Getting Started with Hibernate

Version 7.1.0.Final

Table of Contents

Preface

1.

Obtaining Hibernate

1.1. Hibernate ORM modules
1.2. Platform / BOM

1.3. Example sources

. Tutorial using native Hibernate APIs

2.1. Configuration via properties file
2.2. The annotated entity Java class
2.3. Example code

2.4. Take it further!

. Tutorial using JPA-standard APIs

3.1. persistence.xml

3.2. The annotated entity Java class
3.3. Example code

3.4. Take it further!

. Tutorial Using Envers

4.1. persistence.xml

4.2. The annotated entity Java class
4.3. Example code

4.4. Take it further!

. Credits

© N O 1 Ul W NN e

S S T N " Y S Gy WP
U b W W W w N R, =, O O

Preface

Hibernate is an Object/Relational Mapping (ORM) solution for programs written in Java and other
JVM languages.

While a strong background in SQL is not required to use Hibernate, a basic understanding of its
concepts is useful - especially the principles of data modeling. Understanding the basics of
transactions and design patterns such as Unit of Work are important as well.

Useful background resources

Data Modeling (Wikipedia).
* Data Modeling 101
 Java & Databases: An Overview of Libraries & APIs

Unit of Work

https://en.wikipedia.org/wiki/Data_modeling
https://www.agiledata.org/essays/dataModeling101.html
https://www.marcobehler.com/guides/a-guide-to-accessing-databases-in-java
https://martinfowler.com/eaaCatalog/unitOfWork.html

Chapter 1. Obtaining Hibernate

Hibernate is broken into a number of modules/artifacts under the org.hibernate.orm group. The
main artifact is named hibernate-core.

o This guide uses 7.1.0.Final as the Hibernate version for illustration purposes. Be
sure to change this version, if necessary, to the version you wish to use.

We can declare a dependency on this artifact using Gradle

dependencies {
implementation "org.hibernate.orm:hibernate-core:7.1.0.Final"

}
or Maven:
<dependency>
<groupId>org.hibernate.orm</groupId>
<artifactId>hibernate-core</artifactId>
<version>7.1.0.Final</version>
</dependency>

1.1. Hibernate ORM modules

As mentioned earlier, Hibernate ORM is broken into a number of modules with the intent of
isolating transitive dependencies based on the features being used or not.

Table 1. API-oriented modules

hibernate-core The core object/relational mapping engine
hibernate-envers Entity versioning and auditing

hibernate-spatial Support for spatial/GIS data types using GeoLatte
hibernate-processor An annotation processor that generates a JPA-compliant

metamodel, plus optional Hibernate extras

hibernate-vector Support for mathematical vector types and functions
useful for AI/ML topics like vector similarity search and
Retrieval-Augmented Generation (RAG)

Table 2. Integration-oriented modules

hibernate-agroal Support for Agroal connection pooling
hibernate-c3p0 Support for C3P0 connection pooling
hibernate-hikaricp Support for HikariCP connection pooling

https://www.gradle.org
https://maven.org
https://github.com/GeoLatte/geolatte-geom
https://agroal.github.io/
https://www.mchange.com/projects/c3p0/
https://github.com/brettwooldridge/HikariCP/

hibernate-jcache Integration with JCache, allowing any compliant
implementation as a second-level cache provider

hibernate-graalvm Experimental extension to make it easier to compile
applications as a GraalVM native image

hibernate-micrometer Integration with Micrometer metrics

hibernate-community-dialects Additional community-supported SQL dialects

Table 3. Testing-oriented modules

hibernate-testing A series of JUnit extensions for testing Hibernate ORM
functionality

1.2. Platform / BOM

Hibernate also provides a platform (BOM in Maven terminology) module which can be used to
align versions of the Hibernate modules along with the versions of its libraries. The platform
artifact is named hibernate-platform.

To apply the platform in Gradle

dependencies {
implementation platform "org.hibernate.orm:hibernate-platform:7.1.0.Final"

// use the versions from the platform
implementation "org.hibernate.orm:hibernate-core"
implementation "jakarta.transaction:jakarta.transaction-api"

}

See the Gradle documentation for capabilities of applying a platform.

To apply the platform (BOM) in Maven

<dependency>
<groupId>org.hibernate.orm</groupId>
<artifactId>hibernate-core</artifactId>
</dependency>
<dependency>
<groupld>jakarta.transaction</groupId>
<artifactId>jakarta.transaction-api</artifactId>
</dependency>

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.hibernate.orm</groupId>
<artifactId>hibernate-platform</artifactId>
<version>7.1.0.Final</version>

https://jcp.org/en/jsr/detail?id=107$$
https://www.graalvm.org/
https://micrometer.io
https://docs.gradle.org/current/userguide/java_platform_plugin.html#sec:java_platform_consumption

<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

1.3. Example sources

The bundled examples mentioned in this tutorial can be downloaded from here.

Alternatively, the example source code can also be obtained from Github

https://docs.jboss.org/hibernate/orm/7.1/quickstart/html_single/hibernate-tutorials.zip
https://github.com/hibernate/hibernate-orm/tree/7.1.0.Final/documentation/src/main/asciidoc/quickstart/tutorials

Chapter 2. Tutorial using native Hibernate
APIs

Objectives

@ Configure Hibernate using hibernate.properties
@ Create a SessionFactory using native bootstrapping
@ Use annotations to provide mapping information

@ Use Session to persist and query data

This tutorial is located within the download bundle under annotations/.

2.1. Configuration via properties file

In this example, configuration properties are specified in a file named hibernate.properties.

Configuration via hibernate.properties

Database connection settings
hibernate.connection.url=jdbc:h2:mem:db1;DB_CLOSE_DELAY=-1
hibernate.connection.username=sa
hibernate.connection.password=

Echo all executed SQL to console
hibernate.show_sql=true
hibernate.format_sql=true
hibernate.highlight_sql=true

Automatically export the schema
hibernate.hbm2ddl.auto=create

The following properties specify JDBC connection information:

Table 4. [DBC connection settings
Configuration property name Purpose
jakarta.persistence.jdbc.url JDBC URL of your database

jakarta.persistence.jdbc.user Your database credentials

and
jakarta.persistence.jdbc.passwor
d
o These tutorials use the H2 embedded database, so the values of these properties
are specific to running H2 in its in-memory mode.

https://docs.jboss.org/hibernate/orm/7.1/userguide/html_single/Hibernate_User_Guide.html#bootstrap-native

These properties enable logging of SQL to the console as it is executed, in an aesthetically pleasing
format:

Table 5. Settings for SQL logging to the console

Configuration property name Purpose

hibernate.show_sql If true, log SQL directly to the console
hibernate.format_sql If true, log SQL in a multiline, indented format
hibernate.highlight_sql If true, log SQL with syntax highlighting via ANSI escape codes

When developing persistence logic with Hibernate, it’s very important to be able to see exactly
what SQL is being executed.

2.2. The annotated entity Java class

The entity class in this tutorial is org.hibernate.tutorial.annotations.Event. Observe that:

* This class uses standard JavaBean naming conventions for property getter and setter methods,
as well as private visibility for the fields. This is recommended, but it’s not a requirement.

* The no-argument constructor, which is also a JavaBean convention, is a requirement for all
persistent classes. Hibernate needs to instantiate objects for you, using Java Reflection. The
constructor should have package-private or public visibility, to allow Hibernate to generate
proxies and optimized code for field access.

o The Entity types section of the User Guide covers the complete set of requirements
for the entity class.

We use annotations to identify the class as an entity, and to map it to the relational schema.

Identifying the class as an entity

@Entity @
@Table(name = "Events") @
public class Event {

}

@ @jakarta.persistence.Entity marks the Event class as an entity.

@ @jakarta.persistence.Table explicitly specifies the name of the mapped table. Without this
annotation, the table name would default to Event.

Every entity class must have an identifier.

Identifying the identifier property

eld @
@GeneratedValue @

https://docs.jboss.org/hibernate/orm/7.1/userguide/html_single/Hibernate_User_Guide.html#entity

private Long id;

@ @jakarta.persistence.Id marks the field as holding the identifier (primary key) of the entity.
@ @jakarta.persistence.GeneratedValue specifies that this is a synthetic id, that is, a system-
generated identifier (a surrogate primary key).
Other fields of the entity are considered persistent by default.
Mapping basic properties

private String title;

@Column(name = "eventDate") @
private LocalDateTime date;

@ @jakarta.persistence.Column explicitly specifies the name of a mapped column. Without this
annotation, the column name would default to date, which is a keyword on some databases.

2.3. Example code

The class org.hibernate.tutorial.annotations.HibernateIllustrationTest illustrates the use of the
Hibernate’s native APIs, including:

» Session and SessionFactory, and

* org.hibernate.boot for configuration and bootstrap.

There are several different ways to configure and start Hibernate, and this is not even the most
common approach.

The examples in these tutorials are presented as JUnit tests. A benefit of this

o approach is that setUp() and tearDown() roughly illustrate how a
org.hibernate.SessionFactory is created when the program starts, and closed when
the program terminates.

Obtaining the SessionFactory

protected void setUp() {
// A SessionFactory is set up once for an application!
final StandardServiceRegistry registry =
new StandardServiceRegistryBuilder()

.build(); @ @

try {
sessionFactory =
new MetadataSources(registry) ®
.addAnnotatedClass(Event.class) @
.buildMetadata() ®
.buildSessionFactory(); ®
}

catch (Exception e) {

// The registry would be destroyed by the SessionFactory, but we
// had trouble building the SessionFactory so destroy it manually.
StandardServiceRegistryBuilder.destroy(registry);

® The setUp() method first builds a StandardServiceRegistry instance which incorporates
configuration information into a working set of Services for use by the SessionFactory.

@ Here we put all configuration information in hibernate.properties, so there’s not much
interesting to see.

® Using the StandardServiceRegistry we create the MetadataSources which lets us tell Hibernate
about our domain model.

@ Here we have only one entity class to register.

® An instance of Metadata represents a complete, partially-validated view of the application
domain model.

® The final step in the bootstrap process is to build a SessionFactory for the configured services
and validated domain model. The SessionFactory is a thread-safe object that’s instantiated once
to serve the entire application.

The SessionFactory produces instances of Session. Each session should be thought of as
representing a unit of work.

Persisting entities

sessionFactory.inTransaction(session -> { @
session.persist(new Event("Our very first event!", now())); @
session.persist(new Event("A follow up event", now()));

1)

@ The inTransaction() method creates a session and starts a new transaction.

@ Here we create two new Event objects and hands them over to Hibernate, calling the persist()
method to make these instances persistent. Hibernate is responsible for executing an INSERT
statement for each Event.

Obtaining a list of entities

sessionFactory.inTransaction(session -> {
session.createSelectionQuery("from Event", Event.class) @
.getResultList() @
.forEach(event -> out.println("Event (" + event.getDate() + ") : " +
event.getTitle()));
Ik

@ Here we use a very simple Hibernate Query Language (HQL) statement to load all existing Event
objects from the database.

@ Hibernate generates and executes the appropriate SELECT statement, and then instantiates and
populates Event objects with the data in the query result set.

2.4. Take it further!

Practice Exercises

O Actually run this example to see the SQL executed by Hibernate displayed in the console.
O Reconfigure the examples to connect to your own persistent relational database.

O Add an association to the Event entity to model a message thread.

Chapter 3. Tutorial using JPA-standard APIs

Objectives

@ Configure Hibernate using persistence.xml
@ Bootstrap a Jakarta Persistence EntityManagerFactory
@ Use annotations to provide mapping information

@ Use EntityManager to persist and query data

This tutorial is located within the download bundle under entitymanager/.

3.1. persistence.xml

JPA defines a different bootstrap process, along with a standard configuration file format named
persistence.xml. In Java™ SE environments the persistence provider (Hibernate) is required to
locate every JPA configuration file in the classpath at the path META-INF/persistence.xml.

Configuration via persistence.xml

<persistence xmlns="http://java.sun.com/xml/ns/persistence”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/persistence

http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd"
version="2.0">

<persistence-unit name="org.hibernate.tutorial.jpa"> @
<description>
Persistence unit for the Jakarta Persistence tutorial of the Hibernate
Getting Started Guide
</description>

<class>org.hibernate.tutorial.em.Event</class> @

<properties> ©)
<!-- Database connection settings -->
<property name="jakarta.persistence.jdbc.url"
value="jdbc:h2:mem:db1;DB_CLOSE_DELAY=-1" />
<property name="jakarta.persistence.jdbc.user" value="sa" />
<property name="jakarta.persistence.jdbc.password" value="" />

<!-- Automatically export the schema -->
<property name="jakarta.persistence.schema-generation.database.action"
value="create" />

<l-- Echo all executed SQL to console -->

<property name="hibernate.show_sql" value="true" />
<property name="hibernate.format_sql" value="true" />

10

<property name="hibernate.highlight_sql" value="true" />
</properties>

</persistence-unit>

</persistence>

® A persistence.xml file should provide a unique name for each persistence unit it declares.
Applications use this name to reference the configuration when obtaining an
EntityManagerFactory as we will see shortly.

@ The <class/> element registers our annotated entity class.

® The settings specified as <properties/> elements were already discussed in Configuration via
properties file. Here JPA-standard property names are used where possible.

Configuration properties prefixed with the legacy Java EE namespace
o javax.persistence are still recognized, but the Jakarta EE namespace
jakarta.persistence should be preferred.

3.2. The annotated entity Java class

The entity class is exactly the same as in The annotated entity Java class.

3.3. Example code

The previous tutorials used Hibernate native APIs. This tutorial uses the standard Jakarta
Persistence APIs.

Obtaining the JPA EntityManagerFactory

protected void setUp() {

entityManagerFactory = Persistence.createEntityManagerFactory
("org.hibernate.tutorial.jpa"); @
}

@ Notice again that the persistence unit name is org.hibernate.tutorial.jpa, which matches the
name from our persistence.xml.

The code to persist and query entities is almost identical to Persisting entities. Unfortunately,
EntityManagerFactory doesn’t have a nice inTransaction() method like SessionFactory does, so we
had to write our own:

Managing transactions in JPA

void inTransaction(Consumer<EntityManager> work) {
EntityManager entityManager = entityManagerFactory.createEntityManager();
EntityTransaction transaction = entityManager.getTransaction();
try {
transaction.begin();

11

work.accept(entityManager);
transaction.commit();
}
catch (Exception e) {
if (transaction.isActive()) {
transaction.rollback();

}
throw e;
}
finally {
entityManager.close();
}
}
(r) If you use JPA in Java SE, youw’ll need to copy/paste this function into your project.
- Alternatively you could unwrap the EntityManagerFactory as a SessionFactory.

3.4. Take it further!

Practice Exercises

O Learn how to use CDI to inject a container-managed EntityManager in Quarkus. See the Quarkus
website for instructions.

12

https://quarkus.io/guides/hibernate-orm
https://quarkus.io/guides/hibernate-orm

Chapter 4. Tutorial Using Envers

Objectives

@ Annotate an entity as historical
@ Configure Envers

@ Use the Envers APIs to view and analyze historical data

This tutorial is located within the download bundle under envers/.

4.1. persistence.xml

This file is unchanged from what we had before.

4.2. The annotated entity Java class

The entity class is also almost identical to what we had previously. The major difference is the
addition of the annotation @org.hibernate.envers.Audited, which tells Envers to automatically track
changes to this entity.

4.3. Example code

The code saves some entities, makes a change to one of the entities and then uses the Envers API to
pull back the initial revision as well as the updated revision. A revision refers to a historical
snapshot of an entity.

Using the org.hibernate.envers.AuditReader
public void testBasicUsage() {

AuditReader reader = AuditReaderFactory.get(entityManager); @

Event firstRevision = reader.find(Event.class, 2L, 1);)
I.E\./(.ent secondRevision = reader.find(Event.class, 2L, 2); ®
}
® An org.hibernate.envers.AuditReader is obtained from the

org.hibernate.envers.AuditReaderFactory which wraps the JPA EntityManager.

@ The find method retrieves specific revisions of the entity. The first call retrieves revision
number 1 of the Event with id 2.

@ Later, the second call asks for revision number 2 of the Event with id 2.

13

4.4. Take it further!

Practice Exercises

@ Provide a custom revision entity to additionally capture who made the changes.

@ Write a query to retrieve only historical data which meets some criteria. Use the User Guide to
see how Envers queries are constructed.

@ Experiment with auditing entities which have various forms of relationships (many-to-one,
many-to-many, etc). Try retrieving historical versions (revisions) of such entities and navigating
the object tree.

14

Chapter 5. Credits

The full list of contributors to Hibernate ORM can be found on the GitHub repository.
The following contributors were involved in this documentation:

* Steve Ebersole

15

https://github.com/hibernate/hibernate-orm/graphs/contributors

	Getting Started with Hibernate
	Table of Contents
	Preface
	Chapter 1. Obtaining Hibernate
	1.1. Hibernate ORM modules
	1.2. Platform / BOM
	1.3. Example sources

	Chapter 2. Tutorial using native Hibernate APIs
	2.1. Configuration via properties file
	2.2. The annotated entity Java class
	2.3. Example code
	2.4. Take it further!

	Chapter 3. Tutorial using JPA-standard APIs
	3.1. persistence.xml
	3.2. The annotated entity Java class
	3.3. Example code
	3.4. Take it further!

	Chapter 4. Tutorial Using Envers
	4.1. persistence.xml
	4.2. The annotated entity Java class
	4.3. Example code
	4.4. Take it further!

	Chapter 5. Credits

