Native SQL Queries
You may also express queries in the native SQL dialect of your database.
This is useful if you want to utilize database specific features such as window functions, Common Table Expressions (CTE) or the CONNECT BY
option in Oracle.
It also provides a clean migration path from a direct SQL/JDBC based application to Hibernate/JPA.
Hibernate also allows you to specify handwritten SQL (including stored procedures) for all create, update, delete, and retrieve operations.
Creating a native query using JPA
Execution of native SQL queries is controlled via the NativeQuery
interface, which is obtained by calling Session.createNativeQuery()
.
The following sections describe how to use this API for querying.
Scalar queries
The most basic SQL query is to get a list of scalars (column) values.
List<Object[]> persons = entityManager.createNativeQuery(
"SELECT * FROM Person" )
.getResultList();
List<Object[]> persons = entityManager.createNativeQuery(
"SELECT id, name FROM Person" )
.getResultList();
for(Object[] person : persons) {
Number id = (Number) person[0];
String name = (String) person[1];
}
List<Object[]> persons = session.createNativeQuery(
"SELECT * FROM Person" )
.list();
List<Object[]> persons = session.createNativeQuery(
"SELECT id, name FROM Person" )
.list();
for(Object[] person : persons) {
Number id = (Number) person[0];
String name = (String) person[1];
}
These will return a List
of Object
arrays ( Object[]
) with scalar values for each column in the PERSON
table.
Hibernate will use java.sql.ResultSetMetadata
to deduce the actual order and types of the returned scalar values.
To avoid the overhead of using ResultSetMetadata
, or simply to be more explicit in what is returned, one can use addScalar()
:
List<Object[]> persons = session.createNativeQuery(
"SELECT * FROM Person" )
.addScalar( "id", LongType.INSTANCE )
.addScalar( "name", StringType.INSTANCE )
.list();
for(Object[] person : persons) {
Long id = (Long) person[0];
String name = (String) person[1];
}
Although it still returns an Object
arrays, this query will not use the ResultSetMetadata
anymore since it explicitly gets the id
and name
columns as respectively a BigInteger
and a String
from the underlying ResultSet
.
This also means that only these two columns will be returned, even though the query is still using *
and the ResultSet
contains more than the three listed columns.
It is possible to leave out the type information for all or some of the scalars.
List<Object[]> persons = session.createNativeQuery(
"SELECT * FROM Person" )
.addScalar( "id", LongType.INSTANCE )
.addScalar( "name" )
.list();
for(Object[] person : persons) {
Long id = (Long) person[0];
String name = (String) person[1];
}
This is essentially the same query as before, but now ResultSetMetaData
is used to determine the type of name
, where as the type of id
is explicitly specified.
How the java.sql.Types
returned from ResultSetMetaData
is mapped to Hibernate types is controlled by the Dialect
.
If a specific type is not mapped, or does not result in the expected type, it is possible to customize it via calls to registerHibernateType
in the Dialect.
Entity queries
The above queries were all about returning scalar values, basically returning the raw values from the ResultSet
.
List<Person> persons = entityManager.createNativeQuery(
"SELECT * FROM Person", Person.class )
.getResultList();
List<Person> persons = session.createNativeQuery(
"SELECT * FROM Person" )
.addEntity( Person.class )
.list();
Assuming that Person
is mapped as a class with the columns id
, name
, nickName
, address
, createdOn
and version
,
the following query will also return a List
where each element is a Person
entity.
List<Person> persons = entityManager.createNativeQuery(
"SELECT id, name, nickName, address, createdOn, version " +
"FROM Person", Person.class )
.getResultList();
List<Person> persons = session.createNativeQuery(
"SELECT id, name, nickName, address, createdOn, version " +
"FROM Person" )
.addEntity( Person.class )
.list();
Handling associations and collections
If the entity is mapped with a many-to-one
or a child-side one-to-one
to another entity,
it is required to also return this when performing the native query,
otherwise a database specific column not found error will occur.
List<Phone> phones = entityManager.createNativeQuery(
"SELECT id, phone_number, phone_type, person_id " +
"FROM Phone", Phone.class )
.getResultList();
List<Phone> phones = session.createNativeQuery(
"SELECT id, phone_number, phone_type, person_id " +
"FROM Phone" )
.addEntity( Phone.class )
.list();
This will allow the Phone#person
to function properly since the many-to-one
or one-to-one
association is going to use a proxy that will be initialized when being navigated for the first time.
It is possible to eagerly join the Phone
and the Person
entities to avoid the possible extra roundtrip for initializing the many-to-one
association.
List<Object[]> tuples = session.createNativeQuery(
"SELECT * " +
"FROM Phone ph " +
"JOIN Person pr ON ph.person_id = pr.id" )
.addEntity("phone", Phone.class )
.addJoin( "pr", "phone.person")
.list();
for(Object[] tuple : tuples) {
Phone phone = (Phone) tuple[0];
Person person = (Person) tuple[1];
assertNotNull( person.getName() );
}
SELECT
*
FROM
Phone ph
JOIN
Person pr
ON ph.person_id = pr.id
As seen in the associated SQL query, Hibernate manages to construct the entity hierarchy without requiring any extra database roundtrip. |
By default, when using the addJoin()
method, the result set will contain both entities that are joined.
To construct the entity hierarchy, you need to use a ROOT_ENTITY
or DISTINCT_ROOT_ENTITY
ResultTransformer
.
ResultTransformer
List<Person> persons = session.createNativeQuery(
"SELECT * " +
"FROM Phone ph " +
"JOIN Person pr ON ph.person_id = pr.id" )
.addEntity("phone", Phone.class )
.addJoin( "pr", "phone.person")
.setResultTransformer( Criteria.ROOT_ENTITY )
.list();
for(Person person : persons) {
person.getPhones();
}
Because of the |
Notice that you added an alias name pr to be able to specify the target property path of the join.
It is possible to do the same eager joining for collections (e.g. the Phone#calls
one-to-many
association).
List<Phone> phones = entityManager.createNativeQuery(
"SELECT * " +
"FROM Phone ph " +
"JOIN phone_call c ON c.phone_id = ph.id", Phone.class )
.getResultList();
for(Phone phone : phones) {
List<Call> calls = phone.getCalls();
}
SELECT *
FROM phone ph
JOIN call c ON c.phone_id = ph.id
List<Object[]> tuples = session.createNativeQuery(
"SELECT * " +
"FROM Phone ph " +
"JOIN phone_call c ON c.phone_id = ph.id" )
.addEntity("phone", Phone.class )
.addJoin( "c", "phone.calls")
.list();
for(Object[] tuple : tuples) {
Phone phone = (Phone) tuple[0];
Call call = (Call) tuple[1];
}
SELECT *
FROM phone ph
JOIN call c ON c.phone_id = ph.id
At this stage you are reaching the limits of what is possible with native queries, without starting to enhance the sql queries to make them usable in Hibernate. Problems can arise when returning multiple entities of the same type or when the default alias/column names are not enough.
Returning multiple entities
Until now, the result set column names are assumed to be the same as the column names specified in the mapping document. This can be problematic for SQL queries that join multiple tables since the same column names can appear in more than one table.
Column alias injection is needed in the following query which otherwise throws NonUniqueDiscoveredSqlAliasException
.
List<Object> entities = entityManager.createNativeQuery(
"SELECT * " +
"FROM Person pr, Partner pt " +
"WHERE pr.name = pt.name" )
.getResultList();
List<Object> entities = session.createNativeQuery(
"SELECT * " +
"FROM Person pr, Partner pt " +
"WHERE pr.name = pt.name" )
.list();
The query was intended to return all Person
and Partner
instances with the same name.
The query fails because there is a conflict of names since the two entities are mapped to the same column names (e.g. id
, name
, version
).
Also, on some databases the returned column aliases will most likely be on the form pr.id
, pr.name
, etc.
which are not equal to the columns specified in the mappings (id
and name
).
The following form is not vulnerable to column name duplication:
List<Object> entities = session.createNativeQuery(
"SELECT {pr.*}, {pt.*} " +
"FROM Person pr, Partner pt " +
"WHERE pr.name = pt.name" )
.addEntity( "pr", Person.class)
.addEntity( "pt", Partner.class)
.list();
There’s no such equivalent in JPA because the |
The {pr.}
and {pt.}
notation used above is shorthand for "all properties".
Alternatively, you can list the columns explicitly, but even in this case Hibernate injects the SQL column aliases for each property.
The placeholder for a column alias is just the property name qualified by the table alias.
Alias and property references
In most cases the above alias injection is needed. For queries relating to more complex mappings, like composite properties, inheritance discriminators, collections etc., you can use specific aliases that allow Hibernate to inject the proper aliases.
The following table shows the different ways you can use the alias injection. Please note that the alias names in the result are simply examples, each alias will have a unique and probably different name when used.
Description | Syntax | Example |
---|---|---|
A simple property |
|
|
A composite property |
|
|
Discriminator of an entity |
|
|
All properties of an entity |
|
|
A collection key |
|
|
The id of a collection |
|
|
The element of a collection |
|
|
property of the element in the collection |
|
|
All properties of the element in the collection |
|
|
All properties of the collection |
|
|
Returning DTOs (Data Transfer Objects)
It is possible to apply a ResultTransformer
to native SQL queries, allowing it to return non-managed entities.
public class PersonSummaryDTO {
private Number id;
private String name;
public Number getId() {
return id;
}
public void setId(Number id) {
this.id = id;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
}
List<PersonSummaryDTO> dtos = session.createNativeQuery(
"SELECT p.id as \"id\", p.name as \"name\" " +
"FROM Person p")
.setResultTransformer( Transformers.aliasToBean( PersonSummaryDTO.class ) )
.list();
There’s no such equivalent in JPA because the |
The above query will return a list of PersonSummaryDTO
which has been instantiated and injected the values of id
and name
into its corresponding properties or fields.
Handling inheritance
Native SQL queries which query for entities that are mapped as part of an inheritance must include all properties for the base class and all its subclasses.
List<CreditCardPayment> payments = session.createNativeQuery(
"SELECT * " +
"FROM Payment p " +
"JOIN CreditCardPayment cp on cp.id = p.id" )
.addEntity( CreditCardPayment.class )
.list();
There’s no such equivalent in JPA because the |
Parameters
Native SQL queries support positional as well as named parameters:
List<Person> persons = entityManager.createNativeQuery(
"SELECT * " +
"FROM Person " +
"WHERE name like :name", Person.class )
.setParameter("name", "J%")
.getResultList();
List<Person> persons = session.createNativeQuery(
"SELECT * " +
"FROM Person " +
"WHERE name like :name" )
.addEntity( Person.class )
.setParameter("name", "J%")
.list();
Named SQL queries
Named SQL queries can also be defined during mapping and called in exactly the same way as a named HQL query.
In this case, you do not need to call addEntity()
anymore.
JPA defines the javax.persistence.NamedNativeQuery
annotation for this purpose,
and the Hibernate org.hibernate.annotations.NamedNativeQuery
annotation extends it and adds the following attributes:
flushMode()
-
The flush mode for the query. By default, it uses the current Persistence Context flush mode.
cacheable()
-
Whether the query (results) is cacheable or not. By default, queries are not cached.
cacheRegion()
-
If the query results are cacheable, name the query cache region to use.
fetchSize()
-
The number of rows fetched by the JDBC Driver per database trip. The default value is given by the JDBC driver.
timeout()
-
The query timeout (in seconds). By default, there’s no timeout.
callable()
-
Does the SQL query represent a call to a procedure/function? Default is false.
comment()
-
A comment added to the SQL query for tuning the execution plan.
cacheMode()
-
The cache mode used for this query. This refers to entities/collections returned by the query. The default value is
CacheModeType.NORMAL
. readOnly()
-
Whether the results should be read-only. By default, queries are not read-only so entities are stored in the Persistence Context.
Named SQL queries selecting scalar values
To fetch a single column of given table, the named query looks as follows:
NamedNativeQuery
@NamedNativeQuery(
name = "find_person_name",
query =
"SELECT name " +
"FROM Person "
),
List<String> names = entityManager.createNamedQuery(
"find_person_name" )
.getResultList();
List<String> names = session.getNamedQuery(
"find_person_name" )
.list();
Selecting multiple scalar values is done like this:
NamedNativeQuery
@NamedNativeQuery(
name = "find_person_name_and_nickName",
query =
"SELECT " +
" name, " +
" nickName " +
"FROM Person "
),
Without specifying an explicit result type, Hibernate will assume an Object
array:
List<Object[]> tuples = entityManager.createNamedQuery(
"find_person_name_and_nickName" )
.getResultList();
for(Object[] tuple : tuples) {
String name = (String) tuple[0];
String nickName = (String) tuple[1];
}
List<Object[]> tuples = session.getNamedQuery(
"find_person_name_and_nickName" )
.list();
for(Object[] tuple : tuples) {
String name = (String) tuple[0];
String nickName = (String) tuple[1];
}
It’s possible to use a DTO to store the resulting scalar values:
public class PersonNames {
private final String name;
private final String nickName;
public PersonNames(String name, String nickName) {
this.name = name;
this.nickName = nickName;
}
public String getName() {
return name;
}
public String getNickName() {
return nickName;
}
}
NamedNativeQuery
with ConstructorResult
@NamedNativeQuery(
name = "find_person_name_and_nickName_dto",
query =
"SELECT " +
" name, " +
" nickName " +
"FROM Person ",
resultSetMapping = "name_and_nickName_dto"
),
@SqlResultSetMapping(
name = "name_and_nickName_dto",
classes = @ConstructorResult(
targetClass = PersonNames.class,
columns = {
@ColumnResult(name = "name"),
@ColumnResult(name = "nickName")
}
)
)
List<PersonNames> personNames = entityManager.createNamedQuery(
"find_person_name_and_nickName_dto" )
.getResultList();
List<PersonNames> personNames = session.getNamedQuery(
"find_person_name_and_nickName_dto" )
.list();
You can also use the @NamedNativeQuery
Hibernate annotation
to customize the named query using various configurations such as fetch mode, cacheability, time out interval.
ConstructorResult
and Hibernate NamedNativeQuery
@NamedNativeQueries({
@NamedNativeQuery(
name = "get_person_phone_count",
query = "SELECT pr.name AS name, count(*) AS phoneCount " +
"FROM Phone p " +
"JOIN Person pr ON pr.id = p.person_id " +
"GROUP BY pr.name",
resultSetMapping = "person_phone_count",
timeout = 1,
readOnly = true
),
})
@SqlResultSetMapping(
name = "person_phone_count",
classes = @ConstructorResult(
targetClass = PersonPhoneCount.class,
columns = {
@ColumnResult(name = "name"),
@ColumnResult(name = "phoneCount")
}
)
)
NamedNativeQuery
named native query selecting multiple scalar values into a DTOList<PersonPhoneCount> personNames = session.getNamedNativeQuery(
"get_person_phone_count")
.getResultList();
Named SQL queries selecting entities
Considering the following named query:
NamedNativeQuery
@NamedNativeQuery(
name = "find_person_by_name",
query =
"SELECT " +
" p.id AS \"id\", " +
" p.name AS \"name\", " +
" p.nickName AS \"nickName\", " +
" p.address AS \"address\", " +
" p.createdOn AS \"createdOn\", " +
" p.version AS \"version\" " +
"FROM Person p " +
"WHERE p.name LIKE :name",
resultClass = Person.class
),
The result set mapping declares the entities retrieved by this native query. Each field of the entity is bound to an SQL alias (or column name). All fields of the entity including the ones of subclasses and the foreign key columns of related entities have to be present in the SQL query. Field definitions are optional provided that they map to the same column name as the one declared on the class property.
Executing this named native query can be done as follows:
List<Person> persons = entityManager.createNamedQuery(
"find_person_by_name" )
.setParameter("name", "J%")
.getResultList();
List<Person> persons = session.getNamedQuery(
"find_person_by_name" )
.setParameter("name", "J%")
.list();
To join multiple entities, you need to use a SqlResultSetMapping
for each entity the SQL query is going to fetch.
NamedNativeQuery
@NamedNativeQuery(
name = "find_person_with_phones_by_name",
query =
"SELECT " +
" pr.id AS \"pr.id\", " +
" pr.name AS \"pr.name\", " +
" pr.nickName AS \"pr.nickName\", " +
" pr.address AS \"pr.address\", " +
" pr.createdOn AS \"pr.createdOn\", " +
" pr.version AS \"pr.version\", " +
" ph.id AS \"ph.id\", " +
" ph.person_id AS \"ph.person_id\", " +
" ph.phone_number AS \"ph.number\", " +
" ph.phone_type AS \"ph.type\" " +
"FROM Person pr " +
"JOIN Phone ph ON pr.id = ph.person_id " +
"WHERE pr.name LIKE :name",
resultSetMapping = "person_with_phones"
)
@SqlResultSetMapping(
name = "person_with_phones",
entities = {
@EntityResult(
entityClass = Person.class,
fields = {
@FieldResult( name = "id", column = "pr.id" ),
@FieldResult( name = "name", column = "pr.name" ),
@FieldResult( name = "nickName", column = "pr.nickName" ),
@FieldResult( name = "address", column = "pr.address" ),
@FieldResult( name = "createdOn", column = "pr.createdOn" ),
@FieldResult( name = "version", column = "pr.version" ),
}
),
@EntityResult(
entityClass = Phone.class,
fields = {
@FieldResult( name = "id", column = "ph.id" ),
@FieldResult( name = "person", column = "ph.person_id" ),
@FieldResult( name = "number", column = "ph.number" ),
@FieldResult( name = "type", column = "ph.type" ),
}
)
}
),
List<Object[]> tuples = entityManager.createNamedQuery(
"find_person_with_phones_by_name" )
.setParameter("name", "J%")
.getResultList();
for(Object[] tuple : tuples) {
Person person = (Person) tuple[0];
Phone phone = (Phone) tuple[1];
}
List<Object[]> tuples = session.getNamedQuery(
"find_person_with_phones_by_name" )
.setParameter("name", "J%")
.list();
for(Object[] tuple : tuples) {
Person person = (Person) tuple[0];
Phone phone = (Phone) tuple[1];
}
Finally, if the association to a related entity involve a composite primary key, a @FieldResult
element should be used for each foreign key column.
The @FieldResult
name is composed of the property name for the relationship, followed by a dot ("."), followed by the name or the field or property of the primary key.
For this example, the following entities are going to be used:
@Embeddable
public class Dimensions {
private int length;
private int width;
public int getLength() {
return length;
}
public void setLength(int length) {
this.length = length;
}
public int getWidth() {
return width;
}
public void setWidth(int width) {
this.width = width;
}
}
@Embeddable
public class Identity implements Serializable {
private String firstname;
private String lastname;
public String getFirstname() {
return firstname;
}
public void setFirstname(String firstname) {
this.firstname = firstname;
}
public String getLastname() {
return lastname;
}
public void setLastname(String lastname) {
this.lastname = lastname;
}
public boolean equals(Object o) {
if ( this == o ) return true;
if ( o == null || getClass() != o.getClass() ) return false;
final Identity identity = (Identity) o;
if ( !firstname.equals( identity.firstname ) ) return false;
if ( !lastname.equals( identity.lastname ) ) return false;
return true;
}
public int hashCode() {
int result;
result = firstname.hashCode();
result = 29 * result + lastname.hashCode();
return result;
}
}
@Entity
public class Captain {
@EmbeddedId
private Identity id;
public Identity getId() {
return id;
}
public void setId(Identity id) {
this.id = id;
}
}
@Entity
@NamedNativeQueries({
@NamedNativeQuery(name = "find_all_spaceships",
query =
"SELECT " +
" name as \"name\", " +
" model, " +
" speed, " +
" lname as lastn, " +
" fname as firstn, " +
" length, " +
" width, " +
" length * width as surface, " +
" length * width * 10 as volume " +
"FROM SpaceShip",
resultSetMapping = "spaceship"
)
})
@SqlResultSetMapping(
name = "spaceship",
entities = @EntityResult(
entityClass = SpaceShip.class,
fields = {
@FieldResult(name = "name", column = "name"),
@FieldResult(name = "model", column = "model"),
@FieldResult(name = "speed", column = "speed"),
@FieldResult(name = "captain.lastname", column = "lastn"),
@FieldResult(name = "captain.firstname", column = "firstn"),
@FieldResult(name = "dimensions.length", column = "length"),
@FieldResult(name = "dimensions.width", column = "width"),
}
),
columns = {
@ColumnResult(name = "surface"),
@ColumnResult(name = "volume")
}
)
public class SpaceShip {
@Id
private String name;
private String model;
private double speed;
@ManyToOne(fetch = FetchType.LAZY)
@JoinColumns({
@JoinColumn(name = "fname", referencedColumnName = "firstname"),
@JoinColumn(name = "lname", referencedColumnName = "lastname")
})
private Captain captain;
private Dimensions dimensions;
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public String getModel() {
return model;
}
public void setModel(String model) {
this.model = model;
}
public double getSpeed() {
return speed;
}
public void setSpeed(double speed) {
this.speed = speed;
}
public Captain getCaptain() {
return captain;
}
public void setCaptain(Captain captain) {
this.captain = captain;
}
public Dimensions getDimensions() {
return dimensions;
}
public void setDimensions(Dimensions dimensions) {
this.dimensions = dimensions;
}
}
List<Object[]> tuples = entityManager.createNamedQuery(
"find_all_spaceships" )
.getResultList();
for(Object[] tuple : tuples) {
SpaceShip spaceShip = (SpaceShip) tuple[0];
Number surface = (Number) tuple[1];
Number volume = (Number) tuple[2];
}
List<Object[]> tuples = session.getNamedQuery(
"find_all_spaceships" )
.list();
for(Object[] tuple : tuples) {
SpaceShip spaceShip = (SpaceShip) tuple[0];
Number surface = (Number) tuple[1];
Number volume = (Number) tuple[2];
}
Resolving global catalog and schema in native SQL queries
When using multiple database catalogs and schemas, Hibernate offers the possibility of setting a global catalog or schema so that you don’t have to declare it explicitly for every entity.
<property name="hibernate.default_catalog" value="crm"/>
<property name="hibernate.default_schema" value="analytics"/>
This way, we can imply the global crm catalog and analytics schema in every JPQL, HQL or Criteria API query.
However, for native queries, the SQL query is passed as is, therefore you need to explicitly set the global catalog and schema whenever you are referencing a database table. Fortunately, Hibernate allows you to resolve the current global catalog and schema using the following placeholders:
- {h-catalog}
-
resolves the current
hibernate.default_catalog
configuration property value. - {h-schema}
-
resolves the current
hibernate.default_schema
configuration property value. - {h-domain}
-
resolves the current
hibernate.default_catalog
andhibernate.default_schema
configuration property values (e.g. catalog.schema).
Withe these placeholders, you can imply the catalog, schema, or both catalog and schema for every native query.
So, when running the following native query:
@NamedNativeQuery(
name = "last_30_days_hires",
query =
"select * " +
"from {h-domain}person " +
"where age(hired_on) < '30 days'",
resultClass = Person.class
)
Hibernate is going to resolve the {h-domain}
placeholder according to the values of the default catalog and schema:
SELECT *
FROM crm.analytics.person
WHERE age(hired_on) < '30 days'
Using stored procedures for querying
Hibernate provides support for queries via stored procedures and functions.
A stored procedure arguments are declared using the IN
parameter type, and the result can be either marked with an OUT
parameter type, a REF_CURSOR
or it could just return the result like a function.
OUT
parameter typestatement.executeUpdate(
"CREATE PROCEDURE sp_count_phones (" +
" IN personId INT, " +
" OUT phoneCount INT " +
") " +
"BEGIN " +
" SELECT COUNT(*) INTO phoneCount " +
" FROM Phone p " +
" WHERE p.person_id = personId; " +
"END"
);
To use this stored procedure, you can execute the following JPA 2.1 query:
OUT
parameter type using JPAStoredProcedureQuery query = entityManager.createStoredProcedureQuery( "sp_count_phones");
query.registerStoredProcedureParameter( "personId", Long.class, ParameterMode.IN);
query.registerStoredProcedureParameter( "phoneCount", Long.class, ParameterMode.OUT);
query.setParameter("personId", 1L);
query.execute();
Long phoneCount = (Long) query.getOutputParameterValue("phoneCount");
OUT
parameter type using HibernateSession session = entityManager.unwrap( Session.class );
ProcedureCall call = session.createStoredProcedureCall( "sp_count_phones" );
call.registerParameter( "personId", Long.class, ParameterMode.IN ).bindValue( 1L );
call.registerParameter( "phoneCount", Long.class, ParameterMode.OUT );
Long phoneCount = (Long) call.getOutputs().getOutputParameterValue( "phoneCount" );
assertEquals( Long.valueOf( 2 ), phoneCount );
If the stored procedure outputs the result directly without an OUT
parameter type:
OUT
parameter typestatement.executeUpdate(
"CREATE PROCEDURE sp_phones(IN personId INT) " +
"BEGIN " +
" SELECT * " +
" FROM Phone " +
" WHERE person_id = personId; " +
"END"
);
You can retrieve the results of the aforementioned MySQL stored procedure as follows:
OUT
parameter type using JPAStoredProcedureQuery query = entityManager.createStoredProcedureQuery( "sp_phones");
query.registerStoredProcedureParameter( 1, Long.class, ParameterMode.IN);
query.setParameter(1, 1L);
List<Object[]> personComments = query.getResultList();
OUT
parameter type using HibernateSession session = entityManager.unwrap( Session.class );
ProcedureCall call = session.createStoredProcedureCall( "sp_phones" );
call.registerParameter( 1, Long.class, ParameterMode.IN ).bindValue( 1L );
Output output = call.getOutputs().getCurrent();
List<Object[]> personComments = ( (ResultSetOutput) output ).getResultList();
For a REF_CURSOR
result sets, we’ll consider the following Oracle stored procedure:
REF_CURSOR
stored procedurestatement.executeUpdate(
"CREATE OR REPLACE PROCEDURE sp_person_phones ( " +
" personId IN NUMBER, " +
" personPhones OUT SYS_REFCURSOR ) " +
"AS " +
"BEGIN " +
" OPEN personPhones FOR " +
" SELECT *" +
" FROM phone " +
" WHERE person_id = personId; " +
"END;"
);
|
This function can be called using the standard Java Persistence API:
REF_CURSOR
stored procedure using JPAStoredProcedureQuery query = entityManager.createStoredProcedureQuery( "sp_person_phones" );
query.registerStoredProcedureParameter( 1, Long.class, ParameterMode.IN );
query.registerStoredProcedureParameter( 2, Class.class, ParameterMode.REF_CURSOR );
query.setParameter( 1, 1L );
query.execute();
List<Object[]> postComments = query.getResultList();
REF_CURSOR
stored procedure using HibernateSession session = entityManager.unwrap(Session.class);
ProcedureCall call = session.createStoredProcedureCall( "sp_person_phones");
call.registerParameter(1, Long.class, ParameterMode.IN).bindValue(1L);
call.registerParameter(2, Class.class, ParameterMode.REF_CURSOR);
Output output = call.getOutputs().getCurrent();
List<Object[]> postComments = ( (ResultSetOutput) output ).getResultList();
assertEquals(2, postComments.size());
If the database defines an SQL function:
statement.executeUpdate(
"CREATE FUNCTION fn_count_phones(personId integer) " +
"RETURNS integer " +
"DETERMINISTIC " +
"READS SQL DATA " +
"BEGIN " +
" DECLARE phoneCount integer; " +
" SELECT COUNT(*) INTO phoneCount " +
" FROM Phone p " +
" WHERE p.person_id = personId; " +
" RETURN phoneCount; " +
"END"
);
Because the current StoredProcedureQuery
implementation doesn’t yet support SQL functions,
we need to use the JDBC syntax.
This limitation is acknowledged and will be addressed by the HHH-10530 issue. |
final AtomicReference<Integer> phoneCount = new AtomicReference<>();
Session session = entityManager.unwrap( Session.class );
session.doWork( connection -> {
try (CallableStatement function = connection.prepareCall(
"{ ? = call fn_count_phones(?) }" )) {
function.registerOutParameter( 1, Types.INTEGER );
function.setInt( 2, 1 );
function.execute();
phoneCount.set( function.getInt( 1 ) );
}
} );
Stored procedure queries cannot be paged with Since these servers can return multiple result sets and update counts, Hibernate will iterate the results and take the first result that is a result set as its return value, so everything else will be discarded. For SQL Server, if you can enable |
Using named queries to call stored procedures
Just like with SQL statements, you can also use named queries to call stored procedures.
For this purpose, JPA defines the @NamedStoredProcedureQuery
annotation.
REF_CURSOR
named query stored procedure@NamedStoredProcedureQueries(
@NamedStoredProcedureQuery(
name = "sp_person_phones",
procedureName = "sp_person_phones",
parameters = {
@StoredProcedureParameter(
name = "personId",
type = Long.class,
mode = ParameterMode.IN
),
@StoredProcedureParameter(
name = "personPhones",
type = Class.class,
mode = ParameterMode.REF_CURSOR
)
}
)
)
Calling this stored procedure is straightforward, as illustrated by the following example.
REF_CURSOR
stored procedure using a JPA named queryList<Object[]> postComments = entityManager
.createNamedStoredProcedureQuery( "sp_person_phones" )
.setParameter( "personId", 1L )
.getResultList();
Custom SQL for create, update, and delete
Hibernate can use custom SQL for create, update, and delete operations. The SQL can be overridden at the statement level or individual column level. This section describes statement overrides. For columns, see Column transformers: read and write expressions.
The following example shows how to define custom SQL operations using annotations.
@SQLInsert
, @SQLUpdate
and @SQLDelete
override the INSERT, UPDATE, DELETE statements of a given entity.
For the SELECT clause, a @Loader
must be defined along with a @NamedNativeQuery
used for loading the underlying table record.
For collections, Hibernate allows defining a custom @SQLDeleteAll
which is used for removing all child records associated with a given parent entity.
To filter collections, the @Where
annotation allows customizing the underlying SQL WHERE clause.
@Entity(name = "Person")
@SQLInsert(
sql = "INSERT INTO person (name, id, valid) VALUES (?, ?, true) ",
check = ResultCheckStyle.COUNT
)
@SQLUpdate(
sql = "UPDATE person SET name = ? where id = ? ")
@SQLDelete(
sql = "UPDATE person SET valid = false WHERE id = ? ")
@Loader(namedQuery = "find_valid_person")
@NamedNativeQueries({
@NamedNativeQuery(
name = "find_valid_person",
query = "SELECT id, name " +
"FROM person " +
"WHERE id = ? and valid = true",
resultClass = Person.class
)
})
public static class Person {
@Id
@GeneratedValue
private Long id;
private String name;
@ElementCollection
@SQLInsert(
sql = "INSERT INTO person_phones (person_id, phones, valid) VALUES (?, ?, true) ")
@SQLDeleteAll(
sql = "UPDATE person_phones SET valid = false WHERE person_id = ?")
@Where( clause = "valid = true" )
private List<String> phones = new ArrayList<>();
public Long getId() {
return id;
}
public void setId(Long id) {
this.id = id;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public List<String> getPhones() {
return phones;
}
}
In the example above, the entity is mapped so that entries are soft-deleted (the records are not removed from the database, but instead, a flag marks the row validity).
The Person
entity benefits from custom INSERT, UPDATE, and DELETE statements which update the valid
column accordingly.
The custom @Loader
is used to retrieve only Person
rows that are valid.
The same is done for the phones
collection. The @SQLDeleteAll
and the SQLInsert
queries are used whenever the collection is modified.
You also call a store procedure using the custom CRUD statements; the only requirement is to set the |
To check that the execution happens correctly, Hibernate allows you to define one of those three strategies:
-
none: no check is performed; the store procedure is expected to fail upon constraint violations
-
count: use of row-count returned by the
executeUpdate()
method call to check that the update was successful -
param: like count but using a
CallableStatement
output parameter.
To define the result check style, use the check
parameter.
The parameter order is important and is defined by the order Hibernate handles properties. You can see the expected order by enabling debug logging, so Hibernate can print out the static SQL that is used to create, update, delete etc. entities. To see the expected sequence, remember to not include your custom SQL through annotations or mapping files as that will override the Hibernate generated static sql. |
Overriding SQL statements for secondary tables is also possible using @org.hibernate.annotations.Table
and the sqlInsert
, sqlUpdate
, sqlDelete
attributes.
@Entity(name = "Person")
@Table(name = "person")
@SQLInsert(
sql = "INSERT INTO person (name, id, valid) VALUES (?, ?, true) "
)
@SQLDelete(
sql = "UPDATE person SET valid = false WHERE id = ? "
)
@SecondaryTable(name = "person_details",
pkJoinColumns = @PrimaryKeyJoinColumn(name = "person_id"))
@org.hibernate.annotations.Table(
appliesTo = "person_details",
sqlInsert = @SQLInsert(
sql = "INSERT INTO person_details (image, person_id, valid) VALUES (?, ?, true) ",
check = ResultCheckStyle.COUNT
),
sqlDelete = @SQLDelete(
sql = "UPDATE person_details SET valid = false WHERE person_id = ? "
)
)
@Loader(namedQuery = "find_valid_person")
@NamedNativeQueries({
@NamedNativeQuery(
name = "find_valid_person",
query = "select " +
" p.id, " +
" p.name, " +
" pd.image " +
"from person p " +
"left outer join person_details pd on p.id = pd.person_id " +
"where p.id = ? and p.valid = true and pd.valid = true",
resultClass = Person.class
)
})
public static class Person {
@Id
@GeneratedValue
private Long id;
private String name;
@Column(name = "image", table = "person_details")
private byte[] image;
public Long getId() {
return id;
}
public void setId(Long id) {
this.id = id;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public byte[] getImage() {
return image;
}
public void setImage(byte[] image) {
this.image = image;
}
}
The SQL is directly executed in your database, so you can use any dialect you like. This will, however, reduce the portability of your mapping if you use database specific SQL. |
You can also use stored procedures for customizing the CRUD statements.
Assuming the following stored procedure:
statement.executeUpdate(
"CREATE OR REPLACE PROCEDURE sp_delete_person ( " +
" personId IN NUMBER ) " +
"AS " +
"BEGIN " +
" UPDATE person SET valid = 0 WHERE id = personId; " +
"END;"
);}
The entity can use this stored procedure to soft-delete the entity in question:
@SQLDelete(
sql = "{ call sp_delete_person( ? ) } ",
callable = true
)
You need to set the |