMALE),

 builder.equal(women.get(Person_.relationshipStatus), RelationshipStatus.SINGLE)

);

query.where(builder.and(menRestriction, womenRestriction));

9.3.2. Joins

Joins allow navigation from other javax.persistence.criteria.From to either association

or embedded attributes. Joins are created by the numerous overloaded join methods of the

javax.persistence.criteria.From interface:

Example 9.9. Example with Embedded and ManyToOne

CriteriaQuery<Person> personCriteria = builder.createQuery(Person.class);

Root<Person> personRoot = person.from(Person.class);

// Person.address is an embedded attribute

Join<Person,Address> personAddress = personRoot.join(Person_.address);

// Address.country is a ManyToOne

Join<Address,Country> addressCountry = personAddress.join(Address_.country);

...

Example 9.10. Example with Collections

CriteriaQuery<Person> personCriteria = builder.createQuery(Person.class);

Root<Person> personRoot = person.from(Person.class);

Join<Person,Order> orders = personRoot.join(Person_.orders);

Join<Order,LineItem> orderLines = orders.join(Order_.lineItems);

...

9.3.3. Fetches

Just like in HQL and EJB-QL, we can specify that associated data be fetched along

with the owner. Fetches are created by the numerous overloaded fetch methods of the

javax.persistence.criteria.From interface:

Example 9.11. Example with Embedded and ManyToOne

CriteriaQuery<Person> personCriteria = builder.createQuery(Person.class);

Root<Person> personRoot = person.from(Person.class);

// Person.address is an embedded attribute

Join<Person,Address> personAddress = personRoot.fetch(Person_.address);

// Address.country is a ManyToOne

Join<Address,Country> addressCountry = personAddress.fetch(Address_.country);

Path expressions

83

...

Note

Technically speaking, embedded attributes are always fetched with their owner.

However in order to define the fetching of Address#country we needed a

javax.persistence.criteria.Fetch for its parent path.

Example 9.12. Example with Collections

CriteriaQuery<Person> personCriteria = builder.createQuery(Person.class);

Root<Person> personRoot = person.from(Person.class);

Join<Person,Order> orders = personRoot.fetch(Person_.orders);

Join<Order,LineItem> orderLines = orders.fetch(Order_.lineItems);

...

9.4. Path expressions

Note

Roots, joins and fetches are themselves paths as well.

9.5. Using parameters

Example 9.13. Using parameters

CriteriaQuery<Person> criteria = build.createQuery(Person.class);

Root<Person> personRoot = criteria.from(Person.class);

criteria.select(personRoot);

ParameterExpression<String> eyeColorParam = builder.parameter(String.class);

criteria.where(builder.equal(personRoot.get(Person_.eyeColor), eyeColorPara m));

TypedQuery<Person> query = em.createQuery(criteria);

query.setParameter(eyeColorParam, "brown");

List<Person> people = query.getResultList();

Use the parameter method of javax.persistence.criteria.CriteriaBuilder to obtain

a parameter reference.

Use the parameter reference in the criteria query.

Use the parameter reference to bind the parameter value to the

javax.persistence.TypedQuery

84

Chapter 10.

85

Native query
You may also express queries in the native SQL dialect of your database. This is useful if you want

to utilize database specific features such as query hints or the CONNECT BY option in Oracle. It

also provides a clean migration path from a direct SQL/JDBC based application to Hibernate. Note

that Hibernate allows you to specify handwritten SQL (including stored procedures) for all create,

update, delete, and load operations (please refer to the reference guide for more information.)

10.1. Expressing the resultset

To use a SQL query, you need to describe the SQL resultset, this description will help

the EntityManager to map your columns onto entity properties. This is done using the

@SqlResultSetMapping annotation. Each @SqlResultSetMapping has a name which is used

when creating a SQL query on EntityManager.

@SqlResultSetMapping(name="GetNightAndArea", entities={

 @EntityResult(name="org.hibernate.test.annotations.query.Night", fields = {

 @FieldResult(name="id", column="nid"),

 @FieldResult(name="duration", column="night_duration"),

 @FieldResult(name="date", column="night_date"),

 @FieldResult(name="area", column="area_id")

 }),

 @EntityResult(name="org.hibernate.test.annotations.query.Area", fields = {

 @FieldResult(name="id", column="aid"),

 @FieldResult(name="name", column="name")

 })

 }

)

//or

@SqlResultSetMapping(name="defaultSpaceShip", entities=@EntityResult(name="org.hibernate.test.annotations.query.SpaceShip"))

You can also define scalar results and even mix entity results and scalar results

@SqlResultSetMapping(name="ScalarAndEntities",

 entities={

 @EntityResult(name="org.hibernate.test.annotations.query.Night", fields = {

 @FieldResult(name="id", column="nid"),

 @FieldResult(name="duration", column="night_duration"),

 @FieldResult(name="date", column="night_date"),

 @FieldResult(name="area", column="area_id")

 }),

 @EntityResult(name="org.hibernate.test.annotations.query.Area", fields = {

 @FieldResult(name="id", column="aid"),

 @FieldResult(name="name", column="name")

 })

 },

 columns={

 @ColumnResult(name="durationInSec")

 }

Chapter 10. Native query

86

)

The SQL query will then have to return a column alias durationInSec.

Please refer to the Hibernate Annotations reference guide for more information about

@SqlResultSetMapping.

10.2. Using native SQL Queries

TODO: This sounds like a dupe...

Now that the result set is described, we are capable of executing the native SQL query.

EntityManager provides all the needed APIs. The first method is to use a SQL resultset name to

do the binding, the second one uses the entity default mapping (the column returned has to have

the same names as the one used in the mapping). A third one (not yet supported by Hibernate

entity manager), returns pure scalar results.

String sqlQuery = "select night.id nid, night.night_duration, night.night_date, area.id aid, "

 + "night.area_id, area.name from Night night, Area area where night.area_id = area.id "

 + "and night.night_duration >= ?";

Query q = entityManager.createNativeQuery(sqlQuery, "GetNightAndArea");

q.setParameter(1, expectedDuration);

q.getResultList();

This native query returns nights and area based on the GetNightAndArea result set.

String sqlQuery = "select * from tbl_spaceship where owner = ?";

Query q = entityManager.createNativeQuery(sqlQuery, SpaceShip.class);

q.setParameter(1, "Han");

q.getResultList();

The second version is useful when your SQL query returns one entity reusing the same columns

as the ones mapped in metadata.

10.3. Named queries

Native named queries share the same calling API than JP-QL named queries. Your code doesn't

need to know the difference between the two. This is very useful for migration from SQL to JP-QL:

Query q = entityManager.createNamedQuery("getSeasonByNativeQuery");

q.setParameter(1, name);

Season season = (Season) q.getSingleResult();

87

References
[JPA 2 Specification] JSR 317: Java™ Persistence API, Version 2.0. Java Persistence 2.0 Expert

Group. . Copyright © 2009 SUN MICROSYSTEMS, INC.. <jsr-317-feedback@sun.com>

JSR 317 JCP Page [http://jcp.org/en/jsr/detail?id=317].

http://jcp.org/en/jsr/detail?id=317
http://jcp.org/en/jsr/detail?id=317

88

	Hibernate EntityManager
	Table of Contents
	Introducing JPA Persistence
	Chapter 1. Architecture
	1.1. Definitions
	1.2. In container environment (eg. EJB 3)
	1.2.1. Container-managed entity manager
	1.2.2. Application-managed entity manager
	1.2.3. Persistence context scope
	1.2.4. Persistence context propagation

	1.3. Java SE environments

	Chapter 2. Setup and configuration
	2.1. Setup
	2.2. Configuration and bootstrapping
	2.2.1. Packaging
	2.2.2. Bootstrapping

	2.3. Event listeners
	2.4. Obtaining an EntityManager in a Java SE environment
	2.5. Various

	Chapter 3. Working with objects
	3.1. Entity states
	3.2. Making objects persistent
	3.3. Loading an object
	3.4. Querying objects
	3.4.1. Executing queries
	3.4.1.1. Projection
	3.4.1.2. Scalar results
	3.4.1.3. Bind parameters
	3.4.1.4. Pagination
	3.4.1.5. Externalizing named queries
	3.4.1.6. Native queries
	3.4.1.7. Query lock and flush mode
	3.4.1.8. Query hints

	3.5. Modifying persistent objects
	3.6. Detaching a object
	3.7. Modifying detached objects
	3.8. Automatic state detection
	3.9. Deleting managed objects
	3.10. Flush the persistence context
	3.10.1. In a transaction
	3.10.2. Outside a transaction

	3.11. Transitive persistence
	3.12. Locking
	3.13. Caching
	3.14. Checking the state of an object
	3.15. Native Hibernate API

	Chapter 4. Metamodel
	4.1. Static metamodel

	Chapter 5. Transactions and Concurrency
	5.1. Entity manager and transaction scopes
	5.1.1. Unit of work
	5.1.2. Long units of work
	5.1.3. Considering object identity
	5.1.4. Common concurrency control issues

	5.2. Database transaction demarcation
	5.2.1. Non-managed environment
	5.2.1.1. EntityTransaction

	5.2.2. Using JTA
	5.2.3. Exception handling

	5.3. EXTENDED Persistence Context
	5.3.1. Container Managed Entity Manager
	5.3.2. Application Managed Entity Manager

	5.4. Optimistic concurrency control
	5.4.1. Application version checking
	5.4.2. Extended entity manager and automatic versioning
	5.4.3. Detached objects and automatic versioning

	Chapter 6. Entity listeners and Callback methods
	6.1. Definition
	6.2. Callbacks and listeners inheritance
	6.3. XML definition

	Chapter 7. Batch processing
	7.1. Bulk update/delete

	Chapter 8. JP-QL: The Object Query Language
	8.1. Case Sensitivity
	8.2. The from clause
	8.3. Associations and joins
	8.4. The select clause
	8.5. Aggregate functions
	8.6. Polymorphic queries
	8.7. The where clause
	8.8. Expressions
	8.9. The order by clause
	8.10. The group by clause
	8.11. Subqueries
	8.12. JP-QL examples
	8.13. Bulk UPDATE & DELETE Statements
	8.14. Tips & Tricks

	Chapter 9. Criteria Queries
	9.1. Typed criteria queries
	9.1.1. Selecting an entity
	9.1.2. Selecting a value
	9.1.3. Selecting multiple values
	9.1.4. Selecting a wrapper

	9.2. Tuple criteria queries
	9.2.1. Accessing tuple elements

	9.3. FROM clause
	9.3.1. Roots
	9.3.2. Joins
	9.3.3. Fetches

	9.4. Path expressions
	9.5. Using parameters

	Chapter 10. Native query
	10.1. Expressing the resultset
	10.2. Using native SQL Queries
	10.3. Named queries

	References

