HIBERNATE - 7142
= AHLE Yo AA IS

sholMUlolE Rz oA

3.3.2.GA

Z]-&0o] Gavin King, Christian Bauer, Max Rydahl

Andersen, Emmanuel Bernard, ZL2] 3 Steve Ebersole

and thanks to James Cobb (Graphic Design) Z2#] 32 Cheyenne Weaver (Graphic Design)

Lo FEOAbACK et xii
R (o) - 1 PP 1
1.I. & 1 - A WA Hibernate o] ZZ] A O] A oottt 1
I B BN T 1§ o T O PP PPN 1
LI2. B A F 8 2n e 3
1.1.3. The mapping fIle ...euieiiniriiii e e 4

L L4, HIDETNALE AT oot e e 7
1.1.5. Building wWith MaVenc.euiuiininiii e 9
L6, AlZFTE helPErSE oot 10
117, A 2RI ZAD A T e 11

12 FE 2 - AFAES W T ET] oo 14
1.2.1. Person S 2s Ul T SF 7] oot 14
1.2.2. THEFSE Set-7]HFE] A ah e 15
1.2.3. AIHEOA FFR 7] oo 17
124, ZEES TFR A e 19
1.2.5. Bi-directional assOCIATIONS «.e.uvuertenenetniniiiet ettt et eene e eaenes 21
1.2.6. FHFE IS0 FFASE7] i 22

1.3. I}E 3 - EventManager] O] Z A O]A i 23
131, 715 A EBL ZFA 7] i 23
132, TE2AI I BT T e 24
1.3.3. HIR]I3F7] L] 3L HIZREBE7] i 26

L, R OF it e 27
2 O T D A i 29
2 D X S PP 29
2.2, QB A B e 30
2.3, MK B G e 31
24 T A A e 31
2.5, CONLEXLUAL SESSIOMS . enenenetentttn ettt et ettt et et et e et e ea et et et ea e e e et e enaeneneanes 31
B A e 33
31, TR A A e 33
3.2, SesSIONFACIOIY D 7] i 34
3.3. JDBC IS oo 34
34, A HQ FA ZEHEIE oot 36
3.4.1. SQL DHALECES ettt e et 42
3.4.2. Outer Join FetChingc.oouiiiiiiiiiii e 43
3.4.3. BINATY SEIEAIMS «eutuerinitatetetetet ettt ettt ettt e e e enaaeaaneaenaaanaaasaeaaaeaanenans 43
3.4.4. Second-level ZHAISF query FHA] oo 44
3.4.5. Query Language ZBE ..o.oiiiiiiiiiiiiiii e 44
3.4.6. HIDEINAtE E 7l oot 44

7% JE == A PPN 44
3.6. NamingStrategy =T BF 7] wuniiiiiiiiie et 45
3.7, XML A T e 46
3.8. J2EE S ZZ]AO1A A Bl BT e 47

iii

HIBERNATE - 189 E AutE 93 34 9%

5.

3.8.1. EMAA HFE FEA e 438
3.8.2. INDI-DOUNA SESSIONFACIOTY +uettntnetninateinetetet et enete et ea et et et e e e enaneeneneanens 49
3.8.3. Current Session context management with JTA ..., 49
3.8.4, IMX HER] oottt et e e e aaaas 49
B F T 2o B oo et e et aaaaaees 53
4.1 ZFEZE POJO Sl A oot 53
4.1.1. ol HE e AAAES FTEHSEE o 55
4.1.2. identifier ZEHE S A FBFEF(EA) oo 55
4.1.3. finalo] o}d ZFHEREZ A ETTTH(FA) oo 55
414 9& d=52 93 accessorEF mutatorE S AAFEH(B4) i 56

42, 2S5 T B BET] i 56
4.3. equals()2} hashCode() T BF7] oo 56
A, B Ol L S i e 58
T N Vo) 117 oS PURPRRN 60
4.6. EntityNAMERESOIVEIS . .ninininiiiiiii ittt et e et et et e e e anas 61
ZTEL ORI T8 ettt e et e ettt e e et e e aat e aaaa 65
S T T Al e 65
5110 DIOCEYDE ettt 66
5.1.2. Hibernate-mMapDINE .ueueeeueeeneneeneneeen ettt ettt et et e et een e eneeneneaaenennen 67
T NG T G - T OO PPN 63
T S T PSPPSR 72
5.1.5. NOT TRANSLATED!Enhanced identifier generatorsc...c.cccoeeeueennenn. 76
5.1.6. NOT TRANSLATED! Identifier generator optimizationcccccoeeenns. 77
S5.1.7. COMPOSIEE-TA +eneeneineit ettt ettt e eaen 78
5.1.8. DISCTIMINALOT tutnetiinin ettt et ettt et et e et et e et e e e et eaeaeeneneaenaans 79
5.1.9. Version (OPHONAL) ...oivuniiiineiiie et 80
5.1.10. Timestamp (OPHONAL) .iivvvuneiiiiiieriiiiieee et e ettt e e e e e e e e e e e e e e eaianens 81
ST I B R s 0] 01 o 5 PP P PP PP 82
TN I D Vs 2 o Bt o) o T PP 84
S5.1.130 ONE-TO-0MNE .enenititetit ettt ettt ettt eaeas 87

ST 140 NatUral-Id eeeeenen e et e 89
5.1.15. Component and dynamic-COMPONENTceuveuientinienieneeneeneeneeneeneeneeneeneennes 90
ST B T s 0] o 1S 5 (= P TP PP PP 91

5.1 170 SUDCIASS ettt et e e aeaas 92
5.1.18. JOINEA-SUDCIASS +ueninineiet ettt et et ea e 93
5.1.19. UNION-SUDCIASS .ttnetiniiei ittt ettt et e e et e e e aenas 95
51200 JOMN coiniii et 96

S L 2L Y ettt e 97
5.1.22. Column and formula elementscoeeveiiriiiiiiiniinen e eanen. 98
5.1.230 IMIPOTE ettt et 99

S 1240 ANY o e 99

5.2, HIDEINALE LYPES -eeutntnttnttnein ettt ettt ettt et et ettt et et e e et et e e et e e eneeneeneenes 100
52.10 DETEIE T ZEE oot 100
52.2. 718 value BFRE oo 101

5.2.3. HEZE B value BFQ G oot 102

53. 39l FHAEE S WM ol M ET] i 104
54. SOL Q18 XS TAIE A IS e 104
5.5, Metadata T QS i 105
5.5.1. XDoclet BF AL B 7] oot 105
5.5.2. JDK 5.0 Annotations AF8-3F7] oot 107

5.6. Generated PIrOPEITIES .ueuieninetinie ittt ettt ettt et et et et e et e eaeeneneaeneans 108
5.7. Auxiliary database ODJECES .euiuueiniiniiniieiei et e eaeanes 109
6. COllECHION TNADPDPINE +etntnttntneten et ettt ettt et ettt ettt et ea et e et et et et enea e et e eneeneneaeneane 111
6.1, BZ FHIA D e 111
6.2. F UM T T B s 112
6.2.1. FHA TOreign F]IE cooiiiie e 114
6.2.2. FH A QA T e 114
623, AEA B FHAE e 114
6.2.4. ZF5LS 74 FIHAEF many-to-many AHE 116
6.2.5. One-to-Many TG oo 118

6.3. MAE ZFHA Ul B e 119
6.3.1. Sorted ZHAE oot 119
6.3.2. DT ATEE e 121
6.33. AdAE FHMHES 717 G ATE 122
6.3.4. Ternary associations(Al 7 AT) oiiiiiiiieiee e 124
0.3.5. <IdDaZ> A Bl 7] it s 124

6.4, ZUA A B oot 125
J. A T T B e 129
8 T X S PSPPI 129
7.2, GEHETE AT E e 129
A TR\ = 0 A Vo R) o [PN 129
T.2.2. ONE-LO-0ME ettt ittt e ettt et et 130
NG T @ o S o B ' = o | A PPN 131

7.3. join Ho]ESo] Tt T AATE e 132
R B TR O o (S o B ' = o | AP PON 132
7.3.20 MaANY-L0-0NE .euininiiiniiii ettt 132
T7.3.3. ONE-TO-0ME ettneneintn ettt ettt ettt e e et et et e et et ea e e e e e e e e eaens 133
7.3 4, MaANY-TO-TIAMNY teuenerninininet ettt ettt et ettt e et e e e it e e eaenes 134

T4 FHEGE o0 b S e 135
7.4.1. one-to-mMany / MANY-TO-ONE ..c.ueuuerntrneunernernetnetnenneaneunetenneenenenneneneneanes 135
S O s o Fo o) [PP PP 136

7.5. join HoJEEo] W W AIE e 137
7.5.1. one-to-many / MANY-LO-0IE .rerurrnrntnenenenenenenenenananananeneneneneneeaeaeeraeaenenns 137
T.5.2. ONE O ONE wrttitttte ettt e et e et e e e e e e e ettt ettt aeaan 138
TG TV, F= V0) A Vo B 00 = o N 139

7.6 Bk BAE AT Wl E s 140
8. Component T3 i e aaaaas 143
B L. B E A B i 143

HIBERNATE - 189 E AutE 93 34 9%

82. F& AAES 7F ZHAHE e 145
83. Map QEIZEEXN ZFTWHEET . 147
8.4. composite AJEAEEAN AFWTEL .. 147
8.5, T ARl Fd T E B i e 149
9. INNETItANCE MAPDINEZ +ueutentnenttneneien ettt et ettt et et et e e ea et ea et et e e en e e en et e eaeeneneaenaans 151
9.1. The three SIFATEIES .uerntunernten ettt ettt et et et et e e et e et e e e e eeneaneas 151
9.1.1. Table per class hIeTrarChycceveieririniiiiin e 151
9.1.2. Table PEr SUDCIASS .uteuiiniiiiineieiei e e 152
9.1.3. Table per subclass: using a diSCTIMINALOT ...euvuieneniinineniieiiiieieneieeenenen. 153
9.1.4. table per class hierarchy®} table per subclassE EFF8F7] vovveiiiiieeerinnnn. 154
0.1.5. Table per CONCIELE ClASS .ueuirienintininiii ettt e e eaeane 154
9.1.6. Table per concrete class using implicit polymorphismc..cceceeeveniennen. 155
9.1.7. &=2<2 AL v A mAEFH EAT7] e 156

0.2, Al G e 157
10 AT EZ ZFABFZ] e 159
10.1. Hibernate ZH Al AL S oo, 159
102, BAES DEIE AIT]7] i 159
10.3. AT B AT T] 7] i 160
JL O B =Y - g USSR 162
1041, B ES ABBEZ] oot 162
1042, ZHAES ZEE F7] oo 167
10.4.3. Criteria Z OB oottt 167
10.4.4. native SQLOAIAT OIS i 168
10.5. 9% AAEL HZATET] oo 168
10.6. detached ZBA S WHIAAIT] 7] oo e e, 169
10.7. ZFEH QD 2Bl Zd B oot e 170
10.8. HZs AT 2FAIBEZ] i 171
10.9. & e TE HolHAZALE Atolo] AAES BAET] o 171
10.10. Session=g fIUSH Al Z] 7] oo 172
10.11. Transitive persistence(Z1 O] S S5) it 173
10.12. HIEFHIOTE] AFE-BE7] oot 175
11. Transactions and CONCUITENCY ..eueuenrntunernetn ittt ettt ettt eanetaeanetneanereaeanees 177
1.1, AR G973 EIAA GO i 177
TLLL 2 TER] e 177

[B o4 I =) B o =1 USRS 178
11.1.3. AA] identity LTI TF7] coiiiiiiiiii e 179
IL1LA FEBE AEE s 180
11.2. "lolEwlo] 22 EMAMA ZAl AA i 181
112,10 T TR B BT i 182
11.2.2. JTA AFEBE7] it e e e e 183
11.2.3.0 @21 A8E ZTE] oo 185
11.24. EMAA BFYOFR ittt 185
11.3. Optimistic FATA A O] oo 186
11.3.1. o Z A1 A AT oo 186

Vi

11.32. 8 A A0 BASE 187

11.3.3. Detached ZAAE37 ZFZH S BB it 188

11.3.4. AF A BAZES ZEZBF AIT] 7] i 189

11.4. PessimiStic T0CKING evnerniiiiiiii e 189
11.5. Connection Trelease MOAES ..c.eueutineniuntnetin ettt ettt et et et et e e e et eneneenenns 190

12, AEIAITEI ST Ol E B e 193
12,0, QB A B B i 193
12,2, OJHI E Al ZmBl e 195
12.3. Hibernate QA Q1 H Qb it 197

13, Batch T2H€1m 199
13010 BALCR INSEILS teinitiiinet ittt ettt et e et e et et et e et e ea e aaens 199
13.2. BatCh UPAALES .eetininiiiiii e 200
13.3. StatelessSession W, B T L oo 201
13.4. DML-HQIFEAHY 2 WHOH BRI Lo 201

14. HQL: 3lolvjulo]E Zeo] <loj(Hibernate Query Language)eeeeereveeeerevenneeeevennn 205
T4 L. T A Al B e 205
A o) s N PP 205
143, AFETF O B e 206
14.4. join T2l B AIE i 208
14.5. Referring to 1dentifier PrOPEITY ...ceuveuientiuiintiii ittt e enes 208
L4.6. SELECE ittt et ettt et aaa e aaas 208
LA7. B Al BB i 210
14.8. Polymorphic(TFE) Ol S it 211
L4.9. WHETE i 211
L4010, BB] B it 213
LT4.11. 0rder DY B oo 217
L4012, group DY B ot 218
1413, M EZ Ol 5 e 219
14.14. HQL A B oottt e e et e e e e e e e e et eeeaas 219
14.15. THEE Update @} dElELE .ovniiieniiiii e 222
1416, HE & E Bl G e 222
L1417, I B S e 224
14.18. ROW VAlUE CONSIIUCIOT - am tettttttt ettt et ettt e e e e e e e e e e a ettt e enenenan 224

15. Criteria Q1B oottt ettt ettt 227
15.1. Criteria Q1ZSBA 2 A AT BF 7] o 227
15.2. A Al A TESEZ] oo 227
15.3. AFEL AR 7] (0rdering) covvvveneeiiiiieeiiiiee e 228
15,4, A T i 229
155 B G AF T oo 230
15.6. oAl OB e 230
15.7. Projections, aggregation LT 3L ZIOUPINE .eueevrnerrnnerrunerrineriineerineersinarsenarsnnaeees 231
15.8. Detached A EF MEAOE it 233
15.9. natural 2JHERFO] Q)3 A O B 234

L0, NALVE SOOIl ittt ittt e e e e et et et et et et ea et ea et et e et et ea et ean et eaneanesnesneaneans 237

vii

HIBERNATE - 189 E AutE 93 34 9%

17.

18.

19.

16.1. SQLQUETY A8l 7] oot 237
16. 1.1, 2ZFBE B OB e 237
16.1.2. Bntity O] B oo 238
16.1.3. AFAEF FHHAEL HFB7] oo 239
16.1.4. 2] 7] AEIEI S WFESESF7] oot 239
16.1.5. non-managed AEJE]ES HFEFSI7] i 241
16.1.6. 2S5 ZITIBET] i 242
L16.1.7. T O] B B oo 242

162, MHE SOL B O B e 242
16.2.1. WA|AH OS2 column/alias ©] 552 A A+ return-property A}-83}

4 I TSP PPTPR 244
1622, 2ol A3 WA ZEAA AFEEF7] i 245

16.3. create, update ZZ2] 3L deleteE 93 HWET SOL .ooieiiiiiiiieeiiiiieeeeee e 246

16.4. 2L 9 8F BFZT] SO coiiiiiiee e 248

Lo e = T = e = o U UUPPPUUUUR 251

17.1. HIbernate T B S oo 251

XML T T e ettt 255

18.1. XML HIOTEIRE FFA BF7] it 255
18.1.1. XML} Zei m13BE 3 A E7] oo 255
18.1.2. XML mRH WS H T BE7] oo 256

18.2. XML TR W EFHIOTE] oottt 256

18.3. XML HIOTE] F BIBEFZ] oo 259

S EHY THABET] i 261

10,0, A B S 261
19.1.1. lazy AFAEZ ZFABF7] oo 262
10.1.2. F A WEES FHEZ] i 262
19.1.3. Single-ended AT ZEFA] oottt 263
1914, FAXET ZZHAEL 2718 ATI7] oo 266
19.1.5. batch & AFEBF7] oo 267
19.1.6. subselect |2 A& GF7] i 268
19.1.7. lazy Z2TE] FH A AFETF7] oo 268

19.2. FHHA B THA] e 269
19.2.1. Cache T T B oo 270
19.2.2, HEI: Q1 7] B i e 270
19.2.3. HEIE: Q171722 7] oo 271
1924, W AABIA] L YT1/ZAT7] i, 271
19.2.5. HFSE: transactional ..o..eeieieeieiei e 271
19.2.6. Cache-provider/concurrency-strategy compatibilityc..cc.covevervenvenienienns 271

19.3. FHATE S FEE BF7] i 272

194, O THA] ottt 273

10.5. A FEH O]FEF7] i 274
L0 5. L B T oo e e 274
19.5.2. List, map, idbag, set5-2 updated] 7}% T&Z<el FIdHEo|Th ... 275
19.5.3. Bage# listE2 7F¢ 842 inverse A EOITE ... 275

viii

19.5.4. D AF el oot 276

10.6. HEHZ EUEI T TEZ] oo 276
19.6.1. SessionFactory U EIE BF7] oo 276

I I Y, (< o (e PPN 277

20, oAl QU oo e 279
20.1. AT AR 22T)HE A A e 279
20.1.1. 227T10F BEZBE AT T 7] i 279

20.1.2. I A B BET] e 282

20.1.3. ZEIEIE oo 283

20.1.4. AN AFEBF7] oo 284

20.1.5. AZ3TFE 2710 QUHIOTES e 284

20.1.6. FZsle 27|vf QUOlEE Ant AFESF7] oo 285

20.1.7. 22710 FBA ZAAF oo 285

20.1.8. 2711} F8A AAIE Yl Ant AFESF7] i 286

210 Al Al B I RE A s 287
210 ZFEASO] THFF IEE s 287
21.2. QFHEBE ONE-TO-TNANY «.eirnneiinneeiie e ettt e 287
21.3. AZAIOI T AT T 7] e 289
21.4. A ZACITE ST Unsaved-VAIUE .oeneenen e 291
205, A e 2901

22. Al Weblog O ZFIANOIAT oot 293
22,0, F B BT T e 293
22.2. Hibernate TIT B oot 294
22.3. HIDEINAE S o ittt et et ettt e e 297

23. Al A OB TEAL THT B e 303
23.1. EmMPIOYEr/EMPIOYEE euueuiniiiniitit ittt 303
232, AULNOT/WOTK o ettt 305
23.3. Customer/Order/PrOAUCT ...ueuen et 307
23.4. ZTEF oflAl M T B e 309
23.4.1. "H A3 E (Typed)" one-to-one ST .ooviiiiiieieeeieeeeeeeeeeeeeaaans 309

23.4.2. Composite 7] SA]l oiiiiii e 310

2343, F5" A 7] AL 7FA Many-to-Many ...cceeeeeeeeeeeeeiieeeeeeieeeeannn. 313

2344, I8 Z1HE T e 314

23.4.5. Al 150 T3 ATE oo 315

24, 2Ol A ZEE e 317
25. Database Portability CONSIAErationsc..c.veuueeeuniuneuniueiiiei ettt e eaeneanenns 321
25.1. Portability BasiCS .iuiuieieiiiiiiiiiiie e 321

B T B) -1 Tt TN 321
25.3. DHAlECt TESOIULION euttinit ittt et ettt et et et e et et et e e ee e e eneanenes 321
25.4. Tdentifier QENETAtIONc.uiiuiiniin i e e et e e e eane 322
25.5. Database fUNCHONS ...ueneniininetin ettt ettt e et e e e e e et e eneenenes 323
25.0. TYPE MADPDINEZS eruennenininin ittt ettt ettt et et e e et et et en e e e e 323

IS (= 410 el PPN 325

o2l

Working with object-oriented software and a relational database can be cumbersome and time
consuming in today's enterprise environments. Hibernate is an Object/Relational Mapping tool for
Java environments. The term Object/Relational Mapping (ORM) refers to the technique of mapping

a data representation from an object model to a relational data model with a SQL-based schema.

Hibernate not only takes care of the mapping from Java classes to database tables (and from Java
data types to SQL data types), but also provides data query and retrieval facilities. It can also

significantly reduce development time otherwise spent with manual data handling in SQL and JDBC.

Hibernate's goal is to relieve the developer from 95 percent of common data persistence related
programming tasks. Hibernate may not be the best solution for data-centric applications that only
use stored-procedures to implement the business logic in the database, it is most useful with object-
oriented domain models and business logic in the Java-based middle-tier. However, Hibernate can
certainly help you to remove or encapsulate vendor-specific SQL code and will help with the

common task of result set translation from a tabular representation to a graph of objects.

¢} walo] Hibernate®} Object/Relational w3 = A=) zpule] AR ebH, ths ©HA
< WE7] vtk

e 2

© o
2

A
5

PN

gl

[2

A AR ABEAES 7H B I REHLES 14 Tutorial & ¢olgt. FEE

doc/reference/tutorial/ T @ E 2] o] E 3 o] At}

to 5
2o rlo

=
2. Hibernate7 AH8-8 % Sl 742 olsl2l® 24 o784 & gojeh.

3. View the eg/ directory in the Hibernate distribution. It contains a simple standalone application.
Copy your JDBC driver to the lib/ directory and edit etc/hibernate.properties, specifying correct
values for your database. From a command prompt in the distribution directory, type ant eg

(using Ant), or under Windows, type build eg.

4. Use this reference documentation as your primary source of information. Consider reading
[JPwH] if you need more help with application design, or if you prefer a step-by-step tutorial.

Also visit http://caveatemptor.hibernate.org and download the example application from [JPwH].
5. FAQE-& Hibernate 9] AFO]|E o] gwgo] 9tk
6. Links to third party demos, examples, and tutorials are maintained on the Hibernate website.

7. Hibernate SJAFO]E 9] F&A 992 A7 dHdx g 53 £F 4 E(Tomeat, JBoss

& 32
AS, Struts, EJB %.)oll #3 £ g0t}

If you have questions, use the user forum linked on the Hibernate website. We also provide a
JIRA issue tracking system for bug reports and feature requests. If you are interested in the
development of Hibernate, join the developer mailing list. If you are interested in translating this

documentation into your language, contact us on the developer mailing list.

HibernateE 9%k A& 7Id A, AF AW, 283 5L JBoss IncE &3l ©]§& 7Fsattt

(http://www.hibernate.org/SupportTraining/S & 2}). Hibernatex= JBoss Professional Open Source

Xi

http://caveatemptor.hibernate.org

e

o] th3t JBoss Enterprise Middleware System (JEMS) suite®] =

il

product ZEZA Eo]3l A|E
g HEAE T

1. Feedback

Use Hibernate JIRA [http://opensource.atlassian.com/projects/hibernate] to report errors or request

enhacements to this documentation.

Xii

http://opensource.atlassian.com/projects/hibernate
http://opensource.atlassian.com/projects/hibernate

Tutorial

Intended for new users, this chapter provides an step-by-step introduction to Hibernate, starting
with a simple application using an in-memory database. The tutorial is based on an earlier tutorial
developed by Michael Gloegl. All code is contained in the tutorials/web directory of the project

source.

e

This tutorial expects the user have knowledge of both Java and SQL. If you have
a limited knowledge of JAVA or SQL, it is advised that you start with a good

introduction to that technology prior to attempting to learn Hibernate.

(3

1.1. 3 E 1 - A WM& Hibernate o] Zg]# o)A

For this example, we will set up a small database application that can store events we want to

attend and information about the host(s) of these events.

(3

HSQLDB

1.1.1. Setup

The first thing we need to do is to set up the development environment. We will be using the
"standard layout" advocated by alot of build tools such as Maven [http://maven.org]. Maven, in
particular, has a good resource describing this layout [http://maven.apache.org/guides/introduction/
introduction-to-the-standard-directory-layout.html]. As this tutorial is to be a web application, we

will be creating and making use of src/main/java, src/main/resources and src/main/webapp directories.

We will be using Maven in this tutorial, taking advantage of its transitive dependency management
capabilities as well as the ability of many IDEs to automatically set up a project for us based

on the maven descriptor.

http://hsqldb.org/
http://hsqldb.org/
http://maven.org
http://maven.org
http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html

17}, Tutorial

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemal ocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/
maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupld>org.hibernate.tutorials</groupld>
<artifactld>hibernate-tutorial</artifactld>
<version>1.0.0-SNAPSHOT</version>
<name>First Hibernate Tutorial</name>

<build>
<l-- we dont want the version to be part of the generated war file name -->
<finalName>${artifactld}</finalName>

</build>

<dependencies>
<dependency>
<groupld>org.hibernate</groupld>
<artifactld>hibernate-core</artifactld>
</dependency>

<!-- Because this is a web app, we also have a dependency on the servlet api. -->
<dependency>

<groupld>javax.servlet</groupld>

<artifactld>servlet-api</artifactid>
</dependency>

<!-- Hibernate uses slf4j for logging, for our purposes here use the simple backend -->
<dependency>

<groupld>org.slf4j</groupld>

<artifactld>slf4j-simple</artifactid>
</dependency>

<!-- Hibernate gives you a choice of bytecode providers between cglib and javassist -->
<dependency>
<groupld>javassist</groupld>
<artifactld>javassist</artifactld>
</dependency>
</dependencies>

</project>

e
It is not a requirement to use Maven. If you wish to use something else to build
this tutoial (such as Ant), the layout will remain the same. The only change is
that you will need to manually account for all the needed dependencies. If you
use something like Ivy [http://ant.apache.org/ivy/] providing transitive dependency

management you would still use the dependencies mentioned below. Otherwise,

you'd need to grab all dependencies, both explicit and transitive, and add them

to the project's classpath. If working from the Hibernate distribution bundle, this
would mean hibernate3.jar, all artifacts in the lib/required directory and all files from
either the lib/bytecode/cglib or lib/bytecode/javassist directory; additionally you will

need both the servlet-api jar and one of the slf4j logging backends.

Save this file as pom.xml in the project root directory.

1.1.2. A HA FY =

Next, we create a class that represents the event we want to store in the database; it is a simple

JavaBean class with some properties:

package org.hibernate.tutorial.domain;

import java.util.Date;

public class Event {
private Long id;

private String title;
private Date date;

public Event() {}

public Long getld() {

return id;

private void setld(Long id) {
this.id = id;

public Date getDate() {
return date;,

http://ant.apache.org/ivy/
http://ant.apache.org/ivy/

17}, Tutorial

public void setDate(Date date) {
this.date = date;

public String getTitle() {
return title;

public void setTitle(String title) {
this.title = title;

This class uses standard JavaBean naming conventions for property getter and setter methods,
as well as private visibility for the fields. Although this is the recommended design, it is not
required. Hibernate can also access fields directly, the benefit of accessor methods is robustness

for refactoring.

The id property holds a unique identifier value for a particular event. All persistent entity classes
(there are less important dependent classes as well) will need such an identifier property if we
want to use the full feature set of Hibernate. In fact, most applications, especially web applications,
need to distinguish objects by identifier, so you should consider this a feature rather than a
limitation. However, we usually do not manipulate the identity of an object, hence the setter
method should be private. Only Hibernate will assign identifiers when an object is saved. Hibernate
can access public, private, and protected accessor methods, as well as public, private and protected

fields directly. The choice is up to you and you can match it to fit your application design.

The no-argument constructor is a requirement for all persistent classes; Hibernate has to create
objects for you, using Java Reflection. The constructor can be private, however package or public
visibility is required for runtime proxy generation and efficient data retrieval without bytecode

instrumentation.

Save this file to the src/main/java/org/hibernate/tutorial/domain directory.

1.1.3. The mapping file

Hibernaiet B4 Zej250] 0a AASS 2EA73 A4A7E PEe & Bast Ao
o] 2 Hibernate w3 o] &S P3l= 3Lolv). viF IUS HibernateZ7} 53l oF 3}
= ﬂo]aﬁﬂ‘)]/\ el elelEo] FARIA], ZE]al A o] ARgsfoF st 2 HolE Weo #H
HEo] F3lJIAE Hibernateol Al & &t

WY el AR FrE Bed 2ok

<?xml version="1.0"?>

The mapping file

<IDOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping package="org.hibernate.tutorial.domain">

[.]

</hibernate-mapping>

Hibernate DTD is sophisticated. You can use it for auto-completion of XML mapping elements
and attributes in your editor or IDE. Opening up the DTD file in your text editor is the easiest
way to get an overview of all elements and attributes, and to view the defaults, as well as some
comments. Hibernate will not load the DTD file from the web, but first look it up from the
classpath of the application. The DTD file is included in hibernate-core.jar (it is also included in

the hibernate3.jar, if using the distribution bundle).

e

We will omit the DTD declaration in future examples to shorten the code. It is,

of course, not optional.

Between the two hibernate-mapping tags, include a class element. All persistent entity classes (again,
there might be dependent classes later on, which are not first-class entities) need a mapping to
a table in the SQL database:

<hibernate-mapping package="org.hibernate.tutorial.domain">
<class name="Event" table="EVENTS">
</class>

</hibernate-mapping>

So far we have told Hibernate how to persist and load object of class Event to the table EVENTS.
Each instance is now represented by a row in that table. Now we can continue by mapping
the unique identifier property to the tables primary key. As we do not want to care about
handling this identifier, we configure Hibernate's identifier generation strategy for a surrogate

primary key column:

<hibernate-mapping package="org.hibernate.tutorial.domain">

<class name="Event" table="EVENTS">

1%, Tutorial

<id name="id" column="EVENT _ID">
<generator class="native"/>
</id>
</class>

</hibernate-mapping>

The id element is the declaration of the identifier property. The name='"id" mapping attribute
declares the name of the JavaBean property and tells Hibernate to use the getld() and setld()
methods to access the property. The column attribute tells Hibernate which column of the EVENTS
table holds the primary key value.

The nested generator element specifies the identifier generation strategy (aka how are identifier
values generated?). In this case we choose native, which offers a level of portability depending
on the configured database dialect. Hibernate supports database generated, globally unique, as well
as application assigned, identifiers. Identifier value generation is also one of Hibernate's many

extension points and you can plugin in your own strategy.

Ak

S
Q

native is no longer consider the best strategy in terms of portability. for further

discussion, see 25.47. “Identifier generation”

Lastly, we need to tell Hibernate about the remaining entity class properties. By default, no

properties of the class are considered persistent:

<hibernate-mapping package="org.hibernate.tutorial.domain">

<class name="Event" table="EVENTS">
<id name="id" column="EVENT _ID">
<generator class="native"/>
<fid>
<property name="date" type="timestamp" column="EVENT_DATE"/>
<property name="title"/>
</class>

</hibernate-mapping>

Similar to the id element, the name attribute of the property element tells Hibernate which getter
and setter methods to use. In this case, Hibernate will search for getDate(), setDate(), getTitle()

and setTitle() methods.

Hibernate 43

The title mapping also lacks a type attribute. The types declared and used in the mapping files
are not Java data types; they are not SQL database types either. These types are called Hibernate
mapping types, converters which can translate from Java to SQL data types and vice versa.
Again, Hibernate will try to determine the correct conversion and mapping type itself if the type
attribute is not present in the mapping. In some cases this automatic detection using Reflection
on the Java class might not have the default you expect or need. This is the case with the
date property. Hibernate cannot know if the property, which is of java.util.Date, should map to
a SQL date, timestamp, or time column. Full date and time information is preserved by mapping

the property with a timestamp converter.

Z} O
1 -

Hibernate makes this mapping type determination using reflection when the mapping
files are processed. This can take time and resources, so if startup performance is

important you should consider explicitly defining the type to use.

Save this mapping file as src/main/resources/org/hibernate/tutorial/domain/Event.hbm.xml.

1.1.4. Hibernate 4]

At this point, you should have the persistent class and its mapping file in place. It is now time

to configure Hibernate. First let's set up HSQLDB to run in 'server mode"

(3

We will utilize the Maven exec plugin to launch the HSQLDB server by running: mvn exec:java

-Dexec.mainClass="org.hsqldb.Server" -Dexec.args="-database.0 file:target/data/tutorial’ You will see it start
up and bind to a TCP/IP socket; this is where our application will connect later. If you want to
start with a fresh database during this tutorial, shutdown HSQLDB, delete all files in the target/
data directory, and start HSQLDB again.

Hibernate will be connecting to the database on behalf of your application, so it needs to

know how to obtain connections. For this tutorial we will be using a standalone connection pool

1%, Tutorial

(as opposed to a javax.sql.DataSource). Hibernate comes with support for two third-party open
source JDBC connection pools: ¢3p0 [https://sourceforge.net/projects/c3p0] and proxool [http://
proxool.sourceforge.net/]. However, we will be using the Hibernate built-in connection pool for

this tutorial.

>

For Hibernate's configuration, we can use a simple hibernate.properties file, a more sophisticated
hibernate.cfg.xml file, or even complete programmatic setup. Most users prefer the XML configuration
file:

<?xml version='1.0' encoding="utf-8'?>

<IDOCTYPE hibernate-configuration PUBLIC
"-//Hibernate/Hibernate Configuration DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<hibernate-configuration>

<session-factory>

<!-- Database connection settings -->

<property name="connection.driver_class">org.hsqldb.jdbcDriver</property>
<property name="connection.url">jdbc:hsqldb:hsql://localhost</property>
<property name="connection.username">sa</property>

<property hame="connection.password"></property>

<!-- JDBC connection pool (use the built-in) -->
<property name="connection.pool_size">1</property>

<!-- SQL dialect -->
<property nhame="dialect">org.hibernate.dialect. HSQLDialect</property>

<!-- Enable Hibernate's automatic session context management -->
<property name="current_session_context_class">thread</property>

<l-- Disable the second-level cache -->
<property name="cache.provider_class">org.hibernate.cache.NoCacheProvider</property>

<!I-- Echo all executed SQL to stdout -->
<property name="show_sql">true</property>

https://sourceforge.net/projects/c3p0
https://sourceforge.net/projects/c3p0
http://proxool.sourceforge.net/
http://proxool.sourceforge.net/
http://proxool.sourceforge.net/

Building with Maven

<!-- Drop and re-create the database schema on startup -->
<property name="hbm2ddl|.auto">update</property>

<mapping resource="org/hibernate/tutorial/domain/Event.nbm.xml"/>

</session-factory>

</hibernate-configuration>

(3

You configure Hibernate's SessionFactory. SessionFactory is a global factory responsible for a
particular database. If you have several databases, for easier startup you should use several <session-

factory> configurations in several configuration files.

The first four property elements contain the necessary configuration for the JDBC connection. The

dialect property element specifies the particular SQL variant Hibernate generates.

e gu

In most cases, Hibernate is able to properly determine which dialect to use. See

“Dialect resolution” for more information.

Hibernate's automatic session management for persistence contexts is particularly useful in this
context. The hbm2ddl.auto option turns on automatic generation of database schemas directly into
the database. This can also be turned off by removing the configuration option, or redirected to
a file with the help of the SchemaExport Ant task. Finally, add the mapping file(s) for persistent

classes to the configuration.

Save this file as hibernate.cfg.xml into the src/main/resources directory.

1.1.5. Building with Maven

We will now build the tutorial with Maven. You will need to have Maven installed; it is available
from the Maven download page [http://maven.apache.org/download.html]. Maven will read the /
pom.xml file we created earlier and know how to perform some basic project tasks. First, lets run

the compile goal to make sure we can compile everything so far:

[hibernateTutorial]$ mvn compile
[INFO] Scanning for projects...

http://maven.apache.org/download.html
http://maven.apache.org/download.html

17}, Tutorial

[INFO]
[INFO] Building First Hibernate Tutorial
[INFO] task-segment: [compile]
[INFO]
[INFO] [resources:resources]

[INFO] Using default encoding to copy filtered resources.

[INFQO] [compiler:compile]

[INFO] Compiling 1 source file to /home/steve/projects/sandbox/hibernateTutorial/target/classes
[INFO]
[INFO] BUILD SUCCESSFUL
[INFO]
[INFO] Total time: 2 seconds

[INFO] Finished at: Tue Jun 09 12:25:25 CDT 2009
[INFO] Final Memory: 5M/547M

[INFO]

1.1.6. A Z+3} helpers

It is time to load and store some Event objects, but first you have to complete the setup with some
infrastructure code. You have to startup Hibernate by building a global org.hibernate.SessionFactory
object and storing it somewhere for easy access in application code. A org.hibernate.SessionFactory is
used to obtain org.hibernate.Session instances. A org.hibernate.Session represents a single-threaded unit

of work. The org.hibernate.SessionFactory is a thread-safe global object that is instantiated once.

We will create a HibernateUtil helper class that takes care of startup and makes accessing the

org.hibernate.SessionFactory more convenient.

package org.hibernate.tutorial.util;

import org.hibernate.SessionFactory;
import org.hibernate.cfg.Configuration;

public class HibernateUtil {
private static final SessionFactory sessionFactory = buildSessionFactory();

private static SessionFactory buildSessionFactory() {

try {
/I Create the SessionFactory from hibernate.cfg.xml
return new Configuration().configure().buildSessionFactory();

}

catch (Throwable ex) {
/I Make sure you log the exception, as it might be swallowed
System.err.printin("Initial SessionFactory creation failed." + ex);

2 = AA A%

throw new ExceptioninlinitializerError(ex);

public static SessionFactory getSessionFactory() {
return sessionFactory;

Save this code as src/main/java/org/hibernate/tutorial/util/HibernateUtil. java

This class not only produces the global org.hibernate.SessionFactory reference in its static initializer;
it also hides the fact that it uses a static singleton. We might just as well have looked up
the org.hibernate.SessionFactory reference from JNDI in an application server or any other location

for that matter.

If you give the org.hibernate.SessionFactory a name in your configuration, Hibernate will try to bind
it to JNDI under that name after it has been built. Another, better option is to use a JMX
deployment and let the JMX-capable container instantiate and bind a HibernateService to JNDL

Such advanced options are discussed later.

You now need to configure a logging system. Hibernate uses commons logging and provides two
choices: Log4j and JDK 1.4 logging. Most developers prefer Logdj: copy logdj.properties from the
Hibernate distribution in the etc/ directory to your src directory, next to hibernate.cfg.xml. If you
prefer to have more verbose output than that provided in the example configuration, you can

change the settings. By default, only the Hibernate startup message is shown on stdout.

The tutorial infrastructure is complete and you are now ready to do some real work with Hibernate.
1.1.7. AA 293 HA 3

We are now ready to start doing some real worjk with Hibernate. Let's start by writing an

EventManager class with a main() method:

package org.hibernate.tutorial;
import org.hibernate.Session;
import java.util.*;

import org.hibernate.tutorial. domain.Event;
import org.hibernate.tutorial.util. HibernateUtil;

public class EventManager {

11

17}, Tutorial

public static void main(String[] args) {
EventManager mgr = new EventManager();

if (args[0].equals("store™)) {
mgr.createAndStoreEvent("My Event", new Date());

HibernateUtil.getSessionFactory().close();

private void createAndStoreEvent(String title, Date theDate) {
Session session = HibernateUtil.getSessionFactory().getCurrentSession();
session.beginTransaction();

Event theEvent = new Event();
theEvent.setTitle(title);
theEvent.setDate(theDate);
session.save(theEvent);

session.getTransaction().commit();

In createAndStoreEvent() we created a new Event object and handed it over to Hibernate. At that

point, Hibernate takes care of the SQL and executes an INSERT on the database.

A org.hibernate.Session is designed to represent a single unit of work (a single atmoic piece of
work to be performed). For now we will keep things simple and assume a one-to-one granularity
between a Hibernate org.hibernate.Session and a database transaction. To shield our code from
the actual underlying transaction system we use the Hibernate org.hibernate.Transaction API. In this

particular case we are using JDBC-based transactional semantics, but it could also run with JTA.

What does sessionFactory.getCurrentSession() do? First, you can call it as many times and anywhere
you like once you get hold of your org.hibernate.SessionFactory. The getCurrentSession() method always
returns the "current” unit of work. Remember that we switched the configuration option for this
mechanism to "thread" in our src/main/resources/hibernate.cfg.xml? Due to that setting, the context of

a current unit of work is bound to the current Java thread that executes the application.

2 = AA A%

e

Hibernate offers three methods of current session tracking. The '"thread" based
method is not intended for production use; it is merely useful for prototyping and

tutorials such as this one. Current session tracking is discussed in more detail later on.

A org.hibernate.Session begins when the first call to getCurrentSession() is made for the current
thread. It is then bound by Hibernate to the current thread. When the transaction ends, either
through commit or rollback, Hibernate automatically unbinds the org.hibernate.Session from the
thread and closes it for you. If you call getCurrentSession() again, you get a new org.hibernate.Session

and can start a new unit of work.

Related to the unit of work scope, should the Hibernate org.hibernate.Session be used to execute
one or several database operations? The above example uses one org.hibernate.Session for one
operation. However this is pure coincidence; the example is just not complex enough to show any
other approach. The scope of a Hibernate org.hibernate.Session is flexible but you should never
design your application to use a new Hibernate org.hibernate.Session for every database operation.
Even though it is used in the following examples, consider session-per-operation an anti-pattern.

A real web application is shown later in the tutorial which will help illustrate this.

See 117, Transactions and Concurrency for more information about transaction handling and

demarcation. The previous example also skipped any error handling and rollback.

To run this, we will make use of the Maven exec plugin to call our class with the necessary

classpath setup: mvn exec:java -Dexec.mainClass="org.hibernate.tutorial. EventManager' -Dexec.args="store"

@7_&-3

You may need to perform mvn compile first.

You should see Hibernate starting up and, depending on your configuration, lots of log output.

Towards the end, the following line will be displayed:
[java] Hibernate: insert into EVENTS (EVENT_DATE, title, EVENT _ID) values (?, ?, ?)

This is the INSERT executed by Hibernate.

To list stored events an option is added to the main method:

if (args[0].equals("store")) {
mgr.createAndStoreEvent("My Event", new Date());

13

17}, Tutorial

else if (args[0].equals("list")) {
List events = mgr.listEvents();
for (inti = 0; i < events.size(); i++) {
Event theEvent = (Event) events.get(i);
System.out.printin(
"Event: " + theEvent.getTitle() + " Time: " + theEvent.getDate()

A new listEvents() method is also added:

private List listEvents() {
Session session = HibernateUtil.getSessionFactory().getCurrentSession();
session.beginTransaction();
List result = session.createQuery("from Event").list();
session.getTransaction().commit();
return result;

Here, we are using a Hibernate Query Language (HQL) query to load all existing Event objects
from the database. Hibernate will generate the appropriate SQL, send it to the database and
populate Event objects with the data. You can create more complex queries with HQL. See 147%.

HQL: slo]vjvlo]E & 2] <¢lof(Hibernate Query Language) for more information.

Now we can call our new functionality, again using the Maven exec plugin: mvn exec:java -

Dexec.mainClass="org.hibernate.tutorial. EventManager" -Dexec.args="list"
31 o 73} = O g =
12. E 2 - AAES wF 3]
So far we have mapped a single persistent entity class to a table in isolation. Let's expand on

that a bit and add some class associations. We will add people to the application and store a

list of events in which they participate.
1.2.1. Person |2 vl 35}7]

The first cut of the Person class looks like this:

package org.hibernate.tutorial.domain;
public class Person {

private Long id;

WY Ser-7lvHe] ol

gul

private int age;
private String firstname;
private String lastname;

public Person() {}

/I Accessor methods for all properties, private setter for 'id'

Save this to a file named src/main/java/org/hibernate/tutorial/domain/Person. java

Next, create the new mapping file as src/main/resources/org/hibernate/tutorial/domain/Person.hbm.xml

<hibernate-mapping package="org.hibernate.tutorial.domain">

<class name="Person" table="PERSON">

<id name="id" column="PERSON_ID">
<generator class="native"/>

</id>
<property name="age"/>
<property name="firstname"/>
<property name="lastname"/>

</class>

</hibernate-mapping>

npxjuto 2 A 2-¢ wjF & Hibernate2] T4 F71steh:

<mapping resource="events/Event.hbm.xml"/>
<mapping resource="events/Person.hbm.xml"/>

Create an association between these two entities. Persons can participate in events, and events
have participants. The design questions you have to deal with are: directionality, multiplicity,
and collection behavior.

1.2.2. T 8F Set-7|wke] A
By adding a collection of events to the Person class, you can easily navigate to the events for a

particular person, without executing an explicit query - by calling Person#getEvents. Multi-valued

associations are represented in Hibernate by one of the Java Collection Framework contracts;

15

17}, Tutorial

here we choose a java.util.Set because the collection will not contain duplicate elements and the

ordering is not relevant to our examples:

public class Person {
private Set events = new HashSet();

public Set getEvents() {
return events;

public void setEvents(Set events) {
this.events = events;

Before mapping this association, let's consider the other side. We could just keep this unidirectional
or create another collection on the Event, if we wanted to be able to navigate it from both
directions. This is not necessary, from a functional perspective. You can always execute an explicit
query to retrieve the participants for a particular event. This is a design choice left to you, but
what is clear from this discussion is the multiplicity of the association: 'many" valued on both

sides is called a many-to-many association. Hence, we use Hibernate's many-to-many mapping:

<class name="Person" table="PERSON">
<id name="id" column="PERSON_ID">
<generator class="native"/>
</id>
<property name="age"/>
<property name="firsthame"/>
<property name="lastname"/>

<set name="events" table="PERSON_EVENT">

<key column="PERSON_ID"/>

<many-to-many column="EVENT_ID" class="Event"/>
</set>

</class>

Hibernate supports a broad range of collection mappings, a set being most common. For a many-
to-many association, or n:m entity relationship, an association table is required. Each row in this
table represents a link between a person and an event. The table name is decalred using the table

attribute of the set element. The identifier column name in the association, for the person side,

hal 171

Al
ol

o %

-
gl

is defined with the key element, the column name for the event's side with the column attribute
of the many-to-many. You also have to tell Hibernate the class of the objects in your collection

(the class on the other side of the collection of references).

webA o] wisgS 9% HolEHol~ A7vkE tea 2k

| (. |

| EVENTS | | PERSON_EVENT | | |
I

|

		PERSON		
*EVENT_ID	<-->	*EVENT_ID		
EVENT _DATE		*PERSON_ID	<-->	*PERSON_ID
TITLE				AGE
		FIRSTNAME		
LASTNAME				

U
o

1.2.3. AAEo] Zs}H7]

Now we will bring some people and events together in a new method in EventManager:

private void addPersonToEvent(Long personld, Long eventld) {
Session session = HibernateUtil.getSessionFactory().getCurrentSession();
session.beginTransaction();

Person aPerson = (Person) session.load(Person.class, personld);
Event anEvent = (Event) session.load(Event.class, eventid);
aPerson.getEvents().add(anEvent);

session.getTransaction().commit();

After loading a Person and an Event, simply modify the collection using the normal collection
methods. There is no explicit call to update() or save(); Hibernate automatically detects that the
collection has been modified and needs to be updated. This is called automatic dirty checking. You
can also try it by modifying the name or the date property of any of your objects. As long as
they are in persistent state, that is, bound to a particular Hibernate org.hibernate.Session, Hibernate

monitors any changes and executes SQL in a write-behind fashion. The process of synchronizing

17

17}, Tutorial

the memory state with the database, usually only at the end of a unit of work, is called flushing.

In our code, the unit of work ends with a commit, or rollback, of the database transaction.

You can load person and event in different units of work. Or you can modify an object outside
of a org.hibernate.Session, when it is not in persistent state (if it was persistent before, this state

is called detached). You can even modify a collection when it is detached:

private void addPersonToEvent(Long personld, Long eventld) {
Session session = HibernateUtil.getSessionFactory().getCurrentSession();
session.beginTransaction();

Person aPerson = (Person) session
.createQuery("select p from Person p left join fetch p.events where p.id = :pid")
.setParameter("pid", personld)
.uniqueResult(); // Eager fetch the collection so we can use it detached

Event anEvent = (Event) session.load(Event.class, eventld);

session.getTransaction().commit();

/I End of first unit of work

aPerson.getEvents().add(anEvent); // aPerson (and its collection) is detached

/I Begin second unit of work

Session session2 = HibernateUtil.getSessionFactory().getCurrentSession();
session2.beginTransaction();
session2.update(aPerson); // Reattachment of aPerson

session2.getTransaction().commit();

The call to update makes a detached object persistent again by binding it to a new unit of work,
so any modifications you made to it while detached can be saved to the database. This includes

any modifications (additions/deletions) you made to a collection of that entity object.

This is not much use in our example, but it is an important concept you can incorporate into
your own application. Complete this exercise by adding a new action to the main method of
the EventManager and call it from the command line. If you need the identifiers of a person
and an event - the save() method returns it (you might have to modify some of the previous

methods to return that identifier):

else if (args[0].equals("addpersontoevent™)) {

g
i
o
N
X
2
0
i
1

Long eventld = mgr.createAndStoreEvent("My Event", new Date());
Long personld = mgr.createAndStorePerson("Foo", "Bar");
mgr.addPersonToEvent(personld, eventld);

System.out.printin("Added person " + personld + " to event " + eventld);

This is an example of an association between two equally important classes : two entities. As
mentioned earlier, there are other classes and types in a typical model, usually 'less important'.
Some you have already seen, like an int or a javalang.String. We call these classes value types,
and their instances depend on a particular entity. Instances of these types do not have their own
identity, nor are they shared between entities. Two persons do not reference the same firstname
object, even if they have the same first name. Value types cannot only be found in the JDK ,
but you can also write dependent classes yourself such as an Address or MonetaryAmount class. In

fact, in a Hibernate application all JDK classes are considered value types.

You can also design a collection of value types. This is conceptually different from a collection
of references to other entities, but looks almost the same in Java.

A

R B

1.2.4. =L 713

il

Let's add a collection of email addresses to the Person entity. This will be represented as a

java.util.Set of java.lang.String instances:

private Set emailAddresses = new HashSet();

public Set getEmailAddresses() {
return emailAddresses;

public void setEmailAddresses(Set emailAddresses) {
this.emailAddresses = emailAddresses;

The mapping of this Set is as follows:

<set name="emailAddresses" table="PERSON_EMAIL_ADDR">
<key column="PERSON_ID"/>
<element type="string" column="EMAIL_ADDR"/>

</set>

The difference compared with the earlier mapping is the use of the element part which tells

Hibernate that the collection does not contain references to another entity, but is rather a collection

19

17}, Tutorial

whose elements are values types, here specifically of type string. The lowercase name tells you
it is a Hibernate mapping type/converter. Again the table attribute of the set element determines
the table name for the collection. The key element defines the foreign-key column name in the
collection table. The column attribute in the element element defines the column name where the

email address values will actually be stored.

Here is the updated schema:

I (. I

| EVENTS | | PERSON_EVENT | | |
I

|

		PERSON				
			PERSON_EMAIL_ADDR			
*EVENT_ID	<-->	*EVENT_ID				
EVENT_DATE		*PERSON_ID	<-->	*PERSON_ID	<-->	*PERSON_ID
TITLE				AGE		*EMAIL_ADDR
I		FIRSTNAME				
LASTNAME						
I I

You can see that the primary key of the collection table is in fact a composite key that uses
both columns. This also implies that there cannot be duplicate email addresses per person, which

is exactly the semantics we need for a set in Java.

You can now try to add elements to this collection, just like we did before by linking persons

and events. It is the same code in Java:

private void addEmailToPerson(Long personld, String emailAddress) {
Session session = HibernateUtil.getSessionFactory().getCurrentSession();
session.beginTransaction();

Person aPerson = (Person) session.load(Person.class, personld);
/[adding to the emailAddress collection might trigger a lazy load of the collection

aPerson.getEmailAddresses().add(emailAddress);

session.getTransaction().commit();

This time we did not use a fetch query to initialize the collection. Monitor the SQL log and

try to optimize this with an eager fetch.

20

Bi-directional associations

1.2.5. Bi-directional associations

Next you will map a bi-directional association. You will make the association between person

and event work from both sides in Java. The database schema does not change, so you will

still have many-to-many multiplicity.

(3

First, add a collection of participants to the Event class:

private Set participants = new HashSet();
public Set getParticipants() {

return participants;

public void setParticipants(Set participants) {
this.participants = participants;

Now map this side of the association in Event.hbm.xml.

<set name="participants" table="PERSON_EVENT" inverse="true">
<key column="EVENT_ID"/>
<many-to-many column="PERSON_ID" class="events.Person"/>
</set>

These are normal set mappings in both mapping documents. Notice that the column names in
key and many-to-many swap in both mapping documents. The most important addition here is the

inverse="true" attribute in the set element of the Event's collection mapping.

What this means is that Hibernate should take the other side, the Person class, when it needs to
find out information about the link between the two. This will be a lot easier to understand once

you see how the bi-directional link between our two entities is created.

21

17}, Tutorial

126, e BAZe] 257

First, keep in mind that Hibernate does not affect normal Java semantics. How did we create
a link between a Person and an Event in the unidirectional example? You add an instance of
Event to the collection of event references, of an instance of Person. If you want to make this
link bi-directional, you have to do the same on the other side by adding a Person reference to
the collection in an Event. This process of 'setting the link on both sides' is absolutely necessary

with bi-directional links.

Many developers program defensively and create link management methods to correctly set both

sides (for example, in Person):

protected Set getEvents() {
return events;

protected void setEvents(Set events) {
this.events = events;

public void addToEvent(Event event) {
this.getEvents().add(event);
event.getParticipants().add(this);

public void removeFromEvent(Event event) {
this.getEvents().remove(event);
event.getParticipants().remove(this);

The get and set methods for the collection are now protected. This allows classes in the same
package and subclasses to still access the methods, but prevents everybody else from altering the

collections directly. Repeat the steps for the collection on the other side.

What about the inverse mapping attribute? For you, and for Java, a bi-directional link is simply
a matter of setting the references on both sides correctly. Hibernate, however, does not have
enough information to correctly arrange SQL INSERT and UPDATE statements (to avoid constraint
violations). Making one side of the association inverse tells Hibernate to consider it a mirror
of the other side. That is all that is necessary for Hibernate to resolve any issues that arise
when transforming a directional navigation model to a SQL database schema. The rules are
straightforward: all bi-directional associations need one side as inverse. In a one-to-many association

it has to be the many-side, and in many-to-many association you can select either side.

22

3 E 3 - EventManager ¢ o] Z g A o] A

1.3. ¥+E 3 - EventManager 9 o] Zg]#A oA

A Hibernate web application uses Session and Transaction almost like a standalone application.
However, some common patterns are useful. You can now write an EventManagerServlet. This servlet

can list all events stored in the database, and it provides an HTML form to enter new events.
1.3.1. 718 A &3 2357

First we need create our basic processing servlet. Since our servlet only handles HTTP GET

requests, we will only implement the doGet() method:

package org.hibernate.tutorial.web;
/I Imports
public class EventManagerServlet extends HttpServlet {

protected void doGet(
HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {

SimpleDateFormat dateFormatter = new SimpleDateFormat("dd.MM.yyyy");

try {
// Begin unit of work

HibernateUtil.getSessionFactory().getCurrentSession().beginTransaction();
/I Process request and render page...

// End unit of work
HibernateUtil.getSessionFactory().getCurrentSession().getTransaction().commit();
}
catch (Exception ex) {
HibernateUtil.getSessionFactory().getCurrentSession().getTransaction().rollback();
if (ServletException.class.islnstance(ex)) {
throw (ServletException) ex;
}
else {
throw new ServletException(ex);

17}, Tutorial

Save this servlet as src/main/java/org/hibernate/tutorial/web/EventManagerServlet.java

The pattern applied here is called session-per-request. When a request hits the servlet, a new
Hibernate Session is opened through the first call to getCurrentSession() on the SessionFactory. A
database transaction is then started. All data access occurs inside a transaction irrespective of

whether the data is read or written. Do not use the auto-commit mode in applications.

E diolgulol2 o o)A Ztzto] ths] A Z & Hibernate Sessions AF&31A] @k A
Jo thal PR Y7 &]9 Hibernate SessionS AFE3tef. A0 AE Aoz Al =
v} A g =9 vl =% = E getCurrentSession() = Al-83}}.

ko i

Next, the possible actions of the request are processed and the response HTML is rendered. We

will get to that part soon.

Finally, the unit of work ends when processing and rendering are complete. If any problems
occurred during processing or rendering, an exception will be thrown and the database transaction
rolled back. This completes the session-per-request pattern. Instead of the transaction demarcation
code in every servlet, you could also write a servlet filter. See the Hibernate website and Wiki
for more information about this pattern called Open Session in View. You will need it as soon

as you consider rendering your view in JSP, not in a servlet.
1.32. Z2A17 3 A

Now you can implement the processing of the request and the rendering of the page.

/I Write HTML header
PrintWriter out = response.getWriter();
out.printin("<html><head><title>Event Manager</title></head><body>");

/l Handle actions
if ("store".equals(request.getParameter("action"))) {

String eventTitle = request.getParameter("eventTitle");
String eventDate = request.getParameter("eventDate");
if ("".equals(eventTitle) || "".equals(eventDate)) {
out.printin("<i>Please enter event title and date.</i>");
}
else {
createAndStoreEvent(eventTitle, dateFormatter.parse(eventDate));
out.printin("<i>Added event.</i>");

24

LA AEE

/I Print page
printEventForm(out);
listEvents(out, dateFormatter);

/I Write HTML footer
out.printin("</body></htm[>");
out.flush();

out.close();

This coding style, with a mix of Java and HTML, would not scale in a more complex application-
keep in mind that we are only illustrating basic Hibernate concepts in this tutorial. The code prints
an HTML header and a footer. Inside this page, an HTML form for event entry and a list of

all events in the database are printed. The first method is trivial and only outputs HTML:

private void printEventForm(PrintWriter out) {
out.printin("<h2>Add new event:</h2>");
out.printin("<form>");
out.printin("Title: <input name='eventTitle' length="50"/>
");
out.printin("Date (e.g. 24.12.2009): <input nhame='eventDate' length="10'/>
");
out.printin("<input type='submit’ name="action’ value='store'/>");
out.printin("</form>");

listBvents() W] AT & dlute] Ao 2 Ad3d7] YA A Ao 22d =0 Z23dHE Hibernate Sessions
AHE- et

private void listEvents(PrintWriter out, SimpleDateFormat dateFormatter) {

List result = HibernateUtil.getSessionFactory()
.getCurrentSession().createCriteria(Event.class).list();
if (result.size() > 0) {
out.printin("<h2>Events in database:</h2>");
out.printin("<table border="1">");
out.printin("<tr>");
out.printin("<th>Event title</th>");
out.printin("<th>Event date</th>");
out.printin("</tr>");
Iterator it = result.iterator();
while (it.hasNext()) {
Event event = (Event) it.next();
out.printin("<tr>");

25

17}, Tutorial

out.printin("<td>" + event.getTitle() + "</td>");
out.printin("<td>" + dateFormatter.format(event.getDate()) + "</td>");
out.printin("</tr>");

}

out.printin("</table>");

R e o 2 store WAL createAndStoreEvent() WAL E TlAv| X HCh 2
SessionS A& 3T}

Y
rlo
r [
P
[%
&=
r
lo

protected void createAndStoreEvent(String title, Date theDate) {
Event theEvent = new Event();
theEvent.setTitle(title);
theEvent.setDate(theDate);

HibernateUtil.getSessionFactory()
.getCurrentSession().save(theEvent);

The servlet is now complete. A request to the servlet will be processed in a single Session and
Transaction. As earlier in the standalone application, Hibernate can automatically bind these objects
to the current thread of execution. This gives you the freedom to layer your code and access
the SessionFactory in any way you like. Usually you would use a more sophisticated design and
move the data access code into data access objects (the DAO pattern). See the Hibernate Wiki

for more examples.
1.3.3. B} x| 3}7] 28] 3l H A2ES}H7]

To deploy this application for testing we must create a Web ARchive (WAR). First we must
define the WAR descriptor as src/main/webapp/WEB-INF/web.xml

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.4"
xmins="http://java.sun.com/xml/ns/j2ee"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/web-
app_2_4.xsd">

<servlet>
<servlet-name>Event Manager</servlet-name>
<servlet-class>org.hibernate.tutorial.web.EventManagerServlet</servlet-class>

26

af

</servlet>

<servlet-mapping>
<servlet-name>Event Manager</servlet-name>
<url-pattern>/eventmanager</url-pattern>
</servlet-mapping>
</web-app>

To build and deploy call mvn package in your project directory and copy the hibernate-tutorial.war

file into your Tomcat webapps directory.

http://tomcat.apache.org/

At v X] g 3L Tomcato] 4 3Y o] ™, http://localhost:8080/hibernate-tutorial/eventmanager 2] Z 2] 7|
olMe HZslzh A WA 2 o] FAle MERY =& u HibernateZ} % 7]3}H(HibernateUtil
W & static initializer’} T2 ETH) HE AL B7] 93] 283 9w oWl o ASE o)
A Fe AT 89S A7) YElA Tomeat 215 AAREES e}

1.4. 99F

This tutorial covered the basics of writing a simple standalone Hibernate application and a small

web application. More tutorials are available from the Hibernate website [http://hibernate.org].

27

http://tomcat.apache.org/
http://hibernate.org
http://hibernate.org

28

o} 7] &) A

2.1. 71 &

The diagram below provides a high-level view of the Hibernate architecture:

We do not have the scope in this document to provide a more detailed view of all the runtime
architectures available; Hibernate is flexible and supports several different approaches. We will,

however, show the two extremes: "minimal” architecture and "comprehensive' architecture.

This next diagram illustrates how Hibernate utilizes database and configuration data to provide

persistence services, and persistent objects, to the application.

The "minimal" architecture has the application provide its own JDBC connections and manage its

own transactions. This approach uses a minimal subset of Hibernate's APIs:

The "comprehensive' architecture abstracts the application away from the underlying JDBC/JTA

APIs and allows Hibernate to manage the details.

Here are some definitions of the objects depicted in the diagrams:

SessionFactory (org.hibernate.SessionFactory)
A threadsafe, immutable cache of compiled mappings for a single database. A factory for
Session and a client of ConnectionProvider, SessionFactory can hold an optional (second-level)

cache of data that is reusable between transactions at a process, or cluster, level.

Session (org.hibernate.Session)
A single-threaded, short-lived object representing a conversation between the application and
the persistent store. It wraps a JDBC connection and is a factory for Transaction. Session holds
a mandatory first-level cache of persistent objects that are used when navigating the object

graph or looking up objects by identifier.

9% AANES 2A4E
Short-lived, single threaded objects containing persistent state and business function. These can
be ordinary JavaBeans/POJOs. They are associated with exactly one Session. Once the Session
is closed, they will be detached and free to use in any application layer (for example, directly

as data transfer objects to and from presentation).

Aol (Transient, 2 F-# %) AANEH FYHE
Instances of persistent classes that are not currently associated with a Session. They may have
been instantiated by the application and not yet persisted, or they may have been instantiated

by a closed Session.

29

27, o} El A

Transaction (org.hibernate.Transaction)
(Optional) A single-threaded, short-lived object used by the application to specify atomic units
of work. It abstracts the application from the underlying JDBC, JTA or CORBA transaction.
A Session might span several Transactions in some cases. However, transaction demarcation,

either using the underlying API or Transaction, is never optional.

ConnectionProvider (org.hibernate.connection.ConnectionProvider)
(Optional) A factory for, and pool of, JDBC connections. It abstracts the application from
underlying Datasource or DriverManager. It is not exposed to application, but it can be extended

and/or implemented by the developer.

TransactionFactory (org.hibernate.TransactionFactory)
(Optional) A factory for Transaction instances. It is not exposed to the application, but it can

be extended and/or implemented by the developer.

Extension Interfaces
Hibernate offers a range of optional extension interfaces you can implement to customize the

behavior of your persistence layer. See the API documentation for details.

Given a "minimal’ architecture, the application bypasses the Transaction/TransactionFactory and/or

ConnectionProvider APIs to communicate with JTA or JDBC directly.
—
22. Q2B 2 AHE

An instance of a persistent class can be in one of three different states. These states are defined
in relation to a persistence context. The Hibernate Session object is the persistence context. The

three different states are as follows:

transient
The instance is not associated with any persistence context. It has no persistent identity or

primary key value.

persistent
The instance is currently associated with a persistence context. It has a persistent identity
(primary key value) and can have a corresponding row in the database. For a particular
persistence context, Hibernate guarantees that persistent identity is equivalent to Java identity

in relation to the in-memory location of the object.

detached
The instance was once associated with a persistence context, but that context was closed, or
the instance was serialized to another process. It has a persistent identity and can have a
corresponding row in the database. For detached instances, Hibernate does not guarantee the

relationship between persistent identity and Java identity.

30

IMX &3

2.3. IMX &%

JMX is the J2EE standard for the management of Java components. Hibernate can be
managed via a JMX standard service. AN MBean implementation is provided in the distribution:

org.hibernate.jmx.HibernateService.

For an example of how to deploy Hibernate as a JMX service on the JBoss Application Server,

please see the JBoss User Guide. JBoss AS also provides these benefits if you deploy using JMX:

* Session Management: the Hibernate Session's life cycle can be automatically bound to the scope
of a JTA transaction. This means that you no longer have to manually open and close the
Session; this becomes the job of a JBoss EJB interceptor. You also do not have to worry about
transaction demarcation in your code (if you would like to write a portable persistence layer use

the optional Hibernate Transaction API for this). You call the HibernateContext to access a Session.

* HAR deployment: the Hibernate JMX service is deployed using a JBoss service deployment
descriptor in an EAR and/or SAR file, as it supports all the usual configuration options of
a Hibernate SessionFactory. However, you still need to name all your mapping files in the
deployment descriptor. If you use the optional HAR deployment, JBoss will automatically detect
all mapping files in your HAR file.

oJF FHE E F7b PRE IBoss A A N M A Tt = Fxste

Another feature available as a JMX service is runtime Hibernate statistics. See 3.4.6%. “IHibernate

E7A” for more information.

2.4. JCA A

Hibernate can also be configured as a JCA connector. Please see the website for more information.

Please note, however, that at this stage Hibernate JCA support is under development.

2.5. Contextual sessions

Most applications using Hibernate need some form of "contextual” session, where a given session is in
effect throughout the scope of a given context. However, across applications the definition of what
constitutes a context is typically different; different contexts define different scopes to the notion
of current. Applications using Hibernate prior to version 3.0 tended to utilize either home-grown
ThreadLocal-based contextual sessions, helper classes such as HibernateUtil, or utilized third-party

frameworks, such as Spring or Pico, which provided proxy/interception-based contextual sessions.

Starting with version 3.0.1, Hibernate added the SessionFactory.getCurrentSession() method. Initially,
this assumed usage of JTA transactions, where the JTA transaction defined both the scope and
context of a current session. Given the maturity of the numerous stand-alone JTA TransactionManager
implementations, most, if not all, applications should be using JTA transaction management, whether
or not they are deployed into a J2EE container. Based on that, the JTA-based contextual sessions

are all you need to use.

31

27, o} El A

However, as of version 3.1, the processing behind SessionFactory.getCurrentSession() is now pluggable.
To that end, a new extension interface, org.hibernate.context.CurrentSessionContext, and a new
configuration parameter, hibernate.current_session_context_class, have been added to allow pluggability

of the scope and context of defining current sessions.

See the Javadocs for the org.hibernate.context.CurrentSessionContext interface for a detailed discussion
of its contract. It defines a single method, currentSession(), by which the implementation is
responsible for tracking the current contextual session. Out-of-the-box, Hibernate comes with three

implementations of this interface:

* org.hibernate.context.JTASessionContext: current sessions are tracked and scoped by a JTA transaction.
The processing here is exactly the same as in the older JTA-only approach. See the Javadocs

for details.

* org.hibernate.context. ThreadLocalSessionContext:current sessions are tracked by thread of execution.

See the Javadocs for details.

* org.hibernate.context.ManagedSessionContext: current sessions are tracked by thread of execution.
However, you are responsible to bind and unbind a Session instance with static methods on this

class: it does not open, flush, or close a Session.

The first two implementations provide a 'one session - one database transaction' programming
model. This is also also known and used as session-per-request. The beginning and end of a
Hibernate session is defined by the duration of a database transaction. If you use programmatic
transaction demarcation in plain JSE without JTA, you are advised to use the Hibernate Transaction
API to hide the underlying transaction system from your code. If you use JTA, you can utilize
the JTA interfaces to demarcate transactions. If you execute in an EJB container that supports
CMT, transaction boundaries are defined declaratively and you do not need any transaction or
session demarcation operations in your code. Refer to 117%. Transactions and Concurrency for

more information and code examples.

The hibernate.current_session_context_class configuration parameter defines which
org.hibernate.context.CurrentSessionContext implementation should be used. For backwards compatibility,
if this configuration parameter is not set but a org.hibernate.transaction.TransactionManagerL.ookup is
configured, Hibernate will use the org.hibernate.context.JTASessionContext. Typically, the value of
this parameter would just name the implementation class to use. For the three out-of-the-box

implementations, however, there are three corresponding short names: "jta", "thread", and "managed".

32

T

Hibernate is designed to operate in many different environments and, as such, there is a broad
range of configuration parameters. Fortunately, most have sensible default values and Hibernate is
distributed with an example hibernate.properties file in etc/ that displays the various options. Simply

put the example file in your classpath and customize it to suit your needs.
RYA o
3.1. 229 Ao F+A4

An instance of org.hibernate.cfg.Configuration represents an entire set of mappings of an application's
Java types to an SQL database. The org.hibernate.cfg.Configuration is used to build an immutable

org.hibernate.SessionFactory. The mappings are compiled from various XML mapping files.

You can obtain a org.hibernate.cfg.Configuration instance by instantiating it directly and specifying

XML mapping documents. If the mapping files are in the classpath, use addResource(). For example:

Configuration cfg = new Configuration()
.addResource("ltem.hbm.xml")
.addResource("Bid.hbm.xml");

An alternative way is to specify the mapped class and allow Hibernate to find the mapping

document for you:

Configuration cfg = new Configuration()
.addClass(org.hibernate.auction.ltem.class)
.addClass(org.hibernate.auction.Bid.class);

Hibernate will then search for mapping files named /org/hibernate/auction/Item.hbm.xml and /org/

hibernate/auction/Bid.hbm.xml in the classpath. This approach eliminates any hardcoded filenames.

A org.hibernate.cfg.Configuration also allows you to specify configuration properties. For example:

Configuration cfg = new Configuration()
.addClass(org.hibernate.auction.ltem.class)
.addClass(org.hibernate.auction.Bid.class)

.setProperty("hibernate.dialect”, "org.hibernate.dialect. MySQLInnoDBDialect")

.setProperty("hibernate.connection.datasource", "java:comp/env/jdbc/test")

.setProperty("hibernate.order_updates”, "true");

This is not the only way to pass configuration properties to Hibernate. Some alternative options

include:

w
ol
-
oX

1. Pass an instance of java.util.Properties to Configuration.setProperties().
2. Place a file named hibernate.properties in a root directory of the classpath.
3. java -Dproperty=valueZS A}-83}a] System T EZJEEL A st}

4. Include <property> elements in hibernate.cfg.xml (this is discussed later).
If you want to get started quicklyhibernate.properties is the easiest approach.

The org.hibernate.cfg.Configuration is intended as a startup-time object that will be discarded once

a SessionFactory is created.

3.2. SessionFactory 4 7]

When all mappings have been parsed by the orghibernate.cfg.Configuration, the application must
obtain a factory for org.hibernate.Session instances. This factory is intended to be shared by all

application threads:
SessionFactory sessions = cfg.buildSessionFactory();

Hibernate does allow your application to instantiate more than one org.hibernate.SessionFactory. This

is useful if you are using more than one database.

3.3. JDBC AVAE

It is advisable to have the org.hibernate.SessionFactory create and pool JDBC connections for you.

If you take this approach, opening a org.hibernate.Session is as simple as:
Session session = sessions.openSession(); // open a new Session

Once you start a task that requires access to the database, a JDBC connection will be obtained

from the pool.

Before you can do this, you first need to pass some JDBC connection properties to Hibernate.
All Hibernate property names and semantics are defined on the class org.hibernate.cfg.Environment.

The most important settings for JDBC connection configuration are outlined below.

Hibernate will obtain and pool connections using java.sql.DriverManager if you set the following

properties:

¥ 3.1. Hibernate JDBC ZZ 3 EE

ZEIE olF R
hibernate.connection.driver_class jdbc =gtoly] FP =
hibernate.connection.url jdbc URL
hibernate.connection.username gl o] el w] o] & A8}

34

JDBC AYAE

ZI2HE °olF &=
hibernate.connection.password golEulo] 2~ ALE-AF A=
hibernate.connection.pool_size EHE AYAdEe AU ANF

Hibernate's own connection pooling algorithm is, however, quite rudimentary. It is intended to
help you get started and is not intended for use in a production system, or even for performance
testing. You should use a third party pool for best performance and stability. Just replace the
hibernate.connection.pool_size property with connection pool specific settings. This will turn off

Hibernate's internal pool. For example, you might like to use c3p0.

C3P0 is an open source JDBC connection pool distributed along with Hibernate in the lib
directory. Hibernate will use its org.hibernate.connection.C3POConnectionProvider for connection pooling
if you set hibernate.c3p0.* properties. If you would like to use Proxool, refer to the packaged

hibernate.properties and the Hibernate web site for more information.

The following is an example hibernate.properties file for c¢3p0:

hibernate.connection.driver_class = org.postgresql.Driver
hibernate.connection.url = jdbc:postgresql://localhost/mydatabase
hibernate.connection.username = myuser
hibernate.connection.password = secret
hibernate.c3p0.min_size=5

hibernate.c3p0.max_size=20

hibernate.c3p0.timeout=1800
hibernate.c3p0.max_statements=50

hibernate.dialect = org.hibernate.dialect.PostgreSQLDialect

For use inside an application server, you should almost always configure Hibernate to obtain
connections from an application server javax.sql.Datasource registered in JNDI. You will need to

set at least one of the following properties:

3 3.2. Hibernate Datasource Properties

Z2IY ol& 4=

hibernate.connection.datasource Ho]E &2 INDI o] &

hibernate. jndi.url URL of the JNDI provider (optional)
hibernate. jndi.class class of the JNDI InitialContextFactory (optional)
hibernate.connection.username database user (optional)
hibernate.connection.password database user password (optional)

Here is an example hibernate.properties file for an application server provided JNDI datasource:

hibernate.connection.datasource = java:/comp/env/jdbc/test

35

3% 74

hibernate.transaction.factory class =\
org.hibernate.transaction.JTATransactionFactory

hibernate.transaction.manager_lookup_class =\
org.hibernate.transaction.JBossTransactionManagerLookup

hibernate.dialect = org.hibernate.dialect.PostgreSQLDialect

INDI datasource2H-E o]z JDBC AYAHEL o] ZgAlo]A Auje] Aol o& #
He ERMAS Asdoz 3 Ao|th

Arbitrary connection properties can be given by prepending hibernate.connection' to the
connection property name. For example, you can specify a charSet connection property using

hibernate.connection.charSet.

You can define your own plugin strategy for obtaining JDBC connections by implementing the
interface org.hibernate.connection.ConnectionProvider, and specifying your custom implementation via

the hibernate.connection.provider_class property.
<~ — L
3.4. A8 A 4 ZEVHHE

There are a number of other properties that control the behavior of Hibernate at runtime. All

are optional and have reasonable default values.

ystem-level properties can be

set only via java -Dproperty=value or hibernate.properties. They cannot be set by the

other techniques described above.

¥ 3.3. Hibernate 74 Z2ZHEE

Z2y olg Tes

hibernate.dialect The classname of a Hibernate
org.hibernate.dialect.Dialect which allows Hibernate
to generate SQL optimized for a particular

relational database.
e.g. full.classname.of .Dialect

In most cases Hibernate will actually be able
to choose the correct org.hibernate.dialect.Dialect
implementation based on the JDBC metadata
returned by the JDBC driver.

hibernate.show_sql Write all SQL statements to console. This
is an alternative to setting the log category

org.hibernate.SQL to debug.

36

2 3E o g

8%

hibernate.format_sql

hibernate.default_schema

e.g. true | false

Pretty print the SQL in the log and console.

e.g. true | false

Qualify unqualified table names with the given

schema/tablespace in generated SQL.

e.g. SCHEMA_NAME

hibernate.default_catalog

hibernate.session_factory_name

hibernate.max_fetch_depth

Qualifies unqualified table names with the given

catalog in generated SQL.

e.g. CATALOG_NAME

The org.hibernate.SessionFactory will be
automatically bound to this name in JNDI after

it has been created.

e.g. jndi/composite/name

Sets a maximum "depth” for the outer join fetch
tree for single-ended associations (one-to-one,
many-to-one). A 0 disables default outer join

fetching.

e.g. recommended values between 0 and 3

hibernate.default_batch_fetch_size

hibernate.default_entity_mode

Sets a default size for Hibernate batch fetching

of associations.

e.g. recommended values 4, 8, 16

Sets a default mode for entity representation

for all sessions opened from this SessionFactory

dynamic-map, dom4j, pojo

hibernate.order_updates

hibernate.generate_statistics

Forces Hibernate to order SQL updates by the
primary key value of the items being updated.
This will result in fewer transaction deadlocks

in highly concurrent systems.

e.g. true | false

If enabled, Hibernate will collect statistics useful

for performance tuning.

e.g. true | false

37

2 3E o g

8%

hibernate.use_identifer_rollback

If enabled, generated identifier properties will
be reset to default values when objects are
deleted.

e.g. true | false

hibernate.use_sql_comments

If turned on, Hibernate will generate comments
inside the SQL, for easier debugging, defaults

to false.

e.g. true | false

¥ 3.4. Hibernate JDBC % AWM T2 HEE

Z=2HE °lF

hibernate. jJdbc.fetch_size

op

=
=

A non-zero value determines the JDBC fetch

size (calls Statement.setFetchSize()).

hibernate. jdbc.batch_size

A non-zero value enables use of JDBC2 batch

updates by Hibernate.

e.g. recommended values between 5 and 30

hibernate. jdbc.batch_versioned_data

Set this property to true if your JDBC driver
returns correct row counts from executeBatch().
lit is wusually safe to turn this option on.
Hibernate will then use batched DML for

automatically versioned data. Defaults to false.

e.g. true | false

hibernate. jdbc.factory_class

Select a custom org.hibernate.jdbc.Batcher. Most

applications will not need this configuration

property.

e.g. classname.of.BatcherFactory

hibernate. jdbc.use_scrollable_resultset

hibernate. jdbc.use_streams_for_binary

Enables use of JDBC2 scrollable resultsets by
Hibernate. This property is only necessary when
using user-supplied JDBC connections. Hibernate

uses connection metadata otherwise.

e.g. true | false

Use streams when writing/reading binary or
serializable types to/from JDBC. s*system-level
property

e.g. true | false

38

2 3E o g

8%

hibernate. jdbc.use_get_generated_keys

hibernate.connection.provider_class

hibernate.connection.isolation

hibernate.connection.autocommit

Enables use of JDBC3
PreparedStatement.getGeneratedKeys() to retrieve
natively generated keys after insert. Requires
JDBC3+ driver and JRE1.4+, set to false if
your driver has problems with the Hibernate
identifier generators. By default, it tries
to determine the driver capabilities using

connection metadata.

e.g. truelfalse

The classname of a custom
org.hibernate.connection.ConnectionProvider ~ which

provides JDBC connections to Hibernate.

e.g. classname.of.ConnectionProvider

Sets the JDBC transaction isolation level. Check
java.sql.Connection for meaningful values, but
note that most databases do not support all
isolation levels and some define additional, non-

standard isolations.

eg. 1,2,4,8

Enables autocommit for JDBC pooled

connections (it is not recommended).

e.g. true | false

hibernate.connection.release_mode

Specifies when Hibernate should release JDBC
connections. By default, a JDBC connection is
held until the session is explicitly closed or
disconnected. For an application server JTA
datasource, use after_statement to aggressively
release connections after every JDBC call. For
a non-JTA connection, it often makes sense
to release the connection at the end of each
transaction, by using after_transaction. auto will
choose after_statement for the JTA and CMT
transaction strategies and after_transaction for the

JDBC transaction strategy.

e.g. auto (default) | on_close | after_transaction

| after_statement

This setting only affects Sessions returned from

SessionFactory.openSession. For Sessions obtained

39

3% 74

2 3E o g

8%

hibernate.connection.<propertyName>

through SessionFactory.getCurrentSession, the
CurrentSessionContext implementation configured
for use controls the connection release mode
for those Sessions. See 2.5%4. “Contextual
sessions”

Pass the JDBC property <propertyName> to

DriverManager.getConnection().

hibernate. jndi.<propertyName>

Pass the property <propertyName> to the JNDI

InitialContextFactory.

¥ 3.5. Hibernate Cache ZZHEE

Z2HE oF

hibernate.cache.provider_class

hibernate.cache.use_minimal_puts

hibernate.cache.use_query_cache

&=
The classname of a custom CacheProvider.

e.g. classname.of.CacheProvider

Optimizes second-level cache operation to
minimize writes, at the cost of more frequent
reads. This setting is most useful for clustered
caches and, in Hibernate3, is enabled by default

for clustered cache implementations.

e.g. truelfalse

Enables the query cache. Individual queries still

have to be set cachable.

e.g. truelfalse

hibernate.cache.use_second_level cache

Can be used to completely disable the second
level cache, which is enabled by default for

classes which specify a <cache> mapping.

e.g. truelfalse

hibernate.cache.query_cache_factory

hibernate.cache.region_prefix

The classname of a custom QueryCache interface,
defaults to the built-in StandardQueryCache.

e.g. classname.of.QueryCache

A prefix to use for second-level cache region

names.

e.g. prefix

hibernate.cache.use_structured_entries

Forces Hibernate to store data in the second-

level cache in a more human-friendly format.

40

2 3E o g

8%

e.g. truelfalse

3 3.6. Hibernate E &

i)
r'>~
[kl
fil
&
o

Z2y olg

as

hibernate.transaction.factory_class

The classname of a TransactionFactory to use
with Hibernate Transaction API (defaults to
JDBCTransactionFactory).

e.g. classname.of.TransactionFactory

jta.UserTransaction

A JNDI name used by JTATransactionFactory
to obtain the JTA UserTransaction from the

application server.

e.g. jndi/composite/name

hibernate.transaction.manager_lookup_class

hibernate.transaction.flush_before_completion

hibernate.transaction.auto_close_session

The classname of a TransactionManagerLookup.
It is required when JVM-level caching is
enabled or when using hilo generator in a JTA

environment.

e.g. classname.of.TransactionManagerL.ookup

If enabled, the session will be automatically
flushed during the before completion phase of
the transaction. Built-in and automatic session
context management is preferred, see 2.5%.

“Contextual sessions” .

e.g. true | false

If enabled, the session will be automatically
closed during the after completion phase of
the transaction. Built-in and automatic session
context management is preferred, see 2.5%.

“Contextual sessions” .

e.g. true | false

¢

X 37 A8 7HA ZEHYHE

z2 e o g

=

hibernate.current_session_context_class

Supply a custom strategy for the scoping of
the "current' Session. See 2.54. “Contextual
sessions” for more information about the built-

in strategies.

41

3% 74

2 3E o g

8%

hibernate.query.factory_class

hibernate.query.substitutions

e.g. jta | thread | managed | custom.Class

Chooses the HQL parser implementation.

e.g. org.hibernate.hgl.ast. ASTQueryTranslatorFactory
or

org.hibernate.hql.classic.ClassicQueryTranslatorFactory

Is used to map from tokens in Hibernate queries
to SQL tokens (tokens might be function or

literal names, for example).

e.g. hqlLiteral=SQL_LITERAL,
hqlFunction=SQLFUNC

hibernate.hbm2ddl.auto

Automatically validates or exports schema DDL
to the database when the SessionFactory is
created. With create-drop, the database schema
will be dropped when the SessionFactory is closed

explicitly.

e.g. validate | update | create | create-drop

hibernate.cglib.use_reflection_optimizer

Enables the use of CGLIB instead of runtime
reflection (System-level property). Reflection
can sometimes be useful when troubleshooting.
Hibernate always requires CGLIB even if you
turn off the optimizer. You cannot set this

property in hibernate.cfg.xml.

e.g. true | false

3.4.1. SQL Dialects

Always set the hibernate.dialect property to the correct org.hibernate.dialect.Dialect subclass for your

database. If you specify a dialect, Hibernate will use sensible defaults for some of the other

properties listed above. This means that you will not have to specify them manually.

3 3.8. Hibernate SQL Dialects (hibemate.dialect)

RDBMS Dialect

DB2 org.hibernate.dialect. DB2Dialect

DB2 AS/400 org.hibernate.dialect.DB2400Dialect

DB2 OS390 org.hibernate.dialect. DB2390Dialect
PostgreSQL org.hibernate.dialect.PostgreSQLDialect
MySQL org.hibernate.dialect. MySQLDialect
MySQL with InnoDB org.hibernate.dialect. MySQLInnoDBDialect

42

Outer Join Fetching

RDBMS

Dialect

MySQL with MyISAM

org.hibernate.dialect. MySQLMyISAMDialect

Oracle (any version)

org.hibernate.dialect.OracleDialect

Oracle 9i
Oracle 10g

Sybase

org.hibernate.dialect.Oracle9iDialect
org.hibernate.dialect.Oracle 1 OgDialect

org.hibernate.dialect.SybaseDialect

Sybase Anywhere

org.hibernate.dialect.Sybase AnywhereDialect

Microsoft SQL. Server

org.hibernate.dialect.SQLServerDialect

SAP DB org.hibernate.dialect. SAPDBDialect
Informix org.hibernate.dialect.InformixDialect
HypersonicSQL org.hibernate.dialect. HSQLDialect
Ingres org.hibernate.dialect.IngresDialect
Progress org.hibernate.dialect.ProgressDialect
Mckoi SQL org.hibernate.dialect.MckoiDialect
Interbase org.hibernate.dialect.InterbaseDialect
Pointbase org.hibernate.dialect.PointbaseDialect
FrontBase org.hibernate.dialect.FrontbaseDialect
Firebird org.hibernate.dialect.FirebirdDialect

3.4.2. Outer Join Fetching

If your database supports ANSI, Oracle or Sybase style outer joins, outer join fetching will often

increase performance by limiting the number of round trips to and from the database. This is,

however, at the cost of possibly more work performed by the database itself. Outer join fetching

allows a whole graph of objects connected by many-to-one, one-to-many, many-to-many and one-

to-one associations to be retrieved in a single SQL SELECT.

Outer join fetching can be disabled globally by setting the property hibernate.max_fetch_depth to O.

A setting of 1 or higher enables outer join fetching for one-to-one and many-to-one associations

that have been mapped with fetch="join".

F7F AHe 10.14.

“3

cE”
WEE

flt

B}

3.4.3. Binary Streams

Oracle limits the size of byte arrays that can be passed to and/or from its JDBC driver. If you wish to

use large instances of binary or serializable type, you should enable hibernate.jdbc.use_streams_for_binary.

This is a system-level setting only.

43

w
ol
-
oX

3.4.4. Second-level 7]A] 2} query i A

The properties prefixed by hibernate.cache allow you to use a process or cluster scoped second-

level cache system with Hibernate. See the 19.2%. “SFw®a) @& 7§47 for more information.
3.4.5. Query Language X|] %k

You can define new Hibernate query tokens using hibernate.query.substitutions. For example:
hibernate.query.substitutions true=1, false=0

This would cause the tokens true and false to be translated to integer literals in the generated SQL.
hibernate.query.substitutions toLowercase=LOWER

This would allow you to rename the SQL LOWER function.

3.4.6. Hibernate = 7]

If you enable hibernate.generate_statistics, Hibernate exposes a number of metrics that are useful
when tuning a running system via SessionFactory.getStatistics(). Hibernate can even be configured
to expose these statistics via JMX. Read the Javadoc of the interfaces in org.hibernate.stats for

more information.

3.5, 274

Hibernate utilizes Simple Logging Facade for Java [http://www.slf4j.org/] (SLF4J) in order to log
various system events. SLF4J can direct your logging output to several logging frameworks (NOP,
Simple, logdj version 1.2, JDK 1.4 logging, JCL or logback) depending on your chosen binding.
In order to setup logging you will need slf4j-api.jar in your classpath together with the jar file
for your preferred binding - sif4j-log4jl2.jar in the case of Log4lJ. See the SLF4J documentation
[http://www.sIf4j.org/manual.html] for more detail. To use Log4j you will also need to place a
log4j.properties file in your classpath. An example properties file is distributed with Hibernate in

the src/ directory.

It is recommended that you familiarize yourself with Hibernate's log messages. A lot of work has
been put into making the Hibernate log as detailed as possible, without making it unreadable. It

is an essential troubleshooting device. The most interesting log categories are the following:

¥ 3.9. Hibernate 21 7}H| 28] =

hel 32 EE

org.hibernate.SQL ‘SQL DML #&E°] Add w] ZRE BFE 21 A}

44

http://www.slf4j.org/
http://www.slf4j.org/
http://www.slf4j.org/manual.html
http://www.slf4j.org/manual.html

NamingStrategy & &} 7]

7}el a1 71%s

org.hibernate.type EE JDBC U HES ZIA0Y

org.hibernate.tool.hbm2ddl SQL DDL & E0] A3d uj 245 255 21 A17Y

org.hibernate.pretty flush Al ANA A d3E 2E QEEE(FHY 20719 <lE
HE)e AHE 22 A7t

org.hibernate.cache R E second-level 7]A] HEHE]E 2 AT

org.hibernate.transaction EdAd #d dEHHE 23 AFH

org.hibernate. jdbc 2 E JDBC g4t HES 21 A7t

org.hibernate.hql.ast. AST Aol 34 Foto] HQL ASTS} SQL ASTE 2 A ZIth

org.hibernate.secure EE JAAS &7 £ HES 2aAZY

org.hibernate Log everything. This is a lot of information but it is useful for
troubleshooting

Hibernate2 o] ZAo]AELS NaE uf, GALE A 34} orghibernate.SQL ZHH| &l of] o
3 o]& 7153 debug REE ZFY3IAY, ©tE WH O E hibernateshow_sql TEFHE S o] &
Fs A sl Zdsior @ Aolnt

36 NamingStrategy ‘—‘?“(:ﬂ__ 6]‘7]

org.hibernate.cfg NamingStrategy Q1 E] ¥ o] & HloJE o] A EFH 27)|nt 8454 el "v)
oy AF'S AAstE AL FANA & FErt

You can provide rules for automatically generating database identifiers from Java identifiers or
for processing "logical’ column and table names given in the mapping file into 'physical’ table
and column names. This feature helps reduce the verbosity of the mapping document, eliminating
repetitive noise (TBL_ prefixes, for example). The default strategy used by Hibernate is quite

minimal.

You can specify a different strategy by calling Configuration.setNamingStrategy() before adding

mappings:

SessionFactory sf = new Configuration()
.setNamingStrategy(ImprovedNamingStrategy.INSTANCE)
.addFile("lItem.hbm.xml")

.addFile("Bid.hbm.xml")
.buildSessionFactory();

org.hibernate.cfg.ImprovedNamingStrategy+= o] H o] Z g Ao A& a F83 A ZAY 5 A
ve MEE el

fr

45

3.7. XML 4 3

T gk ttE HZHE hibernatecfgxmlZ WHE T o] AR FAHE A AGs= Aol
t}. o] 3L hibernate.properties I W3 WEEZA A1L9 5 JAY, Bd E ©f EX)

& gl z2AEES SEAst=d AHeE 5 Atk

The XML configuration file is by default expected to be in the root of your CLASSPATH.

Here is an example:

<?xml version='1.0' encoding="utf-8'?>

<IDOCTYPE hibernate-configuration PUBLIC
"-//Hibernate/Hibernate Configuration DTD//EN"
"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<hibernate-configuration>

<l-- a SessionFactory instance listed as /jndi/name -->
<session-factory
name="java:hibernate/SessionFactory">

<l-- properties -->

<property name="connection.datasource">java:/comp/env/jdbc/MyDB</property>

<property name="dialect">org.hibernate.dialect. MySQLDialect</property>

<property name="show_sql">false</property>

<property nhame="transaction.factory_ class">
org.hibernate.transaction.JTATransactionFactory

</property>

<property name="jta.UserTransaction">java:comp/UserTransaction</property>

<!-- mapping files -->
<mapping resource="org/hibernate/auction/ltem.hbm.xml"/>
<mapping resource="org/hibernate/auction/Bid.hbm.xml"/>

<!-- cache settings -->

<class-cache class="org.hibernate.auction.ltem" usage="read-write"/>
<class-cache class="org.hibernate.auction.Bid" usage="read-only"/>
<collection-cache collection="org.hibernate.auction.ltem.bids" usage="read-write"/>

</session-factory>

</hibernate-configuration>

46

J2EE o Zg]Alo]d M T3

The advantage of this approach is the externalization of the mapping file names to configuration.
The hibernate.cfg.xml is also more convenient once you have to tune the Hibernate cache. It is
your choice to use either hibernate.properties or hibernate.cfg.xml. Both are equivalent, except for

the above mentioned benefits of using the XML syntax.

With the XML configuration, starting Hibernate is then as simple as:
SessionFactory sf = new Configuration().configure().buildSessionFactory();
You can select a different XML configuration file using:

SessionFactory sf = new Configuration()
.configure("catdb.cfg.xml")
.buildSessionFactory();

3.8. J2EE o] Z g Al o)A A &g

Hibernatex= J2EE Q1 ZZHAEZH A0 th3 the 53 IES 2+ Atk

* Container-managed datasources: Hibernate can use JDBC connections managed by the container
and provided through JNDI. Usually, a JTA compatible TransactionManager and a ResourceManager
take care of transaction management (CMT), especially distributed transaction handling across
several datasources. You can also demarcate transaction boundaries programmatically (BMT), or

you might want to use the optional Hibernate Transaction API for this to keep your code portable.

* 252l JNDI H}lHd: Hibernatet= A2} Fof 23 9] SessionFactoryS JNDIoO| HIQIE= A]

=)
T ATh

sk

* JTA Session binding: the Hibernate Session can be automatically bound to the scope of JTA
transactions. Simply lookup the SessionFactory from JNDI and get the current Session. Let Hibernate
manage flushing and closing the Session when your JTA transaction completes. Transaction

demarcation is either declarative (CMT) or programmatic (BMT/UserTransaction).

* JMX deployment: if you have a JMX capable application server (e.g. JBoss AS), you can choose
to deploy Hibernate as a managed MBean. This saves you the one line startup code to build
your SessionFactory from a Configuration. The container will startup your HibernateService and also

take care of service dependencies (datasource has to be available before Hibernate starts, etc).

FAe] A0 ug}, FAL TFAale] o] Zg A o)A Aw 7} "connection containment($3A E4)"

AAZFES HY HFo FA 34 hibernate.connection.aggressive_release= true® A A& of =
j
-

47

3.8.1. EdHAME W= 1A

The Hibernate Session API is independent of any transaction demarcation system in your architecture.
If you let Hibernate use JDBC directly through a connection pool, you can begin and end your
transactions by calling the JDBC APIL If you run in a J2EE application server, you might want

to use bean-managed transactions and call the JTA API and UserTransaction when needed.

e (:'-FJF- tE) A ENA FAle ZE o)A S FAEH] A8l e 712 A
2 ¥A3a ¥ A7) = A9 F <l Hibernate Transaction APIE @A Z3akc). ©41& Hibernate
23 E] hibernate.transaction. factory_class& A3l Transaction QAV2E1AE| 3 HE
& A A3 o gt

There are three standard, or built-in, choices:

org.hibernate.transaction.JDBCTransactionFactory

dolEul o] (JDBC) ERMAAESAA HAYAIAHEUZE)

org.hibernate.transaction.JTATransactionFactory
delegates to container-managed transactions if an existing transaction is underway in this
context (for example, EJB session bean method). Otherwise, a new transaction is started and

bean-managed transactions are used.

org.hibernate.transaction.CMTTransactionFactory
container-managed JTA EWA A EA A AAZIth

You can also define your own transaction strategies (for a CORBA transaction service, for example).

Some features in Hibernate (i.e., the second level cache, Contextual Sessions with JTA, etc.)
require access to the JTA TransactionManager in a managed environment. In an application server,
since J2EE does not standardize a single mechanism, you have to specify how Hibernate should

obtain a reference to the TransactionManager:

2t 3.10. JTA TransactionManagers

ERAH AEF ofFg Aol AH
org.hibernate.transaction.JBossTransactionManagerLLookup JBoss
org.hibernate.transaction.WeblogicTransactionManagerL.oookup Weblogic
org.hibernate.transaction. WebSphereTransactionManagerl.ookup WebSphere
org.hibernate.transaction.WebSphereExtendedJTATransactionLookup WebSphere 6
org.hibernate.transaction.OrionTransactionManagerl.ookup Orion
org.hibernate.transaction.ResinTransactionManagerlLookup Resin
org.hibernate.transaction.JOTMTransactionManagerL.ookup JOTM
org.hibernate.transaction.JOnASTransactionManagerLookup JOnAS
org.hibernate.transaction.JRund4TransactionManagerL.ookup JRun4
org.hibernate.transaction.BESTransactionManagerLLookup Borland ES

43

JNDI-bound SessionFactory

3.8.2. JNDI-bound SessionFactory

A JNDI-bound Hibernate SessionFactory can simplify the lookup function of the factory and create
new Sessions. This is not, however, related to a JNDI bound Datasource; both simply use the

same registry.

If you wish to have the SessionFactory bound to a JNDI namespace, specify a name (e.g. java:hibernate/
SessionFactory) using the property hibernate.session_factory_name. If this property is omitted, the
SessionFactory will not be bound to JNDI. This is especially useful in environments with a read-

only JNDI default implementation (in Tomcat, for example).

SessionFactoryS JNDIe| H}el= A]Z uj, Hibernatex= %7] AYXEES %73} A|7]7] Y3l
hibernate.jndi.url, hibernate.jndi.class®] ZtE2 AP Aot WY TAEo] XAH YA &&
7d9-, TJZ E IitialContext7} A} &2 A o]t}

Hibernate will automatically place the SessionFactory in JNDI after you call cfg.buildSessionFactory().
This means you will have this call in some startup code, or utility class in your application, unless

you use JMX deployment with the HibernateService (this is discussed later in greater detail).

If you use a JNDI SessionFactory, an EJB or any other class, you can obtain the SessionFactory

using a JNDI lookup.

It is recommended that you bind the SessionFactory to JNDI in a managed environment and use a static
singleton otherwise. To shield your application code from these details, we also recommend to hide
the actual lookup code for a SessionFactory in a helper class, such as HibernateUtil.getSessionFactory().

Note that such a class is also a convenient way to startup Hibernatesee chapter 1.

3.8.3. Current Session context management with JTA

The easiest way to handle Sessions and transactions is Hibernate's automatic "current' Session
management. For a discussion of contextual sessions see 2.5%. “Contextual sessions” . Using
the "jta" session context, if there is no Hibernate Session associated with the current JTA
transaction, one will be started and associated with that JTA transaction the first time you call
sessionFactory.getCurrentSession(). The Sessions retrieved via getCurrentSession() in the"jta" context are
set to automatically flush before the transaction completes, close after the transaction completes, and
aggressively release JDBC connections after each statement. This allows the Sessions to be managed
by the life cycle of the JTA transaction to which it is associated, keeping user code clean of such
management concerns. Your code can either use JTA programmatically through UserTransaction, or
(recommended for portable code) use the Hibernate Transaction API to set transaction boundaries.

If you run in an EJB container, declarative transaction demarcation with CMT is preferred.

3.8.4. IMX Hj]

The line cfg.buildSessionFactory() still has to be executed somewhere to get a SessionFactory into
JNDI. You can do this either in a static initializer block, like the one in HibernateUtil, or you

can deploy Hibernate as a managed service.

49

Hibernate is distributed with org.hibernate.jmx.HibernateService for deployment on an application
server with JMX capabilities, such as JBoss AS. The actual deployment and configuration is vendor-

specific. Here is an example jboss-service.xml for JBoss 4.0.x:

<?xml version="1.0"?>
<server>

<mbean code="org.hibernate.jmx.HibernateService"
name="jboss.jca:service=HibernateFactory,name=HibernateFactory">

<!l-- Required services -->
<depends>jboss.jca:service=RARDeployer</depends>
<depends>jboss.jca:service=LocalTxCM,name=HsqlDS</depends>

<l-- Bind the Hibernate service to JNDI -->
<attribute name="JndiName">java:/hibernate/SessionFactory</attribute>

<!-- Datasource settings -->
<attribute name="Datasource">java:HsqglDS</attribute>
<attribute name="Dialect">org.hibernate.dialect. HSQL Dialect</attribute>

<l-- Transaction integration -->

<attribute name="TransactionStrategy">
org.hibernate.transaction.JTATransactionFactory</attribute>

<attribute name="TransactionManagerLookupStrategy">
org.hibernate.transaction.JBossTransactionManagerLookup</attribute>

<attribute name="FlushBeforeCompletionEnabled">true</attribute>

<attribute name="AutoCloseSessionEnabled">true</attribute>

<l-- Fetching options -->
<attribute name="MaximumFetchDepth">5</attribute>

<l-- Second-level caching -->

<attribute name="SecondLevelCacheEnabled">true</attribute>

<attribute name="CacheProviderClass">org.hibernate.cache.EhCacheProvider</attribute>
<attribute name="QueryCacheEnabled">true</attribute>

<!-- Logging -->
<attribute name="ShowSgqlEnabled">true</attribute>

<l-- Mapping files -->
<attribute name="MapResources">auction/ltem.hbm.xml,auction/Category.hbm.xml</
attribute>

50

IMX # %]

</mbean>

</server>

This file is deployed in a directory called META-INF and packaged in a JAR file with the extension
sar (service archive). You also need to package Hibernate, its required third-party libraries, your
compiled persistent classes, as well as your mapping files in the same archive. Your enterprise
beans (usually session beans) can be kept in their own JAR file, but you can include this EJB
JAR file in the main service archive to get a single (hot-)deployable unit. Consult the JBoss AS

documentation for more information about JMX service and EJB deployment.

51

52

o A&~ =2 =
3‘3—7 Eﬂ}-}:e

Persistent classes are classes in an application that implement the entities of the business problem
(e.g. Customer and Order in an E-commerce application). Not all instances of a persistent class
are considered to be in the persistent state. For example, an instance can instead be transient

or detached.

Hibernate works best if these classes follow some simple rules, also known as the Plain Old Java
Object (POJO) programming model. However, none of these rules are hard requirements. Indeed,
Hibernate3 assumes very little about the nature of your persistent objects. You can express a

domain model in other ways (using trees of Map instances, for example).

4.1. 73k POJO o A

Most Java applications require a persistent class representing felines. For example:

package eg;
import java.util.Set;
import java.util.Date;

public class Cat {
private Long id; // identifier

private Date birthdate;
private Color color;
private char sex;
private float weight;
private int litterld;

private Cat mother;
private Set kittens = new HashSet();

private void setld(Long id) {
this.id=id;

}

public Long getld() {
return id;

void setBirthdate(Date date) {
birthdate = date;

}
public Date getBirthdate() {

53

~

2,
o2
b
ll
=
[
il

return birthdate;

void setWeight(float weight) {
this.weight = weight;

}

public float getWeight() {
return weight;

public Color getColor() {
return color;

}

void setColor(Color color) {
this.color = color;

void setSex(char sex) {
this.sex=sex;

}

public char getSex() {
return sex;

void setLitterld(int id) {
this.litterld = id;

}

public int getLitterld() {
return litterld;

void setMother(Cat mother) {
this.mother = mother;

}
public Cat getMother() {

return mother;

}
void setKittens(Set kittens) {

this.kittens = kittens;

}
public Set getKittens() {

return kittens;

obFHE glE BYAE FHt

[/l addKitten not needed by Hibernate
public void addKitten(Cat kitten) {
kitten.setMother(this);
kitten.setLitterld(kittens.size());
kittens.add(kitten);

The four main rules of persistent classes are explored in more detail in the following sections.

4.1.1. ol E fl= AHAE 7+ st

Cat has a no-argument constructor. All persistent classes must have a default constructor (which
can be non-public) so that Hibernate can instantiate them using Constructor.newlnstance(). It is
recommended that you have a default constructor with at least package visibility for runtime

proxy generation in Hibernate.
4.1.2. identifier Z2HEZ A F3tzHIA)

Cat has a property called id. This property maps to the primary key column of a database table.
The property might have been called anything, and its type might have been any primitive type,
any primitive "wrapper' type, javalang.String or java.utiLDate. If your legacy database table has
composite keys, you can use a user-defined class with properties of these types (see the section

on composite identifiers later in the chapter.)

Ay

identifier T2 W E = I 434 SAolth FAaLe 2R

4% 9) 31, Hibernate® 3l &
YRz A AEAES FHIIEE & Utk =

R e BAHA

it

In fact, some functionality is available only to classes that declare an identifier property:

* Transitive reattachment for detached objects (cascade update or cascade merge) - see 10.11
. “Transitive persistence(o] 4<)”
* Session.saveOrUpdate()

* Session.merge()

We recommend that you declare consistently-named identifier properties on persistent classes and

that you use a nullable (i.e., non-primitive) type.

4.1.3. finale] ofd FHA2EL AZ3EH(EA)

o1, Z&A|(proxies)E< finalo] old AJ<& FHYP2E = 25 public

Holze) FHA G5 F2E o Fa),

Hibernate®] =4 &
AT g AdE <l

_Vﬁ,oﬁ

You can persist final classes that do not implement an interface with Hibernate. You will not,
however, be able to use proxies for lazy association fetching which will ultimately limit your

options for performance tuning.

55

N

o)
o2
B
iy
&
>
il

G2 S non-final F2AE Ao public final HAEE
o FAlo] public final W AE =
Aoz WA HoR S AME BI7HESIESE o gt

Y —

HAshe AL dsfor drh W

, FAL Jazy="false'E A
1.4. 945 2 =55 93 accessorsd mutators= A A5

Cat declares accessor methods for all its persistent fields. Many other ORM tools directly persist
instance variables. It is better to provide an indirection between the relational schema and internal
data structures of the class. By default, Hibernate persists JavaBeans style properties and recognizes
method names of the form getFoo, isFoo and setFoo. If required, you can switch to direct field

access for particular properties.

ZZHEEL publice® AAE a7} It} - Hibernatex= TJZEE protected get/set % T+
private get/set A4S 7R L2 HEE F&3F Al F AT

4.2. & T8

A subclass must also observe the first and second rules. It inherits its identifier property from

the superclass, Cat. For example:

package eg;

public class DomesticCat extends Cat {
private String name;

public String getName() {
return name;

}

protected void setName(String name) {
this.name=name,;

4.3, equals()ﬂ' hashCode() ‘—:[Léj 6‘]'7]

You have to override the equals() and hashCode() methods if you:

* intend to put instances of persistent classes in a Set (the recommended way to represent many-
valued associations); and

* detached ¢l 2=¥12=E 9] reattachment(A])& AFE32A o =38+

Hibernate guarantees equivalence of persistent identity (database row) and Java identity only
inside a particular session scope. When you mix instances retrieved in different sessions, you must

implement equals() and hashCode() if you wish to have meaningful semantics for Sets.

56

equals() 2} hashCode() -8 3}7]

The most obvious way is to implement equals()/hashCode() by comparing the identifier value of
both objects. If the value is the same, both must be the same database row, because they are equal.
If both are added to a Set, you will only have one element in the Set). Unfortunately, you cannot
use that approach with generated identifiers. Hibernate will only assign identifier values to objects
that are persistent; a newly created instance will not have any identifier value. Furthermore, if an
instance is unsaved and currently in a Set, saving it will assign an identifier value to the object.
If equals() and hashCode() are based on the identifier value, the hash code would change, breaking
the contract of the Set. See the Hibernate website for a full discussion of this problem. This is

not a Hibernate issue, but normal Java semantics of object identity and equality.

It is recommended that you implement equals() and hashCode() using Business key equality. Business
key equality means that the equals() method compares only the properties that form the business

key. It is a key that would identify our instance in the real world (a natural candidate key):

public class Cat {

public boolean equals(Object other) {
if (this == other) return true;
if (!(other instanceof Cat)) return false;

final Cat cat = (Cat) other;

if (!cat.getLitterld().equals(getLitterld())) return false;
if (!cat.getMother().equals(getMother())) return false;

return true;

public int hashCode() {
int result;
result = getMother().hashCode();
result = 29 * result + getLitterld();
return result;

A business key does not have to be as solid as a database primary key candidate (see 11.1.3
. “AA identity 3223}7]”). Immutable or unique properties are usually good candidates

for a business key.

57

Persistent entities do not necessarily have to be represented as POJO classes or as JavaBean

objects at runtime. Hibernate also supports dynamic models (using Maps of Maps at runtime) and
the representation of entities as DOM4J trees. With this approach, you do not write persistent

classes, only mapping files.

By default, Hibernate works in normal POJO mode. You can set a default entity representation
mode for a particular SessionFactory using the default_entity_mode configuration option (see 3£ 3.3.
“Hibernate 74 Z=ZHEE").

The following examples demonstrate the representation using Maps. First, in the mapping file an

entity-name has to be declared instead of, or in addition to, a class name:

<hibernate-mapping>

<class entity-name="Customer">

<id name="id"

type="long"

column="ID">

<generator class="sequence"/>
<fid>

<property name="name"
column="NAME"
type="string"/>

<property name="address"
column="ADDRESS"
type="string"/>

<many-to-one name="organization"
column="ORGANIZATION_ID"
class="Organization"/>

<bag name="orders"
inverse="true"

58

offt
Y
o
td
ofh
il

lazy="false"

cascade="all">

<key column="CUSTOMER_ID"/>

<one-to-many class="Order"/>
</bag>

</class>

</hibernate-mapping>

Even though associations are declared using target class names, the target type of associations can

also be a dynamic entity instead of a POJO.

After setting the default entity mode to dynamic-map for the SessionFactory, you can, at runtime,

work with Maps of Maps:

Session s = openSession();
Transaction tx = s.beginTransaction();
Session s = openSession();

/I Create a customer
Map david = new HashMap();
david.put("name", "David");

/I Create an organization
Map foobar = new HashMap();
foobar.put("name", "Foobar Inc.");

Il Link both
david.put("organization”, foobar);

/I Save both
s.save("Customer", david);
s.save("Organization”, foobar);

tx.commit();
s.close();

One of the main advantages of dynamic mapping is quick turnaround time for prototyping,
without the need for entity class implementation. However, you lose compile-time type checking
and will likely deal with many exceptions at runtime. As a result of the Hibernate mapping, the
database schema can easily be normalized and sound, allowing to add a proper domain model

implementation on top later on.

59

=
ul
Auj
45|
il
td
[t
i
rlo

o
o

shibe]l T Session 7]l ths] AAE 4+ Ak

T
s

Session dynamicSession = pojoSession.getSession(EntityMode.MAP);

/I Create a customer

Map david = new HashMap();
david.put("name", "David");
dynamicSession.save("Customer"”, david);

dynamicSession.flush();
dynamicSession.close()

/I Continue on pojoSession

Please note that the call to getSession() using an EntityMode is on the Session API, not the
SessionFactory. That way, the new Session shares the underlying JDBC connection, transaction, and
other context information. This means you do not have to call flush() and close() on the secondary

Session, and also leave the transaction and connection handling to the primary unit of work.

XML E8 7H8450 ta 37h AR 185 XML g4 2E 4 2l
4.5. Tuplizer=

org.hibernate.tuple.Tuplizer, and its sub-interfaces, are responsible for managing a particular
representation of a piece of data given that representation's org.hibernate.EntityMode. If a given
piece of data is thought of as a data structure, then a tuplizer is the thing that knows how
to create such a data structure and how to extract values from and inject values into such a
data structure. For example, for the POJO entity mode, the corresponding tuplizer knows how
create the POJO through its constructor. It also knows how to access the POJO properties using

the defined property accessors.

There are two high-level types of Tuplizers, represented by the org.hibernate.tuple.entity.Entity Tuplizer
and org.hibernate.tuple.component.ComponentTuplizer interfaces. EntityTuplizers are responsible for
managing the above mentioned contracts in regards to entities, while ComponentTuplizers do the

same for components.

Users can also plug in their own tuplizers. Perhaps you require that a java.util.Map implementation
other than java.util.HashMap be used while in the dynamic-map entity-mode. Or perhaps you need to
define a different proxy generation strategy than the one used by default. Both would be achieved
by defining a custom tuplizer implementation. Tuplizer definitions are attached to the entity or

component mapping they are meant to manage. Going back to the example of our customer entity:

<hibernate-mapping>
<class entity-name="Customer">

60

EntityNameResolvers

<l--
Override the dynamic-map entity-mode
tuplizer for the customer entity
-->
<tuplizer entity-mode="dynamic-map"
class="CustomMapTuplizerimpl"/>

<id name="id" type="long" column="ID">
<generator class="sequence"/>
</id>

<l-- other properties -->

</class>
</hibernate-mapping>

public class CustomMapTuplizerimpl
extends org.hibernate.tuple.entity.DynamicMapEntity Tuplizer {
I/ override the buildInstantiator() method to plug in our custom map...
protected final Instantiator buildinstantiator(
org.hibernate.mapping.PersistentClass mappinginfo) {
return new CustomMaplnstantiator(mappinginfo);

private static final class CustomMaplnstantiator
extends org.hibernate.tuple.DynamicMaplnstantitor {
/I override the generateMap() method to return our custom map...
protected final Map generateMap() {
return new CustomMap();

4.6. EntityNameResolvers

The org.hibernate.EntityNameResolver interface is a contract for resolving the entity name of a
given entity instance. The interface defines a single method resolveEntityName which is passed
the entity instance and is expected to return the appropriate entity name (null is allowed
and would indicate that the resolver does not know how to resolve the entity name of the
given entity instance). Generally speaking, an org.hibernate.EntityNameResolver is going to be most
useful in the case of dynamic models. One example might be using proxied interfaces as your

domain model. The hibernate test suite has an example of this exact style of usage under

61

~
o)
o2
b
ll
=
[
il

the org.hibernate.test.dynamicentity.tuplizer2. Here is some of the code from that package for

illustration.

/**

* A very trivial JDK Proxy InvocationHandler implementation where we proxy an interface as
* the domain model and simply store persistent state in an internal Map. This is an extremely
* trivial example meant only for illustration.
*/
public final class DataProxyHandler implements InvocationHandler {

private String entityName;

private HashMap data = new HashMap();

public DataProxyHandler(String entityName, Serializable id) {
this.entityName = entityName;
data.put("1d", id);

public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {

String methodName = method.getName();

if (methodName.startsWith("set")) {
String propertyName = methodName.substring(3);
data.put(propertyName, args[0]);

}

else if (methodName.startsWith("get")) {
String propertyName = methodName.substring(3);
return data.get(propertyName);

}

else if ("toString".equals(methodName)) {
return entityName + "#" + data.get("I1d");

}

else if ("hashCode".equals(methodName)) {
return new Integer(this.hashCode());

}

return null;

public String getEntityName() {
return entityName;

public HashMap getData() {
return data;

62

EntityNameResolvers

/**
*
*/
public class ProxyHelper {
public static String extractEntityName(Object object) {
/I Our custom java.lang.reflect.Proxy instances actually bundle
/l their appropriate entity name, so we simply extract it from there
/I if this represents one of our proxies; otherwise, we return null
if (Proxy.isProxyClass(object.getClass())) {
InvocationHandler handler = Proxy.getinvocationHandler(object);
if (DataProxyHandler.class.isAssignableFrom(handler.getClass())) {
DataProxyHandler myHandler = (DataProxyHandler) handler;
return myHandler.getEntityName();

}

return null;

// various other utility methods

/**

* The EntityNameResolver implementation.
* IMPL NOTE : An EntityNameResolver really defines a strategy for how entity names should be
* resolved. Since this particular impl can handle resolution for all of our entities we want to
* take advantage of the fact that SessionFactorylmpl keeps these in a Set so that we only ever
* have one instance registered. Why? Well, when it comes time to resolve an entity name,
* Hibernate must iterate over all the registered resolvers. So keeping that number down
* helps that process be as speedy as possible. Hence the equals and hashCode impls
*/
public class MyEntityNameResolver implements EntityNameResolver {
public static final MyEntityNameResolver INSTANCE = new MyEntityNameResolver();

public String resolveEntityName(Object entity) {
return ProxyHelper.extractEntityName(entity);

public boolean equals(Object obj) {
return getClass().equals(obj.getClass());

public int hashCode() {

~
o)
o2
b
ll
=
[
il

return getClass().hashCode();

public class MyEntityTuplizer extends PojoEntityTuplizer {

public MyEntityTuplizer(EntityMetamodel entityMetamodel, PersistentClass mappedEntity) {
super(entityMetamodel, mappedEntity);

public EntityNameResolver[] getEntityNameResolvers() {
return new EntityNameResolver[] { MyEntityNameResolver.INSTANCE };

public String determineConcreteSubclassEntityName(Object entitylnstance,
SessionFactorylmplementor factory) {

String entityName = ProxyHelper.extractEntityName(entitylnstance);
if (entityName == null) {

entityName = super.determineConcreteSubclassEntityName(entitylnstance, factory);
}

return entityName;

In order to register an org.hibernate.EntityNameResolver users must either:

1. Implement a custom Tuplizer, implementing the getEntityNameResolvers method.

2. Register it with the org.hibernate.impl.SessionFactoryImpl (which is the implementation class for

org.hibernate.SessionFactory) using the registerEntityNameResolver method.

64

5.0, Al
Object/relational mappings are usually defined in an XML document. The mapping document is
designed to be readable and hand-editable. The mapping language is Java-centric, meaning that

mappings are constructed around persistent class declarations and not table declarations.

Please note that even though many Hibernate users choose to write the XML by hand, a number of

tools exist to generate the mapping document. These include XDoclet, Middlegen and AndroMDA.

Here is an example mapping:

<?xml version="1.0"?>
<IDOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD 3.0/EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping package="eg">

<class name="Cat"
table="cats"
discriminator-value="C">

<id name="id">
<generator class="native"/>
<fid>

<discriminator column="subclass"
type="character"/>

<property name="weight"/>

<property name="birthdate"
type="date"
not-null="true"
update="false"/>

<property nhame="color"
type="eg.types.ColorUserType
not-null="true"
update="false"/>

65

57 718 O/R w3

<property name="sex"
not-null="true"
update="false"/>

<property name="litterld"
column="litterld"
update="false"/>
<many-to-one name="mother"
column="mother_id"
update="false"/>

<set name="kittens"
inverse="true"
order-by="litter_id">
<key column="mother_id"/>
<one-to-many class="Cat"/>
</set>

<subclass name="DomesticCat"
discriminator-value="D">

<property name="name"
type="string"/>

</subclass>
</class>
<class name="Dog">
<!-- mapping for Dog could go here -->

</class>

</hibernate-mapping>

We will now discuss the content of the mapping document. We will only describe, however, the
document elements and attributes that are used by Hibernate at runtime. The mapping document
also contains some extra optional attributes and elements that affect the database schemas exported

by the schema export tool (for example, the not-null attribute).

5.1.1. Doctype

All XML mappings should declare the doctype shown. The actual DTD can be found at the URL

above, in the directory hibernate-x.x.x/src/org/hibernate , or in hibernate3.jar. Hibernate will always

66

Hibernate-mapping

look for the DTD in its classpath first. If you experience lookups of the DTD using an Internet

connection, check the DTD declaration against the contents of your classpath.

5.1.1.1. EntityResolver

Hibernate will first attempt to resolve DTDs in its classpath. It does this is by registering a custom
org.xml.sax.EntityResolver implementation with the SAXReader it uses to read in the xml files. This

custom EntityResolver recognizes two different systemld namespaces:

® a hibernate namespace is recognized whenever the resolver encounters a systemld starting with
http://hibernate.sourceforge.net/. The resolver attempts to resolve these entities via the classloader

which loaded the Hibernate classes.

* a user namespace is recognized whenever the resolver encounters a systemld using a classpath://
URL protocol. The resolver will attempt to resolve these entities via (1) the current thread

context classloader and (2) the classloader which loaded the Hibernate classes.

The following is an example of utilizing user namespacing:

<?xml version="1.0"?>
<IDOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD 3.0/EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd" [
<IENTITY types SYSTEM "classpath://your/domain/types.xml">
1>

<hibernate-mapping package="your.domain">
<class name="MyEntity">
<id name="id" type="my-custom-id-type">

<fid>

<class>

&types;
</hibernate-mapping>

i)
B
=

o] 714 types.xmle your.domain 3| 7] X ol Y Aol wEFH 523 223 value

B E” & 23
5.1.2. Hibernate-mapping

This element has several optional attributes. The schema and catalog attributes specify that tables
referred to in this mapping belong to the named schema and/or catalog. If they are specified,
tablenames will be qualified by the given schema and catalog names. If they are missing, tablenames

will be unqualified. The default-cascade attribute specifies what cascade style should be assumed

67

5% 718 O/R vj3g

for properties and collections that do not specify a cascade attribute. By default, the auto-import

attribute allows you to use unqualified class names in the query language.

<hibernate-mapping

/>

® 0008

@

7]

schema="schemaName" o
catalog="catalogName" 9
default-cascade="cascade_style" B

default-access="field|property|ClassName" G

default-lazy="true|false" 9
auto-import="true|false" ﬂ
package="package.name" B

schema (optional): the name of a database schema.

catalog (optional): the name of a database catalog.

default-cascade (optional - defaults to none): a default cascade style.

default-access (optional - defaults to property): the strategy Hibernate should use for accessing
all properties. It can be a custom implementation of PropertyAccessor.

default-lazy (optional - defaults to true): the default value for unspecified lazy attributes of
class and collection mappings.

auto-import (optional - defaults to true): specifies whether we can use unqualified class names
of classes in this mapping in the query language.

package (optional): specifies a package prefix to use for unqualified class names in the

mapping document.

If you have two persistent classes with the same unqualified name, you should set auto-import="false".

An exception will result if you attempt to assign two classes to the same 'imported’ name.

The hibernate-mapping element allows you to nest several persistent <class> mappings, as shown

above. It is, however, good practice (and expected by some tools) to map only a single persistent

class, or a single class hierarchy, in one mapping file and name it after the persistent superclass.

For example, Cat.hbm.xml, Dog.hbm.xml, or if using inheritance, Animal.hbm.xml.

5.1.3. Class

You can declare a persistent class using the class element. For example:

<class

68

Class

/>

o0

@09

name="ClassName"

©e

table="tableName"
discriminator-value="discriminator_value" ﬂ
mutable="true|false"
schema="owner"
catalog="catalog"
proxy="ProxylInterface"

dynamic-update="true|false"

@@9@@9

dynamic-insert="true|false"

select-before-update="true|false" m}
polymorphism="implicit|explicit" o
where="arbitrary sql where condition” @
persister="PersisterClass" EE}
batch-size="N" @
optimistic-lock="none|version|dirty|all" @
lazy="true|false" (16)
entity-name="EntityName" a7)
check="arbitrary sqgl check condition" (18)
rowid="rowid" (29)
subselect="SQL expression" (20)
abstract="true|false" (21)

node="element-name"

name (optional): the fully qualified Java class name of the persistent class or interface. If
this attribute is missing, it is assumed that the mapping is for a non-POJO entity.

table (optional - defaults to the unqualified class name): the name of its database table.
discriminator-value (optional - defaults to the class name): a value that distinguishes individual
subclasses that is used for polymorphic behavior. Acceptable values include null and not null.
mutable (optional - defaults to true): specifies that instances of the class are (not) mutable.

schema (optional): overrides the schema name specified by the root <hibernate-mapping> element.

catalog (optional): overrides the catalog name specified by the root <hibernate-mapping> element.

69

5% 718 O/R vj3g

€ proxy (optional): specifies an interface to use for lazy initializing proxies. You can specify
the name of the class itself.

€ dynamic-update (optional - defaults to false): specifies that UPDATE SQL should be generated
at runtime and can contain only those columns whose values have changed.

€ dynamic-insert (optional - defaults to false): specifies that INSERT SQL should be generated
at runtime and contain only the columns whose values are not null.

{0 select-before-update (optional - defaults to false): specifies that Hibernate should never perform
an SQL UPDATE unless it is certain that an object is actually modified. Only when a transient
object has been associated with a new session using update(), will Hibernate perform an extra
SQL SELECT to determine if an UPDATE is actually required.

{0 polymorphism (optional - defaults to implicit): determines whether implicit or explicit query
polymorphism is used.

P where (optional): specifies an arbitrary SQL WHERE condition to be used when retrieving
objects of this class.

B persister (optional): specifies a custom ClassPersister.

@ batch-size (optional - defaults to 1): specifies a "batch size" for fetching instances of this
class by identifier.

i optimistic-lock (optional - defaults to version): determines the optimistic locking strategy.

lazy (optional): lazy fetching can be disabled by setting lazy="false".

entity-name (optional - defaults to the class name): Hibernate3 allows a class to be mapped

multiple times, potentially to different tables. It also allows entity mappings that are represented
by Maps or XML at the Java level. In these cases, you should provide an explicit arbitrary name
for the entity. See 4.44. “ZEZ¢ & E" and 18%. XML "} for more information.

check (optional): an SQL expression used to generate a multi-row check constraint for
automatic schema generation.

rowid (optional): Hibernate can use ROWIDs on databases. On Oracle, for example, Hibernate
can use the rowid extra column for fast updates once this option has been set to rowid. A
ROWID is an implementation detail and represents the physical location of a stored tuple.

Pl subselect (optional): maps an immutable and read-only entity to a database subselect. This is
useful if you want to have a view instead of a base table. See below for more information.

Bl abstract (optional): is used to mark abstract superclasses in <union-subclass> hierarchies.

It is acceptable for the named persistent class to be an interface. You can declare implementing
classes of that interface using the <subclass> element. You can persist any static inner class. Specify

the class name using the standard form i.e. e.g.Foo$Bar.

Immutable classes, mutable="false", cannot be updated or deleted by the application. This allows

Hibernate to make some minor performance optimizations.

The optional proxy attribute enables lazy initialization of persistent instances of the class. Hibernate
will initially return CGLIB proxies that implement the named interface. The persistent object will

load when a method of the proxy is invoked. See 'Initializing collections and proxies' below.

Implicit polymorphism means that instances of the class will be returned by a query that names
any superclass or implemented interface or class, and that instances of any subclass of the class

will be returned by a query that names the class itself. Explicit polymorphism means that class

70

Class

instances will be returned only by queries that explicitly name that class. Queries that name the
class will return only instances of subclasses mapped inside this <class> declaration as a <subclass>
or <joined-subclass>. For most purposes, the default polymorphism="implicit" is appropriate. Explicit
polymorphism is useful when two different classes are mapped to the same table This allows a

"lightweight" class that contains a subset of the table columns.

The persister attribute lets you customize the persistence strategy used for the class. You can,
for example, specify your own subclass of orghibernate.persister.EntityPersister, or you can even
provide a completely new implementation of the interface org.hibernate.persister.ClassPersister that
implements, for example, persistence via stored procedure calls, serialization to flat files or LDAP.

See org.hibernate.test.CustomPersister for a simple example of "persistence’ to a Hashtable.

The dynamic-update and dynamic-insert settings are not inherited by subclasses, so they can also
be specified on the <subclass> or <joined-subclass> elements. Although these settings can increase

performance in some cases, they can actually decrease performance in others.

Use of select-before-update will usually decrease performance. It is useful to prevent a database

update trigger being called unnecessarily if you reattach a graph of detached instances to a Session.

dynamic-updateZ A&7H58A & A$, FAS TS optimistic FF AFES AgEA =2

Aol th:

[¢]

* version: check the version/timestamp columns

* all: check all columns

* dirty: check the changed columns, allowing some concurrent updates
* none: do not use optimistic locking

It is strongly recommended that you use version/timestamp columns for optimistic locking with
Hibernate. This strategy optimizes performance and correctly handles modifications made to detached

instances (i.e. when Session.merge() is used).

There is no difference between a view and a base table for a Hibernate mapping. This is
transparent at the database level, although some DBMS do not support views properly, especially
with updates. Sometimes you want to use a view, but you cannot create one in the database
(i.e. with a legacy schema). In this case, you can map an immutable and read-only entity to

a given SQL subselect expression:

<class name="Summary">
<subselect>
select item.name, max(bid.amount), count(*)
from item
join bid on bid.item_id = item.id
group by item.name

71

57 718 O/R w3

</subselect>

<synchronize table="item"/>
<synchronize table="bid"/>
<id name="name"/>

</class>
Declare the tables to synchronize this entity with, ensuring that auto-flush happens correctly and

that queries against the derived entity do not return stale data. The <subselect> is available both

as an attribute and a nested mapping element.

5.1.4. id

WPE FHLEE volEuo) 2 BlojRe] Zetolvel 7] AL Mok drk R F
BeEe w9 A2E2 §U HUAE 2ot Aupiz 2Ed Z2HEE 74 et
<id> 82E 3 ZEagzRE Zeelve /] APz v P

<id
name="propertyName" o
type="typename" 9
column="column_name" ﬂ
unsaved-value="null|any|none|undefined|id_value" a
access="field|property|ClassName"> 6‘
node="element-name|@attribute-name|element/@attribute|."
<generator class="generatorClass"/>
</id>
€ name (optional): the name of the identifier property.
© type (54): Hibernate BFY S YERH = ©lF.
€ column (optional - defaults to the property name): the name of the primary key column.
@ unsaved-value (optional - defaults to a 'sensible" value): an identifier property value that

indicates an instance is newly instantiated (unsaved), distinguishing it from detached instances
that were saved or loaded in a previous session.
© access (optional - defaults to property): the strategy Hibernate should use for accessing the

property value.

Ean

name &40 FEHH, S HEA

[k
fil
i)
o,
il
N
)
&2
rr
u)

3 7 Eok

unsaved-value &A1& Hibernate3ol A= A2 H Q31X &t}

72

There is an alternative <composite-id> declaration that allows access to legacy data with composite

keys. Its use is strongly discouraged for anything else.

5.1.4.1. Generator

A A <generator> A4 @4 FE& FH L0 ALRFAE e FA AEAES AEA
71=d AH&Ee AEk FH s 2 2F
‘1

=
=
AetAY 2718 Al71=d 229 A9,

ofr

<id name="id" type="long" column="cat_id">
<generator class="org.hibernate.id.TableHiLoGenerator">
<param name="table">uid_table</param>
<param name="column">next_hi_value_column</param>
</generator>
</id>

All generators implement the interface org.hibernate.id.IdentifierGenerator. This is a very simple
interface. Some applications can choose to provide their own specialized implementations, however,
Hibernate provides a range of built-in implementations. The shortcut names for the built-in

generators are as follows:

increment
BUG o] O Yo

] A 227 1S wjo 2 5L 3t long, short
T+ int BFY e AEAES AAA

= X=
G gelaE U AesA el

identity
DB2, MySQL, MS SQL Server, Sybase, HypersonicSQLo|A] 2] AHEL X
= ¥ AE long, short =& int EFY o]t}

(o,

S}, uhgk

gl

sequence
DB2, PostgreSQL, Oracle, SAP DB, McKoiol| A Al 25 AL-83} 7 U Interbaseo| A A Al 7]
(generator) & AFg3t} ¥kE &= 2] ¥ Z+E long, short =& int BFY o]t}

hilo
HolEx AH(YJZERE Z}7Z} hibernate_unique_key2} next_hi)©] hi ZtE Q] AXFEA Fox
™, long, short =+ int EFY Y] AEAES aHF o2 AAA I =0 hi/llo ST SS ALE
gtt}. hi/lo &alE]ES 54 dolgulo] 2o tjafA vt fLg AEARES A

=

seghilo
W E dolEHo] X A|F 2T FoX| W, long, short £ int E}fYe] AHEAES G340
2 A7l hi/lo dalElEE AHERHh

uuid
uses a 128-bit UUID algorithm to generate identifiers of type string that are unique within
a network (the IP address is used). The UUID is encoded as a string of 32 hexadecimal
digits in length.

73

57 718 O/R w3

guid
MS SQL Serveret MySQL Aol A wlo]grlol2 A GUID EAYES A&

rot

=5

native

selects identity, sequence or hilo depending upon the capabilities of the underlying database.

assigned
lets the application assign an identifier to the object before save() is called. This is the default

strategy if no <generator> element is specified.

select
retrieves a primary key, assigned by a database trigger, by selecting the row by some unique

key and retrieving the primary key value.

foreign
uses the identifier of another associated object. It is usually used in conjunction with a <one-

to-one> primary key association.

sequence-identity
a specialized sequence generation strategy that utilizes a database sequence for the actual
value generation, but combines this with JDBC3 getGeneratedKeys to return the generated
identifier value as part of the insert statement execution. This strategy is only supported on
Oracle 10g drivers targeted for JDK 1.4. Comments on these insert statements are disabled

due to a bug in the Oracle drivers.

5.1.4.2. Hi/lo algorithm

The hilo and seqghilo generators provide two alternate implementations of the hi/lo algorithm. The
first implementation requires a 'special’ database table to hold the next available "hi" value. Where

supported, the second uses an Oracle-style sequence.

<id name="id" type="long" column="cat_id">
<generator class="hilo">
<param name="table">hi_value</param>
<param name="column">next_value</param>
<param name="max_lo">100</param>
</generator>
</id>

<id name="id" type="long" column="cat_id">
<generator class="seghilo">
<param name="sequence">hi_value</param>
<param name="max_lo">100</param>
</generator>

74

</id>

Unfortunately, you cannot use hilo when supplying your own Connection to Hibernate. When
Hibernate uses an application server datasource to obtain connections enlisted with JTA, you must

configure the hibernate.transaction.manager_lookup_class.

5.1.4.3. UUID <31y

N

The UUID contains: IP address, startup time of the JVM that is accurate to a quarter second,
system time and a counter value that is unique within the JVM. It is not possible to obtain a

MAC address or memory address from Java code, so this is the best option without using JNI.
5144 2 AY =3 AAEE

For databases that support identity columns (DB2, MySQL, Sybase, MS SQL), you can use identity
key generation. For databases that support sequences (DB2, Oracle, PostgreSQL, Interbase, McKoi,
SAP DB) you can use sequence style key generation. Both of these strategies require two SQL

queries to insert a new object. For example:

<id name="id" type="long" column="person_id">
<generator class="sequence">
<param name="sequence">person_id_sequence</param>
</generator>
</id>

<id name="id" type="long" column="person_id" unsaved-value="0">
<generator class="identity"/>
</id>

For cross-platform development, the native strategy will, depending on the capabilities of the

underlying database, choose from the identity, sequence and hilo strategies.

5.1.4.5. &3¥ 2¥HAt

il

If you want the application to assign identifiers, as opposed to having Hibernate generate them,
you can use the assigned generator. This special generator uses the identifier value already assigned
to the object's identifier property. The generator is used when the primary key is a natural key

instead of a surrogate key. This is the default behavior if you do not specify a <generator> element.

The assigned generator makes Hibernate use unsaved-value="undefined". This forces Hibernate to go
to the database to determine if an instance is transient or detached, unless there is a version or

timestamp property, or you define Interceptor.isUnsaved().

75

5% 718 O/R vj3g

5.1.4.6. EEIAEY 98 adgd ZgolHy 7=

Hibernate does not generate DDL with triggers. It is for legacy schemas only.

<id name="id" type="long" column="person_id">
<generator class="select">
<param name="key">socialSecurityNumber</param>
</generator>
</id>

In the above example, there is a unique valued property named socialSecurityNumber. It is defined
by the class, as a natural key and a surrogate key named person_id, whose value is generated

by a trigger.

5.1.5. NOT TRANSLATED!Enhanced identifier generators

Starting with release 3.2.3, there are 2 new generators which represent a re-thinking of 2 different
aspects of identifier generation. The first aspect is database portability; the second is optimization
Optimization means that you do not have to query the database for every request for a new
identifier value. These two new generators are intended to take the place of some of the named
generators described above, starting in 3.3.x. However, they are included in the current releases

and can be referenced by FON.

The first of these new generators is org.hibernate.id.enhanced.SequenceStyleGenerator which is intended,
firstly, as a replacement for the sequence generator and, secondly, as a better portability
generator than native. This is because native generally chooses between identity and sequence which
have largely different semantics that can cause subtle issues in applications eyeing portability.
org.hibernate.id.enhanced.SequenceStyleGenerator, however, achieves portability in a different manner.
It chooses between a table or a sequence in the database to store its incrementing values, depending
on the capabilities of the dialect being used. The difference between this and native is that table-
based and sequence-based storage have the same exact semantic. In fact, sequences are exactly
what Hibernate tries to emulate with its table-based generators. This generator has a number

of configuration parameters:

* sequence_name (optional, defaults to hibernate_sequence): the name of the sequence or table to
be used.

* initial_value (optional, defaults to 1): the initial value to be retrieved from the sequence/table.
In sequence creation terms, this is analogous to the clause typically named "STARTS WITH".

* increment_size (optional - defaults to 1): the value by which subsequent calls to the sequence/
table should differ. In sequence creation terms, this is analogous to the clause typically named
"INCREMENT BY".

* force_table_use (optional - defaults to false): should we force the use of a table as the backing

structure even though the dialect might support sequence?

76

NOT TRANSLATED! Identifier generator optimization

* value_column (optional - defaults to next_val): only relevant for table structures, it is the name
of the column on the table which is used to hold the value.
* optimizer (optional - defaults to none): See 5.1.6%4. “NOT TRANSLATED! Identifier generator

optimization”

The second of these new generators is org.hibernate.id.enhanced.TableGenerator, which is intended,
firstly, as a replacement for the table generator, even though it actually functions much
more like org.hibernate.id.MultipleHiL.oPerTableGenerator, and secondly, as a re-implementation
of org.hibernate.id.MultipleHiL.oPerTableGenerator that utilizes the notion of pluggable optimizers.
Essentially this generator defines a table capable of holding a number of different increment
values simultaneously by using multiple distinctly keyed rows. This generator has a number of

configuration parameters:

* table_name (optional - defaults to hibernate_sequences): the name of the table to be used.

* value_column_name (optional - defaults to next_val): the name of the column on the table that
is used to hold the value.

* segment_column_name (optional - defaults to sequence_name): the name of the column on the
table that is used to hold the "segment key'. This is the value which identifies which increment
value to use.

* segment_value (optional - defaults to default): The "segment key' value for the segment from
which we want to pull increment values for this generator.

* segment_value_length (optional - defaults to 255): Used for schema generation; the column size
to create this segment key column.

* initial_value (optional - defaults to 1): The initial value to be retrieved from the table.

* increment_size (optional - defaults to 1): The value by which subsequent calls to the table
should differ.

* optimizer (optional - defaults to): See 5.1.64d. “NOT TRANSLATED! Identifier generator

optimization”
5.1.6. NOT TRANSLATED! Identifier generator optimization

For identifier generators that store values in the database, it is inefficient for them to hit the
database on each and every call to generate a new identifier value. Instead, you can group a bunch
of them in memory and only hit the database when you have exhausted your in-memory value
group. This is the role of the pluggable optimizers. Currently only the two enhanced generators
(5.1.54. “NOT TRANSLATED!Enhanced identifier generators” support this operation.

* none (generally this is the default if no optimizer was specified): this will not perform any
optimizations and hit the database for each and every request.

* hilo: applies a hi/lo algorithm around the database retrieved values. The values from the database
for this optimizer are expected to be sequential. The values retrieved from the database structure
for this optimizer indicates the 'group number'. The increment_size is multiplied by that value

in memory to define a group "hi value'.

77

57 718 O/R w3

* pooled: as with the case of hilo, this optimizer attempts to minimize the number of hits to
the database. Here, however, we simply store the starting value for the 'next group' into the
database structure rather than a sequential value in combination with an in-memory grouping

algorithm. Here, increment_size refers to the values coming from the database.

5.1.7. composite-id

<composite-id
name="propertyName"
class="ClassName"
mapped="true|false"
access="field|property|ClassName">
node="element-name|."

<key-property name="propertyName" type="typename" column="column_name"/>
<key-many-to-one name="propertyName class="ClassName" column="column_name"/>

</composite-id>

A table with a composite key can be mapped with multiple properties of the class as identifier
properties. The <composite-id> element accepts <key-property> property mappings and <key-many-

to-one> mappings as child elements.

<composite-id>
<key-property name="medicareNumber"/>
<key-property name="dependent"/>
</composite-id>

The persistent class must override equals() and hashCode() to implement composite identifier equality.

It must also implement Serializable.

Unfortunately, this approach means that a persistent object is its own identifier. There is no
convenient "handle" other than the object itself. You must instantiate an instance of the persistent
class itself and populate its identifier properties before you can load() the persistent state associated
with a composite key. We call this approach an embedded composite identifier, and discourage

it for serious applications.

F Hx HZHE 92 7F mapped composite AEAHG B2 = Zeld], of7]A] <composite-
id> @4 Yo HHE 74 Az Z2HEEL & Fd e 2o Az FPx F
A} gl F&EE .

<composite-id class="Medicareld" mapped="true">

78

Discriminator

<key-property name="medicareNumber"/>
<key-property name="dependent"/>
</composite-id>

In this example, both the composite identifier class, Medicareld, and the entity class itself have
properties named medicareNumber and dependent. The identifier class must override equals() and

hashCode() and implement Serializable. The main disadvantage of this approach is code duplication.

e

A

e
=

py] 3 ¥ composite A H S XA st=d AFEH T

fo

mapped (optional - defaults to false): indicates that a mapped composite identifier is used, and that

the contained property mappings refer to both the entity class and the composite identifier class.

* class (optional - but required for a mapped composite identifier): the class used as a composite

identifier.

We will describe a third, even more convenient approach, where the composite identifier is
implemented as a component class in 8.4%. “composite AHEAEZAN HEXIAEE" . The

attributes described below apply only to this alternative approach:

* name (optional - required for this approach): a property of component type that holds the

composite identifier. Please see chapter 9 for more information.

* access (optional - defaults to property): the strategy Hibernate uses for accessing the property

value.

* class (optional - defaults to the property type determined by reflection): the component class

used as a composite identifier. Please see the next section for more information.

The third approach, an identifier component, is recommended for almost all applications.

5.1.8. Discriminator

The <discriminator> element is required for polymorphic persistence using the table-per-class-
hierarchy mapping strategy. It declares a discriminator column of the table. The discriminator
column contains marker values that tell the persistence layer what subclass to instantiate for a
particular row. A restricted set of types can be used: string, character, integer, byte, short, boolean,

yes_no, true_false.

<discriminator
column="discriminator_column" o
type="discriminator_type" ﬂ'

force="true|false" ﬂ'

79

5% 718 O/R vj3g

insert="true|false" G
formula="arbitrary sql expression" e
/>
€ column (optional - defaults to class): the name of the discriminator column.
@ type (optional - defaults to string): a name that indicates the Hibernate type
@ force (optional - defaults to false): 'forces' Hibernate to specify the allowed discriminator

values, even when retrieving all instances of the root class.
€ insert (optional - defaults to true): set this to false if your discriminator column is also part of
a mapped composite identifier. It tells Hibernate not to include the column in SQL INSERTSs.
© formula (optional): an arbitrary SQL expression that is executed when a type has to be

evaluated. It allows content-based discrimination.

discriminator A H <] AA] ZF=-E <class> 849 <subclass> 2 4 9] discriminator-value 44 o] 2]

s A4 #

The force attribute is only useful if the table contains rows with "extra" discriminator values that

are not mapped to a persistent class. This will not usually be the case.

The formula attribute allows you to declare an arbitrary SQL expression that will be used to

evaluate the type of a row. For example:

<discriminator
formula="case when CLASS_TYPE in ('a', 'b', 'c') then 0 else 1 end"
type="integer"/>

5.1.9. Version (optional)

The <version> element is optional and indicates that the table contains versioned data. This is

particularly useful if you plan to use long transactions. See below for more information:

<version
column="version_column" °
name="propertyName" 9
type="typename" E’
access="field|property|ClassName" G
unsaved-value="null|negative|undefined" 9

generated="never|always" E’

80

Timestamp (optional)

2000 @©

insert="true|false" ﬂ
node="element-name|@attribute-name|element/@attribute|."

column (optional - defaults to the property name): the name of the column holding the
version number.

name: the name of a property of the persistent class.

type (optional - defaults to integer): the type of the version number.

access (optional - defaults to property): the strategy Hibernate uses to access the property value.
unsaved-value (optional - defaults to undefined): a version property value that indicates that
an instance is newly instantiated (unsaved), distinguishing it from detached instances that
were saved or loaded in a previous session. Undefined specifies that the identifier property
value should be used.

generated (optional - defaults to never): specifies that this version property value is generated
by the database. See the discussion of generated properties for more information.

insert (optional - defaults to true): specifies whether the version column should be included
in SQL insert statements. It can be set to false if the database column is defined with a

default value of O.

Version numbers can be of Hibernate type long, integer, short, timestamp or calendar.

A version or timestamp property should never be null for a detached instance. Hibernate will

detect any instance with a null version or timestamp as transient, irrespective of what other

unsaved-value strategies are specified. Declaring a nullable version or timestamp property is an easy

way to avoid problems with transitive reattachment in Hibernate. It is especially useful for people

using assigned identifiers or composite keys.

5.1.10. Timestamp (optional)

The optional <timestamp> element indicates that the table contains timestamped data. This provides

an alternative to versioning. Timestamps are a less safe implementation of optimistic locking.

However, sometimes the application might use the timestamps in other ways.

<timestamp
column="timestamp_column" o
name="propertyName" a'

access="field|property|ClassName"

source="vm|db" a

3
unsaved-value="null|undefined" G
6

generated="never|always"

81

574, 718 O/R w3

node="element-name|@attribute-name|element/@attribute|."

/>

€ column (optional - defaults to the property name): the name of a column holding the timestamp.

© name: the name of a JavaBeans style property of Java type Date or Timestamp of the
persistent class.

® access (optional - defaults to property): the strategy Hibernate uses for accessing the property
value.

© unsaved-value (optional - defaults to null): a version property value that indicates that an

instance is newly instantiated (unsaved), distinguishing it from detached instances that were
saved or loaded in a previous session. Undefined specifies that the identifier property value
should be used.

© source (optional - defaults to vm): Where should Hibernate retrieve the timestamp value
from? From the database, or from the current JVM? Database-based timestamps incur an
overhead because Hibernate must hit the database in order to determine the "next value'. It
is safer to use in clustered environments. Not all Dialects are known to support the retrieval
of the database's current timestamp. Others may also be unsafe for usage in locking due
to lack of precision (Oracle 8, for example).

© generated (optional - defaults to never): specifies that this timestamp property value is actually

generated by the database. See the discussion of generated properties for more information.

(3

5.1.11. Property

The <property> element declares a persistent JavaBean style property of the class.

<property
name="propertyName" 0‘
column="column_name" 9

type="typename" B
update="true|false" 9
insert="true|false" o
formula="arbitrary SQL expression" 9
6

access="field|property|ClassName"

82

Property

lazy="true|false" B’
unique="true|false" @'
not-null="true|false" 9
optimistic-lock="true|false" iE'
generated="never|insert|always" m

node="element-name|@attribute-name|element/@attribute|.
index="index_name"
unique_key="unique_key_id"

length="L"
precision="pP"
scale="S"

/>

© name: A AEAE AZEE ZEHE o] E.

© column (optional - defaults to the property name): the name of the mapped database table
column. This can also be specified by nested <column> element(s).

© type (:F4): Hibernate E}Y}-S YERN & ©] &.

@ update, insert (optional - defaults to true): specifies that the mapped columns should be
included in SQL UPDATE and/or INSERT statements. Setting both to false allows a pure
"derived" property whose value is initialized from some other property that maps to the same
column(s), or by a trigger or other application.

O formula (FA): AdEE 23 EC tal S Felste SQL ¥4, AdHE T2
HE2 245 Ade digh 23 g 284 &=

© access (optional - defaults to property): the strategy Hibernate uses for accessing the property
value.

€ lazy (optional - defaults to false): specifies that this property should be fetched lazily when
the instance variable is first accessed. It requires build-time bytecode instrumentation.

€ unique (optional): enables the DDL generation of a unique constraint for the columns. Also,
allow this to be the target of a property-ref.

© not-null (optional): enables the DDL generation of a nullability constraint for the columns.

{ optimistic-lock (optional - defaults to true): specifies that updates to this property do or do not

require acquisition of the optimistic lock. In other words, it determines if a version increment
should occur when this property is dirty.
{0 generated (optional - defaults to never): specifies that this property value is actually generated

by the database. See the discussion of generated properties for more information.

typename Thed o Atk

1. The name of a Hibernate basic type: integer, string, character, date, timestamp, float, binary, serializable,

object, blob etc.

83

57 718 O/R w3

2. The name of a Java class with a default basic type: int, float, char, java.lang.String, java.util.Date,
java.lang.Integer, java.sql.Clob etc.
3. serializable Java Z8]2=2] o] &.

4. The class name of a custom type: com.illflow.type.MyCustomType etc.

If you do not specify a type, Hibernate will use reflection upon the named property and guess
the correct Hibernate type. Hibernate will attempt to interpret the name of the return class of
the property getter using, in order, rules 2, 3, and 4. In certain cases you will need the type
attribute. For example, to distinguish between Hibernate. DATE and Hibernate. TIMESTAMP, or to

specify a custom type.

The access attribute allows you to control how Hibernate accesses the property at runtime. By default,
Hibernate will call the property get/set pair. If you specify access="field", Hibernate will bypass the
get/set pair and access the field directly using reflection. You can specify your own strategy for

property access by naming a class that implements the interface org.hibernate.property.PropertyAccessor.

A powerful feature is derived properties. These properties are by definition read-only. The property
value is computed at load time. You declare the computation as an SQL expression. This then

translates to a SELECT clause subquery in the SQL query that loads an instance:

<property name="totalPrice"
formula="(SELECT SUM (li.quantity*p.price) FROM Lineltem li, Product p
WHERE li.productld = p.productld
AND li.customerld = customerld
AND li.orderNumber = orderNumber)"/>

You can reference the entity table by not declaring an alias on a particular column. This would
be customerld in the given example. You can also use the nested <formula> mapping element if

you do not want to use the attribute.

5.1.12. Many-to-one

An ordinary association to another persistent class is declared using a many-to-one element. The
relational model is a many-to-one association; a foreign key in one table is referencing the primary

key column(s) of the target table.

<many-to-one

name="propertyName" o
column="column_name" 9
class="ClassName" 9
cascade="cascade_style" ﬂ

84

Many-to-one

/>

e

@ © © o

)

fetch="join|select" @'
update="true|false" m
insert="true|false" E
property-ref="propertyNameFromAssociatedClass" a
access="field|property|ClassName" E"
unique="truelfalse" B
not-null="true|false" iE"
optimistic-lock="true|false" @
lazy="proxy|no-proxy|false" @
not-found="ignore|exception" ‘E}
entity-name="EntityName" @
formula="arbitrary SQL expression" @

node="element-name|@attribute-name|element/@attribute|."
embed-xml="true|false"

index="index_name"

unique_key="unique_key_id"
foreign-key="foreign_key name"

name: the name of the property.

column (optional): the name of the foreign key column. This can also be specified by nested
<column> element(s).

class (optional - defaults to the property type determined by reflection): the name of the
associated class.

cascade (optional): specifies which operations should be cascaded from the parent object to
the associated object.

fetch (optional - defaults to select): chooses between outer-join fetching or sequential select
fetching.

update, insert (optional - defaults to true): specifies that the mapped columns should be included
in SQL UPDATE and/or INSERT statements. Setting both to false allows a pure 'derived"
association whose value is initialized from another property that maps to the same column(s),
or by a trigger or other application.

property-ref (optional): the name of a property of the associated class that is joined to this
foreign key. If not specified, the primary key of the associated class is used.

access (optional - defaults to property): the strategy Hibernate uses for accessing the property

value.

85

57 718 O/R w3

€ unique (optional): enables the DDL generation of a unique constraint for the foreign-key
column. By allowing this to be the target of a property-ref, you can make the association
multiplicity one-to-one.

f not-null (optional): enables the DDL generation of a nullability constraint for the foreign
key columns.

() optimistic-lock (optional - defaults to true): specifies that updates to this property do or do not
require acquisition of the optimistic lock. In other words, it determines if a version increment
should occur when this property is dirty.

P lazy (optional - defaults to proxy): by default, single point associations are proxied. lazy="no-
proxy" specifies that the property should be fetched lazily when the instance variable is
first accessed. This requires build-time bytecode instrumentation. lazy="false" specifies that the
association will always be eagerly fetched.

® not-found (optional - defaults to exception): specifies how foreign keys that reference missing
rows will be handled. ignore will treat a missing row as a null association.

(@ entity-name (optional): the entity name of the associated class.

B formula (FA): AAE foreign keyol] i3t ZES Ao sl+= SQL ZEH 2.

Setting a value of the cascade attribute to any meaningful value other than none will propagate
certain operations to the associated object. The meaningful values are divided into three categories.
First, basic operations, which include: persist, merge, delete, save-update, evict, replicate, lock and refresh;
second, special values: delete-orphan; and third,all comma-separated combinations of operation names:
cascade="persist,merge,evict’" or cascade="all,delete-orphan’. See 10.117Z4. “Transitive persistence(Z]
9 <£2)” for a full explanation. Note that single valued, many-to-one and one-to-one, associations

do not support orphan delete.

Here is an example of a typical many-to-one declaration:

<many-to-one name="product" class="Product" column="PRODUCT _ID"/>

The property-ref attribute should only be used for mapping legacy data where a foreign key
refers to a unique key of the associated table other than the primary key. This is a complicated
and confusing relational model. For example, if the Product class had a unique serial number
that is not the primary key. The unique attribute controls Hibernate's DDL generation with the

SchemaExport tool.

<property name="serialNumber" unique="true" type="string" column="SERIAL_NUMBER"/>

I o Orderltemol] g w8 & th&S AHEE Aolth

<many-to-one name="product" property-ref="serialNumber"
column="PRODUCT_SERIAL_NUMBER"/>

86

One-to-one

This is not encouraged, however.

o} Q)

gl

o

d Fxd #§d 717F dudE <lEES o ZEAFRES =T Ae, vl ¥edE

<properties> Q4 U Fo| IxdH ZZHEES wjF T Folt}

If the referenced unique key is the property of a component, you can specify a property path:

<many-to-one name="owner" property-ref="identity.ssn" column="OWNER_SSN"/>

5.

=

1.13. One-to-one

3

o}

Ap

Z# 2o 3 one-to-one AJIAA = one-to-one A4S AL 3l AAFHT)

!

<one-to-one

/>

name="propertyName" 0
class="ClassName" 9
cascade="cascade_style" E’
constrained="true|false" G
fetch="join|select" g
property-ref="propertyNameFromAssociatedClass" E
access="field|property|ClassName" ﬂ
formula="any SQL expression" @
lazy="proxy|no-proxy|false" 9
entity-name="EntityName" @

node="element-name|@attribute-name|element/@attribute|.
embed-xml="true|false"
foreign-key="foreign_key name"

name: the name of the property.

class (optional - defaults to the property type determined by reflection): the name of the
associated class.

cascade (optional): specifies which operations should be cascaded from the parent object to
the associated object.

constrained (optional): specifies that a foreign key constraint on the primary key of the

mapped table and references the table of the associated class. This option affects the order

87

57

718 O/R u]d

10

in which save() and delete() are cascaded, and determines whether the association can be
proxied. It is also used by the schema export tool.

fetch (optional - defaults to select): chooses between outer-join fetching or sequential select
fetching.

property-ref (optional): the name of a property of the associated class that is joined to the
primary key of this class. If not specified, the primary key of the associated class is used.
access (optional - defaults to property): the strategy Hibernate uses for accessing the property
value.

formula (optional): almost all one-to-one associations map to the primary key of the owning
entity. If this is not the case, you can specify another column, columns or expression to join
on using an SQL formula. See org.hibernate.test.onetooneformula for an example.

lazy (optional - defaults to proxy): by default, single point associations are proxied. lazy="no-
proxy" specifies that the property should be fetched lazily when the instance variable is
first accessed. It requires build-time bytecode instrumentation. lazy="false" specifies that the
association will always be eagerly fetched. Note that if constrained="false", proxying is impossible
and Hibernate will eagerly fetch the association.

entity-name (optional): the entity name of the associated class.

There are two varieties of one-to-one associations:

* Ztolvg] 7] AdBAE

* #9 foreign 7] ABJAA

il

Primary key associations do not need an extra table column. If two rows are related by the

association, then the two table rows share the same primary key value. To relate two objects by

a primary key association, ensure that they are assigned the same identifier value.

For a primary key association, add the following mappings to Employee and Person respectively:

<one-to-one name="person" class="Person"/>

<one-to-one name="employee" class="Employee" constrained="true"/>

Ensure that the primary keys of the related rows in the PERSON and EMPLOYEE tables are

equal. You use a special Hibernate identifier generation strategy called foreign:

<class name="person" table="PERSON">
<id name="id" column="PERSON_ID">

<generator class="foreign">
<param name="property">employee</param>

88

Natural-id

</generator>
</id>

<one-to-one name="employee"
class="Employee"
constrained="true"/>
</class>

A newly saved instance of Person is assigned the same primary key value as the Employee instance

referred with the employee property of that Person.

Alternatively, a foreign key with a unique constraint, from Employee to Person, can be expressed as:

<many-to-one name="person" class="Person" column="PERSON_ID" unique="true"/>

This association can be made bidirectional by adding the following to the Person mapping:

<one-to-one name="employee" class="Employee" property-ref="person"/>

5.1.14. Natural-id

<natural-id mutable="true|false"/>
<property ... />
<many-to-one ... />

</natural-id>

Although we recommend the use of surrogate keys as primary keys, you should try to identify
natural keys for all entities. A natural key is a property or combination of properties that is unique
and non-null. It is also immutable. Map the properties of the natural key inside the <natural-id>
element. Hibernate will generate the necessary unique key and nullability constraints and, as a

result, your mapping will be more self-documenting.

It is recommended that you implement equals() and hashCode() to compare the natural key properties

of the entity.

This mapping is not intended for use with entities that have natural primary keys.

* mutable (optional - defaults to false): by default, natural identifier properties are assumed to

be immutable (constant).

89

5% 718 O/R vj3g

5.1.15. Component and dynamic-component

The <component> element maps properties of a child object to columns of the table of a parent

class. Components can, in turn, declare their own properties, components or collections. See the

"Component" examples below:

<component
name="propertyName" 0'
class="className" ﬂ'
insert="true|false" E’
update="true|false" G

access="field|property|ClassName" 9

lazy="true|false" ﬂ
optimistic-lock="true|false" B
unique="true|false" 9
node="element-name|."

>
<property/>
<many-to-one />

</component>

€ name: the name of the property.

© class (optional - defaults to the property type determined by reflection): the name of the
component (child) class.

© insert: do the mapped columns appear in SQL INSERTSs?

@ update: do the mapped columns appear in SQL UPDATEs?

© access (optional - defaults to property): the strategy Hibernate uses for accessing the property
value.

© lazy (optional - defaults to false): specifies that this component should be fetched lazily when
the instance variable is first accessed. It requires build-time bytecode instrumentation.

€ optimistic-lock (optional - defaults to true): specifies that updates to this component either
do or do not require acquisition of the optimistic lock. It determines if a version increment
should occur when this property is dirty.

€ unique (optional - defaults to false): specifies that a unique constraint exists upon all mapped

columns of the component.

90

Properties

A2 <property> Bl ZEL A2 FF o] T2

<component> S4E 7

E]
- Pmo] ZeWEe Tosts A e Ue FE=A)
Al 71 <parent> A/ H Q4 3]

The <dynamic-component> element allows a Map to be mapped as a component, where the property

names refer to keys of the map. See 8.5%Z. “% %ol AFXHELE" for more information.

5.1.16. Properties

The <properties> element allows the definition of a named, logical grouping of the properties of
a class. The most important use of the construct is that it allows a combination of properties
to be the target of a property-ref. It is also a convenient way to define a multi-column unique

constraint. For example:

<properties
name="logicalName" o
insert="true|false" 9
update="true|false" B’
optimistic-lock="true|false" G
5]

unique="truelfalse"

>
<property/>
<many-to-one />

</properties>

€ name: the logical name of the grouping. It is not an actual property name.

© insert: do the mapped columns appear in SQL INSERTSs?

€ update: do the mapped columns appear in SQL UPDATESs?

© optimistic-lock (optional - defaults to true): specifies that updates to these properties either
do or do not require acquisition of the optimistic lock. It determines if a version increment
should occur when these properties are dirty.

© unique (optional - defaults to false): specifies that a unique constraint exists upon all mapped
columns of the component.

s Eol, ©d 27t B <properties> viB & 7HE 7

<class name="Person">
<id name="personNumber"/>

91

57 718 O/R w3

<properties name="name"
unigue="true" update="false">
<property name="firstName"/>
<property name="initial"/>
<property name="lastName"/>
</properties>
</class>

You might have some legacy data association that refers to this unique key of the Person table,

instead of to the primary key:

<many-to-one name="person"
class="Person" property-ref="name">
<column name="firstName"/>
<column name="initial"/>
<column name="lastName"/>
</many-to-one>

The use of this outside the context of mapping legacy data is not recommended.

5.1.17. Subclass

Polymorphic persistence requires the declaration of each subclass of the root persistent class. For

the table-per-class-hierarchy mapping strategy, the <subclass> declaration is used. For example:

<subclass
name="ClassName" 0
discriminator-value="discriminator_value" 9
proxy="ProxylInterface" E"

lazy="true|false" e
dynamic-update="true|false"
dynamic-insert="true|false"
entity-name="EntityName"
node="element-name"
extends="SuperclassName">

<property />

92

Joined-subclass

</subclass>

1]
2]

3]
4]

name: the fully qualified class name of the subclass.

discriminator-value (optional - defaults to the class name): a value that distinguishes individual
subclasses.
proxy (optional): specifies a class or interface used for lazy initializing proxies.

lazy (optional - defaults to true): setting lazy="false" disables the use of lazy fetching.

Each subclass declares its own persistent properties and subclasses. <version> and <id> properties

are assumed to be inherited from the root class. Each subclass in a hierarchy must define a unique

discriminator-value. If this is not specified, the fully qualified Java class name is used.

For information about inheritance mappings see 97%. Inheritance mapping.

5.1.18. Joined-subclass

Each subclass can also be mapped to its own table. This is called the table-per-subclass mapping

strategy. An inherited state is retrieved by joining with the table of the superclass. To do this

you use the <joined-subclass> element. For example:

<joined-subclass

name="ClassName" °
table="tablename" 9
proxy="ProxylInterface" E’
lazy="true|false" 9

dynamic-update="true|false"
dynamic-insert="true|false"
schema="schema"
catalog="catalog"
extends="SuperclassName"
persister="ClassName"
subselect="SQL expression"
entity-name="EntityName"
node="element-name">

<key>

<property />

</joined-subclass>

93

(9]
Y

¢, 712 O/R w3

name: the fully qualified class name of the subclass.
table: the name of the subclass table.

proxy (optional): specifies a class or interface to use for lazy initializing proxies.

Q0 0®@Q

lazy (optional, defaults to true): setting lazy="false" disables the use of lazy fetching.

A discriminator column is not required for this mapping strategy. Each subclass must, however,
declare a table column holding the object identifier using the <key> element. The mapping at the

start of the chapter would then be re-written as:

<?xml version="1.0"?>

<IDOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping package="eg">

<class name="Cat" table="CATS">
<id name="id" column="uid" type="long">
<generator class="hilo"/>
</id>
<property name="birthdate" type="date"/>
<property name="color" not-null="true"/>
<property name="sex" not-null="true"/>
<property name="weight"/>
<many-to-one name="mate"/>
<set name="kittens">
<key column="MOTHER"/>
<one-to-many class="Cat"/>
</set>
<joined-subclass name="DomesticCat" table="DOMESTIC_CATS">
<key column="CAT"/>
<property name="name" type="string"/>
</joined-subclass>
</class>

<class name="eg.Dog">
<!-- mapping for Dog could go here -->

</class>

</hibernate-mapping>

For information about inheritance mappings see 97%. Inheritance mapping.

94

Union-subclass

5.1.19. Union-subclass

A third option is to map only the concrete classes of an inheritance hierarchy to tables. This

is called the table-per-concrete-class strategy. Each table defines all persistent states of the class,

including the inherited state. In Hibernate, it is not necessary to explicitly map such inheritance

hierarchies. You can map each class with a separate <class> declaration. However, if you wish

use polymorphic associations (e.g. an association to the superclass of your hierarchy), you need

to use the <union-subclass> mapping. For example:

<union-subclass

name="ClassName"
table="tablename"

proxy="ProxylInterface"

lazy="true|false" e'

dynamic-update="true|false"
dynamic-insert="true|false"
schema="schema"
catalog="catalog"
extends="SuperclassName"
abstract="true|false"
persister="ClassName"
subselect="SQL expression
entity-name="EntityName"
node="element-name">

<property />

</union-subclass>

Q0009

°]

name: the fully qualified class name of the subclass.

table: the name of the subclass table.

proxy (optional): specifies a class or interface to use for lazy initializing proxies.

lazy (optional, defaults to true): setting lazy="false" disables the use of lazy fetching.

g Wieele 3 ARy 7] AH ol

gashd ok

For information about inheritance mappings see 97%. Inheritance mapping.

95

5% 718 O/R vj3g

5.1.20. Join

Using the <join> element, it is possible to map properties of one class to several tables that have
a one-to-one relationship. For example:

<join
table="tablename"
schema="owner"

1]
2
catalog="catalog" e
fetch="join|select" 4
5
6]

inverse="true|false"

optional="true|false">
<key ... />
<property ... />

</join>

€ table: the name of the joined table.

schema (optional): overrides the schema name specified by the root <hibernate-mapping> element.
© catalog (optional): overrides the catalog name specified by the root <hibernate-mapping> element.
€ fetch (optional - defaults to join): if set to join, the default, Hibernate will use an inner join

to retrieve a <join> defined by a class or its superclasses. It will use an outer join for a <join>
defined by a subclass. If set to select then Hibernate will use a sequential select for a <join>
defined on a subclass. This will be issued only if a row represents an instance of the subclass.
Inner joins will still be used to retrieve a <join> defined by the class and its superclasses.

© inverse (optional - defaults to false): if enabled, Hibernate will not insert or update the
properties defined by this join.

© optional (optional - defaults to false): if enabled, Hibernate will insert a row only if the
properties defined by this join are non-null. It will always use an outer join to retrieve
the properties.

For example, address information for a person can be mapped to a separate table while preserving

value type semantics for all properties:

<class name="Person"
table="PERSON">

96

Key

<id name="id" column="PERSON_ID">...</id>

<join table="ADDRESS">
<key column="ADDRESS_ID"/>
<property name="address"/>
<property name="zip"/>
<property name="country"/>
</join>

This feature is often only useful for legacy data models. We recommend fewer tables than classes
and a fine-grained domain model. However, it is useful for switching between inheritance mapping

strategies in a single hierarchy, as explained later.

5.1.21. Key

The <key> element has featured a few times within this guide. It appears anywhere the parent
mapping element defines a join to a new table that references the primary key of the original

table. It also defines the foreign key in the joined table:

<key
column="columnname" 0
on-delete="noaction|cascade" 9
property-ref="propertyName" B
not-null="true|false" G’
update="true|false" 9
6

unique="true|false"
/>

© column (optional): the name of the foreign key column. This can also be specified by nested

<column> element(s).

on-delete (optional - defaults to noaction): specifies whether the foreign key constraint has
database-level cascade delete enabled.

€ property-ref (optional): specifies that the foreign key refers to columns that are not the
primary key of the original table. It is provided for legacy data.

© not-null (optional): specifies that the foreign key columns are not nullable. This is implied
whenever the foreign key is also part of the primary key.

© update (optional): specifies that the foreign key should never be updated. This is implied

whenever the foreign key is also part of the primary key.

97

57 718 O/R w3

© unique (optional): specifies that the foreign key should have a unique constraint. This is

implied whenever the foreign key is also the primary key.

For systems where delete performance is important, we recommend that all keys should be defined
on-delete="cascade". Hibernate uses a database-level ON CASCADE DELETE constraint, instead of
many individual DELETE statements. Be aware that this feature bypasses Hibernate's usual optimistic

locking strategy for versioned data.

The not-null and update attributes are useful when mapping a unidirectional one-to-many association.
If you map a unidirectional one-to-many association to a non-nullable foreign key, you must

declare the key column using <key not-null="true">.

5.1.22. Column and formula elements

Mapping elements which accept a column attribute will alternatively accept a <column> subelement.

Likewise, <formula> is an alternative to the formula attribute. For example:

<column
name="column_name"
length="N"
precision="N"
scale="N"
not-null="true|false"
unique="true|false"
unigue-key="multicolumn_unique_key_name"
index="index_name"
sql-type="sqgl_type name"
check="SQL expression"
default="SQL expression"/>

<formula>SQL expression</formula>

column and formula attributes can even be combined within the same property or association

mapping to express, for example, exotic join conditions.

<many-to-one name="homeAddress" class="Address"
insert="false" update="false">
<column name="person_id" not-null="true" length="10"/>
<formula>'MAILING'</formula>
</many-to-one>

98

Import

5.1.23. Import

If your application has two persistent classes with the same name, and you do not want to
specify the fully qualified package name in Hibernate queries, classes can be "imported" explicitly,
rather than relying upon auto-import="true". You can also import classes and interfaces that are

not explicitly mapped:

<import class="java.lang.Object" rename="Universe"/>

<import
class="ClassName" ﬂ
rename="ShortName" 9
/>

€ class: the fully qualified class name of any Java class.

© rename (optional - defaults to the unqualified class name): a name that can be used in

the query language.

5.1.24. Any

There is one more type of property mapping. The <any> mapping element defines a polymorphic
association to classes from multiple tables. This type of mapping requires more than one column.
The first column contains the type of the associated entity. The remaining columns contain the
identifier. It is impossible to specify a foreign key constraint for this kind of association. This is
not the usual way of mapping polymorphic associations and you should use this only in special

cases. For example, for audit logs, user session data, etc.

The meta-type attribute allows the application to specify a custom type that maps database column
values to persistent classes that have identifier properties of the type specified by id-type. You

must specify the mapping from values of the meta-type to class names.

<any name="being" id-type="long" meta-type="string">
<meta-value value="TBL_ANIMAL" class="Animal"/>
<meta-value value="TBL_HUMAN" class="Human"/>
<meta-value value="TBL_ALIEN" class="Alien"/>
<column name="table_name"/>
<column name="id"/>

</any>

99

5% 718 O/R vj3g

<any
name="propertyName" 0'
id-type="idtypename" 9
meta-type="metatypename" E’
cascade="cascade_style" G
access="field|property|ClassName" 9

optimistic-lock="true|false" ﬂ

<meta-value ... />
<meta-value ... />
<column />
<column />

name: X2 E] o] &,

id-type: 21 H A} B}

meta-type (optional - defaults to string): any type that is allowed for a discriminator mapping.
cascade (optional- defaults to none): cascade Z~E}.

access (optional - defaults to property): the strategy Hibernate uses for accessing the property
value.

optimistic-lock (optional - defaults to true): specifies that updates to this property either do
or do not require acquisition of the optimistic lock. It defines whether a version increment

should occur if this property is dirty.

5.2. Hibernate types

52.1. dEY g & =

In relation to the persistence service, Java language-level objects are classified into two groups:

An entity exists independently of any other objects holding references to the entity. Contrast this
with the usual Java model, where an unreferenced object is garbage collected. Entities must be
explicitly saved and deleted. Saves and deletions, however, can be cascaded from a parent entity
to its children. This is different from the ODMG model of object persistence by reachability and
corresponds more closely to how application objects are usually used in large systems. Entities

support circular and shared references. They can also be versioned.

100

71 & value BFY &

An entity's persistent state consists of references to other entities and instances of value types.
Values are primitives: collections (not what is inside a collection), components and certain immutable
objects. Unlike entities, values in particular collections and components, are persisted and deleted
by reachability. Since value objects and primitives are persisted and deleted along with their
containing entity, they cannot be independently versioned. Values have no independent identity,

so they cannot be shared by two entities or collections.

Until now, we have been using the term "persistent class’ to refer to entities. We will continue
to do that. Not all user-defined classes with a persistent state, however, are entities. A component
is a user-defined class with value semantics. A Java property of type java.lang.String also has
value semantics. Given this definition, all types (classes) provided by the JDK have value type
semantics in Java, while user-defined types can be mapped with entity or value type semantics.
This decision is up to the application developer. An entity class in a domain model will normally
have shared references to a single instance of that class, while composition or aggregation usually

translates to a value type.
We will revisit both concepts throughout this reference guide.

The challenge is to map the Java type system, and the developers' definition of entities and
value types, to the SQL/database type system. The bridge between both systems is provided by
Hibernate. For entities, <class>, <subclass> and so on are used. For value types we use <property>,
<component>etc., that usually have a type attribute. The value of this attribute is the name of
a Hibernate mapping type. Hibernate provides a range of mappings for standard JDK value
types out of the box. You can write your own mapping types and implement your own custom

conversion strategies.

With the exception of collections, all built-in Hibernate types support null semantics.
5.2.2. 715 value B}IY =

The built-in basic mapping types can be roughly categorized into the following:

integer, long, short, float, double, character, byte, boolean, yes_no, true_false
Al A E ol wrapper FH2ERFE A PH(AE-AGH) SOL AY B
29 B9 w&F. boolean, yes_no®} true_falser= Java boolean©|l} java.lang.Booleanol TH 3k

= AAd d=ZFEolth

o

string

java.lang.String © 2 Y1 E] VARCHAR (H+ Oracle VARCHAR2)Z 9] B} =f .

date, time, timestamp
javautilDate®} 2R 2] MEZFHP2ZHE SQL EFYE2 DATE, TIME, TIMESTAMP (& 5
)RS B B E

calendar, calendar_date

java.util.Calendar2 58 SQL E}Y =<l TIMESTAMP, DATE (& S71E)29 89 I E.

101

5% 718 O/R vj3g

big_decimal, big_integer

java.math.BigDecimal#} java.math.Biglnteger 2 Y- E] NUMERIC (HE+ Oracle NUMBER)Z 2] B¢

B 5.

locale, timezone, currency
java.util.Locale, java.util.TimeZone, ZL¥]3l java.util.Currency 258 VARCHAR(ZE+E Oracle
VARCHAR2)Z 9] B}Y] "f3. Locale®} Currency®] SIAEAEL IR E9 [SO ZEEE wj

FH} TimeZoned] A2V AEL 759 DE v H}

class
javalang.Class®Z 5B VARCHAR (Z+= Oracle VARCHAR2)Z 9] EFY wl33. Class= ZA 2] #
A wAol7t Be olgo R g

binary
byte € E& A3 SQL binary B} S 2 wg A7t}

text
long Java ¥A<9 & SQL CLOB ¥+ TEXT BEIY o ® wHAZIth

serializable
Maps serializable Java types to an appropriate SQL binary type. You can also indicate the
Hibernate type serializable with the name of a serializable Java class or interface that does
not default to a basic type.

clob, blob

Type mappings for the JDBC classes java.sql.Clob and java.sql.Blob. These types can be
inconvenient for some applications, since the blob or clob object cannot be reused outside of

a transaction. Driver support is patchy and inconsistent.

imm_date, imm_time, imm_timestamp, imm_calendar, imm_calendar_date, imm_serializable, imm_binary
Type mappings for what are considered mutable Java types. This is where Hibernate makes
certain optimizations appropriate only for immutable Java types, and the application treats the
object as immutable. For example, you should not call Date.setTime() for an instance mapped
as imm_timestamp. To change the value of the property, and have that change made persistent,

the application must assign a new, nonidentical, object to the property.

Unique identifiers of entities and collections can be of any basic type except binary, blob and clob.

Composite identifiers are also allowed. See below for more information.

718 value E}Y E 2 orghibernate.Hibernate®ll g 2] = o] = WS35l Type FFES zH=t) 4

£ £9], Hibernate. STRINGS string B} Y 2 X3 3t}
5.2.3. W=3 value BFY =

It is relatively easy for developers to create their own value types. For example, you might want
to persist properties of type java.lang.Biglnteger to VARCHAR columns. Hibernate does not provide

a built-in type for this. Custom types are not limited to mapping a property, or collection element,

102

to a single table column. So, for example, you might have a Java property getName()/setName()
of type java.lang.String that is persisted to the columns FIRST_NAME, INITIAL, SURNAME.

To implement a custom type, implement either org.hibernate.UserType or
org.hibernate.CompositeUserType and declare properties using the fully qualified classname of the

type. View org.hibernate.test.DoubleStringType to see the kind of things that are possible.

<property name="twoStrings" type="org.hibernate.test.DoubleStringType">
<column name="first_string"/>
<column name="second_string"/>

</property>

el Z2HEE oA e 2ES o

ofd

Al7]1E <column> Ej 19 A}E-L FX3}E}.

CompositeUserType, EnhancedUserType, UserCollectionType, 18]35 UserVersionType SRz O]Z\—T‘—_-f“%
8 Be 558 4852 98 A9 AFech

You can even supply parameters to a UserType in the mapping file. To do this, your UserType
must implement the org.hibernate.usertype.ParameterizedType interface. To supply parameters to your

custom type, you can use the <type> element in your mapping files.

<property nhame="priority">
<type name="com.mycompany.usertypes.DefaultValuelntegerType">
<param name="default">0</param>

</type>
</property>

UserType oA Ao AL H Properties 2 A Z2HE defaultZ= HWEE uzjvu]glo])3t e

A% 4 vk

If you regularly use a certain UserType, it is useful to define a shorter name for it. You can do
this using the <typedef> element. Typedefs assign a name to a custom type, and can also contain

a list of default parameter values if the type is parameterized.

<typedef class="com.mycompany.usertypes.DefaultValuelntegerType" name="default_zero">
<param name="default">0</param>
</typedef>

<property name="priority" type="default_zero"/>

57 718 O/R w3

property 713 ol type SHEHUIEES S FORA Aol BA typedef W ATH et
HEHES evgto]l= A& Aol 7}53t

Even though Hibernate's rich range of built-in types and support for components means you will
rarely need to use a custom type, it is considered good practice to use custom types for non-
entity classes that occur frequently in your application. For example, a MonetaryAmount class is a
good candidate for a CompositeUserType, even though it could be mapped as a component. One
reason for this is abstraction. With a custom type, your mapping documents would be protected

against changes to the way monetary values are represented.
53. 3hube] 2B & W o] BB

It is possible to provide more than one mapping for a particular persistent class. In this case,
you must specify an entity name to disambiguate between instances of the two mapped entities.
By default, the entity name is the same as the class name. Hibernate lets you specify the entity
name when working with persistent objects, when writing queries, or when mapping associations

to the named entity.

<class name="Contract" table="Contracts"
entity-name="CurrentContract">

<set name="history" inverse="true"
order-by="effectiveEndDate desc">
<key column="currentContractld"/>
<one-to-many entity-name="HistoricalContract"/>
</set>
</class>

<class name="Contract" table="ContractHistory"
entity-name="HistoricalContract">

<many-to-one name="currentContract"
column="currentContractld"
entity-name="CurrentContract"/>
</class>

Associations are now specified using entity-name instead of class.
54. SQL Q18R E ¥AE AWAE

You can force Hibernate to quote an identifier in the generated SQL by enclosing the table or
column name in backticks in the mapping document. Hibernate will use the correct quotation
style for the SQL Dialect. This is usually double quotes, but the SQL Server uses brackets and
MySQL uses backticks.

104

Metadata tSHE

<class name="Lineltem" table=""Line Item™>
<id name="id" column=""ltem Id™"/><generator class="assigned"/></id>
<property name="itemNumber" column=""Item #"/>

</class>

5.5. Metadata t<elt=

XML does not suit all users so there are some alternative ways to define O/R mapping metadata

in Hibernate.
5.5.1. XDoclet ®}=Y A}-&3}7]

Many Hibernate users prefer to embed mapping information directly in sourcecode using XDoclet
@hibernate.tags. We do not cover this approach in this reference guide since it is considered part

of XDoclet. However, we include the following example of the Cat class with XDoclet mappings:

package eg;
import java.util.Set;
import java.util.Date;

/**

* @hibernate.class

* table="CATS"

*/

public class Cat {
private Long id; // identifier
private Date birthdate;
private Cat mother;
private Set kittens
private Color color;
private char sex;
private float weight;

/*
* @hibernate.id
* generator-class="native"
* column="CAT_ID"
*/
public Long getld() {
return id;

}
private void setld(Long id) {

105

57 718 O/R w3

this.id=id;

/**

* @hibernate.many-to-one

* column="PARENT _ID"

*/

public Cat getMother() {
return mother;

}

void setMother(Cat mother) {
this.mother = mother;

/**

* @hibernate.property

* column="BIRTH_DATE"

*/

public Date getBirthdate() {
return birthdate;

}

void setBirthdate(Date date) {
birthdate = date;

}

/**

* @hibernate.property

* column="WEIGHT"

*

public float getWeight() {
return weight;

}

void setWeight(float weight) {
this.weight = weight;

/**

* @hibernate.property

* column="COLOR"

* not-null="true"

*

public Color getColor() {
return color;

}

void setColor(Color color) {

106

JDK 5.0 Annotations A}-&3}7]

this.color = color;

}

/**

* @hibernate.set

* inverse="true"

* order-by="BIRTH_DATE"

* @hibernate.collection-key

* column="PARENT _ID"

* @hibernate.collection-one-to-many

*/

public Set getKittens() {
return kittens;

}

void setKittens(Set kittens) {
this.kittens = kittens;

}

/l addKitten not needed by Hibernate

public void addKitten(Cat kitten) {
kittens.add(kitten);

/**

* @hibernate.property

* column="SEX"

* not-null="true"

* update="false"

*/

public char getSex() {
return sex;

}

void setSex(char sex) {
this.sex=sex;

See the Hibernate website for more examples of XDoclet and Hibernate.

5.5.2. JDK 5.0 Annotations A}-83}7]

JDK 5.0 introduced XDoclet-style annotations at the language level that are type-safe and checked
at compile time. This mechanism is more powerful than XDoclet annotations and better supported
by tools and IDEs. Intelli] IDEA, for example, supports auto-completion and syntax highlighting
of JDK 5.0 annotations. The new revision of the EJB specification (JSR-220) uses JDK 5.0

annotations as the primary metadata mechanism for entity beans. Hibernate3 implements the

107

574, 718 O/R w3

EntityManager of JSR-220 (the persistence API). Support for mapping metadata is available via
the Hibernate Annotations package as a separate download. Both EJB3 (JSR-220) and Hibernate3

metadata is supported.

&2 EIB AEE Hlo2ZA FHo] &2 POJO S 2ol #3 oA ot

@Entity(access = AccessType.FIELD)
public class Customer implements Serializable {

@Id;
Long id;

String firstName;
String lastName;
Date birthday;

@Transient
Integer age;

@Embedded
private Address homeAddress;

@OneToMany(cascade=CascadeType.ALL)
@JoinColumn(name="CUSTOMER_ID")

Set<Order> orders;

/I Getter/setter and business methods

(3

5.6. Generated properties

Generated properties are properties that have their values generated by the database. Typically,
Hibernate applications needed to refresh objects that contain any properties for which the database
was generating values. Marking properties as generated, however, lets the application delegate
this responsibility to Hibernate. When Hibernate issues an SQL INSERT or UPDATE for an
entity that has defined generated properties, it immediately issues a select afterwards to retrieve

the generated values.

108

Auxiliary database objects

Properties marked as generated must additionally be non-insertable and non-updateable. Only

versions, timestamps, and simple properties, can be marked as generated.
never (the default): the given property value is not generated within the database.

insert: the given property value is generated on insert, but is not regenerated on subsequent updates.
Properties like created-date fall into this category. Even though version and timestamp properties

can be marked as generated, this option is not available.

always: the property value is generated both on insert and on update.

5.7. Auxiliary database objects

Auxiliary database objects allow for the CREATE and DROP of arbitrary database objects.
In conjunction with Hibernate's schema evolution tools, they have the ability to fully define
a user schema within the Hibernate mapping files. Although designed specifically for creating
and dropping things like triggers or stored procedures, any SQL command that can be run via
a java.sql.Statement.execute() method is valid (for example, ALTERs, INSERTS, etc.). There are

essentially two modes for defining auxiliary database objects:

The first mode is to explicitly list the CREATE and DROP commands in the mapping file:

<hibernate-mapping>

<database-object>
<create>CREATE TRIGGER my_trigger ...</create>
<drop>DROP TRIGGER my_trigger</drop>
</database-object>
</hibernate-mapping>

The second mode is to supply a custom class that constructs the CREATE and DROP commands.

This custom class must implement the org.hibernate.mapping.AuxiliaryDatabaseObject interface.

<hibernate-mapping>

<database-object>
<definition class="MyTriggerDefinition"/>

</database-object>

</hibernate-mapping>

Additionally, these database objects can be optionally scoped so that they only apply when certain

dialects are used.

109

57 718 O/R w3

<hibernate-mapping>

<database-object>
<definition class="MyTriggerDefinition"/>
<dialect-scope name="org.hibernate.dialect.Oracle9iDialect"/>
<dialect-scope name="org.hibernate.dialect.Oracle10gDialect"/>
</database-object>
</hibernate-mapping>

110

Collection mapping

i

oA = =
6.1. g = = E—ﬂ }1__ =
Hibernate requires that persistent collection-valued fields be declared as an interface type. For

example:

public class Product {
private String serialNumber;
private Set parts = new HashSet();

public Set getParts() { return parts; }

void setParts(Set parts) { this.parts = parts; }

public String getSerialNumber() { return serialNumber; }
void setSerialNumber(String sn) { serialNumber = sn; }

The actual interface might be java.util.Set, java.util.Collection, java.util.List, java.util.Map,
java.util.SortedSet, java.util.SortedMap or anything you like ("anything you like" means you will have

to write an implementation of org.hibernate.usertype.UserCollectionType.)

Notice how the instance variable was initialized with an instance of HashSet. This is the best way
to initialize collection valued properties of newly instantiated (non-persistent) instances. When you
make the instance persistent, by calling persist() for example, Hibernate will actually replace the

HashSet with an instance of Hibernate's own implementation of Set. Be aware of the following errors:

Cat cat = new DomesticCat();
Cat kitten = new DomesticCat();

Set kittens = new HashSet();

kittens.add(kitten);

cat.setKittens(kittens);

session.persist(cat);

kittens = cat.getKittens(); // Okay, kittens collection is a Set
(HashSet) cat.getKittens(); // Error!

The persistent collections injected by Hibernate behave like HashMap, HashSet, TreeMap, TreeSet

or ArrayList, depending on the interface type.

Collections instances have the usual behavior of value types. They are automatically persisted
when referenced by a persistent object and are automatically deleted when unreferenced. If a

collection is passed from one persistent object to another, its elements might be moved from one

111

67+, Collection mapping

table to another. Two entities cannot share a reference to the same collection instance. Due to
the underlying relational model, collection-valued properties do not support null value semantics.

Hibernate does not distinguish between a null collection reference and an empty collection.

Use persistent collections the same way you use ordinary Java collections. However, please ensure

you understand the semantics of bidirectional associations (these are discussed later).

6.2. 294 mH=

e R

There are quite a range of mappings that can be generated for collections that
cover many common relational models. We suggest you experiment with the schema
generation tool so that you understand how various mapping declarations translate

to database tables.

The Hibernate mapping element used for mapping a collection depends upon the type of interface.

For example, a <set> element is used for mapping properties of type Set.

<class name="Product">
<id name="serialNumber" column="productSerialNumber"/>
<set name="parts">
<key column="productSerialNumber" not-null="true"/>
<one-to-many class="Part"/>
</set>
</class>

<set>T = HE

<map
name="propertyName" n
table="table_name" 'g
schema="schema_name" B
lazy="true|extra|false" a
inverse="true|false" 9

cascade="a|||none|save-update|delete|aII-deIete-orphan|deIetﬁe-orphan"

sort="unsorted|natural|comparatorClass" e

112

il
)
r
=)
ot
il

order-by="column_name asc|desc" @'
where="arbitrary sql where condition" 9
fetch="join|select|subselect" {E}
batch-size="N" m
access="field|property|ClassName" @
optimistic-lock="true|false" ‘E}

mutable="true|false" @
node="element-name|."
embed-xml="true|false"

>
<key />
<map-key />
<element />
</map>

€ name: the collection property name

€ table (optional - defaults to property name): the name of the collection table. It is not used

for one-to-many associations.

@

schema (optional): the name of a table schema to override the schema declared on the
root element

© lazy (optional - defaults to true): disables lazy fetching and specifies that the association
is always eagerly fetched. It can also be used to enable ‘extra-lazy' fetching where most
operations do not initialize the collection. This is suitable for large collections.

inverse (optional - defaults to false): marks this collection as the 'inverse" end of a bidirectional
association.

cascade (optional - defaults to none): enables operations to cascade to child entities.
sort (optional): specifies a sorted collection with natural sort order or a given comparator class.

order-by (optional, JDK1.4 only): specifies a table column or columns that define the iteration

order of the Map, Set or bag, together with an optional asc or desc.

© o000 o

where (optional): specifies an arbitrary SQL. WHERE condition that is used when retrieving
or removing the collection. This is useful if the collection needs to contain only a subset

of the available data.

S

fetch (optional, defaults to select): chooses between outer-join fetching, fetching by sequential

select, and fetching by sequential subselect.

(@ batch-size (optional, defaults to 1): specifies a "batch size" for lazily fetching instances of
this collection.

P access (optional - defaults to property): the strategy Hibernate uses for accessing the collection

property value.

113

67, Collection mapping

B optimistic-lock (optional - defaults to true): specifies that changes to the state of the collection
results in increments of the owning entity's version. For one-to-many associations you may
want to disable this setting.

@ mutable (optional - defaults to true): a value of false specifies that the elements of the

collection never change. This allows for minor performance optimization in some cases.
6.2.1. Zd XM foreign 7] &

Collection instances are distinguished in the database by the foreign key of the entity that owns
the collection. This foreign key is referred to as the collection key column, or columns, of the

collection table. The collection key column is mapped by the <key> element.

There can be a nullability constraint on the foreign key column. For most collections, this is
implied. For unidirectional one-to-many associations, the foreign key column is nullable by default,

so you may need to specify not-null="true".

<key column="productSerialNumber" not-null="true"/>

The foreign key constraint can use ON DELETE CASCADE.
<key column="productSerialNumber" on-delete="cascade"/>

<key> Q4o W3 AA Hogx o AL B}
6.22. M QAL

Collections can contain almost any other Hibernate type, including: basic types, custom types,
components and references to other entities. This is an important distinction. An object in a
collection might be handled with "value" semantics (its life cycle fully depends on the collection
owner), or it might be a reference to another entity with its own life cycle. In the latter case,

only the "link" between the two objects is considered to be a state held by the collection.

K

sE B Y ZdH 24 gdoeEA EHAY. FdH 2 AEL <element> =X <composite-
clement>] o8] vl WAL, AEE FrSe] A
WP Eh oo T = value gUE 7 84

e vt A,

rlo

Q-9 <one-to-many> ¥ <many-to-many>=A]
£S5 W37, FHe Fe dEHE d

ﬂ

e’}

A=

6.2.3. 194 #H

i

All collection mappings, except those with set and bag semantics, need an index column in the
collection table. An index column is a column that maps to an array index, or List index, or
Map key. The index of a Map may be of any basic type, mapped with <map-key>. It can be

an entity reference mapped with <map-key-many-to-many>, or it can be a composite type mapped

114

O,
12
o
(i
il
)
r)f
i

with <composite-map-key>. The index of an array or list is always of type integer and is mapped
using the <list-index> element. The mapped column contains sequential integers that are numbered

from zero by default.

<list-index
column="column_name" ﬁ
base="0|1|..."/>

€ column_name (required): the name of the column holding the collection index values.

€ base (optional - defaults to 0): the value of the index column that corresponds to the first

element of the list or array.

<map-key
column="column_name" o

formula="any SQL expression" a'

type="type_name" B
node="@attribute-name"
length="N"/>

€ column (optional): the name of the column holding the collection index values.
€ formula (optional): a SQL formula used to evaluate the key of the map.
© type (required): the type of the map Keys.

<map-key-many-to-many
column="column_name" o

formula="any SQL expression" aﬂ
class="ClassName"
/>

© column (optional): the name of the foreign key column for the collection index values.
€ formula (optional): a SQ formula used to evaluate the foreign key of the map key.

© class (required): the entity class used as the map key.

If your table does not have an index column, and you still wish to use List as the property type,
you can map the property as a Hibernate <bag>. A bag does not retain its order when it is

retrieved from the database, but it can be optionally sorted or ordered.

115

67, Collection mapping

6.2.4. =S 7172 F49 4 =3 many-to-many S1# =

f

Any collection of values or many-to-many associations requires a dedicated collection table with
a foreign key column or columns, collection element column or columns, and possibly an index

column or columns.

For a collection of values use the <element> tag. For example:

<element
column="column_name" 0‘
formula="any SQL expression" a
type="typename" B’
length="L"
precision="P"
scale="S"

not-null="true|false"

unique="true|false"

node="element-name"
/>

€ column (optional): the name of the column holding the collection element values.
formula (optional): an SQL formula used to evaluate the element.

© type (required): the type of the collection element.

A many-to-many association is specified using the <many-to-many> element.

<many-to-many

column="column_name" ﬁ
formula="any SQL expression" 9
class="ClassName" B’
fetch="select|join" G’
unique="truelfalse" @'
not-found="ignore|exception” B
entity-name="EntityName" ﬂ

property-ref="propertyNameFromAssociatedClass" EI'
node="element-name"

116

)
it
filo

7FA 2494 E 3 many-to-many AHAE

embed-xml="true|false"

/>
€ column (optional): the name of the element foreign key column.
€ formula (optional): an SQL formula used to evaluate the element foreign key value.
© class (required): the name of the associated class.
@ fetch (optional - defaults to join): enables outer-join or sequential select fetching for this

association. This is a special case; for full eager fetching in a single SELECT of an entity
and its many-to-many relationships to other entities, you would enable join fetching,not only

of the collection itself, but also with this attribute on the <many-to-many> nested element.

© unique (optional): enables the DDL generation of a unique constraint for the foreign-key
column. This makes the association multiplicity effectively one-to-many.

© not-found (optional - defaults to exception): specifies how foreign keys that reference missing
rows will be handled: ignore will treat a missing row as a null association.

€ entity-name (optional): the entity name of the associated class, as an alternative to class.

€ property-ref (optional): the name of a property of the associated class that is joined to this

foreign key. If not specified, the primary key of the associated class is used.
Here are some examples.

A set of strings:

<set hame="names" table="person_names">

<key column="person_id"/>

<element column="person_name" type="string"/>
</set>

A bag containing integers with an iteration order determined by the order-by attribute:

<bag name="sizes"
table="item_sizes"
order-by="size asc">
<key column="item_id"/>
<element column="size" type="integer"/>
</bag>

An array of entities, in this case, a many-to-many association:

<array hame="addresses"
table="PersonAddress"
cascade="persist">

117

67, Collection mapping

<key column="personld"/>

<list-index column="sortOrder"/>

<many-to-many column="addressld" class="Address"/>
</array>

dAEed o

%
M

#

e
-0,
i)
[>
lf
tlo

7}Z map :

<map name="holidays"
table="holidays"
schema="dbo"
order-by="hol_name asc">
<key column="id"/>
<map-key column="hol_name" type="string"/>
<element column="hol_date" type="date"/>
</map>

A list of components (this is discussed in the next chapter):

<list name="carComponents"
table="CarComponents">
<key column="carld"/>
<list-index column="sortOrder"/>
<composite-element class="CarComponent">
<property name="price"/>
<property nhame="type"/>
<property name="serialNumber" column="serialNum"/>
</composite-element>
</list>

6.2.5. One-to-many A&
A one-to-many association links the tables of two classes via a foreign key with no intervening

collection table. This mapping loses certain semantics of normal Java collections:

* An instance of the contained entity class cannot belong to more than one instance of the
collection.
* An instance of the contained entity class cannot appear at more than one value of the collection

index.

An association from Product to Part requires the existence of a foreign key column and possibly an

index column to the Part table. A <one-to-many> tag indicates that this is a one-to-many association.

118

=
2
(i
il
)
r
=)
ot
il

<one-to-many
class="ClassName" 0
not-found="ignore|exception” 9

entity-name="EntityName"
node="element-name"
embed-xml="true|false"

/>

€ class (required): the name of the associated class.
€ not-found (optional - defaults to exception): specifies how cached identifiers that reference
missing rows will be handled. ignore will treat a missing row as a null association.

€ entity-name (optional): the entity name of the associated class, as an alternative to class.

The <one-to-many> element does not need to declare any columns. Nor is it necessary to specify

the table name anywhere.

79

If the foreign key column of a <one-to-many> association is declared NOT NULL,
you must declare the <key> mapping not-null="true" or use a bidirectional association
with the collection mapping marked inverse="true". See the discussion of bidirectional

associations later in this chapter for more information.

The following example shows a map of Part entities by name, where partName is a persistent

property of Part. Notice the use of a formula-based index:

<map name="parts"
cascade="all">
<key column="productld" not-null="true"/>
<map-key formula="partName"/>
<one-to-many class="Part"/>
</map>

63. NAE A4 WPE

6.3.1. Sorted ZHA M=

iy

Hibernate java.util.SortedMap3} java.util.SortedSetE F+& sl FH A ES A Lot} G2 v
el ol kel comparatorE A4 s oF Fhrh:

119

67, Collection mapping

<set name="aliases"
table="person_aliases"
sort="natural">
<key column="person"/>
<element column="name" type="string"/>
</set>

<map name="holidays" sort="my.custom.HolidayComparator">
<key column="year_id"/>
<map-key column="hol_name" type="string"/>
<element column="hol_date" type="date"/>

</map>

sort &40 &&= FELS unsorted, natural, ZLZ] 3L java.util.Comparator® T3 st F 29

o] & o]t}
Sorted YA E-L java.util. TreeSet B=+ java.util. TreeMap*] & 3 & 31T},

If you want the database itself to order the collection elements, use the order-by attribute of set,
bag or map mappings. This solution is only available under JDK 1.4 or higher and is implemented
using LinkedHashSet or LinkedHashMap. This performs the ordering in the SQL query and not

in the memory.

<set name="aliases" table="person_aliases" order-by="lower(name) asc">
<key column="person"/>
<element column="name" type="string"/>

</set>

<map name="holidays" order-by="hol_date, hol_name">
<key column="year_id"/>
<map-key column="hol_name" type="string"/>
<element column="hol_date type="date"/>

</map>

@ Note

The value of the order-by attribute is an SQL ordering, not an HQL ordering.

Associations can even be sorted by arbitrary criteria at runtime using a collection filter():

120

sortedUsers = s.createFilter(group.getUsers(), "order by this.name").list();

6.3.2. YuraF A

i

-
—

A bidirectional association allows navigation from both 'ends' of the association. Two kinds of

bidirectional association are supported:

one-to-many

set or bag valued at one end and single-valued at the other

many-to-many

F Zo|A] set EE bag S 7H2 A

You can specify a bidirectional many-to-many association by mapping two many-to-many
associations to the same database table and declaring one end as inverse. You cannot select an

indexed collection.

Here is an example of a bidirectional many-to-many association that illustrates how each category

can have many items and each item can be in many categories:

<class name="Category">
<id name="id" column="CATEGORY_|D"/>

<bag name="items" table="CATEGORY_ITEM">
<key column="CATEGORY_ID"/>
<many-to-many class="Item" column="ITEM_ID"/>
</bag>
</class>

<class name="Item">
<id name="id" column="ITEM_ID"/>

<l--inverse end -->
<bag name="categories" table="CATEGORY_ITEM" inverse="true">
<key column="ITEM_ID"/>
<many-to-many class="Category" column="CATEGORY_ID"/>
</bag>
</class>

Changes made only to the inverse end of the association are not persisted. This means that

Hibernate has two representations in memory for every bidirectional association: one link from A

121

67, Collection mapping

to B and another link from B to A. This is easier to understand if you think about the Java

object model and how a many-to-many relationship in Javais created:

category.getltems().add(item); /I The category now "knows" about the relationship
item.getCategories().add(category); // The item now "knows" about the relationship

session.persist(item); /I The relationship won't be saved!
session.persist(category); I/l The relationship will be saved

non-inverse =& W 27 U ZAS HolEHo] AR A AFE=H AMEEH T

You can define a bidirectional one-to-many association by mapping a one-to-many association to the

same table column(s) as a many-to-one association and declaring the many-valued end inverse="true'.

<class name="Parent">
<id name="id" column="parent_id"/>

<set name="children" inverse="true">
<key column="parent_id"/>
<one-to-many class="Child"/>
</set>
</class>

<class name="Child">
<id name="id" column="child_id"/>

<many-to-one name="parent"
class="Parent"
column="parent_id"
not-null="true"/>
</class>

Mapping one end of an association with inverse="true" does not affect the operation of cascades

as these are orthogonal concepts.

6.3.3. A1d A E ZHAMHNEL 712 oFurer A

1. O O O 1Tt

i

A bidirectional association where one end is represented as a <list> or <map>, requires special
consideration. If there is a property of the child class that maps to the index column you can

use inverse="true" on the collection mapping:

122

-0,
i)
>,
(it
il
)
>~
il
filo
N
)
N,
o]
2,
19
)
o
re
S
il

<class name="Parent">
<id name="id" column="parent_id"/>

<map name="children" inverse="true">
<key column="parent_id"/>
<map-key column="name"
type="string"/>
<one-to-many class="Child"/>
</map>
</class>

<class name="Child">
<id name="id" column="child_id"/>

<property name="name"
not-null="true"/>
<many-to-one name="parent"
class="Parent"
column="parent_id"
not-null="true"/>
</class>

If there is no such property on the child class, the association cannot be considered truly
bidirectional. That is, there is information available at one end of the association that is not
available at the other end. In this case, you cannot map the collection inverse="true". Instead, you

could use the following mapping:

<class name="Parent">
<id name="id" column="parent_id"/>

<map name="children">
<key column="parent_id"
not-null="true"/>
<map-key column="name"
type="string"/>
<one-to-many class="Child"/>
</map>
</class>

<class name="Child">
<id name="id" column="child_id"/>

67, Collection mapping

<many-to-one name="parent"
class="Parent"
column="parent_id"
insert="false"
update="false"
not-null="true"/>
</class>

Note that in this mapping, the collection-valued end of the association is responsible for updates

to the foreign key.

6.3.4. Ternary associations(A 74 AAE)

There are three possible approaches to mapping a ternary association. One approach is to use

a Map with an association as its index:

<map name="contracts">
<key column="employer_id" not-null="true"/>
<map-key-many-to-many column="employee_id" class="Employee"/>
<one-to-many class="Contract"/>

</map>

<map name="connections">
<key column="incoming_node_id"/>
<map-key-many-to-many column="outgoing_node_id" class="Node"/>
<many-to-many column="connection_id" class="Connection"/>
</map>

A second approach is to remodel the association as an entity class. This is the most common

approach.

A final alternative is to use composite elements, which will be discussed later.
0.3.5. <idbag> A}-&3}7]

The majority of the many-to-many associations and collections of values shown previously all map
to tables with composite keys, even though it has been have suggested that entities should have
synthetic identifiers (surrogate keys). A pure association table does not seem to benefit much
from a surrogate key, although a collection of composite values might. It is for this reason that
Hibernate provides a feature that allows you to map many-to-many associations and collections

of values to a table with a surrogate key.

The <idbag> element lets you map a List (or Collection) with bag semantics. For example:

124

FUA dqAE

<idbag name="lovers" table="LOVERS">
<collection-id column="ID" type="long">
<generator class="sequence"/>
</collection-id>
<key column="PERSON1"/>
<many-to-many column="PERSONZ2" class="Person" fetch="join"/>
</idbag>

An <idbag> has a synthetic id generator, just like an entity class. A different surrogate key
is assigned to each collection row. Hibernate does not, however, provide any mechanism for

discovering the surrogate key value of a particular row.

The update performance of an <idbag> supersedes a regular <bag>. Hibernate can locate individual

rows efficiently and update or delete them individually, similar to a list, map or set.

A TN, naive AEAF B WEE <idbag> A AEAE e ALHA Lt
6.4. M A=

This section covers collection examples.

The following class has a collection of Child instances:

package eg;
import java.util.Set;

public class Parent {
private long id;

private Set children;

public long getld() { return id; }
private void setld(long id) { this.id=id; }

private Set getChildren() { return children; }
private void setChildren(Set children) { this.children=children; }

If each child has, at most, one parent, the most natural mapping is a one-to-many association:

<hibernate-mapping>

125

67, Collection mapping

<class name="Parent">
<id name="id">
<generator class="sequence"/>
</id>
<set name="children">
<key column="parent_id"/>
<one-to-many class="Child"/>
</set>
</class>

<class name="Child">
<id name="id">
<generator class="sequence"/>
<fid>
<property name="name"/>
</class>

</hibernate-mapping>

ol A

rlo

O& HolEs o= wigHth

create table parent (id bigint not null primary key)
create table child (id bigint not null primary key, name varchar(255), parent_id bigint)
alter table child add constraint childfkO (parent_id) references parent

e

W FR7E Ao, i one-to-many A#ABAE AHEstet:

<hibernate-mapping>

<class name="Parent">
<id name="id">
<generator class="sequence"/>
</id>
<set name="children" inverse="true">
<key column="parent_id"/>
<one-to-many class="Child"/>
</set>
</class>

<class name="Child">
<id name="id">

126

FUA dqAE

<generator class="sequence"/>
</id>
<property name="name"/>
<many-to-one name="parent" class="Parent" column="parent_id" not-null="true"/>
</class>

</hibernate-mapping>

NOT NULL AXZEFHJEE FE3la:

create table parent (id bigint not null primary key)
create table child (id bigint not null
primary key,
name varchar(255),
parent_id bigint not null)
alter table child add constraint childfkO (parent_id) references parent

Alternatively, if this association must be unidirectional you can declare the NOT NULL constraint

on the <key> mapping:

<hibernate-mapping>

<class name="Parent">
<id name="id">
<generator class="sequence"/>
</id>
<set name="children">
<key column="parent_id" not-null="true"/>
<one-to-many class="Child"/>
</set>
</class>

<class name="Child">
<id name="id">
<generator class="sequence"/>
</id>
<property name="name"/>
</class>

</hibernate-mapping>

127

67, Collection mapping

On the other hand, if a child has multiple parents, a many-to-many association is appropriate:

<hibernate-mapping>

<class name="Parent">
<id name="id">
<generator class="sequence"/>
</id>
<set name="children" table="childset">
<key column="parent_id"/>
<many-to-many class="Child" column="child_id"/>
</set>
</class>

<class name="Child">
<id name="id">
<generator class="sequence"/>
</id>
<property name="name"/>
</class>

</hibernate-mapping>

HlolE A oE:

create table parent (id bigint not null primary key)
create table child (id bigint not null primary key, name varchar(255))
create table childset (parent_id bigint not null,

child_id bigint not null,

primary key (parent_id, child_id))
alter table childset add constraint childsetfkO (parent_id) references parent
alter table childset add constraint childsetfk1 (child_id) references child

For more examples and a complete explanation of a parent/child relationship mapping, see 21

. oAl E2/2}2] for more information.

Even more complex association mappings are covered in the next chapter.

128

A wiE =

7.1. 71 &

Association mappings are often the most difficult thing to implement correctly. In this section
we examine some canonical cases one by one, starting with unidirectional mappings and then

bidirectional cases. We will use Person and Address in all the examples.

Associations will be classified by multiplicity and whether or not they map to an intervening

join table.

Nullable foreign keys are not considered to be good practice in traditional data modelling, so
our examples do not use nullable foreign keys. This is not a requirement of Hibernate, and the

mappings will work if you drop the nullability constraints.
= |
72 S A=

7.2.1. Many-to-one

G many-to-one A#E 7HE FEAQ TR HF Addolh

<class name="Person">
<id name="id" column="personld">
<generator class="native"/>
</id>
<many-to-one name="address"
column="addressl|d"
not-null="true"/>
</class>

<class name="Address">
<id name="id" column="addressld">
<generator class="native"/>
</id>
</class>

create table Person (personld bigint not null primary key, addressld bigint not null)
create table Address (addressld bigint not null primary key)

129

-~
ol
2
r
£
o,
[

7.2.2. One-to-one

foreign 7] 3+ ©dF one-to-one AT/HE thr) o}lF F U3 FU3 Aol AH F
A<

EFIEo|h

& (unique) #A

<class name="Person">
<id name="id" column="personld">
<generator class="native"/>
</id>
<many-to-one name="address"
column="addressld"
unigue="true"
not-null="true"/>
</class>

<class name="Address">
<id name="id" column="addressld">
<generator class="native"/>
</id>

</class>

create table Person (personld bigint not null primary key, addressld bigint not null unique)
create table Address (addressld bigint not null primary key)

A unidirectional one-to-one association on a primary key usually uses a special id generator In

this example, however, we have reversed the direction of the association:

<class name="Person">
<id name="id" column="personld">
<generator class="native"/>
</id>
</class>

<class name="Address">
<id name="id" column="personld">
<generator class="foreign">
<param name="property">person</param>
</generator>
</id>

130

One-to-many

<one-to-one name="person" constrained="true"/>
</class>

create table Person (personld bigint not null primary key)
create table Address (personld bigint not null primary key)

7.2.3. One-to-many

A unidirectional one-to-many association on a foreign key is an unusual case, and is not

recommended.

<class name="Person">
<id name="id" column="personld">
<generator class="native"/>
</id>
<set name="addresses">
<key column="personld"
not-null="true"/>
<one-to-many class="Address"/>
</set>
</class>

<class name="Address">
<id name="id" column="addressld">
<generator class="native"/>
</id>
</class>

create table Person (personld bigint not null primary key)
create table Address (addressld bigint not null primary key, personld bigint not null)

You should instead use a join table for this kind of association.

131

~J
ol
2
r
£
o,
[

7.3. join H|o| &= et G A=
7.3.1. One-to-many

A unidirectional one-to-many association on a join table is the preferred option. Specifying

unique="true", changes the multiplicity from many-to-many to one-to-many.

<class name="Person">
<id name="id" column="personld">
<generator class="native"/>
</id>
<set name="addresses" table="PersonAddress">
<key column="personld"/>
<many-to-many column="addressld"

unigue="true"
class="Address"/>
</set>
</class>

<class name="Address">
<id name="id" column="addressld">
<generator class="native"/>
<fid>
</class>

create table Person (personld bigint not null primary key)
create table PersonAddress (personld not null, addressld bigint not null primary key)
create table Address (addressld bigint not null primary key)

7.3.2. Many-to-one

A unidirectional many-to-one association on a join table is common when the association is

optional. For example:

<class name="Person">
<id name="id" column="personld">
<generator class="native"/>
</id>
<join table="PersonAddress"

132

One-to-one

optional="true">
<key column="personld" unique="true"/>
<many-to-one name="address"
column="addressld"
not-null="true"/>
</join>
</class>

<class name="Address">
<id name="id" column="addressld">
<generator class="native"/>
<fid>

</class>

create table Person (personld bigint not null primary key)
create table PersonAddress (personld bigint not null primary key, addressld bigint not null)
create table Address (‘addressld bigint not null primary key)

7.3.3. One-to-one

A unidirectional one-to-one association on a join table is possible, but extremely unusual.

<class name="Person">
<id name="id" column="personld">
<generator class="native"/>
</id>
<join table="PersonAddress"
optional="true">
<key column="personid"
unigue="true"/>
<many-to-one name="address"
column="addressId"
not-null="true"
unigue="true"/>
</join>
</class>

<class name="Address">
<id name="id" column="addressld">
<generator class="native"/>

-~
ol
2
r
£
o,
[

</id>

</class>

create table Person (personld bigint not null primary key)
create table PersonAddress (personid bigint not null primary key, addressld bigint not null unique)
create table Address (addressld bigint not null primary key)

7.3.4. Many-to-many

Finally, here is an example of a unidirectional many-to-many association.

<class name="Person">
<id name="id" column="personld">
<generator class="native"/>
</id>
<set name="addresses" table="PersonAddress">
<key column="personld"/>
<many-to-many column="addressld"
class="Address"/>
</set>
</class>

<class name="Address">
<id name="id" column="addressld">
<generator class="native"/>
</id>
</class>

create table Person (personld bigint not null primary key)

create table PersonAddress (personld bigint not null, addressid bigint not null, primary key
(personld, addressld))

create table Address (addressld bigint not null primary key)

134

7.4, ©FuldE A=

O O o vl =

7.4.1. one-to-many / many-to-one

A bidirectional many-to-one association is the most common kind of association. The following

example illustrates the standard parent/child relationship.

<class name="Person">
<id name="id" column="personld">
<generator class="native"/>
</id>
<many-to-one name="address"
column="addressl|d"
not-null="true"/>
</class>

<class name="Address">
<id name="id" column="addressld">
<generator class="native"/>
</id>
<set name="people" inverse="true">
<key column="addressld"/>
<one-to-many class="Person"/>
</set>
</class>

create table Person (personld bigint not null primary key, addressld bigint not null)
create table Address (addressld bigint not null primary key)

If you use a List, or other indexed collection, set the key column of the foreign key to not null.
Hibernate will manage the association from the collections side to maintain the index of each

element, making the other side virtually inverse by setting update='"false" and insert="false":

<class name="Person">
<id name="id"/>

<many-to-one name="address"
column="addressld"
not-null="true"

135

-~
ol
2
r
£
o,
[

insert="false"
update="false"/>
</class>

<class name="Address">
<id name="id"/>

<list name="people">
<key column="addressld" not-null="true"/>
<list-index column="peopleldx"/>
<one-to-many class="Person"/>
</list>
</class>

If the underlying foreign key column is NOT NULL, it is important that you define not-null="true"
on the <key> element of the collection mapping. Do not only declare not-null="true" on a possible

nested <column> element, but on the <key> element.

7.4.2. One-to-one

A bidirectional one-to-one association on a foreign key is common:

<class name="Person">
<id name="id" column="personld">
<generator class="native"/>
</id>
<many-to-one name="address"
column="addressld"

unigue="true"
not-null="true"/>
</class>

<class name="Address">
<id name="id" column="addressld">
<generator class="native"/>
</id>
<one-to-one name="person"
property-ref="address"/>
</class>

create table Person (personld bigint not null primary key, addressld bigint not null unique)

136

join Ho]EEo gt Fi3F A=

create table Address (addressld bigint not null primary key)

A bidirectional one-to-one association on a primary key uses the special id generator:

<class name="Person">
<id name="id" column="personld">
<generator class="native"/>
</id>
<one-to-one name="address"/>
</class>

<class name="Address">
<id name="id" column="personld">
<generator class="foreign">
<param name="property">person</param>
</generator>
</id>
<one-to-one name="person"
constrained="true"/>
</class>

create table Person (personld bigint not null primary key)
create table Address (personld bigint not null primary key)

7.5. join Hlo]EEo] ot I AH

[

7.5.1. one-to-many / many-to-one

The following is an example of a bidirectional one-to-many association on a join table. The

inverse="true" can go on either end of the association, on the collection, or on the join.

<class name="Person">
<id name="id" column="personld">
<generator class="native"/>
</id>
<set name="addresses"
table="PersonAddress">

137

7. A% g

i

<key column="personld"/>
<many-to-many column="addressld"
unigue="true"
class="Address"/>
</set>
</class>

<class name="Address">
<id name="id" column="addressld">
<generator class="native"/>
</id>
<join table="PersonAddress"
inverse="true"
optional="true">
<key column="addressld"/>
<many-to-one name="person
column="personld"
not-null="true"/>
</join>
</class>

create table Person (personld bigint not null primary key)
create table PersonAddress (personld bigint not null, addressld bigint not null primary key)
create table Address (addressld bigint not null primary key)

7.5.2. one to one

A bidirectional one-to-one association on a join table is possible, but extremely unusual.

<class name="Person">
<id name="id" column="personld">
<generator class="native"/>
</id>
<join table="PersonAddress"
optional="true">
<key column="personld"
unigue="true"/>
<many-to-one name="address"
column="addressld"
not-null="true"

138

Many-to-many

unigue="true"/>
</join>
</class>

<class name="Address">
<id name="id" column="addressld">
<generator class="native"/>
</id>
<join table="PersonAddress"
optional="true"
inverse="true">
<key column="addressld"
unigue="true"/>
<many-to-one name="person"
column="personld"
not-null="true"
unigue="true"/>
</join>
</class>

create table Person (personld bigint not null primary key)

create table PersonAddress (personld bigint not null primary key, addressld bigint not null unique)

create table Address (‘addressld bigint not null primary key)

7.5.3. Many-to-many

Here is an example of a bidirectional many-to-many association.

<class name="Person">
<id name="id" column="personld">
<generator class="native"/>
</id>
<set name="addresses" table="PersonAddress">
<key column="personld"/>
<many-to-many column="addressld"
class="Address"/>
</set>
</class>

<class name="Address">

139

7. A% g

i

<id name="id" column="addressld">
<generator class="native"/>
</id>
<set name="people" inverse="true" table="PersonAddress">
<key column="addressld"/>
<many-to-many column="personld"
class="Person"/>
</set>
</class>

create table Person (personld bigint not null primary key)

create table PersonAddress (personld bigint not null, addressid bigint not null, primary key
(personld, addressld))

create table Address (addressld bigint not null primary key)

7.6. Bt} BZs A

o

=
=

More complex association joins are extremely rare. Hibernate handles more complex situations by
using SQL fragments embedded in the mapping document. For example, if a table with historical
account information data defines accountNumber, effectiveEndDate and effectiveStartDatecolumns, it

would be mapped as follows:

<properties name="currentAccountKey">
<property name="accountNumber" type="string" not-null="true"/>
<property name="currentAccount" type="boolean">
<formula>case when effectiveEndDate is null then 1 else 0 end</formula>
</property>
</properties>
<property name="effectiveEndDate" type="date"/>
<property name="effectiveStateDate" type="date" not-null="true"/>

You can then map an association to the current instance, the one with null effectiveEndDate, by using:

<many-to-one name="currentAccountinfo"
property-ref="currentAccountKey"
class="Accountinfo">
<column name="accountNumber"/>
<formula>'1'</formula>

140

f
uk
s
Y
%
re
r 2|
=2
o
il

</many-to-one>

In a more complex example, imagine that the association between Employee and Organization is
maintained in an Employment table full of historical employment data. An association to the

employee's most recent employer, the one with the most recent startDate, could be mapped in
the following way:

<join>
<key column="employeeld"/>
<subselect>
select employeeld, orglid
from Employments
group by orgld
having startDate = max(startDate)
</subselect>
<many-to-one name="mostRecentEmployer"
class="Organization"
column="orgld"/>
</join>

This functionality allows a degree of creativity and flexibility, but it is more practical to handle

these kinds of cases using HQL or a criteria query.

141

142

Component v 33

The notion of a component is re-used in several different contexts and purposes throughout

Hibernate.

8.1. T A=

A component is a contained object that is persisted as a value type and not an entity reference.

The term "component” refers to the object-oriented notion of composition and not to architecture-

level components. For example, you can model a person like this:

public class Person {

private java.util.Date birthday;

private Name name;

private String key;

public String getKey() {
return key;

}

private void setKey(String key) {
this.key=key;

}

public java.util.Date getBirthday() {
return birthday;

}

public void setBirthday(java.util.Date birthday) {
this.birthday = birthday;

}

public Name getName() {
return name;

}

public void setName(Name name) {
this.name = name;

public class Name {
char initial;
String first;
String last;
public String getFirst() {

8%F. Component mj 3§

return first;

}

void setFirst(String first) {
this.first = first;

}

public String getLast() {
return last;

}

void setLast(String last) {
this.last = last;

}

public char getlinitial() {
return initial;

}

void setlnitial(char initial) {
this.initial = initial;

Now Name can be persisted as a component of Person. Name defines getter and setter methods for

its persistent properties, but it does not need to declare any interfaces or identifier properties.

Our Hibernate mapping would look like this:

<class name="eg.Person" table="person">
<id name="Key" column="pid" type="string">
<generator class="uuid"/>
</id>
<property name="birthday" type="date"/>
<component name="Name" class="eg.Name"> <!-- class attribute optional -->
<property name="initial"/>
<property name="first"/>
<property name="Ilast"/>
</component>
</class>

person H| o] E-& pid, birthday, initial, first, last 2 H &2 712 A o|t}.

Like value types, components do not support shared references. In other words, two persons could
have the same name, but the two person objects would contain two independent name objects
that were only "the same" by value. The null value semantics of a component are ad hoc. When
reloading the containing object, Hibernate will assume that if all component columns are null, then

the entire component is null. This is suitable for most purposes.

144

o\
B[
&
2
il
i
N
3
)
il
)
r>~
i

The properties of a component can be of any Hibernate type (collections, many-to-one associations,
other components, etc). Nested components should not be considered an exotic usage. Hibernate

is intended to support a fine-grained object model.

<component> QAE HAEWE F Lo Z2AHEE E3FH+= AEHEHY g o Fx22ZA)

.
HA 7= <parent> A B QR AE 3 &3}

<class name="eg.Person" table="person">
<id name="Key" column="pid" type="string">
<generator class="uuid"/>
</id>
<property name="birthday" type="date"/>
<component name="Name" class="eg.Name" unique="true">
<parent name="namedPerson"/> <!-- reference back to the Person -->
<property name="initial"/>
<property name="first"/>
<property name="last"/>
</component>
</class>

=z A A = O =
82. & AAEE 7HX =94
Collections of components are supported (e.g. an array of type Name). Declare your component

collection by replacing the <element> tag with a <composite-element> tag:

<set name="someNames" table="some_names" lazy="true">
<key column="id"/>
<composite-element class="eg.Name"> <!-- class attribute required -->
<property name="initial"/>
<property nhame="first"/>
<property name="Ilast"/>
</composite-element>
</set>

e

If you define a Set of composite elements, it is important to implement equals()

and hashCode() correctly.

Composite elements can contain components but not collections. If your composite element contains

components, use the <nested-composite-element> tag. This case is a collection of components which

145

8%F. Component mj 3§

themselves have components. You may want to consider if a one-to-many association is more
appropriate. Remodel the composite element as an entity, but be aware that even though the Java

model is the same, the relational model and persistence semantics are still slightly different.

A composite element mapping does not support null-able properties if you are using a <set>.
There is no separate primary key column in the composite element table. Hibernate uses each
column's value to identify a record when deleting objects, which is not possible with null values.
You have to either use only not-null properties in a composite-element or choose a <list>, <map>,

<bag> or <idbag>.

A special case of a composite element is a composite element with a nested <many-to-one> element.
This mapping allows you to map extra columns of a many-to-many association table to the
composite element class. The following is a many-to-many association from Order to Item, where

purchaseDate, price and quantity are properties of the association:

<class name="eg.Order" >

<set name="purchasedltems" table="purchase_items" lazy="true">
<key column="order_id">
<composite-element class="eg.Purchase">
<property name="purchaseDate"/>
<property name="price"/>
<property name="quantity"/>
<many-to-one name="item" class="eg.Iltem"/> <!-- class attribute is optional -->
</composite-element>
</set>
</class>

There cannot be a reference to the purchase on the other side for bidirectional association
navigation. Components are value types and do not allow shared references. A single Purchase can

be in the set of an Order, but it cannot be referenced by the Item at the same time.

Axo] A (Ee vl Ao, 78 d#s°] 7Hesith

<class name="eg.Order" >

<set name="purchasedltems" table="purchase_items" lazy="true">
<key column="order_id">
<composite-element class="eg.OrderLine">
<many-to-one name="purchaseDetails class="eg.Purchase"/>
<many-to-one name="item" class="eg.Iltem"/>
</composite-element>
</set>

146

<
S
rO
i)
[
il
U
>
k)
H
[
m
i

</class>

Composite elements can appear in queries using the same syntax as associations to other entities.
— N7 —
8.3. Map ¢l A== AXTHEE

The <composite-map-key> element allows you to map a component class as the key of a Map.

Ensure that you override hashCode() and equals() correctly on the component class.
8.4. composite A|HEAEZA] AZTHEE

You can use a component as an identifier of an entity class. Your component class must satisfy

certain requirements:

* IR L javaio.Serializables T-&&j o 3t}
* It must re-implement equals() and hashCode() consistently with the database's notion of composite

key equality.

(3

You cannot use an IdentifierGenerator to generate composite keys. Instead the application must

assign its own identifiers.

Use the <composite-id> tag, with nested <key-property> elements, in place of the usual <id>
declaration. For example, the OrderLine class has a primary key that depends upon the (composite)

primary key of Order.

<class name="OrderLine">

<composite-id name="id" class="OrderLineld">
<key-property name="lineld"/>
<key-property name="orderld"/>
<key-property name="customerld"/>
</composite-id>

<property name="name"/>

<many-to-one name="order" class="Order"
insert="false" update="false">
<column name="orderld"/>
<column name="customerld"/>

147

8%F. Component mj 3§

</many-to-one>

</class>

Any foreign keys referencing the OrderLine table are now composite. Declare this in your mappings

for other classes. An association to OrderLine is mapped like this:

<many-to-one name="orderLine" class="OrderLine">
<!-- the "class" attribute is optional, as usual -->
<column name="lineld"/>
<column name="orderld"/>
<column name="customerld"/>
</many-to-one>

e R

The column element is an alternative to the column attribute everywhere. Using
the column element just gives more declaration options, which are mostly useful

when utilizing hbm2ddl

OrderLine®)] T3} many-to-many 91 3%-& HE3} composite foreign 7] & A& 3o}

<set name="undeliveredOrderLines">
<key column name="warehouseld"/>
<many-to-many class="OrderLine">
<column name="lineld"/>
<column name="orderld"/>
<column name="customerld"/>
</many-to-many>
</set>

Order®| 4] OrderLineE 9] 8 o] Al&=E Holth

<set name="orderLines" inverse="true">
<key>
<column name="orderld"/>
<column name="customerld"/>
</key>

1438

oft
o
o
o
Fl
rw
[t
il

<one-to-many class="OrderLine"/>
</set>

The <one-to-many> element declares no columns.

WA OrderLine AFA| 7} dhvbe] SFHHAE AFS A, 2RAE =38 31}9] composite foreign

=<
& =t

N

<class name="OrderLine">

<list name="deliveryAttempts">

<key> <!-- a collection inherits the composite key type -->
<column name="lineld"/>
<column name="orderld"/>
<column name="customerld"/>

</key>

<list-index column="attemptld" base="1"/>

<composite-element class="DeliveryAttempt">

</composite-element>
</set>
</class>

3.5. 42 HETIES

You can also map a property of type Map:

<dynamic-component name="userAttributes">
<property name="foo" column="FOO" type="string"/>
<property name="bar" column="BAR" type="integer"/>
<many-to-one name="baz" class="Baz" column="BAZ_|D"/>
</dynamic-component>

The semantics of a <dynamic-component> mapping are identical to <component>. The advantage of
this kind of mapping is the ability to determine the actual properties of the bean at deployment
time just by editing the mapping document. Runtime manipulation of the mapping document is
also possible, using a DOM parser. You can also access, and change, Hibernate's configuration-

time metamodel via the Configuration object.

149

150

Inheritance mapping

9.1. The three strategies

Hibernate:= A 7}#] 7] E2& 92 A& o3 W52 X3

* table per class hierarchy
* table per subclass
* table per concrete class

Altk7b Hibernatex= Ul Al o] °F7F th& S/ b S A

to
o
i)

o

* implicit polymorphism(&=2¢<l tdA)

It is possible to use different mapping strategies for different branches of the same inheritance
hierarchy. You can then make use of implicit polymorphism to achieve polymorphism across the
whole hierarchy. However, Hibernate does not support mixing <subclass>, <joined-subclass> and
<union-subclass> mappings under the same root <class> element. It is possible to mix together
the table per hierarchy and table per subclass strategies under the the same <class> element, by

combining the <subclass> and <join> elements (see below for an example).

It is possible to define subclass, union-subclass, and joined-subclass mappings in separate mapping
documents directly beneath hibernate-mapping. This allows you to extend a class hierarchy by adding
a new mapping file. You must specify an extends attribute in the subclass mapping, naming a
previously mapped superclass. Previously this feature made the ordering of the mapping documents
important. Since Hibernate3, the ordering of mapping files is irrelevant when using the extends
keyword. The ordering inside a single mapping file still needs to be defined as superclasses

before subclasses.

<hibernate-mapping>
<subclass name="DomesticCat" extends="Cat" discriminator-value="D">
<property name="name" type="string"/>
</subclass>
</hibernate-mapping>

9.1.1. Table per class hierarchy

Suppose we have an interface Payment with the implementors CreditCardPayment, CashPayment, and

ChequePayment. The table per hierarchy mapping would display in the following way:

151

9%}, Inheritance mapping

<class name="Payment" table="PAYMENT">
<id name="id" type="long" column="PAYMENT _ID">
<generator class="native"/>
<fid>
<discriminator column="PAYMENT_TYPE" type="string"/>
<property name="amount" column="AMOUNT"/>

<subclass name="CreditCardPayment" discriminator-value="CREDIT">
<property name="creditCardType" column="CCTYPE"/>

</subclass>
<subclass name="CashPayment" discriminator-value="CASH">

</subclass>
<subclass hame="ChequePayment" discriminator-value="CHEQUE">

</subclass>
</class>

Exactly one table is required. There is a limitation of this mapping strategy: columns declared by

the subclasses, such as CCTYPE, cannot have NOT NULL constraints.

9.1.2. Table per subclass

A table per subclass mapping looks like this:

<class name="Payment" table="PAYMENT">
<id name="id" type="long" column="PAYMENT_ID">
<generator class="native"/>
</id>
<property name="amount" column="AMOUNT"/>

<joined-subclass nhame="CreditCardPayment" table="CREDIT_PAYMENT">
<key column="PAYMENT_ID"/>
<property name="creditCardType" column="CCTYPE"/>

</joined-subclass>
<joined-subclass name="CashPayment" table="CASH_PAYMENT">
<key column="PAYMENT_ID"/>

</joined-subclass>
<joined-subclass name="ChequePayment" table="CHEQUE_PAYMENT">
<key column="PAYMENT_ID"/>

152

Table per subclass: using a discriminator

</joined-subclass>
</class>

Four tables are required. The three subclass tables have primary key associations to the superclass

table so the relational model is actually a one-to-one association.

9.1.3. Table per subclass: using a discriminator

Hibernate's implementation of table per subclass does not require a discriminator column. Other
object/relational mappers use a different implementation of table per subclass that requires a type
discriminator column in the superclass table. The approach taken by Hibernate is much more
difficult to implement, but arguably more correct from a relational point of view. If you want
to use a discriminator column with the table per subclass strategy, you can combine the use of

<subclass> and <join>, as follows:

<class name="Payment" table="PAYMENT">
<id name="id" type="long" column="PAYMENT_ID">
<generator class="native"/>
<fid>
<discriminator column="PAYMENT_TYPE" type="string"/>
<property name="amount" column="AMOUNT"/>

<subclass hame="CreditCardPayment" discriminator-value="CREDIT">
<join table="CREDIT_PAYMENT">
<key column="PAYMENT_ID"/>
<property name="creditCardType" column="CCTYPE"/>

</join>
</subclass>
<subclass hame="CashPayment" discriminator-value="CASH">
<join table="CASH_PAYMENT">
<key column="PAYMENT_ID"/>

</join>
</subclass>
<subclass hame="ChequePayment" discriminator-value="CHEQUE">
<join table="CHEQUE_PAYMENT" fetch="select">
<key column="PAYMENT_ID"/>

</join>
</subclass>
</class>

9%}, Inheritance mapping

A el A Q] fetch="select’ AN FHFHP2E Aol v outer joinS A} 3}e] ChequePayment A]
BEH 2 HolgHE H XA 7R ¥ EZ Hibernateol Al <& &t
9.1.4. table per class hierarchy 2} table per subclassE & $3}7]

You can even mix the table per hierarchy and table per subclass strategies using the following

approach:

<class name="Payment" table="PAYMENT">
<id name="id" type="long" column="PAYMENT_ID">
<generator class="native"/>
</id>
<discriminator column="PAYMENT_TYPE" type="string"/>
<property name="amount" column="AMOUNT"/>

<subclass hame="CreditCardPayment" discriminator-value="CREDIT">
<join table="CREDIT_PAYMENT">
<property name="creditCardType" column="CCTYPE"/>

</join>
</subclass>
<subclass hame="CashPayment" discriminator-value="CASH">

</subclass>
<subclass name="ChequePayment" discriminator-value="CHEQUE">

</subclass>
</class>

oE WP

rlo

i
At
o
2
%
Y

o s, FE Payment Z| 2o st st oA Ad

tlo
>
op
ol
£
2
o
it
°

<many-to-one>

<many-to-one name="payment" column="PAYMENT _ID" class="Payment"/>

9.1.5. Table per concrete class

There are two ways we can map the table per concrete class strategy. First, you can use <union-

subclass>.

<class nhame="Payment">
<id name="id" type="long" column="PAYMENT_ID">
<generator class="sequence"/>

154

Table per concrete class using implicit polymorphism

</id>

<property name="amount" column="AMOUNT"/>

<union-subclass name="CreditCardPayment" table="CREDIT_PAYMENT">
<property name="creditCardType" column="CCTYPE"/>

</union-subclass>
<union-subclass name="CashPayment" table="CASH_PAYMENT">

</union-subclass>
<union-subclass name="ChequePayment" table="CHEQUE_PAYMENT">

</union-subclass>
</class>

Al el EHoleEol FAFd s el kd
3L 2|

Feto], 2 Sz RE Z2VE S W ZHES BT

The limitation of this approach is that if a property is mapped on the superclass, the column
name must be the same on all subclass tables. The identity generator strategy is not allowed in
union subclass inheritance. The primary key seed has to be shared across all unioned subclasses

of a hierarchy.

If your superclass is abstract, map it with abstract="true". If it is not abstract, an additional table

(it defaults to PAYMENT in the example above), is needed to hold instances of the superclass.

9.1.6. Table per concrete class using implicit polymorphism

ekl Haw

S S S

rlo
ook

P& 4L Agshe Aotk

<class name="CreditCardPayment" table="CREDIT_PAYMENT">
<id name="id" type="long" column="CREDIT_PAYMENT_ID">
<generator class="native"/>
<fid>
<property name="amount" column="CREDIT_AMOUNT"/>

</class>
<class name="CashPayment" table="CASH_PAYMENT">
<id name="id" type="long" column="CASH_PAYMENT_ID">
<generator class="native"/>

<fid>
<property name="amount" column="CASH_AMOUNT"/>

155

9%}, Inheritance mapping

</class>

<class name="ChequePayment" table="CHEQUE_PAYMENT">
<id name="id" type="long" column="CHEQUE_PAYMENT_|D">
<generator class="native"/>
</id>

<property name="amount" column="CHEQUE_AMOUNT"/>
</class>

Notice that the Payment interface is not mentioned explicitly. Also notice that properties of Payment
are mapped in each of the subclasses. If you want to avoid duplication, consider using XML entities
(for example, [<!ENTITY allproperties SYSTEM 'allproperties.xml’>] in the DOCTYPE declaration
and &allproperties; in the mapping).

of oW 4 I ZoES 8T W Hibernate7} A4 SQI UNIONS S A
7= &=t Holth

of Wi Wwe] %, Paymenie] T shbe] BHBA A#E Tl <any>E AHESte] WP E k.

<any name="payment" meta-type="string" id-type="long">
<meta-value value="CREDIT" class="CreditCardPayment"/>
<meta-value value="CASH" class="CashPayment"/>
<meta-value value="CHEQUE" class="ChequePayment"/>
<column name="PAYMENT_ CLASS"/>
<column name="PAYMENT _ID"/>

</any>

S = S) 4= o= S Or=
0.17. ¥5A BEAe e 4% NA5H EF67)
Since the subclasses are each mapped in their own <class> element, and since Payment is just an
interface), each of the subclasses could easily be part of another inheritance hierarchy. You can

still use polymorphic queries against the Payment interface.

<class name="CreditCardPayment" table="CREDIT_PAYMENT">
<id name="id" type="long" column="CREDIT_PAYMENT _ID">
<generator class="native"/>
</id>
<discriminator column="CREDIT_CARD" type="string"/>
<property name="amount" column="CREDIT_AMOUNT"/>

<subclass name="MasterCardPayment" discriminator-value="MDC"/>
<subclass nhame="VisaPayment" discriminator-value="VISA"/>

156

2
A&
t

</class>

<class name="NonelectronicTransaction" table="NONELECTRONIC_TXN">
<id name="id" type="long" column="TXN_ID">
<generator class="native"/>
</id>

<joined-subclass name="CashPayment" table="CASH_PAYMENT">
<key column="PAYMENT _ID"/>
<property name="amount" column="CASH_AMOUNT"/>

</joined-subclass>

<joined-subclass name="ChequePayment" table="CHEQUE_PAYMENT">
<key column="PAYMENT _ID"/>
<property name="amount" column="CHEQUE_AMOUNT"/>

</joined-subclass>
</class>

Once again, Payment is not mentioned explicitly. If we execute a query against the Payment
interface, for example from Payment, Hibernate automatically returns instances of CreditCardPayment

(and its subclasses, since they also implement Payment), CashPayment and ChequePayment, but not

instances of NonelectronicTransaction.
(o) A==
9.2. A|FE

There are limitations to the "implicit polymorphism" approach to the table per concrete-class

mapping strategy. There are somewhat less restrictive limitations to <union-subclass> mappings.

t}2 X E Hibernateo| A table per concrete-class B3 S0l thdt A|FE, a2 =2 vt
P g At BoFETh
F 91 A& B SA=
&5 O¥94d ¥4 o¥A @A Polymorpt Bh¥d ©®@A Outer %
= tid doid dditt otk | load()/ dogs XJAE A #HA
get()

table per <many- <one-to- <one-to- <many- s.get(Paymerftrotass, from A=
class- to-one> one> many> to-many> | id) Payment Order
hierarchy p o join

o.payment

P
table per <many- <one-to- | <one-to- | <many- s.get(Paymerftotnss, from A=
subclass to-one> one> many> to-many> | id) Payment Order

p 0 join

157

9%}, Inheritance mapping

dEE gdA4 ¥4 o034 9@ A Polymorpt thEAY S ©h@dAd Outer %
= gdid doid itk Tt load()/ s =AE <A HA
get()

o.payment

p
table per <many- <one-to- | <one-to- | <many- | s.get(Paymerftotass, from A=
concrete- to-one> one> many> to-many> | id) Payment Order
class (for p o join
(union- inverse="true" o.payment
subclass) only) p
table per <any> A4 A A5 <many- s.createCritefiegilayment.cth®) BHd(Rek&dHons.idEq(id)).uniqueResu
concrete A &g A &L | to-any> Payment A &L XA &
class p
(implicit
polymorphism)

158

NAEZ 28]

Hibernate is a full object/relational mapping solution that not only shields the developer from
the details of the underlying database management system, but also offers state management of
objects. This is, contrary to the management of SQL statements in common JDBC/SQL persistence

layers, a natural object-oriented view of persistence in Java applications.
@] @, Hibernate o] F2]Al ol MAAES 259 AAEL] AH sl &4 A za) ok

313, SQL 459 Ade] thsl s B5HolA @tk of BEe Hibernateo] o3 2 w1
Azgel AZUAE FYT W o SLA A A FAA dA.

_4

10.1. Hibernate 24 A A&

ofr

Hibernate TF2 A A A&

o

EECE]

X
o

Ela=s

* Transient - an object is transient if it has just been instantiated using the new operator, and
it is not associated with a Hibernate Session. It has no persistent representation in the database
and no identifier value has been assigned. Transient instances will be destroyed by the garbage
collector if the application does not hold a reference anymore. Use the Hibernate Session to
make an object persistent (and let Hibernate take care of the SQL statements that need to

be executed for this transition).

* Persistent - a persistent instance has a representation in the database and an identifier value. It
might just have been saved or loaded, however, it is by definition in the scope of a Session.
Hibernate will detect any changes made to an object in persistent state and synchronize the
state with the database when the unit of work completes. Developers do not execute manual

UPDATE statements, or DELETE statements when an object should be made transient.

* Detached - a detached instance is an object that has been persistent, but its Session has been
closed. The reference to the object is still valid, of course, and the detached instance might
even be modified in this state. A detached instance can be reattached to a new Session at a
later point in time, making it (and all the modifications) persistent again. This feature enables a
programming model for long running units of work that require user think-time. We call them

application transactions, i.e., a unit of work from the point of view of the user.

We will now discuss the states and state transitions (and the Hibernate methods that trigger a

transition) in more detail.
102. AA =S F53 A17]7]

Ste) 9 & FH 29 Ao 273 H QI A2EAEL Hibernateo] 9]3) transient® 7F=¥ T}
T8 E 23S AAH ABA A transient A=H F&s Al = Ak

-
i rlo

DomesticCat fritz = new DomesticCat();
fritz.setColor(Color.GINGER);

159

fritz.setSex('M");
fritz.setName("Fritz");
Long generatedld = (Long) sess.save(fritz);

If Cat has a generated identifier, the identifier is generated and assigned to the cat when save()
is called. If Cat has an assigned identifier, or a composite key, the identifier should be assigned
to the cat instance before calling save(). You can also use persist() instead of save(), with the

semantics defined in the EJB3 early draft.

* persist() makes a transient instance persistent. However, it does not guarantee that the identifier
value will be assigned to the persistent instance immediately, the assignment might happen at
flush time. persist() also guarantees that it will not execute an INSERT statement if it is called
outside of transaction boundaries. This is useful in long-running conversations with an extended
Session/persistence context.

* save() does guarantee to return an identifier. If an INSERT has to be executed to get the
identifier (e.g. "identity" generator, not "sequence'), this INSERT happens immediately, no
matter if you are inside or outside of a transaction. This is problematic in a long-running

conversation with an extended Session/persistence context.

Alternatively, you can assign the identifier using an overloaded version of save().

DomesticCat pk = new DomesticCat();
pk.setColor(Color.TABBY);
pk.setSex('F");

pk.setName("PK");

pk.setKittens(new HashSet());
pk.addKitten(fritz);

sess.save(pk, new Long(1234));

If the object you make persistent has associated objects (e.g. the kittens collection in the previous
example), these objects can be made persistent in any order you like unless you have a NOT NULL
constraint upon a foreign key column. There is never a risk of violating foreign key constraints.

However, you might violate a NOT NULL constraint if you save() the objects in the wrong order.

Usually you do not bother with this detail, as you will normally use Hibernate's transitive persistence
feature to save the associated objects automatically. Then, even NOT NULL constraint violations
do not occur - Hibernate will take care of everything. Transitive persistence is discussed later

in this chapter.
10.3. A E RZEA]7]7]

The load() methods of Session provide a way of retrieving a persistent instance if you know its
identifier. load() takes a class object and loads the state into a newly instantiated instance of

that class in a persistent state.

160

A g 2EA 7

Cat fritz = (Cat) sess.load(Cat.class, generatedId);

/I 'you need to wrap primitive identifiers
long id = 1234;
DomesticCat pk = (DomesticCat) sess.load(DomesticCat.class, new Long(id));

o}

W o = oAl

g

o= Jug =AY 5 Utk

Mo

Fo7l Qlad s

R

rl

Cat cat = new DomesticCat();

/' load pk's state into cat
sess.load(cat, new Long(pkld));
Set kittens = cat.getKittens();

Be aware that load() will throw an unrecoverable exception if there is no matching database row.
If the class is mapped with a proxy, load() just returns an uninitialized proxy and does not actually
hit the database until you invoke a method of the proxy. This is useful if you wish to create
an association to an object without actually loading it from the database. It also allows multiple

instances to be loaded as a batch if batch-size is defined for the class mapping.

If you are not certain that a matching row exists, you should use the get() method which hits

the database immediately and returns null if there is no matching row.

Cat cat = (Cat) sess.get(Cat.class, id);
if (cat==null) {

cat = new Cat();

sess.save(cat, id);

}

return cat;

You can even load an object using an SQL SELECT .. FOR UPDATE, using a LockMode. See

the API documentation for more information.

Cat cat = (Cat) sess.get(Cat.class, id, LockMode.UPGRADE);

Any associated instances or contained collections will not be selected FOR UPDATE, unless you

decide to specify lock or all as a cascade style for the association.

161

refresh() Pl&RES ARE-Ste], o Fujy} shute] Aol e 279 9SS B 22X
71= Aol 7bestth. HelgHolX~ Egrse] 2 AA9 Z2JHE S T oW A& 27|35

A A w0 Aol §8 8t

sess.save(cat);
sess.flush(); //force the SQL INSERT
sess.refresh(cat); //re-read the state (after the trigger executes)

How much does Hibernate load from the database and how many SQL SELECTs will it use? This
depends on the fetching strategy. This is explained in 19.14. “#H% WEE” .

10.4. & &l s}7]

If you do not know the identifiers of the objects you are looking for, you need a query. Hibernate
supports an easy-to-use but powerful object oriented query language (HQL). For programmatic
query creation, Hibernate supports a sophisticated Criteria and Example query feature (QBC and
QBE). You can also express your query in the native SQL of your database, with optional support

from Hibernate for result set conversion into objects.

10.4.1. Ao]E5L& 23 st7]

HQL 7\]«]9/]- native SQL & ¢] = org.hibernate.Query®] Q12®l22 ZJFCTH o] g o2 3
gl g uield, A3 AEFS A%, 2ea dA 2o AP s M Massd AT

’ =
ok A2 & A Sessiond AFE-EF] ko] Querys: E=th

List cats = session.createQuery(
"from Cat as cat where cat.birthdate < ?")
.setDate(0, date)
dist();

List mothers = session.createQuery(
"select mother from Cat as cat join cat.mother as mother where cat.name = ?"
.setString(0, name)
dist();

List kittens = session.createQuery(
"from Cat as cat where cat.mother = ?")
.setEntity(0, pk)
dist();

Cat mother = (Cat) session.createQuery(
"select cat.mother from Cat as cat where cat = ?")
.setEntity(0, izi)

162

.uniqueResult();]]

Query mothersWithKittens = (Cat) session.createQuery(
"select mother from Cat as mother left join fetch mother .kittens");
Set uniqueMothers = new HashSet(mothersWithKittens.list());

A query is usually executed by invoking list(). The result of the query will be loaded completely
into a collection in memory. Entity instances retrieved by a query are in a persistent state. The
uniqueResult() method offers a shortcut if you know your query will only return a single object.
Queries that make use of eager fetching of collections usually return duplicates of the root objects,

but with their collections initialized. You can filter these duplicates through a Set.
10.4.1.1. Ax&2 vHE-s}H7]

Occasionally, you might be able to achieve better performance by executing the query using
the iterate() method. This will usually be the case if you expect that the actual entity instances
returned by the query will already be in the session or second-level cache. If they are not already
cached, iterate() will be slower than list() and might require many database hits for a simple
query, usually 1 for the initial select which only returns identifiers, and n additional selects to

initialize the actual instances.

/I fetch ids
Iterator iter = sess.createQuery("from eg.Qux q order by g.likeliness").iterate();
while (iter.hasNext()) {
Qux qux = (Qux) iter.next(); // fetch the object
/I something we couldnt express in the query
if (qux.calculateComplicatedAlgorithm()) {
/I delete the current instance
iter.remove();
/I dont need to process the rest
break;

104.12. BEEE2S w3lss dos

Hibernate queries sometimes return tuples of objects. Each tuple is returned as an array:

Iterator kittensAndMothers = sess.createQuery(
"select kitten, mother from Cat kitten join kitten.mother mother")
Jdist()
.iterator();

while (kittensAndMothers.hasNext()) {
Obiject[] tuple = (Object[]) kittensAndMothers.next();
Cat kitten = (Cat) tuple[0];
Cat mother = (Cat) tuple[1];

10.4.1.3. =Zrg} A&

Queries can specify a property of a class in the select clause. They can even call SQL aggregate

functions. Properties or aggregates are considered 'scalar’ results and not entities in persistent state.

Iterator results = sess.createQuery(
"select cat.color, min(cat.birthdate), count(cat) from Cat cat " +
"group by cat.color")
Jdist()
.iterator();

while (results.hasNext()) {
Obiject[] row = (Object[]) results.next();
Color type = (Color) row[0];
Date oldest = (Date) row[1];
Integer count = (Integer) row[2];

10.4.1.4. ¥}el= vy &

Methods on Query are provided for binding values to named parameters or JDBC-style ? parameters.
Contrary to JDBC, Hibernate numbers parameters from zero. Named parameters are identifiers of

the form :mame in the query string. The advantages of named parameters are as follows:

- 39E e HES aREc] e EAY Wl BAsE a6l B
* they can occur multiple times in the same query
T B R

/Inamed parameter (preferred)

Query g = sess.createQuery("from DomesticCat cat where cat.name = :name");
g.setString("name", "Fritz");

Iterator cats = g.iterate();

164

/Ipositional parameter

Query g = sess.createQuery("from DomesticCat cat where cat.name = ?");
g.setString(0, "1zi");

Iterator cats = g.iterate();

/Inamed parameter list

List names = new ArrayList();

names.add("1zi");

names.add("Fritz");

Query g = sess.createQuery("from DomesticCat cat where cat.name in (:namesList)");
g.setParameterList("namesList”, names);

List cats = q.list();

10.4.1.5. & 7]

If you need to specify bounds upon your result set, that is, the maximum number of rows you want

to retrieve and/or the first row you want to retrieve, you can use methods of the Query interface:

Query q = sess.createQuery("from DomesticCat cat™);
g.setFirstResult(20);

g.setMaxResults(10);

List cats = q.list();

Hibernate:= ©] limit & <& @Al¢] DBMS9| native SQLE W 3= v

o
e
Rl
%2
kv

10.4.1.6. 223 E 7}53} iteration

If your JDBC driver supports scrollable ResultSets, the Query interface can be used to obtain a

ScrollableResults object that allows flexible navigation of the query results.

Query g = sess.createQuery("select cat.name, cat from DomesticCat cat " +
"order by cat.name");

ScrollableResults cats = g.scroll();

if (cats.first()) {

/I find the first name on each page of an alphabetical list of cats by name
firstNamesOfPages = new ArrayList();
do {

String name = cats.getString(0);

firstNamesOfPages.add(hame);

165

while (cats.scroll(PAGE_SIZE));

I/l Now get the first page of cats

pageOfCats = new ArrayList();

cats.beforeFirst();

int i=0;

while((PAGE_SIZE > i++) && cats.next()) pageOfCats.add(cats.get(1));

}

cats.close()

Note that an open database connection and cursor is required for this functionality. Use

setMaxResult()/setFirstResult() if you need offline pagination functionality.
104.1.7. W ¥ AES FA 3 Al7]7]

You can also define named queries in the mapping document. Remember to use a CDATA section

if your query contains characters that could be interpreted as markup.

<query name="ByNameAndMaximumWeight"><![CDATA[
from eg.DomesticCat as cat
where cat.name = ?
and cat.weight > ?
11></query>

stepulE wpelgs dae wmod dow stk

ol

Query g = sess.getNamedQuery("ByNameAndMaximumWeight");
g.setString(0, name);

g.setint(1, minWeight);

List cats = q.list();

The actual program code is independent of the query language that is used. You can also define
native SQL queries in metadata, or migrate existing queries to Hibernate by placing them in

mapping files.

Also note that a query declaration inside a <hibernate-mapping> element requires a global unique
name for the query, while a query declaration inside a <class> element is made unique automatically

by prepending the fully qualified name of the class. For example eg.Cat.ByNameAndMaximumWeight.

166

il
)
r
il
o
el
n)
o™
ol
ok
N

104.2. FIHE

filo
i)
o
o
o
—‘—l
~

A collection filter is a special type of query that can be applied to a persistent collection or array.

The query string can refer to this, meaning the current collection element.

Collection blackKittens = session.createFilter(
pk.getKittens(),
"where this.color = ?"
.setParameter(Color.BLACK, Hibernate.custom(ColorUserType.class))
dist()

);

The returned collection is considered a bag that is a copy of the given collection. The original
collection is not modified. This is contrary to the implication of the name 'filter’, but consistent

with expected behavior.

Observe that filters do not require a from clause, although they can have one if required. Filters

are not limited to returning the collection elements themselves.

Collection blackKittenMates = session.createFilter(
pk.getKittens(),
"select this.mate where this.color = eg.Color.BLACK.intValue")
dist();

Even an empty filter query is useful, e.g. to load a subset of elements in a large collection:

Collection tenKittens = session.createFilter(
mother.getKittens(), ")
.setFirstResult(0).setMaxResults(10)
Aist();

10.4.3. Criteria & o] &

HQL is extremely powerful, but some developers prefer to build queries dynamically using an
object-oriented API, rather than building query strings. Hibernate provides an intuitive Criteria

query API for these cases:

Criteria crit = session.createCriteria(Cat.class);
crit.add(Restrictions.eq("color", eg.Color.BLACK)));
crit.setMaxResults(10);

167

103 AAEE 2515

List cats = crit.list();

Criteria®} ¥ Example APl & 15%. Criteria 2 2] S Al AA8tA =< E T}
10.4.4. native SQLOA ZHJE

You can express a query in SQL, using createSQLQuery() and let Hibernate manage the mapping
from result sets to objects. You can at any time call session.connection() and use the JDBC Connection

directly. If you choose to use the Hibernate API, you must enclose SQL aliases in braces:

List cats = session.createSQLQuery("SELECT {cat.*} FROM CAT {cat} WHERE ROWNUM<10")
.addEntity("cat", Cat.class)
Jdist();

List cats = session.createSQLQuery(
"SELECT {cat}.ID AS {cat.id}, {cat}.SEX AS {cat.sex}, " +
"{cat}.MATE AS {cat.mate}, {cat}. SUBCLASS AS {cat.class}, ... " +
"FROM CAT {cat} WHERE ROWNUM<10")
.addEntity("cat”, Cat.class)
Jdist()

SQL queries can contain named and positional parameters, just like Hibernate queries. More

information about native SQL queries in Hibernate can be found in 167%. Native SQL.

b

105 9% AASS WA

Transactional persistent instances (i.e. objects loaded, saved, created or queried by the Session) can
be manipulated by the application, and any changes to persistent state will be persisted when the
Session is flushed. This is discussed later in this chapter. There is no need to call a particular
method (like update(), which has a different purpose) to make your modifications persistent. The
most straightforward way to update the state of an object is to load() it and then manipulate

it directly while the Session is open:

DomesticCat cat = (DomesticCat) sess.load(Cat.class, new Long(69));
cat.setName("PK");
sess.flush(); // changes to cat are automatically detected and persisted

Sometimes this programming model is inefficient, as it requires in the same session both an SQL
SELECT to load an object and an SQL UPDATE to persist its updated state. Hibernate offers an

alternate approach by using detached instances.

168

detached A &L HAAT]7]

e

Hibernate does not offer its own API for direct execution of UPDATE or
DELETE statements. Hibernate is a state management service, you do not have
to think in statements to use it. JDBC is a perfect API for executing SQL
statements, you can get a JDBC Connection at any time by calling session.connection().
Furthermore, the notion of mass operations conflicts with object/relational mapping
for online transaction processing-oriented applications. Future versions of Hibernate
can, however, provide special mass operation functions. See 137%. Batch 1%#€|- for

some possible batch operation tricks.

Hibernate+= Session.update() ™ AXE T Session.merge() W AEZE AF-83Fo] detached Q1 2H A5

o AFFE ATFo2A o] 5 A A3tk

/l'in the first session

Cat cat = (Cat) firstSession.load(Cat.class, catld);
Cat potentialMate = new Cat();
firstSession.save(potentialMate);

/l'in a higher layer of the application
cat.setMate(potentialMate);

/Il later, in a new session
secondSession.update(cat); // update cat
secondSession.update(mate); // update mate

W catld 2)HAE 717 Cat©] secondSession®l] 2]3] ojm] ZEE S 7-Fol o= A o] A]
IAS OA] AFFEEHAL A S o, o &S] dHHS Aot

Use update() if you are certain that the session does not contain an already persistent instance with
the same identifier. Use merge() if you want to merge your modifications at any time without
consideration of the state of the session. In other words, update() is usually the first method you
would call in a fresh session, ensuring that the reattachment of your detached instances is the

first operation that is executed.

169

The application should individually update() detached instances that are reachable from the given
detached instance only if it wants their state to be updated. This can be automated using transitive

persistence. See 10.117. “Transitive persistence(Zd o] % <:)” for more information.

The lock() method also allows an application to reassociate an object with a new session. However,

the detached instance has to be unmodified.

/ljust reassociate:

sess.lock(fritz, LockMode.NONE);

//do a version check, then reassociate:

sess.lock(izi, LockMode.READ);

/ldo a version check, using SELECT ... FOR UPDATE, then reassociate:
sess.lock(pk, LockMode.UPGRADE);

Note that lock() can be used with various LockModes. See the API documentation and the chapter

on transaction handling for more information. Reattachment is not the only usecase for lock().

7 2y @9 g o8 BRI EL 11.34. “Optimistic A A A|o]” oA = At}

10.7. Zb&2) e A=

Hibernate AF&AE2 A2 L AHAE YA AA transient A E AZSAY 239 &
Al 2B 2Lel AE detached JIZHZAES AU o E/AHE A7) dibEel 9 HAx

£ Q9 A3t} saveOrUpdate() W AEE o] 7| 5S F+A3h

/l'in the first session
Cat cat = (Cat) firstSession.load(Cat.class, catID);

// in a higher tier of the application
Cat mate = new Cat();
cat.setMate(mate);

/[later, in a new session
secondSession.saveOrUpdate(cat); // update existing state (cat has a non-null id)
secondSession.saveOrUpdate(mate); // save the new instance (mate has a null id)

saveOrUpdate() 2] A}& A9} &= ZAAEANAE E528Y BAoh WA, shvhe] A
A 2 RAEEEE E g2 A2 A oA AFEstE L Al =3HA] g+ 3, 412 update(),
saveOrUpdate(), == merge) 5 AT o+ & Aot 22 AA o] ZFA]HAEL &

MAEE F ol A% A3 AgaA g Aol
7] update() FE+ saveOrUpdate() = TS Alupg] QoA AT}

c ofZFAlelde] A WA A Hol AAE ZEAZTG

170

* A 7L Ul Hol®2 deddr

* HE WASol 2 AA e Ael v

© AATE BAY A 24 Eoj2 dadn

* ojEEAlAE F WA AAClM updae()E ZEFLEHA o5 MASES 53 AT

saveOrUpdate() &= T2 3 s}

W AA L o] AA WA oln] G5 Hof

-« W I AT AR E e AR} 5

« W o2 AL A ZedEE 2 AL save() AT

W AR ABAIL Aol 2715 © Ao TFE G b A IRL save() AT

* if the object is versioned by a <version> or <timestamp>, and the version property value is the
same value assigned to a newly instantiated object, save() it

« 72t A9 7 AAE updae() A7ITH

28] 3 merge()= - ThE T

< W AT WA ARE BU WA AR GE A2} EAG A4S, Fold 4
o) S G QiU o BAET

i AT B AuE 95 A2 BASA e A, dolHMe 22RE 23
g REAZEL ARsAY A2e 9% dadsg 497D A E e

-+ 9% AzEl2T} wgE

 Foldl @it AP AWHA Y3, 2R detached] v RETH

A~ S &= O =
10.8. 9& AA == AHA 871

Session.delete() will remove an object's state from the database. Your application, however, can
still hold a reference to a deleted object. It is best to think of delete() as making a persistent

instance, transient.
sess.delete(cat);

You can delete objects in any order, without risk of foreign key constraint violations. It is still
possible to violate a NOT NULL constraint on a foreign key column by deleting objects in the

wrong order, e.g. if you delete the parent, but forget to delete the children.
10.9. = 7he] B& tlolHAZ RS Alold AAES FA
5171

It is sometimes useful to be able to take a graph of persistent instances and make them persistent

in a different datastore, without regenerating identifier values.

[Iretrieve a cat from one database

171

103 AAEE 2515

Session sessionl = factoryl.openSession();
Transaction tx1 = sessionl.beginTransaction();
Cat cat = sessionl.get(Cat.class, catld);
tx1.commit();

sessionl.close();

/Ireconcile with a second database

Session session2 = factory2.openSession();

Transaction tx2 = session2.beginTransaction();
session2.replicate(cat, ReplicationMode.LATEST VERSION);
tx2.commit();

session2.close();

The ReplicationMode determines how replicate() will deal with conflicts with existing rows in

database:

* ReplicationMode.IGNORE: ignores the object when there is an existing database row with
same identifier

* ReplicationMode. OVERWRITE: overwrites any existing database row with the same identifier

* ReplicationMode. EXCEPTION: throws an exception if there is an existing database row with

same identifier

ReplicationMode.LATEST_VERSION: overwrites the row if its version number is earlier than

version number of the object, or ignore the object otherwise

10.10. Session=- flush A] 7] 7]

o] 549 YT TE HelHuolx ArHASE Fow GHA Heold AR, A
F gadels Eotol A28 74 ZR duolE 37], non-ACD EAAHE el s
A WAES 2NN 5 2RO

the

the

the

the

Sometimes the Session will execute the SQL statements needed to synchronize the JDBC connection's

state with the state of objects held in memory. This process, called flush, occurs by default at

the following points:

e P4 HojEo] A EH7| Ao
* org.hibernate.Transaction.commit() A] % ol A]

* Session.flush() A] & o] A

The SQL statements are issued in the following order:

1.
2.
3.

all entity insertions in the same order the corresponding objects were saved using Session.save()

172

Transitive persistence(Z o] <)

4. RE F94d 94 MAE, dUolEE 18I AYE
5. B =94 Ads
6. all entity deletions in the same order the corresponding objects were deleted using Session.delete()

An exception is that objects using native ID generation are inserted when they are saved.

Except when you explicitly flush(), there are absolutely no guarantees about when the Session
executes the JDBC calls, only the order in which they are executed. However, Hibernate does

guarantee that the Query.list(..) will never return stale or incorrect data.

It is possible to change the default behavior so that flush occurs less frequently. The FlushMode
class defines three different modes: only flush at commit time when the Hibernate Transaction
API is used, flush automatically using the explained routine, or never flush unless flush() is called
explicitly. The last mode is useful for long running units of work, where a Session is kept open

and disconnected for a long time (see 11.3.27. “&-Aw A Az 252l vjds”).

sess = sf.openSession();
Transaction tx = sess.beginTransaction();
sess.setFlushMode(FlushMode.COMMIT); // allow queries to return stale state

Cat izi = (Cat) sess.load(Cat.class, id);
izi.setName(iznizi);

/I might return stale data
sess.find("from Cat as cat left outer join cat.kittens kitten");

/I change to izi is not flushed!

tx.commit(); // flush occurs
sess.close();

flush &<tell, shbe] o 9dste] AT £ Y& 9. ©+d DML o ojde] X
EFQAEE 9utd AL oA=L A= AL Hibernateme] EMAH EAo| #at
ol" ola]E Fwk3l™, 8+ 11%. Transactions and Concurrency9] A AL =9] 3t}

10.11. Transitive persistence(Z o] < <)

W AAES AFsta, AHA s
/A2 #A otk o 9

If the children in a parent/child relationship would be value typed (e.g. a collection of addresses
or strings), their life cycle would depend on the parent and no further action would be required
for convenient "cascading” of state changes. When the parent is saved, the value-typed child

objects are saved and when the parent is deleted, the children will be deleted, etc. This works for

173

operations such as the removal of a child from the collection. Since value-typed objects cannot

have shared references, Hibernate will detect this and delete the child from the database.

Now consider the same scenario with parent and child objects being entities, not value-types (e.g.
categories and items, or parent and child cats). Entities have their own life cycle and support
shared references. Removing an entity from the collection does not mean it can be deleted), and
there is by default no cascading of state from one entity to any other associated entities. Hibernate

does not implement persistence by reachability by default.

- persist(), merge(), saveOrUpdate(), delete(), lock(), refresh(), evict(), replicate() S 3 3+3}+=- Hibernate
A del Wik zkzhe] 71 e olde el shue] thgste AlnAClY LEpde]l A
o} A=A ol= Y E ZHZFLS create, merge, save-update, delete, lock, refresh, evict, replicate 2
Aot Falo] shte]l e oldoe] shute] Adte] wEt AXLACGEHE AS AT

8
G, Al w24 el 278 Aok dth dE S

ol ofl ot X,

<one-to-one name="person" cascade="persist"/>
AzAlold 2ed 50 A%d £= Sk
<one-to-one name="person" cascade="persist,delete,lock"/>

You can even use cascade="all" to specify that all operations should be cascaded along the association.

The default cascade="none" specifies that no operations are to be cascaded.

Aol A=A o= 2EFUQl, delete-orphane 2 %] one-to-many AT A &= 31, delete()

od@olHo] 7 ABORRE AARE dole] A4 AAle] 2§ olof F& YEAT

* It does not usually make sense to enable cascade on a <many-to-one> Or <many-to-many>
association. Cascade is often useful for <one-to-one> and <one-to-many> associations.
WA 212 AA o] o] o By Ao Lo FHoA 1L ¢, cascade="all,delete-orphan’ S
AYFoEM 2AL AW F7) AR BEole,
< Towte] A%, BAle AZANES A WL A 22 5 Atk 2y B A
o] Zo) Al FRep A2 tiE] AF A ZHsiAl 2 Aeole AZhE AL,
=3

Al

2 rz
=

E

= 2

A

e
>

o]

G

ofl
o
rr

Aol a2t A 739, cascade="persist,merge,save-update’ S A}

op ofl
o
Rooo

LN

»

o
=

ol
-

cascade="all'S 713 (T 7 AFdolE she FHHolE) shvte A& wFAI=E A
I A#E BHro HAA/FHOIE/AA I A e AAEQ AF/AUOERAAZ AZEE
BR/AA 2Bl o] #AE vhA R

fe rlo

Furthermore, a mere reference to a child from a persistent parent will result in save/update of

the child. This metaphor is incomplete, however. A child which becomes unreferenced by its

174

W Eb o €] AR&-37]

parent is not automatically deleted, except in the case of a <one-to-many> association mapped with

cascade="delete-orphan’. The precise semantics of cascading operations for a parent/child relationship

are as follows:

* W BRI} persistO] AEE A5, BE AY S0 persist)o] AT

© R H2} merge(o] WYE A, LE A E0| meree)o] AFAT}

* Thd RB1 7} save(), update() BE = saveOrUpdate()oll 2 7, & A2 & 0] saveOrUpdate() ol
Agdn

0
o
-

oo
Lo (/A /B U TIA T e
Moo
= &
Z.
=

W MBI} AAE A BE 4450 dlec)d] AT ET

o WY z}Alo] @& Rwo o3 HF A E 7S, cascade='delete-orphan’©] o} &k,
oW A WAHA e - AFANHE BT Aol AL BATO A4
3Ft} -, cascade="delete-orphan’¢l 73§l "orphaned(lo})"¢l ¢ z}2] o] 2bA| ¥ v}

T+ detached #p2 o] @& Hrof O3] Fxd 79, 23 saveOrUpdate()]|

Finally, note that cascading of operations can be applied to an object graph at call time or

at flush time. All operations, if enabled, are cascaded to associated entities reachable when the

operation is executed. However, save-update and delete-orphan are transitive for all associated entities

reachable during flush of the Session.

10.12. W Eld o] g AF&3}7]

Hibernate requires a rich meta-level model of all entity and value types. This model can be

useful to the application itself. For example, the application might use Hibernate's metadata to

implement a 'smart' deep-copy algorithm that understands which objects should be copied (eg.

mutable value types) and which objects that should not (e.g. immutable value types and, possibly,

associated entities).

Hibernate exposes metadata via the ClassMetadata and CollectionMetadata interfaces and the Type

hierarchy. Instances of the metadata interfaces can be obtained from the SessionFactory.

Catfritz=...... :
ClassMetadata catMeta = sessionfactory.getClassMetadata(Cat.class);

Object[] propertyValues = catMeta.getPropertyValues(fritz);
String[] propertyNames = catMeta.getPropertyNames();
Type[] propertyTypes = catMeta.getPropertyTypes();

/I get a Map of all properties which are not collections or associations
Map namedValues = new HashMap();
for (int i=0; i<propertyNames.length; i++) {
if (!propertyTypes]i].isEntityType() && !propertyTypesJi].isCollectionType()) {
namedValues.put(propertyNames]i], propertyValues]i]);

175

3} 7]

£2 349

10%. A

176

Transactions and Concurrency

The most important point about Hibernate and concurrency control is that it is easy to understand.
Hibernate directly uses JDBC connections and JTA resources without adding any additional locking
behavior. It is recommended that you spend some time with the JDBC, ANSI, and transaction

isolation specification of your database management system.

Hibernate does not lock objects in memory. Your application can expect the behavior as defined
by the isolation level of your database transactions. Through Session, which is also a transaction-
scoped cache, Hibernate provides repeatable reads for lookup by identifier and entity queries and

not reporting queries that return scalar values.

In addition to versioning for automatic optimistic concurrency control, Hibernate also offers, using
the SELECT FOR UPDATE syntax, a (minor) API for pessimistic locking of rows. Optimistic

concurrency control and this API are discussed later in this chapter.

The discussion of concurrency control in Hibernate begins with the granularity of Configuration,

SessionFactory, and Session, as well as database transactions and long conversations.

O O
L A g3 A 9o
A SessionFactory is an expensive-to-create, threadsafe object, intended to be shared by all application

threads. It is created once, usually on application startup, from a Configuration instance.

A Session is an inexpensive, non-threadsafe object that should be used once and then discarded
for: a single request, a conversation or a single unit of work. A Session will not obtain a JDBC

Connection, or a Datasource, unless it is needed. It will not consume any resources until used.

In order to reduce lock contention in the database, a database transaction has to be as short
as possible. Long database transactions will prevent your application from scaling to a highly
concurrent load. It is not recommended that you hold a database transaction open during user

think time until the unit of work is complete.

What is the scope of a unit of work? Can a single Hibernate Session span several database
transactions, or is this a one-to-one relationship of scopes? When should you open and close
a Session and how do you demarcate the database transaction boundaries? These questions are

addressed in the following sections.
11.1.1. 2] &9

First, let's define a unit of work. A unit of work is a design pattern described by Martin Fowler
as “ [maintaining] a list of objects affected by a business transaction and coordinates the writing
out of changes and the resolution of concurrency problems. ” [PoEAA] In other words, its a series
of operations we wish to carry out against the database together. Basically, it is a transaction,

though fulfilling a unit of work will often span multiple physical database transactions (see 11.1.2

177

11%&. Transactions and Concurrency

. “=717ke])3}). So really we are talking about a more abstract notion of a transaction.

The term 'business transaction” is also sometimes used in lieu of unit of work.

Do not use the session-per-operation antipattern: do not open and close a Session for every simple
database call in a single thread. The same is true for database transactions. Database calls in an
application are made using a planned sequence; they are grouped into atomic units of work. This
also means that auto-commit after every single SQL statement is useless in an application as this
mode is intended for ad-hoc SQL console work. Hibernate disables, or expects the application
server to disable, auto-commit mode immediately. Database transactions are never optional. All
communication with a database has to occur inside a transaction. Auto-commit behavior for reading
data should be avoided, as many small transactions are unlikely to perform better than one clearly

defined unit of work. The latter is also more maintainable and extensible.

The most common pattern in a multi-user client/server application is session-per-request. In this
model, a request from the client is sent to the server, where the Hibernate persistence layer runs.
A new Hibernate Session is opened, and all database operations are executed in this unit of work.
On completion of the work, and once the response for the client has been prepared, the session
is flushed and closed. Use a single database transaction to serve the clients request, starting and
committing it when you open and close the Session. The relationship between the two is one-to-

one and this model is a perfect fit for many applications.

The challenge lies in the implementation. Hibernate provides built-in management of the 'current
session" to simplify this pattern. Start a transaction when a server request has to be processed, and
end the transaction before the response is sent to the client. Common solutions are ServletFilter,
AQOP interceptor with a pointcut on the service methods, or a proxy/interception container. An EJB
container is a standardized way to implement cross-cutting aspects such as transaction demarcation
on EJB session beans, declaratively with CMT. If you use programmatic transaction demarcation,

for ease of use and code portability use the Hibernate Transaction API shown later in this chapter.

Your application code can access a 'current session’ to process the request by calling
sessionFactory.getCurrentSession(). You will always get a Session scoped to the current database
transaction. This has to be configured for either resource-local or JTA environments, see 2.5

4. “Contextual sessions” .

You can extend the scope of a Session and database transaction until the "view has been rendered".
This is especially useful in servlet applications that utilize a separate rendering phase after the
request has been processed. Extending the database transaction until view rendering, is achieved
by implementing your own interceptor. However, this will be difficult if you rely on EJBs with
container-managed transactions. A transaction will be completed when an EJB method returns,
before rendering of any view can start. See the Hibernate website and forum for tips and examples

relating to this Open Session in View pattern.

11.1.2. Z&717F2] st

The session-per-request pattern is not the only way of designing units of work. Many business

processes require a whole series of interactions with the user that are interleaved with database

178

M A identity 318 8}7]

accesses. In web and enterprise applications, it is not acceptable for a database transaction to span

a user interaction. Consider the following example:

* The first screen of a dialog opens. The data seen by the user has been loaded in a particular

Session and database transaction. The user is free to modify the objects.

* The user clicks "Save" after 5 minutes and expects their modifications to be made persistent.
The user also expects that they were the only person editing this information and that no

conflicting modification has occurred.

From the point of view of the user, we call this unit of work a long-running conversation or

application transaction. There are many ways to implement this in your application.

A first naive implementation might keep the Session and database transaction open during user think
time, with locks held in the database to prevent concurrent modification and to guarantee isolation
and atomicity. This is an anti-pattern, since lock contention would not allow the application to

scale with the number of concurrent users.

You have to use several database transactions to implement the conversation. In this case, maintaining
isolation of business processes becomes the partial responsibility of the application tier. A single
conversation usually spans several database transactions. It will be atomic if only one of these
database transactions (the last one) stores the updated data. All others simply read data (for
example, in a wizard-style dialog spanning several request/response cycles). This is easier to

implement than it might sound, especially if you utilize some of Hibernate's features:

* Automatic Versioning: Hibernate can perform automatic optimistic concurrency control for you.
It can automatically detect if a concurrent modification occurred during user think time. Check

for this at the end of the conversation.

* Detached Objects: if you decide to use the session-per-request pattern, all loaded instances will
be in the detached state during user think time. Hibernate allows you to reattach the objects
and persist the modifications. The pattern is called session-per-request-with-detached-objects.

Automatic versioning is used to isolate concurrent modifications.

* Extended (or Long) Session: the Hibernate Session can be disconnected from the underlying
JDBC connection after the database transaction has been committed and reconnected when a
new client request occurs. This pattern is known as session-per-conversation and makes even
reattachment unnecessary. Automatic versioning is used to isolate concurrent modifications and

the Session will not be allowed to be flushed automatically, but explicitly.

Both session-per-request-with-detached-objects and session-per-conversation have advantages and
disadvantages. These disadvantages are discussed later in this chapter in the context of optimistic

concurrency control.
11.1.3. 24 A| identity 32 3}7]

An application can concurrently access the same persistent state in two different Sessions. However,
an instance of a persistent class is never shared between two Session instances. It is for this reason

that there are two different notions of identity:

179

11%&. Transactions and Concurrency

t) o] B ¥] o] 2 Identity
foo.getld().equals(bar.getld())

JVM Identity

foo==Dbar

For objects attached to a particular Session (i.e., in the scope of a Session), the two notions are
equivalent and JVM identity for database identity is guaranteed by Hibernate. While the application
might concurrently access the "same" (persistent identity) business object in two different sessions,
the two instances will actually be 'different’ (JVM identity). Conflicts are resolved using an

optimistic approach and automatic versioning at flush/commit time.

This approach leaves Hibernate and the database to worry about concurrency. It also provides the
best scalability, since guaranteeing identity in single-threaded units of work means that it does
not need expensive locking or other means of synchronization. The application does not need to
synchronize on any business object, as long as it maintains a single thread per Session. Within a

Session the application can safely use == to compare objects.

However, an application that uses == outside of a Session might produce unexpected results. This
might occur even in some unexpected places. For example, if you put two detached instances into
the same Set, both might have the same database identity (i.e., they represent the same row). JVM
identity, however, is by definition not guaranteed for instances in a detached state. The developer
has to override the equals() and hashCode() methods in persistent classes and implement their own
notion of object equality. There is one caveat: never use the database identifier to implement
equality. Use a business key that is a combination of unique, usually immutable, attributes. The
database identifier will change if a transient object is made persistent. If the transient instance
(usually together with detached instances) is held in a Set, changing the hashcode breaks the
contract of the Set. Attributes for business keys do not have to be as stable as database primary
keys; you only have to guarantee stability as long as the objects are in the same Set. See the
Hibernate website for a more thorough discussion of this issue. Please note that this is not a

Hibernate issue, but simply how Java object identity and equality has to be implemented.
iy —
11.14. 359 8=

Do not use the anti-patterns session-per-user-session or session-per-application (there are, however,
rare exceptions to this rule). Some of the following issues might also arise within the recommended

patterns, so ensure that you understand the implications before making a design decision:

* A Session is not thread-safe. Things that work concurrently, like HTTP requests, session beans,
or Swing workers, will cause race conditions if a Session instance is shared. If you keep your
Hibernate Session in your HttpSession (this is discussed later in the chapter), you should consider
synchronizing access to your Http session. Otherwise, a user that clicks reload fast enough can

use the same Session in two concurrently running threads.

* An exception thrown by Hibernate means you have to rollback your database transaction and

close the Session immediately (this is discussed in more detail later in the chapter). If your

180

dolelwol 2 EAAN AA 4A

Session is bound to the application, you have to stop the application. Rolling back the database
transaction does not put your business objects back into the state they were at the start of the
transaction. This means that the database state and the business objects will be out of sync.
Usually this is not a problem, because exceptions are not recoverable and you will have to

start over after rollback anyway.

* The Session caches every object that is in a persistent state (watched and checked for dirty
state by Hibernate). If you keep it open for a long time or simply load too much data, it
will grow endlessly until you get an OutOfMemoryException. One solution is to call clear() and
evict() to manage the Session cache, but you should consider a Stored Procedure if you need
mass data operations. Some solutions are shown in 137%. Batch 1?#€|-. Keeping a Session open

for the duration of a user session also means a higher probability of stale data.
11.2. glojEmo] 2~ EANAME AA HH

Database, or system, transaction boundaries are always necessary. No communication with the
database can occur outside of a database transaction (this seems to confuse many developers who
are used to the auto-commit mode). Always use clear transaction boundaries, even for read-only
operations. Depending on your isolation level and database capabilities this might not be required,
but there is no downside if you always demarcate transactions explicitly. Certainly, a single database

transaction is going to perform better than many small transactions, even for reading data.

A Hibernate application can run in non-managed (i.e., standalone, simple Web- or Swing
applications) and managed J2EE environments. In a non-managed environment, Hibernate is usually
responsible for its own database connection pool. The application developer has to manually set
transaction boundaries (begin, commit, or rollback database transactions) themselves. A managed
environment usually provides container-managed transactions (CMT), with the transaction assembly
defined declaratively (in deployment descriptors of EJB session beans, for example). Programmatic

transaction demarcation is then no longer necessary.

However, it is often desirable to keep your persistence layer portable between non-managed
resource-local environments, and systems that can rely on JTA but use BMT instead of CMT.
In both cases use programmatic transaction demarcation. Hibernate offers a wrapper API called
Transaction that translates into the native transaction system of your deployment environment. This

API is actually optional, but we strongly encourage its use unless you are in a CMT session bean.

Ending a Session usually involves four distinct phases:

We discussed Flushing the session earlier, so we will now have a closer look at transaction

demarcation and exception handling in both managed and non-managed environments.

181

11%&. Transactions and Concurrency

11.2.1. I 5x &= 37

If a Hibernate persistence layer runs in a non-managed environment, database connections are
usually handled by simple (i.e., non-DataSource) connection pools from which Hibernate obtains

connections as needed. The session/transaction handling idiom looks like this:

/I Non-managed environment idiom
Session sess = factory.openSession();
Transaction tx = null;

try {
tx = sess.beginTransaction();

/l do some work

tx.commit();
}
catch (RuntimeException e) {
if (tx = null) tx.rollback();
throw e; // or display error message
}
finally {
sess.close();

You do not have to flush() the Session explicitly: the call to commit() automatically triggers the
synchronization depending on the FlushMode for the session. A call to close() marks the end of
a session. The main implication of close() is that the JDBC connection will be relinquished by the

session. This Java code is portable and runs in both non-managed and JTA environments.

As outlined earlier, a much more flexible solution is Hibernate's built-in "current session’ context

management:

/I Non-managed environment idiom with getCurrentSession()

try {
factory.getCurrentSession().beginTransaction();

/I do some work

factory.getCurrentSession().getTransaction().commit();

}

catch (RuntimeException e) {

182

JTA AH8-3}7]

factory.getCurrentSession().getTransaction().rollback();
throw e; // or display error message

You will not see these code snippets in a regular application; fatal (system) exceptions should always
be caught at the "top". In other words, the code that executes Hibernate calls in the persistence
layer, and the code that handles RuntimeException (and usually can only clean up and exit), are
in different layers. The current context management by Hibernate can significantly simplify this

design by accessing a SessionFactory. Exception handling is discussed later in this chapter.

You should select org.hibernate.transaction.JDBCTransactionFactory, which is the default, and for the

second example select "thread" as your hibernate.current_session_context_class.
11.2.2. JTA A}£-3}7]

If your persistence layer runs in an application server (for example, behind EJB session beans),
every datasource connection obtained by Hibernate will automatically be part of the global JTA
transaction. You can also install a standalone JTA implementation and use it without EJB. Hibernate

offers two strategies for JTA integration.

If you use bean-managed transactions (BMT), Hibernate will tell the application server to start
and end a BMT transaction if you use the Transaction APL. The transaction management code is

identical to the non-managed environment.

/[BMT idiom
Session sess = factory.openSession();
Transaction tx = null;

try {
tx = sess.beginTransaction();

/I do some work

tx.commit();
}
catch (RuntimeException e) {
if (tx != null) tx.rollback();
throw e; // or display error message
}
finally {
sess.close();

11%&. Transactions and Concurrency

If you want to use a transaction-bound Session, that is, the getCurrentSession() functionality for

easy context propagation, use the JTA UserTransaction API directly:

// BMT idiom with getCurrentSession()
try {
UserTransaction tx = (UserTransaction)new InitialContext()
.lookup("java:comp/UserTransaction");

tx.begin();

/I Do some work on Session bound to transaction
factory.getCurrentSession().load(...);
factory.getCurrentSession().persist(...);

tx.commit();

}

catch (RuntimeException e) {
tx.rollback();
throw e; // or display error message

With CMT, transaction demarcation is completed in session bean deployment descriptors, not

programmatically. The code is reduced to:

/[CMT idiom
Session sess = factory.getCurrentSession();

/l do some work

In a CMT/EJB, even rollback happens automatically. An unhandled RuntimeException thrown by a
session bean method tells the container to set the global transaction to rollback. You do not need
to use the Hibernate Transaction API at all with BMT or CMT, and you get automatic propagation

of the "current” Session bound to the transaction.

When configuring Hibernate's transaction factory, choose
org.hibernate.transaction.JTATransactionFactory ~ if you use JTA directly (BMT), and
org.hibernate.transaction.CMTTransactionFactory in a CMT session bean. Remember to also set
hibernate.transaction.manager_lookup_class. Ensure that your hibernate.current_session_context_class is

either unset (backwards compatibility), or is set to "jta".

The getCurrentSession() operation has one downside in a JTA environment. There is one caveat

to the use of after_statement connection release mode, which is then used by default. Due to a

184

of 2] %% A 2]

limitation of the JTA spec, it is not possible for Hibernate to automatically clean up any unclosed
ScrollableResults or Iterator instances returned by scroll() or iterate(). You must release the underlying
database cursor by calling ScrollableResults.close() or Hibernate.close(Iterator) explicitly from a finally

block. Most applications can easily avoid using scroll() or iterate() from the JTA or CMT code.)

11.2.3. o A3 A g

If the Session throws an exception, including any SQLException, immediately rollback the database
transaction, call Session.close() and discard the Session instance. Certain methods of Session will
not leave the session in a consistent state. No exception thrown by Hibernate can be treated as

recoverable. Ensure that the Session will be closed by calling close() in a finally block.

The HibernateException, which wraps most of the errors that can occur in a Hibernate persistence
layer, is an unchecked exception. It was not in older versions of Hibernate. In our opinion,
we should not force the application developer to catch an unrecoverable exception at a low
layer. In most systems, unchecked and fatal exceptions are handled in one of the first frames
of the method call stack (i.e., in higher layers) and either an error message is presented to
the application user or some other appropriate action is taken. Note that Hibernate might also
throw other unchecked exceptions that are not a HibernateException. These are not recoverable

and appropriate action should be taken.

Hibernate wraps SQLExceptions thrown while interacting with the database in a JDBCException.
In fact, Hibernate will attempt to convert the exception into a more meaningful subclass
of JDBCException. The underlying SQLException is always available via JDBCException.getCause().
Hibernate converts the SQLException into an appropriate JDBCException subclass using the
SQLExceptionConverter attached to the SessionFactory. By default, the SQLExceptionConverter is defined
by the configured dialect. However, it is also possible to plug in a custom implementation. See
the javadocs for the SQLExceptionConverterFactory class for details. The standard JDBCException

subtypes are:

* JDBCConnectionException: indicates an error with the underlying JDBC communication.

* SQLGrammarException: indicates a grammar or syntax problem with the issued SQL.

* ConstraintViolationException: indicates some form of integrity constraint violation.

* LockAcquisitionException: indicates an error acquiring a lock level necessary to perform the
requested operation.

* GenericJDBCException: a generic exception which did not fall into any of the other categories.
o
11.2.4. EARAH €} o}

An important feature provided by a managed environment like EJB, that is never provided for non-
managed code, is transaction timeout. Transaction timeouts ensure that no misbehaving transaction
can indefinitely tie up resources while returning no response to the user. Outside a managed
(JTA) environment, Hibernate cannot fully provide this functionality. However, Hibernate can at
least control data access operations, ensuring that database level deadlocks and queries with huge
result sets are limited by a defined timeout. In a managed environment, Hibernate can delegate

transaction timeout to JTA. This functionality is abstracted by the Hibernate Transaction object.

185

11%&. Transactions and Concurrency

Session sess = factory.openSession();
try {
/Iset transaction timeout to 3 seconds
sess.getTransaction().setTimeout(3);
sess.getTransaction().begin();

/l do some work

sess.getTransaction().commit()
}
catch (RuntimeException e) {
sess.getTransaction().rollback();
throw e; // or display error message
}
finally {
sess.close();

setTimeout() cannot be called in a CMT bean, where transaction timeouts must be defined

declaratively.
11.3. Optimistic FA]A A o]

The only approach that is consistent with high concurrency and high scalability, is optimistic
concurrency control with versioning. Version checking uses version numbers, or timestamps, to
detect conflicting updates and to prevent lost updates. Hibernate provides three possible approaches
to writing application code that uses optimistic concurrency. The use cases we discuss are in the
context of long conversations, but version checking also has the benefit of preventing lost updates

in single database transactions.
113.1. o} A |4 B4 A7

In an implementation without much help from Hibernate, each interaction with the database occurs
in a new Session and the developer is responsible for reloading all persistent instances from the
database before manipulating them. The application is forced to carry out its own version checking
to ensure conversation transaction isolation. This approach is the least efficient in terms of database

access. It is the approach most similar to entity EJBs.

/I foo is an instance loaded by a previous Session
session = factory.openSession();
Transaction t = session.beginTransaction();

186

g8 AAS AEH v A5

int oldVersion = foo.getVersion();

session.load(foo, foo.getKey()); // load the current state

if (oldVersion != foo.getVersion()) throw new StaleObjectStateException();
foo.setProperty("bar");

t.commit();
session.close();

version T2 E]E <version>S AF&3Fo] w32, Hibernatex= WY AMEIE 7} dirtyd S
flush &<tel]l 2R S AFHoZ FZ7HA1E Aot

If you are operating in a low-data-concurrency environment, and do not require version checking,
you can use this approach and skip the version check. In this case, last commit wins is the default
strategy for long conversations. Be aware that this might confuse the users of the application, as

they might experience lost updates without error messages or a chance to merge conflicting changes.

Manual version checking is only feasible in trivial circumstances and not practical for most
applications. Often not only single instances, but complete graphs of modified objects, have to be
checked. Hibernate offers automatic version checking with either an extended Session or detached

instances as the design paradigm.
1132, 48 A7 4529 w5

A single Session instance and its persistent instances that are used for the whole conversation are
known as session-per-conversation. Hibernate checks instance versions at flush time, throwing an
exception if concurrent modification is detected. It is up to the developer to catch and handle
this exception. Common options are the opportunity for the user to merge changes or to restart

the business conversation with non-stale data.

The Session is disconnected from any underlying JDBC connection when waiting for user interaction.
This approach is the most efficient in terms of database access. The application does not version
check or reattach detached instances, nor does it have to reload instances in every database

transaction.

/I foo is an instance loaded earlier by the old session
Transaction t = session.beginTransaction(); // Obtain a new JDBC connection, start transaction

foo.setProperty("bar");
session.flush(); // Only for last transaction in conversation

t.commit(); /I Also return JDBC connection
session.close(); // Only for last transaction in conversation

187

11%&. Transactions and Concurrency

The foo object knows which Session it was loaded in. Beginning a new database transaction on an
old session obtains a new connection and resumes the session. Committing a database transaction
disconnects a session from the JDBC connection and returns the connection to the pool. After
reconnection, to force a version check on data you are not updating, you can call Session.lock()
with LockMode.READ on any objects that might have been updated by another transaction. You do
not need to lock any data that you are updating. Usually you would set FlushMode. MANUAL on
an extended Session, so that only the last database transaction cycle is allowed to actually persist
all modifications made in this conversation. Only this last database transaction will include the

flush() operation, and then close() the session to end the conversation.

This pattern is problematic if the Session is too big to be stored during user think time (for
example, an HttpSession should be kept as small as possible). As the Session is also the first-level
cache and contains all loaded objects, we can probably use this strategy only for a few request/

response cycles. Use a Session only for a single conversation as it will soon have stale data.

@ Note

Earlier versions of Hibernate required explicit disconnection and reconnection of
a Session. These methods are deprecated, as beginning and ending a transaction

has the same effect.

Keep the disconnected Session close to the persistence layer. Use an EJB stateful session bean to
hold the Session in a three-tier environment. Do not transfer it to the web layer, or even serialize

it to a separate tier, to store it in the HttpSession.

The extended session pattern, or session-per-conversation, is more difficult to implement with
automatic current session context management. You need to supply your own implementation of

the CurrentSessionContext for this. See the Hibernate Wiki for examples.
11.3.3. Detached A &3} 2522 W3}

Q% Aga T 2ze] FEAEe ARE sesond A oldrh AR FUAD 94
N sme dolEuolsote 27s AEAEe AMGEY o FeA M A mo
A detached V2= AES] A& X TFE Session WollA * & 33l A] Session.update(),
Session.saveOrUpdate(), Session.merge() S AF&3le] ZAES thA] H B A7)

/l foo is an instance loaded by a previous Session

foo.setProperty("bar");

session = factory.openSession();

Transaction t = session.beginTransaction();

session.saveOrUpdate(foo); // Use merge() if "foo" might have been loaded already
t.commit();

session.close();

188

A5 A9 w3

i

StE3E A17]7]

Again, Hibernate will check instance versions during flush, throwing an exception if conflicting

updates occurred.

You can also call lock() instead of update(), and use LockMode.READ (performing a version check

and bypassing all caches) if you are sure that the object has not been modified.
11.3.4. A4 < WAstE stE3F 2717

You can disable Hibernate's automatic version increment for particular properties and collections
by setting the optimistic-lock mapping attribute to false. Hibernate will then no longer increment

versions if the property is dirty.

Legacy database schemas are often static and cannot be modified. Or, other applications might
access the same database and will not know how to handle version numbers or even timestamps.
In both cases, versioning cannot rely on a particular column in a table. To force a version
check with a comparison of the state of all fields in a row but without a version or timestamp
property mapping, turn on optimistic-lock="all" in the <class> mapping. This conceptually only works
if Hibernate can compare the old and the new state (i.e., if you use a single long Session and

not session-per-request-with-detached-objects).

Concurrent modification can be permitted in instances where the changes that have been made
do not overlap. If you set optimistic-lock="dirty" when mapping the <class>, Hibernate will only

compare dirty fields during flush.

In both cases, with dedicated version/timestamp columns or with a full/dirty field comparison,
Hibernate uses a single UPDATE statement, with an appropriate WHERE clause, per entity to
execute the version check and update the information. If you use transitive persistence to cascade
reattachment to associated entities, Hibernate may execute unnecessary updates. This is usually
not a problem, but on update triggers in the database might be executed even when no changes
have been made to detached instances. You can customize this behavior by setting select-before-
update="true" in the <class> mapping, forcing Hibernate to SELECT the instance to ensure that

changes did occur before updating the row.

11.4. Pessimistic locking

It is not intended that users spend much time worrying about locking strategies. It is usually
enough to specify an isolation level for the JDBC connections and then simply let the database
do all the work. However, advanced users may wish to obtain exclusive pessimistic locks or re-

obtain locks at the start of a new transaction.
Hibernate will always use the locking mechanism of the database; it never lock objects in memory.

The LockMode class defines the different lock levels that can be acquired by Hibernate. A lock

is obtained by the following mechanisms:

* LockMode.WRITEX HibernateZ} 3+ 32 Hulo]E AL insert & v A E5FH o8 sEFTH

189

11%&. Transactions and Concurrency

* LockMode.UPGRADE can be acquired upon explicit user request using SELECT ... FOR UPDATE
on databases which support that syntax.

* LockMode.UPGRADE_NOWAIT can be acquired upon explicit user request using a SELECT ...
FOR UPDATE NOWAIT under Oracle.

* LockMode.READ is acquired automatically when Hibernate reads data under Repeatable Read or
Serializable isolation level. It can be re-acquired by explicit user request.

* LockMode.NONE-2 Fr&o] §laS UEtdth BE A S Transaction®] 4 o] & B
=2 A3} update() T saveOrUpdate()o] Tt S S A3 dd3d A S0

T3 o] FF REE Az

A A 93'e Ty PWE F stz Edd

T

* LockModeZE A] A 3l Session.load()ol] Tt T =.
* Sessionlock()®l] Wjg T =.
* Query.setLockMode()ol] t) 3t &=

2 Session.load()7} UPGRADE ¥ UPGRADE NOWAIT RE® $&5% 3 , 8% A7} o}F
| Ao os] R=%x &drtA, 2 A A E SELECT ... FOR UPDATEES Al&3&le] 29t}
d 8- Aol ofd tgi A FFo =R ojn] REH Q= AA O sl load)7F &
739, Hibernate= 2 Ao 3l lock()S ZT &3}

=

e 2 O rE

Session.lock() performs a version number check if the specified lock mode is READ, UPGRADE or
UPGRADE_NOWAIT. In the case of UPGRADE or UPGRADE_NOWAIT, SELECT ... FOR UPDATE

is used.

If the requested lock mode is not supported by the database, Hibernate uses an appropriate

alternate mode instead of throwing an exception. This ensures that applications are portable.

11.5. Connection release modes

One of the legacies of Hibernate 2.x JDBC connection management meant that a Session would
obtain a connection when it was first required and then maintain that connection until the session
was closed. Hibernate 3.x introduced the notion of connection release modes that would instruct
a session how to handle its JDBC connections. The following discussion is pertinent only to
connections provided through a configured ConnectionProvider. User-supplied connections are outside
the breadth of this discussion. The different release modes are identified by the enumerated values

of org.hibernate.ConnectionReleaseMode:

* ON_CLOSE: is the legacy behavior described above. The Hibernate session obtains a connection
when it first needs to perform some JDBC access and maintains that connection until the
session is closed.

* AFTER_TRANSACTION: releases connections after a org.hibernate.Transaction has been completed.

* AFTER_STATEMENT (also referred to as aggressive release): releases connections after every
statement execution. This aggressive releasing is skipped if that statement leaves open resources
associated with the given session. Currently the only situation where this occurs is through the

use of org.hibernate.ScrollableResults.

190

Connection release modes

The configuration parameter hibernate.connection.release_mode is used to specify which release mode

to use. The possible values are as follows:

® auto (the default): this choice delegates to the release mode returned
by the org.hibernate.transaction. TransactionFactory.getDefaultReleaseMode() method. For
JTATransactionFactory, this returns ConnectionReleaseMode. AFTER_STATEMENT; for
JDBCTransactionFactory, this returns ConnectionReleaseMode. AFTER_TRANSACTION. Do not
change this default behavior as failures due to the value of this setting tend to indicate bugs
and/or invalid assumptions in user code.

* on_close: uses ConnectionReleaseMode.ON_CLOSE. This setting is left for backwards
compatibility, but its use is discouraged.

* after_transaction: uses ConnectionReleaseMode. AFTER_TRANSACTION. This setting should not be
used in JTA environments. Also note that with ConnectionReleaseMode. AFTER_TRANSACTION,
if a session is considered to be in auto-commit mode, connections will be released as if the
release mode were AFTER_STATEMENT.

* after_statement: uses ConnectionReleaseMode.AFTER_STATEMENT. Additionally, the configured
ConnectionProvider is consulted to see if it supports this setting (supportsAggressiveRelease()). If not,
the release mode is reset to ConnectionReleaseMode. AFTER_TRANSACTION. This setting is
only safe in environments where we can either re-acquire the same underlying JDBC connection
each time you make a call into ConnectionProvider.getConnection() or in auto-commit environments

where it does not matter if we re-establish the same connection.

191

192

A EH = oM ES

It is useful for the application to react to certain events that occur inside Hibernate. This allows

for the implementation of generic functionality and the extension of Hibernate functionality.
12.1. JEAHE

The Interceptor interface provides callbacks from the session to the application, allowing the
application to inspect and/or manipulate properties of a persistent object before it is saved, updated,
deleted or loaded. One possible use for this is to track auditing information. For example, the
following Interceptor automatically sets the createTimestamp when an Auditable is created and updates

the lastUpdateTimestamp property when an Auditable is updated.

You can either implement Interceptor directly or extend Emptylnterceptor.

package org.hibernate.test;

import java.io.Serializable;
import java.util.Date;
import java.util.lterator;

import org.hibernate.Emptylnterceptor;
import org.hibernate.Transaction;
import org.hibernate.type.Type;

public class Auditinterceptor extends Emptylnterceptor {

private int updates;
private int creates;
private int loads;

public void onDelete(Object entity,
Serializable id,
Object[] state,
String[] propertyNames,
Type[] types) {
/l do nothing

public boolean onFlushDirty(Object entity,
Serializable id,
Object|[] currentState,
Object[] previousState,

127, JEAEET o MES

String[] propertyNames,
Typef] types) {

if (entity instanceof Auditable) {
updates++;
for (inti=0; i < propertyNames.length; i++) {
if ("lastUpdateTimestamp".equals(propertyNamesJi])) {
currentState[i] = new Date();
return true;

}

return false;

public boolean onLoad(Object entity,
Serializable id,
Object]] state,
String[] propertyNames,
Type(] types) {
if (entity instanceof Auditable) {
loads++;

}

return false;

public boolean onSave(Object entity,
Serializable id,
Object(] state,
String[] propertyNames,

Type[] types) {

if (entity instanceof Auditable) {
creates++;
for (int i=0; i<propertyNames.length; i++) {
if ("createTimestamp".equals(propertyNamesi])) {
state[i] = new Date();
return true;

}

return false;

194

public void afterTransactionCompletion(Transaction tx) {
if (tx.wasCommitted()) {
System.out.printin("Creations: " + creates + ", Updates: " + updates, "Loads: " + loads);
}
updates=0;
creates=0;
loads=0;

There are two kinds of inteceptors: Session-scoped and SessionFactory-scoped.

rr
to
=
]
Iyt
it

ofs

Session- g & 2] AEAH= A A o] AR Interceptor & &3}
SessionFactory.openSession() W AEE F S AFE3te] 42 o XA

Session session = sf.openSession(new Auditinterceptor());

A SessionFactory-scoped interceptor is registered with the Configuration object prior to building the
SessionFactory. Unless a session is opened explicitly specifying the interceptor to use, the supplied
interceptor will be applied to all sessions opened from that SessionFactory. SessionFactory-scoped
interceptors must be thread safe. Ensure that you do not store session-specific states, since multiple

sessions will use this interceptor potentially concurrently.

new Configuration().setinterceptor(new Auditinterceptor());

12.2. o|HIE A| 2H]

If you have to react to particular events in your persistence layer, you can also use the Hibernate3

event architecture. The event system can be used in addition, or as a replacement, for interceptors.

All the methods of the Session interface correlate to an event. You have a LoadEvent, a FlushEvent,
etc. Consult the XML configuration-file DTD or the org.hibernate.event package for the full list
of defined event types. When a request is made of one of these methods, the Hibernate Session
generates an appropriate event and passes it to the configured event listeners for that type. Out-
of -the-box, these listeners implement the same processing in which those methods always resulted.
However, you are free to implement a customization of one of the listener interfaces (i.e., the
LoadEvent is processed by the registered implementation of the LoadEventListener interface), in
which case their implementation would be responsible for processing any load() requests made

of the Session.

195

127, B H S ol ES

The listeners should be considered singletons. This means they are shared between requests, and

should not save any state as instance variables.

A custom listener implements the appropriate interface for the event it wants to process and/
or extend one of the convenience base classes (or even the default event listeners used by
Hibernate out-of-the-box as these are declared non-final for this purpose). Custom listeners can
either be registered programmatically through the Configuration object, or specified in the Hibernate
configuration XML. Declarative configuration through the properties file is not supported. Here

is an example of a custom load event listener:

public class MyLoadListener implements LoadEventListener {
/I this is the single method defined by the LoadEventListener interface
public void onLoad(LoadEvent event, LoadEventListener.LoadType loadType)
throws HibernateException {
if (IMySecurity.isAuthorized(event.getEntityClassName(), event.getEntityld())) {
throw MySecurityException("Unauthorized access");

}
}
}
FAlL FEo HEE AN QY I gAY E AMSS =S Hibernateol| Al €E = 74
dEZE "o st}

<hibernate-configuration>
<session-factory>

<event type="load">
<listener class="com.eg.MyLoadListener"/>
<listener class="org.hibernate.event.def.DefaultLoadEventListener"/>
</event>
</session-factory>
</hibernate-configuration>

Instead, you can register it programmatically:

Configuration cfg = new Configuration();
LoadEventListener[] stack = { new MyLoadListener(), new DefaultLoadEventListener() };
cfg.EventListeners().setLoadEventListeners(stack);

196

Hibernate A 1% ¢l H ot

Listeners registered declaratively cannot share instances. If the same class name is used in multiple
<listener/> elements, each reference will result in a separate instance of that class. If you need to

share listener instances between listener types you must use the programmatic registration approach.

Why implement an interface and define the specific type during configuration? A listener
implementation could implement multiple event listener interfaces. Having the type additionally

defined during registration makes it easier to turn custom listeners on or off during configuration.

12.3. Hibernate A1 1A ol H ot

Usually, declarative security in Hibernate applications is managed in a session facade layer.
Hibernate3 allows certain actions to be permissioned via JACC, and authorized via JAAS. This is

an optional functionality that is built on top of the event architecture.

WA, AL JAAS authorization AHEE 1§ THSHES §7] 5] AL o|WE ¥ e
52 Aok Bt

<listener type="pre-delete" class="org.hibernate.secure.JACCPreDeleteEventListener"/>
<listener type="pre-update" class="org.hibernate.secure.JACCPreUpdateEventListener"/>
<listener type="pre-insert" class="org.hibernate.secure.JACCPrelnsertEventListener"/>
<listener type="pre-load" class="org.hibernate.secure.JACCPreLoadEventListener"/>

n

Note that <listener type="..." class="..."/> is shorthand for <event type="..."><listener class="..."/></event>

when there is exactly one listener for a particular event type.

Next, while still in hibernate.cfg.xml, bind the permissions to roles:

<grant role="admin" entity-name="User" actions="insert,update,read"/>
<grant role="su" entity-name="User" actions="*"/>

A& (role) o] BEL Falo JACC ZZulo|ge] o3 AAH o3 (role)So|).

197

198

N\ [
2 |
Batch I?#€,-
A naive approach to inserting 100,000 rows in the database using Hibernate might look like this:

Session session = sessionFactory.openSession();

Transaction tx = session.beginTransaction();

for (int i=0; i<100000; i++) {
Customer customer = new Customer(.....);
session.save(customer);

}

tx.commit();

session.close();

This would fall over with an OutOfMemoryException somewhere around the 50,000th row. That is
because Hibernate caches all the newly inserted Customer instances in the session-level cache. In

this chapter we will show you how to avoid this problem.

If you are undertaking batch processing you will need to enable the use of JDBC batching. This
is absolutely essential if you want to achieve optimal performance. Set the JDBC batch size to

a reasonable number (10-50, for example):
hibernate.jdbc.batch_size 20

Hibernate disables insert batching at the JDBC level transparently if you use an identity identifier
generator.

You can also do this kind of work in a process where interaction with the second-level cache
is completely disabled:

hibernate.cache.use_second_level cache false

HHISHESH T EAHIHE | HEHH HIRVAEIH HHHHHAISH HHEH [1HHEHHIHHAEO = 1#°8|-E## second-
level 1CHIBHIHHIHE 1HHIH HHHOWH BTHE HEHNIHHCHHACH HHE,° #HH#iH = &2
1#H #iHL8(# CacheMode8¥Ya HO #itt #H# 1HH#E° E##HE- 1# é# .

13.1. Batch inserts

When making new objects persistent flush() and then clear() the session regularly in order to

control the size of the first-level cache.

199

13%. Batch 12#&)-

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

for (int i=0; i<100000; i++) {
Customer customer = new Customer(.....);
session.save(customer);
if (1% 20 ==0) {//20, same as the JDBC batch size
/[flush a batch of inserts and release memory:
session.flush();
session.clear();

tx.commit();
session.close();

13.2. Batch updates

For retrieving and updating data, the same ideas apply. In addition, you need to use scroll() to

take advantage of server-side cursors for queries that return many rows of data.

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

ScrollableResults customers = session.getNamedQuery("GetCustomers")
.setCacheMode(CacheMode.IGNORE)
.scroll(ScrollMode.FORWARD_ONLY);

int count=0;

while (customers.next()) {

Customer customer = (Customer) customers.get(0);
customer.updateStuff(...);
if (++count% 20==0){
/fflush a batch of updates and release memory:
session.flush();
session.clear();

tx.commit();
session.close();

200

StatelessSession 1#, i#°i### i#a

13.3. StatelessSession 1#, I#°i##I# 1# Y

Alternatively, Hibernate provides a command-oriented API that can be used for streaming data to
and from the database in the form of detached objects. A StatelessSession has no persistence context
associated with it and does not provide many of the higher-level life cycle semantics. In particular,
a stateless session does not implement a first-level cache nor interact with any second-level or query
cache. It does not implement transactional write-behind or automatic dirty checking. Operations
performed using a stateless session never cascade to associated instances. Collections are ignored by
a stateless session. Operations performed via a stateless session bypass Hibernate's event model and
interceptors. Due to the lack of a first-level cache, Stateless sessions are vulnerable to data aliasing

effects. A stateless session is a lower-level abstraction that is much closer to the underlying JDBC.

StatelessSession session = sessionFactory.openStatelessSession();
Transaction tx = session.beginTransaction();

ScrollableResults customers = session.getNamedQuery("GetCustomers")
.scroll(ScrollIMode.FORWARD_ONLY);

while (customers.next()) {
Customer customer = (Customer) customers.get(0);
customer.updateStuff(...);
session.update(customer);

tx.commit();
session.close();

In this code example, the Customer instances returned by the query are immediately detached.

They are never associated with any persistence context.

The insert(), update() and delete() operations defined by the StatelessSession interface are considered to
be direct database row-level operations. They result in the immediate execution of a SQL INSERT,
UPDATE or DELETE respectively. They have different semantics to the save(), saveOrUpdate() and
delete() operations defined by the Session interface.

13.4. DML-1#0i##I#Y, 1#°1#°6# 1Y

As already discussed, automatic and transparent object/relational mapping is concerned with the
management of the object state. The object state is available in memory. This means that
manipulating data directly in the database (using the SQL Data Manipulation Language (DML)
the statements: INSERT, UPDATE, DELETE) will not affect in-memory state. However, Hibernate
provides methods for bulk SQL-style DML statement execution that is performed through the
Hibernate Query Language (HQL).

201

13%. Batch 12#&)-

The pseudo-syntax for UPDATE and DELETE statements is: (UPDATE | DELETE) FROM?
EntityName (WHERE where_conditions)?.

Some points to note:

* from-1 #i##i##, FROM [#Hal##EHEEH I#HUI
Hi# e#

* There can only be a single entity named in the from-clause. It can, however, be aliased. If the
entity name is aliased, then any property references must be qualified using that alias. If the
entity name is not aliased, then it is illegal for any property references to be qualified.

* No joins, either implicit or explicit, can be specified in a bulk HQL query. Sub-queries can be
used in the where-clause, where the subqueries themselves may contain joins.

o where-1 # E##Hi## #HUI
Hit e# .

As an example, to execute an HQL UPDATE, use the Query.executeUpdate() method. The method

is named for those familiar with JDBC's PreparedStatement.executeUpdate():

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

String hglUpdate = "update Customer c set c.name = :newName where c.name = :oldName";
/I or String hglUpdate = "update Customer set name = :newName where name = :oldName";
int updatedEntities = s.createQuery(hglUpdate)

.setString("newName", newName)

.setString("oldName", oldName)

.executeUpdate();
tx.commit();
session.close();

In keeping with the EJB3 specification, HQL UPDATE statements, by default, do not effect
the version or the timestamp property values for the affected entities. However, you can force
Hibernate to reset the version or timestamp property values through the use of a versioned update.
This is achieved by adding the VERSIONED keyword after the UPDATE keyword.

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();
String hglVersionedUpdate = "update versioned Customer set name = :newName where name
= :0ldName";
int updatedEntities = s.createQuery(hglUpdate)
.setString("newName", newName)
.setString("oldName", oldName)
.executeUpdate();

202

DML-i#aif#i#ys 1#°i#°é#o

tx.commit();
session.close();

Custom version types, org.hibernate.usertype.UserVersionType, are not allowed in conjunction with a

update versioned statement.

HQL DELETEé¥]/4 iHaiH#iH#e ng®© ~ s E°HiH COHIHHEHY Query,execu[eUpdate()é¥1/4
H#H-HOIHHEHY 4!

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

String hglDelete = "delete Customer ¢ where c.name = :oldName";
/Il or String hglDelete = "delete Customer where name = :oldName";
int deletedEntities = s.createQuery(hglDelete)

.setString("oldName", oldName)

.executeUpdate();
tx.commit();
session.close();

The int value returned by the Query.executeUpdate() method indicates the number of entities effected
by the operation. This may or may not correlate to the number of rows effected in the database.
An HQL bulk operation might result in multiple actual SQL statements being executed (for joined-
subclass, for example). The returned number indicates the number of actual entities affected by
the statement. Going back to the example of joined-subclass, a delete against one of the subclasses
may actually result in deletes against not just the table to which that subclass is mapped, but also

the "root" table and potentially joined-subclass tables further down the inheritance hierarchy.

IHYEHRHIHE €° °iH-E3 EHOIHHIHE | HEH-EH EHHEHH HQL iHoi#Ye #igl

HEHOHHE CHHIHH 6% E°HISH | #HifHeHoI# ~ HHH- 1 H-IHTHE &

I IHHEHYL, I I 82 JIRA GiHEHHESUIHHE 1°1j°1H#HEHY4. INSERT E-,i#¥eHuits HHiHH
1# 1#H--U—E- I## EHOIHHESY, E°H#HEH# Y INSERT INTO EntityName properties_list select_statement. €
i et e°H#isH:

o #0i8# INSERT INTO .. SELECT .. i##i## ES#i#Ys 1SHI##EHHEHY; INSERT INTO
VALUES ... i##i##i#H# 1SHI#HEHHISH HHEHHeH .

The properties_list is analogous to the column specification in the SQL INSERT statement. For
entities involved in mapped inheritance, only properties directly defined on that given class-level
can be used in the properties_list. Superclass properties are not allowed and subclass properties
do not make sense. In other words, INSERT statements are inherently non-polymorphic.

* select_statement can be any valid HQL select query, with the caveat that the return types must

match the types expected by the insert. Currently, this is checked during query compilation

203

13%. Batch 12#&)-

rather than allowing the check to relegate to the database. This might, however, cause problems
between Hibernate Types which are equivalent as opposed to equal. This might cause issues with
mismatches between a property defined as a org.hibernate.type.DateType and a property defined
as a org.hibernate.type. TimestampType, even though the database might not make a distinction or
might be able to handle the conversion.

¢ For the id property, the insert statement gives you two options. You can either explicitly
specify the id property in the properties_list, in which case its value is taken from the
corresponding select expression, or omit it from the properties_list, in which case a generated
value is used. This latter option is only available when using id generators that operate
in the database; attempting to use this option with any "in memory" type generators
will cause an exception during parsing. For the purposes of this discussion, in-database
generators are considered to be org.hibernate.id.SequenceGenerator (and its subclasses) and any
implementers of org.hibernate.id.PostInsertldentifierGenerator. The most notable exception here is
org.hibernate.id. TableHiLLoGenerator, which cannot be used because it does not expose a selectable
way to get its values.

* For properties mapped as either version or timestamp, the insert statement gives you two options.
You can either specify the property in the properties_list, in which case its value is taken from
the corresponding select expressions, or omit it from the properties_list, in which case the seed

value defined by the org.hibernate.type.VersionType is used.

The following is an example of an HQL INSERT statement execution:

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

String hglinsert = "insert into DelinquentAccount (id, name) select c.id, c.name from Customer c
where ...";
int createdEntities = s.createQuery(hglinsert)
.executeUpdate();
tx.commit();
session.close();

204

HQL: stolwulo]E & o] 1o
(Hibernate Query Language)
Hibernate uses a powerful query language (HQL) that is similar in appearance to SQL. Compared

with SQL, however, HQL is fully object-oriented and understands notions like inheritance,

polymorphism and association.

14.1. I AEA +&

With the exception of names of Java classes and properties, queries are case-insensitive. So SeLeCT
is the same as sELEct is the same as SELECT, but org.hibernate.eg.FOO is not org.hibernate.eg.Foo,
and foo.barSet is not foo.BARSET.

This manual uses lowercase HQL keywords. Some users find queries with uppercase keywords

more readable, but this convention is unsuitable for queries embedded in Java code.

14.2. from A

7} 7Sk 758 Hibernate 2 9= o3 324 olth
from eg.Cat

This returns all instances of the class eg.Cat. You do not usually need to qualify the class name,

since auto-import is the default. For example:
from Cat

In order to refer to the Cat in other parts of the query, you will need to assign an alias.

For example:
from Cat as cat

This query assigns the alias cat to Cat instances, so you can use that alias later in the query.

The as keyword is optional. You could also write:
from Cat cat

Multiple classes can appear, resulting in a cartesian product or 'cross' join.

205

147, HQL: &loluvlo]E A <] <l oj(Hibern...

from Formula, Parameter

from Formula as form, Parameter as param

It is good practice to name query aliases using an initial lowercase as this is consistent with Java

naming standards for local variables (e.g. domesticCat).
-7l = | —
14.3. d#A =3 2=
You can also assign aliases to associated entities or to elements of a collection of values using

a join. For example:

from Cat as cat
inner join cat.mate as mate
left outer join cat.kittens as kitten

from Cat as cat left join cat.mate.kittens as kittens

from Formula form full join form.parameter param

The supported join types are borrowed from ANSI SQL:

® inner join
* left outer join

® right outer join

e full join (7 F&3HA &)

inner join, left outer join, L2 I right outer join & A E°] &A= 4 At}

from Cat as cat
join cat.mate as mate
left join cat.kittens as kitten

AL HOL with 7] =5 ALgsle] S8 29 245

ftlo
2
ol
et
alz
i
ui

from Cat as cat

206

iy
|
H
BN
rO
it

left join cat.kittens as kitten
with kitten.bodyWeight > 10.0

A 'fetch" join allows associations or collections of values to be initialized along with their parent
objects using a single select. This is particularly useful in the case of a collection. It effectively
overrides the outer join and lazy declarations of the mapping file for associations and collections.

See 19.14d. “¥&* WEE" for more information.

from Cat as cat
inner join fetch cat.mate
left join fetch cat.kittens

A fetch join does not usually need to assign an alias, because the associated objects should not
be used in the where clause (or any other clause). The associated objects are also not returned
directly in the query results. Instead, they may be accessed via the parent object. The only reason

you might need an alias is if you are recursively join fetching a further collection:

from Cat as cat
inner join fetch cat.mate
left join fetch cat.kittens child
left join fetch child.kittens

The fetch construct cannot be used in queries called using iterate() (though scroll() can be used).
Fetch should be used together with setMaxResults() or setFirstResult(), as these operations are based
on the result rows which usually contain duplicates for eager collection fetching, hence, the number
of rows is not what you would expect. Fetch should also not be used together with impromptu with
condition. It is possible to create a cartesian product by join fetching more than one collection in
a query, so take care in this case. Join fetching multiple collection roles can produce unexpected
results for bag mappings, so user discretion is advised when formulating queries in this case.

Finally, note that full join fetch and right join fetch are not meaningful.

If you are using property-level lazy fetching (with bytecode instrumentation), it is possible to

force Hibernate to fetch the lazy properties in the first query immediately using fetch all properties.

from Document fetch all properties order by name

from Document doc fetch all properties where lower(doc.name) like '%cats%'

207

147%. HQL: 3telmulo|E] <lej(Hibern...

14.4. join +E9]

ofl
1>

=
=

HQLE % 714 g4 a% =

e

& A4

rot

R = A P

The queries shown in the previous section all use the explicit form, that is, where the join keyword

is explicitly used in the from clause. This is the recommended form.

249 AL join V| HES AFEEA etk A, AFHELS dot(.) E71E AFE3Fe] "dot-
ZFz " th(dereferenced)’. &2 ZAEL Y929 HQL HEW yetd & g =49l

joing A== SQL Ao A inner joino 2 2 ¥}

from Cat as cat where cat.mate.name like '%s%'

14.5. Referring to identifier property

There are 2 ways to refer to an entity's identifier property:

* The special property (lowercase) id may be used to reference the identifier property of an
entity provided that the entity does not define a non-identifier property named id.

e If the entity defines a named identifier property, you can use that property name.

References to composite identifier properties follow the same naming rules. If the entity has a
non-identifier property named id, the composite identifier property can only be referenced by its

defined named. Otherwise, the special id property can be used to reference the identifier property.

T8

Please note that, starting in version 3.2.2, this has changed significantly. In previous
versions, id always referred to the identifier property regardless of its actual name.
A ramification of that decision was that non-identifier properties named id could

never be referenced in Hibernate queries.

14.6. select A

The select clause picks which objects and properties to return in the query result set. Consider

the following:

select mate
from Cat as cat
inner join cat.mate as mate

The query will select mates of other Cats. You can express this query more compactly as:

208

select A

select cat.mate from Cat cat

Queries can return properties of any value type including properties of component type:

select cat.name from DomesticCat cat
where cat.name like 'fri%'

select cust.name.firstName from Customer as cust

Queries can return multiple objects and/or properties as an array of type Object[]:

select mother, offspr, mate.name
from DomesticCat as mother
inner join mother.mate as mate
left outer join mother.kittens as offspr

Or as a List:

select new list(mother, offspr, mate.name)
from DomesticCat as mother

inner join mother.mate as mate

left outer join mother.kittens as offspr

Or - assuming that the class Family has an appropriate constructor - as an actual typesafe Java

object:

select new Family(mother, mate, offspr)
from DomesticCat as mother

join mother.mate as mate

left join mother.kittens as offspr

You can assign aliases to selected expressions using as:

select max(bodyWeight) as max, min(bodyWeight) as min, count(*) as n

209

147, HQL: &loluvlo]E A <] <l oj(Hibern...

from Cat cat
T}S & select new mapd A AFEE wf 71 {831 Th

select new map(max(bodyWeight) as max, min(bodyWeight) as min, count(*) as n)
from Cat cat

o] Aol select® HEI U aliasZHE 3 /N MapS w3k}
14.7. }A &

HQL queries can even return the results of aggregate functions on properties:

select avg(cat.weight), sum(cat.weight), max(cat.weight), count(cat)
from Cat cat

The supported aggregate functions are:

* avg(...), sum(...), min(...), max(...)
® count(*)

* count(...), count(distinct ...), count(all...)

You can use arithmetic operators, concatenation, and recognized SQL functions in the select clause:

select cat.weight + sum(kitten.weight)
from Cat cat

join cat.kittens kitten
group by cat.id, cat.weight

select firstName||" ‘|[initial||' '|Jupper(lastName) from Person
The distinct and all keywords can be used and have the same semantics as in SQL.

select distinct cat.name from Cat cat

select count(distinct cat.name), count(cat) from Cat cat

210

Polymorphic(t}gA) ZJE

14.8. Polymorphic(t}gA]) Ao &

ok e Aol
from Cat as cat

returns instances not only of Cat, but also of subclasses like DomesticCat. Hibernate queries can
name any Java class or interface in the from clause. The query will return instances of all
persistent classes that extend that class or implement the interface. The following query would

return all persistent objects:

from java.lang.Object o

AEFH o] 2 Namedi= o8] 7kA] G4 ZY 250 o8 7+3E Fx= Stk
from Named n, Named m where n.name = m.name

These last two queries will require more than one SQL SELECT. This means that the order by
clause does not correctly order the whole result set. It also means you cannot call these queries

using Query.scroll().

14.9. where &

The where clause allows you to refine the list of instances returned. If no alias exists, you can

refer to properties by name:

from Cat where name="Fritz'

W g A9 alis7h EAY A, kel Faeist B ZzuE o] gL Agdteh
from Cat as cat where cat.name="Fritz'

This returns instances of Cat named 'Fritz'.

The following query:

select foo
from Foo foo, Bar bar

211

147, HQL: &loluvlo]E A <] <l oj(Hibern...

where foo.startDate = bar.date

returns all instances of Foo with an instance of bar with a date property equal to the startDate
property of the Foo. Compound path expressions make the where clause extremely powerful.

Consider the following:

from Cat cat where cat.mate.name is not null

This query translates to an SQL query with a table (inner) join. For example:

from Foo foo
where foo.bar.baz.customer.address.city is not null

would result in a query that would require four table joins in SQL.

The = operator can be used to compare not only properties, but also instances:

from Cat cat, Cat rival where cat.mate = rival.mate

select cat, mate
from Cat cat, Cat mate
where cat.mate = mate

The special property (lowercase) id can be used to reference the unique identifier of an object.

See 14.54. “Referring to identifier property” for more information.

from Cat as cat where cat.id = 123

from Cat as cat where cat.mate.id = 69

The second query is efficient and does not require a table join.
Properties of composite identifiers can also be used. Consider the following example where Person

has composite identifiers consisting of country and medicareNumber:

from bank.Person person
where person.id.country = 'AU'

212

14 E
and person.id.medicareNumber = 123456

from bank.Account account

where account.owner.id.country = 'AU'
and account.owner.id.medicareNumber = 123456

Once again, the second query does not require a table join.

See 14.54. “Referring to identifier property” for more information regarding referencing

identifier properties)

The special property class accesses the discriminator value of an instance in the case of polymorphic
persistence. A Java class name embedded in the where clause will be translated to its discriminator

value.
from Cat cat where cat.class = DomesticCat

You can also use components or composite user types, or properties of said component types.

See 14.174. “#HIEZUEZE" for more information.

An "any" type has the special properties id and class that allows you to express a join in the

following way (where AuditLog.item is a property mapped with <any>):

from AuditLog log, Payment payment
where log.item.class = 'Payment' and log.item.id = payment.id

The log.item.class and payment.class would refer to the values of completely different database

columns in the above query.
Y =)
14.10. X9 =
Expressions used in the where clause include the following:

* mathematical operators: +, -, *, /

* binary comparison operators: =, >=, <=, <>, |=, like

e =7 A%FE and, or, not

* Parentheses () that indicates grouping

® in, not in, between, is null, is not null, is empty, is not empty, member of and not member of

o "7}t 3 7d9-, case ... when ... then ... else ... end, 23] 3L ”73"—‘,4?_1” 739-, case when ... then ...
else ... end

e Ex1d A ... or concat(...,...)

* current_date(), current_time(), and current_timestamp()

213

147, HQL: &loluvlo]E A <] <l oj(Hibern...

* second(...), minute(...), hour(...), day(...), month(...), and year(...)
* EJB-QL 3.00] ¢jaf e dolo] 3t e Q3 # o] H: substring(), trim(), lower(), upper(),
length(), locate(), abs(), sqrt(), bit_length(), mod()
* coalesce() Z2] 3 nullif()
A AHE Z A 7] = str()
ibernate B} &] o] & o], ANSI cast() 2} extract() 7}
).

o &= extract(... from .

fr
M

* numeric ZE°]Y temporal FES 7}
e cast(... as ...), A7) FH A ol FHE

714k dlo]Elu o] 2o o3 A YL A
2" A E 29 aliasEel A& ==, HQL index() o4

* HQL functions that take collection-valued path expressions: size(), minelement(), maxelement(),

o rr i
L

minindex (), maxindex(), along with the special elements() and indices functions that can be quantified
using some, all, exists, any, in.

* Any database-supported SQL scalar function like sign(), trunc(), rtrim(), and sin()

* JDBC-Zetd 914 dEtr B & 2

* named parameters :name, :start_date, and :xl

* SQL EHHEE 'foo, 69, 6.66E+2, '1970-01-01 10:00:01.0'

* Java public static final A<4=5. eg.Color.TABBY

in and between can be used as follows:

from DomesticCat cat where cat.name between ‘A" and 'B'

from DomesticCat cat where cat.name in ('Foo', 'Bar’, 'Baz')

The negated forms can be written as follows:

from DomesticCat cat where cat.name not between 'A' and 'B'

from DomesticCat cat where cat.name not in ('Foo', 'Bar', 'Baz')

Similarly, is null and is not null can be used to test for null values.

Booleans can be easily used in expressions by declaring HQL query substitutions in Hibernate

configuration:

<property name="hibernate.query.substitutions">true 1, false O</property>

ol AL FNYE trued} false V1Y EEL o] HOLEFRE HAH SQLAA HEHH 13 022 o
A Aotk

214

=
>
il

r U
_I

from Cat cat where cat.alive = true

You can test the size of a collection with the special property size or the special size() function.

from Cat cat where cat.kittens.size > 0

from Cat cat where size(cat.kittens) > 0

For indexed collections, you can refer to the minimum and maximum indices using minindex and
maxindex functions. Similarly, you can refer to the minimum and maximum elements of a collection

of basic type using the minelement and maxelement functions. For example:

from Calendar cal where maxelement(cal.holidays) > current_date

from Order order where maxindex(order.items) > 100

from Order order where minelement(order.items) > 10000

The SQL functions any, some, all, exists, in are supported when passed the element or index set of

a collection (elements and indices functions) or the result of a subquery (see below):

select mother from Cat as mother, Cat as kit
where kit in elements(foo.kittens)

select p from NameList list, Person p
where p.name = some elements(list.names)

from Cat cat where exists elements(cat.kittens)

from Player p where 3 > all elements(p.scores)

215

147, HQL: &loluvlo]E A <] <l oj(Hibern...

from Show show where 'fizard' in indices(show.acts)

Note that these constructs - size, elements, indices, minindex, maxindex, minelement, maxelement - can
only be used in the where clause in Hibernate3.
Elements of indexed collections (arrays, lists, and maps) can be referred to by index in a where

clause only:

from Order order where order.items[0].id = 1234

select person from Person person, Calendar calendar
where calendar.holidays['national day'] = person.birthDay
and person.nationality.calendar = calendar

select item from Item item, Order order
where order.items| order.delivereditemindices[0]] = item and order.id = 11

select item from Item item, Order order
where order.items[maxindex(order.items)] = item and order.id = 11

The expression inside [] can even be an arithmetic expression:

select item from Item item, Order order
where order.items[size(order.items) - 1] = item

HQL also provides the built-in index() function for elements of a one-to-many association or

collection of wvalues.

select item, index(item) from Order order
join order.items item
where index(item) <5

Scalar SQL functions supported by the underlying database can be used:

216

order by &

from DomesticCat cat where upper(cat.name) like 'FRI%'

Consider how much longer and less readable the following query would be in SQL:

select cust
from Product prod,
Store store
inner join store.customers cust
where prod.name = 'widget'
and store.location.name in ('Melbourne’, 'Sydney")
and prod = all elements(cust.currentOrder.lineltems)

(o

E v 32

ol 2

flo

SELECT cust.name, cust.address, cust.phone, cust.id, cust.current_order
FROM customers cust,
stores store,
locations loc,
store_customers sc,
product prod
WHERE prod.name = 'widget'
AND store.loc_id = loc.id
AND loc.name IN ('Melbourne’, 'Sydney')
AND sc.store_id = store.id
AND sc.cust_id = cust.id
AND prod.id = ALL(
SELECT item.prod_id
FROM line_items item, orders o
WHERE item.order_id = o.id
AND cust.current_order = o.id

14.11. order by &

The list returned by a query can be ordered by any property of a returned class or components:

from DomesticCat cat
order by cat.name asc, cat.weight desc, cat.birthdate

217

147, HQL: &loluvlo]E A <] <l oj(Hibern...

ase 4 EE dse §H 747 0B B YHAE AL depan

14.12. group by 4

A query that returns aggregate values can be grouped by any property of a returned class or

components:

select cat.color, sum(cat.weight), count(cat)
from Cat cat
group by cat.color

select foo.id, avg(name), max(name)
from Foo foo join foo.names name
group by foo.id

W3l having A o] & HT}

select cat.color, sum(cat.weight), count(cat)

from Cat cat

group by cat.color

having cat.color in (eg.Color.TABBY, eg.Color.BLACK)

SQL functions and aggregate functions are allowed in the having and order by clauses if they are

supported by the underlying database (i.e., not in MySQL).

select cat
from Cat cat
join cat.kittens kitten
group by cat.id, cat.name, cat.other, cat.properties
having avg(kitten.weight) > 100
order by count(kitten) asc, sum(kitten.weight) desc

Neither the group by clause nor the order by clause can contain arithmetic expressions. Hibernate
also does not currently expand a grouped entity, so you cannot write group by cat if all properties

of cat are non-aggregated. You have to list all non-aggregated properties explicitly.

218

X
™

X
Lo
il

14.13. MEAH =

subselect & A A3dtE HolE W o] 259 A9, Hibernatex AYE Yol AEAJES Y3
o EAo = B E FoIHoF k(AT SQL JATF sFo o). Aol A= G
MBAE(9 R Do) Yol alisE FE3E MEDE)o] 3l gHTh
from Cat as fatcat
where fatcat.weight > (
select avg(cat.weight) from DomesticCat cat
)
from DomesticCat as cat
where cat.name = some (
select name.nickName from Name as name
)
from Cat as cat
where not exists (
from Cat as mate where mate.mate = cat
)
from DomesticCat as cat
where cat.name not in (
select name.nickName from Name as name
)
select cat.id, (select max(kit.weight) from cat.kitten kit)
from Cat as cat
Note that HQL subqueries can occur only in the select or where clauses.
Note that subqueries can also utilize row value constructor syntax. See 14.18%d. “Row value

constructor T+ for more information.

14.14. HQL 9 A=

Hibernate queries can be quite powerful and complex. In fact, the power of the query language

is one of Hibernate's main strengths. The following example queries are similar to queries that

219

147, HQL: &loluvlo]E A <] <l oj(Hibern...

have been used on recent projects. Please note that most queries you will write will be much

simpler than the following examples.

The following query returns the order id, number of items, the given minimum total value and
the total value of the order for all unpaid orders for a particular customer. The results are
ordered by total value. In determining the prices, it uses the current catalog. The resulting SQL
query, against the ORDER, ORDER_LINE, PRODUCT, CATALOG and PRICE tables has four inner

joins and an (uncorrelated) subselect.

select order.id, sum(price.amount), count(item)
from Order as order
join order.lineltems as item
join item.product as product,
Catalog as catalog
join catalog.prices as price
where order.paid = false
and order.customer = :customer
and price.product = product
and catalog.effectiveDate < sysdate
and catalog.effectiveDate >= all (
select cat.effectiveDate
from Catalog as cat
where cat.effectiveDate < sysdate
)
group by order
having sum(price.amount) > :minAmount
order by sum(price.amount) desc

Al AR A BN, e ANBAES ug Folahn ghobd, el Aole

select order.id, sum(price.amount), count(item)
from Order as order
join order.lineltems as item
join item.product as product,
Catalog as catalog
join catalog.prices as price
where order.paid = false
and order.customer = :customer
and price.product = product
and catalog = :currentCatalog
group by order
having sum(price.amount) > :minAmount

220

HQL A&

order by sum(price.amount) desc

Aol B AFLAtd] o 71 Heo AE wWAo] #al AT AWAITING. APPROVAL
UE BE AEES A z2tzte] Aedd e AEES] NFE 7HE gt 27
PAYMENT, PAYMENT_STATUS, PAYMENT_STATUS_CHANGE H|o] &S] tjgt ¥ 7] <] inner
I el dHAA A Y subselectE 7HF SQL o2 Wk E o}

I

BN oo &
£ e
2
U o

o,
i

select count(payment), status.name
from Payment as payment
join payment.currentStatus as status
join payment.statusChanges as statusChange
where payment.status.name <> PaymentStatus. AWAITING_APPROVAL
or (
statusChange.timeStamp = (
select max(change.timeStamp)
from PaymentStatusChange change
where change.payment = payment

)

and statusChange.user <> :currentUser
)
group by status.name, status.sortOrder
order by status.sortOrder

If the statusChanges collection was mapped as a list, instead of a set, the query would have been

much simpler to write.

select count(payment), status.name
from Payment as payment
join payment.currentStatus as status
where payment.status.name <> PaymentStatus. AWAITING_ APPROVAL
or payment.statusChanges[maxindex(payment.statusChanges)].user <> :currentUser
group by status.name, status.sortOrder
order by status.sortOrder

o2 Zole= A AR £l e 249 RE AZES AEHA Fe AEES ke
=d] MS SQL Server isNull() &+E A3ttt 2718 ACCOUNT, PAYMENT, PAYMENT_STATUS,
ACCOUNT_TYPE, ORGANIZATION, ORG_USER H|o]EE9d] thd Al 7/l ¢] inner %L, 3}
outer %¢1, 18] 3 3}}9] subselectE 712 3 7i9] SQL Ao E wHA =TT

(

select account, payment

221

147, HQL: &loluvlo]E A <] <l oj(Hibern...

from Account as account

left outer join account.payments as payment
where :currentUser in elements(account.holder.users)

and PaymentStatus.UNPAID = isNull(payment.currentStatus.name, PaymentStatus.UNPAID)
order by account.type.sortOrder, account.accountNumber, payment.dueDate

ol

R HolHMol2Ee] A5, e (BEAA AAX) subselectE Y F a7t 3

i)

o

select account, payment
from Account as account
join account.holder.users as user
left outer join account.payments as payment
where :currentUser = user
and PaymentStatus.UNPAID = isNull(payment.currentStatus.name, PaymentStatus.UNPAID)
order by account.type.sortOrder, account.accountNumber, payment.dueDate

14.15. o) % update®} delete

HQL now supports update, delete and insert ... select ... statements. See 13.4%. “DML-I#0i##I#Y4

##°6# 10" for more information.

14.16. §& & EY &

You can count the number of query results without returning them:

((Integer) session.createQuery("select count(*) from").iterate().next()).intValue()
ge4e A7)0 wet A#E &M (ordering) A -2 W, The Aol g AMgstek

select usr.id, usr.name
from User as usr
left join usr.messages as msg
group by usr.id, usr.name
order by count(msg)

A FALE] HolEuo] 27} subselectE S ALY Ag, FAL FA AoJe] where H W
o selection Afoj=ol that =S AAA L F ATh

222

™
il
&e
m
1
il

from User usr where size(usr.messages) >= 1

If your database does not support subselects, use the following query:

select usr.id, usr.name
from User usr.name

join usr.messages msg
group by usr.id, usr.name
having count(msg) >= 1

As this solution cannot return a User with zero messages because of the inner join, the following

form is also useful:

select usr.id, usr.name
from User as usr

left join usr.messages as msg
group by usr.id, usr.name
having count(msg) =0

ahitel JavaBeano] T2 E S-S WHE de] seinE S wlss

b
50
iy

Query g = s.createQuery("from foo Foo as foo where foo.name=:name and foo.size=:size");
g.setProperties(fooBean); // fooBean has getName() and getSize()
List foos = q.list();

il

=94=

rlo

BEE 7M1 Query B0 28 AHgste] st Zlol btk

Query q = s.createFilter(collection, "™); // the trivial filter
g.setMaxResults(PAGE_SIZE);
g.setFirstResult(PAGE_SIZE * pageNumber);

List page = q.list();

Collection elements can be ordered or grouped using a query filter:

Collection orderedCollection = s.filter(collection, "order by this.amount");
Collection counts = s.filter(collection, "select this.type, count(this) group by this.type");

223

147, HQL: &loluvlo]E A <] <l oj(Hibern...

< FYAE 2713 ohA FuM 2Z(EYA)e A271E Fe F vk

((Integer) session.createQuery("select count(*) from").iterate().next()).intValue();

14.17. AXUEES

-

Components can be used similarly to the simple value types that are used in HQL queries. They

can appear in the select clause as follows:

select p.name from Person p

select p.name.first from Person p

5t where & o] A22 4 9)th:

Hl
rw
(m
o
v
o
Kl
rw
[m
il
rlo
s
ol
=

o] 7]] Person®] name &4 & #

from Person p where p.name = :name

from Person p where p.name.first = :firstName

2

ke

HAEEL X3 order by A o] A2 4 Aok

from Person p order by p.name

from Person p order by p.name.first

7 T UgE ZEZAH AFLL 14.184. “Row value constructor -2 ol 2t}

H

HEE 1)

%
hul

14.18. Row value constructor -+

HQL supports the use of ANSI SQL row value constructor syntax, sometimes referred to AS tuple
syntax, even though the underlying database may not support that notion. Here, we are generally
referring to multi-valued comparisons, typically associated with components. Consider an entity

Person which defines a name component:

224

Row value constructor ‘?"E‘

from Person p where p.name.first="John' and p.name.last="Jingleheimer-Schmidt'

That is valid syntax although it is a little verbose. You can make this more concise by using

row value constructor syntax:

from Person p where p.name=('John’, ‘Jingleheimer-Schmidt')

&

selectd Woll o] & AAst= Ao] £ F8&F 5 Utk

select p.name from Person p

Using row value constructor syntax can also be beneficial when using subqueries that need to

compare against multiple values:

from Cat as cat
where not (cat.name, cat.color) in (
select cat.name, cat.color from DomesticCat cat

One thing to consider when deciding if you want to use this syntax, is that the query will be

dependent upon the ordering of the component sub-properties in the metadata.

225

226

o _
Criteria A o=

Hibernate:= 2] 32 21, &4 7}%5 3} criteria query APIZ E3 A=t}
15 1 . Criteria J .}_\-I;;__ ./__ Ag }\é{ —6]’7]
org.hibernate.Criteria?_] Hyol2s 54 9% FY 2o thst ZdoE Z A, Session Criteria

AER S gk HEefolnt.

Criteria crit = sess.createCriteria(Cat.class);
crit.setMaxResults(50);
List cats = crit.list();

15.2. A3+ Al A sks}7]

7HE A <l 2 9] 7NEe org.hibernate.criterion.Criterion Ol EjH| o] 2~ 9] ol ~¥l 2ot}
org.hibernate.criterion.Restrictions &2~ o™ uw]g] ¥FE0] A Criterion BFYES ¥ += TEF 1)

2EES Felwn

List cats = sess.createCriteria(Cat.class)
.add(Restrictions.like("name", "Fritz%"))
.add(Restrictions.between("weight", minWeight, maxWeight))
dist();

Restrictions can be grouped logically.

List cats = sess.createCriteria(Cat.class)
.add(Restrictions.like("name", "Fritz%"))
.add(Restrictions.or(

Restrictions.eq("age", new Integer(0)),
Restrictions.isNull("age")

)
list();

List cats = sess.createCriteria(Cat.class)
.add(Restrictions.in("name", new String[] { "Fritz", "1zi", "Pk" }))
.add(Restrictions.disjunction()
.add(Restrictions.isNull("age™))
.add(Restrictions.eq("age", new Integer(0)))

227

15%. Criteria A&

.add(Restrictions.eq("age", new Integer(1)))
.add(Restrictions.eq("age”, new Integer(2)))

))
list();

There are a range of built-in criterion types (Restrictions subclasses). One of the most useful

allows you to specify SQL directly.

List cats = sess.createCriteria(Cat.class)
.add(Restrictions.sqlRestriction("lower({alias}.name) like lower(?)", "Fritz%",
Hibernate.STRING))
dist();

Aolx JdEEQ 3 aliasol] o]s] thAH {alias} placeholder.

You can also obtain a criterion from a Property instance. You can create a Property by calling

Property.forName():

Property age = Property.forName("age");
List cats = sess.createCriteria(Cat.class)
.add(Restrictions.disjunction()
.add(age.isNull())
.add(age.eq(new Integer(0)))
.add(age.eq(new Integer(1)))
.add(age.eq(new Integer(2)))
))
.add(Property.forName("name").in(new String[] { "Fritz", "Izi", "Pk" }))
dist();

15.3. A3=<= =X A F7](ordering)

You can order the results using org.hibernate.criterion.Order.

List cats = sess.createCriteria(Cat.class)
.add(Restrictions.like("name”, "F%")
.addOrder(Order.asc("name"))
.addOrder(Order.desc("age"))
.setMaxResults(50)
dist();

228

e
r 4
it

List cats = sess.createCriteria(Cat.class)
.add(Property.forName("name").like("F%"))
.addOrder(Property.forName("name").asc())
.addOrder(Property.forName("age").desc())
.setMaxResults(50)
dist();

154. 943 =

By navigating associations using createCriteria() you can specify constraints upon related entities:

List cats = sess.createCriteria(Cat.class)
.add(Restrictions.like("name”, "F%"))
.createCriteria("kittens")

.add(Restrictions.like("name”, "F%"))
dist();

The second createCriteria() returns a new instance of Criteria that refers to the elements of the

kittens collection.

There is also an alternate form that is useful in certain circumstances:

List cats = sess.createCriteria(Cat.class)
.createAlias("kittens", "kt")
.createAlias("mate", "mt")
.add(Restrictions.eqProperty("kt.name", "mt.name"))
list();

(createAlias()+= Criteria®] ME L QA 2E 25 AAAA T A &E=th)

The kittens collections held by the Cat instances returned by the previous two queries are not
pre-filtered by the criteria. If you want to retrieve just the kittens that match the criteria, you

must use a ResultTransformer.

List cats = sess.createCriteria(Cat.class)
.createCriteria("kittens", "kt")

.add(Restrictions.eq("name”, "F%"))
.setResultTransformer(Criteria.ALIAS_TO_ENTITY_MAP)
dist();

Iterator iter = cats.iterator();

229

15%. Criteria A&

while (iter.hasNext()) {
Map map = (Map) iter.next();
Cat cat = (Cat) map.get(Criteria.ROOT_ALIAS);
Cat kitten = (Cat) map.get("kt");

15.5. 4¢ A& 73

You can specify association fetching semantics at runtime using setFetchMode().

List cats = sess.createCriteria(Cat.class)
.add(Restrictions.like("name", "Fritz%"))
.setFetchMode("mate", FetchMode.EAGER)
.setFetchMode("kittens", FetchMode.EAGER)
dist();

H

o] o] outer 2O F mate?} kittens RFE HXT Ao|th. F=7F ARE= 1014, “HH

Ho]—};"—z” ‘% E«‘j/}’
15.6. oA A=

org.hibernate.criterion.Example] 22 Fo]z A28 22X E Ao 7]&(criterion)S F+F3 A

7= AL A & gaFt

Cat cat = new Cat();

cat.setSex('F";

cat.setColor(Color.BLACK);

List results = session.createCriteria(Cat.class)
.add(Example.create(cat))
ist();

W ZRAEE, AEAE, ABHAEe] FAAG UEER nul ¢ ZEHESe] A9A
i

A& Bxampleo] A &HE WS =A4E + 3

Example example = Example.create(cat)

.excludeZeroes() /lexclude zero valued properties
.excludeProperty("color") //exclude the property named "“color"
.ignoreCase() /Iperform case insensitive string comparisons
.enableLike(); /luse like for string comparisons

List results = session.createCriteria(Cat.class)

230

Projections, aggregation ~L2] 31 grouping

.add(example)
list();

FAZ A" QA Sl e criteria(715) AAA =0 examplesE AHEE & U

List results = session.createCriteria(Cat.class)
.add(Example.create(cat))
.createCriteria("mate")

.add(Example.create(cat.getMate()))
dist();

15.7. Projections, aggregation ZL2] 3L grouping

The class org.hibernate.criterion.Projections is a factory for Projection instances. You can apply a

projection to a query by calling setProjection().

List results = session.createCriteria(Cat.class)
.setProjection(Projections.rowCount())
.add(Restrictions.eq("color", Color.BLACK))
dist();

List results = session.createCriteria(Cat.class)
.setProjection(Projections.projectionList()
.add(Projections.rowCount())
.add(Projections.avg("weight"))
.add(Projections.max("weight"))
.add(Projections.groupProperty(“color"))

)
list();

criteria. A WellA= WAAR] "group by 7F HFAolx] gt oW projection EFYE

=
grouping projectionsE- | Al E Ao, ZARA-E T3 SQL group by & <ol vERGT]

rlo

An alias can be assigned to a projection so that the projected value can be referred to in

restrictions or orderings. Here are two different ways to do this:

List results = session.createCriteria(Cat.class)
.setProjection(Projections.alias(Projections.groupProperty(“color"), "colr"))
.addOrder(Order.asc("colr"))

231

15%. Criteria A&

list();

List results = session.createCriteria(Cat.class)
.setProjection(Projections.groupProperty("color").as("colr"))
.addOrder(Order.asc("colr"))
dist();

alias() MW AZ=9} as() WAEE T THE alias ¥ Projection®] QIAE A o]l 2] projection
Z o} o
[e}

Alo] projectiong projection | =Eo| F71e

List results = session.createCriteria(Cat.class)

.setProjection(Projections.projectionList()
.add(Projections.rowCount(), "catCountByColor")
.add(Projections.avg("weight"), "avgWeight")
.add(Projections.max("weight"), "maxWeight")
.add(Projections.groupProperty("color"), "color")

)

.addOrder(Order.desc("catCountByColor"))

.addOrder(Order.desc("avgWeight"))

dist();

List results = session.createCriteria(Domestic.class, "cat")

.createAlias("kittens", "kit")

.setProjection(Projections.projectionList()
.add(Projections.property(“"cat.name"), "catName")
.add(Projections.property("kit.name"), "kitName")

)

.addOrder(Order.asc("catName"))

.addOrder(Order.asc("kitName"))

Aist();

FA1e TS projectionE S X 36| Property.forName()S AFES 4 it

List results = session.createCriteria(Cat.class)
.setProjection(Property.forName("name"))
.add(Property.forName("color").eq(Color.BLACK))
list();

232

Detached o] E3} A BRI E

List results = session.createCriteria(Cat.class)

.setProjection(Projections.projectionList()
.add(Projections.rowCount().as("catCountByColor"))
.add(Property.forName("weight").avg().as("avgWeight"))
.add(Property.forName("weight").max().as("maxWeight"))
.add(Property.forName("color").group().as("color")

)

.addOrder(Order.desc("catCountByColor"))

.addOrder(Order.desc("avgWeight"))

dist();

15.8. Detached Z &3 ABAGE

The DetachedCriteria class allows you to create a query outside the scope of a session and then

execute it using an arbitrary Session.

DetachedCriteria query = DetachedCriteria.forClass(Cat.class)
.add(Property.forName("sex").eq('F"));

Session session =;

Transaction txn = session.beginTransaction();

List results = query.getExecutableCriteria(session).setMaxResults(100).list();
txn.commit();

session.close();

A DetachedCriteria can also be used to express a subquery. Criterion instances involving subqueries

can be obtained via Subqueries or Property.

DetachedCriteria avgWeight = DetachedCriteria.forClass(Cat.class)
.setProjection(Property.forName("weight").avg());
session.createCriteria(Cat.class)
.add(Property.forName("weight").gt(avgWeight))
dist();

DetachedCriteria weights = DetachedCriteria.forClass(Cat.class)
.setProjection(Property.forName("weight"));
session.createCriteria(Cat.class)
.add(Subqueries.geAll("weight", weights))

233

15%. Criteria A&

dist();
Correlated subqueries are also possible:

DetachedCriteria avgWeightForSex = DetachedCriteria.forClass(Cat.class, "cat2")
.setProjection(Property.forName("weight").avg())
.add(Property.forName("cat2.sex").eqProperty("cat.sex"));
session.createCriteria(Cat.class, "cat")
.add(Property.forName("weight").gt(avgWeightForSex))
dist();

15.9. natural 2] ¥ z}ol] o]t A=

For most queries, including criteria queries, the query cache is not efficient because query cache
invalidation occurs too frequently. However, there is a special kind of query where you can
optimize the cache invalidation algorithm: lookups by a constant natural key. In some applications,

this kind of query occurs frequently. The criteria API provides special provision for this use case.

First, map the natural key of your entity using <natural-id> and enable use of the second-level cache.

<class name="User">
<cache usage="read-write"/>
<id name="id">
<generator class="increment"/>
</id>
<natural-id>
<property nhame="name"/>
<property name="org"/>
</natural-id>
<property name="password"/>
</class>

This functionality is not intended for use with entities with mutable natural keys.

Once you have enabled the Hibernate query cache, the Restrictions.naturalld() allows you to make

use of the more efficient cache algorithm.

session.createCriteria(User.class)
.add(Restrictions.naturalld()
.set("name”, "gavin")

.set("org", "hb")

234

natural & ® 2} 93 Fo =

).setCacheable(true)
.uniqueResult();

235

236

Native SQL

You can also express queries in the native SQL dialect of your database. This is useful if you
want to utilize database-specific features such as query hints or the CONNECT keyword in Oracle.

It also provides a clean migration path from a direct SQL/JDBC based application to Hibernate.

Hibernate3 allows you to specify handwritten SQL, including stored procedures, for all create,

update, delete, and load operations.

1 6 1 . SQLQuery A]’% 6-]’ 7]

Execution of native SQL queries is controlled via the SQLQuery interface, which is obtained by

calling Session.createSQLQuery(). The following sections describe how to use this API for querying.

16.1.1. =72} A=

fr

Ao,

714 NEAQ SQL Aoy 2BAE(RE)e] 258

sess.createSQLQuery("SELECT * FROM CATS").list();
sess.createSQLQuery("SELECT ID, NAME, BIRTHDATE FROM CATS").list();

These will return a List of Object arrays (Object[]) with scalar values for each column in the
CATS table. Hibernate will use ResultSetMetadata to deduce the actual order and types of the

returned scalar values.

To avoid the overhead of using ResultSetMetadata, or simply to be more explicit in what is returned,

one can use addScalar():

sess.createSQLQuery("SELECT * FROM CATS")
.addScalar("ID", Hibernate.LONG)
.addScalar("NAME", Hibernate.STRING)
.addScalar("BIRTHDATE", Hibernate.DATE)

o] Aol tee AR

T = =2

This will return Object arrays, but now it will not use ResultSetMetadata but will instead explicitly
get the ID, NAME and BIRTHDATE column as respectively a Long, String and a Short from the

237

16%. Native SQL

underlying resultset. This also means that only these three columns will be returned, even though

the query is using * and could return more than the three listed columns.
~7EE 9% = A% U@ B YRE $ATE Aol s
sess.createSQLQuery("SELECT * FROM CATS")

.addScalar("ID", Hibernate.LONG)

.addScalar("NAME")
.addScalar("BIRTHDATE")

This is essentially the same query as before, but now ResultSetMetaData is used to determine the
type of NAME and BIRTHDATE, where as the type of ID is explicitly specified.

How the java.sql.Types returned from ResultSetMetaData is mapped to Hibernate types is controlled
by the Dialect. If a specific type is not mapped, or does not result in the expected type, it is

possible to customize it via calls to registerHibernateType in the Dialect.

16.1.2. Entity & o] &

sess.createSQLQuery("SELECT * FROM CATS").addEntity(Cat.class);
sess.createSQLQuery("SELECT ID, NAME, BIRTHDATE FROM CATS").addEntity(Cat.class);

ol A& v&S& AAAh

- SQL Al B4
2 Ao o) wEHE A

Cato] A9 ID, NAME Z12]3 BIRTHDATEZA] g Etha 7g3shd, 9o dogEe v 7+
9] @247} 39 Cat AEIEQ s} ListE wrdkst 7o)t

S

W 7 el E ohE AEE] Bl many-o-one WHH o} YThA E native D] S
AT W oA WIS o] BEAZ, I el A4S ool AP Aol @
ARA GRHUY LH7F Dol Reolth #7442 AYPe » K/ 8 ST AEHOR
@9 Zol A7 $-2E the Dogoll Hl @ many-to-one S AN Y FAHA 2 S Az

sess.createSQLQuery("SELECT ID, NAME, BIRTHDATE, DOG_ID FROM
CATS").addEntity(Cat.class);

238

o] A& cat.getDog()°] Af+3tAl 7ls3stes A& s&grt

16.1.3. AAEFH FIHELS A7 3d7]

il

ZHEA S 2715 ARl o] 7hesd 538F BRE=EEHSE J8H7] f814 Dogoll A eagerly
joinAl 71 & Z o] 7k dlth o] AL addloin() MIAEES E& e, 2A L Adoly Z
A WollA z2JAA71E AE BFAlCA & &l &t

sess.createSQLQuery("SELECT c.ID, NAME, BIRTHDATE, DOG_ID, D_ID, D_NAME FROM
CATS ¢, DOGS d WHERE ¢.DOG_ID = d.D_ID")

.addEntity("cat", Cat.class)

.addJoin("cat.dog");

In this example, the returned Cat's will have their dog property fully initialized without any extra
roundtrip to the database. Notice that you added an alias name ('cat") to be able to specify the
target property path of the join. It is possible to do the same eager joining for collections, e.g.

if the Cat had a one-to-many to Dog instead.

sess.createSQLQuery("SELECT ID, NAME, BIRTHDATE, D_ID, D_NAME, CAT_ID FROM CATS
¢, DOGS d WHERE c.ID = d.CAT_ID")

.addEntity("cat", Cat.class)

.addJoin("cat.dogs");

At this stage you are reaching the limits of what is possible with native queries, without starting
to enhance the sql queries to make them usable in Hibernate. Problems can arise when returning

multiple entities of the same type or when the default alias/column names are not enough.
16.1.4. 18] 7119 oEEES w37

Until now, the result set column names are assumed to be the same as the column names specified
in the mapping document. This can be problematic for SQL queries that join multiple tables, since

the same column names can appear in more than one table.

A aliss 7Y T Aol (obvh Ao G Rolthol A B a stk

sess.createSQLQuery("SELECT c.*, m.* FROM CATS ¢, CATS m WHERE ¢c.MOTHER_ID =
c.ID")

.addEntity("cat", Cat.class)

.addEntity("mother", Cat.class)

The query was intended to return two Cat instances per row: a cat and its mother. The query will,

however, fail because there is a conflict of names; the instances are mapped to the same column

239

16%. Native SQL

names. Also, on some databases the returned column aliases will most likely be on the form "c.ID",
"c.NAME'", etc. which are not equal to the columns specified in the mappings ("ID" and "NAME").

Fae 2

o}

o

ol

i

5

e

FEe 2A 2

ir

o}

sess.createSQLQuery("SELECT {cat.*}, {mother*} FROM CATS c¢, CATS m WHERE
c.MOTHER_ID = c.ID")

.addEntity("cat", Cat.class)

.addEntity("mother"”, Cat.class)

e AY aliasE S FY37] 93 Hibernated placeholderE< 7}z SQL ZH o 214
* 1 Ao o3| widE = QlEEHE

The {cat.*} and {mother.*} notation used above is a shorthand for "all properties'. Alternatively,
you can list the columns explicitly, but even in this case Hibernate injects the SQL column aliases
for each property. The placeholder for a column alias is just the property name qualified by
the table alias. In the following example, you retrieve Cats and their mothers from a different
table (cat_log) to the one declared in the mapping metadata. You can even use the property

aliases in the where clause.

String sql = "SELECT ID as {c.id}, NAME as {c.name}, " +
"BIRTHDATE as {c.birthDate}, MOTHER_ID as {c.mother}, {mother.*} " +
"FROM CAT_LOG c, CAT_LOG m WHERE {c.mother} = c.ID";

List loggedCats = sess.createSQLQuery(sql)
.addEntity("cat", Cat.class)
.addEntity("mother", Cat.class).list()

16.1.4.1. alias =z} T2 ¥ Fx

In most cases the above alias injection is needed. For queries relating to more complex mappings,
like composite properties, inheritance discriminators, collections etc., you can use specific aliases

that allow Hibernate to inject the proper aliases.

The following table shows the different ways you can use the alias injection. Please note that
the alias names in the result are simply examples; each alias will have a unique and probably

different name when used.

240

non-managed QElE &L wt3l3s}7]

X 16.1. alias F¢ o|EE

A T of A

7tetst = =2 9 g {[aliasname]. A_NAME as {item.name}
[propertyname]

composite ZZHE] {[aliasname]. CURRENCY as {item.amount.currency}, VALUE as
[componentname]. {item.amount.value}
[propertyname]}

SRsRse)l ¥ A} {[aliasname].class} DISC as {item.class}

(Discriminator)

dEE]e] RE X {[aliasname].x} {item.=}

2HEHE

Fd4 7] {[aliasname].key} ORGID as {coll.key}

{[aliasname].id}

EMPID as {coll.id}

FUMo 94 {[aliasname].element} | XID as {coll.element}
property of the {[aliasname].element. | NAME as {coll.element.name}
element in the [propertyname]}

collection

ZdHd Yo A= {laliasname].element.*} | {coll.element.*}

84 RE Z=2

o5

ZdHde] RE E {[aliasname].x} {coll.x*}

2HHE

16.1.5. non-managed A EE &S ¥H3s}H7]

It is possible to apply a ResultTransformer to native SQL queries,

managed entities.

allowing it to return non-

sess.createSQLQuery("SELECT NAME, BIRTHDATE FROM CATS")
.setResultTransformer(Transformers.aliasToBean(CatDTO.class))

o] Aot thee

A4 Ao

* SQL A Exd
e A3} W3 =(transformer)

718k= o] 9lar
o= Edl

ruln L
(I
i to
e
I P

o] o]
3 =

2132 NAME3} BIRTHNAME®]
FUAIZ CaDTOS] P EEF WHA S 7

HES CaDTO?] Y$3e=

ZE

16%. Native SQL

16.1.6. & a7

Native SQL queries which query for entities that are mapped as part of an inheritance must

include all properties for the baseclass and all its subclasses.

16.1.7. e} E &

Native SQL queries support positional as well as named parameters:

Query query = sess.createSQLQuery("SELECT * FROM CATS WHERE NAME
like ?").addEntity(Cat.class);
List pusList = query.setString(0, "Pus%").list();

query = sess.createSQLQuery("SELECT * FROM CATS WHERE NAME
like :name").addEntity(Cat.class);
List pusList = query.setString("name”, "Pus%").list();

16.2. W€ SQL A=

Named SQL queries can be defined in the mapping document and called in exactly the same way

as a named HQL query. In this case, you do not need to call addEntity().

<sgl-query name="persons">
<return alias="person" class="eg.Person"/>
SELECT person.NAME AS {person.name},
person.AGE AS {person.age},
person.SEX AS {person.sex}
FROM PERSON person
WHERE person.NAME LIKE :namePattern
</sql-query>

List people = sess.getNamedQuery("persons")
.setString("namePattern”, namePattern)
.setMaxResults(50)
dist();

The <return-join> element is use to join associations and the <load-collection> element is used to

define queries which initialize collections,

<sgl-query name="personsWith">

242

ol
o
(i
n
)
!
)
lo
il

<return alias="person" class="eg.Person"/>
<return-join alias="address" property="person.mailingAddress"/>
SELECT person.NAME AS {person.name},

person.AGE AS {person.age},

person.SEX AS {person.sex},

address.STREET AS {address.street},

address.CITY AS {address.city},

address.STATE AS {address.state},

address.ZIP AS {address.zip}
FROM PERSON person
JOIN ADDRESS address

ON person.ID = address.PERSON_ID AND address.TYPE="MAILING'
WHERE person.NAME LIKE :namePattern
</sql-query>

i
riet

gt;
ol
i
E
oft

wHE SQL A= 2z 3t A& <return-scalar> 84S Al83le] A
_1

< S,
A alias®} Hibernate E}Y S A dsof o)

<sgl-query name="mySqlQuery">
<return-scalar column="name" type="string"/>
<return-scalar column="age" type="long"/>
SELECT p.NAME AS name,
p.AGE AS age,
FROM PERSON p WHERE p.NAME LIKE 'Hiber%'
</sqgl-query>

You can externalize the resultset mapping information in a <resultset> element which will allow

you to either reuse them across several named queries or through the setResultSetMapping() APIL.

<resultset name="personAddress">

<return alias="person" class="eg.Person"/>

<return-join alias="address" property="person.mailingAddress"/>
</resultset>

<sqgl-query name="personsWith" resultset-ref="personAddress">
SELECT person.NAME AS {person.name},
person.AGE AS {person.age},
person.SEX AS {person.sex},
address.STREET AS {address.street},
address.CITY AS {address.city},
address.STATE AS {address.state},
address.ZIP AS {address.zip}

243

16%. Native SQL

FROM PERSON person
JOIN ADDRESS address
ON person.ID = address.PERSON_ID AND address.TYPE='MAILING'
WHERE person.NAME LIKE :namePattern
</sql-query>

You can, alternatively, use the resultset mapping information in your hbm files directly in java code.

List cats = sess.createSQLQuery(
"select {cat.*}, {kitten.*} from cats cat, cats kitten where kitten.mother = cat.id"
)
.setResultSetMapping("catAndKitten")
dist();

16.2.1. WA & o 2 column/alias] &E5<& A A st+=d| return-

property A& 3&}7]

You can explicitly tell Hibernate what column aliases to use with <return-property>, instead of

using the {}-syntax to let Hibernate inject its own aliases.For example:

<sgl-query name="mySqlQuery">
<return alias="person" class="eg.Person">
<return-property name="name" column="myName"/>
<return-property hame="age" column="myAge"/>
<return-property hame="sex" column="mySex"/>
<[return>
SELECT person.NAME AS myName,
person.AGE AS myAge,
person.SEX AS mySex,
FROM PERSON person WHERE person.NAME LIKE :name
</sql-query>

<return-property> also works with multiple columns. This solves a limitation with the {}-syntax

which cannot allow fine grained control of multi-column properties.

<sqgl-query name="organizationCurrentEmployments">
<return alias="emp" class="Employment">
<return-property name="salary">
<return-column name="VALUE"/>
<return-column name="CURRENCY"/>

244

o2 9% W Z2ZAA ALE8

</return-property>
<return-property hame="endDate" column="myEndDate"/>
<[return>
SELECT EMPLOYEE AS {emp.employee}, EMPLOYER AS {emp.employer},
STARTDATE AS {emp.startDate}, ENDDATE AS {emp.endDate},
REGIONCODE as {emp.regionCode}, EID AS {emp.id}, VALUE, CURRENCY
FROM EMPLOYMENT
WHERE EMPLOYER = :id AND ENDDATE IS NULL
ORDER BY STARTDATE ASC
</sql-query>

In this example <return-property> was used in combination with the {}-syntax for injection. This

allows users to choose how they want to refer column and properties.

el gale] uwlgo] 3 7o) T x}(discriminator) S 7 AL Fal

=
3}t <return-discriminator>S A}-g-&j oF 3tT}h.

rlo
&

W AP A4

1622. Ao A W Z2A A AE3}HY]

Hibernate3 provides support for queries via stored procedures and functions. Most of the following
documentation is equivalent for both. The stored procedure/function must return a resultset as the
first out-parameter to be able to work with Hibernate. An example of such a stored function

in Oracle 9 and higher is as follows:

CREATE OR REPLACE FUNCTION selectAllIEmployments
RETURN SYS_REFCURSOR
AS
st_cursor SYS_REFCURSOR;
BEGIN
OPEN st_cursor FOR
SELECT EMPLOYEE, EMPLOYER,
STARTDATE, ENDDATE,
REGIONCODE, EID, VALUE, CURRENCY
FROM EMPLOYMENT;
RETURN st_cursor;
END;

Hibernateol] A o] Aol 2 A}&3}7] Ya) FA
aRe wEg davt ok

2 sy HHE Z2(a named query)E 53

<sql-query name="selectAllEmployees_SP" callable="true">
<return alias="emp" class="Employment">
<return-property hame="employee" column="EMPLOYEE"/>

245

16%. Native SQL

<return-property name="employer" column="EMPLOYER"/>
<return-property hame="startDate" column="STARTDATE"/>
<return-property name="endDate" column="ENDDATE"/>
<return-property hame="regionCode" column="REGIONCODE"/>
<return-property name="id" column="EID"/>
<return-property name="salary">
<return-column name="VALUE"/>
<return-column name="CURRENCY"/>
</return-property>
</return>
{ ? = call selectAllEmployments() }
</sqgl-query>

Stored procedures currently only return scalars and entities. <return-join> and <load-collection> are

not supported.
162.2.1. & Z2AAELS A3 FHAE/AIE

You cannot use stored procedures with Hibernate unless you follow some procedure/function rules.
If they do not follow those rules they are not usable with Hibernate. If you still want to use
these procedures you have to execute them via session.connection(). The rules are different for each

database, since database vendors have different stored procedure semantics/syntax.
Stored procedure queries cannot be paged with setFirstResult()/setMaxResults().

The recommended call form is standard SQL92: { ? = call functionName(<parameters>) } or { ? =

call procedureName(<parameters>}. Native call syntax is not supported.

Oracle®] A% o& 3

il

o] 4

op

ok

* A function must return a result set. The first parameter of a procedure must be an OUT that
returns a result set. This is done by using a SYS_REFCURSOR type in Oracle 9 or 10. In Oracle
you need to define a REF CURSOR type. See Oracle literature for further information.

Sybase T+ MS SQL server®] 7% tt2 13

i

o 7

op

"ok

* The procedure must return a result set. Note that since these servers can return multiple result
sets and update counts, Hibernate will iterate the results and take the first result that is a result
set as its return value. Everything else will be discarded.

© W FAlo] Bale] ZEAJA ol SET NOCOUNT ONg ©]-§ 7hestAl & 4 vt a7
© ofn} wrh agHolsl @ ZolAw oz Wea xAol otk

Hibernate3: create, update, delete Q. ¥ #o]AEL <93 gt
t}. Hibernateo| Al Fe 2o} FHH FHEAELS 74 Al A

246

(@]
o
o
o
o
o]
[oN
o
@
&
ich
kl
[oN
@
¢
@
il
o
e
pl
5
o
wn
/e
.

=

deletesql, updatesql 5)

KR
=
e o5 BAGES oueolE Atk

<class name="Person">
<id name="id">
<generator class="increment"/>
</id>
<property name="name" not-null="true"/>
<sql-insert>INSERT INTO PERSON (NAME, ID) VALUES (UPPER(?), ?)</sql-insert>
<sgl-update>UPDATE PERSON SET NAME=UPPER(?) WHERE ID=?</sql-update>
<sql-delete>DELETE FROM PERSON WHERE ID=?</sql-delete>
</class>

The SQL is directly executed in your database, so you can use any dialect you like. This will
reduce the portability of your mapping if you use database specific SQL.

Wl callable 430] AR EE h g TAA S0 XAk

<class name="Person">

<id name="id">

<generator class="increment"/>

</id>

<property name="name" not-null="true"/>

<sql-insert callable="true">{call createPerson (?, ?)}</sql-insert>

<sql-delete callable="true">{? = call deletePerson (?)}</sql-delete>

<sql-update callable="true">{? = call updatePerson (?, ?)}</sql-update>
</class>

The order of the positional parameters is vital, as they must be in the same sequence as Hibernate

expects them.

You can view the expected order by enabling debug logging for the orghibernate.persister.entity
level. With this level enabled, Hibernate will print out the static SQL that is used to create,
update, delete etc. entities. To view the expected sequence, do not include your custom SQL in

the mapping files, as this will override the Hibernate generated static SQL.

The stored procedures are in most cases required to return the number of rows inserted, updated and
deleted, as Hibernate has some runtime checks for the success of the statement. Hibernate always

registers the first statement parameter as a numeric output parameter for the CUD operations:

CREATE OR REPLACE FUNCTION updatePerson (uid IN NUMBER, uname IN VARCHAR?2)
RETURN NUMBER IS

247

16%. Native SQL

BEGIN

update PERSON
set

NAME = uname,
where

ID = uid;

return SQL%ROWCOUNT;

END updatePerson;

164 29& 9% 253 SQL

You can also declare your own SQL (or HQL) queries for entity loading:

<sql-query name="person">
<return alias="pers" class="Person" lock-mode="upgrade"/>
SELECT NAME AS {pers.name}, ID AS {pers.id}
FROM PERSON
WHERE ID=?
FOR UPDATE
</sql-query>

This is just a named query declaration, as discussed earlier. You can reference this named query

in a class mapping:

<class name="Person">
<id name="id">
<generator class="increment"/>
</id>
<property name="name" not-null="true"/>
<loader query-ref="person"/>
</class>

RE AA el W LA FAE

You can even define a query for collection loading:

<set name="employments" inverse="true">
<key/>

248

<one-to-many class="Employment"/>
<loader query-ref="employments"/>
</set>

<sgl-query name="employments">
<load-collection alias="emp" role="Person.employments"/>
SELECT {emp.*}
FROM EMPLOYMENT emp
WHERE EMPLOYER = :id
ORDER BY STARTDATE ASC, EMPLOYEE ASC
</sql-query>

You can also define an entity loader that loads a collection by join fetching:

<sgl-query name="person">
<return alias="pers" class="Person"/>
<return-join alias="emp" property="pers.employments"/>
SELECT NAME AS {pers.*}, {emp.*}
FROM PERSON pers
LEFT OUTER JOIN EMPLOYMENT emp
ON pers.ID = emp.PERSON_ID
WHERE ID=?
</sql-query>

249

250

Hole ZE 357

Hibernate3 provides an innovative new approach to handling data with "visibility" rules. A Hibernate
filter is a global, named, parameterized filter that can be enabled or disabled for a particular

Hibernate session.

17.1. Hibernate ¥ E =

Hibernate3 has the ability to pre-define filter criteria and attach those filters at both a class
level and a collection level. A filter criteria allows you to define a restriction clause similar to
the existing "where" attribute available on the class and various collection elements. These filter
conditions, however, can be parameterized. The application can then decide at runtime whether
certain filters should be enabled and what their parameter values should be. Filters can be used

like database views, but they are parameterized inside the application.

ol

JE S AFESH] flallA, 2352 WA Ho L Al AHg vjE 84 '1%01] A 7t = o] of
ok ZEHE 937 Y&ll, <hibernate-mapping/> 2.4 W X0l <filter-def/> Q4 E Al-g3}2H:

<filter-def name="myfFilter">
<filter-param name="myFilterParam" type="string"/>
<[filter-def>

This filter can then be attached to a class:

<class name="myClass" ...>

<filter name="myFilter" condition=":myFilterParam = MY_FILTERED_COLUMN"/>
</class>

Or, to a collection:

<set..>
<filter name="myFilter" condition=":myFilterParam = MY_FILTERED_COLUMN"/>
</set>

Or, to both or multiples of each at the same time.

The methods on Session are: enableFilter(String filterName), getEnabledFilter(String filterName), and
disableFilter(String filterName). By default, filters are not enabled for a given session. Filters must
be enabled through use of the Session.enableFilter() method, which returns an instance of the Filter

interface. If you used the simple filter defined above, it would look like this:

251

177, Hol8 d¥ 317

session.enableFilter("myFilter").setParameter("myFilterParam", "some-value");

Methods on the org.hibernate.Filter interface do allow the method-chaining common to much

of Hibernate.

The following is a full example, using temporal data with an effective record date pattern:

<filter-def name="effectiveDate">
<filter-param name="asOfDate" type="date"/>
<ffilter-def>

<class name="Employee" ...>

<many-to-one name="department" column="dept_id" class="Department"/>
<property name="effectiveStartDate" type="date" column="eff_start_dt"/>
<property name="effectiveEndDate" type="date" column="eff_end_dt"/>

<l--
Note that this assumes non-terminal records have an eff_end_dt set to
a max db date for simplicity-sake
-—->
<filter name="effectiveDate"
condition=";asOfDate BETWEEN eff_start_dt and eff_end_dt"/>
</class>

<class name="Department" ...>

<set name="employees" lazy="true">
<key column="dept_id"/>
<one-to-many class="Employee"/>
<filter name="effectiveDate"
condition=":asOfDate BETWEEN eff_start_dt and eff_end_dt"/>
</set>
</class>

In order to ensure that you are provided with currently effective records, enable the filter on

the session prior to retrieving employee data:

Session session = ...;
session.enableFilter("effectiveDate").setParameter("asOfDate", new Date());
List results = session.createQuery(“from Employee as e where e.salary > :targetSalary")

252

Hibernate 8=

.setLong("targetSalary", new Long(1000000))
dist();

Even though a salary constraint was mentioned explicitly on the results in the above HQL, because
of the enabled filter, the query will return only currently active employees who have a salary

greater than one million dollars.

If you want to use filters with outer joining, either through HQL or load fetching, be careful of
the direction of the condition expression. It is safest to set this up for left outer joining. Place

the parameter first followed by the column name(s) after the operator.

After being defined, a filter might be attached to multiple entities and/or collections each with
its own condition. This can be problematic when the conditions are the same each time. Using

<filter-def/> allows you to definine a default condition, either as an attribute or CDATA:

<filter-def name="mygFilter" condition="abc > xyz">...</filter-def>
<filter-def name="myOtherFilter">abc=xyz</ffilter-def>

This default condition will be used whenever the filter is attached to something without specifying
a condition. This means you can give a specific condition as part of the attachment of the filter

that overrides the default condition in that particular case.

253

254

XML vf 3

XML Mapping is an experimental feature in Hibernate 3.0 and is currently under active

development.
18.1. XML dHo|H =2 2} 3s}7]

Hibernate allows you to work with persistent XML data in much the same way you work with
persistent POJOs. A parsed XML tree can be thought of as another way of representing the
relational data at the object level, instead of POJOs.

Hibernate XML EE<L X8 stE APIEA] domdjE ALt G2 dolEHo a2k
B domdj EFES AMstn Aol O EelE Holguel e 450 55477 9
B oolW WAL BHES e AAEe AL + Atk AL AA XML ENE 3
3tal, domdjE Ab&sted A4S 34 3taL, Hibernate®] th 7]EAQ1 L HoldE & od
HAogA AL Holguo]o] AAAZ 4 At} persist(), saveOrUpdate(), merge(), delete(),
replicatel)(merging (] §1)& oF2 A A i=th).

o] E4& HlolE /1AL B 7),IMS EE SOAP 18 3 XSLT-7]ute] @ 2g< 3 o
B HolEe FASE THae Be o ZANAES Z=th

A single mapping can be used to simultaneously map properties of a class and nodes of an XML

document to the database, or, if there is no class to map, it can be used to map just the XML.
18.1.1. XMLZ} Ze 2 wjm L 87 = A &}17]

&2 POIOSH XMLE EAl0] w3 A1 7)E oAl :

<class name="Account"
table="ACCOUNTS"
node="account">

<id name="accountld"
column="ACCOUNT _ID"
node="@id"/>

<many-to-one name="customer"
column="CUSTOMER_ID"
node="customer/@id"
embed-xml="false"/>

<property name="balance"
column="BALANCE"
node="balance"/>

255

18%. XML uj =3

</class>

18.1.2. XML | wke =4 &}7]

&8 POIO Ze 227} EA6HA 2= oA o]t

<class entity-name="Account"
table="ACCOUNTS"
node="account">

<id name="id"

column="ACCOUNT_ID"

node="@id"

type="string"/>
<many-to-one name="customerld"
column="CUSTOMER_ID"
node="customer/@id"
embed-xml="false"
entity-name="Customer"/>

<property name="balance"
column="BALANCE"
node="balance"
type="big_decimal"/>

</class>

This mapping allows you to access the data as a dom4j tree, or as a graph of property name/
value pairs or java Maps. The property names are purely logical constructs that can be referred

to in HQL queries.

18.2. XML ©j =g wElH o] H

A range of Hibernate mapping elements accept the node attribute. This lets you specify the name
of an XML attribute or element that holds the property or entity data. The format of the node

attribute must be one of the following:

* 'element-name: map to the named XML element

256

XML w3 dE}d) o]

* "@attribute-name": map to the named XML attribute
e "' map to the parent element

* "element-name/@attribute-name": map to the named attribute of the named element

For collections and single valued associations, there is an additional embed-xml attribute. If embed-
xml="true", the default, the XML tree for the associated entity (or collection of value type) will
be embedded directly in the XML tree for the entity that owns the association. Otherwise, if
embed-xml="false", then only the referenced identifier value will appear in the XML for single

point associations and collections will not appear at all.

Do not leave embed-xml="true" for too many associations, since XML does not deal well with

circularity.

<class name="Customer"
table="CUSTOMER"
node="customer">

<id name="id"
column="CUST_ID"
node="@id"/>

<map name="accounts"
node="."
embed-xml="true">
<key column="CUSTOMER_ID"
not-null="true"/>
<map-key column="SHORT_DESC"
node="@short-desc"
type="string"/>
<one-to-many entity-name="Account"
embed-xml="false"
node="account"/>
</map>

<component name="name"
node="name">
<property name="firstName"
node="first-name"/>
<property name="initial"
node="initial"/>
<property name="lastName"
node="last-name"/>
</component>

257

18%. XML uj =3

</class>

In this case, the collection of account ids is embedded, but not the actual account data. The

following HQL query:
from Customer c left join fetch c.accounts where c.lastName like :lastName

would return datasets such as this:

<customer id="123456789">
<account short-desc="Savings">987632567</account>
<account short-desc="Credit Card">985612323</account>
<name>
<first-name>Gavin</first-name>
<initial>A</initial>
<last-name>King</last-name>
</name>

</customer>

e

A%, dolde thest 2

uke] ©FAlo] <one-to-many> Tl o]] embed-xml="true' & A A
]

=< Ry
> .
2y S Jrh:

<customer id="123456789">

<account id="987632567" short-desc="Savings">
<customer id="123456789"/>
<balance>100.29</balance>

</account>

<account id="985612323" short-desc="Credit Card">
<customer id="123456789"/>
<balance>-2370.34</balance>

</account>

<name>
<first-name>Gavin</first-name>
<initial>A</initial>
<last-name>King</last-name>

</name>

258

XML ©]o] € =7 5}7]

</customer>

18.3. XML H|o|y A& 3}7]

You can also re-read and update XML documents in the application. You can do this by obtaining

a dom4]j session:

Document doc =;

Session session = factory.openSession();
Session dom4jSession = session.getSession(EntityMode.DOM4J);
Transaction tx = session.beginTransaction();

List results = dom4jSession
.createQuery("from Customer c left join fetch c.accounts where c.lastName like :lastName")
dist();
for (int i=0; i<results.size(); i++) {
/ladd the customer data to the XML document
Element customer = (Element) results.get(i);
doc.add(customer);

tx.commit();
session.close();

Session session = factory.openSession();
Session dom4jSession = session.getSession(EntityMode.DOMA4J);
Transaction tx = session.beginTransaction();

Element cust = (Element) dom4jSession.get("Customer”, customerld);
for (int i=0; i<results.size(); i++) {
Element customer = (Element) results.get(i);
/lchange the customer name in the XML and database
Element name = customer.element("name");
name.element("first-name").setText(firstName);
name.element(“initial").setText(initial);
name.element("last-name").setText(lastName);

tx.commit();

259

18%. XML uj =3

session.close();

When implementing XML-based data import/export, it is useful to combine this feature with

Hibernate's replicate() operation.

260

HExH s JRA)

19.1. 91 W=&

Hibernate uses a fetching strategy to retrieve associated objects if the application needs to navigate

the association. Fetch strategies can be declared in the O/R mapping metadata, or over-ridden

by a particular HQL or Criteria query.

Hibernate3&= Tt ¥ W58 A9

o

t}:

Join fetching: Hibernate retrieves the associated instance or collection in the same SELECT,

using an OUTER JOIN.

Select fetching: a second SELECT is used to retrieve the associated entity or collection. Unless
you explicitly disable lazy fetching by specifying lazy="false", this second select will only be

executed when you access the association.

Subselect fetching: a second SELECT is used to retrieve the associated collections for all entities
retrieved in a previous query or fetch. Unless you explicitly disable lazy fetching by specifying

lazy="false", this second select will only be executed when you access the association.

Batch fetching: an optimization strategy for select fetching. Hibernate retrieves a batch of entity

instances or collections in a single SELECT by specifying a list of primary or foreign keys.

Hibernatex= H3F T} Alo]E ¥ A+t

Immediate fetching: an association, collection or attribute is fetched immediately when the

owner is loaded.

Lazy collection fetching: a collection is fetched when the application invokes an operation upon

that collection. This is the default for collections.

"Extra-lazy" collection fetching: individual elements of the collection are accessed from the
database as needed. Hibernate tries not to fetch the whole collection into memory unless

absolutely needed. It is suitable for large collections.

Proxy fetching: a single-valued association is fetched when a method other than the identifier

getter is invoked upon the associated object.

"No-proxy" fetching: a single-valued association is fetched when the instance variable is accessed.
Compared to proxy fetching, this approach is less lazy; the association is fetched even when
only the identifier is accessed. It is also more transparent, since no proxy is visible to the

application. This approach requires buildtime bytecode instrumentation and is rarely necessary.

Lazy attribute fetching: an attribute or single valued association is fetched when the instance
variable is accessed. This approach requires buildtime bytecode instrumentation and is rarely

necessary.

261

H71

ol

v
ol
&
Fl

w2 A

We have two orthogonal notions here: when is the association fetched and how is it fetched. It is
important that you do not confuse them. We use fetch to tune performance. We can use lazy to

define a contract for what data is always available in any detached instance of a particular class.
19.1.1. lazy A== 2P 3s}7]

By default, Hibernate3 uses lazy select fetching for collections and lazy proxy fetching for single-

valued associations. These defaults make sense for most associations in the majority of applications.

If you set hibernate.default_batch_fetch_size, Hibernate will use the batch fetch optimization for lazy

fetching. This optimization can also be enabled at a more granular level.

Please be aware that access to a lazy association outside of the context of an open Hibernate

session will result in an exception. For example:

s = sessions.openSession();
Transaction tx = s.beginTransaction();

User u = (User) s.createQuery("from User u where u.name=:userName")
.setString("userName", userName).uniqueResult();
Map permissions = u.getPermissions();

tx.commit();
s.close();

Integer accessLevel = (Integer) permissions.get("accounts"); // Error!

Since the permissions collection was not initialized when the Session was closed, the collection
will not be able to load its state. Hibernate does not support lazy initialization for detached
objects. This can be fixed by moving the code that reads from the collection to just before

the transaction is committed.

Alternatively, you can use a non-lazy collection or association, by specifying lazy="false" for the
association mapping. However, it is intended that lazy initialization be used for almost all collections
and associations. If you define too many non-lazy associations in your object model, Hibernate

will fetch the entire database into memory in every transaction.

On the other hand, you can use join fetching, which is non-lazy by nature, instead of select
fetching in a particular transaction. We will now explain how to customize the fetching strategy. In
Hibernate3, the mechanisms for choosing a fetch strategy are identical for single-valued associations

and collections.
19.1.2. H A =S FI5H7]

select HAHA(HZEE)S N+1 selects TAFE ¢ FHeF A, 8= vF EANA join 7

Ag A Tl 18 98 SR Atk

262

Single-ended 43 X EFA]

<set hame="permissions"
fetch="join">
<key column="userld"/>
<one-to-many class="Permission"/>
</set

<many-to-one name="mother" class="Cat" fetch="join"/>

o B ol BelE fech WEE ol F

t}:

ot
tllo
M

o get() B load)E E3F AM
* Aol vnAlolEd wf oz wAyst= A
* Criteria 49 E

* subselect T o] A}8E AL HQL Fo=

Irrespective of the fetching strategy you use, the defined non-lazy graph is guaranteed to be
loaded into memory. This might, however, result in several immediate selects being used to execute

a particular HQL query.

Usually, the mapping document is not used to customize fetching. Instead, we keep the default
behavior, and override it for a particular transaction, using left join fetch in HQL. This tells
Hibernate to fetch the association eagerly in the first select, using an outer join. In the Criteria
query API, you would use setFetchMode(FetchMode.JOIN).

If you want to change the fetching strategy used by get() or load(), you can use a Criteria

query. For example:

User user = (User) session.createCriteria(User.class)
.setFetchMode("permissions"”, FetchMode.JOIN)
.add(Restrictions.idEq(userld))
.uniqueResult();

This is Hibernate's equivalent of what some ORM solutions call a "fetch plan".

A completely different approach to problems with N+1 selects is to use the second-level cache.
19.1.3. Single-ended 13 3ZEFA]

Lazy fetching for collections is implemented using Hibernate's own implementation of persistent

collections. However, a different mechanism is needed for lazy behavior in single-ended associations.

263

H71

ol

v
ol
&
Fl

w2 A

The target entity of the association must be proxied. Hibernate implements lazy initializing proxies

for persistent objects using runtime bytecode enhancement which is accessed via the CGLIB library.

At startup, Hibernate3 generates proxies by default for all persistent classes and uses them to

enable lazy fetching of many-to-one and one-to-one associations.

The mapping file may declare an interface to use as the proxy interface for that class, with
the proxy attribute. By default, Hibernate uses a subclass of the class. The proxied class must
implement a default constructor with at least package visibility. This constructor is recommended

for all persistent classes.

There are potential problems to note when extending this approach to polymorphic classes.For

example:

<class name="Cat" proxy="Cat">

</subclass>
</class>

A AR R, AR 718 A2 27} DomesticCat®] A2® 291 A2, Cato] JAEHAEES
= 7F

A F DomesticCat2. 2 E}YNEE 7HsskAl &S Aotk

Cat cat = (Cat) session.load(Cat.class, id); // instantiate a proxy (does not hit the db)
if (cat.isDomesticCat()) { /I hit the db to initialize the proxy
DomesticCat dc = (DomesticCat) cat; /I Error!

Secondly, it is possible to break proxy ==:

Cat cat = (Cat) session.load(Cat.class, id); [/l instantiate a Cat proxy
DomesticCat dc =

(DomesticCat) session.load(DomesticCat.class, id); // acquire new DomesticCat proxy!
System.out.printin(cat==dc); /I false

cat.setWeight(11.0); // hit the db to initialize the proxy

264

Single-ended A3 ZEHA|

System.out.printin(dc.getWeight()); // 11.0

Third, you cannot use a CGLIB proxy for a final class or a class with any final methods.

Finally, if your persistent object acquires any resources upon instantiation (e.g. in initializers or
default constructor), then those resources will also be acquired by the proxy. The proxy class

is an actual subclass of the persistent class.

These problems are all due to fundamental limitations in Java's single inheritance model. To avoid
these problems your persistent classes must each implement an interface that declares its business
methods. You should specify these interfaces in the mapping file where Catlmpl implements the

interface Cat and DomesticCatlmpl implements the interface DomesticCat. For example:

<class name="Catimpl" proxy="Cat">

</subclass>
</class>

Then proxies for instances of Cat and DomesticCat can be returned by load() or iterate().

Cat cat = (Cat) session.load(Catlmpl.class, catid);
Iterator iter = session.createQuery("from Catlmpl as cat where cat.name="fritz").iterate();
Cat fritz = (Cat) iter.next();

@ Note

list() does not usually return proxies.

HAEL ET lazy 2713 €} o]RE FAlo] ol ZRHEES Catlmpl EFYo] ofd
Cat BFlo g Adsfof & or gt

Certain operations do not require proxy initialization:
* equals(): if the persistent class does not override equals()

* hashCode(): if the persistent class does not override hashCode()

o AWz} getter W AE

b

Hibernatet= equals() TE+ hashCode()S W Zol= Al7|& 9<& FH2=E

i
o
e
et
sl
o
u)

265

o
o
&
Hel
e
[
=
2
QL
N

By choosing lazy="no-proxy" instead of the default lazy="proxy", you can avoid problems associated
with typecasting. However, buildtime bytecode instrumentation is required, and all operations will

result in immediate proxy initialization.
19.1.4. ZYHAEF ZFANES 2713} A1717]

A LazylnitializationException will be thrown by Hibernate if an uninitialized collection or proxy is
accessed outside of the scope of the Session, i.e., when the entity owning the collection or having

the reference to the proxy is in the detached state.

Sometimes a proxy or collection needs to be initialized before closing the Session. You can force
initialization by calling cat.getSex() or cat.getKittens().size(), for example. However, this can be

confusing to readers of the code and it is not convenient for generic code.

The static methods Hibernate.initialize() and Hibernate.isInitialized(), provide the application with a
convenient way of working with lazily initialized collections or proxies. Hibernate.initialize(cat)
will force the initialization of a proxy, cat, as long as its Session is still open.

Hibernate.initialize(cat.getKittens()) has a similar effect for the collection of Kittens.

Another option is to keep the Session open until all required collections and proxies have been
loaded. In some application architectures, particularly where the code that accesses data using
Hibernate, and the code that uses it are in different application layers or different physical
processes, it can be a problem to ensure that the Session is open when a collection is initialized.

There are two basic ways to deal with this issue:

* In a web-based application, a servlet filter can be used to close the Session only at the end of
a user request, once the rendering of the view is complete (the Open Session in View pattern).
Of course, this places heavy demands on the correctness of the exception handling of your
application infrastructure. It is vitally important that the Session is closed and the transaction
ended before returning to the user, even when an exception occurs during rendering of the

view. See the Hibernate Wiki for examples of this "Open Session in View'" pattern.

* In an application with a separate business tier, the business logic must "prepare’ all collections
that the web tier needs before returning. This means that the business tier should load all the
data and return all the data already initialized to the presentation/web tier that is required for a
particular use case. Usually, the application calls Hibernate.initialize() for each collection that will
be needed in the web tier (this call must occur before the session is closed) or retrieves the
collection eagerly using a Hibernate query with a FETCH clause or a FetchMode.JOIN in Criteria.

This is usually easier if you adopt the Command pattern instead of a Session Facade.

* You can also attach a previously loaded object to a new Session with merge() or lock() before
accessing uninitialized collections or other proxies. Hibernate does not, and certainly should not,

do this automatically since it would introduce impromptu transaction semantics.

Sometimes you do not want to initialize a large collection, but still need some information about

it, like its size, for example, or a subset of the data.

266

batch #H| A A}-83}7]

G 2R 2718 A7A @A 2P Ao]2E A UM BHE AET S A
((Integer) s.createFilter(collection, "select count(*)").list().get(0)).intValue()
createFilter() ¥l 2EE E@ WA FHHE 2713k A2 B2 glo] TYMe) RENFES &

gxoz AMsed gk

s.createFilter(lazyCollection, "").setFirstResult(0).setMaxResults(10).list();

19.1.5. batch #H & AF&3}7]

Using batch fetching, Hibernate can load several uninitialized proxies if one proxy is accessed.
Batch fetching is an optimization of the lazy select fetching strategy. There are two ways you

can configure batch fetching: on the class level and the collection level.

Batch fetching for classes/entities is easier to understand. Consider the following example: at
runtime you have 25 Cat instances loaded in a Session, and each Cat has a reference to its owner, a
Person. The Person class is mapped with a proxy, lazy="true". If you now iterate through all cats and
call getOwner() on each, Hibernate will, by default, execute 25 SELECT statements to retrieve the

proxied owners. You can tune this behavior by specifying a batch-size in the mapping of Person:
<class name="Person" batch-size="10">...</class>

Hibernate will now execute only three queries: the pattern is 10, 10, 5.

You can also enable batch fetching of collections. For example, if each Person has a lazy collection
of Cats, and 10 persons are currently loaded in the Session, iterating through all persons will
generate 10 SELECTs, one for every call to getCats(). If you enable batch fetching for the cats

collection in the mapping of Person, Hibernate can pre-fetch collections:

<class name="Person">
<set name="cats" batch-size="3">
</set>

</class>

batch-size 824, Hibernate= 47]¢] SELECTS oA 3, 3, 3, 1 712 ZHYHNEL 2 A A
ojth. Al L £ L 54 Session WollA Z7]3 HA @& FHAAEL oA4EH= 7

Fol olEgTh

267

H71

ol

v
ol
&
Fl

w2 A

Batch fetching of collections is particularly useful if you have a nested tree of items, i.e. the
typical bill-of -materials pattern. However, a nested set or a materialized path might be a better

option for read-mostly trees.
19.1.6. subselect ¥ A}-&35}7]

If one lazy collection or single-valued proxy has to be fetched, Hibernate will load all of them,
re-running the original query in a subselect. This works in the same way as batch-fetching but

without the piecemeal loading.
19.1.7. lazy Z2ZHE] #H A A}&3}7]

Hibernate3 supports the lazy fetching of individual properties. This optimization technique is also
known as fetch groups. Please note that this is mostly a marketing feature; optimizing row reads
is much more important than optimization of column reads. However, only loading some properties
of a class could be useful in extreme cases. For example, when legacy tables have hundreds of

columns and the data model cannot be improved.

lzy Z¥E 292 ol§7b5as sew, G 54 property WSOl el ly %4

= a4t

<class name="Document">
<id name="id">
<generator class="native"/>
<fid>
<property name="name" not-null="true" length="50"/>
<property name="summary" not-null="true" length="200" lazy="true"/>
<property name="text" not-null="true" length="2000" lazy="true"/>
</class>

Lazy property loading requires buildtime bytecode instrumentation. If your persistent classes are

not enhanced, Hibernate will ignore lazy property settings and return to immediate fetching.

bytecode TS 2, T2 Ant B3 E A&}

<target name="instrument" depends="compile">
<taskdef name="instrument" classname="org.hibernate.tool.instrument.InstrumentTask">
<classpath path="${jar.path}"/>
<classpath path="${classes.dir}"/>
<classpath refid="lib.class.path"/>
</taskdef>

<instrument verbose="true">
<fileset dir="${testclasses.dir}/org/hibernate/auction/model">

268

FHA HE FRA

<include name="*.class"/>
<[fileset>
</instrument>
</target>

A different way of avoiding unnecessary column reads, at least for read-only transactions, is
to use the projection features of HQL or Criteria queries. This avoids the need for buildtime

bytecode processing and is certainly a preferred solution.

You can force the usual eager fetching of properties using fetch all properties in HQL.
19.2. A #E A

A Hibernate Session is a transaction-level cache of persistent data. It is possible to configure a
cluster or JVM-level (SessionFactory-level) cache on a class-by-class and collection-by-collection
basis. You can even plug in a clustered cache. Be aware that caches are not aware of changes
made to the persistent store by another application. They can, however, be configured to regularly

expire cached data.

You have the option to tell Hibernate which caching implementation to use by specifying
the name of a class that implements org.hibernate.cache.CacheProvider using the property
hibernate.cache.provider_class. Hibernate is bundled with a number of built-in integrations with the
open-source cache providers that are listed below. You can also implement your own and plug it

in as outlined above. Note that versions prior to 3.2 use EhCache as the default cache provider.

3 19.1. 7| A] Z=Eulolf =

AA Zuboly Feh e 2928 | A9 AN
ot7l A4l
Hashtable org.hibernate.cache.HashtableCacheProvider memory yes
(not
intended
for
production
use)
EHCache org.hibernate.cache.EhCacheProvider memory, yes
disk
OSCache org.hibernate.cache.OSCacheProvider memory, yes
disk
SwarmCache org.hibernate.cache.SwarmCacheProvider clustered yes
(ip (clustered
multicast) invalidation)
JBoss Cache org.hibernate.cache. TreeCacheProvider clustered yes yes (clock
1.x (ip (replication) | sync req.)

269

v
ol
&
H
i
>
:\é’
2
ol
ol
N

7HA] Z2utoly FP= et 28 2H 29 A
S| Sk
multicast),
transactional
JBoss Cache org.hibernate.cache. jbc2.JBossCacheRegionFactocyustered yes yes (clock
2 (ip (replication | sync req.)
multicast), or
transactional | invalidation)

19.2.1. Cache "I =

AL Ee YA P <cache> 240 Us 42 Zeth
<cache

usage="transactional|read-write|nonstrict-read-write|read-only" o
region="RegionName" 9

include="alllnon-lazy" E’
/>

1] usage -‘Q—’F) NA e A A 3t} transactional, read-write, nonstrict-read-write =& read-only

€ region (optional: defaults to the class or collection role name): specifies the name of the
second level cache region

€ include (optional: defaults to all) non-lazy: specifies that properties of the entity mapped with

lazy="true" cannot be cached when attribute-level lazy fetching is enabled
Alternatively, you can specify <class-cache> and <collection-cache> elements in hibernate.cfg.xml.

uwage £ ANA FAA =

i

24 gk},
19.22. vl 217] A&

If your application needs to read, but not modify, instances of a persistent class, a read-only cache

can be used. This is the simplest and optimal performing strategy. It is even safe for use in a cluster.

<class name="eg.Immutable" mutable="false">
<cache usage="read-only"/>

</class>

270

19.2.3. Wk Q1 7]/ 7]

If the application needs to update data, a read-write cache might be appropriate. This cache strategy
should never be used if serializable transaction isolation level is required. If the cache is used
in a JTA environment, you must specify the property hibernate.transaction.manager_lookup_class and
naming a strategy for obtaining the JTA TransactionManager. In other environments, you should
ensure that the transaction is completed when Session.close() or Session.disconnect() is called. If you
want to use this strategy in a cluster, you should ensure that the underlying cache implementation

supports locking. The built-in cache providers do not support locking.

<class name="eg.Cat" >
<cache usage="read-write"/>

<set name="kittens" ... >
<cache usage="read-write"/>
</set>
</class>

19.2.4. W5 AAF A & ¢l 7]/

If the application only occasionally needs to update data (i.e. if it is extremely unlikely that two
transactions would try to update the same item simultaneously), and strict transaction isolation
is not required, a nonstrict-read-write cache might be appropriate. If the cache is used in a JTA
environment, you must specify hibernate.transaction.manager_lookup_class. In other environments, you

should ensure that the transaction is completed when Session.close() or Session.disconnect() is called.

19.2.5. W% transactional
The transactional cache strategy provides support for fully transactional cache providers such as

JBoss TreeCache. Such a cache can only be used in a JTA environment and you must specify

hibernate.transaction.manager_lookup_class.

19.2.6. Cache-provider/concurrency-strategy compatibility

2

None of the cache providers support all of the cache concurrency strategies.

The following table shows which providers are compatible with which concurrency strategies.

271

7 Al 7] A& AA A e 81 7]-227] transactional
81 7]-227]

Hashtable (not yes yes yes

intended for

production use)

EHCache yes yes yes

OSCache yes yes yes

SwarmCache yes yes

JBoss Cache 1.x | yes yes

JBoss Cache 2 yes yes

19.3. JHA &5 HP T

Whenever you pass an object to save(), update() or saveOrUpdate(), and whenever you retrieve
an object using load(), get(), list(), iterate() or scroll(), that object is added to the internal cache

of the Session.

When flush() is subsequently called, the state of that object will be synchronized with the database.
If you do not want this synchronization to occur, or if you are processing a huge number of
objects and need to manage memory efficiently, the evict() method can be used to remove the

object and its collections from the first-level cache.

ScrollableResult cats = sess.createQuery("from Cat as cat").scroll(); //a huge result set
while (cats.next()) {

Cat cat = (Cat) cats.get(0);

doSomethingWithACat(cat);

sess.evict(cat);

Sessione H=ZF QIAEXATE A Ao &R ARE AA =T contains() WAEE A

Fauh
To evict all objects from the session cache, call Session.clear()

second-level F|AlQ] A%, slute] lxv 2 AA| 2,

=
role®] FAAIE FE|E EAA 7] SessionFactory ol 7 ol€ |

I
)
rot
v

sessionFactory.evict(Cat.class, catld); //evict a particular Cat
sessionFactory.evict(Cat.class); //evict all Cats
sessionFactory.evictCollection("Cat.kittens", catld); //evict a particular collection of kittens

272

ECRE

sessionFactory.evictCollection("Cat.kittens"); //evict all kitten collections

The CacheMode controls how a particular session interacts with the second-level cache:

® CacheMode.NORMAL: will read items from and write items to the second-level cache

® CacheMode.GET: will read items from the second-level cache. Do not write to the second-level

cache except when updating data

® CacheMode.PUT: will write items to the second-level cache. Do not read from the second-

level cache

® CacheMode.REFRESH: will write items to the second-level cache. Do not read from the second-
level cache. Bypass the effect of hibernate.cache.use_minimal_puts forcing a refresh of the second-

level cache for all items read from the database

second-level 7HA] H= H] A G HWE&EE Hepg-Astel™ Statistics APIE AH8-8e}:

Map cacheEntries = sessionFactory.getStatistics()
.getSecondLevelCacheStatistics(regionName)
.getEntries();

You will need to enable statistics and, optionally, force Hibernate to keep the cache entries in

a more readable format:

hibernate.generate_statistics true
hibernate.cache.use_structured_entries true

19.4. & 2] 7 A

Query result sets can also be cached. This is only useful for queries that are run frequently with

the same parameters. You will first need to enable the query cache:
hibernate.cache.use_query_cache true

This setting creates two new cache regions: one holding cached query result sets
(org.hibernate.cache.StandardQueryCache), the other holding timestamps of the most recent updates
to queryable tables (org.hibernate.cache.UpdateTimestampsCache). Note that the query cache does not
cache the state of the actual entities in the result set; it caches only identifier values and results

of value type. The query cache should always be used in conjunction with the second-level cache.

273

v
ol
&
H
i
>
:\l=
2
ol
ol
N

Most queries do not benefit from caching, so by default, queries are not cached. To enable
caching, call Query.setCacheable(true). This call allows the query to look for existing cache results

or add its results to the cache when it is executed.

If you require fine-grained control over query cache expiration policies, you can specify a named

cache region for a particular query by calling Query.setCacheRegion().

List blogs = sess.createQuery("from Blog blog where blog.blogger = :blogger")
.setEntity("blogger", blogger)
.setMaxResults(15)
.setCacheable(true)
.setCacheRegion("frontpages")

Aist();
W "ol 2ol Wel AN 99 AN FAAAE e Ao, TS
Query.setCacheMode(CacheMode. REFRESH) S & &3l of St} o] AL 7| & flo|g 7 WHx o XA
25 53 QU lEFHJIL(AE EH, HibernateE T3 HA R &) 54 Ao Ay AE

AelRow AAGGE AL o=y Aol AdA 3L
29

< SesswnFactory.ev1ctQuer1es()%— 3] Ao 1A

P mlo

|

—_

0.5. Fd A HEHA o]d) 37

—

In the previous sections we have covered collections and their applications. In this section we

explore some more issues in relation to collections at runtime.

19.5.1. &

Hibernate= Al 7FA] 71222 F R FIHE

tlo
o
1o
o
O

- gES AR

4 2] =AM

=
=

* one-to-many associations

* many-to-many associations

o] Rex 1 7}A] Elo] &3 foreign key #AIES FHAAR S 7F #AAF 2P sl
g Fart de BE AL A LI FA Fevh #AY Fxe Arxus EYES ¢
HAstA olsl sty U 214 3}7] 98] Hibernate

274

List, map, idbag, setE5-& updated] 7}F4 &&3F ¢l FHAHAEo|t}

All indexed collections (maps, lists, and arrays) have a primary key consisting of the <key>
and <index> columns. In this case, collection updates are extremely efficient. The primary key
can be efficiently indexed and a particular row can be efficiently located when Hibernate tries

to update or delete it.

Sets have a primary key consisting of <key> and element columns. This can be less efficient for
some types of collection element, particularly composite elements or large text or binary fields,
as the database may not be able to index a complex primary key as efficiently. However, for
one-to-many or many-to-many associations, particularly in the case of synthetic identifiers, it is
likely to be just as efficient. If you want SchemaExport to actually create the primary key of a

<set>, you must declare all columns as not-null="true".

<idbag> mappings define a surrogate key, so they are efficient to update. In fact, they are

the best case.

Bags are the worst case since they permit duplicate element values and, as they have no index
column, no primary key can be defined. Hibernate has no way of distinguishing between duplicate
rows. Hibernate resolves this problem by completely removing in a single DELETE and recreating

the collection whenever it changes. This can be inefficient.

For a one-to-many association, the "primary key' may not be the physical primary key of the
database table. Even in this case, the above classification is still useful. It reflects how Hibernate

"locates" individual rows of the collection.

AN 5

il

19.5.2. List, map, idbag, setE-2 updateol] 7} & &4 <l
o]t}

From the discussion above, it should be clear that indexed collections and sets allow the most

efficient operation in terms of adding, removing and updating elements.

There is, arguably, one more advantage that indexed collections have over sets for many-to-many
associations or collections of values. Because of the structure of a Set, Hibernate does not UPDATE
a row when an element is "changed’. Changes to a Set always work via INSERT and DELETE of

individual rows. Once again, this consideration does not apply to one-to-many associations.

After observing that arrays cannot be lazy, you can conclude that lists, maps and idbags are the
most performant (non-inverse) collection types, with sets not far behind. You can expect sets

to be the most common kind of collection in Hibernate applications. This is because the 'set"

semantics are most natural in the relational model.

However, in well-designed Hibernate domain models, most collections are in fact one-to-many
associations with inverse="true". For these associations, the update is handled by the many-to-one

end of the association, and so considerations of collection update performance simply do not apply.
19.5.3. BagE3} list52 714 &84 <2l inverse Zd A Eo|t}

There is a particular case, however, in which bags, and also lists, are much more performant than

sets. For a collection with inverse="true", the standard bidirectional one-to-many relationship idiom,

275

v
ol
&
H
i
>
:\l=
2
ol
ol
N

for example, we can add elements to a bag or list without needing to initialize (fetch) the bag
elements. This is because, unlike a set, Collection.add() or Collection.addAll() must always return true

for a bag or List. This can make the following common code much faster:

Parent p = (Parent) sess.load(Parent.class, id);

Child ¢ = new Child();

c.setParent(p);

p.getChildren().add(c); //no need to fetch the collection!
sess.flush();

19.5.4. & AF delete

Deleting collection elements one by one can sometimes be extremely inefficient. Hibernate knows
not to do that in the case of an newly-empty collection (if you called list.clear(), for example).

In this case, Hibernate will issue a single DELETE.

Suppose you added a single element to a collection of size twenty and then remove two elements.
Hibernate will issue one INSERT statement and two DELETE statements, unless the collection is

a bag. This is certainly desirable.

A w, 27 F e RAES GAEA 18 MY LAES AAGI A Al N AES
2425s FrHEYA ZHgskAl 7 7HA Jbed AE i EC] EAIgh

c S G olE Y WEL AAT ol Al A FES APAN
* remove the whole collection in one SQL DELETE and insert all five current elements one by one

Hibernate cannot know that the second option is probably quicker. It would probably be undesirable

for Hibernate to be that intuitive as such behavior might confuse database triggers, etc.

Fortunately, you can force this behavior (i.e. the second strategy) at any time by discarding
(i.e. dereferencing) the original collection and returning a newly instantiated collection with all

the current elements.

One-shot-delete does not apply to collections mapped inverse="true".
19.6. H¥XHA ZYEH 357

FHAsl=s Axd2s #E x5 U ZYUHHG H glole Zol A&HZA Zeth
Hibernate= 24 2] yH 42 oy eo]dE tdt AA d92 5EHELS A&t} Hibernate
o] A Statistics:= SessionFactory®l] tjal] ©o]-& 7}%3}t}.

19.6.1. SessionFactory =Y E ¥ 3}7]

FASe F IR HFHER SessionFactory metricsol] H2E £ Utk FAe] A WHA JFAHLS
o

sessionFactory.getStatistics() & & 3}3 G4l 22 FE StatisticsE: 9 AW g 22Z# o] 3= Aot

276

Metrics

Hibernate can also use JMX to publish metrics if you enable the StatisticsService MBean. You
can enable a single MBean for all your SessionFactory or one per factory. See the following code

for minimalistic configuration examples:

/I MBean service registration for a specific SessionFactory
Hashtable tb = new Hashtable();
tb.put("type", "statistics");

tb.put("sessionFactory", "myFinancialApp");
ObjectName on = new ObjectName("hibernate", th); // MBean object name

StatisticsService stats = new StatisticsService(); // MBean implementation
stats.setSessionFactory(sessionFactory); // Bind the stats to a SessionFactory
server.registerMBean(stats, on); // Register the Mbean on the server

/I MBean service registration for all SessionFactory's

Hashtable tb = new Hashtable();

tb.put("type", "statistics");

tb.put("sessionFactory”, "all");

ObjectName on = new ObjectName("hibernate", tb); // MBean object name

StatisticsService stats = new StatisticsService(); // MBean implementation
server.registerMBean(stats, on); // Register the MBean on the server

You can activate and deactivate the monitoring for a SessionFactory:

* A A] : hibernate.generate_statistics, T] ZE + false

>

3 Al : sf.getStatistics().setStatisticsEnabled(true) BE+= hibernateStatsBean.setStatisticsEnabled (true)

Statistics can be reset programmatically using the clear() method. A summary can be sent to a

logger (info level) using the logSummary() method.

19.6.2. Metrics

Hibernate provides a number of metrics, from basic information to more specialized information
that is only relevant in certain scenarios. All available counters are described in the Statistics

interface API, in three categories:

n

flo

o

F2 Q1 Session A}-8-ol

¢

S

o AR MAEY M, AMHE JDBC AYMAEY MF 53 7
#4

= metrics.

* Metrics related to the entities, collections, queries, and caches as a whole (aka global metrics).

277

c 54 AP, 2YH, o] EE A4 9ol BAH FA metrics.

For example, you can check the cache hit, miss, and put ratio of entities, collections and queries,

and the average time a query needs. Be aware that the number of milliseconds is subject to

approximation in Java. Hibernate is tied to the JVM precision and on some platforms this might

only be accurate to 10 seconds.

Simple getters are used to access the global metrics (i.e. not tied to a particular entity, collection,

cache region, etc.). You can access the metrics of a particular entity, collection or cache region

through its name, and through its HQL or SQL representation for queries. Please refer to the

Statistics, EntityStatistics, CollectionStatistics, SecondLevelCacheStatistics, and QueryStatistics

for more information. The following code is a simple example:

Statistics stats = HibernateUtil.sessionFactory.getStatistics();

double queryCacheHitCount = stats.getQueryCacheHitCount();
double queryCacheMissCount = stats.getQueryCacheMissCount();
double queryCacheHitRatio =

queryCacheHitCount / (queryCacheHitCount + queryCacheMissCount);

log.info("Query Hit ratio:" + queryCacheHitRatio);

EntityStatistics entityStats =
stats.getEntityStatistics(Cat.class.getName());
long changes =
entityStats.getinsertCount()
+ entityStats.getUpdateCount()
+ entityStats.getDeleteCount();
log.info(Cat.class.getName() + " changed " + changes + "times");

API Javadoc

You can work on all entities, collections, queries and region caches, by retrieving the list of

names of entities, collections, queries and region caches using the following methods: getQueries(),

getEntityNames(), getCollectionRoleNames(), and getSecondLevelCacheRegionNames().

278

=AL Qb

Roundtrip engineering with Hibernate is possible using a set of Eclipse plugins, commandline

tools, and Ant tasks.

Hibernate Tools currently include plugins for the Eclipse IDE as well as Ant tasks for reverse

engineering of existing databases:

* Mapping Editor: an editor for Hibernate XML mapping files that supports auto-completion and
syntax highlighting. It also supports semantic auto-completion for class names and property/field

names, making it more versatile than a normal XML editor.

* Console: the console is a new view in Eclipse. In addition to a tree overview of your console
configurations, you are also provided with an interactive view of your persistent classes and
their relationships. The console allows you to execute HQL queries against your database and

browse the result directly in Eclipse.

* Development Wizards: several wizards are provided with the Hibernate Eclipse tools. You can
use a wizard to quickly generate Hibernate configuration (cfg.xml) files, or to reverse engineer
an existing database schema into POJO source files and Hibernate mapping files. The reverse

engineering wizard supports customizable templates.

Please refer to the Hibernate Tools package documentation for more information.

However, the Hibernate main package comes bundled with an integrated tool : SchemaExport aka

hbm2ddl.It can even be used from 'inside" Hibernate.
20.1. AFFA 1 27)up A

DDL can be generated from your mapping files by a Hibernate utility. The generated schema
includes referential integrity constraints, primary and foreign keys, for entity and collection tables.

Tables and sequences are also created for mapped identifier generators.

You must specify a SQL Dialect via the hibernate.dialect property when using this tool, as DDL

is highly vendor-specific.

First, you must customize your mapping files to improve the generated schema. The next section

covers schema customization.
20.1.1. 2=7)a} @=3} A 7]7)

Many Hibernate mapping elements define optional attributes named length, precision and scale. You

can set the length, precision and scale of a column with this attribute.

<property name="zip" length="5"/>

279

207 =741 Shh

<property name="balance" precision="12" scale="2"/>

Some tags also accept a not-null attribute for generating a NOT NULL constraint on table columns,

and a unique attribute for generating UNIQUE constraint on table columns.

<many-to-one name="bar" column="barld" not-null="true"/>

<element column="serialNumber" type="long" not-null="true" unique="true"/>

A unique-key attribute can be used to group columns in a single, unique key constraint. Currently,
the specified value of the unique-key attribute is not used to name the constraint in the generated

DDL. It is only used to group the columns in the mapping file.

<many-to-one name="org" column="orgld" unique-key="OrgEmployeeld"/>
<property name="employeeld" unique-key="OrgEmployee"/>

An index attribute specifies the name of an index that will be created using the mapped column
or columns. Multiple columns can be grouped into the same index by simply specifying the

same index name.

<property name="lastName" index="CustName"/>
<property name="firstName" index="CustName"/>

A foreign-key attribute can be used to override the name of any generated foreign key constraint.

<many-to-one name="bar" column="barld" foreign-key="FKFooBar"/>

rlo
A
v
ol
i)
o
o,

g 2S5 T st A4 <column> & 4E | §FT o]

<property name="name" type="my.customtypes.Name"/>
<column name="last" not-null="true" index="bar_idx" length="30"/>
<column name="first" not-null="true" index="bar_idx" length="20"/>
<column name="initial"/>

280

</property>

The default attribute allows you to specify a default value for a column.You should assign the

same value to the mapped property before saving a new instance of the mapped class.

<property name="credits" type="integer" insert="false">
<column name="credits" default="10"/>
</property>

<version hame="version" type="integer" insert="false">
<column name="version" default="0"/>
</property>

sql-type 442 SQL ©lolElElY ol W3t Hibernate E}QP] TUZE wj3S owtol= A7
A& AHEAFo A 5 &8l =Tk

<property name="balance" type="float">
<column name="balance" sql-type="decimal(13,3)"/>

</property>
check 4L check AZEH A EE AASE AS F2loA &&=

<property name="foo" type="integer">
<column name="foo" check="foo > 10"/>
</property>

<class name="Fo0" table="foos" check="bar < 100.0">

<property name="bar" type="float"/>
</class>

The following table summarizes these optional attributes.

¥ 20.1. 8¢

= Fie=— 5l A
length number ‘ A 7o

281

207 =741 Shh

%4 = o149

precision number ZAY decimal AEE

scale number A ¥ decimal =7]

not-null truelfalse specifies that the column should be non-nullable

unique truelfalse Aol st Y UEEHJEE 7HA- kTS A
gt

index index_name (ths-2&) =9 o]&& AF3tt

unique-key unique_key_name Ues-ZE 4 A2EYRIESY o5& AASTH

foreign-key foreign_key_name specifies the name of the foreign key constraint
generated for an association, for a <one-to-one>,
<many-to-one>, <key>, Or <many-to-many> mapping
element. Note that inverse="true" sides will not be
considered by SchemaExport.

sql-type SQL column type overrides the default column type (attribute of
<column> element only)

default SQL expression APl gk v ZE e AAH}

check SQL expression AY = "Ho]lEo] th3 SQL check AZ=EH <
ES AN

<comment> R4FE AAFEH 27)vld] U FAHES AAHs= AL FAlA s &sF=c).

<class name="Customer" table="CurCust">
<comment>Current customers only</comment>

</class>

<property name="balance">
<column name="bal">
<comment>Balance in USD</comment>
</column>
</property>

This results in a comment on table or comment on column statement in the generated DDL where

supported.

171

SchemaExport =7+ DDL =3I HE
A7,

ol

20.1.2. = 4ld)

il
3
5\
i
)
o
f
N
Y
ﬁL
R
o
ull
tlo
>
Og{:;

/34 DDL &

282

The following table displays the SchemaExport command line options

java -cp hibernate_classpaths org.hibernate.tool.hbm2ddl.SchemaExport options mapping_files

3% 20.2. SchemaExport Ué] %‘ 13]'?_ %ﬁ“‘:’a‘

&4 4

--quiet do not output the script to stdout
--drop # "HolgES =517
--create L2 HolgE5S AT
--text do not export to the database

--output=my_schema.ddl

ddl 2APEES HAR FY A}

--naming=eg.MyNamingStrategy
--config=hibernate.cfg.xml

--properties=hibernate.properties

select a NamingStrategy

XML 3} 2 B E] Hibernate 74 ¢ 9

ft
o

o}

read database properties from a file

--format

AHE QLS 2T FE Wol FA A et

--delimiter=;

~AYES A% B A BS 4Y

rot

o}

You can even embed SchemaExport in your application:

Configuration cfg =;

new SchemaExport(cfg).create(false, true);

20.1.3. ZE2JHEHE

Database properties can be specified:

* hibernate.properties Lﬂoﬂ /\1

-D<property>E 7}7 Al 2"l ZZHE]Z A

* _propertiesE 71X HHE ZZHEE Ul A

"od TeWEEL e

Fagus

¥ 20.3. SchemaExport 7194 Z 2 HE &

zZ2E of 44
hibernate.connection.driver_class jdbc =&toly] FHP 2=
hibernate.connection.url jdbc url

hibernate.connection.username

hibernate.connection.password

dlo] B W o] 22 ALgA}

AgA 2=

283

207 =741 Shh

z2E of 44
hibernate.dialect dialect

20.1.4. Ant A}-&3}7)

Al

rlo

FAe] Ant = 2T HE A SchemaExportE &

0
il
4

<target name="schemaexport">
<taskdef name="schemaexport"
classname="org.hibernate.tool.hbm2ddl.SchemaExportTask"
classpathref="class.path"/>

<schemaexport
properties="hibernate.properties"
quiet="no"
text="no"
drop="no"
delimiter=";"
output="schema-export.sql">
<fileset dir="src">

<include name="*** hbm.xml"/>

<ffileset>

</schemaexport>

</target>

20.1.5. A=3slE= 27)0F HHJEE

The SchemaUpdate tool will update an existing schema with "incremental” changes. The SchemaUpdate

depends upon the JDBC metadata API and, as such, will not work with all JDBC drivers.

java -cp hibernate_classpaths org.hibernate.tool.hbm2ddl.SchemaUpdate options mapping_files

3 20.4. SchemaUpdate Ug‘%‘ a’(‘{‘ %}1‘3%

Al A

--quiet do not output the script to stdout

--text do not export the script to the database
--naming=eg.MyNamingStrategy select a NamingStrategy
--properties=hibernate.properties read database properties from a file
--config=hibernate.cfg.xml specify a .cfg.xml file

You can embed SchemaUpdate in your application:

284

e
olN
ol

= 227]v dHlo]EE Ant AHE-3}17]

Configuration cfg =;
new SchemaUpdate(cfg).execute(false);

20.1.6. AZ3sl= 270 QU o] EE] Ant AF83}7)

TS Ant 2T H E 9| ASchemaUpdateE & 4 AtTh:

<target name="schemaupdate">
<taskdef name="schemaupdate"
classname="org.hibernate.tool.hbm2ddl.SchemaUpdateTask"
classpathref="class.path"/>

<schemaupdate
properties="hibernate.properties"
quiet="no">
<fileset dir="src">

<include name="**/* hbm.xml"/>

<ffileset>

</schemaupdate>

</target>

20.1.7. =719F f-24 AA}

The SchemaValidator tool will validate that the existing database schema "matches' your mapping
documents. The SchemaValidator depends heavily upon the JDBC metadata API and, as such, will

not work with all JDBC drivers. This tool is extremely useful for testing.

java -cp hibernate_classpaths org.hibernate.tool.hbm2ddl.SchemaValidator options mapping_files

3 20.5. SchemaValidator Ué‘%‘ E}OJ %ﬁ%

Al A

--naming=eg.MyNamingStrategy select a NamingStrategy
--properties=hibernate.properties read database properties from a file
--config=hibernate.cfg.xml specify a .cfg.xml file

You can embed SchemaValidator in your application:

Configuration cfg =;
new SchemaValidator(cfg).validate();

285

207 =741 Shh

20.1.8. 27|18} 84 AAE 93] Ant AF&35}7)

FA LS Ant 2T HE A SchemaValidatorE &8 4 Ath:

<target name="schemavalidate">
<taskdef name="schemavalidator"
classname="org.hibernate.tool.hbm2ddl.SchemaValidatorTask"
classpathref="class.path"/>

<schemavalidator
properties="hibernate.properties">
<fileset dir="src">
<include name="**/* hbm.xml"/>
<[fileset>
</schemavalidator>
</target>

286

of A : -5 /=}2]

One of the first things that new users want to do with Hibernate is to model a parent/child
type relationship. There are two different approaches to this. The most convenient approach,
especially for new users, is to model both Parent and Child as entity classes with a <one-to-many>
association from Parent to Child. The alternative approach is to declare the Child as a <composite-
element>. The default semantics of a one-to-many association in Hibernate are much less close to
the usual semantics of a parent/child relationship than those of a composite element mapping. We
will explain how to use a bidirectional one-to-many association with cascades to model a parent/

child relationship efficiently and elegantly.

;

21.1. FAHAE #AS = E

Hibernate collections are considered to be a logical part of their owning entity and not of the

contained entities. Be aware that this is a critical distinction that has the following consequences:

* When you remove/add an object from/to a collection, the version number of the collection

owner is incremented.

* If an object that was removed from a collection is an instance of a value type (e.g. a composite
element), that object will cease to be persistent and its state will be completely removed from
the database. Likewise, adding a value type instance to the collection will cause its state to

be immediately persistent.

* Conversely, if an entity is removed from a collection (a one-to-many or many-to-many
association), it will not be deleted by default. This behavior is completely consistent; a change
to the internal state of another entity should not cause the associated entity to vanish. Likewise,

adding an entity to a collection does not cause that entity to become persistent, by default.

Adding an entity to a collection, by default, merely creates a link between the two entities.
Removing the entity will remove the link. This is appropriate for all sorts of cases. However, it
is not appropriate in the case of a parent/child relationship. In this case, the life of the child

is bound to the life cycle of the parent.
21.2. %FHF3F one-to-many
Parent2X-E| ChildZ 9] ZF&3l <one-to-many> AAAAE A Z3tckal 714 31Af.
<set name="children">
<key column="parent_id"/>

<one-to-many class="Child"/>
</set>

If we were to execute the following code:

287

217, Al A F5/zp2]

Parentp=..... ;

Child ¢ = new Child();
p.getChildren().add(c);
session.save(c);
session.flush();

Hibernater= 5 7029l SQL EHAES A3ad Aot}

e cofl g HIZ=E YA A I E INSERT
* pEHE 29 HAE AAAJ]E UPDATE
This is not only inefficient, but also violates any NOT NULL constraint on the parent_id column. You

can fix the nullability constraint violation by specifying not-null="true" in the collection mapping:

<set name="children">
<key column="parent_id" not-null="true"/>
<one-to-many class="Child"/>

</set>

AR ol Re ARHE AH o] ot

The underlying cause of this behavior is that the link (the foreign key parent_id) from p to c is
not considered part of the state of the Child object and is therefore not created in the INSERT.
The solution is to make the link part of the Child mapping.

<many-to-one name="parent" column="parent_id" not-null="true"/>

You also need to add the parent property to the Child class.

Now that the Child entity is managing the state of the link, we tell the collection not to update

the link. We use the inverse attribute to do this:

<set name="children" inverse="true">
<key column="parent_id"/>
<one-to-many class="Child"/>
</set>

The following code would be used to add a new Child:

2388

Parent p = (Parent) session.load(Parent.class, pid);
Child ¢ = new Child();

c.setParent(p);

p.getChildren().add(c);

session.save(c);

session.flush();

Only one SQL INSERT would now be issued.

You could also create an addChild() method of Parent.

public void addChild(Child c) {
c.setParent(this);
children.add(c);

The code to add a Child looks like this:

Parent p = (Parent) session.load(Parent.class, pid);
Child ¢ = new Child();

p.addChild(c);

session.save(c);

session.flush();

21.3. A =Aold A 7]

You can address the frustrations of the explicit call to save() by using cascades.

<set name="children" inverse="true" cascade="all">
<key column="parent_id"/>
<one-to-many class="Child"/>

</set>

This simplifies the code above to:

Parent p = (Parent) session.load(Parent.class, pid);
Child ¢ = new Child();
p.addChild(c);

289

217 oA Br/x}2

session.flush();

Similarly, we do not need to iterate over the children when saving or deleting a Parent. The

following removes p and all its children from the database.

Parent p = (Parent) session.load(Parent.class, pid);
session.delete(p);
session.flush();

However, the following code:

Parent p = (Parent) session.load(Parent.class, pid);
Child ¢ = (Child) p.getChildren().iterator().next();
p.getChildren().remove(c);

c.setParent(null);

session.flush();

will not remove ¢ from the database. In this case, it will only remove the link to p and cause a

NOT NULL constraint violation. You need to explicitly delete() the Child.

Parent p = (Parent) session.load(Parent.class, pid);
Child ¢ = (Child) p.getChildren().iterator().next();
p.getChildren().remove(c);

session.delete(c);

session.flush();

In our case, a Child cannot exist without its parent. So if we remove a Child from the collection,

we do want it to be deleted. To do this, we must use cascade="all-delete-orphan".

<set name="children" inverse="true" cascade="all-delete-orphan">
<key column="parent_id"/>
<one-to-many class="Child"/>

</set>

Even though the collection mapping specifies inverse="true", cascades are still processed by iterating
the collection elements. If you need an object be saved, deleted or updated by cascade, you must

add it to the collection. It is not enough to simply call setParent().

290

A 2=2A o] =5 7} unsaved-value

214 ﬂ] i\—ﬂ] O] E%iﬂ- unsaved-value

Suppose we loaded up a Parent in one Session, made some changes in a Ul action and wanted
to persist these changes in a new session by calling update(). The Parent will contain a collection
of children and, since the cascading update is enabled, Hibernate needs to know which children
are newly instantiated and which represent existing rows in the database. We will also assume
that both Parent and Child have generated identifier properties of type Long. Hibernate will use
the identifier and version/timestamp property value to determine which of the children are new.
(See 10.74. “AF Al Ad] 7A=" .) In Hibernate3, it is no longer necessary to specify an

unsaved-value explicitly.

The following code will update parent and child and insert newChild:

/Iparent and child were both loaded in a previous session
parent.addChild(child);

Child newChild = new Child();
parent.addChild(newChild);

session.update(parent);

session.flush();

This may be suitable for the case of a generated identifier, but what about assigned identifiers
and composite identifiers? This is more difficult, since Hibernate cannot use the identifier property
to distinguish between a newly instantiated object, with an identifier assigned by the user, and
an object loaded in a previous session. In this case, Hibernate will either use the timestamp or
version property, or will actually query the second-level cache or, worst case, the database, to

see if the row exists.

21.5. 4&

The sections we have just covered can be a bit confusing. However, in practice, it all works out

nicely. Most Hibernate applications use the parent/child pattern in many places.

We mentioned an alternative in the first paragraph. None of the above issues exist in the case
of <composite-element> mappings, which have exactly the semantics of a parent/child relationship.
Unfortunately, there are two big limitations with composite element classes: composite elements

cannot own collections and they should not be the child of any entity other than the unique parent.

291

292

ol Al : Weblog o] =] Aol A

22.1. 9% FH==

The persistent classes here represent a weblog and an item posted in a weblog. They are to be

modelled as a standard parent/child relationship, but we will use an ordered bag, instead of a set:

package eg;
import java.util.List;

public class Blog {
private Long _id;
private String _name;
private List _items;

public Long getld() {
return _id;

}

public List getltems() {
return _items;

}

public String getName() {
return _name;

}

public void setld(Long long1) {
_id = long1;

}

public void setltems(List list) {
_items = list;

}

public void setName(String string) {
__hame = string;

package eg;

import java.text.DateFormat;
import java.util.Calendar;

293

227, o A: Weblog o] =& A o)A

public class Blogltem {
private Long _id;
private Calendar _datetime;
private String _text;
private String _title;
private Blog _blog;

public Blog getBlog() {
return _blog;

}

public Calendar getDatetime() {
return _datetime;

}

public Long getld() {
return _id;

}

public String getText() {
return _text;

}

public String getTitle() {
return _title;

}

public void setBlog(Blog blog) {
_blog = blog;

}

public void setDatetime(Calendar calendar) {
_datetime = calendar;

}

public void setld(Long long1) {
_id =long1;

}

public void setText(String string) {
_text = string;

}

public void setTitle(String string) {
_title = string;

}

22.2. Hibernate tj 3 =

The XML mappings are now straightforward. For example:

294

Hibernate "] 3 =

<?xml version="1.0"?>

<IDOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD 3.0/EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping package="eg">

<class
name="Blog"
table="BLOGS">

<id
name="id"
column="BLOG_ID">

<generator class="native"/>

<fid>

<property
name="name"
column="NAME"
not-null="true"
unigue="true"/>

<bag
name="items"
inverse="true"
order-by="DATE_TIME"

cascade="all">

<key column="BLOG_ID"/>
<one-to-many class="Blogltem"/>

</bag>

</class>

</hibernate-mapping>

<?xml version="1.0"?>
<IDOCTYPE hibernate-mapping PUBLIC

295

227, o A: Weblog o] =& A o)A

"-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping package="eg">

<class
name="Blogltem"
table="BLOG_ITEMS"
dynamic-update="true">

<id
name="id"
column="BLOG_ITEM_ID">

<generator class="native"/>

<fid>

<property
name="title"
column="TITLE"
not-null="true"/>

<property
name="text"
column="TEXT"
not-null="true"/>

<property
name="datetime"
column="DATE_TIME"
not-null="true"/>

<many-to-one
name="blog"
column="BLOG_|D"
not-null="true"/>

</class>

</hibernate-mapping>

296

Hibernate =@ =

22.3. Hibernate 3 &=

The following class demonstrates some of the kinds of things we can do with these classes

using Hibernate:

package eg;

import java.util. ArrayList;
import java.util.Calendar;
import java.util.lterator;
import java.util.List;

import org.hibernate.HibernateException;

import org.hibernate.Query;

import org.hibernate.Session;

import org.hibernate.SessionFactory;

import org.hibernate.Transaction;

import org.hibernate.cfg.Configuration;

import org.hibernate.tool.hbm2ddl.SchemaExport;

public class BlogMain {

private SessionFactory _sessions;

public void configure() throws HibernateException {
_sessions = new Configuration()
.addClass(Blog.class)
.addClass(Blogltem.class)
.buildSessionFactory();

public void exportTables() throws HibernateException {
Configuration cfg = new Configuration()
.addClass(Blog.class)
.addClass(Blogltem.class);
new SchemaExport(cfg).create(true, true);

public Blog createBlog(String name) throws HibernateException {

Blog blog = new Blog();

blog.setName(name);
blog.setltems(new ArrayList());

297

227, o A: Weblog o] =& A o)A

Session session = _sessions.openSession();
Transaction tx = null;
try {
tx = session.beginTransaction();
session.persist(blog);
tx.commit();
}
catch (HibernateException he) {
if (tx!=null) tx.rollback();
throw he;
}
finally {
session.close();

}

return blog;

public Blogltem createBlogltem(Blog blog, String title, String text)
throws HibernateException {

Blogltem item = new Blogltem();
item.setTitle(title);

item.setText(text);

item.setBlog(blog);

item.setDatetime(Calendar.getinstance());
blog.getltems().add(item);

Session session = _sessions.openSession();
Transaction tx = null;
try {
tx = session.beginTransaction();
session.update(blog);
tx.commit();
}
catch (HibernateException he) {
if (tx!=null) tx.rollback();
throw he;
}
finally {
session.close();

}

return item;

298

Hibernate =&

public Blogltem createBlogltem(Long blogid, String title, String text)
throws HibernateException {

Blogltem item = new Blogltem();
item.setTitle(title);

item.setText(text);

item.setDatetime(Calendar.getinstance());

Session session = _sessions.openSession();
Transaction tx = null;
try {
tx = session.beginTransaction();
Blog blog = (Blog) session.load(Blog.class, blogid);
item.setBlog(blog);
blog.getltems().add(item);
tx.commit();
}
catch (HibernateException he) {
if (tx!=null) tx.rollback();
throw he;
}
finally {
session.close();

}

return item;

public void updateBlogltem(Blogltem item, String text)
throws HibernateException {

item.setText(text);

Session session = _sessions.openSession();
Transaction tx = null;
try {
tx = session.beginTransaction();
session.update(item);
tx.commit();
}
catch (HibernateException he) {
if (tx!=null) tx.rollback();
throw he;

299

227, o A: Weblog o] =& A o)A

finally {
session.close();

public void updateBlogltem(Long itemid, String text)
throws HibernateException {

Session session = _sessions.openSession();
Transaction tx = null;
try {
tx = session.beginTransaction();
Blogltem item = (Blogltem) session.load(Blogltem.class, itemid);
item.setText(text);
tx.commit();
}
catch (HibernateException he) {
if (tx!=null) tx.rollback();
throw he;
}
finally {
session.close();

public List listAllIBlogNamesAndltemCounts(int max)
throws HibernateException {

Session session = _sessions.openSession();
Transaction tx = null;
List result = null;
try {
tx = session.beginTransaction();
Query g = session.createQuery(
"select blog.id, blog.name, count(blogltem) " +
"from Blog as blog " +
"left outer join blog.items as blogltem " +
"group by blog.name, blog.id " +
"order by max(blogltem.datetime)"
)i
g.setMaxResults(max);
result = g.list();
tx.commit();

300

Hibernate =&

catch (HibernateException he) {
if (tx!=null) tx.rollback();
throw he;

}

finally {
session.close();

}

return result;

public Blog getBlogAndAllltems(Long blogid)
throws HibernateException {

Session session = _sessions.openSession();
Transaction tx = null;
Blog blog = null;
try {
tx = session.beginTransaction();
Query g = session.createQuery(
"from Blog as blog " +
"left outer join fetch blog.items " +
"where blog.id = :blogid"
)i
g.setParameter("blogid”, blogid);
blog = (Blog) g.uniqueResult();
tx.commit();
}
catch (HibernateException he) {
if (tx!=null) tx.rollback();
throw he;
}
finally {
session.close();

}

return blog;

public List listBlogsAndRecentltems() throws HibernateException {

Session session = _sessions.openSession();
Transaction tx = null;
List result = null;

try {
tx = session.beginTransaction();

301

227, o A: Weblog o] =& A o)A

Query g = session.createQuery(
"from Blog as blog " +
"inner join blog.items as blogltem " +
"where blogltem.datetime > :minDate"

);

Calendar cal = Calendar.getinstance();
cal.roll(Calendar. MONTH, false);
g.setCalendar("minDate", cal);

result = g.list();
tx.commit();

}

catch (HibernateException he) {
if (tx!=null) tx.rollback();
throw he;

}

finally {
session.close();

}

return result;

302

oA A: A8 71A] mAES

This chapters explores some more complex association mappings.

23.1. Employer/Employee

The following model of the relationship between Employer and Employee uses an entity class
(Employment) to represent the association. You can do this when there might be more than one
period of employment for the same two parties. Components are used to model monetary values

and employee names.

Here is a possible mapping document:

<hibernate-mapping>

<class name="Employer" table="employers">
<id name="id">
<generator class="sequence">
<param name="sequence">employer_id_seqg</param>
</generator>
</id>
<property name="name"/>
</class>

<class name="Employment" table="employment_periods">

<id name="id">
<generator class="sequence">
<param name="sequence">employment_id_seq</param>
</generator>
</id>
<property name="startDate" column="start_date"/>
<property name="endDate" column="end_date"/>

<component name="hourlyRate" class="MonetaryAmount">
<property name="amount">
<column name="hourly_rate" sql-type="NUMERIC(12, 2)"/>
</property>
<property name="currency" length="12"/>
</component>

<many-to-one name="employer" column="employer_id" not-null="true"/>

303

23%. A A o8 A WP E

<many-to-one name="employee" column="employee_id" not-null="true"/>
</class>

<class name="Employee" table="employees">
<id name="id">
<generator class="sequence">
<param name="sequence">employee id_seq</param>
</generator>
</id>
<property name="taxfileNumber"/>
<component name="name" class="Name">
<property name="firstName"/>
<property name="initial"/>
<property name="lastName"/>
</component>
</class>

</hibernate-mapping>

Here is the table schema generated by SchemaExport.

create table employers (
id BIGINT not null,
name VARCHAR(255),
primary key (id)

create table employment_periods (
id BIGINT not null,
hourly_rate NUMERIC(12, 2),
currency VARCHAR(12),
employee_id BIGINT not null,
employer_id BIGINT not null,
end_date TIMESTAMP,
start_date TIMESTAMP,
primary key (id)

create table employees (
id BIGINT not null,
firstName VARCHAR(255),
initial CHAR(2),

304

Author/Work

lastName VARCHAR(255),
taxfileNumber VARCHAR(255),
primary key (id)

alter table employment_periods

add constraint employment_periodsFKO foreign key (employer_id) references employers
alter table employment_periods

add constraint employment_periodsFK1 foreign key (employee_id) references employees
create sequence employee_id_seq
create sequence employment_id_seq
create sequence employer_id_seq

23.2. Author/Work

Consider the following model of the relationships between Work, Author and Person. In the example,
the relationship between Work and Author is represented as a many-to-many association and the
relationship between Author and Person is represented as one-to-one association. Another possibility

would be to have Author extend Person.

tg Y BAE o5 BASS Aes) BEdch

<hibernate-mapping>
<class name="Work" table="works" discriminator-value="W">

<id name="id" column="id">
<generator class="native"/>
</id>
<discriminator column="type" type="character"/>

<property name="title"/>
<set name="authors" table="author_work">

<key column name="work_id"/>

<many-to-many class="Author" column name="author_id"/>
</set>

<subclass name="Book" discriminator-value="B">
<property name="text"/>

</subclass>

<subclass hame="Song" discriminator-value="S">

305

23%. A A o8 A WP E

<property name="tempo"/>
<property name="genre"/>
</subclass>

</class>
<class name="Author" table="authors">

<id name="id" column="id">
<!-- The Author must have the same identifier as the Person -->
<generator class="assigned"/>

</id>

<property name="alias"/>
<one-to-one name="person" constrained="true"/>

<set name="works" table="author_work" inverse="true">
<key column="author_id"/>
<many-to-many class="Work" column="work_id"/>
</set>

</class>

<class name="Person" table="persons">
<id name="id" column="id">
<generator class="native"/>
</id>
<property nhame="name"/>
</class>

</hibernate-mapping>

There are four tables in this mapping: works, authors and persons hold work, author and person

data respectively. author_work is an association table linking authors to works. Here is the table

schema, as generated by SchemaExport:

create table works (
id BIGINT not null generated by default as identity,
tempo FLOAT,
genre VARCHAR(255),
text INTEGER,
title VARCHAR(255),
type CHAR(1) not null,

306

Customer/Order/Product

primary key (id)

create table author_work (
author_id BIGINT not null,
work_id BIGINT not null,
primary key (work_id, author_id)

create table authors (
id BIGINT not null generated by default as identity,
alias VARCHAR(255),
primary key (id)

create table persons (
id BIGINT not null generated by default as identity,
name VARCHAR(255),
primary key (id)

alter table authors

add constraint authorsFKO foreign key (id) references persons
alter table author_work

add constraint author_workFKO foreign key (author_id) references authors
alter table author_work

add constraint author_workFK1 foreign key (work_id) references works

23.3. Customer/Order/Product

In this section we consider a model of the relationships between Customer, Order, Line Item
and Product. There is a one-to-many association between Customer and Order, but how can you
represent Order / Lineltem / Product? In the example, Lineltem is mapped as an association class
representing the many-to-many association between Order and Product. In Hibernate this is called

a composite element.

The mapping document will look like this:

<hibernate-mapping>

<class name="Customer" table="customers">
<id name="id">

307

23%. A A o8 A WP E

<generator class="native"/>

</id>

<property name="name"/>

<set name="orders" inverse="true">
<key column="customer_id"/>
<one-to-many class="Order"/>

</set>

</class>

<class name="Order" table="orders">
<id name="id">
<generator class="native"/>
</id>
<property name="date"/>
<many-to-one name="customer" column="customer_id"/>
<list name="lineltems" table="line_items">
<key column="order_id"/>
<list-index column="line_number"/>
<composite-element class="Lineltem">
<property name="quantity"/>
<many-to-one name="product" column="product_id"/>
</composite-element>
</list>
</class>

<class name="Product" table="products">
<id name="id">
<generator class="native"/>
</id>
<property name="serialNumber"/>
</class>

</hibernate-mapping>

N
el
L
o
o
o

g tolE, 283 AFE HolHE BAIT line_itemstE F3 FEE
A Hlo]ERA FAFT

customers, orders, line_items “L#] 3l productsi= ZFz} 327] ©l o]y, FE d oy
o
=

create table customers (
id BIGINT not null generated by default as identity,
name VARCHAR(255),
primary key (id)

308

718F oA v g S

create table orders (
id BIGINT not null generated by default as identity,
customer_id BIGINT,
date TIMESTAMP,
primary key (id)

create table line_items (
line_number INTEGER not null,
order_id BIGINT not null,
product_id BIGINT,
quantity INTEGER,
primary key (order_id, line_number)

create table products (
id BIGINT not null generated by default as identity,
serialNumber VARCHAR(255),
primary key (id)

alter table orders

add constraint ordersFKO foreign key (customer_id) references customers
alter table line_items

add constraint line_itemsFKO foreign key (product_id) references products
alter table line_items

add constraint line_itemsFK1 foreign key (order_id) references orders

23.4. 7€} oA wjHE=

These examples are available from the Hibernate test suite. You will find many other useful

example mappings there by searching in the test folder of the Hibernate distribution.

23.4.1. "8 23} = (Typed)" one-to-one A&

<class name="Person">
<id name="name"/>
<one-to-one name="address"
cascade="all">
<formula>name</formula>
<formula>'HOME'</formula>
</one-to-one>

309

23%. A A o8 A WP E

<one-to-one name="mailingAddress"
cascade="all">
<formula>name</formula>
<formula>'MAILING'</formula>
</one-to-one>
</class>

<class name="Address" batch-size="2"
check="addressType in (MAILING', ' HOME', 'BUSINESS')">
<composite-id>
<key-many-to-one name="person"
column="personName"/>
<key-property name="type"
column="addressType"/>
</composite-id>
<property name="street" type="text"/>
<property name="state"/>
<property name="zip"/>
</class>

23.4.2. Composite 7] o A

<class name="Customer">

<id name="customerld"
length="10">
<generator class="assigned"/>
</id>

<property name="name" not-null="true" length="100"/>
<property name="address" not-null="true" length="200"/>

<list name="orders"
inverse="true"
cascade="save-update">
<key column="customerld"/>
<index column="orderNumber"/>
<one-to-many class="Order"/>
</list>

</class>

<class name="Order" table="CustomerOrder" lazy="true">

310

Composite 7] | A

<synchronize table="Lineltem"/>
<synchronize table="Product"/>

<composite-id name="id"
class="Order$ld">
<key-property name="customerld" length="10"/>
<key-property name="orderNumber"/>
</composite-id>

<property name="orderDate"
type="calendar_date"
not-null="true"/>

<property hame="total">
<formula>
(select sum(li.quantity*p.price)
from Lineltem li, Product p
where li.productld = p.productid
and li.customerld = customerld
and li.orderNumber = orderNumber)
</formula>
</property>

<many-to-one name="customer"
column="customerld"
insert="false"
update="false"
not-null="true"/>

<bag name="lineltems"
fetch="join"
inverse="true"
cascade="save-update">
<key>
<column name="customerld"/>
<column name="orderNumber"/>
</key>
<one-to-many class="Lineltem"/>
</bag>

</class>

<class name="Lineltem">

311

23%. A A o8 A WP E

<composite-id name="id"
class="Lineltem$Id">
<key-property name="customerld" length="10"/>
<key-property name="orderNumber"/>
<key-property name="productld" length="10"/>
</composite-id>

<property name="quantity"/>

<many-to-one name="order"
insert="false"
update="false"
not-null="true">
<column name="customerld"/>
<column name="orderNumber"/>
</many-to-one>

<many-to-one name="product"
insert="false"
update="false"
not-null="true"
column="productld"/>

</class>

<class name="Product">
<synchronize table="Lineltem"/>

<id name="productld"
length="10">
<generator class="assigned"/>
</id>

<property nhame="description"
not-null="true"
length="200"/>
<property name="price" length="3"/>
<property name="numberAvailable"/>

<property name="numberOrdered">
<formula>
(select sum(li.quantity)
from Lineltem li
where li.productld = productld)

312

< 7}A Many-to-many

</formula>
</property>

</class>

23.43. &89 &4 7] £$4L 717 Many-to-many

<class name="User" table=""User™ ">
<composite-id>
<key-property name="name"/>
<key-property name="org"/>
</composite-id>
<set name="groups" table="UserGroup">
<key>
<column name="userName"/>
<column name="org"/>
</key>
<many-to-many class="Group">
<column name="groupName"/>
<formula>org</formula>
</many-to-many>
</set>
</class>

<class name="Group" table=""Group™">
<composite-id>
<key-property name="name"/>
<key-property name="org"/>
</composite-id>
<property name="description"/>
<set name="users" table="UserGroup" inverse="true">
<key>
<column name="groupName"/>
<column name="org"/>
</key>
<many-to-many class="User">
<column name="userName"/>
<formula>org</formula>
</many-to-many>
</set>
</class>

313

23%. A A o8 A WP E

"

23.4.4. W& 7|9 34

<class name="Person"
discriminator-value="p">

<id name="id"
column="person_id"
unsaved-value="0">
<generator class="native"/>
</id>

<discriminator
type="character">
<formula>
case
when title is not null then 'E'
when salesperson is not null then 'C'
else 'P'
end
</formula>
</discriminator>

<property nhame="name"
not-null="true"
length="80"/>

<property name="sex"
not-null="true"
update="false"/>

<component name="address">
<property name="address"/>
<property name="zip"/>
<property name="country"/>
</component>

<subclass name="Employee"
discriminator-value="E">
<property name="title"
length="20"/>
<property name="salary"/>
<many-to-one name="manager"/>

314

</subclass>

<subclass name="Customer"
discriminator-value="C">
<property name="comments"/>
<many-to-one name="salesperson"/>
</subclass>

</class>

23.4.5. A 7159 o

<
l-40
i

r

<class name="Person">

<id name="id">
<generator class="hilo"/>
</id>

<property name="name" length="100"/>

<one-to-one name="address"
property-ref="person"
cascade="all"
fetch="join"/>

<set name="accounts"
inverse="true">
<key column="userld"
property-ref="userld"/>
<one-to-many class="Account"/>
</set>

<property name="userld" length="8"/>
</class>
<class name="Address">
<id name="id">
<generator class="hilo"/>

<fid>

<property name="address" length="300"/>

315

23%. A A o8 A WP E

<property name="zip" length="5"/>
<property name="country" length="25"/>
<many-to-one name="person" unique="true" not-null="true"/>

</class>
<class name="Account">
<id name="accountld" length="32">
<generator class="uuid"/>
</id>
<many-to-one name="user"
column="userld"
property-ref="userld"/>

<property name="type" not-null="true"/>

</class>

316

Write fine-grained classes and map them using <component>:
street, suburb, state, postcodeS 74 &3} A]7]+=U] Address ;=5 AL&35leh oA L Z= A
AHEd S FXAATIAL B ER S dest AR

Declare identifier properties on persistent classes:
Hibernate makes identifier properties optional. There are a range of reasons why you should
use them. We recommend that identifiers be 'synthetic', that is, generated with no business

meaning.

Identify natural keys:
e d"EEC Wl if 7155 A6, <nawral-id>E ARSst 2AES T
[e]

IAF 715 TS e ZEHAEES Y 2E7] A8 equals()9} hashCode()E & 31}

o,
ol

=8

of

Place each class mapping in its own file:
Do not use a single monolithic mapping document. Map com.eg.Foo in the file com/eg/Foo.hbm.xml.

This makes sense, particularly in a team environment.

Load mappings as resources:
aREo] wFste FH2Ee WA B ELS wX s

Consider externalizing query strings:
This is recommended if your queries call non-ANSI-standard SQL functions. Externalizing the

query strings to mapping files will make the application more portable.

vl = | ES AHEshEh
As in JDBC, always replace non-constant values by "?". Do not use string manipulation to bind

a non-constant value in a query. You should also consider using named parameters in queries.

Do not manage your own JDBC connections:
Hibernate allows the application to manage JDBC connections, but his approach should be
considered a last-resort. If you cannot use the built-in connection providers, consider providing

your own implementation of org.hibernate.connection.ConnectionProvider.

Consider using a custom type:
Suppose you have a Java type from a library that needs to be persisted but does
not provide the accessors needed to map it as a component. You should consider
implementing org.hibernate.UserType. This approach frees the application code from implementing

transformations to/from a Hibernate type.

Use hand-coded JDBC in bottlenecks:
In performance-critical areas of the system, some kinds of operations might benefit from
direct JDBC. Do not assume, however, that JDBC is necessarily faster. Please wait until you

know something is a bottleneck. If you need to use direct JDBC, you can open a Hibernate

317

)
~
ol
B
o
o
(2
)
oM
i)
il

Session and usingfile:///usr/share/doc/HTML/en-US/index.html that JDBC connection. This way

you can still use the same transaction strategy and underlying connection provider.

Understand Session flushing:

Sometimes the Session synchronizes its persistent state with the database. Performance will be
affected if this process occurs too often. You can sometimes minimize unnecessary flushing by
disabling automatic flushing, or even by changing the order of queries and other operations

within a particular transaction.

In a three tiered architecture, consider using detached objects:

When using a servlet/session bean architecture, you can pass persistent objects loaded in the
session bean to and from the servlet/JSP layer. Use a new session to service each request.

Use Session.merge() or Session.saveOrUpdate() to synchronize objects with the database.

In a two tiered architecture, consider using long persistence contexts:

Database Transactions have to be as short as possible for best scalability. However, it is
often necessary to implement long running application transactions, a single unit-of-work from
the point of view of a user. An application transaction might span several client request/
response cycles. It is common to use detached objects to implement application transactions.
An appropriate alternative in a two tiered architecture, is to maintain a single open persistence
contact session for the whole life cycle of the application transaction. Then simply disconnect
from the JDBC connection at the end of each request and reconnect at the beginning of the
subsequent request. Never share a single session across more than one application transaction

or you will be working with stale data.

Do not treat exceptions as recoverable:

This is more of a necessary practice than a "best" practice. When an exception occurs, roll back
the Transaction and close the Session. If you do not do this, Hibernate cannot guarantee that in-
memory state accurately represents the persistent state. For example, do not use Session.load()
to determine if an instance with the given identifier exists on the database; use Session.get()

or a query instead.

Prefer lazy fetching for associations:

Use eager fetching sparingly. Use proxies and lazy collections for most associations to classes
that are not likely to be completely held in the second-level cache. For associations to cached
classes, where there is an a extremely high probability of a cache hit, explicitly disable eager
fetching using lazy="false'. When join fetching is appropriate to a particular use case, use

a query with a left join fetch.

Use the open session in view pattern, or a disciplined assembly phase to avoid problems with

unfetched data:

Hibernate frees the developer from writing tedious Data Transfer Objects (DTO). In a
traditional EJB architecture, DTOs serve dual purposes: first, they work around the problem
that entity beans are not serializable; second, they implicitly define an assembly phase where
all data to be used by the view is fetched and marshalled into the DTOs before returning
control to the presentation tier. Hibernate eliminates the first purpose. Unless you are prepared

to hold the persistence context (the session) open across the view rendering process, you

318

will still need an assembly phase. Think of your business methods as having a strict contract
with the presentation tier about what data is available in the detached objects. This is not a

limitation of Hibernate. It is a fundamental requirement of safe transactional data access.

Consider abstracting your business logic from Hibernate:
Hide Hibernate data-access code behind an interface. Combine the DAO and Thread Local
Session patterns. You can even have some classes persisted by handcoded JDBC associated to
Hibernate via a UserType. This advice is, however, intended for "sufficiently large" applications.

It is not appropriate for an application with five tables.

Do not use exotic association mappings:
Practical test cases for real many-to-many associations are rare. Most of the time you need
additional information stored in the "link table". In this case, it is much better to use two
one-to-many associations to an intermediate link class. In fact, most associations are one-
to-many and many-to-one. For this reason, you should proceed cautiously when using any

other association style.

Prefer bidirectional associations:
Wg duse D17 H ofHth Be o FA M, A RE ABEe A
oE oA & Wgo =z YH|AolE stEdlok sk

319

320

Database Portability Considerations

25.1. Portability Basics

One of the selling points of Hibernate (and really Object/Relational Mapping as a whole) is the
notion of database portability. This could mean an internal IT user migrating from one database
vendor to another, or it could mean a framework or deployable application consuming Hibernate
to simultaneously target multiple database products by their users. Regardless of the exact scenario,
the basic idea is that you want Hibernate to help you run against any number of databases without

changes to your code, and ideally without any changes to the mapping metadata.

25.2. Dialect

The first line of portability for Hibernate is the dialect, which is a specialization of the
org.hibernate.dialect.Dialect contract. A dialect encapsulates all the differences in how Hibernate must
communicate with a particular database to accomplish some task like getting a sequence value
or structuring a SELECT query. Hibernate bundles a wide range of dialects for many of the
most popular databases. If you find that your particular database is not among them, it is not

terribly difficult to write your own.

25.3. Dialect resolution

Originally, Hibernate would always require that users specify which dialect to use. In the case
of users looking to simultaneously target multiple databases with their build that was problematic.
Generally this required their users to configure the Hibernate dialect or defining their own method

of setting that value.

Starting with version 3.2, Hibernate introduced the notion of automatically detecting the dialect
to use based on the java.sgl.DatabaseMetaData obtained from a java.sql.Connection to that database.
This was much better, expect that this resolution was limited to databases Hibernate know about

ahead of time and was in no way configurable or overrideable.

Starting with version 3.3, Hibernate has a fare more powerful way to automatically determine
which dialect to should be used by relying on a series of delegates which implement the

org.hibernate.dialect.resolver.DialectResolver which defines only a single method:
public Dialect resolveDialect(DatabaseMetaData metaData) throws JDBCConnectionException

. The basic contract here is that if the resolver 'understands' the given database metadata then
it returns the corresponding Dialect; if not it returns null and the process continues to the next
resolver. The signature also identifies org.hibernate.exception.JDBCConnectionException as possibly being
thrown. A JDBCConnectionException here is interpreted to imply a 'non transient’ (aka non-
recoverable) connection problem and is used to indicate an immediate stop to resolution attempts.

All other exceptions result in a warning and continuing on to the next resolver.

321

257%F. Database Portability Con...

The cool part about these resolvers is that users can also register their own custom resolvers
which will be processed ahead of the built-in Hibernate ones. This might be useful in a number
of different situations: it allows easy integration for auto-detection of dialects beyond those
shipped with HIbernate itself; it allows you to specify to use a custom dialect when a particular
database is recognized; etc. To register one or more resolvers, simply specify them (seperated
by commas, tabs or spaces) using the 'hibernate.dialect_resolvers' configuration setting (see the
DIALECT_RESOLVERS constant on org.hibernate.cfg.Environment).

25.4. Identifier generation

When considering portability between databases, another important decision is selecting the identifier
generation stratagy you want to use. Originally Hibernate provided the native generator for this
purpose, which was intended to select between a sequence, identity, or table strategy depending on
the capability of the underlying database. However, an insidious implication of this approach comes
about when targtetting some databases which support identity generation and some which do not.
identity generation relies on the SQL definition of an IDENTITY (or auto-increment) column to
manage the identifier value; it is what is known as a post-insert generation strategy becauase the
insert must actually happen before we can know the identifier value. Because Hibernate relies on
this identifier value to uniquely reference entities within a persistence context it must then issue

the insert immediately when the users requests the entitiy be associated with the session (like via

save() e.g.) regardless of current transactional semantics.

(3

The underlying issue is that the actual semanctics of the application itself changes in these cases.

Starting with version 3.2.3, Hibernate comes with a set of enhanced [http://in.relation.to/2082.lace]

identifier generators targetting portability in a much different way.

(3

The idea behind these generators is to port the actual semantics of the identifer value generation

to the different databases. For example, the org.hibernate.id.enhanced.SequenceStyleGenerator mimics

the behavior of a sequence on databases which do not support sequences by using a table.

322

http://in.relation.to/2082.lace
http://in.relation.to/2082.lace

Database functions

25.5. Database functions

9]

This is an area in Hibernate in need of improvement. In terms of portability
concerns, this function handling currently works pretty well from HQL; however,

it is quite lacking in all other aspects.

SQL functions can be referenced in many ways by users. However, not all databases support
the same set of functions. Hibernate, provides a means of mapping a logical function name to
a a delegate which knows how to render that particular function, perhaps even using a totally

different physical function call.

T8

Technically this function registration is handled through the

org.hibernate.dialect.function.SQLFunctionRegistry class which is intended to allow users

to provide custom function definitions without having to provide a custom dialect.

This specific behavior is not fully completed as of yet.

It is sort of implemented such that users can programatically register functions with

the org.hibernate.cfg.Configuration and those functions will be recognized for HQL.

25.6. Type mappings

This section scheduled for completion at a later date...

323

324

References

[PoEAA] Patterns of Enterprise Application Architecture. 0-321-12742-0. X]20] Martin Fowler.
Z & © 2003 Pearson Education, Inc.. Addison-Wesley Publishing Company.

[JPwH] Java Persistence with Hibernate. Second Edition of Hibernate in Action. 1-932394-88-5.
http://www.manning.com/bauer2 . X|2o] Christian Bauer =Z2] 3. Gavin King. A2t ©

2007 Manning Publications Co.. Manning Publications Co..

325

http://www.manning.com/bauer2

326

	HIBERNATE - 개성있는 자바를 위한 관계 영속
	차례
	머리말
	1. Feedback

	1장. Tutorial
	1.1. 파트 1 - 첫 번째 Hibernate 어플리케이션
	1.1.1. Setup
	1.1.2. 첫 번째 클래스
	1.1.3. The mapping file
	1.1.4. Hibernate 구성
	1.1.5. Building with Maven
	1.1.6. 시작과 helper들
	1.1.7. 객체 로딩과 객체 저장

	1.2. 파트 2 - 연관들을 매핑하기
	1.2.1. Person 클래스 매핑하기
	1.2.2. 단방향 Set-기반의 연관
	1.2.3. 연관들에 작업하기
	1.2.4. 값들을 가진 콜렉션
	1.2.5. Bi-directional associations
	1.2.6. 양방향 링크들에 작업하기

	1.3. 파트 3 - EventManager 웹 어플리케이션
	1.3.1. 기본 서블릿 작성하기
	1.3.2. 프로세싱과 렌더링
	1.3.3. 배치하기 그리고 테스트하기

	1.4. 요약

	2장. 아키텍처
	2.1. 개요
	2.2. 인스턴스 상태들
	2.3. JMX 통합
	2.4. JCA 지원
	2.5. Contextual sessions

	3장. 구성
	3.1. 프로그램 상의 구성
	3.2. SessionFactory 얻기
	3.3. JDBC 커넥션들
	3.4. 선택적인 구성 프로퍼티들
	3.4.1. SQL Dialects
	3.4.2. Outer Join Fetching
	3.4.3. Binary Streams
	3.4.4. Second-level 캐시와 query 캐시
	3.4.5. Query Language 치환
	3.4.6. Hibernate 통계

	3.5. 로깅
	3.6. NamingStrategy 구현하기
	3.7. XML 구성 파일
	3.8. J2EE 어플리케이션 서버 통합
	3.8.1. 트랜잭션 방도 구성
	3.8.2. JNDI-bound SessionFactory
	3.8.3. Current Session context management with JTA
	3.8.4. JMX 배치

	4장. 영속 클래스들
	4.1. 간단한 POJO 예제
	4.1.1. 아규먼트 없는 생성자를 구현하라
	4.1.2. identifier 프로퍼티를 제공하라(옵션)
	4.1.3. final이 아닌 클래스들을 선호하라(옵션)
	4.1.4. 영속 필드들을 위한 accessor들과 mutator들을 선언하라(옵션)

	4.2. 상속 구현하기
	4.3. equals()와 hashCode() 구현하기
	4.4. 동적인 모형들
	4.5. Tuplizer들
	4.6. EntityNameResolvers

	5장. 기본 O/R 매핑
	5.1. 매핑 선언
	5.1.1. Doctype
	5.1.1.1. EntityResolver

	5.1.2. Hibernate-mapping
	5.1.3. Class
	5.1.4. id
	5.1.4.1. Generator
	5.1.4.2. Hi/lo algorithm
	5.1.4.3. UUID 알고리즘
	5.1.4.4. 식별 컬럼들과 시퀀스들
	5.1.4.5. 할당된 식별자들
	5.1.4.6. 트리거들에 의해 할당된 프라이머리 키들

	5.1.5. NOT TRANSLATED!Enhanced identifier generators
	5.1.6. NOT TRANSLATED! Identifier generator optimization
	5.1.7. composite-id
	5.1.8. Discriminator
	5.1.9. Version (optional)
	5.1.10. Timestamp (optional)
	5.1.11. Property
	5.1.12. Many-to-one
	5.1.13. One-to-one
	5.1.14. Natural-id
	5.1.15. Component and dynamic-component
	5.1.16. Properties
	5.1.17. Subclass
	5.1.18. Joined-subclass
	5.1.19. Union-subclass
	5.1.20. Join
	5.1.21. Key
	5.1.22. Column and formula elements
	5.1.23. Import
	5.1.24. Any

	5.2. Hibernate types
	5.2.1. 엔티티들과 값들
	5.2.2. 기본 value 타입들
	5.2.3. 맞춤형 value 타입들

	5.3. 하나의 클래스를 한 번 이상 매핑하기
	5.4. SQL 인용부호 표시된 식별자들
	5.5. Metadata 대안들
	5.5.1. XDoclet 마크업 사용하기
	5.5.2. JDK 5.0 Annotations 사용하기

	5.6. Generated properties
	5.7. Auxiliary database objects

	6장. Collection mapping
	6.1. 영속 콜렉션들
	6.2. 콜렉션 매핑들
	6.2.1. 콜렉션 foreign 키들
	6.2.2. 콜렉션 요소들
	6.2.3. 인덱싱 된 콜렉션들
	6.2.4. 값들을 가진 콜렉션들과 many-to-many 연관들
	6.2.5. One-to-many 연관들

	6.3. 개선된 콜렉션 매핑들
	6.3.1. Sorted 콜렉션들
	6.3.2. 양방향 연관들
	6.3.3. 인덱싱된 콜렉션들을 가진 양방향 연관들
	6.3.4. Ternary associations(세겹 연관들)
	6.3.5. <idbag> 사용하기

	6.4. 콜렉션 예제들

	7장. 연관 매핑들
	7.1. 개요
	7.2. 단방향 연관들
	7.2.1. Many-to-one
	7.2.2. One-to-one
	7.2.3. One-to-many

	7.3. join 테이블들에 대한 단방향 연관들
	7.3.1. One-to-many
	7.3.2. Many-to-one
	7.3.3. One-to-one
	7.3.4. Many-to-many

	7.4. 양방향 연관들
	7.4.1. one-to-many / many-to-one
	7.4.2. One-to-one

	7.5. join 테이블들에 대한 양방향 연관들
	7.5.1. one-to-many / many-to-one
	7.5.2. one to one
	7.5.3. Many-to-many

	7.6. 보다 복잡한 연관 매핑들

	8장. Component 매핑
	8.1. 종속 객체들
	8.2. 종속 객체들을 가진 콜렉션들
	8.3. Map 인덱스들로서 컴포넌트들
	8.4. composite 식별자들로서 컴포넌트들
	8.5. 동적인 컴포넌트들

	9장. Inheritance mapping
	9.1. The three strategies
	9.1.1. Table per class hierarchy
	9.1.2. Table per subclass
	9.1.3. Table per subclass: using a discriminator
	9.1.4. table per class hierarchy와 table per subclass를 혼합하기
	9.1.5. Table per concrete class
	9.1.6. Table per concrete class using implicit polymorphism
	9.1.7. 함축적인 다형성을 다른 상속 매핑들과 혼합하기

	9.2. 제약들

	10장. 객체들로 작업하기
	10.1. Hibernate 객체 상태들
	10.2. 객체들을 영속화 시키기
	10.3. 객체를 로드시키기
	10.4. 질의하기
	10.4.1. 질의들을 실행하기
	10.4.1.1. 결과들을 반복하기
	10.4.1.2. 튜플들을 반환하는 질의들
	10.4.1.3. 스칼라 결과들
	10.4.1.4. 바인드 프라미터들
	10.4.1.5. 쪽매김
	10.4.1.6. 스크롤 가능한 iteration
	10.4.1.7. 명명된 질의들을 구체화 시키기

	10.4.2. 콜렉션들을 필터링 하기
	10.4.3. Criteria 질의들
	10.4.4. native SQL에서 질의들

	10.5. 영속 객체들을 변경하기
	10.6. detached 객체들을 변경시키기
	10.7. 자동적인 상태 검출
	10.8. 영속 객체들을 삭제하기
	10.9. 두 개의 다른 데이터저장소들 사이에 객체들을 복제하기
	10.10. Session을 flush 시키기
	10.11. Transitive persistence(전이 영속)
	10.12. 메타데이터 사용하기

	11장. Transactions and Concurrency
	11.1. 세션 영역과 트랜잭션 영역
	11.1.1. 작업 단위
	11.1.2. 장기간의 대화
	11.1.3. 객체 identity 고려하기
	11.1.4. 공통된 쟁점들

	11.2. 데이터베이스 트랜잭션 경계 설정
	11.2.1. 관리되지 않는 환경
	11.2.2. JTA 사용하기
	11.2.3. 예외상황 처리
	11.2.4. 트랜잭션 타임아웃

	11.3. Optimistic 동시성 제어
	11.3.1. 어플리케이션 버전 체킹
	11.3.2. 확장된 세션과 자동적인 버전화
	11.3.3. Detached 객체들과 자동적인 버전화
	11.3.4. 자동적인 버전화를 맞춤화 시키기

	11.4. Pessimistic locking
	11.5. Connection release modes

	12장. 인터셉터들과 이벤트들
	12.1. 인터셉터들
	12.2. 이벤트 시스템
	12.3. Hibernate 선언적인 보안

	13장. Batch ì²�ë¦¬
	13.1. Batch inserts
	13.2. Batch updates
	13.3. StatelessSession ì�¸í�°í��ì�´ì�¤
	13.4. DML-ì�¤í��ì�¼ ì�°ì�°ë�¤

	14장. HQL: 하이버네이트 질의 언어(Hibernate Query Language)
	14.1. 대소문자 구분
	14.2. from 절
	14.3. 연관들과 조인들
	14.4. join 구문의 형식들
	14.5. Referring to identifier property
	14.6. select 절
	14.7. 집계 함수들
	14.8. Polymorphic(다형성) 질의들
	14.9. where 절
	14.10. 표현식들
	14.11. order by 절
	14.12. group by 절
	14.13. 서브질의들
	14.14. HQL 예제들
	14.15. 대량 update와 delete
	14.16. 팁들 & 트릭들
	14.17. 컴포넌트들
	14.18. Row value constructor 구문

	15장. Criteria 질의들
	15.1. Criteria 인스턴스 생성하기
	15.2. 결과 셋 제한하기
	15.3. 결과들을 순서지우기(ordering)
	15.4. 연관들
	15.5. 동적인 연관 페칭
	15.6. 예제 질의들
	15.7. Projections, aggregation 그리고 grouping
	15.8. Detached 질의들과 서브질의들
	15.9. natural 식별자에 의한 질의들

	16장. Native SQL
	16.1. SQLQuery 사용하기
	16.1.1. 스칼라 질의들
	16.1.2. Entity 질의들
	16.1.3. 연관들과 콜렉션들을 처리하기
	16.1.4. 여러 개의 엔티티들을 반환하기
	16.1.4.1. alias 참조와 프로퍼티 참조

	16.1.5. non-managed 엔티티들을 반환하기
	16.1.6. 상속 처리하기
	16.1.7. 파라미터들

	16.2. 명명된 SQL 질의들
	16.2.1. 명시적으로 column/alias 이름들을 지정하는데 return-property 사용하기
	16.2.2. 질의를 위한 내장 프로시저 사용하기
	16.2.2.1. 내장 프로시저들을 사용하는 규칙들/제약들

	16.3. create, update 그리고 delete를 위한 맞춤형 SQL
	16.4. 로딩을 위한 맞춤형 SQL

	17장. 데이터 필터링하기
	17.1. Hibernate 필터들

	18장. XML 매핑
	18.1. XML 데이터로 작업하기
	18.1.1. XML과 클래스 매핑을 함께 지정하기
	18.1.2. XML 매핑만을 지정하기

	18.2. XML 매핑 메타데이터
	18.3. XML 데이터 처리하기

	19장. 퍼포먼스 개선하기
	19.1. 페칭 방도들
	19.1.1. lazy 연관들로 작업하기
	19.1.2. 페치 방도들을 튜닝하기
	19.1.3. Single-ended 연관 프락시
	19.1.4. 콜렉션들과 프락시들을 초기화 시키기
	19.1.5. batch 페칭 사용하기
	19.1.6. subselect 페칭 사용하기
	19.1.7. lazy 프로퍼티 페칭 사용하기

	19.2. 두번째 레벨 캐시
	19.2.1. Cache 매핑들
	19.2.2. 방도: 읽기 전용
	19.2.3. 방도: 읽기/쓰기
	19.2.4. 방도: 엄격하지 않은 읽기/쓰기
	19.2.5. 방도: transactional
	19.2.6. Cache-provider/concurrency-strategy compatibility

	19.3. 캐시들을 관리하기
	19.4. 질의 캐시
	19.5. 콜렉션 퍼포먼스 이해하기
	19.5.1. 분류
	19.5.2. List, map, idbag, set들은 update에 가장 효율적인 콜렉션들이다
	19.5.3. Bag들과 list들은 가장 효율적인 inverse 콜렉션들이다
	19.5.4. 원 샷 delete

	19.6. 퍼포먼스 모니터링하기
	19.6.1. SessionFactory 모니터링 하기
	19.6.2. Metrics

	20장. 도구셋 안내
	20.1. 자동적인 스키마 생성
	20.1.1. 스키마 맞춤화 시키기
	20.1.2. 도구 실행하기
	20.1.3. 프로퍼티들
	20.1.4. Ant 사용하기
	20.1.5. 점증하는 스키마 업데이트들
	20.1.6. 점증하는 스키마 업데이트들에 Ant 사용하기
	20.1.7. 스키마 유효성 검사
	20.1.8. 스키마 유효성 검사를 위해 Ant 사용하기

	21장. 예제: 부모/자식
	21.1. 콜렉션들에 관한 노트
	21.2. 양방향 one-to-many
	21.3. 케스케이딩 생명주기
	21.4. 케스케이드들과 unsaved-value
	21.5. 결론

	22장. 예제: Weblog 어플리케이션
	22.1. 영속 클래스들
	22.2. Hibernate 매핑들
	22.3. Hibernate 코드

	23장. 예제: 여러 가지 매핑들
	23.1. Employer/Employee
	23.2. Author/Work
	23.3. Customer/Order/Product
	23.4. 기타 예제 매핑들
	23.4.1. "형식화된(Typed)" one-to-one 연관
	23.4.2. Composite 키 예제
	23.4.3. 공유된 합성 키 속성을 가진 Many-to-many
	23.4.4. 내용 기반 판별
	23.4.5. 대체 키들에 대한 연관들

	24장. 최상의 실전 경험들
	25장. Database Portability Considerations
	25.1. Portability Basics
	25.2. Dialect
	25.3. Dialect resolution
	25.4. Identifier generation
	25.5. Database functions
	25.6. Type mappings

	References

