Hibernate.orgCommunity Documentation
3.6.10.Final
Copyright © 2004 Red Hat, Inc.
February 8, 2012
Working with both Object-Oriented software and Relational Databases can be cumbersome and time consuming. Development costs are significantly higher due to a paradigm mismatch between how data is represented in objects versus relational databases. Hibernate is an Object/Relational Mapping solution for Java environments. The term Object/Relational Mapping refers to the technique of mapping data from an object model representation to a relational data model representation (and visa versa). See http://en.wikipedia.org/wiki/Object-relational_mapping for a good high-level discussion.
While having a strong background in SQL is not required to use Hibernate, having a basic understanding of the concepts can greatly help you understand Hibernate more fully and quickly. Probably the single best background is an understanding of data modeling principles. You might want to consider these resources as a good starting point:
Hibernate not only takes care of the mapping from Java classes to database tables (and from Java data types to SQL data types), but also provides data query and retrieval facilities. It can significantly reduce development time otherwise spent with manual data handling in SQL and JDBC. Hibernate’s design goal is to relieve the developer from 95% of common data persistence-related programming tasks by eliminating the need for manual, hand-crafted data processing using SQL and JDBC. However, unlike many other persistence solutions, Hibernate does not hide the power of SQL from you and guarantees that your investment in relational technology and knowledge is as valid as always.
Hibernate may not be the best solution for data-centric applications that only use stored-procedures to implement the business logic in the database, it is most useful with object-oriented domain models and business logic in the Java-based middle-tier. However, Hibernate can certainly help you to remove or encapsulate vendor-specific SQL code and will help with the common task of result set translation from a tabular representation to a graph of objects.
Falls Ihnen Hibernate und Objekt/Relationales Mapping oder sogar Java neu sind, orientieren Sie sich bitte an folgenden Schritten:
Read Kapitel 1, Tutorial for a tutorial with step-by-step instructions. The source code for the tutorial is included in the distribution in the doc/reference/tutorial/
directory.
Read Kapitel 2, Architektur to understand the environments where Hibernate can be used.
View the eg/
directory in the Hibernate distribution. It contains a simple standalone application. Copy your JDBC driver to the lib/
directory and edit etc/hibernate.properties
, specifying correct values for your database. From a command prompt in the distribution directory, type ant eg
(using Ant), or under Windows, type build eg
.
Use this reference documentation as your primary source of information. Consider reading [JPwH] if you need more help with application design, or if you prefer a step-by-step tutorial. Also visit http://caveatemptor.hibernate.org and download the example application from [JPwH].
Antworten auf häufig gestellte Fragen (FAQs) finden Sie auf der Website von Hibernate.
Auf der Hibernate Website befinden sich auch Demos, Beispiele und Anleitungen Dritter.
Bei Fragen wenden Sie sich an das Benutzerforum, das mit der Hibernate Website verlinkt ist. Wir bieten auch ein JIRA-Problemverfolgungssystem für Fehlerberichte und Feature-Anfragen. Falls Sie an der Entwicklung von Hibernate interessiert sind, registrieren Sie sich bei der Mailing-Liste für Entwickler. Falls Sie diese Dokumentation in Ihre Sprache übersetzen möchten, setzen Sie sich mittels der Mailing-Liste für Entwickler mit uns in Verbindung.
There are a number of ways to become involved in the Hibernate community, including
Trying stuff out and reporting bugs. See http://hibernate.org/issuetracker.html details.
Trying your hand at fixing some bugs or implementing enhancements. Again, see http://hibernate.org/issuetracker.html details.
http://hibernate.org/community.html list a few ways to engage in the community.
There are forums for users to ask questions and receive help from the community.
There are also IRC channels for both user and developer discussions.
Helping improve or translate this documentation. Contact us on the developer mailing list if you have interest.
Evangelizing Hibernate within your organization.
Intended for new users, this chapter provides an step-by-step introduction to Hibernate, starting with a simple application using an in-memory database. The tutorial is based on an earlier tutorial developed by Michael Gloegl. All code is contained in the tutorials/web
directory of the project source.
This tutorial expects the user have knowledge of both Java and SQL. If you have a limited knowledge of JAVA or SQL, it is advised that you start with a good introduction to that technology prior to attempting to learn Hibernate.
The distribution contains another example application under the tutorial/eg
project source directory.
For this example, we will set up a small database application that can store events we want to attend and information about the host(s) of these events.
Although you can use whatever database you feel comfortable using, we will use HSQLDB (an in-memory, Java database) to avoid describing installation/setup of any particular database servers.
The first thing we need to do is to set up the development environment. We will be using the "standard layout" advocated by alot of build tools such as Maven. Maven, in particular, has a good resource describing this layout. As this tutorial is to be a web application, we will be creating and making use of src/main/java
, src/main/resources
and src/main/webapp
directories.
We will be using Maven in this tutorial, taking advantage of its transitive dependency management capabilities as well as the ability of many IDEs to automatically set up a project for us based on the maven descriptor.
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>org.hibernate.tutorials</groupId>
<artifactId>hibernate-tutorial</artifactId>
<version>1.0.0-SNAPSHOT</version>
<name>First Hibernate Tutorial</name>
<build>
<!-- we dont want the version to be part of the generated war file name -->
<finalName>${artifactId}</finalName>
</build>
<dependencies>
<dependency>
<groupId>org.hibernate</groupId>
<artifactId>hibernate-core</artifactId>
</dependency>
<!-- Because this is a web app, we also have a dependency on the servlet api. -->
<dependency>
<groupId>javax.servlet</groupId>
<artifactId>servlet-api</artifactId>
</dependency>
<!-- Hibernate uses slf4j for logging, for our purposes here use the simple backend -->
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-simple</artifactId>
</dependency>
<!-- Hibernate gives you a choice of bytecode providers between cglib and javassist -->
<dependency>
<groupId>javassist</groupId>
<artifactId>javassist</artifactId>
</dependency>
</dependencies>
</project>
It is not a requirement to use Maven. If you wish to use something else to build this tutorial (such as Ant), the layout will remain the same. The only change is that you will need to manually account for all the needed dependencies. If you use something like Ivy providing transitive dependency management you would still use the dependencies mentioned below. Otherwise, you'd need to grab all dependencies, both explicit and transitive, and add them to the project's classpath. If working from the Hibernate distribution bundle, this would mean hibernate3.jar
, all artifacts in the lib/required
directory and all files from either the lib/bytecode/cglib
or lib/bytecode/javassist
directory; additionally you will need both the servlet-api jar and one of the slf4j logging backends.
Save this file as pom.xml
in the project root directory.
Next, we create a class that represents the event we want to store in the database; it is a simple JavaBean class with some properties:
package org.hibernate.tutorial.domain;
import java.util.Date;
public class Event {
private Long id;
private String title;
private Date date;
public Event() {}
public Long getId() {
return id;
}
private void setId(Long id) {
this.id = id;
}
public Date getDate() {
return date;
}
public void setDate(Date date) {
this.date = date;
}
public String getTitle() {
return title;
}
public void setTitle(String title) {
this.title = title;
}
}
This class uses standard JavaBean naming conventions for property getter and setter methods, as well as private visibility for the fields. Although this is the recommended design, it is not required. Hibernate can also access fields directly, the benefit of accessor methods is robustness for refactoring.
The id
property holds a unique identifier value for a particular event. All persistent entity classes (there are less important dependent classes as well) will need such an identifier property if we want to use the full feature set of Hibernate. In fact, most applications, especially web applications, need to distinguish objects by identifier, so you should consider this a feature rather than a limitation. However, we usually do not manipulate the identity of an object, hence the setter method should be private. Only Hibernate will assign identifiers when an object is saved. Hibernate can access public, private, and protected accessor methods, as well as public, private and protected fields directly. The choice is up to you and you can match it to fit your application design.
The no-argument constructor is a requirement for all persistent classes; Hibernate has to create objects for you, using Java Reflection. The constructor can be private, however package or public visibility is required for runtime proxy generation and efficient data retrieval without bytecode instrumentation.
Save this file to the src/main/java/org/hibernate/tutorial/domain
directory.
Hibernate muss darüber informiert werden, wie Objekte der persistenten Klasse geladen und gespeichert werden sollen. Hier wird die "Mapping"-Datei von Hibernate benötigt. Diese Datei informiert Hibernate darüber, auf welche Tabelle in der Datenbank zugegriffen werden soll und welche Spalten dieser Tabelle verwendet werden sollen.
Die Grundstruktur einer Mapping-Datei sieht wie folgt aus:
<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://www.hibernate.org/dtd/hibernate-mapping-3.0.dtd">
<hibernate-mapping package="org.hibernate.tutorial.domain">
[...]
</hibernate-mapping
>
Hibernate DTD is sophisticated. You can use it for auto-completion of XML mapping elements and attributes in your editor or IDE. Opening up the DTD file in your text editor is the easiest way to get an overview of all elements and attributes, and to view the defaults, as well as some comments. Hibernate will not load the DTD file from the web, but first look it up from the classpath of the application. The DTD file is included in hibernate-core.jar
(it is also included in the hibernate3.jar
, if using the distribution bundle).
We will omit the DTD declaration in future examples to shorten the code. It is, of course, not optional.
Between the two hibernate-mapping
tags, include a class
element. All persistent entity classes (again, there might be dependent classes later on, which are not first-class entities) need a mapping to a table in the SQL database:
<hibernate-mapping package="org.hibernate.tutorial.domain">
<class name="Event" table="EVENTS">
</class>
</hibernate-mapping>
So far we have told Hibernate how to persist and load object of class Event
to the table EVENTS
. Each instance is now represented by a row in that table. Now we can continue by mapping the unique identifier property to the tables primary key. As we do not want to care about handling this identifier, we configure Hibernate's identifier generation strategy for a surrogate primary key column:
<hibernate-mapping package="org.hibernate.tutorial.domain">
<class name="Event" table="EVENTS">
<id name="id" column="EVENT_ID">
<generator class="native"/>
</id>
</class>
</hibernate-mapping>
The id
element is the declaration of the identifier property. The name="id"
mapping attribute declares the name of the JavaBean property and tells Hibernate to use the getId()
and setId()
methods to access the property. The column attribute tells Hibernate which column of the EVENTS
table holds the primary key value.
The nested generator
element specifies the identifier generation strategy (aka how are identifier values generated?). In this case we choose native
, which offers a level of portability depending on the configured database dialect. Hibernate supports database generated, globally unique, as well as application assigned, identifiers. Identifier value generation is also one of Hibernate's many extension points and you can plugin in your own strategy.
native
is no longer consider the best strategy in terms of portability. for further discussion, see Abschnitt 28.4, „Identifier generation“
Lastly, we need to tell Hibernate about the remaining entity class properties. By default, no properties of the class are considered persistent:
<hibernate-mapping package="org.hibernate.tutorial.domain">
<class name="Event" table="EVENTS">
<id name="id" column="EVENT_ID">
<generator class="native"/>
</id>
<property name="date" type="timestamp" column="EVENT_DATE"/>
<property name="title"/>
</class>
</hibernate-mapping>
Similar to the id
element, the name
attribute of the property
element tells Hibernate which getter and setter methods to use. In this case, Hibernate will search for getDate()
, setDate()
, getTitle()
and setTitle()
methods.
Why does the date
property mapping include the column
attribute, but the title
does not? Without the column
attribute, Hibernate by default uses the property name as the column name. This works for title
, however, date
is a reserved keyword in most databases so you will need to map it to a different name.
The title
mapping also lacks a type
attribute. The types declared and used in the mapping files are not Java data types; they are not SQL database types either. These types are called Hibernate mapping types, converters which can translate from Java to SQL data types and vice versa. Again, Hibernate will try to determine the correct conversion and mapping type itself if the type
attribute is not present in the mapping. In some cases this automatic detection using Reflection on the Java class might not have the default you expect or need. This is the case with the date
property. Hibernate cannot know if the property, which is of java.util.Date
, should map to a SQL date
, timestamp
, or time
column. Full date and time information is preserved by mapping the property with a timestamp
converter.
Hibernate makes this mapping type determination using reflection when the mapping files are processed. This can take time and resources, so if startup performance is important you should consider explicitly defining the type to use.
Save this mapping file as src/main/resources/org/hibernate/tutorial/domain/Event.hbm.xml
.
At this point, you should have the persistent class and its mapping file in place. It is now time to configure Hibernate. First let's set up HSQLDB to run in "server mode"
We do this do that the data remains between runs.
We will utilize the Maven exec plugin to launch the HSQLDB server by running: mvn exec:java -Dexec.mainClass="org.hsqldb.Server" -Dexec.args="-database.0 file:target/data/tutorial"
You will see it start up and bind to a TCP/IP socket; this is where our application will connect later. If you want to start with a fresh database during this tutorial, shutdown HSQLDB, delete all files in the target/data
directory, and start HSQLDB again.
Hibernate will be connecting to the database on behalf of your application, so it needs to know how to obtain connections. For this tutorial we will be using a standalone connection pool (as opposed to a javax.sql.DataSource
). Hibernate comes with support for two third-party open source JDBC connection pools: c3p0 and proxool. However, we will be using the Hibernate built-in connection pool for this tutorial.
The built-in Hibernate connection pool is in no way intended for production use. It lacks several features found on any decent connection pool.
For Hibernate's configuration, we can use a simple hibernate.properties
file, a more sophisticated hibernate.cfg.xml
file, or even complete programmatic setup. Most users prefer the XML configuration file:
<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-configuration PUBLIC
"-//Hibernate/Hibernate Configuration DTD 3.0//EN"
"http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd">
<hibernate-configuration>
<session-factory>
<!-- Database connection settings -->
<property name="connection.driver_class"
>org.hsqldb.jdbcDriver</property>
<property name="connection.url"
>jdbc:hsqldb:hsql://localhost</property>
<property name="connection.username"
>sa</property>
<property name="connection.password"
></property>
<!-- JDBC connection pool (use the built-in) -->
<property name="connection.pool_size"
>1</property>
<!-- SQL dialect -->
<property name="dialect"
>org.hibernate.dialect.HSQLDialect</property>
<!-- Enable Hibernate's automatic session context management -->
<property name="current_session_context_class"
>thread</property>
<!-- Disable the second-level cache -->
<property name="cache.provider_class"
>org.hibernate.cache.NoCacheProvider</property>
<!-- Echo all executed SQL to stdout -->
<property name="show_sql"
>true</property>
<!-- Drop and re-create the database schema on startup -->
<property name="hbm2ddl.auto"
>update</property>
<mapping resource="org/hibernate/tutorial/domain/Event.hbm.xml"/>
</session-factory>
</hibernate-configuration
>
Notice that this configuration file specifies a different DTD
You configure Hibernate's SessionFactory
. SessionFactory is a global factory responsible for a particular database. If you have several databases, for easier startup you should use several <session-factory>
configurations in several configuration files.
The first four property
elements contain the necessary configuration for the JDBC connection. The dialect property
element specifies the particular SQL variant Hibernate generates.
In most cases, Hibernate is able to properly determine which dialect to use. See Abschnitt 28.3, „Dialect resolution“ for more information.
Hibernate's automatic session management for persistence contexts is particularly useful in this context. The hbm2ddl.auto
option turns on automatic generation of database schemas directly into the database. This can also be turned off by removing the configuration option, or redirected to a file with the help of the SchemaExport
Ant task. Finally, add the mapping file(s) for persistent classes to the configuration.
Save this file as hibernate.cfg.xml
into the src/main/resources
directory.
We will now build the tutorial with Maven. You will need to have Maven installed; it is available from the Maven download page. Maven will read the /pom.xml
file we created earlier and know how to perform some basic project tasks. First, lets run the compile
goal to make sure we can compile everything so far:
[hibernateTutorial]$ mvn compile [INFO] Scanning for projects... [INFO] ------------------------------------------------------------------------ [INFO] Building First Hibernate Tutorial [INFO] task-segment: [compile] [INFO] ------------------------------------------------------------------------ [INFO] [resources:resources] [INFO] Using default encoding to copy filtered resources. [INFO] [compiler:compile] [INFO] Compiling 1 source file to /home/steve/projects/sandbox/hibernateTutorial/target/classes [INFO] ------------------------------------------------------------------------ [INFO] BUILD SUCCESSFUL [INFO] ------------------------------------------------------------------------ [INFO] Total time: 2 seconds [INFO] Finished at: Tue Jun 09 12:25:25 CDT 2009 [INFO] Final Memory: 5M/547M [INFO] ------------------------------------------------------------------------
It is time to load and store some Event
objects, but first you have to complete the setup with some infrastructure code. You have to startup Hibernate by building a global org.hibernate.SessionFactory
object and storing it somewhere for easy access in application code. A org.hibernate.SessionFactory
is used to obtain org.hibernate.Session
instances. A org.hibernate.Session
represents a single-threaded unit of work. The org.hibernate.SessionFactory
is a thread-safe global object that is instantiated once.
We will create a HibernateUtil
helper class that takes care of startup and makes accessing the org.hibernate.SessionFactory
more convenient.
package org.hibernate.tutorial.util;
import org.hibernate.SessionFactory;
import org.hibernate.cfg.Configuration;
public class HibernateUtil {
private static final SessionFactory sessionFactory = buildSessionFactory();
private static SessionFactory buildSessionFactory() {
try {
// Create the SessionFactory from hibernate.cfg.xml
return new Configuration().configure().buildSessionFactory();
}
catch (Throwable ex) {
// Make sure you log the exception, as it might be swallowed
System.err.println("Initial SessionFactory creation failed." + ex);
throw new ExceptionInInitializerError(ex);
}
}
public static SessionFactory getSessionFactory() {
return sessionFactory;
}
}
Save this code as src/main/java/org/hibernate/tutorial/util/HibernateUtil.java
This class not only produces the global org.hibernate.SessionFactory
reference in its static initializer; it also hides the fact that it uses a static singleton. We might just as well have looked up the org.hibernate.SessionFactory
reference from JNDI in an application server or any other location for that matter.
If you give the org.hibernate.SessionFactory
a name in your configuration, Hibernate will try to bind it to JNDI under that name after it has been built. Another, better option is to use a JMX deployment and let the JMX-capable container instantiate and bind a HibernateService
to JNDI. Such advanced options are discussed later.
You now need to configure a logging system. Hibernate uses commons logging and provides two choices: Log4j and JDK 1.4 logging. Most developers prefer Log4j: copy log4j.properties
from the Hibernate distribution in the etc/
directory to your src
directory, next to hibernate.cfg.xml
. If you prefer to have more verbose output than that provided in the example configuration, you can change the settings. By default, only the Hibernate startup message is shown on stdout.
The tutorial infrastructure is complete and you are now ready to do some real work with Hibernate.
We are now ready to start doing some real work with Hibernate. Let's start by writing an EventManager
class with a main()
method:
package org.hibernate.tutorial;
import org.hibernate.Session;
import java.util.*;
import org.hibernate.tutorial.domain.Event;
import org.hibernate.tutorial.util.HibernateUtil;
public class EventManager {
public static void main(String[] args) {
EventManager mgr = new EventManager();
if (args[0].equals("store")) {
mgr.createAndStoreEvent("My Event", new Date());
}
HibernateUtil.getSessionFactory().close();
}
private void createAndStoreEvent(String title, Date theDate) {
Session session = HibernateUtil.getSessionFactory().getCurrentSession();
session.beginTransaction();
Event theEvent = new Event();
theEvent.setTitle(title);
theEvent.setDate(theDate);
session.save(theEvent);
session.getTransaction().commit();
}
}
In createAndStoreEvent()
we created a new Event
object and handed it over to Hibernate. At that point, Hibernate takes care of the SQL and executes an INSERT
on the database.
A org.hibernate.Session is designed to represent a single unit of work (a single atomic piece of work to be performed). For now we will keep things simple and assume a one-to-one granularity between a Hibernate org.hibernate.Session and a database transaction. To shield our code from the actual underlying transaction system we use the Hibernate org.hibernate.Transaction
API. In this particular case we are using JDBC-based transactional semantics, but it could also run with JTA.
What does sessionFactory.getCurrentSession()
do? First, you can call it as many times and anywhere you like once you get hold of your org.hibernate.SessionFactory
. The getCurrentSession()
method always returns the "current" unit of work. Remember that we switched the configuration option for this mechanism to "thread" in our src/main/resources/hibernate.cfg.xml
? Due to that setting, the context of a current unit of work is bound to the current Java thread that executes the application.
Hibernate offers three methods of current session tracking. The "thread" based method is not intended for production use; it is merely useful for prototyping and tutorials such as this one. Current session tracking is discussed in more detail later on.
A org.hibernate.Session begins when the first call to getCurrentSession()
is made for the current thread. It is then bound by Hibernate to the current thread. When the transaction ends, either through commit or rollback, Hibernate automatically unbinds the org.hibernate.Session from the thread and closes it for you. If you call getCurrentSession()
again, you get a new org.hibernate.Session and can start a new unit of work.
Related to the unit of work scope, should the Hibernate org.hibernate.Session be used to execute one or several database operations? The above example uses one org.hibernate.Session for one operation. However this is pure coincidence; the example is just not complex enough to show any other approach. The scope of a Hibernate org.hibernate.Session is flexible but you should never design your application to use a new Hibernate org.hibernate.Session for every database operation. Even though it is used in the following examples, consider session-per-operation an anti-pattern. A real web application is shown later in the tutorial which will help illustrate this.
See Kapitel 13, Transactions and Concurrency for more information about transaction handling and demarcation. The previous example also skipped any error handling and rollback.
To run this, we will make use of the Maven exec plugin to call our class with the necessary classpath setup: mvn exec:java -Dexec.mainClass="org.hibernate.tutorial.EventManager" -Dexec.args="store"
You may need to perform mvn compile
first.
You should see Hibernate starting up and, depending on your configuration, lots of log output. Towards the end, the following line will be displayed:
[java] Hibernate: insert into EVENTS (EVENT_DATE, title, EVENT_ID) values (?, ?, ?)
This is the INSERT
executed by Hibernate.
To list stored events an option is added to the main method:
if (args[0].equals("store")) {
mgr.createAndStoreEvent("My Event", new Date());
}
else if (args[0].equals("list")) {
List events = mgr.listEvents();
for (int i = 0; i < events.size(); i++) {
Event theEvent = (Event) events.get(i);
System.out.println(
"Event: " + theEvent.getTitle() + " Time: " + theEvent.getDate()
);
}
}
A new listEvents() method is also added
:
private List listEvents() {
Session session = HibernateUtil.getSessionFactory().getCurrentSession();
session.beginTransaction();
List result = session.createQuery("from Event").list();
session.getTransaction().commit();
return result;
}
Here, we are using a Hibernate Query Language (HQL) query to load all existing Event
objects from the database. Hibernate will generate the appropriate SQL, send it to the database and populate Event
objects with the data. You can create more complex queries with HQL. See Kapitel 16, HQL: Die "Hibernate Query Language" for more information.
Now we can call our new functionality, again using the Maven exec plugin: mvn exec:java -Dexec.mainClass="org.hibernate.tutorial.EventManager" -Dexec.args="list"
So far we have mapped a single persistent entity class to a table in isolation. Let's expand on that a bit and add some class associations. We will add people to the application and store a list of events in which they participate.
The first cut of the Person
class looks like this:
package org.hibernate.tutorial.domain;
public class Person {
private Long id;
private int age;
private String firstname;
private String lastname;
public Person() {}
// Accessor methods for all properties, private setter for 'id'
}
Save this to a file named src/main/java/org/hibernate/tutorial/domain/Person.java
Next, create the new mapping file as src/main/resources/org/hibernate/tutorial/domain/Person.hbm.xml
<hibernate-mapping package="org.hibernate.tutorial.domain">
<class name="Person" table="PERSON">
<id name="id" column="PERSON_ID">
<generator class="native"/>
</id>
<property name="age"/>
<property name="firstname"/>
<property name="lastname"/>
</class>
</hibernate-mapping>
Anschließend fügen Sie dann das neue Mapping der Konfiguration von Hibernate hinzu:
<mapping resource="org/hibernate/tutorial/domain/Event.hbm.xml"/>
<mapping resource="org/hibernate/tutorial/domain/Person.hbm.xml"/>
Create an association between these two entities. Persons can participate in events, and events have participants. The design questions you have to deal with are: directionality, multiplicity, and collection behavior.
By adding a collection of events to the Person
class, you can easily navigate to the events for a particular person, without executing an explicit query - by calling Person#getEvents
. Multi-valued associations are represented in Hibernate by one of the Java Collection Framework contracts; here we choose a java.util.Set
because the collection will not contain duplicate elements and the ordering is not relevant to our examples:
public class Person {
private Set events = new HashSet();
public Set getEvents() {
return events;
}
public void setEvents(Set events) {
this.events = events;
}
}
Before mapping this association, let's consider the other side. We could just keep this unidirectional or create another collection on the Event
, if we wanted to be able to navigate it from both directions. This is not necessary, from a functional perspective. You can always execute an explicit query to retrieve the participants for a particular event. This is a design choice left to you, but what is clear from this discussion is the multiplicity of the association: "many" valued on both sides is called a many-to-many association. Hence, we use Hibernate's many-to-many mapping:
<class name="Person" table="PERSON">
<id name="id" column="PERSON_ID">
<generator class="native"/>
</id>
<property name="age"/>
<property name="firstname"/>
<property name="lastname"/>
<set name="events" table="PERSON_EVENT">
<key column="PERSON_ID"/>
<many-to-many column="EVENT_ID" class="Event"/>
</set>
</class>
Hibernate supports a broad range of collection mappings, a set
being most common. For a many-to-many association, or n:m entity relationship, an association table is required. Each row in this table represents a link between a person and an event. The table name is decalred using the table
attribute of the set
element. The identifier column name in the association, for the person side, is defined with the key
element, the column name for the event's side with the column
attribute of the many-to-many
. You also have to tell Hibernate the class of the objects in your collection (the class on the other side of the collection of references).
Das Datenbankschema für dieses Mapping lautet daher:
_____________ __________________ | | | | _____________ | EVENTS | | PERSON_EVENT | | | |_____________| |__________________| | PERSON | | | | | |_____________| | *EVENT_ID | <--> | *EVENT_ID | | | | EVENT_DATE | | *PERSON_ID | <--> | *PERSON_ID | | TITLE | |__________________| | AGE | |_____________| | FIRSTNAME | | LASTNAME | |_____________|
Now we will bring some people and events together in a new method in EventManager
:
private void addPersonToEvent(Long personId, Long eventId) {
Session session = HibernateUtil.getSessionFactory().getCurrentSession();
session.beginTransaction();
Person aPerson = (Person) session.load(Person.class, personId);
Event anEvent = (Event) session.load(Event.class, eventId);
aPerson.getEvents().add(anEvent);
session.getTransaction().commit();
}
After loading a Person
and an Event
, simply modify the collection using the normal collection methods. There is no explicit call to update()
or save()
; Hibernate automatically detects that the collection has been modified and needs to be updated. This is called automatic dirty checking. You can also try it by modifying the name or the date property of any of your objects. As long as they are in persistent state, that is, bound to a particular Hibernate org.hibernate.Session
, Hibernate monitors any changes and executes SQL in a write-behind fashion. The process of synchronizing the memory state with the database, usually only at the end of a unit of work, is called flushing. In our code, the unit of work ends with a commit, or rollback, of the database transaction.
You can load person and event in different units of work. Or you can modify an object outside of a org.hibernate.Session
, when it is not in persistent state (if it was persistent before, this state is called detached). You can even modify a collection when it is detached:
private void addPersonToEvent(Long personId, Long eventId) {
Session session = HibernateUtil.getSessionFactory().getCurrentSession();
session.beginTransaction();
Person aPerson = (Person) session
.createQuery("select p from Person p left join fetch p.events where p.id = :pid")
.setParameter("pid", personId)
.uniqueResult(); // Eager fetch the collection so we can use it detached
Event anEvent = (Event) session.load(Event.class, eventId);
session.getTransaction().commit();
// End of first unit of work
aPerson.getEvents().add(anEvent); // aPerson (and its collection) is detached
// Begin second unit of work
Session session2 = HibernateUtil.getSessionFactory().getCurrentSession();
session2.beginTransaction();
session2.update(aPerson); // Reattachment of aPerson
session2.getTransaction().commit();
}
The call to update
makes a detached object persistent again by binding it to a new unit of work, so any modifications you made to it while detached can be saved to the database. This includes any modifications (additions/deletions) you made to a collection of that entity object.
This is not much use in our example, but it is an important concept you can incorporate into your own application. Complete this exercise by adding a new action to the main method of the EventManager
and call it from the command line. If you need the identifiers of a person and an event - the save()
method returns it (you might have to modify some of the previous methods to return that identifier):
else if (args[0].equals("addpersontoevent")) {
Long eventId = mgr.createAndStoreEvent("My Event", new Date());
Long personId = mgr.createAndStorePerson("Foo", "Bar");
mgr.addPersonToEvent(personId, eventId);
System.out.println("Added person " + personId + " to event " + eventId);
}
This is an example of an association between two equally important classes : two entities. As mentioned earlier, there are other classes and types in a typical model, usually "less important". Some you have already seen, like an int
or a java.lang.String
. We call these classes value types, and their instances depend on a particular entity. Instances of these types do not have their own identity, nor are they shared between entities. Two persons do not reference the same firstname
object, even if they have the same first name. Value types cannot only be found in the JDK , but you can also write dependent classes yourself such as an Address
or MonetaryAmount
class. In fact, in a Hibernate application all JDK classes are considered value types.
You can also design a collection of value types. This is conceptually different from a collection of references to other entities, but looks almost the same in Java.
Let's add a collection of email addresses to the Person
entity. This will be represented as a java.util.Set
of java.lang.String
instances:
private Set emailAddresses = new HashSet();
public Set getEmailAddresses() {
return emailAddresses;
}
public void setEmailAddresses(Set emailAddresses) {
this.emailAddresses = emailAddresses;
}
The mapping of this Set
is as follows:
<set name="emailAddresses" table="PERSON_EMAIL_ADDR">
<key column="PERSON_ID"/>
<element type="string" column="EMAIL_ADDR"/>
</set>
The difference compared with the earlier mapping is the use of the element
part which tells Hibernate that the collection does not contain references to another entity, but is rather a collection whose elements are values types, here specifically of type string
. The lowercase name tells you it is a Hibernate mapping type/converter. Again the table
attribute of the set
element determines the table name for the collection. The key
element defines the foreign-key column name in the collection table. The column
attribute in the element
element defines the column name where the email address values will actually be stored.
Here is the updated schema:
_____________ __________________ | | | | _____________ | EVENTS | | PERSON_EVENT | | | ___________________ |_____________| |__________________| | PERSON | | | | | | | |_____________| | PERSON_EMAIL_ADDR | | *EVENT_ID | <--> | *EVENT_ID | | | |___________________| | EVENT_DATE | | *PERSON_ID | <--> | *PERSON_ID | <--> | *PERSON_ID | | TITLE | |__________________| | AGE | | *EMAIL_ADDR | |_____________| | FIRSTNAME | |___________________| | LASTNAME | |_____________|
You can see that the primary key of the collection table is in fact a composite key that uses both columns. This also implies that there cannot be duplicate email addresses per person, which is exactly the semantics we need for a set in Java.
You can now try to add elements to this collection, just like we did before by linking persons and events. It is the same code in Java:
private void addEmailToPerson(Long personId, String emailAddress) {
Session session = HibernateUtil.getSessionFactory().getCurrentSession();
session.beginTransaction();
Person aPerson = (Person) session.load(Person.class, personId);
// adding to the emailAddress collection might trigger a lazy load of the collection
aPerson.getEmailAddresses().add(emailAddress);
session.getTransaction().commit();
}
This time we did not use a fetch query to initialize the collection. Monitor the SQL log and try to optimize this with an eager fetch.
Next you will map a bi-directional association. You will make the association between person and event work from both sides in Java. The database schema does not change, so you will still have many-to-many multiplicity.
A relational database is more flexible than a network programming language, in that it does not need a navigation direction; data can be viewed and retrieved in any possible way.
First, add a collection of participants to the Event
class:
private Set participants = new HashSet();
public Set getParticipants() {
return participants;
}
public void setParticipants(Set participants) {
this.participants = participants;
}
Now map this side of the association in Event.hbm.xml
.
<set name="participants" table="PERSON_EVENT" inverse="true">
<key column="EVENT_ID"/>
<many-to-many column="PERSON_ID" class="Person"/>
</set
>
These are normal set
mappings in both mapping documents. Notice that the column names in key
and many-to-many
swap in both mapping documents. The most important addition here is the inverse="true"
attribute in the set
element of the Event
's collection mapping.
What this means is that Hibernate should take the other side, the Person
class, when it needs to find out information about the link between the two. This will be a lot easier to understand once you see how the bi-directional link between our two entities is created.
First, keep in mind that Hibernate does not affect normal Java semantics. How did we create a link between a Person
and an Event
in the unidirectional example? You add an instance of Event
to the collection of event references, of an instance of Person
. If you want to make this link bi-directional, you have to do the same on the other side by adding a Person
reference to the collection in an Event
. This process of "setting the link on both sides" is absolutely necessary with bi-directional links.
Many developers program defensively and create link management methods to correctly set both sides (for example, in Person
):
protected Set getEvents() {
return events;
}
protected void setEvents(Set events) {
this.events = events;
}
public void addToEvent(Event event) {
this.getEvents().add(event);
event.getParticipants().add(this);
}
public void removeFromEvent(Event event) {
this.getEvents().remove(event);
event.getParticipants().remove(this);
}
The get and set methods for the collection are now protected. This allows classes in the same package and subclasses to still access the methods, but prevents everybody else from altering the collections directly. Repeat the steps for the collection on the other side.
What about the inverse
mapping attribute? For you, and for Java, a bi-directional link is simply a matter of setting the references on both sides correctly. Hibernate, however, does not have enough information to correctly arrange SQL INSERT
and UPDATE
statements (to avoid constraint violations). Making one side of the association inverse
tells Hibernate to consider it a mirror of the other side. That is all that is necessary for Hibernate to resolve any issues that arise when transforming a directional navigation model to a SQL database schema. The rules are straightforward: all bi-directional associations need one side as inverse
. In a one-to-many association it has to be the many-side, and in many-to-many association you can select either side.
A Hibernate web application uses Session
and Transaction
almost like a standalone application. However, some common patterns are useful. You can now write an EventManagerServlet
. This servlet can list all events stored in the database, and it provides an HTML form to enter new events.
First we need create our basic processing servlet. Since our servlet only handles HTTP GET
requests, we will only implement the doGet()
method:
package org.hibernate.tutorial.web;
// Imports
public class EventManagerServlet extends HttpServlet {
protected void doGet(
HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {
SimpleDateFormat dateFormatter = new SimpleDateFormat( "dd.MM.yyyy" );
try {
// Begin unit of work
HibernateUtil.getSessionFactory().getCurrentSession().beginTransaction();
// Process request and render page...
// End unit of work
HibernateUtil.getSessionFactory().getCurrentSession().getTransaction().commit();
}
catch (Exception ex) {
HibernateUtil.getSessionFactory().getCurrentSession().getTransaction().rollback();
if ( ServletException.class.isInstance( ex ) ) {
throw ( ServletException ) ex;
}
else {
throw new ServletException( ex );
}
}
}
}
Save this servlet as src/main/java/org/hibernate/tutorial/web/EventManagerServlet.java
The pattern applied here is called session-per-request. When a request hits the servlet, a new Hibernate Session
is opened through the first call to getCurrentSession()
on the SessionFactory
. A database transaction is then started. All data access occurs inside a transaction irrespective of whether the data is read or written. Do not use the auto-commit mode in applications.
Verwenden Sie keine neue Hibernate Session
für jeden Datenbankvorgang. Verwenden Sie eine Hibernate Session
, die die gesamte Anfrage umfasst. Verwenden Sie getCurrentSession()
, damit diese automatisch an den aktuellen Java-Thread gebunden wird.
Next, the possible actions of the request are processed and the response HTML is rendered. We will get to that part soon.
Finally, the unit of work ends when processing and rendering are complete. If any problems occurred during processing or rendering, an exception will be thrown and the database transaction rolled back. This completes the session-per-request
pattern. Instead of the transaction demarcation code in every servlet, you could also write a servlet filter. See the Hibernate website and Wiki for more information about this pattern called Open Session in View. You will need it as soon as you consider rendering your view in JSP, not in a servlet.
Now you can implement the processing of the request and the rendering of the page.
// Write HTML header
PrintWriter out = response.getWriter();
out.println("<html><head><title>Event Manager</title></head><body>");
// Handle actions
if ( "store".equals(request.getParameter("action")) ) {
String eventTitle = request.getParameter("eventTitle");
String eventDate = request.getParameter("eventDate");
if ( "".equals(eventTitle) || "".equals(eventDate) ) {
out.println("<b><i>Please enter event title and date.</i></b>");
}
else {
createAndStoreEvent(eventTitle, dateFormatter.parse(eventDate));
out.println("<b><i>Added event.</i></b>");
}
}
// Print page
printEventForm(out);
listEvents(out, dateFormatter);
// Write HTML footer
out.println("</body></html>");
out.flush();
out.close();
This coding style, with a mix of Java and HTML, would not scale in a more complex application-keep in mind that we are only illustrating basic Hibernate concepts in this tutorial. The code prints an HTML header and a footer. Inside this page, an HTML form for event entry and a list of all events in the database are printed. The first method is trivial and only outputs HTML:
private void printEventForm(PrintWriter out) {
out.println("<h2>Add new event:</h2>");
out.println("<form>");
out.println("Title: <input name='eventTitle' length='50'/><br/>");
out.println("Date (e.g. 24.12.2009): <input name='eventDate' length='10'/><br/>");
out.println("<input type='submit' name='action' value='store'/>");
out.println("</form>");
}
Die listEvents()
Methode verwendet die an den aktuellen Thread gebundene Hibernate Session
bei der Ausführung einer Abfrage:
private void listEvents(PrintWriter out, SimpleDateFormat dateFormatter) {
List result = HibernateUtil.getSessionFactory()
.getCurrentSession().createCriteria(Event.class).list();
if (result.size() > 0) {
out.println("<h2>Events in database:</h2>");
out.println("<table border='1'>");
out.println("<tr>");
out.println("<th>Event title</th>");
out.println("<th>Event date</th>");
out.println("</tr>");
Iterator it = result.iterator();
while (it.hasNext()) {
Event event = (Event) it.next();
out.println("<tr>");
out.println("<td>" + event.getTitle() + "</td>");
out.println("<td>" + dateFormatter.format(event.getDate()) + "</td>");
out.println("</tr>");
}
out.println("</table>");
}
}
Zuletzt wird die store
-Vorgang zur createAndStoreEvent()
-Methode gesendet, die ebenfalls die Session
des aktuellen Threads verwendet:
protected void createAndStoreEvent(String title, Date theDate) {
Event theEvent = new Event();
theEvent.setTitle(title);
theEvent.setDate(theDate);
HibernateUtil.getSessionFactory()
.getCurrentSession().save(theEvent);
}
The servlet is now complete. A request to the servlet will be processed in a single Session
and Transaction
. As earlier in the standalone application, Hibernate can automatically bind these objects to the current thread of execution. This gives you the freedom to layer your code and access the SessionFactory
in any way you like. Usually you would use a more sophisticated design and move the data access code into data access objects (the DAO pattern). See the Hibernate Wiki for more examples.
To deploy this application for testing we must create a Web ARchive (WAR). First we must define the WAR descriptor as src/main/webapp/WEB-INF/web.xml
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.4"
xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">
<servlet>
<servlet-name>Event Manager</servlet-name>
<servlet-class>org.hibernate.tutorial.web.EventManagerServlet</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>Event Manager</servlet-name>
<url-pattern>/eventmanager</url-pattern>
</servlet-mapping>
</web-app>
To build and deploy call mvn package
in your project directory and copy the hibernate-tutorial.war
file into your Tomcat webapps
directory.
If you do not have Tomcat installed, download it from http://tomcat.apache.org/ and follow the installation instructions. Our application requires no changes to the standard Tomcat configuration.
Wenn das Deployment erfolgt ist und Tomcat ausgeführt wird, greifen Sie mittels http://localhost:8080/hibernate-tutorial/eventmanager
auf die Anwendung zu. Sehen Sie im Protokoll von Tomcat nach, ob Hibernate initialisiert wird, wenn die erste Anfrage bei Ihrem Servlet eingeht (das statische Initialisierungsprogramm in HibernateUtil
wird aufgerufen), und prüfen Sie die detaillierte Ausgabe nach Ausnahmen.
This tutorial covered the basics of writing a simple standalone Hibernate application and a small web application. More tutorials are available from the Hibernate website.
The diagram below provides a high-level view of the Hibernate architecture:
Unfortunately we cannot provide a detailed view of all possible runtime architectures. Hibernate is sufficiently flexible to be used in a number of ways in many, many architectures. We will, however, illustrate 2 specifically since they are extremes.
The "minimal" architecture has the application manage its own JDBC connections and provide those connections to Hibernate; additionally the application manages transactions for itself. This approach uses a minimal subset of Hibernate APIs.
The "comprehensive" architecture abstracts the application away from the underlying JDBC/JTA APIs and allows Hibernate to manage the details.
Here are quick discussions about some of the API objects depicted in the preceding diagrams (you will see them again in more detail in later chapters).
org.hibernate.SessionFactory
)A thread-safe, immutable cache of compiled mappings for a single database. A factory for org.hibernate.Session
instances. A client of org.hibernate.connection.ConnectionProvider
. Optionally maintains a second level cache
of data that is reusable between transactions at a process or cluster level.
org.hibernate.Session
)A single-threaded, short-lived object representing a conversation between the application and the persistent store. Wraps a JDBC java.sql.Connection
. Factory for org.hibernate.Transaction
. Maintains a first level cache
of persistent the application's persistent objects and collections; this cache is used when navigating the object graph or looking up objects by identifier.
Short-lived, single threaded objects containing persistent state and business function. These can be ordinary JavaBeans/POJOs. They are associated with exactly one org.hibernate.Session
. Once the org.hibernate.Session
is closed, they will be detached and free to use in any application layer (for example, directly as data transfer objects to and from presentation). Kapitel 11, Das Arbeiten mit Objekten discusses transient, persistent and detached object states.
Instances of persistent classes that are not currently associated with a org.hibernate.Session
. They may have been instantiated by the application and not yet persisted, or they may have been instantiated by a closed org.hibernate.Session
. Kapitel 11, Das Arbeiten mit Objekten discusses transient, persistent and detached object states.
org.hibernate.Transaction
)(Optional) A single-threaded, short-lived object used by the application to specify atomic units of work. It abstracts the application from the underlying JDBC, JTA or CORBA transaction. A org.hibernate.Session
might span several org.hibernate.Transaction
s in some cases. However, transaction demarcation, either using the underlying API or org.hibernate.Transaction
, is never optional.
org.hibernate.connection.ConnectionProvider
)(Optional) A factory for, and pool of, JDBC connections. It abstracts the application from underlying javax.sql.DataSource
or java.sql.DriverManager
. It is not exposed to application, but it can be extended and/or implemented by the developer.
org.hibernate.TransactionFactory
)(Optional) A factory for org.hibernate.Transaction
instances. It is not exposed to the application, but it can be extended and/or implemented by the developer.
Hibernate offers a range of optional extension interfaces you can implement to customize the behavior of your persistence layer. See the API documentation for details.
JMX is the J2EE standard for the management of Java components. Hibernate can be managed via a JMX standard service. AN MBean implementation is provided in the distribution: org.hibernate.jmx.HibernateService
.
Another feature available as a JMX service is runtime Hibernate statistics. See Abschnitt 3.4.6, „Die Hibernate Statistik“ for more information.
Most applications using Hibernate need some form of "contextual" session, where a given session is in effect throughout the scope of a given context. However, across applications the definition of what constitutes a context is typically different; different contexts define different scopes to the notion of current. Applications using Hibernate prior to version 3.0 tended to utilize either home-grown ThreadLocal
-based contextual sessions, helper classes such as HibernateUtil
, or utilized third-party frameworks, such as Spring or Pico, which provided proxy/interception-based contextual sessions.
Starting with version 3.0.1, Hibernate added the SessionFactory.getCurrentSession()
method. Initially, this assumed usage of JTA
transactions, where the JTA
transaction defined both the scope and context of a current session. Given the maturity of the numerous stand-alone JTA TransactionManager
implementations, most, if not all, applications should be using JTA
transaction management, whether or not they are deployed into a J2EE
container. Based on that, the JTA
-based contextual sessions are all you need to use.
However, as of version 3.1, the processing behind SessionFactory.getCurrentSession()
is now pluggable. To that end, a new extension interface, org.hibernate.context.CurrentSessionContext
, and a new configuration parameter, hibernate.current_session_context_class
, have been added to allow pluggability of the scope and context of defining current sessions.
See the Javadocs for the org.hibernate.context.CurrentSessionContext
interface for a detailed discussion of its contract. It defines a single method, currentSession()
, by which the implementation is responsible for tracking the current contextual session. Out-of-the-box, Hibernate comes with three implementations of this interface:
org.hibernate.context.JTASessionContext
: current sessions are tracked and scoped by a JTA
transaction. The processing here is exactly the same as in the older JTA-only approach. See the Javadocs for details.
org.hibernate.context.ThreadLocalSessionContext
:current sessions are tracked by thread of execution. See the Javadocs for details.
org.hibernate.context.ManagedSessionContext
: current sessions are tracked by thread of execution. However, you are responsible to bind and unbind a Session
instance with static methods on this class: it does not open, flush, or close a Session
.
The first two implementations provide a "one session - one database transaction" programming model. This is also known and used as session-per-request. The beginning and end of a Hibernate session is defined by the duration of a database transaction. If you use programmatic transaction demarcation in plain JSE without JTA, you are advised to use the Hibernate Transaction
API to hide the underlying transaction system from your code. If you use JTA, you can utilize the JTA interfaces to demarcate transactions. If you execute in an EJB container that supports CMT, transaction boundaries are defined declaratively and you do not need any transaction or session demarcation operations in your code. Refer to Kapitel 13, Transactions and Concurrency for more information and code examples.
The hibernate.current_session_context_class
configuration parameter defines which org.hibernate.context.CurrentSessionContext
implementation should be used. For backwards compatibility, if this configuration parameter is not set but a org.hibernate.transaction.TransactionManagerLookup
is configured, Hibernate will use the org.hibernate.context.JTASessionContext
. Typically, the value of this parameter would just name the implementation class to use. For the three out-of-the-box implementations, however, there are three corresponding short names: "jta", "thread", and "managed".
Hibernate is designed to operate in many different environments and, as such, there is a broad range of configuration parameters. Fortunately, most have sensible default values and Hibernate is distributed with an example hibernate.properties
file in etc/
that displays the various options. Simply put the example file in your classpath and customize it to suit your needs.
An instance of org.hibernate.cfg.Configuration
represents an entire set of mappings of an application's Java types to an SQL database. The org.hibernate.cfg.Configuration
is used to build an immutable org.hibernate.SessionFactory
. The mappings are compiled from various XML mapping files.
You can obtain a org.hibernate.cfg.Configuration
instance by instantiating it directly and specifying XML mapping documents. If the mapping files are in the classpath, use addResource()
. For example:
Configuration cfg = new Configuration()
.addResource("Item.hbm.xml")
.addResource("Bid.hbm.xml");
An alternative way is to specify the mapped class and allow Hibernate to find the mapping document for you:
Configuration cfg = new Configuration()
.addClass(org.hibernate.auction.Item.class)
.addClass(org.hibernate.auction.Bid.class);
Hibernate will then search for mapping files named /org/hibernate/auction/Item.hbm.xml
and /org/hibernate/auction/Bid.hbm.xml
in the classpath. This approach eliminates any hardcoded filenames.
A org.hibernate.cfg.Configuration
also allows you to specify configuration properties. For example:
Configuration cfg = new Configuration()
.addClass(org.hibernate.auction.Item.class)
.addClass(org.hibernate.auction.Bid.class)
.setProperty("hibernate.dialect", "org.hibernate.dialect.MySQLInnoDBDialect")
.setProperty("hibernate.connection.datasource", "java:comp/env/jdbc/test")
.setProperty("hibernate.order_updates", "true");
This is not the only way to pass configuration properties to Hibernate. Some alternative options include:
Pass an instance of java.util.Properties
to Configuration.setProperties()
.
Place a file named hibernate.properties
in a root directory of the classpath.
Stellen Sie die System
-Properties mittels java -Dproperty=value
ein.
Include <property>
elements in hibernate.cfg.xml
(this is discussed later).
If you want to get started quicklyhibernate.properties
is the easiest approach.
The org.hibernate.cfg.Configuration
is intended as a startup-time object that will be discarded once a SessionFactory
is created.
When all mappings have been parsed by the org.hibernate.cfg.Configuration
, the application must obtain a factory for org.hibernate.Session
instances. This factory is intended to be shared by all application threads:
SessionFactory sessions = cfg.buildSessionFactory();
Hibernate does allow your application to instantiate more than one org.hibernate.SessionFactory
. This is useful if you are using more than one database.
It is advisable to have the org.hibernate.SessionFactory
create and pool JDBC connections for you. If you take this approach, opening a org.hibernate.Session
is as simple as:
Session session = sessions.openSession(); // open a new Session
Once you start a task that requires access to the database, a JDBC connection will be obtained from the pool.
Before you can do this, you first need to pass some JDBC connection properties to Hibernate. All Hibernate property names and semantics are defined on the class org.hibernate.cfg.Environment
. The most important settings for JDBC connection configuration are outlined below.
Hibernate will obtain and pool connections using java.sql.DriverManager
if you set the following properties:
Tabelle 3.1. Hibernate JDBC-Properties
Property-Name | Zweck |
---|---|
hibernate.connection.driver_class | JDBC driver class |
hibernate.connection.url | JDBC URL |
hibernate.connection.username | Datenbankbenutzer |
hibernate.connection.password | Datenbankbenutzer-Passwort |
hibernate.connection.pool_size | maximum number of pooled connections |
Hibernate's own connection pooling algorithm is, however, quite rudimentary. It is intended to help you get started and is not intended for use in a production system, or even for performance testing. You should use a third party pool for best performance and stability. Just replace the hibernate.connection.pool_size property with connection pool specific settings. This will turn off Hibernate's internal pool. For example, you might like to use c3p0.
C3P0 is an open source JDBC connection pool distributed along with Hibernate in the lib
directory. Hibernate will use its org.hibernate.connection.C3P0ConnectionProvider
for connection pooling if you set hibernate.c3p0.* properties. If you would like to use Proxool, refer to the packaged hibernate.properties
and the Hibernate web site for more information.
The following is an example hibernate.properties
file for c3p0:
hibernate.connection.driver_class = org.postgresql.Driver hibernate.connection.url = jdbc:postgresql://localhost/mydatabase hibernate.connection.username = myuser hibernate.connection.password = secret hibernate.c3p0.min_size=5 hibernate.c3p0.max_size=20 hibernate.c3p0.timeout=1800 hibernate.c3p0.max_statements=50 hibernate.dialect = org.hibernate.dialect.PostgreSQLDialect
For use inside an application server, you should almost always configure Hibernate to obtain connections from an application server javax.sql.Datasource
registered in JNDI. You will need to set at least one of the following properties:
Tabelle 3.2. Properties der Hibernate Datenquelle ("Datasource")
Property-Name | Zweck |
---|---|
hibernate.connection.datasource | JNDI-Name der Datenquelle |
hibernate.jndi.url | URL des JNDI-Providers (optional) |
hibernate.jndi.class | Klasse der JNDI-InitialContextFactory (optional) |
hibernate.connection.username | Datenbankbenutzer (optional) |
hibernate.connection.password | Passwort des Datenbankbenutzers (optional) |
Here is an example hibernate.properties
file for an application server provided JNDI datasource:
hibernate.connection.datasource = java:/comp/env/jdbc/test hibernate.transaction.factory_class = \ org.hibernate.transaction.JTATransactionFactory hibernate.transaction.manager_lookup_class = \ org.hibernate.transaction.JBossTransactionManagerLookup hibernate.dialect = org.hibernate.dialect.PostgreSQLDialect
Von einer JNDI-Datenquelle erhaltene JDBC-Verbindungen nehmen automatisch an den vom Container verwalteten Transaktionen des Applikationsservers teil.
Arbitrary connection properties can be given by prepending "hibernate.connection
" to the connection property name. For example, you can specify a charSet connection property using hibernate.connection.charSet.
You can define your own plugin strategy for obtaining JDBC connections by implementing the interface org.hibernate.connection.ConnectionProvider
, and specifying your custom implementation via the hibernate.connection.provider_class property.
There are a number of other properties that control the behavior of Hibernate at runtime. All are optional and have reasonable default values.
Some of these properties are "system-level" only. System-level properties can be set only via java -Dproperty=value
or hibernate.properties
. They cannot be set by the other techniques described above.
Tabelle 3.3. Konfigurationseigenschaften von Hibernate
Property-Name | Zweck |
---|---|
hibernate.dialect | The classname of a Hibernate org.hibernate.dialect.Dialect which allows Hibernate to generate SQL optimized for a particular relational database. e.g. In most cases Hibernate will actually be able to choose the correct |
hibernate.show_sql | Schreiben Sie alle SQL-Anweisungen in die Konsole. Es handelt sich dabei um eine Alternative für die Einstellung der Protokollkategorie org.hibernate.SQL auf debug . e.g. |
hibernate.format_sql | SQL in Protokoll und Konsole lesbar ausgeben. e.g. |
hibernate.default_schema | Qualify unqualified table names with the given schema/tablespace in generated SQL. e.g. |
hibernate.default_catalog | Qualifies unqualified table names with the given catalog in generated SQL. e.g. |
hibernate.session_factory_name | The org.hibernate.SessionFactory will be automatically bound to this name in JNDI after it has been created. e.g. |
hibernate.max_fetch_depth | Sets a maximum "depth" for the outer join fetch tree for single-ended associations (one-to-one, many-to-one). A 0 disables default outer join fetching. e.g. recommended values between |
hibernate.default_batch_fetch_size | Sets a default size for Hibernate batch fetching of associations. e.g. recommended values |
hibernate.default_entity_mode | Sets a default mode for entity representation for all sessions opened from this SessionFactory
|
hibernate.order_updates | Forces Hibernate to order SQL updates by the primary key value of the items being updated. This will result in fewer transaction deadlocks in highly concurrent systems. e.g. |
hibernate.generate_statistics | Falls aktiviert, so sammelt Hibernate Statistiken, die bei der Feinabstimmung der Performance von Nutzen sind. e.g. |
hibernate.use_identifier_rollback | Falls aktiviert, so werden die generierten Bezeichner-Properties auf die Standardwerte zurückgesetzt, wenn Objekte gelöscht werden. e.g. |
hibernate.use_sql_comments | Falls eingeschaltet, generiert Hibernate Kommentare innerhalb der SQL, für eine vereinfachte Fehlersuche. Die Standardeinstellung lautet false . e.g. |
hibernate.id.new_generator_mappings | Setting is relevant when using @GeneratedValue . It indicates whether or not the new IdentifierGenerator implementations are used for javax.persistence.GenerationType.AUTO , javax.persistence.GenerationType.TABLE and javax.persistence.GenerationType.SEQUENCE . Default to false to keep backward compatibility. e.g. |
We recommend all new projects which make use of to use @GeneratedValue
to also set hibernate.id.new_generator_mappings=true
as the new generators are more efficient and closer to the JPA 2 specification semantic. However they are not backward compatible with existing databases (if a sequence or a table is used for id generation).
Tabelle 3.4. Hibernate JDBC- und Connection-Properties
Property-Name | Zweck |
---|---|
hibernate.jdbc.fetch_size | Ein Wert ungleich Null bestimmt die Anzahl der JDBC-Datensätze, den so genannten "Fetch Size" (ruft Statement.setFetchSize() auf). |
hibernate.jdbc.batch_size | Ein Wert von ungleich Null aktiviert die Verwendung von JDBC2-Stapelaktualisierungen (sog. "Batch Updates") durch Hibernate. e.g. recommended values between |
hibernate.jdbc.batch_versioned_data | Set this property to true if your JDBC driver returns correct row counts from executeBatch() . It is usually safe to turn this option on. Hibernate will then use batched DML for automatically versioned data. Defaults to false . e.g. |
hibernate.jdbc.factory_class | Select a custom org.hibernate.jdbc.Batcher . Most applications will not need this configuration property. e.g. |
hibernate.jdbc.use_scrollable_resultset | Enables use of JDBC2 scrollable resultsets by Hibernate. This property is only necessary when using user-supplied JDBC connections. Hibernate uses connection metadata otherwise. e.g. |
hibernate.jdbc.use_streams_for_binary | Use streams when writing/reading binary or serializable types to/from JDBC. *system-level property* e.g. |
hibernate.jdbc.use_get_generated_keys | Enables use of JDBC3 PreparedStatement.getGeneratedKeys() to retrieve natively generated keys after insert. Requires JDBC3+ driver and JRE1.4+, set to false if your driver has problems with the Hibernate identifier generators. By default, it tries to determine the driver capabilities using connection metadata. e.g. |
hibernate.connection.provider_class | The classname of a custom org.hibernate.connection.ConnectionProvider which provides JDBC connections to Hibernate. e.g. |
hibernate.connection.isolation | Sets the JDBC transaction isolation level. Check java.sql.Connection for meaningful values, but note that most databases do not support all isolation levels and some define additional, non-standard isolations. e.g. |
hibernate.connection.autocommit | Enables autocommit for JDBC pooled connections (it is not recommended). e.g. |
hibernate.connection.release_mode | Specifies when Hibernate should release JDBC connections. By default, a JDBC connection is held until the session is explicitly closed or disconnected. For an application server JTA datasource, use after_statement to aggressively release connections after every JDBC call. For a non-JTA connection, it often makes sense to release the connection at the end of each transaction, by using after_transaction . auto will choose after_statement for the JTA and CMT transaction strategies and after_transaction for the JDBC transaction strategy. e.g. This setting only affects |
hibernate.connection.<propertyName> | Pass the JDBC property <propertyName> to DriverManager.getConnection() . |
hibernate.jndi.<propertyName> | Pass the property <propertyName> to the JNDI InitialContextFactory . |
Tabelle 3.5. Hibernate Cache-Properties
Property-Name | Zweck |
---|---|
hibernate.cache.provider_class | Der Klassenname eines anwenderdefinierten CacheProvider . e.g. |
hibernate.cache.use_minimal_puts | Optimizes second-level cache operation to minimize writes, at the cost of more frequent reads. This setting is most useful for clustered caches and, in Hibernate3, is enabled by default for clustered cache implementations. e.g. |
hibernate.cache.use_query_cache | Enables the query cache. Individual queries still have to be set cachable. e.g. |
hibernate.cache.use_second_level_cache | Can be used to completely disable the second level cache, which is enabled by default for classes which specify a <cache> mapping. e.g. |
hibernate.cache.query_cache_factory | Der Klassenname eines anwenderdefinierten QueryCache -Interface, Standard ist das eingebaute StandardQueryCache . e.g. |
hibernate.cache.region_prefix | Ein für Cache-Bereiche der zweiten Ebene zu verwendender Präfix. e.g. |
hibernate.cache.use_structured_entries | Bringt Hibernate dazu, Daten im Cachespeicher der zweiten Ebene in einer für den Benutzer freundlicheren Art zu speichern. e.g. |
hibernate.cache.default_cache_concurrency_strategy | Setting used to give the name of the default org.hibernate.annotations.CacheConcurrencyStrategy to use when either @Cacheable or @Cache is used. @Cache(strategy="..") is used to override this default. |
Tabelle 3.6. Hibernate Transaktions-Properties
Property-Name | Zweck |
---|---|
hibernate.transaction.factory_class | Der Klassenname einer TransactionFactory , der mit der Hibernate Transaction API (Anwenderprogrammierschnittstelle) zu verwenden ist (standardmäßig JDBCTransactionFactory ). e.g. |
jta.UserTransaction | Ein von der JTATransactionFactory zum Erhalt der JTA UserTransaction vom Applikationsserver verwendeter JNDI-Name. e.g. |
hibernate.transaction.manager_lookup_class | The classname of a TransactionManagerLookup . It is required when JVM-level caching is enabled or when using hilo generator in a JTA environment. e.g. |
hibernate.transaction.flush_before_completion | If enabled, the session will be automatically flushed during the before completion phase of the transaction. Built-in and automatic session context management is preferred, see Abschnitt 2.3, „Contextual sessions“. e.g. |
hibernate.transaction.auto_close_session | If enabled, the session will be automatically closed during the after completion phase of the transaction. Built-in and automatic session context management is preferred, see Abschnitt 2.3, „Contextual sessions“. e.g. |
Tabelle 3.7. Verschiedene Properties
Property-Name | Zweck |
---|---|
hibernate.current_session_context_class | Supply a custom strategy for the scoping of the "current" Session . See Abschnitt 2.3, „Contextual sessions“ for more information about the built-in strategies. e.g. |
hibernate.query.factory_class | Wählt die Implemetierung des HQL-Parsers (Analysealgorithmus). e.g. |
hibernate.query.substitutions | Is used to map from tokens in Hibernate queries to SQL tokens (tokens might be function or literal names, for example). e.g. |
hibernate.hbm2ddl.auto | Automatically validates or exports schema DDL to the database when the SessionFactory is created. With create-drop , the database schema will be dropped when the SessionFactory is closed explicitly. e.g. |
hibernate.hbm2ddl.import_files | Comma-separated names of the optional files containing SQL DML statements executed during the File order matters, the statements of a give file are executed before the statements of the following files. These statements are only executed if the schema is created ie if e.g. |
hibernate.bytecode.use_reflection_optimizer | Enables the use of bytecode manipulation instead of runtime reflection. This is a System-level property and cannot be set in e.g. |
hibernate.bytecode.provider | Both javassist or cglib can be used as byte manipulation engines; the default is e.g. |
Always set the hibernate.dialect
property to the correct org.hibernate.dialect.Dialect
subclass for your database. If you specify a dialect, Hibernate will use sensible defaults for some of the other properties listed above. This means that you will not have to specify them manually.
Tabelle 3.8. Hibernate SQL-Dialekte (hibernate.dialect
)
RDBMS | Dialekt |
---|---|
DB2 | org.hibernate.dialect.DB2Dialect |
DB2 AS/400 | org.hibernate.dialect.DB2400Dialect |
DB2 OS390 | org.hibernate.dialect.DB2390Dialect |
PostgreSQL | org.hibernate.dialect.PostgreSQLDialect |
MySQL5 | org.hibernate.dialect.MySQL5Dialect |
MySQL5 with InnoDB | org.hibernate.dialect.MySQL5InnoDBDialect |
MySQL mit MyISAM | org.hibernate.dialect.MySQLMyISAMDialect |
Oracle (alle Versionen) | org.hibernate.dialect.OracleDialect |
Oracle 9i | org.hibernate.dialect.Oracle9iDialect |
Oracle 10g | org.hibernate.dialect.Oracle10gDialect |
Oracle 11g | org.hibernate.dialect.Oracle10gDialect |
Sybase | org.hibernate.dialect.SybaseASE15Dialect |
Sybase Anywhere | org.hibernate.dialect.SybaseAnywhereDialect |
Microsoft SQL Server 2000 | org.hibernate.dialect.SQLServerDialect |
Microsoft SQL Server 2005 | org.hibernate.dialect.SQLServer2005Dialect |
Microsoft SQL Server 2008 | org.hibernate.dialect.SQLServer2008Dialect |
SAP DB | org.hibernate.dialect.SAPDBDialect |
Informix | org.hibernate.dialect.InformixDialect |
HypersonicSQL | org.hibernate.dialect.HSQLDialect |
H2 Database | org.hibernate.dialect.H2Dialect |
Ingres | org.hibernate.dialect.IngresDialect |
Progress | org.hibernate.dialect.ProgressDialect |
Mckoi SQL | org.hibernate.dialect.MckoiDialect |
Interbase | org.hibernate.dialect.InterbaseDialect |
Pointbase | org.hibernate.dialect.PointbaseDialect |
FrontBase | org.hibernate.dialect.FrontbaseDialect |
Firebird | org.hibernate.dialect.FirebirdDialect |
If your database supports ANSI, Oracle or Sybase style outer joins, outer join fetching will often increase performance by limiting the number of round trips to and from the database. This is, however, at the cost of possibly more work performed by the database itself. Outer join fetching allows a whole graph of objects connected by many-to-one, one-to-many, many-to-many and one-to-one associations to be retrieved in a single SQL SELECT
.
Outer join fetching can be disabled globally by setting the property hibernate.max_fetch_depth
to 0
. A setting of 1
or higher enables outer join fetching for one-to-one and many-to-one associations that have been mapped with fetch="join"
.
See Abschnitt 21.1, „Abrufstrategien“ for more information.
Oracle limits the size of byte
arrays that can be passed to and/or from its JDBC driver. If you wish to use large instances of binary
or serializable
type, you should enable hibernate.jdbc.use_streams_for_binary
. This is a system-level setting only.
The properties prefixed by hibernate.cache
allow you to use a process or cluster scoped second-level cache system with Hibernate. See the Abschnitt 21.2, „Das Cache der zweiten Ebene“ for more information.
You can define new Hibernate query tokens using hibernate.query.substitutions
. For example:
hibernate.query.substitutions true=1, false=0
This would cause the tokens true
and false
to be translated to integer literals in the generated SQL.
hibernate.query.substitutions toLowercase=LOWER
This would allow you to rename the SQL LOWER
function.
If you enable hibernate.generate_statistics
, Hibernate exposes a number of metrics that are useful when tuning a running system via SessionFactory.getStatistics()
. Hibernate can even be configured to expose these statistics via JMX. Read the Javadoc of the interfaces in org.hibernate.stats
for more information.
Hibernate utilizes Simple Logging Facade for Java (SLF4J) in order to log various system events. SLF4J can direct your logging output to several logging frameworks (NOP, Simple, log4j version 1.2, JDK 1.4 logging, JCL or logback) depending on your chosen binding. In order to setup logging you will need slf4j-api.jar
in your classpath together with the jar file for your preferred binding - slf4j-log4j12.jar
in the case of Log4J. See the SLF4J documentation for more detail. To use Log4j you will also need to place a log4j.properties
file in your classpath. An example properties file is distributed with Hibernate in the src/
directory.
It is recommended that you familiarize yourself with Hibernate's log messages. A lot of work has been put into making the Hibernate log as detailed as possible, without making it unreadable. It is an essential troubleshooting device. The most interesting log categories are the following:
Tabelle 3.9. Die Protokollkategorien von Hibernate
Kategorie | Funktion |
---|---|
org.hibernate.SQL | Protokollierung aller SQL DML-Anweisungen bei deren Ausführung |
org.hibernate.type | Protokollierung aller JDBC-Parameter |
org.hibernate.tool.hbm2ddl | Protokollierung aller SQL DDL-Anweisungen bei deren Ausführung |
org.hibernate.pretty | Protokollierung des Status aller Entities (max. 20 Entities) die zum Räumungzeitpunkt mit der Session assoziiert werden. |
org.hibernate.cache | Protokollierung aller Cache-Vorgänge der zweiten Ebene |
org.hibernate.transaction | Protokollierung von transaktionsbezogenen Vorgänge |
org.hibernate.jdbc | Protokollierung sämtlicher JDBC-Ressourcen-Erfassungen |
org.hibernate.hql.ast.AST | Protokollierung von HQL und SQL ASTs während Abfragen-Parsing |
org.hibernate.secure | Protokollierung aller JAAS-Authentifizierungsanfragen |
org.hibernate | Log everything. This is a lot of information but it is useful for troubleshooting |
Bei der Entwicklung von Anwendungen mit Hibernate sollten Sie fast ausschließlich mit der aktivierten debug
-Einstellung für die Kategorie org.hibernate.SQL
arbeiten oder alternativ mit der aktivierten Property hibernate.show_sql
.
Das Interface org.hibernate.cfg.NamingStrategy
ermöglicht es Ihnen einen Namensgebungsstandard (sog. "naming standard") für Datenbankobjekte und Schema-Elemente zu bestimmen.
You can provide rules for automatically generating database identifiers from Java identifiers or for processing "logical" column and table names given in the mapping file into "physical" table and column names. This feature helps reduce the verbosity of the mapping document, eliminating repetitive noise (TBL_
prefixes, for example). The default strategy used by Hibernate is quite minimal.
You can specify a different strategy by calling Configuration.setNamingStrategy()
before adding mappings:
SessionFactory sf = new Configuration()
.setNamingStrategy(ImprovedNamingStrategy.INSTANCE)
.addFile("Item.hbm.xml")
.addFile("Bid.hbm.xml")
.buildSessionFactory();
Bei org.hibernate.cfg.ImprovedNamingStrategy
handelt es sich um eine eingebaute Strategie, die beim Startpunkt einiger Anwendungen von Nutzen sein kann.
You can configure the persister implementation used to persist your entities and collections:
by default, Hibernate uses persisters that make sense in a relational model and follow Java Persistence's specification
you can define a PersisterClassProvider
implementation that provides the persister class used of a given entity or collection
finally, you can override them on a per entity and collection basis in the mapping using @Persister
or its XML equivalent
The latter in the list the higher in priority.
You can pass the PersisterClassProvider
instance to the Configuration
object.
SessionFactory sf = new Configuration()
.setPersisterClassProvider(customPersisterClassProvider)
.addAnnotatedClass(Order.class)
.buildSessionFactory();
The persister class provider methods, when returning a non null persister class, override the default Hibernate persisters. The entity name or the collection role are passed to the methods. It is a nice way to centralize the overriding logic of the persisters instead of spreading them on each entity or collection mapping.
Eine andere Konfigurationsmöglichkeit ist die Spezifizierung einer vollständigen Konfigurationsdatei mit dem Namen hibernate.cfg.xml
. Diese Datei kann als Ersatz für die hibernate.properties
-Datei dienen oder - falls beide vorhanden sind - Properties außer Kraft setzen.
The XML configuration file is by default expected to be in the root of your CLASSPATH
. Here is an example:
<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-configuration PUBLIC
"-//Hibernate/Hibernate Configuration DTD//EN"
"http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd">
<hibernate-configuration>
<!-- a SessionFactory instance listed as /jndi/name -->
<session-factory
name="java:hibernate/SessionFactory">
<!-- properties -->
<property name="connection.datasource">java:/comp/env/jdbc/MyDB</property>
<property name="dialect">org.hibernate.dialect.MySQLDialect</property>
<property name="show_sql">false</property>
<property name="transaction.factory_class">
org.hibernate.transaction.JTATransactionFactory
</property>
<property name="jta.UserTransaction">java:comp/UserTransaction</property>
<!-- mapping files -->
<mapping resource="org/hibernate/auction/Item.hbm.xml"/>
<mapping resource="org/hibernate/auction/Bid.hbm.xml"/>
<!-- cache settings -->
<class-cache class="org.hibernate.auction.Item" usage="read-write"/>
<class-cache class="org.hibernate.auction.Bid" usage="read-only"/>
<collection-cache collection="org.hibernate.auction.Item.bids" usage="read-write"/>
</session-factory>
</hibernate-configuration>
The advantage of this approach is the externalization of the mapping file names to configuration. The hibernate.cfg.xml
is also more convenient once you have to tune the Hibernate cache. It is your choice to use either hibernate.properties
or hibernate.cfg.xml
. Both are equivalent, except for the above mentioned benefits of using the XML syntax.
With the XML configuration, starting Hibernate is then as simple as:
SessionFactory sf = new Configuration().configure().buildSessionFactory();
You can select a different XML configuration file using:
SessionFactory sf = new Configuration()
.configure("catdb.cfg.xml")
.buildSessionFactory();
Hibernate besitzt die folgenden Intergrationspunkte für die J2EE Infrastruktur:
Container-managed datasources: Hibernate can use JDBC connections managed by the container and provided through JNDI. Usually, a JTA compatible TransactionManager
and a ResourceManager
take care of transaction management (CMT), especially distributed transaction handling across several datasources. You can also demarcate transaction boundaries programmatically (BMT), or you might want to use the optional Hibernate Transaction
API for this to keep your code portable.
Automatisches JNDI-Binding: Hibernate kann seine SessionFactory
nach dem Startup an JNDI binden.
JTA Session binding: the Hibernate Session
can be automatically bound to the scope of JTA transactions. Simply lookup the SessionFactory
from JNDI and get the current Session
. Let Hibernate manage flushing and closing the Session
when your JTA transaction completes. Transaction demarcation is either declarative (CMT) or programmatic (BMT/UserTransaction).
JMX deployment: if you have a JMX capable application server (e.g. JBoss AS), you can choose to deploy Hibernate as a managed MBean. This saves you the one line startup code to build your SessionFactory
from a Configuration
. The container will startup your HibernateService
and also take care of service dependencies (datasource has to be available before Hibernate starts, etc).
Je nach Ihrer Umgebung müssen Sie möglicherweise die Konfigurationsoption hibernate.connection.aggressive_release
auf "true" setzen, falls Ihr Server "Connection Containment"-Ausnahmen (d.h. Verbindungseinschränkungen) anzeigt.
The Hibernate Session
API is independent of any transaction demarcation system in your architecture. If you let Hibernate use JDBC directly through a connection pool, you can begin and end your transactions by calling the JDBC API. If you run in a J2EE application server, you might want to use bean-managed transactions and call the JTA API and UserTransaction
when needed.
Um Ihren Code zwischen diesen beiden (und anderen) Umgebungen übertragbar zu halten, empfehlen wir das optionale Hibernate Transaction
-API, welches das zu Grunde liegende System wrappt und verbirgt. Sie müssen eine Factory-Klasse für Transaction
-Instanzen bestimmen, indem Sie die Hibernate Konfigurationseigenschaft hibernate.transaction.factory_class
einstellen.
There are three standard, or built-in, choices:
org.hibernate.transaction.JDBCTransactionFactory
delegiert an die Datenbank (JDBC) Transaktionen (default)
org.hibernate.transaction.JTATransactionFactory
delegates to container-managed transactions if an existing transaction is underway in this context (for example, EJB session bean method). Otherwise, a new transaction is started and bean-managed transactions are used.
org.hibernate.transaction.CMTTransactionFactory
delegiert an containerverwaltete JTA-Transaktionen
You can also define your own transaction strategies (for a CORBA transaction service, for example).
Some features in Hibernate (i.e., the second level cache, Contextual Sessions with JTA, etc.) require access to the JTA TransactionManager
in a managed environment. In an application server, since J2EE does not standardize a single mechanism, you have to specify how Hibernate should obtain a reference to the TransactionManager
:
Tabelle 3.10. JTA-TransactionManagers
Transaction-Factory | Applikationsserver |
---|---|
org.hibernate.transaction.JBossTransactionManagerLookup | JBoss AS |
org.hibernate.transaction.WeblogicTransactionManagerLookup | Weblogic |
org.hibernate.transaction.WebSphereTransactionManagerLookup | WebSphere |
org.hibernate.transaction.WebSphereExtendedJTATransactionLookup | WebSphere 6 |
org.hibernate.transaction.OrionTransactionManagerLookup | Orion |
org.hibernate.transaction.ResinTransactionManagerLookup | Resin |
org.hibernate.transaction.JOTMTransactionManagerLookup | JOTM |
org.hibernate.transaction.JOnASTransactionManagerLookup | JOnAS |
org.hibernate.transaction.JRun4TransactionManagerLookup | JRun4 |
org.hibernate.transaction.BESTransactionManagerLookup | Borland ES |
org.hibernate.transaction.JBossTSStandaloneTransactionManagerLookup | JBoss TS used standalone (ie. outside JBoss AS and a JNDI environment generally). Known to work for org.jboss.jbossts:jbossjta:4.11.0.Final |
A JNDI-bound Hibernate SessionFactory
can simplify the lookup function of the factory and create new Session
s. This is not, however, related to a JNDI bound Datasource
; both simply use the same registry.
If you wish to have the SessionFactory
bound to a JNDI namespace, specify a name (e.g. java:hibernate/SessionFactory
) using the property hibernate.session_factory_name
. If this property is omitted, the SessionFactory
will not be bound to JNDI. This is especially useful in environments with a read-only JNDI default implementation (in Tomcat, for example).
Beim Binden der SessionFactory
an JNDI, wird Hibernate die Werte von hibernate.jndi.url
, hibernate.jndi.class
verwenden, um einen Anfangskontext zu initiieren. Werden diese nicht festgelegt, so wird der Standard InitialContext
verwendet.
Hibernate will automatically place the SessionFactory
in JNDI after you call cfg.buildSessionFactory()
. This means you will have this call in some startup code, or utility class in your application, unless you use JMX deployment with the HibernateService
(this is discussed later in greater detail).
If you use a JNDI SessionFactory
, an EJB or any other class, you can obtain the SessionFactory
using a JNDI lookup.
It is recommended that you bind the SessionFactory
to JNDI in a managed environment and use a static
singleton otherwise. To shield your application code from these details, we also recommend to hide the actual lookup code for a SessionFactory
in a helper class, such as HibernateUtil.getSessionFactory()
. Note that such a class is also a convenient way to startup Hibernate—see chapter 1.
The easiest way to handle Sessions
and transactions is Hibernate's automatic "current" Session
management. For a discussion of contextual sessions see Abschnitt 2.3, „Contextual sessions“. Using the "jta"
session context, if there is no Hibernate Session
associated with the current JTA transaction, one will be started and associated with that JTA transaction the first time you call sessionFactory.getCurrentSession()
. The Session
s retrieved via getCurrentSession()
in the "jta"
context are set to automatically flush before the transaction completes, close after the transaction completes, and aggressively release JDBC connections after each statement. This allows the Session
s to be managed by the life cycle of the JTA transaction to which it is associated, keeping user code clean of such management concerns. Your code can either use JTA programmatically through UserTransaction
, or (recommended for portable code) use the Hibernate Transaction
API to set transaction boundaries. If you run in an EJB container, declarative transaction demarcation with CMT is preferred.
The line cfg.buildSessionFactory()
still has to be executed somewhere to get a SessionFactory
into JNDI. You can do this either in a static
initializer block, like the one in HibernateUtil
, or you can deploy Hibernate as a managed service.
Hibernate is distributed with org.hibernate.jmx.HibernateService
for deployment on an application server with JMX capabilities, such as JBoss AS. The actual deployment and configuration is vendor-specific. Here is an example jboss-service.xml
for JBoss 4.0.x:
<?xml version="1.0"?>
<server>
<mbean code="org.hibernate.jmx.HibernateService"
name="jboss.jca:service=HibernateFactory,name=HibernateFactory">
<!-- Required services -->
<depends>jboss.jca:service=RARDeployer</depends>
<depends>jboss.jca:service=LocalTxCM,name=HsqlDS</depends>
<!-- Bind the Hibernate service to JNDI -->
<attribute name="JndiName">java:/hibernate/SessionFactory</attribute>
<!-- Datasource settings -->
<attribute name="Datasource">java:HsqlDS</attribute>
<attribute name="Dialect">org.hibernate.dialect.HSQLDialect</attribute>
<!-- Transaction integration -->
<attribute name="TransactionStrategy">
org.hibernate.transaction.JTATransactionFactory</attribute>
<attribute name="TransactionManagerLookupStrategy">
org.hibernate.transaction.JBossTransactionManagerLookup</attribute>
<attribute name="FlushBeforeCompletionEnabled">true</attribute>
<attribute name="AutoCloseSessionEnabled">true</attribute>
<!-- Fetching options -->
<attribute name="MaximumFetchDepth">5</attribute>
<!-- Second-level caching -->
<attribute name="SecondLevelCacheEnabled">true</attribute>
<attribute name="CacheProviderClass">org.hibernate.cache.EhCacheProvider</attribute>
<attribute name="QueryCacheEnabled">true</attribute>
<!-- Logging -->
<attribute name="ShowSqlEnabled">true</attribute>
<!-- Mapping files -->
<attribute name="MapResources">auction/Item.hbm.xml,auction/Category.hbm.xml</attribute>
</mbean>
</server>
This file is deployed in a directory called META-INF
and packaged in a JAR file with the extension .sar
(service archive). You also need to package Hibernate, its required third-party libraries, your compiled persistent classes, as well as your mapping files in the same archive. Your enterprise beans (usually session beans) can be kept in their own JAR file, but you can include this EJB JAR file in the main service archive to get a single (hot-)deployable unit. Consult the JBoss AS documentation for more information about JMX service and EJB deployment.
Persistent classes are classes in an application that implement the entities of the business problem (e.g. Customer and Order in an E-commerce application). The term "persistent" here means that the classes are able to be persisted, not that they are in the persistent state (see Abschnitt 11.1, „Statusarten von Hibernate Objekten“ for discussion).
Hibernate works best if these classes follow some simple rules, also known as the Plain Old Java Object (POJO) programming model. However, none of these rules are hard requirements. Indeed, Hibernate assumes very little about the nature of your persistent objects. You can express a domain model in other ways (using trees of java.util.Map
instances, for example).
Beispiel 4.1. Simple POJO representing a cat
package eg;
import java.util.Set;
import java.util.Date;
public class Cat {
private Long id; // identifier
private Date birthdate;
private Color color;
private char sex;
private float weight;
private int litterId;
private Cat mother;
private Set kittens = new HashSet();
private void setId(Long id) {
this.id=id;
}
public Long getId() {
return id;
}
void setBirthdate(Date date) {
birthdate = date;
}
public Date getBirthdate() {
return birthdate;
}
void setWeight(float weight) {
this.weight = weight;
}
public float getWeight() {
return weight;
}
public Color getColor() {
return color;
}
void setColor(Color color) {
this.color = color;
}
void setSex(char sex) {
this.sex=sex;
}
public char getSex() {
return sex;
}
void setLitterId(int id) {
this.litterId = id;
}
public int getLitterId() {
return litterId;
}
void setMother(Cat mother) {
this.mother = mother;
}
public Cat getMother() {
return mother;
}
void setKittens(Set kittens) {
this.kittens = kittens;
}
public Set getKittens() {
return kittens;
}
// addKitten not needed by Hibernate
public void addKitten(Cat kitten) {
kitten.setMother(this);
kitten.setLitterId( kittens.size() );
kittens.add(kitten);
}
}
The four main rules of persistent classes are explored in more detail in the following sections.
Cat
has a no-argument constructor. All persistent classes must have a default constructor (which can be non-public) so that Hibernate can instantiate them using
. It is recommended that this constructor be defined with at least package visibility in order for runtime proxy generation to work properly. java.lang.reflect.Constructor
.newInstance()
Historically this was considered option. While still not (yet) enforced, this should be considered a deprecated feature as it will be completely required to provide a identifier property in an upcoming release.
Cat
has a property named id
. This property maps to the primary key column(s) of the underlying database table. The type of the identifier property can be any "basic" type (see ???). See Abschnitt 9.4, „Komponenten als zusammengesetzte Bezeichner“ for information on mapping composite (multi-column) identifiers.
Identifiers do not necessarily need to identify column(s) in the database physically defined as a primary key. They should just identify columns that can be used to uniquely identify rows in the underlying table.
We recommend that you declare consistently-named identifier properties on persistent classes and that you use a nullable (i.e., non-primitive) type.
A central feature of Hibernate, proxies (lazy loading), depends upon the persistent class being either non-final, or the implementation of an interface that declares all public methods. You can persist final
classes that do not implement an interface with Hibernate; you will not, however, be able to use proxies for lazy association fetching which will ultimately limit your options for performance tuning. To persist a final
class which does not implement a "full" interface you must disable proxy generation. See Beispiel 4.2, „Disabling proxies in hbm.xml“ and Beispiel 4.3, „Disabling proxies in annotations“.
If the final
class does implement a proper interface, you could alternatively tell Hibernate to use the interface instead when generating the proxies. See Beispiel 4.4, „Proxying an interface in hbm.xml“ and Beispiel 4.5, „Proxying an interface in annotations“.
Beispiel 4.5. Proxying an interface in annotations
@Entity @Proxy(proxyClass=ICat.class) public class Cat implements ICat { ... }
You should also avoid declaring public final
methods as this will again limit the ability to generate proxies from this class. If you want to use a class with public final
methods, you must explicitly disable proxying. Again, see Beispiel 4.2, „Disabling proxies in hbm.xml“ and Beispiel 4.3, „Disabling proxies in annotations“.
Cat
declares accessor methods for all its persistent fields. Many other ORM tools directly persist instance variables. It is better to provide an indirection between the relational schema and internal data structures of the class. By default, Hibernate persists JavaBeans style properties and recognizes method names of the form getFoo
, isFoo
and setFoo
. If required, you can switch to direct field access for particular properties.
Properties need not be declared public. Hibernate can persist a property declared with package
, protected
or private
visibility as well.
A subclass must also observe the first and second rules. It inherits its identifier property from the superclass, Cat
. For example:
package eg;
public class DomesticCat extends Cat {
private String name;
public String getName() {
return name;
}
protected void setName(String name) {
this.name=name;
}
}
You have to override the equals()
and hashCode()
methods if you:
intend to put instances of persistent classes in a Set
(the recommended way to represent many-valued associations); and
planen, den Wiederanbindung abgesetzter Instanzen zu verwenden
Hibernate guarantees equivalence of persistent identity (database row) and Java identity only inside a particular session scope. When you mix instances retrieved in different sessions, you must implement equals()
and hashCode()
if you wish to have meaningful semantics for Set
s.
The most obvious way is to implement equals()
/hashCode()
by comparing the identifier value of both objects. If the value is the same, both must be the same database row, because they are equal. If both are added to a Set
, you will only have one element in the Set
). Unfortunately, you cannot use that approach with generated identifiers. Hibernate will only assign identifier values to objects that are persistent; a newly created instance will not have any identifier value. Furthermore, if an instance is unsaved and currently in a Set
, saving it will assign an identifier value to the object. If equals()
and hashCode()
are based on the identifier value, the hash code would change, breaking the contract of the Set
. See the Hibernate website for a full discussion of this problem. This is not a Hibernate issue, but normal Java semantics of object identity and equality.
It is recommended that you implement equals()
and hashCode()
using Business key equality. Business key equality means that the equals()
method compares only the properties that form the business key. It is a key that would identify our instance in the real world (a natural candidate key):
public class Cat {
...
public boolean equals(Object other) {
if (this == other) return true;
if ( !(other instanceof Cat) ) return false;
final Cat cat = (Cat) other;
if ( !cat.getLitterId().equals( getLitterId() ) ) return false;
if ( !cat.getMother().equals( getMother() ) ) return false;
return true;
}
public int hashCode() {
int result;
result = getMother().hashCode();
result = 29 * result + getLitterId();
return result;
}
}
A business key does not have to be as solid as a database primary key candidate (see Abschnitt 13.1.3, „Die Berücksichtigung der Objektidentität“). Immutable or unique properties are usually good candidates for a business key.
The following features are currently considered experimental and may change in the near future.
Persistent entities do not necessarily have to be represented as POJO classes or as JavaBean objects at runtime. Hibernate also supports dynamic models (using Map
s of Map
s at runtime) and the representation of entities as DOM4J trees. With this approach, you do not write persistent classes, only mapping files.
By default, Hibernate works in normal POJO mode. You can set a default entity representation mode for a particular SessionFactory
using the default_entity_mode
configuration option (see Tabelle 3.3, „Konfigurationseigenschaften von Hibernate“).
The following examples demonstrate the representation using Map
s. First, in the mapping file an entity-name
has to be declared instead of, or in addition to, a class name:
<hibernate-mapping>
<class entity-name="Customer">
<id name="id"
type="long"
column="ID">
<generator class="sequence"/>
</id>
<property name="name"
column="NAME"
type="string"/>
<property name="address"
column="ADDRESS"
type="string"/>
<many-to-one name="organization"
column="ORGANIZATION_ID"
class="Organization"/>
<bag name="orders"
inverse="true"
lazy="false"
cascade="all">
<key column="CUSTOMER_ID"/>
<one-to-many class="Order"/>
</bag>
</class>
</hibernate-mapping>
Even though associations are declared using target class names, the target type of associations can also be a dynamic entity instead of a POJO.
After setting the default entity mode to dynamic-map
for the SessionFactory
, you can, at runtime, work with Map
s of Map
s:
Session s = openSession();
Transaction tx = s.beginTransaction();
// Create a customer
Map david = new HashMap();
david.put("name", "David");
// Create an organization
Map foobar = new HashMap();
foobar.put("name", "Foobar Inc.");
// Link both
david.put("organization", foobar);
// Save both
s.save("Customer", david);
s.save("Organization", foobar);
tx.commit();
s.close();
One of the main advantages of dynamic mapping is quick turnaround time for prototyping, without the need for entity class implementation. However, you lose compile-time type checking and will likely deal with many exceptions at runtime. As a result of the Hibernate mapping, the database schema can easily be normalized and sound, allowing to add a proper domain model implementation on top later on.
Die Modi für die Entity Repräsentation können auch auf per Session
-Basis eingestellt werden:
Session dynamicSession = pojoSession.getSession(EntityMode.MAP);
// Create a customer
Map david = new HashMap();
david.put("name", "David");
dynamicSession.save("Customer", david);
...
dynamicSession.flush();
dynamicSession.close()
...
// Continue on pojoSession
Please note that the call to getSession()
using an EntityMode
is on the Session
API, not the SessionFactory
. That way, the new Session
shares the underlying JDBC connection, transaction, and other context information. This means you do not have to call flush()
and close()
on the secondary Session
, and also leave the transaction and connection handling to the primary unit of work.
More information about the XML representation capabilities can be found in Kapitel 20, XML-Mapping.
org.hibernate.tuple.Tuplizer
and its sub-interfaces are responsible for managing a particular representation of a piece of data given that representation's org.hibernate.EntityMode
. If a given piece of data is thought of as a data structure, then a tuplizer is the thing that knows how to create such a data structure, how to extract values from such a data structure and how to inject values into such a data structure. For example, for the POJO entity mode, the corresponding tuplizer knows how create the POJO through its constructor. It also knows how to access the POJO properties using the defined property accessors.
There are two (high-level) types of Tuplizers:
org.hibernate.tuple.entity.EntityTuplizer
which is responsible for managing the above mentioned contracts in regards to entities
org.hibernate.tuple.component.ComponentTuplizer
which does the same for components
Users can also plug in their own tuplizers. Perhaps you require that java.util.Map
implementation other than java.util.HashMap
be used while in the dynamic-map entity-mode. Or perhaps you need to define a different proxy generation strategy than the one used by default. Both would be achieved by defining a custom tuplizer implementation. Tuplizer definitions are attached to the entity or component mapping they are meant to manage. Going back to the example of our Customer
entity, Beispiel 4.6, „Specify custom tuplizers in annotations“ shows how to specify a custom org.hibernate.tuple.entity.EntityTuplizer
using annotations while Beispiel 4.7, „Specify custom tuplizers in hbm.xml“ shows how to do the same in hbm.xml
Beispiel 4.6. Specify custom tuplizers in annotations
@Entity
@Tuplizer(impl = DynamicEntityTuplizer.class)
public interface Cuisine {
@Id
@GeneratedValue
public Long getId();
public void setId(Long id);
public String getName();
public void setName(String name);
@Tuplizer(impl = DynamicComponentTuplizer.class)
public Country getCountry();
public void setCountry(Country country);
}
Beispiel 4.7. Specify custom tuplizers in hbm.xml
<hibernate-mapping>
<class entity-name="Customer">
<!--
Override the dynamic-map entity-mode
tuplizer for the customer entity
-->
<tuplizer entity-mode="dynamic-map"
class="CustomMapTuplizerImpl"/>
<id name="id" type="long" column="ID">
<generator class="sequence"/>
</id>
<!-- other properties -->
...
</class>
</hibernate-mapping>
org.hibernate.EntityNameResolver
is a contract for resolving the entity name of a given entity instance. The interface defines a single method resolveEntityName
which is passed the entity instance and is expected to return the appropriate entity name (null is allowed and would indicate that the resolver does not know how to resolve the entity name of the given entity instance). Generally speaking, an org.hibernate.EntityNameResolver
is going to be most useful in the case of dynamic models. One example might be using proxied interfaces as your domain model. The hibernate test suite has an example of this exact style of usage under the org.hibernate.test.dynamicentity.tuplizer2. Here is some of the code from that package for illustration.
/**
* A very trivial JDK Proxy InvocationHandler implementation where we proxy an
* interface as the domain model and simply store persistent state in an internal
* Map. This is an extremely trivial example meant only for illustration.
*/
public final class DataProxyHandler implements InvocationHandler {
private String entityName;
private HashMap data = new HashMap();
public DataProxyHandler(String entityName, Serializable id) {
this.entityName = entityName;
data.put( "Id", id );
}
public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {
String methodName = method.getName();
if ( methodName.startsWith( "set" ) ) {
String propertyName = methodName.substring( 3 );
data.put( propertyName, args[0] );
}
else if ( methodName.startsWith( "get" ) ) {
String propertyName = methodName.substring( 3 );
return data.get( propertyName );
}
else if ( "toString".equals( methodName ) ) {
return entityName + "#" + data.get( "Id" );
}
else if ( "hashCode".equals( methodName ) ) {
return new Integer( this.hashCode() );
}
return null;
}
public String getEntityName() {
return entityName;
}
public HashMap getData() {
return data;
}
}
public class ProxyHelper {
public static String extractEntityName(Object object) {
// Our custom java.lang.reflect.Proxy instances actually bundle
// their appropriate entity name, so we simply extract it from there
// if this represents one of our proxies; otherwise, we return null
if ( Proxy.isProxyClass( object.getClass() ) ) {
InvocationHandler handler = Proxy.getInvocationHandler( object );
if ( DataProxyHandler.class.isAssignableFrom( handler.getClass() ) ) {
DataProxyHandler myHandler = ( DataProxyHandler ) handler;
return myHandler.getEntityName();
}
}
return null;
}
// various other utility methods ....
}
/**
* The EntityNameResolver implementation.
*
* IMPL NOTE : An EntityNameResolver really defines a strategy for how entity names
* should be resolved. Since this particular impl can handle resolution for all of our
* entities we want to take advantage of the fact that SessionFactoryImpl keeps these
* in a Set so that we only ever have one instance registered. Why? Well, when it
* comes time to resolve an entity name, Hibernate must iterate over all the registered
* resolvers. So keeping that number down helps that process be as speedy as possible.
* Hence the equals and hashCode implementations as is
*/
public class MyEntityNameResolver implements EntityNameResolver {
public static final MyEntityNameResolver INSTANCE = new MyEntityNameResolver();
public String resolveEntityName(Object entity) {
return ProxyHelper.extractEntityName( entity );
}
public boolean equals(Object obj) {
return getClass().equals( obj.getClass() );
}
public int hashCode() {
return getClass().hashCode();
}
}
public class MyEntityTuplizer extends PojoEntityTuplizer {
public MyEntityTuplizer(EntityMetamodel entityMetamodel, PersistentClass mappedEntity) {
super( entityMetamodel, mappedEntity );
}
public EntityNameResolver[] getEntityNameResolvers() {
return new EntityNameResolver[] { MyEntityNameResolver.INSTANCE };
}
public String determineConcreteSubclassEntityName(Object entityInstance, SessionFactoryImplementor factory) {
String entityName = ProxyHelper.extractEntityName( entityInstance );
if ( entityName == null ) {
entityName = super.determineConcreteSubclassEntityName( entityInstance, factory );
}
return entityName;
}
...
In order to register an org.hibernate.EntityNameResolver
users must either:
Implement a custom tuplizer (see Abschnitt 4.5, „Tuplizer“), implementing the getEntityNameResolvers
method
Register it with the org.hibernate.impl.SessionFactoryImpl
(which is the implementation class for org.hibernate.SessionFactory
) using the registerEntityNameResolver
method.
Object/relational mappings can be defined in three approaches:
using Java 5 annotations (via the Java Persistence 2 annotations)
using JPA 2 XML deployment descriptors (described in chapter XXX)
using the Hibernate legacy XML files approach known as hbm.xml
Annotations are split in two categories, the logical mapping annotations (describing the object model, the association between two entities etc.) and the physical mapping annotations (describing the physical schema, tables, columns, indexes, etc). We will mix annotations from both categories in the following code examples.
JPA annotations are in the javax.persistence.*
package. Hibernate specific extensions are in org.hibernate.annotations.*
. You favorite IDE can auto-complete annotations and their attributes for you (even without a specific "JPA" plugin, since JPA annotations are plain Java 5 annotations).
Here is an example of mapping
package eg;
@Entity
@Table(name="cats") @Inheritance(strategy=SINGLE_TABLE)
@DiscriminatorValue("C") @DiscriminatorColumn(name="subclass", discriminatorType=CHAR)
public class Cat {
@Id @GeneratedValue
public Integer getId() { return id; }
public void setId(Integer id) { this.id = id; }
private Integer id;
public BigDecimal getWeight() { return weight; }
public void setWeight(BigDecimal weight) { this.weight = weight; }
private BigDecimal weight;
@Temporal(DATE) @NotNull @Column(updatable=false)
public Date getBirthdate() { return birthdate; }
public void setBirthdate(Date birthdate) { this.birthdate = birthdate; }
private Date birthdate;
@org.hibernate.annotations.Type(type="eg.types.ColorUserType")
@NotNull @Column(updatable=false)
public ColorType getColor() { return color; }
public void setColor(ColorType color) { this.color = color; }
private ColorType color;
@NotNull @Column(updatable=false)
public String getSex() { return sex; }
public void setSex(String sex) { this.sex = sex; }
private String sex;
@NotNull @Column(updatable=false)
public Integer getLitterId() { return litterId; }
public void setLitterId(Integer litterId) { this.litterId = litterId; }
private Integer litterId;
@ManyToOne @JoinColumn(name="mother_id", updatable=false)
public Cat getMother() { return mother; }
public void setMother(Cat mother) { this.mother = mother; }
private Cat mother;
@OneToMany(mappedBy="mother") @OrderBy("litterId")
public Set<Cat> getKittens() { return kittens; }
public void setKittens(Set<Cat> kittens) { this.kittens = kittens; }
private Set<Cat> kittens = new HashSet<Cat>();
}
@Entity @DiscriminatorValue("D")
public class DomesticCat extends Cat {
public String getName() { return name; }
public void setName(String name) { this.name = name }
private String name;
}
@Entity
public class Dog { ... }
The legacy hbm.xml approach uses an XML schema designed to be readable and hand-editable. The mapping language is Java-centric, meaning that mappings are constructed around persistent class declarations and not table declarations.
Please note that even though many Hibernate users choose to write the XML by hand, a number of tools exist to generate the mapping document. These include XDoclet, Middlegen and AndroMDA.
Here is an example mapping:
<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://www.hibernate.org/dtd/hibernate-mapping-3.0.dtd">
<hibernate-mapping package="eg">
<class name="Cat"
table="cats"
discriminator-value="C">
<id name="id">
<generator class="native"/>
</id>
<discriminator column="subclass"
type="character"/>
<property name="weight"/>
<property name="birthdate"
type="date"
not-null="true"
update="false"/>
<property name="color"
type="eg.types.ColorUserType"
not-null="true"
update="false"/>
<property name="sex"
not-null="true"
update="false"/>
<property name="litterId"
column="litterId"
update="false"/>
<many-to-one name="mother"
column="mother_id"
update="false"/>
<set name="kittens"
inverse="true"
order-by="litter_id">
<key column="mother_id"/>
<one-to-many class="Cat"/>
</set>
<subclass name="DomesticCat"
discriminator-value="D">
<property name="name"
type="string"/>
</subclass>
</class>
<class name="Dog">
<!-- mapping for Dog could go here -->
</class>
</hibernate-mapping>
We will now discuss the concepts of the mapping documents (both annotations and XML). We will only describe, however, the document elements and attributes that are used by Hibernate at runtime. The mapping document also contains some extra optional attributes and elements that affect the database schemas exported by the schema export tool (for example, the not-null
attribute).
An entity is a regular Java object (aka POJO) which will be persisted by Hibernate.
To mark an object as an entity in annotations, use the @Entity
annotation.
@Entity
public class Flight implements Serializable {
Long id;
@Id
public Long getId() { return id; }
public void setId(Long id) { this.id = id; }
}
That's pretty much it, the rest is optional. There are however any options to tweak your entity mapping, let's explore them.
@Table
lets you define the table the entity will be persisted into. If undefined, the table name is the unqualified class name of the entity. You can also optionally define the catalog, the schema as well as unique constraints on the table.
@Entity
@Table(name="TBL_FLIGHT",
schema="AIR_COMMAND",
uniqueConstraints=
@UniqueConstraint(
name="flight_number",
columnNames={"comp_prefix", "flight_number"} ) )
public class Flight implements Serializable {
@Column(name="comp_prefix")
public String getCompagnyPrefix() { return companyPrefix; }
@Column(name="flight_number")
public String getNumber() { return number; }
}
The constraint name is optional (generated if left undefined). The column names composing the constraint correspond to the column names as defined before the Hibernate NamingStrategy
is applied.
@Entity.name
lets you define the shortcut name of the entity you can used in JP-QL and HQL queries. It defaults to the unqualified class name of the class.
Hibernate goes beyond the JPA specification and provide additional configurations. Some of them are hosted on @org.hibernate.annotations.Entity
:
dynamicInsert
/ dynamicUpdate
(defaults to false): specifies that INSERT
/ UPDATE
SQL should be generated at runtime and contain only the columns whose values are not null. The dynamic-update
and dynamic-insert
settings are not inherited by subclasses. Although these settings can increase performance in some cases, they can actually decrease performance in others.
selectBeforeUpdate
(defaults to false): specifies that Hibernate should never perform an SQL UPDATE
unless it is certain that an object is actually modified. Only when a transient object has been associated with a new session using update()
, will Hibernate perform an extra SQL SELECT
to determine if an UPDATE
is actually required. Use of select-before-update
will usually decrease performance. It is useful to prevent a database update trigger being called unnecessarily if you reattach a graph of detached instances to a Session
.
polymorphisms
(defaults to IMPLICIT
): determines whether implicit or explicit query polymorphisms is used. Implicit polymorphisms means that instances of the class will be returned by a query that names any superclass or implemented interface or class, and that instances of any subclass of the class will be returned by a query that names the class itself. Explicit polymorphisms means that class instances will be returned only by queries that explicitly name that class. Queries that name the class will return only instances of subclasses mapped. For most purposes, the default polymorphisms=IMPLICIT
is appropriate. Explicit polymorphisms is useful when two different classes are mapped to the same table This allows a "lightweight" class that contains a subset of the table columns.
persister
: specifies a custom ClassPersister
. The persister
attribute lets you customize the persistence strategy used for the class. You can, for example, specify your own subclass of org.hibernate.persister.EntityPersister
, or you can even provide a completely new implementation of the interface org.hibernate.persister.ClassPersister
that implements, for example, persistence via stored procedure calls, serialization to flat files or LDAP. See org.hibernate.test.CustomPersister
for a simple example of "persistence" to a Hashtable
.
optimisticLock
(defaults to VERSION
): determines the optimistic locking strategy. If you enable dynamicUpdate
, you will have a choice of optimistic locking strategies:
version
: check the version/timestamp columns
all
: check all columns
dirty
: check the changed columns, allowing some concurrent updates
none
: do not use optimistic locking
It is strongly recommended that you use version/timestamp columns for optimistic locking with Hibernate. This strategy optimizes performance and correctly handles modifications made to detached instances (i.e. when Session.merge()
is used).
Be sure to import @javax.persistence.Entity
to mark a class as an entity. It's a common mistake to import @org.hibernate.annotations.Entity
by accident.
Some entities are not mutable. They cannot be updated or deleted by the application. This allows Hibernate to make some minor performance optimizations.. Use the @Immutable
annotation.
You can also alter how Hibernate deals with lazy initialization for this class. On @Proxy
, use lazy
=false to disable lazy fetching (not recommended). You can also specify an interface to use for lazy initializing proxies (defaults to the class itself): use proxyClass
on @Proxy
. Hibernate will initially return proxies (Javassist or CGLIB) that implement the named interface. The persistent object will load when a method of the proxy is invoked. See "Initializing collections and proxies" below.
@BatchSize
specifies a "batch size" for fetching instances of this class by identifier. Not yet loaded instances are loaded batch-size at a time (default 1).
You can specific an arbitrary SQL WHERE condition to be used when retrieving objects of this class. Use @Where
for that.
In the same vein, @Check
lets you define an SQL expression used to generate a multi-row check constraint for automatic schema generation.
There is no difference between a view and a base table for a Hibernate mapping. This is transparent at the database level, although some DBMS do not support views properly, especially with updates. Sometimes you want to use a view, but you cannot create one in the database (i.e. with a legacy schema). In this case, you can map an immutable and read-only entity to a given SQL subselect expression using @org.hibernate.annotations.Subselect
:
@Entity
@Subselect("select item.name, max(bid.amount), count(*) "
+ "from item "
+ "join bid on bid.item_id = item.id "
+ "group by item.name")
@Synchronize( {"item", "bid"} ) //tables impacted
public class Summary {
@Id
public String getId() { return id; }
...
}
Declare the tables to synchronize this entity with, ensuring that auto-flush happens correctly and that queries against the derived entity do not return stale data. The <subselect>
is available both as an attribute and a nested mapping element.
We will now explore the same options using the hbm.xml structure. You can declare a persistent class using the class
element. For example:
<class name="ClassName" table=
"tableName" discri
minator-value="discriminator_value" mutabl
e="true|false" schema
="owner" catalo
g="catalog" proxy=
"ProxyInterface" dynami
c-update="true|false" dynami
c-insert="true|false" select
-before-update="true|false" polymo
rphism="implicit|explicit" where=
"arbitrary sql where condition" persis
ter="PersisterClass" batch-
size="N" optimi
stic-lock="none|version|dirty|all" lazy="(16)true|false" entity(17)-name="EntityName" check=(18)"arbitrary sql check condition" rowid=(19)"rowid" subsel(20)ect="SQL expression" abstra(21)ct="true|false" node="element-name" />
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
(16) |
|
(17) |
|
(18) |
|
(19) |
|
(20) |
|
(21) |
|
It is acceptable for the named persistent class to be an interface. You can declare implementing classes of that interface using the <subclass>
element. You can persist any static inner class. Specify the class name using the standard form i.e. e.g.Foo$Bar
.
Here is how to do a virtual view (subselect) in XML:
<class name="Summary">
<subselect>
select item.name, max(bid.amount), count(*)
from item
join bid on bid.item_id = item.id
group by item.name
</subselect>
<synchronize table="item"/>
<synchronize table="bid"/>
<id name="name"/>
...
</class>
The <subselect>
is available both as an attribute and a nested mapping element.
Mapped classes must declare the primary key column of the database table. Most classes will also have a JavaBeans-style property holding the unique identifier of an instance.
Mark the identifier property with @Id
.
@Entity
public class Person {
@Id Integer getId() { ... }
...
}
In hbm.xml, use the <id>
element which defines the mapping from that property to the primary key column.
<id name="propertyName" type="
typename" column
="column_name" unsave
d-value="null|any|none|undefined|id_value" access
="field|property|ClassName"> node="element-name|@attribute-name|element/@attribute|." <generator class="generatorClass"/> </id>
| |
| |
| |
| |
|
Falls das name
-Attribut fehlt, wird davon ausgegangen, dass die Klasse keine Bezeichner-Property besitzt.
The unsaved-value
attribute is almost never needed in Hibernate3 and indeed has no corresponding element in annotations.
You can also declare the identifier as a composite identifier. This allows access to legacy data with composite keys. Its use is strongly discouraged for anything else.
You can define a composite primary key through several syntaxes:
use a component type to represent the identifier and map it as a property in the entity: you then annotated the property as @EmbeddedId
. The component type has to be Serializable
.
map multiple properties as @Id
properties: the identifier type is then the entity class itself and needs to be Serializable
. This approach is unfortunately not standard and only supported by Hibernate.
map multiple properties as @Id
properties and declare an external class to be the identifier type. This class, which needs to be Serializable
, is declared on the entity via the @IdClass
annotation. The identifier type must contain the same properties as the identifier properties of the entity: each property name must be the same, its type must be the same as well if the entity property is of a basic type, its type must be the type of the primary key of the associated entity if the entity property is an association (either a @OneToOne
or a @ManyToOne
).
As you can see the last case is far from obvious. It has been inherited from the dark ages of EJB 2 for backward compatibilities and we recommend you not to use it (for simplicity sake).
Let's explore all three cases using examples.
Here is a simple example of @EmbeddedId
.
@Entity
class User {
@EmbeddedId
@AttributeOverride(name="firstName", column=@Column(name="fld_firstname")
UserId id;
Integer age;
}
@Embeddable
class UserId implements Serializable {
String firstName;
String lastName;
}
You can notice that the UserId
class is serializable. To override the column mapping, use @AttributeOverride
.
An embedded id can itself contains the primary key of an associated entity.
@Entity
class Customer {
@EmbeddedId CustomerId id;
boolean preferredCustomer;
@MapsId("userId")
@JoinColumns({
@JoinColumn(name="userfirstname_fk", referencedColumnName="firstName"),
@JoinColumn(name="userlastname_fk", referencedColumnName="lastName")
})
@OneToOne User user;
}
@Embeddable
class CustomerId implements Serializable {
UserId userId;
String customerNumber;
//implements equals and hashCode
}
@Entity
class User {
@EmbeddedId UserId id;
Integer age;
}
@Embeddable
class UserId implements Serializable {
String firstName;
String lastName;
//implements equals and hashCode
}
In the embedded id object, the association is represented as the identifier of the associated entity. But you can link its value to a regular association in the entity via the @MapsId
annotation. The @MapsId
value correspond to the property name of the embedded id object containing the associated entity's identifier. In the database, it means that the Customer.user
and the CustomerId.userId
properties share the same underlying column (user_fk
in this case).
The component type used as identifier must implement equals()
and hashCode()
.
In practice, your code only sets the Customer.user
property and the user id value is copied by Hibernate into the CustomerId.userId
property.
The id value can be copied as late as flush time, don't rely on it until after flush time.
While not supported in JPA, Hibernate lets you place your association directly in the embedded id component (instead of having to use the @MapsId
annotation).
@Entity
class Customer {
@EmbeddedId CustomerId id;
boolean preferredCustomer;
}
@Embeddable
class CustomerId implements Serializable {
@OneToOne
@JoinColumns({
@JoinColumn(name="userfirstname_fk", referencedColumnName="firstName"),
@JoinColumn(name="userlastname_fk", referencedColumnName="lastName")
})
User user;
String customerNumber;
//implements equals and hashCode
}
@Entity
class User {
@EmbeddedId UserId id;
Integer age;
}
@Embeddable
class UserId implements Serializable {
String firstName;
String lastName;
//implements equals and hashCode
}
Let's now rewrite these examples using the hbm.xml syntax.
<composite-id
name="propertyName"
class="ClassName"
mapped="true|false"
access="field|property|ClassName"
node="element-name|.">
<key-property name="propertyName" type="typename" column="column_name"/>
<key-many-to-one name="propertyName" class="ClassName" column="column_name"/>
......
</composite-id>
First a simple example:
<class name="User">
<composite-id name="id" class="UserId">
<key-property name="firstName" column="fld_firstname"/>
<key-property name="lastName"/>
</composite-id>
</class>
Then an example showing how an association can be mapped.
<class name="Customer">
<composite-id name="id" class="CustomerId">
<key-property name="firstName" column="userfirstname_fk"/>
<key-property name="lastName" column="userfirstname_fk"/>
<key-property name="customerNumber"/>
</composite-id>
<property name="preferredCustomer"/>
<many-to-one name="user">
<column name="userfirstname_fk" updatable="false" insertable="false"/>
<column name="userlastname_fk" updatable="false" insertable="false"/>
</many-to-one>
</class>
<class name="User">
<composite-id name="id" class="UserId">
<key-property name="firstName"/>
<key-property name="lastName"/>
</composite-id>
<property name="age"/>
</class>
Notice a few things in the previous example:
the order of the properties (and column) matters. It must be the same between the association and the primary key of the associated entity
the many to one uses the same columns as the primary key and thus must be marked as read only (insertable
and updatable
to false).
unlike with @MapsId
, the id value of the associated entity is not transparently copied, check the foreign
id generator for more information.
The last example shows how to map association directly in the embedded id component.
<class name="Customer">
<composite-id name="id" class="CustomerId">
<key-many-to-one name="user">
<column name="userfirstname_fk"/>
<column name="userlastname_fk"/>
</key-many-to-one>
<key-property name="customerNumber"/>
</composite-id>
<property name="preferredCustomer"/>
</class>
<class name="User">
<composite-id name="id" class="UserId">
<key-property name="firstName"/>
<key-property name="lastName"/>
</composite-id>
<property name="age"/>
</class>
This is the recommended approach to map composite identifier. The following options should not be considered unless some constraint are present.
Another, arguably more natural, approach is to place @Id
on multiple properties of your entity. This approach is only supported by Hibernate (not JPA compliant) but does not require an extra embeddable component.
@Entity
class Customer implements Serializable {
@Id @OneToOne
@JoinColumns({
@JoinColumn(name="userfirstname_fk", referencedColumnName="firstName"),
@JoinColumn(name="userlastname_fk", referencedColumnName="lastName")
})
User user;
@Id String customerNumber;
boolean preferredCustomer;
//implements equals and hashCode
}
@Entity
class User {
@EmbeddedId UserId id;
Integer age;
}
@Embeddable
class UserId implements Serializable {
String firstName;
String lastName;
//implements equals and hashCode
}
In this case Customer
is its own identifier representation: it must implement Serializable
and must implement equals()
and hashCode()
.
In hbm.xml, the same mapping is:
<class name="Customer">
<composite-id>
<key-many-to-one name="user">
<column name="userfirstname_fk"/>
<column name="userlastname_fk"/>
</key-many-to-one>
<key-property name="customerNumber"/>
</composite-id>
<property name="preferredCustomer"/>
</class>
<class name="User">
<composite-id name="id" class="UserId">
<key-property name="firstName"/>
<key-property name="lastName"/>
</composite-id>
<property name="age"/>
</class>
@IdClass
on an entity points to the class (component) representing the identifier of the class. The properties marked @Id
on the entity must have their corresponding property on the @IdClass
. The return type of search twin property must be either identical for basic properties or must correspond to the identifier class of the associated entity for an association.
This approach is inherited from the EJB 2 days and we recommend against its use. But, after all it's your application and Hibernate supports it.
@Entity
@IdClass(CustomerId.class)
class Customer implements Serializable {
@Id @OneToOne
@JoinColumns({
@JoinColumn(name="userfirstname_fk", referencedColumnName="firstName"),
@JoinColumn(name="userlastname_fk", referencedColumnName="lastName")
})
User user;
@Id String customerNumber;
boolean preferredCustomer;
}
class CustomerId implements Serializable {
UserId user;
String customerNumber;
//implements equals and hashCode
}
@Entity
class User {
@EmbeddedId UserId id;
Integer age;
//implements equals and hashCode
}
@Embeddable
class UserId implements Serializable {
String firstName;
String lastName;
//implements equals and hashCode
}
Customer
and CustomerId
do have the same properties customerNumber
as well as user
. CustomerId
must be Serializable
and implement equals()
and hashCode()
.
While not JPA standard, Hibernate let's you declare the vanilla associated property in the @IdClass
.
@Entity
@IdClass(CustomerId.class)
class Customer implements Serializable {
@Id @OneToOne
@JoinColumns({
@JoinColumn(name="userfirstname_fk", referencedColumnName="firstName"),
@JoinColumn(name="userlastname_fk", referencedColumnName="lastName")
})
User user;
@Id String customerNumber;
boolean preferredCustomer;
}
class CustomerId implements Serializable {
@OneToOne User user;
String customerNumber;
//implements equals and hashCode
}
@Entity
class User {
@EmbeddedId UserId id;
Integer age;
//implements equals and hashCode
}
@Embeddable
class UserId implements Serializable {
String firstName;
String lastName;
}
This feature is of limited interest though as you are likely to have chosen the @IdClass
approach to stay JPA compliant or you have a quite twisted mind.
Here are the equivalent on hbm.xml files:
<class name="Customer">
<composite-id class="CustomerId" mapped="true">
<key-many-to-one name="user">
<column name="userfirstname_fk"/>
<column name="userlastname_fk"/>
</key-many-to-one>
<key-property name="customerNumber"/>
</composite-id>
<property name="preferredCustomer"/>
</class>
<class name="User">
<composite-id name="id" class="UserId">
<key-property name="firstName"/>
<key-property name="lastName"/>
</composite-id>
<property name="age"/>
</class>
Hibernate can generate and populate identifier values for you automatically. This is the recommended approach over "business" or "natural" id (especially composite ids).
Hibernate offers various generation strategies, let's explore the most common ones first that happens to be standardized by JPA:
IDENTITY: supports identity columns in DB2, MySQL, MS SQL Server, Sybase and HypersonicSQL. The returned identifier is of type long
, short
or int
.
SEQUENCE (called seqhilo
in Hibernate): uses a hi/lo algorithm to efficiently generate identifiers of type long
, short
or int
, given a named database sequence.
TABLE (called MultipleHiLoPerTableGenerator
in Hibernate) : uses a hi/lo algorithm to efficiently generate identifiers of type long
, short
or int
, given a table and column as a source of hi values. The hi/lo algorithm generates identifiers that are unique only for a particular database.
AUTO: selects IDENTITY
, SEQUENCE
or TABLE
depending upon the capabilities of the underlying database.
We recommend all new projects to use the new enhanced identifier generators. They are deactivated by default for entities using annotations but can be activated using hibernate.id.new_generator_mappings=true
. These new generators are more efficient and closer to the JPA 2 specification semantic.
However they are not backward compatible with existing Hibernate based application (if a sequence or a table is used for id generation). See XXXXXXX ??? for more information on how to activate them.
To mark an id property as generated, use the @GeneratedValue
annotation. You can specify the strategy used (default to AUTO
) by setting strategy
.
@Entity
public class Customer {
@Id @GeneratedValue
Integer getId() { ... };
}
@Entity
public class Invoice {
@Id @GeneratedValue(strategy=GenerationType.IDENTITY)
Integer getId() { ... };
}
SEQUENCE
and TABLE
require additional configurations that you can set using @SequenceGenerator
and @TableGenerator
:
name
: name of the generator
table
/ sequenceName
: name of the table or the sequence (defaulting respectively to hibernate_sequences
and hibernate_sequence
)
catalog
/ schema
:
initialValue
: the value from which the id is to start generating
allocationSize
: the amount to increment by when allocating id numbers from the generator
In addition, the TABLE
strategy also let you customize:
pkColumnName
: the column name containing the entity identifier
valueColumnName
: the column name containing the identifier value
pkColumnValue
: the entity identifier
uniqueConstraints
: any potential column constraint on the table containing the ids
To link a table or sequence generator definition with an actual generated property, use the same name in both the definition name
and the generator value generator
as shown below.
@Id
@GeneratedValue(
strategy=GenerationType.SEQUENCE,
generator="SEQ_GEN")
@javax.persistence.SequenceGenerator(
name="SEQ_GEN",
sequenceName="my_sequence",
allocationSize=20
)
public Integer getId() { ... }
The scope of a generator definition can be the application or the class. Class-defined generators are not visible outside the class and can override application level generators. Application level generators are defined in JPA's XML deployment descriptors (see XXXXXX ???):
<table-generator name="EMP_GEN"
table="GENERATOR_TABLE"
pk-column-name="key"
value-column-name="hi"
pk-column-value="EMP"
allocation-size="20"/>
//and the annotation equivalent
@javax.persistence.TableGenerator(
name="EMP_GEN",
table="GENERATOR_TABLE",
pkColumnName = "key",
valueColumnName = "hi"
pkColumnValue="EMP",
allocationSize=20
)
<sequence-generator name="SEQ_GEN"
sequence-name="my_sequence"
allocation-size="20"/>
//and the annotation equivalent
@javax.persistence.SequenceGenerator(
name="SEQ_GEN",
sequenceName="my_sequence",
allocationSize=20
)
If a JPA XML descriptor (like META-INF/orm.xml
) is used to define the generators, EMP_GEN
and SEQ_GEN
are application level generators.
Package level definition is not supported by the JPA specification. However, you can use the @GenericGenerator
at the package level (see ???).
These are the four standard JPA generators. Hibernate goes beyond that and provide additional generators or additional options as we will see below. You can also write your own custom identifier generator by implementing org.hibernate.id.IdentifierGenerator
.
To define a custom generator, use the @GenericGenerator
annotation (and its plural counter part @GenericGenerators
) that describes the class of the identifier generator or its short cut name (as described below) and a list of key/value parameters. When using @GenericGenerator
and assigning it via @GeneratedValue.generator
, the @GeneratedValue.strategy
is ignored: leave it blank.
@Id @GeneratedValue(generator="system-uuid")
@GenericGenerator(name="system-uuid", strategy = "uuid")
public String getId() {
@Id @GeneratedValue(generator="trigger-generated")
@GenericGenerator(
name="trigger-generated",
strategy = "select",
parameters = @Parameter(name="key", value = "socialSecurityNumber")
)
public String getId() {
The hbm.xml approach uses the optional <generator>
child element inside <id>
. If any parameters are required to configure or initialize the generator instance, they are passed using the <param>
element.
<id name="id" type="long" column="cat_id">
<generator class="org.hibernate.id.TableHiLoGenerator">
<param name="table">uid_table</param>
<param name="column">next_hi_value_column</param>
</generator>
</id>
All generators implement the interface org.hibernate.id.IdentifierGenerator
. This is a very simple interface. Some applications can choose to provide their own specialized implementations, however, Hibernate provides a range of built-in implementations. The shortcut names for the built-in generators are as follows:
increment
generiert Bezeichner des Typs long
, short
oder int
, die nur eindeutig sind, wenn kein anderer Vorgang Daten derselben Tabelle hinzufügt. Nicht in einem Cluster zu verwenden.
identity
unterstützt die Identitätsspalten in DB2, MySQL, MS SQL Server, Sybase und HypersonicSQL. Der zurückgesendete Bezeichner ist vom Typ long
, short
oder int
.
sequence
verwendet eine Sequenz in DB2, PostgreSQL, Oracle, SAP DB, McKoi oder einen Generator in Interbase. Der zurückgeschickte Bezeichner ist vom Typ long
, short
oder int
hilo
verwendet einen hi/lo Algorithmus um effizient Bezeichner des Typs long
, short
oder int
zu generieren, bei gegebener Tabelle und Spalte (Standardeinstellung lautet hibernate_unique_key
bzw. next_hi
) als Quelle der hi-Werte. Der hi/lo-Algorithmus generiert Bezeichner, die für eine bestimmte Datenbank eindeutig sind.
seqhilo
verwendet einen hi/lo-Algorithmus um effizient Bezeichner des Typs long
, short
oder int
zu generieren, bei einer vorgegebenen und benannten Datenbanksequenz.
uuid
Generates a 128-bit UUID based on a custom algorithm. The value generated is represented as a string of 32 hexidecimal digits. Users can also configure it to use a separator (config parameter "separator") which separates the hexidecimal digits into 8{sep}8{sep}4{sep}8{sep}4. Note specifically that this is different than the IETF RFC 4122 representation of 8-4-4-4-12. If you need RFC 4122 compliant UUIDs, consider using "uuid2" generator discussed below.
uuid2
Generates a IETF RFC 4122 compliant (variant 2) 128-bit UUID. The exact "version" (the RFC term) generated depends on the pluggable "generation strategy" used (see below). Capable of generating values as java.util.UUID
, java.lang.String
or as a byte array of length 16 (byte[16]
). The "generation strategy" is defined by the interface org.hibernate.id.UUIDGenerationStrategy
. The generator defines 2 configuration parameters for defining which generation strategy to use:
uuid_gen_strategy_class
Names the UUIDGenerationStrategy class to use
uuid_gen_strategy
Names the UUIDGenerationStrategy instance to use
Out of the box, comes with the following strategies:
org.hibernate.id.uuid.StandardRandomStrategy
(the default) - generates "version 3" (aka, "random") UUID values via the randomUUID
method of java.util.UUID
org.hibernate.id.uuid.CustomVersionOneStrategy
- generates "version 1" UUID values, using IP address since mac address not available. If you need mac address to be used, consider leveraging one of the existing third party UUID generators which sniff out mac address and integrating it via the org.hibernate.id.UUIDGenerationStrategy
contract. Two such libraries known at time of this writing include http://johannburkard.de/software/uuid/ and http://commons.apache.org/sandbox/id/uuid.html
guid
verwendet einen von der Datenbank generierten GUID-String auf dem MS SQL Server und MySQL.
native
selects identity
, sequence
or hilo
depending upon the capabilities of the underlying database.
assigned
lets the application assign an identifier to the object before save()
is called. This is the default strategy if no <generator>
element is specified.
select
retrieves a primary key, assigned by a database trigger, by selecting the row by some unique key and retrieving the primary key value.
foreign
uses the identifier of another associated object. It is usually used in conjunction with a <one-to-one>
primary key association.
sequence-identity
a specialized sequence generation strategy that utilizes a database sequence for the actual value generation, but combines this with JDBC3 getGeneratedKeys to return the generated identifier value as part of the insert statement execution. This strategy is only supported on Oracle 10g drivers targeted for JDK 1.4. Comments on these insert statements are disabled due to a bug in the Oracle drivers.
The hilo
and seqhilo
generators provide two alternate implementations of the hi/lo algorithm. The first implementation requires a "special" database table to hold the next available "hi" value. Where supported, the second uses an Oracle-style sequence.
<id name="id" type="long" column="cat_id">
<generator class="hilo">
<param name="table">hi_value</param>
<param name="column">next_value</param>
<param name="max_lo">100</param>
</generator>
</id>
<id name="id" type="long" column="cat_id">
<generator class="seqhilo">
<param name="sequence">hi_value</param>
<param name="max_lo">100</param>
</generator>
</id>
Unfortunately, you cannot use hilo
when supplying your own Connection
to Hibernate. When Hibernate uses an application server datasource to obtain connections enlisted with JTA, you must configure the hibernate.transaction.manager_lookup_class
.
The UUID contains: IP address, startup time of the JVM that is accurate to a quarter second, system time and a counter value that is unique within the JVM. It is not possible to obtain a MAC address or memory address from Java code, so this is the best option without using JNI.
For databases that support identity columns (DB2, MySQL, Sybase, MS SQL), you can use identity
key generation. For databases that support sequences (DB2, Oracle, PostgreSQL, Interbase, McKoi, SAP DB) you can use sequence
style key generation. Both of these strategies require two SQL queries to insert a new object. For example:
<id name="id" type="long" column="person_id">
<generator class="sequence">
<param name="sequence">person_id_sequence</param>
</generator>
</id>
<id name="id" type="long" column="person_id" unsaved-value="0">
<generator class="identity"/>
</id>
For cross-platform development, the native
strategy will, depending on the capabilities of the underlying database, choose from the identity
, sequence
and hilo
strategies.
If you want the application to assign identifiers, as opposed to having Hibernate generate them, you can use the assigned
generator. This special generator uses the identifier value already assigned to the object's identifier property. The generator is used when the primary key is a natural key instead of a surrogate key. This is the default behavior if you do not specify @GeneratedValue
nor <generator>
elements.
The assigned
generator makes Hibernate use unsaved-value="undefined"
. This forces Hibernate to go to the database to determine if an instance is transient or detached, unless there is a version or timestamp property, or you define Interceptor.isUnsaved()
.
Hibernate does not generate DDL with triggers. It is for legacy schemas only.
<id name="id" type="long" column="person_id">
<generator class="select">
<param name="key">socialSecurityNumber</param>
</generator>
</id>
In the above example, there is a unique valued property named socialSecurityNumber
. It is defined by the class, as a natural key and a surrogate key named person_id
, whose value is generated by a trigger.
Finally, you can ask Hibernate to copy the identifier from another associated entity. In the Hibernate jargon, it is known as a foreign generator but the JPA mapping reads better and is encouraged.
@Entity
class MedicalHistory implements Serializable {
@Id @OneToOne
@JoinColumn(name = "person_id")
Person patient;
}
@Entity
public class Person implements Serializable {
@Id @GeneratedValue Integer id;
}
Or alternatively
@Entity
class MedicalHistory implements Serializable {
@Id Integer id;
@MapsId @OneToOne
@JoinColumn(name = "patient_id")
Person patient;
}
@Entity
class Person {
@Id @GeneratedValue Integer id;
}
In hbm.xml use the following approach:
<class name="MedicalHistory">
<id name="id">
<generator class="foreign">
<param name="property">patient</param>
</generator>
</id>
<one-to-one name="patient" class="Person" constrained="true"/>
</class>
Starting with release 3.2.3, there are 2 new generators which represent a re-thinking of 2 different aspects of identifier generation. The first aspect is database portability; the second is optimization Optimization means that you do not have to query the database for every request for a new identifier value. These two new generators are intended to take the place of some of the named generators described above, starting in 3.3.x. However, they are included in the current releases and can be referenced by FQN.
The first of these new generators is org.hibernate.id.enhanced.SequenceStyleGenerator
which is intended, firstly, as a replacement for the sequence
generator and, secondly, as a better portability generator than native
. This is because native
generally chooses between identity
and sequence
which have largely different semantics that can cause subtle issues in applications eyeing portability. org.hibernate.id.enhanced.SequenceStyleGenerator
, however, achieves portability in a different manner. It chooses between a table or a sequence in the database to store its incrementing values, depending on the capabilities of the dialect being used. The difference between this and native
is that table-based and sequence-based storage have the same exact semantic. In fact, sequences are exactly what Hibernate tries to emulate with its table-based generators. This generator has a number of configuration parameters:
sequence_name
(optional, defaults to hibernate_sequence
): the name of the sequence or table to be used.
initial_value
(optional, defaults to 1
): the initial value to be retrieved from the sequence/table. In sequence creation terms, this is analogous to the clause typically named "STARTS WITH".
increment_size
(optional - defaults to 1
): the value by which subsequent calls to the sequence/table should differ. In sequence creation terms, this is analogous to the clause typically named "INCREMENT BY".
force_table_use
(optional - defaults to false
): should we force the use of a table as the backing structure even though the dialect might support sequence?
value_column
(optional - defaults to next_val
): only relevant for table structures, it is the name of the column on the table which is used to hold the value.
optimizer
(optional - defaults to none
): See Abschnitt 5.1.2.3.1, „Identifier generator optimization“
The second of these new generators is org.hibernate.id.enhanced.TableGenerator
, which is intended, firstly, as a replacement for the table
generator, even though it actually functions much more like org.hibernate.id.MultipleHiLoPerTableGenerator
, and secondly, as a re-implementation of org.hibernate.id.MultipleHiLoPerTableGenerator
that utilizes the notion of pluggable optimizers. Essentially this generator defines a table capable of holding a number of different increment values simultaneously by using multiple distinctly keyed rows. This generator has a number of configuration parameters:
table_name
(optional - defaults to hibernate_sequences
): the name of the table to be used.
value_column_name
(optional - defaults to next_val
): the name of the column on the table that is used to hold the value.
segment_column_name
(optional - defaults to sequence_name
): the name of the column on the table that is used to hold the "segment key". This is the value which identifies which increment value to use.
segment_value
(optional - defaults to default
): The "segment key" value for the segment from which we want to pull increment values for this generator.
segment_value_length
(optional - defaults to 255
): Used for schema generation; the column size to create this segment key column.
initial_value
(optional - defaults to 1
): The initial value to be retrieved from the table.
increment_size
(optional - defaults to 1
): The value by which subsequent calls to the table should differ.
optimizer
(optional - defaults to ??
): See Abschnitt 5.1.2.3.1, „Identifier generator optimization“.
For identifier generators that store values in the database, it is inefficient for them to hit the database on each and every call to generate a new identifier value. Instead, you can group a bunch of them in memory and only hit the database when you have exhausted your in-memory value group. This is the role of the pluggable optimizers. Currently only the two enhanced generators (Abschnitt 5.1.2.3, „Enhanced identifier generators“ support this operation.
none
(generally this is the default if no optimizer was specified): this will not perform any optimizations and hit the database for each and every request.
hilo
: applies a hi/lo algorithm around the database retrieved values. The values from the database for this optimizer are expected to be sequential. The values retrieved from the database structure for this optimizer indicates the "group number". The increment_size
is multiplied by that value in memory to define a group "hi value".
pooled
: as with the case of hilo
, this optimizer attempts to minimize the number of hits to the database. Here, however, we simply store the starting value for the "next group" into the database structure rather than a sequential value in combination with an in-memory grouping algorithm. Here, increment_size
refers to the values coming from the database.
Hibernate supports the automatic generation of some of the identifier properties. Simply use the @GeneratedValue
annotation on one or several id properties.
The Hibernate team has always felt such a construct as fundamentally wrong. Try hard to fix your data model before using this feature.
@Entity
public class CustomerInventory implements Serializable {
@Id
@TableGenerator(name = "inventory",
table = "U_SEQUENCES",
pkColumnName = "S_ID",
valueColumnName = "S_NEXTNUM",
pkColumnValue = "inventory",
allocationSize = 1000)
@GeneratedValue(strategy = GenerationType.TABLE, generator = "inventory")
Integer id;
@Id @ManyToOne(cascade = CascadeType.MERGE)
Customer customer;
}
@Entity
public class Customer implements Serializable {
@Id
private int id;
}
You can also generate properties inside an @EmbeddedId
class.
When using long transactions or conversations that span several database transactions, it is useful to store versioning data to ensure that if the same entity is updated by two conversations, the last to commit changes will be informed and not override the other conversation's work. It guarantees some isolation while still allowing for good scalability and works particularly well in read-often write-sometimes situations.
You can use two approaches: a dedicated version number or a timestamp.
A version or timestamp property should never be null for a detached instance. Hibernate will detect any instance with a null version or timestamp as transient, irrespective of what other unsaved-value
strategies are specified. Declaring a nullable version or timestamp property is an easy way to avoid problems with transitive reattachment in Hibernate. It is especially useful for people using assigned identifiers or composite keys.
You can add optimistic locking capability to an entity using the @Version
annotation:
@Entity
public class Flight implements Serializable {
...
@Version
@Column(name="OPTLOCK")
public Integer getVersion() { ... }
}
The version property will be mapped to the OPTLOCK
column, and the entity manager will use it to detect conflicting updates (preventing lost updates you might otherwise see with the last-commit-wins strategy).
The version column may be a numeric. Hibernate supports any kind of type provided that you define and implement the appropriate UserVersionType
.
The application must not alter the version number set up by Hibernate in any way. To artificially increase the version number, check in Hibernate Entity Manager's reference documentation LockModeType.OPTIMISTIC_FORCE_INCREMENT
or LockModeType.PESSIMISTIC_FORCE_INCREMENT
.
If the version number is generated by the database (via a trigger for example), make sure to use @org.hibernate.annotations.Generated(GenerationTime.ALWAYS).
To declare a version property in hbm.xml, use:
<version column="version_column" name="
propertyName" type="
typename" access
="field|property|ClassName" unsave
d-value="null|negative|undefined" genera
ted="never|always" insert
="true|false" node="element-name|@attribute-name|element/@attribute|." />
| |
| |
| |
| |
| |
| |
|
Alternatively, you can use a timestamp. Timestamps are a less safe implementation of optimistic locking. However, sometimes an application might use the timestamps in other ways as well.
Simply mark a property of type Date
or Calendar
as @Version
.
@Entity
public class Flight implements Serializable {
...
@Version
public Date getLastUpdate() { ... }
}
When using timestamp versioning you can tell Hibernate where to retrieve the timestamp value from - database or JVM - by optionally adding the @org.hibernate.annotations.Source
annotation to the property. Possible values for the value attribute of the annotation are org.hibernate.annotations.SourceType.VM
and org.hibernate.annotations.SourceType.DB
. The default is SourceType.DB
which is also used in case there is no @Source
annotation at all.
Like in the case of version numbers, the timestamp can also be generated by the database instead of Hibernate. To do that, use @org.hibernate.annotations.Generated(GenerationTime.ALWAYS).
In hbm.xml, use the <timestamp>
element:
<timestamp column="timestamp_column" name="
propertyName" access
="field|property|ClassName" unsave
d-value="null|undefined" source
="vm|db" genera
ted="never|always" node="element-name|@attribute-name|element/@attribute|." />
| |
| |
| |
| |
| |
|
<Timestamp>
is equivalent to <version type="timestamp">
. And <timestamp source="db">
is equivalent to <version type="dbtimestamp">
You need to decide which property needs to be made persistent in a given entity. This differs slightly between the annotation driven metadata and the hbm.xml files.
In the annotations world, every non static non transient property (field or method depending on the access type) of an entity is considered persistent, unless you annotate it as @Transient
. Not having an annotation for your property is equivalent to the appropriate @Basic
annotation.
The @Basic
annotation allows you to declare the fetching strategy for a property. If set to LAZY
, specifies that this property should be fetched lazily when the instance variable is first accessed. It requires build-time bytecode instrumentation, if your classes are not instrumented, property level lazy loading is silently ignored. The default is EAGER
. You can also mark a property as not optional thanks to the @Basic.optional
attribute. This will ensure that the underlying column are not nullable (if possible). Note that a better approach is to use the @NotNull
annotation of the Bean Validation specification.
Let's look at a few examples:
public transient int counter; //transient property
private String firstname; //persistent property
@Transient
String getLengthInMeter() { ... } //transient property
String getName() {... } // persistent property
@Basic
int getLength() { ... } // persistent property
@Basic(fetch = FetchType.LAZY)
String getDetailedComment() { ... } // persistent property
@Temporal(TemporalType.TIME)
java.util.Date getDepartureTime() { ... } // persistent property
@Enumerated(EnumType.STRING)
Starred getNote() { ... } //enum persisted as String in database
counter
, a transient field, and lengthInMeter
, a method annotated as @Transient
, and will be ignored by the Hibernate. name
, length
, and firstname
properties are mapped persistent and eagerly fetched (the default for simple properties). The detailedComment
property value will be lazily fetched from the database once a lazy property of the entity is accessed for the first time. Usually you don't need to lazy simple properties (not to be confused with lazy association fetching). The recommended alternative is to use the projection capability of JP-QL (Java Persistence Query Language) or Criteria queries.
JPA support property mapping of all basic types supported by Hibernate (all basic Java types , their respective wrappers and serializable classes). Hibernate Annotations supports out of the box enum type mapping either into a ordinal column (saving the enum ordinal) or a string based column (saving the enum string representation): the persistence representation, defaulted to ordinal, can be overridden through the @Enumerated
annotation as shown in the note
property example.
In plain Java APIs, the temporal precision of time is not defined. When dealing with temporal data you might want to describe the expected precision in database. Temporal data can have DATE
, TIME
, or TIMESTAMP
precision (ie the actual date, only the time, or both). Use the @Temporal
annotation to fine tune that.
@Lob
indicates that the property should be persisted in a Blob or a Clob depending on the property type: java.sql.Clob
, Character[]
, char[]
and java.lang.String
will be persisted in a Clob. java.sql.Blob
, Byte[]
, byte[]
and Serializable
type will be persisted in a Blob.
@Lob
public String getFullText() {
return fullText;
}
@Lob
public byte[] getFullCode() {
return fullCode;
}
If the property type implements java.io.Serializable
and is not a basic type, and if the property is not annotated with @Lob
, then the Hibernate serializable
type is used.
You can also manually specify a type using the @org.hibernate.annotations.Type
and some parameters if needed. @Type.type
could be:
The name of a Hibernate basic type: integer, string, character, date, timestamp, float, binary, serializable, object, blob
etc.
The name of a Java class with a default basic type: int, float, char, java.lang.String, java.util.Date, java.lang.Integer, java.sql.Clob
etc.
Der Name einer serialisierbaren Java-Klasse.
The class name of a custom type: com.illflow.type.MyCustomType
etc.
If you do not specify a type, Hibernate will use reflection upon the named property and guess the correct Hibernate type. Hibernate will attempt to interpret the name of the return class of the property getter using, in order, rules 2, 3, and 4.
@org.hibernate.annotations.TypeDef
and @org.hibernate.annotations.TypeDefs
allows you to declare type definitions. These annotations can be placed at the class or package level. Note that these definitions are global for the session factory (even when defined at the class level). If the type is used on a single entity, you can place the definition on the entity itself. Otherwise, it is recommended to place the definition at the package level. In the example below, when Hibernate encounters a property of class PhoneNumer
, it delegates the persistence strategy to the custom mapping type PhoneNumberType
. However, properties belonging to other classes, too, can delegate their persistence strategy to PhoneNumberType
, by explicitly using the @Type
annotation.
Package level annotations are placed in a file named package-info.java
in the appropriate package. Place your annotations before the package declaration.
@TypeDef(
name = "phoneNumber",
defaultForType = PhoneNumber.class,
typeClass = PhoneNumberType.class
)
@Entity
public class ContactDetails {
[...]
private PhoneNumber localPhoneNumber;
@Type(type="phoneNumber")
private OverseasPhoneNumber overseasPhoneNumber;
[...]
}
The following example shows the usage of the parameters
attribute to customize the TypeDef.
//in org/hibernate/test/annotations/entity/package-info.java
@TypeDefs(
{
@TypeDef(
name="caster",
typeClass = CasterStringType.class,
parameters = {
@Parameter(name="cast", value="lower")
}
)
}
)
package org.hibernate.test.annotations.entity;
//in org/hibernate/test/annotations/entity/Forest.java
public class Forest {
@Type(type="caster")
public String getSmallText() {
...
}
When using composite user type, you will have to express column definitions. The @Columns
has been introduced for that purpose.
@Type(type="org.hibernate.test.annotations.entity.MonetaryAmountUserType")
@Columns(columns = {
@Column(name="r_amount"),
@Column(name="r_currency")
})
public MonetaryAmount getAmount() {
return amount;
}
public class MonetaryAmount implements Serializable {
private BigDecimal amount;
private Currency currency;
...
}
By default the access type of a class hierarchy is defined by the position of the @Id
or @EmbeddedId
annotations. If these annotations are on a field, then only fields are considered for persistence and the state is accessed via the field. If there annotations are on a getter, then only the getters are considered for persistence and the state is accessed via the getter/setter. That works well in practice and is the recommended approach.
The placement of annotations within a class hierarchy has to be consistent (either field or on property) to be able to determine the default access type. It is recommended to stick to one single annotation placement strategy throughout your whole application.
However in some situations, you need to:
force the access type of the entity hierarchy
override the access type of a specific entity in the class hierarchy
override the access type of an embeddable type
The best use case is an embeddable class used by several entities that might not use the same access type. In this case it is better to force the access type at the embeddable class level.
To force the access type on a given class, use the @Access
annotation as showed below:
@Entity
public class Order {
@Id private Long id;
public Long getId() { return id; }
public void setId(Long id) { this.id = id; }
@Embedded private Address address;
public Address getAddress() { return address; }
public void setAddress() { this.address = address; }
}
@Entity
public class User {
private Long id;
@Id public Long getId() { return id; }
public void setId(Long id) { this.id = id; }
private Address address;
@Embedded public Address getAddress() { return address; }
public void setAddress() { this.address = address; }
}
@Embeddable
@Access(AcessType.PROPERTY)
public class Address {
private String street1;
public String getStreet1() { return street1; }
public void setStreet1() { this.street1 = street1; }
private hashCode; //not persistent
}
You can also override the access type of a single property while keeping the other properties standard.
@Entity
public class Order {
@Id private Long id;
public Long getId() { return id; }
public void setId(Long id) { this.id = id; }
@Transient private String userId;
@Transient private String orderId;
@Access(AccessType.PROPERTY)
public String getOrderNumber() { return userId + ":" + orderId; }
public void setOrderNumber() { this.userId = ...; this.orderId = ...; }
}
In this example, the default access type is FIELD
except for the orderNumber
property. Note that the corresponding field, if any must be marked as @Transient
or transient
.
The annotation @org.hibernate.annotations.AccessType
should be considered deprecated for FIELD and PROPERTY access. It is still useful however if you need to use a custom access type.
It is sometimes useful to avoid increasing the version number even if a given property is dirty (particularly collections). You can do that by annotating the property (or collection) with @OptimisticLock(excluded=true)
.
More formally, specifies that updates to this property do not require acquisition of the optimistic lock.
The column(s) used for a property mapping can be defined using the @Column
annotation. Use it to override default values (see the JPA specification for more information on the defaults). You can use this annotation at the property level for properties that are:
not annotated at all
annotated with @Basic
annotated with @Version
annotated with @Lob
annotated with @Temporal
@Entity
public class Flight implements Serializable {
...
@Column(updatable = false, name = "flight_name", nullable = false, length=50)
public String getName() { ... }
The name
property is mapped to the flight_name
column, which is not nullable, has a length of 50 and is not updatable (making the property immutable).
This annotation can be applied to regular properties as well as @Id
or @Version
properties.
@Column( name="columnName"; boolean un
ique() default false; boolean nu
llable() default true; boolean in
sertable() default true; boolean up
datable() default true; String col
umnDefinition() default ""; String tab
le() default ""; int length
() default 255; int precis
ion() default 0; // decimal precision int scale(
) default 0; // decimal scale
| |
| |
| |
| |
| |
| |
| |
| |
| |
|
Sometimes, you want the Database to do some computation for you rather than in the JVM, you might also create some kind of virtual column. You can use a SQL fragment (aka formula) instead of mapping a property into a column. This kind of property is read only (its value is calculated by your formula fragment).
@Formula("obj_length * obj_height * obj_width")
public long getObjectVolume()
The SQL fragment can be as complex as you want and even include subselects.
If a property is not annotated, the following rules apply:
If the property is of a single type, it is mapped as @Basic
Otherwise, if the type of the property is annotated as @Embeddable, it is mapped as @Embedded
Otherwise, if the type of the property is Serializable
, it is mapped as @Basic
in a column holding the object in its serialized version
Otherwise, if the type of the property is java.sql.Clob
or java.sql.Blob
, it is mapped as @Lob
with the appropriate LobType
The <property>
element declares a persistent JavaBean style property of the class.
<property name="propertyName" column
="column_name" type="
typename" update
="true|false" insert
="true|false" formul
a="arbitrary SQL expression" access
="field|property|ClassName" lazy="
true|false" unique
="true|false" not-nu
ll="true|false" optimi
stic-lock="true|false" genera
ted="never|insert|always" node="element-name|@attribute-name|element/@attribute|." index="index_name" unique_key="unique_key_id" length="L" precision="P" scale="S" />
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
|
typename könnte sein:
The name of a Hibernate basic type: integer, string, character, date, timestamp, float, binary, serializable, object, blob
etc.
The name of a Java class with a default basic type: int, float, char, java.lang.String, java.util.Date, java.lang.Integer, java.sql.Clob
etc.
Der Name einer serialisierbaren Java-Klasse.
The class name of a custom type: com.illflow.type.MyCustomType
etc.
If you do not specify a type, Hibernate will use reflection upon the named property and guess the correct Hibernate type. Hibernate will attempt to interpret the name of the return class of the property getter using, in order, rules 2, 3, and 4. In certain cases you will need the type
attribute. For example, to distinguish between Hibernate.DATE
and Hibernate.TIMESTAMP
, or to specify a custom type.
The access
attribute allows you to control how Hibernate accesses the property at runtime. By default, Hibernate will call the property get/set pair. If you specify access="field"
, Hibernate will bypass the get/set pair and access the field directly using reflection. You can specify your own strategy for property access by naming a class that implements the interface org.hibernate.property.PropertyAccessor
.
A powerful feature is derived properties. These properties are by definition read-only. The property value is computed at load time. You declare the computation as an SQL expression. This then translates to a SELECT
clause subquery in the SQL query that loads an instance:
<property name="totalPrice"
formula="( SELECT SUM (li.quantity*p.price) FROM LineItem li, Product p
WHERE li.productId = p.productId
AND li.customerId = customerId
AND li.orderNumber = orderNumber )"/>
You can reference the entity table by not declaring an alias on a particular column. This would be customerId
in the given example. You can also use the nested <formula>
mapping element if you do not want to use the attribute.
Embeddable objects (or components) are objects whose properties are mapped to the same table as the owning entity's table. Components can, in turn, declare their own properties, components or collections
It is possible to declare an embedded component inside an entity and even override its column mapping. Component classes have to be annotated at the class level with the @Embeddable
annotation. It is possible to override the column mapping of an embedded object for a particular entity using the @Embedded
and @AttributeOverride
annotation in the associated property:
@Entity
public class Person implements Serializable {
// Persistent component using defaults
Address homeAddress;
@Embedded
@AttributeOverrides( {
@AttributeOverride(name="iso2", column = @Column(name="bornIso2") ),
@AttributeOverride(name="name", column = @Column(name="bornCountryName") )
} )
Country bornIn;
...
}
@Embeddable
public class Address implements Serializable {
String city;
Country nationality; //no overriding here
}
@Embeddable
public class Country implements Serializable {
private String iso2;
@Column(name="countryName") private String name;
public String getIso2() { return iso2; }
public void setIso2(String iso2) { this.iso2 = iso2; }
public String getName() { return name; }
public void setName(String name) { this.name = name; }
...
}
An embeddable object inherits the access type of its owning entity (note that you can override that using the @Access
annotation).
The Person
entity has two component properties, homeAddress
and bornIn
. homeAddress
property has not been annotated, but Hibernate will guess that it is a persistent component by looking for the @Embeddable
annotation in the Address class. We also override the mapping of a column name (to bornCountryName
) with the @Embedded
and @AttributeOverride
annotations for each mapped attribute of Country
. As you can see, Country
is also a nested component of Address
, again using auto-detection by Hibernate and JPA defaults. Overriding columns of embedded objects of embedded objects is through dotted expressions.
@Embedded
@AttributeOverrides( {
@AttributeOverride(name="city", column = @Column(name="fld_city") ),
@AttributeOverride(name="nationality.iso2", column = @Column(name="nat_Iso2") ),
@AttributeOverride(name="nationality.name", column = @Column(name="nat_CountryName") )
//nationality columns in homeAddress are overridden
} )
Address homeAddress;
Hibernate Annotations supports something that is not explicitly supported by the JPA specification. You can annotate a embedded object with the @MappedSuperclass
annotation to make the superclass properties persistent (see @MappedSuperclass
for more informations).
You can also use association annotations in an embeddable object (ie @OneToOne
, @ManyToOne
, @OneToMany
or @ManyToMany
). To override the association columns you can use @AssociationOverride
.
If you want to have the same embeddable object type twice in the same entity, the column name defaulting will not work as several embedded objects would share the same set of columns. In plain JPA, you need to override at least one set of columns. Hibernate, however, allows you to enhance the default naming mechanism through the NamingStrategy
interface. You can write a strategy that prevent name clashing in such a situation. DefaultComponentSafeNamingStrategy
is an example of this.
If a property of the embedded object points back to the owning entity, annotate it with the @Parent
annotation. Hibernate will make sure this property is properly loaded with the entity reference.
In XML, use the <component>
element.
<component name="propertyName" class=
"className" insert
="true|false" update
="true|false" access
="field|property|ClassName" lazy="
true|false" optimi
stic-lock="true|false" unique
="true|false" node="element-name|." > <property ...../> <many-to-one .... /> ........ </component>
| |
| |
| |
| |
| |
| |
| |
|
Die untergeordneten <property>
-Tags mappen Properties der untergeordneten Klasse zu den Spalten der Tabelle.
Das <component>
-Element ermöglicht ein <parent>
-Subelement, das eine Property der Komponentenklasse als Rückreferenz zur enthaltenden Entity mappt.
The <dynamic-component>
element allows a Map
to be mapped as a component, where the property names refer to keys of the map. See Abschnitt 9.5, „Dynamische Komponenten“ for more information. This feature is not supported in annotations.
Java is a language supporting polymorphism: a class can inherit from another. Several strategies are possible to persist a class hierarchy:
Single table per class hierarchy strategy: a single table hosts all the instances of a class hierarchy
Joined subclass strategy: one table per class and subclass is present and each table persist the properties specific to a given subclass. The state of the entity is then stored in its corresponding class table and all its superclasses
Table per class strategy: one table per concrete class and subclass is present and each table persist the properties of the class and its superclasses. The state of the entity is then stored entirely in the dedicated table for its class.
With this approach the properties of all the subclasses in a given mapped class hierarchy are stored in a single table.
Each subclass declares its own persistent properties and subclasses. Version and id properties are assumed to be inherited from the root class. Each subclass in a hierarchy must define a unique discriminator value. If this is not specified, the fully qualified Java class name is used.
@Entity
@Inheritance(strategy=InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(
name="planetype",
discriminatorType=DiscriminatorType.STRING
)
@DiscriminatorValue("Plane")
public class Plane { ... }
@Entity
@DiscriminatorValue("A320")
public class A320 extends Plane { ... }
In hbm.xml, for the table-per-class-hierarchy mapping strategy, the <subclass>
declaration is used. For example:
<subclass name="ClassName" discri
minator-value="discriminator_value" proxy=
"ProxyInterface" lazy="
true|false" dynamic-update="true|false" dynamic-insert="true|false" entity-name="EntityName" node="element-name" extends="SuperclassName"> <property .... /> ..... </subclass>
| |
| |
| |
|
For information about inheritance mappings see Kapitel 10, Inheritance mapping.
Discriminators are required for polymorphic persistence using the table-per-class-hierarchy mapping strategy. It declares a discriminator column of the table. The discriminator column contains marker values that tell the persistence layer what subclass to instantiate for a particular row. Hibernate Core supports the follwoing restricted set of types as discriminator column: string
, character
, integer
, byte
, short
, boolean
, yes_no
, true_false
.
Use the @DiscriminatorColumn
to define the discriminator column as well as the discriminator type.
The enum DiscriminatorType
used in javax.persitence.DiscriminatorColumn
only contains the values STRING
, CHAR
and INTEGER
which means that not all Hibernate supported types are available via the @DiscriminatorColumn
annotation.
You can also use @DiscriminatorFormula
to express in SQL a virtual discriminator column. This is particularly useful when the discriminator value can be extracted from one or more columns of the table. Both @DiscriminatorColumn
and @DiscriminatorFormula
are to be set on the root entity (once per persisted hierarchy).
@org.hibernate.annotations.DiscriminatorOptions
allows to optionally specify Hibernate specific discriminator options which are not standardized in JPA. The available options are force
and insert
. The force
attribute is useful if the table contains rows with "extra" discriminator values that are not mapped to a persistent class. This could for example occur when working with a legacy database. If force
is set to true
Hibernate will specify the allowed discriminator values in the SELECT
query, even when retrieving all instances of the root class. The second option - insert
- tells Hibernate whether or not to include the discriminator column in SQL INSERTs
. Usually the column should be part of the INSERT
statement, but if your discriminator column is also part of a mapped composite identifier you have to set this option to false
.
There is also a @org.hibernate.annotations.ForceDiscriminator
annotation which is deprecated since version 3.6. Use @DiscriminatorOptions
instead.
Finally, use @DiscriminatorValue
on each class of the hierarchy to specify the value stored in the discriminator column for a given entity. If you do not set @DiscriminatorValue
on a class, the fully qualified class name is used.
@Entity
@Inheritance(strategy=InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(
name="planetype",
discriminatorType=DiscriminatorType.STRING
)
@DiscriminatorValue("Plane")
public class Plane { ... }
@Entity
@DiscriminatorValue("A320")
public class A320 extends Plane { ... }
In hbm.xml, the <discriminator>
element is used to define the discriminator column or formula:
<discriminator column="discriminator_column" type="
discriminator_type" force=
"true|false" insert
="true|false" formul
a="arbitrary sql expression" />
| |
| |
| |
| |
|
Die tatsächlichen Werte der Diskriminatorspalte werden durch das discriminator-value
-Attribut der <class>
und <subclass>
-Elemente spezifiziert.
The formula
attribute allows you to declare an arbitrary SQL expression that will be used to evaluate the type of a row. For example:
<discriminator
formula="case when CLASS_TYPE in ('a', 'b', 'c') then 0 else 1 end"
type="integer"/>
Each subclass can also be mapped to its own table. This is called the table-per-subclass mapping strategy. An inherited state is retrieved by joining with the table of the superclass. A discriminator column is not required for this mapping strategy. Each subclass must, however, declare a table column holding the object identifier. The primary key of this table is also a foreign key to the superclass table and described by the @PrimaryKeyJoinColumn
s or the <key>
element.
@Entity @Table(name="CATS")
@Inheritance(strategy=InheritanceType.JOINED)
public class Cat implements Serializable {
@Id @GeneratedValue(generator="cat-uuid")
@GenericGenerator(name="cat-uuid", strategy="uuid")
String getId() { return id; }
...
}
@Entity @Table(name="DOMESTIC_CATS")
@PrimaryKeyJoinColumn(name="CAT")
public class DomesticCat extends Cat {
public String getName() { return name; }
}
The table name still defaults to the non qualified class name. Also if @PrimaryKeyJoinColumn
is not set, the primary key / foreign key columns are assumed to have the same names as the primary key columns of the primary table of the superclass.
In hbm.xml, use the <joined-subclass>
element. For example:
<joined-subclass name="ClassName" table=
"tablename" proxy=
"ProxyInterface" lazy="
true|false" dynamic-update="true|false" dynamic-insert="true|false" schema="schema" catalog="catalog" extends="SuperclassName" persister="ClassName" subselect="SQL expression" entity-name="EntityName" node="element-name"> <key .... > <property .... /> ..... </joined-subclass>
| |
| |
| |
|
Use the <key>
element to declare the primary key / foreign key column. The mapping at the start of the chapter would then be re-written as:
<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD//EN"
"http://www.hibernate.org/dtd/hibernate-mapping-3.0.dtd">
<hibernate-mapping package="eg">
<class name="Cat" table="CATS">
<id name="id" column="uid" type="long">
<generator class="hilo"/>
</id>
<property name="birthdate" type="date"/>
<property name="color" not-null="true"/>
<property name="sex" not-null="true"/>
<property name="weight"/>
<many-to-one name="mate"/>
<set name="kittens">
<key column="MOTHER"/>
<one-to-many class="Cat"/>
</set>
<joined-subclass name="DomesticCat" table="DOMESTIC_CATS">
<key column="CAT"/>
<property name="name" type="string"/>
</joined-subclass>
</class>
<class name="eg.Dog">
<!-- mapping for Dog could go here -->
</class>
</hibernate-mapping>
For information about inheritance mappings see Kapitel 10, Inheritance mapping.
A third option is to map only the concrete classes of an inheritance hierarchy to tables. This is called the table-per-concrete-class strategy. Each table defines all persistent states of the class, including the inherited state. In Hibernate, it is not necessary to explicitly map such inheritance hierarchies. You can map each class as a separate entity root. However, if you wish use polymorphic associations (e.g. an association to the superclass of your hierarchy), you need to use the union subclass mapping.
@Entity
@Inheritance(strategy = InheritanceType.TABLE_PER_CLASS)
public class Flight implements Serializable { ... }
Or in hbm.xml:
<union-subclass name="ClassName" table=
"tablename" proxy=
"ProxyInterface" lazy="
true|false" dynamic-update="true|false" dynamic-insert="true|false" schema="schema" catalog="catalog" extends="SuperclassName" abstract="true|false" persister="ClassName" subselect="SQL expression" entity-name="EntityName" node="element-name"> <property .... /> ..... </union-subclass>
| |
| |
| |
|
Für diese Mapping-Strategie ist keine Diskriminatorspalte oder Schlüsselspalte erforderlich.
For information about inheritance mappings see Kapitel 10, Inheritance mapping.
This is sometimes useful to share common properties through a technical or a business superclass without including it as a regular mapped entity (ie no specific table for this entity). For that purpose you can map them as @MappedSuperclass
.
@MappedSuperclass
public class BaseEntity {
@Basic
@Temporal(TemporalType.TIMESTAMP)
public Date getLastUpdate() { ... }
public String getLastUpdater() { ... }
...
}
@Entity class Order extends BaseEntity {
@Id public Integer getId() { ... }
...
}
In database, this hierarchy will be represented as an Order
table having the id
, lastUpdate
and lastUpdater
columns. The embedded superclass property mappings are copied into their entity subclasses. Remember that the embeddable superclass is not the root of the hierarchy though.
Properties from superclasses not mapped as @MappedSuperclass
are ignored.
The default access type (field or methods) is used, unless you use the @Access
annotation.
The same notion can be applied to @Embeddable
objects to persist properties from their superclasses. You also need to use @MappedSuperclass
to do that (this should not be considered as a standard EJB3 feature though)
It is allowed to mark a class as @MappedSuperclass
in the middle of the mapped inheritance hierarchy.
Any class in the hierarchy non annotated with @MappedSuperclass
nor @Entity
will be ignored.
You can override columns defined in entity superclasses at the root entity level using the @AttributeOverride
annotation.
@MappedSuperclass
public class FlyingObject implements Serializable {
public int getAltitude() {
return altitude;
}
@Transient
public int getMetricAltitude() {
return metricAltitude;
}
@ManyToOne
public PropulsionType getPropulsion() {
return metricAltitude;
}
...
}
@Entity
@AttributeOverride( name="altitude", column = @Column(name="fld_altitude") )
@AssociationOverride(
name="propulsion",
joinColumns = @JoinColumn(name="fld_propulsion_fk")
)
public class Plane extends FlyingObject {
...
}
The altitude
property will be persisted in an fld_altitude
column of table Plane
and the propulsion association will be materialized in a fld_propulsion_fk
foreign key column.
You can define @AttributeOverride
(s) and @AssociationOverride
(s) on @Entity
classes, @MappedSuperclass
classes and properties pointing to an @Embeddable
object.
In hbm.xml, simply map the properties of the superclass in the <class>
element of the entity that needs to inherit them.
While not recommended for a fresh schema, some legacy databases force your to map a single entity on several tables.
Using the @SecondaryTable
or @SecondaryTables
class level annotations. To express that a column is in a particular table, use the table
parameter of @Column
or @JoinColumn
.
@Entity
@Table(name="MainCat")
@SecondaryTables({
@SecondaryTable(name="Cat1", pkJoinColumns={
@PrimaryKeyJoinColumn(name="cat_id", referencedColumnName="id")
),
@SecondaryTable(name="Cat2", uniqueConstraints={@UniqueConstraint(columnNames={"storyPart2"})})
})
public class Cat implements Serializable {
private Integer id;
private String name;
private String storyPart1;
private String storyPart2;
@Id @GeneratedValue
public Integer getId() {
return id;
}
public String getName() {
return name;
}
@Column(table="Cat1")
public String getStoryPart1() {
return storyPart1;
}
@Column(table="Cat2")
public String getStoryPart2() {
return storyPart2;
}
}
In this example, name
will be in MainCat
. storyPart1
will be in Cat1
and storyPart2
will be in Cat2
. Cat1
will be joined to MainCat
using the cat_id
as a foreign key, and Cat2
using id
(ie the same column name, the MainCat
id column has). Plus a unique constraint on storyPart2
has been set.
There is also additional tuning accessible via the @org.hibernate.annotations.Table
annotation:
fetch
: If set to JOIN, the default, Hibernate will use an inner join to retrieve a secondary table defined by a class or its superclasses and an outer join for a secondary table defined by a subclass. If set to SELECT
then Hibernate will use a sequential select for a secondary table defined on a subclass, which will be issued only if a row turns out to represent an instance of the subclass. Inner joins will still be used to retrieve a secondary defined by the class and its superclasses.
inverse
: If true, Hibernate will not try to insert or update the properties defined by this join. Default to false.
optional
: If enabled (the default), Hibernate will insert a row only if the properties defined by this join are non-null and will always use an outer join to retrieve the properties.
foreignKey
: defines the Foreign Key name of a secondary table pointing back to the primary table.
Make sure to use the secondary table name in the appliesto
property
@Entity
@Table(name="MainCat")
@SecondaryTable(name="Cat1")
@org.hibernate.annotations.Table(
appliesTo="Cat1",
fetch=FetchMode.SELECT,
optional=true)
public class Cat implements Serializable {
private Integer id;
private String name;
private String storyPart1;
private String storyPart2;
@Id @GeneratedValue
public Integer getId() {
return id;
}
public String getName() {
return name;
}
@Column(table="Cat1")
public String getStoryPart1() {
return storyPart1;
}
@Column(table="Cat2")
public String getStoryPart2() {
return storyPart2;
}
}
In hbm.xml, use the <join>
element.
<join table="tablename" schema
="owner" catalo
g="catalog" fetch=
"join|select" invers
e="true|false" option
al="true|false"> <key ... /> <property ... /> ... </join>
| |
| |
| |
| |
| |
|
For example, address information for a person can be mapped to a separate table while preserving value type semantics for all properties:
<class name="Person"
table="PERSON">
<id name="id" column="PERSON_ID">...</id>
<join table="ADDRESS">
<key column="ADDRESS_ID"/>
<property name="address"/>
<property name="zip"/>
<property name="country"/>
</join>
...
This feature is often only useful for legacy data models. We recommend fewer tables than classes and a fine-grained domain model. However, it is useful for switching between inheritance mapping strategies in a single hierarchy, as explained later.
To link one entity to an other, you need to map the association property as a to one association. In the relational model, you can either use a foreign key or an association table, or (a bit less common) share the same primary key value between the two entities.
To mark an association, use either @ManyToOne
or @OnetoOne
.
@ManyToOne
and @OneToOne
have a parameter named targetEntity
which describes the target entity name. You usually don't need this parameter since the default value (the type of the property that stores the association) is good in almost all cases. However this is useful when you want to use interfaces as the return type instead of the regular entity.
Setting a value of the cascade
attribute to any meaningful value other than nothing will propagate certain operations to the associated object. The meaningful values are divided into three categories.
basic operations, which include: persist, merge, delete, save-update, evict, replicate, lock and refresh
;
special values: delete-orphan
or all
;
comma-separated combinations of operation names: cascade="persist,merge,evict"
or cascade="all,delete-orphan"
. See Abschnitt 11.11, „Transitive Persistenz“ for a full explanation. Note that single valued many-to-one associations do not support orphan delete.
By default, single point associations are eagerly fetched in JPA 2. You can mark it as lazily fetched by using @ManyToOne(fetch=FetchType.LAZY)
in which case Hibernate will proxy the association and load it when the state of the associated entity is reached. You can force Hibernate not to use a proxy by using @LazyToOne(NO_PROXY)
. In this case, the property is fetched lazily when the instance variable is first accessed. This requires build-time bytecode instrumentation. lazy="false" specifies that the association will always be eagerly fetched.
With the default JPA options, single-ended associations are loaded with a subsequent select if set to LAZY
, or a SQL JOIN is used for EAGER
associations. You can however adjust the fetching strategy, ie how data is fetched by using @Fetch
. FetchMode
can be SELECT
(a select is triggered when the association needs to be loaded) or JOIN
(use a SQL JOIN to load the association while loading the owner entity). JOIN
overrides any lazy attribute (an association loaded through a JOIN
strategy cannot be lazy).
An ordinary association to another persistent class is declared using a
@ManyToOne
if several entities can point to the the target entity
@OneToOne
if only a single entity can point to the the target entity
and a foreign key in one table is referencing the primary key column(s) of the target table.
@Entity
public class Flight implements Serializable {
@ManyToOne( cascade = {CascadeType.PERSIST, CascadeType.MERGE} )
@JoinColumn(name="COMP_ID")
public Company getCompany() {
return company;
}
...
}
The @JoinColumn
attribute is optional, the default value(s) is the concatenation of the name of the relationship in the owner side, _ (underscore), and the name of the primary key column in the owned side. In this example company_id
because the property name is company
and the column id of Company is id
.
@Entity
public class Flight implements Serializable {
@ManyToOne( cascade = {CascadeType.PERSIST, CascadeType.MERGE}, targetEntity=CompanyImpl.class )
@JoinColumn(name="COMP_ID")
public Company getCompany() {
return company;
}
...
}
public interface Company {
...
}
You can also map a to one association through an association table. This association table described by the @JoinTable
annotation will contains a foreign key referencing back the entity table (through @JoinTable.joinColumns
) and a a foreign key referencing the target entity table (through @JoinTable.inverseJoinColumns
).
@Entity
public class Flight implements Serializable {
@ManyToOne( cascade = {CascadeType.PERSIST, CascadeType.MERGE} )
@JoinTable(name="Flight_Company",
joinColumns = @JoinColumn(name="FLIGHT_ID"),
inverseJoinColumns = @JoinColumn(name="COMP_ID")
)
public Company getCompany() {
return company;
}
...
}
You can use a SQL fragment to simulate a physical join column using the @JoinColumnOrFormula
/ @JoinColumnOrformulas
annotations (just like you can use a SQL fragment to simulate a property column via the @Formula
annotation).
@Entity
public class Ticket implements Serializable {
@ManyToOne
@JoinColumnOrFormula(formula="(firstname + ' ' + lastname)")
public Person getOwner() {
return person;
}
...
}
You can mark an association as mandatory by using the optional=false
attribute. We recommend to use Bean Validation's @NotNull
annotation as a better alternative however. As a consequence, the foreign key column(s) will be marked as not nullable (if possible).
When Hibernate cannot resolve the association because the expected associated element is not in database (wrong id on the association column), an exception is raised. This might be inconvenient for legacy and badly maintained schemas. You can ask Hibernate to ignore such elements instead of raising an exception using the @NotFound
annotation.
Beispiel 5.1. @NotFound annotation
@Entity
public class Child {
...
@ManyToOne
@NotFound(action=NotFoundAction.IGNORE)
public Parent getParent() { ... }
...
}
Sometimes you want to delegate to your database the deletion of cascade when a given entity is deleted. In this case Hibernate generates a cascade delete constraint at the database level.
Beispiel 5.2. @OnDelete annotation
@Entity
public class Child {
...
@ManyToOne
@OnDelete(action=OnDeleteAction.CASCADE)
public Parent getParent() { ... }
...
}
Foreign key constraints, while generated by Hibernate, have a fairly unreadable name. You can override the constraint name using @ForeignKey
.
Beispiel 5.3. @ForeignKey annotation
@Entity
public class Child {
...
@ManyToOne
@ForeignKey(name="FK_PARENT")
public Parent getParent() { ... }
...
}
alter table Child add constraint FK_PARENT foreign key (parent_id) references Parent
Sometimes, you want to link one entity to an other not by the target entity primary key but by a different unique key. You can achieve that by referencing the unique key column(s) in @JoinColumn.referenceColumnName
.
@Entity
class Person {
@Id Integer personNumber;
String firstName;
@Column(name="I")
String initial;
String lastName;
}
@Entity
class Home {
@ManyToOne
@JoinColumns({
@JoinColumn(name="first_name", referencedColumnName="firstName"),
@JoinColumn(name="init", referencedColumnName="I"),
@JoinColumn(name="last_name", referencedColumnName="lastName"),
})
Person owner
}
This is not encouraged however and should be reserved to legacy mappings.
In hbm.xml, mapping an association is similar. The main difference is that a @OneToOne
is mapped as <many-to-one unique="true"/>
, let's dive into the subject.
<many-to-one name="propertyName" column
="column_name" class=
"ClassName" cascad
e="cascade_style" fetch=
"join|select" update
="true|false" insert
="true|false" proper
ty-ref="propertyNameFromAssociatedClass" access
="field|property|ClassName" unique
="true|false" not-nu
ll="true|false" optimi
stic-lock="true|false" lazy="
proxy|no-proxy|false" not-fo
und="ignore|exception" entity
-name="EntityName" formul
a="arbitrary SQL expression" node="element-name|@attribute-name|element/@attribute|." embed-xml="true|false" index="index_name" unique_key="unique_key_id" foreign-key="foreign_key_name" />
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
|
Setting a value of the cascade
attribute to any meaningful value other than none
will propagate certain operations to the associated object. The meaningful values are divided into three categories. First, basic operations, which include: persist, merge, delete, save-update, evict, replicate, lock and refresh
; second, special values: delete-orphan
; and third,all
comma-separated combinations of operation names: cascade="persist,merge,evict"
or cascade="all,delete-orphan"
. See Abschnitt 11.11, „Transitive Persistenz“ for a full explanation. Note that single valued, many-to-one and one-to-one, associations do not support orphan delete.
Here is an example of a typical many-to-one
declaration:
<many-to-one name="product" class="Product" column="PRODUCT_ID"/>
The property-ref
attribute should only be used for mapping legacy data where a foreign key refers to a unique key of the associated table other than the primary key. This is a complicated and confusing relational model. For example, if the Product
class had a unique serial number that is not the primary key. The unique
attribute controls Hibernate's DDL generation with the SchemaExport tool.
<property name="serialNumber" unique="true" type="string" column="SERIAL_NUMBER"/>
Dann könnte das Mapping für OrderItem
folgendes verwenden:
<many-to-one name="product" property-ref="serialNumber" column="PRODUCT_SERIAL_NUMBER"/>
This is not encouraged, however.
Wenn der eindeutige Schlüssel, auf den verwiesen wird, mehrere Properties der zugehörigen Entity enthält, so sollten die Properties, auf die verwiesen wird, in einem benannten <properties>
-Element gemappt werden.
If the referenced unique key is the property of a component, you can specify a property path:
<many-to-one name="owner" property-ref="identity.ssn" column="OWNER_SSN"/>
The second approach is to ensure an entity and its associated entity share the same primary key. In this case the primary key column is also a foreign key and there is no extra column. These associations are always one to one.
Beispiel 5.4. One to One association
@Entity
public class Body {
@Id
public Long getId() { return id; }
@OneToOne(cascade = CascadeType.ALL)
@MapsId
public Heart getHeart() {
return heart;
}
...
}
@Entity
public class Heart {
@Id
public Long getId() { ...}
}
Many people got confused by these primary key based one to one associations. They can only be lazily loaded if Hibernate knows that the other side of the association is always present. To indicate to Hibernate that it is the case, use @OneToOne(optional=false)
.
In hbm.xml, use the following mapping.
<one-to-one name="propertyName" class=
"ClassName" cascad
e="cascade_style" constr
ained="true|false" fetch=
"join|select" proper
ty-ref="propertyNameFromAssociatedClass" access
="field|property|ClassName" formul
a="any SQL expression" lazy="
proxy|no-proxy|false" entity
-name="EntityName" node="element-name|@attribute-name|element/@attribute|." embed-xml="true|false" foreign-key="foreign_key_name" />
| |
| |
| |
| |
| |
| |
| |
| |
| |
|
Primary key associations do not need an extra table column. If two rows are related by the association, then the two table rows share the same primary key value. To relate two objects by a primary key association, ensure that they are assigned the same identifier value.
For a primary key association, add the following mappings to Employee
and Person
respectively:
<one-to-one name="person" class="Person"/>
<one-to-one name="employee" class="Employee" constrained="true"/>
Ensure that the primary keys of the related rows in the PERSON and EMPLOYEE tables are equal. You use a special Hibernate identifier generation strategy called foreign
:
<class name="person" table="PERSON">
<id name="id" column="PERSON_ID">
<generator class="foreign">
<param name="property">employee</param>
</generator>
</id>
...
<one-to-one name="employee"
class="Employee"
constrained="true"/>
</class>
A newly saved instance of Person
is assigned the same primary key value as the Employee
instance referred with the employee
property of that Person
.
Although we recommend the use of surrogate keys as primary keys, you should try to identify natural keys for all entities. A natural key is a property or combination of properties that is unique and non-null. It is also immutable. Map the properties of the natural key as @NaturalId
or map them inside the <natural-id>
element. Hibernate will generate the necessary unique key and nullability constraints and, as a result, your mapping will be more self-documenting.
@Entity
public class Citizen {
@Id
@GeneratedValue
private Integer id;
private String firstname;
private String lastname;
@NaturalId
@ManyToOne
private State state;
@NaturalId
private String ssn;
...
}
//and later on query
List results = s.createCriteria( Citizen.class )
.add( Restrictions.naturalId().set( "ssn", "1234" ).set( "state", ste ) )
.list();
Or in XML,
<natural-id mutable="true|false"/>
<property ... />
<many-to-one ... />
......
</natural-id>
It is recommended that you implement equals()
and hashCode()
to compare the natural key properties of the entity.
This mapping is not intended for use with entities that have natural primary keys.
mutable
(optional - defaults to false
): by default, natural identifier properties are assumed to be immutable (constant).
There is one more type of property mapping. The @Any
mapping defines a polymorphic association to classes from multiple tables. This type of mapping requires more than one column. The first column contains the type of the associated entity. The remaining columns contain the identifier. It is impossible to specify a foreign key constraint for this kind of association. This is not the usual way of mapping polymorphic associations and you should use this only in special cases. For example, for audit logs, user session data, etc.
The @Any
annotation describes the column holding the metadata information. To link the value of the metadata information and an actual entity type, The @AnyDef
and @AnyDefs
annotations are used. The metaType
attribute allows the application to specify a custom type that maps database column values to persistent classes that have identifier properties of the type specified by idType
. You must specify the mapping from values of the metaType
to class names.
@Any( metaColumn = @Column( name = "property_type" ), fetch=FetchType.EAGER )
@AnyMetaDef(
idType = "integer",
metaType = "string",
metaValues = {
@MetaValue( value = "S", targetEntity = StringProperty.class ),
@MetaValue( value = "I", targetEntity = IntegerProperty.class )
} )
@JoinColumn( name = "property_id" )
public Property getMainProperty() {
return mainProperty;
}
Note that @AnyDef
can be mutualized and reused. It is recommended to place it as a package metadata in this case.
//on a package
@AnyMetaDef( name="property"
idType = "integer",
metaType = "string",
metaValues = {
@MetaValue( value = "S", targetEntity = StringProperty.class ),
@MetaValue( value = "I", targetEntity = IntegerProperty.class )
} )
package org.hibernate.test.annotations.any;
//in a class
@Any( metaDef="property", metaColumn = @Column( name = "property_type" ), fetch=FetchType.EAGER )
@JoinColumn( name = "property_id" )
public Property getMainProperty() {
return mainProperty;
}
The hbm.xml equivalent is:
<any name="being" id-type="long" meta-type="string">
<meta-value value="TBL_ANIMAL" class="Animal"/>
<meta-value value="TBL_HUMAN" class="Human"/>
<meta-value value="TBL_ALIEN" class="Alien"/>
<column name="table_name"/>
<column name="id"/>
</any>
You cannot mutualize the metadata in hbm.xml as you can in annotations.
<any name="propertyName" id-typ
e="idtypename" meta-t
ype="metatypename" cascad
e="cascade_style" access
="field|property|ClassName" optimi
stic-lock="true|false" > <meta-value ... /> <meta-value ... /> ..... <column .... /> <column .... /> ..... </any>
| |
| |
| |
| |
| |
|
The <properties>
element allows the definition of a named, logical grouping of the properties of a class. The most important use of the construct is that it allows a combination of properties to be the target of a property-ref
. It is also a convenient way to define a multi-column unique constraint. For example:
<properties name="logicalName" insert
="true|false" update
="true|false" optimi
stic-lock="true|false" unique
="true|false" > <property ...../> <many-to-one .... /> ........ </properties>
| |
| |
| |
| |
|
Nehmen wir etwa das folgende <properties>
-Mapping:
<class name="Person">
<id name="personNumber"/>
...
<properties name="name"
unique="true" update="false">
<property name="firstName"/>
<property name="initial"/>
<property name="lastName"/>
</properties>
</class>
You might have some legacy data association that refers to this unique key of the Person
table, instead of to the primary key:
<many-to-one name="owner"
class="Person" property-ref="name">
<column name="firstName"/>
<column name="initial"/>
<column name="lastName"/>
</many-to-one>
When using annotations as a mapping strategy, such construct is not necessary as the binding between a column and its related column on the associated table is done directly
@Entity
class Person {
@Id Integer personNumber;
String firstName;
@Column(name="I")
String initial;
String lastName;
}
@Entity
class Home {
@ManyToOne
@JoinColumns({
@JoinColumn(name="first_name", referencedColumnName="firstName"),
@JoinColumn(name="init", referencedColumnName="I"),
@JoinColumn(name="last_name", referencedColumnName="lastName"),
})
Person owner
}
The use of this outside the context of mapping legacy data is not recommended.
The hbm.xml structure has some specificities naturally not present when using annotations, let's describe them briefly.
All XML mappings should declare the doctype shown. The actual DTD can be found at the URL above, in the directory hibernate-x.x.x/src/org/hibernate
, or in hibernate3.jar
. Hibernate will always look for the DTD in its classpath first. If you experience lookups of the DTD using an Internet connection, check the DTD declaration against the contents of your classpath.
Hibernate will first attempt to resolve DTDs in its classpath. It does this is by registering a custom org.xml.sax.EntityResolver
implementation with the SAXReader it uses to read in the xml files. This custom EntityResolver
recognizes two different systemId namespaces:
a hibernate namespace
is recognized whenever the resolver encounters a systemId starting with http://www.hibernate.org/dtd/
. The resolver attempts to resolve these entities via the classloader which loaded the Hibernate classes.
a user namespace
is recognized whenever the resolver encounters a systemId using a classpath://
URL protocol. The resolver will attempt to resolve these entities via (1) the current thread context classloader and (2) the classloader which loaded the Hibernate classes.
The following is an example of utilizing user namespacing:
<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd" [
<!ENTITY types SYSTEM "classpath://your/domain/types.xml">
]>
<hibernate-mapping package="your.domain">
<class name="MyEntity">
<id name="id" type="my-custom-id-type">
...
</id>
<class>
&types;
</hibernate-mapping>
Where types.xml
is a resource in the your.domain
package and contains a custom typedef.
This element has several optional attributes. The schema
and catalog
attributes specify that tables referred to in this mapping belong to the named schema and/or catalog. If they are specified, tablenames will be qualified by the given schema and catalog names. If they are missing, tablenames will be unqualified. The default-cascade
attribute specifies what cascade style should be assumed for properties and collections that do not specify a cascade
attribute. By default, the auto-import
attribute allows you to use unqualified class names in the query language.
<hibernate-mapping schema="schemaName" catal
og="catalogName" defau
lt-cascade="cascade_style" defau
lt-access="field|property|ClassName" defau
lt-lazy="true|false" auto-
import="true|false" packa
ge="package.name" />
| |
| |
| |
| |
| |
| |
|
If you have two persistent classes with the same unqualified name, you should set auto-import="false"
. An exception will result if you attempt to assign two classes to the same "imported" name.
The hibernate-mapping
element allows you to nest several persistent <class>
mappings, as shown above. It is, however, good practice (and expected by some tools) to map only a single persistent class, or a single class hierarchy, in one mapping file and name it after the persistent superclass. For example, Cat.hbm.xml
, Dog.hbm.xml
, or if using inheritance, Animal.hbm.xml
.
The <key>
element is featured a few times within this guide. It appears anywhere the parent mapping element defines a join to a new table that references the primary key of the original table. It also defines the foreign key in the joined table:
<key column="columnname" on-del
ete="noaction|cascade" proper
ty-ref="propertyName" not-nu
ll="true|false" update
="true|false" unique
="true|false" />
| |
| |
| |
| |
| |
|
For systems where delete performance is important, we recommend that all keys should be defined on-delete="cascade"
. Hibernate uses a database-level ON CASCADE DELETE
constraint, instead of many individual DELETE
statements. Be aware that this feature bypasses Hibernate's usual optimistic locking strategy for versioned data.
The not-null
and update
attributes are useful when mapping a unidirectional one-to-many association. If you map a unidirectional one-to-many association to a non-nullable foreign key, you must declare the key column using <key not-null="true">
.
If your application has two persistent classes with the same name, and you do not want to specify the fully qualified package name in Hibernate queries, classes can be "imported" explicitly, rather than relying upon auto-import="true"
. You can also import classes and interfaces that are not explicitly mapped:
<import class="java.lang.Object" rename="Universe"/>
<import class="ClassName" rename
="ShortName" />
| |
|
This feature is unique to hbm.xml and is not supported in annotations.
Mapping elements which accept a column
attribute will alternatively accept a <column>
subelement. Likewise, <formula>
is an alternative to the formula
attribute. For example:
<column
name="column_name"
length="N"
precision="N"
scale="N"
not-null="true|false"
unique="true|false"
unique-key="multicolumn_unique_key_name"
index="index_name"
sql-type="sql_type_name"
check="SQL expression"
default="SQL expression"
read="SQL expression"
write="SQL expression"/>
<formula>SQL expression</formula>
Most of the attributes on column
provide a means of tailoring the DDL during automatic schema generation. The read
and write
attributes allow you to specify custom SQL that Hibernate will use to access the column's value. For more on this, see the discussion of column read and write expressions.
The column
and formula
elements can even be combined within the same property or association mapping to express, for example, exotic join conditions.
<many-to-one name="homeAddress" class="Address"
insert="false" update="false">
<column name="person_id" not-null="true" length="10"/>
<formula>'MAILING'</formula>
</many-to-one>
In relation to the persistence service, Java language-level objects are classified into two groups:
An entity exists independently of any other objects holding references to the entity. Contrast this with the usual Java model, where an unreferenced object is garbage collected. Entities must be explicitly saved and deleted. Saves and deletions, however, can be cascaded from a parent entity to its children. This is different from the ODMG model of object persistence by reachability and corresponds more closely to how application objects are usually used in large systems. Entities support circular and shared references. They can also be versioned.
An entity's persistent state consists of references to other entities and instances of value types. Values are primitives: collections (not what is inside a collection), components and certain immutable objects. Unlike entities, values in particular collections and components, are persisted and deleted by reachability. Since value objects and primitives are persisted and deleted along with their containing entity, they cannot be independently versioned. Values have no independent identity, so they cannot be shared by two entities or collections.
Until now, we have been using the term "persistent class" to refer to entities. We will continue to do that. Not all user-defined classes with a persistent state, however, are entities. A component is a user-defined class with value semantics. A Java property of type java.lang.String
also has value semantics. Given this definition, all types (classes) provided by the JDK have value type semantics in Java, while user-defined types can be mapped with entity or value type semantics. This decision is up to the application developer. An entity class in a domain model will normally have shared references to a single instance of that class, while composition or aggregation usually translates to a value type.
We will revisit both concepts throughout this reference guide.
The challenge is to map the Java type system, and the developers' definition of entities and value types, to the SQL/database type system. The bridge between both systems is provided by Hibernate. For entities, <class>
, <subclass>
and so on are used. For value types we use <property>
, <component>
etc., that usually have a type
attribute. The value of this attribute is the name of a Hibernate mapping type. Hibernate provides a range of mappings for standard JDK value types out of the box. You can write your own mapping types and implement your own custom conversion strategies.
With the exception of collections, all built-in Hibernate types support null semantics.
The built-in basic mapping types can be roughly categorized into the following:
integer, long, short, float, double, character, byte, boolean, yes_no, true_false
Typen-Mappings von Java-"Primitives" oder "Wrapper-Klassen" zu passenden (Anbieter-spezifischen) SQL-Spaltentypen. boolean, yes_no
und true_false
sind alternative Verschlüsselungen für einen Java boolean
oder java.lang.Boolean
.
string
Ein "Type-Mapping" von java.lang.String
zu VARCHAR
(oder Oracle VARCHAR2
).
date, time, timestamp
Type-Mappings von java.util.Date
und dessen Subklassen zu SQL-Typen DATE
, TIME
und TIMESTAMP
(oder äquivalent).
calendar, calendar_date
Type-Mappings von java.util.Calendar
zu SQL-Typen TIMESTAMP
und DATE
(oder äquivalent).
big_decimal, big_integer
Type-Mappings von java.math.BigDecimal
und java.math.BigInteger
zu NUMERIC
(oder Oracle NUMBER
).
locale, timezone, currency
Type-Mappings von java.util.Locale
, java.util.TimeZone
und java.util.Currency
zuVARCHAR
(oder Oracle VARCHAR2
). Instanzen von Locale
und Currency
werden zu ihren ISO-Codes gemappt. Instanzen von TimeZone
werden zu ihrer ID
gemappt.
class
Ein Type-Mapping von java.lang.Class
zu VARCHAR
(oder Oracle VARCHAR2
). Eine Class
wird zu ihrem vollständigen Namen gemappt.
binary
Mappt Byte-Arrays zum zugehörigen SQL-Binärtyp.
text
Maps long Java strings to a SQL LONGVARCHAR
or TEXT
type.
image
Maps long byte arrays to a SQL LONGVARBINARY
.
serializable
Maps serializable Java types to an appropriate SQL binary type. You can also indicate the Hibernate type serializable
with the name of a serializable Java class or interface that does not default to a basic type.
clob, blob
Type mappings for the JDBC classes java.sql.Clob
and java.sql.Blob
. These types can be inconvenient for some applications, since the blob or clob object cannot be reused outside of a transaction. Driver support is patchy and inconsistent.
materialized_clob
Maps long Java strings to a SQL CLOB
type. When read, the CLOB
value is immediately materialized into a Java string. Some drivers require the CLOB
value to be read within a transaction. Once materialized, the Java string is available outside of the transaction.
materialized_blob
Maps long Java byte arrays to a SQL BLOB
type. When read, the BLOB
value is immediately materialized into a byte array. Some drivers require the BLOB
value to be read within a transaction. Once materialized, the byte array is available outside of the transaction.
imm_date, imm_time, imm_timestamp, imm_calendar, imm_calendar_date, imm_serializable, imm_binary
Type mappings for what are considered mutable Java types. This is where Hibernate makes certain optimizations appropriate only for immutable Java types, and the application treats the object as immutable. For example, you should not call Date.setTime()
for an instance mapped as imm_timestamp
. To change the value of the property, and have that change made persistent, the application must assign a new, nonidentical, object to the property.
Unique identifiers of entities and collections can be of any basic type except binary
, blob
and clob
. Composite identifiers are also allowed. See below for more information.
Die grundlegenden Wertetypen haben entsprechende Type
-Konstanten, die auf org.hibernate.Hibernate
definiert sind. So repräsentiert Hibernate.STRING
zum Beispiel den string
-Typ.
It is relatively easy for developers to create their own value types. For example, you might want to persist properties of type java.lang.BigInteger
to VARCHAR
columns. Hibernate does not provide a built-in type for this. Custom types are not limited to mapping a property, or collection element, to a single table column. So, for example, you might have a Java property getName()
/setName()
of type java.lang.String
that is persisted to the columns FIRST_NAME
, INITIAL
, SURNAME
.
To implement a custom type, implement either org.hibernate.UserType
or org.hibernate.CompositeUserType
and declare properties using the fully qualified classname of the type. View org.hibernate.test.DoubleStringType
to see the kind of things that are possible.
<property name="twoStrings" type="org.hibernate.test.DoubleStringType">
<column name="first_string"/>
<column name="second_string"/>
</property>
Beachten Sie die Verwendung von <column>
-Tags beim Mappen einer Property zu mehreren Spalten.
Die CompositeUserType
, EnhancedUserType
, UserCollectionType
und UserVersionType
Interfaces unterstützen auch speziellere Einsatzmöglichkeiten.
You can even supply parameters to a UserType
in the mapping file. To do this, your UserType
must implement the org.hibernate.usertype.ParameterizedType
interface. To supply parameters to your custom type, you can use the <type>
element in your mapping files.
<property name="priority">
<type name="com.mycompany.usertypes.DefaultValueIntegerType">
<param name="default">0</param>
</type>
</property>
Der UserType
kann jetzt den Wert für den Parameter mit Namen default
von dem an ihn geleiteten Properties
-Objekt abrufen.
If you regularly use a certain UserType
, it is useful to define a shorter name for it. You can do this using the <typedef>
element. Typedefs assign a name to a custom type, and can also contain a list of default parameter values if the type is parameterized.
<typedef class="com.mycompany.usertypes.DefaultValueIntegerType" name="default_zero">
<param name="default">0</param>
</typedef>
<property name="priority" type="default_zero"/>
Es ist auch möglich, die in einer "typedef" bereitgestellten Parameter von Fall zu Fall unter Verwendung der Typ-Parameter des Property-Mappings außer Kraft zu setzen.
Even though Hibernate's rich range of built-in types and support for components means you will rarely need to use a custom type, it is considered good practice to use custom types for non-entity classes that occur frequently in your application. For example, a MonetaryAmount
class is a good candidate for a CompositeUserType
, even though it could be mapped as a component. One reason for this is abstraction. With a custom type, your mapping documents would be protected against changes to the way monetary values are represented.
It is possible to provide more than one mapping for a particular persistent class. In this case, you must specify an entity name to disambiguate between instances of the two mapped entities. By default, the entity name is the same as the class name. Hibernate lets you specify the entity name when working with persistent objects, when writing queries, or when mapping associations to the named entity.
<class name="Contract" table="Contracts" entity-name="CurrentContract"> ... <set name="history" inverse="true" order-by="effectiveEndDate desc"> <key column="currentContractId"/> <one-to-many entity-name="HistoricalContract"/> </set> </class> <class name="Contract" table="ContractHistory" entity-name="HistoricalContract"> ... <many-to-one name="currentContract" column="currentContractId" entity-name="CurrentContract"/> </class>
Associations are now specified using entity-name
instead of class
.
This feature is not supported in Annotations
You can force Hibernate to quote an identifier in the generated SQL by enclosing the table or column name in backticks in the mapping document. Hibernate will use the correct quotation style for the SQL Dialect
. This is usually double quotes, but the SQL Server uses brackets and MySQL uses backticks.
@Entity @Table(name="`Line Item`")
class LineItem {
@id @Column(name="`Item Id`") Integer id;
@Column(name="`Item #`") int itemNumber
}
<class name="LineItem" table="`Line Item`">
<id name="id" column="`Item Id`"/><generator class="assigned"/></id>
<property name="itemNumber" column="`Item #`"/>
...
</class>
Generated properties are properties that have their values generated by the database. Typically, Hibernate applications needed to refresh
objects that contain any properties for which the database was generating values. Marking properties as generated, however, lets the application delegate this responsibility to Hibernate. When Hibernate issues an SQL INSERT or UPDATE for an entity that has defined generated properties, it immediately issues a select afterwards to retrieve the generated values.
Properties marked as generated must additionally be non-insertable and non-updateable. Only versions, timestamps, and simple properties, can be marked as generated.
never
(the default): the given property value is not generated within the database.
insert
: the given property value is generated on insert, but is not regenerated on subsequent updates. Properties like created-date fall into this category. Even though version and timestamp properties can be marked as generated, this option is not available.
always
: the property value is generated both on insert and on update.
To mark a property as generated, use @Generated
.
Hibernate allows you to customize the SQL it uses to read and write the values of columns mapped to simple properties. For example, if your database provides a set of data encryption functions, you can invoke them for individual columns like this:
@Entity
class CreditCard {
@Column(name="credit_card_num")
@ColumnTransformer(
read="decrypt(credit_card_num)",
write="encrypt(?)")
public String getCreditCardNumber() { return creditCardNumber; }
public void setCreditCardNumber(String number) { this.creditCardNumber = number; }
private String creditCardNumber;
}
or in XML
<property name="creditCardNumber">
<column
name="credit_card_num"
read="decrypt(credit_card_num)"
write="encrypt(?)"/>
</property>
You can use the plural form @ColumnTransformers
if more than one columns need to define either of these rules.
If a property uses more that one column, you must use the forColumn
attribute to specify which column, the expressions are targeting.
@Entity
class User {
@Type(type="com.acme.type.CreditCardType")
@Columns( {
@Column(name="credit_card_num"),
@Column(name="exp_date") } )
@ColumnTransformer(
forColumn="credit_card_num",
read="decrypt(credit_card_num)",
write="encrypt(?)")
public CreditCard getCreditCard() { return creditCard; }
public void setCreditCard(CreditCard card) { this.creditCard = card; }
private CreditCard creditCard;
}
Hibernate applies the custom expressions automatically whenever the property is referenced in a query. This functionality is similar to a derived-property formula
with two differences:
The property is backed by one or more columns that are exported as part of automatic schema generation.
The property is read-write, not read-only.
The write
expression, if specified, must contain exactly one '?' placeholder for the value.
Auxiliary database objects allow for the CREATE and DROP of arbitrary database objects. In conjunction with Hibernate's schema evolution tools, they have the ability to fully define a user schema within the Hibernate mapping files. Although designed specifically for creating and dropping things like triggers or stored procedures, any SQL command that can be run via a java.sql.Statement.execute()
method is valid (for example, ALTERs, INSERTS, etc.). There are essentially two modes for defining auxiliary database objects:
The first mode is to explicitly list the CREATE and DROP commands in the mapping file:
<hibernate-mapping>
...
<database-object>
<create>CREATE TRIGGER my_trigger ...</create>
<drop>DROP TRIGGER my_trigger</drop>
</database-object>
</hibernate-mapping>
The second mode is to supply a custom class that constructs the CREATE and DROP commands. This custom class must implement the org.hibernate.mapping.AuxiliaryDatabaseObject
interface.
<hibernate-mapping>
...
<database-object>
<definition class="MyTriggerDefinition"/>
</database-object>
</hibernate-mapping>
Additionally, these database objects can be optionally scoped so that they only apply when certain dialects are used.
<hibernate-mapping>
...
<database-object>
<definition class="MyTriggerDefinition"/>
<dialect-scope name="org.hibernate.dialect.Oracle9iDialect"/>
<dialect-scope name="org.hibernate.dialect.Oracle10gDialect"/>
</database-object>
</hibernate-mapping>
This feature is not supported in Annotations
As an Object/Relational Mapping solution, Hibernate deals with both the Java and JDBC representations of application data. An online catalog application, for example, most likely has Product
object with a number of attributes such as a sku
, name
, etc. For these individual attributes, Hibernate must be able to read the values out of the database and write them back. This 'marshalling' is the function of a Hibernate type, which is an implementation of the org.hibernate.type.Type
interface. In addition, a Hibernate type describes various aspects of behavior of the Java type such as "how is equality checked?" or "how are values cloned?".
A Hibernate type is neither a Java type nor a SQL datatype; it provides a information about both.
When you encounter the term type in regards to Hibernate be aware that usage might refer to the Java type, the SQL/JDBC type or the Hibernate type.
Hibernate categorizes types into two high-level groups: value types (see Abschnitt 6.1, „Value types“) and entity types (see Abschnitt 6.2, „Entity types“).
The main distinguishing characteristic of a value type is the fact that they do not define their own lifecycle. We say that they are "owned" by something else (specifically an entity, as we will see later) which defines their lifecycle. Value types are further classified into 3 sub-categories: basic types (see Abschnitt 6.1.1, „Basic value types“), composite types (see Abschnitt 6.1.2, „Composite types“) amd collection types (see Abschnitt 6.1.3, „Collection types“).
The norm for basic value types is that they map a single database value (column) to a single, non-aggregated Java type. Hibernate provides a number of built-in basic types, which we will present in the following sections by the Java type. Mainly these follow the natural mappings recommended in the JDBC specification. We will later cover how to override these mapping and how to provide and use alternative type mappings.
org.hibernate.type.StringType
Maps a string to the JDBC VARCHAR type. This is the standard mapping for a string if no Hibernate type is specified.
Registered under string
and java.lang.String
in the type registry (see Abschnitt 6.5, „Type registry“).
org.hibernate.type.MaterializedClob
Maps a string to a JDBC CLOB type
Registered under materialized_clob
in the type registry (see Abschnitt 6.5, „Type registry“).
org.hibernate.type.TextType
Maps a string to a JDBC LONGVARCHAR type
Registered under text
in the type registry (see Abschnitt 6.5, „Type registry“).
org.hibernate.type.CharacterType
Maps a char or java.lang.Character
to a JDBC CHAR
Registered under char
and java.lang.Character
in the type registry (see Abschnitt 6.5, „Type registry“).
org.hibernate.type.BooleanType
Maps a boolean to a JDBC BIT type
Registered under boolean
and java.lang.Boolean
in the type registry (see Abschnitt 6.5, „Type registry“).
org.hibernate.type.NumericBooleanType
Maps a boolean to a JDBC INTEGER type as 0 = false, 1 = true
Registered under numeric_boolean
in the type registry (see Abschnitt 6.5, „Type registry“).
org.hibernate.type.YesNoType
Maps a boolean to a JDBC CHAR type as ('N' | 'n') = false, ( 'Y' | 'y' ) = true
Registered under yes_no
in the type registry (see Abschnitt 6.5, „Type registry“).
org.hibernate.type.TrueFalseType
Maps a boolean to a JDBC CHAR type as ('F' | 'f') = false, ( 'T' | 't' ) = true
Registered under true_false
in the type registry (see Abschnitt 6.5, „Type registry“).
org.hibernate.type.ByteType
Maps a byte or java.lang.Byte
to a JDBC TINYINT
Registered under byte
and java.lang.Byte
in the type registry (see Abschnitt 6.5, „Type registry“).
org.hibernate.type.ShortType
Maps a short or java.lang.Short
to a JDBC SMALLINT
Registered under short
and java.lang.Short
in the type registry (see Abschnitt 6.5, „Type registry“).
org.hibernate.type.IntegerTypes
Maps an int or java.lang.Integer
to a JDBC INTEGER
Registered under int
and java.lang.Integer
in the type registry (see Abschnitt 6.5, „Type registry“).
org.hibernate.type.LongType
Maps a long or java.lang.Long
to a JDBC BIGINT
Registered under long
and java.lang.Long
in the type registry (see Abschnitt 6.5, „Type registry“).
org.hibernate.type.FloatType
Maps a float or java.lang.Float
to a JDBC FLOAT
Registered under float
and java.lang.Float
in the type registry (see Abschnitt 6.5, „Type registry“).
org.hibernate.type.DoubleType
Maps a double or java.lang.Double
to a JDBC DOUBLE
Registered under double
and java.lang.Double
in the type registry (see Abschnitt 6.5, „Type registry“).
org.hibernate.type.BigIntegerType
Maps a java.math.BigInteger
to a JDBC NUMERIC
Registered under big_integer
and java.math.BigInteger
in the type registry (see Abschnitt 6.5, „Type registry“).
org.hibernate.type.BigDecimalType
Maps a java.math.BigDecimal
to a JDBC NUMERIC
Registered under big_decimal
and java.math.BigDecimal
in the type registry (see Abschnitt 6.5, „Type registry“).
org.hibernate.type.TimestampType
Maps a java.sql.Timestamp
to a JDBC TIMESTAMP
Registered under timestamp
, java.sql.Timestamp
and java.util.Date
in the type registry (see Abschnitt 6.5, „Type registry“).
org.hibernate.type.TimeType
Maps a java.sql.Time
to a JDBC TIME
Registered under time
and java.sql.Time
in the type registry (see Abschnitt 6.5, „Type registry“).
org.hibernate.type.DateType
Maps a java.sql.Date
to a JDBC DATE
Registered under date
and java.sql.Date
in the type registry (see Abschnitt 6.5, „Type registry“).
org.hibernate.type.CalendarType
Maps a java.util.Calendar
to a JDBC TIMESTAMP
Registered under calendar
, java.util.Calendar
and java.util.GregorianCalendar
in the type registry (see Abschnitt 6.5, „Type registry“).
org.hibernate.type.CalendarDateType
Maps a java.util.Calendar
to a JDBC DATE
Registered under calendar_date
in the type registry (see Abschnitt 6.5, „Type registry“).
org.hibernate.type.CurrencyType
Maps a java.util.Currency
to a JDBC VARCHAR (using the Currency code)
Registered under currency
and java.util.Currency
in the type registry (see Abschnitt 6.5, „Type registry“).
org.hibernate.type.LocaleType
Maps a java.util.Locale
to a JDBC VARCHAR (using the Locale code)
Registered under locale
and java.util.Locale
in the type registry (see Abschnitt 6.5, „Type registry“).
org.hibernate.type.TimeZoneType
Maps a java.util.TimeZone
to a JDBC VARCHAR (using the TimeZone ID)
Registered under timezone
and java.util.TimeZone
in the type registry (see Abschnitt 6.5, „Type registry“).
org.hibernate.type.UrlType
Maps a java.net.URL
to a JDBC VARCHAR (using the external form)
Registered under url
and java.net.URL
in the type registry (see Abschnitt 6.5, „Type registry“).
org.hibernate.type.ClassType
Maps a java.lang.Class
to a JDBC VARCHAR (using the Class name)
Registered under class
and java.lang.Class
in the type registry (see Abschnitt 6.5, „Type registry“).
org.hibernate.type.BlobType
Maps a java.sql.Blob
to a JDBC BLOB
Registered under blob
and java.sql.Blob
in the type registry (see Abschnitt 6.5, „Type registry“).
org.hibernate.type.ClobType
Maps a java.sql.Clob
to a JDBC CLOB
Registered under clob
and java.sql.Clob
in the type registry (see Abschnitt 6.5, „Type registry“).
org.hibernate.type.BinaryType
Maps a primitive byte[] to a JDBC VARBINARY
Registered under binary
and byte[]
in the type registry (see Abschnitt 6.5, „Type registry“).
org.hibernate.type.MaterializedBlobType
Maps a primitive byte[] to a JDBC BLOB
Registered under materialized_blob
in the type registry (see Abschnitt 6.5, „Type registry“).
org.hibernate.type.ImageType
Maps a primitive byte[] to a JDBC LONGVARBINARY
Registered under image
in the type registry (see Abschnitt 6.5, „Type registry“).
org.hibernate.type.BinaryType
Maps a java.lang.Byte[] to a JDBC VARBINARY
Registered under wrapper-binary
, Byte[]
and java.lang.Byte[]
in the type registry (see Abschnitt 6.5, „Type registry“).
org.hibernate.type.CharArrayType
Maps a char[] to a JDBC VARCHAR
Registered under characters
and char[]
in the type registry (see Abschnitt 6.5, „Type registry“).
org.hibernate.type.CharacterArrayType
Maps a java.lang.Character[] to a JDBC VARCHAR
Registered under wrapper-characters
, Character[]
and java.lang.Character[]
in the type registry (see Abschnitt 6.5, „Type registry“).
org.hibernate.type.UUIDBinaryType
Maps a java.util.UUID to a JDBC BINARY
Registered under uuid-binary
and java.util.UUID
in the type registry (see Abschnitt 6.5, „Type registry“).
org.hibernate.type.UUIDCharType
Maps a java.util.UUID to a JDBC CHAR (though VARCHAR is fine too for existing schemas)
Registered under uuid-char
in the type registry (see Abschnitt 6.5, „Type registry“).
org.hibernate.type.PostgresUUIDType
Maps a java.util.UUID to the PostgreSQL UUID data type (through Types#OTHER
which is how the PostgreSQL JDBC driver defines it).
Registered under pg-uuid
in the type registry (see Abschnitt 6.5, „Type registry“).
org.hibernate.type.SerializableType
Maps implementors of java.lang.Serializable to a JDBC VARBINARY
Unlike the other value types, there are multiple instances of this type. It gets registered once under java.io.Serializable
. Additionally it gets registered under the specific java.io.Serializable
implementation class names.
The Java Persistence API calls these embedded types, while Hibernate traditionally called them components. Just be aware that both terms are used and mean the same thing in the scope of discussing Hibernate.
Components represent aggregations of values into a single Java type. For example, you might have an Address class that aggregates street, city, state, etc information or a Name class that aggregates the parts of a person's Name. In many ways a component looks exactly like an entity. They are both (generally speaking) classes written specifically for the application. They both might have references to other application-specific classes, as well as to collections and simple JDK types. As discussed before, the only distinguishing factory is the fact that a component does not own its own lifecycle nor does it define an identifier.
It is critical understand that we mean the collection itself, not its contents. The contents of the collection can in turn be basic, component or entity types (though not collections), but the collection itself is owned.
Collections are covered in Kapitel 7, Collection mapping.
The definition of entities is covered in detail in Kapitel 4, Persistente Klassen. For the purpose of this discussion, it is enough to say that entities are (generally application-specific) classes which correlate to rows in a table. Specifically they correlate to the row by means of a unique identifier. Because of this unique identifier, entities exist independently and define their own lifecycle. As an example, when we delete a Membership
, both the User
and Group
entities remain.
This notion of entity independence can be modified by the application developer using the concept of cascades. Cascades allow certain operations to continue (or "cascade") across an association from one entity to another. Cascades are covered in detail in Kapitel 8, Assoziations-Mappings.
Why do we spend so much time categorizing the various types of types? What is the significance of the distinction?
The main categorization was between entity types and value types. To review we said that entities, by nature of their unique identifier, exist independently of other objects whereas values do not. An application cannot "delete" a Product sku; instead, the sku is removed when the Product itself is deleted (obviously you can update the sku of that Product to null to make it "go away", but even there the access is done through the Product).
Nor can you define an association to that Product sku. You can define an association to Product based on its sku, assuming sku is unique, but that is totally different.
TBC...
Hibernate makes it relatively easy for developers to create their own value types. For example, you might want to persist properties of type java.lang.BigInteger
to VARCHAR
columns. Custom types are not limited to mapping values to a single table column. So, for example, you might want to concatenate together FIRST_NAME
, INITIAL
and SURNAME
columns into a java.lang.String
.
There are 3 approaches to developing a custom Hibernate type. As a means of illustrating the different approaches, lets consider a use case where we need to compose a java.math.BigDecimal
and java.util.Currency
together into a custom Money
class.
The first approach is to directly implement the org.hibernate.type.Type
interface (or one of its derivatives). Probably, you will be more interested in the more specific org.hibernate.type.BasicType
contract which would allow registration of the type (see Abschnitt 6.5, „Type registry“). The benefit of this registration is that whenever the metadata for a particular property does not specify the Hibernate type to use, Hibernate will consult the registry for the exposed property type. In our example, the property type would be Money
, which is the key we would use to register our type in the registry:
Beispiel 6.1. Defining and registering the custom Type
public class MoneyType implements BasicType {
public String[] getRegistrationKeys() {
return new String[] { Money.class.getName() };
}
public int[] sqlTypes(Mapping mapping) {
// We will simply use delegation to the standard basic types for BigDecimal and Currency for many of the
// Type methods...
return new int[] {
BigDecimalType.INSTANCE.sqlType(),
CurrencyType.INSTANCE.sqlType(),
};
// we could also have honored any registry overrides via...
//return new int[] {
// mappings.getTypeResolver().basic( BigDecimal.class.getName() ).sqlTypes( mappings )[0],
// mappings.getTypeResolver().basic( Currency.class.getName() ).sqlTypes( mappings )[0]
//};
}
public Class getReturnedClass() {
return Money.class;
}
public Object nullSafeGet(ResultSet rs, String[] names, SessionImplementor session, Object owner) throws SQLException {
assert names.length == 2;
BigDecimal amount = BigDecimalType.INSTANCE.get( names[0] ); // already handles null check
Currency currency = CurrencyType.INSTANCE.get( names[1] ); // already handles null check
return amount == null && currency == null
? null
: new Money( amount, currency );
}
public void nullSafeSet(PreparedStatement st, Object value, int index, boolean[] settable, SessionImplementor session)
throws SQLException {
if ( value == null ) {
BigDecimalType.INSTANCE.set( st, null, index );
CurrencyType.INSTANCE.set( st, null, index+1 );
}
else {
final Money money = (Money) value;
BigDecimalType.INSTANCE.set( st, money.getAmount(), index );
CurrencyType.INSTANCE.set( st, money.getCurrency(), index+1 );
}
}
...
}
Configuration cfg = new Configuration();
cfg.registerTypeOverride( new MoneyType() );
cfg...;
It is important that we registered the type before adding mappings.
Both org.hibernate.usertype.UserType
and org.hibernate.usertype.CompositeUserType
were originally added to isolate user code from internal changes to the org.hibernate.type.Type
interfaces.
The second approach is the use the org.hibernate.usertype.UserType
interface, which presents a somewhat simplified view of the org.hibernate.type.Type
interface. Using a org.hibernate.usertype.UserType
, our Money
custom type would look as follows:
Beispiel 6.2. Defining the custom UserType
public class MoneyType implements UserType {
public int[] sqlTypes() {
return new int[] {
BigDecimalType.INSTANCE.sqlType(),
CurrencyType.INSTANCE.sqlType(),
};
}
public Class getReturnedClass() {
return Money.class;
}
public Object nullSafeGet(ResultSet rs, String[] names, Object owner) throws SQLException {
assert names.length == 2;
BigDecimal amount = BigDecimalType.INSTANCE.get( names[0] ); // already handles null check
Currency currency = CurrencyType.INSTANCE.get( names[1] ); // already handles null check
return amount == null && currency == null
? null
: new Money( amount, currency );
}
public void nullSafeSet(PreparedStatement st, Object value, int index) throws SQLException {
if ( value == null ) {
BigDecimalType.INSTANCE.set( st, null, index );
CurrencyType.INSTANCE.set( st, null, index+1 );
}
else {
final Money money = (Money) value;
BigDecimalType.INSTANCE.set( st, money.getAmount(), index );
CurrencyType.INSTANCE.set( st, money.getCurrency(), index+1 );
}
}
...
}
There is not much difference between the org.hibernate.type.Type
example and the org.hibernate.usertype.UserType
example, but that is only because of the snippets shown. If you choose the org.hibernate.type.Type
approach there are quite a few more methods you would need to implement as compared to the org.hibernate.usertype.UserType
.
The third and final approach is the use the org.hibernate.usertype.CompositeUserType
interface, which differs from org.hibernate.usertype.UserType
in that it gives us the ability to provide Hibernate the information to handle the composition within the Money
class (specifically the 2 attributes). This would give us the capability, for example, to reference the amount
attribute in an HQL query. Using a org.hibernate.usertype.CompositeUserType
, our Money
custom type would look as follows:
Beispiel 6.3. Defining the custom CompositeUserType
public class MoneyType implements CompositeUserType {
public String[] getPropertyNames() {
// ORDER IS IMPORTANT! it must match the order the columns are defined in the property mapping
return new String[] { "amount", "currency" };
}
public Type[] getPropertyTypes() {
return new Type[] { BigDecimalType.INSTANCE, CurrencyType.INSTANCE };
}
public Class getReturnedClass() {
return Money.class;
}
public Object getPropertyValue(Object component, int propertyIndex) {
if ( component == null ) {
return null;
}
final Money money = (Money) component;
switch ( propertyIndex ) {
case 0: {
return money.getAmount();
}
case 1: {
return money.getCurrency();
}
default: {
throw new HibernateException( "Invalid property index [" + propertyIndex + "]" );
}
}
}
public void setPropertyValue(Object component, int propertyIndex, Object value) throws HibernateException {
if ( component == null ) {
return;
}
final Money money = (Money) component;
switch ( propertyIndex ) {
case 0: {
money.setAmount( (BigDecimal) value );
break;
}
case 1: {
money.setCurrency( (Currency) value );
break;
}
default: {
throw new HibernateException( "Invalid property index [" + propertyIndex + "]" );
}
}
}
public Object nullSafeGet(ResultSet rs, String[] names, SessionImplementor session, Object owner) throws SQLException {
assert names.length == 2;
BigDecimal amount = BigDecimalType.INSTANCE.get( names[0] ); // already handles null check
Currency currency = CurrencyType.INSTANCE.get( names[1] ); // already handles null check
return amount == null && currency == null
? null
: new Money( amount, currency );
}
public void nullSafeSet(PreparedStatement st, Object value, int index, SessionImplementor session) throws SQLException {
if ( value == null ) {
BigDecimalType.INSTANCE.set( st, null, index );
CurrencyType.INSTANCE.set( st, null, index+1 );
}
else {
final Money money = (Money) value;
BigDecimalType.INSTANCE.set( st, money.getAmount(), index );
CurrencyType.INSTANCE.set( st, money.getCurrency(), index+1 );
}
}
...
}
Internally Hibernate uses a registry of basic types (see Abschnitt 6.1.1, „Basic value types“) when it needs to resolve the specific org.hibernate.type.Type
to use in certain situations. It also provides a way for applications to add extra basic type registrations as well as override the standard basic type registrations.
To register a new type or to override an existing type registration, applications would make use of the registerTypeOverride
method of the org.hibernate.cfg.Configuration
class when bootstrapping Hibernate. For example, lets say you want Hibernate to use your custom SuperDuperStringType
; during bootstrap you would call:
Beispiel 6.4. Overriding the standard StringType
Configuration cfg = ...;
cfg.registerTypeOverride( new SuperDuperStringType() );
The argument to registerTypeOverride
is a org.hibernate.type.BasicType
which is a specialization of the org.hibernate.type.Type
we saw before. It adds a single method:
Beispiel 6.5. Snippet from BasicType.java
/**
* Get the names under which this type should be registered in the type registry.
*
* @return The keys under which to register this type.
*/
public String[] getRegistrationKeys();
One approach is to use inheritance (SuperDuperStringType
extends org.hibernate.type.StringType
); another is to use delegation.
Naturally Hibernate also allows to persist collections. These persistent collections can contain almost any other Hibernate type, including: basic types, custom types, components and references to other entities. The distinction between value and reference semantics is in this context very important. An object in a collection might be handled with "value" semantics (its life cycle fully depends on the collection owner), or it might be a reference to another entity with its own life cycle. In the latter case, only the "link" between the two objects is considered to be a state held by the collection.
As a requirement persistent collection-valued fields must be declared as an interface type (see Beispiel 7.2, „Collection mapping using @OneToMany and @JoinColumn“). The actual interface might be java.util.Set
, java.util.Collection
, java.util.List
, java.util.Map
, java.util.SortedSet
, java.util.SortedMap
or anything you like ("anything you like" means you will have to write an implementation of org.hibernate.usertype.UserCollectionType
).
Notice how in Beispiel 7.2, „Collection mapping using @OneToMany and @JoinColumn“ the instance variable parts
was initialized with an instance of HashSet
. This is the best way to initialize collection valued properties of newly instantiated (non-persistent) instances. When you make the instance persistent, by calling persist()
, Hibernate will actually replace the HashSet
with an instance of Hibernate's own implementation of Set
. Be aware of the following error:
Beispiel 7.1. Hibernate uses its own collection implementations
Cat cat = new DomesticCat();
Cat kitten = new DomesticCat();
....
Set kittens = new HashSet();
kittens.add(kitten);
cat.setKittens(kittens);
session.persist(cat);
kittens = cat.getKittens(); // Okay, kittens collection is a Set
(HashSet) cat.getKittens(); // Error!
The persistent collections injected by Hibernate behave like HashMap
, HashSet
, TreeMap
, TreeSet
or ArrayList
, depending on the interface type.
Collections instances have the usual behavior of value types. They are automatically persisted when referenced by a persistent object and are automatically deleted when unreferenced. If a collection is passed from one persistent object to another, its elements might be moved from one table to another. Two entities cannot share a reference to the same collection instance. Due to the underlying relational model, collection-valued properties do not support null value semantics. Hibernate does not distinguish between a null collection reference and an empty collection.
Use persistent collections the same way you use ordinary Java collections. However, ensure you understand the semantics of bidirectional associations (see Abschnitt 7.3.2, „Bidirektionale Assoziationen“).
Using annotations you can map Collection
s, List
s, Map
s and Set
s of associated entities using @OneToMany and @ManyToMany. For collections of a basic or embeddable type use @ElementCollection. In the simplest case a collection mapping looks like this:
Beispiel 7.2. Collection mapping using @OneToMany and @JoinColumn
@Entity
public class Product {
private String serialNumber;
private Set<Part> parts = new HashSet<Part>();
@Id
public String getSerialNumber() { return serialNumber; }
void setSerialNumber(String sn) { serialNumber = sn; }
@OneToMany
@JoinColumn(name="PART_ID")
public Set<Part> getParts() { return parts; }
void setParts(Set parts) { this.parts = parts; }
}
@Entity
public class Part {
...
}
Product describes a unidirectional relationship with Part using the join column PART_ID. In this unidirectional one to many scenario you can also use a join table as seen in Beispiel 7.3, „Collection mapping using @OneToMany and @JoinTable“.
Beispiel 7.3. Collection mapping using @OneToMany and @JoinTable
@Entity
public class Product {
private String serialNumber;
private Set<Part> parts = new HashSet<Part>();
@Id
public String getSerialNumber() { return serialNumber; }
void setSerialNumber(String sn) { serialNumber = sn; }
@OneToMany
@JoinTable(
name="PRODUCT_PARTS",
joinColumns = @JoinColumn( name="PRODUCT_ID"),
inverseJoinColumns = @JoinColumn( name="PART_ID")
)
public Set<Part> getParts() { return parts; }
void setParts(Set parts) { this.parts = parts; }
}
@Entity
public class Part {
...
}
Without describing any physical mapping (no @JoinColumn
or @JoinTable
), a unidirectional one to many with join table is used. The table name is the concatenation of the owner table name, _, and the other side table name. The foreign key name(s) referencing the owner table is the concatenation of the owner table, _, and the owner primary key column(s) name. The foreign key name(s) referencing the other side is the concatenation of the owner property name, _, and the other side primary key column(s) name. A unique constraint is added to the foreign key referencing the other side table to reflect the one to many.
Lets have a look now how collections are mapped using Hibernate mapping files. In this case the first step is to chose the right mapping element. It depends on the type of interface. For example, a <set>
element is used for mapping properties of type Set
.
Beispiel 7.4. Mapping a Set using <set>
<class name="Product">
<id name="serialNumber" column="productSerialNumber"/>
<set name="parts">
<key column="productSerialNumber" not-null="true"/>
<one-to-many class="Part"/>
</set>
</class>
In Beispiel 7.4, „Mapping a Set using <set>“ a one-to-many association links the Product
and Part
entities. This association requires the existence of a foreign key column and possibly an index column to the Part
table. This mapping loses certain semantics of normal Java collections:
An instance of the contained entity class cannot belong to more than one instance of the collection.
An instance of the contained entity class cannot appear at more than one value of the collection index.
Looking closer at the used <one-to-many>
tag we see that it has the following options.
Beispiel 7.5. options of <one-to-many> element
<one-to-many class="ClassName" not-fo
und="ignore|exception" entity
-name="EntityName" node="element-name" embed-xml="true|false" />
| |
| |
|
The <one-to-many>
element does not need to declare any columns. Nor is it necessary to specify the table
name anywhere.
If the foreign key column of a <one-to-many>
association is declared NOT NULL
, you must declare the <key>
mapping not-null="true"
or use a bidirectional association with the collection mapping marked inverse="true"
. See Abschnitt 7.3.2, „Bidirektionale Assoziationen“.
Apart from the <set>
tag as shown in Beispiel 7.4, „Mapping a Set using <set>“, there is also <list>
, <map>
, <bag>
, <array>
and <primitive-array>
mapping elements. The <map>
element is representative:
Beispiel 7.6. Elements of the <map> mapping
<map name="propertyName" table="tab
le_name" schema="sc
hema_name" lazy="true
|extra|false" inverse="t
rue|false" cascade="a
ll|none|save-update|delete|all-delete-orphan|delete-orphan" sort="unso
rted|natural|comparatorClass" order-by="
column_name asc|desc" where="arb
itrary sql where condition" fetch="joi
n|select|subselect" batch-size
="N" access="fi
eld|property|ClassName" optimistic
-lock="true|false" mutable="t
rue|false" node="element-name|." embed-xml="true|false" > <key .... /> <map-key .... /> <element .... /> </map>
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
|
After exploring the basic mapping of collections in the preceding paragraphs we will now focus details like physical mapping considerations, indexed collections and collections of value types.
On the database level collection instances are distinguished by the foreign key of the entity that owns the collection. This foreign key is referred to as the collection key column, or columns, of the collection table. The collection key column is mapped by the @JoinColumn
annotation respectively the <key>
XML element.
There can be a nullability constraint on the foreign key column. For most collections, this is implied. For unidirectional one-to-many associations, the foreign key column is nullable by default, so you may need to specify
@JoinColumn(nullable=false)
or
<key column="productSerialNumber" not-null="true"/>
The foreign key constraint can use ON DELETE CASCADE
. In XML this can be expressed via:
<key column="productSerialNumber" on-delete="cascade"/>
In annotations the Hibernate specific annotation @OnDelete has to be used.
@OnDelete(action=OnDeleteAction.CASCADE)
See Abschnitt 5.1.11.3, „Key“ for more information about the <key>
element.
In the following paragraphs we have a closer at the indexed collections List
and Map
how the their index can be mapped in Hibernate.
Lists can be mapped in two different ways:
as ordered lists, where the order is not materialized in the database
as indexed lists, where the order is materialized in the database
To order lists in memory, add @javax.persistence.OrderBy
to your property. This annotation takes as parameter a list of comma separated properties (of the target entity) and orders the collection accordingly (eg firstname asc, age desc
), if the string is empty, the collection will be ordered by the primary key of the target entity.
Beispiel 7.7. Ordered lists using @OrderBy
@Entity
public class Customer {
@Id @GeneratedValue public Integer getId() { return id; }
public void setId(Integer id) { this.id = id; }
private Integer id;
@OneToMany(mappedBy="customer")
@OrderBy("number")
public List<Order> getOrders() { return orders; }
public void setOrders(List<Order> orders) { this.orders = orders; }
private List<Order> orders;
}
@Entity
public class Order {
@Id @GeneratedValue public Integer getId() { return id; }
public void setId(Integer id) { this.id = id; }
private Integer id;
public String getNumber() { return number; }
public void setNumber(String number) { this.number = number; }
private String number;
@ManyToOne
public Customer getCustomer() { return customer; }
public void setCustomer(Customer customer) { this.customer = customer; }
private Customer number;
}
-- Table schema
|-------------| |----------|
| Order | | Customer |
|-------------| |----------|
| id | | id |
| number | |----------|
| customer_id |
|-------------|
To store the index value in a dedicated column, use the @javax.persistence.OrderColumn
annotation on your property. This annotations describes the column name and attributes of the column keeping the index value. This column is hosted on the table containing the association foreign key. If the column name is not specified, the default is the name of the referencing property, followed by underscore, followed by ORDER
(in the following example, it would be orders_ORDER
).
Beispiel 7.8. Explicit index column using @OrderColumn
@Entity
public class Customer {
@Id @GeneratedValue public Integer getId() { return id; }
public void setId(Integer id) { this.id = id; }
private Integer id;
@OneToMany(mappedBy="customer")
@OrderColumn(name="orders_index")
public List<Order> getOrders() { return orders; }
public void setOrders(List<Order> orders) { this.orders = orders; }
private List<Order> orders;
}
@Entity
public class Order {
@Id @GeneratedValue public Integer getId() { return id; }
public void setId(Integer id) { this.id = id; }
private Integer id;
public String getNumber() { return number; }
public void setNumber(String number) { this.number = number; }
private String number;
@ManyToOne
public Customer getCustomer() { return customer; }
public void setCustomer(Customer customer) { this.customer = customer; }
private Customer number;
}
-- Table schema
|--------------| |----------|
| Order | | Customer |
|--------------| |----------|
| id | | id |
| number | |----------|
| customer_id |
| orders_order |
|--------------|
We recommend you to convert the legacy @org.hibernate.annotations.IndexColumn
usages to @OrderColumn
unless you are making use of the base property. The base
property lets you define the index value of the first element (aka as base index). The usual value is 0
or 1
. The default is 0 like in Java.
Looking again at the Hibernate mapping file equivalent, the index of an array or list is always of type integer
and is mapped using the <list-index>
element. The mapped column contains sequential integers that are numbered from zero by default.
Beispiel 7.9. index-list element for indexed collections in xml mapping
<list-index column="column_name" base="
0|1|..."/>
| |
|
If your table does not have an index column, and you still wish to use List
as the property type, you can map the property as a Hibernate <bag>. A bag does not retain its order when it is retrieved from the database, but it can be optionally sorted or ordered.
The question with Map
s is where the key value is stored. There are everal options. Maps can borrow their keys from one of the associated entity properties or have dedicated columns to store an explicit key.
To use one of the target entity property as a key of the map, use @MapKey(name="myProperty")
, where myProperty
is a property name in the target entity. When using @MapKey
without the name attribuate, the target entity primary key is used. The map key uses the same column as the property pointed out. There is no additional column defined to hold the map key, because the map key represent a target property. Be aware that once loaded, the key is no longer kept in sync with the property. In other words, if you change the property value, the key will not change automatically in your Java model.
Beispiel 7.10. Use of target entity property as map key via @MapKey
@Entity
public class Customer {
@Id @GeneratedValue public Integer getId() { return id; }
public void setId(Integer id) { this.id = id; }
private Integer id;
@OneToMany(mappedBy="customer")
@MapKey(name="number")
public Map<String,Order> getOrders() { return orders; }
public void setOrders(Map<String,Order> order) { this.orders = orders; }
private Map<String,Order> orders;
}
@Entity
public class Order {
@Id @GeneratedValue public Integer getId() { return id; }
public void setId(Integer id) { this.id = id; }
private Integer id;
public String getNumber() { return number; }
public void setNumber(String number) { this.number = number; }
private String number;
@ManyToOne
public Customer getCustomer() { return customer; }
public void setCustomer(Customer customer) { this.customer = customer; }
private Customer number;
}
-- Table schema
|-------------| |----------|
| Order | | Customer |
|-------------| |----------|
| id | | id |
| number | |----------|
| customer_id |
|-------------|
Alternatively the map key is mapped to a dedicated column or columns. In order to customize the mapping use one of the following annotations:
@MapKeyColumn
if the map key is a basic type. If you don't specify the column name, the name of the property followed by underscore followed by KEY
is used (for example orders_KEY
).
@MapKeyEnumerated
/ @MapKeyTemporal
if the map key type is respectively an enum or a Date
.
@MapKeyJoinColumn
/@MapKeyJoinColumns
if the map key type is another entity.
@AttributeOverride
/@AttributeOverrides
when the map key is a embeddable object. Use key.
as a prefix for your embeddable object property names.
You can also use @MapKeyClass
to define the type of the key if you don't use generics.
Beispiel 7.11. Map key as basic type using @MapKeyColumn
@Entity
public class Customer {
@Id @GeneratedValue public Integer getId() { return id; }
public void setId(Integer id) { this.id = id; }
private Integer id;
@OneToMany @JoinTable(name="Cust_Order")
@MapKeyColumn(name="orders_number")
public Map<String,Order> getOrders() { return orders; }
public void setOrders(Map<String,Order> orders) { this.orders = orders; }
private Map<String,Order> orders;
}
@Entity
public class Order {
@Id @GeneratedValue public Integer getId() { return id; }
public void setId(Integer id) { this.id = id; }
private Integer id;
public String getNumber() { return number; }
public void setNumber(String number) { this.number = number; }
private String number;
@ManyToOne
public Customer getCustomer() { return customer; }
public void setCustomer(Customer customer) { this.customer = customer; }
private Customer number;
}
-- Table schema
|-------------| |----------| |---------------|
| Order | | Customer | | Cust_Order |
|-------------| |----------| |---------------|
| id | | id | | customer_id |
| number | |----------| | order_id |
| customer_id | | orders_number |
|-------------| |---------------|
We recommend you to migrate from @org.hibernate.annotations.MapKey
/ @org.hibernate.annotation.MapKeyManyToMany
to the new standard approach described above
Using Hibernate mapping files there exists equivalent concepts to the descibed annotations. You have to use <map-key>
, <map-key-many-to-many>
and <composite-map-key>
. <map-key>
is used for any basic type, <map-key-many-to-many>
for an entity reference and <composite-map-key>
for a composite type.
Beispiel 7.12. map-key xml mapping element
<map-key column="column_name" formul
a="any SQL expression" type="
type_name" node="@attribute-name" length="N"/>
| |
| |
|
Beispiel 7.13. map-key-many-to-many
<map-key-many-to-many column="column_name" formul
a="any SQL expression" class="ClassName" />
| |
| |
|
In some situations you don't need to associate two entities but simply create a collection of basic types or embeddable objects. Use the @ElementCollection
for this case.
Beispiel 7.14. Collection of basic types mapped via @ElementCollection
@Entity
public class User {
[...]
public String getLastname() { ...}
@ElementCollection
@CollectionTable(name="Nicknames", joinColumns=@JoinColumn(name="user_id"))
@Column(name="nickname")
public Set<String> getNicknames() { ... }
}
The collection table holding the collection data is set using the @CollectionTable
annotation. If omitted the collection table name defaults to the concatenation of the name of the containing entity and the name of the collection attribute, separated by an underscore. In our example, it would be User_nicknames
.
The column holding the basic type is set using the @Column
annotation. If omitted, the column name defaults to the property name: in our example, it would be nicknames
.
But you are not limited to basic types, the collection type can be any embeddable object. To override the columns of the embeddable object in the collection table, use the @AttributeOverride
annotation.
Beispiel 7.15. @ElementCollection for embeddable objects
@Entity
public class User {
[...]
public String getLastname() { ...}
@ElementCollection
@CollectionTable(name="Addresses", joinColumns=@JoinColumn(name="user_id"))
@AttributeOverrides({
@AttributeOverride(name="street1", column=@Column(name="fld_street"))
})
public Set<Address> getAddresses() { ... }
}
@Embeddable
public class Address {
public String getStreet1() {...}
[...]
}
Such an embeddable object cannot contains a collection itself.
in @AttributeOverride
, you must use the value.
prefix to override properties of the embeddable object used in the map value and the key.
prefix to override properties of the embeddable object used in the map key.
@Entity
public class User {
@ElementCollection
@AttributeOverrides({
@AttributeOverride(name="key.street1", column=@Column(name="fld_street")),
@AttributeOverride(name="value.stars", column=@Column(name="fld_note"))
})
public Map<Address,Rating> getFavHomes() { ... }
We recommend you to migrate from @org.hibernate.annotations.CollectionOfElements
to the new @ElementCollection
annotation.
Using the mapping file approach a collection of values is mapped using the <element>
tag. For example:
Beispiel 7.16. <element> tag for collection values using mapping files
<element column="column_name" formul
a="any SQL expression" type="
typename" length="L" precision="P" scale="S" not-null="true|false" unique="true|false" node="element-name" />
| |
| |
|
Hibernate supports collections implementing java.util.SortedMap
and java.util.SortedSet
. With annotations you declare a sort comparator using @Sort
. You chose between the comparator types unsorted, natural or custom. If you want to use your own comparator implementation, you'll also have to specify the implementation class using the comparator
attribute. Note that you need to use either a SortedSet
or a SortedMap
interface.
Beispiel 7.17. Sorted collection with @Sort
@OneToMany(cascade=CascadeType.ALL, fetch=FetchType.EAGER)
@JoinColumn(name="CUST_ID")
@Sort(type = SortType.COMPARATOR, comparator = TicketComparator.class)
public SortedSet<Ticket> getTickets() {
return tickets;
}
Using Hibernate mapping files you specify a comparator in the mapping file with <sort>
:
Beispiel 7.18. Sorted collection using xml mapping
<set name="aliases"
table="person_aliases"
sort="natural">
<key column="person"/>
<element column="name" type="string"/>
</set>
<map name="holidays" sort="my.custom.HolidayComparator">
<key column="year_id"/>
<map-key column="hol_name" type="string"/>
<element column="hol_date" type="date"/>
</map>
Erlaubte Werte für das sort
-Attribut sind unsorted
, natural
und der Name einer Klassenimplementierung java.util.Comparator
.
Sortierte Collections verhalten sich tatsächlich wie java.util.TreeSet
oder java.util.TreeMap
.
If you want the database itself to order the collection elements, use the order-by
attribute of set
, bag
or map
mappings. This solution is implemented using LinkedHashSet
or LinkedHashMap
and performs the ordering in the SQL query and not in the memory.
Beispiel 7.19. Sorting in database using order-by
<set name="aliases" table="person_aliases" order-by="lower(name) asc">
<key column="person"/>
<element column="name" type="string"/>
</set>
<map name="holidays" order-by="hol_date, hol_name">
<key column="year_id"/>
<map-key column="hol_name" type="string"/>
<element column="hol_date type="date"/>
</map>
The value of the order-by
attribute is an SQL ordering, not an HQL ordering.
Associations can even be sorted by arbitrary criteria at runtime using a collection filter()
:
Beispiel 7.20. Sorting via a query filter
sortedUsers = s.createFilter( group.getUsers(), "order by this.name" ).list();
Eine bidirektionale Assoziation erlaubt die Navigation von beiden "Enden" der Assoziation. Es werden zwei Arten bidirektionaler Assoziationen unterstützt:
set or bag valued at one end and single-valued at the other
an beiden Enden "Set"- oder "Bag"-wertig
Often there exists a many to one association which is the owner side of a bidirectional relationship. The corresponding one to many association is in this case annotated by @OneToMany(mappedBy=...)
Beispiel 7.21. Bidirectional one to many with many to one side as association owner
@Entity
public class Troop {
@OneToMany(mappedBy="troop")
public Set<Soldier> getSoldiers() {
...
}
@Entity
public class Soldier {
@ManyToOne
@JoinColumn(name="troop_fk")
public Troop getTroop() {
...
}
Troop
has a bidirectional one to many relationship with Soldier
through the troop
property. You don't have to (must not) define any physical mapping in the mappedBy
side.
To map a bidirectional one to many, with the one-to-many side as the owning side, you have to remove the mappedBy
element and set the many to one @JoinColumn
as insertable and updatable to false. This solution is not optimized and will produce additional UPDATE statements.
Beispiel 7.22. Bidirectional associtaion with one to many side as owner
@Entity
public class Troop {
@OneToMany
@JoinColumn(name="troop_fk") //we need to duplicate the physical information
public Set<Soldier> getSoldiers() {
...
}
@Entity
public class Soldier {
@ManyToOne
@JoinColumn(name="troop_fk", insertable=false, updatable=false)
public Troop getTroop() {
...
}
How does the mappping of a bidirectional mapping look like in Hibernate mapping xml? There you define a bidirectional one-to-many association by mapping a one-to-many association to the same table column(s) as a many-to-one association and declaring the many-valued end inverse="true"
.
Beispiel 7.23. Bidirectional one to many via Hibernate mapping files
<class name="Parent">
<id name="id" column="parent_id"/>
....
<set name="children" inverse="true">
<key column="parent_id"/>
<one-to-many class="Child"/>
</set>
</class>
<class name="Child">
<id name="id" column="child_id"/>
....
<many-to-one name="parent"
class="Parent"
column="parent_id"
not-null="true"/>
</class>
Mapping one end of an association with inverse="true"
does not affect the operation of cascades as these are orthogonal concepts.
A many-to-many association is defined logically using the @ManyToMany
annotation. You also have to describe the association table and the join conditions using the @JoinTable
annotation. If the association is bidirectional, one side has to be the owner and one side has to be the inverse end (ie. it will be ignored when updating the relationship values in the association table):
Beispiel 7.24. Many to many association via @ManyToMany
@Entity
public class Employer implements Serializable {
@ManyToMany(
targetEntity=org.hibernate.test.metadata.manytomany.Employee.class,
cascade={CascadeType.PERSIST, CascadeType.MERGE}
)
@JoinTable(
name="EMPLOYER_EMPLOYEE",
joinColumns=@JoinColumn(name="EMPER_ID"),
inverseJoinColumns=@JoinColumn(name="EMPEE_ID")
)
public Collection getEmployees() {
return employees;
}
...
}
@Entity
public class Employee implements Serializable {
@ManyToMany(
cascade = {CascadeType.PERSIST, CascadeType.MERGE},
mappedBy = "employees",
targetEntity = Employer.class
)
public Collection getEmployers() {
return employers;
}
}
In this example @JoinTable
defines a name
, an array of join columns, and an array of inverse join columns. The latter ones are the columns of the association table which refer to the Employee
primary key (the "other side"). As seen previously, the other side don't have to (must not) describe the physical mapping: a simple mappedBy
argument containing the owner side property name bind the two.
As any other annotations, most values are guessed in a many to many relationship. Without describing any physical mapping in a unidirectional many to many the following rules applied. The table name is the concatenation of the owner table name, _ and the other side table name. The foreign key name(s) referencing the owner table is the concatenation of the owner table name, _ and the owner primary key column(s). The foreign key name(s) referencing the other side is the concatenation of the owner property name, _, and the other side primary key column(s). These are the same rules used for a unidirectional one to many relationship.
Beispiel 7.25. Default values for @ManyToMany
(uni-directional)
@Entity
public class Store {
@ManyToMany(cascade = CascadeType.PERSIST)
public Set<City> getImplantedIn() {
...
}
}
@Entity
public class City {
... //no bidirectional relationship
}
A Store_City
is used as the join table. The Store_id
column is a foreign key to the Store
table. The implantedIn_id
column is a foreign key to the City
table.
Without describing any physical mapping in a bidirectional many to many the following rules applied. The table name is the concatenation of the owner table name, _ and the other side table name. The foreign key name(s) referencing the owner table is the concatenation of the other side property name, _, and the owner primary key column(s). The foreign key name(s) referencing the other side is the concatenation of the owner property name, _, and the other side primary key column(s). These are the same rules used for a unidirectional one to many relationship.
Beispiel 7.26. Default values for @ManyToMany
(bi-directional)
@Entity
public class Store {
@ManyToMany(cascade = {CascadeType.PERSIST, CascadeType.MERGE})
public Set<Customer> getCustomers() {
...
}
}
@Entity
public class Customer {
@ManyToMany(mappedBy="customers")
public Set<Store> getStores() {
...
}
}
A Store_Customer
is used as the join table. The stores_id
column is a foreign key to the Store
table. The customers_id
column is a foreign key to the Customer
table.
Using Hibernate mapping files you can map a bidirectional many-to-many association by mapping two many-to-many associations to the same database table and declaring one end as inverse.
You cannot select an indexed collection.
Beispiel 7.27, „Many to many association using Hibernate mapping files“ shows a bidirectional many-to-many association that illustrates how each category can have many items and each item can be in many categories:
Beispiel 7.27. Many to many association using Hibernate mapping files
<class name="Category">
<id name="id" column="CATEGORY_ID"/>
...
<bag name="items" table="CATEGORY_ITEM">
<key column="CATEGORY_ID"/>
<many-to-many class="Item" column="ITEM_ID"/>
</bag>
</class>
<class name="Item">
<id name="id" column="ITEM_ID"/>
...
<!-- inverse end -->
<bag name="categories" table="CATEGORY_ITEM" inverse="true">
<key column="ITEM_ID"/>
<many-to-many class="Category" column="CATEGORY_ID"/>
</bag>
</class>
Changes made only to the inverse end of the association are not persisted. This means that Hibernate has two representations in memory for every bidirectional association: one link from A to B and another link from B to A. This is easier to understand if you think about the Java object model and how a many-to-many relationship in Javais created:
Beispiel 7.28. Effect of inverse vs. non-inverse side of many to many associations
category.getItems().add(item); // The category now "knows" about the relationship
item.getCategories().add(category); // The item now "knows" about the relationship
session.persist(item); // The relationship won't be saved!
session.persist(category); // The relationship will be saved
Die nicht-invertierte Seite wird dazu benutzt, die gespeicherte Darstellung in der Datenbank zu speichern.
There are some additional considerations for bidirectional mappings with indexed collections (where one end is represented as a <list>
or <map>
) when using Hibernate mapping files. If there is a property of the child class that maps to the index column you can use inverse="true"
on the collection mapping:
Beispiel 7.29. Bidirectional association with indexed collection
<class name="Parent">
<id name="id" column="parent_id"/>
....
<map name="children" inverse="true">
<key column="parent_id"/>
<map-key column="name"
type="string"/>
<one-to-many class="Child"/>
</map>
</class>
<class name="Child">
<id name="id" column="child_id"/>
....
<property name="name"
not-null="true"/>
<many-to-one name="parent"
class="Parent"
column="parent_id"
not-null="true"/>
</class>
If there is no such property on the child class, the association cannot be considered truly bidirectional. That is, there is information available at one end of the association that is not available at the other end. In this case, you cannot map the collection inverse="true"
. Instead, you could use the following mapping:
Beispiel 7.30. Bidirectional association with indexed collection, but no index column
<class name="Parent">
<id name="id" column="parent_id"/>
....
<map name="children">
<key column="parent_id"
not-null="true"/>
<map-key column="name"
type="string"/>
<one-to-many class="Child"/>
</map>
</class>
<class name="Child">
<id name="id" column="child_id"/>
....
<many-to-one name="parent"
class="Parent"
column="parent_id"
insert="false"
update="false"
not-null="true"/>
</class>
Note that in this mapping, the collection-valued end of the association is responsible for updates to the foreign key.
There are three possible approaches to mapping a ternary association. One approach is to use a Map
with an association as its index:
Beispiel 7.31. Ternary association mapping
@Entity
public class Company {
@Id
int id;
...
@OneToMany // unidirectional
@MapKeyJoinColumn(name="employee_id")
Map<Employee, Contract> contracts;
}
// or
<map name="contracts">
<key column="employer_id" not-null="true"/>
<map-key-many-to-many column="employee_id" class="Employee"/>
<one-to-many class="Contract"/>
</map>
A second approach is to remodel the association as an entity class. This is the most common approach. A final alternative is to use composite elements, which will be discussed later.
The majority of the many-to-many associations and collections of values shown previously all map to tables with composite keys, even though it has been suggested that entities should have synthetic identifiers (surrogate keys). A pure association table does not seem to benefit much from a surrogate key, although a collection of composite values might. For this reason Hibernate provides a feature that allows you to map many-to-many associations and collections of values to a table with a surrogate key.
The <idbag>
element lets you map a List
(or Collection
) with bag semantics. For example:
<idbag name="lovers" table="LOVERS">
<collection-id column="ID" type="long">
<generator class="sequence"/>
</collection-id>
<key column="PERSON1"/>
<many-to-many column="PERSON2" class="Person" fetch="join"/>
</idbag>
An <idbag>
has a synthetic id generator, just like an entity class. A different surrogate key is assigned to each collection row. Hibernate does not, however, provide any mechanism for discovering the surrogate key value of a particular row.
The update performance of an <idbag>
supersedes a regular <bag>
. Hibernate can locate individual rows efficiently and update or delete them individually, similar to a list, map or set.
In der aktuellen Implementierung wird die native
Bezeichnergenerierungsstrategie nicht für <idbag>
Collection-Bezeichner unterstützt.
This section covers collection examples.
The following class has a collection of Child
instances:
Beispiel 7.32. Example classes Parent
and Child
public class Parent {
private long id;
private Set<Child> children;
// getter/setter
...
}
public class Child {
private long id;
private String name
// getter/setter
...
}
If each child has, at most, one parent, the most natural mapping is a one-to-many association:
Beispiel 7.33. One to many unidirectional Parent-Child
relationship using annotations
public class Parent {
@Id
@GeneratedValue
private long id;
@OneToMany
private Set<Child> children;
// getter/setter
...
}
public class Child {
@Id
@GeneratedValue
private long id;
private String name;
// getter/setter
...
}
Beispiel 7.34. One to many unidirectional Parent-Child
relationship using mapping files
<hibernate-mapping>
<class name="Parent">
<id name="id">
<generator class="sequence"/>
</id>
<set name="children">
<key column="parent_id"/>
<one-to-many class="Child"/>
</set>
</class>
<class name="Child">
<id name="id">
<generator class="sequence"/>
</id>
<property name="name"/>
</class>
</hibernate-mapping>
Das mappt zu den folgenden Tabellendefinitionen:
Beispiel 7.35. Table definitions for unidirectional Parent
-Child
relationship
create table parent ( id bigint not null primary key )
create table child ( id bigint not null primary key, name varchar(255), parent_id bigint )
alter table child add constraint childfk0 (parent_id) references parent
Falls der "parent" erforderlich ist, verwenden Sie eine bidirektionale "One-to-Many"-Assoziation:
Beispiel 7.36. One to many bidirectional Parent-Child
relationship using annotations
public class Parent {
@Id
@GeneratedValue
private long id;
@OneToMany(mappedBy="parent")
private Set<Child> children;
// getter/setter
...
}
public class Child {
@Id
@GeneratedValue
private long id;
private String name;
@ManyToOne
private Parent parent;
// getter/setter
...
}
Beispiel 7.37. One to many bidirectional Parent-Child
relationship using mapping files
<hibernate-mapping>
<class name="Parent">
<id name="id">
<generator class="sequence"/>
</id>
<set name="children" inverse="true">
<key column="parent_id"/>
<one-to-many class="Child"/>
</set>
</class>
<class name="Child">
<id name="id">
<generator class="sequence"/>
</id>
<property name="name"/>
<many-to-one name="parent" class="Parent" column="parent_id" not-null="true"/>
</class>
</hibernate-mapping>
Beachten Sie die NOT NULL
-Bedingung:
Beispiel 7.38. Table definitions for bidirectional Parent
-Child
relationship
create table parent ( id bigint not null primary key )
create table child ( id bigint not null
primary key,
name varchar(255),
parent_id bigint not null )
alter table child add constraint childfk0 (parent_id) references parent
Alternatively, if this association must be unidirectional you can enforce the NOT NULL
constraint.
Beispiel 7.39. Enforcing NOT NULL constraint in unidirectional relation using annotations
public class Parent {
@Id
@GeneratedValue
private long id;
@OneToMany(optional=false)
private Set<Child> children;
// getter/setter
...
}
public class Child {
@Id
@GeneratedValue
private long id;
private String name;
// getter/setter
...
}
Beispiel 7.40. Enforcing NOT NULL constraint in unidirectional relation using mapping files
<hibernate-mapping>
<class name="Parent">
<id name="id">
<generator class="sequence"/>
</id>
<set name="children">
<key column="parent_id" not-null="true"/>
<one-to-many class="Child"/>
</set>
</class>
<class name="Child">
<id name="id">
<generator class="sequence"/>
</id>
<property name="name"/>
</class>
</hibernate-mapping>
On the other hand, if a child has multiple parents, a many-to-many association is appropriate.
Beispiel 7.41. Many to many Parent-Child
relationship using annotations
public class Parent {
@Id
@GeneratedValue
private long id;
@ManyToMany
private Set<Child> children;
// getter/setter
...
}
public class Child {
@Id
@GeneratedValue
private long id;
private String name;
// getter/setter
...
}
Beispiel 7.42. Many to many Parent-Child
relationship using mapping files
<hibernate-mapping>
<class name="Parent">
<id name="id">
<generator class="sequence"/>
</id>
<set name="children" table="childset">
<key column="parent_id"/>
<many-to-many class="Child" column="child_id"/>
</set>
</class>
<class name="Child">
<id name="id">
<generator class="sequence"/>
</id>
<property name="name"/>
</class>
</hibernate-mapping>
Tabellendefinitionen:
Beispiel 7.43. Table definitions for many to many releationship
create table parent ( id bigint not null primary key ) create table child ( id bigint not null primary key, name varchar(255) ) create table childset ( parent_id bigint not null, child_id bigint not null, primary key ( parent_id, child_id ) ) alter table childset add constraint childsetfk0 (parent_id) references parent alter table childset add constraint childsetfk1 (child_id) references child
For more examples and a complete explanation of a parent/child relationship mapping, see Kapitel 24, Beispiel: "Parent/Child" for more information. Even more complex association mappings are covered in the next chapter.
Association mappings are often the most difficult thing to implement correctly. In this section we examine some canonical cases one by one, starting with unidirectional mappings and then bidirectional cases. We will use Person
and Address
in all the examples.
Associations will be classified by multiplicity and whether or not they map to an intervening join table.
Nullable foreign keys are not considered to be good practice in traditional data modelling, so our examples do not use nullable foreign keys. This is not a requirement of Hibernate, and the mappings will work if you drop the nullability constraints.
Eine unidirektionale "Many-to-One"-Assoziation ist der gängigste Typ unidirektionaler Assoziationen.
<class name="Person">
<id name="id" column="personId">
<generator class="native"/>
</id>
<many-to-one name="address"
column="addressId"
not-null="true"/>
</class>
<class name="Address">
<id name="id" column="addressId">
<generator class="native"/>
</id>
</class
>
create table Person ( personId bigint not null primary key, addressId bigint not null ) create table Address ( addressId bigint not null primary key )
Eine unidirektionale "One-to-One"-Assoziation an einem Fremdschlüssel ist fast identisch. Der einzige Unterschied besteht in der Spalte der eindeutigen Bedingung.
<class name="Person">
<id name="id" column="personId">
<generator class="native"/>
</id>
<many-to-one name="address"
column="addressId"
unique="true"
not-null="true"/>
</class>
<class name="Address">
<id name="id" column="addressId">
<generator class="native"/>
</id>
</class
>
create table Person ( personId bigint not null primary key, addressId bigint not null unique ) create table Address ( addressId bigint not null primary key )
A unidirectional one-to-one association on a primary key usually uses a special id generator In this example, however, we have reversed the direction of the association:
<class name="Person">
<id name="id" column="personId">
<generator class="native"/>
</id>
</class>
<class name="Address">
<id name="id" column="personId">
<generator class="foreign">
<param name="property"
>person</param>
</generator>
</id>
<one-to-one name="person" constrained="true"/>
</class
>
create table Person ( personId bigint not null primary key ) create table Address ( personId bigint not null primary key )
A unidirectional one-to-many association on a foreign key is an unusual case, and is not recommended.
<class name="Person">
<id name="id" column="personId">
<generator class="native"/>
</id>
<set name="addresses">
<key column="personId"
not-null="true"/>
<one-to-many class="Address"/>
</set>
</class>
<class name="Address">
<id name="id" column="addressId">
<generator class="native"/>
</id>
</class
>
create table Person ( personId bigint not null primary key ) create table Address ( addressId bigint not null primary key, personId bigint not null )
You should instead use a join table for this kind of association.
A unidirectional one-to-many association on a join table is the preferred option. Specifying unique="true"
, changes the multiplicity from many-to-many to one-to-many.
<class name="Person">
<id name="id" column="personId">
<generator class="native"/>
</id>
<set name="addresses" table="PersonAddress">
<key column="personId"/>
<many-to-many column="addressId"
unique="true"
class="Address"/>
</set>
</class>
<class name="Address">
<id name="id" column="addressId">
<generator class="native"/>
</id>
</class
>
create table Person ( personId bigint not null primary key ) create table PersonAddress ( personId not null, addressId bigint not null primary key ) create table Address ( addressId bigint not null primary key )
A unidirectional many-to-one association on a join table is common when the association is optional. For example:
<class name="Person">
<id name="id" column="personId">
<generator class="native"/>
</id>
<join table="PersonAddress"
optional="true">
<key column="personId" unique="true"/>
<many-to-one name="address"
column="addressId"
not-null="true"/>
</join>
</class>
<class name="Address">
<id name="id" column="addressId">
<generator class="native"/>
</id>
</class
>
create table Person ( personId bigint not null primary key ) create table PersonAddress ( personId bigint not null primary key, addressId bigint not null ) create table Address ( addressId bigint not null primary key )
A unidirectional one-to-one association on a join table is possible, but extremely unusual.
<class name="Person">
<id name="id" column="personId">
<generator class="native"/>
</id>
<join table="PersonAddress"
optional="true">
<key column="personId"
unique="true"/>
<many-to-one name="address"
column="addressId"
not-null="true"
unique="true"/>
</join>
</class>
<class name="Address">
<id name="id" column="addressId">
<generator class="native"/>
</id>
</class
>
create table Person ( personId bigint not null primary key ) create table PersonAddress ( personId bigint not null primary key, addressId bigint not null unique ) create table Address ( addressId bigint not null primary key )
Finally, here is an example of a unidirectional many-to-many association.
<class name="Person">
<id name="id" column="personId">
<generator class="native"/>
</id>
<set name="addresses" table="PersonAddress">
<key column="personId"/>
<many-to-many column="addressId"
class="Address"/>
</set>
</class>
<class name="Address">
<id name="id" column="addressId">
<generator class="native"/>
</id>
</class
>
create table Person ( personId bigint not null primary key ) create table PersonAddress ( personId bigint not null, addressId bigint not null, primary key (personId, addressId) ) create table Address ( addressId bigint not null primary key )
A bidirectional many-to-one association is the most common kind of association. The following example illustrates the standard parent/child relationship.
<class name="Person">
<id name="id" column="personId">
<generator class="native"/>
</id>
<many-to-one name="address"
column="addressId"
not-null="true"/>
</class>
<class name="Address">
<id name="id" column="addressId">
<generator class="native"/>
</id>
<set name="people" inverse="true">
<key column="addressId"/>
<one-to-many class="Person"/>
</set>
</class
>
create table Person ( personId bigint not null primary key, addressId bigint not null ) create table Address ( addressId bigint not null primary key )
If you use a List
, or other indexed collection, set the key
column of the foreign key to not null
. Hibernate will manage the association from the collections side to maintain the index of each element, making the other side virtually inverse by setting update="false"
and insert="false"
:
<class name="Person">
<id name="id"/>
...
<many-to-one name="address"
column="addressId"
not-null="true"
insert="false"
update="false"/>
</class>
<class name="Address">
<id name="id"/>
...
<list name="people">
<key column="addressId" not-null="true"/>
<list-index column="peopleIdx"/>
<one-to-many class="Person"/>
</list>
</class
>
If the underlying foreign key column is NOT NULL
, it is important that you define not-null="true"
on the <key>
element of the collection mapping. Do not only declare not-null="true"
on a possible nested <column>
element, but on the <key>
element.
A bidirectional one-to-one association on a foreign key is common:
<class name="Person">
<id name="id" column="personId">
<generator class="native"/>
</id>
<many-to-one name="address"
column="addressId"
unique="true"
not-null="true"/>
</class>
<class name="Address">
<id name="id" column="addressId">
<generator class="native"/>
</id>
<one-to-one name="person"
property-ref="address"/>
</class
>
create table Person ( personId bigint not null primary key, addressId bigint not null unique ) create table Address ( addressId bigint not null primary key )
A bidirectional one-to-one association on a primary key uses the special id generator:
<class name="Person">
<id name="id" column="personId">
<generator class="native"/>
</id>
<one-to-one name="address"/>
</class>
<class name="Address">
<id name="id" column="personId">
<generator class="foreign">
<param name="property"
>person</param>
</generator>
</id>
<one-to-one name="person"
constrained="true"/>
</class
>
create table Person ( personId bigint not null primary key ) create table Address ( personId bigint not null primary key )
The following is an example of a bidirectional one-to-many association on a join table. The inverse="true"
can go on either end of the association, on the collection, or on the join.
<class name="Person">
<id name="id" column="personId">
<generator class="native"/>
</id>
<set name="addresses"
table="PersonAddress">
<key column="personId"/>
<many-to-many column="addressId"
unique="true"
class="Address"/>
</set>
</class>
<class name="Address">
<id name="id" column="addressId">
<generator class="native"/>
</id>
<join table="PersonAddress"
inverse="true"
optional="true">
<key column="addressId"/>
<many-to-one name="person"
column="personId"
not-null="true"/>
</join>
</class
>
create table Person ( personId bigint not null primary key ) create table PersonAddress ( personId bigint not null, addressId bigint not null primary key ) create table Address ( addressId bigint not null primary key )
A bidirectional one-to-one association on a join table is possible, but extremely unusual.
<class name="Person">
<id name="id" column="personId">
<generator class="native"/>
</id>
<join table="PersonAddress"
optional="true">
<key column="personId"
unique="true"/>
<many-to-one name="address"
column="addressId"
not-null="true"
unique="true"/>
</join>
</class>
<class name="Address">
<id name="id" column="addressId">
<generator class="native"/>
</id>
<join table="PersonAddress"
optional="true"
inverse="true">
<key column="addressId"
unique="true"/>
<many-to-one name="person"
column="personId"
not-null="true"
unique="true"/>
</join>
</class
>
create table Person ( personId bigint not null primary key ) create table PersonAddress ( personId bigint not null primary key, addressId bigint not null unique ) create table Address ( addressId bigint not null primary key )
Here is an example of a bidirectional many-to-many association.
<class name="Person">
<id name="id" column="personId">
<generator class="native"/>
</id>
<set name="addresses" table="PersonAddress">
<key column="personId"/>
<many-to-many column="addressId"
class="Address"/>
</set>
</class>
<class name="Address">
<id name="id" column="addressId">
<generator class="native"/>
</id>
<set name="people" inverse="true" table="PersonAddress">
<key column="addressId"/>
<many-to-many column="personId"
class="Person"/>
</set>
</class
>
create table Person ( personId bigint not null primary key ) create table PersonAddress ( personId bigint not null, addressId bigint not null, primary key (personId, addressId) ) create table Address ( addressId bigint not null primary key )
More complex association joins are extremely rare. Hibernate handles more complex situations by using SQL fragments embedded in the mapping document. For example, if a table with historical account information data defines accountNumber
, effectiveEndDate
and effectiveStartDate
columns, it would be mapped as follows:
<properties name="currentAccountKey">
<property name="accountNumber" type="string" not-null="true"/>
<property name="currentAccount" type="boolean">
<formula
>case when effectiveEndDate is null then 1 else 0 end</formula>
</property>
</properties>
<property name="effectiveEndDate" type="date"/>
<property name="effectiveStateDate" type="date" not-null="true"/>
You can then map an association to the current instance, the one with null effectiveEndDate
, by using:
<many-to-one name="currentAccountInfo"
property-ref="currentAccountKey"
class="AccountInfo">
<column name="accountNumber"/>
<formula
>'1'</formula>
</many-to-one
>
In a more complex example, imagine that the association between Employee
and Organization
is maintained in an Employment
table full of historical employment data. An association to the employee's most recent employer, the one with the most recent startDate
, could be mapped in the following way:
<join>
<key column="employeeId"/>
<subselect>
select employeeId, orgId
from Employments
group by orgId
having startDate = max(startDate)
</subselect>
<many-to-one name="mostRecentEmployer"
class="Organization"
column="orgId"/>
</join
>
This functionality allows a degree of creativity and flexibility, but it is more practical to handle these kinds of cases using HQL or a criteria query.
The notion of a component is re-used in several different contexts and purposes throughout Hibernate.
A component is a contained object that is persisted as a value type and not an entity reference. The term "component" refers to the object-oriented notion of composition and not to architecture-level components. For example, you can model a person like this:
public class Person {
private java.util.Date birthday;
private Name name;
private String key;
public String getKey() {
return key;
}
private void setKey(String key) {
this.key=key;
}
public java.util.Date getBirthday() {
return birthday;
}
public void setBirthday(java.util.Date birthday) {
this.birthday = birthday;
}
public Name getName() {
return name;
}
public void setName(Name name) {
this.name = name;
}
......
......
}
public class Name {
char initial;
String first;
String last;
public String getFirst() {
return first;
}
void setFirst(String first) {
this.first = first;
}
public String getLast() {
return last;
}
void setLast(String last) {
this.last = last;
}
public char getInitial() {
return initial;
}
void setInitial(char initial) {
this.initial = initial;
}
}
Now Name
can be persisted as a component of Person
. Name
defines getter and setter methods for its persistent properties, but it does not need to declare any interfaces or identifier properties.
Our Hibernate mapping would look like this:
<class name="eg.Person" table="person">
<id name="Key" column="pid" type="string">
<generator class="uuid"/>
</id>
<property name="birthday" type="date"/>
<component name="Name" class="eg.Name"
> <!-- class attribute optional -->
<property name="initial"/>
<property name="first"/>
<property name="last"/>
</component>
</class
>
Die Personentabelle würde die Spalten pid
, birthday
, initial
, first
und last
besitzen.
Like value types, components do not support shared references. In other words, two persons could have the same name, but the two person objects would contain two independent name objects that were only "the same" by value. The null value semantics of a component are ad hoc. When reloading the containing object, Hibernate will assume that if all component columns are null, then the entire component is null. This is suitable for most purposes.
The properties of a component can be of any Hibernate type (collections, many-to-one associations, other components, etc). Nested components should not be considered an exotic usage. Hibernate is intended to support a fine-grained object model.
Das <component>
-Element ermöglicht ein <parent>
-Subelement, das eine Property der Komponentenklasse als Rückreferenz zur enthaltenden Entity mappt.
<class name="eg.Person" table="person">
<id name="Key" column="pid" type="string">
<generator class="uuid"/>
</id>
<property name="birthday" type="date"/>
<component name="Name" class="eg.Name" unique="true">
<parent name="namedPerson"/> <!-- reference back to the Person -->
<property name="initial"/>
<property name="first"/>
<property name="last"/>
</component>
</class
>
Collections of components are supported (e.g. an array of type Name
). Declare your component collection by replacing the <element>
tag with a <composite-element>
tag:
<set name="someNames" table="some_names" lazy="true">
<key column="id"/>
<composite-element class="eg.Name"
> <!-- class attribute required -->
<property name="initial"/>
<property name="first"/>
<property name="last"/>
</composite-element>
</set
>
If you define a Set
of composite elements, it is important to implement equals()
and hashCode()
correctly.
Composite elements can contain components but not collections. If your composite element contains components, use the <nested-composite-element>
tag. This case is a collection of components which themselves have components. You may want to consider if a one-to-many association is more appropriate. Remodel the composite element as an entity, but be aware that even though the Java model is the same, the relational model and persistence semantics are still slightly different.
A composite element mapping does not support null-able properties if you are using a <set>
. There is no separate primary key column in the composite element table. Hibernate uses each column's value to identify a record when deleting objects, which is not possible with null values. You have to either use only not-null properties in a composite-element or choose a <list>
, <map>
, <bag>
or <idbag>
.
A special case of a composite element is a composite element with a nested <many-to-one>
element. This mapping allows you to map extra columns of a many-to-many association table to the composite element class. The following is a many-to-many association from Order
to Item
, where purchaseDate
, price
and quantity
are properties of the association:
<class name="eg.Order" .... >
....
<set name="purchasedItems" table="purchase_items" lazy="true">
<key column="order_id">
<composite-element class="eg.Purchase">
<property name="purchaseDate"/>
<property name="price"/>
<property name="quantity"/>
<many-to-one name="item" class="eg.Item"/> <!-- class attribute is optional -->
</composite-element>
</set>
</class
>
There cannot be a reference to the purchase on the other side for bidirectional association navigation. Components are value types and do not allow shared references. A single Purchase
can be in the set of an Order
, but it cannot be referenced by the Item
at the same time.
Sogar dreifache (oder vierfache, usw.) Assoziationen sind möglich:
<class name="eg.Order" .... >
....
<set name="purchasedItems" table="purchase_items" lazy="true">
<key column="order_id">
<composite-element class="eg.OrderLine">
<many-to-one name="purchaseDetails class="eg.Purchase"/>
<many-to-one name="item" class="eg.Item"/>
</composite-element>
</set>
</class
>
Composite elements can appear in queries using the same syntax as associations to other entities.
The <composite-map-key>
element allows you to map a component class as the key of a Map
. Ensure that you override hashCode()
and equals()
correctly on the component class.
You can use a component as an identifier of an entity class. Your component class must satisfy certain requirements:
Es muss java.io.Serializable
implementieren.
It must re-implement equals()
and hashCode()
consistently with the database's notion of composite key equality.
In Hibernate3, although the second requirement is not an absolutely hard requirement of Hibernate, it is recommended.
You cannot use an IdentifierGenerator
to generate composite keys. Instead the application must assign its own identifiers.
Use the <composite-id>
tag, with nested <key-property>
elements, in place of the usual <id>
declaration. For example, the OrderLine
class has a primary key that depends upon the (composite) primary key of Order
.
<class name="OrderLine">
<composite-id name="id" class="OrderLineId">
<key-property name="lineId"/>
<key-property name="orderId"/>
<key-property name="customerId"/>
</composite-id>
<property name="name"/>
<many-to-one name="order" class="Order"
insert="false" update="false">
<column name="orderId"/>
<column name="customerId"/>
</many-to-one>
....
</class
>
Any foreign keys referencing the OrderLine
table are now composite. Declare this in your mappings for other classes. An association to OrderLine
is mapped like this:
<many-to-one name="orderLine" class="OrderLine">
<!-- the "class" attribute is optional, as usual -->
<column name="lineId"/>
<column name="orderId"/>
<column name="customerId"/>
</many-to-one
>
The column
element is an alternative to the column
attribute everywhere. Using the column
element just gives more declaration options, which are mostly useful when utilizing hbm2ddl
Eine many-to-many
-Assoziation zu OrderLine
verwendet ebenfalls den zusammengesetzten Fremdschlüssel:
<set name="undeliveredOrderLines">
<key column name="warehouseId"/>
<many-to-many class="OrderLine">
<column name="lineId"/>
<column name="orderId"/>
<column name="customerId"/>
</many-to-many>
</set
>
The collection of OrderLine
s in Order
would use:
<set name="orderLines" inverse="true">
<key>
<column name="orderId"/>
<column name="customerId"/>
</key>
<one-to-many class="OrderLine"/>
</set
>
The <one-to-many>
element declares no columns.
Falls OrderLine
selbst eine Collection besitzt, so besitzt es auch einen zusammengesetzten Fremdschlüssel.
<class name="OrderLine">
....
....
<list name="deliveryAttempts">
<key
> <!-- a collection inherits the composite key type -->
<column name="lineId"/>
<column name="orderId"/>
<column name="customerId"/>
</key>
<list-index column="attemptId" base="1"/>
<composite-element class="DeliveryAttempt">
...
</composite-element>
</set>
</class
>
You can also map a property of type Map
:
<dynamic-component name="userAttributes">
<property name="foo" column="FOO" type="string"/>
<property name="bar" column="BAR" type="integer"/>
<many-to-one name="baz" class="Baz" column="BAZ_ID"/>
</dynamic-component
>
The semantics of a <dynamic-component>
mapping are identical to <component>
. The advantage of this kind of mapping is the ability to determine the actual properties of the bean at deployment time just by editing the mapping document. Runtime manipulation of the mapping document is also possible, using a DOM parser. You can also access, and change, Hibernate's configuration-time metamodel via the Configuration
object.
Hibernate unterstützt drei grundlegende Mapping-Strategien der Vererbung:
"Tabelle-pro-Klasse"-Hierarchie
table per subclass
"Tabelle-pro-konkrete-Klasse"
Desweiteren unterstützt Hibernate eine vierte, etwas andere Art der Polymorphie:
implizite Polymorphie
It is possible to use different mapping strategies for different branches of the same inheritance hierarchy. You can then make use of implicit polymorphism to achieve polymorphism across the whole hierarchy. However, Hibernate does not support mixing <subclass>
, <joined-subclass>
and <union-subclass>
mappings under the same root <class>
element. It is possible to mix together the table per hierarchy and table per subclass strategies under the the same <class>
element, by combining the <subclass>
and <join>
elements (see below for an example).
It is possible to define subclass
, union-subclass
, and joined-subclass
mappings in separate mapping documents directly beneath hibernate-mapping
. This allows you to extend a class hierarchy by adding a new mapping file. You must specify an extends
attribute in the subclass mapping, naming a previously mapped superclass. Previously this feature made the ordering of the mapping documents important. Since Hibernate3, the ordering of mapping files is irrelevant when using the extends keyword. The ordering inside a single mapping file still needs to be defined as superclasses before subclasses.
<hibernate-mapping>
<subclass name="DomesticCat" extends="Cat" discriminator-value="D">
<property name="name" type="string"/>
</subclass>
</hibernate-mapping
>
Suppose we have an interface Payment
with the implementors CreditCardPayment
, CashPayment
, and ChequePayment
. The table per hierarchy mapping would display in the following way:
<class name="Payment" table="PAYMENT">
<id name="id" type="long" column="PAYMENT_ID">
<generator class="native"/>
</id>
<discriminator column="PAYMENT_TYPE" type="string"/>
<property name="amount" column="AMOUNT"/>
...
<subclass name="CreditCardPayment" discriminator-value="CREDIT">
<property name="creditCardType" column="CCTYPE"/>
...
</subclass>
<subclass name="CashPayment" discriminator-value="CASH">
...
</subclass>
<subclass name="ChequePayment" discriminator-value="CHEQUE">
...
</subclass>
</class
>
Exactly one table is required. There is a limitation of this mapping strategy: columns declared by the subclasses, such as CCTYPE
, cannot have NOT NULL
constraints.
A table per subclass mapping looks like this:
<class name="Payment" table="PAYMENT">
<id name="id" type="long" column="PAYMENT_ID">
<generator class="native"/>
</id>
<property name="amount" column="AMOUNT"/>
...
<joined-subclass name="CreditCardPayment" table="CREDIT_PAYMENT">
<key column="PAYMENT_ID"/>
<property name="creditCardType" column="CCTYPE"/>
...
</joined-subclass>
<joined-subclass name="CashPayment" table="CASH_PAYMENT">
<key column="PAYMENT_ID"/>
...
</joined-subclass>
<joined-subclass name="ChequePayment" table="CHEQUE_PAYMENT">
<key column="PAYMENT_ID"/>
...
</joined-subclass>
</class
>
Four tables are required. The three subclass tables have primary key associations to the superclass table so the relational model is actually a one-to-one association.
Hibernate's implementation of table per subclass does not require a discriminator column. Other object/relational mappers use a different implementation of table per subclass that requires a type discriminator column in the superclass table. The approach taken by Hibernate is much more difficult to implement, but arguably more correct from a relational point of view. If you want to use a discriminator column with the table per subclass strategy, you can combine the use of <subclass>
and <join>
, as follows:
<class name="Payment" table="PAYMENT">
<id name="id" type="long" column="PAYMENT_ID">
<generator class="native"/>
</id>
<discriminator column="PAYMENT_TYPE" type="string"/>
<property name="amount" column="AMOUNT"/>
...
<subclass name="CreditCardPayment" discriminator-value="CREDIT">
<join table="CREDIT_PAYMENT">
<key column="PAYMENT_ID"/>
<property name="creditCardType" column="CCTYPE"/>
...
</join>
</subclass>
<subclass name="CashPayment" discriminator-value="CASH">
<join table="CASH_PAYMENT">
<key column="PAYMENT_ID"/>
...
</join>
</subclass>
<subclass name="ChequePayment" discriminator-value="CHEQUE">
<join table="CHEQUE_PAYMENT" fetch="select">
<key column="PAYMENT_ID"/>
...
</join>
</subclass>
</class
>
Durch die optionale fetch="select"
-Deklaration ruft Hibernate die ChequePayment
-Subklassendaten unter Verwendung eines äußeren Verbunds (sog. "outer Join") bei Anfragen an die Superklasse nicht auf.
You can even mix the table per hierarchy and table per subclass strategies using the following approach:
<class name="Payment" table="PAYMENT">
<id name="id" type="long" column="PAYMENT_ID">
<generator class="native"/>
</id>
<discriminator column="PAYMENT_TYPE" type="string"/>
<property name="amount" column="AMOUNT"/>
...
<subclass name="CreditCardPayment" discriminator-value="CREDIT">
<join table="CREDIT_PAYMENT">
<property name="creditCardType" column="CCTYPE"/>
...
</join>
</subclass>
<subclass name="CashPayment" discriminator-value="CASH">
...
</subclass>
<subclass name="ChequePayment" discriminator-value="CHEQUE">
...
</subclass>
</class
>
Bei allen diesen Mapping-Strategien wird eine polymorphe Assoziation zur Stamm-Payment
-Klasse mittels <many-to-one>
gemappt.
<many-to-one name="payment" column="PAYMENT_ID" class="Payment"/>
There are two ways we can map the table per concrete class strategy. First, you can use <union-subclass>
.
<class name="Payment">
<id name="id" type="long" column="PAYMENT_ID">
<generator class="sequence"/>
</id>
<property name="amount" column="AMOUNT"/>
...
<union-subclass name="CreditCardPayment" table="CREDIT_PAYMENT">
<property name="creditCardType" column="CCTYPE"/>
...
</union-subclass>
<union-subclass name="CashPayment" table="CASH_PAYMENT">
...
</union-subclass>
<union-subclass name="ChequePayment" table="CHEQUE_PAYMENT">
...
</union-subclass>
</class
>
Drei Tabellen sind für die Subklassen involviert. Jede Tabelle definiert Spalten für alle Properties der Klasse, einschließlich vererbter Properties.
The limitation of this approach is that if a property is mapped on the superclass, the column name must be the same on all subclass tables. The identity generator strategy is not allowed in union subclass inheritance. The primary key seed has to be shared across all unioned subclasses of a hierarchy.
If your superclass is abstract, map it with abstract="true"
. If it is not abstract, an additional table (it defaults to PAYMENT
in the example above), is needed to hold instances of the superclass.
Alternativ kann implizite Polymorphie angewendet werden:
<class name="CreditCardPayment" table="CREDIT_PAYMENT">
<id name="id" type="long" column="CREDIT_PAYMENT_ID">
<generator class="native"/>
</id>
<property name="amount" column="CREDIT_AMOUNT"/>
...
</class>
<class name="CashPayment" table="CASH_PAYMENT">
<id name="id" type="long" column="CASH_PAYMENT_ID">
<generator class="native"/>
</id>
<property name="amount" column="CASH_AMOUNT"/>
...
</class>
<class name="ChequePayment" table="CHEQUE_PAYMENT">
<id name="id" type="long" column="CHEQUE_PAYMENT_ID">
<generator class="native"/>
</id>
<property name="amount" column="CHEQUE_AMOUNT"/>
...
</class
>
Notice that the Payment
interface is not mentioned explicitly. Also notice that properties of Payment
are mapped in each of the subclasses. If you want to avoid duplication, consider using XML entities (for example, [ <!ENTITY allproperties SYSTEM "allproperties.xml"> ]
in the DOCTYPE
declaration and &allproperties;
in the mapping).
The disadvantage of this approach is that Hibernate does not generate SQL UNION
s when performing polymorphic queries.
Bei dieser Mapping-Strategie wird in der Regel eine polymorphe Assoziation zu Payment
mittels <any>
gemappt.
<any name="payment" meta-type="string" id-type="long">
<meta-value value="CREDIT" class="CreditCardPayment"/>
<meta-value value="CASH" class="CashPayment"/>
<meta-value value="CHEQUE" class="ChequePayment"/>
<column name="PAYMENT_CLASS"/>
<column name="PAYMENT_ID"/>
</any
>
Since the subclasses are each mapped in their own <class>
element, and since Payment
is just an interface), each of the subclasses could easily be part of another inheritance hierarchy. You can still use polymorphic queries against the Payment
interface.
<class name="CreditCardPayment" table="CREDIT_PAYMENT">
<id name="id" type="long" column="CREDIT_PAYMENT_ID">
<generator class="native"/>
</id>
<discriminator column="CREDIT_CARD" type="string"/>
<property name="amount" column="CREDIT_AMOUNT"/>
...
<subclass name="MasterCardPayment" discriminator-value="MDC"/>
<subclass name="VisaPayment" discriminator-value="VISA"/>
</class>
<class name="NonelectronicTransaction" table="NONELECTRONIC_TXN">
<id name="id" type="long" column="TXN_ID">
<generator class="native"/>
</id>
...
<joined-subclass name="CashPayment" table="CASH_PAYMENT">
<key column="PAYMENT_ID"/>
<property name="amount" column="CASH_AMOUNT"/>
...
</joined-subclass>
<joined-subclass name="ChequePayment" table="CHEQUE_PAYMENT">
<key column="PAYMENT_ID"/>
<property name="amount" column="CHEQUE_AMOUNT"/>
...
</joined-subclass>
</class
>
Once again, Payment
is not mentioned explicitly. If we execute a query against the Payment
interface, for example from Payment
, Hibernate automatically returns instances of CreditCardPayment
(and its subclasses, since they also implement Payment
), CashPayment
and ChequePayment
, but not instances of NonelectronicTransaction
.
There are limitations to the "implicit polymorphism" approach to the table per concrete-class mapping strategy. There are somewhat less restrictive limitations to <union-subclass>
mappings.
The following table shows the limitations of table per concrete-class mappings, and of implicit polymorphism, in Hibernate.
Tabelle 10.1. Features von Vererbungsmappings
Vererbungsstrategie | Polymorphic many-to-one | Polymorphes "One-to-One" | Polymorphes "One-to-Many" | Polymorphes "Many-to-Many" | Polymorphes load()/get() | Polymorphe Anfragen | Polymorphe Verknüpfungen | Outer join fetching |
---|---|---|---|---|---|---|---|---|
table per class-hierarchy | <many-to-one> | <one-to-one> | <one-to-many> | <many-to-many> | s.get(Payment.class, id) | from Payment p | from Order o join o.payment p | supported |
table per subclass | <many-to-one> | <one-to-one> | <one-to-many> | <many-to-many> | s.get(Payment.class, id) | from Payment p | from Order o join o.payment p | supported |
Tabelle-pro-konkrete-Klasse (Union-Subklasse) | <many-to-one> | <one-to-one> | <one-to-many> (for inverse="true" only) | <many-to-many> | s.get(Payment.class, id) | from Payment p | from Order o join o.payment p | supported |
table per concrete class (implicit polymorphism) | <any> | not supported | not supported | <many-to-any> | s.createCriteria(Payment.class).add( Restrictions.idEq(id) ).uniqueResult() | from Payment p | not supported | not supported |
Hibernate is a full object/relational mapping solution that not only shields the developer from the details of the underlying database management system, but also offers state management of objects. This is, contrary to the management of SQL statements
in common JDBC/SQL persistence layers, a natural object-oriented view of persistence in Java applications.
Mit anderen Worten - Hibernate Anwendungsentwickler sollten sich stets über den Status Ihrer Objekte Gedanken machen und nicht unbedingt über die Ausführung von SQL-Anweisungen. Dieser Teil wird von Hibernate übernommen und ist nur dann für den Anwendungsentwickler von Bedeutung, wenn die Performance des Systems eingestellt wird.
Hibernate definiert und unterstützt die folgenden Arten des Objektstatus:
Transient - an object is transient if it has just been instantiated using the new
operator, and it is not associated with a Hibernate Session
. It has no persistent representation in the database and no identifier value has been assigned. Transient instances will be destroyed by the garbage collector if the application does not hold a reference anymore. Use the Hibernate Session
to make an object persistent (and let Hibernate take care of the SQL statements that need to be executed for this transition).
Persistent - a persistent instance has a representation in the database and an identifier value. It might just have been saved or loaded, however, it is by definition in the scope of a Session
. Hibernate will detect any changes made to an object in persistent state and synchronize the state with the database when the unit of work completes. Developers do not execute manual UPDATE
statements, or DELETE
statements when an object should be made transient.
Detached - a detached instance is an object that has been persistent, but its Session
has been closed. The reference to the object is still valid, of course, and the detached instance might even be modified in this state. A detached instance can be reattached to a new Session
at a later point in time, making it (and all the modifications) persistent again. This feature enables a programming model for long running units of work that require user think-time. We call them application transactions, i.e., a unit of work from the point of view of the user.
We will now discuss the states and state transitions (and the Hibernate methods that trigger a transition) in more detail.
Newly instantiated instances of a persistent class are considered transient by Hibernate. We can make a transient instance persistent by associating it with a session:
DomesticCat fritz = new DomesticCat();
fritz.setColor(Color.GINGER);
fritz.setSex('M');
fritz.setName("Fritz");
Long generatedId = (Long) sess.save(fritz);
If Cat
has a generated identifier, the identifier is generated and assigned to the cat
when save()
is called. If Cat
has an assigned
identifier, or a composite key, the identifier should be assigned to the cat
instance before calling save()
. You can also use persist()
instead of save()
, with the semantics defined in the EJB3 early draft.
persist()
makes a transient instance persistent. However, it does not guarantee that the identifier value will be assigned to the persistent instance immediately, the assignment might happen at flush time. persist()
also guarantees that it will not execute an INSERT
statement if it is called outside of transaction boundaries. This is useful in long-running conversations with an extended Session/persistence context.
save()
does guarantee to return an identifier. If an INSERT has to be executed to get the identifier ( e.g. "identity" generator, not "sequence"), this INSERT happens immediately, no matter if you are inside or outside of a transaction. This is problematic in a long-running conversation with an extended Session/persistence context.
Alternatively, you can assign the identifier using an overloaded version of save()
.
DomesticCat pk = new DomesticCat();
pk.setColor(Color.TABBY);
pk.setSex('F');
pk.setName("PK");
pk.setKittens( new HashSet() );
pk.addKitten(fritz);
sess.save( pk, new Long(1234) );
If the object you make persistent has associated objects (e.g. the kittens
collection in the previous example), these objects can be made persistent in any order you like unless you have a NOT NULL
constraint upon a foreign key column. There is never a risk of violating foreign key constraints. However, you might violate a NOT NULL
constraint if you save()
the objects in the wrong order.
Usually you do not bother with this detail, as you will normally use Hibernate's transitive persistence feature to save the associated objects automatically. Then, even NOT NULL
constraint violations do not occur - Hibernate will take care of everything. Transitive persistence is discussed later in this chapter.
The load()
methods of Session
provide a way of retrieving a persistent instance if you know its identifier. load()
takes a class object and loads the state into a newly instantiated instance of that class in a persistent state.
Cat fritz = (Cat) sess.load(Cat.class, generatedId);
// you need to wrap primitive identifiers
long id = 1234;
DomesticCat pk = (DomesticCat) sess.load( DomesticCat.class, new Long(id) );
Alternativ können Sie den Status in eine beliebige Instanz laden:
Cat cat = new DomesticCat();
// load pk's state into cat
sess.load( cat, new Long(pkId) );
Set kittens = cat.getKittens();
Be aware that load()
will throw an unrecoverable exception if there is no matching database row. If the class is mapped with a proxy, load()
just returns an uninitialized proxy and does not actually hit the database until you invoke a method of the proxy. This is useful if you wish to create an association to an object without actually loading it from the database. It also allows multiple instances to be loaded as a batch if batch-size
is defined for the class mapping.
If you are not certain that a matching row exists, you should use the get()
method which hits the database immediately and returns null if there is no matching row.
Cat cat = (Cat) sess.get(Cat.class, id);
if (cat==null) {
cat = new Cat();
sess.save(cat, id);
}
return cat;
You can even load an object using an SQL SELECT ... FOR UPDATE
, using a LockMode
. See the API documentation for more information.
Cat cat = (Cat) sess.get(Cat.class, id, LockMode.UPGRADE);
Any associated instances or contained collections will not be selected FOR UPDATE
, unless you decide to specify lock
or all
as a cascade style for the association.
Es ist mittels der refresh()
-Methode jederzeit möglich, ein Objekt und alle seine Collections erneut zu laden. Dies ist insbesondere dann von Nutzen, wenn Datenbank-Trigger zur Initialisierung der Objekt-Properties verwendet werden.
sess.save(cat);
sess.flush(); //force the SQL INSERT
sess.refresh(cat); //re-read the state (after the trigger executes)
How much does Hibernate load from the database and how many SQL SELECT
s will it use? This depends on the fetching strategy. This is explained in Abschnitt 21.1, „Abrufstrategien“.
If you do not know the identifiers of the objects you are looking for, you need a query. Hibernate supports an easy-to-use but powerful object oriented query language (HQL). For programmatic query creation, Hibernate supports a sophisticated Criteria and Example query feature (QBC and QBE). You can also express your query in the native SQL of your database, with optional support from Hibernate for result set conversion into objects.
HQL und native SQL-Anfragen werden durch eine Instanz von org.hibernate.Query
repräsentiert. Dieses Interface bietet Methoden zur Parameter-Bindung, Handhabung von Ergebnissätzen (sog. "result sets") und für das Ausführen der tatsächlichen Anfrage. Sie können mittels der Session
immer eine Query
erhalten:
List cats = session.createQuery(
"from Cat as cat where cat.birthdate < ?")
.setDate(0, date)
.list();
List mothers = session.createQuery(
"select mother from Cat as cat join cat.mother as mother where cat.name = ?")
.setString(0, name)
.list();
List kittens = session.createQuery(
"from Cat as cat where cat.mother = ?")
.setEntity(0, pk)
.list();
Cat mother = (Cat) session.createQuery(
"select cat.mother from Cat as cat where cat = ?")
.setEntity(0, izi)
.uniqueResult();]]
Query mothersWithKittens = (Cat) session.createQuery(
"select mother from Cat as mother left join fetch mother.kittens");
Set uniqueMothers = new HashSet(mothersWithKittens.list());
A query is usually executed by invoking list()
. The result of the query will be loaded completely into a collection in memory. Entity instances retrieved by a query are in a persistent state. The uniqueResult()
method offers a shortcut if you know your query will only return a single object. Queries that make use of eager fetching of collections usually return duplicates of the root objects, but with their collections initialized. You can filter these duplicates through a Set
.
Occasionally, you might be able to achieve better performance by executing the query using the iterate()
method. This will usually be the case if you expect that the actual entity instances returned by the query will already be in the session or second-level cache. If they are not already cached, iterate()
will be slower than list()
and might require many database hits for a simple query, usually 1 for the initial select which only returns identifiers, and n additional selects to initialize the actual instances.
// fetch ids
Iterator iter = sess.createQuery("from eg.Qux q order by q.likeliness").iterate();
while ( iter.hasNext() ) {
Qux qux = (Qux) iter.next(); // fetch the object
// something we couldnt express in the query
if ( qux.calculateComplicatedAlgorithm() ) {
// delete the current instance
iter.remove();
// dont need to process the rest
break;
}
}
Hibernate queries sometimes return tuples of objects. Each tuple is returned as an array:
Iterator kittensAndMothers = sess.createQuery(
"select kitten, mother from Cat kitten join kitten.mother mother")
.list()
.iterator();
while ( kittensAndMothers.hasNext() ) {
Object[] tuple = (Object[]) kittensAndMothers.next();
Cat kitten = (Cat) tuple[0];
Cat mother = (Cat) tuple[1];
....
}
Queries can specify a property of a class in the select
clause. They can even call SQL aggregate functions. Properties or aggregates are considered "scalar" results and not entities in persistent state.
Iterator results = sess.createQuery(
"select cat.color, min(cat.birthdate), count(cat) from Cat cat " +
"group by cat.color")
.list()
.iterator();
while ( results.hasNext() ) {
Object[] row = (Object[]) results.next();
Color type = (Color) row[0];
Date oldest = (Date) row[1];
Integer count = (Integer) row[2];
.....
}
Methods on Query
are provided for binding values to named parameters or JDBC-style ?
parameters. Contrary to JDBC, Hibernate numbers parameters from zero. Named parameters are identifiers of the form :name
in the query string. The advantages of named parameters are as follows:
benannte Parameter sind unempfindlich im Bezug auf die Reihenfolge, in der sie im Anfragenstring erscheinen
they can occur multiple times in the same query
sie dokumentieren sich selbst
//named parameter (preferred)
Query q = sess.createQuery("from DomesticCat cat where cat.name = :name");
q.setString("name", "Fritz");
Iterator cats = q.iterate();
//positional parameter
Query q = sess.createQuery("from DomesticCat cat where cat.name = ?");
q.setString(0, "Izi");
Iterator cats = q.iterate();
//named parameter list
List names = new ArrayList();
names.add("Izi");
names.add("Fritz");
Query q = sess.createQuery("from DomesticCat cat where cat.name in (:namesList)");
q.setParameterList("namesList", names);
List cats = q.list();
If you need to specify bounds upon your result set, that is, the maximum number of rows you want to retrieve and/or the first row you want to retrieve, you can use methods of the Query
interface:
Query q = sess.createQuery("from DomesticCat cat");
q.setFirstResult(20);
q.setMaxResults(10);
List cats = q.list();
Hibernate weiß, wie die Grenzanfrage in die native SQL Ihres DBMS zu übersetzen ist.
If your JDBC driver supports scrollable ResultSet
s, the Query
interface can be used to obtain a ScrollableResults
object that allows flexible navigation of the query results.
Query q = sess.createQuery("select cat.name, cat from DomesticCat cat " +
"order by cat.name");
ScrollableResults cats = q.scroll();
if ( cats.first() ) {
// find the first name on each page of an alphabetical list of cats by name
firstNamesOfPages = new ArrayList();
do {
String name = cats.getString(0);
firstNamesOfPages.add(name);
}
while ( cats.scroll(PAGE_SIZE) );
// Now get the first page of cats
pageOfCats = new ArrayList();
cats.beforeFirst();
int i=0;
while( ( PAGE_SIZE > i++ ) && cats.next() ) pageOfCats.add( cats.get(1) );
}
cats.close()
Note that an open database connection and cursor is required for this functionality. Use setMaxResult()
/setFirstResult()
if you need offline pagination functionality.
Queries can also be configured as so called named queries using annotations or Hibernate mapping documents. @NamedQuery
and @NamedQueries
can be defined at the class level as seen in Beispiel 11.1, „Defining a named query using @NamedQuery“ . However their definitions are global to the session factory/entity manager factory scope. A named query is defined by its name and the actual query string.
Beispiel 11.1. Defining a named query using @NamedQuery
@Entity
@NamedQuery(name="night.moreRecentThan", query="select n from Night n where n.date >= :date")
public class Night {
...
}
public class MyDao {
doStuff() {
Query q = s.getNamedQuery("night.moreRecentThan");
q.setDate( "date", aMonthAgo );
List results = q.list();
...
}
...
}
Using a mapping document can be configured using the <query>
node. Remember to use a CDATA
section if your query contains characters that could be interpreted as markup.
Beispiel 11.2. Defining a named query using <query>
<query name="ByNameAndMaximumWeight"><![CDATA[
from eg.DomesticCat as cat
where cat.name = ?
and cat.weight > ?
] ]></query>
Parameter binding and executing is done programatically as seen in Beispiel 11.3, „Parameter binding of a named query“.
Beispiel 11.3. Parameter binding of a named query
Query q = sess.getNamedQuery("ByNameAndMaximumWeight");
q.setString(0, name);
q.setInt(1, minWeight);
List cats = q.list();
The actual program code is independent of the query language that is used. You can also define native SQL queries in metadata, or migrate existing queries to Hibernate by placing them in mapping files.
Also note that a query declaration inside a <hibernate-mapping>
element requires a global unique name for the query, while a query declaration inside a <class>
element is made unique automatically by prepending the fully qualified name of the class. For example eg.Cat.ByNameAndMaximumWeight
.
A collection filter is a special type of query that can be applied to a persistent collection or array. The query string can refer to this
, meaning the current collection element.
Collection blackKittens = session.createFilter(
pk.getKittens(),
"where this.color = ?")
.setParameter( Color.BLACK, Hibernate.custom(ColorUserType.class) )
.list()
);
The returned collection is considered a bag that is a copy of the given collection. The original collection is not modified. This is contrary to the implication of the name "filter", but consistent with expected behavior.
Observe that filters do not require a from
clause, although they can have one if required. Filters are not limited to returning the collection elements themselves.
Collection blackKittenMates = session.createFilter(
pk.getKittens(),
"select this.mate where this.color = eg.Color.BLACK.intValue")
.list();
Even an empty filter query is useful, e.g. to load a subset of elements in a large collection:
Collection tenKittens = session.createFilter(
mother.getKittens(), "")
.setFirstResult(0).setMaxResults(10)
.list();
HQL is extremely powerful, but some developers prefer to build queries dynamically using an object-oriented API, rather than building query strings. Hibernate provides an intuitive Criteria
query API for these cases:
Criteria crit = session.createCriteria(Cat.class);
crit.add( Restrictions.eq( "color", eg.Color.BLACK ) );
crit.setMaxResults(10);
List cats = crit.list();
The Criteria
and the associated Example
API are discussed in more detail in Kapitel 17, "Criteria Queries".
You can express a query in SQL, using createSQLQuery()
and let Hibernate manage the mapping from result sets to objects. You can at any time call session.connection()
and use the JDBC Connection
directly. If you choose to use the Hibernate API, you must enclose SQL aliases in braces:
List cats = session.createSQLQuery("SELECT {cat.*} FROM CAT {cat} WHERE ROWNUM<10")
.addEntity("cat", Cat.class)
.list();
List cats = session.createSQLQuery(
"SELECT {cat}.ID AS {cat.id}, {cat}.SEX AS {cat.sex}, " +
"{cat}.MATE AS {cat.mate}, {cat}.SUBCLASS AS {cat.class}, ... " +
"FROM CAT {cat} WHERE ROWNUM<10")
.addEntity("cat", Cat.class)
.list()
SQL queries can contain named and positional parameters, just like Hibernate queries. More information about native SQL queries in Hibernate can be found in Kapitel 18, Native SQL.
Transactional persistent instances (i.e. objects loaded, saved, created or queried by the Session
) can be manipulated by the application, and any changes to persistent state will be persisted when the Session
is flushed. This is discussed later in this chapter. There is no need to call a particular method (like update()
, which has a different purpose) to make your modifications persistent. The most straightforward way to update the state of an object is to load()
it and then manipulate it directly while the Session
is open:
DomesticCat cat = (DomesticCat) sess.load( Cat.class, new Long(69) );
cat.setName("PK");
sess.flush(); // changes to cat are automatically detected and persisted
Sometimes this programming model is inefficient, as it requires in the same session both an SQL SELECT
to load an object and an SQL UPDATE
to persist its updated state. Hibernate offers an alternate approach by using detached instances.
Zahlreiche Anwendungen müssen ein Objekt in einer Transaktion abrufen, dieses für Modifizierungen an die UI-Schicht schicken und die Änderungen anschließend in einer neuen Transaktion speichern. Anwendungen, die diese Herangehensweise in einer Umgebung mit hoher Nebenläufigkeit (d.h. häufigem gleichzeitigen Zugriff) benutzen, verwenden in der Regel versionierte Daten, um die Isolation der "langen" Arbeitseinheit zu gewährleisten.
Hibernate unterstützt dieses Modell, indem es mittels der Session.update()
oder Session.merge()
-Methoden die Möglichkeit der Wiederanbindung abgesetzter Instanzen bietet:
// in the first session
Cat cat = (Cat) firstSession.load(Cat.class, catId);
Cat potentialMate = new Cat();
firstSession.save(potentialMate);
// in a higher layer of the application
cat.setMate(potentialMate);
// later, in a new session
secondSession.update(cat); // update cat
secondSession.update(mate); // update mate
Wäre Cat
mit Bezeichner catId
bereits durch secondSession
geladen worden, wenn die Anwendung die Wiederanbindung durchzuführen versucht hätte, so wäre eine Ausnahme gemeldet worden.
Use update()
if you are certain that the session does not contain an already persistent instance with the same identifier. Use merge()
if you want to merge your modifications at any time without consideration of the state of the session. In other words, update()
is usually the first method you would call in a fresh session, ensuring that the reattachment of your detached instances is the first operation that is executed.
The application should individually update()
detached instances that are reachable from the given detached instance only if it wants their state to be updated. This can be automated using transitive persistence. See Abschnitt 11.11, „Transitive Persistenz“ for more information.
The lock()
method also allows an application to reassociate an object with a new session. However, the detached instance has to be unmodified.
//just reassociate:
sess.lock(fritz, LockMode.NONE);
//do a version check, then reassociate:
sess.lock(izi, LockMode.READ);
//do a version check, using SELECT ... FOR UPDATE, then reassociate:
sess.lock(pk, LockMode.UPGRADE);
Note that lock()
can be used with various LockMode
s. See the API documentation and the chapter on transaction handling for more information. Reattachment is not the only usecase for lock()
.
Other models for long units of work are discussed in Abschnitt 13.3, „Optimistische Nebenläufigkeitskontrolle“.
Benutzer von Hibernate haben den Wunsch nach einer allgemeinen Methode geäußert, die entweder eine transiente Instanz durch Generierung eines neuen Bezeichners speichert oder die dem aktuellen Bezeichner zugehörigen abgesetzten Instanzen aktualisiert/erneut hinzufügt. Die saveOrUpdate()
-Methode implementiert diese Funktionalität.
// in the first session
Cat cat = (Cat) firstSession.load(Cat.class, catID);
// in a higher tier of the application
Cat mate = new Cat();
cat.setMate(mate);
// later, in a new session
secondSession.saveOrUpdate(cat); // update existing state (cat has a non-null id)
secondSession.saveOrUpdate(mate); // save the new instance (mate has a null id)
Gebrauch und Semantik von saveOrUpdate()
scheinen neue Benutzer manchmal zu überfordern. So lange Sie nicht versuchen, diese Instanzen von einer Session in einer neuen Session zu verwenden, sollten Sie update()
, saveOrUpdate()
oder merge()
ohnehin nicht benutzen müssen. Manchmal kommen ganze Anwendungen ohne irgendeine dieser Methoden aus.
In der Regel kommen update()
oder saveOrUpdate()
in folgenden Situationen zum Einsatz:
die Anwendung lädt ein Objekt in der ersten Session
das Objekt wird an den UI-"Tier" weitergegeben
am Objekt werden einige Modifikationen vorgenommen
das Objekt wird zurück an den "Business-Logic-Tier" geleitet
die Anwendung persistiert diese Modifikationen durch Aufruf von update()
in einer zweiten Session
saveOrUpdate()
tut folgendes:
falls das Objekt in dieser Session bereits persistent ist, geschieht nichts
falls ein anderes mit der Session assoziiertes Objekt denselben Bezeichner besitzt, wird eine Ausnahme gemeldet
falls das Objekt keine Bezeichner-Property besitzt, speichern Sie es mittels save()
falls der Bezeichner des Objekts einen ihm zugeordneten Wert am neu instantiierten Objekt besitzt, speichern Sie mittels save()
if the object is versioned by a <version>
or <timestamp>
, and the version property value is the same value assigned to a newly instantiated object, save()
it
andernfalls aktualisieren Sie das Objekt mittels update()
und merge()
ist völlig anders:
falls eine persistente Instanz mit demselben Bezeichner zum gegenwärtigen Zeitpunkt mit der Session assoziiert ist, so kopieren Sie den Status des vorgegebenen Objekts in die persistente Instanz
falls keine persistente Instanz zum gegenwärtigen Zeitpunkt mit der Session assoziiert wird, so versuchen Sie sie aus der Datenbank zu laden oder erstellen Sie eine neue persistente Instanz
die persistente Instanz wird zurückgeschickt
die vorgegebene Instanz wird nicht mit der Session assoziiert, sie bleibt abgesetzt
Session.delete()
will remove an object's state from the database. Your application, however, can still hold a reference to a deleted object. It is best to think of delete()
as making a persistent instance, transient.
sess.delete(cat);
You can delete objects in any order, without risk of foreign key constraint violations. It is still possible to violate a NOT NULL
constraint on a foreign key column by deleting objects in the wrong order, e.g. if you delete the parent, but forget to delete the children.
It is sometimes useful to be able to take a graph of persistent instances and make them persistent in a different datastore, without regenerating identifier values.
//retrieve a cat from one database
Session session1 = factory1.openSession();
Transaction tx1 = session1.beginTransaction();
Cat cat = session1.get(Cat.class, catId);
tx1.commit();
session1.close();
//reconcile with a second database
Session session2 = factory2.openSession();
Transaction tx2 = session2.beginTransaction();
session2.replicate(cat, ReplicationMode.LATEST_VERSION);
tx2.commit();
session2.close();
The ReplicationMode
determines how replicate()
will deal with conflicts with existing rows in the database:
ReplicationMode.IGNORE
: ignores the object when there is an existing database row with the same identifier
ReplicationMode.OVERWRITE
: overwrites any existing database row with the same identifier
ReplicationMode.EXCEPTION
: throws an exception if there is an existing database row with the same identifier
ReplicationMode.LATEST_VERSION
: overwrites the row if its version number is earlier than the version number of the object, or ignore the object otherwise
Anwendungsfälle dieses Features beinhalten die Abstimmung von in verschiedenen Datenbankinstanzen eingegebenen Daten, das Upgrade von Systemkonfigurationsinformationen während Produkt-Upgrades, die Wiederholung von während nicht-ACID Transaktionen gemachten Änderungen und mehr.
Sometimes the Session
will execute the SQL statements needed to synchronize the JDBC connection's state with the state of objects held in memory. This process, called flush, occurs by default at the following points:
vor dem Ausführen einiger Anfragen
von org.hibernate.Transaction.commit()
von Session.flush()
The SQL statements are issued in the following order:
all entity insertions in the same order the corresponding objects were saved using Session.save()
alle Entity-Aktualisierungen
alle Collection-Löschungen
alle Löschungen, Aktualisierungen und Einfügungen von Elementen der Collection
alle Einfügungen in Collections
all entity deletions in the same order the corresponding objects were deleted using Session.delete()
An exception is that objects using native
ID generation are inserted when they are saved.
Except when you explicitly flush()
, there are absolutely no guarantees about when the Session
executes the JDBC calls, only the order in which they are executed. However, Hibernate does guarantee that the Query.list(..)
will never return stale or incorrect data.
It is possible to change the default behavior so that flush occurs less frequently. The FlushMode
class defines three different modes: only flush at commit time when the Hibernate Transaction
API is used, flush automatically using the explained routine, or never flush unless flush()
is called explicitly. The last mode is useful for long running units of work, where a Session
is kept open and disconnected for a long time (see Abschnitt 13.3.2, „Erweiterte Session und automatische Versionierung“).
sess = sf.openSession();
Transaction tx = sess.beginTransaction();
sess.setFlushMode(FlushMode.COMMIT); // allow queries to return stale state
Cat izi = (Cat) sess.load(Cat.class, id);
izi.setName(iznizi);
// might return stale data
sess.find("from Cat as cat left outer join cat.kittens kitten");
// change to izi is not flushed!
...
tx.commit(); // flush occurs
sess.close();
During flush, an exception might occur (e.g. if a DML operation violates a constraint). Since handling exceptions involves some understanding of Hibernate's transactional behavior, we discuss it in Kapitel 13, Transactions and Concurrency.
Es ist recht mühselig, einzelne Objekte zu speichern, zu löschen und erneut hinzuzufügen, insbesondere dann, wenn man es mit einem Diagramm assoziierter Objekte zu tun hat. Ein gängiger Fall ist die Beziehung zwischen übergeordneten und untergeordneten Objekten (sog. "parent/child"-Beziehung). Sehen Sie sich das folgende Beispiel an:
If the children in a parent/child relationship would be value typed (e.g. a collection of addresses or strings), their life cycle would depend on the parent and no further action would be required for convenient "cascading" of state changes. When the parent is saved, the value-typed child objects are saved and when the parent is deleted, the children will be deleted, etc. This works for operations such as the removal of a child from the collection. Since value-typed objects cannot have shared references, Hibernate will detect this and delete the child from the database.
Now consider the same scenario with parent and child objects being entities, not value-types (e.g. categories and items, or parent and child cats). Entities have their own life cycle and support shared references. Removing an entity from the collection does not mean it can be deleted), and there is by default no cascading of state from one entity to any other associated entities. Hibernate does not implement persistence by reachability by default.
Für jeden Grundvorgang der Hibernate Session - einschließlich persist(), merge(), saveOrUpdate(), delete(), lock(), refresh(), evict(), replicate()
- gibt es eine entsprechende Art der Weitergabe. Die Arten sind dem entsprechend create, merge, save-update, delete, lock, refresh, evict, replicate
benannt. Falls Sie möchten, dass ein Vorgang entlang einer Assoziation weitergegeben wird, so müssen Sie dass im Mapping-Dokument angeben. Zum Beispiel wie folgt aussehen:
<one-to-one name="person" cascade="persist"/>
Die Arten der Weitergabe (sog. "Cascade Styles") können kombiniert werden:
<one-to-one name="person" cascade="persist,delete,lock"/>
You can even use cascade="all"
to specify that all operations should be cascaded along the association. The default cascade="none"
specifies that no operations are to be cascaded.
In case you are using annotatons you probably have noticed the cascade
attribute taking an array of CascadeType
as a value. The cascade concept in JPA is very is similar to the transitive persistence and cascading of operations as described above, but with slightly different semantics and cascading types:
CascadeType.PERSIST
: cascades the persist (create) operation to associated entities persist() is called or if the entity is managed
CascadeType.MERGE
: cascades the merge operation to associated entities if merge() is called or if the entity is managed
CascadeType.REMOVE
: cascades the remove operation to associated entities if delete() is called
CascadeType.REFRESH:
cascades the refresh operation to associated entities if refresh() is called
CascadeType.DETACH:
cascades the detach operation to associated entities if detach() is called
CascadeType.ALL
: all of the above
CascadeType.ALL also covers Hibernate specific operations like save-update, lock etc...
A special cascade style, delete-orphan
, applies only to one-to-many associations, and indicates that the delete()
operation should be applied to any child object that is removed from the association. Using annotations there is no CascadeType.DELETE-ORPHAN
equivalent. Instead you can use the attribute orphanRemoval as seen in
Beispiel 11.4, „@OneToMany with orphanRemoval“. If an entity is removed from a @OneToMany
collection or an associated entity is dereferenced from a @OneToOne
association, this associated entity can be marked for deletion if orphanRemoval
is set to true.
Beispiel 11.4. @OneToMany
with orphanRemoval
@Entity
public class Customer {
private Set<Order> orders;
@OneToMany(cascade=CascadeType.ALL, orphanRemoval=true)
public Set<Order> getOrders() { return orders; }
public void setOrders(Set<Order> orders) { this.orders = orders; }
[...]
}
@Entity
public class Order { ... }
Customer customer = em.find(Customer.class, 1l);
Order order = em.find(Order.class, 1l);
customer.getOrders().remove(order); //order will be deleted by cascade
Empfehlungen:
It does not usually make sense to enable cascade on a many-to-one or many-to-many association. In fact the @ManyToOne
and @ManyToMany
don't even offer a orphanRemoval
attribute. Cascading is often useful for one-to-one and one-to-many associations.
If the child object's lifespan is bounded by the lifespan of the parent object, make it a life cycle object by specifying cascade="all,delete-orphan"(
.@OneToMany(cascade=CascadeType.ALL, orphanRemoval=true)
)
Andernfalls wird keine Weitergabe benötigt. Wenn Sie jedoch glauben, dass Sie oft mit über- und untergeordneten Objekten in derselben Transaktion arbeiten werden und Sie sich etwas Tipparbeit sparen möchten, so können Sie cascade="persist,merge,save-update"
verwenden.
Das Mappen einer Assoziation (entweder einer einwertigen Assoziation oder einer Collection) unter Verwendung von cascade="all"
kennzeichnet die Assoziation als zum Parent/Child-Beziehungstyp gehörig, bei dem Speichern/Aktualisieren/Löschen des übergeordneten Objekts zum Speichern/Aktualisieren/Löschen des untergeordneten Objekts (oder Objekte) führt.
Furthermore, a mere reference to a child from a persistent parent will result in save/update of the child. This metaphor is incomplete, however. A child which becomes unreferenced by its parent is not automatically deleted, except in the case of a one-to-many association mapped with cascade="delete-orphan"
. The precise semantics of cascading operations for a parent/child relationship are as follows:
Falls für einen "Parent" persist()
gilt, so gilt für sämtliche "Children" ebenfalls persist()
Falls für einen "Parent" merge()
gilt, so gilt für sämtliche "Children" ebenfalls merge()
Falls für einen "Parent" save()
, update()
oder saveOrUpdate()
gilt, so gilt für sämtliche "Children" ebenfalls saveOrUpdate()
Falls auf ein transientes oder abgesetztes "Child" durch einen persistenten "Parent" verwiesen wird, so gilt dafür saveOrUpdate()
Falls ein "Parent" gelöscht wird, so gilt für alle "Children" delete()
Falls der Verweis auf ein "Child" von einem persistenten "Parent" entfällt, passiert nicht besonderes - die Anwendung sollte das "Child" explizit löschen falls nötig - außer es gilt cascade="delete-orphan"
, in welchem Fall das "verwaiste" Child gelöscht wird.
Finally, note that cascading of operations can be applied to an object graph at call time or at flush time. All operations, if enabled, are cascaded to associated entities reachable when the operation is executed. However, save-update
and delete-orphan
are transitive for all associated entities reachable during flush of the Session
.
Hibernate requires a rich meta-level model of all entity and value types. This model can be useful to the application itself. For example, the application might use Hibernate's metadata to implement a "smart" deep-copy algorithm that understands which objects should be copied (eg. mutable value types) and which objects that should not (e.g. immutable value types and, possibly, associated entities).
Hibernate exposes metadata via the ClassMetadata
and CollectionMetadata
interfaces and the Type
hierarchy. Instances of the metadata interfaces can be obtained from the SessionFactory
.
Cat fritz = ......;
ClassMetadata catMeta = sessionfactory.getClassMetadata(Cat.class);
Object[] propertyValues = catMeta.getPropertyValues(fritz);
String[] propertyNames = catMeta.getPropertyNames();
Type[] propertyTypes = catMeta.getPropertyTypes();
// get a Map of all properties which are not collections or associations
Map namedValues = new HashMap();
for ( int i=0; i<propertyNames.length; i++ ) {
if ( !propertyTypes[i].isEntityType() && !propertyTypes[i].isCollectionType() ) {
namedValues.put( propertyNames[i], propertyValues[i] );
}
}
Hibernate's treatment of read-only entities may differ from what you may have encountered elsewhere. Incorrect usage may cause unexpected results.
When an entity is read-only:
Hibernate does not dirty-check the entity's simple properties or single-ended associations;
Hibernate will not update simple properties or updatable single-ended associations;
Hibernate will not update the version of the read-only entity if only simple properties or single-ended updatable associations are changed;
In some ways, Hibernate treats read-only entities the same as entities that are not read-only:
Hibernate cascades operations to associations as defined in the entity mapping.
Hibernate updates the version if the entity has a collection with changes that dirties the entity;
A read-only entity can be deleted.
Even if an entity is not read-only, its collection association can be affected if it contains a read-only entity.
For details about the affect of read-only entities on different property and association types, see Abschnitt 12.2, „Read-only affect on property type“.
For details about how to make entities read-only, see Abschnitt 12.1, „Making persistent entities read-only“
Hibernate does some optimizing for read-only entities:
It saves execution time by not dirty-checking simple properties or single-ended associations.
It saves memory by deleting database snapshots.
Only persistent entities can be made read-only. Transient and detached entities must be put in persistent state before they can be made read-only.
Hibernate provides the following ways to make persistent entities read-only:
you can map an entity class as immutable; when an entity of an immutable class is made persistent, Hibernate automatically makes it read-only. see Abschnitt 12.1.1, „Entities of immutable classes“ for details
you can change a default so that entities loaded into the session by Hibernate are automatically made read-only; see Abschnitt 12.1.2, „Loading persistent entities as read-only“ for details
you can make an HQL query or criteria read-only so that entities loaded when the query or criteria executes, scrolls, or iterates, are automatically made read-only; see Abschnitt 12.1.3, „Loading read-only entities from an HQL query/criteria“ for details
you can make a persistent entity that is already in the in the session read-only; see Abschnitt 12.1.4, „Making a persistent entity read-only“ for details
When an entity instance of an immutable class is made persistent, Hibernate automatically makes it read-only.
An entity of an immutable class can created and deleted the same as an entity of a mutable class.
Hibernate treats a persistent entity of an immutable class the same way as a read-only persistent entity of a mutable class. The only exception is that Hibernate will not allow an entity of an immutable class to be changed so it is not read-only.
Entities of immutable classes are automatically loaded as read-only.
To change the default behavior so Hibernate loads entity instances of mutable classes into the session and automatically makes them read-only, call:
Session.setDefaultReadOnly( true );
To change the default back so entities loaded by Hibernate are not made read-only, call:
Session.setDefaultReadOnly( false );
You can determine the current setting by calling:
Session.isDefaultReadOnly();
If Session.isDefaultReadOnly() returns true, entities loaded by the following are automatically made read-only:
Session.load()
Session.get()
Session.merge()
executing, scrolling, or iterating HQL queries and criteria; to override this setting for a particular HQL query or criteria see Abschnitt 12.1.3, „Loading read-only entities from an HQL query/criteria“
Changing this default has no effect on:
persistent entities already in the session when the default was changed
persistent entities that are refreshed via Session.refresh(); a refreshed persistent entity will only be read-only if it was read-only before refreshing
persistent entities added by the application via Session.persist(), Session.save(), and Session.update() Session.saveOrUpdate()
Entities of immutable classes are automatically loaded as read-only.
If Session.isDefaultReadOnly() returns false (the default) when an HQL query or criteria executes, then entities and proxies of mutable classes loaded by the query will not be read-only.
You can override this behavior so that entities and proxies loaded by an HQL query or criteria are automatically made read-only.
For an HQL query, call:
Query.setReadOnly( true );
Query.setReadOnly( true )
must be called before Query.list()
, Query.uniqueResult()
, Query.scroll()
, or Query.iterate()
For an HQL criteria, call:
Criteria.setReadOnly( true );
Criteria.setReadOnly( true )
must be called before Criteria.list()
, Criteria.uniqueResult()
, or Criteria.scroll()
Entities and proxies that exist in the session before being returned by an HQL query or criteria are not affected.
Uninitialized persistent collections returned by the query are not affected. Later, when the collection is initialized, entities loaded into the session will be read-only if Session.isDefaultReadOnly() returns true.
Using Query.setReadOnly( true )
or Criteria.setReadOnly( true )
works well when a single HQL query or criteria loads all the entities and intializes all the proxies and collections that the application needs to be read-only.
When it is not possible to load and initialize all necessary entities in a single query or criteria, you can temporarily change the session default to load entities as read-only before the query is executed. Then you can explicitly initialize proxies and collections before restoring the session default.
Session session = factory.openSession(); Transaction tx = session.beginTransaction(); setDefaultReadOnly( true ); Contract contract = ( Contract ) session.createQuery( "from Contract where customerName = 'Sherman'" ) .uniqueResult(); Hibernate.initialize( contract.getPlan() ); Hibernate.initialize( contract.getVariations() ); Hibernate.initialize( contract.getNotes() ); setDefaultReadOnly( false ); ... tx.commit(); session.close();
If Session.isDefaultReadOnly() returns true, then you can use Query.setReadOnly( false ) and Criteria.setReadOnly( false ) to override this session setting and load entities that are not read-only.
Persistent entities of immutable classes are automatically made read-only.
To make a persistent entity or proxy read-only, call:
Session.setReadOnly(entityOrProxy, true)
To change a read-only entity or proxy of a mutable class so it is no longer read-only, call:
Session.setReadOnly(entityOrProxy, false)
When a read-only entity or proxy is changed so it is no longer read-only, Hibernate assumes that the current state of the read-only entity is consistent with its database representation. If this is not true, then any non-flushed changes made before or while the entity was read-only, will be ignored.
To throw away non-flushed changes and make the persistent entity consistent with its database representation, call:
session.refresh( entity );
To flush changes made before or while the entity was read-only and make the database representation consistent with the current state of the persistent entity:
// evict the read-only entity so it is detached session.evict( entity ); // make the detached entity (with the non-flushed changes) persistent session.update( entity ); // now entity is no longer read-only and its changes can be flushed s.flush();
The following table summarizes how different property types are affected by making an entity read-only.
Tabelle 12.1. Affect of read-only entity on property types
Property/Association Type | Changes flushed to DB? |
---|---|
Simple | no* |
Unidirectional one-to-one Unidirectional many-to-one (Abschnitt 12.2.2.1, „Unidirectional one-to-one and many-to-one“) |
no* no* |
Unidirectional one-to-many Unidirectional many-to-many (Abschnitt 12.2.2.2, „Unidirectional one-to-many and many-to-many“) |
yes yes |
Bidirectional one-to-one | only if the owning entity is not read-only* |
Bidirectional one-to-many/many-to-one inverse collection non-inverse collection (Abschnitt 12.2.3.2, „Bidirectional one-to-many/many-to-one“) |
only added/removed entities that are not read-only* yes |
Bidirectional many-to-many | yes |
* Behavior is different when the entity having the property/association is read-only, compared to when it is not read-only.
When a persistent object is read-only, Hibernate does not dirty-check simple properties.
Hibernate will not synchronize simple property state changes to the database. If you have automatic versioning, Hibernate will not increment the version if any simple properties change.
Session session = factory.openSession(); Transaction tx = session.beginTransaction(); // get a contract and make it read-only Contract contract = ( Contract ) session.get( Contract.class, contractId ); session.setReadOnly( contract, true ); // contract.getCustomerName() is "Sherman" contract.setCustomerName( "Yogi" ); tx.commit(); tx = session.beginTransaction(); contract = ( Contract ) session.get( Contract.class, contractId ); // contract.getCustomerName() is still "Sherman" ... tx.commit(); session.close();
Hibernate treats unidirectional one-to-one and many-to-one associations in the same way when the owning entity is read-only.
We use the term unidirectional single-ended association when referring to functionality that is common to unidirectional one-to-one and many-to-one associations.
Hibernate does not dirty-check unidirectional single-ended associations when the owning entity is read-only.
If you change a read-only entity's reference to a unidirectional single-ended association to null, or to refer to a different entity, that change will not be flushed to the database.
If an entity is of an immutable class, then its references to unidirectional single-ended associations must be assigned when that entity is first created. Because the entity is automatically made read-only, these references can not be updated.
If automatic versioning is used, Hibernate will not increment the version due to local changes to unidirectional single-ended associations.
In the following examples, Contract has a unidirectional many-to-one association with Plan. Contract cascades save and update operations to the association.
The following shows that changing a read-only entity's many-to-one association reference to null has no effect on the entity's database representation.
// get a contract with an existing plan; // make the contract read-only and set its plan to null tx = session.beginTransaction(); Contract contract = ( Contract ) session.get( Contract.class, contractId ); session.setReadOnly( contract, true ); contract.setPlan( null ); tx.commit(); // get the same contract tx = session.beginTransaction(); contract = ( Contract ) session.get( Contract.class, contractId ); // contract.getPlan() still refers to the original plan; tx.commit(); session.close();
The following shows that, even though an update to a read-only entity's many-to-one association has no affect on the entity's database representation, flush still cascades the save-update operation to the locally changed association.
// get a contract with an existing plan; // make the contract read-only and change to a new plan tx = session.beginTransaction(); Contract contract = ( Contract ) session.get( Contract.class, contractId ); session.setReadOnly( contract, true ); Plan newPlan = new Plan( "new plan" contract.setPlan( newPlan); tx.commit(); // get the same contract tx = session.beginTransaction(); contract = ( Contract ) session.get( Contract.class, contractId ); newPlan = ( Contract ) session.get( Plan.class, newPlan.getId() ); // contract.getPlan() still refers to the original plan; // newPlan is non-null because it was persisted when // the previous transaction was committed; tx.commit(); session.close();
Hibernate treats unidirectional one-to-many and many-to-many associations owned by a read-only entity the same as when owned by an entity that is not read-only.
Hibernate dirty-checks unidirectional one-to-many and many-to-many associations;
The collection can contain entities that are read-only, as well as entities that are not read-only.
Entities can be added and removed from the collection; changes are flushed to the database.
If automatic versioning is used, Hibernate will update the version due to changes in the collection if they dirty the owning entity.
If a read-only entity owns a bidirectional one-to-one association:
Hibernate does not dirty-check the association.
updates that change the association reference to null or to refer to a different entity will not be flushed to the database.
If automatic versioning is used, Hibernate will not increment the version due to local changes to the association.
If an entity is of an immutable class, and it owns a bidirectional one-to-one association, then its reference must be assigned when that entity is first created. Because the entity is automatically made read-only, these references cannot be updated.
When the owner is not read-only, Hibernate treats an association with a read-only entity the same as when the association is with an entity that is not read-only.
A read-only entity has no impact on a bidirectional one-to-many/many-to-one association if:
the read-only entity is on the one-to-many side using an inverse collection;
the read-only entity is on the one-to-many side using a non-inverse collection;
the one-to-many side uses a non-inverse collection that contains the read-only entity
When the one-to-many side uses an inverse collection:
a read-only entity can only be added to the collection when it is created;
a read-only entity can only be removed from the collection by an orphan delete or by explicitly deleting the entity.
Hibernate treats bidirectional many-to-many associations owned by a read-only entity the same as when owned by an entity that is not read-only.
Hibernate dirty-checks bidirectional many-to-many associations.
The collection on either side of the association can contain entities that are read-only, as well as entities that are not read-only.
Entities are added and removed from both sides of the collection; changes are flushed to the database.
If automatic versioning is used, Hibernate will update the version due to changes in both sides of the collection if they dirty the entity owning the respective collections.
The most important point about Hibernate and concurrency control is that it is easy to understand. Hibernate directly uses JDBC connections and JTA resources without adding any additional locking behavior. It is recommended that you spend some time with the JDBC, ANSI, and transaction isolation specification of your database management system.
Hibernate does not lock objects in memory. Your application can expect the behavior as defined by the isolation level of your database transactions. Through Session
, which is also a transaction-scoped cache, Hibernate provides repeatable reads for lookup by identifier and entity queries and not reporting queries that return scalar values.
In addition to versioning for automatic optimistic concurrency control, Hibernate also offers, using the SELECT FOR UPDATE
syntax, a (minor) API for pessimistic locking of rows. Optimistic concurrency control and this API are discussed later in this chapter.
The discussion of concurrency control in Hibernate begins with the granularity of Configuration
, SessionFactory
, and Session
, as well as database transactions and long conversations.
A SessionFactory
is an expensive-to-create, threadsafe object, intended to be shared by all application threads. It is created once, usually on application startup, from a Configuration
instance.
A Session
is an inexpensive, non-threadsafe object that should be used once and then discarded for: a single request, a conversation or a single unit of work. A Session
will not obtain a JDBC Connection
, or a Datasource
, unless it is needed. It will not consume any resources until used.
In order to reduce lock contention in the database, a database transaction has to be as short as possible. Long database transactions will prevent your application from scaling to a highly concurrent load. It is not recommended that you hold a database transaction open during user think time until the unit of work is complete.
What is the scope of a unit of work? Can a single Hibernate Session
span several database transactions, or is this a one-to-one relationship of scopes? When should you open and close a Session
and how do you demarcate the database transaction boundaries? These questions are addressed in the following sections.
First, let's define a unit of work. A unit of work is a design pattern described by Martin Fowler as „ [maintaining] a list of objects affected by a business transaction and coordinates the writing out of changes and the resolution of concurrency problems. “[PoEAA] In other words, its a series of operations we wish to carry out against the database together. Basically, it is a transaction, though fulfilling a unit of work will often span multiple physical database transactions (see Abschnitt 13.1.2, „Lange Konversationen“). So really we are talking about a more abstract notion of a transaction. The term "business transaction" is also sometimes used in lieu of unit of work.
Do not use the session-per-operation antipattern: do not open and close a Session
for every simple database call in a single thread. The same is true for database transactions. Database calls in an application are made using a planned sequence; they are grouped into atomic units of work. This also means that auto-commit after every single SQL statement is useless in an application as this mode is intended for ad-hoc SQL console work. Hibernate disables, or expects the application server to disable, auto-commit mode immediately. Database transactions are never optional. All communication with a database has to occur inside a transaction. Auto-commit behavior for reading data should be avoided, as many small transactions are unlikely to perform better than one clearly defined unit of work. The latter is also more maintainable and extensible.
The most common pattern in a multi-user client/server application is session-per-request. In this model, a request from the client is sent to the server, where the Hibernate persistence layer runs. A new Hibernate Session
is opened, and all database operations are executed in this unit of work. On completion of the work, and once the response for the client has been prepared, the session is flushed and closed. Use a single database transaction to serve the clients request, starting and committing it when you open and close the Session
. The relationship between the two is one-to-one and this model is a perfect fit for many applications.
The challenge lies in the implementation. Hibernate provides built-in management of the "current session" to simplify this pattern. Start a transaction when a server request has to be processed, and end the transaction before the response is sent to the client. Common solutions are ServletFilter
, AOP interceptor with a pointcut on the service methods, or a proxy/interception container. An EJB container is a standardized way to implement cross-cutting aspects such as transaction demarcation on EJB session beans, declaratively with CMT. If you use programmatic transaction demarcation, for ease of use and code portability use the Hibernate Transaction
API shown later in this chapter.
Your application code can access a "current session" to process the request by calling sessionFactory.getCurrentSession()
. You will always get a Session
scoped to the current database transaction. This has to be configured for either resource-local or JTA environments, see Abschnitt 2.3, „Contextual sessions“.
You can extend the scope of a Session
and database transaction until the "view has been rendered". This is especially useful in servlet applications that utilize a separate rendering phase after the request has been processed. Extending the database transaction until view rendering, is achieved by implementing your own interceptor. However, this will be difficult if you rely on EJBs with container-managed transactions. A transaction will be completed when an EJB method returns, before rendering of any view can start. See the Hibernate website and forum for tips and examples relating to this Open Session in View pattern.
The session-per-request pattern is not the only way of designing units of work. Many business processes require a whole series of interactions with the user that are interleaved with database accesses. In web and enterprise applications, it is not acceptable for a database transaction to span a user interaction. Consider the following example:
The first screen of a dialog opens. The data seen by the user has been loaded in a particular Session
and database transaction. The user is free to modify the objects.
The user clicks "Save" after 5 minutes and expects their modifications to be made persistent. The user also expects that they were the only person editing this information and that no conflicting modification has occurred.
From the point of view of the user, we call this unit of work a long-running conversation or application transaction. There are many ways to implement this in your application.
A first naive implementation might keep the Session
and database transaction open during user think time, with locks held in the database to prevent concurrent modification and to guarantee isolation and atomicity. This is an anti-pattern, since lock contention would not allow the application to scale with the number of concurrent users.
You have to use several database transactions to implement the conversation. In this case, maintaining isolation of business processes becomes the partial responsibility of the application tier. A single conversation usually spans several database transactions. It will be atomic if only one of these database transactions (the last one) stores the updated data. All others simply read data (for example, in a wizard-style dialog spanning several request/response cycles). This is easier to implement than it might sound, especially if you utilize some of Hibernate's features:
Automatic Versioning: Hibernate can perform automatic optimistic concurrency control for you. It can automatically detect if a concurrent modification occurred during user think time. Check for this at the end of the conversation.
Detached Objects: if you decide to use the session-per-request pattern, all loaded instances will be in the detached state during user think time. Hibernate allows you to reattach the objects and persist the modifications. The pattern is called session-per-request-with-detached-objects. Automatic versioning is used to isolate concurrent modifications.
Extended (or Long) Session: the Hibernate Session
can be disconnected from the underlying JDBC connection after the database transaction has been committed and reconnected when a new client request occurs. This pattern is known as session-per-conversation and makes even reattachment unnecessary. Automatic versioning is used to isolate concurrent modifications and the Session
will not be allowed to be flushed automatically, but explicitly.
Both session-per-request-with-detached-objects and session-per-conversation have advantages and disadvantages. These disadvantages are discussed later in this chapter in the context of optimistic concurrency control.
An application can concurrently access the same persistent state in two different Session
s. However, an instance of a persistent class is never shared between two Session
instances. It is for this reason that there are two different notions of identity:
foo.getId().equals( bar.getId() )
foo==bar
For objects attached to a particular Session
(i.e., in the scope of a Session
), the two notions are equivalent and JVM identity for database identity is guaranteed by Hibernate. While the application might concurrently access the "same" (persistent identity) business object in two different sessions, the two instances will actually be "different" (JVM identity). Conflicts are resolved using an optimistic approach and automatic versioning at flush/commit time.
This approach leaves Hibernate and the database to worry about concurrency. It also provides the best scalability, since guaranteeing identity in single-threaded units of work means that it does not need expensive locking or other means of synchronization. The application does not need to synchronize on any business object, as long as it maintains a single thread per Session
. Within a Session
the application can safely use ==
to compare objects.
However, an application that uses ==
outside of a Session
might produce unexpected results. This might occur even in some unexpected places. For example, if you put two detached instances into the same Set
, both might have the same database identity (i.e., they represent the same row). JVM identity, however, is by definition not guaranteed for instances in a detached state. The developer has to override the equals()
and hashCode()
methods in persistent classes and implement their own notion of object equality. There is one caveat: never use the database identifier to implement equality. Use a business key that is a combination of unique, usually immutable, attributes. The database identifier will change if a transient object is made persistent. If the transient instance (usually together with detached instances) is held in a Set
, changing the hashcode breaks the contract of the Set
. Attributes for business keys do not have to be as stable as database primary keys; you only have to guarantee stability as long as the objects are in the same Set
. See the Hibernate website for a more thorough discussion of this issue. Please note that this is not a Hibernate issue, but simply how Java object identity and equality has to be implemented.
Do not use the anti-patterns session-per-user-session or session-per-application (there are, however, rare exceptions to this rule). Some of the following issues might also arise within the recommended patterns, so ensure that you understand the implications before making a design decision:
A Session
is not thread-safe. Things that work concurrently, like HTTP requests, session beans, or Swing workers, will cause race conditions if a Session
instance is shared. If you keep your Hibernate Session
in your HttpSession
(this is discussed later in the chapter), you should consider synchronizing access to your Http session. Otherwise, a user that clicks reload fast enough can use the same Session
in two concurrently running threads.
An exception thrown by Hibernate means you have to rollback your database transaction and close the Session
immediately (this is discussed in more detail later in the chapter). If your Session
is bound to the application, you have to stop the application. Rolling back the database transaction does not put your business objects back into the state they were at the start of the transaction. This means that the database state and the business objects will be out of sync. Usually this is not a problem, because exceptions are not recoverable and you will have to start over after rollback anyway.
The Session
caches every object that is in a persistent state (watched and checked for dirty state by Hibernate). If you keep it open for a long time or simply load too much data, it will grow endlessly until you get an OutOfMemoryException. One solution is to call clear()
and evict()
to manage the Session
cache, but you should consider a Stored Procedure if you need mass data operations. Some solutions are shown in Kapitel 15, Batch-Verarbeitung. Keeping a Session
open for the duration of a user session also means a higher probability of stale data.
Database, or system, transaction boundaries are always necessary. No communication with the database can occur outside of a database transaction (this seems to confuse many developers who are used to the auto-commit mode). Always use clear transaction boundaries, even for read-only operations. Depending on your isolation level and database capabilities this might not be required, but there is no downside if you always demarcate transactions explicitly. Certainly, a single database transaction is going to perform better than many small transactions, even for reading data.
A Hibernate application can run in non-managed (i.e., standalone, simple Web- or Swing applications) and managed J2EE environments. In a non-managed environment, Hibernate is usually responsible for its own database connection pool. The application developer has to manually set transaction boundaries (begin, commit, or rollback database transactions) themselves. A managed environment usually provides container-managed transactions (CMT), with the transaction assembly defined declaratively (in deployment descriptors of EJB session beans, for example). Programmatic transaction demarcation is then no longer necessary.
However, it is often desirable to keep your persistence layer portable between non-managed resource-local environments, and systems that can rely on JTA but use BMT instead of CMT. In both cases use programmatic transaction demarcation. Hibernate offers a wrapper API called Transaction
that translates into the native transaction system of your deployment environment. This API is actually optional, but we strongly encourage its use unless you are in a CMT session bean.
Ending a Session
usually involves four distinct phases:
Räumen der Session
Festschreibung der Transaktion
Schließen der Session
Bearbeitung von Ausnahmen
We discussed Flushing the session earlier, so we will now have a closer look at transaction demarcation and exception handling in both managed and non-managed environments.
If a Hibernate persistence layer runs in a non-managed environment, database connections are usually handled by simple (i.e., non-DataSource) connection pools from which Hibernate obtains connections as needed. The session/transaction handling idiom looks like this:
// Non-managed environment idiom
Session sess = factory.openSession();
Transaction tx = null;
try {
tx = sess.beginTransaction();
// do some work
...
tx.commit();
}
catch (RuntimeException e) {
if (tx != null) tx.rollback();
throw e; // or display error message
}
finally {
sess.close();
}
You do not have to flush()
the Session
explicitly: the call to commit()
automatically triggers the synchronization depending on the FlushMode for the session. A call to close()
marks the end of a session. The main implication of close()
is that the JDBC connection will be relinquished by the session. This Java code is portable and runs in both non-managed and JTA environments.
As outlined earlier, a much more flexible solution is Hibernate's built-in "current session" context management:
// Non-managed environment idiom with getCurrentSession()
try {
factory.getCurrentSession().beginTransaction();
// do some work
...
factory.getCurrentSession().getTransaction().commit();
}
catch (RuntimeException e) {
factory.getCurrentSession().getTransaction().rollback();
throw e; // or display error message
}
You will not see these code snippets in a regular application; fatal (system) exceptions should always be caught at the "top". In other words, the code that executes Hibernate calls in the persistence layer, and the code that handles RuntimeException
(and usually can only clean up and exit), are in different layers. The current context management by Hibernate can significantly simplify this design by accessing a SessionFactory
. Exception handling is discussed later in this chapter.
You should select org.hibernate.transaction.JDBCTransactionFactory
, which is the default, and for the second example select "thread"
as your hibernate.current_session_context_class
.
If your persistence layer runs in an application server (for example, behind EJB session beans), every datasource connection obtained by Hibernate will automatically be part of the global JTA transaction. You can also install a standalone JTA implementation and use it without EJB. Hibernate offers two strategies for JTA integration.
If you use bean-managed transactions (BMT), Hibernate will tell the application server to start and end a BMT transaction if you use the Transaction
API. The transaction management code is identical to the non-managed environment.
// BMT idiom
Session sess = factory.openSession();
Transaction tx = null;
try {
tx = sess.beginTransaction();
// do some work
...
tx.commit();
}
catch (RuntimeException e) {
if (tx != null) tx.rollback();
throw e; // or display error message
}
finally {
sess.close();
}
If you want to use a transaction-bound Session
, that is, the getCurrentSession()
functionality for easy context propagation, use the JTA UserTransaction
API directly:
// BMT idiom with getCurrentSession()
try {
UserTransaction tx = (UserTransaction)new InitialContext()
.lookup("java:comp/UserTransaction");
tx.begin();
// Do some work on Session bound to transaction
factory.getCurrentSession().load(...);
factory.getCurrentSession().persist(...);
tx.commit();
}
catch (RuntimeException e) {
tx.rollback();
throw e; // or display error message
}
With CMT, transaction demarcation is completed in session bean deployment descriptors, not programmatically. The code is reduced to:
// CMT idiom
Session sess = factory.getCurrentSession();
// do some work
...
In a CMT/EJB, even rollback happens automatically. An unhandled RuntimeException
thrown by a session bean method tells the container to set the global transaction to rollback. You do not need to use the Hibernate Transaction
API at all with BMT or CMT, and you get automatic propagation of the "current" Session bound to the transaction.
When configuring Hibernate's transaction factory, choose org.hibernate.transaction.JTATransactionFactory
if you use JTA directly (BMT), and org.hibernate.transaction.CMTTransactionFactory
in a CMT session bean. Remember to also set hibernate.transaction.manager_lookup_class
. Ensure that your hibernate.current_session_context_class
is either unset (backwards compatibility), or is set to "jta"
.
The getCurrentSession()
operation has one downside in a JTA environment. There is one caveat to the use of after_statement
connection release mode, which is then used by default. Due to a limitation of the JTA spec, it is not possible for Hibernate to automatically clean up any unclosed ScrollableResults
or Iterator
instances returned by scroll()
or iterate()
. You must release the underlying database cursor by calling ScrollableResults.close()
or Hibernate.close(Iterator)
explicitly from a finally
block. Most applications can easily avoid using scroll()
or iterate()
from the JTA or CMT code.)
If the Session
throws an exception, including any SQLException
, immediately rollback the database transaction, call Session.close()
and discard the Session
instance. Certain methods of Session
will not leave the session in a consistent state. No exception thrown by Hibernate can be treated as recoverable. Ensure that the Session
will be closed by calling close()
in a finally
block.
The HibernateException
, which wraps most of the errors that can occur in a Hibernate persistence layer, is an unchecked exception. It was not in older versions of Hibernate. In our opinion, we should not force the application developer to catch an unrecoverable exception at a low layer. In most systems, unchecked and fatal exceptions are handled in one of the first frames of the method call stack (i.e., in higher layers) and either an error message is presented to the application user or some other appropriate action is taken. Note that Hibernate might also throw other unchecked exceptions that are not a HibernateException
. These are not recoverable and appropriate action should be taken.
Hibernate wraps SQLException
s thrown while interacting with the database in a JDBCException
. In fact, Hibernate will attempt to convert the exception into a more meaningful subclass of JDBCException
. The underlying SQLException
is always available via JDBCException.getCause()
. Hibernate converts the SQLException
into an appropriate JDBCException
subclass using the SQLExceptionConverter
attached to the SessionFactory
. By default, the SQLExceptionConverter
is defined by the configured dialect. However, it is also possible to plug in a custom implementation. See the javadocs for the SQLExceptionConverterFactory
class for details. The standard JDBCException
subtypes are:
JDBCConnectionException
: indicates an error with the underlying JDBC communication.
SQLGrammarException
: indicates a grammar or syntax problem with the issued SQL.
ConstraintViolationException
: indicates some form of integrity constraint violation.
LockAcquisitionException
: indicates an error acquiring a lock level necessary to perform the requested operation.
GenericJDBCException
: a generic exception which did not fall into any of the other categories.
An important feature provided by a managed environment like EJB, that is never provided for non-managed code, is transaction timeout. Transaction timeouts ensure that no misbehaving transaction can indefinitely tie up resources while returning no response to the user. Outside a managed (JTA) environment, Hibernate cannot fully provide this functionality. However, Hibernate can at least control data access operations, ensuring that database level deadlocks and queries with huge result sets are limited by a defined timeout. In a managed environment, Hibernate can delegate transaction timeout to JTA. This functionality is abstracted by the Hibernate Transaction
object.
Session sess = factory.openSession();
try {
//set transaction timeout to 3 seconds
sess.getTransaction().setTimeout(3);
sess.getTransaction().begin();
// do some work
...
sess.getTransaction().commit()
}
catch (RuntimeException e) {
sess.getTransaction().rollback();
throw e; // or display error message
}
finally {
sess.close();
}
setTimeout()
cannot be called in a CMT bean, where transaction timeouts must be defined declaratively.
The only approach that is consistent with high concurrency and high scalability, is optimistic concurrency control with versioning. Version checking uses version numbers, or timestamps, to detect conflicting updates and to prevent lost updates. Hibernate provides three possible approaches to writing application code that uses optimistic concurrency. The use cases we discuss are in the context of long conversations, but version checking also has the benefit of preventing lost updates in single database transactions.
In an implementation without much help from Hibernate, each interaction with the database occurs in a new Session
and the developer is responsible for reloading all persistent instances from the database before manipulating them. The application is forced to carry out its own version checking to ensure conversation transaction isolation. This approach is the least efficient in terms of database access. It is the approach most similar to entity EJBs.
// foo is an instance loaded by a previous Session
session = factory.openSession();
Transaction t = session.beginTransaction();
int oldVersion = foo.getVersion();
session.load( foo, foo.getKey() ); // load the current state
if ( oldVersion != foo.getVersion() ) throw new StaleObjectStateException();
foo.setProperty("bar");
t.commit();
session.close();
Die version
-Property wird unter Verwendung von <version>
gemappt, und Hibernate wird diese während des Räumens automatisch inkrementieren, falls die Entity aufgrund eines Zugriffs als "dirty" erkannt wird.
If you are operating in a low-data-concurrency environment, and do not require version checking, you can use this approach and skip the version check. In this case, last commit wins is the default strategy for long conversations. Be aware that this might confuse the users of the application, as they might experience lost updates without error messages or a chance to merge conflicting changes.
Manual version checking is only feasible in trivial circumstances and not practical for most applications. Often not only single instances, but complete graphs of modified objects, have to be checked. Hibernate offers automatic version checking with either an extended Session
or detached instances as the design paradigm.
A single Session
instance and its persistent instances that are used for the whole conversation are known as session-per-conversation. Hibernate checks instance versions at flush time, throwing an exception if concurrent modification is detected. It is up to the developer to catch and handle this exception. Common options are the opportunity for the user to merge changes or to restart the business conversation with non-stale data.
The Session
is disconnected from any underlying JDBC connection when waiting for user interaction. This approach is the most efficient in terms of database access. The application does not version check or reattach detached instances, nor does it have to reload instances in every database transaction.
// foo is an instance loaded earlier by the old session
Transaction t = session.beginTransaction(); // Obtain a new JDBC connection, start transaction
foo.setProperty("bar");
session.flush(); // Only for last transaction in conversation
t.commit(); // Also return JDBC connection
session.close(); // Only for last transaction in conversation
The foo
object knows which Session
it was loaded in. Beginning a new database transaction on an old session obtains a new connection and resumes the session. Committing a database transaction disconnects a session from the JDBC connection and returns the connection to the pool. After reconnection, to force a version check on data you are not updating, you can call Session.lock()
with LockMode.READ
on any objects that might have been updated by another transaction. You do not need to lock any data that you are updating. Usually you would set FlushMode.MANUAL
on an extended Session
, so that only the last database transaction cycle is allowed to actually persist all modifications made in this conversation. Only this last database transaction will include the flush()
operation, and then close()
the session to end the conversation.
This pattern is problematic if the Session
is too big to be stored during user think time (for example, an HttpSession
should be kept as small as possible). As the Session
is also the first-level cache and contains all loaded objects, we can probably use this strategy only for a few request/response cycles. Use a Session
only for a single conversation as it will soon have stale data.
Earlier versions of Hibernate required explicit disconnection and reconnection of a Session
. These methods are deprecated, as beginning and ending a transaction has the same effect.
Keep the disconnected Session
close to the persistence layer. Use an EJB stateful session bean to hold the Session
in a three-tier environment. Do not transfer it to the web layer, or even serialize it to a separate tier, to store it in the HttpSession
.
The extended session pattern, or session-per-conversation, is more difficult to implement with automatic current session context management. You need to supply your own implementation of the CurrentSessionContext
for this. See the Hibernate Wiki for examples.
Jede Interaktion mit dem persistenten Speicher geschieht in einer neuen Session
. Allerdings werden dieselben persistenten Instanzen für jede Interaktion mit der Datenbank wiederverwendet. Die Anwendung manipuliert den Status der abgesetzten Instanzen, die ursprünglich in einer anderen Session
geladen wurden und fügt diese mittels Session.update()
, Session.saveOrUpdate()
oder Session.merge()
erneut hinzu.
// foo is an instance loaded by a previous Session
foo.setProperty("bar");
session = factory.openSession();
Transaction t = session.beginTransaction();
session.saveOrUpdate(foo); // Use merge() if "foo" might have been loaded already
t.commit();
session.close();
Again, Hibernate will check instance versions during flush, throwing an exception if conflicting updates occurred.
You can also call lock()
instead of update()
, and use LockMode.READ
(performing a version check and bypassing all caches) if you are sure that the object has not been modified.
You can disable Hibernate's automatic version increment for particular properties and collections by setting the optimistic-lock
mapping attribute to false
. Hibernate will then no longer increment versions if the property is dirty.
Legacy database schemas are often static and cannot be modified. Or, other applications might access the same database and will not know how to handle version numbers or even timestamps. In both cases, versioning cannot rely on a particular column in a table. To force a version check with a comparison of the state of all fields in a row but without a version or timestamp property mapping, turn on optimistic-lock="all"
in the <class>
mapping. This conceptually only works if Hibernate can compare the old and the new state (i.e., if you use a single long Session
and not session-per-request-with-detached-objects).
Concurrent modification can be permitted in instances where the changes that have been made do not overlap. If you set optimistic-lock="dirty"
when mapping the <class>
, Hibernate will only compare dirty fields during flush.
In both cases, with dedicated version/timestamp columns or with a full/dirty field comparison, Hibernate uses a single UPDATE
statement, with an appropriate WHERE
clause, per entity to execute the version check and update the information. If you use transitive persistence to cascade reattachment to associated entities, Hibernate may execute unnecessary updates. This is usually not a problem, but on update triggers in the database might be executed even when no changes have been made to detached instances. You can customize this behavior by setting select-before-update="true"
in the <class>
mapping, forcing Hibernate to SELECT
the instance to ensure that changes did occur before updating the row.
It is not intended that users spend much time worrying about locking strategies. It is usually enough to specify an isolation level for the JDBC connections and then simply let the database do all the work. However, advanced users may wish to obtain exclusive pessimistic locks or re-obtain locks at the start of a new transaction.
Hibernate will always use the locking mechanism of the database; it never lock objects in memory.
The LockMode
class defines the different lock levels that can be acquired by Hibernate. A lock is obtained by the following mechanisms:
LockMode.WRITE
wird automatisch erlangt, wenn Hibernate eine Reihe aktualisiert oder einfügt.
LockMode.UPGRADE
can be acquired upon explicit user request using SELECT ... FOR UPDATE
on databases which support that syntax.
LockMode.UPGRADE_NOWAIT
can be acquired upon explicit user request using a SELECT ... FOR UPDATE NOWAIT
under Oracle.
LockMode.READ
is acquired automatically when Hibernate reads data under Repeatable Read or Serializable isolation level. It can be re-acquired by explicit user request.
LockMode.NONE
repräsentiert das Fehlen einer Sperre. Alle Objekte wechseln am Ende einer Transaction
in diesen Sperrmodus. Objekte, die durch Aufruf von update()
oder saveOrUpdate()
der Session zugeordnet werden, starten ebenfalls in diesem Sperrmodus.
Die "explizite Benutzeranfrage" wird auf eine der folgenden Arten ausgedrückt:
Ein Aufruf an Session.load()
, der einen LockMode
bestimmt.
Ein Aufruf an Session.lock()
.
Ein Aufruf an Query.setLockMode()
.
Falls Session.load()
mit UPGRADE
oder UPGRADE_NOWAIT
aufgerufen wird und das angefragte Objekt bis jetzt noch nicht durch die Session geladen wurde, so wird das Objekt unter Verwendung von SELECT ... FOR UPDATE
geladen. Falls load()
für ein bereits mit weniger restriktiver Sperre geladenes Objekt als das angefragte aufgerufen wird, so ruft Hibernate lock()
für das Objekt auf.
Session.lock()
performs a version number check if the specified lock mode is READ
, UPGRADE
or UPGRADE_NOWAIT
. In the case of UPGRADE
or UPGRADE_NOWAIT
, SELECT ... FOR UPDATE
is used.
If the requested lock mode is not supported by the database, Hibernate uses an appropriate alternate mode instead of throwing an exception. This ensures that applications are portable.
One of the legacies of Hibernate 2.x JDBC connection management meant that a Session
would obtain a connection when it was first required and then maintain that connection until the session was closed. Hibernate 3.x introduced the notion of connection release modes that would instruct a session how to handle its JDBC connections. The following discussion is pertinent only to connections provided through a configured ConnectionProvider
. User-supplied connections are outside the breadth of this discussion. The different release modes are identified by the enumerated values of org.hibernate.ConnectionReleaseMode
:
ON_CLOSE
: is the legacy behavior described above. The Hibernate session obtains a connection when it first needs to perform some JDBC access and maintains that connection until the session is closed.
AFTER_TRANSACTION
: releases connections after a org.hibernate.Transaction
has been completed.
AFTER_STATEMENT
(also referred to as aggressive release): releases connections after every statement execution. This aggressive releasing is skipped if that statement leaves open resources associated with the given session. Currently the only situation where this occurs is through the use of org.hibernate.ScrollableResults
.
The configuration parameter hibernate.connection.release_mode
is used to specify which release mode to use. The possible values are as follows:
auto
(the default): this choice delegates to the release mode returned by the org.hibernate.transaction.TransactionFactory.getDefaultReleaseMode()
method. For JTATransactionFactory, this returns ConnectionReleaseMode.AFTER_STATEMENT; for JDBCTransactionFactory, this returns ConnectionReleaseMode.AFTER_TRANSACTION. Do not change this default behavior as failures due to the value of this setting tend to indicate bugs and/or invalid assumptions in user code.
on_close
: uses ConnectionReleaseMode.ON_CLOSE. This setting is left for backwards compatibility, but its use is discouraged.
after_transaction
: uses ConnectionReleaseMode.AFTER_TRANSACTION. This setting should not be used in JTA environments. Also note that with ConnectionReleaseMode.AFTER_TRANSACTION, if a session is considered to be in auto-commit mode, connections will be released as if the release mode were AFTER_STATEMENT.
after_statement
: uses ConnectionReleaseMode.AFTER_STATEMENT. Additionally, the configured ConnectionProvider
is consulted to see if it supports this setting (supportsAggressiveRelease()
). If not, the release mode is reset to ConnectionReleaseMode.AFTER_TRANSACTION. This setting is only safe in environments where we can either re-acquire the same underlying JDBC connection each time you make a call into ConnectionProvider.getConnection()
or in auto-commit environments where it does not matter if we re-establish the same connection.
It is useful for the application to react to certain events that occur inside Hibernate. This allows for the implementation of generic functionality and the extension of Hibernate functionality.
The Interceptor
interface provides callbacks from the session to the application, allowing the application to inspect and/or manipulate properties of a persistent object before it is saved, updated, deleted or loaded. One possible use for this is to track auditing information. For example, the following Interceptor
automatically sets the createTimestamp
when an Auditable
is created and updates the lastUpdateTimestamp
property when an Auditable
is updated.
You can either implement Interceptor
directly or extend EmptyInterceptor
.
package org.hibernate.test;
import java.io.Serializable;
import java.util.Date;
import java.util.Iterator;
import org.hibernate.EmptyInterceptor;
import org.hibernate.Transaction;
import org.hibernate.type.Type;
public class AuditInterceptor extends EmptyInterceptor {
private int updates;
private int creates;
private int loads;
public void onDelete(Object entity,
Serializable id,
Object[] state,
String[] propertyNames,
Type[] types) {
// do nothing
}
public boolean onFlushDirty(Object entity,
Serializable id,
Object[] currentState,
Object[] previousState,
String[] propertyNames,
Type[] types) {
if ( entity instanceof Auditable ) {
updates++;
for ( int i=0; i < propertyNames.length; i++ ) {
if ( "lastUpdateTimestamp".equals( propertyNames[i] ) ) {
currentState[i] = new Date();
return true;
}
}
}
return false;
}
public boolean onLoad(Object entity,
Serializable id,
Object[] state,
String[] propertyNames,
Type[] types) {
if ( entity instanceof Auditable ) {
loads++;
}
return false;
}
public boolean onSave(Object entity,
Serializable id,
Object[] state,
String[] propertyNames,
Type[] types) {
if ( entity instanceof Auditable ) {
creates++;
for ( int i=0; i<propertyNames.length; i++ ) {
if ( "createTimestamp".equals( propertyNames[i] ) ) {
state[i] = new Date();
return true;
}
}
}
return false;
}
public void afterTransactionCompletion(Transaction tx) {
if ( tx.wasCommitted() ) {
System.out.println("Creations: " + creates + ", Updates: " + updates, "Loads: " + loads);
}
updates=0;
creates=0;
loads=0;
}
}
There are two kinds of inteceptors: Session
-scoped and SessionFactory
-scoped.
Ein für die Session
zuständiger Interzeptor wird beim Öffnen einer Session unter Verwendung einer der überlasteten SessionFactory.openSession()-Methoden spezifiziert, die einen Interceptor
akzeptieren.
Session session = sf.openSession( new AuditInterceptor() );
A SessionFactory
-scoped interceptor is registered with the Configuration
object prior to building the SessionFactory
. Unless a session is opened explicitly specifying the interceptor to use, the supplied interceptor will be applied to all sessions opened from that SessionFactory
. SessionFactory
-scoped interceptors must be thread safe. Ensure that you do not store session-specific states, since multiple sessions will use this interceptor potentially concurrently.
new Configuration().setInterceptor( new AuditInterceptor() );
If you have to react to particular events in your persistence layer, you can also use the Hibernate3 event architecture. The event system can be used in addition, or as a replacement, for interceptors.
All the methods of the Session
interface correlate to an event. You have a LoadEvent
, a FlushEvent
, etc. Consult the XML configuration-file DTD or the org.hibernate.event
package for the full list of defined event types. When a request is made of one of these methods, the Hibernate Session
generates an appropriate event and passes it to the configured event listeners for that type. Out-of-the-box, these listeners implement the same processing in which those methods always resulted. However, you are free to implement a customization of one of the listener interfaces (i.e., the LoadEvent
is processed by the registered implementation of the LoadEventListener
interface), in which case their implementation would be responsible for processing any load()
requests made of the Session
.
The listeners should be considered singletons. This means they are shared between requests, and should not save any state as instance variables.
A custom listener implements the appropriate interface for the event it wants to process and/or extend one of the convenience base classes (or even the default event listeners used by Hibernate out-of-the-box as these are declared non-final for this purpose). Custom listeners can either be registered programmatically through the Configuration
object, or specified in the Hibernate configuration XML. Declarative configuration through the properties file is not supported. Here is an example of a custom load event listener:
public class MyLoadListener implements LoadEventListener {
// this is the single method defined by the LoadEventListener interface
public void onLoad(LoadEvent event, LoadEventListener.LoadType loadType)
throws HibernateException {
if ( !MySecurity.isAuthorized( event.getEntityClassName(), event.getEntityId() ) ) {
throw MySecurityException("Unauthorized access");
}
}
}
Sie benötigen außerdem einen Konfigurationseintrag, der Hibernate mitteilt, dass der Listener zusätzlich zum Standard-Listener verwendet werden soll:
<hibernate-configuration>
<session-factory>
...
<event type="load">
<listener class="com.eg.MyLoadListener"/>
<listener class="org.hibernate.event.def.DefaultLoadEventListener"/>
</event>
</session-factory>
</hibernate-configuration
>
Instead, you can register it programmatically:
Configuration cfg = new Configuration();
LoadEventListener[] stack = { new MyLoadListener(), new DefaultLoadEventListener() };
cfg.EventListeners().setLoadEventListeners(stack);
Listeners registered declaratively cannot share instances. If the same class name is used in multiple <listener/>
elements, each reference will result in a separate instance of that class. If you need to share listener instances between listener types you must use the programmatic registration approach.
Why implement an interface and define the specific type during configuration? A listener implementation could implement multiple event listener interfaces. Having the type additionally defined during registration makes it easier to turn custom listeners on or off during configuration.
Usually, declarative security in Hibernate applications is managed in a session facade layer. Hibernate3 allows certain actions to be permissioned via JACC, and authorized via JAAS. This is an optional functionality that is built on top of the event architecture.
Zunächst einmal müssen die betreffenden Event-Listener konfiguriert werden, damit die Verwendung der JAAS Authorisierung aktiviert ist.
<listener type="pre-delete" class="org.hibernate.secure.JACCPreDeleteEventListener"/>
<listener type="pre-update" class="org.hibernate.secure.JACCPreUpdateEventListener"/>
<listener type="pre-insert" class="org.hibernate.secure.JACCPreInsertEventListener"/>
<listener type="pre-load" class="org.hibernate.secure.JACCPreLoadEventListener"/>
Note that <listener type="..." class="..."/>
is shorthand for <event type="..."><listener class="..."/></event>
when there is exactly one listener for a particular event type.
Next, while still in hibernate.cfg.xml
, bind the permissions to roles:
<grant role="admin" entity-name="User" actions="insert,update,read"/>
<grant role="su" entity-name="User" actions="*"/>
Die Rollennamen sind die von Ihrem JACC-Anbieter verstandenen Rollen.
A naive approach to inserting 100,000 rows in the database using Hibernate might look like this:
Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();
for ( int i=0; i<100000; i++ ) {
Customer customer = new Customer(.....);
session.save(customer);
}
tx.commit();
session.close();
This would fall over with an OutOfMemoryException
somewhere around the 50,000th row. That is because Hibernate caches all the newly inserted Customer
instances in the session-level cache. In this chapter we will show you how to avoid this problem.
If you are undertaking batch processing you will need to enable the use of JDBC batching. This is absolutely essential if you want to achieve optimal performance. Set the JDBC batch size to a reasonable number (10-50, for example):
hibernate.jdbc.batch_size 20
Hibernate disables insert batching at the JDBC level transparently if you use an identity
identifier generator.
You can also do this kind of work in a process where interaction with the second-level cache is completely disabled:
hibernate.cache.use_second_level_cache false
Dies ist jedoch nicht unbedingt erforderlich, da der CacheMode
so eingestellt werden kann, dass die Interaktion mit dem Cache der zweiten Ebene deaktiviert ist.
When making new objects persistent flush()
and then clear()
the session regularly in order to control the size of the first-level cache.
Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();
for ( int i=0; i<100000; i++ ) {
Customer customer = new Customer(.....);
session.save(customer);
if ( i % 20 == 0 ) { //20, same as the JDBC batch size
//flush a batch of inserts and release memory:
session.flush();
session.clear();
}
}
tx.commit();
session.close();
For retrieving and updating data, the same ideas apply. In addition, you need to use scroll()
to take advantage of server-side cursors for queries that return many rows of data.
Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();
ScrollableResults customers = session.getNamedQuery("GetCustomers")
.setCacheMode(CacheMode.IGNORE)
.scroll(ScrollMode.FORWARD_ONLY);
int count=0;
while ( customers.next() ) {
Customer customer = (Customer) customers.get(0);
customer.updateStuff(...);
if ( ++count % 20 == 0 ) {
//flush a batch of updates and release memory:
session.flush();
session.clear();
}
}
tx.commit();
session.close();
Alternatively, Hibernate provides a command-oriented API that can be used for streaming data to and from the database in the form of detached objects. A StatelessSession
has no persistence context associated with it and does not provide many of the higher-level life cycle semantics. In particular, a stateless session does not implement a first-level cache nor interact with any second-level or query cache. It does not implement transactional write-behind or automatic dirty checking. Operations performed using a stateless session never cascade to associated instances. Collections are ignored by a stateless session. Operations performed via a stateless session bypass Hibernate's event model and interceptors. Due to the lack of a first-level cache, Stateless sessions are vulnerable to data aliasing effects. A stateless session is a lower-level abstraction that is much closer to the underlying JDBC.
StatelessSession session = sessionFactory.openStatelessSession();
Transaction tx = session.beginTransaction();
ScrollableResults customers = session.getNamedQuery("GetCustomers")
.scroll(ScrollMode.FORWARD_ONLY);
while ( customers.next() ) {
Customer customer = (Customer) customers.get(0);
customer.updateStuff(...);
session.update(customer);
}
tx.commit();
session.close();
In this code example, the Customer
instances returned by the query are immediately detached. They are never associated with any persistence context.
The insert(), update()
and delete()
operations defined by the StatelessSession
interface are considered to be direct database row-level operations. They result in the immediate execution of a SQL INSERT, UPDATE
or DELETE
respectively. They have different semantics to the save(), saveOrUpdate()
and delete()
operations defined by the Session
interface.
As already discussed, automatic and transparent object/relational mapping is concerned with the management of the object state. The object state is available in memory. This means that manipulating data directly in the database (using the SQL Data Manipulation Language
(DML) the statements: INSERT
, UPDATE
, DELETE
) will not affect in-memory state. However, Hibernate provides methods for bulk SQL-style DML statement execution that is performed through the Hibernate Query Language (HQL).
The pseudo-syntax for UPDATE
and DELETE
statements is: ( UPDATE | DELETE ) FROM? EntityName (WHERE where_conditions)?
.
Some points to note:
In der "from"-Klausel, ist der "FROM"-Schlüsselbegriff optional
There can only be a single entity named in the from-clause. It can, however, be aliased. If the entity name is aliased, then any property references must be qualified using that alias. If the entity name is not aliased, then it is illegal for any property references to be qualified.
No joins, either implicit or explicit, can be specified in a bulk HQL query. Sub-queries can be used in the where-clause, where the subqueries themselves may contain joins.
Die "where"-Klausel ist ebenfalls optional.
As an example, to execute an HQL UPDATE
, use the Query.executeUpdate()
method. The method is named for those familiar with JDBC's PreparedStatement.executeUpdate()
:
Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();
String hqlUpdate = "update Customer c set c.name = :newName where c.name = :oldName";
// or String hqlUpdate = "update Customer set name = :newName where name = :oldName";
int updatedEntities = s.createQuery( hqlUpdate )
.setString( "newName", newName )
.setString( "oldName", oldName )
.executeUpdate();
tx.commit();
session.close();
In keeping with the EJB3 specification, HQL UPDATE
statements, by default, do not effect the version or the timestamp property values for the affected entities. However, you can force Hibernate to reset the version
or timestamp
property values through the use of a versioned update
. This is achieved by adding the VERSIONED
keyword after the UPDATE
keyword.
Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();
String hqlVersionedUpdate = "update versioned Customer set name = :newName where name = :oldName";
int updatedEntities = s.createQuery( hqlUpdate )
.setString( "newName", newName )
.setString( "oldName", oldName )
.executeUpdate();
tx.commit();
session.close();
Custom version types, org.hibernate.usertype.UserVersionType
, are not allowed in conjunction with a update versioned
statement.
Um HQL DELETE
auszuführen, verwenden Sie dieselbe Query.executeUpdate()
-Methode:
Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();
String hqlDelete = "delete Customer c where c.name = :oldName";
// or String hqlDelete = "delete Customer where name = :oldName";
int deletedEntities = s.createQuery( hqlDelete )
.setString( "oldName", oldName )
.executeUpdate();
tx.commit();
session.close();
The int
value returned by the Query.executeUpdate()
method indicates the number of entities effected by the operation. This may or may not correlate to the number of rows effected in the database. An HQL bulk operation might result in multiple actual SQL statements being executed (for joined-subclass, for example). The returned number indicates the number of actual entities affected by the statement. Going back to the example of joined-subclass, a delete against one of the subclasses may actually result in deletes against not just the table to which that subclass is mapped, but also the "root" table and potentially joined-subclass tables further down the inheritance hierarchy.
Die Pseudo-Syntax für INSERT
-Anweisungen lautet: INSERT INTO EntityName properties_list select_statement
. Hierzu einige wichtige Punkte:
Nur INSERT INTO ... SELECT ... wird unterstützt, nicht jedoch INSERT INTO ... VALUES ....
The properties_list is analogous to the column specification
in the SQL INSERT
statement. For entities involved in mapped inheritance, only properties directly defined on that given class-level can be used in the properties_list. Superclass properties are not allowed and subclass properties do not make sense. In other words, INSERT
statements are inherently non-polymorphic.
select_statement can be any valid HQL select query, with the caveat that the return types must match the types expected by the insert. Currently, this is checked during query compilation rather than allowing the check to relegate to the database. This might, however, cause problems between Hibernate Type
s which are equivalent as opposed to equal. This might cause issues with mismatches between a property defined as a org.hibernate.type.DateType
and a property defined as a org.hibernate.type.TimestampType
, even though the database might not make a distinction or might be able to handle the conversion.
For the id property, the insert statement gives you two options. You can either explicitly specify the id property in the properties_list, in which case its value is taken from the corresponding select expression, or omit it from the properties_list, in which case a generated value is used. This latter option is only available when using id generators that operate in the database; attempting to use this option with any "in memory" type generators will cause an exception during parsing. For the purposes of this discussion, in-database generators are considered to be org.hibernate.id.SequenceGenerator
(and its subclasses) and any implementers of org.hibernate.id.PostInsertIdentifierGenerator
. The most notable exception here is org.hibernate.id.TableHiLoGenerator
, which cannot be used because it does not expose a selectable way to get its values.
For properties mapped as either version
or timestamp
, the insert statement gives you two options. You can either specify the property in the properties_list, in which case its value is taken from the corresponding select expressions, or omit it from the properties_list, in which case the seed value
defined by the org.hibernate.type.VersionType
is used.
The following is an example of an HQL INSERT
statement execution:
Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();
String hqlInsert = "insert into DelinquentAccount (id, name) select c.id, c.name from Customer c where ...";
int createdEntities = s.createQuery( hqlInsert )
.executeUpdate();
tx.commit();
session.close();
Hibernate uses a powerful query language (HQL) that is similar in appearance to SQL. Compared with SQL, however, HQL is fully object-oriented and understands notions like inheritance, polymorphism and association.
With the exception of names of Java classes and properties, queries are case-insensitive. So SeLeCT
is the same as sELEct
is the same as SELECT
, but org.hibernate.eg.FOO
is not org.hibernate.eg.Foo
, and foo.barSet
is not foo.BARSET
.
This manual uses lowercase HQL keywords. Some users find queries with uppercase keywords more readable, but this convention is unsuitable for queries embedded in Java code.
Die einfachste Form der Hibernate-Anfrage lautet:
from eg.Cat
This returns all instances of the class eg.Cat
. You do not usually need to qualify the class name, since auto-import
is the default. For example:
from Cat
In order to refer to the Cat
in other parts of the query, you will need to assign an alias. For example:
from Cat as cat
This query assigns the alias cat
to Cat
instances, so you can use that alias later in the query. The as
keyword is optional. You could also write:
from Cat cat
Multiple classes can appear, resulting in a cartesian product or "cross" join.
from Formula, Parameter
from Formula as form, Parameter as param
It is good practice to name query aliases using an initial lowercase as this is consistent with Java naming standards for local variables (e.g. domesticCat
).
You can also assign aliases to associated entities or to elements of a collection of values using a join
. For example:
from Cat as cat inner join cat.mate as mate left outer join cat.kittens as kitten
from Cat as cat left join cat.mate.kittens as kittens
from Formula form full join form.parameter param
The supported join types are borrowed from ANSI SQL:
inner join
left outer join
right outer join
full join
(in der Regel nicht sehr nützlich)
Die inner join
, left outer join
und right outer join
-Konstrukte können abgekürzt werden.
from Cat as cat join cat.mate as mate left join cat.kittens as kitten
Sie können weitere Verbundbedingungen unter Verwendung des HQL-Schlüsselbegriffs with
eingeben.
from Cat as cat left join cat.kittens as kitten with kitten.bodyWeight > 10.0
A "fetch" join allows associations or collections of values to be initialized along with their parent objects using a single select. This is particularly useful in the case of a collection. It effectively overrides the outer join and lazy declarations of the mapping file for associations and collections. See Abschnitt 21.1, „Abrufstrategien“ for more information.
from Cat as cat inner join fetch cat.mate left join fetch cat.kittens
A fetch join does not usually need to assign an alias, because the associated objects should not be used in the where
clause (or any other clause). The associated objects are also not returned directly in the query results. Instead, they may be accessed via the parent object. The only reason you might need an alias is if you are recursively join fetching a further collection:
from Cat as cat inner join fetch cat.mate left join fetch cat.kittens child left join fetch child.kittens
The fetch
construct cannot be used in queries called using iterate()
(though scroll()
can be used). Fetch
should be used together with setMaxResults()
or setFirstResult()
, as these operations are based on the result rows which usually contain duplicates for eager collection fetching, hence, the number of rows is not what you would expect. Fetch
should also not be used together with impromptu with
condition. It is possible to create a cartesian product by join fetching more than one collection in a query, so take care in this case. Join fetching multiple collection roles can produce unexpected results for bag mappings, so user discretion is advised when formulating queries in this case. Finally, note that full join fetch
and right join fetch
are not meaningful.
If you are using property-level lazy fetching (with bytecode instrumentation), it is possible to force Hibernate to fetch the lazy properties in the first query immediately using fetch all properties
.
from Document fetch all properties order by name
from Document doc fetch all properties where lower(doc.name) like '%cats%'
HQL unterstützt zwei Arten von "Association-Joining": implicit
und explicit
.
The queries shown in the previous section all use the explicit
form, that is, where the join keyword is explicitly used in the from clause. This is the recommended form.
Die implicit
-Form verwendet den "Join"-Schlüsselbegriff nicht. Statt dessen sind die Assoziationen unter Verwendung von Punktnotation "dereferenziert". implicit
-Joins können in jedem der HQL-Sätze erscheinen. implicit
-Join-Ergebnisse resultieren in "inner Joins" in der sich ergebenden SQL-Anweisung.
from Cat as cat where cat.mate.name like '%s%'
There are 2 ways to refer to an entity's identifier property:
The special property (lowercase) id
may be used to reference the identifier property of an entity provided that the entity does not define a non-identifier property named id.
If the entity defines a named identifier property, you can use that property name.
References to composite identifier properties follow the same naming rules. If the entity has a non-identifier property named id, the composite identifier property can only be referenced by its defined named. Otherwise, the special id
property can be used to reference the identifier property.
Please note that, starting in version 3.2.2, this has changed significantly. In previous versions, id
always referred to the identifier property regardless of its actual name. A ramification of that decision was that non-identifier properties named id
could never be referenced in Hibernate queries.
The select
clause picks which objects and properties to return in the query result set. Consider the following:
select mate from Cat as cat inner join cat.mate as mate
The query will select mate
s of other Cat
s. You can express this query more compactly as:
select cat.mate from Cat cat
Queries can return properties of any value type including properties of component type:
select cat.name from DomesticCat cat where cat.name like 'fri%'
select cust.name.firstName from Customer as cust
Queries can return multiple objects and/or properties as an array of type Object[]
:
select mother, offspr, mate.name from DomesticCat as mother inner join mother.mate as mate left outer join mother.kittens as offspr
Or as a List
:
select new list(mother, offspr, mate.name) from DomesticCat as mother inner join mother.mate as mate left outer join mother.kittens as offspr
Or - assuming that the class Family
has an appropriate constructor - as an actual typesafe Java object:
select new Family(mother, mate, offspr) from DomesticCat as mother join mother.mate as mate left join mother.kittens as offspr
You can assign aliases to selected expressions using as
:
select max(bodyWeight) as max, min(bodyWeight) as min, count(*) as n from Cat cat
Das ist besonders in Verbindung mit select new map
nützlich:
select new map( max(bodyWeight) as max, min(bodyWeight) as min, count(*) as n ) from Cat cat
Diese Anfrage reagiert mit einer Map
von Aliassen zu gewählten Werten.
HQL queries can even return the results of aggregate functions on properties:
select avg(cat.weight), sum(cat.weight), max(cat.weight), count(cat) from Cat cat
The supported aggregate functions are:
avg(...), sum(...), min(...), max(...)
count(*)
count(...), count(distinct ...), count(all...)
You can use arithmetic operators, concatenation, and recognized SQL functions in the select clause:
select cat.weight + sum(kitten.weight) from Cat cat join cat.kittens kitten group by cat.id, cat.weight
select firstName||' '||initial||' '||upper(lastName) from Person
The distinct
and all
keywords can be used and have the same semantics as in SQL.
select distinct cat.name from Cat cat select count(distinct cat.name), count(cat) from Cat cat
Eine Anfrage wie:
from Cat as cat
returns instances not only of Cat
, but also of subclasses like DomesticCat
. Hibernate queries can name any Java class or interface in the from
clause. The query will return instances of all persistent classes that extend that class or implement the interface. The following query would return all persistent objects:
from java.lang.Object o
Das Interface Named
könnte durch verschiedene persistente Klassen implementiert werden:
from Named n, Named m where n.name = m.name
These last two queries will require more than one SQL SELECT
. This means that the order by
clause does not correctly order the whole result set. It also means you cannot call these queries using Query.scroll()
.
The where
clause allows you to refine the list of instances returned. If no alias exists, you can refer to properties by name:
from Cat where name='Fritz'
Falls ein Alias existiert, verwenden Sie einen vollständigen Property-Namen:
from Cat as cat where cat.name='Fritz'
This returns instances of Cat
named 'Fritz'.
The following query:
select foo from Foo foo, Bar bar where foo.startDate = bar.date
returns all instances of Foo
with an instance of bar
with a date
property equal to the startDate
property of the Foo
. Compound path expressions make the where
clause extremely powerful. Consider the following:
from Cat cat where cat.mate.name is not null
This query translates to an SQL query with a table (inner) join. For example:
from Foo foo where foo.bar.baz.customer.address.city is not null
would result in a query that would require four table joins in SQL.
The =
operator can be used to compare not only properties, but also instances:
from Cat cat, Cat rival where cat.mate = rival.mate
select cat, mate from Cat cat, Cat mate where cat.mate = mate
The special property (lowercase) id
can be used to reference the unique identifier of an object. See Abschnitt 16.5, „Referring to identifier property“ for more information.
from Cat as cat where cat.id = 123 from Cat as cat where cat.mate.id = 69
The second query is efficient and does not require a table join.
Properties of composite identifiers can also be used. Consider the following example where Person
has composite identifiers consisting of country
and medicareNumber
:
from bank.Person person where person.id.country = 'AU' and person.id.medicareNumber = 123456
from bank.Account account where account.owner.id.country = 'AU' and account.owner.id.medicareNumber = 123456
Once again, the second query does not require a table join.
See Abschnitt 16.5, „Referring to identifier property“ for more information regarding referencing identifier properties)
The special property class
accesses the discriminator value of an instance in the case of polymorphic persistence. A Java class name embedded in the where clause will be translated to its discriminator value.
from Cat cat where cat.class = DomesticCat
You can also use components or composite user types, or properties of said component types. See Abschnitt 16.17, „Komponenten“ for more information.
An "any" type has the special properties id
and class
that allows you to express a join in the following way (where AuditLog.item
is a property mapped with <any>
):
from AuditLog log, Payment payment where log.item.class = 'Payment' and log.item.id = payment.id
The log.item.class
and payment.class
would refer to the values of completely different database columns in the above query.
Expressions used in the where
clause include the following:
mathematical operators: +, -, *, /
binary comparison operators: =, >=, <=, <>, !=, like
logische Vorgänge and, or, not
Parentheses ( )
that indicates grouping
in
, not in
, between
, is null
, is not null
, is empty
, is not empty
, member of
and not member of
"Einfacher" Fall case ... when ... then ... else ... end
, und "gesuchter" Fall case when ... then ... else ... end
String-Verkettung ...||...
oder concat(...,...)
current_date()
, current_time()
, and current_timestamp()
second(...)
, minute(...)
, hour(...)
, day(...)
, month(...)
, and year(...)
Jede Funktion oder Operator definiert durch EJB-QL 3.0: substring(), trim(), lower(), upper(), length(), locate(), abs(), sqrt(), bit_length(), mod()
coalesce()
und nullif()
str()
zur Konvertierung numerischer oder temporärer Werte in einen lesbaren String
cast(... as ...)
, wo ein zweites Argument der Name eines Hibernate-Typs ist und extract(... from ...)
, wenn ANSI cast()
und extract()
von der zu Grunde liegenden Datenbank unterstützt werden
die HQL index()
-Funktion, die für Aliasse eine verbundenen indizierten Collection gilt
HQL functions that take collection-valued path expressions: size(), minelement(), maxelement(), minindex(), maxindex()
, along with the special elements()
and indices
functions that can be quantified using some, all, exists, any, in
.
Any database-supported SQL scalar function like sign()
, trunc()
, rtrim()
, and sin()
Positionelle Parameter im JDBC-Stil ?
named parameters :name
, :start_date
, and :x1
SQL-Literale 'foo'
, 69
, 6.66E+2
, '1970-01-01 10:00:01.0'
Java public static final
-Konstanten eg.Color.TABBY
in
and between
can be used as follows:
from DomesticCat cat where cat.name between 'A' and 'B'
from DomesticCat cat where cat.name in ( 'Foo', 'Bar', 'Baz' )
The negated forms can be written as follows:
from DomesticCat cat where cat.name not between 'A' and 'B'
from DomesticCat cat where cat.name not in ( 'Foo', 'Bar', 'Baz' )
Similarly, is null
and is not null
can be used to test for null values.
Booleans can be easily used in expressions by declaring HQL query substitutions in Hibernate configuration:
<property name="hibernate.query.substitutions" >true 1, false 0</property >
Das ersetzt die Schlüsselbegriffe true
und false
durch die Literale 1
und 0
in der aus dieser HQL übersetzten SQL:
from Cat cat where cat.alive = true
You can test the size of a collection with the special property size
or the special size()
function.
from Cat cat where cat.kittens.size > 0
from Cat cat where size(cat.kittens) > 0
For indexed collections, you can refer to the minimum and maximum indices using minindex
and maxindex
functions. Similarly, you can refer to the minimum and maximum elements of a collection of basic type using the minelement
and maxelement
functions. For example:
from Calendar cal where maxelement(cal.holidays) > current_date
from Order order where maxindex(order.items) > 100
from Order order where minelement(order.items) > 10000
The SQL functions any, some, all, exists, in
are supported when passed the element or index set of a collection (elements
and indices
functions) or the result of a subquery (see below):
select mother from Cat as mother, Cat as kit where kit in elements(foo.kittens)
select p from NameList list, Person p where p.name = some elements(list.names)
from Cat cat where exists elements(cat.kittens)
from Player p where 3 > all elements(p.scores)
from Show show where 'fizard' in indices(show.acts)
Note that these constructs - size
, elements
, indices
, minindex
, maxindex
, minelement
, maxelement
- can only be used in the where clause in Hibernate3.
Elements of indexed collections (arrays, lists, and maps) can be referred to by index in a where clause only:
from Order order where order.items[0].id = 1234
select person from Person person, Calendar calendar where calendar.holidays['national day'] = person.birthDay and person.nationality.calendar = calendar
select item from Item item, Order order where order.items[ order.deliveredItemIndices[0] ] = item and order.id = 11
select item from Item item, Order order where order.items[ maxindex(order.items) ] = item and order.id = 11
The expression inside []
can even be an arithmetic expression:
select item from Item item, Order order where order.items[ size(order.items) - 1 ] = item
HQL also provides the built-in index()
function for elements of a one-to-many association or collection of values.
select item, index(item) from Order order join order.items item where index(item) < 5
Scalar SQL functions supported by the underlying database can be used:
from DomesticCat cat where upper(cat.name) like 'FRI%'
Consider how much longer and less readable the following query would be in SQL:
select cust from Product prod, Store store inner join store.customers cust where prod.name = 'widget' and store.location.name in ( 'Melbourne', 'Sydney' ) and prod = all elements(cust.currentOrder.lineItems)
Tipp: etwas wie
SELECT cust.name, cust.address, cust.phone, cust.id, cust.current_order FROM customers cust, stores store, locations loc, store_customers sc, product prod WHERE prod.name = 'widget' AND store.loc_id = loc.id AND loc.name IN ( 'Melbourne', 'Sydney' ) AND sc.store_id = store.id AND sc.cust_id = cust.id AND prod.id = ALL( SELECT item.prod_id FROM line_items item, orders o WHERE item.order_id = o.id AND cust.current_order = o.id )
The list returned by a query can be ordered by any property of a returned class or components:
from DomesticCat cat order by cat.name asc, cat.weight desc, cat.birthdate
Die optionalen asc
oder desc
zeigen die aufsteigende bzw. absteigende Reihenfolge an.
A query that returns aggregate values can be grouped by any property of a returned class or components:
select cat.color, sum(cat.weight), count(cat) from Cat cat group by cat.color
select foo.id, avg(name), max(name) from Foo foo join foo.names name group by foo.id
Eine having
-Klausel ist ebenfalls gestattet.
select cat.color, sum(cat.weight), count(cat) from Cat cat group by cat.color having cat.color in (eg.Color.TABBY, eg.Color.BLACK)
SQL functions and aggregate functions are allowed in the having
and order by
clauses if they are supported by the underlying database (i.e., not in MySQL).
select cat from Cat cat join cat.kittens kitten group by cat.id, cat.name, cat.other, cat.properties having avg(kitten.weight) > 100 order by count(kitten) asc, sum(kitten.weight) desc
Neither the group by
clause nor the order by
clause can contain arithmetic expressions. Hibernate also does not currently expand a grouped entity, so you cannot write group by cat
if all properties of cat
are non-aggregated. You have to list all non-aggregated properties explicitly.
Für Datenbanken, die Unterauswahlen unterstützen, unterstützt Hibernate innerhalb von Anfragen Unteranfragen. Eine Unteranfrage muss eingeklammert sein (oftmals durch einen SQL aggregierten Funktionsaufruf). Selbst korrelierende Unteranfragen (Unteranfragen, die auf einen Alias in der außerhalb liegenden Anfrage verweisen) sind gestattet.
from Cat as fatcat where fatcat.weight > ( select avg(cat.weight) from DomesticCat cat )
from DomesticCat as cat where cat.name = some ( select name.nickName from Name as name )
from Cat as cat where not exists ( from Cat as mate where mate.mate = cat )
from DomesticCat as cat where cat.name not in ( select name.nickName from Name as name )
select cat.id, (select max(kit.weight) from cat.kitten kit) from Cat as cat
Note that HQL subqueries can occur only in the select or where clauses.
Note that subqueries can also utilize row value constructor
syntax. See Abschnitt 16.18, „Die Syntax des "Row-Value-Constructors"“ for more information.
Hibernate queries can be quite powerful and complex. In fact, the power of the query language is one of Hibernate's main strengths. The following example queries are similar to queries that have been used on recent projects. Please note that most queries you will write will be much simpler than the following examples.
The following query returns the order id, number of items, the given minimum total value and the total value of the order for all unpaid orders for a particular customer. The results are ordered by total value. In determining the prices, it uses the current catalog. The resulting SQL query, against the ORDER
, ORDER_LINE
, PRODUCT
, CATALOG
and PRICE
tables has four inner joins and an (uncorrelated) subselect.
select order.id, sum(price.amount), count(item) from Order as order join order.lineItems as item join item.product as product, Catalog as catalog join catalog.prices as price where order.paid = false and order.customer = :customer and price.product = product and catalog.effectiveDate < sysdate and catalog.effectiveDate >= all ( select cat.effectiveDate from Catalog as cat where cat.effectiveDate < sysdate ) group by order having sum(price.amount) > :minAmount order by sum(price.amount) desc
Monströs! Im wirklichen Leben bin ich kein großer Freund von Unteranfragen, daher sieht meine Anfrage eher wie folgt aus:
select order.id, sum(price.amount), count(item) from Order as order join order.lineItems as item join item.product as product, Catalog as catalog join catalog.prices as price where order.paid = false and order.customer = :customer and price.product = product and catalog = :currentCatalog group by order having sum(price.amount) > :minAmount order by sum(price.amount) desc
Die nächste Anfrage zählt die Anzahl von Zahlungen in jedem Status, wobei Zahlungen mit AWAITING_APPROVAL
-Status, bei denen die aktuellste Statusänderung durch den Benutzer vorgenommen wurde, ausgenommen sind. Sie wird in eine SQL-Anfrage mit zwei inneren Verbünden und eine korrelierte Unterauswahl an die PAYMENT
, PAYMENT_STATUS
und PAYMENT_STATUS_CHANGE
-Tabellen übersetzt.
select count(payment), status.name from Payment as payment join payment.currentStatus as status join payment.statusChanges as statusChange where payment.status.name < > PaymentStatus.AWAITING_APPROVAL or ( statusChange.timeStamp = ( select max(change.timeStamp) from PaymentStatusChange change where change.payment = payment ) and statusChange.user < > :currentUser ) group by status.name, status.sortOrder order by status.sortOrder
If the statusChanges
collection was mapped as a list, instead of a set, the query would have been much simpler to write.
select count(payment), status.name from Payment as payment join payment.currentStatus as status where payment.status.name < > PaymentStatus.AWAITING_APPROVAL or payment.statusChanges[ maxIndex(payment.statusChanges) ].user < > :currentUser group by status.name, status.sortOrder order by status.sortOrder
Die nächste Anfrage verwendet die MS SQL Server isNull()
-Funktion, um alle Konten und unbezahlten Zahlungen für the Organisation, zu der der aktuelle Benutzer gehört, wiederzugeben. Sie wird in eine SQL-Anfrage mit drei inneren Verbünden ("inner Joins"), einen äußeren Verbund ("outer Join") und eine Unterauswahl gegen die ACCOUNT
, PAYMENT
, PAYMENT_STATUS
, ACCOUNT_TYPE
, ORGANIZATION
und ORG_USER
-Tabellen übersetzt.
select account, payment from Account as account left outer join account.payments as payment where :currentUser in elements(account.holder.users) and PaymentStatus.UNPAID = isNull(payment.currentStatus.name, PaymentStatus.UNPAID) order by account.type.sortOrder, account.accountNumber, payment.dueDate
Bei einigen Datenbanken würden wir die (korrelierende) Unterauswahl abschaffen müssen.
select account, payment from Account as account join account.holder.users as user left outer join account.payments as payment where :currentUser = user and PaymentStatus.UNPAID = isNull(payment.currentStatus.name, PaymentStatus.UNPAID) order by account.type.sortOrder, account.accountNumber, payment.dueDate
HQL now supports update
, delete
and insert ... select ...
statements. See Abschnitt 15.4, „Vorgänge im DML-Stil“ for more information.
You can count the number of query results without returning them:
( (Integer) session.createQuery("select count(*) from ....").iterate().next() ).intValue()
Um ein Ergebnis nach der Größe einer Collection zu ordnen, verwenden Sie die folgende Anfrage:
select usr.id, usr.name from User as usr left join usr.messages as msg group by usr.id, usr.name order by count(msg)
Falls Ihre Datenbank Unterauswahlen unterstützt, können Sie eine Bedingung bezüglich der Auswahlgröße in der "where"-Klausel Ihrer Anfrage stellen:
from User usr where size(usr.messages) >= 1
If your database does not support subselects, use the following query:
select usr.id, usr.name from User usr join usr.messages msg group by usr.id, usr.name having count(msg) >= 1
As this solution cannot return a User
with zero messages because of the inner join, the following form is also useful:
select usr.id, usr.name from User as usr left join usr.messages as msg group by usr.id, usr.name having count(msg) = 0
Properties eines JavaBean können an benannte Anfragenparameter gebunden werden:
Query q = s.createQuery("from foo Foo as foo where foo.name=:name and foo.size=:size");
q.setProperties(fooBean); // fooBean has getName() and getSize()
List foos = q.list();
Collections sind unter Verwendung des Query
-Interface mit einem Filter seitenwechselbar:
Query q = s.createFilter( collection, "" ); // the trivial filter
q.setMaxResults(PAGE_SIZE);
q.setFirstResult(PAGE_SIZE * pageNumber);
List page = q.list();
Collection elements can be ordered or grouped using a query filter:
Collection orderedCollection = s.filter( collection, "order by this.amount" );
Collection counts = s.filter( collection, "select this.type, count(this) group by this.type" );
Sie können die Größe einer Collection finden, ohne diese zu initialisieren:
( (Integer) session.createQuery("select count(*) from ....").iterate().next() ).intValue();
Components can be used similarly to the simple value types that are used in HQL queries. They can appear in the select
clause as follows:
select p.name from Person p
select p.name.first from Person p
wo die Namen-Property der Person eine Komponente ist. Komponenten können auch in der where
-Klausel verwendet werden:
from Person p where p.name = :name
from Person p where p.name.first = :firstName
Komponenten können auch in der order by
-Klausel verwendet werden:
from Person p order by p.name
from Person p order by p.name.first
Another common use of components is in row value constructors.
HQL supports the use of ANSI SQL row value constructor
syntax, sometimes referred to AS tuple
syntax, even though the underlying database may not support that notion. Here, we are generally referring to multi-valued comparisons, typically associated with components. Consider an entity Person which defines a name component:
from Person p where p.name.first='John' and p.name.last='Jingleheimer-Schmidt'
That is valid syntax although it is a little verbose. You can make this more concise by using row value constructor
syntax:
from Person p where p.name=('John', 'Jingleheimer-Schmidt')
Es kann sich als nützlich erweisen, dies in der select
-Klausel zu spezifizieren:
select p.name from Person p
Using row value constructor
syntax can also be beneficial when using subqueries that need to compare against multiple values:
from Cat as cat where not ( cat.name, cat.color ) in ( select cat.name, cat.color from DomesticCat cat )
One thing to consider when deciding if you want to use this syntax, is that the query will be dependent upon the ordering of the component sub-properties in the metadata.
Hibernate besitzt eine intuitive, erweiterbare "Criteria Query"-API.
Das Interface org.hibernate.Criteria
repräsentiert eine Anfrage an eine bestimmte persistente Klasse. Bei der Session
handelt es sich um eine Factory für Criteria
-Instanzen.
Criteria crit = sess.createCriteria(Cat.class);
crit.setMaxResults(50);
List cats = crit.list();
Ein individuelles "Query Criterion" (Anfragenkriterium) ist eine Instanz des Interface org.hibernate.criterion.Criterion
. Die Klasse org.hibernate.criterion.Restrictions
definiert Factory-Methoden, um bestimmte eingebaute Criterion
-Typen einzuholen.
List cats = sess.createCriteria(Cat.class)
.add( Restrictions.like("name", "Fritz%") )
.add( Restrictions.between("weight", minWeight, maxWeight) )
.list();
Restrictions can be grouped logically.
List cats = sess.createCriteria(Cat.class)
.add( Restrictions.like("name", "Fritz%") )
.add( Restrictions.or(
Restrictions.eq( "age", new Integer(0) ),
Restrictions.isNull("age")
) )
.list();
List cats = sess.createCriteria(Cat.class)
.add( Restrictions.in( "name", new String[] { "Fritz", "Izi", "Pk" } ) )
.add( Restrictions.disjunction()
.add( Restrictions.isNull("age") )
.add( Restrictions.eq("age", new Integer(0) ) )
.add( Restrictions.eq("age", new Integer(1) ) )
.add( Restrictions.eq("age", new Integer(2) ) )
) )
.list();
There are a range of built-in criterion types (Restrictions
subclasses). One of the most useful allows you to specify SQL directly.
List cats = sess.createCriteria(Cat.class)
.add( Restrictions.sqlRestriction("lower({alias}.name) like lower(?)", "Fritz%", Hibernate.STRING) )
.list();
Der {alias}
-Platzhalter wird durch den Reihen-Alias der angefragten Entity ersetzt.
You can also obtain a criterion from a Property
instance. You can create a Property
by calling Property.forName()
:
Property age = Property.forName("age");
List cats = sess.createCriteria(Cat.class)
.add( Restrictions.disjunction()
.add( age.isNull() )
.add( age.eq( new Integer(0) ) )
.add( age.eq( new Integer(1) ) )
.add( age.eq( new Integer(2) ) )
) )
.add( Property.forName("name").in( new String[] { "Fritz", "Izi", "Pk" } ) )
.list();
You can order the results using org.hibernate.criterion.Order
.
List cats = sess.createCriteria(Cat.class)
.add( Restrictions.like("name", "F%")
.addOrder( Order.asc("name") )
.addOrder( Order.desc("age") )
.setMaxResults(50)
.list();
List cats = sess.createCriteria(Cat.class)
.add( Property.forName("name").like("F%") )
.addOrder( Property.forName("name").asc() )
.addOrder( Property.forName("age").desc() )
.setMaxResults(50)
.list();
By navigating associations using createCriteria()
you can specify constraints upon related entities:
List cats = sess.createCriteria(Cat.class)
.add( Restrictions.like("name", "F%") )
.createCriteria("kittens")
.add( Restrictions.like("name", "F%") )
.list();
The second createCriteria()
returns a new instance of Criteria
that refers to the elements of the kittens
collection.
There is also an alternate form that is useful in certain circumstances:
List cats = sess.createCriteria(Cat.class)
.createAlias("kittens", "kt")
.createAlias("mate", "mt")
.add( Restrictions.eqProperty("kt.name", "mt.name") )
.list();
(createAlias()
erstellt keine neue Instanz von Criteria
.)
The kittens collections held by the Cat
instances returned by the previous two queries are not pre-filtered by the criteria. If you want to retrieve just the kittens that match the criteria, you must use a ResultTransformer
.
List cats = sess.createCriteria(Cat.class)
.createCriteria("kittens", "kt")
.add( Restrictions.eq("name", "F%") )
.setResultTransformer(Criteria.ALIAS_TO_ENTITY_MAP)
.list();
Iterator iter = cats.iterator();
while ( iter.hasNext() ) {
Map map = (Map) iter.next();
Cat cat = (Cat) map.get(Criteria.ROOT_ALIAS);
Cat kitten = (Cat) map.get("kt");
}
Additionally you may manipulate the result set using a left outer join:
List cats = session.createCriteria( Cat.class ) .createAlias("mate", "mt", Criteria.LEFT_JOIN, Restrictions.like("mt.name", "good%") ) .addOrder(Order.asc("mt.age")) .list();
This will return all of the Cat
s with a mate whose name starts with "good" ordered by their mate's age, and all cats who do not have a mate. This is useful when there is a need to order or limit in the database prior to returning complex/large result sets, and removes many instances where multiple queries would have to be performed and the results unioned by java in memory.
Without this feature, first all of the cats without a mate would need to be loaded in one query.
A second query would need to retreive the cats with mates who's name started with "good" sorted by the mates age.
Thirdly, in memory; the lists would need to be joined manually.
You can specify association fetching semantics at runtime using setFetchMode()
.
List cats = sess.createCriteria(Cat.class)
.add( Restrictions.like("name", "Fritz%") )
.setFetchMode("mate", FetchMode.EAGER)
.setFetchMode("kittens", FetchMode.EAGER)
.list();
This query will fetch both mate
and kittens
by outer join. See Abschnitt 21.1, „Abrufstrategien“ for more information.
Mit der Klasse org.hibernate.criterion.Example
können Sie ein Anfragenkriterium aus einer gegebenen Instanz zu konstruieren.
Cat cat = new Cat();
cat.setSex('F');
cat.setColor(Color.BLACK);
List results = session.createCriteria(Cat.class)
.add( Example.create(cat) )
.list();
Versions-Properties, Bezeichner und Assoziationen werden übergangen. In der Standardeinstellung werden auch Properties mit dem Wert Null ausgeschlossen.
Sie können anpassen, wie das Example
angewendet wird.
Example example = Example.create(cat)
.excludeZeroes() //exclude zero valued properties
.excludeProperty("color") //exclude the property named "color"
.ignoreCase() //perform case insensitive string comparisons
.enableLike(); //use like for string comparisons
List results = session.createCriteria(Cat.class)
.add(example)
.list();
Sie können sogar Beispiele verwenden, um Kriterien auf assoziierte Objekte anzuwenden.
List results = session.createCriteria(Cat.class)
.add( Example.create(cat) )
.createCriteria("mate")
.add( Example.create( cat.getMate() ) )
.list();
The class org.hibernate.criterion.Projections
is a factory for Projection
instances. You can apply a projection to a query by calling setProjection()
.
List results = session.createCriteria(Cat.class)
.setProjection( Projections.rowCount() )
.add( Restrictions.eq("color", Color.BLACK) )
.list();
List results = session.createCriteria(Cat.class)
.setProjection( Projections.projectionList()
.add( Projections.rowCount() )
.add( Projections.avg("weight") )
.add( Projections.max("weight") )
.add( Projections.groupProperty("color") )
)
.list();
In einer "Criteria Query" ist kein explizites "gruppieren nach" notwendig. Bestimmte Projektionstypen sind als Gruppierungsprojektionen definiert, die auch in der SQL group by
-Klausel auftreten.
An alias can be assigned to a projection so that the projected value can be referred to in restrictions or orderings. Here are two different ways to do this:
List results = session.createCriteria(Cat.class)
.setProjection( Projections.alias( Projections.groupProperty("color"), "colr" ) )
.addOrder( Order.asc("colr") )
.list();
List results = session.createCriteria(Cat.class)
.setProjection( Projections.groupProperty("color").as("colr") )
.addOrder( Order.asc("colr") )
.list();
Die alias()
und as()
-Methoden wrappen die Projektionsinstanzen in eine andere Alias-Instanz von Projection
. Als Tastenkürzel können Sie einen Alias zuordnen, wenn Sie der Projektionsliste eine Projektion hinzufügen:
List results = session.createCriteria(Cat.class)
.setProjection( Projections.projectionList()
.add( Projections.rowCount(), "catCountByColor" )
.add( Projections.avg("weight"), "avgWeight" )
.add( Projections.max("weight"), "maxWeight" )
.add( Projections.groupProperty("color"), "color" )
)
.addOrder( Order.desc("catCountByColor") )
.addOrder( Order.desc("avgWeight") )
.list();
List results = session.createCriteria(Domestic.class, "cat")
.createAlias("kittens", "kit")
.setProjection( Projections.projectionList()
.add( Projections.property("cat.name"), "catName" )
.add( Projections.property("kit.name"), "kitName" )
)
.addOrder( Order.asc("catName") )
.addOrder( Order.asc("kitName") )
.list();
Sie können auch Property.forName()
verwenden, um Projektionen auszudrücken:
List results = session.createCriteria(Cat.class)
.setProjection( Property.forName("name") )
.add( Property.forName("color").eq(Color.BLACK) )
.list();
List results = session.createCriteria(Cat.class)
.setProjection( Projections.projectionList()
.add( Projections.rowCount().as("catCountByColor") )
.add( Property.forName("weight").avg().as("avgWeight") )
.add( Property.forName("weight").max().as("maxWeight") )
.add( Property.forName("color").group().as("color" )
)
.addOrder( Order.desc("catCountByColor") )
.addOrder( Order.desc("avgWeight") )
.list();
The DetachedCriteria
class allows you to create a query outside the scope of a session and then execute it using an arbitrary Session
.
DetachedCriteria query = DetachedCriteria.forClass(Cat.class)
.add( Property.forName("sex").eq('F') );
Session session = ....;
Transaction txn = session.beginTransaction();
List results = query.getExecutableCriteria(session).setMaxResults(100).list();
txn.commit();
session.close();
A DetachedCriteria
can also be used to express a subquery. Criterion instances involving subqueries can be obtained via Subqueries
or Property
.
DetachedCriteria avgWeight = DetachedCriteria.forClass(Cat.class)
.setProjection( Property.forName("weight").avg() );
session.createCriteria(Cat.class)
.add( Property.forName("weight").gt(avgWeight) )
.list();
DetachedCriteria weights = DetachedCriteria.forClass(Cat.class)
.setProjection( Property.forName("weight") );
session.createCriteria(Cat.class)
.add( Subqueries.geAll("weight", weights) )
.list();
Correlated subqueries are also possible:
DetachedCriteria avgWeightForSex = DetachedCriteria.forClass(Cat.class, "cat2")
.setProjection( Property.forName("weight").avg() )
.add( Property.forName("cat2.sex").eqProperty("cat.sex") );
session.createCriteria(Cat.class, "cat")
.add( Property.forName("weight").gt(avgWeightForSex) )
.list();
For most queries, including criteria queries, the query cache is not efficient because query cache invalidation occurs too frequently. However, there is a special kind of query where you can optimize the cache invalidation algorithm: lookups by a constant natural key. In some applications, this kind of query occurs frequently. The criteria API provides special provision for this use case.
First, map the natural key of your entity using <natural-id>
and enable use of the second-level cache.
<class name="User">
<cache usage="read-write"/>
<id name="id">
<generator class="increment"/>
</id>
<natural-id>
<property name="name"/>
<property name="org"/>
</natural-id>
<property name="password"/>
</class
>
This functionality is not intended for use with entities with mutable natural keys.
Once you have enabled the Hibernate query cache, the Restrictions.naturalId()
allows you to make use of the more efficient cache algorithm.
session.createCriteria(User.class)
.add( Restrictions.naturalId()
.set("name", "gavin")
.set("org", "hb")
).setCacheable(true)
.uniqueResult();
You can also express queries in the native SQL dialect of your database. This is useful if you want to utilize database-specific features such as query hints or the CONNECT
keyword in Oracle. It also provides a clean migration path from a direct SQL/JDBC based application to Hibernate.
Hibernate3 allows you to specify handwritten SQL, including stored procedures, for all create, update, delete, and load operations.
Execution of native SQL queries is controlled via the SQLQuery
interface, which is obtained by calling Session.createSQLQuery()
. The following sections describe how to use this API for querying.
Die grundlegendste SQL-Anfrage erfolgt durch eine Liste von Skalaren (Werten).
sess.createSQLQuery("SELECT * FROM CATS").list();
sess.createSQLQuery("SELECT ID, NAME, BIRTHDATE FROM CATS").list();
These will return a List of Object arrays (Object[]) with scalar values for each column in the CATS table. Hibernate will use ResultSetMetadata to deduce the actual order and types of the returned scalar values.
To avoid the overhead of using ResultSetMetadata
, or simply to be more explicit in what is returned, one can use addScalar()
:
sess.createSQLQuery("SELECT * FROM CATS")
.addScalar("ID", Hibernate.LONG)
.addScalar("NAME", Hibernate.STRING)
.addScalar("BIRTHDATE", Hibernate.DATE)
Diese Anfrage spezifiziert:
den SQL-Anfragen-String
die wiederzugebenden Spalten und Typen
This will return Object arrays, but now it will not use ResultSetMetadata
but will instead explicitly get the ID, NAME and BIRTHDATE column as respectively a Long, String and a Short from the underlying resultset. This also means that only these three columns will be returned, even though the query is using *
and could return more than the three listed columns.
Es ist möglich, die Typeninformationen für alle oder einige der Skalare auszulassen.
sess.createSQLQuery("SELECT * FROM CATS")
.addScalar("ID", Hibernate.LONG)
.addScalar("NAME")
.addScalar("BIRTHDATE")
This is essentially the same query as before, but now ResultSetMetaData
is used to determine the type of NAME and BIRTHDATE, where as the type of ID is explicitly specified.
How the java.sql.Types returned from ResultSetMetaData is mapped to Hibernate types is controlled by the Dialect. If a specific type is not mapped, or does not result in the expected type, it is possible to customize it via calls to registerHibernateType
in the Dialect.
Die Anfragen oben behandeln die erhaltenen Skalarwerte, wobei es sich dabei um die "unbearbeiteten" Werte von resultset handelt. Nachfolgend sehen Sie, wie Sie Entity-Objekte von einer nativen SQL-Anfrage mittels addEntity()
erhalten.
sess.createSQLQuery("SELECT * FROM CATS").addEntity(Cat.class);
sess.createSQLQuery("SELECT ID, NAME, BIRTHDATE FROM CATS").addEntity(Cat.class);
Diese Anfrage spezifiziert:
den SQL-Anfragen-String
die von der Anfrage wiedergegebene Entity
Geht man davon aus, dass Cat als Klasse mit den Spalten ID, NAME und BIRTHDATE gemappt ist, werden die Anfragen oben beide mit einer Liste antworten, in der jedes Element eine Entity von Cat ist.
Falls die Entity mit many-to-one
zu einer anderen Entity gemappt ist, so ist dies ebenfalls erforderlich wenn die native Anfrage durchgeführt wird, da sonst eine Datenbank-spezifische "Spalte nicht gefunden"-Fehlermeldung ("column not found") erscheint. Die zusätzlichen Spalten werden bei Verwendung der * Notation automatisch wiedergegeben, aber wie im folgenden Beispiel für eine many-to-one
zu Dog
wollen wir lieber explizit sein:
sess.createSQLQuery("SELECT ID, NAME, BIRTHDATE, DOG_ID FROM CATS").addEntity(Cat.class);
Dies ermöglicht die ordnungsgemäße Funktion von cat.getDog().
Es ist möglich "eager Join" in Dog
anzuwenden, um den Extra-Weg zur Datenbank zur Initialisierung des Proxy zu vermeiden. Dies geschieht mittels der addJoin()
-Methode, die es Ihnen ermöglicht, eine Assoziation oder Collection zu verbinden.
sess.createSQLQuery("SELECT c.ID, NAME, BIRTHDATE, DOG_ID, D_ID, D_NAME FROM CATS c, DOGS d WHERE c.DOG_ID = d.D_ID")
.addEntity("cat", Cat.class)
.addJoin("cat.dog");
In this example, the returned Cat
's will have their dog
property fully initialized without any extra roundtrip to the database. Notice that you added an alias name ("cat") to be able to specify the target property path of the join. It is possible to do the same eager joining for collections, e.g. if the Cat
had a one-to-many to Dog
instead.
sess.createSQLQuery("SELECT ID, NAME, BIRTHDATE, D_ID, D_NAME, CAT_ID FROM CATS c, DOGS d WHERE c.ID = d.CAT_ID")
.addEntity("cat", Cat.class)
.addJoin("cat.dogs");
At this stage you are reaching the limits of what is possible with native queries, without starting to enhance the sql queries to make them usable in Hibernate. Problems can arise when returning multiple entities of the same type or when the default alias/column names are not enough.
Until now, the result set column names are assumed to be the same as the column names specified in the mapping document. This can be problematic for SQL queries that join multiple tables, since the same column names can appear in more than one table.
Spalten Alias-Einspeisung wird bei der folgenden Anfrage benötigt (die aller Wahrscheinlichkeit nach fehlschlagen wird):
sess.createSQLQuery("SELECT c.*, m.* FROM CATS c, CATS m WHERE c.MOTHER_ID = m.ID")
.addEntity("cat", Cat.class)
.addEntity("mother", Cat.class)
The query was intended to return two Cat instances per row: a cat and its mother. The query will, however, fail because there is a conflict of names; the instances are mapped to the same column names. Also, on some databases the returned column aliases will most likely be on the form "c.ID", "c.NAME", etc. which are not equal to the columns specified in the mappings ("ID" and "NAME").
Die folgende Form ist nicht anfällig für die Duplizierung von Spaltennamen:
sess.createSQLQuery("SELECT {cat.*}, {m.*} FROM CATS c, CATS m WHERE c.MOTHER_ID = m.ID")
.addEntity("cat", Cat.class)
.addEntity("mother", Cat.class)
Diese Anfrage spezifiziert:
der SQL Anfragen-String mit Platzhaltern für die durch Hibernate eingespeisten Aliasse
die von der Anfrage erhaltenen Entities
The {cat.*} and {mother.*} notation used above is a shorthand for "all properties". Alternatively, you can list the columns explicitly, but even in this case Hibernate injects the SQL column aliases for each property. The placeholder for a column alias is just the property name qualified by the table alias. In the following example, you retrieve Cats and their mothers from a different table (cat_log) to the one declared in the mapping metadata. You can even use the property aliases in the where clause.
String sql = "SELECT ID as {c.id}, NAME as {c.name}, " +
"BIRTHDATE as {c.birthDate}, MOTHER_ID as {c.mother}, {mother.*} " +
"FROM CAT_LOG c, CAT_LOG m WHERE {c.mother} = c.ID";
List loggedCats = sess.createSQLQuery(sql)
.addEntity("cat", Cat.class)
.addEntity("mother", Cat.class).list()
In most cases the above alias injection is needed. For queries relating to more complex mappings, like composite properties, inheritance discriminators, collections etc., you can use specific aliases that allow Hibernate to inject the proper aliases.
The following table shows the different ways you can use the alias injection. Please note that the alias names in the result are simply examples; each alias will have a unique and probably different name when used.
Tabelle 18.1. Alias-Einspeisungsnamen
Beschreibung | Syntax | Beispiel |
---|---|---|
Eine einfache Property | {[aliasname].[propertyname] | A_NAME as {item.name} |
Eine zusammengesetzte Property | {[aliasname].[componentname].[propertyname]} | CURRENCY as {item.amount.currency}, VALUE as {item.amount.value} |
Diskriminator einer Entity | {[aliasname].class} | DISC as {item.class} |
Alle Properties einer Entity | {[aliasname].*} | {item.*} |
Ein Collection-Schlüssel | {[aliasname].key} | ORGID as {coll.key} |
Die id einer Collection | {[aliasname].id} | EMPID as {coll.id} |
Das Element einer Collection | {[aliasname].element} | XID as {coll.element} |
property of the element in the collection | {[aliasname].element.[propertyname]} | NAME as {coll.element.name} |
Alle Properties des Elements in der Collection | {[aliasname].element.*} | {coll.element.*} |
All properties of the collection | {[aliasname].*} | {coll.*} |
It is possible to apply a ResultTransformer to native SQL queries, allowing it to return non-managed entities.
sess.createSQLQuery("SELECT NAME, BIRTHDATE FROM CATS")
.setResultTransformer(Transformers.aliasToBean(CatDTO.class))
Diese Anfrage spezifiziert:
den SQL-Anfragen-String
ein Ergebnistransformer
Die Anfrage oben wird eine Liste von CatDTO
wiedergeben, die instantiiert wurde und die Werte für NAME und BIRTHNAME in die entsprechenden Properties oder Felder eingespeist hat.
Native SQL queries which query for entities that are mapped as part of an inheritance must include all properties for the baseclass and all its subclasses.
Native SQL queries support positional as well as named parameters:
Query query = sess.createSQLQuery("SELECT * FROM CATS WHERE NAME like ?").addEntity(Cat.class);
List pusList = query.setString(0, "Pus%").list();
query = sess.createSQLQuery("SELECT * FROM CATS WHERE NAME like :name").addEntity(Cat.class);
List pusList = query.setString("name", "Pus%").list();
Named SQL queries can also be defined in the mapping document and called in exactly the same way as a named HQL query (see Abschnitt 11.4.1.7, „Externalisierung benannter Anfragen“). In this case, you do not need to call addEntity()
.
Beispiel 18.1. Named sql query using the <sql-query> maping element
<sql-query name="persons">
<return alias="person" class="eg.Person"/>
SELECT person.NAME AS {person.name},
person.AGE AS {person.age},
person.SEX AS {person.sex}
FROM PERSON person
WHERE person.NAME LIKE :namePattern
</sql-query>
Beispiel 18.2. Execution of a named query
List people = sess.getNamedQuery("persons")
.setString("namePattern", namePattern)
.setMaxResults(50)
.list();
The <return-join>
element is use to join associations and the <load-collection>
element is used to define queries which initialize collections,
Beispiel 18.3. Named sql query with association
<sql-query name="personsWith">
<return alias="person" class="eg.Person"/>
<return-join alias="address" property="person.mailingAddress"/>
SELECT person.NAME AS {person.name},
person.AGE AS {person.age},
person.SEX AS {person.sex},
address.STREET AS {address.street},
address.CITY AS {address.city},
address.STATE AS {address.state},
address.ZIP AS {address.zip}
FROM PERSON person
JOIN ADDRESS address
ON person.ID = address.PERSON_ID AND address.TYPE='MAILING'
WHERE person.NAME LIKE :namePattern
</sql-query>
Eine benannte SQL-Anfrage kann einen Skalarwert wiedergeben. Sie müssen unter Verwendung des <return-scalar>
-Elements den Spalten-Alias und den Hibernate-Typ deklarieren:
Beispiel 18.4. Named query returning a scalar
<sql-query name="mySqlQuery">
<return-scalar column="name" type="string"/>
<return-scalar column="age" type="long"/>
SELECT p.NAME AS name,
p.AGE AS age,
FROM PERSON p WHERE p.NAME LIKE 'Hiber%'
</sql-query>
You can externalize the resultset mapping information in a <resultset>
element which will allow you to either reuse them across several named queries or through the setResultSetMapping()
API.
Beispiel 18.5. <resultset> mapping used to externalize mapping information
<resultset name="personAddress">
<return alias="person" class="eg.Person"/>
<return-join alias="address" property="person.mailingAddress"/>
</resultset>
<sql-query name="personsWith" resultset-ref="personAddress">
SELECT person.NAME AS {person.name},
person.AGE AS {person.age},
person.SEX AS {person.sex},
address.STREET AS {address.street},
address.CITY AS {address.city},
address.STATE AS {address.state},
address.ZIP AS {address.zip}
FROM PERSON person
JOIN ADDRESS address
ON person.ID = address.PERSON_ID AND address.TYPE='MAILING'
WHERE person.NAME LIKE :namePattern
</sql-query>
You can, alternatively, use the resultset mapping information in your hbm files directly in java code.
Beispiel 18.6. Programmatically specifying the result mapping information
List cats = sess.createSQLQuery(
"select {cat.*}, {kitten.*} from cats cat, cats kitten where kitten.mother = cat.id"
)
.setResultSetMapping("catAndKitten")
.list();
So far we have only looked at externalizing SQL queries using Hibernate mapping files. The same concept is also available with anntations and is called named native queries. You can use @NamedNativeQuery
(@NamedNativeQueries
) in conjunction with @SqlResultSetMapping
(@SqlResultSetMappings
). Like @NamedQuery
, @NamedNativeQuery
and @SqlResultSetMapping
can be defined at class level, but their scope is global to the application. Lets look at a view examples.
Beispiel 18.7, „Named SQL query using @NamedNativeQuery together with @SqlResultSetMapping“ shows how a resultSetMapping
parameter is defined in @NamedNativeQuery
. It represents the name of a defined @SqlResultSetMapping
. The resultset mapping declares the entities retrieved by this native query. Each field of the entity is bound to an SQL alias (or column name). All fields of the entity including the ones of subclasses and the foreign key columns of related entities have to be present in the SQL query. Field definitions are optional provided that they map to the same column name as the one declared on the class property. In the example 2 entities, Night
and Area
, are returned and each property is declared and associated to a column name, actually the column name retrieved by the query.
In Beispiel 18.8, „Implicit result set mapping“ the result set mapping is implicit. We only describe the entity class of the result set mapping. The property / column mappings is done using the entity mapping values. In this case the model property is bound to the model_txt column.
Finally, if the association to a related entity involve a composite primary key, a @FieldResult
element should be used for each foreign key column. The @FieldResult
name is composed of the property name for the relationship, followed by a dot ("."), followed by the name or the field or property of the primary key. This can be seen in Beispiel 18.9, „Using dot notation in @FieldResult for specifying associations “.
Beispiel 18.7. Named SQL query using @NamedNativeQuery
together with @SqlResultSetMapping
@NamedNativeQuery(name="night&area", query="select night.id nid, night.night_duration, "
+ " night.night_date, area.id aid, night.area_id, area.name "
+ "from Night night, Area area where night.area_id = area.id",
resultSetMapping="joinMapping")
@SqlResultSetMapping(name="joinMapping", entities={
@EntityResult(entityClass=Night.class, fields = {
@FieldResult(name="id", column="nid"),
@FieldResult(name="duration", column="night_duration"),
@FieldResult(name="date", column="night_date"),
@FieldResult(name="area", column="area_id"),
discriminatorColumn="disc"
}),
@EntityResult(entityClass=org.hibernate.test.annotations.query.Area.class, fields = {
@FieldResult(name="id", column="aid"),
@FieldResult(name="name", column="name")
})
}
)
Beispiel 18.8. Implicit result set mapping
@Entity
@SqlResultSetMapping(name="implicit",
entities=@EntityResult(entityClass=SpaceShip.class))
@NamedNativeQuery(name="implicitSample",
query="select * from SpaceShip",
resultSetMapping="implicit")
public class SpaceShip {
private String name;
private String model;
private double speed;
@Id
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
@Column(name="model_txt")
public String getModel() {
return model;
}
public void setModel(String model) {
this.model = model;
}
public double getSpeed() {
return speed;
}
public void setSpeed(double speed) {
this.speed = speed;
}
}
Beispiel 18.9. Using dot notation in @FieldResult for specifying associations
@Entity
@SqlResultSetMapping(name="compositekey",
entities=@EntityResult(entityClass=SpaceShip.class,
fields = {
@FieldResult(name="name", column = "name"),
@FieldResult(name="model", column = "model"),
@FieldResult(name="speed", column = "speed"),
@FieldResult(name="captain.firstname", column = "firstn"),
@FieldResult(name="captain.lastname", column = "lastn"),
@FieldResult(name="dimensions.length", column = "length"),
@FieldResult(name="dimensions.width", column = "width")
}),
columns = { @ColumnResult(name = "surface"),
@ColumnResult(name = "volume") } )
@NamedNativeQuery(name="compositekey",
query="select name, model, speed, lname as lastn, fname as firstn, length, width, length * width as surface from SpaceShip",
resultSetMapping="compositekey")
} )
public class SpaceShip {
private String name;
private String model;
private double speed;
private Captain captain;
private Dimensions dimensions;
@Id
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
@ManyToOne(fetch= FetchType.LAZY)
@JoinColumns( {
@JoinColumn(name="fname", referencedColumnName = "firstname"),
@JoinColumn(name="lname", referencedColumnName = "lastname")
} )
public Captain getCaptain() {
return captain;
}
public void setCaptain(Captain captain) {
this.captain = captain;
}
public String getModel() {
return model;
}
public void setModel(String model) {
this.model = model;
}
public double getSpeed() {
return speed;
}
public void setSpeed(double speed) {
this.speed = speed;
}
public Dimensions getDimensions() {
return dimensions;
}
public void setDimensions(Dimensions dimensions) {
this.dimensions = dimensions;
}
}
@Entity
@IdClass(Identity.class)
public class Captain implements Serializable {
private String firstname;
private String lastname;
@Id
public String getFirstname() {
return firstname;
}
public void setFirstname(String firstname) {
this.firstname = firstname;
}
@Id
public String getLastname() {
return lastname;
}
public void setLastname(String lastname) {
this.lastname = lastname;
}
}
If you retrieve a single entity using the default mapping, you can specify the resultClass
attribute instead of resultSetMapping
:
@NamedNativeQuery(name="implicitSample", query="select * from SpaceShip", resultClass=SpaceShip.class)
public class SpaceShip {
In some of your native queries, you'll have to return scalar values, for example when building report queries. You can map them in the @SqlResultsetMapping
through @ColumnResult
. You actually can even mix, entities and scalar returns in the same native query (this is probably not that common though).
Beispiel 18.10. Scalar values via @ColumnResult
@SqlResultSetMapping(name="scalar", columns=@ColumnResult(name="dimension"))
@NamedNativeQuery(name="scalar", query="select length*width as dimension from SpaceShip", resultSetMapping="scalar")
An other query hint specific to native queries has been introduced: org.hibernate.callable
which can be true or false depending on whether the query is a stored procedure or not.
You can explicitly tell Hibernate what column aliases to use with <return-property>
, instead of using the {}
-syntax to let Hibernate inject its own aliases.For example:
<sql-query name="mySqlQuery">
<return alias="person" class="eg.Person">
<return-property name="name" column="myName"/>
<return-property name="age" column="myAge"/>
<return-property name="sex" column="mySex"/>
</return>
SELECT person.NAME AS myName,
person.AGE AS myAge,
person.SEX AS mySex,
FROM PERSON person WHERE person.NAME LIKE :name
</sql-query>
<return-property>
also works with multiple columns. This solves a limitation with the {}
-syntax which cannot allow fine grained control of multi-column properties.
<sql-query name="organizationCurrentEmployments">
<return alias="emp" class="Employment">
<return-property name="salary">
<return-column name="VALUE"/>
<return-column name="CURRENCY"/>
</return-property>
<return-property name="endDate" column="myEndDate"/>
</return>
SELECT EMPLOYEE AS {emp.employee}, EMPLOYER AS {emp.employer},
STARTDATE AS {emp.startDate}, ENDDATE AS {emp.endDate},
REGIONCODE as {emp.regionCode}, EID AS {emp.id}, VALUE, CURRENCY
FROM EMPLOYMENT
WHERE EMPLOYER = :id AND ENDDATE IS NULL
ORDER BY STARTDATE ASC
</sql-query>
In this example <return-property>
was used in combination with the {}
-syntax for injection. This allows users to choose how they want to refer column and properties.
Falls Ihr Mapping über einen Diskriminator verfügt, so müssen Sie <return-discriminator>
verwenden, um die Diskriminator-Spalte festzulegen.
Hibernate3 provides support for queries via stored procedures and functions. Most of the following documentation is equivalent for both. The stored procedure/function must return a resultset as the first out-parameter to be able to work with Hibernate. An example of such a stored function in Oracle 9 and higher is as follows:
CREATE OR REPLACE FUNCTION selectAllEmployments
RETURN SYS_REFCURSOR
AS
st_cursor SYS_REFCURSOR;
BEGIN
OPEN st_cursor FOR
SELECT EMPLOYEE, EMPLOYER,
STARTDATE, ENDDATE,
REGIONCODE, EID, VALUE, CURRENCY
FROM EMPLOYMENT;
RETURN st_cursor;
END;
Um diese Anfrage in Hibernate zu verwenden, müssen Sie sie durch eine benannte Anfrage mappen.
<sql-query name="selectAllEmployees_SP" callable="true">
<return alias="emp" class="Employment">
<return-property name="employee" column="EMPLOYEE"/>
<return-property name="employer" column="EMPLOYER"/>
<return-property name="startDate" column="STARTDATE"/>
<return-property name="endDate" column="ENDDATE"/>
<return-property name="regionCode" column="REGIONCODE"/>
<return-property name="id" column="EID"/>
<return-property name="salary">
<return-column name="VALUE"/>
<return-column name="CURRENCY"/>
</return-property>
</return>
{ ? = call selectAllEmployments() }
</sql-query>
Stored procedures currently only return scalars and entities. <return-join>
and <load-collection>
are not supported.
You cannot use stored procedures with Hibernate unless you follow some procedure/function rules. If they do not follow those rules they are not usable with Hibernate. If you still want to use these procedures you have to execute them via session.connection()
. The rules are different for each database, since database vendors have different stored procedure semantics/syntax.
Stored procedure queries cannot be paged with setFirstResult()/setMaxResults()
.
The recommended call form is standard SQL92: { ? = call functionName(<parameters>) }
or { ? = call procedureName(<parameters>}
. Native call syntax is not supported.
Für Oracle gelten die folgenden Regeln:
A function must return a result set. The first parameter of a procedure must be an OUT
that returns a result set. This is done by using a SYS_REFCURSOR
type in Oracle 9 or 10. In Oracle you need to define a REF CURSOR
type. See Oracle literature for further information.
Für Sybase oder MS SQL Server gelten die folgenden Regeln:
The procedure must return a result set. Note that since these servers can return multiple result sets and update counts, Hibernate will iterate the results and take the first result that is a result set as its return value. Everything else will be discarded.
Falls Sie SET NOCOUNT ON
in Ihrer Prozedur aktivieren können, so würde sie wahrscheinlich effizienter. Dies ist jedoch keine Voraussetzung.
Hibernate3 can use custom SQL for create, update, and delete operations. The SQL can be overridden at the statement level or inidividual column level. This section describes statement overrides. For columns, see Abschnitt 5.6, „Column transformers: read and write expressions“. Beispiel 18.11, „Custom CRUD via annotations“ shows how to define custom SQL operatons using annotations.
Beispiel 18.11. Custom CRUD via annotations
@Entity
@Table(name="CHAOS")
@SQLInsert( sql="INSERT INTO CHAOS(size, name, nickname, id) VALUES(?,upper(?),?,?)")
@SQLUpdate( sql="UPDATE CHAOS SET size = ?, name = upper(?), nickname = ? WHERE id = ?")
@SQLDelete( sql="DELETE CHAOS WHERE id = ?")
@SQLDeleteAll( sql="DELETE CHAOS")
@Loader(namedQuery = "chaos")
@NamedNativeQuery(name="chaos", query="select id, size, name, lower( nickname ) as nickname from CHAOS where id= ?", resultClass = Chaos.class)
public class Chaos {
@Id
private Long id;
private Long size;
private String name;
private String nickname;
@SQLInsert
, @SQLUpdate
, @SQLDelete
, @SQLDeleteAll
respectively override the INSERT, UPDATE, DELETE, and DELETE all statement. The same can be achieved using Hibernate mapping files and the <sql-insert>
, <sql-update>
and <sql-delete>
nodes. This can be seen in Beispiel 18.12, „Custom CRUD XML“.
Beispiel 18.12. Custom CRUD XML
<class name="Person">
<id name="id">
<generator class="increment"/>
</id>
<property name="name" not-null="true"/>
<sql-insert>INSERT INTO PERSON (NAME, ID) VALUES ( UPPER(?), ? )</sql-insert>
<sql-update>UPDATE PERSON SET NAME=UPPER(?) WHERE ID=?</sql-update>
<sql-delete>DELETE FROM PERSON WHERE ID=?</sql-delete>
</class>
If you expect to call a store procedure, be sure to set the callable
attribute to true
. In annotations as well as in xml.
To check that the execution happens correctly, Hibernate allows you to define one of those three strategies:
none: no check is performed: the store procedure is expected to fail upon issues
count: use of rowcount to check that the update is successful
param: like COUNT but using an output parameter rather that the standard mechanism
To define the result check style, use the check
parameter which is again available in annoations as well as in xml.
You can use the exact same set of annotations respectively xml nodes to override the collection related statements -see Beispiel 18.13, „Overriding SQL statements for collections using annotations“.
Beispiel 18.13. Overriding SQL statements for collections using annotations
@OneToMany
@JoinColumn(name="chaos_fk")
@SQLInsert( sql="UPDATE CASIMIR_PARTICULE SET chaos_fk = ? where id = ?")
@SQLDelete( sql="UPDATE CASIMIR_PARTICULE SET chaos_fk = null where id = ?")
private Set<CasimirParticle> particles = new HashSet<CasimirParticle>();
The parameter order is important and is defined by the order Hibernate handles properties. You can see the expected order by enabling debug logging for the org.hibernate.persister.entity
level. With this level enabled Hibernate will print out the static SQL that is used to create, update, delete etc. entities. (To see the expected sequence, remember to not include your custom SQL through annotations or mapping files as that will override the Hibernate generated static sql)
Overriding SQL statements for secondary tables is also possible using @org.hibernate.annotations.Table
and either (or all) attributes sqlInsert
, sqlUpdate
, sqlDelete
:
Beispiel 18.14. Overriding SQL statements for secondary tables
@Entity
@SecondaryTables({
@SecondaryTable(name = "`Cat nbr1`"),
@SecondaryTable(name = "Cat2"})
@org.hibernate.annotations.Tables( {
@Table(appliesTo = "Cat", comment = "My cat table" ),
@Table(appliesTo = "Cat2", foreignKey = @ForeignKey(name="FK_CAT2_CAT"), fetch = FetchMode.SELECT,
sqlInsert=@SQLInsert(sql="insert into Cat2(storyPart2, id) values(upper(?), ?)") )
} )
public class Cat implements Serializable {
The previous example also shows that you can give a comment to a given table (primary or secondary): This comment will be used for DDL generation.
The SQL is directly executed in your database, so you can use any dialect you like. This will, however, reduce the portability of your mapping if you use database specific SQL.
Last but not least, stored procedures are in most cases required to return the number of rows inserted, updated and deleted. Hibernate always registers the first statement parameter as a numeric output parameter for the CUD operations:
Beispiel 18.15. Stored procedures and their return value
CREATE OR REPLACE FUNCTION updatePerson (uid IN NUMBER, uname IN VARCHAR2) RETURN NUMBER IS BEGIN update PERSON set NAME = uname, where ID = uid; return SQL%ROWCOUNT; END updatePerson;
You can also declare your own SQL (or HQL) queries for entity loading. As with inserts, updates, and deletes, this can be done at the individual column level as described in Abschnitt 5.6, „Column transformers: read and write expressions“ or at the statement level. Here is an example of a statement level override:
<sql-query name="person">
<return alias="pers" class="Person" lock-mode="upgrade"/>
SELECT NAME AS {pers.name}, ID AS {pers.id}
FROM PERSON
WHERE ID=?
FOR UPDATE
</sql-query>
This is just a named query declaration, as discussed earlier. You can reference this named query in a class mapping:
<class name="Person">
<id name="id">
<generator class="increment"/>
</id>
<property name="name" not-null="true"/>
<loader query-ref="person"/>
</class>
Das funktioniert sogar mit gespeicherten Prozeduren.
You can even define a query for collection loading:
<set name="employments" inverse="true">
<key/>
<one-to-many class="Employment"/>
<loader query-ref="employments"/>
</set>
<sql-query name="employments">
<load-collection alias="emp" role="Person.employments"/>
SELECT {emp.*}
FROM EMPLOYMENT emp
WHERE EMPLOYER = :id
ORDER BY STARTDATE ASC, EMPLOYEE ASC
</sql-query>
You can also define an entity loader that loads a collection by join fetching:
<sql-query name="person">
<return alias="pers" class="Person"/>
<return-join alias="emp" property="pers.employments"/>
SELECT NAME AS {pers.*}, {emp.*}
FROM PERSON pers
LEFT OUTER JOIN EMPLOYMENT emp
ON pers.ID = emp.PERSON_ID
WHERE ID=?
</sql-query>
The annotation equivalent <loader>
is the @Loader annotation as seen in Beispiel 18.11, „Custom CRUD via annotations“.
Hibernate3 provides an innovative new approach to handling data with "visibility" rules. A Hibernate filter is a global, named, parameterized filter that can be enabled or disabled for a particular Hibernate session.
Hibernate3 has the ability to pre-define filter criteria and attach those filters at both a class level and a collection level. A filter criteria allows you to define a restriction clause similar to the existing "where" attribute available on the class and various collection elements. These filter conditions, however, can be parameterized. The application can then decide at runtime whether certain filters should be enabled and what their parameter values should be. Filters can be used like database views, but they are parameterized inside the application.
Using annotatons filters are defined via @org.hibernate.annotations.FilterDef
or @org.hibernate.annotations.FilterDefs
. A filter definition has a name()
and an array of parameters(). A parameter will allow you to adjust the behavior of the filter at runtime. Each parameter is defined by a @ParamDef
which has a name and a type. You can also define a defaultCondition()
parameter for a given @FilterDef
to set the default condition to use when none are defined in each individual @Filter
. @FilterDef
(s) can be defined at the class or package level.
We now need to define the SQL filter clause applied to either the entity load or the collection load. @Filter
is used and placed either on the entity or the collection element. The connection between @FilterName
and @Filter
is a matching name.
Beispiel 19.1. @FilterDef and @Filter annotations
@Entity
@FilterDef(name="minLength", parameters=@ParamDef( name="minLength", type="integer" ) )
@Filters( {
@Filter(name="betweenLength", condition=":minLength <= length and :maxLength >= length"),
@Filter(name="minLength", condition=":minLength <= length")
} )
public class Forest { ... }
When the collection use an association table as a relational representation, you might want to apply the filter condition to the association table itself or to the target entity table. To apply the constraint on the target entity, use the regular @Filter
annotation. However, if you want to target the association table, use the @FilterJoinTable
annotation.
Beispiel 19.2. Using @FilterJoinTable
for filterting on the association table
@OneToMany
@JoinTable
//filter on the target entity table
@Filter(name="betweenLength", condition=":minLength <= length and :maxLength >= length")
//filter on the association table
@FilterJoinTable(name="security", condition=":userlevel >= requredLevel")
public Set<Forest> getForests() { ... }
Using Hibernate mapping files for defining filters the situtation is very similar. The filters must first be defined and then attached to the appropriate mapping elements. To define a filter, use the <filter-def/>
element within a <hibernate-mapping/>
element:
Beispiel 19.3. Defining a filter definition via <filter-def>
<filter-def name="myFilter">
<filter-param name="myFilterParam" type="string"/>
</filter-def>
This filter can then be attached to a class or collection (or, to both or multiples of each at the same time):
Beispiel 19.4. Attaching a filter to a class or collection using <filter>
<class name="myClass" ...>
...
<filter name="myFilter" condition=":myFilterParam = MY_FILTERED_COLUMN"/>
<set ...>
<filter name="myFilter" condition=":myFilterParam = MY_FILTERED_COLUMN"/>
</set>
</class>
The methods on Session
are: enableFilter(String filterName)
, getEnabledFilter(String filterName)
, and disableFilter(String filterName)
. By default, filters are not enabled for a given session. Filters must be enabled through use of the Session.enableFilter()
method, which returns an instance of the Filter
interface. If you used the simple filter defined above, it would look like this:
session.enableFilter("myFilter").setParameter("myFilterParam", "some-value");
Methods on the org.hibernate.Filter interface do allow the method-chaining common to much of Hibernate.
The following is a full example, using temporal data with an effective record date pattern:
<filter-def name="effectiveDate">
<filter-param name="asOfDate" type="date"/>
</filter-def>
<class name="Employee" ...>
...
<many-to-one name="department" column="dept_id" class="Department"/>
<property name="effectiveStartDate" type="date" column="eff_start_dt"/>
<property name="effectiveEndDate" type="date" column="eff_end_dt"/>
...
<!--
Note that this assumes non-terminal records have an eff_end_dt set to
a max db date for simplicity-sake
-->
<filter name="effectiveDate"
condition=":asOfDate BETWEEN eff_start_dt and eff_end_dt"/>
</class>
<class name="Department" ...>
...
<set name="employees" lazy="true">
<key column="dept_id"/>
<one-to-many class="Employee"/>
<filter name="effectiveDate"
condition=":asOfDate BETWEEN eff_start_dt and eff_end_dt"/>
</set>
</class>
In order to ensure that you are provided with currently effective records, enable the filter on the session prior to retrieving employee data:
Session session = ...;
session.enableFilter("effectiveDate").setParameter("asOfDate", new Date());
List results = session.createQuery("from Employee as e where e.salary > :targetSalary")
.setLong("targetSalary", new Long(1000000))
.list();
Even though a salary constraint was mentioned explicitly on the results in the above HQL, because of the enabled filter, the query will return only currently active employees who have a salary greater than one million dollars.
If you want to use filters with outer joining, either through HQL or load fetching, be careful of the direction of the condition expression. It is safest to set this up for left outer joining. Place the parameter first followed by the column name(s) after the operator.
After being defined, a filter might be attached to multiple entities and/or collections each with its own condition. This can be problematic when the conditions are the same each time. Using <filter-def/>
allows you to definine a default condition, either as an attribute or CDATA:
<filter-def name="myFilter" condition="abc > xyz">...</filter-def>
<filter-def name="myOtherFilter">abc=xyz</filter-def>
This default condition will be used whenever the filter is attached to something without specifying a condition. This means you can give a specific condition as part of the attachment of the filter that overrides the default condition in that particular case.
XML Mapping is an experimental feature in Hibernate 3.0 and is currently under active development.
Hibernate allows you to work with persistent XML data in much the same way you work with persistent POJOs. A parsed XML tree can be thought of as another way of representing the relational data at the object level, instead of POJOs.
Hibernate unterstützt dom4j als API zur Verarbeitung von XML-Bäumen. Sie können Anfragen, die dom4j-Bäume von der Datenbank abrufen, schreiben, wobei alle Modifikationen am Baum automatisch mit der Datenbank synchronisiert werden. Sie können sogar ein XML-Dokument unter Verwendung von dom4j auf die Syntax prüfen und mittels Hibernates Grundvorgängen: persist(), saveOrUpdate(), merge(), delete(), replicate()
("Merging" wird noch nicht unterstützt) in die Datenbank schreiben.
Dieses Feature bietet zahlreiche Anwendungen einschließlich des Imports/Exports von Daten, Externalisierung von Entity-Daten via JMS oder SOAP und XSLT-basiertem Reporting.
A single mapping can be used to simultaneously map properties of a class and nodes of an XML document to the database, or, if there is no class to map, it can be used to map just the XML.
Hier ist ein Beispiel für das gleichzeitige Mappen eines POJO und XML:
<class name="Account"
table="ACCOUNTS"
node="account">
<id name="accountId"
column="ACCOUNT_ID"
node="@id"/>
<many-to-one name="customer"
column="CUSTOMER_ID"
node="customer/@id"
embed-xml="false"/>
<property name="balance"
column="BALANCE"
node="balance"/>
...
</class
>
Dieses ist ein Beispiel ohne POJO-Klasse:
<class entity-name="Account"
table="ACCOUNTS"
node="account">
<id name="id"
column="ACCOUNT_ID"
node="@id"
type="string"/>
<many-to-one name="customerId"
column="CUSTOMER_ID"
node="customer/@id"
embed-xml="false"
entity-name="Customer"/>
<property name="balance"
column="BALANCE"
node="balance"
type="big_decimal"/>
...
</class
>
This mapping allows you to access the data as a dom4j tree, or as a graph of property name/value pairs or java Map
s. The property names are purely logical constructs that can be referred to in HQL queries.
A range of Hibernate mapping elements accept the node
attribute. This lets you specify the name of an XML attribute or element that holds the property or entity data. The format of the node
attribute must be one of the following:
"element-name"
: map to the named XML element
"@attribute-name"
: map to the named XML attribute
"."
: map to the parent element
"element-name/@attribute-name"
: map to the named attribute of the named element
For collections and single valued associations, there is an additional embed-xml
attribute. If embed-xml="true"
, the default, the XML tree for the associated entity (or collection of value type) will be embedded directly in the XML tree for the entity that owns the association. Otherwise, if embed-xml="false"
, then only the referenced identifier value will appear in the XML for single point associations and collections will not appear at all.
Do not leave embed-xml="true"
for too many associations, since XML does not deal well with circularity.
<class name="Customer"
table="CUSTOMER"
node="customer">
<id name="id"
column="CUST_ID"
node="@id"/>
<map name="accounts"
node="."
embed-xml="true">
<key column="CUSTOMER_ID"
not-null="true"/>
<map-key column="SHORT_DESC"
node="@short-desc"
type="string"/>
<one-to-many entity-name="Account"
embed-xml="false"
node="account"/>
</map>
<component name="name"
node="name">
<property name="firstName"
node="first-name"/>
<property name="initial"
node="initial"/>
<property name="lastName"
node="last-name"/>
</component>
...
</class
>
In this case, the collection of account ids is embedded, but not the actual account data. The following HQL query:
from Customer c left join fetch c.accounts where c.lastName like :lastName
would return datasets such as this:
<customer id="123456789">
<account short-desc="Savings"
>987632567</account>
<account short-desc="Credit Card"
>985612323</account>
<name>
<first-name
>Gavin</first-name>
<initial
>A</initial>
<last-name
>King</last-name>
</name>
...
</customer
>
Wenn Sie die Einstellung embed-xml="true"
im <one-to-many>
-Mapping vornehmen, so sehen die Daten eher wie folgt aus:
<customer id="123456789">
<account id="987632567" short-desc="Savings">
<customer id="123456789"/>
<balance
>100.29</balance>
</account>
<account id="985612323" short-desc="Credit Card">
<customer id="123456789"/>
<balance
>-2370.34</balance>
</account>
<name>
<first-name
>Gavin</first-name>
<initial
>A</initial>
<last-name
>King</last-name>
</name>
...
</customer
>
You can also re-read and update XML documents in the application. You can do this by obtaining a dom4j session:
Document doc = ....;
Session session = factory.openSession();
Session dom4jSession = session.getSession(EntityMode.DOM4J);
Transaction tx = session.beginTransaction();
List results = dom4jSession
.createQuery("from Customer c left join fetch c.accounts where c.lastName like :lastName")
.list();
for ( int i=0; i<results.size(); i++ ) {
//add the customer data to the XML document
Element customer = (Element) results.get(i);
doc.add(customer);
}
tx.commit();
session.close();
Session session = factory.openSession();
Session dom4jSession = session.getSession(EntityMode.DOM4J);
Transaction tx = session.beginTransaction();
Element cust = (Element) dom4jSession.get("Customer", customerId);
for ( int i=0; i<results.size(); i++ ) {
Element customer = (Element) results.get(i);
//change the customer name in the XML and database
Element name = customer.element("name");
name.element("first-name").setText(firstName);
name.element("initial").setText(initial);
name.element("last-name").setText(lastName);
}
tx.commit();
session.close();
When implementing XML-based data import/export, it is useful to combine this feature with Hibernate's replicate()
operation.
Hibernate uses a fetching strategy to retrieve associated objects if the application needs to navigate the association. Fetch strategies can be declared in the O/R mapping metadata, or over-ridden by a particular HQL or Criteria
query.
Hibernate3 definiert die folgenden Abrufstrategien:
Join fetching: Hibernate retrieves the associated instance or collection in the same SELECT
, using an OUTER JOIN
.
Select fetching: a second SELECT
is used to retrieve the associated entity or collection. Unless you explicitly disable lazy fetching by specifying lazy="false"
, this second select will only be executed when you access the association.
Subselect fetching: a second SELECT
is used to retrieve the associated collections for all entities retrieved in a previous query or fetch. Unless you explicitly disable lazy fetching by specifying lazy="false"
, this second select will only be executed when you access the association.
Batch fetching: an optimization strategy for select fetching. Hibernate retrieves a batch of entity instances or collections in a single SELECT
by specifying a list of primary or foreign keys.
Hibernate unterscheidet außerdem zwischen:
Immediate fetching: an association, collection or attribute is fetched immediately when the owner is loaded.
Lazy collection fetching: a collection is fetched when the application invokes an operation upon that collection. This is the default for collections.
"Extra-lazy" collection fetching: individual elements of the collection are accessed from the database as needed. Hibernate tries not to fetch the whole collection into memory unless absolutely needed. It is suitable for large collections.
Proxy fetching: a single-valued association is fetched when a method other than the identifier getter is invoked upon the associated object.
"No-proxy" fetching: a single-valued association is fetched when the instance variable is accessed. Compared to proxy fetching, this approach is less lazy; the association is fetched even when only the identifier is accessed. It is also more transparent, since no proxy is visible to the application. This approach requires buildtime bytecode instrumentation and is rarely necessary.
Lazy attribute fetching: an attribute or single valued association is fetched when the instance variable is accessed. This approach requires buildtime bytecode instrumentation and is rarely necessary.
We have two orthogonal notions here: when is the association fetched and how is it fetched. It is important that you do not confuse them. We use fetch
to tune performance. We can use lazy
to define a contract for what data is always available in any detached instance of a particular class.
By default, Hibernate3 uses lazy select fetching for collections and lazy proxy fetching for single-valued associations. These defaults make sense for most associations in the majority of applications.
If you set hibernate.default_batch_fetch_size
, Hibernate will use the batch fetch optimization for lazy fetching. This optimization can also be enabled at a more granular level.
Please be aware that access to a lazy association outside of the context of an open Hibernate session will result in an exception. For example:
s = sessions.openSession();
Transaction tx = s.beginTransaction();
User u = (User) s.createQuery("from User u where u.name=:userName")
.setString("userName", userName).uniqueResult();
Map permissions = u.getPermissions();
tx.commit();
s.close();
Integer accessLevel = (Integer) permissions.get("accounts"); // Error!
Since the permissions collection was not initialized when the Session
was closed, the collection will not be able to load its state. Hibernate does not support lazy initialization for detached objects. This can be fixed by moving the code that reads from the collection to just before the transaction is committed.
Alternatively, you can use a non-lazy collection or association, by specifying lazy="false"
for the association mapping. However, it is intended that lazy initialization be used for almost all collections and associations. If you define too many non-lazy associations in your object model, Hibernate will fetch the entire database into memory in every transaction.
On the other hand, you can use join fetching, which is non-lazy by nature, instead of select fetching in a particular transaction. We will now explain how to customize the fetching strategy. In Hibernate3, the mechanisms for choosing a fetch strategy are identical for single-valued associations and collections.
Der Auswahlabruf - "Select Fetching" (Standard) ist extrem anfällig für N+1 Auswahlprobleme, weswegen sich die Aktivierung von "Join-Fetching" im Mapping-Dokument empfiehlt:
<set name="permissions"
fetch="join">
<key column="userId"/>
<one-to-many class="Permission"/>
</set
<many-to-one name="mother" class="Cat" fetch="join"/>
Die im Mapping-Dokument definierte fetch
-Strategie hat Auswirkungen auf:
Abruf mittels get()
oder load()
einem impliziten Abruf, der beim Navigieren der Assoziation erfolgt
Criteria
-Anfragen
HQL-Anfragen, wenn subselect
-Abruf verwendet wird
Irrespective of the fetching strategy you use, the defined non-lazy graph is guaranteed to be loaded into memory. This might, however, result in several immediate selects being used to execute a particular HQL query.
Usually, the mapping document is not used to customize fetching. Instead, we keep the default behavior, and override it for a particular transaction, using left join fetch
in HQL. This tells Hibernate to fetch the association eagerly in the first select, using an outer join. In the Criteria
query API, you would use setFetchMode(FetchMode.JOIN)
.
If you want to change the fetching strategy used by get()
or load()
, you can use a Criteria
query. For example:
User user = (User) session.createCriteria(User.class)
.setFetchMode("permissions", FetchMode.JOIN)
.add( Restrictions.idEq(userId) )
.uniqueResult();
This is Hibernate's equivalent of what some ORM solutions call a "fetch plan".
A completely different approach to problems with N+1 selects is to use the second-level cache.
Lazy fetching for collections is implemented using Hibernate's own implementation of persistent collections. However, a different mechanism is needed for lazy behavior in single-ended associations. The target entity of the association must be proxied. Hibernate implements lazy initializing proxies for persistent objects using runtime bytecode enhancement which is accessed via the CGLIB library.
At startup, Hibernate3 generates proxies by default for all persistent classes and uses them to enable lazy fetching of many-to-one
and one-to-one
associations.
The mapping file may declare an interface to use as the proxy interface for that class, with the proxy
attribute. By default, Hibernate uses a subclass of the class. The proxied class must implement a default constructor with at least package visibility. This constructor is recommended for all persistent classes.
There are potential problems to note when extending this approach to polymorphic classes.For example:
<class name="Cat" proxy="Cat">
......
<subclass name="DomesticCat">
.....
</subclass>
</class>
Zunächst einmal werden Instanzen von Cat
hinsichtlich ihres Datentyps niemals in DomesticCat
konvertierbar sein, selbst wenn die zu Grunde liegende Instanz eine Instanz von DomesticCat
ist:
Cat cat = (Cat) session.load(Cat.class, id); // instantiate a proxy (does not hit the db)
if ( cat.isDomesticCat() ) { // hit the db to initialize the proxy
DomesticCat dc = (DomesticCat) cat; // Error!
....
}
Secondly, it is possible to break proxy ==
:
Cat cat = (Cat) session.load(Cat.class, id); // instantiate a Cat proxy
DomesticCat dc =
(DomesticCat) session.load(DomesticCat.class, id); // acquire new DomesticCat proxy!
System.out.println(cat==dc); // false
Allerdings ist die Situation nicht so schlimm wie sie aussieht. Obwohl wir jetzt zwei Verweise auf verschiedene Proxy-Objekte besitzen, so bleibt die zu Grunde liegende Instanz nach wie vor dasselbe Objekt:
cat.setWeight(11.0); // hit the db to initialize the proxy
System.out.println( dc.getWeight() ); // 11.0
Third, you cannot use a CGLIB proxy for a final
class or a class with any final
methods.
Finally, if your persistent object acquires any resources upon instantiation (e.g. in initializers or default constructor), then those resources will also be acquired by the proxy. The proxy class is an actual subclass of the persistent class.
These problems are all due to fundamental limitations in Java's single inheritance model. To avoid these problems your persistent classes must each implement an interface that declares its business methods. You should specify these interfaces in the mapping file where CatImpl
implements the interface Cat
and DomesticCatImpl
implements the interface DomesticCat
. For example:
<class name="CatImpl" proxy="Cat">
......
<subclass name="DomesticCatImpl" proxy="DomesticCat">
.....
</subclass>
</class>
Then proxies for instances of Cat
and DomesticCat
can be returned by load()
or iterate()
.
Cat cat = (Cat) session.load(CatImpl.class, catid);
Iterator iter = session.createQuery("from CatImpl as cat where cat.name='fritz'").iterate();
Cat fritz = (Cat) iter.next();
list()
does not usually return proxies.
Beziehungen werden ebenfalls "lazy" initialisiert. Das bedeutet, dass Sie sämtliche Properties als Typ Cat
, nicht CatImpl
deklarieren müssen.
Certain operations do not require proxy initialization:
equals()
: if the persistent class does not override equals()
hashCode()
: if the persistent class does not override hashCode()
Die "Getter"-Methode des Bezeichners
Hibernate erkennt persistente Klassen, die equals()
oder hashCode()
außer Kraft setzen.
By choosing lazy="no-proxy"
instead of the default lazy="proxy"
, you can avoid problems associated with typecasting. However, buildtime bytecode instrumentation is required, and all operations will result in immediate proxy initialization.
A LazyInitializationException
will be thrown by Hibernate if an uninitialized collection or proxy is accessed outside of the scope of the Session
, i.e., when the entity owning the collection or having the reference to the proxy is in the detached state.
Sometimes a proxy or collection needs to be initialized before closing the Session
. You can force initialization by calling cat.getSex()
or cat.getKittens().size()
, for example. However, this can be confusing to readers of the code and it is not convenient for generic code.
The static methods Hibernate.initialize()
and Hibernate.isInitialized()
, provide the application with a convenient way of working with lazily initialized collections or proxies. Hibernate.initialize(cat)
will force the initialization of a proxy, cat
, as long as its Session
is still open. Hibernate.initialize( cat.getKittens() )
has a similar effect for the collection of kittens.
Another option is to keep the Session
open until all required collections and proxies have been loaded. In some application architectures, particularly where the code that accesses data using Hibernate, and the code that uses it are in different application layers or different physical processes, it can be a problem to ensure that the Session
is open when a collection is initialized. There are two basic ways to deal with this issue:
In a web-based application, a servlet filter can be used to close the Session
only at the end of a user request, once the rendering of the view is complete (the Open Session in View pattern). Of course, this places heavy demands on the correctness of the exception handling of your application infrastructure. It is vitally important that the Session
is closed and the transaction ended before returning to the user, even when an exception occurs during rendering of the view. See the Hibernate Wiki for examples of this "Open Session in View" pattern.
In an application with a separate business tier, the business logic must "prepare" all collections that the web tier needs before returning. This means that the business tier should load all the data and return all the data already initialized to the presentation/web tier that is required for a particular use case. Usually, the application calls Hibernate.initialize()
for each collection that will be needed in the web tier (this call must occur before the session is closed) or retrieves the collection eagerly using a Hibernate query with a FETCH
clause or a FetchMode.JOIN
in Criteria
. This is usually easier if you adopt the Command pattern instead of a Session Facade.
You can also attach a previously loaded object to a new Session
with merge()
or lock()
before accessing uninitialized collections or other proxies. Hibernate does not, and certainly should not, do this automatically since it would introduce impromptu transaction semantics.
Sometimes you do not want to initialize a large collection, but still need some information about it, like its size, for example, or a subset of the data.
Sie können einen Collection-Filter verwenden, um die Größe der Collection zu ermitteln ohne diese zu initialisieren:
( (Integer) s.createFilter( collection, "select count(*)" ).list().get(0) ).intValue()
Die createFilter()
-Methode wird außerdem benutzt, um effizient Untersätze einer Collection abzurufen, ohne die gesamte Collection zu initialisieren:
s.createFilter( lazyCollection, "").setFirstResult(0).setMaxResults(10).list();
Using batch fetching, Hibernate can load several uninitialized proxies if one proxy is accessed. Batch fetching is an optimization of the lazy select fetching strategy. There are two ways you can configure batch fetching: on the class level and the collection level.
Batch fetching for classes/entities is easier to understand. Consider the following example: at runtime you have 25 Cat
instances loaded in a Session
, and each Cat
has a reference to its owner
, a Person
. The Person
class is mapped with a proxy, lazy="true"
. If you now iterate through all cats and call getOwner()
on each, Hibernate will, by default, execute 25 SELECT
statements to retrieve the proxied owners. You can tune this behavior by specifying a batch-size
in the mapping of Person
:
<class name="Person" batch-size="10">...</class>
Hibernate will now execute only three queries: the pattern is 10, 10, 5.
You can also enable batch fetching of collections. For example, if each Person
has a lazy collection of Cat
s, and 10 persons are currently loaded in the Session
, iterating through all persons will generate 10 SELECT
s, one for every call to getCats()
. If you enable batch fetching for the cats
collection in the mapping of Person
, Hibernate can pre-fetch collections:
<class name="Person">
<set name="cats" batch-size="3">
...
</set>
</class>
With a batch-size
of 3, Hibernate will load 3, 3, 3, 1 collections in four SELECT
s. Again, the value of the attribute depends on the expected number of uninitialized collections in a particular Session
.
Batch fetching of collections is particularly useful if you have a nested tree of items, i.e. the typical bill-of-materials pattern. However, a nested set or a materialized path might be a better option for read-mostly trees.
If one lazy collection or single-valued proxy has to be fetched, Hibernate will load all of them, re-running the original query in a subselect. This works in the same way as batch-fetching but without the piecemeal loading.
Another way to affect the fetching strategy for loading associated objects is through something called a fetch profile, which is a named configuration associated with the org.hibernate.SessionFactory
but enabled, by name, on the org.hibernate.Session
. Once enabled on a org.hibernate.Session
, the fetch profile will be in affect for that org.hibernate.Session
until it is explicitly disabled.
So what does that mean? Well lets explain that by way of an example which show the different available approaches to configure a fetch profile:
Beispiel 21.1. Specifying a fetch profile using @FetchProfile
@Entity
@FetchProfile(name = "customer-with-orders", fetchOverrides = {
@FetchProfile.FetchOverride(entity = Customer.class, association = "orders", mode = FetchMode.JOIN)
})
public class Customer {
@Id
@GeneratedValue
private long id;
private String name;
private long customerNumber;
@OneToMany
private Set<Order> orders;
// standard getter/setter
...
}
Beispiel 21.2. Specifying a fetch profile using <fetch-profile>
outside <class>
node
<hibernate-mapping>
<class name="Customer">
...
<set name="orders" inverse="true">
<key column="cust_id"/>
<one-to-many class="Order"/>
</set>
</class>
<class name="Order">
...
</class>
<fetch-profile name="customer-with-orders">
<fetch entity="Customer" association="orders" style="join"/>
</fetch-profile>
</hibernate-mapping>
Beispiel 21.3. Specifying a fetch profile using <fetch-profile>
inside <class>
node
<hibernate-mapping>
<class name="Customer">
...
<set name="orders" inverse="true">
<key column="cust_id"/>
<one-to-many class="Order"/>
</set>
<fetch-profile name="customer-with-orders">
<fetch association="orders" style="join"/>
</fetch-profile>
</class>
<class name="Order">
...
</class>
</hibernate-mapping>
Now normally when you get a reference to a particular customer, that customer's set of orders will be lazy meaning we will not yet have loaded those orders from the database. Normally this is a good thing. Now lets say that you have a certain use case where it is more efficient to load the customer and their orders together. One way certainly is to use "dynamic fetching" strategies via an HQL or criteria queries. But another option is to use a fetch profile to achieve that. The following code will load both the customer andtheir orders:
Beispiel 21.4. Activating a fetch profile for a given Session
Session session = ...;
session.enableFetchProfile( "customer-with-orders" ); // name matches from mapping
Customer customer = (Customer) session.get( Customer.class, customerId );
@FetchProfile
definitions are global and it does not matter on which class you place them. You can place the @FetchProfile
annotation either onto a class or package (package-info.java). In order to define multiple fetch profiles for the same class or package @FetchProfiles
can be used.
Currently only join style fetch profiles are supported, but they plan is to support additional styles. See HHH-3414 for details.
Hibernate3 supports the lazy fetching of individual properties. This optimization technique is also known as fetch groups. Please note that this is mostly a marketing feature; optimizing row reads is much more important than optimization of column reads. However, only loading some properties of a class could be useful in extreme cases. For example, when legacy tables have hundreds of columns and the data model cannot be improved.
Um das "lazy" Laden von Properties zu aktivieren, setzen Sie das lazy
-Attribut auf Ihr bestimmtes Property-Mapping:
<class name="Document">
<id name="id">
<generator class="native"/>
</id>
<property name="name" not-null="true" length="50"/>
<property name="summary" not-null="true" length="200" lazy="true"/>
<property name="text" not-null="true" length="2000" lazy="true"/>
</class>
Lazy property loading requires buildtime bytecode instrumentation. If your persistent classes are not enhanced, Hibernate will ignore lazy property settings and return to immediate fetching.
Für die Bytecode-Instrumentierung verwenden Sie folgende Ant-Funktion:
<target name="instrument" depends="compile">
<taskdef name="instrument" classname="org.hibernate.tool.instrument.InstrumentTask">
<classpath path="${jar.path}"/>
<classpath path="${classes.dir}"/>
<classpath refid="lib.class.path"/>
</taskdef>
<instrument verbose="true">
<fileset dir="${testclasses.dir}/org/hibernate/auction/model">
<include name="*.class"/>
</fileset>
</instrument>
</target>
A different way of avoiding unnecessary column reads, at least for read-only transactions, is to use the projection features of HQL or Criteria queries. This avoids the need for buildtime bytecode processing and is certainly a preferred solution.
You can force the usual eager fetching of properties using fetch all properties
in HQL.
A Hibernate Session
is a transaction-level cache of persistent data. It is possible to configure a cluster or JVM-level (SessionFactory
-level) cache on a class-by-class and collection-by-collection basis. You can even plug in a clustered cache. Be aware that caches are not aware of changes made to the persistent store by another application. They can, however, be configured to regularly expire cached data.
You have the option to tell Hibernate which caching implementation to use by specifying the name of a class that implements org.hibernate.cache.CacheProvider
using the property hibernate.cache.provider_class
. Hibernate is bundled with a number of built-in integrations with the open-source cache providers that are listed in Tabelle 21.1, „Cache-Provider“. You can also implement your own and plug it in as outlined above. Note that versions prior to Hibernate 3.2 use EhCache as the default cache provider.
Tabelle 21.1. Cache-Provider
Cache | Provider-Klasse | Typ | Cluster-sicher | Anfragen-Cache unterstützt |
---|---|---|---|---|
Hash-Tabelle (nicht für den Produktionsgebrauch vorgesehen) | org.hibernate.cache.HashtableCacheProvider | Speicher | Ja | |
EHCache | org.hibernate.cache.EhCacheProvider | memory, disk, transactional, clustered | Ja | Ja |
OSCache | org.hibernate.cache.OSCacheProvider | Speicher, Disk | Ja | |
SwarmCache | org.hibernate.cache.SwarmCacheProvider | geclustert (ip multicast) | ja (geclusterte Außerkraftsetzung) | |
JBoss Cache 1.x | org.hibernate.cache.TreeCacheProvider | geclustert (ip multicast), transaktional | ja (Replikation) | ja (clock sync req.) |
JBoss Cache 2 | org.hibernate.cache.jbc.JBossCacheRegionFactory | geclustert (ip multicast), transaktional | yes (replication or invalidation) | ja (clock sync req.) |
As we have done in previous chapters we are looking at the two different possibiltites to configure caching. First configuration via annotations and then via Hibernate mapping files.
By default, entities are not part of the second level cache and we recommend you to stick to this setting. However, you can override this by setting the shared-cache-mode
element in your persistence.xml
file or by using the javax.persistence.sharedCache.mode
property in your configuration. The following values are possible:
ENABLE_SELECTIVE
(Default and recommended value): entities are not cached unless explicitly marked as cacheable.
DISABLE_SELECTIVE
: entities are cached unless explicitly marked as not cacheable.
ALL
: all entities are always cached even if marked as non cacheable.
NONE
: no entity are cached even if marked as cacheable. This option can make sense to disable second-level cache altogether.
The cache concurrency strategy used by default can be set globaly via the hibernate.cache.default_cache_concurrency_strategy
configuration property. The values for this property are:
read-only
read-write
nonstrict-read-write
transactional
It is recommended to define the cache concurrency strategy per entity rather than using a global one. Use the @org.hibernate.annotations.Cache
annotation for that.
Beispiel 21.5. Definition of cache concurrency strategy via @Cache
@Entity
@Cacheable
@Cache(usage = CacheConcurrencyStrategy.NONSTRICT_READ_WRITE)
public class Forest { ... }
Hibernate also let's you cache the content of a collection or the identifiers if the collection contains other entities. Use the @Cache
annotation on the collection property.
Beispiel 21.6. Caching collections using annotations
@OneToMany(cascade=CascadeType.ALL, fetch=FetchType.EAGER)
@JoinColumn(name="CUST_ID")
@Cache(usage = CacheConcurrencyStrategy.NONSTRICT_READ_WRITE)
public SortedSet<Ticket> getTickets() {
return tickets;
}
Beispiel 21.7, „@Cache annotation with attributes“shows the @org.hibernate.annotations.Cache
annotations with its attributes. It allows you to define the caching strategy and region of a given second level cache.
Beispiel 21.7. @Cache
annotation with attributes
@Cache( CacheConcurrencyStrategy usage(); String reg
ion() default ""; String inc
lude() default "all"; )
usage: the given cache concurrency strategy (NONE, READ_ONLY, NONSTRICT_READ_WRITE, READ_WRITE, TRANSACTIONAL) | |
region (optional): the cache region (default to the fqcn of the class or the fq role name of the collection) | |
|
Let's now take a look at Hibernate mapping files. There the <cache>
element of a class or collection mapping is used to configure the second level cache. Looking at Beispiel 21.8, „The Hibernate <cache> mapping element“ the parallels to anotations is obvious.
Beispiel 21.8. The Hibernate <cache>
mapping element
<cache usage="transactional|read-write|nonstrict-read-write|read-only" region="Re
gionName" include="a
ll|non-lazy" />
| |
| |
|
Alternatively to <cache>
, you can use <class-cache>
and <collection-cache>
elements in hibernate.cfg.xml
.
Let's now have a closer look at the different usage strategies
If your application needs to read, but not modify, instances of a persistent class, a read-only
cache can be used. This is the simplest and optimal performing strategy. It is even safe for use in a cluster.
If the application needs to update data, a read-write
cache might be appropriate. This cache strategy should never be used if serializable transaction isolation level is required. If the cache is used in a JTA environment, you must specify the property hibernate.transaction.manager_lookup_class
and naming a strategy for obtaining the JTA TransactionManager
. In other environments, you should ensure that the transaction is completed when Session.close()
or Session.disconnect()
is called. If you want to use this strategy in a cluster, you should ensure that the underlying cache implementation supports locking. The built-in cache providers do not support locking.
If the application only occasionally needs to update data (i.e. if it is extremely unlikely that two transactions would try to update the same item simultaneously), and strict transaction isolation is not required, a nonstrict-read-write
cache might be appropriate. If the cache is used in a JTA environment, you must specify hibernate.transaction.manager_lookup_class
. In other environments, you should ensure that the transaction is completed when Session.close()
or Session.disconnect()
is called.
The transactional
cache strategy provides support for fully transactional cache providers such as JBoss TreeCache. Such a cache can only be used in a JTA environment and you must specify hibernate.transaction.manager_lookup_class
.
None of the cache providers support all of the cache concurrency strategies.
The following table shows which providers are compatible with which concurrency strategies.
Tabelle 21.2. Cache-Nebenläufigkeitsstrategie-Support
Cache | read-only | nonstrict-read-write | read-write | transactional |
---|---|---|---|---|
Hash-Tabelle (nicht für den Produktionsgebrauch vorgesehen) | Ja | Ja | Ja | |
EHCache | Ja | Ja | Ja | Ja |
OSCache | Ja | Ja | Ja | |
SwarmCache | Ja | Ja | ||
JBoss Cache 1.x | Ja | Ja | ||
JBoss Cache 2 | Ja | Ja |
Whenever you pass an object to save()
, update()
or saveOrUpdate()
, and whenever you retrieve an object using load()
, get()
, list()
, iterate()
or scroll()
, that object is added to the internal cache of the Session
.
When flush()
is subsequently called, the state of that object will be synchronized with the database. If you do not want this synchronization to occur, or if you are processing a huge number of objects and need to manage memory efficiently, the evict()
method can be used to remove the object and its collections from the first-level cache.
Beispiel 21.9. Explcitly evicting a cached instance from the first level cache using Session.evict()
ScrollableResult cats = sess.createQuery("from Cat as cat").scroll(); //a huge result set
while ( cats.next() ) {
Cat cat = (Cat) cats.get(0);
doSomethingWithACat(cat);
sess.evict(cat);
}
Die Session
bietet außerdem eine contains()
-Methode um zu bestimmen, ob eine Instanz zu dem Session-Cache gehört.
To evict all objects from the session cache, call Session.clear()
Für das Cache der zweiten Ebene gibt es in der SessionFactory
definierte Methoden, um den gecachten Status einer Instanz, gesamten Klasse, Collection-Instanz oder der gesamten Collection-Rolle zu räumen.
Beispiel 21.10. Second-level cache eviction via SessionFactoty.evict()
and SessionFacyory.evictCollection()
sessionFactory.evict(Cat.class, catId); //evict a particular Cat
sessionFactory.evict(Cat.class); //evict all Cats
sessionFactory.evictCollection("Cat.kittens", catId); //evict a particular collection of kittens
sessionFactory.evictCollection("Cat.kittens"); //evict all kitten collections
The CacheMode
controls how a particular session interacts with the second-level cache:
CacheMode.NORMAL
: will read items from and write items to the second-level cache
CacheMode.GET
: will read items from the second-level cache. Do not write to the second-level cache except when updating data
CacheMode.PUT
: will write items to the second-level cache. Do not read from the second-level cache
CacheMode.REFRESH
: will write items to the second-level cache. Do not read from the second-level cache. Bypass the effect of hibernate.cache.use_minimal_puts
forcing a refresh of the second-level cache for all items read from the database
Um die Inhalte eines Cache der zweiten Ebene oder eines Cache-Bereichs zu durchsuchen, verwenden Sie die Statistics
-API:
Beispiel 21.11. Browsing the second-level cache entries via the Statistics
API
Map cacheEntries = sessionFactory.getStatistics()
.getSecondLevelCacheStatistics(regionName)
.getEntries();
You will need to enable statistics and, optionally, force Hibernate to keep the cache entries in a more readable format:
Beispiel 21.12. Enabling Hibernate statistics
hibernate.generate_statistics true hibernate.cache.use_structured_entries true
Query result sets can also be cached. This is only useful for queries that are run frequently with the same parameters.
Caching of query results introduces some overhead in terms of your applications normal transactional processing. For example, if you cache results of a query against Person Hibernate will need to keep track of when those results should be invalidated because changes have been committed against Person. That, coupled with the fact that most applications simply gain no benefit from caching query results, leads Hibernate to disable caching of query results by default. To use query caching, you will first need to enable the query cache:
hibernate.cache.use_query_cache true
This setting creates two new cache regions:
org.hibernate.cache.StandardQueryCache
, holding the cached query results
org.hibernate.cache.UpdateTimestampsCache
, holding timestamps of the most recent updates to queryable tables. These are used to validate the results as they are served from the query cache.
If you configure your underlying cache implementation to use expiry or timeouts is very important that the cache timeout of the underlying cache region for the UpdateTimestampsCache be set to a higher value than the timeouts of any of the query caches. In fact, we recommend that the the UpdateTimestampsCache region not be configured for expiry at all. Note, in particular, that an LRU cache expiry policy is never appropriate.
As mentioned above, most queries do not benefit from caching or their results. So by default, individual queries are not cached even after enabling query caching. To enable results caching for a particular query, call org.hibernate.Query.setCacheable(true)
. This call allows the query to look for existing cache results or add its results to the cache when it is executed.
The query cache does not cache the state of the actual entities in the cache; it caches only identifier values and results of value type. For this reaso, the query cache should always be used in conjunction with the second-level cache for those entities expected to be cached as part of a query result cache (just as with collection caching).
If you require fine-grained control over query cache expiration policies, you can specify a named cache region for a particular query by calling Query.setCacheRegion()
.
List blogs = sess.createQuery("from Blog blog where blog.blogger = :blogger")
.setEntity("blogger", blogger)
.setMaxResults(15)
.setCacheable(true)
.setCacheRegion("frontpages")
.list();
If you want to force the query cache to refresh one of its regions (disregard any cached results it finds there) you can use org.hibernate.Query.setCacheMode(CacheMode.REFRESH)
. In conjunction with the region you have defined for the given query, Hibernate will selectively force the results cached in that particular region to be refreshed. This is particularly useful in cases where underlying data may have been updated via a separate process and is a far more efficient alternative to bulk eviction of the region via org.hibernate.SessionFactory.evictQueries()
.
In the previous sections we have covered collections and their applications. In this section we explore some more issues in relation to collections at runtime.
Hibernate unterscheidet drei Grundtypen von Collections:
Collections von Werten
one-to-many associations
many-to-many associations
Diese Klassifizierung unterscheidet die verschiedenen Tabellen- und Fremdschlüsselbeziehungen, aber sagt so gut wie nichts über das relationale Modell aus. Um die relationale Struktur und Performance-Eigenschaften vollständig zu verstehen, müssen wir die Struktur des von Hibernate zur Aktualisierung und Löschung von Reihen der Collection verwendeten Primärschlüssels berücksichtigen. Das legt die folgende Klassifizierung nahe:
indizierte Collections
Sets
Bags
All indexed collections (maps, lists, and arrays) have a primary key consisting of the <key>
and <index>
columns. In this case, collection updates are extremely efficient. The primary key can be efficiently indexed and a particular row can be efficiently located when Hibernate tries to update or delete it.
Sets have a primary key consisting of <key>
and element columns. This can be less efficient for some types of collection element, particularly composite elements or large text or binary fields, as the database may not be able to index a complex primary key as efficiently. However, for one-to-many or many-to-many associations, particularly in the case of synthetic identifiers, it is likely to be just as efficient. If you want SchemaExport
to actually create the primary key of a <set>
, you must declare all columns as not-null="true"
.
<idbag>
mappings define a surrogate key, so they are efficient to update. In fact, they are the best case.
Bags are the worst case since they permit duplicate element values and, as they have no index column, no primary key can be defined. Hibernate has no way of distinguishing between duplicate rows. Hibernate resolves this problem by completely removing in a single DELETE
and recreating the collection whenever it changes. This can be inefficient.
For a one-to-many association, the "primary key" may not be the physical primary key of the database table. Even in this case, the above classification is still useful. It reflects how Hibernate "locates" individual rows of the collection.
From the discussion above, it should be clear that indexed collections and sets allow the most efficient operation in terms of adding, removing and updating elements.
There is, arguably, one more advantage that indexed collections have over sets for many-to-many associations or collections of values. Because of the structure of a Set
, Hibernate does not UPDATE
a row when an element is "changed". Changes to a Set
always work via INSERT
and DELETE
of individual rows. Once again, this consideration does not apply to one-to-many associations.
After observing that arrays cannot be lazy, you can conclude that lists, maps and idbags are the most performant (non-inverse) collection types, with sets not far behind. You can expect sets to be the most common kind of collection in Hibernate applications. This is because the "set" semantics are most natural in the relational model.
However, in well-designed Hibernate domain models, most collections are in fact one-to-many associations with inverse="true"
. For these associations, the update is handled by the many-to-one end of the association, and so considerations of collection update performance simply do not apply.
There is a particular case, however, in which bags, and also lists, are much more performant than sets. For a collection with inverse="true"
, the standard bidirectional one-to-many relationship idiom, for example, we can add elements to a bag or list without needing to initialize (fetch) the bag elements. This is because, unlike a set
, Collection.add()
or Collection.addAll()
must always return true for a bag or List
. This can make the following common code much faster:
Parent p = (Parent) sess.load(Parent.class, id);
Child c = new Child();
c.setParent(p);
p.getChildren().add(c); //no need to fetch the collection!
sess.flush();
Deleting collection elements one by one can sometimes be extremely inefficient. Hibernate knows not to do that in the case of an newly-empty collection (if you called list.clear()
, for example). In this case, Hibernate will issue a single DELETE
.
Suppose you added a single element to a collection of size twenty and then remove two elements. Hibernate will issue one INSERT
statement and two DELETE
statements, unless the collection is a bag. This is certainly desirable.
Nehmen wir jedoch an wir entfernen 18 Elemente, ließen also zwei übrig und fügten dann drei weitere hinzu. In diesem Fall gibt es zwei mögliche Vorgehensweisen:
die 18 Reihen eine nach der anderen löschen und anschließend drei Reihen einfügen
remove the whole collection in one SQL DELETE
and insert all five current elements one by one
Hibernate cannot know that the second option is probably quicker. It would probably be undesirable for Hibernate to be that intuitive as such behavior might confuse database triggers, etc.
Fortunately, you can force this behavior (i.e. the second strategy) at any time by discarding (i.e. dereferencing) the original collection and returning a newly instantiated collection with all the current elements.
One-shot-delete does not apply to collections mapped inverse="true"
.
Optimierungen machen ohne Überwachung und Zugriff auf Performanzzahlen wenig Sinn. Hibernate liefert eine ganze Bandbreite von Zahlen zu seinen internen Vorgängen. Statistiken sind in Hibernate über die SessionFactory
verfügbar.
Sie können auf zwei Arten auf SessionFactory
-Metriken zugreifen. Die erste Möglichkeit ist es, sessionFactory.getStatistics()
aufzurufen und die Statistics
selbst zu lesen und anzuzeigen.
Hibernate can also use JMX to publish metrics if you enable the StatisticsService
MBean. You can enable a single MBean for all your SessionFactory
or one per factory. See the following code for minimalistic configuration examples:
// MBean service registration for a specific SessionFactory
Hashtable tb = new Hashtable();
tb.put("type", "statistics");
tb.put("sessionFactory", "myFinancialApp");
ObjectName on = new ObjectName("hibernate", tb); // MBean object name
StatisticsService stats = new StatisticsService(); // MBean implementation
stats.setSessionFactory(sessionFactory); // Bind the stats to a SessionFactory
server.registerMBean(stats, on); // Register the Mbean on the server
// MBean service registration for all SessionFactory's
Hashtable tb = new Hashtable();
tb.put("type", "statistics");
tb.put("sessionFactory", "all");
ObjectName on = new ObjectName("hibernate", tb); // MBean object name
StatisticsService stats = new StatisticsService(); // MBean implementation
server.registerMBean(stats, on); // Register the MBean on the server
You can activate and deactivate the monitoring for a SessionFactory
:
zum Konfigurationszeitpunkt setzen Sie hibernate.generate_statistics
auf false
zur Runtime: sf.getStatistics().setStatisticsEnabled(true)
oder hibernateStatsBean.setStatisticsEnabled(true)
Statistics can be reset programmatically using the clear()
method. A summary can be sent to a logger (info level) using the logSummary()
method.
Hibernate provides a number of metrics, from basic information to more specialized information that is only relevant in certain scenarios. All available counters are described in the Statistics
interface API, in three categories:
Mit dem allgemeinen Session
-Gebrauch zusammenhängende Metriken wie etwa die Anzahl geöffneter Sessions, abgerufener JDBC-Verbindungen usw.
Metrics related to the entities, collections, queries, and caches as a whole (aka global metrics).
Detaillierte Metriken, die sich auf eine bestimmte Entity, Collection, Anfrage oder Cache-Region beziehen.
For example, you can check the cache hit, miss, and put ratio of entities, collections and queries, and the average time a query needs. Be aware that the number of milliseconds is subject to approximation in Java. Hibernate is tied to the JVM precision and on some platforms this might only be accurate to 10 seconds.
Simple getters are used to access the global metrics (i.e. not tied to a particular entity, collection, cache region, etc.). You can access the metrics of a particular entity, collection or cache region through its name, and through its HQL or SQL representation for queries. Please refer to the Statistics
, EntityStatistics
, CollectionStatistics
, SecondLevelCacheStatistics
, and QueryStatistics
API Javadoc for more information. The following code is a simple example:
Statistics stats = HibernateUtil.sessionFactory.getStatistics();
double queryCacheHitCount = stats.getQueryCacheHitCount();
double queryCacheMissCount = stats.getQueryCacheMissCount();
double queryCacheHitRatio =
queryCacheHitCount / (queryCacheHitCount + queryCacheMissCount);
log.info("Query Hit ratio:" + queryCacheHitRatio);
EntityStatistics entityStats =
stats.getEntityStatistics( Cat.class.getName() );
long changes =
entityStats.getInsertCount()
+ entityStats.getUpdateCount()
+ entityStats.getDeleteCount();
log.info(Cat.class.getName() + " changed " + changes + "times" );
You can work on all entities, collections, queries and region caches, by retrieving the list of names of entities, collections, queries and region caches using the following methods: getQueries()
, getEntityNames()
, getCollectionRoleNames()
, and getSecondLevelCacheRegionNames()
.
Roundtrip engineering with Hibernate is possible using a set of Eclipse plugins, commandline tools, and Ant tasks.
Hibernate Tools currently include plugins for the Eclipse IDE as well as Ant tasks for reverse engineering of existing databases:
Mapping Editor: an editor for Hibernate XML mapping files that supports auto-completion and syntax highlighting. It also supports semantic auto-completion for class names and property/field names, making it more versatile than a normal XML editor.
Console: the console is a new view in Eclipse. In addition to a tree overview of your console configurations, you are also provided with an interactive view of your persistent classes and their relationships. The console allows you to execute HQL queries against your database and browse the result directly in Eclipse.
Development Wizards: several wizards are provided with the Hibernate Eclipse tools. You can use a wizard to quickly generate Hibernate configuration (cfg.xml) files, or to reverse engineer an existing database schema into POJO source files and Hibernate mapping files. The reverse engineering wizard supports customizable templates.
Please refer to the Hibernate Tools package documentation for more information.
However, the Hibernate main package comes bundled with an integrated tool : SchemaExport aka hbm2ddl
.It can even be used from "inside" Hibernate.
DDL can be generated from your mapping files by a Hibernate utility. The generated schema includes referential integrity constraints, primary and foreign keys, for entity and collection tables. Tables and sequences are also created for mapped identifier generators.
You must specify a SQL Dialect
via the hibernate.dialect
property when using this tool, as DDL is highly vendor-specific.
First, you must customize your mapping files to improve the generated schema. The next section covers schema customization.
Many Hibernate mapping elements define optional attributes named length
, precision
and scale
. You can set the length, precision and scale of a column with this attribute.
<property name="zip" length="5"/>
<property name="balance" precision="12" scale="2"/>
Some tags also accept a not-null
attribute for generating a NOT NULL
constraint on table columns, and a unique
attribute for generating UNIQUE
constraint on table columns.
<many-to-one name="bar" column="barId" not-null="true"/>
<element column="serialNumber" type="long" not-null="true" unique="true"/>
A unique-key
attribute can be used to group columns in a single, unique key constraint. Currently, the specified value of the unique-key
attribute is not used to name the constraint in the generated DDL. It is only used to group the columns in the mapping file.
<many-to-one name="org" column="orgId" unique-key="OrgEmployeeId"/>
<property name="employeeId" unique-key="OrgEmployee"/>
An index
attribute specifies the name of an index that will be created using the mapped column or columns. Multiple columns can be grouped into the same index by simply specifying the same index name.
<property name="lastName" index="CustName"/>
<property name="firstName" index="CustName"/>
A foreign-key
attribute can be used to override the name of any generated foreign key constraint.
<many-to-one name="bar" column="barId" foreign-key="FKFooBar"/>
Zahlreiche Mapping-Elemente akzeptieren auch ein untergeordnetes <column>
-Element. Das ist insbesondere für das Mappen von vielspaltigen Typen hilfreich:
<property name="name" type="my.customtypes.Name"/>
<column name="last" not-null="true" index="bar_idx" length="30"/>
<column name="first" not-null="true" index="bar_idx" length="20"/>
<column name="initial"/>
</property
>
The default
attribute allows you to specify a default value for a column.You should assign the same value to the mapped property before saving a new instance of the mapped class.
<property name="credits" type="integer" insert="false">
<column name="credits" default="10"/>
</property
>
<version name="version" type="integer" insert="false">
<column name="version" default="0"/>
</property
>
Das sql-type
-Attribut ermöglicht die Außerkraftsetzung des Standard-Mappings eines Hibernate-Typs zum SQL-Datentyp.
<property name="balance" type="float">
<column name="balance" sql-type="decimal(13,3)"/>
</property
>
Das check
-Attribut ermöglicht es Ihnen, eine Prüfungsbedingung festzulegen.
<property name="foo" type="integer">
<column name="foo" check="foo
> 10"/>
</property
>
<class name="Foo" table="foos" check="bar < 100.0">
...
<property name="bar" type="float"/>
</class
>
The following table summarizes these optional attributes.
Tabelle 22.1. Zusammenfassung
Attribut | Werte | Bedeutung |
---|---|---|
length | Zahl | Spaltenlänge |
precision | Zahl | Dezimale Genauigkeit der Spalte |
scale | Zahl | Dezimale Skalierung der Spalte |
not-null | true|false | specifies that the column should be non-nullable |
unique | true|false | bestimmt, dass die Spalte eine eindeutige Bedingung besitzt |
index | index_name | bestimmt den Namen eines (mehrspaltigen) Index |
unique-key | unique_key_name | bestimmt den Namen einer mehrspaltigen, eindeutigen Bedingung |
foreign-key | foreign_key_name | legt den Namen einer Bedingung des Fremdschlüssels fest, der für eine Assoziation generiert wurde für ein <one-to-one> , <many-to-one> , <key> oder <many-to-many> -Mapping-Element. Bitte beachten Sie, dass inverse="true" -Seiten beim SchemaExport nicht berücksichtigt werden. |
sql-type | SQL column type | setzt den Standard-Spaltentyp außer Kraft (nur Attribut von <column> -Element) |
default | SQL-Ausdruck | bestimmt einen Standardwert für die Spalte |
check | SQL-Ausdruck | erstellt eine SQL-Überprüfungsbedingung an entweder der Spalte oder der Tabelle |
Das <comment>
-Element erlaubt die Bestimmung von Kommentaren für das generierte Schema.
<class name="Customer" table="CurCust">
<comment
>Current customers only</comment>
...
</class
>
<property name="balance">
<column name="bal">
<comment
>Balance in USD</comment>
</column>
</property
>
This results in a comment on table
or comment on column
statement in the generated DDL where supported.
Das SchemaExport
-Tool schreibt ein DDL-Skript um DDL-Anweisungen zu standardisieren und/oder auszuführen.
The following table displays the SchemaExport
command line options
java -cp
hibernate_classpaths org.hibernate.tool.hbm2ddl.SchemaExport
options mapping_files
Tabelle 22.2. SchemaExport
-Befehlszeilenoptionen
Option | Beschreibung |
---|---|
--quiet | do not output the script to stdout |
--drop | nur Tabellen droppen |
--create | nur Tabellen erstellen |
--text | do not export to the database |
--output=my_schema.ddl | ddl-Skript an eine Datei ausgeben |
--naming=eg.MyNamingStrategy | wählen Sie eine NamingStrategy |
--config=hibernate.cfg.xml | Hibernate Konfiguration aus einer XML-Datei lesen |
--properties=hibernate.properties | Datenbank-Properties aus einer Datei lesen |
--format | generierte SQL sauber im Skript formatieren |
--delimiter=; | einen Delimiter für das Zeilenende des Skripts setzen |
You can even embed SchemaExport
in your application:
Configuration cfg = ....;
new SchemaExport(cfg).create(false, true);
Database properties can be specified:
wie System-Properties mit -D
<property>
in hibernate.properties
in einer benannten Properties-Datei mit --properties
Die benötigten Properties sind:
Tabelle 22.3. SchemaExport-Connection-Properties
Property-Name | Beschreibung |
---|---|
hibernate.connection.driver_class | jdbc-Treiberklasse |
hibernate.connection.url | jdbc url |
hibernate.connection.username | Datenbankbenutzer |
hibernate.connection.password | Benutzer-Passwort |
hibernate.dialect | Dialekt |
Sie können SchemaExport
vom Ihrem Ant-Build-Skript aufrufen:
<target name="schemaexport">
<taskdef name="schemaexport"
classname="org.hibernate.tool.hbm2ddl.SchemaExportTask"
classpathref="class.path"/>
<schemaexport
properties="hibernate.properties"
quiet="no"
text="no"
drop="no"
delimiter=";"
output="schema-export.sql">
<fileset dir="src">
<include name="**/*.hbm.xml"/>
</fileset>
</schemaexport>
</target
>
The SchemaUpdate
tool will update an existing schema with "incremental" changes. The SchemaUpdate
depends upon the JDBC metadata API and, as such, will not work with all JDBC drivers.
java -cp
hibernate_classpaths org.hibernate.tool.hbm2ddl.SchemaUpdate
options mapping_files
Tabelle 22.4. SchemaUpdate
-Befehlszeilenoptionen
Option | Beschreibung |
---|---|
--quiet | do not output the script to stdout |
--text | do not export the script to the database |
--naming=eg.MyNamingStrategy | wählen Sie eine NamingStrategy |
--properties=hibernate.properties | Datenbank-Properties aus einer Datei lesen |
--config=hibernate.cfg.xml | eine .cfg.xml -Datei bestimmen |
You can embed SchemaUpdate
in your application:
Configuration cfg = ....;
new SchemaUpdate(cfg).execute(false);
Sie können SchemaUpdate
vom Ant-Skript aufrufen:
<target name="schemaupdate">
<taskdef name="schemaupdate"
classname="org.hibernate.tool.hbm2ddl.SchemaUpdateTask"
classpathref="class.path"/>
<schemaupdate
properties="hibernate.properties"
quiet="no">
<fileset dir="src">
<include name="**/*.hbm.xml"/>
</fileset>
</schemaupdate>
</target
>
The SchemaValidator
tool will validate that the existing database schema "matches" your mapping documents. The SchemaValidator
depends heavily upon the JDBC metadata API and, as such, will not work with all JDBC drivers. This tool is extremely useful for testing.
java -cp
hibernate_classpaths org.hibernate.tool.hbm2ddl.SchemaValidator
options mapping_files
The following table displays the SchemaValidator
command line options:
Tabelle 22.5. SchemaValidator
-Befehlszeilenoptionen
Option | Beschreibung |
---|---|
--naming=eg.MyNamingStrategy | wählen Sie eine NamingStrategy |
--properties=hibernate.properties | Datenbank-Properties aus einer Datei lesen |
--config=hibernate.cfg.xml | eine .cfg.xml -Datei bestimmen |
You can embed SchemaValidator
in your application:
Configuration cfg = ....;
new SchemaValidator(cfg).validate();
Sie können SchemaValidator
vom Ant-Skript aus aufrufen:
<target name="schemavalidate">
<taskdef name="schemavalidator"
classname="org.hibernate.tool.hbm2ddl.SchemaValidatorTask"
classpathref="class.path"/>
<schemavalidator
properties="hibernate.properties">
<fileset dir="src">
<include name="**/*.hbm.xml"/>
</fileset>
</schemavalidator>
</target
>
Hibernate Core also offers integration with some external modules/projects. This includes Hibernate Validator the reference implementation of Bean Validation (JSR 303) and Hibernate Search.
Bean Validation standardizes how to define and declare domain model level constraints. You can, for example, express that a property should never be null, that the account balance should be strictly positive, etc. These domain model constraints are declared in the bean itself by annotating its properties. Bean Validation can then read them and check for constraint violations. The validation mechanism can be executed in different layers in your application without having to duplicate any of these rules (presentation layer, data access layer). Following the DRY principle, Bean Validation and its reference implementation Hibernate Validator has been designed for that purpose.
The integration between Hibernate and Bean Validation works at two levels. First, it is able to check in-memory instances of a class for constraint violations. Second, it can apply the constraints to the Hibernate metamodel and incorporate them into the generated database schema.
Each constraint annotation is associated to a validator implementation responsible for checking the constraint on the entity instance. A validator can also (optionally) apply the constraint to the Hibernate metamodel, allowing Hibernate to generate DDL that expresses the constraint. With the appropriate event listener, you can execute the checking operation on inserts, updates and deletes done by Hibernate.
When checking instances at runtime, Hibernate Validator returns information about constraint violations in a set of ConstraintViolation
s. Among other information, the ConstraintViolation
contains an error description message that can embed the parameter values bundle with the annotation (eg. size limit), and message strings that may be externalized to a ResourceBundle
.
To enable Hibernate's Bean Validation integration, simply add a Bean Validation provider (preferably Hibernate Validation 4) on your classpath.
By default, no configuration is necessary.
The Default
group is validated on entity insert and update and the database model is updated accordingly based on the Default
group as well.
You can customize the Bean Validation integration by setting the validation mode. Use the javax.persistence.validation.mode
property and set it up for example in your persistence.xml
file or your hibernate.cfg.xml
file. Several options are possible:
auto
(default): enable integration between Bean Validation and Hibernate (callback and ddl generation) only if Bean Validation is present in the classpath.
none
: disable all integration between Bean Validation and Hibernate
callback
: only validate entities when they are either inserted, updated or deleted. An exception is raised if no Bean Validation provider is present in the classpath.
ddl
: only apply constraints to the database schema when generated by Hibernate. An exception is raised if no Bean Validation provider is present in the classpath. This value is not defined by the Java Persistence spec and is specific to Hibernate.
You can use both callback
and ddl
together by setting the property to callback, dll
<persistence ...>
<persistence-unit ...>
...
<properties>
<property name="javax.persistence.validation.mode"
value="callback, ddl"/>
</properties>
</persistence-unit>
</persistence>
This is equivalent to auto
except that if no Bean Validation provider is present, an exception is raised.
If you want to validate different groups during insertion, update and deletion, use:
javax.persistence.validation.group.pre-persist
: groups validated when an entity is about to be persisted (default to Default
)
javax.persistence.validation.group.pre-update
: groups validated when an entity is about to be updated (default to Default
)
javax.persistence.validation.group.pre-remove
: groups validated when an entity is about to be deleted (default to no group)
org.hibernate.validator.group.ddl
: groups considered when applying constraints on the database schema (default to Default
)
Each property accepts the fully qualified class names of the groups validated separated by a comma (,)
Beispiel 23.1. Using custom groups for validation
<persistence ...>
<persistence-unit ...>
...
<properties>
<property name="javax.persistence.validation.group.pre-update"
value="javax.validation.group.Default, com.acme.group.Strict"/>
<property name="javax.persistence.validation.group.pre-remove"
value="com.acme.group.OnDelete"/>
<property name="org.hibernate.validator.group.ddl"
value="com.acme.group.DDL"/>
</properties>
</persistence-unit>
</persistence>
You can set these properties in hibernate.cfg.xml
, hibernate.properties
or programmatically.
If an entity is found to be invalid, the list of constraint violations is propagated by the ConstraintViolationException
which exposes the set of ConstraintViolation
s.
This exception is wrapped in a RollbackException
when the violation happens at commit time. Otherwise the ConstraintViolationException
is returned (for example when calling flush()
. Note that generally, catchable violations are validated at a higher level (for example in Seam / JSF 2 via the JSF - Bean Validation integration or in your business layer by explicitly calling Bean Validation).
An application code will rarely be looking for a ConstraintViolationException
raised by Hibernate. This exception should be treated as fatal and the persistence context should be discarded (EntityManager
or Session
).
Hibernate uses Bean Validation constraints to generate an accurate database schema:
@NotNull
leads to a not null column (unless it conflicts with components or table inheritance)
@Size.max
leads to a varchar(max)
definition for Strings
@Min
, @Max
lead to column checks (like value <= max
)
@Digits
leads to the definition of precision and scale (ever wondered which is which? It's easy now with @Digits
:) )
These constraints can be declared directly on the entity properties or indirectly by using constraint composition.
For more information check the Hibernate Validator reference documentation.
Full text search engines like Apache Lucene™ are a very powerful technology to bring free text/efficient queries to applications. If suffers several mismatches when dealing with a object domain model (keeping the index up to date, mismatch between the index structure and the domain model, querying mismatch...) Hibernate Search indexes your domain model thanks to a few annotations, takes care of the database / index synchronization and brings you back regular managed objects from free text queries. Hibernate Search is using Apache Lucene under the cover.
Hibernate Search integrates with Hibernate Core transparently provided that the Hibernate Search jar is present on the classpath. If you do not wish to automatically register Hibernate Search event listeners, you can set hibernate.search.autoregister_listeners
to false. Such a need is very uncommon and not recommended.
Check the Hibernate Search reference documentation for more information.
One of the first things that new users want to do with Hibernate is to model a parent/child type relationship. There are two different approaches to this. The most convenient approach, especially for new users, is to model both Parent
and Child
as entity classes with a <one-to-many>
association from Parent
to Child
. The alternative approach is to declare the Child
as a <composite-element>
. The default semantics of a one-to-many association in Hibernate are much less close to the usual semantics of a parent/child relationship than those of a composite element mapping. We will explain how to use a bidirectional one-to-many association with cascades to model a parent/child relationship efficiently and elegantly.
Hibernate collections are considered to be a logical part of their owning entity and not of the contained entities. Be aware that this is a critical distinction that has the following consequences:
When you remove/add an object from/to a collection, the version number of the collection owner is incremented.
If an object that was removed from a collection is an instance of a value type (e.g. a composite element), that object will cease to be persistent and its state will be completely removed from the database. Likewise, adding a value type instance to the collection will cause its state to be immediately persistent.
Conversely, if an entity is removed from a collection (a one-to-many or many-to-many association), it will not be deleted by default. This behavior is completely consistent; a change to the internal state of another entity should not cause the associated entity to vanish. Likewise, adding an entity to a collection does not cause that entity to become persistent, by default.
Adding an entity to a collection, by default, merely creates a link between the two entities. Removing the entity will remove the link. This is appropriate for all sorts of cases. However, it is not appropriate in the case of a parent/child relationship. In this case, the life of the child is bound to the life cycle of the parent.
Gehen wir einmal davon aus, wir wollten mit einer einfachen <one-to-many>
-Assoziation von Parent
zu Child
beginnen.
<set name="children">
<key column="parent_id"/>
<one-to-many class="Child"/>
</set
>
If we were to execute the following code:
Parent p = .....;
Child c = new Child();
p.getChildren().add(c);
session.save(c);
session.flush();
so würde Hibernate zwei SQL-Anweisungen herausgeben:
ein INSERT
, um den Datensatz für c
zu erstellen
ein UPDATE
, um die Verbindung von p
zuc
zu erstellen
This is not only inefficient, but also violates any NOT NULL
constraint on the parent_id
column. You can fix the nullability constraint violation by specifying not-null="true"
in the collection mapping:
<set name="children">
<key column="parent_id" not-null="true"/>
<one-to-many class="Child"/>
</set
>
Dieses ist jedoch nicht die empfohlene Lösung:
The underlying cause of this behavior is that the link (the foreign key parent_id
) from p
to c
is not considered part of the state of the Child
object and is therefore not created in the INSERT
. The solution is to make the link part of the Child
mapping.
<many-to-one name="parent" column="parent_id" not-null="true"/>
You also need to add the parent
property to the Child
class.
Now that the Child
entity is managing the state of the link, we tell the collection not to update the link. We use the inverse
attribute to do this:
<set name="children" inverse="true">
<key column="parent_id"/>
<one-to-many class="Child"/>
</set
>
The following code would be used to add a new Child
:
Parent p = (Parent) session.load(Parent.class, pid);
Child c = new Child();
c.setParent(p);
p.getChildren().add(c);
session.save(c);
session.flush();
Only one SQL INSERT
would now be issued.
You could also create an addChild()
method of Parent
.
public void addChild(Child c) {
c.setParent(this);
children.add(c);
}
The code to add a Child
looks like this:
Parent p = (Parent) session.load(Parent.class, pid);
Child c = new Child();
p.addChild(c);
session.save(c);
session.flush();
You can address the frustrations of the explicit call to save()
by using cascades.
<set name="children" inverse="true" cascade="all">
<key column="parent_id"/>
<one-to-many class="Child"/>
</set
>
This simplifies the code above to:
Parent p = (Parent) session.load(Parent.class, pid);
Child c = new Child();
p.addChild(c);
session.flush();
Similarly, we do not need to iterate over the children when saving or deleting a Parent
. The following removes p
and all its children from the database.
Parent p = (Parent) session.load(Parent.class, pid);
session.delete(p);
session.flush();
However, the following code:
Parent p = (Parent) session.load(Parent.class, pid);
Child c = (Child) p.getChildren().iterator().next();
p.getChildren().remove(c);
c.setParent(null);
session.flush();
will not remove c
from the database. In this case, it will only remove the link to p
and cause a NOT NULL
constraint violation. You need to explicitly delete()
the Child
.
Parent p = (Parent) session.load(Parent.class, pid);
Child c = (Child) p.getChildren().iterator().next();
p.getChildren().remove(c);
session.delete(c);
session.flush();
In our case, a Child
cannot exist without its parent. So if we remove a Child
from the collection, we do want it to be deleted. To do this, we must use cascade="all-delete-orphan"
.
<set name="children" inverse="true" cascade="all-delete-orphan">
<key column="parent_id"/>
<one-to-many class="Child"/>
</set
>
Even though the collection mapping specifies inverse="true"
, cascades are still processed by iterating the collection elements. If you need an object be saved, deleted or updated by cascade, you must add it to the collection. It is not enough to simply call setParent()
.
Suppose we loaded up a Parent
in one Session
, made some changes in a UI action and wanted to persist these changes in a new session by calling update()
. The Parent
will contain a collection of children and, since the cascading update is enabled, Hibernate needs to know which children are newly instantiated and which represent existing rows in the database. We will also assume that both Parent
and Child
have generated identifier properties of type Long
. Hibernate will use the identifier and version/timestamp property value to determine which of the children are new. (See Abschnitt 11.7, „Automatische Statuserkennung“.) In Hibernate3, it is no longer necessary to specify an unsaved-value
explicitly.
The following code will update parent
and child
and insert newChild
:
//parent and child were both loaded in a previous session
parent.addChild(child);
Child newChild = new Child();
parent.addChild(newChild);
session.update(parent);
session.flush();
This may be suitable for the case of a generated identifier, but what about assigned identifiers and composite identifiers? This is more difficult, since Hibernate cannot use the identifier property to distinguish between a newly instantiated object, with an identifier assigned by the user, and an object loaded in a previous session. In this case, Hibernate will either use the timestamp or version property, or will actually query the second-level cache or, worst case, the database, to see if the row exists.
The sections we have just covered can be a bit confusing. However, in practice, it all works out nicely. Most Hibernate applications use the parent/child pattern in many places.
We mentioned an alternative in the first paragraph. None of the above issues exist in the case of <composite-element>
mappings, which have exactly the semantics of a parent/child relationship. Unfortunately, there are two big limitations with composite element classes: composite elements cannot own collections and they should not be the child of any entity other than the unique parent.
The persistent classes here represent a weblog and an item posted in a weblog. They are to be modelled as a standard parent/child relationship, but we will use an ordered bag, instead of a set:
package eg;
import java.util.List;
public class Blog {
private Long _id;
private String _name;
private List _items;
public Long getId() {
return _id;
}
public List getItems() {
return _items;
}
public String getName() {
return _name;
}
public void setId(Long long1) {
_id = long1;
}
public void setItems(List list) {
_items = list;
}
public void setName(String string) {
_name = string;
}
}
package eg;
import java.text.DateFormat;
import java.util.Calendar;
public class BlogItem {
private Long _id;
private Calendar _datetime;
private String _text;
private String _title;
private Blog _blog;
public Blog getBlog() {
return _blog;
}
public Calendar getDatetime() {
return _datetime;
}
public Long getId() {
return _id;
}
public String getText() {
return _text;
}
public String getTitle() {
return _title;
}
public void setBlog(Blog blog) {
_blog = blog;
}
public void setDatetime(Calendar calendar) {
_datetime = calendar;
}
public void setId(Long long1) {
_id = long1;
}
public void setText(String string) {
_text = string;
}
public void setTitle(String string) {
_title = string;
}
}
The XML mappings are now straightforward. For example:
<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://www.hibernate.org/dtd/hibernate-mapping-3.0.dtd">
<hibernate-mapping package="eg">
<class
name="Blog"
table="BLOGS">
<id
name="id"
column="BLOG_ID">
<generator class="native"/>
</id>
<property
name="name"
column="NAME"
not-null="true"
unique="true"/>
<bag
name="items"
inverse="true"
order-by="DATE_TIME"
cascade="all">
<key column="BLOG_ID"/>
<one-to-many class="BlogItem"/>
</bag>
</class>
</hibernate-mapping
>
<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://www.hibernate.org/dtd/hibernate-mapping-3.0.dtd">
<hibernate-mapping package="eg">
<class
name="BlogItem"
table="BLOG_ITEMS"
dynamic-update="true">
<id
name="id"
column="BLOG_ITEM_ID">
<generator class="native"/>
</id>
<property
name="title"
column="TITLE"
not-null="true"/>
<property
name="text"
column="TEXT"
not-null="true"/>
<property
name="datetime"
column="DATE_TIME"
not-null="true"/>
<many-to-one
name="blog"
column="BLOG_ID"
not-null="true"/>
</class>
</hibernate-mapping
>
The following class demonstrates some of the kinds of things we can do with these classes using Hibernate:
package eg;
import java.util.ArrayList;
import java.util.Calendar;
import java.util.Iterator;
import java.util.List;
import org.hibernate.HibernateException;
import org.hibernate.Query;
import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.Transaction;
import org.hibernate.cfg.Configuration;
import org.hibernate.tool.hbm2ddl.SchemaExport;
public class BlogMain {
private SessionFactory _sessions;
public void configure() throws HibernateException {
_sessions = new Configuration()
.addClass(Blog.class)
.addClass(BlogItem.class)
.buildSessionFactory();
}
public void exportTables() throws HibernateException {
Configuration cfg = new Configuration()
.addClass(Blog.class)
.addClass(BlogItem.class);
new SchemaExport(cfg).create(true, true);
}
public Blog createBlog(String name) throws HibernateException {
Blog blog = new Blog();
blog.setName(name);
blog.setItems( new ArrayList() );
Session session = _sessions.openSession();
Transaction tx = null;
try {
tx = session.beginTransaction();
session.persist(blog);
tx.commit();
}
catch (HibernateException he) {
if (tx!=null) tx.rollback();
throw he;
}
finally {
session.close();
}
return blog;
}
public BlogItem createBlogItem(Blog blog, String title, String text)
throws HibernateException {
BlogItem item = new BlogItem();
item.setTitle(title);
item.setText(text);
item.setBlog(blog);
item.setDatetime( Calendar.getInstance() );
blog.getItems().add(item);
Session session = _sessions.openSession();
Transaction tx = null;
try {
tx = session.beginTransaction();
session.update(blog);
tx.commit();
}
catch (HibernateException he) {
if (tx!=null) tx.rollback();
throw he;
}
finally {
session.close();
}
return item;
}
public BlogItem createBlogItem(Long blogid, String title, String text)
throws HibernateException {
BlogItem item = new BlogItem();
item.setTitle(title);
item.setText(text);
item.setDatetime( Calendar.getInstance() );
Session session = _sessions.openSession();
Transaction tx = null;
try {
tx = session.beginTransaction();
Blog blog = (Blog) session.load(Blog.class, blogid);
item.setBlog(blog);
blog.getItems().add(item);
tx.commit();
}
catch (HibernateException he) {
if (tx!=null) tx.rollback();
throw he;
}
finally {
session.close();
}
return item;
}
public void updateBlogItem(BlogItem item, String text)
throws HibernateException {
item.setText(text);
Session session = _sessions.openSession();
Transaction tx = null;
try {
tx = session.beginTransaction();
session.update(item);
tx.commit();
}
catch (HibernateException he) {
if (tx!=null) tx.rollback();
throw he;
}
finally {
session.close();
}
}
public void updateBlogItem(Long itemid, String text)
throws HibernateException {
Session session = _sessions.openSession();
Transaction tx = null;
try {
tx = session.beginTransaction();
BlogItem item = (BlogItem) session.load(BlogItem.class, itemid);
item.setText(text);
tx.commit();
}
catch (HibernateException he) {
if (tx!=null) tx.rollback();
throw he;
}
finally {
session.close();
}
}
public List listAllBlogNamesAndItemCounts(int max)
throws HibernateException {
Session session = _sessions.openSession();
Transaction tx = null;
List result = null;
try {
tx = session.beginTransaction();
Query q = session.createQuery(
"select blog.id, blog.name, count(blogItem) " +
"from Blog as blog " +
"left outer join blog.items as blogItem " +
"group by blog.name, blog.id " +
"order by max(blogItem.datetime)"
);
q.setMaxResults(max);
result = q.list();
tx.commit();
}
catch (HibernateException he) {
if (tx!=null) tx.rollback();
throw he;
}
finally {
session.close();
}
return result;
}
public Blog getBlogAndAllItems(Long blogid)
throws HibernateException {
Session session = _sessions.openSession();
Transaction tx = null;
Blog blog = null;
try {
tx = session.beginTransaction();
Query q = session.createQuery(
"from Blog as blog " +
"left outer join fetch blog.items " +
"where blog.id = :blogid"
);
q.setParameter("blogid", blogid);
blog = (Blog) q.uniqueResult();
tx.commit();
}
catch (HibernateException he) {
if (tx!=null) tx.rollback();
throw he;
}
finally {
session.close();
}
return blog;
}
public List listBlogsAndRecentItems() throws HibernateException {
Session session = _sessions.openSession();
Transaction tx = null;
List result = null;
try {
tx = session.beginTransaction();
Query q = session.createQuery(
"from Blog as blog " +
"inner join blog.items as blogItem " +
"where blogItem.datetime
> :minDate"
);
Calendar cal = Calendar.getInstance();
cal.roll(Calendar.MONTH, false);
q.setCalendar("minDate", cal);
result = q.list();
tx.commit();
}
catch (HibernateException he) {
if (tx!=null) tx.rollback();
throw he;
}
finally {
session.close();
}
return result;
}
}
This chapters explores some more complex association mappings.
The following model of the relationship between Employer
and Employee
uses an entity class (Employment
) to represent the association. You can do this when there might be more than one period of employment for the same two parties. Components are used to model monetary values and employee names.
Here is a possible mapping document:
<hibernate-mapping>
<class name="Employer" table="employers">
<id name="id">
<generator class="sequence">
<param name="sequence"
>employer_id_seq</param>
</generator>
</id>
<property name="name"/>
</class>
<class name="Employment" table="employment_periods">
<id name="id">
<generator class="sequence">
<param name="sequence"
>employment_id_seq</param>
</generator>
</id>
<property name="startDate" column="start_date"/>
<property name="endDate" column="end_date"/>
<component name="hourlyRate" class="MonetaryAmount">
<property name="amount">
<column name="hourly_rate" sql-type="NUMERIC(12, 2)"/>
</property>
<property name="currency" length="12"/>
</component>
<many-to-one name="employer" column="employer_id" not-null="true"/>
<many-to-one name="employee" column="employee_id" not-null="true"/>
</class>
<class name="Employee" table="employees">
<id name="id">
<generator class="sequence">
<param name="sequence"
>employee_id_seq</param>
</generator>
</id>
<property name="taxfileNumber"/>
<component name="name" class="Name">
<property name="firstName"/>
<property name="initial"/>
<property name="lastName"/>
</component>
</class>
</hibernate-mapping
>
Here is the table schema generated by SchemaExport
.
create table employers ( id BIGINT not null, name VARCHAR(255), primary key (id) ) create table employment_periods ( id BIGINT not null, hourly_rate NUMERIC(12, 2), currency VARCHAR(12), employee_id BIGINT not null, employer_id BIGINT not null, end_date TIMESTAMP, start_date TIMESTAMP, primary key (id) ) create table employees ( id BIGINT not null, firstName VARCHAR(255), initial CHAR(1), lastName VARCHAR(255), taxfileNumber VARCHAR(255), primary key (id) ) alter table employment_periods add constraint employment_periodsFK0 foreign key (employer_id) references employers alter table employment_periods add constraint employment_periodsFK1 foreign key (employee_id) references employees create sequence employee_id_seq create sequence employment_id_seq create sequence employer_id_seq
Consider the following model of the relationships between Work
, Author
and Person
. In the example, the relationship between Work
and Author
is represented as a many-to-many association and the relationship between Author
and Person
is represented as one-to-one association. Another possibility would be to have Author
extend Person
.
Das folgende Mapping-Dokument repräsentiert diese Beziehungen auf korrekte Weise:
<hibernate-mapping>
<class name="Work" table="works" discriminator-value="W">
<id name="id" column="id">
<generator class="native"/>
</id>
<discriminator column="type" type="character"/>
<property name="title"/>
<set name="authors" table="author_work">
<key column name="work_id"/>
<many-to-many class="Author" column name="author_id"/>
</set>
<subclass name="Book" discriminator-value="B">
<property name="text"/>
</subclass>
<subclass name="Song" discriminator-value="S">
<property name="tempo"/>
<property name="genre"/>
</subclass>
</class>
<class name="Author" table="authors">
<id name="id" column="id">
<!-- The Author must have the same identifier as the Person -->
<generator class="assigned"/>
</id>
<property name="alias"/>
<one-to-one name="person" constrained="true"/>
<set name="works" table="author_work" inverse="true">
<key column="author_id"/>
<many-to-many class="Work" column="work_id"/>
</set>
</class>
<class name="Person" table="persons">
<id name="id" column="id">
<generator class="native"/>
</id>
<property name="name"/>
</class>
</hibernate-mapping
>
There are four tables in this mapping: works
, authors
and persons
hold work, author and person data respectively. author_work
is an association table linking authors to works. Here is the table schema, as generated by SchemaExport
:
create table works ( id BIGINT not null generated by default as identity, tempo FLOAT, genre VARCHAR(255), text INTEGER, title VARCHAR(255), type CHAR(1) not null, primary key (id) ) create table author_work ( author_id BIGINT not null, work_id BIGINT not null, primary key (work_id, author_id) ) create table authors ( id BIGINT not null generated by default as identity, alias VARCHAR(255), primary key (id) ) create table persons ( id BIGINT not null generated by default as identity, name VARCHAR(255), primary key (id) ) alter table authors add constraint authorsFK0 foreign key (id) references persons alter table author_work add constraint author_workFK0 foreign key (author_id) references authors alter table author_work add constraint author_workFK1 foreign key (work_id) references works
In this section we consider a model of the relationships between Customer
, Order
, Line Item
and Product
. There is a one-to-many association between Customer
and Order
, but how can you represent Order
/ LineItem
/ Product
? In the example, LineItem
is mapped as an association class representing the many-to-many association between Order
and Product
. In Hibernate this is called a composite element.
The mapping document will look like this:
<hibernate-mapping>
<class name="Customer" table="customers">
<id name="id">
<generator class="native"/>
</id>
<property name="name"/>
<set name="orders" inverse="true">
<key column="customer_id"/>
<one-to-many class="Order"/>
</set>
</class>
<class name="Order" table="orders">
<id name="id">
<generator class="native"/>
</id>
<property name="date"/>
<many-to-one name="customer" column="customer_id"/>
<list name="lineItems" table="line_items">
<key column="order_id"/>
<list-index column="line_number"/>
<composite-element class="LineItem">
<property name="quantity"/>
<many-to-one name="product" column="product_id"/>
</composite-element>
</list>
</class>
<class name="Product" table="products">
<id name="id">
<generator class="native"/>
</id>
<property name="serialNumber"/>
</class>
</hibernate-mapping
>
customers
, orders
, line_items
und products
enthalten Kunde, Bestellung, Bestellungsbelegzeile und Produktdaten. line_items
fungiert auch als Assoziationstabelle, die Bestellungen mit Produkten verbindet.
create table customers ( id BIGINT not null generated by default as identity, name VARCHAR(255), primary key (id) ) create table orders ( id BIGINT not null generated by default as identity, customer_id BIGINT, date TIMESTAMP, primary key (id) ) create table line_items ( line_number INTEGER not null, order_id BIGINT not null, product_id BIGINT, quantity INTEGER, primary key (order_id, line_number) ) create table products ( id BIGINT not null generated by default as identity, serialNumber VARCHAR(255), primary key (id) ) alter table orders add constraint ordersFK0 foreign key (customer_id) references customers alter table line_items add constraint line_itemsFK0 foreign key (product_id) references products alter table line_items add constraint line_itemsFK1 foreign key (order_id) references orders
These examples are available from the Hibernate test suite. You will find many other useful example mappings there by searching in the test
folder of the Hibernate distribution.
<class name="Person">
<id name="name"/>
<one-to-one name="address"
cascade="all">
<formula
>name</formula>
<formula
>'HOME'</formula>
</one-to-one>
<one-to-one name="mailingAddress"
cascade="all">
<formula
>name</formula>
<formula
>'MAILING'</formula>
</one-to-one>
</class>
<class name="Address" batch-size="2"
check="addressType in ('MAILING', 'HOME', 'BUSINESS')">
<composite-id>
<key-many-to-one name="person"
column="personName"/>
<key-property name="type"
column="addressType"/>
</composite-id>
<property name="street" type="text"/>
<property name="state"/>
<property name="zip"/>
</class
>
<class name="Customer">
<id name="customerId"
length="10">
<generator class="assigned"/>
</id>
<property name="name" not-null="true" length="100"/>
<property name="address" not-null="true" length="200"/>
<list name="orders"
inverse="true"
cascade="save-update">
<key column="customerId"/>
<index column="orderNumber"/>
<one-to-many class="Order"/>
</list>
</class>
<class name="Order" table="CustomerOrder" lazy="true">
<synchronize table="LineItem"/>
<synchronize table="Product"/>
<composite-id name="id"
class="Order$Id">
<key-property name="customerId" length="10"/>
<key-property name="orderNumber"/>
</composite-id>
<property name="orderDate"
type="calendar_date"
not-null="true"/>
<property name="total">
<formula>
( select sum(li.quantity*p.price)
from LineItem li, Product p
where li.productId = p.productId
and li.customerId = customerId
and li.orderNumber = orderNumber )
</formula>
</property>
<many-to-one name="customer"
column="customerId"
insert="false"
update="false"
not-null="true"/>
<bag name="lineItems"
fetch="join"
inverse="true"
cascade="save-update">
<key>
<column name="customerId"/>
<column name="orderNumber"/>
</key>
<one-to-many class="LineItem"/>
</bag>
</class>
<class name="LineItem">
<composite-id name="id"
class="LineItem$Id">
<key-property name="customerId" length="10"/>
<key-property name="orderNumber"/>
<key-property name="productId" length="10"/>
</composite-id>
<property name="quantity"/>
<many-to-one name="order"
insert="false"
update="false"
not-null="true">
<column name="customerId"/>
<column name="orderNumber"/>
</many-to-one>
<many-to-one name="product"
insert="false"
update="false"
not-null="true"
column="productId"/>
</class>
<class name="Product">
<synchronize table="LineItem"/>
<id name="productId"
length="10">
<generator class="assigned"/>
</id>
<property name="description"
not-null="true"
length="200"/>
<property name="price" length="3"/>
<property name="numberAvailable"/>
<property name="numberOrdered">
<formula>
( select sum(li.quantity)
from LineItem li
where li.productId = productId )
</formula>
</property>
</class
>
<class name="User" table="`User`">
<composite-id>
<key-property name="name"/>
<key-property name="org"/>
</composite-id>
<set name="groups" table="UserGroup">
<key>
<column name="userName"/>
<column name="org"/>
</key>
<many-to-many class="Group">
<column name="groupName"/>
<formula
>org</formula>
</many-to-many>
</set>
</class>
<class name="Group" table="`Group`">
<composite-id>
<key-property name="name"/>
<key-property name="org"/>
</composite-id>
<property name="description"/>
<set name="users" table="UserGroup" inverse="true">
<key>
<column name="groupName"/>
<column name="org"/>
</key>
<many-to-many class="User">
<column name="userName"/>
<formula
>org</formula>
</many-to-many>
</set>
</class>
<class name="Person"
discriminator-value="P">
<id name="id"
column="person_id"
unsaved-value="0">
<generator class="native"/>
</id>
<discriminator
type="character">
<formula>
case
when title is not null then 'E'
when salesperson is not null then 'C'
else 'P'
end
</formula>
</discriminator>
<property name="name"
not-null="true"
length="80"/>
<property name="sex"
not-null="true"
update="false"/>
<component name="address">
<property name="address"/>
<property name="zip"/>
<property name="country"/>
</component>
<subclass name="Employee"
discriminator-value="E">
<property name="title"
length="20"/>
<property name="salary"/>
<many-to-one name="manager"/>
</subclass>
<subclass name="Customer"
discriminator-value="C">
<property name="comments"/>
<many-to-one name="salesperson"/>
</subclass>
</class
>
<class name="Person">
<id name="id">
<generator class="hilo"/>
</id>
<property name="name" length="100"/>
<one-to-one name="address"
property-ref="person"
cascade="all"
fetch="join"/>
<set name="accounts"
inverse="true">
<key column="userId"
property-ref="userId"/>
<one-to-many class="Account"/>
</set>
<property name="userId" length="8"/>
</class>
<class name="Address">
<id name="id">
<generator class="hilo"/>
</id>
<property name="address" length="300"/>
<property name="zip" length="5"/>
<property name="country" length="25"/>
<many-to-one name="person" unique="true" not-null="true"/>
</class>
<class name="Account">
<id name="accountId" length="32">
<generator class="uuid"/>
</id>
<many-to-one name="user"
column="userId"
property-ref="userId"/>
<property name="type" not-null="true"/>
</class
>
<component>
:Verwenden Sie eine Address
-Klasse, um street
, suburb
, state
, postcode
einzukapseln. Das unterstützt die Wiederverwendung des Code und vereinfacht die Erhöhung der Bedienerfreundlichkeit.
Hibernate makes identifier properties optional. There are a range of reasons why you should use them. We recommend that identifiers be 'synthetic', that is, generated with no business meaning.
Bestimmen Sie natürliche Schlüssel für alle Entities, und mappen Sie diese mittels <natural-id>
. Implementieren Sie equals()
und hashCode()
, um die Properties, aus denen der natürliche Schlüssel besteht, zu vergleichen.
Do not use a single monolithic mapping document. Map com.eg.Foo
in the file com/eg/Foo.hbm.xml
. This makes sense, particularly in a team environment.
Deployen Sie die Mappings gemeinsam mit den Klassen, die sie mappen.
This is recommended if your queries call non-ANSI-standard SQL functions. Externalizing the query strings to mapping files will make the application more portable.
As in JDBC, always replace non-constant values by "?". Do not use string manipulation to bind a non-constant value in a query. You should also consider using named parameters in queries.
Hibernate allows the application to manage JDBC connections, but his approach should be considered a last-resort. If you cannot use the built-in connection providers, consider providing your own implementation of org.hibernate.connection.ConnectionProvider
.
Suppose you have a Java type from a library that needs to be persisted but does not provide the accessors needed to map it as a component. You should consider implementing org.hibernate.UserType
. This approach frees the application code from implementing transformations to/from a Hibernate type.
In performance-critical areas of the system, some kinds of operations might benefit from direct JDBC. Do not assume, however, that JDBC is necessarily faster. Please wait until you know something is a bottleneck. If you need to use direct JDBC, you can open a Hibernate Session
, wrap your JDBC operation as a org.hibernate.jdbc.Work
object and using that JDBC connection. This way you can still use the same transaction strategy and underlying connection provider.
Session
flushing:Sometimes the Session synchronizes its persistent state with the database. Performance will be affected if this process occurs too often. You can sometimes minimize unnecessary flushing by disabling automatic flushing, or even by changing the order of queries and other operations within a particular transaction.
When using a servlet/session bean architecture, you can pass persistent objects loaded in the session bean to and from the servlet/JSP layer. Use a new session to service each request. Use Session.merge()
or Session.saveOrUpdate()
to synchronize objects with the database.
Database Transactions have to be as short as possible for best scalability. However, it is often necessary to implement long running application transactions, a single unit-of-work from the point of view of a user. An application transaction might span several client request/response cycles. It is common to use detached objects to implement application transactions. An appropriate alternative in a two tiered architecture, is to maintain a single open persistence contact session for the whole life cycle of the application transaction. Then simply disconnect from the JDBC connection at the end of each request and reconnect at the beginning of the subsequent request. Never share a single session across more than one application transaction or you will be working with stale data.
This is more of a necessary practice than a "best" practice. When an exception occurs, roll back the Transaction
and close the Session
. If you do not do this, Hibernate cannot guarantee that in-memory state accurately represents the persistent state. For example, do not use Session.load()
to determine if an instance with the given identifier exists on the database; use Session.get()
or a query instead.
Use eager fetching sparingly. Use proxies and lazy collections for most associations to classes that are not likely to be completely held in the second-level cache. For associations to cached classes, where there is an a extremely high probability of a cache hit, explicitly disable eager fetching using lazy="false"
. When join fetching is appropriate to a particular use case, use a query with a left join fetch
.
Hibernate frees the developer from writing tedious Data Transfer Objects (DTO). In a traditional EJB architecture, DTOs serve dual purposes: first, they work around the problem that entity beans are not serializable; second, they implicitly define an assembly phase where all data to be used by the view is fetched and marshalled into the DTOs before returning control to the presentation tier. Hibernate eliminates the first purpose. Unless you are prepared to hold the persistence context (the session) open across the view rendering process, you will still need an assembly phase. Think of your business methods as having a strict contract with the presentation tier about what data is available in the detached objects. This is not a limitation of Hibernate. It is a fundamental requirement of safe transactional data access.
Hide Hibernate data-access code behind an interface. Combine the DAO and Thread Local Session patterns. You can even have some classes persisted by handcoded JDBC associated to Hibernate via a UserType
. This advice is, however, intended for "sufficiently large" applications. It is not appropriate for an application with five tables.
Practical test cases for real many-to-many associations are rare. Most of the time you need additional information stored in the "link table". In this case, it is much better to use two one-to-many associations to an intermediate link class. In fact, most associations are one-to-many and many-to-one. For this reason, you should proceed cautiously when using any other association style.
Unidirektionale Assoziationen sind schwieriger abzufragen. In einer großen Anwendung müssen fast alle Assoziationen bei Anfragen nach beiden Richtungen navigierbar sein.
One of the selling points of Hibernate (and really Object/Relational Mapping as a whole) is the notion of database portability. This could mean an internal IT user migrating from one database vendor to another, or it could mean a framework or deployable application consuming Hibernate to simultaneously target multiple database products by their users. Regardless of the exact scenario, the basic idea is that you want Hibernate to help you run against any number of databases without changes to your code, and ideally without any changes to the mapping metadata.
The first line of portability for Hibernate is the dialect, which is a specialization of the org.hibernate.dialect.Dialect
contract. A dialect encapsulates all the differences in how Hibernate must communicate with a particular database to accomplish some task like getting a sequence value or structuring a SELECT query. Hibernate bundles a wide range of dialects for many of the most popular databases. If you find that your particular database is not among them, it is not terribly difficult to write your own.
Originally, Hibernate would always require that users specify which dialect to use. In the case of users looking to simultaneously target multiple databases with their build that was problematic. Generally this required their users to configure the Hibernate dialect or defining their own method of setting that value.
Starting with version 3.2, Hibernate introduced the notion of automatically detecting the dialect to use based on the java.sql.DatabaseMetaData
obtained from a java.sql.Connection
to that database. This was much better, expect that this resolution was limited to databases Hibernate know about ahead of time and was in no way configurable or overrideable.
Starting with version 3.3, Hibernate has a fare more powerful way to automatically determine which dialect to should be used by relying on a series of delegates which implement the org.hibernate.dialect.resolver.DialectResolver
which defines only a single method:
public Dialect resolveDialect(DatabaseMetaData metaData) throws JDBCConnectionException
The basic contract here is that if the resolver 'understands' the given database metadata then it returns the corresponding Dialect; if not it returns null and the process continues to the next resolver. The signature also identifies org.hibernate.exception.JDBCConnectionException
as possibly being thrown. A JDBCConnectionException here is interpreted to imply a "non transient" (aka non-recoverable) connection problem and is used to indicate an immediate stop to resolution attempts. All other exceptions result in a warning and continuing on to the next resolver.
The cool part about these resolvers is that users can also register their own custom resolvers which will be processed ahead of the built-in Hibernate ones. This might be useful in a number of different situations: it allows easy integration for auto-detection of dialects beyond those shipped with HIbernate itself; it allows you to specify to use a custom dialect when a particular database is recognized; etc. To register one or more resolvers, simply specify them (seperated by commas, tabs or spaces) using the 'hibernate.dialect_resolvers' configuration setting (see the DIALECT_RESOLVERS
constant on org.hibernate.cfg.Environment
).
When considering portability between databases, another important decision is selecting the identifier generation stratagy you want to use. Originally Hibernate provided the native generator for this purpose, which was intended to select between a sequence, identity, or table strategy depending on the capability of the underlying database. However, an insidious implication of this approach comes about when targtetting some databases which support identity generation and some which do not. identity generation relies on the SQL definition of an IDENTITY (or auto-increment) column to manage the identifier value; it is what is known as a post-insert generation strategy becauase the insert must actually happen before we can know the identifier value. Because Hibernate relies on this identifier value to uniquely reference entities within a persistence context it must then issue the insert immediately when the users requests the entitiy be associated with the session (like via save() e.g.) regardless of current transactional semantics.
Hibernate was changed slightly once the implication of this was better understood so that the insert is delayed in cases where that is feasible.
The underlying issue is that the actual semanctics of the application itself changes in these cases.
Starting with version 3.2.3, Hibernate comes with a set of enhanced identifier generators targetting portability in a much different way.
There are specifically 2 bundled enhancedgenerators:
org.hibernate.id.enhanced.SequenceStyleGenerator
org.hibernate.id.enhanced.TableGenerator
The idea behind these generators is to port the actual semantics of the identifer value generation to the different databases. For example, the org.hibernate.id.enhanced.SequenceStyleGenerator
mimics the behavior of a sequence on databases which do not support sequences by using a table.
This is an area in Hibernate in need of improvement. In terms of portability concerns, this function handling currently works pretty well from HQL; however, it is quite lacking in all other aspects.
SQL functions can be referenced in many ways by users. However, not all databases support the same set of functions. Hibernate, provides a means of mapping a logical function name to a delegate which knows how to render that particular function, perhaps even using a totally different physical function call.
Technically this function registration is handled through the org.hibernate.dialect.function.SQLFunctionRegistry
class which is intended to allow users to provide custom function definitions without having to provide a custom dialect. This specific behavior is not fully completed as of yet.
It is sort of implemented such that users can programatically register functions with the org.hibernate.cfg.Configuration
and those functions will be recognized for HQL.
[PoEAA] Patterns of Enterprise Application Architecture. 0-321-12742-0. Copyright © 2003 Pearson Education, Inc.. Addison-Wesley Publishing Company.
[JPwH] Java Persistence with Hibernate. Second Edition of Hibernate in Action. 1-932394-88-5. http://www.manning.com/bauer2 . Copyright © 2007 Manning Publications Co.. Manning Publications Co..
Copyright © 2004 Red Hat, Inc.