Collections
Naturally Hibernate also allows to persist collections. These persistent collections can contain almost any other Hibernate type, including: basic types, custom types, embeddables and references to other entities. In this context, the distinction between value and reference semantics is very important. An object in a collection might be handled with value semantics (its life cycle being fully depends on the collection owner), or it might be a reference to another entity with its own life cycle. In the latter case, only the link between the two objects is considered to be a state held by the collection.
The owner of the collection is always an entity, even if the collection is defined by an embeddable type. Collections form one/many-to-many associations between types so there can be:
-
value type collections
-
embeddable type collections
-
entity collections
Hibernate uses its own collection implementations which are enriched with lazy-loading, caching or state change detection semantics.
For this reason, persistent collections must be declared as an interface type.
The actual interface might be java.util.Collection
, java.util.List
, java.util.Set
, java.util.Map
, java.util.SortedSet
, java.util.SortedMap
or even other object types (meaning you will have to write an implementation of org.hibernate.usertype.UserCollectionType
).
As the following example demonstrates, it’s important to use the interface type and not the collection implementation, as declared in the entity mapping.
@Entity(name = "Person")
public static class Person {
@Id
private Long id;
@ElementCollection
private List<String> phones = new ArrayList<>();
public List<String> getPhones() {
return phones;
}
}
Person person = entityManager.find( Person.class, 1L );
//Throws java.lang.ClassCastException: org.hibernate.collection.internal.PersistentBag cannot be cast to java.util.ArrayList
ArrayList<String> phones = (ArrayList<String>) person.getPhones();
It is important that collections be defined using the appropriate Java Collections Framework interface rather than a specific implementation. From a theoretical perspective, this just follows good design principles. From a practical perspective, Hibernate (like other persistence providers) will use their own collection implementations which conform to the Java Collections Framework interfaces. |
The persistent collections injected by Hibernate behave like ArrayList
, HashSet
, TreeSet
, HashMap
or TreeMap
, depending on the interface type.
Collections as a value type
Value and embeddable type collections have a similar behavior as simple value types because they are automatically persisted when referenced by a persistent object and automatically deleted when unreferenced. If a collection is passed from one persistent object to another, its elements might be moved from one table to another.
Two entities cannot share a reference to the same collection instance. Collection-valued properties do not support null value semantics because Hibernate does not distinguish between a null collection reference and an empty collection. |
Collections of value types
Collections of value type include basic and embeddable types. Collections cannot be nested, and, when used in collections, embeddable types are not allowed to define other collections.
For collections of value types, JPA 2.0 defines the @ElementCollection
annotation.
The lifecycle of the value-type collection is entirely controlled by its owning entity.
Considering the previous example mapping, when clearing the phone collection, Hibernate deletes all the associated phones. When adding a new element to the value type collection, Hibernate issues a new insert statement.
person.getPhones().clear();
person.getPhones().add( "123-456-7890" );
person.getPhones().add( "456-000-1234" );
DELETE FROM Person_phones WHERE Person_id = 1
INSERT INTO Person_phones ( Person_id, phones )
VALUES ( 1, '123-456-7890' )
INSERT INTO Person_phones (Person_id, phones)
VALUES ( 1, '456-000-1234' )
If removing all elements or adding new ones is rather straightforward, removing a certain entry actually requires reconstructing the whole collection from scratch.
person.getPhones().remove( 0 );
DELETE FROM Person_phones WHERE Person_id = 1
INSERT INTO Person_phones ( Person_id, phones )
VALUES ( 1, '456-000-1234' )
Depending on the number of elements, this behavior might not be efficient, if many elements need to be deleted and reinserted back into the database table.
A workaround is to use an @OrderColumn
, which, although not as efficient as when using the actual link table primary key, might improve the efficiency of the remove operations.
@ElementCollection
@OrderColumn(name = "order_id")
private List<String> phones = new ArrayList<>();
person.getPhones().remove( 0 );
DELETE FROM Person_phones
WHERE Person_id = 1
AND order_id = 1
UPDATE Person_phones
SET phones = '456-000-1234'
WHERE Person_id = 1
AND order_id = 0
The |
Embeddable type collections behave the same way as value type collections. Adding embeddables to the collection triggers the associated insert statements and removing elements from the collection will generate delete statements.
@Entity(name = "Person")
public static class Person {
@Id
private Long id;
@ElementCollection
private List<Phone> phones = new ArrayList<>();
public List<Phone> getPhones() {
return phones;
}
}
@Embeddable
public static class Phone {
private String type;
@Column(name = "`number`")
private String number;
public Phone() {
}
public Phone(String type, String number) {
this.type = type;
this.number = number;
}
public String getType() {
return type;
}
public String getNumber() {
return number;
}
}
person.getPhones().add( new Phone( "landline", "028-234-9876" ) );
person.getPhones().add( new Phone( "mobile", "072-122-9876" ) );
INSERT INTO Person_phones ( Person_id, number, type )
VALUES ( 1, '028-234-9876', 'landline' )
INSERT INTO Person_phones ( Person_id, number, type )
VALUES ( 1, '072-122-9876', 'mobile' )
Collections of entities
If value type collections can only form a one-to-many association between an owner entity and multiple basic or embeddable types, entity collections can represent both @OneToMany and @ManyToMany associations.
From a relational database perspective, associations are defined by the foreign key side (the child-side). With value type collections, only the entity can control the association (the parent-side), but for a collection of entities, both sides of the association are managed by the persistence context.
For this reason, entity collections can be devised into two main categories: unidirectional and bidirectional associations. Unidirectional associations are very similar to value type collections since only the parent side controls this relationship. Bidirectional associations are more tricky since, even if sides need to be in-sync at all times, only one side is responsible for managing the association. A bidirectional association has an owning side and an inverse (mappedBy) side.
Another way of categorizing entity collections is by the underlying collection type, and so we can have:
-
bags
-
indexed lists
-
sets
-
sorted sets
-
maps
-
sorted maps
-
arrays
In the following sections, we will go through all these collection types and discuss both unidirectional and bidirectional associations.
Bags
Bags are unordered lists and we can have unidirectional bags or bidirectional ones.
Unidirectional bags
The unidirectional bag is mapped using a single @OneToMany
annotation on the parent side of the association.
Behind the scenes, Hibernate requires an association table to manage the parent-child relationship, as we can see in the following example:
@Entity(name = "Person")
public static class Person {
@Id
private Long id;
@OneToMany(cascade = CascadeType.ALL)
private List<Phone> phones = new ArrayList<>();
public Person() {
}
public Person(Long id) {
this.id = id;
}
public List<Phone> getPhones() {
return phones;
}
}
@Entity(name = "Phone")
public static class Phone {
@Id
private Long id;
private String type;
@Column(name = "`number`")
private String number;
public Phone() {
}
public Phone(Long id, String type, String number) {
this.id = id;
this.type = type;
this.number = number;
}
public Long getId() {
return id;
}
public String getType() {
return type;
}
public String getNumber() {
return number;
}
}
CREATE TABLE Person (
id BIGINT NOT NULL ,
PRIMARY KEY ( id )
)
CREATE TABLE Person_Phone (
Person_id BIGINT NOT NULL ,
phones_id BIGINT NOT NULL
)
CREATE TABLE Phone (
id BIGINT NOT NULL ,
number VARCHAR(255) ,
type VARCHAR(255) ,
PRIMARY KEY ( id )
)
ALTER TABLE Person_Phone
ADD CONSTRAINT UK_9uhc5itwc9h5gcng944pcaslf
UNIQUE (phones_id)
ALTER TABLE Person_Phone
ADD CONSTRAINT FKr38us2n8g5p9rj0b494sd3391
FOREIGN KEY (phones_id) REFERENCES Phone
ALTER TABLE Person_Phone
ADD CONSTRAINT FK2ex4e4p7w1cj310kg2woisjl2
FOREIGN KEY (Person_id) REFERENCES Person
Because both the parent and the child sides are entities, the persistence context manages each entity separately. Cascades can propagate an entity state transition from a parent entity to its children. |
By marking the parent side with the CascadeType.ALL
attribute, the unidirectional association lifecycle becomes very similar to that of a value type collection.
Person person = new Person( 1L );
person.getPhones().add( new Phone( 1L, "landline", "028-234-9876" ) );
person.getPhones().add( new Phone( 2L, "mobile", "072-122-9876" ) );
entityManager.persist( person );
INSERT INTO Person ( id )
VALUES ( 1 )
INSERT INTO Phone ( number, type, id )
VALUES ( '028-234-9876', 'landline', 1 )
INSERT INTO Phone ( number, type, id )
VALUES ( '072-122-9876', 'mobile', 2 )
INSERT INTO Person_Phone ( Person_id, phones_id )
VALUES ( 1, 1 )
INSERT INTO Person_Phone ( Person_id, phones_id )
VALUES ( 1, 2 )
In the example above, once the parent entity is persisted, the child entities are going to be persisted as well.
Just like value type collections, unidirectional bags are not as efficient when it comes to modifying the collection structure (removing or reshuffling elements). Because the parent-side cannot uniquely identify each individual child, Hibernate might delete all child table rows associated with the parent entity and re-add them according to the current collection state. |
Bidirectional bags
The bidirectional bag is the most common type of entity collection.
The @ManyToOne
side is the owning side of the bidirectional bag association, while the @OneToMany
is the inverse side, being marked with the mappedBy
attribute.
@Entity(name = "Person")
public static class Person {
@Id
private Long id;
@OneToMany(mappedBy = "person", cascade = CascadeType.ALL)
private List<Phone> phones = new ArrayList<>();
public Person() {
}
public Person(Long id) {
this.id = id;
}
public List<Phone> getPhones() {
return phones;
}
public void addPhone(Phone phone) {
phones.add( phone );
phone.setPerson( this );
}
public void removePhone(Phone phone) {
phones.remove( phone );
phone.setPerson( null );
}
}
@Entity(name = "Phone")
public static class Phone {
@Id
private Long id;
private String type;
@Column(name = "`number`", unique = true)
@NaturalId
private String number;
@ManyToOne
private Person person;
public Phone() {
}
public Phone(Long id, String type, String number) {
this.id = id;
this.type = type;
this.number = number;
}
public Long getId() {
return id;
}
public String getType() {
return type;
}
public String getNumber() {
return number;
}
public Person getPerson() {
return person;
}
public void setPerson(Person person) {
this.person = person;
}
@Override
public boolean equals(Object o) {
if ( this == o ) {
return true;
}
if ( o == null || getClass() != o.getClass() ) {
return false;
}
Phone phone = (Phone) o;
return Objects.equals( number, phone.number );
}
@Override
public int hashCode() {
return Objects.hash( number );
}
}
CREATE TABLE Person (
id BIGINT NOT NULL, PRIMARY KEY (id)
)
CREATE TABLE Phone (
id BIGINT NOT NULL,
number VARCHAR(255),
type VARCHAR(255),
person_id BIGINT,
PRIMARY KEY (id)
)
ALTER TABLE Phone
ADD CONSTRAINT UK_l329ab0g4c1t78onljnxmbnp6
UNIQUE (number)
ALTER TABLE Phone
ADD CONSTRAINT FKmw13yfsjypiiq0i1osdkaeqpg
FOREIGN KEy (person_id) REFERENCES Person
person.addPhone( new Phone( 1L, "landline", "028-234-9876" ) );
person.addPhone( new Phone( 2L, "mobile", "072-122-9876" ) );
entityManager.flush();
person.removePhone( person.getPhones().get( 0 ) );
INSERT INTO Phone (number, person_id, type, id)
VALUES ( '028-234-9876', 1, 'landline', 1 )
INSERT INTO Phone (number, person_id, type, id)
VALUES ( '072-122-9876', 1, 'mobile', 2 )
UPDATE Phone
SET person_id = NULL, type = 'landline' where id = 1
@OneToMany(mappedBy = "person", cascade = CascadeType.ALL, orphanRemoval = true)
private List<Phone> phones = new ArrayList<>();
DELETE FROM Phone WHERE id = 1
When rerunning the previous example, the child will get removed because the parent-side propagates the removal upon disassociating the child entity reference.
Ordered Lists
Although they use the List
interface on the Java side, bags don’t retain element order.
To preserve the collection element order, there are two possibilities:
@OrderBy
-
the collection is ordered upon retrieval using a child entity property
@OrderColumn
-
the collection uses a dedicated order column in the collection link table
Unidirectional ordered lists
When using the @OrderBy
annotation, the mapping looks as follows:
@OrderBy
list@Entity(name = "Person")
public static class Person {
@Id
private Long id;
@OneToMany(cascade = CascadeType.ALL)
@OrderBy("number")
private List<Phone> phones = new ArrayList<>();
public Person() {
}
public Person(Long id) {
this.id = id;
}
public List<Phone> getPhones() {
return phones;
}
}
@Entity(name = "Phone")
public static class Phone {
@Id
private Long id;
private String type;
@Column(name = "`number`")
private String number;
public Phone() {
}
public Phone(Long id, String type, String number) {
this.id = id;
this.type = type;
this.number = number;
}
public Long getId() {
return id;
}
public String getType() {
return type;
}
public String getNumber() {
return number;
}
}
The database mapping is the same as with the Unidirectional bags example, so it won’t be repeated. Upon fetching the collection, Hibernate generates the following select statement:
@OrderBy
list select statementSELECT
phones0_.Person_id AS Person_i1_1_0_,
phones0_.phones_id AS phones_i2_1_0_,
unidirecti1_.id AS id1_2_1_,
unidirecti1_."number" AS number2_2_1_,
unidirecti1_.type AS type3_2_1_
FROM
Person_Phone phones0_
INNER JOIN
Phone unidirecti1_ ON phones0_.phones_id=unidirecti1_.id
WHERE
phones0_.Person_id = 1
ORDER BY
unidirecti1_."number"
The child table column is used to order the list elements.
The If no property is specified (e.g. |
Another ordering option is to use the @OrderColumn
annotation:
@OrderColumn
list@OneToMany(cascade = CascadeType.ALL)
@OrderColumn(name = "order_id")
private List<Phone> phones = new ArrayList<>();
CREATE TABLE Person_Phone (
Person_id BIGINT NOT NULL ,
phones_id BIGINT NOT NULL ,
order_id INTEGER NOT NULL ,
PRIMARY KEY ( Person_id, order_id )
)
This time, the link table takes the order_id
column and uses it to materialize the collection element order.
When fetching the list, the following select query is executed:
@OrderColumn
list select statementselect
phones0_.Person_id as Person_i1_1_0_,
phones0_.phones_id as phones_i2_1_0_,
phones0_.order_id as order_id3_0_,
unidirecti1_.id as id1_2_1_,
unidirecti1_.number as number2_2_1_,
unidirecti1_.type as type3_2_1_
from
Person_Phone phones0_
inner join
Phone unidirecti1_
on phones0_.phones_id=unidirecti1_.id
where
phones0_.Person_id = 1
With the order_id
column in place, Hibernate can order the list in-memory after it’s being fetched from the database.
Bidirectional ordered lists
The mapping is similar with the Bidirectional bags example, just that the parent side is going to be annotated with either @OrderBy
or @OrderColumn
.
@OrderBy
list@OneToMany(mappedBy = "person", cascade = CascadeType.ALL)
@OrderBy("number")
private List<Phone> phones = new ArrayList<>();
Just like with the unidirectional @OrderBy
list, the number
column is used to order the statement on the SQL level.
When using the @OrderColumn
annotation, the order_id
column is going to be embedded in the child table:
@OrderColumn
list@OneToMany(mappedBy = "person", cascade = CascadeType.ALL)
@OrderColumn(name = "order_id")
private List<Phone> phones = new ArrayList<>();
CREATE TABLE Phone (
id BIGINT NOT NULL ,
number VARCHAR(255) ,
type VARCHAR(255) ,
person_id BIGINT ,
order_id INTEGER ,
PRIMARY KEY ( id )
)
When fetching the collection, Hibernate will use the fetched ordered columns to sort the elements according to the @OrderColumn
mapping.
Customizing ordered list ordinal
You can customize the ordinal of the underlying ordered list by using the @ListIndexBase
annotation.
@ListIndexBase
mapping example@OneToMany(mappedBy = "person", cascade = CascadeType.ALL)
@OrderColumn(name = "order_id")
@ListIndexBase(100)
private List<Phone> phones = new ArrayList<>();
When inserting two Phone
records, Hibernate is going to start the List index from 100 this time.
@ListIndexBase
persist examplePerson person = new Person( 1L );
entityManager.persist( person );
person.addPhone( new Phone( 1L, "landline", "028-234-9876" ) );
person.addPhone( new Phone( 2L, "mobile", "072-122-9876" ) );
INSERT INTO Phone("number", person_id, type, id)
VALUES ('028-234-9876', 1, 'landline', 1)
INSERT INTO Phone("number", person_id, type, id)
VALUES ('072-122-9876', 1, 'mobile', 2)
UPDATE Phone
SET order_id = 100
WHERE id = 1
UPDATE Phone
SET order_id = 101
WHERE id = 2
Customizing ORDER BY SQL clause
While the JPA
@OrderBy
annotation allows you to specify the entity attributes used for sorting
when fetching the current annotated collection, the Hibernate specific
@OrderBy
annotation is used to specify a SQL clause instead.
In the following example, the @OrderBy
annotations uses the CHAR_LENGTH
SQL function to order the Article
entities
by the number of characters of the name
attribute.
@OrderBy
mapping example@Entity(name = "Person")
public static class Person {
@Id
private Long id;
private String name;
@OneToMany(mappedBy = "person", cascade = CascadeType.ALL)
@org.hibernate.annotations.OrderBy(clause = "CHAR_LENGTH(name) DESC")
private List<Article> articles = new ArrayList<>();
//Getters and setters are omitted for brevity
}
@Entity(name = "Article")
public static class Article {
@Id
@GeneratedValue
private Long id;
private String name;
private String content;
@ManyToOne(fetch = FetchType.LAZY)
private Person person;
private Article() {
}
public Article(String name, String content) {
this.name = name;
this.content = content;
}
//Getters and setters are omitted for brevity
}
When fetching the articles
collection, Hibernate uses the ORDER BY SQL clause provided by the mapping:
@OrderBy
fetching examplePerson person = entityManager.find( Person.class, 1L );
assertEquals(
"High-Performance Hibernate",
person.getArticles().get( 0 ).getName()
);
select
a.person_id as person_i4_0_0_,
a.id as id1_0_0_,
a.content as content2_0_1_,
a.name as name3_0_1_,
a.person_id as person_i4_0_1_
from
Article a
where
a.person_id = ?
order by
CHAR_LENGTH(a.name) desc
Sets
Sets are collections that don’t allow duplicate entries and Hibernate supports both the unordered Set
and the natural-ordering SortedSet
.
Unidirectional sets
The unidirectional set uses a link table to hold the parent-child associations and the entity mapping looks as follows:
@Entity(name = "Person")
public static class Person {
@Id
private Long id;
@OneToMany(cascade = CascadeType.ALL)
private Set<Phone> phones = new HashSet<>();
public Person() {
}
public Person(Long id) {
this.id = id;
}
public Set<Phone> getPhones() {
return phones;
}
}
@Entity(name = "Phone")
public static class Phone {
@Id
private Long id;
private String type;
@NaturalId
@Column(name = "`number`")
private String number;
public Phone() {
}
public Phone(Long id, String type, String number) {
this.id = id;
this.type = type;
this.number = number;
}
public Long getId() {
return id;
}
public String getType() {
return type;
}
public String getNumber() {
return number;
}
@Override
public boolean equals(Object o) {
if ( this == o ) {
return true;
}
if ( o == null || getClass() != o.getClass() ) {
return false;
}
Phone phone = (Phone) o;
return Objects.equals( number, phone.number );
}
@Override
public int hashCode() {
return Objects.hash( number );
}
}
The unidirectional set lifecycle is similar to that of the Unidirectional bags, so it can be omitted.
The only difference is that Set
doesn’t allow duplicates, but this constraint is enforced by the Java object contract rather than the database mapping.
When using sets, it’s very important to supply proper equals/hashCode implementations for child entities. In the absence of a custom equals/hashCode implementation logic, Hibernate will use the default Java reference-based object equality which might render unexpected results when mixing detached and managed object instances. |
Bidirectional sets
Just like bidirectional bags, the bidirectional set doesn’t use a link table, and the child table has a foreign key referencing the parent table primary key. The lifecycle is just like with bidirectional bags except for the duplicates which are filtered out.
@Entity(name = "Person")
public static class Person {
@Id
private Long id;
@OneToMany(mappedBy = "person", cascade = CascadeType.ALL)
private Set<Phone> phones = new HashSet<>();
public Person() {
}
public Person(Long id) {
this.id = id;
}
public Set<Phone> getPhones() {
return phones;
}
public void addPhone(Phone phone) {
phones.add( phone );
phone.setPerson( this );
}
public void removePhone(Phone phone) {
phones.remove( phone );
phone.setPerson( null );
}
}
@Entity(name = "Phone")
public static class Phone {
@Id
private Long id;
private String type;
@Column(name = "`number`", unique = true)
@NaturalId
private String number;
@ManyToOne
private Person person;
public Phone() {
}
public Phone(Long id, String type, String number) {
this.id = id;
this.type = type;
this.number = number;
}
public Long getId() {
return id;
}
public String getType() {
return type;
}
public String getNumber() {
return number;
}
public Person getPerson() {
return person;
}
public void setPerson(Person person) {
this.person = person;
}
@Override
public boolean equals(Object o) {
if ( this == o ) {
return true;
}
if ( o == null || getClass() != o.getClass() ) {
return false;
}
Phone phone = (Phone) o;
return Objects.equals( number, phone.number );
}
@Override
public int hashCode() {
return Objects.hash( number );
}
}
Sorted sets
For sorted sets, the entity mapping must use the SortedSet
interface instead.
According to the SortedSet
contract, all elements must implement the Comparable
interface and therefore provide the sorting logic.
Unidirectional sorted sets
A SortedSet
that relies on the natural sorting order given by the child element Comparable
implementation logic must be annotated with the @SortNatural
Hibernate annotation.
@Entity(name = "Person")
public static class Person {
@Id
private Long id;
@OneToMany(cascade = CascadeType.ALL)
@SortNatural
private SortedSet<Phone> phones = new TreeSet<>();
public Person() {
}
public Person(Long id) {
this.id = id;
}
public Set<Phone> getPhones() {
return phones;
}
}
@Entity(name = "Phone")
public static class Phone implements Comparable<Phone> {
@Id
private Long id;
private String type;
@NaturalId
@Column(name = "`number`")
private String number;
public Phone() {
}
public Phone(Long id, String type, String number) {
this.id = id;
this.type = type;
this.number = number;
}
public Long getId() {
return id;
}
public String getType() {
return type;
}
public String getNumber() {
return number;
}
@Override
public int compareTo(Phone o) {
return number.compareTo( o.getNumber() );
}
@Override
public boolean equals(Object o) {
if ( this == o ) {
return true;
}
if ( o == null || getClass() != o.getClass() ) {
return false;
}
Phone phone = (Phone) o;
return Objects.equals( number, phone.number );
}
@Override
public int hashCode() {
return Objects.hash( number );
}
}
The lifecycle and the database mapping are identical to the Unidirectional bags, so they are intentionally omitted.
To provide a custom sorting logic, Hibernate also provides a @SortComparator
annotation:
@Entity(name = "Person")
public static class Person {
@Id
private Long id;
@OneToMany(cascade = CascadeType.ALL)
@SortComparator(ReverseComparator.class)
private SortedSet<Phone> phones = new TreeSet<>();
public Person() {
}
public Person(Long id) {
this.id = id;
}
public Set<Phone> getPhones() {
return phones;
}
}
public static class ReverseComparator implements Comparator<Phone> {
@Override
public int compare(Phone o1, Phone o2) {
return o2.compareTo( o1 );
}
}
@Entity(name = "Phone")
public static class Phone implements Comparable<Phone> {
@Id
private Long id;
private String type;
@NaturalId
@Column(name = "`number`")
private String number;
public Phone() {
}
public Phone(Long id, String type, String number) {
this.id = id;
this.type = type;
this.number = number;
}
public Long getId() {
return id;
}
public String getType() {
return type;
}
public String getNumber() {
return number;
}
@Override
public int compareTo(Phone o) {
return number.compareTo( o.getNumber() );
}
@Override
public boolean equals(Object o) {
if ( this == o ) {
return true;
}
if ( o == null || getClass() != o.getClass() ) {
return false;
}
Phone phone = (Phone) o;
return Objects.equals( number, phone.number );
}
@Override
public int hashCode() {
return Objects.hash( number );
}
}
Bidirectional sorted sets
The @SortNatural
and @SortComparator
work the same for bidirectional sorted sets too:
@OneToMany(mappedBy = "person", cascade = CascadeType.ALL)
@SortNatural
private SortedSet<Phone> phones = new TreeSet<>();
@SortComparator(ReverseComparator.class)
private SortedSet<Phone> phones = new TreeSet<>();
Maps
A java.util.Map
is a ternary association because it requires a parent entity, a map key and a value.
An entity can either be a map key or a map value, depending on the mapping.
Hibernate allows using the following map keys:
MapKeyColumn
-
for value type maps, the map key is a column in the link table that defines the grouping logic
MapKey
-
the map key is either the primary key or another property of the entity stored as a map entry value
MapKeyEnumerated
-
the map key is an
Enum
of the target child entity MapKeyTemporal
-
the map key is a
Date
or aCalendar
of the target child entity MapKeyJoinColumn
-
the map key is an entity mapped as an association in the child entity that’s stored as a map entry key
Value type maps
A map of value type must use the @ElementCollection
annotation, just like value type lists, bags or sets.
public enum PhoneType {
LAND_LINE,
MOBILE
}
@Entity(name = "Person")
public static class Person {
@Id
private Long id;
@Temporal(TemporalType.TIMESTAMP)
@ElementCollection
@CollectionTable(name = "phone_register")
@Column(name = "since")
private Map<Phone, Date> phoneRegister = new HashMap<>();
public Person() {}
public Person(Long id) {
this.id = id;
}
public Map<Phone, Date> getPhoneRegister() {
return phoneRegister;
}
}
@Embeddable
public static class Phone {
private PhoneType type;
@Column(name = "`number`")
private String number;
public Phone() {
}
public Phone(PhoneType type, String number) {
this.type = type;
this.number = number;
}
public PhoneType getType() {
return type;
}
public String getNumber() {
return number;
}
}
CREATE TABLE Person (
id BIGINT NOT NULL ,
PRIMARY KEY ( id )
)
CREATE TABLE phone_register (
Person_id BIGINT NOT NULL ,
since TIMESTAMP ,
number VARCHAR(255) NOT NULL ,
type INTEGER NOT NULL ,
PRIMARY KEY ( Person_id, number, type )
)
ALTER TABLE phone_register
ADD CONSTRAINT FKrmcsa34hr68of2rq8qf526mlk
FOREIGN KEY (Person_id) REFERENCES Person
Adding entries to the map generates the following SQL statements:
person.getPhoneRegister().put(
new Phone( PhoneType.LAND_LINE, "028-234-9876" ), new Date()
);
person.getPhoneRegister().put(
new Phone( PhoneType.MOBILE, "072-122-9876" ), new Date()
);
INSERT INTO phone_register (Person_id, number, type, since)
VALUES (1, '072-122-9876', 1, '2015-12-15 17:16:45.311')
INSERT INTO phone_register (Person_id, number, type, since)
VALUES (1, '028-234-9876', 0, '2015-12-15 17:16:45.311')
Maps with a custom key type
Hibernate defines the
@MapKeyType
annotation
which you can use to customize the Map
key type.
Considering you have the following tables in your database:
create table person (
id int8 not null,
primary key (id)
)
create table call_register (
person_id int8 not null,
phone_number int4,
call_timestamp_epoch int8 not null,
primary key (person_id, call_timestamp_epoch)
)
alter table if exists call_register
add constraint FKsn58spsregnjyn8xt61qkxsub
foreign key (person_id)
references person
The call_register
records the call history for every person
.
The call_timestamp_epoch
column stores the phone call timestamp as a Unix timestamp since epoch.
The |
Since we want to map all the calls by their associated java.util.Date
, not by their timestamp since epoch which is a number, the entity mapping looks as follows:
@MapKeyType
mapping example@Entity
@Table(name = "person")
public static class Person {
@Id
private Long id;
@ElementCollection
@CollectionTable(
name = "call_register",
joinColumns = @JoinColumn(name = "person_id")
)
@MapKeyType(
@Type(
type = "org.hibernate.userguide.collections.type.TimestampEpochType"
)
)
@MapKeyColumn( name = "call_timestamp_epoch" )
@Column(name = "phone_number")
private Map<Date, Integer> callRegister = new HashMap<>();
public void setId(Long id) {
this.id = id;
}
public Map<Date, Integer> getCallRegister() {
return callRegister;
}
}
The associated TimestampEpochType
looks as follows:
public class TimestampEpochType extends AbstractSingleColumnStandardBasicType<Date> implements VersionType<Date>, LiteralType<Date> { public static final TimestampEpochType INSTANCE = new TimestampEpochType(); public TimestampEpochType() { super( BigIntTypeDescriptor.INSTANCE, JdbcTimestampTypeDescriptor.INSTANCE ); } @Override public String getName() { return "epoch"; } @Override public Date next( Date current, SharedSessionContractImplementor session) { return seed( session ); } @Override public Date seed( SharedSessionContractImplementor session) { return new Timestamp( System.currentTimeMillis() ); } @Override public Comparator<Date> getComparator() { return getJavaTypeDescriptor().getComparator(); } @Override public String objectToSQLString( Date value, Dialect dialect) throws Exception { final Timestamp ts = Timestamp.class.isInstance( value ) ? ( Timestamp ) value : new Timestamp( value.getTime() ); return StringType.INSTANCE.objectToSQLString( ts.toString(), dialect ); } @Override public Date fromStringValue( String xml) throws HibernateException { return fromString( xml ); } }
The TimestampEpochType
allows us to map a Unix timestamp since epoch to a java.util.Date
.
But, without the @MapKeyType
Hibernate annotation, it would not be possible to customize the Map
key type.
Maps having an interface type as the key
Considering you have the following PhoneNumber
interface with an implementation given by the MobilePhone
class type:
PhoneNumber
interface and the MobilePhone
class typepublic interface PhoneNumber {
String get();
}
@Embeddable
public static class MobilePhone
implements PhoneNumber {
static PhoneNumber fromString(String phoneNumber) {
String[] tokens = phoneNumber.split( "-" );
if ( tokens.length != 3 ) {
throw new IllegalArgumentException( "invalid phone number: " + phoneNumber );
}
int i = 0;
return new MobilePhone(
tokens[i++],
tokens[i++],
tokens[i]
);
}
private MobilePhone() {
}
public MobilePhone(
String countryCode,
String operatorCode,
String subscriberCode) {
this.countryCode = countryCode;
this.operatorCode = operatorCode;
this.subscriberCode = subscriberCode;
}
@Column(name = "country_code")
private String countryCode;
@Column(name = "operator_code")
private String operatorCode;
@Column(name = "subscriber_code")
private String subscriberCode;
@Override
public String get() {
return String.format(
"%s-%s-%s",
countryCode,
operatorCode,
subscriberCode
);
}
@Override
public boolean equals(Object o) {
if ( this == o ) {
return true;
}
if ( o == null || getClass() != o.getClass() ) {
return false;
}
MobilePhone that = (MobilePhone) o;
return Objects.equals( countryCode, that.countryCode ) &&
Objects.equals( operatorCode, that.operatorCode ) &&
Objects.equals( subscriberCode, that.subscriberCode );
}
@Override
public int hashCode() {
return Objects.hash( countryCode, operatorCode, subscriberCode );
}
}
If you want to use the PhoneNumber
interface as a java.util.Map
key, then you need to supply the
@MapKeyClass
annotation as well.
@MapKeyClass
mapping example@Entity
@Table(name = "person")
public static class Person {
@Id
private Long id;
@ElementCollection
@CollectionTable(
name = "call_register",
joinColumns = @JoinColumn(name = "person_id")
)
@MapKeyColumn( name = "call_timestamp_epoch" )
@MapKeyClass( MobilePhone.class )
@Column(name = "call_register")
private Map<PhoneNumber, Integer> callRegister = new HashMap<>();
//Getters and setters are omitted for brevity
}
create table person (
id bigint not null,
primary key (id)
)
create table call_register (
person_id bigint not null,
call_register integer,
country_code varchar(255) not null,
operator_code varchar(255) not null,
subscriber_code varchar(255) not null,
primary key (person_id, country_code, operator_code, subscriber_code)
)
alter table call_register
add constraint FKqyj2at6ik010jqckeaw23jtv2
foreign key (person_id)
references person
When inserting a Person
with a callRegister
containing 2 MobilePhone
references,
Hibernate generates the following SQL statements:
@MapKeyClass
persist examplePerson person = new Person();
person.setId( 1L );
person.getCallRegister().put( new MobilePhone( "01", "234", "567" ), 101 );
person.getCallRegister().put( new MobilePhone( "01", "234", "789" ), 102 );
entityManager.persist( person );
insert into person (id) values (?)
-- binding parameter [1] as [BIGINT] - [1]
insert into call_register(
person_id,
country_code,
operator_code,
subscriber_code,
call_register
)
values
(?, ?, ?, ?, ?)
-- binding parameter [1] as [BIGINT] - [1]
-- binding parameter [2] as [VARCHAR] - [01]
-- binding parameter [3] as [VARCHAR] - [234]
-- binding parameter [4] as [VARCHAR] - [789]
-- binding parameter [5] as [INTEGER] - [102]
insert into call_register(
person_id,
country_code,
operator_code,
subscriber_code,
call_register
)
values
(?, ?, ?, ?, ?)
-- binding parameter [1] as [BIGINT] - [1]
-- binding parameter [2] as [VARCHAR] - [01]
-- binding parameter [3] as [VARCHAR] - [234]
-- binding parameter [4] as [VARCHAR] - [567]
-- binding parameter [5] as [INTEGER] - [101]
When fetching a Person
and accessing the callRegister
Map
,
Hibernate generates the following SQL statements:
@MapKeyClass
fetch examplePerson person = entityManager.find( Person.class, 1L );
assertEquals( 2, person.getCallRegister().size() );
assertEquals(
Integer.valueOf( 101 ),
person.getCallRegister().get( MobilePhone.fromString( "01-234-567" ) )
);
assertEquals(
Integer.valueOf( 102 ),
person.getCallRegister().get( MobilePhone.fromString( "01-234-789" ) )
);
select
cr.person_id as person_i1_0_0_,
cr.call_register as call_reg2_0_0_,
cr.country_code as country_3_0_,
cr.operator_code as operator4_0_,
cr.subscriber_code as subscrib5_0_
from
call_register cr
where
cr.person_id = ?
-- binding parameter [1] as [BIGINT] - [1]
-- extracted value ([person_i1_0_0_] : [BIGINT]) - [1]
-- extracted value ([call_reg2_0_0_] : [INTEGER]) - [101]
-- extracted value ([country_3_0_] : [VARCHAR]) - [01]
-- extracted value ([operator4_0_] : [VARCHAR]) - [234]
-- extracted value ([subscrib5_0_] : [VARCHAR]) - [567]
-- extracted value ([person_i1_0_0_] : [BIGINT]) - [1]
-- extracted value ([call_reg2_0_0_] : [INTEGER]) - [102]
-- extracted value ([country_3_0_] : [VARCHAR]) - [01]
-- extracted value ([operator4_0_] : [VARCHAR]) - [234]
-- extracted value ([subscrib5_0_] : [VARCHAR]) - [789]
Unidirectional maps
A unidirectional map exposes a parent-child association from the parent-side only.
The following example shows a unidirectional map which also uses a @MapKeyTemporal
annotation.
The map key is a timestamp and it’s taken from the child entity table.
The |
public enum PhoneType {
LAND_LINE,
MOBILE
}
@Entity(name = "Person")
public static class Person {
@Id
private Long id;
@OneToMany(cascade = CascadeType.ALL, orphanRemoval = true)
@JoinTable(
name = "phone_register",
joinColumns = @JoinColumn(name = "phone_id"),
inverseJoinColumns = @JoinColumn(name = "person_id"))
@MapKey(name = "since")
@MapKeyTemporal(TemporalType.TIMESTAMP)
private Map<Date, Phone> phoneRegister = new HashMap<>();
public Person() {
}
public Person(Long id) {
this.id = id;
}
public Map<Date, Phone> getPhoneRegister() {
return phoneRegister;
}
public void addPhone(Phone phone) {
phoneRegister.put( phone.getSince(), phone );
}
}
@Entity(name = "Phone")
public static class Phone {
@Id
@GeneratedValue
private Long id;
private PhoneType type;
@Column(name = "`number`")
private String number;
private Date since;
public Phone() {
}
public Phone(PhoneType type, String number, Date since) {
this.type = type;
this.number = number;
this.since = since;
}
public PhoneType getType() {
return type;
}
public String getNumber() {
return number;
}
public Date getSince() {
return since;
}
}
CREATE TABLE Person (
id BIGINT NOT NULL ,
PRIMARY KEY ( id )
)
CREATE TABLE Phone (
id BIGINT NOT NULL ,
number VARCHAR(255) ,
since TIMESTAMP ,
type INTEGER ,
PRIMARY KEY ( id )
)
CREATE TABLE phone_register (
phone_id BIGINT NOT NULL ,
person_id BIGINT NOT NULL ,
PRIMARY KEY ( phone_id, person_id )
)
ALTER TABLE phone_register
ADD CONSTRAINT FKc3jajlx41lw6clbygbw8wm65w
FOREIGN KEY (person_id) REFERENCES Phone
ALTER TABLE phone_register
ADD CONSTRAINT FK6npoomh1rp660o1b55py9ndw4
FOREIGN KEY (phone_id) REFERENCES Person
Bidirectional maps
Like most bidirectional associations, this relationship is owned by the child-side while the parent is the inverse side and can propagate its own state transitions to the child entities.
In the following example, you can see that @MapKeyEnumerated
was used so that the Phone
enumeration becomes the map key.
@Entity(name = "Person")
public static class Person {
@Id
private Long id;
@OneToMany(mappedBy = "person", cascade = CascadeType.ALL, orphanRemoval = true)
@MapKey(name = "type")
@MapKeyEnumerated
private Map<PhoneType, Phone> phoneRegister = new HashMap<>();
public Person() {
}
public Person(Long id) {
this.id = id;
}
public Map<PhoneType, Phone> getPhoneRegister() {
return phoneRegister;
}
public void addPhone(Phone phone) {
phone.setPerson( this );
phoneRegister.put( phone.getType(), phone );
}
}
@Entity(name = "Phone")
public static class Phone {
@Id
@GeneratedValue
private Long id;
private PhoneType type;
@Column(name = "`number`")
private String number;
private Date since;
@ManyToOne
private Person person;
public Phone() {
}
public Phone(PhoneType type, String number, Date since) {
this.type = type;
this.number = number;
this.since = since;
}
public PhoneType getType() {
return type;
}
public String getNumber() {
return number;
}
public Date getSince() {
return since;
}
public Person getPerson() {
return person;
}
public void setPerson(Person person) {
this.person = person;
}
}
CREATE TABLE Person (
id BIGINT NOT NULL ,
PRIMARY KEY ( id )
)
CREATE TABLE Phone (
id BIGINT NOT NULL ,
number VARCHAR(255) ,
since TIMESTAMP ,
type INTEGER ,
person_id BIGINT ,
PRIMARY KEY ( id )
)
ALTER TABLE Phone
ADD CONSTRAINT FKmw13yfsjypiiq0i1osdkaeqpg
FOREIGN KEY (person_id) REFERENCES Person
Arrays
When discussing arrays, it is important to understand the distinction between SQL array types and Java arrays that are mapped as part of the application’s domain model.
Not all databases implement the SQL-99 ARRAY type and, for this reason, Hibernate doesn’t support native database array types.
Hibernate does support the mapping of arrays in the Java domain model - conceptually the same as mapping a List. However, it is important to realize that it is impossible for Hibernate to offer lazy-loading for arrays of entities and, for this reason, it is strongly recommended to map a "collection" of entities using a List rather than an array.
Arrays as binary
By default, Hibernate will choose a BINARY type, as supported by the current Dialect
.
@Entity(name = "Person")
public static class Person {
@Id
private Long id;
private String[] phones;
public Person() {
}
public Person(Long id) {
this.id = id;
}
public String[] getPhones() {
return phones;
}
public void setPhones(String[] phones) {
this.phones = phones;
}
}
CREATE TABLE Person (
id BIGINT NOT NULL ,
phones VARBINARY(255) ,
PRIMARY KEY ( id )
)
If you want to map arrays such as Check out this article for an example of how to write such a custom Hibernate Type. |
Collections as basic value type
Notice how all the previous examples explicitly mark the collection attribute as either ElementCollection
, OneToMany
or ManyToMany
.
Collections not marked as such require a custom Hibernate Type
and the collection elements must be stored in a single database column.
This is sometimes beneficial. Consider a use-case such as a VARCHAR
column that represents a delimited list/set of Strings.
@Entity(name = "Person")
public static class Person {
@Id
private Long id;
@Type(type = "comma_delimited_strings")
private List<String> phones = new ArrayList<>();
public List<String> getPhones() {
return phones;
}
}
public class CommaDelimitedStringsJavaTypeDescriptor extends AbstractTypeDescriptor<List> {
public static final String DELIMITER = ",";
public CommaDelimitedStringsJavaTypeDescriptor() {
super(
List.class,
new MutableMutabilityPlan<List>() {
@Override
protected List deepCopyNotNull(List value) {
return new ArrayList( value );
}
}
);
}
@Override
public String toString(List value) {
return ( (List<String>) value ).stream().collect( Collectors.joining( DELIMITER ) );
}
@Override
public List fromString(String string) {
List<String> values = new ArrayList<>();
Collections.addAll( values, string.split( DELIMITER ) );
return values;
}
@Override
public <X> X unwrap(List value, Class<X> type, WrapperOptions options) {
return (X) toString( value );
}
@Override
public <X> List wrap(X value, WrapperOptions options) {
return fromString( (String) value );
}
}
public class CommaDelimitedStringsType extends AbstractSingleColumnStandardBasicType<List> {
public CommaDelimitedStringsType() {
super(
VarcharTypeDescriptor.INSTANCE,
new CommaDelimitedStringsJavaTypeDescriptor()
);
}
@Override
public String getName() {
return "comma_delimited_strings";
}
}
The developer can use the comma-delimited collection like any other collection we’ve discussed so far and Hibernate will take care of the type transformation part. The collection itself behaves like any other basic value type, as its lifecycle is bound to its owner entity.
person.phones.add( "027-123-4567" );
person.phones.add( "028-234-9876" );
session.flush();
person.getPhones().remove( 0 );
INSERT INTO Person ( phones, id )
VALUES ( '027-123-4567,028-234-9876', 1 )
UPDATE Person
SET phones = '028-234-9876'
WHERE id = 1
See the Hibernate Integrations Guide for more details on developing custom value type mappings.
Custom collection types
If you wish to use other collection types than List
, Set
or Map
, like Queue
for instance,
you have to use a custom collection type, as illustrated by the following example:
@Entity(name = "Person")
public static class Person {
@Id
private Long id;
@OneToMany(cascade = CascadeType.ALL)
@CollectionType( type = "org.hibernate.userguide.collections.type.QueueType")
private Collection<Phone> phones = new LinkedList<>();
//Constructors are omitted for brevity
public Queue<Phone> getPhones() {
return (Queue<Phone>) phones;
}
}
@Entity(name = "Phone")
public static class Phone implements Comparable<Phone> {
@Id
private Long id;
private String type;
@NaturalId
@Column(name = "`number`")
private String number;
//Getters and setters are omitted for brevity
@Override
public int compareTo(Phone o) {
return number.compareTo( o.getNumber() );
}
@Override
public boolean equals(Object o) {
if ( this == o ) {
return true;
}
if ( o == null || getClass() != o.getClass() ) {
return false;
}
Phone phone = (Phone) o;
return Objects.equals( number, phone.number );
}
@Override
public int hashCode() {
return Objects.hash( number );
}
}
public class QueueType implements UserCollectionType {
@Override
public PersistentCollection instantiate(
SharedSessionContractImplementor session,
CollectionPersister persister) throws HibernateException {
return new PersistentQueue( session );
}
@Override
public PersistentCollection wrap(
SharedSessionContractImplementor session,
Object collection) {
return new PersistentQueue( session, (List) collection );
}
@Override
public Iterator getElementsIterator(Object collection) {
return ( (Queue) collection ).iterator();
}
@Override
public boolean contains(Object collection, Object entity) {
return ( (Queue) collection ).contains( entity );
}
@Override
public Object indexOf(Object collection, Object entity) {
int i = ( (List) collection ).indexOf( entity );
return ( i < 0 ) ? null : i;
}
@Override
public Object replaceElements(
Object original,
Object target,
CollectionPersister persister,
Object owner,
Map copyCache,
SharedSessionContractImplementor session)
throws HibernateException {
Queue result = (Queue) target;
result.clear();
result.addAll( (Queue) original );
return result;
}
@Override
public Object instantiate(int anticipatedSize) {
return new LinkedList<>();
}
}
public class PersistentQueue extends PersistentBag implements Queue {
public PersistentQueue(SharedSessionContractImplementor session) {
super( session );
}
public PersistentQueue(SharedSessionContractImplementor session, List list) {
super( session, list );
}
@Override
public boolean offer(Object o) {
return add(o);
}
@Override
public Object remove() {
return poll();
}
@Override
public Object poll() {
int size = size();
if(size > 0) {
Object first = get(0);
remove( 0 );
return first;
}
throw new NoSuchElementException();
}
@Override
public Object element() {
return peek();
}
@Override
public Object peek() {
return size() > 0 ? get( 0 ) : null;
}
}
The reason why the
However, the custom collection type can still be customized as long as the base type is one of the aformentioned persistent types. |
This way, the Phone
collection can be used as a java.util.Queue
:
Person person = entityManager.find( Person.class, 1L );
Queue<Phone> phones = person.getPhones();
Phone head = phones.peek();
assertSame(head, phones.poll());
assertEquals( 1, phones.size() );