
Hibernate OGM Reference Guide

Emmanuel Bernard

Sanne Grinovero

Gunnar Morling

Davide D'Alto

Guillaume Scheibel

Hibernate OGM Reference Guide

by Emmanuel Bernard, Sanne Grinovero, Gunnar Morling, Davide D'Alto, and Guillaume Scheibel

4.2.0.Final

iii

Preface ... vi

1. Goals ... vii

2. What we have today .. viii

3. Experimental features .. ix

4. Use cases .. ix

1. How to get help and contribute on Hibernate OGM ... 1

1.1. How to get help .. 1

1.2. How to contribute ... 1

1.2.1. How to build Hibernate OGM .. 1

1.2.2. How to contribute code effectively ... 2

2. Getting started with Hibernate OGM .. 4

3. Architecture ... 9

3.1. General architecture .. 9

3.2. How is data persisted ... 11

3.3. How is data queried .. 17

4. Configure and start Hibernate OGM .. 20

4.1. Bootstrapping Hibernate OGM ... 20

4.1.1. Using JPA ... 20

4.1.2. Using Hibernate ORM native APIs .. 21

4.2. Environments .. 22

4.2.1. In a Java EE container ... 22

4.2.2. In a standalone JTA environment .. 23

4.2.3. Without JTA ... 24

4.3. Configuration options .. 25

4.4. Configuring Hibernate Search .. 25

4.5. How to package Hibernate OGM applications for WildFly 9 26

4.5.1. Packaging Hibernate OGM applications for WildFly 9 26

4.5.2. Enabling both the Hibernate Search and Hibernate OGM modules 27

5. Map your entities ... 29

5.1. Supported entity mapping .. 29

5.2. Supported Types .. 30

5.3. Supported association mapping ... 30

6. Hibernate OGM APIs .. 32

6.1. Bootstrap Hibernate OGM ... 32

6.2. JPA and native Hibernate ORM APIs ... 32

6.2.1. Accessing the OgmSession API ... 33

6.3. On flush and transactions .. 33

6.3.1. Acting upon errors during application of changes 35

6.4. SPIs ... 37

7. Query your entities .. 38

7.1. Using JP-QL ... 38

7.2. Using the native query language of your NoSQL ... 42

7.3. Using Hibernate Search .. 43

7.4. Using the Criteria API ... 45

Hibernate OGM

Reference Guide

iv

8. NoSQL datastores ... 46

8.1. Using a specific NoSQL datastore ... 46

9. Infinispan ... 48

9.1. Configure Infinispan .. 48

9.1.1. Adding Infinispan dependencies .. 48

9.1.2. Infinispan specific configuration properties ... 49

9.1.3. Cache names used by Hibernate OGM ... 50

9.2. Manage data size ... 51

9.3. Clustering: store data on multiple Infinispan nodes .. 52

9.4. Storage principles ... 55

9.4.1. Properties and built-in types .. 55

9.4.2. Identifiers ... 56

9.4.3. Entities .. 60

9.4.4. Associations ... 64

9.5. Transactions ... 77

9.6. Storing a Lucene index in Infinispan .. 78

10. Ehcache ... 80

10.1. Configure Ehcache .. 80

10.1.1. Adding Ehcache dependencies ... 80

10.1.2. Ehcache specific configuration properties ... 80

10.1.3. Cache names used by Hibernate OGM .. 81

10.2. Storage principles ... 82

10.2.1. Properties and built-in types .. 82

10.2.2. Identifiers ... 83

10.2.3. Entities .. 87

10.2.4. Associations ... 91

10.3. Transactions ... 104

11. MongoDB ... 105

11.1. Configuring MongoDB ... 105

11.1.1. Adding MongoDB dependencies .. 105

11.1.2. MongoDB specific configuration properties ... 105

11.1.3. FongoDB Provider .. 108

11.1.4. Annotation based configuration .. 109

11.1.5. Programmatic configuration ... 110

11.2. Storage principles ... 112

11.2.1. Properties and built-in types .. 112

11.2.2. Entities ... 114

11.2.3. Associations ... 128

11.3. Transactions ... 157

11.4. Optimistic Locking ... 157

11.5. Queries ... 158

11.5.1. JP-QL queries .. 159

11.5.2. Native MongoDB queries .. 159

11.5.3. Hibernate Search .. 162

Hibernate OGM

Reference Guide

v

12. Neo4j .. 163

12.1. How to add Neo4j integration ... 163

12.2. Configuring Neo4j ... 163

12.3. Storage principles ... 164

12.3.1. Properties and built-in types .. 165

12.3.2. Entities ... 166

12.3.3. Associations ... 171

12.3.4. Auto-generated Values ... 180

12.3.5. Labels summary ... 182

12.4. Transactions ... 182

12.5. Queries ... 183

12.5.1. JP-QL queries .. 183

12.5.2. Cypher queries ... 184

13. CouchDB (Experimental) .. 186

13.1. Configuring CouchDB .. 186

13.1.1. Annotation based configuration .. 188

13.1.2. Programmatic configuration ... 189

13.2. Storage principles ... 190

13.2.1. Properties and built-in types .. 190

13.2.2. Entities ... 192

13.2.3. Associations ... 201

13.3. Transactions ... 223

13.4. Queries ... 224

14. Cassandra .. 225

14.1. Configuring Cassandra .. 225

14.1.1. Adding Cassandra dependencies ... 225

14.1.2. Cassandra specific configuration properties .. 226

14.2. Storage principles ... 227

14.2.1. Properties and built-in types .. 227

14.3. Transactions and Concurrency ... 227

vi

Preface
Hibernate Object/Grid Mapper (OGM) is a persistence engine providing Java Persistence (JPA)

support for NoSQL datastores. It reuses Hibernate ORM’s object life cycle management and

(de)hydration engine but persists entities into a NoSQL store (key/value, document, column-ori-

ented, etc) instead of a relational database. It reuses the Java Persistence Query Language (JP-

QL) as an interface to querying stored data.

The project is now fairly mature when it comes to the storage strategies. And the feature set is

sufficient to be used in your projects. We do have however much bigger ambitions than a simple

object mapper. Many things are on the roadmap (more NoSQL, query, denormalization engine,

etc). If you feel a feature is missing, report it to us. If you want to contribute, even better!

Hibernate OGM is released under the LGPL open source license.

Note

The future of this project is being shaped by the requests from our users. Please

give us feedback on

• what you like

• what you don’t like

• what is confusing

• what you are missing as a feature

Check Section 1.2, “How to contribute” on how to contact us.

Tip

We worked hard on this documentation but we know it is far from perfect. If you

find something confusing or feel that an explanation is missing, contact us in one

of the following ways:

• post on Hibernate OGM’s forum [https://forum.hibernate.org/viewforum.php?

f=31].

• open bug reports in JIRA [https://hibernate.atlassian.net/browse/OGM]

• propose improvements on the development mailing list [http://

www.hibernate.org/community/mailinglists]

https://forum.hibernate.org/viewforum.php?f=31
https://forum.hibernate.org/viewforum.php?f=31
https://forum.hibernate.org/viewforum.php?f=31
https://hibernate.atlassian.net/browse/OGM
https://hibernate.atlassian.net/browse/OGM
http://www.hibernate.org/community/mailinglists
http://www.hibernate.org/community/mailinglists
http://www.hibernate.org/community/mailinglists

Preface

vii

• join us on IRC to discuss developments and improvements (#hibernate-dev

on freenode.net; you need to be registered on freenode: the room does not

accept "anonymous" users).

1. Goals

Hibernate OGM:

• offers a familiar programming paradigm (JPA) to deal with NoSQL stores

• moves model denormalization from a manual imperative work to a declarative approach handled

by the engine

• encourages new data usage patterns and NoSQL exploration in more "traditional" enterprises

• helps scale existing applications with a NoSQL front end to a traditional database

NoSQL can be very disconcerting as it is composed of many disparate solutions with different

benefits and drawbacks. Speaking only of the main ones, NoSQL is at least categorized in four

families:

• graph oriented databases

• key/value stores: essentially Maps but with different behaviors and ideas behind various prod-

ucts (data grids, persistent with strong or eventual consistency, etc)

• document based datastores: contains as value semi-structured documents (think JSON)

• column based datastores

Preface

viii

Figure 1. Various NoSQL families

Each have different benefits and drawbacks and one solution might fit a use case better than an

other. However access patterns and APIs are different from one product to the other.

Hibernate OGM is not expected to be the Rosetta stone used to interact with all NoSQL solution

in all use cases. But for people modeling their data as a domain model, it provides distinctive

advantages over raw APIs and has the benefit of providing an API and semantic known to Java

developers. Reusing the same programmatic model and trying different (No)SQL engines will

hopefully help people to explore alternative datastores.

Hibernate OGM also aims at helping people scale traditional relational databases by providing a

NoSQL front-end and keeping the same JPA APIs and domain model.

2. What we have today

Today, Hibernate OGM does not support all of these goals. Here is a list of what we have:

• store data in key/value stores (Infinispan’s datagrid and Ehcache)

• store data in document stores (MongoDB and CouchDB - the latter in preview)

• store data in graph databases (Neo4J)

Preface

ix

• Create, Read, Update and Delete operations (CRUD) for entities

• polymorphic entities (support for superclasses, subclasses etc).

• embeddable objects (aka components)

• support for basic types (numbers, String, URL, Date, enums, etc)

• support for associations

• support for collections (Set, List, Map, etc)

• support for JP-QL queries (not arbitrary joins though)

• support for mapping native queries results to managed entities

• support for Hibernate Search’s full-text queries

• and generally, support for JPA and native Hibernate ORM API support

In short, a perfectly capable Object Mapper for multiple popular NoSQL datastores.

3. Experimental features

As Hibernate OGM is a rather young project, some parts of it may be marked as experimental. This

may affect specific APIs or SPIs (e.g. the case for the SchemaInitializer SPI contract at the

moment), entire dialects (this is the case for the CouchDB dialect at the moment) or deliverables.

Experimental APIs/SPIs are marked via the @Experimental annotation. Experimental dialects

make that fact apparent through their datastore name (e.g. "COUCHDB_EXPERIMENTAL") and

experimental deliverables use the "experimental" artifact classifier.

If a certain part is marked as experimental it may undergo backwards-incompatible changes in fu-

ture releases. E.g. API/SPI methods may be altered, so that code using them needs to be adapted

as well. For experimental dialects the persistent format of data may be changed, so that a future

version of such dialect may not be able to read back data written by previous versions. A manual

update of the affected data may be thus required. Experimental deliverables should be used with

special care, as they are work in progress. You should use them for testing but not production

use cases.

But most of our dialects are mature, so don’t worry ;)

4. Use cases

Here are a few areas where Hibernate OGM can be beneficial:

• need to scale your datastore up and down rapidly (via the underlying NoSQL datastore capa-

bility)

Preface

x

• keep your domain model independent of the underlying datastore technology (RDBMS, Infinis-

pan, NoSQL)

• explore the best tool for the use case

• use a familiar JPA front end to your datastore

• use Hibernate Search full-text search / text analysis capabilities and store the data set in an

scalable datastore

These are a few ideas and the list will grow as we add more capabilities to Hibernate OGM.

1

Chapter 1. How to get help and

contribute on Hibernate OGM
Hibernate OGM is a young project. Join and help us shape it!

1.1. How to get help

First of all, make sure to read this reference documentation. This is the most comprehensive formal

source of information. Of course, it is not perfect: feel free to come and ask for help, comment or

propose improvements in our Hibernate OGM forum [https://forum.hibernate.org/viewforum.php?

f=31].

You can also:

• open bug reports in JIRA [https://hibernate.atlassian.net/browse/OGM]

• propose improvements on the development mailing list [http://www.hibernate.org/communi-

ty/mailinglists]

• join us on IRC to discuss developments and improvements (#hibernate-dev on

freenode.net; you need to be registered on freenode: the room does not accept "anonymous"

users).

1.2. How to contribute

Welcome!

There are many ways to contribute:

• report bugs in JIRA [https://hibernate.atlassian.net/browse/OGM]

• give feedback in the forum, IRC or the development mailing list

• improve the documentation

• fix bugs or contribute new features

• propose and code a datastore dialect for your favorite NoSQL engine

Hibernate OGM’s code is available on GitHub at https://github.com/hibernate/hibernate-ogm.

1.2.1. How to build Hibernate OGM

Hibernate OGM uses Git and Maven 3, make sure to have both installed on your system.

https://forum.hibernate.org/viewforum.php?f=31
https://forum.hibernate.org/viewforum.php?f=31
https://forum.hibernate.org/viewforum.php?f=31
https://hibernate.atlassian.net/browse/OGM
https://hibernate.atlassian.net/browse/OGM
http://www.hibernate.org/community/mailinglists
http://www.hibernate.org/community/mailinglists
http://www.hibernate.org/community/mailinglists
https://hibernate.atlassian.net/browse/OGM
https://hibernate.atlassian.net/browse/OGM
https://github.com/hibernate/hibernate-ogm

How to get help and con-

tribute on Hibernate OGM

2

Clone the git repository from GitHub:

#get the sources

git clone https://github.com/hibernate/hibernate-ogm

cd hibernate-ogm

Run maven

#build project

mvn clean install -s settings-example.xml

Note

Note that Hibernate OGM uses artifacts from the Maven repository hosted by

JBoss. Make sure to either use the -s settings-example.xml option or adjust

your ~/.m2/settings.xml according to the descriptions available on this jboss.org

wiki page [http://community.jboss.org/wiki/MavenGettingStarted-Users].

To skip building the documentation, set the skipDocs property to true:

mvn clean install -DskipDocs=true -s settings-example.xml

Tip

If you just want to build the documentation only, run it from the hibernate-ogm-

documentation/manual subdirectory.

1.2.2. How to contribute code effectively

The best way to share code is to fork the Hibernate OGM repository on GitHub, create a branch

and open a pull request when you are ready. Make sure to rebase your pull request on the latest

version of the master branch before offering it.

Here are a couple of approaches the team follows:

• We do small independent commits for each code change. In particular, we do not mix stylistic

code changes (import, typos, etc) and new features in the same commit.

• Commit messages follow this convention: the JIRA issue number, a short commit summary, an

empty line, a longer description if needed. Make sure to limit line length to 80 characters, even

at this day and age it makes for more readable commit comments.

http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users

How to get help and con-

tribute on Hibernate OGM

3

OGM-123 Summary of commit operation

Optional details on the commit

and a longer description can be

added here.

• A pull request can contain several commits but should be self contained: include the implemen-

tation, its unit tests, its documentation and javadoc changes if needed.

• All commits are proposed via pull requests and reviewed by another member of the team be-

fore being pushed to the reference repository. That’s right, we never commit directly upstream

without code review.

4

Chapter 2. Getting started with

Hibernate OGM
If you are familiar with JPA, you are almost good to go :-) We will nevertheless walk you through

the first few steps of persisting and retrieving an entity using Hibernate OGM.

Before we can start, make sure you have the following tools configured:

• Java JDK 7 or above

• Maven 3.2.3 or above

Hibernate OGM is published in the JBoss hosted Maven repository. Adjust your ~/.m2/

settings.xml file according to the guidelines found on this webpage [http://community.jboss.org/

wiki/MavenGettingStarted-Users]. In this example we will use Infinispan as the targeted datastore.

Add org.hibernate.ogm:hibernate-ogm-bom:4.2.0.Final to your dependency management

block and org.hibernate.ogm:hibernate-ogm-infinispan:4.2.0.Final to your project de-

pendencies:

<dependencyManagement>

 <dependencies>

 <dependency>

 <groupId>org.hibernate.ogm</groupId>

 <artifactId>hibernate-ogm-bom</artifactId>

 <version>4.2.0.Final</version>

 <type>pom</type>

 <scope>import</scope>

 </dependency>

 </dependencies>

<dependencyManagement>

<dependencies>

 <dependency>

 <groupId>org.hibernate.ogm</groupId>

 <artifactId>hibernate-ogm-infinispan</artifactId>

 </dependency>

</dependencies>

The former is a so-called "bill of materials" POM which specifies a matching set of versions for

Hibernate OGM and its dependencies. That way you never need to specify a version explicitly

within your dependencies block, you will rather get the versions from the BOM automatically.

Note

If you’re deploying your application onto JBoss WildFly, you don’t need to add the

Hibernate OGM modules to your deployment unit but you can rather add them

http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users

Getting started with

Hibernate OGM

5

as modules to the application server itself. Refer to Section 4.5, “How to package

Hibernate OGM applications for WildFly 9” to learn more.

We will use the JPA APIs in this tutorial. While Hibernate OGM depends on JPA 2.1, it is marked

as provided in the Maven POM file. If you run outside a Java EE container, make sure to explicitly

add the dependency:

<dependency>

 <groupId>org.hibernate.javax.persistence</groupId>

 <artifactId>hibernate-jpa-2.1-api</artifactId>

</dependency>

Let’s now map our first Hibernate OGM entity.

@Entity

public class Dog {

 @Id @GeneratedValue(strategy = GenerationType.TABLE, generator = "dog")

 @TableGenerator(

 name = "dog",

 table = "sequences",

 pkColumnName = "key",

 pkColumnValue = "dog",

 valueColumnName = "seed"

)

 public Long getId() { return id; }

 public void setId(Long id) { this.id = id; }

 private Long id;

 public String getName() { return name; }

 public void setName(String name) { this.name = name; }

 private String name;

 @ManyToOne

 public Breed getBreed() { return breed; }

 public void setBreed(Breed breed) { this.breed = breed; }

 private Breed breed;

}

@Entity

public class Breed {

 @Id @GeneratedValue(generator = "uuid")

 @GenericGenerator(name="uuid", strategy="uuid2")

 public String getId() { return id; }

 public void setId(String id) { this.id = id; }

 private String id;

 public String getName() { return name; }

 public void setName(String name) { this.name = name; }

 private String name;

}

Getting started with

Hibernate OGM

6

I lied to you, we have already mapped two entities! If you are familiar with JPA, you can see that

there is nothing specific to Hibernate OGM in our mapping.

In this tutorial, we will use JBoss Transactions for our JTA transaction manager. So let’s add the

JTA API and JBoss Transactions to our POM as well. The final list of dependencies should look

like this:

<dependencies>

 <!-- Hibernate OGM Infinispan module; pulls in the OGM core module -->

 <dependency>

 <groupId>org.hibernate.ogm</groupId>

 <artifactId>hibernate-ogm-infinispan</artifactId>

 </dependency>

 <!-- standard APIs dependencies - provided in a Java EE container -->

 <dependency>

 <groupId>org.hibernate.javax.persistence</groupId>

 <artifactId>hibernate-jpa-2.1-api</artifactId>

 </dependency>

 <dependency>

 <groupId>org.jboss.spec.javax.transaction</groupId>

 <artifactId>jboss-transaction-api_1.2_spec</artifactId>

 </dependency>

 <!-- JBoss Transactions dependency - this (or another implementation) is

 provided in a Java EE container -->

 <dependency>

 <groupId>org.jboss.jbossts</groupId>

 <artifactId>jbossjta</artifactId>

 </dependency>

</dependencies>

Next we need to define the persistence unit. Create a META-INF/persistence.xml file.

<?xml version="1.0"?>

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://java.sun.com/

xml/ns/persistence/persistence_2_0.xsd"

 version="2.0">

 <persistence-unit name="ogm-jpa-tutorial" transaction-type="JTA">

 <!-- Use Hibernate OGM provider: configuration will be transparent -->

 <provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider>

 <properties>

 <!-- property is optional if you want to use Infinispan, otherwise adjust to

 your favorite

 NoSQL Datastore provider.

 <property name="hibernate.ogm.datastore.provider" value="infinispan"/>

 -->

 <!-- defines which JTA Transaction we plan to use -->

 <property name="hibernate.transaction.jta.platform"

 value="org.hibernate.service.jta.platform.internal.JBossStandAloneJtaPlatform"/

>

Getting started with

Hibernate OGM

7

 </properties>

 </persistence-unit>

</persistence>

Let’s now persist a set of entities and retrieve them.

//accessing JBoss's Transaction can be done differently but this one works nicely

TransactionManager tm = getTransactionManager();

//build the EntityManagerFactory as you would build in in Hibernate ORM

EntityManagerFactory emf = Persistence.createEntityManagerFactory(

 "ogm-jpa-tutorial");

final Logger logger = LoggerFactory.getLogger(DogBreedRunner.class);

[..]

//Persist entities the way you are used to in plain JPA

tm.begin();

logger.infof("About to store dog and breed");

EntityManager em = emf.createEntityManager();

Breed collie = new Breed();

collie.setName("Collie");

em.persist(collie);

Dog dina = new Dog();

dina.setName("Dina");

dina.setBreed(collie);

em.persist(dina);

Long dinaId = dina.getId();

em.flush();

em.close();

tm.commit();

[..]

//Retrieve your entities the way you are used to in plain JPA

tm.begin();

logger.infof("About to retrieve dog and breed");

em = emf.createEntityManager();

dina = em.find(Dog.class, dinaId);

logger.infof("Found dog %s of breed %s", dina.getName(), dina.getBreed().getName());

em.flush();

em.close();

tm.commit();

[..]

emf.close();

private static final String JBOSS_TM_CLASS_NAME = "com.arjuna.ats.jta.TransactionManager";

public static TransactionManager getTransactionManager() throws Exception {

 Class<?> tmClass = Main.class.getClassLoader().loadClass(JBOSS_TM_CLASS_NAME);

 return (TransactionManager) tmClass.getMethod("transactionManager").invoke(null);

}

Getting started with

Hibernate OGM

8

Note

Some JVM do not handle mixed IPv4/IPv6 stacks properly (older Mac OS X JDK

in particular [http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=7144274]), if

you experience trouble starting the Infinispan cluster, pass the following property: -

Djava.net.preferIPv4Stack=true to your JVM or upgrade to a recent JDK ver-

sion. jdk7u6 (b22) is known to work on Max OS X.

Note

There are some additional constraints related to transactions when working with

Neo4j. You will find more details in the Neo4j transactions section: Section 12.4,

“Transactions”

A working example can be found in Hibernate OGM’s distribution under hibernate-ogm-docu-

mentation/examples/gettingstarted.

What have we seen?

• Hibernate OGM is a JPA implementation and is used as such both for mapping and in API usage

• It is configured as a specific JPA provider:

org.hibernate.ogm.jpa.HibernateOgmPersistence

Let’s explore more in the next chapters.

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=7144274
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=7144274
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=7144274

9

Chapter 3. Architecture

Note

Hibernate OGM defines an abstraction layer represented by DatastoreProvider

and GridDialect to separate the OGM engine from the datastores interaction. It

has successfully abstracted various key/value stores, document stores and graph

databases. We are working on testing it on other NoSQL families.

In this chapter we will explore:

• the general architecture

• how the data is persisted in the NoSQL datastore

• how we support JP-QL queries

Let’s start with the general architecture.

3.1. General architecture

Hibernate OGM is really made possible by the reuse of a few key components:

• Hibernate ORM for JPA support

• the NoSQL drivers to interact with the underlying datastore

• optionally Hibernate Search for indexing and query purposes

• optionally Infinispan’s Lucene Directory to store indexes in Infinispan itself, or in many other

NoSQL using Infinispan’s write-through cachestores

• Hibernate OGM itself

Architecture

10

Figure 3.1. General architecture

Hibernate OGM reuses as much as possible from the Hibernate ORM infrastructure. There is no

need to rewrite an entirely new JPA engine. The Persisters and the Loaders (two interfaces

used by Hibernate ORM) have been rewritten to persist data in the NoSQL store. These imple-

mentations are the core of Hibernate OGM. We will see in Section 3.2, “How is data persisted”

how the data is structured.

Architecture

11

The particularities between NoSQL stores are abstracted by the notion of a DatastoreProvider

and a GridDialect.

• DatastoreProvider abstracts how to start and maintain a connection between Hibernate OGM

and the datastore.

• GridDialect abstracts how data itself including association is persisted.

Think of them as the JDBC layer for our NoSQL stores.

Other than these, all the Create/Read/Update/Delete (CRUD) operations are implemented by the

Hibernate ORM engine (object hydration and dehydration, cascading, lifecycle etc).

As of today, we have implemented the following datastore providers:

• a Map based datastore provider (for testing)

• an Infinispan based datastore provider to persist your entities in Infinispan

• a Ehcache based datastore provider to persist your entities in Ehcache

• a MongoDB based datastore provider to persist data in a MongoDB database

• a Neo4j based datastore provider to persist data in the Neo4j graph database

• a CouchDB based datastore provider to persist data in the CouchDB document store

To implement JP-QL queries, Hibernate OGM parses the JP-QL string and calls the appropriate

translator functions to build a native query. If the underlying engine does not have any query

support, we use Hibernate Search as an external query engine.

We will discuss the subject of querying in more details in Section 3.3, “How is data queried”.

Hibernate OGM best works in a JTA environment. The easiest solution is to deploy it on a Java EE

container. Alternatively, you can use a standalone JTA TransactionManager. We explain how to

in Section 4.2.2, “In a standalone JTA environment”.

Let’s now see how and in which structure data is persisted in the NoSQL data store.

3.2. How is data persisted

Hibernate OGM tries to reuse as much as possible the relational model concepts, at least when

they are practical and make sense in OGM’s case. For very good reasons, the relational model

brought peace in the database landscape over 30 years ago. In particular, Hibernate OGM inherits

the following traits:

• abstraction between the application object model and the persistent data model

• persist data as basic types

Architecture

12

• keep the notion of primary key to address an entity

• keep the notion of foreign key to link two entities (not enforced)

If the application data model is too tightly coupled with your persistent data model, a few issues

arise:

• any change in the application object hierarchy / composition must be reflected in the persistent

data

• any change in the application object model will require a migration at the data level

• any access to the data by another application ties both applications losing flexibility

• any access to the data from another platform become somewhat more challenging

• serializing entities leads to many additional problems (see note below)

Why aren’t entities serialized in the key/value entry

There are a couple of reasons why serializing the entity directly in the datastore -

key/value in particular - can lead to problems:

• When entities are pointing to other entities are you storing the whole graph? Hint:

this can be quite big!

• If doing so, how do you guarantee object identity or even consistency amongst

duplicated objects? It might make sense to store the same object graph from

different root objects.

• What happens in case of class schema change? If you add or remove a property

or include a superclass, you must migrate all entities in your datastore to avoid

deserialization issues.

Entities are stored as tuples of values by Hibernate OGM. More specifically, each entity is concep-

tually represented by a Map<String,Object> where the key represents the column name (often

the property name but not always) and the value represents the column value as a basic type. We

favor basic types over complex ones to increase portability (across platforms and across type /

class schema evolution over time). For example a URL object is stored as its String representation.

The key identifying a given entity instance is composed of:

• the table name

• the primary key column name(s)

• the primary key column value(s)

Architecture

13

Figure 3.2. Storing entities

The GridDialect specific to the NoSQL datastore you target is then responsible to convert this

map into the most natural model:

• for a key/value store or a data grid, we use the logical key as the key in the grid and we store

the map as the value. Note that it’s an approximation and some key/value providers will use

more tailored approaches.

Architecture

14

• for a document oriented store, the map is represented by a document and each entry in the

map corresponds to a property in a document.

Associations are also stored as tuple as well or more specifically as a set of tuples. Hibernate OGM

stores the information necessary to navigate from an entity to its associations. This is a departure

from the pure relational model but it ensures that association data is reachable via key lookups

based on the information contained in the entity tuple we want to navigate from. Note that this

leads to some level of duplication as information has to be stored for both sides of the association.

The key in which association data are stored is composed of:

• the table name

• the column name(s) representing the foreign key to the entity we come from

• the column value(s) representing the foreign key to the entity we come from

Using this approach, we favor fast read and (slightly) slower writes.

Architecture

15

Figure 3.3. Storing associations

Note that this approach has benefits and drawbacks:

• it ensures that all CRUD operations are doable via key lookups

• it favors reads over writes (for associations)

• but it duplicates data

Again, there are specificities in how data is inherently stored in the specific NoSQL store. For

example, in document oriented stores, the association information including the identifier to the

associated entities can be stored in the entity owning the association. This is a more natural model

for documents.

Architecture

16

Figure 3.4. Storing associations in a document store

Some identifiers require to store a seed in the datastore (like sequences for examples). The seed

is stored in the value whose key is composed of:

• the table name

• the column name representing the segment

• the column value representing the segment

Warning

This description is how conceptually Hibernate OGM asks the datastore provider

to store data. Depending on the family and even the specific datastore, the storage

is optimized to be as natural as possible. In other words as you would have stored

the specific structure naturally. Make sure to check the chapter dedicated to the

NoSQL store you target to find the specificities.

Many NoSQL stores have no notion of schema. Likewise, the tuple stored by Hibernate OGM is

not tied to a particular schema: the tuple is represented by a Map, not a typed Map specific to a

given entity type. Nevertheless, JPA does describe a schema thanks to:

• the class schema

• the JPA physical annotations like @Table and @Column.

While tied to the application, it offers some robustness and explicit understanding when the

schema is changed as the schema is right in front of the developers' eyes. This is an intermediary

Architecture

17

model between the strictly typed relational model and the totally schema-less approach pushed

by some NoSQL families.

3.3. How is data queried

Since Hibernate OGM wants to offer all of JPA, it needs to support JP-QL queries. Hibernate OGM

parses the JP-QL query string and extracts its meaning. From there, several options are available

depending of the capabilities of the NoSQL store you target:

• it directly delegates the native query generation to the datastore specific query translator im-

plementation

• it uses Hibernate Search as a query engine to execute the query

If the NoSQL datastore has some query capabilities and if the JP-QL query is simple enough

to be executed by the datastore, then the JP-QL parser directly pushes the query generation

to the NoSQL specific query translator. The query returns the list of matching entity columns or

projections and Hibernate OGM returns managed entities.

Some NoSQL stores have poor query support, or none at all. In this case Hibernate OGM can use

Hibernate Search as its indexing and query engine. Hibernate Search is able to index and query

objects - entities - and run full-text queries. It uses the well known Apache Lucene to do that but

adds a few interesting characteristics like clustering support and an object oriented abstraction

including an object oriented query DSL. Let’s have a look at the architecture of Hibernate OGM

when using Hibernate Search:

Architecture

18

Figure 3.5. Using Hibernate Search as query engine - greyed areas are

blocks already present in Hibernate OGM’s architecture

In this situation, Hibernate ORM Core pushes change events to Hibernate Search which will in-

dex entities accordingly and keep the index and the datastore in sync. The JP-QL query parser

Architecture

19

delegates the query translation to the Hibernate Search query translator and executes the query

on top of the Lucene indexes. Indexes can be stored in various fashions:

• on a file system (the default in Lucene)

• in Infinispan via the Infinispan Lucene directory implementation: the index is then distributed

across several servers transparently

• in NoSQL stores like Voldemort that can natively store Lucene indexes

• in NoSQL stores that can be used as overflow to Infinispan: in this case Infinispan is used as an

intermediary layer to serve the index efficiently but persists the index in another NoSQL store.

Tip

You can use Hibernate Search even if you do plan to use the NoSQL datastore

query capabilities. Hibernate Search offers a few interesting options:

• clusterability

• full-text queries - ie Google for your entities

• geospatial queries

• query faceting (ie dynamic categorization of the query results by price, brand etc)

20

Chapter 4. Configure and start

Hibernate OGM
Hibernate OGM favors ease of use and convention over configuration. This makes its configuration

quite simple by default.

4.1. Bootstrapping Hibernate OGM

Hibernate OGM can be used via the Hibernate native APIs (Session) or via the JPA APIs (Enti-

tyManager). Depending of your choice, the bootstrapping strategy is slightly different.

4.1.1. Using JPA

The good news is that if you use JPA as your primary API, the configura-

tion is extremely simple. Hibernate OGM is seen as a persistence provider which

you need to configure in your persistence.xml. That’s it! The provider name is

org.hibernate.ogm.jpa.HibernateOgmPersistence.

Example 4.1. persistence.xml file

<?xml version="1.0"?>

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://java.sun.com/

xml/ns/persistence/persistence_2_0.xsd"

 version="2.0">

 <persistence-unit name="org.hibernate.ogm.tutorial.jpa" transaction-type="JTA">

 <!-- Use Hibernate OGM provider: configuration will be transparent -->

 <provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider>

 <properties>

 <property name="hibernate.transaction.jta.platform"

 value="org.hibernate.service.jta.platform.internal.JBossStandAloneJtaPlatform" /

>

 <property name="hibernate.ogm.datastore.provider"

 value="infinispan" />

 </properties>

 </persistence-unit>

</persistence>

There are a couple of things to notice:

• there is no JDBC dialect setting

• there is no JDBC setting except sometimes a jta-data-source (check Section 4.2.1, “In a

Java EE container” for more info)

Configure and start

Hibernate OGM

21

• there is no DDL scheme generation options (hbm2ddl) as NoSQL generally do not require

schemas

• if you use JTA (which we recommend), you will need to set the JTA platform

You also need to configure which NoSQL datastore you want to use and how to connect to it. We

will detail how to do that later in Chapter 8, NoSQL datastores. In this case, we have used the

defaults settings for Infinispan.

From there, simply bootstrap JPA the way you are used to with Hibernate ORM:

• via Persistence.createEntityManagerFactory

• by injecting the EntityManager / EntityManagerFactory in a Java EE container

• by using your favorite injection framework (CDI - Weld, Spring, Guice)

4.1.2. Using Hibernate ORM native APIs

If you want to bootstrap Hibernate OGM using the native Hibernate APIs, use the class

org.hibernate.ogm.cfg.OgmConfiguration.

Example 4.2. Bootstrap Hibernate OGM with Hibernate ORM native APIs

Configuration cfg = new OgmConfiguration();

//assuming you are using JTA in a non contained environment

cfg.setProperty(environment.TRANSACTION_STRATEGY,

 "org.hibernate.transaction.JTATransactionFactory");

//assuming JBoss TransactionManager in standalone mode

cfg.setProperty(Environment.JTA_PLATFORM,

 "org.hibernate.service.jta.platform.internal.JBossStandAloneJtaPlatform");

//assuming the default infinispan settings

cfg.setProperty("hibernate.ogm.datastore.provider",

 "infinispan");

//add your annotated classes

cfg.addAnnotatedClass(Order.class)

 .addAnnotatedClass(Item.class)

//build the SessionFactory

SessionFactory sf = cfg.buildSessionFactory();

There are a couple of things to notice:

• there is no DDL schema generation options (hbm2ddl) as Infinispan does not require schemas

• you need to set the right transaction strategy and the right transaction manager lookup strategy

if you use a JTA based transaction strategy (see Section 4.2, “Environments”)

Configure and start

Hibernate OGM

22

You also need to configure which NoSQL datastore you want to use and how to connect to it. We

will detail how to do that later in Chapter 8, NoSQL datastores. In this case, we have used the

defaults settings for Infinispan.

4.2. Environments

Hibernate OGM runs in various environments, pretty much what you are used to with Hibernate

ORM. There are however environments where it works better and has been more thoroughly

tested.

4.2.1. In a Java EE container

You don’t have to do much in this case. You need three specific settings:

• the transaction factory

• the JTA platform

• a JTA datasource

If you use JPA, simply set the transaction-type to JTA and the transaction factory will be set

for you.

If you use Hibernate ORM native APIs only, then set hibernate.transaction.factory_class

to either:

• org.hibernate.transaction.CMTTransactionFactory if you use declarative transaction de-

marcation.

• or org.hibernate.transaction.JTATransactionFactory if you manually demarcate trans-

action boundaries

Set the JTA platform to the right Java EE container. The property is

hibernate.transaction.transaction.jta.platform and must contain the fully qual-

ified class name of the lookup implementation. The list of available val-

ues are listed in Hibernate ORM’s configuration section [http://docs.jboss.org/hiber-

nate/orm/4.1/devguide/en-US/html_single/#services-JtaPlatform]. For example, in WildFly, use

org.hibernate.service.jta.platform.internal.JBossAppServerJtaPlatform.

In your persistence.xml, you also need to define an existing datasource. It is not needed by

Hibernate OGM and won’t be used but the JPA specification mandates this setting.

Example 4.3. persistence.xml file

<?xml version="1.0"?>

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://java.sun.com/

xml/ns/persistence/persistence_2_0.xsd"

http://docs.jboss.org/hibernate/orm/4.1/devguide/en-US/html_single/#services-JtaPlatform
http://docs.jboss.org/hibernate/orm/4.1/devguide/en-US/html_single/#services-JtaPlatform
http://docs.jboss.org/hibernate/orm/4.1/devguide/en-US/html_single/#services-JtaPlatform

Configure and start

Hibernate OGM

23

 version="2.0">

 <persistence-unit name="org.hibernate.ogm.tutorial.jpa" transaction-type="JTA">

 <!-- Use Hibernate OGM provider: configuration will be transparent -->

 <provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider>

 <jta-data-source>java:/DefaultDS</jta-data-source>

 <properties>

 <property name="hibernate.transaction.jta.platform"

 value="org.hibernate.service.jta.platform.internal.JBossAppServerJtaPlatform" />

 <property name="hibernate.ogm.datastore.provider"

 value="infinispan" />

 </properties>

 </persistence-unit>

</persistence>

java:DefaultDS will work for out of the box WildFly deployments.

4.2.2. In a standalone JTA environment

There is a set of common misconceptions in the Java community about JTA:

• JTA is hard to use

• JTA is only needed when you need transactions spanning several databases

• JTA works in Java EE only

• JTA is slower than "simple" transactions

None of that is true of course, let me show you how to use JBoss Transaction in a standalone

environment with Hibernate OGM.

In Hibernate OGM, make sure to set the following properties:

• transaction-type to JTA in your persistence.xml if you use JPA

• or hibernate.transaction.factory_class to

org.hibernate.transaction.JTATransactionFactory if you use OgmConfiguration to

bootstrap Hibernate OGM.

• hibernate.transaction.jta.platform to

org.hibernate.service.jta.platform.internal.JBossStandAloneJtaPlatform in both

cases.

On the JBoss Transaction side, add JBoss Transaction in your classpath. If you use maven, it

should look like this:

Example 4.4. JBoss Transaction dependency declaration

<dependency>

Configure and start

Hibernate OGM

24

 <groupId>org.jboss.jbossts</groupId>

 <artifactId>jbossjta</artifactId>

 <version>4.16.4.Final</version>

</dependency>

The next step is you get access to the transaction manager. The easiest solution is to do as the

following example:

TransactionManager transactionManager =

 com.arjuna.ats.jta.TransactionManager.transactionmanager();

Then use the standard JTA APIs to demarcate your transaction and you are done!

Example 4.5. Demarcate your transaction with standalone JTA

//note that you must start the transaction before creating the EntityManager

//or else call entityManager.joinTransaction()

transactionManager.begin();

final EntityManager em = emf.createEntityManager();

Poem poem = new Poem();

poem.setName("L'albatros");

em.persist(poem);

transactionManager.commit();

em.clear();

transactionManager.begin();

poem = em.find(Poem.class, poem.getId());

assertThat(poem).isNotNull();

assertThat(poem.getName()).isEqualTo("L'albatros");

em.remove(poem);

transactionManager.commit();

em.close();

That was not too hard, was it? Note that application frameworks like Seam or Spring Framework

should be able to initialize the transaction manager and call it to demarcate transactions for you.

Check their respective documentation.

4.2.3. Without JTA

While this approach works today, it does not ensure that works are done transactionally and hence

won’t be able to rollback your work. This will change in the future but in the mean time, such an

environment is not recommended.

Configure and start

Hibernate OGM

25

Note

For NoSQL datastores not supporting transactions, this is less of a concern.

4.3. Configuration options

The most important options when configuring Hibernate OGM are related to the datastore. They

are explained in Chapter 8, NoSQL datastores.

Otherwise, most options from Hibernate ORM and Hibernate Search are applicable when using

Hibernate OGM. You can pass them as you are used to do either in your persistence.xml file,

your hibernate.cfg.xml file or programmatically.

More interesting is a list of options that do not apply to Hibernate OGM and that should not be set:

• hibernate.dialect

• hibernate.connection.* and in particular hibernate.connection.provider_class

• hibernate.show_sql and hibernate.format_sql

• hibernate.default_schema and hibernate.default_catalog

• hibernate.use_sql_comments

• hibernate.jdbc.*

• hibernate.hbm2ddl.auto and hibernate.hbm2ddl.import_file

4.4. Configuring Hibernate Search

Hibernate Search integrates with Hibernate OGM just like it does with Hibernate ORM. The Hi-

bernate Search version tested is 5.2.0.Final. Add the dependency to your project - the group id is

org.hibernate and artifact id hibernate-search-orm.

Then configure where you want to store your indexes, map your entities with the relevant in-

dex annotations and you are good to go. For more information, simply check the Hibernate

Search reference documentation [http://docs.jboss.org/hibernate/stable/search/reference/en-US/

html_single/].

In Section 9.6, “Storing a Lucene index in Infinispan” we’ll discuss how to store your Lucene

indexes in Infinispan. This is useful even if you don’t plan to use Infinispan as your primary data

store.

http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/
http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/
http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/
http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/

Configure and start

Hibernate OGM

26

4.5. How to package Hibernate OGM applications for

WildFly 9

Provided you’re deploying on WildFly, there is an additional way to add the OGM dependencies

to your application.

In WildFly, class loading is based on modules; this system defines explicit, non-transitive depen-

dencies on other modules.

Modules allow to share the same artifacts across multiple applications, making deployments small-

er and quicker, and also making it possible to deploy multiple different versions of any library.

More details about modules are described in Class Loading in WildFly [https://docs.jboss.org/

author/display/WFLY9/Class+Loading+in+WildFly].

If you apply the following instructions you can create super small deployments which do not include

any dependency.

4.5.1. Packaging Hibernate OGM applications for WildFly 9

You can download the pre-packaged module ZIP for this version of Hibernate OGM from:

• Sourceforge [https://downloads.sourceforge.net/project/hibernate/hibernate-ogm/4.2.0.Final/

hibernate-ogm-modules-wildfly9-4.2.0.Final.zip]

• JBoss’s Maven repository [https://repository.jboss.org/nexus/service/local/artifact/maven/redi-

rect?r=central&g=org.hibernate.ogm&a=hibernate-ogm-

modules-wildfly9&v=4.2.0.Final&e=zip]

Unpack the archive into the modules folder of your WildFly 9 installation. The modules included

are:

• org.hibernate:ogm, the core Hibernate OGM library and the Infinispan datastore provider.

• org.hibernate.ogm.<%DATASTORE%>:main, one module for each datastore, with <%DATAS-

TORE%> being one of ehcache, mongodb etc.

• Several shared dependencies such as org.hibernate.hql:<%VERSION%> (containing the query

parser) and others

There are two ways to include the dependencies in your project:

Using the manifest

Add this entry to the MANIFEST.MF in your archive (replace <%DATASTORE%> with the

right value for your chosen datastore):

https://docs.jboss.org/author/display/WFLY9/Class+Loading+in+WildFly
https://docs.jboss.org/author/display/WFLY9/Class+Loading+in+WildFly
https://docs.jboss.org/author/display/WFLY9/Class+Loading+in+WildFly
https://downloads.sourceforge.net/project/hibernate/hibernate-ogm/4.2.0.Final/hibernate-ogm-modules-wildfly9-4.2.0.Final.zip
https://downloads.sourceforge.net/project/hibernate/hibernate-ogm/4.2.0.Final/hibernate-ogm-modules-wildfly9-4.2.0.Final.zip
https://downloads.sourceforge.net/project/hibernate/hibernate-ogm/4.2.0.Final/hibernate-ogm-modules-wildfly9-4.2.0.Final.zip
https://repository.jboss.org/nexus/service/local/artifact/maven/redirect?r=central&g=org.hibernate.ogm&a=hibernate-ogm-modules-wildfly9&v=4.2.0.Final&e=zip
https://repository.jboss.org/nexus/service/local/artifact/maven/redirect?r=central&g=org.hibernate.ogm&a=hibernate-ogm-modules-wildfly9&v=4.2.0.Final&e=zip
https://repository.jboss.org/nexus/service/local/artifact/maven/redirect?r=central&g=org.hibernate.ogm&a=hibernate-ogm-modules-wildfly9&v=4.2.0.Final&e=zip
https://repository.jboss.org/nexus/service/local/artifact/maven/redirect?r=central&g=org.hibernate.ogm&a=hibernate-ogm-modules-wildfly9&v=4.2.0.Final&e=zip

Configure and start

Hibernate OGM

27

Dependencies: org.hibernate:ogm services, org.hibernate.ogm.<%DATASTORE

%>:main services

Using jboss-deployment-structure.xml

This is a JBoss-specific descriptor. Add a WEB-INF/jboss-deployment-structure.xml in

your archive with the following content (replace <%DATASTORE%> with the right value for

your chosen datastore):

<jboss-deployment-structure>

 <deployment>

 <dependencies>

 <module name="org.hibernate" slot="ogm" services="export" />

 <module name="org.hibernate.ogm.<%DATASTORE%>" slot="main" services="export" />

 </dependencies>

 </deployment>

</jboss-deployment-structure>

More information about the descriptor can be found in the WildFly documentation [https://

docs.jboss.org/author/display/WFLY9/Class+Loading+in+WildFly].

4.5.2. Enabling both the Hibernate Search and Hibernate OGM

modules

A compatible Hibernate Search module is included in WildFly 9: all you have to do is activate the

dependency.

When using WildFly, no library is available to your deployments unless you explicitly request it, or

unless it is the implementation for a JavaEE service which your application is using. For example,

Hibernate ORM will be available by default to your application if you are including the definition of

a persistence unit, although there are options to prevent that, for example to use a different JPA

implementor or to use a different version of Hibernate ORM.

Hibernate Search is not automatically provided, so you have to make it available explicitly either

via the MANIFEST.MF or via a custom jboss-deployment-structure.xml.

To do that, the MANIFEST.MF of your deployment will look like:

Example 4.6. Example MANIFEST.MF for an application using Hibernate

OGM for CouchDB and also Hibernate Search

org.hibernate:ogm services, org.hibernate.ogm.couchdb services,

 org.hibernate.search.orm services

Optionally you could download a different version of the Hibernate Search modules, provided it

is compatible with the Hibernate OGM version you plan to use. For example you might want to

https://docs.jboss.org/author/display/WFLY9/Class+Loading+in+WildFly
https://docs.jboss.org/author/display/WFLY9/Class+Loading+in+WildFly
https://docs.jboss.org/author/display/WFLY9/Class+Loading+in+WildFly

Configure and start

Hibernate OGM

28

download a more recent micro version of what is included in WildFly 9 at the time of publishing

this documentation.

The Hibernate Search documentation explains the details of downloading and

deploying a custom version: Update and activate latest Hibernate Search

version in WildFly [http://docs.jboss.org/hibernate/search/5.2/reference/en-US/html/search-

configuration.html#_update_and_activate_latest_hibernate_search_version_in_wildfly].

This approach might require you to make changes to the XML definitions of the Hibernate OGM

modules to change the references to the Hibernate Search slot to the slot version that you plan

to use.

http://docs.jboss.org/hibernate/search/5.2/reference/en-US/html/search-configuration.html#_update_and_activate_latest_hibernate_search_version_in_wildfly
http://docs.jboss.org/hibernate/search/5.2/reference/en-US/html/search-configuration.html#_update_and_activate_latest_hibernate_search_version_in_wildfly
http://docs.jboss.org/hibernate/search/5.2/reference/en-US/html/search-configuration.html#_update_and_activate_latest_hibernate_search_version_in_wildfly
http://docs.jboss.org/hibernate/search/5.2/reference/en-US/html/search-configuration.html#_update_and_activate_latest_hibernate_search_version_in_wildfly

29

Chapter 5. Map your entities
This section mainly describes the specificities of Hibernate OGM mappings. It is not be a compre-

hensive guide to entity mappings, the complete guide is Hibernate ORM’s documentation [http://

docs.jboss.org/hibernate/orm/4.3/manual/en-US/html/ch05.html]: after all Hibernate OGM is Hi-

bernate ORM.

5.1. Supported entity mapping

Pretty much all entity related constructs should work out of the box in Hibernate OGM. @Entity,

@Table, @Column, @Enumarated, @Temporal, @Cacheable and the like will work as expected. If you

want an example, check out Chapter 2, Getting started with Hibernate OGM or the documentation

of Hibernate ORM. Let’s concentrate of the features that differ or are simply not supported by

Hibernate OGM.

The various inheritance strategies are not supported by Hibernate OGM, only the table per con-

crete class strategy is used. This is not so much a limitation but rather an acknowledgment of

the dynamic nature of NoSQL schemas. If you feel the need to support other strategies, let us

know (see Section 1.2, “How to contribute”). Simply do not use @Inheritance nor @Discrimi-

natorColumn.

Secondary tables are not supported by Hibernate OGM at the moment. If you have needs for this

feature, let us know (see Section 1.2, “How to contribute”).

Queries are partially supported, you will find more information in the query chapter.

All standard JPA id generators are supported: IDENTITY, SEQUENCE, TABLE and AUTO. If you

need support for additional generators, let us know (see Section 1.2, “How to contribute”).

Note

We recommend you use a UUID based generator as this type of generator allows

maximum scalability to the underlying datastore as no cluster-wide counter is nec-

essary.

@Entity

public class Breed {

 @Id @GeneratedValue(generator = "uuid")

 @GenericGenerator(name="uuid", strategy="uuid2")

 public String getId() { return id; }

 public void setId(String id) { this.id = id; }

 private String id;

 public String getName() { return name; }

 public void setName(String name) { this.name = name; }

 private String name;

http://docs.jboss.org/hibernate/orm/4.3/manual/en-US/html/ch05.html
http://docs.jboss.org/hibernate/orm/4.3/manual/en-US/html/ch05.html
http://docs.jboss.org/hibernate/orm/4.3/manual/en-US/html/ch05.html

Map your entities

30

}

5.2. Supported Types

Most Java built-in types as supported at this stage. However, custom types (@Type) are not sup-

ported.

Here is a list of supported Java types:

• Boolean

• Byte

• Byte Array

• Calendar

• Class

• Date

• Double

• Integer

• Long

• Short

• Float

• Character

• String

• BigDecimal (mapped as scientific notation)

• BigInteger

• Url (as described by RFC 1738 and returned by toString of the Java URL type)

• UUID stored as described by RFC 4122

• Enums

Let us know if you need more type support Section 1.2, “How to contribute”

5.3. Supported association mapping

All association types are supported (@OneToOne, @OneToMany, @ManyToOne, @ManyToMany). Like-

wise, all collection types are supported (Set, Map, List). The way Hibernate OGM stores asso-

Map your entities

31

ciation information is however quite different than the traditional RDBMS representation. Each

chapter dedicated to a datastore describes how associations are persisted, make sure to check

them out.

Keep in mind that collections with many entries won’t perform very well in Hibernate OGM (at

least today) as all of the association navigation for a given entity is stored in a single key. If your

collection is made of 1 million elements, Hibernate OGM stores 1 million tuples in the association

key.

32

Chapter 6. Hibernate OGM APIs
Hibernate OGM has very few specific APIs. For the most part, you will interact with it via either:

• the JPA APIs

• the native Hibernate ORM APIs

This chapter will only discuss the Hibernate OGM specific behaviors regarding these APIs. If you

need to learn JPA or the native Hibernate APIs, check out the Hibernate ORM documentation

[http://hibernate.org/orm/documentation/].

6.1. Bootstrap Hibernate OGM

We already discussed this subject earlier, have a look at Chapter 4, Configure and start Hibernate

OGM for all the details.

As a reminder, it basically boils down to either:

• set the right persistence provider in your persistence.xml file and create an EntityManager-

Factory the usual way

• start via the Hibernate ORM native APIs using OgmConfiguration to boot a SessionFactory

6.2. JPA and native Hibernate ORM APIs

You know of the Java Persistence and Hibernate ORM native APIs? You are pretty much good

to go. If you need a refresher, make sure you read the Hibernate ORM documentation [http://

hibernate.org/orm/documentation/].

A few things are a bit different though, let’s discuss them.

Most of the EntityManager and Session contracts are supported. Here are the few exceptions:

• Session.createCriteria: criteria queries are not yet supported in Hibernate OGM

• Session.createFilter: queries on collections are not supported yet

• Session 's enableFilter, disableFilter etc: query filters are not supported at the moment

• doWork and doReturningWork are not implemented as they rely on JDBC connections - see

OGM-694 [https://hibernate.atlassian.net/browse/OGM-694]

• Session 's stored procedure APIs are not supported

http://hibernate.org/orm/documentation/
http://hibernate.org/orm/documentation/
http://hibernate.org/orm/documentation/
http://hibernate.org/orm/documentation/
http://hibernate.org/orm/documentation/
https://hibernate.atlassian.net/browse/OGM-694
https://hibernate.atlassian.net/browse/OGM-694

Hibernate OGM APIs

33

• Session 's natural id APIs are not yet supported

• Session.lock is not fully supported at this time

• EntityManager 's criteria query APIs are not supported

• EntityManager 's stored procedure APIs are not supported - see OGM-695 [https://

hibernate.atlassian.net/browse/OGM-695]

• EntityManager.lock is not fully supported at this time

• see Chapter 7, Query your entities to know what is supported for JP-QL and native queries

6.2.1. Accessing the OgmSession API

To execute NoSQL native queries, one approach is to use OgmSession.createNativeQuery.

You can read more about it in Section 7.2, “Using the native query language of your NoSQL”. But

let’s see how to access an OgmSession instance.

From JPA, use the unwrap method of EntityManager

Example 6.1. Get to an OgmSession from an EntityManager

EntityManager entityManager = ...

OgmSession ogmSession = entityManager.unwrap(OgmSession.class);

NoSQLQuery query = ogmSession.createNativeQuery(...);

In the Hibernate native API case, you should already have access to an OgmSession. The Ogm-

Configuration you used returns an OgmSessionFactory. This factory in turns produces OgmSes-

sion.

Example 6.2. Get to an OgmSession with Hibernate ORM native APIs

OgmConfiguration ogmConfiguration = new OgmConfiguration();

OgmSessionFactory ogmSessionFactory = ogmConfiguration.buildSessionFactory();

OgmSession ogmSession = ogmSessionFactory.openSession();

NoSQLQuery query = ogmSession.createNativeQuery(...);

6.3. On flush and transactions

While most underlying datastores do not support transaction, it is important to demarcate trans-

action via the Hibernate OGM APIs. Let’s see why.

Hibernate does pile up changes for as long as it can before pushing them down to the data-

store. This opens up the doors to huge optimizations (avoiding duplication, batching opera-

https://hibernate.atlassian.net/browse/OGM-695
https://hibernate.atlassian.net/browse/OGM-695
https://hibernate.atlassian.net/browse/OGM-695

Hibernate OGM APIs

34

tions etc). You can force changes to be sent to the datastore by calling Session.flush or

EntityManager.flush. In some situations - for example before some queries are executed -,

Hibernate will flush automatically. It will also flush when the transaction demarcation happens

(whether there is a real transaction or not).

The best approach is to always demarcate the transaction as shown below. This avoids the needs

to manually call flush and will offer future opportunities for Hibernate OGM.

Example 6.3. Explicitly demarcating transactions

Here is how you do outside of a JTA environment.

Session session = ...

Transaction transaction = session.beginTransaction();

try {

 // do your work

 transaction.commit(); // will flush changes to the datastore

catch (Exception e) {

 transaction.rollback();

}

// or in JPA

EntityManager entityManager = ...

EntityTransaction transaction = entityManager.getTransaction();

try {

 // do your work

 transaction.commit(); // will flush changes to the datastore

}

catch (Exception e) {

 transaction.rollback();

}

Inside a JTA environment, either the container demarcates the transaction for you and Hiber-

nate OGM will transparently join that transaction and flush at commit time. Or you need to man-

ually demarcate the transaction. In the latter case, it is best to start / stop the transaction be-

fore retrieving the Session or EntityManager as shown below. The alternative is to call the

EntityManager.joinTransaction() once the transaction has started.

transactionManager.begin();

Session session = sessionFactory.openSession();

// do your work

transactionManager.commit(); // will flush changes to the datastore

// or in JPA

transactionManager.begin();

EntityManager entityManager = entityManagerFactory.createEntityManager();

// do your work

transactionManager.commit(); // will flush changes to the datastore

Hibernate OGM APIs

35

6.3.1. Acting upon errors during application of changes

Note

The error compensation API described in the following is an experimental feature

as of version 4.2.0.Final. It will be enriched with additional features over time. This

might require changes to existing method signatures and thus may break code

using a previous version of the API.

Please let us know about your usage of the API and your wishes regarding futher

capabilities!

If an error occurs during flushing a set of changes, some data changes may already have been

applied in the datastore. If the store is non-transactional, there is no way to rollback (undo) these

changes. In this case it is desirable to know which changes have been applied and which ones

failed in order to take appropriate action.

Hibernate OGM provides an error compensation API for this purpose. By implementing the

org.hibernate.ogm.failure.ErrorHandler interface, you will be notified if

• an interaction between the Hibernate OGM engine and the grid dialect failed

• a rollback of the current transaction was triggered

Use cases for the error compensation API include:

• Logging all applied operations

• Retrying a failed operation e.g. after timeouts

• Making an attempt to compensate (apply an inverse operation) applied changes

In its current form the API lays the ground for manually performing these and similar tasks, but

we envision a more automated approach in future versions, e.g. for automatic retries of failed

operations or the automatic application of compensating operations.

Let’s take a look at an example:

Example 6.4. Custom ErrorHandler implementation

public class ExampleErrorHandler extends BaseErrorHandler {

 @Override

 public void onRollback(RollbackContext context) {

 // write all applied operations to a log file

 for (GridDialectOperation appliedOperation : context.getAppliedGridDialectOperations()) {

Hibernate OGM APIs

36

 switch (appliedOperation.getType()) {

 case INSERT_TUPLE:

 EntityKeyMetadata entityKeyMetadata = appliedOperation.as(InsertTuple.class).getEntityKeyMetadata();

 Tuple tuple = appliedOperation.as(InsertTuple.class).getTuple();

 // write EKM and tuple to log file...

 break;

 case REMOVE_TUPLE:

 // ...

 break;

 case ...

 // ...

 break;

 }

 }

 }

 @Override

 public ErrorHandlingStrategy onFailedGridDialectOperation(FailedGridDialectOperationContext context) {

 // Ignore this exception and continue

 if (context.getException() instanceof TupleAlreadyExistsException) {

 GridDialectOperation failedOperation = context.getFailedOperation();

 // write to log ...

 return ErrorHandlingStrategy.CONTINUE;

 }

 // But abort on all others

 else {

 return ErrorHandlingStrategy.ABORT;

 }

 }

}

The onRollback() method - which is called when the transaction is rolled back (either by the user

or by the container) - shows how to iterate over all methods applied prior to the rollback, examine

their specific type and e.g. write them to a log file.

The onFailedGridDialectOperation() method is called for each specific datastore operation

failing. It lets you decide whether to continue ignoring the failure, retry or abort the operation. If

ABORT is returned, the causing exception will be re-thrown, eventually causing the current trans-

action to be rolled back. If CONTINUE is returned, that exception will be ignored, causing the current

transaction to continue.

The decision whether to abort or continue can be based on the specific exception type or on the

grid dialect operation which caused the failure. In the example all exceptions of type TupleAl-

readyExistsException are ignored, whereas all other exceptions cause the current flush cycle

to be aborted. You also could react to datastore-specific exceptions such as MongoDB’s Mongo-

TimeoutException, if needed.

Note that by extending the provided base class BaseErrorHandler rather than implementing the

interface directly, you only need to implement those callback methods you are actually interested

in. The implementation will also not break if further callback methods are added to the ErrorHan-

dler interface in future releases.

Hibernate OGM APIs

37

Having implemented the error handler, it needs to be registered with Hibernate OGM. To do so,

specify it using the property hibernate.ogm.error_handler, e.g. as a persistence unit property

in META-INF/persistence.xml:

<property name="hibernate.ogm.error_handler" value="com.example.ExampleErrorHandler"/>

6.4. SPIs

Some of the Hibernate OGM public contracts are geared towards either integrators or implemen-

tors of datastore providers. They should not be used by a regular application. These contracts are

named SPIs and are in a .spi package.

To keep improving Hibernate OGM, we might break these SPIs between versions. If you plan on

writing a datastore, come and talk to us.

Tip

Non public contracts are stored within a .impl package. If you see yourself using

one of these classes, beware that we can break these without notice.

38

Chapter 7. Query your entities
Once your data is in the datastore, it’s time for some query fun! With Hibernate OGM, you have

a few alternatives that should get you covered:

• Use JP-QL - only for simple queries for now

• Use the NoSQL native query mapping the result as managed entities

• Use Hibernate Search queries - primarily full-text queries

7.1. Using JP-QL

For Hibernate OGM, we developed a brand new JP-QL parser which is already able to convert

simple queries into the native underlying datastore query language (e.g. MongoQL for MongoDB,

CypherQL for Neo4J, etc). This parser can also generate Hibernate Search queries for datastores

that do not support a query language.

Note

For datastores like Infinispan that require Hibernate Search to execute JP-QL

queries, the following preconditions must be met:

• no join, aggregation, or other relational operations are implied

• the entity involved in the query must be indexed

• the properties involved in the predicates must be indexed

Here is an example:

@Entity @Indexed

public class Hypothesis {

 @Id

 public String getId() { return id; }

 public void setId(String id) { this.id = id; }

 private String id;

 @Field(analyze=Analyze.NO)

 public String getDescription() { return description; }

 public void setDescription(String description) { this.description = description; }

 private String description;

}

Query query = session

 .createQuery("from Hypothesis h where h.description = :desc")

 .setString("desc", "tomorrow it's going to rain");

Query your entities

39

Note that the description field is marked as not analysed. This is necessary to

support field equality and comparison as defined by JP-QL.

You can make use of the following JP-QL constructs:

• simple comparisons using "<", "<=", "=", ">=" and ">"

• IS NULL and IS NOT NULL

• the boolean operators AND, OR, NOT

• LIKE, IN and BETWEEN

• ORDER BY

In particular and of notice, what is not supported is:

• cross entity joins

• JP-QL functions in particular aggregation functions like count

• JP-QL update and delete queries

That may sound rather limiting for your use cases so bear with us. This is a hot area we want to

improve, please tell us what feature you miss by opening a JIRA or via email. Also read the next

section, you will see other alternatives to implement your queries.

Let’s look at some of the queries you can express in JP-QL:

Example 7.1. Some JP-QL queries

// query returning an entity based on a simple predicate

select h from Hypothesis h where id = 16

// projection of the entity property

select id, description from Hypothesis h where id = 16

// projection of the embedded properties

select h.author.address.street from Hypothesis h where h.id = 16

// predicate comparing a property value and a literal

from Hypothesis h where h.position = '2'

// negation

from Hypothesis h where not h.id = '13'

from Hypothesis h where h.position <> 4

// conjunction

from Hypothesis h where h.position = 2 and not h.id = '13'

Query your entities

40

// named parameters

from Hypothesis h where h.description = :myParam

// range query

from Hypothesis h where h.description BETWEEN :start and :end"

// comparisons

from Hypothesis h where h.position < 3

// in

from Hypothesis h where h.position IN (2, 3, 4)

// like

from Hypothesis h where h.description LIKE '%dimensions%'

// comparison with null

from Hypothesis h where h.description IS null

// order by

from Hypothesis h where h.description IS NOT null ORDER BY id

from Helicopter h order by h.make desc, h.name

There are also features that are partially supported:

• Inner JOIN on an embedded association: works as expected with Neo4j and MongoDB; doesn’t

work if your datastore provider implements JP-QL queries using Hibernate Search.

• Projections or filters on properties of an embedded identifier: works as expected with Neo4j and

MongoDB; doesn’t work if your datastore provider implements JP-QL queries using Hibernate

Search.

These are better illustrated by the following example:

Example 7.2. Entity with embedded collection and supported JP-QL queries

@Indexed

@Entity

public class StoryGame {

 @DocumentId

 @EmbeddedId

 @FieldBridge(impl = NewsIdFieldBridge.class)

 private StoryID storyId;

 @ElementCollection

 @IndexedEmbedded

 private List<OptionalStoryBranch> optionalEndings;

 ...

}

Query your entities

41

@Embeddable

public class StoryID implements Serializable {

 private String title;

 private String author;

 ...

}

@Embeddable

public class OptionalStoryBranch {

 // Analyze.NO for filtering in query

 // Store.YES for projection in query

 @Field(store = Store.YES, analyze = Analyze.NO)

 private String text;

 ...

}

Filter the results using the supported operators will work for all the datastores:

String query =

 "SELECT sg" +

 "FROM StoryGame sg JOIN sg.optionalEndings ending WHERE ending.text = 'Happy ending'"

List<StoryGame> stories = session.createQuery(query).list();

Projection of properties of an embedded association works with Neo4j and MongoDB, but the

other datastores will only return one element from the association. This is due to the fact that

Hibernate Search is currently not supporting projection of associations. Here’s an example of a

query affected by this:

String query =

 "SELECT ending.text " +

 "FROM StoryGame sg JOIN sg.optionalEndings ending WHERE ending.text LIKE 'Happy%'";

List<String> endings = session.createQuery(query).list();

Projecting and filtering on embedded id properties works with Neo4j and MongoDB but throws an

exception with the other datastores:

String query =

 "SELECT sg.storyId.title FROM StoryGame sg WHERE sg.storyId.title = 'Best Story Ever'";

List<String> title = session.createQuery(query).list();

It will cause the following exception if the datastore uses Hibernate Search to execute JP-QL

queries:

Query your entities

42

org.hibernate.hql.ParsingException: HQL100002: The type [storyId] has no indexed proper

ty named title.

Note

In order to reflect changes performed in the current session, all entities affected by

a given query are flushed to the datastore prior to query execution (that’s the case

for Hibernate ORM as well as Hibernate OGM).

For not fully transactional stores, this can cause changes to be written as a side-

effect of running queries which cannot be reverted by a possible later rollback.

Depending on your specific use cases and requirements you may prefer to disable

auto-flushing, e.g. by invoking query.setFlushMode(FlushMode.MANUAL). Bear

in mind though that query results will then not reflect changes applied within the

current session.

7.2. Using the native query language of your NoSQL

Often you want the raw power of the underlying NoSQL query engine. Even if that costs you

portability.

Hibernate OGM addresses that problem by letting you express native queries (e.g. in MongoQL

or CypherQL) and map the result of these queries as mapped entities.

In JPA, use EntityManager.createNativeQuery. The first form accepts a result class if your

result set maps the mapping definition of the entity. The second form accepts the name of a

resultSetMapping and lets you customize how properties are mapped to columns by the query.

You can also used a predefined named query which defines its result set mapping.

Let’s take a look at how it is done for Neo4J:

Example 7.3. Various ways to create a native query in JPA

@Entity

@NamedNativeQuery(

 name = "AthanasiaPoem",

 query = "{ $and: [{ name : 'Athanasia' }, { author : 'Oscar Wilde' }] }",

 resultClass = Poem.class)

public class Poem {

 @Id

 private Long id;

 private String name;

 private String author;

Query your entities

43

 // getters, setters ...

}

...

javax.persistence.EntityManager em = ...

// a single result query

String query1 = "MATCH (n:Poem { name:'Portia', author:'Oscar Wilde' }) RETURN n";

Poem poem = (Poem) em.createNativeQuery(query1, Poem.class).getSingleResult();

// query with order by

String query2 = "MATCH (n:Poem { name:'Portia', author:'Oscar Wilde' }) " +

 "RETURN n ORDER BY n.name";

List<Poem> poems = em.createNativeQuery(query2, Poem.class).getResultList();

// query with projections

String query3 = MATCH (n:Poem) RETURN n.name, n.author ORDER BY n.name";

List<Object[]> poemNames = (List<Object[]>)em.createNativeQuery(query3)

 .getResultList();

// named query

Poem poem = (Poem) em.createNamedQuery("AthanasiaPoem").getSingleResult();

In the native Hibernate API, use OgmSession.createNativeQuery or Session.getNamedQuery.

The former form lets you define the result set mapping programmatically. The latter is receiving

the name of a predefined query already describing its result set mapping.

Example 7.4. Hibernate API defining a result set mapping

OgmSession session = ...

String query1 = "{ $and: [{ name : 'Portia' }, { author : 'Oscar Wilde' }] }";

Poem poem = session.createNativeQuery(query1)

 .addEntity("Poem", Poem.class)

 .uniqueResult();

Check out each individual datastore chapter for more info on the specifics of the native query

language mapping. In particular Neo4J and MongoDB.

7.3. Using Hibernate Search

Hibernate Search offers a way to index Java objects into Lucene indexes and to execute full-

text queries on them. The indexes do live outside your datastore. This offers a few interesting

properties in terms of feature set and scalability.

Apache Lucene is a full-text indexing and query engine with excellent query performance. Feature

wise, full-text means you can do much more than a simple equality match.

Hibernate Search natively integrates with Hibernate ORM. And Hibernate OGM of course!

Query your entities

44

Example 7.5. Using Hibernate Search for full-text matching

@Entity @Indexed

public class Hypothesis {

 @Id

 public String getId() { return id; }

 public void setId(String id) { this.id = id; }

 private String id;

 @Field(analyze=Analyze.YES)

 public String getDescription() { return description; }

 public void setDescription(String description) { this.description = description; }

 private String description;

}

EntityManager entityManager = ...

//Add full-text superpowers to any EntityManager:

FullTextEntityManager ftem = Search.getFullTextEntityManager(entityManager);

//Optionally use the QueryBuilder to simplify Query definition:

QueryBuilder b = ftem.getSearchFactory()

 .buildQueryBuilder()

 .forEntity(Hypothesis.class)

 .get();

//Create a Lucene Query:

Query lq = b.keyword().onField("description").matching("tomorrow").createQuery();

//Transform the Lucene Query in a JPA Query:

FullTextQuery ftQuery = ftem.createFullTextQuery(lq, Hypothesis.class);

//List all matching Hypothesis:

List<Hypothesis> resultList = ftQuery.getResultList();

Assuming our database contains an Hypothesis instance having description "Sometimes tomor-

row we release", that instance will be returned by our full-text query.

Text similarity can be very powerful as it can be configured for specific languages or domain

specific terminology; it can deal with typos and synonyms, and above all it can return results by

relevance.

Worth noting the Lucene index is a vectorial space of term occurrence statistics: so extracting

tags from text, frequencies of strings and correlate this data makes it very easy to build efficient

data analysis applications.

While the potential of Lucene queries is very high, it’s not suited for all use cases Let’s see some

of the limitations of Lucene Queries as our main query engine:

Query your entities

45

• Lucene doesn’t support Joins. Any to-One relations can be mapped fine, and the Lucene com-

munity is making progress on other forms, but restrictions on OneToMany or ManyToMany can’t

be implemented today.

• Since we apply changes to the index at commit time, your updates won’t affect queries until

you commit (we might improve on this).

• While queries are extremely fast, write operations are not as fast (but we can make it scale).

For a complete understanding of what Hibernate Search can do for you and how to use it, go check

the Hibernate Search reference documentation [http://docs.jboss.org/hibernate/stable/search/ref-

erence/en-US/html_single/].

7.4. Using the Criteria API

At this time, we have not implemented support for the Criteria APIs (neither Hibernate native and

JPA).

http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/
http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/
http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/

46

Chapter 8. NoSQL datastores
Currently Hibernate OGM supports the following NoSQL datastores:

• Map: stores data in an in-memory Java map to store data. Use it only for unit tests.

• Infinispan: stores data into Infinispan [http://infinispan.org/] (data grid)

• Ehcache: stores data into Ehcache [http://ehcache.org/] (cache)

• MongoDB: stores data into MongoDB [http://www.mongodb.org/] (document store)

• Neo4j: stores data into Neo4j [http://www.neo4j.org/] (graph database)

• CouchDB: stores data into CouchDB [https://couchdb.apache.org/] (document store)

• at this stage, this datastore is experimental

More are planned, if you are interested, come talk to us (see Chapter 1, How to get help and

contribute on Hibernate OGM).

For each datastore, Hibernate OGM has specific integration code called a datastore provider. All

are in a dedicated maven module, you simply need to depend on the one you use.

Hibernate OGM interacts with NoSQL datastores via two contracts:

• a DatastoreProvider which is responsible for starting and stopping the connection(s) with the

datastore and prop up the datastore if needed

• a GridDialect which is responsible for converting an Hibernate OGM operation into a datastore

specific operation

8.1. Using a specific NoSQL datastore

Only a few steps are necessary:

• add the datastore provider module in your classpath

• ask Hibernate OGM to use that datastore provider

• configure the URL or configuration to reach the datastore

Adding the relevant Hibernate OGM module in your classpath looks like this in Maven:

<dependency>

 <groupId>org.hibernate.ogm</groupId>

 <artifactId>hibernate-ogm-infinispan</artifactId>

http://infinispan.org/
http://infinispan.org/
http://ehcache.org/
http://ehcache.org/
http://www.mongodb.org/
http://www.mongodb.org/
http://www.neo4j.org/
http://www.neo4j.org/
https://couchdb.apache.org/
https://couchdb.apache.org/

NoSQL datastores

47

 <version>4.2.0.Final</version>

</dependency>

The module names are hibernate-ogm-infinispan, hibernate-ogm-ehcache, hiber-

nate-ogm-mongodb, hibernate-ogm-neo4j and hibernate-ogm-couchdb. The map datastore

is included in the Hibernate OGM engine module.

Next, configure which datastore provider you want to use. This is done via the

hibernate.ogm.datastore.provider option. Possible values are:

• specific shortcuts (preferable): map (only to be used for unit tests), infinispan, ehcache, mon-

godb, neo4j_embedded or couchdb_experimental

• the fully qualified class name of a DatastoreProvider implementation

Note

When bootstrapping a session factory or entity manager factory programmatically,

you should use the constants declared on OgmProperties to specify configuration

properties such as hibernate.ogm.datastore.provider.

In this case you also can specify the provider in form of a class object of a datastore

provider type or pass an instance of a datastore provider type:

Map<String, Object> properties = new HashMap<String, Object>();

// pass the type

properties.put(OgmProperties.DATASTORE_PROVIDER, MongoDBDatastoreProvider.class);

EntityManagerFactory emf = Persistence.createEntityManagerFactory("my-

pu", properties);

By default, a datastore provider chooses the best grid dialect transparently but you can manually

override that setting with the hibernate.ogm.datastore.grid_dialect option. Use the fully

qualified class name of the GridDialect implementation. Most users should ignore this setting

entirely and live a happier life instead.

Let’s now look at the specifics of each datastore provider. How to configure it further, what mapping

structure is used and more.

48

Chapter 9. Infinispan
Infinispan is an open source in-memory data grid focusing on high performance. As a data grid,

you can deploy it on multiple servers - referred to as nodes - and connect to it as if it were a single

storage engine: it will cleverly distribute both the computation effort and the data storage.

It is trivial to setup on a single node, in your local JVM, so you can easily try Hibernate OGM. But

Infinispan really shines in multiple node deployments: you will need to configure some networking

details but nothing changes in terms of application behaviour, while performance and data size

can scale linearly.

From all its features we will only describe those relevant to Hibernate OGM; for a complete de-

scription of all its capabilities and configuration options, refer to the Infinispan project documen-

tation at infinispan.org [http://infinispan.org].

9.1. Configure Infinispan

You configure Hibernate OGM and Infinispan in two steps basically:

• Add the dependencies to your classpath

• And then choose one of:

• Use the default Infinispan configuration (no action needed)

• Point to your own configuration resource file

• Point to a JNDI name of an existing Infinispan instance

9.1.1. Adding Infinispan dependencies

To add the dependencies via Maven, add the following module:

<dependency>

 <groupId>org.hibernate.ogm</groupId>

 <artifactId>hibernate-ogm-infinispan</artifactId>

 <version>4.2.0.Final</version>

</dependency>

If you’re not using a dependency management tool, copy all the dependencies from the distribution

in the directories:

• /lib/required

• /lib/infinispan

• Optionally - depending on your container - you might need some of the jars from /lib/provided

http://infinispan.org
http://infinispan.org

Infinispan

49

9.1.2. Infinispan specific configuration properties

The advanced configuration details of an Infinispan Cache are defined in an Infinispan specific

XML configuration file; the Hibernate OGM properties are simple and usually just point to this

external resource.

To use the default configuration provided by Hibernate OGM - which is a good starting point for

new users - you don’t have to set any property.

Hibernate OGM properties for Infinispan

hibernate.ogm.datastore.provider

Set it to infinispan to use Infinispan as the datastore provider.

hibernate.ogm.infinispan.cachemanager_jndi_name

If you have an Infinispan EmbeddedCacheManager registered in JNDI, provide the JNDI name

and Hibernate OGM will use this instance instead of starting a new CacheManager. This will

ignore any further configuration properties as Infinispan is assumed being already configured.

Infinispan can typically be pushed to JNDI via WildFly, Spring or Seam.

hibernate.ogm.infinispan.configuration_resource_name

Should point to the resource name of an Infinispan configuration file. This is ignored

in case JNDI lookup is set. Defaults to org/hibernate/ogm/datastore/infinispan/de-

fault-config.xml.

hibernate.ogm.datastore.keyvalue.cache_storage

The strategy for persisting data in Infinispan. The following two strategies exist (values of the

org.hibernate.ogm.datastore.keyvalue.options.CacheMappingType enum):

• CACHE_PER_TABLE: A dedicated cache will be used for each entity type, association type

and id source table.

• CACHE_PER_KIND: Three caches will be used: one cache for all entities, one cache for all

associations and one cache for all id sources.

Defaults to CACHE_PER_TABLE. It is the recommended strategy as it makes it easier to target

a specific cache for a given entity.

Note

When bootstrapping a session factory or entity manager factory programmatically,

you should use the constants accessible via InfinispanProperties when spec-

ifying the configuration properties listed above.

Common properties shared between stores are declared on OgmProperties (a

super interface of InfinispanProperties).

For maximum portability between stores, use the most generic interface possible.

Infinispan

50

9.1.3. Cache names used by Hibernate OGM

Depending on the cache mapping approach, Hibernate OGM will either:

• store each entity type, association type and id source table in a dedicated cache very much like

what Hibernate ORM would do. This is the CACHE_PER_TABLE approach.

• store data in three different caches when using the CACHE_PER_KIND approach:

• ENTITIES: is going to be used to store the main attributes of all your entities.

• ASSOCIATIONS: stores the association information representing the links between entities.

• IDENTIFIER_STORE: contains internal metadata that Hibernate OGM needs to provide se-

quences and auto-incremental numbers for primary key generation.

The preferred strategy is CACHE_PER_TABLE as it offers both more fine grained configuration op-

tions and the ability to work on specific entities in a more simple fashion.

In the following paragraphs, we will explain which aspects of Infinispan you’re likely to want to

reconfigure from their defaults. All attributes and elements from Infinispan which we don’t mention

are safe to ignore. Refer to the Infinispan User Guide [http://infinispan.org/documentation/] for the

guru level performance tuning and customizations.

An Infinispan configuration file is an XML file complying with the Infinispan schema; the basic

structure is shown in the following example:

Example 9.1. Simple structure of an infinispan xml configuration file

<?xml version="1.0" encoding="UTF-8"?>

<infinispan

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:infinispan:config:7.0 http://www.infinispan.org/schemas/infinispan-

config-7.0.xsd"

 xmlns="urn:infinispan:config:7.0">

 <cache-container name="HibernateOGM" default-cache="DEFAULT">

 <!-- *************************** -->

 <!-- Default cache settings -->

 <!-- *************************** -->

 <local-cache name="DEFAULT">

 <transaction mode="NON_DURABLE_XA"

 transaction-manager-

lookup="org.infinispan.transaction.lookup.JBossStandaloneJTAManagerLookup"/>

 </local-cache>

 <local-cache name="User"/>

 <local-cache name="Order"/>

 <local-cache name="associations_User_Order"/>

http://infinispan.org/documentation/
http://infinispan.org/documentation/

Infinispan

51

 </cache-container>

</infinispan>

There are global settings that can be set before the cache_container section. These settings will

affect the whole instance; mainly of interest for Hibernate OGM users is the jgroups element in

which we will set JGroups configuration overrides.

Inside the cache-container section are defined explicit named caches and their configurations

as well as the default cache (named DEFAULT here) if we want to affect all named caches. This is

where we will likely want to configure clustering modes, eviction policies and CacheStores.

9.2. Manage data size

In its default configuration Infinispan stores all data in the heap of the JVM; in this barebone mode

it is conceptually not very different than using a HashMap: the size of the data should fit in the

heap of your VM, and stopping/killing/crashing your application will get all data lost with no way

to recover it.

To store data permanently (out of the JVM memory) a CacheStore should be enabled. The in-

finispan-core.jar includes a simple implementation able to store data in simple binary files,

on any read/write mounted filesystem; this is an easy starting point, but the real stuff is to be

found in the additional modules found in the Infinispan distribution. Here you can find many more

implementations to store your data in anything from JDBC connected relational databases, other

NoSQL engines, to cloud storage services or other Infinispan clusters. Finally, implementing a

custom CacheStore is quite easy.

To limit the memory consumption of the precious heap space, you can activate a passivation or

an eviction policy; again there are several strategies to play with, for now let’s just consider you’ll

likely need one to avoid running out of memory when storing too many entries in the bounded

JVM memory space; of course you don’t need to choose one while experimenting with limited

data sizes: enabling such a strategy doesn’t have any other impact in the functionality of your

Hibernate OGM application (other than performance: entries stored in the Infinispan in-memory

space is accessed much quicker than from any CacheStore).

A CacheStore can be configured as write-through, committing all changes to the CacheStore

before returning (and in the same transaction) or as write-behind. A write-behind configuration is

normally not encouraged in storage engines, as a failure of the node implies some data might be

lost without receiving any notification about it, but this problem is mitigated in Infinispan because

of its capability to combine CacheStore write-behind with a synchronous replication to other In-

finispan nodes.

Example 9.2. Enabling a FileCacheStore and eviction

<local-cache name="User">

 <transaction mode="NON_DURABLE_XA"

 transaction-manager-

lookup="org.infinispan.transaction.lookup.JBossStandaloneJTAManagerLookup"/>

Infinispan

52

 <eviction strategy="LIRS" max-entries="2000"/>

 <persistence passivation="true">

 <file-store

 shared="false"

 path="/var/infinispan/myapp/users"

 <write-behind flush-lock-timeout="15000" thread-pool-size="5" />

 </file-store>

 </persistence>

</local-cache>

In this example we enabled both eviction and a CacheStore (the persistence element). LIRS

is one of the choices we have for eviction strategies. Here it is configured to keep (approximately)

2000 entries in live memory and evict the remaining as a memory usage control strategy.

The CacheStore is enabling passivation, which means that the entries which are evicted are

stored on the filesystem.

Warning

You could configure an eviction strategy while not configuring a passivating

CacheStore! That is a valid configuration for Infinispan but will have the evictor

permanently remove entries. Hibernate OGM will break in such a configuration.

9.3. Clustering: store data on multiple Infinispan nodes

The best thing about Infinispan is that all nodes are treated equally and it requires almost no

beforehand capacity planning: to add more nodes to the cluster you just have to start new JVMs,

on the same or different physical servers, having your same Infinispan configuration and your

same application.

Infinispan supports several clustering cache modes; each mode provides the same API and func-

tionality but with different performance, scalability and availability options:

Infinispan cache modes

local

Useful for a single VM: networking stack is disabled

replication

All data is replicated to each node; each node contains a full copy of all entries. Consequen-

tially reads are faster but writes don’t scale as well. Not suited for very large datasets.

distribution

Each entry is distributed on multiple nodes for redundancy and failure recovery, but not to

all the nodes. Provides linear scalability for both write and read operations. distribution is the

default mode.

Infinispan

53

To use the replication or distribution cache modes Infinispan will use JGroups to discover

and connect to the other nodes.

In the default configuration, JGroups will attempt to autodetect peer nodes using a multicast sock-

et; this works out of the box in the most network environments but will require some extra configu-

ration in cloud environments (which often block multicast packets) or in case of strict firewalls. See

the JGroups reference documentation [http://www.jgroups.org/manual/html_single/], specifically

look for Discovery Protocols to customize the detection of peer nodes.

Nowadays, the JVM defaults to use IPv6 network stack; this will work fine with JGroups, but only

if you configured IPv6 correctly. It is often useful to force the JVM to use IPv4.

It is also useful to let JGroups know which networking interface you want to use; especially if you

have multiple interfaces it might not guess correctly.

Example 9.3. JVM properties to set for clustering

#192.168.122.1 is an example IPv4 address

-Djava.net.preferIPv4Stack=true -Djgroups.bind_addr=192.168.122.1

Note

You don’t need to use IPv4: JGroups is compatible with IPv6 provided you have

routing properly configured and valid addresses assigned.

The jgroups.bind_addr needs to match a placeholder name in your JGroups

configuration in case you don’t use the default one.

The default configuration uses distribution as cache mode and uses the jgroups-tcp.xml

configuration for JGroups, which is contained in the Infinispan jar as the default configuration for

Infinispan users. Let’s see how to reconfigure this:

Example 9.4. Reconfiguring cache mode and override JGroups

configuration

<?xml version="1.0" encoding="UTF-8"?>

<infinispan

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:infinispan:config:7.0 http://www.infinispan.org/schemas/infinispan-

config-7.0.xsd"

 xmlns="urn:infinispan:config:7.0">

 <jgroups>

 <stack-file name="custom-stack" path="my-jgroups-conf.xml" />

 </jgroups>

 <cache-container name="HibernateOGM" default-cache="DEFAULT">

 <transport stack="custom-stack" />

http://www.jgroups.org/manual/html_single/
http://www.jgroups.org/manual/html_single/

Infinispan

54

 <!-- *************************************** -->

 <!-- Default cache used as template -->

 <!-- *************************************** -->

 <distrubuted-cache name="DEFAULT" mode="SYNC">

 <locking striping="false" acquire-timeout="10000"

 concurrency-level="500" write-skew="false" />

 <transaction mode="NON_DURABLE_XA"

 transaction-manager-

lookup="org.infinispan.transaction.lookup.JBossStandaloneJTAManagerLookup" />

 <state-transfer enabled="true" timeout="480000"

 await-initial-transfer="true" />

 </distributed-cache>

 <!-- Override the cache mode: -->

 <replicated-cache name="User" mode="SYNC">

 <locking striping="false" acquire-timeout="10000"

 concurrency-level="500" write-skew="false" />

 <transaction mode="NON_DURABLE_XA"

 transaction-manager-

lookup="org.infinispan.transaction.lookup.JBossStandaloneJTAManagerLookup" />

 <state-transfer enabled="true" timeout="480000"

 await-initial-transfer="true" />

 </replicated-cache>

 <distributed-cache name="Order" mode="SYNC">

 <locking striping="false" acquire-timeout="10000"

 concurrency-level="500" write-skew="false" />

 <transaction mode="NON_DURABLE_XA"

 transaction-manager-

lookup="org.infinispan.transaction.lookup.JBossStandaloneJTAManagerLookup" />

 <state-transfer enabled="true" timeout="480000"

 await-initial-transfer="true" />

 </distributed-cache>

 <distributed-cache name="associations_User_Order" mode="SYNC">

 <locking striping="false" acquire-timeout="10000"

 concurrency-level="500" write-skew="false" />

 <transaction mode="NON_DURABLE_XA"

 transaction-manager-

lookup="org.infinispan.transaction.lookup.JBossStandaloneJTAManagerLookup" />

 <state-transfer enabled="true" timeout="480000"

 await-initial-transfer="true" />

 </distributed-cache>

 </cache-container>

</infinispan>

In the example above we specify a custom JGroups configuration file and set the cache mode

for the default cache to distribution; this is going to be inherited by the Order and the

associations_User_Order caches. But for User we have chosen (for the sake of this example)

to use replication.

Now that you have clustering configured, start the service on multiple nodes. Each node will need

the same configuration and jars.

Infinispan

55

Tip

We have just shown how to override the clustering mode and the networking stack

for the sake of completeness, but you don’t have to!

Start with the default configuration and see if that fits you. You can fine tune these

setting when you are closer to going in production.

9.4. Storage principles

To describe things simply, each entity is stored under a single key. The value itself is a map

containing the columns / values pair.

Each association from one entity instance to (a set of) another is stored under a single key. The

value contains the navigational information to the (set of) entity.

9.4.1. Properties and built-in types

Each entity is represented by a map. Each property or more precisely column is represented by

an entry in this map, the key being the column name.

Hibernate OGM support by default the following property types:

• java.lang.String

• java.lang.Character (or char primitive)

• java.lang.Boolean (or boolean primitive); Optionally the annotations @Type(type =

"true_false"), @Type(type = "yes_no") and @Type(type = "numeric_boolean") can be

used to map boolean properties to the characters 'T'/'F', 'Y'/'N' or the int values 0/1, respectively.

• java.lang.Byte (or byte primitive)

• java.lang.Short (or short primitive)

• java.lang.Integer (or integer primitive)

• java.lang.Long (or long primitive)

• java.lang.Integer (or integer primitive)

• java.lang.Float (or float primitive)

• java.lang.Double (or double primitive)

• java.math.BigDecimal

• java.math.BigInteger

Infinispan

56

• java.util.Calendar

• java.util.Date

• java.util.UUID

• java.util.URL

Note

Hibernate OGM doesn’t store null values in Infinispan, setting a value to null is the

same as removing the corresponding entry from Infinispan.

This can have consequences when it comes to queries on null value.

9.4.2. Identifiers

Entity identifiers are used to build the key in which the entity is stored in the cache.

The key is comprised of the following information:

• the identifier column names

• the identifier column values

• the entity table (for the CACHE_PER_KIND strategy)

In CACHE_PER_TABLE, the table name is inferred from the cache name. In CACHE_PER_KIND, the

table name is necessary to identify the entity in the generic cache.

Example 9.5. Define an identifier as a primitive type

@Entity

public class Bookmark {

 @Id

 private Long id;

 private String title;

 // getters, setters ...

}

Table 9.1. Content of the Bookmark cache in CACHE_PER_TABLE

KEY MAP ENTRIES

["id"], [42] id 42

Infinispan

57

KEY MAP ENTRIES

title "Hibernate OGM documenta-

tion"

Table 9.2. Content of the ENTITIES cache in CACHE_PER_KIND

KEY MAP ENTRIES

id 42

"Bookmark", ["id"], [42] title "Hibernate OGM documenta-

tion"

Example 9.6. Define an identifier using @EmbeddedId

@Embeddable

public class NewsID implements Serializable {

 private String title;

 private String author;

 // getters, setters ...

}

@Entity

public class News {

 @EmbeddedId

 private NewsID newsId;

 private String content;

 // getters, setters ...

}

Table 9.3. Content of the News cache in CACHE_PER_TABLE

KEY MAP ENTRIES

newsId.author "Guillaume"

newsId.title "How to use Hibernate

OGM ?"

[newsId.author, newsId.title],

["Guillaume", "How to

use Hibernate OGM ?"] content "Simple, just like ORM but

with a NoSQL database"

Table 9.4. Content of the ENTITIES cache in CACHE_PER_KIND

KEY MAP ENTRIES

"News", [newsId.author,

newsId.title], ["Guil-

newsId.author "Guillaume"

Infinispan

58

KEY MAP ENTRIES

newsId.title "How to use Hibernate

OGM ?"laume", "How to use

Hibernate OGM ?"] content "Simple, just like ORM but

with a NoSQL database"

9.4.2.1. Identifier generation strategies

Since Infinispan has not native sequence nor identity column support, these are simulated using

the table strategy, however their default values vary. We highly recommend you explicitly use a

TABLE strategy if you want to generate a monotonic identifier.

But if you can, use a pure in-memory and scalable strategy like a UUID generator.

Example 9.7. Id generation strategy TABLE using default values

@Entity

public class GuitarPlayer {

 @Id

 @GeneratedValue(strategy = GenerationType.TABLE)

 private long id;

 private String name;

 // getters, setters ...

}

Table 9.5. Content of the hibernate_sequences cache in CACHE_PER_TABLE

KEY NEXT VALUE

["sequence_name"], ["default"] 2

Table 9.6. Content of the IDENTIFIERS cache in CACHE_PER_KIND

KEY NEXT VALUE

"hibernate_sequences", ["sequence_name"],

["default"]
2

As you can see, in CACHE_PER_TABLE, the key does not contain the id source table name. It is

inferred by the cache name hosting that key.

Example 9.8. Id generation strategy TABLE using a custom table

@Entity

Infinispan

59

public class GuitarPlayer {

 @Id

 @GeneratedValue(strategy = GenerationType.TABLE, generator = "guitarGen")

 @TableGenerator(

 name = "guitarGen",

 table = "GuitarPlayerSequence",

 pkColumnName = "seq"

 pkColumnValue = "guitarPlayer",

)

 private long id;

 // getters, setters ...

}

Table 9.7. Content of the GuitarPlayerSequence cache in CACHE_PER_TABLE

KEY NEXT VALUE

["seq"], ["guitarPlayer"] 2

Table 9.8. Content of the IDENTIFIERS cache in CACHE_PER_KIND

KEY NEXT VALUE

"GuitarPlayerSequence", ["seq"], ["guitarPlay-

er"]
2

Example 9.9. SEQUENCE id generation strategy

@Entity

public class Song {

 @Id

 @GeneratedValue(strategy = GenerationType.SEQUENCE, generator = "songSequenceGenerator")

 @SequenceGenerator(

 name = "songSequenceGenerator",

 sequenceName = "song_sequence",

 initialValue = 2,

 allocationSize = 20

)

 private Long id;

 private String title;

 // getters, setters ...

}

Table 9.9. Content of the hibernate_sequences cache in CACHE_PER_TABLE

KEY NEXT VALUE

["sequence_name"], ["song_sequence"] 11

Infinispan

60

Table 9.10. Content of the IDENTIFIERS cache in CACHE_PER_KIND

KEY NEXT VALUE

"hibernate_sequences", "["sequence_name"],

["song_sequence"]
11

9.4.3. Entities

Entities are stored in the cache named after the entity name when using the CACHE_PER_TABLE

strategy. In the CACHE_PER_KIND strategy, entities are stored in a single cache named ENTITIES.

The key is comprised of the following information:

• the identifier column names

• the identifier column values

• the entity table (for the CACHE_PER_KIND strategy)

In CACHE_PER_TABLE, the table name is inferred from the cache name. In CACHE_PER_KIND, the

table name is necessary to identify the entity in the generic cache.

The entry value is an instance of org.infinispan.atomic.FineGrainedMap which contains all

the entity properties - or to be specific columns. Each column name and value is stored as a key /

value pair in the map. We use this specialized map as Infinispan is able to transport changes in

a much more efficient way.

Example 9.10. Default JPA mapping for an entity

@Entity

public class News {

 @Id

 private String id;

 private String title;

 // getters, setters ...

}

Table 9.11. Content of the News cache in CACHE_PER_TYPE

KEY MAP ENTRIES

id "1234-5678"
["id"], ["1234-5678"]

title "On the merits of NoSQL"

Infinispan

61

Table 9.12. Content of the ENTITIES cache in CACHE_PER_KIND

KEY MAP ENTRIES

id "1234-5678"
"News", ["id"], ["1234-5678"]

title "On the merits of NoSQL"

As you can see, the table name is not part of the key for CACHE_PER_TYPE. In the rest of this

section we will no longer show the CACHE_PER_KIND strategy.

Example 9.11. Rename field and collection using @Table and @Column

@Entity

@Table(name = "Article")

public class News {

 @Id

 private String id;

 @Column(name = "headline")

 private String title;

 // getters, setters ...

}

Table 9.13. Content of the Article cache

KEY MAP ENTRIES

id "1234-5678"
["id"], ["1234-5678"]

headline "On the merits of NoSQL"

9.4.3.1. Embedded objects and collections

Example 9.12. Embedded object

@Entity

public class News {

 @Id

 private String id;

 private String title;

 @Embedded

 private NewsPaper paper;

 // getters, setters ...

}

@Embeddable

public class NewsPaper {

Infinispan

62

 private String name;

 private String owner;

 // getters, setters ...

}

Table 9.14. Content of the News cache

KEY MAP ENTRIES

id "1234-5678"

title "On the merits of NoSQL"

paper.name "NoSQL journal of prophecies"
["id"], ["1234-5678"]

paper.owner "Delphy"

Example 9.13. @ElementCollection with one attribute

@Entity

public class GrandMother {

 @Id

 private String id;

 @ElementCollection

 private List<GrandChild> grandChildren = new ArrayList<GrandChild>();

 // getters, setters ...

}

@Embeddable

public class GrandChild {

 private String name;

 // getters, setters ...

}

Table 9.15. Content of the GrandMother cache

KEY MAP ENTRIES

["id"], ["granny"] id "granny"

Table 9.16. Content of the associations_GrandMother_grandChildren cache in

CACHE_PER_TYPE

KEY ROW KEY ROW MAP ENTRIES

["GrandMother_id"],

["granny"]

GrandMother_id "granny"

Infinispan

63

KEY ROW KEY ROW MAP ENTRIES

["GrandMother_id",

"name"],

["granny", "Leia"]

name "Leia"

GrandMother_id "granny"["GrandMother_id",

"name"],

["granny", "Luke"]
name "Luke"

Table 9.17. Content of the ASSOCIATIONS cache in CACHE_PER_KIND

KEY ROW KEY ROW MAP ENTRIES

GrandMother_id "granny"["GrandMother_id",

"name"],

["granny", "Leia"]
name "Leia"

GrandMother_id "granny"

"GrandMother_grandChildren",

["GrandMother_id"],

["granny"] ["GrandMother_id",

"name"],

["granny", "Luke"]
name "Luke"

Here, we see that the collection of elements is stored in a separate cache and entry. The asso-

ciation key is made of:

• the foreign key column names pointing to the owner of this association

• the foreign key column values pointing to the owner of this association

• the association table name in the CACHE_PER_KIND approach where all associations share the

same cache

The association entry is a map containing the representation of each entry in the collection. The

keys of that map are made of:

• the names of the columns uniquely identifying that specific collection entry (e.g. for a Set this

is all of the columns)

• the values of the columns uniquely identifying that specific collection entry

The value attack to that collection entry key is a Map containing the key value pairs column name /

column value.

Example 9.14. @ElementCollection with @OrderColumn

@Entity

public class GrandMother {

 @Id

 private String id;

 @ElementCollection

Infinispan

64

 @OrderColumn(name = "birth_order")

 private List<GrandChild> grandChildren = new ArrayList<GrandChild>();

 // getters, setters ...

}

@Embeddable

public class GrandChild {

 private String name;

 // getters, setters ...

}

Table 9.18. Content of the GrandMother cache

KEY MAP ENTRIES

["id"], ["granny"] id "granny"

Table 9.19. Content of the GrandMother_grandChildren cache

KEY ROW KEY ROW MAP ENTRIES

GrandMother_id "granny"

birth_order 0

["GrandMother_id",

"birth_order"],

["granny", 0] name "Leia"

GrandMother_id "granny"

birth_order 1

["GrandMother_id"],

["granny"]
["GrandMother_id",

"birth_order"],

["granny", 1] name "Luke"

Here we used an indexed collection and to identify the entry in the collection, only the owning

entity id and the index value is enough.

9.4.4. Associations

Associations between entities are mapped like (collection of) embeddables except that the target

entity is represented by its identifier(s).

Example 9.15. Unidirectional one-to-one

@Entity

public class Vehicule {

 @Id

 private String id;

 private String brand;

 // getters, setters ...

}

Infinispan

65

@Entity

public class Wheel {

 @Id

 private String id;

 private double diameter;

 @OneToOne

 private Vehicule vehicule;

 // getters, setters ...

}

Table 9.20. Content of the Vehicule cache

KEY MAP ENTRIES

id "V_01"
["id"], ["V_01"]

brand "Mercedes"

Table 9.21. Content of the Wheel cache

KEY MAP ENTRIES

id "W001"

diameter 0.0["id"], ["W001"]

vehicule_id "V_01"

Example 9.16. Unidirectional one-to-one with @JoinColumn

@Entity

public class Vehicule {

 @Id

 private String id;

 private String brand;

 // getters, setters ...

}

@Entity

public class Wheel {

 @Id

 private String id;

 private double diameter;

 @OneToOne

 @JoinColumn(name = "part_of")

 private Vehicule vehicule;

Infinispan

66

 // getters, setters ...

}

Table 9.22. Content of the Vehicle cache

KEY MAP ENTRIES

id "V_01"
["id"], ["V_01"]

brand "Mercedes"

Table 9.23. Content of the Wheel cache

KEY MAP ENTRIES

id "W001"

diameter 0.0"Wheel", ["id"], ["W001"]

part_of "V_01"

Example 9.17. Unidirectional one-to-one with @MapsId and

@PrimaryKeyJoinColumn

@Entity

public class Vehicule {

 @Id

 private String id;

 private String brand;

 // getters, setters ...

}

@Entity

public class Wheel {

 @Id

 private String id;

 private double diameter;

 @OneToOne

 @PrimaryKeyJoinColumn

 @MapsId

 private Vehicule vehicule;

 // getters, setters ...

}

Table 9.24. Content of the Vehicle cache

KEY MAP ENTRIES

["id"], ["V_01"] id "V_01"

Infinispan

67

KEY MAP ENTRIES

brand "Mercedes"

Table 9.25. Content of the Wheel cache

KEY MAP ENTRIES

vehicule_id "V_01"
["vehicule_id"], ["V_01"]

diameter 0.0

Example 9.18. Bidirectional one-to-one

@Entity

public class Husband {

 @Id

 private String id;

 private String name;

 @OneToOne

 private Wife wife;

 // getters, setters ...

}

@Entity

public class Wife {

 @Id

 private String id;

 private String name;

 @OneToOne(mappedBy="wife")

 private Husband husband;

 // getters, setters ...

}

Table 9.26. Content of the Husband cache

KEY MAP ENTRIES

id "alex"

name "Alex"["id"], ["alex"]

wife "bea"

Table 9.27. Content of the Wife cache

KEY MAP ENTRIES

["id"], ["bea"] id "bea"

Infinispan

68

KEY MAP ENTRIES

name "Bea"

Table 9.28. Content of the associations_Husband cache

KEY ROW KEY MAP ENTRIES

id "alex"
["wife"], ["bea"]

["id", "wife"],

["alex", "bea"] wife "bea"

Example 9.19. Unidirectional one-to-many

@Entity

public class Basket {

 @Id

 private String id;

 private String owner;

 @OneToMany

 private List<Product> products = new ArrayList<Product>();

 // getters, setters ...

}

@Entity

public class Product {

 @Id

 private String name;

 private String description;

 // getters, setters ...

}

Table 9.29. Content of the Basket cache

KEY MAP ENTRIES

id "davide_basket"
["id"], ["davide_basket"]

owner "Davide"

Table 9.30. Content of the Product cache

KEY MAP ENTRIES

name "Beer"
["name"], ["Beer"]

description "Tactical Nuclear Penguin"

Infinispan

69

KEY MAP ENTRIES

name "Pretzel"
["name"], ["Pretzel"]

description "Glutino Pretzel Sticks"

Table 9.31. Content of the associations_Basket_Product cache

KEY ROW KEY MAP ENTRIES

Basket_id "davide_basket"["Basket_id",

"products_name"],

["davide_basket",

"Beer"]

products_name "Beer"

Basket_id "davide_basket"

["Basket_id"],

["davide_basket"] ["Basket_id",

"products_name"],

["davide_basket",

"Pretzel"]

products_name "Pretzel"

Example 9.20. Unidirectional one-to-many with @JoinTable

@Entity

public class Basket {

 @Id

 private String id;

 private String owner;

 @OneToMany

 @JoinTable(name = "BasketContent")

 private List<Product> products = new ArrayList<Product>();

 // getters, setters ...

}

@Entity

public class Product {

 @Id

 private String name;

 private String description;

 // getters, setters ...

}

Table 9.32. Content of the Basket cache

KEY MAP ENTRIES

["id"], ["davide_basket"] id "davide_basket"

Infinispan

70

KEY MAP ENTRIES

owner "Davide"

Table 9.33. Content of the Basket cache

KEY MAP ENTRIES

name "Beer"
["name"], ["Beer"]

description "Tactical Nuclear Penguin"

name "Pretzel"
["name"], ["Pretzel"]

description "Glutino Pretzel Sticks"

Table 9.34. Content of the associations_BasketContent cache

KEY ROW KEY MAP ENTRIES

Basket_id "davide_basket"["Basket_id",

"products_name"],

["davide_basket",

"Beer"]

products_name "Beer"

Basket_id "davide_basket"

["Basket_id"],

["davide_basket"] ["Basket_id",

"products_name"],

["davide_basket",

"Pretzel"]

products_name "Pretzel"

Example 9.21. Unidirectional one-to-many using maps with defaults

@Entity

public class User {

 @Id

 private String id;

 @OneToMany

 private Map<String, Address> addresses = new HashMap<String, Address>();

 // getters, setters ...

}

@Entity

public class Address {

 @Id

 private String id;

 private String city;

 // getters, setters ...

}

Infinispan

71

Table 9.35. Content of the User cache

KEY MAP ENTRIES

["id"], ["user_001"] id "user_001"

Table 9.36. Content of the Address cache

KEY MAP ENTRIES

id "address_001"
["id"], ["address_001"]

city "Rome"

id "address_002"
["id"], ["address_002"]

city "Paris"

Table 9.37. Content of the associations_User_address cache

KEY ROW KEY MAP ENTRIES

User_id "user_001"

addresses_KEY "home"

["User_id",

"addresses_KEY"],

["user_001", "home"] addresses_id "address_001"

User_id "user_002"

addresses_KEY "work"

["User_id"],

"user_001"]
["User_id",

"addresses_KEY"],

["user_001", "work"] addresses_id "address_002"

Example 9.22. Unidirectional one-to-many using maps with

@MapKeyColumn

@Entity

public class User {

 @Id

 private String id;

 @OneToMany

 @MapKeyColumn(name = "addressType")

 private Map<String, Address> addresses = new HashMap<String, Address>();

 // getters, setters ...

}

@Entity

public class Address {

 @Id

 private String id;

 private String city;

Infinispan

72

 // getters, setters ...

}

Table 9.38. Content of the User cache

KEY MAP ENTRIES

["id"], ["user_001"] id "user_001"

Table 9.39. Content of the Address cache

KEY MAP ENTRIES

id "address_001"
["id"], ["address_001"]

city "Rome"

id "address_002"
["id"], ["address_002"]

city "Paris"

Table 9.40. Content of the associations_User_address cache

KEY ROW KEY MAP ENTRIES

User_id "user_001"

addressesType "home"

["User_id", "ad-

dressType"],

["user_001", "home"] addresses_id "address_001"

User_id "user_002"

addressesType "work"

["User_id"],

"user_001"]
["User_id", "ad-

dressType"],

["user_001", "work"] addresses_id "address_002"

Example 9.23. Unidirectional many-to-one

@Entity

public class JavaUserGroup {

 @Id

 private String jugId;

 private String name;

 // getters, setters ...

}

@Entity

public class Member {

 @Id

 private String id;

 private String name;

Infinispan

73

 @ManyToOne

 private JavaUserGroup memberOf;

 // getters, setters ...

}

Table 9.41. Content of the JavaUserGroup cache

KEY MAP ENTRIES

jugId "summer_camp"
["jugId"], ["summer_camp"]

name "JUG Summer Camp"

Table 9.42. Content of the Member cache

KEY MAP ENTRIES

member_id "emmanuel"

name "Emmanuel Bernard"["member_id"], ["emmanuel"]

memberOf_jug_id "summer_camp"

member_id "jerome"

name "Jerome"["member_id"], ["jerome"]

memberOf_jug_id "summer_camp"

Example 9.24. Bidirectional many-to-one

@Entity

public class SalesForce {

 @Id

 private String id;

 private String corporation;

 @OneToMany(mappedBy = "salesForce")

 private Set<SalesGuy> salesGuys = new HashSet<SalesGuy>();

 // getters, setters ...

}

@Entity

public class SalesGuy {

 private String id;

 private String name;

 @ManyToOne

 private SalesForce salesForce;

 // getters, setters ...

}

Infinispan

74

Table 9.43. Content of the SalesForce cache

KEY MAP ENTRIES

id "red_hat"
["id"], ["red_hat"]

corporation "Red Hat"

Table 9.44. Content of the SalesGuy cache

KEY MAP ENTRIES

id "eric"

name "Eric"["id"], ["eric"]

salesForce_id "red_hat"

id "simon"

name "Simon"["id"], ["simon"]

salesForce_id "red_hat"

Table 9.45. Content of the associations_SalesGuy cache

KEY ROW KEY MAP ENTRIES

salesForce_id "red_hat"["salesForce_id", "id"],

["red_hat", "eric"] id "eric"

salesForce_id "red_hat"

["salesForce_id"],

["red_hat"] ["salesForce_id", "id"],

["red_hat", "simon"] id "simon"

Example 9.25. Unidirectional many-to-many

@Entity

public class Student {

 @Id

 private String id;

 private String name;

 // getters, setters ...

}

@Entity

public class ClassRoom {

 @Id

 private long id;

 private String lesson;

 @ManyToMany

 private List<Student> students = new ArrayList<Student>();

Infinispan

75

 // getters, setters ...

}

The "Math" class has 2 students: John Doe and Mario Rossi

The "English" class has 2 students: Kate Doe and Mario Rossi

Table 9.46. Content of the ClassRoom cache

KEY MAP ENTRIES

id 1
["id"], [1]

name "Math"

id 2
["id"], [2]

name "English"

Table 9.47. Content of the Student cache

KEY MAP ENTRIES

id "john"
["id"], ["john"]

name "John Doe"

id "mario"
["id"], ["mario"]

name "Mario Rossi"

id "kate"
["id"], ["kate"]

name "Kate Doe"

Table 9.48. Content of the associations_ClassRoom_Student cache

KEY ROW KEY MAP ENTRIES

ClassRoom_id 1["ClassRoom_id",

"students_id"],

[1, "mario"]
students_id "mario"

ClassRoom_id 1
["ClassRoom_id"], [1]

["ClassRoom_id",

"students_id"],

[1, "john"]
students_id "john"

ClassRoom_id 2["ClassRoom_id",

"students_id"],

[2, "kate"]
students_id "kate"

ClassRoom_id 2
["ClassRoom_id"], [2]

["ClassRoom_id",

"students_id"],

[2, "mario"]
students_id "mario"

Infinispan

76

Example 9.26. Bidirectional many-to-many

@Entity

public class AccountOwner {

 @Id

 private String id;

 private String SSN;

 @ManyToMany

 private Set<BankAccount> bankAccounts;

 // getters, setters ...

}

@Entity

public class BankAccount {

 @Id

 private String id;

 private String accountNumber;

 @ManyToMany(mappedBy = "bankAccounts")

 private Set<AccountOwner> owners = new HashSet<AccountOwner>();

 // getters, setters ...

}

David owns 2 accounts: "012345" and "ZZZ-009"

Table 9.49. Content of the AccountOwner cache

KEY MAP ENTRIES

id "David"
["id"], ["David"]

SSN "0123456"

Table 9.50. Content of the BankAccount cache

KEY MAP ENTRIES

id "account_1"
["id"], ["account_1"]

accountNumber "X2345000"

id "account_2"
["id"], ["account_2"]

accountNumber "ZZZ-009"

Infinispan

77

Table 9.51. Content of the AccountOwner_BankAccount cache

KEY ROW KEY MAP ENTRIES

bankAccounts_id "account_1"
["bankAccounts_id"],

["account_1"]

["bankAccounts_id",

"owners_id"], ["ac-

count_1", "David"]
owners_id "David"

bankAccounts_id "account_2"
["bankAccounts_id"],

["account_2"]

["bankAccounts_id",

"owners_id"], ["ac-

count_2", "David"]
owners_id "David"

bankAccounts_id "account_1"["owners_id",

"banksAccounts_id"],

["David", "account_1"]
owners_id "David"

bankAccounts_id "account_2"

["owners_id"],

["David"] ["owners_id",

"banksAccounts_id"],

["David", "account_2"]
owners_id "David"

9.5. Transactions

Infinispan supports transactions and integrates with any standard JTA TransactionManager; this

is a great advantage for JPA users as it allows to experience a similar behaviour to the one we

are used to when we work with RDBMS databases.

If you’re having Hibernate OGM start and manage Infinispan, you can skip this as it will inject

the same TransactionManager instance which you already have set up in the Hibernate / JPA

configuration.

If you are providing an already started Infinispan CacheManager instance by using the JNDI lookup

approach, then you have to make sure the CacheManager is using the same TransactionMan-

ager as Hibernate:

Example 9.27. Configuring a JBoss Standalone TransactionManager lookup

in Infinispan configuration

<default>

 <transaction

 transactionMode="TRANSACTIONAL"

 transactionManagerLookupClass=

 "org.infinispan.transaction.lookup.JBossStandaloneJTAManagerLookup" />

</default>

Infinispan supports different transaction modes like PESSIMISTIC and OPTIMISTIC, supports XA

recovery and provides many more configuration options; see the Infinispan User Guide [http://

infinispan.org/documentation/] for more advanced configuration options.

http://infinispan.org/documentation/
http://infinispan.org/documentation/
http://infinispan.org/documentation/

Infinispan

78

9.6. Storing a Lucene index in Infinispan

Hibernate Search, which can be used for advanced query capabilities (see Chapter 7, Query your

entities), needs some place to store the indexes for its embedded Apache Lucene engine.

A common place to store these indexes is the filesystem which is the default for Hibernate Search;

however if your goal is to scale your NoSQL engine on multiple nodes you need to share this index.

Network sharing file systems are a possibility but we don’t recommended that. Often the best

option is to store the index in whatever NoSQL database you are using (or a different dedicated

one).

Tip

You might find this section useful even if you don’t intend to store your data in

Infinispan.

The Infinispan project provides an adaptor to plug into Apache Lucene, so that it writes the indexes

in Infinispan and searches data in it. Since Infinispan can be used as an application cache to other

NoSQL storage engines by using a CacheStore (see Section 9.2, “Manage data size”) you can

use this adaptor to store the Lucene indexes in any NoSQL store supported by Infinispan:

• Cassandra

• Filesystem (but locked correctly at the Infinispan level)

• MongoDB

• HBase

• JDBC databases

• JDBM

• BDBJE

• A secondary (independent) Infinispan grid

• Any Cloud storage service supported by JClouds [http://www.jclouds.org/documentation/refer-

ence/supported-providers/]

How to configure it? Here is a simple cheat sheet to get you started with this type of setup:

• Add org.hibernate:hibernate-search-infinispan:5.2.0.Final to your dependencies

• set these configuration properties:

• hibernate.search.default.directory_provider = infinispan

http://www.jclouds.org/documentation/reference/supported-providers/
http://www.jclouds.org/documentation/reference/supported-providers/
http://www.jclouds.org/documentation/reference/supported-providers/

Infinispan

79

• hibernate.search.default.exclusive_index_use = false

• hibernate.search.infinispan.configuration_resourcename = [infinispan configura-

tion filename]

The referenced Infinispan configuration should define a CacheStore to load/store the index in the

NoSQL engine of choice. It should also define three cache names:

Table 9.52. Infinispan caches used to store indexes

Cache name Description Suggested cluster

mode

LuceneIndexesLock-

ing

Transfers locking information. Does not need

a cache store.

replication

LuceneIndexesData Contains the bulk of Lucene data. Needs a

cache store.

distribution + L1

LuceneIndexesMeta-

data

Stores metadata on the index segments.

Needs a cache store.

replication

This configuration is not going to scale well on write operations: to do that you should read about

the master/slave and sharding options in Hibernate Search. The complete explanation and con-

figuration options can be found in the Hibernate Search Reference Guide [http://docs.jboss.org/

hibernate/search/4.2/reference/en-US/html_single/#infinispan-directories]

Some NoSQL support storage of Lucene indexes directly, in which case you might skip the Infin-

ispan Lucene integration by implementing a custom DirectoryProvider for Hibernate Search.

You’re very welcome to share the code and have it merged in Hibernate Search for others to use,

inspect, improve and maintain.

http://docs.jboss.org/hibernate/search/4.2/reference/en-US/html_single/#infinispan-directories
http://docs.jboss.org/hibernate/search/4.2/reference/en-US/html_single/#infinispan-directories
http://docs.jboss.org/hibernate/search/4.2/reference/en-US/html_single/#infinispan-directories

80

Chapter 10. Ehcache
When combined with Hibernate ORM, Ehcache is commonly used as a 2nd level cache to cache

data whose primary storage is a relational database. When used with Hibernate OGM it is not

"just a cache" but is the main storage engine for your data.

This is not the reference manual for Ehcache itself: we’re going to list only how Hibernate OGM

should be configured to use Ehcache; for all the tuning and advanced options please refer to the

Ehcache Documentation [http://www.ehcache.org/documentation].

10.1. Configure Ehcache

Two steps:

• Add the dependencies to classpath

• And then choose one of:

• Use the default Ehcache configuration (no action needed)

• Point to your own configuration resource name

10.1.1. Adding Ehcache dependencies

To add the dependencies via some Maven-definitions-using tool, add the following module:

<dependency>

 <groupId>org.hibernate.ogm</groupId>

 <artifactId>hibernate-ogm-ehcache</artifactId>

 <version>4.2.0.Final</version>

</dependency>

If you’re not using a dependency management tool, copy all the dependencies from the distribution

in the directories:

• /lib/required

• /lib/ehcache

• Optionally - depending on your container - you might need some of the jars from /lib/provided

10.1.2. Ehcache specific configuration properties

Hibernate OGM expects you to define an Ehcache configuration in its own configuration resource;

all what we need to set it the resource name.

http://www.ehcache.org/documentation
http://www.ehcache.org/documentation

Ehcache

81

To use the default configuration provided by Hibernate OGM - which is a good starting point for

new users - you don’t have to set any property.

Ehcache datastore configuration properties

hibernate.ogm.datastore.provider

To use Ehcache as a datastore provider set it to ehcache.

hibernate.ogm.ehcache.configuration_resource_name

Should point to the resource name of an Ehcache configuration file. Defaults to org/hiber-

nate/ogm/datastore/ehcache/default-ehcache.xml.

hibernate.ogm.datastore.keyvalue.cache_storage

The strategy for persisting data in EhCache. The following two strategies exist (values of the

org.hibernate.ogm.datastore.keyvalue.options.CacheMappingType enum):

• CACHE_PER_TABLE: A dedicated cache will be used for each entity type, association type

and id source table.

• CACHE_PER_KIND: Three caches will be used: one cache for all entities, one cache for all

associations and one cache for all id sources.

Defaults to CACHE_PER_TABLE. It is the recommended strategy as it makes it easier to target

a specific cache for a given entity.

Note

When bootstrapping a session factory or entity manager factory programmatically,

you should use the constants accessible via EhcacheProperties when specifying

the configuration properties listed above.

Common properties shared between stores are declared on OgmProperties (a

super interface of EhcacheProperties).

For maximum portability between stores, use the most generic interface possible.

10.1.3. Cache names used by Hibernate OGM

Depending on the cache mapping approach, Hibernate OGM will either:

• store each entity type, association type and id source table in a dedicated cache very much like

what Hibernate ORM would do. This is the CACHE_PER_TABLE approach.

• store data in three different caches when using the CACHE_PER_KIND approach:

• ENTITIES: is going to be used to store the main attributes of all your entities.

Ehcache

82

• ASSOCIATIONS: stores the association information representing the links between entities.

• IDENTIFIER_STORE: contains internal metadata that Hibernate OGM needs to provide se-

quences and auto-incremental numbers for primary key generation.

The preferred strategy is CACHE_PER_TABLE as it offers both more fine grained configuration op-

tions and the ability to work on specific entities in a more simple fashion.

10.2. Storage principles

To describe things simply, each entity is stored under a single key. The value itself is a map

containing the columns / values pair.

Each association from one entity instance to (a set of) another is stored under a single key. The

value contains the navigational information to the (set of) entity.

10.2.1. Properties and built-in types

Each entity is represented by a map. Each property or more precisely column is represented by

an entry in this map, the key being the column name.

Hibernate OGM supports by default the following property types:

• java.lang.String

• java.lang.Character (or char primitive)

• java.lang.Boolean (or boolean primitive); Optionally the annotations @Type(type =

"true_false"), @Type(type = "yes_no") and @Type(type = "numeric_boolean") can be

used to map boolean properties to the characters 'T'/'F', 'Y'/'N' or the int values 0/1, respectively.

• java.lang.Byte (or byte primitive)

• java.lang.Short (or short primitive)

• java.lang.Integer (or integer primitive)

• java.lang.Long (or long primitive)

• java.lang.Integer (or integer primitive)

• java.lang.Float (or float primitive)

• java.lang.Double (or double primitive)

• java.math.BigDecimal

• java.math.BigInteger

Ehcache

83

• java.util.Calendar

• java.util.Date

• java.util.UUID

• java.util.URL

Note

Hibernate OGM doesn’t store null values in Ehcache, setting a value to null is the

same as removing the corresponding entry from Ehcache.

This can have consequences when it comes to queries on null value.

10.2.2. Identifiers

Entity identifiers are used to build the key in which the entity is stored in the cache.

The key is comprised of the following information:

• the identifier column names

• the identifier column values

• the entity table (for the CACHE_PER_KIND strategy)

In CACHE_PER_TABLE, the table name is inferred from the cache name. In CACHE_PER_KIND, the

table name is necessary to identify the entity in the generic cache.

Example 10.1. Define an identifier as a primitive type

@Entity

public class Bookmark {

 @Id

 private Long id;

 private String title;

 // getters, setters ...

}

Table 10.1. Content of the Bookmark cache in CACHE_PER_TABLE

KEY MAP ENTRIES

["id"], [42] id 42

Ehcache

84

KEY MAP ENTRIES

title "Hibernate OGM documenta-

tion"

Table 10.2. Content of the ENTITIES cache in CACHE_PER_KIND

KEY MAP ENTRIES

id 42

"Bookmark", ["id"], [42] title "Hibernate OGM documenta-

tion"

Example 10.2. Define an identifier using @EmbeddedId

@Embeddable

public class NewsID implements Serializable {

 private String title;

 private String author;

 // getters, setters ...

}

@Entity

public class News {

 @EmbeddedId

 private NewsID newsId;

 private String content;

 // getters, setters ...

}

Table 10.3. Content of the News cache in CACHE_PER_TABLE

KEY MAP ENTRIES

newsId.author "Guillaume"

newsId.title "How to use Hibernate

OGM ?"

[newsId.author, newsId.title],

["Guillaume", "How to

use Hibernate OGM ?"] content "Simple, just like ORM but

with a NoSQL database"

Table 10.4. Content of the ENTITIES cache in CACHE_PER_KIND

KEY MAP ENTRIES

"News", [newsId.author,

newsId.title], ["Guil-

newsId.author "Guillaume"

Ehcache

85

KEY MAP ENTRIES

newsId.title "How to use Hibernate

OGM ?"laume", "How to use

Hibernate OGM ?"] content "Simple, just like ORM but

with a NoSQL database"

10.2.2.1. Identifier generation strategies

Since Ehcache has not native sequence nor identity column support, these are simulated using

the table strategy, however their default values vary. We highly recommend you explicitly use a

TABLE strategy if you want to generate a monotonic identifier.

But if you can, use a pure in-memory and scalable strategy like a UUID generator.

Example 10.3. Id generation strategy TABLE using default values

@Entity

public class GuitarPlayer {

 @Id

 @GeneratedValue(strategy = GenerationType.TABLE)

 private long id;

 private String name;

 // getters, setters ...

}

Table 10.5. Content of the hibernate_sequences cache in CACHE_PER_TABLE

KEY NEXT VALUE

["sequence_name"], ["default"] 2

Table 10.6. Content of the IDENTIFIERS cache in CACHE_PER_KIND

KEY NEXT VALUE

"hibernate_sequences", ["sequence_name"],

["default"]
2

As you can see, in CACHE_PER_TABLE, the key does not contain the id source table name. It is

inferred by the cache name hosting that key.

Example 10.4. Id generation strategy TABLE using a custom table

@Entity

Ehcache

86

public class GuitarPlayer {

 @Id

 @GeneratedValue(strategy = GenerationType.TABLE, generator = "guitarGen")

 @TableGenerator(

 name = "guitarGen",

 table = "GuitarPlayerSequence",

 pkColumnName = "seq"

 pkColumnValue = "guitarPlayer",

)

 private long id;

 // getters, setters ...

}

Table 10.7. Content of the GuitarPlayerSequence cache in CACHE_PER_TABLE

KEY NEXT VALUE

["seq"], ["guitarPlayer"] 2

Table 10.8. Content of the IDENTIFIERS cache in CACHE_PER_KIND

KEY NEXT VALUE

"GuitarPlayerSequence", ["seq"], ["guitarPlay-

er"]
2

Example 10.5. SEQUENCE id generation strategy

@Entity

public class Song {

 @Id

 @GeneratedValue(strategy = GenerationType.SEQUENCE, generator = "songSequenceGenerator")

 @SequenceGenerator(

 name = "songSequenceGenerator",

 sequenceName = "song_sequence",

 initialValue = 2,

 allocationSize = 20

)

 private Long id;

 private String title;

 // getters, setters ...

}

Table 10.9. Content of the hibernate_sequences cache in CACHE_PER_TABLE

KEY NEXT VALUE

["sequence_name"], ["song_sequence"] 11

Ehcache

87

Table 10.10. Content of the IDENTIFIERS cache in CACHE_PER_KIND

KEY NEXT VALUE

"hibernate_sequences", "["sequence_name"],

["song_sequence"]
11

10.2.3. Entities

Entities are stored in the cache named after the entity name when using the CACHE_PER_TABLE

strategy. In the CACHE_PER_KIND strategy, entities are stored in a single cache named ENTITIES.

The key is comprised of the following information:

• the identifier column names

• the identifier column values

• the entity table (for the CACHE_PER_KIND strategy)

In CACHE_PER_TABLE, the table name is inferred from the cache name. In CACHE_PER_KIND, the

table name is necessary to identify the entity in the generic cache.

The entry value is itself a map which contains all the entity properties - or to be specific columns.

Each column name and value is stored as a key / value pair in the map.

Example 10.6. Default JPA mapping for an entity

@Entity

public class News {

 @Id

 private String id;

 private String title;

 // getters, setters ...

}

Table 10.11. Content of the News cache in CACHE_PER_TYPE

KEY MAP ENTRIES

id "1234-5678"
["id"], ["1234-5678"]

title "On the merits of NoSQL"

Table 10.12. Content of the ENTITIES cache in CACHE_PER_KIND

KEY MAP ENTRIES

"News", ["id"], ["1234-5678"] id "1234-5678"

Ehcache

88

KEY MAP ENTRIES

title "On the merits of NoSQL"

As you can see, the table name is not part of the key for CACHE_PER_TYPE. In the rest of this

section we will no longer show the CACHE_PER_KIND strategy.

Example 10.7. Rename field and collection using @Table and @Column

@Entity

@Table(name = "Article")

public class News {

 @Id

 private String id;

 @Column(name = "headline")

 private String title;

 // getters, setters ...

}

Table 10.13. Content of the Article cache

KEY MAP ENTRIES

id "1234-5678"
["id"], ["1234-5678"]

headline "On the merits of NoSQL"

10.2.3.1. Embedded objects and collections

Example 10.8. Embedded object

@Entity

public class News {

 @Id

 private String id;

 private String title;

 @Embedded

 private NewsPaper paper;

 // getters, setters ...

}

@Embeddable

public class NewsPaper {

 private String name;

 private String owner;

Ehcache

89

 // getters, setters ...

}

Table 10.14. Content of the News cache

KEY MAP ENTRIES

id "1234-5678"

title "On the merits of NoSQL"

paper.name "NoSQL journal of prophecies"
["id"], ["1234-5678"]

paper.owner "Delphy"

Example 10.9. @ElementCollection with one attribute

@Entity

public class GrandMother {

 @Id

 private String id;

 @ElementCollection

 private List<GrandChild> grandChildren = new ArrayList<GrandChild>();

 // getters, setters ...

}

@Embeddable

public class GrandChild {

 private String name;

 // getters, setters ...

}

Table 10.15. Content of the GrandMother cache

KEY MAP ENTRIES

["id"], ["granny"] id "granny"

Table 10.16. Content of the associations_GrandMother_grandChildren cache in

CACHE_PER_TYPE

KEY ROW KEY ROW MAP ENTRIES

GrandMother_id "granny"
["GrandMother_id"],

["granny"]

["GrandMother_id",

"name"],

["granny", "Leia"]
name "Leia"

Ehcache

90

KEY ROW KEY ROW MAP ENTRIES

GrandMother_id "granny"["GrandMother_id",

"name"],

["granny", "Luke"]
name "Luke"

Table 10.17. Content of the ASSOCIATIONS cache in CACHE_PER_KIND

KEY ROW KEY ROW MAP ENTRIES

GrandMother_id "granny"["GrandMother_id",

"name"],

["granny", "Leia"]
name "Leia"

GrandMother_id "granny"

"GrandMother_grandChildren",

["GrandMother_id"],

["granny"] ["GrandMother_id",

"name"],

["granny", "Luke"]
name "Luke"

Here, we see that the collection of elements is stored in a separate cache and entry. The asso-

ciation key is made of:

• the foreign key column names pointing to the owner of this association

• the foreign key column values pointing to the owner of this association

• the association table name in the CACHE_PER_KIND approach where all associations share the

same cache

The association entry is a map containing the representation of each entry in the collection. The

keys of that map are made of:

• the names of the columns uniquely identifying that specific collection entry (e.g. for a Set this

is all of the columns)

• the values of the columns uniquely identifying that specific collection entry

The value attack to that collection entry key is a Map containing the key value pairs column name /

column value.

Example 10.10. @ElementCollection with @OrderColumn

@Entity

public class GrandMother {

 @Id

 private String id;

 @ElementCollection

Ehcache

91

 @OrderColumn(name = "birth_order")

 private List<GrandChild> grandChildren = new ArrayList<GrandChild>();

 // getters, setters ...

}

@Embeddable

public class GrandChild {

 private String name;

 // getters, setters ...

}

Table 10.18. Content of the GrandMother cache

KEY MAP ENTRIES

["id"], ["granny"] id "granny"

Table 10.19. Content of the GrandMother_grandChildren cache

KEY ROW KEY ROW MAP ENTRIES

GrandMother_id "granny"

birth_order 0

["GrandMother_id",

"birth_order"],

["granny", 0] name "Leia"

GrandMother_id "granny"

birth_order 1

["GrandMother_id"],

["granny"]
["GrandMother_id",

"birth_order"],

["granny", 1] name "Luke"

Here we used an indexed collection and to identify the entry in the collection, only the owning

entity id and the index value is enough.

10.2.4. Associations

Associations between entities are mapped like (collection of) embeddables except that the target

entity is represented by its identifier(s).

Example 10.11. Unidirectional one-to-one

@Entity

public class Vehicule {

 @Id

 private String id;

 private String brand;

 // getters, setters ...

}

Ehcache

92

@Entity

public class Wheel {

 @Id

 private String id;

 private double diameter;

 @OneToOne

 private Vehicule vehicule;

 // getters, setters ...

}

Table 10.20. Content of the Vehicule cache

KEY MAP ENTRIES

id "V_01"
["id"], ["V_01"]

brand "Mercedes"

Table 10.21. Content of the Wheel cache

KEY MAP ENTRIES

id "W001"

diameter 0.0["id"], ["W001"]

vehicule_id "V_01"

Example 10.12. Unidirectional one-to-one with @JoinColumn

@Entity

public class Vehicule {

 @Id

 private String id;

 private String brand;

 // getters, setters ...

}

@Entity

public class Wheel {

 @Id

 private String id;

 private double diameter;

 @OneToOne

 @JoinColumn(name = "part_of")

 private Vehicule vehicule;

Ehcache

93

 // getters, setters ...

}

Table 10.22. Content of the Vehicle cache

KEY MAP ENTRIES

id "V_01"
["id"], ["V_01"]

brand "Mercedes"

Table 10.23. Content of the Wheel cache

KEY MAP ENTRIES

id "W001"

diameter 0.0"Wheel", ["id"], ["W001"]

part_of "V_01"

Example 10.13. Unidirectional one-to-one with @MapsId and

@PrimaryKeyJoinColumn

@Entity

public class Vehicule {

 @Id

 private String id;

 private String brand;

 // getters, setters ...

}

@Entity

public class Wheel {

 @Id

 private String id;

 private double diameter;

 @OneToOne

 @PrimaryKeyJoinColumn

 @MapsId

 private Vehicule vehicule;

 // getters, setters ...

}

Table 10.24. Content of the Vehicle cache

KEY MAP ENTRIES

["id"], ["V_01"] id "V_01"

Ehcache

94

KEY MAP ENTRIES

brand "Mercedes"

Table 10.25. Content of the Wheel cache

KEY MAP ENTRIES

vehicule_id "V_01"
["vehicule_id"], ["V_01"]

diameter 0.0

Example 10.14. Bidirectional one-to-one

@Entity

public class Husband {

 @Id

 private String id;

 private String name;

 @OneToOne

 private Wife wife;

 // getters, setters ...

}

@Entity

public class Wife {

 @Id

 private String id;

 private String name;

 @OneToOne(mappedBy="wife")

 private Husband husband;

 // getters, setters ...

}

Table 10.26. Content of the Husband cache

KEY MAP ENTRIES

id "alex"

name "Alex"["id"], ["alex"]

wife "bea"

Table 10.27. Content of the Wife cache

KEY MAP ENTRIES

["id"], ["bea"] id "bea"

Ehcache

95

KEY MAP ENTRIES

name "Bea"

Table 10.28. Content of the associations_Husband cache

KEY ROW KEY MAP ENTRIES

id "alex"
["wife"], ["bea"]

["id", "wife"],

["alex", "bea"] wife "bea"

Example 10.15. Unidirectional one-to-many

@Entity

public class Basket {

 @Id

 private String id;

 private String owner;

 @OneToMany

 private List<Product> products = new ArrayList<Product>();

 // getters, setters ...

}

@Entity

public class Product {

 @Id

 private String name;

 private String description;

 // getters, setters ...

}

Table 10.29. Content of the Basket cache

KEY MAP ENTRIES

id "davide_basket"
["id"], ["davide_basket"]

owner "Davide"

Table 10.30. Content of the Product cache

KEY MAP ENTRIES

name "Beer"
["name"], ["Beer"]

description "Tactical Nuclear Penguin"

Ehcache

96

KEY MAP ENTRIES

name "Pretzel"
["name"], ["Pretzel"]

description "Glutino Pretzel Sticks"

Table 10.31. Content of the associations_Basket_Product cache

KEY ROW KEY MAP ENTRIES

Basket_id "davide_basket"["Basket_id",

"products_name"],

["davide_basket",

"Beer"]

products_name "Beer"

Basket_id "davide_basket"

["Basket_id"],

["davide_basket"] ["Basket_id",

"products_name"],

["davide_basket",

"Pretzel"]

products_name "Pretzel"

Example 10.16. Unidirectional one-to-many with @JoinTable

@Entity

public class Basket {

 @Id

 private String id;

 private String owner;

 @OneToMany

 @JoinTable(name = "BasketContent")

 private List<Product> products = new ArrayList<Product>();

 // getters, setters ...

}

@Entity

public class Product {

 @Id

 private String name;

 private String description;

 // getters, setters ...

}

Table 10.32. Content of the Basket cache

KEY MAP ENTRIES

["id"], ["davide_basket"] id "davide_basket"

Ehcache

97

KEY MAP ENTRIES

owner "Davide"

Table 10.33. Content of the Basket cache

KEY MAP ENTRIES

name "Beer"
["name"], ["Beer"]

description "Tactical Nuclear Penguin"

name "Pretzel"
["name"], ["Pretzel"]

description "Glutino Pretzel Sticks"

Table 10.34. Content of the associations_BasketContent cache

KEY ROW KEY MAP ENTRIES

Basket_id "davide_basket"["Basket_id",

"products_name"],

["davide_basket",

"Beer"]

products_name "Beer"

Basket_id "davide_basket"

["Basket_id"],

["davide_basket"] ["Basket_id",

"products_name"],

["davide_basket",

"Pretzel"]

products_name "Pretzel"

Example 10.17. Unidirectional one-to-many using maps with defaults

@Entity

public class User {

 @Id

 private String id;

 @OneToMany

 private Map<String, Address> addresses = new HashMap<String, Address>();

 // getters, setters ...

}

@Entity

public class Address {

 @Id

 private String id;

 private String city;

 // getters, setters ...

}

Ehcache

98

Table 10.35. Content of the User cache

KEY MAP ENTRIES

["id"], ["user_001"] id "user_001"

Table 10.36. Content of the Address cache

KEY MAP ENTRIES

id "address_001"
["id"], ["address_001"]

city "Rome"

id "address_002"
["id"], ["address_002"]

city "Paris"

Table 10.37. Content of the associations_User_address cache

KEY ROW KEY MAP ENTRIES

User_id "user_001"

addresses_KEY "home"

["User_id",

"addresses_KEY"],

["user_001", "home"] addresses_id "address_001"

User_id "user_002"

addresses_KEY "work"

["User_id"],

"user_001"]
["User_id",

"addresses_KEY"],

["user_001", "work"] addresses_id "address_002"

Example 10.18. Unidirectional one-to-many using maps with

@MapKeyColumn

@Entity

public class User {

 @Id

 private String id;

 @OneToMany

 @MapKeyColumn(name = "addressType")

 private Map<String, Address> addresses = new HashMap<String, Address>();

 // getters, setters ...

}

@Entity

public class Address {

 @Id

 private String id;

 private String city;

Ehcache

99

 // getters, setters ...

}

Table 10.38. Content of the User cache

KEY MAP ENTRIES

["id"], ["user_001"] id "user_001"

Table 10.39. Content of the Address cache

KEY MAP ENTRIES

id "address_001"
["id"], ["address_001"]

city "Rome"

id "address_002"
["id"], ["address_002"]

city "Paris"

Table 10.40. Content of the associations_User_address cache

KEY ROW KEY MAP ENTRIES

User_id "user_001"

addressesType "home"

["User_id", "ad-

dressType"],

["user_001", "home"] addresses_id "address_001"

User_id "user_002"

addressesType "work"

["User_id"],

"user_001"]
["User_id", "ad-

dressType"],

["user_001", "work"] addresses_id "address_002"

Example 10.19. Unidirectional many-to-one

@Entity

public class JavaUserGroup {

 @Id

 private String jugId;

 private String name;

 // getters, setters ...

}

@Entity

public class Member {

 @Id

 private String id;

 private String name;

Ehcache

100

 @ManyToOne

 private JavaUserGroup memberOf;

 // getters, setters ...

}

Table 10.41. Content of the JavaUserGroup cache

KEY MAP ENTRIES

jugId "summer_camp"
["jugId"], ["summer_camp"]

name "JUG Summer Camp"

Table 10.42. Content of the Member cache

KEY MAP ENTRIES

member_id "emmanuel"

name "Emmanuel Bernard"["member_id"], ["emmanuel"]

memberOf_jug_id "summer_camp"

member_id "jerome"

name "Jerome"["member_id"], ["jerome"]

memberOf_jug_id "summer_camp"

Example 10.20. Bidirectional many-to-one

@Entity

public class SalesForce {

 @Id

 private String id;

 private String corporation;

 @OneToMany(mappedBy = "salesForce")

 private Set<SalesGuy> salesGuys = new HashSet<SalesGuy>();

 // getters, setters ...

}

@Entity

public class SalesGuy {

 private String id;

 private String name;

 @ManyToOne

 private SalesForce salesForce;

 // getters, setters ...

}

Ehcache

101

Table 10.43. Content of the SalesForce cache

KEY MAP ENTRIES

id "red_hat"
["id"], ["red_hat"]

corporation "Red Hat"

Table 10.44. Content of the SalesGuy cache

KEY MAP ENTRIES

id "eric"

name "Eric"["id"], ["eric"]

salesForce_id "red_hat"

id "simon"

name "Simon"["id"], ["simon"]

salesForce_id "red_hat"

Table 10.45. Content of the associations_SalesGuy cache

KEY ROW KEY MAP ENTRIES

salesForce_id "red_hat"["salesForce_id", "id"],

["red_hat", "eric"] id "eric"

salesForce_id "red_hat"

["salesForce_id"],

["red_hat"] ["salesForce_id", "id"],

["red_hat", "simon"] id "simon"

Example 10.21. Unidirectional many-to-many

@Entity

public class Student {

 @Id

 private String id;

 private String name;

 // getters, setters ...

}

@Entity

public class ClassRoom {

 @Id

 private long id;

 private String lesson;

 @ManyToMany

 private List<Student> students = new ArrayList<Student>();

Ehcache

102

 // getters, setters ...

}

The "Math" class has 2 students: John Doe and Mario Rossi

The "English" class has 2 students: Kate Doe and Mario Rossi

Table 10.46. Content of the ClassRoom cache

KEY MAP ENTRIES

id 1
["id"], [1]

name "Math"

id 2
["id"], [2]

name "English"

Table 10.47. Content of the Student cache

KEY MAP ENTRIES

id "john"
["id"], ["john"]

name "John Doe"

id "mario"
["id"], ["mario"]

name "Mario Rossi"

id "kate"
["id"], ["kate"]

name "Kate Doe"

Table 10.48. Content of the associations_ClassRoom_Student cache

KEY ROW KEY MAP ENTRIES

ClassRoom_id 1["ClassRoom_id",

"students_id"],

[1, "mario"]
students_id "mario"

ClassRoom_id 1
["ClassRoom_id"], [1]

["ClassRoom_id",

"students_id"],

[1, "john"]
students_id "john"

ClassRoom_id 2["ClassRoom_id",

"students_id"],

[2, "kate"]
students_id "kate"

ClassRoom_id 2
["ClassRoom_id"], [2]

["ClassRoom_id",

"students_id"],

[2, "mario"]
students_id "mario"

Ehcache

103

Example 10.22. Bidirectional many-to-many

@Entity

public class AccountOwner {

 @Id

 private String id;

 private String SSN;

 @ManyToMany

 private Set<BankAccount> bankAccounts;

 // getters, setters ...

}

@Entity

public class BankAccount {

 @Id

 private String id;

 private String accountNumber;

 @ManyToMany(mappedBy = "bankAccounts")

 private Set<AccountOwner> owners = new HashSet<AccountOwner>();

 // getters, setters ...

}

David owns 2 accounts: "012345" and "ZZZ-009"

Table 10.49. Content of the AccountOwner cache

KEY MAP ENTRIES

id "David"
["id"], ["David"]

SSN "0123456"

Table 10.50. Content of the BankAccount cache

KEY MAP ENTRIES

id "account_1"
["id"], ["account_1"]

accountNumber "X2345000"

id "account_2"
["id"], ["account_2"]

accountNumber "ZZZ-009"

Ehcache

104

Table 10.51. Content of the AccountOwner_BankAccount cache

KEY ROW KEY MAP ENTRIES

bankAccounts_id "account_1"
["bankAccounts_id"],

["account_1"]

["bankAccounts_id",

"owners_id"], ["ac-

count_1", "David"]
owners_id "David"

bankAccounts_id "account_2"
["bankAccounts_id"],

["account_2"]

["bankAccounts_id",

"owners_id"], ["ac-

count_2", "David"]
owners_id "David"

bankAccounts_id "account_1"["owners_id",

"banksAccounts_id"],

["David", "account_1"]
owners_id "David"

bankAccounts_id "account_2"

["owners_id"],

["David"] ["owners_id",

"banksAccounts_id"],

["David", "account_2"]
owners_id "David"

10.3. Transactions

While Ehcache technically supports transactions, Hibernate OGM is currently unable to use them.

Careful!

If you need this feature, it should be easy to implement: contributions welcome! See JIRA

OGM-243 [https://hibernate.onjira.com/browse/OGM-243].

https://hibernate.onjira.com/browse/OGM-243
https://hibernate.onjira.com/browse/OGM-243
https://hibernate.onjira.com/browse/OGM-243

105

Chapter 11. MongoDB
MongoDB [http://www.mongodb.org] is a document oriented datastore written in C++ with strong

emphasis on ease of use. The nested nature of documents make it a particularly natural fit for

most object representations.

This implementation is based upon the MongoDB Java driver. The currently supported version

is 2.13.1.

11.1. Configuring MongoDB

Configuring Hibernate OGM to use MongoDb is easy:

• Add the MongoDB module and driver to the classpath

• provide the MongoDB URL to Hibernate OGM

11.1.1. Adding MongoDB dependencies

To add the dependencies via Maven, add the following module:

<dependency>

 <groupId>org.hibernate.ogm</groupId>

 <artifactId>hibernate-ogm-mongodb</artifactId>

 <version>4.2.0.Final</version>

</dependency>

This will pull the MongoDB driver transparently.

If you’re not using a dependency management tool, copy all the dependencies from the distribution

in the directories:

• /lib/required

• /lib/mongodb

• Optionally - depending on your container - you might need some of the jars from /lib/provided

11.1.2. MongoDB specific configuration properties

To get started quickly, pay attention to the following options:

• hibernate.ogm.datastore.provider

http://www.mongodb.org
http://www.mongodb.org

MongoDB

106

• hibernate.ogm.datastore.host

• hibernate.ogm.datastore.database

And we should have you running. The following properties are available to configure MongoDB

support:

MongoDB datastore configuration properties

hibernate.ogm.datastore.provider

To use MongoDB as a datastore provider, this property must be set to mongodb

hibernate.ogm.option.configurator

The fully-qualified class name or an instance of a programmatic option configurator (see Sec-

tion 11.1.5, “Programmatic configuration”)

hibernate.ogm.datastore.host

The hostname and port of the MongoDB instance. The optional port is concatenated to the

host and separated by a colon. When using replica sets, you can define the various servers

in a comma separated list of hosts and ports. Let’s see a few valid examples:

• mongodb.example.com

• mongodb.example.com:27018

• 2001:db8::ff00:42:8329 (IPv6)

• [2001:db8::ff00:42:8329]:27018 (IPv6 with port requires the IPv6 to be surrounded by

square brackets)

• www.example.com, www2.example.com:123, 192.0.2.1, 192.0.2.2:123,

2001:db8::ff00:42:8329, [2001:db8::ff00:42:8329]:123 (replica set)

The default value is 127.0.0.1:27017. If left undefined, the default port is 27017.

hibernate.ogm.datastore.port

Deprecated: use hibernate.ogm.datastore.host. The port used by the MongoDB instance.

Ignored when multiple hosts are defined. The default value is 27017.

hibernate.ogm.datastore.database

The database to connect to. This property has no default value.

hibernate.ogm.datastore.create_database

If set to true, the database will be created if it doesn’t exist. This property default value is false.

hibernate.ogm.datastore.username

The username used when connecting to the MongoDB server. This property has no default

value.

MongoDB

107

hibernate.ogm.datastore.password

The password used to connect to the MongoDB server. This property has no default value.

This property is ignored if the username isn’t specified.

hibernate.ogm.error_handler

The fully-qualified class name, class object or an instance of ErrorHandler to get notified up-

on errors during flushes (see Section 6.3.1, “Acting upon errors during application of changes”)

hibernate.ogm.mongodb.connection_timeout

Defines the timeout used by the driver when the connection to the MongoDB instance is

initiated. This configuration is expressed in milliseconds. The default value is 5000.

hibernate.ogm.mongodb.authentication_mechanism

Define the authentication mechanism to use. Possible values are:

• BEST: Handshakes with the server to find the best authentication mechanism.

• SCRAM_SHA_1: The SCRAM SHA 1 Challenge Response mechanism as described in this

RFC [http://tools.ietf.org/html/rfc5802].

• MONGODB_CR: The MongoDB Challenge Response mechanism (deprecated since MongoDB

3)

• GSSAPI: The GSSAPI mechanism. See the RFC [http://tools.ietf.org/html/rfc4752]

• MONGODB_X509: The MongoDB X.509

• PLAIN: The PLAIN mechanism. See the RFC [http://www.ietf.org/rfc/rfc4616.txt]

hibernate.ogm.datastore.document.association_storage

Defines the way OGM stores association information in Mon-

goDB. The following two strategies exist (values of the

org.hibernate.ogm.datastore.document.options.AssociationStorageType enum):

• IN_ENTITY: store association information within the entity

• ASSOCIATION_DOCUMENT: store association information in a dedicated document per asso-

ciation

IN_ENTITY is the default and recommended option unless the association navigation data is

much bigger than the core of the document and leads to performance degradation.

hibernate.ogm.mongodb.association_document_storage

Defines how to store assocation documents (applies only if the ASSOCIATION_DOCUMENT

association storage strategy is used). Possible strategies are (values of the

org.hibernate.ogm.datastore.mongodb.options.AssociationDocumentStorageType

enum):

• GLOBAL_COLLECTION (default): stores the association information in a unique MongoDB

collection for all associations

http://tools.ietf.org/html/rfc5802
http://tools.ietf.org/html/rfc5802
http://tools.ietf.org/html/rfc4752
http://tools.ietf.org/html/rfc4752
http://www.ietf.org/rfc/rfc4616.txt
http://www.ietf.org/rfc/rfc4616.txt

MongoDB

108

• COLLECTION_PER_ASSOCIATION stores the association in a dedicated MongoDB collection

per association

hibernate.ogm.mongodb.write_concern

Defines the write concern setting to be applied when issuing writes against the MongoDB

datastore. Possible settings are (values of the WriteConcernType enum): ACKNOWLEDGED, UN-

ACKNOWLEDGED, FSYNCED, JOURNALED, REPLICA_ACKNOWLEDGED, MAJORITY and CUSTOM. When

set to CUSTOM, a custom WriteConcern implementation type has to be specified.

This option is case insensitive and the default value is ACKNOWLEDGED.

hibernate.ogm.mongodb.write_concern_type

Specifies a custom WriteConcern implementation type (fully-qualified name, class object or

instance). This is useful in cases where the pre-defined configurations are not sufficient, e.g.

if you want to ensure that writes are propagated to a specific number of replicas or given "tag

set". Only takes effect if hibernate.ogm.mongodb.write_concern is set to CUSTOM.

hibernate.ogm.mongodb.read_preference

Specifies the ReadPreference to be applied when issuing reads against the MongoDB

datastore. Possible settings are (values of the ReadPreferenceType enum): PRIMARY,

PRIMARY_PREFERRED, SECONDARY, SECONDARY_PREFERRED and NEAREST. It’s currently not pos-

sible to plug in custom read preference types. If you’re interested in such a feature, please

let us know.

For more information, please refer to the official documentation [http://api.mongodb.org/java/cur-

rent/com/mongodb/WriteConcern.html].

Note

When bootstrapping a session factory or entity manager factory programmatically,

you should use the constants accessible via MongoDBProperties when specifying

the configuration properties listed above.

Common properties shared between stores are declared on OgmProperties (a

super interface of MongoDBProperties).

For maximum portability between stores, use the most generic interface possible.

11.1.3. FongoDB Provider

Fongo is an in-memory java implementation of MongoDB. It intercepts calls to the standard mon-

go-java-driver for finds, updates, inserts, removes and other methods. The primary use is for light-

weight unit testing where you don’t want to spin up a mongod process.

Hibernate OGM provides a FongoDB provider so during tests it can be used instead of MongoDB

driver. Note that you don’t need to change your business code to adapt to FongoDB because all

adaptations are done under the cover by Hibernate OGM.

http://api.mongodb.org/java/current/com/mongodb/WriteConcern.html
http://api.mongodb.org/java/current/com/mongodb/WriteConcern.html
http://api.mongodb.org/java/current/com/mongodb/WriteConcern.html

MongoDB

109

To start using FongoDB provider, you should do two things:

The first one is register the provider by using hibernate.ogm.datastore.provider and setting

to fongodb.

Example 11.1. Configuring FongoDB provider

<persistence-unit name="ogm-jpa-tutorial" transaction-type="JTA">

 <provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider>

 <properties>

 <property name="hibernate.ogm.datastore.provider" value="fongodb"/>

 <property name="hibernate.transaction.jta.platform"

 value="org.hibernate.service.jta.platform.internal.JBossStandAloneJtaPlatform"/>

 </properties>

</persistence-unit>

The second one is adding FongoDB and SLF4J dependencies in your project.

<dependency>

 <groupId>com.github.fakemongo</groupId>

 <artifactId>fongo</artifactId>

 <scope>test</scope>

 <version>1.6.2</version>

</dependency>

<dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-simple</artifactId>

 <version>1.7.5</version>

 <scope>test</scope>

</dependency>

You can read more about FongoDB project and its limitations at https://github.com/fakemongo/fon-

go

11.1.4. Annotation based configuration

Hibernate OGM allows to configure store-specific options via Java annotations. You can override

global configurations for a specific entity or even a specify property by virtue of the location where

you place that annotation.

When working with the MongoDB backend, you can specify the following settings:

• the write concern for entities and associations using the @WriteConcern annotation

• the read preference for entities and associations using the @ReadPreference annotation

• a strategy for storing associations using the @AssociationStorage and @AssociationDocu-

mentStorage annotations (refer to Section 11.2, “Storage principles” to learn more about these

options).

https://github.com/fakemongo/fongo
https://github.com/fakemongo/fongo

MongoDB

110

The following shows an example:

Example 11.2. Configuring the association storage strategy using

annotations

@Entity

@WriteConcern(WriteConcernType.JOURNALED)

@ReadPreference(ReadPreferenceType.PRIMARY_PREFERRED)

@AssociationStorage(AssociationStorageType.ASSOCIATION_DOCUMENT)

@AssociationDocumentStorage(AssociationDocumentStorageType.COLLECTION_PER_ASSOCIATION)

public class Zoo {

 @OneToMany

 private Set<Animal> animals;

 @OneToMany

 private Set<Person> employees;

 @OneToMany

 @AssociationStorage(AssociationStorageType.IN_ENTITY)

 private Set<Person> visitors;

 // getters, setters ...

}

The @WriteConcern annotation on the entity level expresses that all writes should be done using

the JOURNALED setting. Similarly, the @ReadPreference annotation advices the engine to prefer-

ably read that entity from the primary node if possible. The other two annotations on the type-level

specify that all associations of the Zoo class should be stored in separate assocation documents,

using a dedicated collection per association. This setting applies to the animals and employees

associations. Only the elements of the visitors association will be stored in the document of the

corresponding Zoo entity as per the configuration of that specific property which takes precedence

over the entity-level configuration.

11.1.5. Programmatic configuration

In addition to the annotation mechanism, Hibernate OGM also provides a programmatic API for

applying store-specific configuration options. This can be useful if you can’t modify certain entity

types or don’t want to add store-specific configuration annotations to them. The API allows set

options in a type-safe fashion on the global, entity and property levels.

When working with MongoDB, you can currently configure the following options using the API:

• write concern

• read preference

• association storage strategy

MongoDB

111

• association document storage strategy

To set these options via the API, you need to create an OptionConfigurator implementation as

shown in the following example:

Example 11.3. Example of an option configurator

public class MyOptionConfigurator extends OptionConfigurator {

 @Override

 public void configure(Configurable configurable) {

 configurable.configureOptionsFor(MongoDB.class)

 .writeConcern(WriteConcernType.REPLICA_ACKNOWLEDGED)

 .readPreference(ReadPreferenceType.NEAREST)

 .entity(Zoo.class)

 .associationStorage(AssociationStorageType.ASSOCIATION_DOCUMENT)

 .associationDocumentStorage(AssociationDocumentStorageType.COLLECTION_PER_ASSOCIATION)

 .property("animals", ElementType.FIELD)

 .associationStorage(AssociationStorageType.IN_ENTITY)

 .entity(Animal.class)

 .writeConcern(new RequiringReplicaCountOf(3))

 .associationStorage(AssociationStorageType.ASSOCIATION_DOCUMENT);

 }

}

The call to configureOptionsFor(), passing the store-specific identifier type MongoDB, provides

the entry point into the API. Following the fluent API pattern, you then can configure global options

(writeConcern(), readPreference()) and navigate to single entities or properties to apply op-

tions specific to these (associationStorage() etc.). The call to writeConcern() for the Animal

entity shows how a specific write concern type can be used. Here RequiringReplicaCountOf is

a custom implementation of WriteConcern which ensures that writes are propagated to a given

number of replicas before a write is acknowledged.

Options given on the property level precede entity-level options. So e.g. the animals association

of the Zoo class would be stored using the in entity strategy, while all other associations of the

Zoo entity would be stored using separate association documents.

Similarly, entity-level options take precedence over options given on the global level. Global-level

options specified via the API complement the settings given via configuration properties. In case a

setting is given via a configuration property and the API at the same time, the latter takes prece-

dence.

Note that for a given level (property, entity, global), an option set via annotations is overridden

by the same option set programmatically. This allows you to change settings in a more flexible

way if required.

To register an option configurator, specify its class name using the

hibernate.ogm.option.configurator property. When bootstrapping a session factory or entity

manager factory programmatically, you also can pass in an OptionConfigurator instance or the

class object representing the configurator type.

MongoDB

112

11.2. Storage principles

Hibernate OGM tries to make the mapping to the underlying datastore as natural as possible so

that third party applications not using Hibernate OGM can still read and update the same datastore.

We worked particularly hard on the MongoDB model to offer various classic mappings between

your object model and the MongoDB documents.

To describe things simply, each entity is stored as a MongoDB document. This document is stored

in a MongoDB collection named after the entity type. The navigational information for each asso-

ciation from one entity to (a set of) entity is stored in the document representing the entity we

are departing from.

11.2.1. Properties and built-in types

Each entity is represented by a document. Each property or more precisely column is represented

by a field in this document, the field name being the column name.

Hibernate OGM supports by default the following property types:

• java.lang.String

 { "text" : "Hello world!" }

• java.lang.Character (or char primitive)

 { "delimiter" : "/" }

• java.lang.Boolean (or boolean primitive)

 { "favorite" : true } # default mapping { "favorite" : "T" } # if @Type(type = "true_false")

 is given { "favorite" : "Y" } # if @Type(type = "yes_no") is given { "favorite" : 1 } #

 if @Type(type = "numeric_boolean") is given

 mapping { "favorite" : "T" } # if @Type(type = "true_false")

is given { "favorite" : "Y" } # if @Type(type = "yes_no")

is given { "favorite" : 1 } # if @Type(type = "numeric_boolean")

• java.lang.Byte (or byte primitive)

 { "display_mask" : "70" }

• java.lang.Byte[] (or byte[])

MongoDB

113

 { "pdfAsBytes" : BinData(0,"MTIzNDU=") }

• java.lang.Short (or short primitive)

 { "urlPort" : 80 }

• java.lang.Integer (or integer primitive)

 { "stockCount" : 12309 }

• java.lang.Long (or long primitive)

 { "userId" : NumberLong("-6718902786625749549") }

• java.lang.Float (or float primitive)

 { "visitRatio" : 10.39 }

• java.lang.Double (or double primitive)

 { "tax_percentage" : 12.34 }

• java.math.BigDecimal

 { "site_weight" : "21.77" }

• java.math.BigInteger

 { "site_weight" : "444" }

• java.util.Calendar

MongoDB

114

 { "creation" : "2014/11/03 16:19:49:283 +0000" }

• java.util.Date

 { "last_update" : ISODate("2014-11-03T16:19:49.283Z") }

• java.util.UUID

 { "serialNumber" : "71f5713d-69c4-4b62-ad15-aed8ce8d10e0" }

• java.util.URL

 { "url" : "http://www.hibernate.org/" }

• org.bson.types.ObjectId

 { "object_id" : ObjectId("547d9b40e62048750f25ef77") }

Note

Hibernate OGM doesn’t store null values in MongoDB, setting a value to null is the

same as removing the field in the corresponding object in the db.

This can have consequences when it comes to queries on null value.

11.2.2. Entities

Entities are stored as MongoDB documents and not as BLOBs: each entity property will be trans-

lated into a document field. You can use @Table and @Column annotations to rename respectively

the collection the document is stored in and the document’s field a property is persisted in.

Example 11.4. Default JPA mapping for an entity

@Entity

public class News {

 @Id

MongoDB

115

 private String id;

 private String title;

 // getters, setters ...

}

// Stored in the Collection "News"{ "_id" : "1234-5678-0123-4567", "title": "On the

 merits of NoSQL",}

"News"{ "_id" :

 "1234-5678-0123-4567", "title": "On the merits of

Example 11.5. Rename field and collection using @Table and @Column

@Entity

// Overrides the collection name

@Table(name = "News_Collection")

public class News {

 @Id

 private String id;

 // Overrides the field name

 @Column(name = "headline")

 private String title;

 // getters, setters ...

}

// Stored in the Collection "News"{ "_id" : "1234-5678-0123-4567", "headline": "On the

 merits of NoSQL",}

"News"{ "_id" :

 "1234-5678-0123-4567", "headline": "On the merits of

11.2.2.1. Identifiers

Note

Hibernate OGM always store identifiers using the _id field of a MongoDB docu-

ment ignoring the name of the property in the entity.

That’s a good thing as MongoDB has special treatment and expectation of the

property _id.

MongoDB

116

An identifier type may be one of the built-in types or a more complex type represented by an

embedded class. When you use a built-in type, the identifier is mapped like a regular property.

When you use an embedded class, then the _id is representing a nested document containing

the embedded class properties.

Example 11.6. Define an identifier as a primitive type

@Entity

public class Bookmark {

 @Id

 private String id;

 private String title;

 // getters, setters ...

}

{

 "_id" : "bookmark_1"

 "title" : "Hibernate OGM documentation"

}

Example 11.7. Define an identifier using @EmbeddedId

@Embeddable

public class NewsID implements Serializable {

 private String title;

 private String author;

 // getters, setters ...

}

@Entity

public class News {

 @EmbeddedId

 private NewsID newsId;

 private String content;

 // getters, setters ...

}

News collection as JSON in MongoDB

{

 "_id" : {

MongoDB

117

 "author" : "Guillaume",

 "title" : "How to use Hibernate OGM ?"

 },

 "content" : "Simple, just like ORM but with a NoSQL database"

}

Generally, it is recommended though to work with MongoDB’s object id data type. This will facilitate

the integration with other applications expecting that common MongoDB id type. To do so, you

have two options:

• Define your id property as org.bson.types.ObjectId

• Define your id property as String and annotate it with @Type(type="objectid")

In both cases the id will be stored as native ObjectId in the datastore.

Example 11.8. Define an id as ObjectId

@Entity

public class News {

 @Id

 private ObjectId id;

 private String title;

 // getters, setters ...

}

Example 11.9. Define an id of type String as ObjectId

@Entity

public class News {

 @Id

 @Type(type = "objectid")

 private String id;

 private String title;

 // getters, setters ...

}

11.2.2.2. Identifier generation strategies

You can assign id values yourself or let Hibernate OGM generate the value using the @Generat-

edValue annotation.

There are 4 different strategies:

MongoDB

118

1. IDENTITY (suggested)

2. TABLE

3. SEQUENCE

4. AUTO

1) IDENTITY generation strategy

The preferable strategy, Hibernate OGM will create the identifier upon insertion. To apply this

strategy the id must be one of the following:

• annotated with @Type(type="objectid")

• org.bson.types.ObjectId

like in the following examples:

Example 11.10. Define an id of type String as ObjectId

@Entity

public class News {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 @Type(type = "objectid")

 private String id;

 private String title;

 // getters, setters ...

}

{

 "_id" : ObjectId("5425448830048b67064d40b1"),

 "title" : "Exciting News"

}

Example 11.11. Define an id as ObjectId

@Entity

public class News {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private ObjectId id;

 private String title;

MongoDB

119

 // getters, setters ...

}

{

 "_id" : ObjectId("5425448830048b67064d40b1"),

 "title" : "Exciting News"

}

2) TABLE generation strategy

Example 11.12. Id generation strategy TABLE using default values

@Entity

public class GuitarPlayer {

 @Id

 @GeneratedValue(strategy = GenerationType.TABLE)

 private Long id;

 private String name;

 // getters, setters ...

}

GuitarPlayer collection

{

 "_id" : NumberLong(1),

 "name" : "Buck Cherry"

}

hibernate_sequences collection

{

 "_id" : "GuitarPlayer",

 "next_val" : 101

}

Example 11.13. Id generation strategy TABLE using a custom table

@Entity

public class GuitarPlayer {

 @Id

MongoDB

120

 @GeneratedValue(strategy = GenerationType.TABLE, generator = "guitarGen")

 @TableGenerator(

 name = "guitarGen",

 table = "GuitarPlayerSequence",

 pkColumnValue = "guitarPlayer",

 valueColumnName = "nextGuitarPlayerId"

)

 private long id;

 // getters, setters ...

}

GuitarPlayer collection

{

 "_id" : NumberLong(1),

 "name" : "Buck Cherry"

}

GuitarPlayerSequence collection

{

 "_id" : "guitarPlayer",

 "nextGuitarPlayerId" : 2

}

3) SEQUENCE generation strategy

Example 11.14. SEQUENCE id generation strategy using default values

@Entity

public class Song {

 @Id

 @GeneratedValue(strategy = GenerationType.SEQUENCE)

 private Long id;

 private String title;

 // getters, setters ...

}

Song collection

{

 "_id" : NumberLong(2),

 "title" : "Flower Duet"

MongoDB

121

}

hibernate_sequences collection

{ "_id" : "song_sequence_name", "next_val" : 21 }

Example 11.15. SEQUENCE id generation strategy using custom values

@Entity

public class Song {

 @Id

 @GeneratedValue(strategy = GenerationType.SEQUENCE, generator = "songSequenceGenerator")

 @SequenceGenerator(

 name = "songSequenceGenerator",

 sequenceName = "song_seq",

 initialValue = 2,

 allocationSize = 20

)

 private Long id;

 private String title;

 // getters, setters ...

}

Song collection

{

 "_id" : NumberLong(2),

 "title" : "Flower Duet"

}

hibernate_sequences collection

{ "_id" : "song_seq", "next_val" : 42 }

4) AUTO generation strategy

Warning

Care must be taken when using the GenerationType.AUTO strategy. When

the property hibernate.id.new_generator_mappings is set to false (default),

it will map to the IDENTITY strategy. As described before, this requires your

MongoDB

122

ids to be of type ObjectId or @Type(type = "objectid") String. If

hibernate.id.new_generator_mappings is set to true, AUTO will be mapped to

the TABLE strategy. This requires your id to be of a numeric type.

We recommend to not use AUTO but one of the explicit strategies (IDENTITY or

TABLE) to avoid potential misconfigurations.

For more details you can check the issue OGM-663 [https://hibernate.atlassian.net/

browse/OGM-663].

If the property hibernate.id.new_generator_mappings is set to false, AUTO will behave as the

IDENTITY strategy.

If the property hibernate.id.new_generator_mappings is set to true, AUTO will behave as the

SEQUENCE strategy.

Example 11.16. AUTO id generation strategy using default values

@Entity

public class DistributedRevisionControl {

 @Id

 @GeneratedValue(strategy = GenerationType.AUTO)

 private Long id;

 private String name;

 // getters, setters ...

}

DistributedRevisionControl collection

{ "_id" : NumberLong(1), "name" : "Git" }

hibernate_sequences collection

{ "_id" : "hibernate_sequence", "next_val" : 2 }

Example 11.17. AUTO id generation strategy wih

hibernate.id.new_generator_mappings set to false and ObjectId

@Entity

public class Comedian {

 @Id

https://hibernate.atlassian.net/browse/OGM-663
https://hibernate.atlassian.net/browse/OGM-663
https://hibernate.atlassian.net/browse/OGM-663

MongoDB

123

 @GeneratedValue(strategy = GenerationType.AUTO)

 private ObjectId id;

 private String name;

 // getters, setters ...

}

Comedian collection

{ "_id" : ObjectId("5458b11693f4add0f90519c5"), "name" : "Louis C.K." }

Example 11.18. Entity with @EmbeddedId

@Entity

public class News {

 @EmbeddedId

 private NewsID newsId;

 // getters, setters ...

}

@Embeddable

public class NewsID implements Serializable {

 private String title;

 private String author;

 // getters, setters ...

}

Rendered as JSON in MongoDB

{

 "_id" :{

 "title": "How does Hibernate OGM MongoDB work?",

 "author": "Guillaume"

 }

}

11.2.2.3. Embedded objects and collections

Hibernate OGM stores elements annotated with @Embedded or @ElementCollection as nested

documents of the owning entity.

MongoDB

124

Example 11.19. Embedded object

@Entity

public class News {

 @Id

 private String id;

 private String title;

 @Embedded

 private NewsPaper paper;

 // getters, setters ...

}

@Embeddable

public class NewsPaper {

 private String name;

 private String owner;

 // getters, setters ...

}

{

 "_id" : "1234-5678-0123-4567",

 "title": "On the merits of NoSQL",

 "paper": {

 "name": "NoSQL journal of prophecies",

 "owner": "Delphy"

 }

}

Example 11.20. @ElementCollection with primitive types

@Entity

public class AccountWithPhone {

 @Id

 private String id;

 @ElementCollection

 private List<String> mobileNumbers;

 // getters, setters ...

}

AccountWithPhone collection

MongoDB

125

{

 "_id" : "john_account",

 "mobileNumbers" : ["+1-222-555-0222", "+1-202-555-0333"]

}

Example 11.21. @ElementCollection with one attribute

@Entity

public class GrandMother {

 @Id

 private String id;

 @ElementCollection

 private List<GrandChild> grandChildren = new ArrayList<GrandChild>();

 // getters, setters ...

}

@Embeddable

public class GrandChild {

 private String name;

 // getters, setters ...

}

{

 "_id" : "df153180-c6b3-4a4c-a7da-d5de47cf6f00",

 "grandChildren" : ["Luke", "Leia"]

}

The class GrandChild has only one attribute name, this means that Hibernate OGM doesn’t need

to store the name of the attribute.

If the nested document has two or more fields, like in the following example, Hibernate OGM will

store the name of the fields as well.

Example 11.22. @ElementCollection with @OrderColumn

@Entity

public class GrandMother {

 @Id

 private String id;

 @ElementCollection

 @OrderColumn(name = "birth_order")

 private List<GrandChild> grandChildren = new ArrayList<GrandChild>();

MongoDB

126

 // getters, setters ...

}

@Embeddable

public class GrandChild {

 private String name;

 // getters, setters ...

}

{

 "_id" : "e3e1ed4e-c685-4c3f-9a67-a5aeec6ff3ba",

 "grandChildren" :

 [

 {

 "name" : "Luke",

 "birth_order" : 0

 },

 {

 "name" : "Leia",

 "birthorder" : 1

 }

]

}

Note

You can override the column name used for a property of an embedded object.

But you need to know that the default column name is the concatenation of the

embedding property, a . (dot) and the embedded property (recursively for several

levels of embedded objects).

The MongoDB datastore treats dots specifically as it transforms them into nested

documents. If you want to override one column name and still keep the nested

structure, don’t forget the dots.

That’s a bit abstract, so let’s use an example.

@Entity

class Order {

 @Id String number;

 User user;

 Address shipping;

 @AttributeOverrides({

 @AttributeOverride(name="name", column=@Column(name="delivery.provider"),

 @AttributeOverride(name="expectedDelaysInDays", column=@Column(name="delivery.delays")

 })

 DeliveryProvider deliveryProvider;

MongoDB

127

 CreditCardType cardType;

}

// default columns

@Embedded

class User {

 String firstname;

 String lastname;

}

// override one column

@Embeddable

public Address {

 String street;

 @Column(name="shipping.dest_city")

 String city;

}

// both columns overridden from the embedding side

@Embeddable

public DeliveryProvider {

 String name;

 Integer expectedDelaysInDays;

}

// do not use dots in the overriding

// and mix levels (bad form)

@Embedded

class CreditCardType {

 String merchant;

 @Column(name="network")

 String network;

}

{

 "_id": "123RF33",

 "user": {

 "firstname": "Emmanuel",

 "lastname": "Bernard"

 },

 "shipping": {

 "street": "1 av des Champs Elysées",

 "dest_city": "Paris"

 },

 "delivery": {

 "provider": "Santa Claus Inc.",

 "delays": "1"

 }

 "network": "VISA",

 "cardType: {

 "merchant": "Amazon"

 }

}

MongoDB

128

If you share the same embeddable in different places, you can use JPA’s @At-

tributeOverride to override columns from the embedding side. This is the case

of DeliveryProvider in our example.

If you omit the dot in one of the columns, this column will not be part of the nested

document. This is demonstrated by the CreditCardType. We advise you against

it. Like crossing streams, it is bad form. This approach might not be supported in

the future.

11.2.3. Associations

Hibernate OGM MongoDB proposes three strategies to store navigation information for associa-

tions. The three possible strategies are:

• IN_ENTITY (default)

• ASSOCIATION_DOCUMENT, using a global collection for all associations

• COLLECTION_PER_ASSOCIATION, using a dedicated collection for each association

To switch between these strategies, use of the three approaches to options:

• annotate your entity with @AssocationStorage and @AssociationDocumentStorage annota-

tions (see Section 11.1.4, “Annotation based configuration”),

• use the API for programmatic configuration (see Section 11.1.5, “Programmatic configuration”)

• or specify a default strategy via the

hibernate.ogm.datastore.document.association_storage and

hibernate.ogm.mongodb.association_document_storage configuration properties.

11.2.3.1. In Entity strategy

• *-to-one associations

• *-to-many associations

In this strategy, Hibernate OGM stores the id(s) of the associated entity(ies) into the entity doc-

ument itself. This field stores the id value for to-one associations and an array of id values for

to-many associations. An embedded id will be represented by a nested document. For indexed

collections (i.e. List or Map), the index will be stored along the id.

Note

When using this strategy the annotations @JoinTable will be ignored because no

collection is created for associations.

MongoDB

129

You can use @JoinColumn to change the name of the field that stores the foreign

key (as an example, see Example 11.24, “Unidirectional one-to-one with @Join-

Column”).

11.2.3.2. To-one associations

Example 11.23. Unidirectional one-to-one

@Entity

public class Vehicule {

 @Id

 private String id;

 private String brand;

 // getters, setters ...

}

@Entity

public class Wheel {

 @Id

 private String id;

 private double diameter;

 @OneToOne

 private Vehicule vehicule;

 // getters, setters ...

}

{

 "_id" : "V_01",

 "brand" : "Mercedes"

}

Wheel collection as JSON in MongoDB

{

 "_id" : "W001",

 "diameter" : 0,

 "vehicule_id" : "V_01"

}

MongoDB

130

Example 11.24. Unidirectional one-to-one with @JoinColumn

@Entity

public class Vehicule {

 @Id

 private String id;

 private String brand;

 // getters, setters ...

}

@Entity

public class Wheel {

 @Id

 private String id;

 private double diameter;

 @OneToOne

 @JoinColumn(name = "part_of")

 private Vehicule vehicule;

 // getters, setters ...

}

{

 "_id" : "V_01",

 "brand" : "Mercedes"

}

Wheel collection as JSON in MongoDB

{

 "_id" : "W001",

 "diameter" : 0,

 "part_of" : "V_01"

}

In a true one-to-one association, it is possible to share the same id between the two entities and

therefore a foreign key is not required. You can see how to map this type of association in the

following example:

Example 11.25. Unidirectional one-to-one with @MapsId and

@PrimaryKeyJoinColumn

@Entity

MongoDB

131

public class Vehicule {

 @Id

 private String id;

 private String brand;

 // getters, setters ...

}

@Entity

public class Wheel {

 @Id

 private String id;

 private double diameter;

 @OneToOne

 @PrimaryKeyJoinColumn

 @MapsId

 private Vehicule vehicule;

 // getters, setters ...

}

Vehicule collection as JSON in MongoDB

{

 "_id" : "V_01",

 "brand" : "Mercedes"

}

Wheel collection as JSON in MongoDB

{

 "_id" : "V_01",

 "diameter" : 0,

}

Example 11.26. Bidirectional one-to-one

@Entity

public class Husband {

 @Id

 private String id;

 private String name;

 @OneToOne

 private Wife wife;

 // getters, setters ...

MongoDB

132

}

@Entity

public class Wife {

 @Id

 private String id;

 private String name;

 @OneToOne

 private Husband husband;

 // getters, setters ...

}

Husband collection as JSON in MongoDB

{

 "_id" : "alex",

 "name" : "Alex",

 "wife" : "bea"

}

Wife collection as JSON in MongoDB

{

 "_id" : "bea",

 "name" : "Bea",

 "husband" : "alex"

}

Example 11.27. Unidirectional many-to-one

@Entity

public class JavaUserGroup {

 @Id

 private String jugId;

 private String name;

 // getters, setters ...

}

@Entity

public class Member {

 @Id

 private String id;

 private String name;

 @ManyToOne

MongoDB

133

 private JavaUserGroup memberOf;

 // getters, setters ...

}

JavaUserGroup collection as JSON in MongoDB

{

 "_id" : "summer_camp",

 "name" : "JUG Summer Camp"

}

Member collection as JSON in MongoDB

{

 "_id" : "jerome",

 "name" : "Jerome"

 "memberOf_jugId" : "summer_camp"

}

{

 "_id" : "emmanuel",

 "name" : "Emmanuel Bernard"

 "memberOf_jugId" : "summer_camp"

}

Example 11.28. Bidirectional many-to-one

@Entity

public class SalesForce {

 @Id

 private String id;

 private String corporation;

 @OneToMany(mappedBy = "salesForce")

 private Set<SalesGuy> salesGuys = new HashSet<SalesGuy>();

 // getters, setters ...

}

@Entity

public class SalesGuy {

 private String id;

 private String name;

 @ManyToOne

 private SalesForce salesForce;

 // getters, setters ...

}

MongoDB

134

SalesForce collection

{

 "_id" : "red_hat",

 "corporation" : "Red Hat",

 "salesGuys" : ["eric", "simon"]

}

SalesGuy collection

{

 "_id" : "eric",

 "name" : "Eric"

 "salesForce_id" : "red_hat",

}

{

 "_id" : "simon",

 "name" : "Simon",

 "salesForce_id" : "red_hat"

}

Example 11.29. Bidirectional many-to-one between entities with embedded

ids

@Entity

public class Game {

 @EmbeddedId

 private GameId id;

 private String name;

 @ManyToOne

 private Court playedOn;

 // getters, setters ...

}

public class GameId implements Serializable {

 private String category;

 @Column(name = "id.gameSequenceNo")

 private int sequenceNo;

 // getters, setters ...

 // equals / hashCode

}

@Entity

MongoDB

135

public class Court {

 @EmbeddedId

 private CourtId id;

 private String name;

 @OneToMany(mappedBy = "playedOn")

 private Set<Game> games = new HashSet<Game>();

 // getters, setters ...

}

public class CourtId implements Serializable {

 private String countryCode;

 private int sequenceNo;

 // getters, setters ...

 // equals / hashCode

}

Court collection.

{

 "_id" : {

 "countryCode" : "DE",

 "sequenceNo" : 123

 },

 "name" : "Hamburg Court",

 "games" : [

 { "gameSequenceNo" : 457, "category" : "primary" },

 { "gameSequenceNo" : 456, "category" : "primary" }

]

}

Game collection.

{

 "_id" : {

 "category" : "primary",

 "gameSequenceNo" : 456

 },

 "name" : "The game",

 "playedOn_id" : {

 "countryCode" : "DE",

 "sequenceNo" : 123

 }

}

{

 "_id" : {

 "category" : "primary",

 "gameSequenceNo" : 457

 },

MongoDB

136

 "name" : "The other game",

 "playedOn_id" : {

 "countryCode" : "DE",

 "sequenceNo" : 123

 }

}

Here we see that the embedded id is represented as a nested document and directly referenced

by the associations.

11.2.3.3. To-many associations

Example 11.30. Unidirectional one-to-many

@Entity

public class Basket {

 @Id

 private String id;

 private String owner;

 @OneToMany

 private List<Product> products = new ArrayList<Product>();

 // getters, setters ...

}

@Entity

public class Product {

 @Id

 private String name;

 private String description;

 // getters, setters ...

}

Basket collection

{

 "_id" : "davide_basket",

 "owner" : "Davide",

 "products" : ["Beer", "Pretzel"]

}

Product collection

{

MongoDB

137

 "_id" : "Pretzel",

 "description" : "Glutino Pretzel Sticks"

}

{

 "_id" : "Beer",

 "description" : "Tactical nuclear penguin"

}

Example 11.31. Unidirectional one-to-many with @OrderColumn

@Entity

public class Basket {

 @Id

 private String id;

 private String owner;

 @OneToMany

 private List<Product> products = new ArrayList<Product>();

 // getters, setters ...

}

@Entity

public class Product {

 @Id

 private String name;

 private String description;

 // getters, setters ...

}

Basket collection

{

 "_id" : "davide_basket",

 "owner" : "Davide",

 "products" : [

 {

 "products_name" : "Pretzel",

 "products_ORDER" : 1

 },

 {

 "products_name" : "Beer",

 "products_ORDER" : 0

 }

]

}

MongoDB

138

Product collection

{

 "_id" : "Pretzel",

 "description" : "Glutino Pretzel Sticks"

}

{

 "_id" : "Beer",

 "description" : "Tactical nuclear penguin"

}

A map can be used to represents an association, in this case Hibernate OGM will store the key

of the map and the associated id.

Example 11.32. Unidirectional one-to-many using maps with defaults

@Entity

public class User {

 @Id

 private String id;

 @OneToMany

 private Map<String, Address> addresses = new HashMap<String, Address>();

 // getters, setters ...

}

@Entity

public class Address {

 @Id

 private String id;

 private String city;

 // getters, setters ...

}

User collection as JSON in MongoDB

{

 "_id" : "user_001",

 "addresses" : [

 {

 "addresses_KEY" : "work",

 "addresses_id" : "address_001"

 },

 {

 "addresses_KEY" : "home",

 "addresses_id" : "address_002"

 }

MongoDB

139

]

}

Address collection as JSON in MongoDB

{ "_id" : "address_001", "city" : "Rome" }{ "_id" : "address_002", "city" : "Paris" }

}{ "_id" : "address_002", "city" : "Paris"

You can use @MapKeyColumn to rename the column containing the key of the map.

Example 11.33. Unidirectional one-to-many using maps with

@MapKeyColumn

@Entity

public class User {

 @Id

 private String id;

 @OneToMany

 @MapKeyColumn(name = "addressType")

 private Map<String, Address> addresses = new HashMap<String, Address>();

 // getters, setters ...

}

@Entity

public class Address {

 @Id

 private String id;

 private String city;

 // getters, setters ...

}

User collection as JSON in MongoDB

{

 "_id" : "user_001",

 "addresses" : [

 {

 "addressType" : "work",

 "addresses_id" : "address_001"

 },

 {

 "addressType" : "home",

 "addresses_id" : "address_002"

 }

]

MongoDB

140

}

Address collection as JSON in MongoDB

{ "_id" : "address_001", "city" : "Rome" }{ "_id" : "address_002", "city" : "Paris" }

}{ "_id" : "address_002", "city" : "Paris"

Example 11.34. Unidirectional many-to-many using in entity strategy

@Entity

public class Student {

 @Id

 private String id;

 private String name;

 // getters, setters ...

}

@Entity

public class ClassRoom {

 @Id

 private long id;

 private String lesson;

 @ManyToMany

 private List<Student> students = new ArrayList<Student>();

 // getters, setters ...

}

Student collection

{

 "_id" : "john",

 "name" :"John Doe" }

{

 "_id" : "mario",

 "name" : "Mario Rossi"

}

{

 "_id" : "kate",

 "name" : "Kate Doe"

}

ClassRoom collection

MongoDB

141

{

 "_id" : NumberLong(1),

 "lesson" : "Math"

 "students" : [

 "mario",

 "john"

]

}

{

 "_id" : NumberLong(2),

 "lesson" : "English"

 "students" : [

 "mario",

 "kate"

]

}

Example 11.35. Bidirectional many-to-many

@Entity

public class AccountOwner {

 @Id

 private String id;

 private String SSN;

 @ManyToMany

 private Set<BankAccount> bankAccounts;

 // getters, setters ...

}

@Entity

public class BankAccount {

 @Id

 private String id;

 private String accountNumber;

 @ManyToMany(mappedBy = "bankAccounts")

 private Set<AccountOwner> owners = new HashSet<AccountOwner>();

 // getters, setters ...

}

AccountOwner collection

{

 "_id" : "owner_1",

 "SSN" : "0123456"

MongoDB

142

 "bankAccounts" : ["account_1"]

}

BankAccount collection

{

 "_id" : "account_1",

 "accountNumber" : "X2345000"

 "owners" : ["owner_1", "owner2222"]

}

Example 11.36. Ordered list with embedded id

@Entity

public class Race {

 @EmbeddedId

 private RaceId raceId;

 @OrderColumn(name = "ranking")

 @OneToMany @JoinTable(name = "Race_Runners")

 private List<Runner> runnersByArrival = new ArrayList<Runner>();

 // getters, setters ...

}

public class RaceId implements Serializable {

 private int federationSequence;

 private int federationDepartment;

 // getters, setters, equals, hashCode

}

@Entity

public class Runner {

 @EmbeddedId

 private RunnerId runnerId;

 private int age;

 // getters, setters ...

}

public class RunnerId implements Serializable {

 private String firstname;

 private String lastname;

 // getters, setters, equals, hashCode

}

Race collection.

{

MongoDB

143

 "_id": {

 "federationDepartment": 75,

 "federationSequence": 23

 },

 "runnersByArrival": [{

 "firstname": "Pere",

 "lastname": "Noel",

 "ranking": 1

 }, {

 "firstname": "Emmanuel",

 "lastname": "Bernard",

 "ranking": 0

 }]

}

Runner collection.

{

 "_id": {

 "firstname": "Pere",

 "lastname": "Noel"

 },

 "age": 105

} {

 "_id": {

 "firstname": "Emmanuel",

 "lastname": "Bernard"

 },

 "age": 37

}

11.2.3.4. One collection per association strategy

In this strategy, Hibernate OGM creates a MongoDB collection per association in which it will store

all navigation information for that particular association.

This is the strategy closest to the relational model. If an entity A is related to B and C, 2 collections

will be created. The name of this collection is made of the association table concatenated with

associations_.

For example, if the BankAccount and Owner are related, the collection used to store will be named

associations_Owner_BankAccount. You can rename The prefix is useful to quickly identify the

association collections from the entity collections. You can also decide to rename the collection

representing the association using @JoinTable (see an example)

Each document of an association collection has the following structure:

• _id contains the id of the owner of relationship

• rows contains all the id of the related entities

MongoDB

144

Note

The preferred approach is to use the in-entity strategy but this approach can alle-

viate the problem of having documents that are too big.

Example 11.37. Unidirectional relationship

{

 "_id" : { "owners_id" : "owner0001" },

 "rows" : [

 "accountABC",

 "accountXYZ"

]

}

Example 11.38. Bidirectional relationship

{

 "_id" : { "owners_id" : "owner0001" },

 "rows" : ["accountABC", "accountXYZ"]

}

{

 "_id" : { "bankAccounts_id" : "accountXYZ" },

 "rows" : ["owner0001"]

}

Note

This strategy won’t affect *-to-one associations or embedded collections.

Example 11.39. Unidirectional one-to-many using one collection per

strategy

@Entity

public class Basket {

 @Id

 private String id;

 private String owner;

 @OneToMany

 private List<Product> products = new ArrayList<Product>();

 // getters, setters ...

MongoDB

145

}

@Entity

public class Product {

 @Id

 private String name;

 private String description;

 // getters, setters ...

}

Basket collection

{

 "_id" : "davide_basket",

 "owner" : "Davide"

}

Product collection

{

 "_id" : "Pretzel",

 "description" : "Glutino Pretzel Sticks"

}

{

 "_id" : "Beer",

 "description" : "Tactical nuclear penguin"

}

associations_Basket_Product collection

{

 "_id" : { "Basket_id" : "davide_basket" },

 "rows" : ["Beer", "Pretzel"]

}

The order of the element in the list might be preserved using @OrderColumn. Hibernate OGM will

store the order adding an additional fieldd to the document containing the association.

Example 11.40. Unidirectional one-to-many using one collection per

strategy with @OrderColumn

@Entity

public class Basket {

MongoDB

146

 @Id

 private String id;

 private String owner;

 @OneToMany

 @OrderColumn

 private List<Product> products = new ArrayList<Product>();

 // getters, setters ...

}

@Entity

public class Product {

 @Id

 private String name;

 private String description;

 // getters, setters ...

}

Basket collection

{

 "_id" : "davide_basket",

 "owner" : "Davide"

}

Product collection

{

 "_id" : "Pretzel",

 "description" : "Glutino Pretzel Sticks"

}

{

 "_id" : "Beer",

 "description" : "Tactical nuclear penguin"

}

associations_Basket_Product collection

{

 "_id" : { "Basket_id" : "davide_basket" },

 "rows" : [

 {

 "products_name" : "Pretzel",

 "products_ORDER" : 1

 },

 {

MongoDB

147

 "products_name" : "Beer",

 "products_ORDER" : 0

 }

]

}

Example 11.41. Unidirectional many-to-many using one collection per

association strategy

@Entity

public class Student {

 @Id

 private String id;

 private String name;

 // getters, setters ...

}

@Entity

public class ClassRoom {

 @Id

 private long id;

 private String lesson;

 @ManyToMany

 private List<Student> students = new ArrayList<Student>();

 // getters, setters ...

}

Student collection

{

 "_id" : "john",

 "name" : "John Doe"

}

{

 "_id" : "mario",

 "name" : "Mario Rossi"

}

{

 "_id" : "kate",

 "name" : "Kate Doe"

}

ClassRoom collection

{

MongoDB

148

 "_id" : NumberLong(1),

 "lesson" : "Math"

}

{

 "_id" : NumberLong(2),

 "lesson" : "English"

}

associations_ClassRoom_Student

{

 "_id" : {

 "ClassRoom_id" : NumberLong(1),

 },

 "rows" : ["john", "mario"]

}

{

 "_id" : {

 "ClassRoom_id" : NumberLong(2),

 },

 "rows" : ["mario", "kate"]

}

Example 11.42. Bidirectional many-to-many using one collection per

association strategy

@Entity

public class AccountOwner {

 @Id

 private String id;

 private String SSN;

 @ManyToMany

 private Set<BankAccount> bankAccounts;

 // getters, setters ...

}

@Entity

public class BankAccount {

 @Id

 private String id;

 private String accountNumber;

 @ManyToMany(mappedBy = "bankAccounts")

 private Set<AccountOwner> owners = new HashSet<AccountOwner>();

 // getters, setters ...

MongoDB

149

}

AccountOwner collection

{

 "_id" : "owner_1",

 "SSN" : "0123456"

}

BankAccount collection

{

 "_id" : "account_1",

 "accountNumber" : "X2345000"

}

associations_AccountOwner_BankAccount collection

{

 "_id" : {

 "bankAccounts_id" : "account_1"

 },

 "rows" : ["owner_1"]

}

{

 "_id" : {

 "owners_id" : "owner_1"

 },

 "rows" : ["account_1"]

}

You can change the name of the collection containing the association using the @JoinTable an-

notation. In the following example, the name of the collection containing the association is Owner-

BankAccounts (instead of the default associations_AccountOwner_BankAccount)

Example 11.43. Bidirectional many-to-many using one collection per

association strategy and @JoinTable

@Entity

public class AccountOwner {

 @Id

 private String id;

 private String SSN;

MongoDB

150

 @ManyToMany

 @JoinTable(name = "OwnerBankAccounts")

 private Set<BankAccount> bankAccounts;

 // getters, setters ...

}

@Entity

public class BankAccount {

 @Id

 private String id;

 private String accountNumber;

 @ManyToMany(mappedBy = "bankAccounts")

 private Set<AccountOwner> owners = new HashSet<AccountOwner>();

 // getters, setters ...

}

AccountOwner collection

{

 "_id" : "owner_1",

 "SSN" : "0123456"

}

BankAccount collection

{

 "_id" : "account_1",

 "accountNumber" : "X2345000"

}

OwnerBankAccount

{

 "_id" : {

 "bankAccounts_id" : "account_1"

 },

 "rows" : ["owner_1"]

}

{

 "_id" : {

 "owners_id" : "owner_1"

 },

 "rows" : ["account_1"]

}

MongoDB

151

11.2.3.5. Global collection strategy

With this strategy, Hibernate OGM creates a single collection named Associations in which it will

store all navigation information for all associations. Each document of this collection is structured

in 2 parts. The first is the _id field which contains the identifier information of the association

owner and the name of the association table. The second part is the rows field which stores (into

an embedded collection) all ids that the current instance is related to.

Note

This strategy won’t affect *-to-one associations or embedded collections.

Generally, you should not make use of this strategy unless embedding the associ-

ation information proves to be too big for your document and you wish to separate

them.

Example 11.44. Associations collection containing unidirectional

association

{

 "_id": {

 "owners_id": "owner0001",

 "table": "AccountOwner_BankAccount"

 },

 "rows": ["accountABC", "accountXYZ"]

}

For a bidirectional relationship, another document is created where ids are reversed. Don’t worry,

Hibernate OGM takes care of keeping them in sync:

Example 11.45. Associations collection containing a bidirectional

association

{

 "_id": {

 "owners_id": "owner0001",

 "table": "AccountOwner_BankAccount"

 },

 "rows": ["accountABC", "accountXYZ"]

}

{

 "_id": {

 "bankAccounts_id": "accountXYZ",

 "table": "AccountOwner_BankAccount"

 },

 "rows": ["owner0001"]

MongoDB

152

}

Example 11.46. Unidirectional one-to-many using global collection strategy

@Entity

public class Basket {

 @Id

 private String id;

 private String owner;

 @OneToMany

 private List<Product> products = new ArrayList<Product>();

 // getters, setters ...

}

@Entity

public class Product {

 @Id

 private String name;

 private String description;

 // getters, setters ...

}

Basket collection

{

 "_id" : "davide_basket",

 "owner" : "Davide"

}

Product collection

{

 "_id" : "Pretzel",

 "description" : "Glutino Pretzel Sticks"

}

{

 "_id" : "Beer",

 "description" : "Tactical nuclear penguin"

}

Associations collection

MongoDB

153

{

 "_id" : {

 "Basket_id" : "davide_basket",

 "table" : "Basket_Product"

 },

 "rows" : [

 {

 "products_name" : "Pretzel",

 "products_ORDER" : 1

 },

 {

 "products_name" : "Beer",

 "products_ORDER" : 0

 }

]

}

Example 11.47. Unidirectional one-to-many using global collection strategy

with @JoinTable

@Entity

public class Basket {

 @Id

 private String id;

 private String owner;

 @OneToMany

 // It will change the value stored in the field table in the Associations collection

 @JoinTable(name = "BasketContent")

 private List<Product> products = new ArrayList<Product>();

 // getters, setters ...

}

@Entity

public class Product {

 @Id

 private String name;

 private String description;

 // getters, setters ...

}

Basket collection

{

 "_id" : "davide_basket",

 "owner" : "Davide"

MongoDB

154

}

Product collection

{

 "_id" : "Pretzel",

 "description" : "Glutino Pretzel Sticks"

}

{

 "_id" : "Beer",

 "description" : "Tactical nuclear penguin"

}

Associations collection

{

 "_id" : {

 "Basket_id" : "davide_basket",

 "table" : "BasketContent"

 },

 "rows" : ["Beer", "Pretzel"]

}

Example 11.48. Unidirectional many-to-many using global collection

strategy

@Entity

public class Student {

 @Id

 private String id;

 private String name;

 // getters, setters ...

}

@Entity

public class ClassRoom {

 @Id

 private long id;

 private String lesson;

 @ManyToMany

 private List<Student> students = new ArrayList<Student>();

 // getters, setters ...

}

MongoDB

155

Student collection

{

 "_id" : "john",

 "name" : "John Doe"

}

{

 "_id" : "mario",

 "name" : "Mario Rossi"

}

{

 "_id" : "kate",

 "name" : "Kate Doe"

}

ClassRoom collection

{

 "_id" : NumberLong(1),

 "lesson" : "Math"

}

{

 "_id" : NumberLong(2),

 "lesson" : "English"

}

Associations collection

{

 "_id" : {

 "ClassRoom_id" : NumberLong(1),

 "table" : "ClassRoom_Student"

 },

 "rows" : ["john", "mario"]

}

{

 "_id" : {

 "ClassRoom_id" : NumberLong(2),

 "table" : "ClassRoom_Student"

 },

 "rows" : ["mario", "kate"]

}

Example 11.49. Bidirectional many-to-many using global collection strategy

@Entity

public class AccountOwner {

 @Id

MongoDB

156

 private String id;

 private String SSN;

 @ManyToMany

 private Set<BankAccount> bankAccounts;

 // getters, setters ...

}

@Entity

public class BankAccount {

 @Id

 private String id;

 private String accountNumber;

 @ManyToMany(mappedBy = "bankAccounts")

 private Set<AccountOwner> owners = new HashSet<AccountOwner>();

 // getters, setters ...

}

AccountOwner collection

{

 "_id" : "owner0001",

 "SSN" : "0123456"

}

BankAccount collection

{

 "_id" : "account_1",

 "accountNumber" : "X2345000"

}

Associations collection

{

 "_id" : {

 "bankAccounts_id" : "account_1",

 "table" : "AccountOwner_BankAccount"

 },

 "rows" : ["owner0001"]

}

{

 "_id" : {

 "owners_id" : "owner0001",

MongoDB

157

 "table" : "AccountOwner_BankAccount"

 },

 "rows" : ["account_1"]

}

11.3. Transactions

MongoDB does not support transactions. Only changes applied to the same document are done

atomically. A change applied to more than one document will not be applied atomically. This

problem is slightly mitigated by the fact that Hibernate OGM queues all changes before applying

them during flush time. So the window of time used to write to MongoDB is smaller than what you

would have done manually.

We recommend that you still use transaction demarcations with Hibernate OGM to trigger the flush

operation transparently (on commit). But do not consider rollback as a possibility, this won’t work.

11.4. Optimistic Locking

MongoDB does not provide a built-in mechanism for detecting concurrent updates to the same

document but it provides a way to execute atomic find and update operations. By exploiting this

commands Hibernate OGM can detect concurrent modifications to the same document.

You can enable optimistic locking detection using the annotation @Version:

Example 11.50. Optimistic locking detection via @Version

@Entity

public class Planet implements Nameable {

 @Id

 private String id;

 private String name;

 @Version

 private int version;

 // getters, setters ...

}

{

 "_id" : "planet-1",

 "name" : "Pluto",

 "version" : 0

}

The @Version annotation define which attribute will keep track of the version of the

document, Hibernate OGM will update the field when required and if two changes

MongoDB

158

from two different sessions (for example) are applied to the same document a

org.hibernate.StaleObjectStateException is thrown.

You can use @Column to change the name of the field created on MongoDB:

Example 11.51. Optimistic locking detection via @Version using @Column

@Entity

public class Planet implements Nameable {

 @Id

 private String id;

 private String name;

 @Version

 @Column(name="OPTLOCK")

 private int version;

 // getters, setters ...

}

{

 "_id" : "planet-1",

 "name" : "Pluto",

 "OPTLOCK" : 0

}

11.5. Queries

You can express queries in a few different ways:

• using JP-QL

• using a native MongoQL query

• using a Hibernate Search query (brings advanced full-text and geospatial queries)

While you can use JP-QL for simple queries, you might hit limitations. The current recommended

approach is to use native MongoQL if your query involves nested (list of) elements.

Note

In order to reflect changes performed in the current session, all entities affected by

a given query are flushed to the datastore prior to query execution (that’s the case

for Hibernate ORM as well as Hibernate OGM).

For not fully transactional stores such as MongoDB this can cause changes to be

written as a side-effect of running queries which cannot be reverted by a possible

later rollback.

MongoDB

159

Depending on your specific use cases and requirements you may prefer to disable

auto-flushing, e.g. by invoking query.setFlushMode(FlushMode.MANUAL). Bear

in mind though that query results will then not reflect changes applied within the

current session.

11.5.1. JP-QL queries

Hibernate OGM is a work in progress, so only a sub-set of JP-QL constructs is available when

using the JP-QL query support. This includes:

• simple comparisons using "<", "<=", "=", ">=" and ">"

• IS NULL and IS NOT NULL

• the boolean operators AND, OR, NOT

• LIKE, IN and BETWEEN

• ORDER BY

• inner JOIN on embedded collections

• projections of regular and embedded properties

Queries using these constructs will be transformed into equivalent native MongoDB queries.

Note

Let us know by opening an issue or sending an email what query you wish to

execute. Expanding our support in this area is high on our priority list.

11.5.2. Native MongoDB queries

Hibernate OGM also supports certain forms of native queries for MongoDB. Currently two forms

of native queries are available via the MongoDB backend:

• find queries specifying the search criteria only

• queries specified using the MongoDB CLI syntax

The former always maps results to entity types. The latter either maps results to entity types or

to certain supported forms of projection. Note that parameterized queries are not supported by

MongoDB, so don’t expect Query#setParameter() to work.

MongoDB

160

Warning

Specifying native MongoDB queries using the CLI syntax is an EXPERIMENTAL

feature for the time being. Currently only find() and count() queries are sup-

ported via the CLI syntax. Further query types (including updating queries) may be

supported in future revisions.

No cursor operations such as sort() are supported. Instead use the correspond-

ing MongoDB query modifiers [http://docs.mongodb.org/manual/reference/opera-

tor/query-modifier/] such as $orderby within the criteria parameter.

JSON parameters passed via the CLI syntax must be specified us-

ing the strict mode [http://docs.mongodb.org/manual/reference/mongodb-ex-

tended-json/]. Specifically, keys need to be given within quotes, e.g. use

db.WILDE_POEM.find({ \"name\" : \"Athanasia\" }) instead of

db.WILDE_POEM.find({ name : \"Athanasia\" }). The only relaxation of this is

that single quotes may be used when specifying attribute names/values to facilitate

embedding queries within Java strings, e.g. db.WILDE_POEM.find({ 'name' :

'Athanasia' }).

Note that results of projections are returned as retrieved from the MongoDB driver

at the moment and are not (yet) converted using suitable Hibernate OGM type

implementations.

You can execute native queries as shown in the following example:

Example 11.52. Using the JPA API

@Entity

public class Poem {

 @Id

 private Long id;

 private String name;

 private String author;

 // getters, setters ...

}

...

javax.persistence.EntityManager em = ...

// criteria-only find syntax

String query1 = "{ $and: [{ name : 'Portia' }, { author : 'Oscar Wilde' }] }";

Poem poem = (Poem) em.createNativeQuery(query1, Poem.class).getSingleResult();

http://docs.mongodb.org/manual/reference/operator/query-modifier/
http://docs.mongodb.org/manual/reference/operator/query-modifier/
http://docs.mongodb.org/manual/reference/operator/query-modifier/
http://docs.mongodb.org/manual/reference/mongodb-extended-json/
http://docs.mongodb.org/manual/reference/mongodb-extended-json/
http://docs.mongodb.org/manual/reference/mongodb-extended-json/

MongoDB

161

// criteria-only find syntax with order-by

String query2 = "{ $query : { author : 'Oscar Wilde' }, $orderby : { name : 1 } }";

List<Poem> poems = em.createNativeQuery(query2, Poem.class).getResultList();

// projection via CLI-syntax

String query3 = "db.WILDE_POEM.find(" +

 "{ '$query' : { 'name' : 'Athanasia' }, '$orderby' : { 'name' : 1 } }" +

 "{ 'name' : 1 }" +

 ")";

// will contain name and id as MongoDB always returns the id for projections

List<Object[]> poemNames = (List<Object[]>)em.createNativeQuery(query3).getResultList();

// projection via CLI-syntax

String query4 = "db.WILDE_POEM.count({ 'name' : 'Athanasia' })";

Object[] count = (Object[])em.createNativeQuery(query4).getSingleResult();

The result of a query is a managed entity (or a list thereof) or a projection of attributes in form of

an object array, just like you would get from a JP-QL query.

Example 11.53. Using the Hibernate native API

OgmSession session = ...

String query1 = "{ $and: [{ name : 'Portia' }, { author : 'Oscar Wilde' }] }";

Poem poem = session.createNativeQuery(query1)

 .addEntity("Poem", Poem.class)

 .uniqueResult();

String query2 = "{ $query : { author : 'Oscar Wilde' }, $orderby : { name : 1 } }";

List<Poem> poems = session.createNativeQuery(query2)

 .addEntity("Poem", Poem.class)

 .list();

Native queries can also be created using the @NamedNativeQuery annotation:

Example 11.54. Using @NamedNativeQuery

@Entity

@NamedNativeQuery(

 name = "AthanasiaPoem",

 query = "{ $and: [{ name : 'Athanasia' }, { author : 'Oscar Wilde' }] }",

 resultClass = Poem.class)

public class Poem { ... }

...

// Using the EntityManager

Poem poem1 = (Poem) em.createNamedQuery("AthanasiaPoem")

 .getSingleResult();

MongoDB

162

// Using the Session

Poem poem2 = (Poem) session.getNamedQuery("AthanasiaPoem")

 .uniqueResult();

Hibernate OGM stores data in a natural way so you can still execute queries using the MongoDB

driver, the main drawback is that the results are going to be raw MongoDB documents and not

managed entities.

11.5.3. Hibernate Search

You can index your entities using Hibernate Search. That way, a set of secondary indexes inde-

pendent of MongoDB is maintained by Hibernate Search and you can write queries on top of

them. The benefit of this approach is a nice integration at the JPA / Hibernate API level (managed

entities are returned by the queries). The drawback is that you need to store the Lucene indexes

somewhere (file system, infinispan grid, etc). Have a look at the Infinispan section (Section 9.6,

“Storing a Lucene index in Infinispan”) for more info on how to use Hibernate Search.

163

Chapter 12. Neo4j
Neo4j [http://www.neo4j.org] is a robust (fully ACID) transactional property graph database. This

kind of databases are suited for those type of problems that can be represented with a graph like

social relationships or road maps for example.

At the moment only the support for the embedded Neo4j is included in OGM.

12.1. How to add Neo4j integration

1. Add the dependencies to your project. If your project uses Maven you can add this to

the pom.xml:

<dependency>

 <groupId>org.hibernate.ogm</groupId>

 <artifactId>hibernate-ogm-neo4j</artifactId>

 <version>4.2.0.Final</version>

</dependency>

Alternatively you can find the required libraries in the distribution package on

SourceForge [https://downloads.sourceforge.net/project/hibernate/hibernate-ogm/4.2.0.Final/hi-

bernate-ogm-4.2.0.Final-dist.zip]

2. Add the following properties:

hibernate.ogm.datastore.provider = neo4j_embedded

hibernate.ogm.neo4j.database_path = C:\example\mydb

12.2. Configuring Neo4j

The following properties are available to configure Neo4j support:

Neo4j datastore configuration properties

hibernate.ogm.neo4j.database_path

The absolute path representing the location of the Neo4j database. Example: C:\neo4jdb

\mydb

hibernate.ogm.neo4j.configuration_resource_name (optional)

Location of the Neo4j embedded properties file. It can be an URL, name of a classpath re-

source or file system path.

hibernate.schema_update.unique_constraint_strategy (optional)

If set to SKIP, Hibernate OGM won’t create any unique constraints on

the nodes representing the entities. This property won’t affect the unique

http://www.neo4j.org
http://www.neo4j.org
https://downloads.sourceforge.net/project/hibernate/hibernate-ogm/4.2.0.Final/hibernate-ogm-4.2.0.Final-dist.zip
https://downloads.sourceforge.net/project/hibernate/hibernate-ogm/4.2.0.Final/hibernate-ogm-4.2.0.Final-dist.zip
https://downloads.sourceforge.net/project/hibernate/hibernate-ogm/4.2.0.Final/hibernate-ogm-4.2.0.Final-dist.zip

Neo4j

164

constraints generated for sequences. Other possible values (defined on the

org.hibernate.tool.hbm2ddl.UniqueConstraintSchemaUpdateStrategy enum) are

DROP_RECREATE_QUIETLY and RECREATE_QUIETLY but the effect will be the same (since Neo4j

constraints don’t have a name): keep the existing constraints and create the missing one.

Default value is DROP_RECREATE_QUIETLY.

Warning

At the moment, you must not specify the property

hibernate.transaction.jta.platform when using Neo4j. It would override Hi-

bernate OGM’s version and the transactions would not work correctly.

Note

Use the following method to retrieve the transaction manager (it needs to be done

after the EntityManagerFactory has been bootstrapped):

private static TransactionManag

er extractJBossTransactionManager(EntityManagerFactory factory) {

 SessionFactoryImplementor sessionFactory =

 (SessionFactoryImplementor) ((HibernateEntityManagerFactory) factory).getSessionFactory();

 return sessionFactory.getServiceRegistry().getService(JtaPlatform.class).retrieveTransactionManager();

}

Note

When bootstrapping a session factory or entity manager factory programmatically,

you should use the constants accessible via Neo4jProperties when specifying

the configuration properties listed above.

Common properties shared between stores are declared on OgmProperties (a

super interface of Neo4jProperties).

For maximum portability between stores, use the most generic interface possible.

12.3. Storage principles

Hibernate OGM tries to make the mapping to the underlying datastore as natural as possible so

that third party applications not using Hibernate OGM can still read and update the same datastore.

To make things simple, each entity is represented by a node, each embedded object is also rep-

resented by a node. Links between entities (whether to-one to to-many associations) are repre-

Neo4j

165

sented by relationships between nodes. Entity and embedded nodes are labelled ENTITY and

EMBEDDED respectively.

12.3.1. Properties and built-in types

Each entity is represented by a node. Each property or more precisely column is represented by

an attribute of this node.

The following types (and corresponding primitives) get passed to Neo4j without any conversion:

• java.lang.Boolean; Optionally the annotations @Type(type = "true_false"), @Type(type

= "yes_no") and @Type(type = "numeric_boolean") can be used to map boolean properties

to the characters 'T'/'F', 'Y'/'N' or the int values 0/1, respectively.

• java.lang.Character

• java.lang.Byte

• java.lang.Short

• java.lang.Integer

• java.lang.Long

• java.lang.Float

• java.lang.Double

• java.lang.String

The following types get converted into java.lang.String:

• java.math.BigDecimal

• java.math.BigInteger

• java.util.Calendar

stored as `String` with the format "yyyy/MM/dd HH:mm:ss:SSS Z"

• java.util.Date

stored as `String` with the format "yyyy/MM/dd HH:mm:ss:SSS Z"

• java.util.UUID

Neo4j

166

• java.util.URL

Note

Hibernate OGM doesn’t store null values in Neo4J, setting a value to null is the

same as removing the corresponding entry from Neo4J.

This can have consequences when it comes to queries on null value.

12.3.2. Entities

Entities are stored as Neo4j nodes, which means each entity property will be translated into a

property of the node. The name of the table mapping the entity is used as label.

You can use the name property of the @Table and @Column annotations to rename the label and

the node’s properties.

An additional label ENTITY is added to the node.

Example 12.1. Default JPA mapping for an entity

@Entity

public class News {

 @Id

 private String id;

 private String title;

 // getters, setters ...

}

Example 12.2. Rename node label and properties using @Table and

@Column

@Entity

@Table(name="ARTICLE")

Neo4j

167

public class News {

 @Id

 private String id;

 @Column(name = "headline")

 private String title;

 // getters, setters ...

}

12.3.2.1. Identifiers and unique constraints

Warning

Neo4j does not support constraints on more than one property. For this reason,

Hibernate OGM will create a unique constraint ONLY when it spans a single prop-

erty and it will ignore the ones spanning multiple properties.

The lack of unique constraints on node properties might result in the creation of

multiple nodes with the same identifier.

Hibernate OGM will create unique constraints for the identifier of entities and for the properties

annotated with:

• @Id

• @EmbeddedId

• @NaturalId

• @Column(unique = true)

• @Table(uniqueConstraints = @UniqueConstraint(columnNames =

{ "column_name" }))

Embedded identifiers are currently stored as dot separated properties.

Neo4j

168

Example 12.3. Entity with @EmbeddedId

@Entity

public class News {

 @EmbeddedId

 private NewsID newsId;

 private String content

 // getters, setters ...

}

@Embeddable

public class NewsID implements Serializable {

 private String title;

 private String author;

 // getters, setters ...

}

12.3.2.2. Embedded objects and collections

Embedded elements are stored as separate nodes labeled with EMBEDDED.

The the type of the relationship that connects the entity node to the embedded node is the attribute

name representing the embedded in the java class.

Example 12.4. Embedded object

@Entity

public class News {

 @EmbeddedId

 private NewsID newsId;

 @Embedded

 private NewsPaper paper;

 // getters, setters ...

Neo4j

169

}

@Embeddable

public class NewsID implements Serializable {

 private String title;

 private String author;

 // getters, setters ...

}

@Embeddable

public class NewsPaper {

 private String name;

 private String owner;

 // getters, setters ...

}

Example 12.5. @ElementCollection

@Entity

public class GrandMother {

 @Id

 private String id;

 @ElementCollection

 private List<GrandChild> grandChildren = new ArrayList<GrandChild>();

 // getters, setters ...

}

@Embeddable

public class GrandChild {

 private String name;

Neo4j

170

 // getters, setters ...

}

Note that in the previous examples no property is added to the relationships; in the following one,

one property is added to keep track of the order of the elements in the list.

Example 12.6. @ElementCollection with @OrderColumn

@Entity

public class GrandMother {

 @Id

 private String id;

 @ElementCollection

 @OrderColumn(name = "birth_order")

 private List<GrandChild> grandChildren = new ArrayList<GrandChild>();

 // getters, setters ...

}

@Embeddable

public class GrandChild {

 private String name;

 // getters, setters ...

}

Neo4j

171

12.3.3. Associations

An association, bidirectional or unidirectional, is always mapped using one relationship, beginning

at the owning side of the association. This is possible because in Neo4j relationships can be

navigated in both directions.

The type of the relationships depends on the type of the association, but in general it is the role

of the association on the main side. The only property stored on the relationship is going to be

the index of the association when required, for example when the association is annotated with

@OrderColumn or when a java.util.Map is used.

In Neo4j nodes are connected via relationship, this means that we don’t need to create properties

which store foreign column keys. This means that annotation like @JoinColumn won’t have any

effect.

Example 12.7. Unidirectional one-to-one

@Entity

public class Vehicule {

 @Id

 private String id;

 private String brand;

 // getters, setters ...

}

@Entity

public class Wheel {

Neo4j

172

 @Id

 private String id;

 private String company;

 private double diameter;

 @OneToOne

 private Vehicule vehicule;

 // getters, setters ...

}

Example 12.8. Bidirectional one-to-one

@Entity

public class Husband {

 @Id

 private String id;

 private String name;

 @OneToOne

 private Wife wife;

 // getters, setters ...

}

@Entity

public class Wife {

 @Id

 private String id;

Neo4j

173

 private String name;

 @OneToOne(mappedBy = "wife")

 private Husband husband;

 // getters, setters ...

}

Example 12.9. Unidirectional one-to-many

@Entity

public class Basket {

 @Id

 private String id;

 private String owner;

 @OneToMany

 private List<Product> products = new ArrayList<Product>();

 // getters, setters ...

}

@Entity

public class Product {

 @Id

 private String name;

 private String description;

Neo4j

174

 // getters, setters ...

}

Example 12.10. Unidirectional one-to-many using maps with defaults

@Entity

public class User {

 @Id

 private String id;

 @OneToMany

 private Map<String, Address> addresses = new HashMap<String, Address>();

 // getters, setters ...

}

@Entity

public class Address {

 @Id

 private String id;

 private String city;

 // getters, setters ...

}

Neo4j

175

Example 12.11. Unidirectional one-to-many using maps with

@MapKeyColumn

@Entity

public class User {

 @Id

 private String id;

 @OneToMany

 @MapKeyColumn(name = "addressType")

 private Map<String, Address> addresses = new HashMap<String, Address>();

 // getters, setters ...

}

@Entity

public class Address {

 @Id

 private String id;

 private String city;

 // getters, setters ...

}

Neo4j

176

Example 12.12. Unidirectional many-to-one

@Entity

public class JavaUserGroup {

 @Id

 private String jug_id;

 private String name;

 // getters, setters ...

}

@Entity

public class Member {

 @Id

 private String id;

 private String name;

 @ManyToOne

 private JavaUserGroup memberOf;

 // getters, setters ...

}

Neo4j

177

Example 12.13. Bidirectional many-to-one

@Entity

public class SalesForce {

 @Id

 private String id;

 private String corporation;

 @OneToMany(mappedBy = "salesForce")

 private Set<SalesGuy> salesGuys = new HashSet<SalesGuy>();

 // getters, setters ...

}

@Entity

public class SalesGuy {

 private String id;

 private String name;

 @ManyToOne

 private SalesForce salesForce;

 // getters, setters ...

}

Neo4j

178

Example 12.14. Unidirectional many-to-many

@Entity

public class Student {

 @Id

 private String id;

 private String name;

 // getters, setters ...

}

@Entity

public class ClassRoom {

 @Id

 private long id;

 private String lesson;

 @ManyToMany

 private List<Student> students = new ArrayList<Student>();

 // getters, setters ...

}

Neo4j

179

Example 12.15. Bidirectional many-to-many

@Entity

public class AccountOwner {

 @Id

 private String id;

 private String SSN;

 @ManyToMany

 private Set<BankAccount> bankAccounts;

 // getters, setters ...

}

@Entity

public class BankAccount {

 @Id

 private String id;

Neo4j

180

 private String accountNumber;

 @ManyToMany(mappedBy = "bankAccounts")

 private Set<AccountOwner> owners = new HashSet<AccountOwner>();

 // getters, setters ...

}

12.3.4. Auto-generated Values

Hibernate OGM supports the table generation strategy as well as the sequence generation strat-

egy with Neo4j. It is generally recommended to work with the latter, as it allows a slightly more

efficient querying for the next sequence value.

Sequence-based generators are represented by nodes in the following form:

Example 12.16. GenerationType.SEQUENCE

@Entity

public class Song {

 ...

 @Id

 @GeneratedValue(strategy = GenerationType.SEQUENCE, generator = "songSequenceGenerator")

 @SequenceGenerator(

 name = "songSequenceGenerator",

 sequenceName = "song_sequence",

 initialValue = INITIAL_VALUE,

 allocationSize = 10)

Neo4j

181

 public Long getId() {

 return id;

 }

 ...

Each sequence generator node is labelled with SEQUENCE. The sequence name can be speci-

fied via @SequenceGenerator#sequenceName(). A unique constraint is applied to the property

sequence_name in order to ensure uniqueness of sequences.

If required, you can set the initial value of a sequence and the increment size

via @SequenceGenerator#initialValue() and @SequenceGenerator#allocationSize(), re-

spectively. The options @SequenceGenerator#catalog() and @SequenceGenerator#schema()

are not supported.

Table-based generators are represented by nodes in the following form:

Example 12.17. GenerationType.TABLE

@Entity

public class Video {

 ...

 @Id

 @GeneratedValue(strategy = GenerationType.TABLE, generator = "video")

 @TableGenerator(

 name = "video",

 table = "Sequences",

 pkColumnName = "key",

 pkColumnValue = "video",

 valueColumnName = "seed"

)

 public Integer getId() {

 return id;

 }

 ...

Neo4j

182

Each table generator node is labelled with TABLE_BASED_SEQUENCE and the table

name as specified via @TableGenerator#table(). The sequence name is to be

given via @TableGenerator#pkColumnValue(). The node properties holding the se-

quence name and value can be configured via @TableGenerator#pkColumnName() and

@TableGenerator#valueColumnName(), respectively. A unique constraint is applied to the prop-

erty sequence_name to avoid the same sequence name is used twice within the same "table".

If required, you can set the initial value of a sequence and the increment

size via @TableGenerator#initialValue() and @TableGenerator#allocationSize(),

respectively. The options @TableGenerator#catalog(), @TableGenerator#schema(),

@TableGenerator#uniqueConstraints() and @TableGenerator#indexes() are not support-

ed.

12.3.5. Labels summary

The maximum number of labels the database can contain is roughly 2 billion.

The following summary will help you to keep track of the labels assigned to a new node:

Table 12.1. Summary of the labels assigned to a new node

NODE TYPE LABELS

Entity ENTITY, <Entity class name>

Embeddable EMBEDDED, <Embeddable class name>

GenerationType.SEQUENCE SEQUENCE

GenerationType.TABLE TABLE_BASED_SEQUENCE, <Table name>

12.4. Transactions

Caution

Neo4J operations must be executed inside a transaction. Make sure your interac-

tions with Hibernate OGM are within a transaction when you target Neo4J.

Neo4j

183

Unless a different org.hibernate.engine.transaction.jta.platform.spi.JtaPlatform is

specified, Hibernate OGM will use a specific implementation to integrate with the Neo4j transaction

mechanism. This means that you can start and commit transaction using the Hibernate session.

The drawback is that it is not possible at the moment to let Neo4j participate in managed JTA trans-

actions spanning several resources (see issue OGM-370 [https://hibernate.atlassian.net/browse/

OGM-370]).

Example 12.18. Example of starting and committing transactions

Session session = factory.openSession();

Transaction tx = session.beginTransaction();

Account account = new Account();

account.setLogin("myAccount");

session.persist(account);

tx.commit();

...

tx = session.beginTransaction();

Account savedAccount = (Account) session.get(Account.class, account.getId());

tx.commit();

12.5. Queries

You can express queries in a few different ways:

• using JP-QL

• using the Cypher query language

Note

Neo4J makes use of a Lucene version which is not compatible with the most recent

Hibernate Search version. This unfortunately makes it impossible to use the latest

Hibernate Search version and Neo4J embedded in the same application.

While you can use JP-QL for simple queries, you might hit limitations. The current recommended

approach is to use native Cypher queries if your query involves nested (list of) elements.

12.5.1. JP-QL queries

Hibernate OGM is a work in progress, so only a sub-set of JP-QL constructs is available when

using the JP-QL query support. This includes:

• simple comparisons using "<", "<=", "=", ">=" and ">"

https://hibernate.atlassian.net/browse/OGM-370
https://hibernate.atlassian.net/browse/OGM-370
https://hibernate.atlassian.net/browse/OGM-370

Neo4j

184

• IS NULL and IS NOT NULL

• the boolean operators AND, OR, NOT

• LIKE, IN and BETWEEN

• ORDER BY

• inner JOIN on embedded collections

• projections of regular and embedded properties

Queries using these constructs will be transformed into equivalent Cypher queries [http://

docs.neo4j.org/chunked/stable/cypher-query-lang.html].

Note

Let us know by opening an issue or sending an email what query you wish to

execute. Expanding our support in this area is high on our priority list.

12.5.2. Cypher queries

Hibernate OGM also supports Cypher queries [http://docs.neo4j.org/chunked/stable/cypher-

query-lang.html] for Neo4j. You can execute Cypher queries as shown in the following example:

Example 12.19. Using the JPA API

@Entity

public class Poem {

 @Id

 private Long id;

 private String name;

 private String author;

 // getters, setters ...

}

...

javax.persistence.EntityManager em = ...

// a single result query

String query1 = "MATCH (n:Poem { name:'Portia', author:'Oscar Wilde' }) RETURN n";

Poem poem = (Poem) em.createNativeQuery(query1, Poem.class).getSingleResult();

// query with order by

String query2 = "MATCH (n:Poem { name:'Portia', author:'Oscar Wilde' }) " +

 "RETURN n ORDER BY n.name";

http://docs.neo4j.org/chunked/stable/cypher-query-lang.html
http://docs.neo4j.org/chunked/stable/cypher-query-lang.html
http://docs.neo4j.org/chunked/stable/cypher-query-lang.html
http://docs.neo4j.org/chunked/stable/cypher-query-lang.html
http://docs.neo4j.org/chunked/stable/cypher-query-lang.html
http://docs.neo4j.org/chunked/stable/cypher-query-lang.html

Neo4j

185

List<Poem> poems = em.createNativeQuery(query2, Poem.class).getResultList();

// query with projections

String query3 = MATCH (n:Poem) RETURN n.name, n.author ORDER BY n.name";

List<Object[]> poemNames = (List<Object[]>) em.createNativeQuery(query3)

 .getResultList();

The result of a query is a managed entity (or a list thereof) or a projection of attributes in form of

an object array, just like you would get from a JP-QL query.

Example 12.20. Using the Hibernate native API

OgmSession session = ...

String query1 = "MATCH (n:Poem { name:'Portia', author:'Oscar Wilde' }) " +

 "RETURN n";

Poem poem = session.createNativeQuery(query1)

 .addEntity("Poem", Poem.class)

 .uniqueResult();

String query2 = "MATCH (n:Poem { name:'Portia', author:'Oscar Wilde' }) " +

 "RETURN n ORDER BY n.name";

List<Poem> poems = session.createNativeQuery(query2)

 .addEntity("Poem", Poem.class)

 .list();

Native queries can also be created using the @NamedNativeQuery annotation:

Example 12.21. Using @NamedNativeQuery

@Entity

@NamedNativeQuery(

 name = "AthanasiaPoem",

 query = "MATCH (n:Poem { name:'Athanasia', author:'Oscar Wilde' }) RETURN n",

 resultClass = Poem.class)

public class Poem { ... }

...

// Using the EntityManager

Poem poem1 = (Poem) em.createNamedQuery("AthanasiaPoem")

 .getSingleResult();

// Using the Session

Poem poem2 = (Poem) session.getNamedQuery("AthanasiaPoem")

 .uniqueResult();

Hibernate OGM stores data in a natural way so you can still execute queries using your favorite

tool, the main drawback is that the results are going to be raw Neo4j elements and not managed

entities.

186

Chapter 13. CouchDB

(Experimental)
CouchDB [https://couchdb.apache.org/] is a document-oriented datastore which stores your data

in form of JSON documents and exposes its API via HTTP based on REST principles. It is thus

very easy to access from a wide range of languages and applications.

Note

Support for CouchDB is considered an EXPERIMENTAL feature as of this release.

In particular you should be prepared for possible changes to the persistent repre-

sentation of mapped objects in future releases.

Also be aware of the fact that partial updates are unsupported at the moment

(OGM-388 [https://hibernate.atlassian.net/browse/OGM-388]). Instead always the

entire document will be replaced during updates. This means that fields possibly

written by other applications but not mapped to properties in your domain model

will get lost.

The ASSOCIATION_DOCUMENT mode for storing associations should be used

with care as there is potential for lost updates (OGM-461 [https://

hibernate.atlassian.net/browse/OGM-461]). It is recommended to use the

IN_ENTITY mode (which is the default).

Should you find any bugs or have feature requests for this dialect, then please open

a ticket in the OGM issue tracker [https://hibernate.atlassian.net/browse/OGM].

13.1. Configuring CouchDB

Hibernate OGM uses the excellent RESTEasy [https://www.jboss.org/resteasy] library to talk to

CouchDB stores, so there is no need to include any of the Java client libraries for CouchDB in

your classpath.

The following properties are available to configure CouchDB support in Hibernate OGM:

CouchDB datastore configuration properties

hibernate.ogm.datastore.provider

To use CouchDB as a datastore provider, this property must be set to couchdb_experimental

hibernate.ogm.option.configurator

The fully-qualified class name or an instance of a programmatic option configurator (see Sec-

tion 13.1.2, “Programmatic configuration”)

https://couchdb.apache.org/
https://couchdb.apache.org/
https://hibernate.atlassian.net/browse/OGM-388
https://hibernate.atlassian.net/browse/OGM-388
https://hibernate.atlassian.net/browse/OGM-461
https://hibernate.atlassian.net/browse/OGM-461
https://hibernate.atlassian.net/browse/OGM-461
https://hibernate.atlassian.net/browse/OGM
https://hibernate.atlassian.net/browse/OGM
https://www.jboss.org/resteasy
https://www.jboss.org/resteasy

CouchDB (Experimental)

187

hibernate.ogm.datastore.host

The hostname and port of the CouchDB instance. The optional port is concatenated to the

host and separated by a colon. Let’s see a few valid examples:

• couchdb.example.com

• couchdb.example.com:5985

• 2001:db8::ff00:42:8329 (IPv6)

• [2001:db8::ff00:42:8329]:5985 (IPv6 with port requires the IPv6 to be surrounded by

square brackets)

Listing multiple initial hosts for fault tolerance is not supported. The default value is

127.0.0.1:5984. If left undefined, the default port is 5984.

hibernate.ogm.datastore.port

Deprecated: use hibernate.ogm.datastore.host. The port used by the CouchDB instance.

The default value is 5984.

hibernate.ogm.datastore.database

The database to connect to. This property has no default value.

hibernate.ogm.datastore.create_database

Whether to create the specified database in case it does not exist or not. Can be true or false

(default). Note that the specified user must have the right to create databases if set to true.

hibernate.ogm.datastore.username

The username used when connecting to the CouchDB server. Note that this user must have

the right to create design documents in the chosen database. This property has no default

value. Hibernate OGM currently does not support accessing CouchDB via HTTPS; if you’re

interested in such functionality, let us know.

hibernate.ogm.datastore.password

The password used to connect to the CouchDB server. This property has no default value.

This property is ignored if the username isn’t specified.

hibernate.ogm.error_handler

The fully-qualified class name, class object or an instance of ErrorHandler to get notified up-

on errors during flushes (see Section 6.3.1, “Acting upon errors during application of changes”)

hibernate.ogm.datastore.document.association_storage

Defines the way OGM stores association information in

CouchDB. The following two strategies exist (values of the

org.hibernate.ogm.datastore.document.options.AssociationStorageType enum):

IN_ENTITY (store association information within the entity) and ASSOCIATION_DOCUMENT

(store association information in a dedicated document per association). IN_ENTITY is the

default and recommended option unless the association navigation data is much bigger than

the core of the document and leads to performance degradation.

CouchDB (Experimental)

188

Note

When bootstrapping a session factory or entity manager factory programmatically,

you should use the constants accessible via CouchDBProperties when specify-

ing the configuration properties listed above. Common properties shared between

(document) stores are declared on OgmProperties and DocumentStoreProper-

ties, respectively. To ease migration between stores, it is recommended to refer-

ence these constants directly from there.

13.1.1. Annotation based configuration

Hibernate OGM allows to configure store-specific options via Java annotations. When working

with the CouchDB backend, you can specify how associations should be stored using the Asso-

ciationStorage annotation (refer to Section 13.2, “Storage principles” to learn more about as-

sociation storage strategies in general).

The following shows an example:

Example 13.1. Configuring the association storage strategy using

annotations

@Entity

@AssociationStorage(AssociationStorageType.ASSOCIATION_DOCUMENT)

public class Zoo {

 @OneToMany

 private Set<Animal> animals;

 @OneToMany

 private Set<Person> employees;

 @OneToMany

 @AssociationStorage(AssociationStorageType.IN_ENTITY)

 private Set<Person> visitors;

 //...

}

The annotation on the entity level expresses that all associations of the Zoo class should be stored

in separate assocation documents. This setting applies to the animals and employees associa-

tions. Only the elements of the visitors association will be stored in the document of the cor-

responding Zoo entity as per the configuration of that specific property which takes precedence

over the entity-level configuration.

CouchDB (Experimental)

189

13.1.2. Programmatic configuration

In addition to the annotation mechanism, Hibernate OGM also provides a programmatic API for

applying store-specific configuration options. This can be useful if you can’t modify certain entity

types or don’t want to add store-specific configuration annotations to them. The API allows set

options in a type-safe fashion on the global, entity and property levels.

When working with CouchDB, you can currently configure the following options using the API:

• association storage strategy (on the global, entity and property level)

To set this option via the API, you need to create an OptionConfigurator implementation as

shown in the following example:

Example 13.2. Example of an option configurator

public class MyOptionConfigurator extends OptionConfigurator {

 @Override

 public void configure(Configurable configurable) {

 configurable.configureOptionsFor(CouchDB.class)

 .associationStorage(AssociationStorageType.ASSOCIATION_DOCUMENT)

 .entity(Zoo.class)

 .property("visitors", ElementType.FIELD)

 .associationStorage(AssociationStorageType.IN_ENTITY)

 .entity(Animal.class)

 .associationStorage(AssociationStorageType.ASSOCIATION_DOCUMENT);

 }

}

The call to configureOptionsFor(), passing the store-specific identifier type CouchDB, provides

the entry point into the API. Following the fluent API pattern, you then can configure global options

and navigate to single entities or properties to apply options specific to these.

Options given on the property level precede entity-level options. So e.g. the visitors association

of the Zoo class would be stored using the in entity strategy, while all other associations of the

Zoo entity would be stored using separate association documents.

Similarly, entity-level options take precedence over options given on the global level. Global-level

options specified via the API complement the settings given via configuration properties. In case a

setting is given via a configuration property and the API at the same time, the latter takes prece-

dence.

Note that for a given level (property, entity, global), an option set via annotations is overridden

by the same option set programmatically. This allows you to change settings in a more flexible

way if required.

To register an option configurator, specify its class name using the

hibernate.ogm.option.configurator property. When bootstrapping a session factory or entity

CouchDB (Experimental)

190

manager factory programmatically, you also can pass in an OptionConfigurator instance or the

class object representing the configurator type.

13.2. Storage principles

Hibernate OGM tries to make the mapping to the underlying datastore as natural as possible so

that third party applications not using Hibernate OGM can still read and update the same datastore.

The following describe how entities and associations are mapped to CouchDB documents by

Hibernate OGM.

13.2.1. Properties and built-in types

Note

Hibernate OGM doesn’t store null values in CouchDB, setting a value to null will

be the same as removing the field in the corresponding object in the db.

Hibernate OGM support by default the following types:

• java.lang.String

 { "text" : "Hello world!" }

• java.lang.Character (or char primitive)

 { "delimiter" : "/" }

• java.lang.Boolean (or boolean primitive)

 { "favorite" : true } # default mapping { "favorite" : "T" } # if @Type(type = "true_false")

 is given { "favorite" : "Y" } # if @Type(type = "yes_no") is given { "favorite" : 1 } #

 if @Type(type = "numeric_boolean") is given

 mapping { "favorite" : "T" } # if @Type(type = "true_false")

is given { "favorite" : "Y" } # if @Type(type = "yes_no")

is given { "favorite" : 1 } # if @Type(type = "numeric_boolean")

• java.lang.Byte (or byte primitive)

 { "display_mask" : "70" }

• java.lang.Short (or short primitive)

CouchDB (Experimental)

191

 { "urlPort" : 80 }

• java.lang.Integer (or int primitive)

 { "stockCount" : 12309 }

• java.lang.Long (or long primitive)

 { "userId" : "-6718902786625749549" }

• java.lang.Float (or float primitive)

 { "visitRatio" : 10.4 }

• java.lang.Double (or double primitive)

 { "tax_percentage" : 12.34 }

• java.math.BigDecimal

 { "site_weight" : "21.77" }

• java.math.BigInteger

 { "site_weight" : "444" }

• java.util.Calendar

 { "creation" : "2014-11-18T15:51:26.252Z" }

• java.util.Date

 { "last_update" : "2014-11-18T15:51:26.252Z" }

• java.util.UUID

CouchDB (Experimental)

192

 { "serialNumber" : "71f5713d-69c4-4b62-ad15-aed8ce8d10e0" }

• java.util.URL

 { "url" : "http://www.hibernate.org/" }

13.2.2. Entities

Entities are stored as CouchDB documents and not as BLOBs which means each entity property

will be translated into a document field. You can use the name property of the @Table and @Column

annotations to rename the collections and the document’s fields if you need to.

CouchDB provides a built-in mechanism for detecting concurrent updates to one and the same

document. For that purpose each document has an attribute named _rev (for "revision") which is

to be passed back to the store when doing an update. So when writing back a document and the

document’s revision has been altered by another writer in parallel, CouchDB will raise an optimistic

locking error (you could then e.g. re-read the current document version and try another update).

For this mechanism to work, you need to declare a property for the _rev attribute in all your entity

types and mark it with the @Version and @Generated annotations. The first marks it as a property

used for optimistic locking, while the latter advices Hibernate OGM to refresh that property after

writes since its value is managed by the datastore.

Warning

Not mapping the _rev attribute may cause lost updates, as Hibernate OGM needs

to re-read the current revision before doing an update in this case. Thus a warn-

ing will be issued during initialization for each entity type which fails to map that

property.

The following shows an example of an entity and its persistent representation in CouchDB.

Example 13.3. Example of an entity and its representation in CouchDB

@Entity

public class News {

 @Id

 private String id;

 @Version

 @Generated

 @Column(name="_rev")

 private String revision;

CouchDB (Experimental)

193

 private String title;

 private String description;

 //getters, setters ...

}

{

 "_id": "News:id_:news-1_",

 "_rev": "1-d1cd3b00a677a2e31cd0480a796e8480",

 "$type": "entity",

 "$table": "News",

 "title": "On the merits of NoSQL",

 "description": "This paper discuss why NoSQL will save the world for good"

}

Note that CouchDB doesn’t have a concept of "tables" or "collections" as e.g. MongoDB does;

Instead all documents are stored in one large bucket. Thus Hibernate OGM needs to add two

additional attributes: $type which contains the type of a document (entity vs. association docu-

ments) and $table which specifies the entity name as derived from the type or given via the

@Table annotation.

Note

Attributes whose name starts with the "$" character are managed by Hibernate

OGM and thus should not be modified manually. Also it is not recommended to

start the names of your attributes with the "$" character to avoid collisions with

attributes possibly introduced by Hibernate OGM in future releases.

Example 13.4. Rename field and collection using @Table and @Column

@Entity

@Table(name="Article")

public class News {

 @Id

 @Column(name="code")

 private String id;

 @Version

 @Generated

 @Column(name="_rev")

 private String revision;

 private String title;

 @Column(name="desc")

 private String description;

CouchDB (Experimental)

194

 //getters, setters ...

}

{

 "_id": "Article:code_:news-1_",

 "_rev": "1-d1cd3b00a677a2e31cd0480a796e8480",

 "$type": "entity",

 "$table": "Article",

 "title": "On the merits of NoSQL",

 "desc": "This paper discuss why NoSQL will save the world for good"

}

13.2.2.1. Identifiers

The _id field of a CouchDB document is directly used to store the identifier columns mapped in

the entities. You can use any persistable Java type as identifier type, e.g. String or long.

Hibernate OGM will convert the @Id property into a _id document field so you can name the entity

id like you want, it will always be stored into _id.

Note that you also can work with embedded ids (via @EmbeddedId), but be aware of the fact that

CouchDB doesn’t support storing embedded structures in the _id attribute. Hibernate OGM thus

will create a concatenated representation of the embedded id’s properties in this case.

Example 13.5. Entity with @EmbeddedId

@Entity

public class News {

 @EmbeddedId

 private NewsID newsId;

 // getters, setters ...

}

@Embeddable

public class NewsID implements Serializable {

 private String title;

 private String author;

 // getters, setters ...

}

{

 "_id": "News:newsId.author_newsId.title_:Guillaume_How to use Hibernate OGM ?_",

 "_rev": "2-1f02af4fabba7b4fa7394f1167244226",

 "$type": "entity",

 "$table": "News",

CouchDB (Experimental)

195

 "newsId": {

 "author": "Guillaume",

 "title": "How to use Hibernate OGM ?"

 }

}

13.2.2.2. Identifier generation strategies

You can assign id values yourself or let Hibernate OGM generate the value using the @Generat-

edValue annotation.

Two main strategies are supported:

1. TABLE

2. SEQUENCE

Both strategy will create a new document containg the next value to use for the id, the difference

between the two strategies is the name of the field containing the values.

Hibernate OGM goes not support the IDENTITY strategy and an exception is thrown at startup

when it is used. The AUTO strategy is the same as the SEQUENCE one.

1) TABLE generation strategy

Example 13.6. Id generation strategy TABLE using default values

@Entity

public class Video {

 @Id

 @GeneratedValue(strategy = GenerationType.TABLE)

 private Integer id;

 private String name

 // getters, setters, ...

}

{

 "_id": "Video:id_:1_",

 "_rev": "1-b4c16b6cd8a083f2173f8df19bd24750",

 "$type": "entity",

 "$table": "Video",

 "id": 1,

 "name": "Scream",

 "director": "Wes Craven"

}

{

CouchDB (Experimental)

196

 "_id": "hibernate_sequences:sequence_name:default",

 "_rev": "1-ebb82f1cea26d57f47a290fb0c1cc58f",

 "$type": "sequence",

 "next_val": "2"

}

Example 13.7. Id generation strategy TABLE using a custom table

@Entity

public class Video {

 @Id

 @GeneratedValue(strategy = GenerationType.TABLE, generator = "video")

 @TableGenerator(

 name = "video",

 table = "sequences",

 pkColumnName = "key",

 pkColumnValue = "video",

 valueColumnName = "seed"

)

 private Integer id;

 private String name;

 // getter, setters, ...

}

@Entitypublic class Video { @Id @GeneratedValue(strategy = GenerationType.TABLE, generator

 = "video") @TableGenerator(name = "video", table = "sequences",

 pkColumnName = "key", pkColumnValue = "video", valueColumnName =

 "seed") private Integer id; private String name // getters, setters, ...}

titypublic class Video

 {

 @Id @GeneratedValue(strategy = GenerationType.TABLE, generator =

 "video")

 @TableGenerator(name =

 "video", table =

 "sequences", pkColumnName =

 "key", pkColumnValue =

 "video", valueColumnName =

 "seed"

) private Integer

 id; private String

 name // getters, setters,

{

 "_id": "sequences:key:video",

 "_rev": "2-78b3450e0658743164828c4076e06a49",

CouchDB (Experimental)

197

 "$type": "sequence",

 "seed": "101"

}

2) SEQUENCE generation strategy

Example 13.8. SEQUENCE id generation strategy using default values

@Entity

public class Song {

 @Id

 @GeneratedValue(strategy = GenerationType.SEQUENCE)

 private Long id;

 private String title;

 // getters, setters ...

}

{

 "_id": "Song:id_:2_",

 "_rev": "1-63bc100449fb2840067028c3825ed784",

 "$type": "entity",

 "$table": "Song",

 "id": "2",

 "title": "Ave Maria",

 "singer": "Charlotte Church"

}

{

 "_id": "hibernate_sequences:sequence_name:hibernate_sequence",

 "_rev": "2-dcc622bcb1389ad18829dcfc8b812c87",

 "$type": "sequence",

 "next_val": "3"

}

Example 13.9. SEQUENCE id generation strategy using custom values

@Entity

public class Song {

 @Id

 @GeneratedValue(strategy = GenerationType.SEQUENCE, generator = "songSequenceGenerator")

 @SequenceGenerator(

 name = "songSequenceGenerator",

 sequenceName = "song_sequence",

 initialValue = 2,

CouchDB (Experimental)

198

 allocationSize = 20

)

 private Long id;

 private String title;

 // getters, setters ...

}

{

 "_id": "Song:id_:2_",

 "_rev": "1-63bc100449fb2840067028c3825ed784",

 "$type": "entity",

 "$table": "Song",

 "id": "2",

 "title": "Ave Maria",

 "singer": "Charlotte Church"

}

{

 "_id": "hibernate_sequences:sequence_name:song_sequence",

 "_rev": "2-df47883f076c84cb953f9184de7aa82a",

 "$type": "sequence",

 "next_val": "21"

}

13.2.2.3. Embedded objects and collections

Hibernate OGM stores elements annotated with @Embedded or @ElementCollection as nested

documents of the owning entity.

Example 13.10. Embedded object

@Entity

public class News {

 @Id

 private String id;

 private String title;

 @Embedded

 private NewsPaper paper;

 // getters, setters ...

}

@Embeddable

public class NewsPaper {

 private String name;

 private String owner;

CouchDB (Experimental)

199

 // getters, setters ...

}

{

 "_id": "News:id_:939c892d-1129-4aff-abf8-e6c26e59dcb_",

 "_rev": "2-1f02af4fabba7b4fa7394f1167244226",

 "$type": "entity",

 "$table": "News",

 "id": "939c892d-1129-4aff-abf8-e6c26e59dcb",

 "paper": {

 "name": "NoSQL journal of prophecies",

 "owner": "Delphy"

 }

}

Example 13.11. @ElementCollection with primitive types

@Entity

public class AccountWithPhone {

 @Id

 private String id;

 @ElementCollection

 private List<String> mobileNumbers;

 // getters, setters ...

}

AccountWithPhone collection

{

 "_id": "AccountWithPhone:id_:2_",

 "_rev": "2-a71f7c0d621a08232568f9840bff05ce",

 "$type": "entity",

 "$table": "AccountWithPhone",

 "id": "2",

 "mobileNumbers": [

 "+1-222-555-0222",

 "+1-202-555-0333"

]

}

Example 13.12. @ElementCollection with one attribute

@Entity

public class GrandMother {

CouchDB (Experimental)

200

 @Id

 private String id;

 @ElementCollection

 private List<GrandChild> grandChildren = new ArrayList<GrandChild>();

 // getters, setters ...

}

@Embeddable

public class GrandChild {

 private String name;

 // getters, setters ...

}

{

 "_id": "grandmother:id_:86ada718-f2a2-4299-b6ac-3d90b1ef2331_",

 "_rev": "2-1f02af4fabba7b4fa7394f1167244226",

 "$type": "entity",

 "$table": "grandmother",

 "id": "86ada718-f2a2-4299-b6ac-3d90b1ef2331",

 "grandChildren" : ["Luke", "Leia"]

}

The class GrandChild has only one attribute name, this means that Hibernate OGM doesn’t need

to store the name of the attribute.

If the nested document has two or more fields, like in the following example, Hibernate OGM will

store the name of the fields as well.

Example 13.13. @ElementCollection with @OrderColumn

@Entity

public class GrandMother {

 @Id

 private String id;

 @ElementCollection

 @OrderColumn(name = "birth_order")

 private List<GrandChild> grandChildren = new ArrayList<GrandChild>();

 // getters, setters ...

}

@Embeddable

public class GrandChild {

 private String name;

CouchDB (Experimental)

201

 // getters, setters ...

}

{

 "_id": "GrandMother:id_:86ada718-f2a2-4299-b6ac-3d90b1ef2331_",

 "_rev": "2-1f02af4fabba7b4fa7394f1167244226",

 "$type": "entity",

 "$table": "GrandMother",

 "grandChildren" : [

 {

 "name" : "luke",

 "birth_order" : 0

 },

 {

 "name" : "leia",

 "birthorder" : 1

 }

]

}

13.2.3. Associations

Hibernate OGM CouchDB provides two strategies to store navigation information for associations:

• IN_ENTITY (default)

• ASSOCIATION_DOCUMENT

You can switch between the two strategies using:

• the @AssociationStorage annotation (see Section 13.1.1, “Annotation based configuration”)

• the API for programmatic configuration (see Section 13.1.2, “Programmatic configuration”)

• specifying a gloabl default strategy via the

hibernate.ogm.datastore.document.association_storage configuration property

13.2.3.1. In Entity strategy

With this strategy, Hibernate OGM directly stores the id(s) of the other side of the association

into a field or an embedded document depending if the mapping concerns a single object or a

collection. The field that stores the relationship information is named like the entity property.

Note

When using this strategy the annotations @JoinTable will be ignored because no

collection is created for associations.

CouchDB (Experimental)

202

You can use @JoinColumn to change the name of the field that stores the foreign

key (as an example, see ???).

Example 13.14. Java entity

@Entity

public class AccountOwner {

 @Id

 private String id;

 @ManyToMany

 public Set<BankAccount> bankAccounts;

 // getters, setters, ...

Example 13.15. JSON representation

{

 "_id": "AccountOwner:id_:owner0001_",

 "_rev": "1-d1cd3b00a677a2e31cd0480a796e8480",

 "$type": "entity",

 "$table": "AccountOwner",

 "bankAccounts" : [

 "accountABC",

 "accountXYZ"

]

}

Example 13.16. Unidirectional one-to-one

@Entity

public class Vehicule {

 @Id

 private String id;

 private String brand;

 // getters, setters ...

}

@Entity

public class Wheel {

 @Id

 private String id;

 private double diameter;

CouchDB (Experimental)

203

 @OneToOne

 private Vehicule vehicule;

 // getters, setters ...

}

{

 "_id": "Vehicule:id_:V001_",

 "_rev": "1-41dc2d2fd68ce2fc683241a60e59a676",

 "$type": "entity",

 "$table": "Vehicule",

 "id": "V001",

 "brand": "Mercedes",

}

{

 "_id": "Wheel:id_:W1_",

 "_rev": "1-30430d67174484f6b647480dbf781f55",

 "$type": "entity",

 "$table": "Wheel",

 "id": "W1",

 "diameter" : 0,

 "vehicule_id" : "V001"

}

Example 13.17. Unidirectional one-to-one with @JoinColumn

@Entity

public class Vehicule {

 @Id

 private String id;

 private String brand;

 // getters, setters ...

}

@Entity

public class Wheel {

 @Id

 private String id;

 private double diameter;

 @OneToOne

 @JoinColumn(name = "part_of")

 private Vehicule vehicule;

 // getters, setters ...

CouchDB (Experimental)

204

}

{

 "_id": "Vehicule:id_:V001_",

 "_rev": "1-41dc2d2fd68ce2fc683241a60e59a676",

 "$type": "entity",

 "$table": "Vehicule",

 "id": "V001",

 "brand": "Mercedes",

}

{

 "_id": "Wheel:id_:W1_",

 "_rev": "1-30430d67174484f6b647480dbf781f55",

 "$type": "entity",

 "$table": "Wheel",

 "id": "W1",

 "diameter" : 0,

 "part_of" : "V001"

}

In a true one-to-one association, it is possible to share the same id between the two entities and

therefore a foreign key is not required. You can see how to map this type of association in the

following example:

Example 13.18. Unidirectional one-to-one with @MapsId and

@PrimaryKeyJoinColumn

@Entity

public class Vehicule {

 @Id

 private String id;

 private String brand;

 // getters, setters ...

}

@Entity

public class Wheel {

 @Id

 private String id;

 private double diameter;

 @OneToOne

 @PrimaryKeyJoinColumn

 @MapsId

 private Vehicule vehicule;

CouchDB (Experimental)

205

 // getters, setters ...

}

{

 "_id": "Vehicule:id_:V001_",

 "_rev": "1-41dc2d2fd68ce2fc683241a60e59a676",

 "$type": "entity",

 "$table": "Vehicule",

 "id": "V001",

 "brand": "Mercedes",

}

{

 "_id": "Wheel:vehicule/_id_:V001_",

 "_rev": "1-30430d67174484f6b647480dbf781f55",

 "$type": "entity",

 "$table": "Wheel",

 "diameter" : 0,

 "vehicule_id" : "V001"

}

Example 13.19. Bidirectional one-to-one

@Entity

public class Husband {

 @Id

 private String id;

 private String name;

 @OneToOne

 private Wife wife;

 // getters, setters ...

}

@Entity

public class Wife {

 @Id

 private String id;

 private String name;

 @OneToOne

 private Husband husband;

 // getters, setters ...

}

CouchDB (Experimental)

206

{

 "_id": "Husband:id_:alex_",

 "_rev": "2-8f976fc216130fb40144b000910b9c1d",

 "$type": "entity",

 "$table": "Husband",

 "id" : "alex",

 "name" : "Alex",

 "wife" : "bea"

}

{

 "_id": "Wife:id_:bea_",

 "_rev": "2-69130cc082958becbdf4154a3d19c2e6",

 "$type": "entity",

 "$table": "Wife",

 "id" : "bea",

 "name" : "Bea",

 "husband" : "alex"

}

Example 13.20. Unidirectional one-to-many

@Entity

public class Basket {

 @Id

 private String id;

 private String owner;

 @OneToMany

 private List<Product> products = new ArrayList<Product>();

 // getters, setters ...

}

@Entity

public class Product {

 @Id

 private String name;

 private String description;

 // getters, setters ...

}

Basket collection

{

CouchDB (Experimental)

207

 "_id": "Basket:id_:davide/_basket_",

 "_rev": "2-8f976fc216130fb40144b000910b9c1d",

 "$type": "entity",

 "$table": "Basket",

 "id" : "davide_basket",

 "owner" : "Davide",

 "products" : ["Beer", "Pretzel"]

}

Product collection

{

 "_id": "Product:name_:Beer_",

 "_rev": "1-e2a51de970f3e5a0e1118989eef1cf7b",

 "$type": "entity",

 "$table": "Product",

 "name" : "Beer",

 "description" : "Tactical nuclear penguin"

}

{

 "_id": "Product:name_:Pretzel_",

 "_rev": "1-b78ce2687db2fb550d9e8753423db3f3",

 "$type": "entity",

 "$table": "Product",

 "name" : "Pretzel",

 "description" : "Glutino Pretzel Sticks"

}

Example 13.21. Unidirectional one-to-many using one collection per

strategy with @OrderColumn

@Entity

public class Basket {

 @Id

 private String id;

 private String owner;

 @OneToMany

 private List<Product> products = new ArrayList<Product>();

 // getters, setters ...

}

@Entity

public class Product {

 @Id

 private String name;

 private String description;

CouchDB (Experimental)

208

 // getters, setters ...

}

Basket collection

{

 "_id" : "davide_basket",

 "owner" : "Davide"

}

Product collection

{

 "_id" : "Pretzel",

 "description" : "Glutino Pretzel Sticks"

}

{

 "_id" : "Beer",

 "description" : "Tactical nuclear penguin"

}

associations_Basket_Product collection

{

 "_id" : { "Basket_id" : "davide_basket" },

 "rows" : [

 {

 "products_name" : "Pretzel",

 "products_ORDER" : 1

 },

 {

 "products_name" : "Beer",

 "products_ORDER" : 0

 }

]

}

A map can be used to represents an association, in this case Hibernate OGM will store the key

of the map and the associated id.

Example 13.22. Unidirectional one-to-many using maps with defaults

@Entity

public class User {

 @Id

 private String id;

CouchDB (Experimental)

209

 @OneToMany

 private Map<String, Address> addresses = new HashMap<String, Address>();

 // getters, setters ...

}

@Entity

public class Address {

 @Id

 private String id;

 private String city;

 // getters, setters ...

}

{

 "_id": "User:id_:user/_001",

 "_rev": "3-77de96250380a79a20a38e78826bf4f7",

 "$type": "entity",

 "$table": "User",

 "id" : "user_001",

 "addresses" : [

 {

 "addresses_KEY" : "work",

 "addresses_id" : "address_001"

 },

 {

 "addresses_KEY" : "home",

 "addresses_id" : "address_002"

 }

]

}

{

 "_id": "Address:id_:address/_001",

 "_rev": "1-dd366cd017f87548956dc55d3b12fefd",

 "$type": "entity",

 "$table": "Address",

 "id" : "address_001",

 "city" : "Rome"

}

{

 "_id": "Address:id_:address/_001",

 "_rev": "1-04f13666a62473ac951dd039c7cdc780",

 "$type": "entity",

 "$table": "Address",

 "id" : "address_002",

 "city" : "Paris"

CouchDB (Experimental)

210

}

You can use @MapKeyColumn to rename the column containing the key of the map.

Example 13.23. Unidirectional one-to-many using maps with

@MapKeyColumn

@Entity

public class User {

 @Id

 private String id;

 @OneToMany

 @MapKeyColumn(name = "addressType")

 private Map<String, Address> addresses = new HashMap<String, Address>();

 // getters, setters ...

}

@Entity

public class Address {

 @Id

 private String id;

 private String city;

 // getters, setters ...

}

{

 "_id": "User:id_:user/_001",

 "_rev": "3-77de96250380a79a20a38e78826bf4f7",

 "$type": "entity",

 "$table": "User",

 "id" : "user_001",

 "addresses" : [

 {

 "addressType" : "work",

 "addresses_id" : "address_001"

 },

 {

 "addressType" : "home",

 "addresses_id" : "address_002"

 }

]

}

{

 "_id": "Address:id_:address/_001",

 "_rev": "1-dd366cd017f87548956dc55d3b12fefd",

CouchDB (Experimental)

211

 "$type": "entity",

 "$table": "Address",

 "id" : "address_001",

 "city" : "Rome"

}

{

 "_id": "Address:id_:address/_001",

 "_rev": "1-04f13666a62473ac951dd039c7cdc780",

 "$type": "entity",

 "$table": "Address",

 "id" : "address_002",

 "city" : "Paris"

}

Example 13.24. Unidirectional many-to-one

@Entity

public class JavaUserGroup {

 @Id

 private String jugId;

 private String name;

 // getters, setters ...

}

@Entity

public class Member {

 @Id

 private String id;

 private String name;

 @ManyToOne

 private JavaUserGroup memberOf;

 // getters, setters ...

}

{

 "_id": "JavaUserGroups:id_:summer/_camp",

 "_rev": "1-04f13666a62473ac951dd039c7cdc780",

 "$type": "entity",

 "$table": "JavaUserGroup",

 "id" : "summer_camp",

 "name" : "JUG Summer Camp"

}

CouchDB (Experimental)

212

{

 "_id": "Member:id_:jerome",

 "_rev": "1-880bf595c39a965dec0216d9d990ebd1",

 "$type": "entity",

 "$table": "Member",

 "id" : "jerome",

 "name" : "Jerome"

 "memberOf_jugId" : "summer_camp"

}

{

 "_id": "Member:id_:emmanuel",

 "_rev": "1-18e83ce9774a769814c401c49a5afcf3",

 "$type": "entity",

 "$table": "Member",

 "id" : "emmanuel",

 "name" : "Emmanuel Bernard"

 "memberOf_jugId" : "summer_camp"

}

Example 13.25. Bidirectional many-to-one

@Entity

public class SalesForce {

 @Id

 private String id;

 private String corporation;

 @OneToMany(mappedBy = "salesForce")

 private Set<SalesGuy> salesGuys = new HashSet<SalesGuy>();

 // getters, setters ...

}

@Entity

public class SalesGuy {

 private String id;

 private String name;

 @ManyToOne

 private SalesForce salesForce;

 // getters, setters ...

}

{

 "_id": "SalesForce:id_:red/_hat",

 "_rev": "1-04f13666a62473ac951dd039c7cdc780",

CouchDB (Experimental)

213

 "$type": "entity",

 "$table": "SalesForce",

 "_id": "red_hat",

 "corporation": "Red Hat",

 "salesGuys": ["eric", "simon"]

}

{

 "_id": "SalesGuy:id_:eric",

 "_rev": "1-18e83ce9774a769814c401c49a5afcf3",

 "$type": "entity",

 "$table": "SalesGuy",

 "id": "eric",

 "name": "Eric"

 "salesForce_id": "red_hat",

}

{

 "_id": "SalesGuy:id_:eric",

 "_rev": "1-18e83ce9774a769814c401c49a5afcf3",

 "$type": "entity",

 "$table": "SalesGuy",

 "id": "simon",

 "name": "Simon",

 "salesForce_id": "red_hat"

}

Example 13.26. Unidirectional many-to-many using in entity strategy

@Entity

public class Student {

 @Id

 private String id;

 private String name;

 // getters, setters ...

}

@Entity

public class ClassRoom {

 @Id

 private Long id;

 private String lesson;

 @ManyToMany

 private List<Student> students = new ArrayList<Student>();

 // getters, setters ...

CouchDB (Experimental)

214

}

{

 "_id": "ClassRoom:id_:1_",

 "_rev": "2-ae1d9748a84af991615fa842a7e796ea",

 "$type": "entity",

 "$table": "ClassRoom",

 "id": "1",

 "students": [

 "mario",

 "john"

],

 "name": "Math"

}

{

 "_id": "ClassRoom:id_:2_",

 "_rev": "2-0e58f03f518c5c1982bb7936308604e4",

 "$type": "entity",

 "$table": "ClassRoom",

 "id": "2",

 "students": [

 "kate",

 "mario"

],

 "name": "English"

}

{

 "_id": "Student:id_:john_",

 "_rev": "1-60b642619f0e62e079da8a6521ea9750",

 "$type": "entity",

 "$table": "Student",

 "id": "john",

 "name": "John Doe"

}

{

 "_id": "Student:id_:kate_",

 "_rev": "1-911bb5cbc9b16c6d90f1e91e856a9224",

 "$type": "entity",

 "$table": "Student",

 "id": "kate",

 "name": "Kate Doe"

}

{

CouchDB (Experimental)

215

 "_id": "Student:id_:mario_",

 "_rev": "1-7dc611e3c627a837033e7eb5e244f7f8",

 "$type": "entity",

 "$table": "Student",

 "id": "mario",

 "name": "Mario Rossi"

}

Example 13.27. Bidirectional many-to-many

@Entity

public class AccountOwner {

 @Id

 private String id;

 private String SSN;

 @ManyToMany

 private Set<BankAccount> bankAccounts;

 // getters, setters ...

}

@Entity

public class BankAccount {

 @Id

 private String id;

 private String accountNumber;

 @ManyToMany(mappedBy = "bankAccounts")

 private Set<AccountOwner> owners = new HashSet<AccountOwner>();

 // getters, setters ...

}

{

 "_id": "AccountOwner:id_:owner/_1_",

 "_rev": "3-07eb9959eac966afedd0547aa74a59a7",

 "$type": "entity",

 "$table": "AccountOwner",

 "id": "owner_1",

 "SSN": "0123456",

 "bankAccounts": [

 "account_1",

 "account_2"

]

}

CouchDB (Experimental)

216

{

 "_id": "BankAccount:id_:account/_1_",

 "_rev": "2-87252fffa4ab443485f55504215fbed3",

 "$type": "entity",

 "$table": "BankAccount",

 "id": "account_1",

 "accountNumber": "X2345000",

 "owners": [

 "owner_1"

]

}

{

 "_id": "BankAccount:id_:account/_2_",

 "_rev": "2-15bdfeda927dd10fa10aa19ceee4ea34",

 "$type": "entity",

 "$table": "BankAccount",

 "id": "account_2",

 "accountNumber": "ZZZ-009",

 "owners": [

 "owner_1"

]

}

13.2.3.2. Association document strategy

With this strategy, Hibernate OGM uses separate association documents (with $type set to "as-

sociation") to store all navigation information. Each assocation document is structured in 2 parts.

The first is the _id field which contains the identifier information of the association owner and the

name of the association table. The second part is the rows field which stores (into an embedded

collection) all ids that the current instance is related to.

Example 13.28. Unidirectional relationship

{

 "_id": "AccountOwner_BankAccount:owners/_id_:4f5b48ad-f074-4a64-8cf4-1f9c54a33f76_",

 "_rev": "1-18ef25ec73c1942c45c868aa92f24f2c",

 "$type": "association",

 "rows": [

 7873a2a7-c77c-447c-b000-890f0a4dfa9a

]

}

For a bidirectional relationship, another document is created where ids are reversed. Don’t worry,

Hibernate OGM takes care of keeping them in sync:

CouchDB (Experimental)

217

Example 13.29. Bidirectional relationship

{

 "_id": "AccountOwner_BankAccount:owners/_id_:4f5b48ad-f074-4a64-8cf4-1f9c54a33f76_",

 "_rev": "1-18ef25ec73c1942c45c868aa92f24f2c",

 "$type": "association",

 "rows": [

 "7873a2a7-c77c-447c-b000-890f0a4dfa9a"

]

}

{

 "_id": "AccountOwner_BankAccount:bankAccounts/_id_:7873a2a7-c77c-447c-b000-890f0a4dfa9a_",

 "_rev": "1-78e92f980745941a779abb914da65a6c",

 "$type": "association",

 "rows": [

 "4f5b48ad-f074-4a64-8cf4-1f9c54a33f76"

]

}

Note

This strategy won’t affect *-to-one associations or embedded collections.

Example 13.30. Unidirectional one-to-many using document strategy

@Entity

public class Basket {

 @Id

 private String id;

 private String owner;

 @OneToMany

 private List<Product> products = new ArrayList<Product>();

 // getters, setters ...

}

@Entity

public class Product {

 @Id

 private String name;

 private String description;

 // getters, setters ...

}

CouchDB (Experimental)

218

{

 "_id": "Basket:id_:davide/_basket_",

 "_rev": "1-ba920ac3d1ed5544a71d6c6c5f2ee286",

 "$type": "entity",

 "$table": "Basket",

 "id": "davide_basket",

 "owner": "Davide"

}

{

 "_id": "Basket:id_:davide/_basket_",

 "_rev": "1-ba920ac3d1ed5544a71d6c6c5f2ee286",

 "$type": "entity",

 "$table": "Basket",

 "id": "davide_basket",

 "owner": "Davide"

}

{

 "_id": "Product:name_:Pretzel_",

 "_rev": "1-b78ce2687db2fb550d9e8753423db3f3",

 "$type": "entity",

 "$table": "Product",

 "description": "Glutino Pretzel Sticks",

 "name": "Pretzel"

}

{

 "_id": "Basket_Product:Basket/_id_:davide/_basket_",

 "_rev": "1-f6d9aa44a7ca4f01b68c94b1f5599956",

 "$type": "association",

 "rows": [

 "Beer",

 "Pretzel"

]

}

Using the annotation @JoinTable it is possible to change the value of the document containing

the association.

Example 13.31. Unidirectional one-to-many using document strategy with

@JoinTable

@Entity

public class Basket {

 @Id

CouchDB (Experimental)

219

 private String id;

 private String owner;

 @OneToMany

 @JoinTable(name = "BasketContent")

 private List<Product> products = new ArrayList<Product>();

 // getters, setters ...

}

@Entity

public class Product {

 @Id

 private String name;

 private String description;

 // getters, setters ...

}

{

 "_id": "Basket:id_:davide/_basket_",

 "_rev": "1-ba920ac3d1ed5544a71d6c6c5f2ee286",

 "$type": "entity",

 "$table": "Basket",

 "id": "davide_basket",

 "owner": "Davide"

}

{

 "_id": "Basket:id_:davide/_basket_",

 "_rev": "1-ba920ac3d1ed5544a71d6c6c5f2ee286",

 "$type": "entity",

 "$table": "Basket",

 "id": "davide_basket",

 "owner": "Davide"

}

{

 "_id": "Product:name_:Pretzel_",

 "_rev": "1-b78ce2687db2fb550d9e8753423db3f3",

 "$type": "entity",

 "$table": "Product",

 "description": "Glutino Pretzel Sticks",

 "name": "Pretzel"

}

{

CouchDB (Experimental)

220

 "_id": "BasketContent:Basket/_id_:davide/_basket_",

 "_rev": "1-f6d9aa44a7ca4f01b68c94b1f5599956",

 "$type": "association",

 "rows": [

 "Beer",

 "Pretzel"

]

}

Example 13.32. Unidirectional many-to-many using document strategy

@Entity

public class Student {

 @Id

 private String id;

 private String name;

 // getters, setters ...

}

@Entity

public class ClassRoom {

 @Id

 private Long id;

 private String lesson;

 @ManyToMany

 private List<Student> students = new ArrayList<Student>();

 // getters, setters ...

}

{

 "_id": "ClassRoom:id_:1_",

 "_rev": "2-ae1d9748a84af991615fa842a7e796ea",

 "$type": "entity",

 "$table": "ClassRoom",

 "id": "1",

 "name": "Math"

}

{

 "_id": "ClassRoom:id_:2_",

 "_rev": "2-0e58f03f518c5c1982bb7936308604e4",

 "$type": "entity",

 "$table": "ClassRoom",

 "id": "2",

 "name": "English"

CouchDB (Experimental)

221

}

{

 "_id": "Student:id_:john_",

 "_rev": "1-60b642619f0e62e079da8a6521ea9750",

 "$type": "entity",

 "$table": "Student",

 "id": "john",

 "name": "John Doe"

}

{

 "_id": "Student:id_:kate_",

 "_rev": "1-911bb5cbc9b16c6d90f1e91e856a9224",

 "$type": "entity",

 "$table": "Student",

 "id": "kate",

 "name": "Kate Doe"

}

{

 "_id": "Student:id_:mario_",

 "_rev": "1-7dc611e3c627a837033e7eb5e244f7f8",

 "$type": "entity",

 "$table": "Student",

 "id": "mario",

 "name": "Mario Rossi"

}

{

 "_id": "ClassRoom_Student:ClassRoom/_id_:1_",

 "_rev": "1-351e470a8c134a084d9ad282796a7464",

 "$type": "association",

 "rows": [

 "mario",

 "john"

]

}

{

 "_id": "ClassRoom_Student:ClassRoom/_id_:2_",

 "_rev": "1-825d1900ec216dc73e0152564de8e975",

 "$type": "association",

 "rows": [

 "kate"

]

CouchDB (Experimental)

222

}

Example 13.33. Bidirectional many-to-many using document strategy

@Entity

public class AccountOwner {

 @Id

 private String id;

 private String SSN;

 @ManyToMany

 private Set<BankAccount> bankAccounts;

 // getters, setters ...

}

@Entity

public class BankAccount {

 @Id

 private String id;

 private String accountNumber;

 @ManyToMany(mappedBy = "bankAccounts")

 private Set<AccountOwner> owners = new HashSet<AccountOwner>();

 // getters, setters ...

}

{

 "_id": "AccountOwner:id_:owner/_1_",

 "_rev": "3-07eb9959eac966afedd0547aa74a59a7",

 "$type": "entity",

 "$table": "AccountOwner",

 "id": "owner_1",

 "SSN": "0123456",

}

{

 "_id": "BankAccount:id_:account/_1_",

 "_rev": "2-87252fffa4ab443485f55504215fbed3",

 "$type": "entity",

 "$table": "BankAccount",

 "id": "account_1",

 "accountNumber": "X2345000",

}

CouchDB (Experimental)

223

{

 "_id": "BankAccount:id_:account/_2_",

 "_rev": "2-15bdfeda927dd10fa10aa19ceee4ea34",

 "$type": "entity",

 "$table": "BankAccount",

 "id": "account_2",

 "accountNumber": "ZZZ-009",

}

{

 "_id": "AccountOwner_BankAccount:bankAccounts/_id_:account/_1_",

 "_rev": "1-34ecb6bcadae6e51112de0cf50387521",

 "$type": "association",

 "rows": [

 "owner_1"

]

}

{

 "_id": "AccountOwner_BankAccount:bankAccounts/_id_:account/_2_",

 "_rev": "1-34ecb6bcadae6e51112de0cf50387521",

 "$type": "association",

 "rows": [

 "owner_1"

]

}

{

 "_id": "AccountOwner_BankAccount:owners/_id_:owner/_1_",

 "_rev": "2-d2cc7816eae5498a0829a3cdae0b208e",

 "$type": "association",

 "rows": [

 "account_1",

 "account_2"

]

}

13.3. Transactions

CouchDB does not support transactions. Only changes applied to the same document are done

atomically. A change applied to more than one document will not be applied atomically. This

problem is slightly mitigated by the fact that Hibernate OGM queues all changes before applying

them during flush time. So the window of time used to write to CouchDB is smaller than what you

would have done manually.

We recommend that you still use transaction demarcations with Hibernate OGM to trigger the flush

operation transparently (on commit). But do not consider rollback as a possibility, this won’t work.

CouchDB (Experimental)

224

13.4. Queries

Hibernate OGM is a work in progress and we are actively working on JP-QL query support.

In the mean time, you have two strategies to query entities stored by Hibernate OGM:

• use native CouchDB queries

• use Hibernate Search

Because Hibernate OGM stores data in CouchDB in a natural way, you can the HTTP client or

REST library of your choice and execute queries (using CouchDB views) on the datastore directly

without involving Hibernate OGM. The benefit of this approach is to use the query capabilities

of CouchDB. The drawback is that raw CouchDB documents will be returned and not managed

entities.

The alternative approach is to index your entities with Hibernate Search. That way, a set of sec-

ondary indexes independent of CouchDB is maintained by Hibernate Search and you can write

queries on top of them. The benefit of this approach is an nice integration at the JPA / Hibernate

API level (managed entities are returned by the queries). The drawback is that you need to store

the Lucene indexes somewhere (file system, infinispan grid etc). Have a look at the Infinispan

section for more info on how to use Hibernate Search.

225

Chapter 14. Cassandra
Cassandra [http://cassandra.apache.org/] is a distributed column family database.

This implementation uses CQL3 [http://docs.datastax.com/en/cql/3.1/cql/cql_intro_c.html] over

the native wire protocol with java-driver [https://github.com/datastax/java-driver]. The currently

supported version is Cassandra 2.1.

Note

Support for Cassandra is considered an EXPERIMENTAL feature as of this re-

lease.

Should you find any bugs or have feature requests for this dialect, then please open

a ticket in the OGM issue tracker [https://hibernate.atlassian.net/browse/OGM].

14.1. Configuring Cassandra

Configuring Hibernate OGM to use Cassandra is easy:

• Add the Cassandra module and driver to the classpath

• provide the Cassandra connection information to Hibernate OGM

14.1.1. Adding Cassandra dependencies

To add the dependencies via Maven, add the following module:

<dependency>

 <groupId>org.hibernate.ogm</groupId>

 <artifactId>hibernate-ogm-cassandra</artifactId>

 <version>4.2.0.Final</version>

</dependency>

This will pull the cassandra java-driver transparently.

If you’re not using a dependency management tool, copy all the dependencies from the distribution

in the directories:

• /lib/required

• /lib/cassandra

• Optionally - depending on your container - you might need some of the jars from /lib/provided

http://cassandra.apache.org/
http://cassandra.apache.org/
http://docs.datastax.com/en/cql/3.1/cql/cql_intro_c.html
http://docs.datastax.com/en/cql/3.1/cql/cql_intro_c.html
https://github.com/datastax/java-driver
https://github.com/datastax/java-driver
https://hibernate.atlassian.net/browse/OGM
https://hibernate.atlassian.net/browse/OGM

Cassandra

226

14.1.2. Cassandra specific configuration properties

To get started quickly, pay attention to the following options:

• hibernate.ogm.datastore.provider

• hibernate.ogm.datastore.host

• hibernate.ogm.datastore.database

And we should have you running. The following properties are available to configure Cassandra

support:

Cassandra datastore configuration properties

hibernate.ogm.datastore.provider

To use Cassandra as a datastore provider, this property must be set to

cassandra_experimental

hibernate.ogm.datastore.host

The hostname and port of the Cassandra instance. The optional port is concatenated to the

host and separated by a colon. Let’s see a few valid examples:

• cassandra.example.com

• cassandra.example.com:9043

• 2001:db8::ff00:42:8329 (IPv6)

• [2001:db8::ff00:42:8329]:9043 (IPv6 with port requires the IPv6 to be surrounded by

square brackets)

Listing multiple initial hosts for fault tolerance is not currently supported. The default value

is 127.0.0.1:9042. If left undefined, the default port is 9042.

hibernate.ogm.datastore.port

Deprecated: use hibernate.ogm.datastore.host. The port used by the Cassandra in-

stance. Ignored when multiple hosts are defined. The default value is 9042.

hibernate.ogm.datastore.database

The database to connect to. This property has no default value.

hibernate.ogm.datastore.username

The username used when connecting to the Cassandra server. This property has no default

value.

hibernate.ogm.datastore.password

The password used to connect to the Cassandra server. This property has no default value.

Cassandra

227

14.2. Storage principles

Each Entity type maps to one Cassandra table. Each Entity instance maps to one CQL3 row of

the table, each property of the Entity being one CQL3 column.

CQL3 table and column names are always quoted to preserve case consistency with the Java

layer, with the table name matching the Entity class and the column names matching the Entity’s

properties. The @Table and @Column annotations can be used to override identifier names in

the usual manner.

Embedded objects are stored as additional columns in the owning Entitie’s table. The columns are

named as EmbeddedTypeName.FieldOfEmbeddedType The type and field names can be overrid-

den by annotations, but concatenation token delimiter cannot.

14.2.1. Properties and built-in types

CQL3 types [http://docs.datastax.com/en/cql/3.1/cql/cql_reference/cql_data_types_c.html]

CQL3 supports a smaller selection of numeric data types than Hibernate, so the missing types

are autotmatically converted. byte and short values are promoted to integer.

CQL3 has no character type, so character is promoted to varchar i.e. String. Strings are UTF-8,

not ascii.

CQL3 does not distinguish between byte[] and BLOB types for binary storage. These are handled

equivalently.

CQL3 does not have a Calendar type, so these are converted to Dates, which are stores as time

offset from the unix epoch.

14.2.1.1. Identifier generation strategies

You can assign id values yourself or let Hibernate OGM generate the value using the @Generat-

edValue annotation.

The preferred identifier approach in Cassandra is to use UUIDs.

Cassandra does not natively support sequence (auto increment identifiers) at present. This ap-

proach is supported though use of an additional table to store sequence state, but incurs additional

access overheads that make it undesirable for tables with frequent inserts.

14.3. Transactions and Concurrency

Cassandra does not support transactions. Changes to a single Entity are atomic. Changes to more

than one are neither atomic nor isolated.

Cassandra does not distinguish between update and insert operations and will not prevent creation

of an Entity with duplicate Id, instead treating it as modification of the existing Entity.

http://docs.datastax.com/en/cql/3.1/cql/cql_reference/cql_data_types_c.html
http://docs.datastax.com/en/cql/3.1/cql/cql_reference/cql_data_types_c.html

	Hibernate OGM Reference Guide
	Table of Contents
	Preface
	1. Goals
	2. What we have today
	3. Experimental features
	4. Use cases

	Chapter 1. How to get help and contribute on Hibernate OGM
	1.1. How to get help
	1.2. How to contribute
	1.2.1. How to build Hibernate OGM
	1.2.2. How to contribute code effectively

	Chapter 2. Getting started with Hibernate OGM
	Chapter 3. Architecture
	3.1. General architecture
	3.2. How is data persisted
	3.3. How is data queried

	Chapter 4. Configure and start Hibernate OGM
	4.1. Bootstrapping Hibernate OGM
	4.1.1. Using JPA
	4.1.2. Using Hibernate ORM native APIs

	4.2. Environments
	4.2.1. In a Java EE container
	4.2.2. In a standalone JTA environment
	4.2.3. Without JTA

	4.3. Configuration options
	4.4. Configuring Hibernate Search
	4.5. How to package Hibernate OGM applications for WildFly 9
	4.5.1. Packaging Hibernate OGM applications for WildFly 9
	4.5.2. Enabling both the Hibernate Search and Hibernate OGM modules

	Chapter 5. Map your entities
	5.1. Supported entity mapping
	5.2. Supported Types
	5.3. Supported association mapping

	Chapter 6. Hibernate OGM APIs
	6.1. Bootstrap Hibernate OGM
	6.2. JPA and native Hibernate ORM APIs
	6.2.1. Accessing the OgmSession API

	6.3. On flush and transactions
	6.3.1. Acting upon errors during application of changes

	6.4. SPIs

	Chapter 7. Query your entities
	7.1. Using JP-QL
	7.2. Using the native query language of your NoSQL
	7.3. Using Hibernate Search
	7.4. Using the Criteria API

	Chapter 8. NoSQL datastores
	8.1. Using a specific NoSQL datastore

	Chapter 9. Infinispan
	9.1. Configure Infinispan
	9.1.1. Adding Infinispan dependencies
	9.1.2. Infinispan specific configuration properties
	9.1.3. Cache names used by Hibernate OGM

	9.2. Manage data size
	9.3. Clustering: store data on multiple Infinispan nodes
	9.4. Storage principles
	9.4.1. Properties and built-in types
	9.4.2. Identifiers
	9.4.2.1. Identifier generation strategies

	9.4.3. Entities
	9.4.3.1. Embedded objects and collections

	9.4.4. Associations

	9.5. Transactions
	9.6. Storing a Lucene index in Infinispan

	Chapter 10. Ehcache
	10.1. Configure Ehcache
	10.1.1. Adding Ehcache dependencies
	10.1.2. Ehcache specific configuration properties
	10.1.3. Cache names used by Hibernate OGM

	10.2. Storage principles
	10.2.1. Properties and built-in types
	10.2.2. Identifiers
	10.2.2.1. Identifier generation strategies

	10.2.3. Entities
	10.2.3.1. Embedded objects and collections

	10.2.4. Associations

	10.3. Transactions

	Chapter 11. MongoDB
	11.1. Configuring MongoDB
	11.1.1. Adding MongoDB dependencies
	11.1.2. MongoDB specific configuration properties
	11.1.3. FongoDB Provider
	11.1.4. Annotation based configuration
	11.1.5. Programmatic configuration

	11.2. Storage principles
	11.2.1. Properties and built-in types
	11.2.2. Entities
	11.2.2.1. Identifiers
	11.2.2.2. Identifier generation strategies
	11.2.2.3. Embedded objects and collections

	11.2.3. Associations
	11.2.3.1. In Entity strategy
	11.2.3.2. To-one associations
	11.2.3.3. To-many associations
	11.2.3.4. One collection per association strategy
	11.2.3.5. Global collection strategy

	11.3. Transactions
	11.4. Optimistic Locking
	11.5. Queries
	11.5.1. JP-QL queries
	11.5.2. Native MongoDB queries
	11.5.3. Hibernate Search

	Chapter 12. Neo4j
	12.1. How to add Neo4j integration
	12.2. Configuring Neo4j
	12.3. Storage principles
	12.3.1. Properties and built-in types
	12.3.2. Entities
	12.3.2.1. Identifiers and unique constraints
	12.3.2.2. Embedded objects and collections

	12.3.3. Associations
	12.3.4. Auto-generated Values
	12.3.5. Labels summary

	12.4. Transactions
	12.5. Queries
	12.5.1. JP-QL queries
	12.5.2. Cypher queries

	Chapter 13. CouchDB (Experimental)
	13.1. Configuring CouchDB
	13.1.1. Annotation based configuration
	13.1.2. Programmatic configuration

	13.2. Storage principles
	13.2.1. Properties and built-in types
	13.2.2. Entities
	13.2.2.1. Identifiers
	13.2.2.2. Identifier generation strategies
	13.2.2.3. Embedded objects and collections

	13.2.3. Associations
	13.2.3.1. In Entity strategy
	13.2.3.2. Association document strategy

	13.3. Transactions
	13.4. Queries

	Chapter 14. Cassandra
	14.1. Configuring Cassandra
	14.1.1. Adding Cassandra dependencies
	14.1.2. Cassandra specific configuration properties

	14.2. Storage principles
	14.2.1. Properties and built-in types
	14.2.1.1. Identifier generation strategies

	14.3. Transactions and Concurrency

