¢y HIBERNATE OGM

Hibernate OGM 5.4.0.Betal

Reference Guide

Emmanuel Bernard, Sanne Grinovero, Gunnar Morling, Davide D'Alto, Guillaume
Scheibel, Mark Paluch, Guillaume Smet, Fabio Massimo Ercoli

2018-05-24

Table of Contents

Preface

Goals

What we have today
Experimental features
Use cases

1. How to get help and contribute on Hibernate OGM

1.1. How to get help
1.2. How to contribute
1.2.1. How to build Hibernate OGM
1.2.2. How to contribute code effectively
1.3. How to build support for a data store
1.3.1. DataStore providers
1.3.2. Dialects
1.3.3. Entities
1.3.4. Associations
1.3.5. Configuration
1.3.6. Types
1.3.7. Tests

2. Getting started with Hibernate OGM
3. Architecture

3.1. General architecture

3.2. How is data persisted

3.3. Id generation using sequences
3.4. How is data queried

4. Configure and start Hibernate OGM

4.1. Bootstrapping Hibernate OGM
4.1.1. Using JPA
4.1.2. Using Hibernate ORM native APIs
4.2. Environments
4.2.1. In a Java EE container
4.2.2. In a standalone JTA environment
4.2.3. Without JTA
4.3. Configuration options
4.4. Configuring Hibernate Search

4.5. How to package Hibernate OGM applications for WildFly 12.0
4.5.1. Packaging Hibernate OGM applications for WildFly 12.0
4.5.2. List of the Hibernate OGM WildFly/JBoss feature packs
4.5.3. Configure your persistence.xml to use your choice of persistence provider

4.5.4. Enable support for JEE 8

o o N N B L UL LN W WL R

mmghwwmmooomgggbb@bbhﬁ%é

4.5.5. Using the Hibernate OGM modules with Infinispan 38

5. Map your entities 40
5.1. Supported entity mapping 40
5.2. Supported Types 41
5.3. Supported association mapping 42

6. Hibernate OGM APIs 43
6.1. Bootstrap Hibernate OGM 43
6.2. JPA and native Hibernate ORM APIs 43

6.2.1. Accessing theOgmSession API 44
6.3. On flush and transactions 44
6.3.1. Acting upon errors during application of changes 45
6.4. SPIs A8

7. Query your entities 49
7.1. Using JPQL 49
7.2. Using the native query language of your NoSQL 53
7.3. Using Hibernate Search 55
7.4. Using the Criteria API 56
7.5. Using stored procedures 56

8. NoSQL datastores 58
8.1. Using a specific NoSQL datastore 58

9. Infinispan 60
9.1. Why use Hibernate OGM with Infinispan? 60
9.2. Infinispan: Choosing between Embedded Mode and Hot Rod 60
9.3. Hibernate OGM & Infinispan Embedded 62

9.3.1. Configure Hibernate OGM for Infinispan Embedded 62
9.3.2. Adding Infinispan dependencies 63
9.3.3. Infinispan specific configuration properties 63
9.3.4. Cache names used by Hibernate OGM 64
9.3.5. Manage data size 66
9.3.6. Clustering: store data on multiple Infinispan nodes 67
9.3.7. Storage principles 70
9.3.8. Transactions 96
9.3.9. Storing a Lucene index in Infinispan a7
9.4. Hibernate OGM & Infinispan Server over Hot Rod 98
9.4.1. Adding Infinispan Remote dependencies 99
9.4.2. Configuration properties for Infinispan Remote 99
9.4.3. Data encoding: Protobuf Schema 102
9.4.4. Storage Principles of the Infinispan Remote dataprovider 103
9.4.5. Caches creation and Configuration 106
9.4.6. Remote Query Capability 108
9.4.7. Known Limitations & Future improvements 108

10. MongoDB 110

10.1. Why should | use Hibernate OGM with MongoDB 110

10.2. Configuring MongoDB 110
10.2.1. Adding MongoDB dependencies 111
10.2.2. MongoDB specific configuration properties 111
10.2.3. Annotation based configuration 114
10.2.4. Programmatic configuration 115

10.3. Storage principles 117
10.3.1. Properties and built-in types 117
10.3.2. Entities 119
10.3.3. Associations 135

10.4. Indexes and unique constraints 167
10.4.1. Standard indexes and unigue constraints 167
10.4.2. Using MongoDB specific index options 168
10.4.3. Full text indexes 168

10.5. Transactions 169

10.6. Optimistic Locking 169

10.7. Queries 471
10.7.1. JPQL queries 171
10.7.2. Native MongoDB queries 172
10.7.3. Server-side JavaScript and stored procedures 176
10.7.4. Hibernate Search 177

10.8. Geospatial support 77
10.8.1. Geospatial fields A77
10.8.2. Geospatial indexes and queries 178

11. Neo4j 180

11.1. How to add Neo4j integration 180

11.2. Configuring Neo4j 181

11.3. Storage principles 182
11.3.1. Properties and built-in types 182
11.3.2. Entities 183
11.3.3. Associations 189
11.3.4. Auto-generated Values 199
11.3.5. Labels summary. 201

11.4. Transactions 202

11.5. Queries 202
11.5.1. JPQL queries 203

11.5.2. Cypher queries 203

Preface

Hibernate OGM is a persistence engine providing Java Persistence (JPA) support for NoSQL
datastores. It reuses Hibernate ORMOs object life cycle management and (de)hydration engine but
persists entities into a NoSQL store (key/value, document, column-oriented, etc) instead of a
relational database.

It allows using the Java Persistence Query Language (JPQL) as an interface to querying stored data, in
addition to using native queries of the specific NoSQL database.

The project is now fairly mature when it comes to the storage strategies, and the feature set is
sufficient to be used in your projects. We do have however much bigger ambitions than a simple object
mapper. Many things are on the roadmap (more NoSQL, query, denormalization engine, etc). If you feel
a feature is missing, report it to us . If you want to contribute, even better!

Hibernate OGM is released under the LGPL open source license.

The future of this project is being shaped by the requests from our users. Please
give us feedback on
¥ what you like
| ¥ what you donOt like
¥ what is confusing

¥ what you are missing as a feature

Check How to contribute on how to contact us.

We worked hard on this documentation but we know it is far from perfect. If you

" find something confusing or feel that an explanation is missing, please let us know.

Getting in touch is easy: see contacting the developer community .

Goals
Hibernate OGM:

¥ offers a familiar programming paradigm (JPA) to deal with NoSQL stores

¥ moves model denormalization from a manual imperative work to a declarative approach handled
by the engine

¥ encourages new data usage patterns and NoSQL exploration in more "traditional" enterprises

¥ helps scale existing applications with a NoSQL front end to a traditional database

http://hibernate.org/community/

NoSQL can be very disconcerting as it is composed of many disparate solutions with different benefits
and drawbacks. NoSQL databases can be loosely classified in four families:
¥ graph oriented databases

¥ key/value stores: essentially Maps but with different behaviors and ideas behind various products
(data grids, persistent with strong or eventual consistency, etc)

¥ document based datastores: maps which contain semi-structured documents (think JSON)

¥ column based datastores

Figure 1. Various NoSQL families

Each have different benefits and drawbacks and one solution might fit a use case better than an other.
However access patterns and APIs are different from one product to the other.

Hibernate OGM is not expected to be the Rosetta stone used to interact with all NoSQL solution in all
use cases. But for people modeling their data as a domain model, it provides distinctive advantages
over raw APIs and has the benefit of providing an APl and semantic known to Java developers.
Reusing the same programmatic model and trying different (No)SQL engines will hopefully help

people to explore alternative datastores.

Hibernate OGM also aims at helping people scale traditional relational databases by providing a
NoSQL front-end and keeping the same JPA APIs and domain model. It could for example help to

migrate a selection of your model from an RDBMS to a particular NoSQL solution which better fits the
typical use case.

What we have today
Today, Hibernate OGM does not support all of these goals. Here is a list of what we have:

¥ store data in key/value stores (Infinispan and Ehcache)

¥ store data in document stores (MongoDB and CouchDB - the latter in preview)
¥ store data in graph databases (Neo4J)

¥ Create, Read, Update and Delete operations (CRUD) for entities
¥ polymorphic entities (support for superclasses, subclasses etc).
¥ embeddable objects (aka components)

¥ support for basic types (numbers, String, URL, Date, enums, etc)
¥ support for associations

¥ support for collections (Set, List, Map, etc)

¥ support for JPQL queries (not arbitrary joins though)

¥ support for mapping native queries results to managed entities

¥ support for Hibernate SearchOs full-text queries

¥ and generally, support for JPA and native Hibernate ORM API support

In short, a perfectly capable Object Mapper for multiple popular NoSQL datastores.

Experimental features

As Hibernate OGM is a rather young project, some parts of it may be marked as experimental. This
may affect specific APIs or SPIs (e.g. the case for the Schemalnitializer SPI contract at the
moment), entire dialects (this is the case for the CouchDB dialect at the moment) or deliverables.

Experimental APIs/SPIs are marked via the @Experimental annotation. Experimental dialects make
that fact apparent through their datastore name (e.g. "COUCHDB_EXPERIMENTAL") and experimental
deliverables use the "experimental" artifact classifier.

If a certain part is marked as experimental it may undergo backwards-incompatible changes in future
releases. E.g. API/SPI methods may be altered, so that code using them needs to be adapted as well.
For experimental dialects the persistent format of data may be changed, so that a future version of
such dialect may not be able to read back data written by previous versions. A manual update of the
affected data may be thus required. Experimental deliverables should be used with special care, as
they are work in progress. You should use them for testing but not production use cases.

But most of our dialects are mature, so donOt worry ;)

Use cases

Here are a few areas where Hibernate OGM can be beneficial:

¥ need to scale your datastore up and down rapidly (via the underlying NoSQL datastore capability)

¥ keep your domain model independent of the underlying datastore technology (RDBMS, Infinispan,
NoSQL)

¥ explore the best tool for the use case
¥ use a familiar JPA front end to your datastore
¥ use Hibernate Search full-text search / text analysis capabilities and store the data set in an

scalable datastore

These are a few ideas and the list will grow as we add more capabilities to Hibernate OGM.

Chapter 1. How to get help and contribute on
Hibernate OGM

Hibernate OGM is a young project. Join and help us shape it!

1.1. How to get help

First of all, make sure to read this reference documentation. This is the most comprehensive formal
source of information. Of course, it is not perfect: feel free to come and ask for help, comment or
propose improvements in our Hibernate OGM forum.

You can also:

¥ open bug reports in JIRA
¥ propose improvements on the development mailing list

¥ join us on IRC to discuss developments and improvements hibernate-dev on freenode.net
you need to be registered on freenode: the room does not accept "anonymous" users).

1.2. How to contribute

Welcome!
There are many ways to contribute:

¥ report bugs in JIRA

¥ give feedback in the forum, IRC or the development mailing list
¥ improve the documentation

¥ fix bugs or contribute new features

¥ propose and code a datastore dialect for your favorite NoSQL engine

Hibernate OGMOs code is available on GitHub atttps://github.com/ hibernate/ hibernate-ogm .

1.2.1. How to build Hibernate OGM

Hibernate OGM uses Git and Maven 3, make sure to have both installed on your system.

Clone the git repository from GitHub:

https://discourse.hibernate.org/c/hibernate-ogm
https://hibernate.atlassian.net/browse/OGM
http://www.hibernate.org/community/mailinglists
https://hibernate.atlassian.net/browse/OGM
https://github.com/hibernate/hibernate-ogm
https://github.com/hibernate/hibernate-ogm
https://github.com/hibernate/hibernate-ogm
https://github.com/hibernate/hibernate-ogm
https://github.com/hibernate/hibernate-ogm

#get the sources
git clone https://github.com/hibernate/hibernate-ogm
cd hibernate-ogm

Run maven

#build project
mvn clean install -s settings-example.xml

Note that Hibernate OGM uses artifacts from the Maven repository hosted by
JBoss. Make sure to either use the -s settings-example.xml option or adjust
your ~/.m2/settings.xml according to the descriptions available on this

jboss.org wiki page.

These settings are required for development of Hibernate OGM but should not be
needed to use it.

To skip building the documentation, set the skipDocs property to true:

mvn clean install -DskipDocs=true -s settings-example.xml

n If you just want to build the documentation only, run it from the hibernate-ogm-

documentation/manual subdirectory.

1.2.2. How to contribute code effectively

The best way to share code is to fork the Hibernate OGM repository on GitHub, create a branch and
open a pull request when you are ready. Make sure to rebase your pull request on the latest version of
the master branch before offering it.

Here are a couple of approaches the team follows:

¥ We do small independent commits for each code change. In particular, we do not mix stylistic code
changes (import, typos, etc) and new features in the same commit.

¥ Commit messages follow this convention: the JIRA issue number, a short commit summary, an
empty line, a longer description if needed. Make sure to limit line length to 80 characters, even at
this day and age it makes for more readable commit comments.

OGM-123 Summary of commit operation

Optional details on the commit
and a longer description can be
added here.

http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users

¥ A pull request can contain several commits but should be self contained: include the
implementation, its unit tests, its documentation and javadoc changes if needed.

¥ All commits are proposed via pull requests and reviewed by another member of the team before
being pushed to the reference repository. ThatOs right, we never commit directly upstream without
code review.

1.3. How to build support for a data store

Advanced section

1]
This is an advanced subject, feel free to skip this section if you are not building a

data store.
Hibernate OGM supports various data stores by abstracting them with DatastoreProvider and
GridDialect . The supported features vary between data stores, and dialects do not have to

implement all features. Hibernate OGM implements a TCK (Technology Compatibility Kit) to verify
interoperability and features of the dialect. Hibernate OGM supports a variety of document- and key-
value-stores and ships with some abstraction and utility classes for document- and key-value-stores
(like KeyValueStoreProperties and DocumentStoreProperties).

1.3.1. DataStore providers

Supporting a data store usually begins with a DatastoreProvider . Providers can implement a
lifecycle (start , stop) to initialize, configure and shutdown resources. Taking a look at existing data
store support such as MongoDB (see
org.hibernate.ogm.datastore.mongodb.impl.MongoDBDatastoreProvider) is a good idea

to get an impression of how to boot the data store support. Providers are seen as services, they can
implement various service interfaces to activate certain features (see the
org.hibernate.service.spi package for details).

A common issue to face then implementing new data stores is transactionality. Some data stores
provide transactional support that can be used in the context of Hibernate OGM wrapped by JTA. If
your data store does not support transactions, you can enable transaction emulation within the

DatastoreProvider
Features of a DatastoreProvider

¥ Resource lifecycle

¥ Managing connection resources
¥ Configuration

¥ Access to query parsers

¥ Define/Validate a schema

1.3.2. Dialects

A data store can have one or more dialects. Dialects describe the style how data is mapped to a
particular data store. NoSQL data stores imply a certain nature, how to map data. Document-oriented
data stores encourage an entity-as-document pattern where embedded data structures could be
stored within the document itself. Key-value data stores allow different approaches, e.g. storing an
entity as JSON document or event storing individual key-value pairs that map the entity within a hash
table data structure. Hibernate OGM allows multiple dialects per data store and users may choose the
most appropriate one.

The most basic support is provided by implementing the GridDialect interface. Implementing that
interface is mandatory to support a specific data store.

A GridDialect usually supports:

¥ Create/Read/Update/Delete for entities

¥ Create/Read/Update/Delete for associations

¥ ld/Sequence generator

¥ Provides locking strategies
A dialect may optionally implement one or more additional facet interfaces to provide a broader
support for certain features:

¥ QueryableGridDialect

¥ BatchableGridDialect

¥ ldentityColumnAwareGridDialect

¥ OptimisticLockingAwareGridDialect

¥ MultigetGridDialect
Features of a QueryableGridDialect

¥ Query execution

¥ Support for native queries
Features of a BatchableGridDialect

¥ Operation queueing

¥ Execution of queued Create/Update/Delete as a batch
Features of a IdentityColumnAwareGridDialect

¥ Supports the generation of identity values upon data insertion

Features of an OptimisticLockingAwareGridDialect
¥ Finding and altering versioned records in an atomic fashion
Features of a MultigetGridDialect

¥ Retrieve multiple tuples within one operation

Before starting make a clear plan of how you think entities, relations and nested

n structures are best represented in the NoSQL store you plan to implement. It helps
to have a clear picture about that, and this will require some experience with the
NoSQL database you plan to support.

Start with a small feature set to get a feeling for Hibernate OGM, for example aim
at implementing CRUD operations only and ignore relations and queries. You can
" always extend the features as you proceed.

Starting from or studying existing dialects is also an interesting strategy. It can be
intimidating with complex dialects though.

Hibernate OGM is not opinionated by which means data is stored/loaded for a particular data store,
but the particular dialect is. Hibernate OGM strives for the most natural mapping style. The idea is to
facilitate integration with other applications of that database by sticking to established patterns and
idioms of that store.

1.3.3. Entities
Entities are seen by a dialect as Tuple . ATuple contains:

¥ a snapshot (thatOs the view of the data as loaded from your database),
¥ a set of key-value pairs that carry the actual data,

¥ and a list of operations to apply onto the original snapshot. Tuple keys use dot-path property
identifiers to indicate nesting. That comes handy when working with document stores because
you can build a document structure based on that details.

1.3.4. Associations

Most NoSQL data stores have no built-in support for associations between entities (unless youQOre
using a graph database).

Hibernate OGM simulates associations for datastore with no support by storing the navigational
information to go from a given entity to its (list of) associated entity. This of it as query materialisation.
This navigational information data can be stored within the entity itself or externally (as own

documents or relation items).

1.3.5. Configuration

Hibernate OGM can read its configuration properties from various sources. Most common
configuration sources are:

¥ hibernate.properties file

¥ persistence.xml file

¥ environment variables override or integrate properties set in the above configuration files

¥ annotation configuration (entity classes)

¥ programmatic configuration
The org.hibernate.ogm.options package provides the configuration infrastructure.

You might want to look at MongoDBConfiguration or InfinispanConfiguration to get an idea
how configuration works. Configuration is usually read when starting a data store provider or while

operating. A good example of accessing configuration during runtime is the association storage

option, where users can define, how to store a particular association (within the entity or as a separate
collection/key/document/node).

The configuration and options context infrastructure allows to support data store-specific options
such asReadPreference for MongoDB or TTL for Redis.

Programmatic configuration

Data store support can implement programmatic configuration. The configuration splits into three
parts:

¥ Global configuration

¥ Entity configuration

¥ Property configuration
Programmatic configuration consists of two parts: configuration interfaces (see

org.hibernate.ogm.options.navigation) and partial (abstract) implementation classes. These
parts are merged at runtime using ASM class generation.

1.3.6. Types

Every data store supports a unique set of data types. Some stores support floating point types and
date types, others just strings. Hibernate OGM allows users to utility a variety of data types (see JPA
spec) for their data models. On the other hand, that data needs to be stored within the data store and
mapped back.

10

A dialect can provide a GridType to describe the handling of a particular data type, meaning you can
specify how dates, floating point types or even byte arrays are handled. Whether they are mapped to
other data types (e. g. use double for float or use base64-encoded strings for byte arrays) or
wrapped within strings.

Data store-specific types can be handled the same way, check out StringAsObjectldType for the
String-mapping of MongoDBOObjectld type.

Type-mapping can be an exhausting task. The whole type handling is in flux and is

subject to change as Hibernate OGM progresses. Ask, if youOre not sure about it.

1.3.7. Tests

Hibernate OGM brings a well suited infrastructure for tests. The test infrastructure consists of generic
base classes OgmTestCase for OGM and JpaTestCase for JPA) for tests and a test helper (see
GridDialectTestHelper). That classes are used to get a different view on data than the frontend-
view by the Session and the EntityManager

It is always helpful to create a set of own test cases for different scenarios to

validate the data is mapped in the way itOs intended or to verify data store-specific
options such as TTL.

Another bunch of tests is called the backend TCK. That test classes test nearly all aspects of Hibernate
OGM viewed from a users' perspective. Tests contain cases for simple/complex entities, associations,
list- and map data types, queries using Hibernate Search, and tests for data type support.

The backend TCK is included using classpath filters, just check one of the current implementations
(like RedisBackendTckHelper). When youOre developing a core module, that is included in the
distribution, you will have to add your dialect to the @ SkipByGridDialect annotation of some tests.

Running even 20% of the tests successfully is a great achievement. Proceed step-
" by-step. Large numbers of tests can fail just because of one thing that is handled

differently. DonOt hesitate to ask for help.

11

Chapter 2. Getting started with Hibernate OGM

If you are familiar with JPA, you are almost good to go. We will nevertheless walk you through the first
few steps of persisting and retrieving an entity using Hibernate OGM.

Before we can start, make sure you have the following tools configured:

¥ Java JDK 8

¥ Maven 3.2.3 or above
Hibernate OGM is published in the Maven central repository.

Add org.hibernate.ogm:hibernate-ogm-bom:5.4.0.Betal to your dependency management
block and org.hibernate.ogm:hibernate-ogm-infinispan-embedded:5.4.0.Betal to your
project dependencies:

<dependencyManagement>

<dependencies>
<dependency>
<groupld> org.hibernate.ogm </groupld>
<artifactld> hibernate-ogm-bom </artifactld>

<version> 5.4.0.Betal </version>
<type> pom</type>
<scope> import </scope>
</dependency>
</dependencies>
<dependencyManagement>

> M M M T T e me e

<dependencies>

E <dependency>

E <groupld> org.hibernate.ogm </groupld>

E <artifactld> hibernate-ogm-infinispan-embedded </artifactld>
E </dependency>

</dependencies>

The former is a so-called "bill of materials" POM which specifies a matching set of versions for
Hibernate OGM and its dependencies. That way you never need to specify a version explicitly within
your dependencies block, you will rather get the versions from the BOM automatically.

If youOre deploying your application onto WildFly 12.0, you donOt need to add the
| Hibernate OGM modules to your deployment unit but you can rather add them as
' modules to the application server. Refer to How to package Hibernate OGM
applications for WildFly 12.0 to learn more.

We will use the JPA APIs in this tutorial. While Hibernate OGM depends on JPA 2.1, it is marked as
provided in the Maven POM file. If you run outside a Java EE container, make sure to explicitly add the
dependency:

12

<dependency>

E <groupld> org.hibernate.javax.persistence </groupld>
E <artifactld> hibernate-jpa-2.1-api </artifactld>
</dependency>

LetOs now map our first Hibernate OGM entity.

public class Dog {

E (strategy = GenerationType . TABLE, generator = "dog")
E (

E name = "dog",

E table = "sequences ",

E pkColumnName = "key",

E pkColumnValue = "dog",

E valueColumnName = "seed "

E)

E public Long getld () { return id; }

E public void setld (Long id) { this .id = id; }

E private Long id ;

E public String getName () { return name; }

E public void setName (String name) { this .name = name; }

E private String name;

E

E public Breed getBreed () { return breed ; }

E public void setBreed (Breed breed) { this .breed = breed ; }
E private Breed breed ;

}

public class Breed {

E (generator = "uuid ")

E (name="uuid ", strategy ="uuid2 ")

E public String getld () { return id; }

E public void setld (String id) { this .id =id; }

E private String id ;

E public String getName () { return name; }

E public void setName (String name) { this .name = name; }
E private String name;

}

| lied to you, we have already mapped two entities!

If you are familiar with JPA, you can see that there is nothing specific to Hibernate OGM in our
mapping.

In this tutorial, we will use JBoss Transactions for our JTA transaction manager. So letOs add the JTA
API and JBoss Transactions to our POM as well.

We will also add Hibernate Search because the Infinispan dialect needs it to run JPQL queries, but we
will leave the details for another time (Using Hibernate Search).

The final list of dependencies should look like this:

13

<dependencies>

E <!l-- Hibernate OGM Infinispan module; pulls in the OGM core module -->

E <dependency>

E <groupld> org.hibernate.ogm </groupld>

E <artifactld> hibernate-ogm-infinispan-embedded </artifactld>
E </dependency>

E <1-- Optional , needed to run JPQL queries on some datastores - >
E <dependency>

E <groupld> org.hibernate.search </groupld>

E <artifactld> hibernate-search-orm </artifactld>

E </dependency>

E <!I-- Standard APIs dependencies - provided in a Java EE container -->

E <dependency>

E <groupld> org.hibernate.javax.persistence </groupld>

E <artifactld> hibernate-jpa-2.1-api </artifactld>

E </dependency>

E <dependency>

E <groupld> org.jboss.spec.javax.transaction </groupld>

E <artifactld> jboss-transaction-api_1.2_spec </artifactld>
E </dependency>

E <l-- Add the Narayana Transactions Manager

E an implementation would be provided in a Java EE container,

E but this works nicely in Java SE as well -->

E <dependency>

E <groupld> org.jboss.narayana.jta </groupld>

E <artifactld> narayana-jta </artifactld>

E </dependency>

E <dependency>

E <groupld> org.jboss </groupld>

E <artifactld> jboss-transaction-spi </artifactld>

E </dependency>

</dependencies>

Next we need to define the persistence unit. Create a META-INF/persistence.xml file.
<?xml version="1.0"?>
<persistence xmins =" http://java.sun.com/xml/ns/persistence
E xmins:xsi =" http://www.w3.0rg/2001/XMLSchema-instance
E xsi:schemalocation =" http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd "
E version ="2.0 ">
E <persistence-unit name=" ogm-jpa-tutorial " transaction-type ="JTA" >
E <!I-- Use the Hibernate OGM provider: configuration will be transparent -->
E <provider> org.hibernate.ogm.jpa.HibernateOgmPersistence </provider>
E <properties>
E <l-- Here you will pick which NoSQL technology to use, and configure it;
E in this example we start a local in-memory Infinispan node. -->
E <property name=" hibernate.ogm.datastore.provider " value ="infinispan_embedded
E </properties>
E </persistence-unit>
</persistence>

LetOs now persist a set of entities and retrieve them.

14

" s

/laccessing JBoss's Transaction can be done differently but this one works nicely
TransactionManager tm = com. arjuna . ats . jta . TransactionManager . transactionManager 0);

//build the EntityManagerFactory as you would build in in Hibernate ORM

EntityManagerFactory emf = Persistence . createEntityManagerFactory (
E "ogm-jpa-tutorial ")
final Logger logger = LoggerFactory . getLogger (DogBreedRunner .class);

(-]

/[Persist entities the way you are used to in plain JPA

tm. begin ();

logger . infof (" About to store dog and breed ");
EntityManager em = emf. createEntityManager ();
Breed collie = new Breed () ;

collie . setName (" Collie ");
em persist (collie);

Dog dina = new Dog();

dina . setName (" Dina ") ;

dina . setBreed (collie);

em persist (dina);

Long dinald = dina .getld ();
em flush ();

em close ();

tm. commit () ;

[-.]

/IRetrieve your entities the way you are used to in plain JPA

tm. begin ();

logger . infof (" About to retrieve dog and breed ");

em = emf. createEntityManager 0);

dina = em find (Dog. class , dinald);

logger . infof (" Found dog %s of breed %s ", dina . getName (), dina . getBreed (). getName());

em flush ();
em close ();
tm. commit () ;

(-]

emf. close ();

A working example can be found in Hibernate OGMOs distribution under hibernate-ogm-
documentation/examples/gettingstarted

What have we seen?

¥ Hibernate OGM is a JPA implementation and is used as such both for mapping and in API usage

¥ It is configured as a specific JPA provider:
org.hibernate.ogm.jpa.HibernateOgmPersistence

LetOs explore more in the next chapters.

15

16

Hibernate OGM might also require Hibernate Search on the classpath. This
depends on the dialect or features you want to use with you project and you will
find more details about it in the next chapters.

If you want to use Hibernate OGM with WildFly 12.0 you will need some additional
configuration and you can find all the details in the How to package Hibernate OGM
applications for WildFly 12.0 paragraph.

http://hibernate.org/search/
http://wildfly.org/

Chapter 3. Architecture

Hibernate OGM defines an abstraction layer represented by DatastoreProvider
| and GridDialect to separate the OGM engine from the datastores interaction. It
' has successfully abstracted various key/value stores, document stores and graph
databases. We are working on testing it on other NoSQL families.

In this chapter we will explore:

¥ the general architecture
¥ how the data is persisted in the NoSQL datastore

¥ how we support JPQL queries

LetOs start with the general architecture.

3.1. General architecture

Hibernate OGM is made possible by the reuse of a few key components:

¥ Hibernate ORM for JPA support
¥ the NoSQL drivers to interact with the underlying datastore

¥ optionally Hibernate Search for indexing and query purposes

¥ optionally InfinispanOs Lucene Directory to store indexes in Infinispan itself, or in many other

NoSQL using InfinispanOs write-through cachestores

¥ Hibernate OGM itself

17

Application

Ohbject
model

interacts
with
¥ Hibernate OGM
JPA or Hibernate native APIs
delegates
persistence Hio
; load ibernate
Hibernate OGM Core queries ORM Core
1o
delegate -
queries to Query engine —
JP-0L parser
delegates
datastore
CRUD
upertatluns delegates
Q queries
to
¥ Jr
DatastoreProvider Datastore
& GridDialect query translator
\ pd

interacts

) executes
with datastore

native query(ies)

NoSQL
Datastore

Figure 2. General architecture

Hibernate OGM reuses as much as possible from the Hibernate ORM infrastructure. There is no need
to rewrite a new JPA engine. The Persister s and the Loader s (two interfaces used by Hibernate
ORM) have been rewritten to persist data in the NoSQL store. These implementations are the core of
Hibernate OGM. We will see inHow is data persisted how the data is structured.

The particularities between NoSQL stores are abstracted by the notion of a DatastoreProvider and
a GridDialect

18

¥ DatastoreProvider abstracts how to start and maintain a connection between Hibernate OGM
and the datastore.

¥ GridDialect abstracts how data itself including associations are persisted.
Think of them as the JDBC layer for our NoSQL stores.

Other than these, all the Create/Read/Update/Delete (CRUD) operations are implemented by the
Hibernate ORM engine (object hydration and dehydration, cascading, lifecycle etc).

As of today, we have implemented the following datastore providers:

¥ a HashMap based datastore provider (for testing)

¥ an Infinispan Embedded datastore provider to persist your entities in an Infinispan instance
running within the same JVM

¥ an Infinispan Remote datastore provider to persist your entities in Infinispan over a remote Hot
Rod client

¥ an Ehcache based datastore provider to persist your entities in Ehcache
¥ a MongoDB based datastore provider to persist data in a MongoDB database
¥ a Neo4j based datastore provider to persist data in the Neo4j graph database

¥ a CouchDB based datastore provider to persist data in the CouchDB document store
(experimental)

¥ a Cassandra based datastore provider to persist data in Apache Cassandra (experimental)
¥ a Redis based datastore provider to persist data in the Redis key/value store (experimental)

¥ an Ignite based datastore provider to persist data in Apache Ignite (experimental)

To implement JPQL queries, Hibernate OGM parses the JPQL string and calls the appropriate
translator functions to build a native query. Since not all NoSQL technologies support querying, when
lacking we can use Hibernate Search as an external query engine.

We will discuss the subject of querying in more details in How is data queried.

Hibernate OGM best works in a JTA environment. The easiest solution is to deploy it on a Java EE
container. Alternatively, you can use a standalone JTA TransactionManager . We explain how to inin
a standalone JTA environment.

LetOs now see how and in which structure data is persisted in the NoSQL data store.

3.2. How is data persisted

Hibernate OGM tries to reuse as much as possible the relational model concepts, at least when they
are practical and make sense in OGMOs case. For very good reasons, the relational model brought

19

peace in the database landscape over 30 years ago. In particular, Hibernate OGM inherits the following
traits:
¥ abstraction between the application object model and the persistent data model
¥ persist data as basic types
¥ keep the notion of primary key to address an entity
¥ keep the notion of foreign key to link two entities (not enforced)
If the application data model is too tightly coupled with your persistent data model, a few issues arise:
¥ any change in the application object hierarchy / composition must be reflected in the persistent
data
¥ any change in the application object model will require a migration at the data level
¥ any access to the data by another application ties both applications losing flexibility
¥ any access to the data from another platform become somewhat more challenging

¥ serializing entities leads to many additional problems (see note below)

Why arenOt entities serialized in the key/value entry

There are a couple of reasons why serializing the entity directly in the datastore -
key/value in particular - can lead to problems:

¥ When entities are pointing to other entities are you storing the whole graph?
Hint: this can be quite big!

. ¥ If doing so, how do you guarantee object identity or even consistency amongst
duplicated objects? It might make sense to store the same object graph from
different root objects.

¥ What happens in case of class schema change? If you add or remove a
property or include a superclass, you must migrate all entities in your
datastore to avoid deserialization issues.

Entities are stored as tuples of values by Hibernate OGM. More specifically, each entity is conceptually
represented by a Map<String,Object> where the key represents the column name (often the
property name but not always) and the value represents the column value as a basic type. We favor
basic types over complex ones to increase portability (across platforms and across type / class

schema evolution over time). For example a URL object is stored as its String representation.

The key identifying a given entity instance is composed of:

¥ the table name

¥ the primary key column name(s)

20

¥ the primary key column value(s)

userld
name street
—— compaosition .
age clty
homepage zipcode
address
—
tbl_user

userld_pk

name

age

homepage

street

city

zipcode

{userld_pk=1,

name="Emmanuel",

age=33,

tbl_user,userld_pk,1l |homepage="http://emmanuelbernard.com",
address.street="rue de la Paix",
address.city="Paris",
address.zipcode="75008"}

Figure 3. Storing entities

The GridDialect specific to the NoSQL datastore you target is then responsible to convert this map
into the most natural model:

¥ for a key/value store or a data grid, we use the logical key as the key in the grid and we store the
map as the value. Note that itOs an approximation and some key/value providers will use more
tailored approaches.

¥ for a document oriented store, the map is represented by a document and each entry in the map
corresponds to a property in a document.

Associations are also stored as tuples. Hibernate OGM stores the information necessary to navigate
from an entity to its associations. This is a departure from the pure relational model but it ensures that
association data is reachable via key lookups based on the information contained in the entity tuple we
want to navigate from. Note that this leads to some level of duplication as information has to be stored
for both sides of the association.

21

The key in which association data are stored is composed of:

¥ the table name
¥ the column name(s) representing the foreign key to the entity we come from

¥ the column value(s) representing the foreign key to the entity we come from

Using this approach, we favor fast read and (slightly) slower writes.

User
userId n . | Address
addressId
name city
addresses
tb1l_user 1 tbl_user_address 4 tb1l_address

userld_pk *luserld_fk = addressId_pk
name addressId_fk city

tb1l_user,userld_pk,1 {userId_pk=1, name="Emmanuel”}

tbl_user,userld_pk,2 {userld_pk=2,name="Caroline”}
tbl_address,addressIld_pk, 3 {addressld_pk=3,city="Paris”}
tbl_address,addressId_pk,5 {addressId_pk=5,city="Atlanta”}

{ {userld_fk=1, addressId_fk=3},

tbl_user_address,userld_fk,1 fuserId_fk=1, addressId_fk=5} }

tbl_user_address,userld_fk,2 { {userld_fk=2, addressld_fk=3} }

tbl_user_address,addressIld_fk,5 { {userld_fk=1, addressId_fk=5} }

{ {userld_fk=1, addressld_fk=3},
{userld_fk=2, addressld_fk=3} }

tbl_user_address,addressId_fk,3

Figure 4. Storing associations

Note that this approach has benefits and drawbacks:

¥ it ensures that all CRUD operations are doable via key lookups
¥ it favors reads over writes (for associations)

¥ but it duplicates data

22

Again, there are specificities in how data is inherently stored in the specific NoSQL store. For example,
in document oriented stores, the association information including the identifier to the associated
entities can be stored in the entity owning the association. This is a more natural model for
documents.

{userId_pk=1,
tbl_user,userld_pk,1 name="Emmanuel”,
addresses=[3, 5]}

{userId_pk=2,
tbl_user,userld_pk,?2 name="Caroline",
addresses=[3]}

{addressId_pk=3,
tbl_address,addressId_pk, 3 city="Paris”,
users=[1, 2]}

{addressId_pk=5,
tbl_address,addressId_pk,5 city="Atlanta”,
users=[1]}

Figure 5. Storing associations in a document store

Some identifiers require to store a seed in the datastore (like sequences for examples). The seed is
stored in the value whose key is composed of:

¥ the table name

¥ the column name representing the segment

¥ the column value representing the segment

This description is how conceptually Hibernate OGM asks the datastore provider to
store data. Depending on the family and even the specific datastore, the storage is

optimized to be as natural as possible. In other words as you would have stored the
specific structure naturally. Make sure to check the chapter dedicated to the
NoSQL store you target to find the specificities.

Many NoSQL stores have no notion of schema. Likewise, the tuple stored by Hibernate OGM is not tied
to a particular schema: the tuple is represented by a Map, not a typed Map specific to a given entity
type. Nevertheless, JPA does describe a schema thanks to:

¥ the class schema

¥ the JPA physical annotations like @Table and @Column.

While tied to the application, it offers some robustness and explicit understanding when the schema is
changed as the schema is right in front of the developers' eyes. This is an intermediary model between

23

the strictly typed relational model and the totally schema-less approach pushed by some NoSQL
families.

3.3. Id generation using sequences
You can use sequences with the following annotations:

¥ @SequenceGenerator : it will use native sequences if available

¥ @TableGenerator : it will emulate sequences storing the value in the most appropriate data
structure; for example a document in MongoDB or a node in Neo4j.

HereOs some things to keep in mind when dealing with sequence generation:

¥ @TableGenerator s the fallback approach used when the underlying datastore does not support
native sequences generation.

¥ If the datastore does not support atomic operations and does not support native sequences,
Hibernate OGM will throw an exception at bootstrap and suggest alternatives.

¥ The mapping of the sequence might change based on the annotation used, you should check the
mapping paragraph in the documentation related to the dialect you are using.

¥ The value saved in the the datastore might not be the next value in the sequence.

3.4. How is data queried

Since Hibernate OGM wants to offer all of JPA, it needs to support JPQL queries. Hibernate OGM
parses the JPQL query string and extracts its meaning. From there, several options are available
depending of the capabilities of the NoSQL store you target:

¥ it directly delegates the native query generation to the datastore specific query translator
implementation

¥ it uses Hibernate Search as a query engine to execute the query

If the NoSQL datastore has some query capabilities and if the JPQL query is simple enough to be
executed by the datastore, then the JPQL parser directly pushes the query generation to the NoSQL
specific query translator. The query returns the list of matching entity columns or projections and
Hibernate OGM returns managed entities.

Some NoSQL stores have poor query support, or none at all. In this case Hibernate OGM can use
Hibernate Search as its indexing and query engine. Hibernate Search is able to index and query
objects - entities - and run full-text queries. It uses the well known Apache Lucene to do this but adds

a few interesting characteristics like clustering support and an object oriented abstraction including

an object oriented query DSL. LetOs have a look at the architecture of Hibernate OGM when using
Hibernate Search:

24

\ Hibernate OGM

sends entity
change events,
fo Hibernate Search

indexing engine

Query engine —

Hibernate Search
query engine

reads
Lucene
indexes writes
Lucene
indexes
indexes
optionall Lucene
EtDr-Ed in indexes
MoSQaL
datastore

Figure 6. Using Hibernate Search as query engine - greyed areas are blocks already present in Hibernate OGMOs
architecture

In this situation, Hibernate ORM Core pushes change events to Hibernate Search which will index
entities accordingly and keep the index and the datastore in sync. The JPQL query parser delegates
the query translation to the Hibernate Search query translator and executes the query on top of the
Lucene indexes. Indexes can be stored in various fashions:

¥ on a file system (the default in Lucene)

25

26

¥ in Infinispan via the Infinispan Lucene directory implementation: the index is then distributed
across several servers transparently

¥ in NoSQL stores that can natively store Lucene indexes

¥ in NoSQL stores that can be used as overflow to Infinispan: in this case Infinispan is used as an
intermediary layer to serve the index efficiently but persists the index in another NoSQL store.

You can use Hibernate Search even if you do plan to use the NoSQL datastore
query capabilities. Hibernate Search offers a few interesting options:

¥ clusterability
[1]

¥ full-text queries - ie Google for your entities
¥ geospatial queries

¥ query faceting (ie dynamic categorization of the query results by price, brand
etc)

Chapter 4. Configure and start Hibernate OGM

Hibernate OGM favors ease of use and convention over configuration. This makes its configuration
quite simple by default.

4.1. Bootstrapping Hibernate OGM

Hibernate OGM can be used via the Hibernate native APIs Gession) or via the JPA APIs
(EntityManager). Depending on your choice, the bootstrapping strategy is slightly different.

4.1.1. Using JPA

If you use JPA as your primary API, the configuration is extremely simple. Hibernate OGM is seen as a
persistence provider which you need to configure in your persistence.xml . ThatOs it! The provider
name is org.hibernate.ogm.jpa.HibernateOgmPersistence

Example 1. persistence.xml file

<?xml version="1.0"?>

<persistence xmlins =" http://java.sun.com/xml/ns/persistence

E xmins:xsi =" http://www.w3.0rg/2001/XMLSchema-instance

E xsi:schemalocation =" http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd "

E version ="2.0 ">

E <persistence-unit name=" org.hibernate.ogm.tutorial.jpa " transaction-type ="JTA" >
E <l-- Use Hibernate OGM provider: configuration will be transparent -->

E <provider> org.hibernate.ogm.jpa.HibernateOgmPersistence </provider>
E <properties>

E <property name=" hibernate.transaction.jta.platform

E value ="JBossTS" />

E <property name=" hibernate.ogm.datastore.provider

E value ="infinispan_embedded ">

E </properties>

E </persistence-unit>

</persistence>

There are a couple of things to notice:

¥ there is no JDBC dialect setting

¥ there is no JDBC setting except sometimes a jta-data-source (check In a Java EE container
for more info)

¥ most NoSQL databases do not require a schema, in which case schema generation options
(hbm2ddl) do not apply

¥ if you use JTA (which we recommend), you will need to set the JTA platform

You also need to configure which NoSQL datastore you want to use and how to connect to it. We will

27

detail how to do that later in NoSQL datastores.

In this case, we have used the default settings for Infinispan: this will start a local, in-memory
Infinispan instance which is useful for testing but the stored data will be lost on shutdown. You might
think of this configuration as similar to storing your data in an hashmap, but you could of course
change the Infinispan configuration to enable clustering (for both scalability and failover) and to
enable permanent persistence strategies.

From there, simply bootstrap JPA the way you are used to with Hibernate ORM:

¥ via Persistence.createEntityManagerFactory
¥ by injecting the EntityManager / EntityManagerFactory in a Java EE container

¥ by using your favorite injection framework (CDI - Weld, Spring, Guice)

Note that what youOre starting is not an exotic new JPA implementation but is in all
effects an instance of Hibernate ORM, although using some alternative internal
| components to deal with the NoSQL stores. This means that any framework and

tool integrating with Hibernate ORM can integrate with Hibernate OGM - of course
as long as itOs not making assumptions such as that a JDBC datasource will be
used.

4.1.2. Using Hibernate ORM native APIs

If you want to bootstrap Hibernate OGM using the native Hibernate APIs, use the new bootstrap API
from Hibernate ORM 5. By setting OgmProperties.ENABLED to true, the Hibernate OGM
components will be activated. Note that unwrapping into OgmSessionFactoryBuilder is not strictly
needed, but it will allow you to set Hibernate OGM specific options in the future and also gives you a
reference to OgmSessionFactory instead of SessionFactory

28

Example 2. Bootstrap Hibernate OGM with Hibernate ORM native APIs

StandardServiceRegistry registry = new StandardServiceRegistryBuilder O

E . applySetting (OgmProperties . ENABLED true)

E //assuming you are using JTA in a non container environment

E . applySetting (AvailableSettings . TRANSACTION_COORDINATOR_STRATEGY'jta ")
E /lassuming JBoss TransactionManager in standalone mode

E . applySetting (AvailableSettings . JTA_PLATFORM "JBossTS")

E /lassuming Infinispan as the backend, using the default settings

E . applySetting (OgmProperties . DATASTORE_PROVIDER InfinispanEmbedded

. DATASTORE_PROVIDER_NAME;
E . buld ();

//build the SessionFactory
OgmSessionFactory sessionFactory = new MetadataSources (registry)

E . addAnnotatedClass (Order . class)

E . addAnnotatedClass (Item .class)

E . buildMetadata ()

E . getSessionFactoryBuilder @)

E . unwrap (OgmSessionFactoryBuilder .class)
E . build ();

There are a couple of things to notice:
¥ there is no DDL schema generation options (hbm2ddl) as Infinispan does not require schemas
when running in embedded mode
¥ you need to set the right transaction strategy and the right transaction manager lookup strategy

if you use a JTA based transaction strategy (see Environments)

You also need to configure which NoSQL datastore you want to use and how to connect to it. We will
detail how to do that later in NoSQL datastores. In this case, we have used the defaults settings for
Infinispan.

4.2. Environments

Hibernate OGM runs in various environments: it should work pretty much in all environments in which
Hibernate ORM runs. There are however some selected environments in which it was tested more
thoroughly than others. The current version is being tested regularly in Java SE (without a container)
and within the WildFly 12.0 application server; at time of writing this thereOs no known reason for it to
not work in different containers as long as you remember that it requires a specific version of
Hibernate ORM: some containers might package a conflicting version.

4.2.1. In a Java EE container
You donOt have to do much in this case. You need three specific settings:

¥ the transaction coordinator type

¥ the JTA platform

29

¥ a JTA datasource

If you use JPA, simply set the transaction-type to JTA and the transaction factory will be set for
you.

If you use Hibernate ORM native APls only, then set
hibernate.transaction.coordinator_class to "jta".

Set the JTA platform to the right Java EE container. The property is
hibernate.transaction.jta.platform and must contain the fully qualified class name of the
lookup implementation. The list of available values are listed in Hibernate ORMOs configuration section
For example in WildFly 12.0 you would pick JBossAS, although in WildFly these settings are
automatically injected so you could skip this.

In your persistence.xml you usually need to define an existing datasource. This is not needed by
Hibernate OGM: it will ignore the datasource, but JPA specification mandates the setting.

Example 3. persistence.xml file

<?xml version="1.0"?>

<persistence xmlins =" http://java.sun.com/xml/ns/persistence

E xmins:xsi =" http://www.w3.0rg/2001/XMLSchema-instance "

E xsi:schemal.ocation =" http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd "

E version ="2.0 ">

E <persistence-unit name=" org.hibernate.ogm.tutorial.jpa " transaction-type ="JTA" >
E <!I-- Use Hibernate OGM provider: configuration will be transparent -->

E <provider> org.hibernate.ogm.jpa.HibernateOgmPersistence </provider>

E <jta-data-source> java:/DefaultDS </jta-data-source>

E <properties>

E <property name=" hibernate.transaction.jta.platform " value ="JB0SSAS" />
E <property name=" hibernate.ogm.datastore.provider " value ="infinispan_embedded "
/>

E </properties>

E </persistence-unit>
</persistence>

java:DefaultDS will work for out of the box WildFly deployments.

4.2.2. In a standalone JTA environment
There is a set of common misconceptions in the Java community about JTA:

¥ JTA is hard to use
¥ JTA is only needed when you need transactions spanning several databases
¥ JTA works in Java EE only

¥ JTA is slower than "simple" transactions

30

https://docs.jboss.org/hibernate/orm/5.3/userguide/html_single/Hibernate_User_Guide.html#transactions-physical-jtaplatform

None of these are true: let me show you how to use the Narayana Transactions Manager in a
standalone environment with Hibernate OGM.

In Hibernate OGM, make sure to set the following properties:

¥ transaction-type to JTA in your persistence.xml if you use JPA

¥ or hibernate.transaction.coordinator_class to "jta" if you use
StandardServiceRegistryBuilder / OgmConfiguration to bootstrap Hibernate OGM.

¥ hibernate.transaction.jta.platform to JBossTS in both cases.

Add the Narayana Transactions Manager to your classpath. If you use maven, it should look like this:

Example 4. Narayana Transactions Manager dependency declaration

<dependency>

E <groupld> org.jboss.narayana.jta </groupld>
E <artifactld> narayana-ita </artifactld>

E <version> 5.5.30.Final </version>
</dependency>

The next step is you get access to the transaction manager. The easiest solution is to do as the
following example:

TransactionManager transactionManager =
E com. arjuna . ats .jta . TransactionManager . transactionmanager 0);

Then use the standard JTA APIs to demarcate your transaction and you are done!

31

Example 5. Demarcate your transaction with standalone JTA

/Inote that you must start the transaction before creating the EntityManager
/lor else call entityManager.joinTransaction()
transactionManager . begin ();

final EntityManager em = emf. createEntityManager 0);
Poem poem = new Poem();

poem. setName (" L'albatros ")

em persist (poem) ;

transactionManager ..commit () ;

em clear ();

transactionManager . begin ();

poem = em find (Poem class , poem. getld ());

assertThat (poem) . isNotNull () ;

assertThat (poem. getName ()) . isEqualTo (" L'albatros ");
em remove (poem) ;

transactionManager ..commit () ;

em close ();

That was not too hard, was it? Note that application frameworks like the Spring Framework should be
able to initialize the transaction manager and call it to demarcate transactions for you. Check their
respective documentation.

4.2.3. Without JTA

While this approach works today, it does not ensure that operations are done transactionally and
hence wonOt be able to rollback your work. This will change in the future but in the mean time, such an
environment is not recommended.

! For NoSQL datastores not supporting transactions, this is less of a concern.

4.3. Configuration options

The most important options when configuring Hibernate OGM are related to the datastore. They are
explained in NoSQL datastores.

Otherwise, most options from Hibernate ORM and Hibernate Search are applicable when using
Hibernate OGM. You can pass them as you are used to do either in yourpersistence.xml file, your
hibernate.cfg.xml file or programmatically.

More interesting is a list of options that do not apply to Hibernate OGM and that should not be set:

¥ hibernate.dialect

32

¥ hibernate.connection.* and in particular hibernate.connection.provider_class
¥ hibernate.show_sql and hibernate.format_sql

¥ hibernate.default_schema and hibernate.default_catalog

¥ hibernate.use_sqgl_comments

¥ hibernate.jdbc.*

¥ hibernate.hbm2ddl.auto and hibernate.hbm2ddl.import_file

4.4. Configuring Hibernate Search

Hibernate Search integrates with Hibernate OGM just like it does with Hibernate ORM. The Hibernate
Search version tested is 5.10.0.Final. Add the dependency to your project - the group id is
org.hibernate and artifact id hibernate-search-orm

Then configure where you want to store your indexes, map your entities with the relevant index
annotations and you are good to go. For more information, simply check the Hibernate Search
reference documentation .

In Storing a Lucene index in Infinispan weOll discuss how to store your Lucene indexes in Infinispan.
This is useful even if you donOt plan to use Infinispan as your primary data store.

Hibernate OGM requires Hibernate Search on the classpath only when you need to
run JPQL or HQL queries with some datastores. This is because some datastores
| donOt have a query language or we donOt support it yet. In this situation you need to

index the entities that you want to query and Hibernate OGM will convert the
queries in Lucene queries. Check the paragraph related to the datastore of your
choice to see if it requires Hibernate Search or not.

4.5. How to package Hibernate OGM applications for
WildFly 12.0

Provided youOre deploying on WildFly, there is an additional way to add the OGM dependencies to your
application.

In WildFly, class loading is based on modules; this system defines explicit, non-transitive dependencies
on other modules.

Modules allow to share the same artifacts across multiple applications, making deployments smaller
and quicker, and also making it possible to deploy multiple different versions of any library.

More details about modules are described in Class Loading in WildFly.

33

https://docs.jboss.org/hibernate/search/5.10/reference/en-US/html_single/
https://docs.jboss.org/hibernate/search/5.10/reference/en-US/html_single/
https://docs.jboss.org/author/display/WFLY10/Class+Loading+in+WildFly

When deploying a JPA application on WildFly, you should be aware that there are some additional
useful configuration properties defined by the WildFly JPA subsystem. These are documented in
WildFly JPA Reference Guide

If you apply the following instructions you can create small and efficient deployments which do not
include any dependency, as you can include your favourite version of Hibernate OGM directly to the
collection of container provided libraries.

4.5.1. Packaging Hibernate OGM applications for WildFly 12.0

When using WildFly several of the technologies it includes are automatically enabled. For example
Hibernate ORM is made available to your applications if your persistence.xml defines a persistence
unit using Hibernate as persistence provider (or is not specifying any provider, as Hibernate is the
default one).

Similarly, Hibernate Search is automatically activated and made available on the userOs application
classpath if and when the application server detects the need for it. This is the default behaviour, but

you are in control and can override this all; see the WildFly JPA Reference Guide for a full list of
properties you can explicitly set.

WildFly 12.0 however does not include Hibernate OGM and the compatible Hibernate ORM and
Hibernate Search versions and it will require some configuration to make everything works.

Hibernate OGM 5.4.0.Betal requires Hibernate ORM 5.3.0.Final and Hibernate Search 5.10.0.Final.

Server provisioning via Maven

Maven users can use the wildfly-server-provisioning-maven-plugin to create a custom
WildFly server including the Hibernate OGM modules:

<plugins>

E <plugin>

E <groupld> org.wildfly.build </groupld>

E <artifactld> wildfly-server-provisioning-maven-plugin </artifactld>
E <version> 1.2.10.Final <Iversion>

E <executions>

E <execution>

E <id> server-provisioning </id>

E <goals>

E <goal> build </goal>

E </goals>

E <phase> compile </phase>

E <configuration>

E <config-file> server-provisioning.xml </config-file>

E <server-name> wildfly-with-hibernate-ogm </server-name>
E </configuration>

E </execution>

E </executions>

E </plugin>

</plugins>

34

https://docs.jboss.org/author/display/WFLY10/JPA+Reference+Guide
https://docs.jboss.org/author/display/WFLY10/JPA+Reference+Guide

You will also need aserver-provisioning.xml in the root of your project:

<server-provisioning xmins =" urn:wildfly:server-provisioning:1.1 ">
E <feature-packs>

E <feature-pack

E groupld =" org.hibernate "

E artifactld =" hibernate-search-jbossmodules-orm

E version ="5.10.0.Final ">

E <feature-pack

E groupld =" org.hibernate.ogm

E artifactld =" hibernate-ogm-featurepack-infinispan-remote
E version ="5.4.0Betal " /> "

E <feature-pack

E groupld =" org.hibernate.ogm

E artifactld =" hibernate-ogm-featurepack-infinispan-embedded "
E version ="5.4.0Betal " /> "

E <feature-pack

E groupld =" org.hibernate.ogm

E artifactld =" hibernate-ogm-featurepack-mongodb

E version ="5.4.0Betal " /> "

E <feature-pack

E groupld =" org.hibernate.ogm "

E artifactld =" hibernate-ogm-featurepack-neo4j

E version ="5.4.0.Betal " /> "

E </feature-packs>
</server-provisioning>

I Add Hibernate Search feature pack, if you need it.

Add one or more Hibernate OGM feature packs, it depends on which dialects your application
needs.

1. Seelist of available Hibernate Search feature packs.

2. Seelist of available Hibernate OGM feature packs.
Once you have the archives, you need to unpack them into the modules folder of your WildFly 12.0
installation. The modules included are:

¥ org.hibernate.ogm, the core Hibernate OGM library.

¥ org.hibernate.ogm.<%DATASTORE%>0ne module for each datastore, with <%DATASTORE%Y>
being one of infinispan, mongodb etc.

¥ org.hibernate.orm, the Hibernate ORM libraries.
¥ org.hibernate.search the Hibernate Search libraries.

¥ Several shared dependencies such as org.hibernate.hgl:<%VERSION%>(containing the query
parser) and others

35

https://docs.jboss.org/hibernate/search/5.10/reference/en-US/html_single/#hibernatesearch-jboss-modules-feature-packs

The module slot to use for Hibernate OGM 5.4.0.Betal is5.4 as the format of the slot name does not
include the "micro" part of the project version.

You will also need to set the property wildfly.jpa.hibernate.search.module to
org.hibernate.search.orm:5.10 in your persistence.xml . This way your application will use
the right Hibernate ORM and Hibernate Search version (and not the one shipped with WildFly).

Example 6. Property for enabling a Hibernate Search and Hibernate ORM version compatible with Hibernate
OGM

<property name=" wildfly.jpa.hibernate.search.module " value ="org.hibernate.search.orm:5.10
" s

Now that WildFly is ready, you can include the dependencies in your application in two ways:

Include dependencies using the manifest

Add this entry to the MANIFEST.MF in your archive (replace <%DATASTORE%>with the right
value for your chosen datastore):

Dependencies: org.hibernate.ogm:5.4 services, org.hibernate.ogm.<%DATASTORE%>:5.4 services

Include dependencies using jboss-deployment-structure.xml

This is a JBoss-specific descriptor. Add a WEB-INF/jboss-deployment-structure.xml in your
archive with the following content (replace <%DATASTORE%Y>with the right value for your chosen
datastore):

<jboss-deployment-structure>

</dependencies>
</deployment>
</jboss-deployment-structure>

E <deployment>

E <dependencies>

E <module name=" org.hibernate.ogm " slot ="5.4 " services ="export " />

E <module name="org.hibernate.ogm.<%DATASTORE% >" slot="5.4" services="export" / >
E

E

More information about the descriptor can be found in the WildFly documentation.

More information about Maven Wildfly provisioning plugin can be found in the WildFly provisioning
build tools .

If you are not using Maven in your project, there is also a Gradle plugin org.wildfly.build.provision
available on the official portal.

36

https://docs.jboss.org/author/display/WFLY10/Class+Loading+in+WildFly
https://github.com/wildfly/wildfly-build-tools
https://github.com/wildfly/wildfly-build-tools
https://plugins.gradle.org/plugin/org.wildfly.build.provision

4.5.2. List of the Hibernate OGM WildFly/JBoss feature packs

Core feature pack

It contains the core of Hibernate OGM and all the dialects feature packs extend it.

It extends the base WildFly feature pack distribution. It includes Hibernate ORM 5.3.0.Final modules,
required by Hibernate OGM 5.4.0.Betal.

The feature pack is published on the JBoss Nexus repository and Maven Central as
org.hibernate.ogm:hibernate-ogm-featurepack-core:5.4.0.Betal:zip .

Infinispan Remote feature pack

This is the Infinispan Remote dialect feature pack. It includes the main module:
¥ org.hibernate.ogm.infinispan-remote containing Hibernate OGM Infinispan Remote module

It includes Hibernate OGM core feature pack and Infinispan client Wildfly modules. The feature pack is
published on the JBoss Nexus repository and Maven Central as org.hibernate.ogm:hibernate-ogm-
featurepack-infinispan-remote:5.4.0.Betal:zip .

Infinispan Embedded feature pack

This is the Infinispan Embedded dialect feature pack. It includes the main module:
¥ org.hibernate.ogm.infinispan-embedded containing Hibernate OGM Infinispan Embedded module

It includes Hibernate OGM core feature pack and Infinispan client Wildfly modules. The feature pack is
published on the JBoss Nexus repository and Maven Central as org.hibernate.ogm:hibernate-ogm-
featurepack-infinispan-embedded:5.4.0.Betal:zip .

MongoDB feature pack

This is the MongoDB dialect feature pack. It includes the main module:
¥ org.hibernate.ogm.mongodh containing Hibernate OGM MongoDB module

It includes Hibernate OGM core feature pack and MongoDB Java client. The feature pack is published
on the JBoss Nexus repository and Maven Central as org.hibernate.ogm:hibernate-ogm-featurepack-
mongodb:5.4.0.Betal:zip.

Neo4j feature pack

This is the Neo4j dialect feature pack. It includes the main module:

37

https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.hibernate.ogm~hibernate-ogm-featurepack-core~{hibernate-ogm-version}~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.hibernate.ogm~hibernate-ogm-featurepack-infinispan-remote~{hibernate-ogm-version}~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.hibernate.ogm~hibernate-ogm-featurepack-infinispan-remote~{hibernate-ogm-version}~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.hibernate.ogm~hibernate-ogm-featurepack-infinispan-embedded~{hibernate-ogm-version}~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.hibernate.ogm~hibernate-ogm-featurepack-infinispan-embedded~{hibernate-ogm-version}~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.hibernate.ogm~hibernate-ogm-featurepack-mongodb~{hibernate-ogm-version}~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.hibernate.ogm~hibernate-ogm-featurepack-mongodb~{hibernate-ogm-version}~~

¥ org.hibernate.ogm.neo4j containing Hibernate OGM Neo4j module

It includes Hibernate OGM core feature pack and Neo4j client libraries. The feature pack is published
on the JBoss Nexus repository and Maven Central as org.hibernate.ogm:hibernate-ogm-featurepack-
neo4j:5.4.0.Betal:zip.

4.5.3. Configure your persistence.xml to use your choice of persistence provider

WildFly will by default attempt to guess which Persistence Provider you need by having a look at the
provider section of the persistence.xml

4.5.4. Enable support for JEE 8

Hibernate OGM 5.4.0.Betal requiresCDI 2.0 and JPA 2.2, that belong to JEES8 specification. WildFly
12 has limited support for Java EES8.

To enable required CDI version we need to start the server with ee8.preview.mode Java system
property set to true :

-Dee8.preview.mode=true

To enable required JPA version we need to apply hibernate-jpa-api-2.2-wildflymodules patch to the
server. Download the patch from here:

¥ http://central.maven.org/ maven2/ org/ hibernate/ javax/ persistence/ hibernate-jpa-api-2.2-
wildflymodules/ 1.0.0.Beta2/hibernate-jpa-api-2.2-wildflymodules-1.0.0.Beta2-wildfly-
12.0.0.Final-patch.zip

Or using these maven coordinates:

<groupld> org.hibernate.javax.persistence </groupld>
<artifactld> hibernate-jpa-api-2.2-wildflymodules </artifactld>
<classifier> wildfly-12.0.0.Final-patch </classifier>

<version> 1.0.0.Beta2 </version>
<type> zip </type>

To apply the patch execute the JBoss cli command:

patch apply --override-all hibernate-jpa-api-2.2-wildflymodules-1.0.0.Beta2-wildfly-12.0.0-
patch.zip

4.5.5. Using the Hibernate OGM modules with Infinispan

The Infinispan project also provides custom modules for WildFly 12.0. Hibernate OGM modules require
these modules if youOre planning to use the Hibernate OGM / Infinispan combination on WildFly.

38

https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.hibernate.ogm~hibernate-ogm-featurepack-neo4j~{hibernate-ogm-version}~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.hibernate.ogm~hibernate-ogm-featurepack-neo4j~{hibernate-ogm-version}~~
http://central.maven.org/maven2/org/hibernate/javax/persistence/hibernate-jpa-api-2.2-wildflymodules/1.0.0.Beta2/hibernate-jpa-api-2.2-wildflymodules-1.0.0.Beta2-wildfly-12.0.0.Final-patch.zip
http://central.maven.org/maven2/org/hibernate/javax/persistence/hibernate-jpa-api-2.2-wildflymodules/1.0.0.Beta2/hibernate-jpa-api-2.2-wildflymodules-1.0.0.Beta2-wildfly-12.0.0.Final-patch.zip
http://central.maven.org/maven2/org/hibernate/javax/persistence/hibernate-jpa-api-2.2-wildflymodules/1.0.0.Beta2/hibernate-jpa-api-2.2-wildflymodules-1.0.0.Beta2-wildfly-12.0.0.Final-patch.zip
http://central.maven.org/maven2/org/hibernate/javax/persistence/hibernate-jpa-api-2.2-wildflymodules/1.0.0.Beta2/hibernate-jpa-api-2.2-wildflymodules-1.0.0.Beta2-wildfly-12.0.0.Final-patch.zip
http://central.maven.org/maven2/org/hibernate/javax/persistence/hibernate-jpa-api-2.2-wildflymodules/1.0.0.Beta2/hibernate-jpa-api-2.2-wildflymodules-1.0.0.Beta2-wildfly-12.0.0.Final-patch.zip
http://central.maven.org/maven2/org/hibernate/javax/persistence/hibernate-jpa-api-2.2-wildflymodules/1.0.0.Beta2/hibernate-jpa-api-2.2-wildflymodules-1.0.0.Beta2-wildfly-12.0.0.Final-patch.zip
http://central.maven.org/maven2/org/hibernate/javax/persistence/hibernate-jpa-api-2.2-wildflymodules/1.0.0.Beta2/hibernate-jpa-api-2.2-wildflymodules-1.0.0.Beta2-wildfly-12.0.0.Final-patch.zip
http://central.maven.org/maven2/org/hibernate/javax/persistence/hibernate-jpa-api-2.2-wildflymodules/1.0.0.Beta2/hibernate-jpa-api-2.2-wildflymodules-1.0.0.Beta2-wildfly-12.0.0.Final-patch.zip
http://central.maven.org/maven2/org/hibernate/javax/persistence/hibernate-jpa-api-2.2-wildflymodules/1.0.0.Beta2/hibernate-jpa-api-2.2-wildflymodules-1.0.0.Beta2-wildfly-12.0.0.Final-patch.zip
http://central.maven.org/maven2/org/hibernate/javax/persistence/hibernate-jpa-api-2.2-wildflymodules/1.0.0.Beta2/hibernate-jpa-api-2.2-wildflymodules-1.0.0.Beta2-wildfly-12.0.0.Final-patch.zip
http://central.maven.org/maven2/org/hibernate/javax/persistence/hibernate-jpa-api-2.2-wildflymodules/1.0.0.Beta2/hibernate-jpa-api-2.2-wildflymodules-1.0.0.Beta2-wildfly-12.0.0.Final-patch.zip
http://central.maven.org/maven2/org/hibernate/javax/persistence/hibernate-jpa-api-2.2-wildflymodules/1.0.0.Beta2/hibernate-jpa-api-2.2-wildflymodules-1.0.0.Beta2-wildfly-12.0.0.Final-patch.zip
http://central.maven.org/maven2/org/hibernate/javax/persistence/hibernate-jpa-api-2.2-wildflymodules/1.0.0.Beta2/hibernate-jpa-api-2.2-wildflymodules-1.0.0.Beta2-wildfly-12.0.0.Final-patch.zip
http://central.maven.org/maven2/org/hibernate/javax/persistence/hibernate-jpa-api-2.2-wildflymodules/1.0.0.Beta2/hibernate-jpa-api-2.2-wildflymodules-1.0.0.Beta2-wildfly-12.0.0.Final-patch.zip
http://central.maven.org/maven2/org/hibernate/javax/persistence/hibernate-jpa-api-2.2-wildflymodules/1.0.0.Beta2/hibernate-jpa-api-2.2-wildflymodules-1.0.0.Beta2-wildfly-12.0.0.Final-patch.zip
http://central.maven.org/maven2/org/hibernate/javax/persistence/hibernate-jpa-api-2.2-wildflymodules/1.0.0.Beta2/hibernate-jpa-api-2.2-wildflymodules-1.0.0.Beta2-wildfly-12.0.0.Final-patch.zip
http://central.maven.org/maven2/org/hibernate/javax/persistence/hibernate-jpa-api-2.2-wildflymodules/1.0.0.Beta2/hibernate-jpa-api-2.2-wildflymodules-1.0.0.Beta2-wildfly-12.0.0.Final-patch.zip
http://central.maven.org/maven2/org/hibernate/javax/persistence/hibernate-jpa-api-2.2-wildflymodules/1.0.0.Beta2/hibernate-jpa-api-2.2-wildflymodules-1.0.0.Beta2-wildfly-12.0.0.Final-patch.zip
http://central.maven.org/maven2/org/hibernate/javax/persistence/hibernate-jpa-api-2.2-wildflymodules/1.0.0.Beta2/hibernate-jpa-api-2.2-wildflymodules-1.0.0.Beta2-wildfly-12.0.0.Final-patch.zip

This release of Hibernate OGM was tested exclusively with Infinispan version 9.2.0.Final; the Infinispan
project generally attempts to maintain the same APl and integration points within the same
major.minor version, so a micro version update should be safe but is untested.

In case you want to experiment with a more significant version upgrade, you will need to edit the
modules of Hibernate OGM: the module identifiers are hardcoded in the XML files representing the
module.

Download the Infinispan modules pack for WildFly 12.0 from here:

¥ Infinispan WildFly modules version 9.2.0.Final from the Maven repository

Then similarly to what you did with the Hibernate OGM modules zip, unpack this one too in your
modules directory within the application server.

If you are using the Hibernate OGM Infinispan feature packs, you donOt have to
worry about this. Infinispan client is already included in them.

39

https://repo1.maven.org/maven2/org/infinispan/infinispan-as-embedded-modules/9.2.0.Final/infinispan-as-embedded-modules-9.2.0.Final.zip

Chapter 5. Map your entities

This section mainly describes the specificities of Hibernate OGM mappings. ItOs not meant to be a
comprehensive guide to entity mappings, the complete guide is Hibernate ORMOs documentationafter
all Hibernate OGMis Hibernate ORM.

5.1. Supported entity mapping

Pretty much all entity related constructs should work out of the box in Hibernate OGM. @Entity
@Table, @Column, @Enumerated , @ Temporal , @Cacheable and the like will work as expected. If you
want an example, check out Getting started with Hibernate OGM or the documentation of Hibernate
ORM. LetOs concentrate of the features that differ or are simply not supported by Hibernate OGM.

Hibernate OGM supports the following inheritance strategies: *
InheritanceType. TABLE_PER_CLASS * InheritanceType.SINGLE_TABLE

If you feel the need to support other strategies, let us know (see How to contribute).

JPA annotations refer to tables but the kind of abstraction the database will use depends on the
nature of the NoSQL datastore you are dealing with. For example, in MongoDB a table is mapped as a
document.

You can find more details about the way entities are stored in the corresponding mapping section of
the datastore you are using.

Secondary tables are not supported by Hibernate OGM at the moment. If you have needs for this
feature, let us know (see How to contribute).

Queries are partially supported, you will find more information in the query chapter.

All standard JPA id generators are supported: IDENTITY, SEQUENCE, TABLE and AUTO. If you need
support for additional generators, let us know (see How to contribute).

40

https://docs.jboss.org/hibernate/orm/5.3/userguide/html_single/Hibernate_User_Guide.html#domain-model

