
Hibernate Search

Apache Lucene™ Integration

Reference Guide

3.1.1.GA

Hibernate Search

Hibernate 3.1.1.GA iii

Preface .. v
1. Getting started .. 1

1.1. System Requirements ... 2
1.2. Using Maven .. 3
1.3. Configuration ... 5
1.4. Indexing ... 10
1.5. Searching ... 11
1.6. Analyzer ... 12
1.7. What's next .. 15

2. Architecture .. 17
2.1. Overview .. 17
2.2. Back end ... 18

2.2.1. Back end types ... 18
2.2.1.1. Lucene ... 18
2.2.1.2. JMS .. 19

2.2.2. Work execution ... 20
2.2.2.1. Synchronous .. 20
2.2.2.2. Asynchronous ... 20

2.3. Reader strategy ... 20
2.3.1. Shared .. 20
2.3.2. Not-shared .. 21
2.3.3. Custom .. 21

3. Configuration .. 23
3.1. Directory configuration ... 23
3.2. Sharding indexes ... 25
3.3. Sharing indexes (two entities into the same directory) 27
3.4. Worker configuration .. 28
3.5. JMS Master/Slave configuration .. 29

3.5.1. Slave nodes .. 29
3.5.2. Master node .. 30

3.6. Reader strategy configuration .. 32
3.7. Enabling Hibernate Search and automatic indexing 33

3.7.1. Enabling Hibernate Search ... 33
3.7.2. Automatic indexing .. 34

3.8. Tuning Lucene indexing performance .. 35
4. Mapping entities to the index structure ... 39

4.1. Mapping an entity .. 39
4.1.1. Basic mapping .. 39
4.1.2. Mapping properties multiple times 42
4.1.3. Embedded and associated objects 42
4.1.4. Boost factor ... 47
4.1.5. Analyzer .. 48

4.1.5.1. Analyzer definitions .. 49

iv Hibernate 3.1.1.GA

4.1.5.2. Available analyzers .. 51
4.1.5.3. Analyzer discriminator (experimental) 52
4.1.5.4. Retrieving an analyzer ... 55

4.2. Property/Field Bridge ... 56
4.2.1. Built-in bridges .. 56
4.2.2. Custom Bridge .. 58

4.2.2.1. StringBridge .. 58
4.2.2.2. FieldBridge ... 60
4.2.2.3. ClassBridge .. 63

4.3. Providing your own id .. 65
4.3.1. The ProvidedId annotation .. 65

5. Querying .. 67
5.1. Building queries ... 68

5.1.1. Building a Lucene query ... 68
5.1.2. Building a Hibernate Search query 68

5.1.2.1. Generality ... 68
5.1.2.2. Pagination .. 69
5.1.2.3. Sorting .. 70
5.1.2.4. Fetching strategy .. 70
5.1.2.5. Projection ... 71

5.2. Retrieving the results ... 72
5.2.1. Performance considerations ... 73
5.2.2. Result size .. 73
5.2.3. ResultTransformer .. 74
5.2.4. Understanding results ... 74

5.3. Filters ... 75
5.4. Optimizing the query process .. 80
5.5. Native Lucene Queries .. 80

6. Manual indexing ... 81
6.1. Indexing ... 81
6.2. Purging .. 82

7. Index Optimization ... 85
7.1. Automatic optimization ... 85
7.2. Manual optimization ... 86
7.3. Adjusting optimization .. 86

8. Advanced features ... 87
8.1. SearchFactory .. 87
8.2. Accessing a Lucene Directory ... 87
8.3. Using an IndexReader ... 87
8.4. Customizing Lucene's scoring formula .. 88

Hibernate 3.1.1.GA v

Preface
Full text search engines like Apache Lucene are very powerful technologies
to add efficient free text search capabilities to applications. However,
Lucene suffers several mismatches when dealing with object domain model.
Amongst other things indexes have to be kept up to date and mismatches
between index structure and domain model as well as query mismatches
have to be avoided.

Hibernate Search addresses these shortcomings - it indexes your domain
model with the help of a few annotations, takes care of database/index
synchronization and brings back regular managed objects from free
text queries. To achieve this Hibernate Search is combining the
power of Hibernate [http://www.hibernate.org] and Apache Lucene
[http://lucene.apache.org].

http://www.hibernate.org
http://www.hibernate.org
http://lucene.apache.org
http://lucene.apache.org

vi Hibernate 3.1.1.GA

Hibernate 3.1.1.GA 1

Chapter 1. Getting started
Welcome to Hibernate Search! The following chapter will guide you through
the initial steps required to integrate Hibernate Search into an existing
Hibernate enabled application. In case you are a Hibernate new timer we
recommend you start here [http://hibernate.org/152.html].

http://hibernate.org/152.html
http://hibernate.org/152.html

Chapter 1. Getting started

2 Hibernate 3.1.1.GA

1.1. System Requirements

Table 1.1. System requirements

Java Runtime A JDK or JRE version 5 or greater.
You can download a Java Runtime
for Windows/Linux/Solaris here [http:/
/java.sun.com/javase/downloads/].

Hibernate Search hibernate-search.jar and all runtime
dependencies from the lib directory
of the Hibernate Search distribution.
Please refer to README.txt in the
lib directory to understand which
dependencies are required.

Hibernate Core This instructions have been tested
against Hibernate 3.3.x. You will
need hibernate-core.jar and its
transitive dependencies from the lib
directory of the distribution. Refer to
README.txt in the lib directory of the
distribution to determine the minimum
runtime requirements.

Hibernate Annotations Even though Hibernate Search
can be used without Hibernate
Annotations the following instructions
will use them for basic entity
configuration (@Entity, @Id,
@OneToMany,...). This part of
the configuration could also be
expressed in xml or code. However,
Hibernate Search itself has its own
set of annotations (@Indexed,
@DocumentId, @Field,...) for which
there exists so far no alternative
configuration. The tutorial is tested
against version 3.4.x of Hibernate
Annotations.

You can download all dependencies from the Hibernate download
site [http://www.hibernate.org/6.html]. You can also verify the
dependency versions against the Hibernate Compatibility Matrix
[http://www.hibernate.org/6.html#A3].

http://java.sun.com/javase/downloads/
http://java.sun.com/javase/downloads/
http://java.sun.com/javase/downloads/
http://www.hibernate.org/6.html
http://www.hibernate.org/6.html
http://www.hibernate.org/6.html
http://www.hibernate.org/6.html#A3
http://www.hibernate.org/6.html#A3

Using Maven

Hibernate 3.1.1.GA 3

1.2. Using Maven

Instead of managing all dependencies manually, maven
users have the possibility to use the JBoss maven repository
[http://repository.jboss.com/maven2]. Just add the JBoss repository url to the
repositories section of your pom.xml or settings.xml:

Example 1.1. Adding the JBoss maven repository to
settings.xml

<repository>

 <id>repository.jboss.org</id>

 <name>JBoss Maven Repository</name>

 <url>http://repository.jboss.org/maven2</url>

 <layout>default</layout>

</repository>

Then add the following dependencies to your pom.xml:

http://repository.jboss.com/maven2
http://repository.jboss.com/maven2

Chapter 1. Getting started

4 Hibernate 3.1.1.GA

Example 1.2. Maven dependencies for Hibernate Search

<dependency>

 <groupId>org.hibernate</groupId>

 <artifactId>hibernate-search</artifactId>

 <version>3.1.1.GA</version>

</dependency>

<dependency>

 <groupId>org.hibernate</groupId>

 <artifactId>hibernate-annotations</artifactId>

 <version>3.4.0.GA</version>

</dependency>

<dependency>

 <groupId>org.hibernate</groupId>

 <artifactId>hibernate-entitymanager</artifactId>

 <version>3.4.0.GA</version>

</dependency>

<dependency>

 <groupId>org.apache.solr</groupId>

 <artifactId>solr-common</artifactId>

 <version>1.3.0</version>

</dependency>

<dependency>

 <groupId>org.apache.solr</groupId>

 <artifactId>solr-core</artifactId>

 <version>1.3.0</version>

</dependency>

<dependency>

 <groupId>org.apache.lucene</groupId>

 <artifactId>lucene-snowball</artifactId>

 <version>2.4.1</version>

</dependency>

Not all dependencies are required. Only the hibernate-search dependency
is mandatory. This dependency, together with its required transitive
dependencies, contain all required classes needed to use Hibernate Search.
hibernate-annotations is only needed if you want to use annotations to
configure your domain model as we do in this tutorial. However, even if you
choose not to use Hibernate Annotations you still have to use the Hibernate
Search specific annotations, which are bundled with the hibernate-search jar
file, to configure your Lucene index. Currently there is no XML configuration
available for Hibernate Search. hibernate-entitymanager is required if
you want to use Hibernate Search in conjunction with JPA. The Solr
dependencies are needed if you want to utilize Solr's analyzer framework.
More about this later. And finally, the lucene-snowball dependency is needed
if you want to use Lucene's snowball stemmer.

Configuration

Hibernate 3.1.1.GA 5

1.3. Configuration

Once you have downloaded and added all required dependencies to
your application you have to add a couple of properties to your hibernate
configuration file. If you are using Hibernate directly this can be done in
hibernate.properties or hibernate.cfg.xml. If you are using Hibernate via
JPA you can also add the properties to persistence.xml. The good news is
that for standard use most properties offer a sensible default. An example
persistence.xml configuration could look like this:

Example 1.3. Basic configuration options to be added to
hibernate.properties, hibernate.cfg.xml or persistence.xml

...

<property name="hibernate.search.default.directory_provider"

 value="org.hibernate.search.store.FSDirectoryProvider"/>

<property name="hibernate.search.default.indexBase"

 value="/var/lucene/indexes"/>

...

First you have to tell Hibernate Search which
DirectoryProvider to use. This can be achieved by setting the
hibernate.search.default.directory_provider property. Apache Lucene
has the notion of a Directory to store the index files. Hibernate Search
handles the initialization and configuration of a Lucene Directory
instance via a DirectoryProvider. In this tutorial we will use a subclass
of DirectoryProvider called FSDirectoryProvider. This will give us the
ability to physically inspect the Lucene indexes created by Hibernate
Search (eg via Luke [http://www.getopt.org/luke/]). Once you have a
working configuration you can start experimenting with other directory
providers (see Section 3.1, “Directory configuration”). Next to the directory
provider you also have to specify the default root directory for all indexes via
hibernate.search.default.indexBase.

Lets assume that your application contains the Hibernate managed classes
example.Book and example.Author and you want to add free text search
capabilities to your application in order to search the books contained in your
database.

http://www.getopt.org/luke/
http://www.getopt.org/luke/

Chapter 1. Getting started

6 Hibernate 3.1.1.GA

Example 1.4. Example entities Book and Author before
adding Hibernate Search specific annotations

package example;

...

@Entity

public class Book {

 @Id

 @GeneratedValue

 private Integer id;

 private String title;

 private String subtitle;

 @ManyToMany

 private Set<Author> authors = new HashSet<Author>();

 private Date publicationDate;

 public Book() {

 }

 // standard getters/setters follow here

 ...

}

package example;

...

@Entity

public class Author {

 @Id

 @GeneratedValue

 private Integer id;

 private String name;

 public Author() {

 }

 // standard getters/setters follow here

 ...

}

To achieve this you have to add a few annotations to the Book and Author
class. The first annotation @Indexed marks Book as indexable. By design

Configuration

Hibernate 3.1.1.GA 7

Hibernate Search needs to store an untokenized id in the index to ensure
index unicity for a given entity. @DocumentId marks the property to use for this
purpose and is in most cases the same as the database primary key. In fact
since the 3.1.0 release of Hibernate Search @DocumentId is optional in the
case where an @Id annotation exists.

Next you have to mark the fields you want to make searchable. Let's start
with title and subtitle and annotate both with @Field. The parameter
index=Index.TOKENIZED will ensure that the text will be tokenized using the
default Lucene analyzer. Usually, tokenizing means chunking a sentence into
individual words and potentially excluding common words like 'a' or 'the'.
We will talk more about analyzers a little later on. The second parameter
we specify within @Field, store=Store.NO, ensures that the actual data will
not be stored in the index. Whether this data is stored in the index or not
has nothing to do with the ability to search for it. From Lucene's perspective
it is not necessary to keep the data once the index is created. The benefit
of storing it is the ability to retrieve it via projections (Section 5.1.2.5,
“Projection”).

Without projections, Hibernate Search will per default execute a Lucene
query in order to find the database identifiers of the entities matching the
query critera and use these identifiers to retrieve managed objects from the
database. The decision for or against projection has to be made on a case
to case basis. The default behaviour - Store.NO - is recommended since it
returns managed objects whereas projections only return object arrays.

After this short look under the hood let's go back to annotating the Book
class. Another annotation we have not yet discussed is @DateBridge. This
annotation is one of the built-in field bridges in Hibernate Search. The Lucene
index is purely string based. For this reason Hibernate Search must convert
the data types of the indexed fields to strings and vice versa. A range of
predefined bridges are provided, including the DateBridge which will convert
a java.util.Date into a String with the specified resolution. For more details
see Section 4.2, “Property/Field Bridge”.

This leaves us with @IndexedEmbedded. This annotation is used to index
associated entities (@ManyToMany, @*ToOne and @Embedded) as part of the
owning entity. This is needed since a Lucene index document is a flat data
structure which does not know anything about object relations. To ensure
that the authors' name wil be searchable you have to make sure that the
names are indexed as part of the book itself. On top of @IndexedEmbedded
you will also have to mark all fields of the associated entity you want to have
included in the index with @Indexed. For more details see Section 4.1.3,
“Embedded and associated objects”.

Chapter 1. Getting started

8 Hibernate 3.1.1.GA

These settings should be sufficient for now. For more details on entity
mapping refer to Section 4.1, “Mapping an entity”.

Configuration

Hibernate 3.1.1.GA 9

Example 1.5. Example entities after adding Hibernate
Search annotations

package example;

...

@Entity

@Indexed

public class Book {

 @Id

 @GeneratedValue

 @DocumentId

 private Integer id;

 @Field(index=Index.TOKENIZED, store=Store.NO)

 private String title;

 @Field(index=Index.TOKENIZED, store=Store.NO)

 private String subtitle;

 @IndexedEmbedded

 @ManyToMany

 private Set<Author> authors = new HashSet<Author>();

 @Field(index = Index.UN_TOKENIZED, store = Store.YES)

 @DateBridge(resolution = Resolution.DAY)

 private Date publicationDate;

 public Book() {

 }

 // standard getters/setters follow here

 ...

}

package example;

...

@Entity

public class Author {

 @Id

 @GeneratedValue

 private Integer id;

 @Field(index=Index.TOKENIZED, store=Store.NO)

 private String name;

 public Author() {

 }

 // standard getters/setters follow here

 ...

}

Chapter 1. Getting started

10 Hibernate 3.1.1.GA

1.4. Indexing

Hibernate Search will transparently index every entity persisted, updated
or removed through Hibernate Core. However, you have to trigger an initial
indexing to populate the Lucene index with the data already present in your
database. Once you have added the above properties and annotations it
is time to trigger an initial batch index of your books. You can achieve this
by using one of the following code snippets (see also Chapter 6, Manual
indexing):

Example 1.6. Using Hibernate Session to index data

FullTextSession fullTextSession =

 Search.getFullTextSession(session);

Transaction tx = fullTextSession.beginTransaction();

List books = session.createQuery("from Book as book").list();

for (Book book : books) {

 fullTextSession.index(book);

}

tx.commit(); //index is written at commit time

Example 1.7. Using JPA to index data

EntityManager em = entityManagerFactory.createEntityManager();

FullTextEntityManager fullTextEntityManager =

 Search.getFullTextEntityManager(em);

em.getTransaction().begin();

List books = em.createQuery("select book from Book as

 book").getResultList();

for (Book book : books) {

 fullTextEntityManager.index(book);

}

em.getTransaction().commit();

em.close();

After executing the above code, you should be able to see a Lucene index
under /var/lucene/indexes/example.Book. Go ahead an inspect this index
with Luke [http://www.getopt.org/luke/]. It will help you to understand how
Hibernate Search works.

http://www.getopt.org/luke/
http://www.getopt.org/luke/

Searching

Hibernate 3.1.1.GA 11

1.5. Searching

Now it is time to execute a first search. The general approach is to create a
native Lucene query and then wrap this query into a org.hibernate.Query in
order to get all the functionality one is used to from the Hibernate API. The
following code will prepare a query against the indexed fields, execute it and
return a list of Books.

Example 1.8. Using Hibernate Session to create and
execute a search

FullTextSession fullTextSession =

 Search.getFullTextSession(session);

Transaction tx = fullTextSession.beginTransaction();

// create native Lucene query

String[] fields = new String[]{"title", "subtitle", "authors.name",

 "publicationDate"};

MultiFieldQueryParser parser = new MultiFieldQueryParser(fields, new

 StandardAnalyzer());

org.apache.lucene.search.Query query = parser.parse("Java rocks!"

);

// wrap Lucene query in a org.hibernate.Query

org.hibernate.Query hibQuery =

 fullTextSession.createFullTextQuery(query, Book.class);

// execute search

List result = hibQuery.list();

tx.commit();

session.close();

Chapter 1. Getting started

12 Hibernate 3.1.1.GA

Example 1.9. Using JPA to create and execute a search

EntityManager em = entityManagerFactory.createEntityManager();

FullTextEntityManager fullTextEntityManager =

 org.hibernate.hibernate.search.jpa.Search.getFullTextEntityManager(em);

em.getTransaction().begin();

// create native Lucene query

String[] fields = new String[]{"title", "subtitle", "authors.name",

 "publicationDate"};

MultiFieldQueryParser parser = new MultiFieldQueryParser(fields, new

 StandardAnalyzer());

org.apache.lucene.search.Query query = parser.parse("Java rocks!"

);

// wrap Lucene query in a javax.persistence.Query

javax.persistence.Query persistenceQuery =

 fullTextEntityManager.createFullTextQuery(query, Book.class);

// execute search

List result = persistenceQuery.getResultList();

em.getTransaction().commit();

em.close();

1.6. Analyzer

Let's make things a little more interesting now. Assume that one of your
indexed book entities has the title "Refactoring: Improving the Design of
Existing Code" and you want to get hits for all of the following queries:
"refactor", "refactors", "refactored" and "refactoring". In Lucene this can be
achieved by choosing an analyzer class which applies word stemming during
the indexing as well as search process. Hibernate Search offers several
ways to configure the analyzer to use (see Section 4.1.5, “Analyzer”):

• Setting the hibernate.search.analyzer property in the configuration file.
The specified class will then be the default analyzer.

• Setting the @Analyzer annotation at the entity level.

• Setting the @Analyzer annotation at the field level.

When using the @Analyzer annotation one can either specify the fully
qualified classname of the analyzer to use or one can refer to an analyzer
definition defined by the @AnalyzerDef annotation. In the latter case the

Analyzer

Hibernate 3.1.1.GA 13

Solr analyzer framework with its factories approach is utilized. To find
out more about the factory classes available you can either browse
the Solr JavaDoc or read the corresponding section on the Solr Wiki.
[http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters] Note that
depending on the chosen factory class additional libraries on top of the Solr
dependencies might be required. For example, the PhoneticFilterFactory
depends on commons-codec [http://commons.apache.org/codec].

In the example below a StandardTokenizerFactory is used followed by two
filter factories, LowerCaseFilterFactory and SnowballPorterFilterFactory.
The standard tokenizer splits words at punctuation characters and hyphens
while keeping email addresses and internet hostnames intact. It is a good
general purpose tokenizer. The lowercase filter lowercases the letters in each
token whereas the snowball filter finally applies language specific stemming.

Generally, when using the Solr framework you have to start with a tokenizer
followed by an arbitrary number of filters.

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
http://commons.apache.org/codec
http://commons.apache.org/codec

Chapter 1. Getting started

14 Hibernate 3.1.1.GA

Example 1.10. Using @AnalyzerDef and the Solr framework to
define and use an analyzer

package example;

...

@Entity

@Indexed

@AnalyzerDef(name = "customanalyzer",

 tokenizer = @TokenizerDef(factory =

 StandardTokenizerFactory.class),

 filters = {

 @TokenFilterDef(factory = LowerCaseFilterFactory.class),

 @TokenFilterDef(factory = SnowballPorterFilterFactory.class,

 params = {

 @Parameter(name = "language", value = "English")

 })

 })

public class Book {

 @Id

 @GeneratedValue

 @DocumentId

 private Integer id;

 @Field(index=Index.TOKENIZED, store=Store.NO)

 @Analyzer(definition = "customanalyzer")

 private String title;

 @Field(index=Index.TOKENIZED, store=Store.NO)

 @Analyzer(definition = "customanalyzer")

 private String subtitle;

 @IndexedEmbedded

 @ManyToMany

 private Set<Author> authors = new HashSet<Author>();

 @Field(index = Index.UN_TOKENIZED, store = Store.YES)

 @DateBridge(resolution = Resolution.DAY)

 private Date publicationDate;

 public Book() {

 }

 // standard getters/setters follow here

 ...

}

What's next

Hibernate 3.1.1.GA 15

1.7. What's next

The above paragraphs hopefully helped you getting an overview of Hibernate
Search. Using the maven archetype plugin and the following command you
can create an initial runnable maven project structure populated with the
example code of this tutorial.

Example 1.11. Using the Maven archetype to create tutorial
sources

mvn archetype:create \

 -DarchetypeGroupId=org.hibernate \

 -DarchetypeArtifactId=hibernate-search-quickstart \

 -DarchetypeVersion=3.1.1.GA \

 -DgroupId=my.company -DartifactId=quickstart

Using the maven project you can execute the examples, inspect the file
system based index and search and retrieve a list of managed objects. Just
run mvn package to compile the sources and run the unit tests.

The next step after this tutorial is to get more familiar with the overall
architecture of Hibernate Search (Chapter 2, Architecture) and explore the
basic features in more detail. Two topics which were only briefly touched
in this tutorial were analyzer configuration (Section 4.1.5, “Analyzer”) and
field bridges (Section 4.2, “Property/Field Bridge”), both important features
required for more fine-grained indexing. More advanced topics cover
clustering (Section 3.5, “JMS Master/Slave configuration”) and large indexes
handling (Section 3.2, “Sharding indexes”).

16 Hibernate 3.1.1.GA

Hibernate 3.1.1.GA 17

Chapter 2. Architecture

2.1. Overview

Hibernate Search consists of an indexing component and an index search
component. Both are backed by Apache Lucene.

Each time an entity is inserted, updated or removed in/from the database,
Hibernate Search keeps track of this event (through the Hibernate event
system) and schedules an index update. All the index updates are handled
without you having to use the Apache Lucene APIs (see Section 3.7,
“Enabling Hibernate Search and automatic indexing”).

To interact with Apache Lucene indexes, Hibernate Search has the notion
of DirectoryProviders. A directory provider will manage a given Lucene
Directory type. You can configure directory providers to adjust the directory
target (see Section 3.1, “Directory configuration”).

Hibernate Search uses the Lucene index to search an entity and return a
list of managed entities saving you the tedious object to Lucene document
mapping. The same persistence context is shared between Hibernate and
Hibernate Search. As a matter of fact, the FullTextSession is built on top
of the Hibernate Session. so that the application code can use the unified
org.hibernate.Query or javax.persistence.Query APIs exactly the way a
HQL, JPA-QL or native queries would do.

To be more efficient, Hibernate Search batches the write interactions with
the Lucene index. There is currently two types of batching depending on
the expected scope. Outside a transaction, the index update operation is
executed right after the actual database operation. This scope is really a no
scoping setup and no batching is performed. However, it is recommended
- for both your database and Hibernate Search - to execute your operation
in a transaction be it JDBC or JTA. When in a transaction, the index update
operation is scheduled for the transaction commit phase and discarded in
case of transaction rollback. The batching scope is the transaction. There are
two immediate benefits:

• Performance: Lucene indexing works better when operation are executed
in batch.

• ACIDity: The work executed has the same scoping as the one executed by
the database transaction and is executed if and only if the transaction is
committed. This is not ACID in the strict sense of it, but ACID behavior is

Chapter 2. Architecture

18 Hibernate 3.1.1.GA

rarely useful for full text search indexes since they can be rebuilt from the
source at any time.

You can think of those two scopes (no scope vs transactional) as the
equivalent of the (infamous) autocommit vs transactional behavior. From
a performance perspective, the in transaction mode is recommended.
The scoping choice is made transparently. Hibernate Search detects the
presence of a transaction and adjust the scoping.

Note
Hibernate Search works perfectly fine in the Hibernate /
EntityManager long conversation pattern aka. atomic conversation.

Note
Depending on user demand, additional scoping will be considered,
the pluggability mechanism being already in place.

2.2. Back end

Hibernate Search offers the ability to let the scoped work being processed
by different back ends. Two back ends are provided out of the box for two
different scenarios.

2.2.1. Back end types

2.2.1.1. Lucene

In this mode, all index update operations applied on a given node (JVM) will
be executed to the Lucene directories (through the directory providers) by the
same node. This mode is typically used in non clustered environment or in
clustered environments where the directory store is shared.

Back end types

Hibernate 3.1.1.GA 19

Lucene back end configuration.

This mode targets non clustered applications, or clustered applications where
the Directory is taking care of the locking strategy.

The main advantage is simplicity and immediate visibility of the changes in
Lucene queries (a requirement in some applications).

2.2.1.2. JMS

All index update operations applied on a given node are sent to a JMS
queue. A unique reader will then process the queue and update the master
index. The master index is then replicated on a regular basis to the slave
copies. This is known as the master/slaves pattern. The master is the sole
responsible for updating the Lucene index. The slaves can accept read as
well as write operations. However, they only process the read operation on
their local index copy and delegate the update operations to the master.

JMS back end configuration.

This mode targets clustered environments where throughput is critical, and
index update delays are affordable. Reliability is ensured by the JMS provider
and by having the slaves working on a local copy of the index.

Chapter 2. Architecture

20 Hibernate 3.1.1.GA

Note
Hibernate Search is an extensible architecture. Feel free to drop ideas
for other third party back ends to hibernate-dev@lists.jboss.org.

2.2.2. Work execution

The indexing work (done by the back end) can be executed synchronously
with the transaction commit (or update operation if out of transaction), or
asynchronously.

2.2.2.1. Synchronous

This is the safe mode where the back end work is executed in concert with
the transaction commit. Under highly concurrent environment, this can lead
to throughput limitations (due to the Apache Lucene lock mechanism) and it
can increase the system response time if the backend is significantly slower
than the transactional process and if a lot of IO operations are involved.

2.2.2.2. Asynchronous

This mode delegates the work done by the back end to a different
thread. That way, throughput and response time are (to a certain extend)
decorrelated from the back end performance. The drawback is that a small
delay appears between the transaction commit and the index update and a
small overhead is introduced to deal with thread management.

It is recommended to use synchronous execution first and evaluate
asynchronous execution if performance problems occur and after having
set up a proper benchmark (ie not a lonely cowboy hitting the system in a
completely unrealistic way).

2.3. Reader strategy

When executing a query, Hibernate Search interacts with the Apache Lucene
indexes through a reader strategy. Choosing a reader strategy will depend on
the profile of the application (frequent updates, read mostly, asynchronous
index update etc). See also Section 3.6, “Reader strategy configuration”

2.3.1. Shared

With this strategy, Hibernate Search will share the same IndexReader, for
a given Lucene index, across multiple queries and threads provided that
the IndexReader is still up-to-date. If the IndexReader is not up-to-date, a
new one is opened and provided. Each IndexReader is made of several

Not-shared

Hibernate 3.1.1.GA 21

SegmentReaders. This strategy only reopens segments that have been
modified or created after last opening and shares the already loaded
segments from the previous instance. This strategy is the default.

The name of this strategy is shared.

2.3.2. Not-shared

Every time a query is executed, a Lucene IndexReader is opened. This
strategy is not the most efficient since opening and warming up an
IndexReader can be a relatively expensive operation.

The name of this strategy is not-shared.

2.3.3. Custom

You can write your own reader strategy that suits your application needs
by implementing org.hibernate.search.reader.ReaderProvider. The
implementation must be thread safe.

22 Hibernate 3.1.1.GA

Hibernate 3.1.1.GA 23

Chapter 3. Configuration

3.1. Directory configuration

Apache Lucene has a notion of Directory to store the index files. The
Directory implementation can be customized, but Lucene comes
bundled with a file system (FSDirectoryProvider) and an in memory
(RAMDirectoryProvider) implementation. DirectoryProviders are the
Hibernate Search abstraction around a Lucene Directory and handle the
configuration and the initialization of the underlying Lucene resources.
Table 3.1, “List of built-in Directory Providers” shows the list of the directory
providers bundled with Hibernate Search.

Chapter 3. Configuration

24 Hibernate 3.1.1.GA

Table 3.1. List of built-in Directory Providers

Class Description Properties

org.hibernate.search.store.FSDirectoryProviderFile system based
directory. The
directory used will
be <indexBase>/<
indexName >

indexBase : Base
directory

indexName: override
@Indexed.index (useful
for sharded indexes)

org.hibernate.search.store.FSMasterDirectoryProviderFile system based
directory. Like
FSDirectoryProvider. It
also copies the index
to a source directory
(aka copy directory) on a
regular basis.

The recommended
value for the refresh
period is (at least) 50%
higher that the time to
copy the information
(default 3600 seconds -
60 minutes).

Note that the copy is
based on an incremental
copy mechanism
reducing the average
copy time.

DirectoryProvider
typically used on the
master node in a JMS
back end cluster.

The
buffer_size_on_copy

optimum depends on
your operating system
and available RAM;
most people reported
good results using
values between 16 and
64MB.

indexBase: Base
directory

indexName: override
@Indexed.index (useful
for sharded indexes)

sourceBase: Source
(copy) base directory.

source: Source directory
suffix (default to
@Indexed.index).
The actual source
directory name being
<sourceBase>/<source>

refresh: refresh period
in second (the copy will
take place every refresh
seconds).

buffer_size_on_copy:
The amount of
MegaBytes to move in
a single low level copy
instruction; defaults to
16MB.

org.hibernate.search.store.FSSlaveDirectoryProviderFile system based
directory. Like
FSDirectoryProvider,
but retrieves a master
version (source) on a
regular basis. To avoid
locking and inconsistent
search results, 2 local
copies are kept.

The recommended
value for the refresh
period is (at least) 50%
higher that the time to
copy the information
(default 3600 seconds -
60 minutes).

Note that the copy is
based on an incremental
copy mechanism
reducing the average
copy time.

DirectoryProvider
typically used on slave
nodes using a JMS back
end.

The
buffer_size_on_copy

optimum depends on
your operating system
and available RAM;
most people reported
good results using
values between 16 and
64MB.

indexBase: Base
directory

indexName: override
@Indexed.index (useful
for sharded indexes)

sourceBase: Source
(copy) base directory.

source: Source directory
suffix (default to
@Indexed.index).
The actual source
directory name being
<sourceBase>/<source>

refresh: refresh period
in second (the copy will
take place every refresh
seconds).

buffer_size_on_copy:
The amount of
MegaBytes to move in
a single low level copy
instruction; defaults to
16MB.

org.hibernate.search.store.RAMDirectoryProviderMemory based
directory, the directory
will be uniquely
identified (in the same
deployment unit) by the
@Indexed.index element

none

Sharding indexes

Hibernate 3.1.1.GA 25

If the built-in directory providers do not fit your needs, you
can write your own directory provider by implementing the
org.hibernate.store.DirectoryProvider interface.

Each indexed entity is associated to a Lucene index (an index can be
shared by several entities but this is not usually the case). You can configure
the index through properties prefixed by hibernate.search.indexname .
Default properties inherited to all indexes can be defined using the prefix
hibernate.search.default.

To define the directory provider of a given index, you use the
hibernate.search.indexname.directory_provider

Example 3.1. Configuring directory providers

hibernate.search.default.directory_provider

 org.hibernate.search.store.FSDirectoryProvider

hibernate.search.default.indexBase=/usr/lucene/indexes

hibernate.search.Rules.directory_provider

 org.hibernate.search.store.RAMDirectoryProvider

applied on

Example 3.2. Specifying the index name using the index
parameter of @Indexed

@Indexed(index="Status")

public class Status { ... }

@Indexed(index="Rules")

public class Rule { ... }

will create a file system directory in /usr/lucene/indexes/Status where the
Status entities will be indexed, and use an in memory directory named Rules
where Rule entities will be indexed.

You can easily define common rules like the directory provider and base
directory, and override those defaults later on on a per index basis.

Writing your own DirectoryProvider, you can utilize this configuration
mechanism as well.

3.2. Sharding indexes

In some extreme cases involving huge indexes (in size), it is necessary to
split (shard) the indexing data of a given entity type into several Lucene
indexes. This solution is not recommended until you reach significant index

Chapter 3. Configuration

26 Hibernate 3.1.1.GA

sizes and index update times are slowing the application down. The main
drawback of index sharding is that searches will end up being slower since
more files have to be opened for a single search. In other words don't do it
until you have problems :)

Despite this strong warning, Hibernate Search allows you to index a given
entity type into several sub indexes. Data is sharded into the different sub
indexes thanks to an IndexShardingStrategy. By default, no sharding strategy
is enabled, unless the number of shards is configured. To configure the
number of shards use the following property

Example 3.3. Enabling index sharding by specifying
nbr_of_shards for a specific index

hibernate.search.<indexName>.sharding_strategy.nbr_of_shards 5

This will use 5 different shards.

The default sharding strategy, when shards are set up, splits the data
according to the hash value of the id string representation (generated by the
Field Bridge). This ensures a fairly balanced sharding. You can replace the
strategy by implementing IndexShardingStrategy and by setting the following
property

Example 3.4. Specifying a custom sharding strategy

hibernate.search.<indexName>.sharding_strategy

 my.shardingstrategy.Implementation

Each shard has an independent directory provider configuration as described
in Section 3.1, “Directory configuration”. The DirectoryProvider default name
for the previous example are <indexName>.0 to <indexName>.4. In other words,
each shard has the name of it's owning index followed by . (dot) and its index
number.

Example 3.5. Configuring the sharding configuration for an
example entity Animal

hibernate.search.default.indexBase /usr/lucene/indexes

hibernate.search.Animal.sharding_strategy.nbr_of_shards 5

hibernate.search.Animal.directory_provider

 org.hibernate.search.store.FSDirectoryProvider

hibernate.search.Animal.0.indexName Animal00

hibernate.search.Animal.3.indexBase /usr/lucene/sharded

hibernate.search.Animal.3.indexName Animal03

Sharing indexes (two entities into the same
directory)

Hibernate 3.1.1.GA 27

This configuration uses the default id string hashing strategy and shards the
Animal index into 5 subindexes. All subindexes are FSDirectoryProvider
instances and the directory where each subindex is stored is as followed:

• for subindex 0: /usr/lucene/indexes/Animal00 (shared indexBase but
overridden indexName)

• for subindex 1: /usr/lucene/indexes/Animal.1 (shared indexBase, default
indexName)

• for subindex 2: /usr/lucene/indexes/Animal.2 (shared indexBase, default
indexName)

• for subindex 3: /usr/lucene/shared/Animal03 (overridden indexBase,
overridden indexName)

• for subindex 4: /usr/lucene/indexes/Animal.4 (shared indexBase, default
indexName)

3.3. Sharing indexes (two entities into the same
directory)

Note

This is only presented here so that you know the option is available.
There is really not much benefit in sharing indexes.

It is technically possible to store the information of more than one entity into a
single Lucene index. There are two ways to accomplish this:

• Configuring the underlying directory providers to point to the same physical
index directory. In practice, you set the property hibernate.search.[fully
qualified entity name].indexName to the same value. As an example let’s
use the same index (directory) for the Furniture and Animal entity. We just
set indexName for both entities to for example “Animal”. Both entities will
then be stored in the Animal directory

hibernate.search.org.hibernate.search.test.shards.Furniture.indexName = Animal

hibernate.search.org.hibernate.search.test.shards.Animal.indexName = Animal

• Setting the @Indexed annotation’s index attribute of the entities you want
to merge to the same value. If we again wanted all Furniture instances to
be indexed in the Animal index along with all instances of Animal we would
specify @Indexed(index=”Animal”) on both Animal and Furniture classes.

Chapter 3. Configuration

28 Hibernate 3.1.1.GA

3.4. Worker configuration

It is possible to refine how Hibernate Search interacts with Lucene through
the worker configuration. The work can be executed to the Lucene directory
or sent to a JMS queue for later processing. When processed to the Lucene
directory, the work can be processed synchronously or asynchronously to the
transaction commit.

You can define the worker configuration using the following properties

Table 3.2. worker configuration

Property Description

hibernate.search.worker.backend Out of the box support for the Apache
Lucene back end and the JMS back
end. Default to lucene. Supports also
jms.

hibernate.search.worker.execution Supports synchronous and
asynchronous execution. Default to
sync. Supports also async.

hibernate.search.worker.thread_pool.sizeDefines the number of threads in the
pool. useful only for asynchronous
execution. Default to 1.

hibernate.search.worker.buffer_queue.maxDefines the maximal number of
work queue if the thread poll is
starved. Useful only for asynchronous
execution. Default to infinite. If the
limit is reached, the work is done by
the main thread.

hibernate.search.worker.jndi.* Defines the JNDI properties to initiate
the InitialContext (if needed). JNDI is
only used by the JMS back end.

hibernate.search.worker.jms.connection_factoryMandatory for the JMS back end.
Defines the JNDI name to lookup
the JMS connection factory from
(/ConnectionFactory by default in
JBoss AS)

hibernate.search.worker.jms.queue Mandatory for the JMS back end.
Defines the JNDI name to lookup the
JMS queue from. The queue will be
used to post work messages.

JMS Master/Slave configuration

Hibernate 3.1.1.GA 29

3.5. JMS Master/Slave configuration

This section describes in greater detail how to configure the Master / Slaves
Hibernate Search architecture.

JMS Master/Slave architecture overview.

3.5.1. Slave nodes

Every index update operation is sent to a JMS queue. Index querying
operations are executed on a local index copy.

Chapter 3. Configuration

30 Hibernate 3.1.1.GA

Example 3.6. JMS Slave configuration

slave configuration

DirectoryProvider

(remote) master location

hibernate.search.default.sourceBase =

 /mnt/mastervolume/lucenedirs/mastercopy

local copy location

hibernate.search.default.indexBase = /Users/prod/lucenedirs

refresh every half hour

hibernate.search.default.refresh = 1800

appropriate directory provider

hibernate.search.default.directory_provider =

 org.hibernate.search.store.FSSlaveDirectoryProvider

Backend configuration

hibernate.search.worker.backend = jms

hibernate.search.worker.jms.connection_factory = /ConnectionFactory

hibernate.search.worker.jms.queue = queue/hibernatesearch

#optional jndi configuration (check your JMS provider for more

 information)

Optional asynchronous execution strategy

hibernate.search.worker.execution = async

hibernate.search.worker.thread_pool.size = 2

hibernate.search.worker.buffer_queue.max = 50

A file system local copy is recommended for faster search results.

The refresh period should be higher that the expected time copy.

3.5.2. Master node

Every index update operation is taken from a JMS queue and executed. The
master index is copied on a regular basis.

Master node

Hibernate 3.1.1.GA 31

Example 3.7. JMS Master configuration

master configuration

DirectoryProvider

(remote) master location where information is copied to

hibernate.search.default.sourceBase =

 /mnt/mastervolume/lucenedirs/mastercopy

local master location

hibernate.search.default.indexBase = /Users/prod/lucenedirs

refresh every half hour

hibernate.search.default.refresh = 1800

appropriate directory provider

hibernate.search.default.directory_provider =

 org.hibernate.search.store.FSMasterDirectoryProvider

Backend configuration

#Backend is the default lucene one

The refresh period should be higher that the expected time copy.

In addition to the Hibernate Search framework configuration, a Message
Driven Bean should be written and set up to process the index works queue
through JMS.

Chapter 3. Configuration

32 Hibernate 3.1.1.GA

Example 3.8. Message Driven Bean processing the indexing
queue

@MessageDriven(activationConfig = {

 @ActivationConfigProperty(propertyName="destinationType",

 propertyValue="javax.jms.Queue"),

 @ActivationConfigProperty(propertyName="destination",

 propertyValue="queue/hibernatesearch"),

 @ActivationConfigProperty(propertyName="DLQMaxResent",

 propertyValue="1")

 })

public class MDBSearchController extends

 AbstractJMSHibernateSearchController implements MessageListener {

 @PersistenceContext EntityManager em;

 //method retrieving the appropriate session

 protected Session getSession() {

 return (Session) em.getDelegate();

 }

 //potentially close the session opened in #getSession(), not

 needed here

 protected void cleanSessionIfNeeded(Session session)

 }

}

This example inherits from the abstract JMS controller class
available in the Hibernate Search source code and implements
a JavaEE 5 MDB. This implementation is given as an example
and, while most likely be more complex, can be adjusted to make
use of non Java EE Message Driven Beans. For more information
about the getSession() and cleanSessionIfNeeded(), please check
AbstractJMSHibernateSearchController's javadoc.

3.6. Reader strategy configuration

The different reader strategies are described in Reader strategy. Out of the
box strategies are:

• shared: share index readers across several queries. This strategy is the
most efficient.

• not-shared: create an index reader for each individual query

The default reader strategy is shared. This can be adjusted:

hibernate.search.reader.strategy = not-shared

Adding this property switches to the not-shared strategy.

Enabling Hibernate Search and automatic
indexing

Hibernate 3.1.1.GA 33

Or if you have a custom reader strategy:

hibernate.search.reader.strategy =

 my.corp.myapp.CustomReaderProvider

where my.corp.myapp.CustomReaderProvider is the custom strategy
implementation.

3.7. Enabling Hibernate Search and automatic
indexing

3.7.1. Enabling Hibernate Search

Hibernate Search is enabled out of the box when using Hibernate
Annotations or Hibernate EntityManager. If, for some reason you need to
disable it, set hibernate.search.autoregister_listeners to false. Note that
there is no performance penalty when the listeners are enabled even though
no entities are indexed.

To enable Hibernate Search in Hibernate Core (ie. if you don't use Hibernate
Annotations), add the FullTextIndexEventListener for the following six
Hibernate events and also add it after the default DefaultFlushEventListener,
as in the following example.

Chapter 3. Configuration

34 Hibernate 3.1.1.GA

Example 3.9. Explicitly enabling Hibernate Search by
configuring the FullTextIndexEventListener

<hibernate-configuration>

 <session-factory>

 ...

 <event type="post-update">

 <listener

 class="org.hibernate.search.event.FullTextIndexEventListener"/>

 </event>

 <event type="post-insert">

 <listener

 class="org.hibernate.search.event.FullTextIndexEventListener"/>

 </event>

 <event type="post-delete">

 <listener

 class="org.hibernate.search.event.FullTextIndexEventListener"/>

 </event>

 <event type="post-collection-recreate">

 <listener

 class="org.hibernate.search.event.FullTextIndexEventListener"/>

 </event>

 <event type="post-collection-remove">

 <listener

 class="org.hibernate.search.event.FullTextIndexEventListener"/>

 </event>

 <event type="post-collection-update">

 <listener

 class="org.hibernate.search.event.FullTextIndexEventListener"/>

 </event>

 <event type="flush">

 <listener

 class="org.hibernate.event.def.DefaultFlushEventListener"/>

 <listener

 class="org.hibernate.search.event.FullTextIndexEventListener"/>

 </event>

 </session-factory>

</hibernate-configuration>

3.7.2. Automatic indexing

By default, every time an object is inserted, updated or deleted through
Hibernate, Hibernate Search updates the according Lucene index. It is
sometimes desirable to disable that features if either your index is read-only
or if index updates are done in a batch way (see Chapter 6, Manual
indexing).

To disable event based indexing, set

hibernate.search.indexing_strategy manual

Tuning Lucene indexing performance

Hibernate 3.1.1.GA 35

Note

In most case, the JMS backend provides the best of both world, a
lightweight event based system keeps track of all changes in the
system, and the heavyweight indexing process is done by a separate
process or machine.

3.8. Tuning Lucene indexing performance

Hibernate Search allows you to tune the Lucene indexing performance
by specifying a set of parameters which are passed through to underlying
Lucene IndexWriter such as mergeFactor, maxMergeDocs and maxBufferedDocs.
You can specify these parameters either as default values applying for all
indexes, on a per index basis, or even per shard.

There are two sets of parameters allowing for different performance settings
depending on the use case. During indexing operations triggered by
database modifications, the parameters are grouped by the transaction
keyword:

hibernate.search.[default|<indexname>].indexwriter.transaction.<parameter_name>

When indexing occurs via FullTextSession.index() (see Chapter 6, Manual
indexing), the used properties are those grouped under the batch keyword:

hibernate.search.[default|<indexname>].indexwriter.batch.<parameter_name>

Unless the corresponding .batch property is explicitly set, the value will
default to the .transaction property. If no value is set for a .batch value in a
specific shard configuration, Hibernate Search will look at the index section,
then at the default section and after that it will look for a .transaction in the
same order:

hibernate.search.Animals.2.indexwriter.transaction.max_merge_docs 10

hibernate.search.Animals.2.indexwriter.transaction.merge_factor 20

hibernate.search.default.indexwriter.batch.max_merge_docs 100

This configuration will result in these settings applied to the second shard of
Animals index:

• transaction.max_merge_docs = 10

• batch.max_merge_docs = 100

• transaction.merge_factor = 20

• batch.merge_factor = 20

Chapter 3. Configuration

36 Hibernate 3.1.1.GA

All other values will use the defaults defined in Lucene.

The default for all values is to leave them at Lucene's own default, so
the listed values in the following table actually depend on the version of
Lucene you are using; values shown are relative to version 2.4. For more
information about Lucene indexing performances, please refer to the Lucene
documentation.

Tuning Lucene indexing performance

Hibernate 3.1.1.GA 37

Table 3.3. List of indexing performance and behavior
properties

Property Description Default Value

hibernate.search.[default|<indexname>].indexwriter.[transaction|batch].max_buffered_delete_termsDetermines the minimal
number of delete terms
required before the
buffered in-memory
delete terms are applied
and flushed. If there are
documents buffered in
memory at the time, they
are merged and a new
segment is created.

Disabled (flushes by
RAM usage)

hibernate.search.[default|<indexname>].indexwriter.[transaction|batch].max_buffered_docsControls the amount of
documents buffered in
memory during indexing.
The bigger the more
RAM is consumed.

Disabled (flushes by
RAM usage)

hibernate.search.[default|<indexname>].indexwriter.[transaction|batch].max_field_lengthThe maximum number
of terms that will be
indexed for a single
field. This limits the
amount of memory
required for indexing so
that very large data will
not crash the indexing
process by running out
of memory. This setting
refers to the number of
running terms, not to
the number of different
terms.

This silently truncates
large documents,
excluding from the
index all terms that
occur further in the
document. If you know
your source documents
are large, be sure to
set this value high
enough to accommodate
the expected size.
If you set it to
Integer.MAX_VALUE,
then the only limit is
your memory, but you
should anticipate an
OutOfMemoryError.

If setting this value in
batch differently than
in transaction you
may get different data
(and results) in your
index depending on the
indexing mode.

10000

hibernate.search.[default|<indexname>].indexwriter.[transaction|batch].max_merge_docsDefines the largest
number of documents
allowed in a segment.
Larger values are best
for batched indexing
and speedier searches.
Small values are best for
transaction indexing.

Unlimited
(Integer.MAX_VALUE)

hibernate.search.[default|<indexname>].indexwriter.[transaction|batch].merge_factorControls segment merge
frequency and size.

Determines how often
segment indexes are
merged when insertion
occurs. With smaller
values, less RAM is
used while indexing,
and searches on
unoptimized indexes
are faster, but indexing
speed is slower.
With larger values,
more RAM is used
during indexing, and
while searches on
unoptimized indexes
are slower, indexing
is faster. Thus larger
values (> 10) are best
for batch index creation,
and smaller values (<
10) for indexes that are
interactively maintained.
The value must no be
lower than 2.

10

hibernate.search.[default|<indexname>].indexwriter.[transaction|batch].ram_buffer_sizeControls the amount of
RAM in MB dedicated
to document buffers.
When used together
max_buffered_docs
a flush occurs for
whichever event
happens first.

Generally for faster
indexing performance
it's best to flush by
RAM usage instead of
document count and use
as large a RAM buffer
as you can.

16 MB

hibernate.search.[default|<indexname>].indexwriter.[transaction|batch].term_index_intervalExpert: Set the interval
between indexed terms.

Large values cause
less memory to be used
by IndexReader, but
slow random-access
to terms. Small values
cause more memory
to be used by an
IndexReader, and
speed random-access
to terms. See Lucene
documentation for more
details.

128

hibernate.search.[default|<indexname>].indexwriter.[transaction|batch].use_compound_fileThe advantage of using
the compound file
format is that less file
descriptors are used.
The disadvantage is
that indexing takes more
time and temporary
disk space. You can
set this parameter to
false in an attempt to
improve the indexing
time, but you could run
out of file descriptors
if mergeFactor is also
large.

Boolean parameter, use
"true" or "false". The
default value for this
option is true.

true

38 Hibernate 3.1.1.GA

Hibernate 3.1.1.GA 39

Chapter 4. Mapping entities to the
index structure

All the metadata information needed to index entities is described through
annotations. There is no need for xml mapping files. In fact there is
currently no xml configuration option available (see HSEARCH-210
[http://opensource.atlassian.com/projects/hibernate/browse/HSEARCH-210]).
You can still use hibernate mapping files for the basic Hibernate
configuration, but the Search specific configuration has to be expressed via
annotations.

4.1. Mapping an entity

4.1.1. Basic mapping

First, we must declare a persistent class as indexable. This is done by
annotating the class with @Indexed (all entities not annotated with @Indexed
will be ignored by the indexing process):

Example 4.1. Making a class indexable using the @Indexed
annotation

@Entity

@Indexed(index="indexes/essays")

public class Essay {

 ...

}

The index attribute tells Hibernate what the Lucene directory name
is (usually a directory on your file system). It is recommended
to define a base directory for all Lucene indexes using the
hibernate.search.default.indexBase property in your configuration file.
Alternatively you can specify a base directory per indexed entity by specifying
hibernate.search.<index>.indexBase, where <index> is the fully qualified
classname of the indexed entity. Each entity instance will be represented by
a Lucene Document inside the given index (aka Directory).

For each property (or attribute) of your entity, you have the ability to describe
how it will be indexed. The default (no annotation present) means that the
property is completely ignored by the indexing process. @Field does declare
a property as indexed. When indexing an element to a Lucene document you
can specify how it is indexed:

http://opensource.atlassian.com/projects/hibernate/browse/HSEARCH-210
http://opensource.atlassian.com/projects/hibernate/browse/HSEARCH-210

Chapter 4. Mapping entities to the i...

40 Hibernate 3.1.1.GA

• name : describe under which name, the property should be stored in the
Lucene Document. The default value is the property name (following the
JavaBeans convention)

• store : describe whether or not the property is stored in the Lucene index.
You can store the value Store.YES (consuming more space in the index but
allowing projection, see Section 5.1.2.5, “Projection” for more information),
store it in a compressed way Store.COMPRESS (this does consume more
CPU), or avoid any storage Store.NO (this is the default value). When
a property is stored, you can retrieve its original value from the Lucene
Document. This is not related to whether the element is indexed or not.

• index: describe how the element is indexed and the type of information
store. The different values are Index.NO (no indexing, ie cannot be found
by a query), Index.TOKENIZED (use an analyzer to process the property),
Index.UN_TOKENIZED (no analyzer pre-processing), Index.NO_NORMS (do not
store the normalization data). The default value is TOKENIZED.

• termVector: describes collections of term-frequency pairs. This attribute
enables term vectors being stored during indexing so they are available
within documents. The default value is TermVector.NO.

The different values of this attribute are:

Value Definition

TermVector.YES Store the term vectors of each
document. This produces two
synchronized arrays, one contains
document terms and the other
contains the term's frequency.

TermVector.NO Do not store term vectors.

TermVector.WITH_OFFSETS Store the term vector and token
offset information. This is the same
as TermVector.YES plus it contains
the starting and ending offset
position information for the terms.

TermVector.WITH_POSITIONS Store the term vector and token
position information. This is the
same as TermVector.YES plus it
contains the ordinal positions of
each occurrence of a term in a
document.

TermVector.WITH_POSITION_OFFSETS

Basic mapping

Hibernate 3.1.1.GA 41

Value Definition

Store the term vector, token
position and offset information.
This is a combination of the
YES, WITH_OFFSETS and
WITH_POSITIONS.

Whether or not you want to store the original data in the index depends on
how you wish to use the index query result. For a regular Hibernate Search
usage storing is not necessary. However you might want to store some fields
to subsequently project them (see Section 5.1.2.5, “Projection” for more
information).

Whether or not you want to tokenize a property depends on whether you
wish to search the element as is, or by the words it contains. It make sense
to tokenize a text field, but tokenizing a date field probably not. Note that
fields used for sorting must not be tokenized.

Finally, the id property of an entity is a special property used by Hibernate
Search to ensure index unicity of a given entity. By design, an id has to be
stored and must not be tokenized. To mark a property as index id, use the
@DocumentId annotation. If you are using Hibernate Annotations and you have
specified @Id you can omit @DocumentId. The chosen entity id will also be
used as document id.

Example 4.2. Adding @DocumentId ad @Field annotations to an
indexed entity

@Entity

@Indexed(index="indexes/essays")

public class Essay {

 ...

 @Id

 @DocumentId

 public Long getId() { return id; }

 @Field(name="Abstract", index=Index.TOKENIZED, store=Store.YES)

 public String getSummary() { return summary; }

 @Lob

 @Field(index=Index.TOKENIZED)

 public String getText() { return text; }

}

Chapter 4. Mapping entities to the i...

42 Hibernate 3.1.1.GA

The above annotations define an index with three fields: id , Abstract and
text . Note that by default the field name is decapitalized, following the
JavaBean specification

4.1.2. Mapping properties multiple times

Sometimes one has to map a property multiple times per index, with
slightly different indexing strategies. For example, sorting a query by field
requires the field to be UN_TOKENIZED. If one wants to search by words in this
property and still sort it, one need to index it twice - once tokenized and once
untokenized. @Fields allows to achieve this goal.

Example 4.3. Using @Fields to map a property multiple
times

@Entity

@Indexed(index = "Book")

public class Book {

 @Fields({

 @Field(index = Index.TOKENIZED),

 @Field(name = "summary_forSort", index =

 Index.UN_TOKENIZED, store = Store.YES)

 })

 public String getSummary() {

 return summary;

 }

 ...

}

The field summary is indexed twice, once as summary in a tokenized way, and
once as summary_forSort in an untokenized way. @Field supports 2 attributes
useful when @Fields is used:

• analyzer: defines a @Analyzer annotation per field rather than per property

• bridge: defines a @FieldBridge annotation per field rather than per
property

See below for more information about analyzers and field bridges.

4.1.3. Embedded and associated objects

Associated objects as well as embedded objects can be indexed as part
of the root entity index. This is useful if you expect to search a given entity
based on properties of associated objects. In the following example the aim
is to return places where the associated city is Atlanta (In the Lucene query
parser language, it would translate into address.city:Atlanta).

Embedded and associated objects

Hibernate 3.1.1.GA 43

Example 4.4. Using @IndexedEmbedded to index
associations

@Entity

@Indexed

public class Place {

 @Id

 @GeneratedValue

 @DocumentId

 private Long id;

 @Field(index = Index.TOKENIZED)

 private String name;

 @OneToOne(cascade = { CascadeType.PERSIST, CascadeType.REMOVE }

)

 @IndexedEmbedded

 private Address address;

}

@Entity

public class Address {

 @Id

 @GeneratedValue

 private Long id;

 @Field(index=Index.TOKENIZED)

 private String street;

 @Field(index=Index.TOKENIZED)

 private String city;

 @ContainedIn

 @OneToMany(mappedBy="address")

 private Set<Place> places;

 ...

}

In this example, the place fields will be indexed in the Place index. The Place
index documents will also contain the fields address.id, address.street,
and address.city which you will be able to query. This is enabled by the
@IndexedEmbedded annotation.

Be careful. Because the data is denormalized in the Lucene index when
using the @IndexedEmbedded technique, Hibernate Search needs to be aware
of any change in the Place object and any change in the Address object
to keep the index up to date. To make sure the Place Lucene document is
updated when it's Address changes, you need to mark the other side of the
bidirectional relationship with @ContainedIn.

Chapter 4. Mapping entities to the i...

44 Hibernate 3.1.1.GA

@ContainedIn is only useful on associations pointing to entities as opposed to
embedded (collection of) objects.

Let's make our example a bit more complex:

Embedded and associated objects

Hibernate 3.1.1.GA 45

Example 4.5. Nested usage of @IndexedEmbedded and
@ContainedIn

@Entity

@Indexed

public class Place {

 @Id

 @GeneratedValue

 @DocumentId

 private Long id;

 @Field(index = Index.TOKENIZED)

 private String name;

 @OneToOne(cascade = { CascadeType.PERSIST, CascadeType.REMOVE }

)

 @IndexedEmbedded

 private Address address;

}

@Entity

public class Address {

 @Id

 @GeneratedValue

 private Long id;

 @Field(index=Index.TOKENIZED)

 private String street;

 @Field(index=Index.TOKENIZED)

 private String city;

 @IndexedEmbedded(depth = 1, prefix = "ownedBy_")

 private Owner ownedBy;

 @ContainedIn

 @OneToMany(mappedBy="address")

 private Set<Place> places;

 ...

}

@Embeddable

public class Owner {

 @Field(index = Index.TOKENIZED)

 private String name;

 ...

}

Any @*ToMany, @*ToOne and @Embedded attribute can be annotated with
@IndexedEmbedded. The attributes of the associated class will then be added

Chapter 4. Mapping entities to the i...

46 Hibernate 3.1.1.GA

to the main entity index. In the previous example, the index will contain the
following fields

• id

• name

• address.street

• address.city

• address.ownedBy_name

The default prefix is propertyName., following the traditional object navigation
convention. You can override it using the prefix attribute as it is shown on
the ownedBy property.

Note

The prefix cannot be set to the empty string.

The depth property is necessary when the object graph contains a cyclic
dependency of classes (not instances). For example, if Owner points to Place.
Hibernate Search will stop including Indexed embedded attributes after
reaching the expected depth (or the object graph boundaries are reached).
A class having a self reference is an example of cyclic dependency. In our
example, because depth is set to 1, any @IndexedEmbedded attribute in Owner
(if any) will be ignored.

Using @IndexedEmbedded for object associations allows you to express queries
such as:

• Return places where name contains JBoss and where address city is
Atlanta. In Lucene query this would be

+name:jboss +address.city:atlanta

• Return places where name contains JBoss and where owner's name
contain Joe. In Lucene query this would be

+name:jboss +address.orderBy_name:joe

In a way it mimics the relational join operation in a more efficient way (at the
cost of data duplication). Remember that, out of the box, Lucene indexes
have no notion of association, the join operation is simply non-existent. It
might help to keep the relational model normalized while benefiting from the
full text index speed and feature richness.

Boost factor

Hibernate 3.1.1.GA 47

Note

An associated object can itself (but does not have to) be @Indexed

When @IndexedEmbedded points to an entity, the association has to be
directional and the other side has to be annotated @ContainedIn (as seen in
the previous example). If not, Hibernate Search has no way to update the
root index when the associated entity is updated (in our example, a Place
index document has to be updated when the associated Address instance is
updated).

Sometimes, the object type annotated by @IndexedEmbedded is not the object
type targeted by Hibernate and Hibernate Search. This is especially the case
when interfaces are used in lieu of their implementation. For this reason
you can override the object type targeted by Hibernate Search using the
targetElement parameter.

Example 4.6. Using the targetElement property of
@IndexedEmbedded

@Entity

@Indexed

public class Address {

 @Id

 @GeneratedValue

 @DocumentId

 private Long id;

 @Field(index= Index.TOKENIZED)

 private String street;

 @IndexedEmbedded(depth = 1, prefix = "ownedBy_", targetElement =

 Owner.class)

 @Target(Owner.class)

 private Person ownedBy;

 ...

}

@Embeddable

public class Owner implements Person { ... }

4.1.4. Boost factor

Lucene has the notion of boost factor. It's a way to give more weight to a field
or to an indexed element over others during the indexation process. You can
use @Boost at the @Field, method or class level.

Chapter 4. Mapping entities to the i...

48 Hibernate 3.1.1.GA

Example 4.7. Using different ways of increasing the weight
of an indexed element using a boost factor

@Entity

@Indexed(index="indexes/essays")

@Boost(1.7f)

public class Essay {

 ...

 @Id

 @DocumentId

 public Long getId() { return id; }

 @Field(name="Abstract", index=Index.TOKENIZED, store=Store.YES,

 boost=@Boost(2f))

 @Boost(1.5f)

 public String getSummary() { return summary; }

 @Lob

 @Field(index=Index.TOKENIZED, boost=@Boost(1.2f))

 public String getText() { return text; }

 @Field

 public String getISBN() { return isbn; }

}

In our example, Essay's probability to reach the top of the search list will be
multiplied by 1.7. The summary field will be 3.0 (2 * 1.5 - @Field.boost and
@Boost on a property are cumulative) more important than the isbn field.
The text field will be 1.2 times more important than the isbn field. Note
that this explanation in strictest terms is actually wrong, but it is simple and
close enough to reality for all practical purposes. Please check the Lucene
documentation or the excellent Lucene In Action from Otis Gospodnetic and
Erik Hatcher.

4.1.5. Analyzer

The default analyzer class used to index tokenized fields is configurable
through the hibernate.search.analyzer property. The default value for this
property is org.apache.lucene.analysis.standard.StandardAnalyzer.

You can also define the analyzer class per entity, property and even per
@Field (useful when multiple fields are indexed from a single property).

Analyzer

Hibernate 3.1.1.GA 49

Example 4.8. Different ways of specifying an analyzer

@Entity

@Indexed

@Analyzer(impl = EntityAnalyzer.class)

public class MyEntity {

 @Id

 @GeneratedValue

 @DocumentId

 private Integer id;

 @Field(index = Index.TOKENIZED)

 private String name;

 @Field(index = Index.TOKENIZED)

 @Analyzer(impl = PropertyAnalyzer.class)

 private String summary;

 @Field(index = Index.TOKENIZED, analyzer = @Analyzer(impl =

 FieldAnalyzer.class)

 private String body;

 ...

}

In this example, EntityAnalyzer is used to index all tokenized properties (eg.
name), except summary and body which are indexed with PropertyAnalyzer and
FieldAnalyzer respectively.

Caution

Mixing different analyzers in the same entity is most of the time a
bad practice. It makes query building more complex and results less
predictable (for the novice), especially if you are using a QueryParser
(which uses the same analyzer for the whole query). As a rule of
thumb, for any given field the same analyzer should be used for
indexing and querying.

4.1.5.1. Analyzer definitions

Analyzers can become quite complex to deal with for which reason Hibernate
Search introduces the notion of analyzer definitions. An analyzer definition
can be reused by many @Analyzer declarations. An analyzer definition is
composed of:

• a name: the unique string used to refer to the definition

• a tokenizer: responsible for tokenizing the input stream into individual
words

Chapter 4. Mapping entities to the i...

50 Hibernate 3.1.1.GA

• a list of filters: each filter is responsible to remove, modify or sometimes
even add words into the stream provided by the tokenizer

This separation of tasks - a tokenizer followed by a list of filters - allows for
easy reuse of each individual component and let you build your customized
analyzer in a very flexible way (just like Lego). Generally speaking the
Tokenizer starts the analysis process by turning the character input into
tokens which are then further processed by the TokenFilters. Hibernate
Search supports this infrastructure by utilizing the Solr analyzer framework.
Make sure to add solr-core.jar and solr-common.jar to your classpath
to use analyzer definitions. In case you also want to utilizing a snowball
stemmer also include the lucene-snowball.jar. Other Solr analyzers might
depend on more libraries. For example, the PhoneticFilterFactory depends
on commons-codec [http://commons.apache.org/codec]. Your distribution of
Hibernate Search provides these dependencies in its lib directory.

Example 4.9. @AnalyzerDef and the Solr framework

@AnalyzerDef(name="customanalyzer",

 tokenizer = @TokenizerDef(factory =

 StandardTokenizerFactory.class),

 filters = {

 @TokenFilterDef(factory =

 ISOLatin1AccentFilterFactory.class),

 @TokenFilterDef(factory =

 LowerCaseFilterFactory.class),

 @TokenFilterDef(factory = StopFilterFactory.class,

 params = {

 @Parameter(name="words", value=

 "org/hibernate/search/test/analyzer/solr/stoplist.properties"),

 @Parameter(name="ignoreCase", value="true")

 })

})

public class Team {

 ...

}

A tokenizer is defined by its factory which is responsible for building the
tokenizer and using the optional list of parameters. This example use the
standard tokenizer. A filter is defined by its factory which is responsible for
creating the filter instance using the optional parameters. In our example,
the StopFilter filter is built reading the dedicated words property file and is
expected to ignore case. The list of parameters is dependent on the tokenizer
or filter factory.

http://commons.apache.org/codec
http://commons.apache.org/codec

Analyzer

Hibernate 3.1.1.GA 51

Warning

Filters are applied in the order they are defined in the @AnalyzerDef
annotation. Make sure to think twice about this order.

Once defined, an analyzer definition can be reused by an @Analyzer
declaration using the definition name rather than declaring an implementation
class.

Example 4.10. Referencing an analyzer by name

@Entity

@Indexed

@AnalyzerDef(name="customanalyzer", ...)

public class Team {

 @Id

 @DocumentId

 @GeneratedValue

 private Integer id;

 @Field

 private String name;

 @Field

 private String location;

 @Field @Analyzer(definition = "customanalyzer")

 private String description;

}

Analyzer instances declared by @AnalyzerDef are available by their name in
the SearchFactory.

Analyzer analyzer =

 fullTextSession.getSearchFactory().getAnalyzer("customanalyzer");

This is quite useful wen building queries. Fields in queries should be
analyzed with the same analyzer used to index the field so that they speak a
common "language": the same tokens are reused between the query and the
indexing process. This rule has some exceptions but is true most of the time.
Respect it unless you know what you are doing.

4.1.5.2. Available analyzers

Solr and Lucene come with a lot of useful default tokenizers and filters.
You can find a complete list of tokenizer factories and filter factories at
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters. Let check a few
of them.

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

Chapter 4. Mapping entities to the i...

52 Hibernate 3.1.1.GA

Table 4.1. Some of the available tokenizers

Factory Description parameters

StandardTokenizerFactoryUse the Lucene
StandardTokenizer

none

HTMLStripStandardTokenizerFactoryRemove HTML tags,
keep the text and pass it
to a StandardTokenizer

none

Table 4.2. Some of the available filters

Factory Description parameters

StandardFilterFactory Remove dots from
acronyms and 's from
words

none

LowerCaseFilterFactory Lowercase words none

StopFilterFactory remove words (tokens)
matching a list of stop
words

words: points to a
resource file containing
the stop words

ignoreCase: true if case
should be ignore when
comparing stop words,
false otherwise

SnowballPorterFilterFactoryReduces a word to it's
root in a given language.
(eg. protect, protects,
protection share the
same root). Using such
a filter allows searches
matching related words.

language: Danish,
Dutch, English, Finnish,
French, German, Italian,
Norwegian, Portuguese,
Russian, Spanish,
Swedish
and a few more

ISOLatin1AccentFilterFactoryremove accents for
languages like French

none

We recommend to check all the implementations of
org.apache.solr.analysis.TokenizerFactory and
org.apache.solr.analysis.TokenFilterFactory in your IDE to see the
implementations available.

4.1.5.3. Analyzer discriminator (experimental)

So far all the introduced ways to specify an analyzer were static. However,
there are use cases where it is useful to select an analyzer depending on

Analyzer

Hibernate 3.1.1.GA 53

the current state of the entity to be indexed, for example in multilingual
application. For an BlogEntry class for example the analyzer could depend
on the language property of the entry. Depending on this property the correct
language specific stemmer should be chosen to index the actual text.

To enable this dynamic analyzer selection Hibernate Search introduces the
AnalyzerDiscriminator annotation. The following example demonstrates the
usage of this annotation:

Chapter 4. Mapping entities to the i...

54 Hibernate 3.1.1.GA

Example 4.11. Usage of @AnalyzerDiscriminator in order to
select an analyzer depending on the entity state

@Entity

@Indexed

@AnalyzerDefs({

 @AnalyzerDef(name = "en",

 tokenizer = @TokenizerDef(factory =

 StandardTokenizerFactory.class),

 filters = {

 @TokenFilterDef(factory = LowerCaseFilterFactory.class),

 @TokenFilterDef(factory = EnglishPorterFilterFactory.class

)

 }),

 @AnalyzerDef(name = "de",

 tokenizer = @TokenizerDef(factory =

 StandardTokenizerFactory.class),

 filters = {

 @TokenFilterDef(factory = LowerCaseFilterFactory.class),

 @TokenFilterDef(factory = GermanStemFilterFactory.class)

 })

})

public class BlogEntry {

 @Id

 @GeneratedValue

 @DocumentId

 private Integer id;

 @Field

 @AnalyzerDiscriminator(impl = LanguageDiscriminator.class)

 private String language;

 @Field

 private String text;

 private Set<BlogEntry> references;

 // standard getter/setter

 ...

}

public class LanguageDiscriminator implements Discriminator {

 public String getAnanyzerDefinitionName(Object value, Object

 entity, String field) {

 if (value == null || !(entity instanceof Article)) {

 return null;

 }

 return (String) value;

 }

}

Analyzer

Hibernate 3.1.1.GA 55

The prerequisite for using @AnalyzerDiscriminator is that all analyzers which
are going to be used are predefined via @AnalyzerDef definitions. If this is
the case one can place the @AnalyzerDiscriminator annotation either on the
class or on a specific property of the entity for which to dynamically select an
analyzer. Via the impl parameter of the AnalyzerDiscriminator you specify
a concrete implementation of the Discriminator interface. It is up to you
to provide an implementation for this interface. The only method you have
to implement is getAnanyzerDefinitionName() which gets called for each
field added to the Lucene document. The entity which is getting indexed is
also passed to the interface method. The value parameter is only set if the
AnalyzerDiscriminator is placed on property level instead of class level. In
this case the value represents the current value of this property.

An implemention of the Discriminator interface has to return the name of an
existing analyzer definition if the analyzer should be set dynamically or null
if the default analyzer should not be overridden. The given example assumes
that the language parameter is either 'de' or 'en' which matches the specified
names in the @AnalyzerDefs.

Note

The @AnalyzerDiscriminator is currently still experimental and the
API might still change. We are hoping for some feedback from the
community about the usefulness and usability of this feature.

4.1.5.4. Retrieving an analyzer

During indexing time, Hibernate Search is using analyzers under the hood
for you. In some situations, retrieving analyzers can be handy. If your domain
model makes use of multiple analyzers (maybe to benefit from stemming, use
phonetic approximation and so on), you need to make sure to use the same
analyzers when you build your query.

Note

This rule can be broken but you need a good reason for it. If you are
unsure, use the same analyzers.

You can retrieve the scoped analyzer for a given entity used at indexing time
by Hibernate Search. A scoped analyzer is an analyzer which applies the
right analyzers depending on the field indexed: multiple analyzers can be
defined on a given entity each one working on an individual field, a scoped
analyzer unify all these analyzers into a context-aware analyzer. While the
theory seems a bit complex, using the right analyzer in a query is very easy.

Chapter 4. Mapping entities to the i...

56 Hibernate 3.1.1.GA

Example 4.12. Using the scoped analyzer when building a
full-text query

org.apache.lucene.queryParser.QueryParser parser = new QueryParser(

 "title",

 fullTextSession.getSearchFactory().getAnalyzer(Song.class)

);

org.apache.lucene.search.Query luceneQuery =

 parser.parse("title:sky Or title_stemmed:diamond");

org.hibernate.Query fullTextQuery =

 fullTextSession.createFullTextQuery(luceneQuery, Song.class);

List result = fullTextQuery.list(); //return a list of managed

 objects

In the example above, the song title is indexed in two fields: the standard
analyzer is used in the field title and a stemming analyzer is used in the
field title_stemmed. By using the analyzer provided by the search factory, the
query uses the appropriate analyzer depending on the field targeted.

If your query targets more that one query and you wish to use
your standard analyzer, make sure to describe it using an analyzer
definition. You can retrieve analyzers by their definition name using
searchFactory.getAnalyzer(String).

4.2. Property/Field Bridge

In Lucene all index fields have to be represented as Strings. For this reason
all entity properties annotated with @Field have to be indexed in a String
form. For most of your properties, Hibernate Search does the translation job
for you thanks to a built-in set of bridges. In some cases, though you need a
more fine grain control over the translation process.

4.2.1. Built-in bridges

Hibernate Search comes bundled with a set of built-in bridges between a
Java property type and its full text representation.

null
null elements are not indexed. Lucene does not support null elements
and this does not make much sense either.

java.lang.String
String are indexed as is

Built-in bridges

Hibernate 3.1.1.GA 57

short, Short, integer, Integer, long, Long, float, Float, double, Double,
BigInteger, BigDecimal

Numbers are converted in their String representation. Note that numbers
cannot be compared by Lucene (ie used in ranged queries) out of the
box: they have to be padded

Note

Using a Range query is debatable and has drawbacks, an
alternative approach is to use a Filter query which will filter the
result query to the appropriate range.

Hibernate Search will support a padding mechanism

java.util.Date
Dates are stored as yyyyMMddHHmmssSSS in GMT time
(200611072203012 for Nov 7th of 2006 4:03PM and 12ms EST). You
shouldn't really bother with the internal format. What is important is that
when using a DateRange Query, you should know that the dates have to
be expressed in GMT time.

Usually, storing the date up to the millisecond is not necessary.
@DateBridge defines the appropriate resolution you are willing to store in
the index (@DateBridge(resolution=Resolution.DAY)). The date pattern will
then be truncated accordingly.

@Entity

@Indexed

public class Meeting {

 @Field(index=Index.UN_TOKENIZED)

 @DateBridge(resolution=Resolution.MINUTE)

 private Date date;

 ...

Warning

A Date whose resolution is lower than MILLISECOND cannot be a
@DocumentId

java.net.URI, java.net.URL
URI and URL are converted to their string representation

java.lang.Class
Class are converted to their fully qualified class name. The thread context
classloader is used when the class is rehydrated

Chapter 4. Mapping entities to the i...

58 Hibernate 3.1.1.GA

4.2.2. Custom Bridge

Sometimes, the built-in bridges of Hibernate Search do not cover some of
your property types, or the String representation used by the bridge does not
meet your requirements. The following paragraphs describe several solutions
to this problem.

4.2.2.1. StringBridge

The simplest custom solution is to give Hibernate Search an implementation
of your expected Object to String bridge. To do so you need to implements
the org.hibernate.search.bridge.StringBridge interface. All implementations
have to be thread-safe as they are used concurrently.

Example 4.13. Implementing your own StringBridge

/**

 * Padding Integer bridge.

 * All numbers will be padded with 0 to match 5 digits

 *

 * @author Emmanuel Bernard

 */

public class PaddedIntegerBridge implements StringBridge {

 private int PADDING = 5;

 public String objectToString(Object object) {

 String rawInteger = ((Integer) object).toString();

 if (rawInteger.length() > PADDING)

 throw new IllegalArgumentException("Try to pad on a

 number too big");

 StringBuilder paddedInteger = new StringBuilder();

 for (int padIndex = rawInteger.length() ; padIndex <

 PADDING ; padIndex++) {

 paddedInteger.append('0');

 }

 return paddedInteger.append(rawInteger).toString();

 }

}

Then any property or field can use this bridge thanks to the @FieldBridge
annotation

@FieldBridge(impl = PaddedIntegerBridge.class)

private Integer length;

Parameters can be passed to the Bridge implementation making it more
flexible. The Bridge implementation implements a ParameterizedBridge

Custom Bridge

Hibernate 3.1.1.GA 59

interface, and the parameters are passed through the @FieldBridge
annotation.

Example 4.14. Passing parameters to your bridge
implementation

public class PaddedIntegerBridge implements StringBridge,

 ParameterizedBridge {

 public static String PADDING_PROPERTY = "padding";

 private int padding = 5; //default

 public void setParameterValues(Map parameters) {

 Object padding = parameters.get(PADDING_PROPERTY);

 if (padding != null) this.padding = (Integer) padding;

 }

 public String objectToString(Object object) {

 String rawInteger = ((Integer) object).toString();

 if (rawInteger.length() > padding)

 throw new IllegalArgumentException("Try to pad on a

 number too big");

 StringBuilder paddedInteger = new StringBuilder();

 for (int padIndex = rawInteger.length() ; padIndex <

 padding ; padIndex++) {

 paddedInteger.append('0');

 }

 return paddedInteger.append(rawInteger).toString();

 }

}

//property

@FieldBridge(impl = PaddedIntegerBridge.class,

 params = @Parameter(name="padding", value="10")

)

private Integer length;

The ParameterizedBridge interface can be implemented by StringBridge,
TwoWayStringBridge, FieldBridge implementations.

All implementations have to be thread-safe, but the parameters are set
during initialization and no special care is required at this stage.

If you expect to use your bridge implementation on an id property (ie
annotated with @DocumentId), you need to use a slightly extended version of
StringBridge named TwoWayStringBridge. Hibernate Search needs to read
the string representation of the identifier and generate the object out of it.
There is not difference in the way the @FieldBridge annotation is used.

Chapter 4. Mapping entities to the i...

60 Hibernate 3.1.1.GA

Example 4.15. Implementing a TwoWayStringBridge which
can for example be used for id properties

public class PaddedIntegerBridge implements TwoWayStringBridge,

 ParameterizedBridge {

 public static String PADDING_PROPERTY = "padding";

 private int padding = 5; //default

 public void setParameterValues(Map parameters) {

 Object padding = parameters.get(PADDING_PROPERTY);

 if (padding != null) this.padding = (Integer) padding;

 }

 public String objectToString(Object object) {

 String rawInteger = ((Integer) object).toString();

 if (rawInteger.length() > padding)

 throw new IllegalArgumentException("Try to pad on a

 number too big");

 StringBuilder paddedInteger = new StringBuilder();

 for (int padIndex = rawInteger.length() ; padIndex <

 padding ; padIndex++) {

 paddedInteger.append('0');

 }

 return paddedInteger.append(rawInteger).toString();

 }

 public Object stringToObject(String stringValue) {

 return new Integer(stringValue);

 }

}

//id property

@DocumentId

@FieldBridge(impl = PaddedIntegerBridge.class,

 params = @Parameter(name="padding", value="10")

private Integer id;

It is critically important for the two-way process to be idempotent (ie object =
stringToObject(objectToString(object))).

4.2.2.2. FieldBridge

Some use cases require more than a simple object to string translation when
mapping a property to a Lucene index. To give you the greatest possible
flexibility you can also implement a bridge as a FieldBridge. This interface
gives you a property value and let you map it the way you want in your
Lucene Document.The interface is very similar in its concept to the Hibernate
UserTypes.

Custom Bridge

Hibernate 3.1.1.GA 61

You can for example store a given property in two different document fields:

Chapter 4. Mapping entities to the i...

62 Hibernate 3.1.1.GA

Example 4.16. Implementing the FieldBridge interface in
order to a given property into multiple document fields

/**

 * Store the date in 3 different fields - year, month, day - to ease

 Range Query per

 * year, month or day (eg get all the elements of December for the

 last 5 years).

 *

 * @author Emmanuel Bernard

 */

public class DateSplitBridge implements FieldBridge {

 private final static TimeZone GMT = TimeZone.getTimeZone("GMT");

 public void set(String name, Object value, Document document,

 LuceneOptions luceneOptions) {

 Date date = (Date) value;

 Calendar cal = GregorianCalendar.getInstance(GMT);

 cal.setTime(date);

 int year = cal.get(Calendar.YEAR);

 int month = cal.get(Calendar.MONTH) + 1;

 int day = cal.get(Calendar.DAY_OF_MONTH);

 // set year

 Field field = new Field(name + ".year",

 String.valueOf(year),

 luceneOptions.getStore(), luceneOptions.getIndex(),

 luceneOptions.getTermVector());

 field.setBoost(luceneOptions.getBoost());

 document.add(field);

 // set month and pad it if needed

 field = new Field(name + ".month", month < 10 ? "0" : ""

 + String.valueOf(month), luceneOptions.getStore(),

 luceneOptions.getIndex(),

 luceneOptions.getTermVector());

 field.setBoost(luceneOptions.getBoost());

 document.add(field);

 // set day and pad it if needed

 field = new Field(name + ".day", day < 10 ? "0" : ""

 + String.valueOf(day), luceneOptions.getStore(),

 luceneOptions.getIndex(),

 luceneOptions.getTermVector());

 field.setBoost(luceneOptions.getBoost());

 document.add(field);

 }

}

//property

@FieldBridge(impl = DateSplitBridge.class)

private Date date;

Custom Bridge

Hibernate 3.1.1.GA 63

4.2.2.3. ClassBridge

It is sometimes useful to combine more than one property of a given entity
and index this combination in a specific way into the Lucene index. The
@ClassBridge and @ClassBridge annotations can be defined at the class
level (as opposed to the property level). In this case the custom field bridge
implementation receives the entity instance as the value parameter instead
of a particular property. Though not shown in this example, @ClassBridge
supports the termVector attribute discussed in section Section 4.1.1, “Basic
mapping”.

Chapter 4. Mapping entities to the i...

64 Hibernate 3.1.1.GA

Example 4.17. Implementing a class bridge

@Entity

@Indexed

@ClassBridge(name="branchnetwork",

 index=Index.TOKENIZED,

 store=Store.YES,

 impl = CatFieldsClassBridge.class,

 params = @Parameter(name="sepChar", value=" "))

public class Department {

 private int id;

 private String network;

 private String branchHead;

 private String branch;

 private Integer maxEmployees

 ...

}

public class CatFieldsClassBridge implements FieldBridge,

 ParameterizedBridge {

 private String sepChar;

 public void setParameterValues(Map parameters) {

 this.sepChar = (String) parameters.get("sepChar");

 }

 public void set(String name, Object value, Document document,

 LuceneOptions luceneOptions) {

 // In this particular class the name of the new field was

 passed

 // from the name field of the ClassBridge Annotation. This

 is not

 // a requirement. It just works that way in this instance.

 The

 // actual name could be supplied by hard coding it below.

 Department dep = (Department) value;

 String fieldValue1 = dep.getBranch();

 if (fieldValue1 == null) {

 fieldValue1 = "";

 }

 String fieldValue2 = dep.getNetwork();

 if (fieldValue2 == null) {

 fieldValue2 = "";

 }

 String fieldValue = fieldValue1 + sepChar + fieldValue2;

 Field field = new Field(name, fieldValue,

 luceneOptions.getStore(), luceneOptions.getIndex(),

 luceneOptions.getTermVector());

 field.setBoost(luceneOptions.getBoost());

 document.add(field);

 }

}

Providing your own id

Hibernate 3.1.1.GA 65

In this example, the particular CatFieldsClassBridge is applied to the
department instance, the field bridge then concatenate both branch and
network and index the concatenation.

4.3. Providing your own id

Warning

This part of the documentation is a work in progress.

You can provide your own id for Hibernate Search if you are extending the
internals. You will have to generate a unique value so it can be given to
Lucene to be indexed. This will have to be given to Hibernate Search when
you create an org.hibernate.search.Work object - the document id is required
in the constructor.

4.3.1. The ProvidedId annotation

Unlike conventional Hibernate Search API and @DocumentId, this
annotation is used on the class and not a field. You also can provide your
own bridge implementation when you put in this annotation by calling
the bridge() which is on @ProvidedId. Also, if you annotate a class with
@ProvidedId, your subclasses will also get the annotation - but it is not done
by using the java.lang.annotations.@Inherited. Be sure however, to not use
this annotation with @DocumentId as your system will break.

Example 4.18. Providing your own id

@ProvidedId (bridge = org.my.own.package.MyCustomBridge)

@Indexed

public class MyClass{

 @Field

 String MyString;

 ...

}

66 Hibernate 3.1.1.GA

Hibernate 3.1.1.GA 67

Chapter 5. Querying
The second most important capability of Hibernate Search is the ability to
execute a Lucene query and retrieve entities managed by an Hibernate
session, providing the power of Lucene without leaving the Hibernate
paradigm, and giving another dimension to the Hibernate classic search
mechanisms (HQL, Criteria query, native SQL query). Preparing and
executing a query consists of four simple steps:

• Creating a FullTextSession

• Creating a Lucene query

• Wrapping the Lucene query using a org.hibernate.Query

• Executing the search by calling for example list() or scroll()

To access the querying facilities, you have to use an FullTextSession. This
Search specific session wraps a regular org.hibernate.Session to provide
query and indexing capabilities.

Example 5.1. Creating a FullTextSession

Session session = sessionFactory.openSession();

...

FullTextSession fullTextSession =

 Search.getFullTextSession(session);

The actual search facility is built on native Lucene queries which the following
example illustrates.

Example 5.2. Creating a Lucene query

org.apache.lucene.queryParser.QueryParser parser =

 new QueryParser("title", new StopAnalyzer());

org.apache.lucene.search.Query luceneQuery = parser.parse(

 "summary:Festina Or brand:Seiko");

org.hibernate.Query fullTextQuery =

 fullTextSession.createFullTextQuery(luceneQuery);

List result = fullTextQuery.list(); //return a list of managed

 objects

The Hibernate query built on top of the Lucene query is a regular
org.hibernate.Query, which means you are in the same paradigm as the
other Hibernate query facilities (HQL, Native or Criteria). The regular list() ,
uniqueResult(), iterate() and scroll() methods can be used.

Chapter 5. Querying

68 Hibernate 3.1.1.GA

In case you are using the Java Persistence APIs of Hibernate (aka EJB 3.0
Persistence), the same extensions exist:

Example 5.3. Creating a Search query using the JPA API

EntityManager em = entityManagerFactory.createEntityManager();

FullTextEntityManager fullTextEntityManager =

 org.hibernate.hibernate.search.jpa.Search.getFullTextEntityManager(em);

...

org.apache.lucene.queryParser.QueryParser parser =

 new QueryParser("title", new StopAnalyzer());

org.apache.lucene.search.Query luceneQuery = parser.parse(

 "summary:Festina Or brand:Seiko");

javax.persistence.Query fullTextQuery =

 fullTextEntityManager.createFullTextQuery(luceneQuery);

List result = fullTextQuery.getResultList(); //return a list of

 managed objects

The following examples we will use the Hibernate APIs but the same
example can be easily rewritten with the Java Persistence API by just
adjusting the way the FullTextQuery is retrieved.

5.1. Building queries

Hibernate Search queries are built on top of Lucene queries which gives
you total freedom on the type of Lucene query you want to execute.
However, once built, Hibernate Search wraps further query processing using
org.hibernate.Query as your primary query manipulation API.

5.1.1. Building a Lucene query

It is out of the scope of this documentation on how to exactly build a Lucene
query. Please refer to the online Lucene documentation or get hold of a copy
of either Lucene In Action or Hibernate Search in Action.

5.1.2. Building a Hibernate Search query

5.1.2.1. Generality

Once the Lucene query is built, it needs to be wrapped into an Hibernate
Query.

Building a Hibernate Search query

Hibernate 3.1.1.GA 69

Example 5.4. Wrapping a Lucene query into a Hibernate
Query

FullTextSession fullTextSession = Search.getFullTextSession(session

);

org.hibernate.Query fullTextQuery =

 fullTextSession.createFullTextQuery(luceneQuery);

If not specified otherwise, the query will be executed against all indexed
entities, potentially returning all types of indexed classes. It is advised, from a
performance point of view, to restrict the returned types:

Example 5.5. Filtering the search result by entity type

org.hibernate.Query fullTextQuery =

 fullTextSession.createFullTextQuery(luceneQuery, Customer.class);

// or

fullTextQuery = fullTextSession.createFullTextQuery(luceneQuery,

 Item.class, Actor.class);

The first example returns only matching Customers, the second returns
matching Actors and Items. The type restriction is fully polymorphic which
means that if there are two indexed subclasses Salesman and Customer of the
baseclass Person, it is possible to just specify Person.class in order to filter
on result types.

5.1.2.2. Pagination

Out of performance reasons it is recommended to restrict the number of
returned objects per query. In fact is a very common use case anyway that
the user navigates from one page to an other. The way to define pagination
is exactly the way you would define pagination in a plain HQL or Criteria
query.

Example 5.6. Defining pagination for a search query

org.hibernate.Query fullTextQuery =

 fullTextSession.createFullTextQuery(luceneQuery, Customer.class);

fullTextQuery.setFirstResult(15); //start from the 15th element

fullTextQuery.setMaxResults(10); //return 10 elements

Note

It is still possible to get the total number of matching elements
regardless of the pagination via fulltextQuery.getResultSize()

Chapter 5. Querying

70 Hibernate 3.1.1.GA

5.1.2.3. Sorting

Apache Lucene provides a very flexible and powerful way to sort results.
While the default sorting (by relevance) is appropriate most of the time, it can
be interesting to sort by one or several other properties. In order to do so set
the Lucene Sort object to apply a Lucene sorting strategy.

Example 5.7. Specifying a Lucene Sort in order to sort the
results

org.hibernate.search.FullTextQuery query = s.createFullTextQuery(

 query, Book.class);

org.apache.lucene.search.Sort sort = new Sort(new

 SortField("title"));

query.setSort(sort);

List results = query.list();

One can notice the FullTextQuery interface which is a sub interface of
org.hibernate.Query. Be aware that fields used for sorting must not be
tokenized.

5.1.2.4. Fetching strategy

When you restrict the return types to one class, Hibernate Search loads
the objects using a single query. It also respects the static fetching strategy
defined in your domain model.

It is often useful, however, to refine the fetching strategy for a specific use
case.

Example 5.8. Specifying FetchMode on a query

Criteria criteria = s.createCriteria(Book.class).setFetchMode(

 "authors", FetchMode.JOIN);

s.createFullTextQuery(luceneQuery).setCriteriaQuery(criteria);

In this example, the query will return all Books matching the luceneQuery.
The authors collection will be loaded from the same query using an SQL
outer join.

When defining a criteria query, it is not needed to restrict the entity types
returned while creating the Hibernate Search query from the full text session:
the type is guessed from the criteria query itself. Only fetch mode can be
adjusted, refrain from applying any other restriction.

One cannot use setCriteriaQuery if more than one entity type is expected to
be returned.

Building a Hibernate Search query

Hibernate 3.1.1.GA 71

5.1.2.5. Projection

For some use cases, returning the domain object (graph) is overkill. Only a
small subset of the properties is necessary. Hibernate Search allows you to
return a subset of properties:

Example 5.9. Using projection instead of returning the full
domain object

org.hibernate.search.FullTextQuery query = s.createFullTextQuery(

 luceneQuery, Book.class);

query.setProjection("id", "summary", "body", "mainAuthor.name");

List results = query.list();

Object[] firstResult = (Object[]) results.get(0);

Integer id = firstResult[0];

String summary = firstResult[1];

String body = firstResult[2];

String authorName = firstResult[3];

Hibernate Search extracts the properties from the Lucene index and
convert them back to their object representation, returning a list of Object[].
Projections avoid a potential database round trip (useful if the query
response time is critical), but has some constraints:

• the properties projected must be stored in the index
(@Field(store=Store.YES)), which increase the index size

• the properties projected must use a FieldBridge implementing
org.hibernate.search.bridge.TwoWayFieldBridge or
org.hibernate.search.bridge.TwoWayStringBridge, the latter being the
simpler version. All Hibernate Search built-in types are two-way.

• you can only project simple properties of the indexed entity or its
embedded associations. This means you cannot project a whole
embedded entity.

• projection does not work on collections or maps which are indexed via
@IndexedEmbedded

Projection is useful for another kind of use cases. Lucene provides some
metadata information to the user about the results. By using some special
placeholders, the projection mechanism can retrieve them:

Chapter 5. Querying

72 Hibernate 3.1.1.GA

Example 5.10. Using projection in order to retrieve meta
data

org.hibernate.search.FullTextQuery query = s.createFullTextQuery(

 luceneQuery, Book.class);

query.setProjection(FullTextQuery.SCORE, FullTextQuery.THIS,

 "mainAuthor.name");

List results = query.list();

Object[] firstResult = (Object[]) results.get(0);

float score = firstResult[0];

Book book = firstResult[1];

String authorName = firstResult[2];

You can mix and match regular fields and special placeholders. Here is the
list of available placeholders:

• FullTextQuery.THIS: returns the initialized and managed entity (as a non
projected query would have done).

• FullTextQuery.DOCUMENT: returns the Lucene Document related to the
object projected.

• FullTextQuery.OBJECT_CLASS: returns the class of the indexed entity.

• FullTextQuery.SCORE: returns the document score in the query. Scores
are handy to compare one result against an other for a given query but are
useless when comparing the result of different queries.

• FullTextQuery.ID: the id property value of the projected object.

• FullTextQuery.DOCUMENT_ID: the Lucene document id. Careful, Lucene
document id can change overtime between two different IndexReader
opening (this feature is experimental).

• FullTextQuery.EXPLANATION: returns the Lucene Explanation object for
the matching object/document in the given query. Do not use if you retrieve
a lot of data. Running explanation typically is as costly as running the
whole Lucene query per matching element. Make sure you use projection!

5.2. Retrieving the results

Once the Hibernate Search query is built, executing it is in no way different
than executing a HQL or Criteria query. The same paradigm and object
semantic applies. All the common operations are available: list(),
uniqueResult(), iterate(), scroll().

Performance considerations

Hibernate 3.1.1.GA 73

5.2.1. Performance considerations

If you expect a reasonable number of results (for example using
pagination) and expect to work on all of them, list() or uniqueResult() are
recommended. list() work best if the entity batch-size is set up properly.
Note that Hibernate Search has to process all Lucene Hits elements (within
the pagination) when using list() , uniqueResult() and iterate().

If you wish to minimize Lucene document loading, scroll() is more
appropriate. Don't forget to close the ScrollableResults object when you're
done, since it keeps Lucene resources. If you expect to use scroll, but wish
to load objects in batch, you can use query.setFetchSize(). When an object
is accessed, and if not already loaded, Hibernate Search will load the next
fetchSize objects in one pass.

Pagination is a preferred method over scrolling though.

5.2.2. Result size

It is sometime useful to know the total number of matching documents:

• for the Google-like feature 1-10 of about 888,000,000

• to implement a fast pagination navigation

• to implement a multi step search engine (adding approximation if the
restricted query return no or not enough results)

Of course it would be too costly to retrieve all the matching documents.
Hibernate Search allows you to retrieve the total number of matching
documents regardless of the pagination parameters. Even more interesting,
you can retrieve the number of matching elements without triggering a single
object load.

Example 5.11. Determining the result size of a query

org.hibernate.search.FullTextQuery query = s.createFullTextQuery(

 luceneQuery, Book.class);

assert 3245 == query.getResultSize(); //return the number of

 matching books without loading a single one

org.hibernate.search.FullTextQuery query = s.createFullTextQuery(

 luceneQuery, Book.class);

query.setMaxResult(10);

List results = query.list();

assert 3245 == query.getResultSize(); //return the total number of

 matching books regardless of pagination

Chapter 5. Querying

74 Hibernate 3.1.1.GA

Note

Like Google, the number of results is approximative if the index is not
fully up-to-date with the database (asynchronous cluster for example).

5.2.3. ResultTransformer

Especially when using projection, the data structure returned by a query (an
object array in this case), is not always matching the application needs. It
is possible to apply a ResultTransformer operation post query to match the
targeted data structure:

Example 5.12. Using ResultTransformer in conjunction with
projections

org.hibernate.search.FullTextQuery query = s.createFullTextQuery(

 luceneQuery, Book.class);

query.setProjection("title", "mainAuthor.name");

query.setResultTransformer(

 new StaticAliasToBeanResultTransformer(BookView.class, "title",

 "author")

);

List<BookView> results = (List<BookView>) query.list();

for(BookView view : results) {

 log.info("Book: " + view.getTitle() + ", " + view.getAuthor()

);

}

Examples of ResultTransformer implementations can be found in the
Hibernate Core codebase.

5.2.4. Understanding results

You will find yourself sometimes puzzled by a result showing up in a query
or a result not showing up in a query. Luke is a great tool to understand
those mysteries. However, Hibernate Search also gives you access to
the Lucene Explanation object for a given result (in a given query). This
class is considered fairly advanced to Lucene users but can provide a good
understanding of the scoring of an object. You have two ways to access the
Explanation object for a given result:

• Use the fullTextQuery.explain(int) method

• Use projection

Filters

Hibernate 3.1.1.GA 75

The first approach takes a document id as a parameter and return the
Explanation object. The document id can be retrieved using projection and
the FullTextQuery.DOCUMENT_ID constant.

Warning

The Document id has nothing to do with the entity id. Do not mess up
these two notions.

The second approach let's you project the Explanation object using the
FullTextQuery.EXPLANATION constant.

Example 5.13. Retrieving the Lucene Explanation object
using projection

FullTextQuery ftQuery = s.createFullTextQuery(luceneQuery,

 Dvd.class)

 .setProjection(FullTextQuery.DOCUMENT_ID,

 FullTextQuery.EXPLANATION, FullTextQuery.THIS);

@SuppressWarnings("unchecked") List<Object[]> results =

 ftQuery.list();

for (Object[] result : results) {

 Explanation e = (Explanation) result[1];

 display(e.toString());

}

Be careful, building the explanation object is quite expensive, it is roughly as
expensive as running the Lucene query again. Don't do it if you don't need
the object

5.3. Filters

Apache Lucene has a powerful feature that allows to filter query results
according to a custom filtering process. This is a very powerful way to apply
additional data restrictions, especially since filters can be cached and reused.
Some interesting use cases are:

• security

• temporal data (eg. view only last month's data)

• population filter (eg. search limited to a given category)

• and many more

Hibernate Search pushes the concept further by introducing the notion of
parameterizable named filters which are transparently cached. For people
familiar with the notion of Hibernate Core filters, the API is very similar:

Chapter 5. Querying

76 Hibernate 3.1.1.GA

Example 5.14. Enabling fulltext filters for a given query

fullTextQuery = s.createFullTextQuery(query, Driver.class);

fullTextQuery.enableFullTextFilter("bestDriver");

fullTextQuery.enableFullTextFilter("security").setParameter(

 "login", "andre");

fullTextQuery.list(); //returns only best drivers where andre has

 credentials

In this example we enabled two filters on top of the query. You can enable (or
disable) as many filters as you like.

Declaring filters is done through the @FullTextFilterDef annotation. This
annotation can be on any @Indexed entity regardless of the query the filter
is later applied to. This implies that filter definitions are global and their
names must be unique. A SearchException is thrown in case two different
@FullTextFilterDef annotations with the same name are defined. Each
named filter has to specify its actual filter implementation.

Example 5.15. Defining and implementing a Filter

@Entity

@Indexed

@FullTextFilterDefs({

 @FullTextFilterDef(name = "bestDriver", impl =

 BestDriversFilter.class),

 @FullTextFilterDef(name = "security", impl =

 SecurityFilterFactory.class)

})

public class Driver { ... }

public class BestDriversFilter extends

 org.apache.lucene.search.Filter {

 public DocIdSet getDocIdSet(IndexReader reader) throws

 IOException {

 OpenBitSet bitSet = new OpenBitSet(reader.maxDoc());

 TermDocs termDocs = reader.termDocs(new Term("score", "5"

));

 while (termDocs.next()) {

 bitSet.set(termDocs.doc());

 }

 return bitSet;

 }

}

BestDriversFilter is an example of a simple Lucene filter which reduces
the result set to drivers whose score is 5. In this example the specified filter
implements the org.apache.lucene.search.Filter directly and contains a
no-arg constructor.

Filters

Hibernate 3.1.1.GA 77

If your Filter creation requires additional steps or if the filter you want to use
does not have a no-arg constructor, you can use the factory pattern:

Example 5.16. Creating a filter using the factory pattern

@Entity

@Indexed

@FullTextFilterDef(name = "bestDriver", impl =

 BestDriversFilterFactory.class)

public class Driver { ... }

public class BestDriversFilterFactory {

 @Factory

 public Filter getFilter() {

 //some additional steps to cache the filter results per

 IndexReader

 Filter bestDriversFilter = new BestDriversFilter();

 return new CachingWrapperFilter(bestDriversFilter);

 }

}

Hibernate Search will look for a @Factory annotated method and use it to
build the filter instance. The factory must have a no-arg constructor. For
people familiar with JBoss Seam, this is similar to the component factory
pattern, but the annotation is different!

Named filters come in handy where parameters have to be passed to the
filter. For example a security filter might want to know which security level
you want to apply:

Example 5.17. Passing parameters to a defined filter

fullTextQuery = s.createFullTextQuery(query, Driver.class);

fullTextQuery.enableFullTextFilter("security").setParameter(

 "level", 5);

Each parameter name should have an associated setter on either the filter or
filter factory of the targeted named filter definition.

Chapter 5. Querying

78 Hibernate 3.1.1.GA

Example 5.18. Using parameters in the actual filter
implementation

public class SecurityFilterFactory {

 private Integer level;

 /**

 * injected parameter

 */

 public void setLevel(Integer level) {

 this.level = level;

 }

 @Key

 public FilterKey getKey() {

 StandardFilterKey key = new StandardFilterKey();

 key.addParameter(level);

 return key;

 }

 @Factory

 public Filter getFilter() {

 Query query = new TermQuery(new Term("level",

 level.toString()));

 return new CachingWrapperFilter(new

 QueryWrapperFilter(query));

 }

}

Note the method annotated @Key returning a FilterKey object. The returned
object has a special contract: the key object must implement equals() /
hashCode() so that 2 keys are equal if and only if the given Filter types are
the same and the set of parameters are the same. In other words, 2 filter
keys are equal if and only if the filters from which the keys are generated can
be interchanged. The key object is used as a key in the cache mechanism.

@Key methods are needed only if:

• you enabled the filter caching system (enabled by default)

• your filter has parameters

In most cases, using the StandardFilterKey implementation will be good
enough. It delegates the equals() / hashCode() implementation to each of the
parameters equals and hashcode methods.

As mentioned before the defined filters are per default cached and the
cache uses a combination of hard and soft references to allow disposal of
memory when needed. The hard reference cache keeps track of the most
recently used filters and transforms the ones least used to SoftReferences

Filters

Hibernate 3.1.1.GA 79

when needed. Once the limit of the hard reference cache is reached
additional filters are cached as SoftReferences. To adjust the size of the
hard reference cache, use hibernate.search.filter.cache_strategy.size
(defaults to 128). For advanced use of filter caching, you can implement
your own FilterCachingStrategy. The classname is defined by
hibernate.search.filter.cache_strategy.

This filter caching mechanism should not be confused with caching the
actual filter results. In Lucene it is common practice to wrap filters using the
IndexReader around a CachingWrapperFilter. The wrapper will cache the
DocIdSet returned from the getDocIdSet(IndexReader reader) method to
avoid expensive recomputation. It is important to mention that the computed
DocIdSet is only cachable for the same IndexReader instance, because the
reader effectively represents the state of the index at the moment it was
opened. The document list cannot change within an opened IndexReader. A
different/new IndexReader instance, however, works potentially on a different
set of Documents (either from a different index or simply because the index
has changed), hence the cached DocIdSet has to be recomputed.

Hibernate Search also helps with this aspect of caching.
Per default the cache flag of @FullTextFilterDef is set to
FilterCacheModeType.INSTANCE_AND_DOCIDSETRESULTS which will
automatically cache the filter instance as well as wrap the specified filter
around a Hibernate specific implementation of CachingWrapperFilter
(org.hibernate.search.filter.CachingWrapperFilter). In contrast to
Lucene's version of this class SoftReferences are used together with a hard
reference count (see discussion about filter cache). The hard reference count
can be adjusted using hibernate.search.filter.cache_docidresults.size
(defaults to 5). The wrapping behaviour can be controlled using the
@FullTextFilterDef.cache parameter. There are three different values for this
parameter:

Value Definition

FilterCacheModeType.NONE No filter instance and no result is
cached by Hibernate Search. For
every filter call, a new filter instance
is created. This setting might be
useful for rapidly changing data
sets or heavily memory constrained
environments.

FilterCacheModeType.INSTANCE_ONLYThe filter instance is cached
and reused across concurrent
Filter.getDocIdSet() calls. DocIdSet
results are not cached. This setting

Chapter 5. Querying

80 Hibernate 3.1.1.GA

Value Definition

is useful when a filter uses its own
specific caching mechanism or the
filter results change dynamically
due to application specific events
making DocIdSet caching in both
cases unnecessary.

FilterCacheModeType.INSTANCE_AND_DOCIDSETRESULTSBoth the filter instance and the
DocIdSet results are cached. This is
the default value.

Last but not least - why should filters be cached? There are two areas where
filter caching shines:

• the system does not update the targeted entity index often (in other words,
the IndexReader is reused a lot)

• the Filter's DocIdSet is expensive to compute (compared to the time spent
to execute the query)

5.4. Optimizing the query process

Query performance depends on several criteria:

• the Lucene query itself: read the literature on this subject

• the number of object loaded: use pagination (always ;-)) or index
projection (if needed)

• the way Hibernate Search interacts with the Lucene readers: defines the
appropriate Reader strategy.

5.5. Native Lucene Queries

If you wish to use some specific features of Lucene, you can always run
Lucene specific queries. Check Chapter 8, Advanced features for more
information.

Hibernate 3.1.1.GA 81

Chapter 6. Manual indexing

6.1. Indexing

It is sometimes useful to index an entity even if this entity is not inserted or
updated to the database. This is for example the case when you want to build
your index for the first time. FullTextSession.index() allows you to do so.

Example 6.1. Indexing an entity via FullTextSession.index()

FullTextSession fullTextSession =

 Search.getFullTextSession(session);

Transaction tx = fullTextSession.beginTransaction();

for (Customer customer : customers) {

 fullTextSession.index(customer);

}

tx.commit(); //index are written at commit time

For maximum efficiency, Hibernate Search batches index operations
and executes them at commit time. If you expect to index a lot of
data, however, you need to be careful about memory consumption
since all documents are kept in a queue until the transaction commit.
You can potentially face an OutOfMemoryException. To avoid this
exception, you can use fullTextSession.flushToIndexes(). Every time
fullTextSession.flushToIndexes() is called (or if the transaction is
committed), the batch queue is processed (freeing memory) applying all
index changes. Be aware that once flushed changes cannot be rolled back.

Note

hibernate.search.worker.batch_size has been deprecated in favor of
this explicit API which provides better control

Other parameters which also can affect indexing time and memory
consumption are:

• hibernate.search.[default|<indexname>].indexwriter.[batch|transaction].max_buffered_docs

• hibernate.search.[default|<indexname>].indexwriter.[batch|transaction].max_field_length

• hibernate.search.[default|<indexname>].indexwriter.[batch|transaction].max_merge_docs

• hibernate.search.[default|<indexname>].indexwriter.[batch|transaction].merge_factor

• hibernate.search.[default|<indexname>].indexwriter.[batch|transaction].ram_buffer_size

Chapter 6. Manual indexing

82 Hibernate 3.1.1.GA

• hibernate.search.[default|<indexname>].indexwriter.[batch|transaction].term_index_interval

These parameters are Lucene specific and Hibernate Search is just passing
these parameters through - see Section 3.8, “Tuning Lucene indexing
performance” for more details.

Example 6.2. Efficiently indexing a given class (useful for
index (re)initialization)

fullTextSession.setFlushMode(FlushMode.MANUAL);

fullTextSession.setCacheMode(CacheMode.IGNORE);

transaction = fullTextSession.beginTransaction();

//Scrollable results will avoid loading too many objects in memory

ScrollableResults results = fullTextSession.createCriteria(

 Email.class)

 .setFetchSize(BATCH_SIZE)

 .scroll(ScrollMode.FORWARD_ONLY);

int index = 0;

while(results.next()) {

 index++;

 fullTextSession.index(results.get(0)); //index each element

 if (index % BATCH_SIZE == 0) {

 fullTextSession.flushToIndexes(); //apply changes to indexes

 fullTextSession.clear(); //clear since the queue is

 processed

 }

}

transaction.commit();

Try to use a batch size that guarantees that your application will not run out
of memory.

6.2. Purging

It is equally possible to remove an entity or all entities of a given type
from a Lucene index without the need to physically remove them from the
database. This operation is named purging and is also done through the
FullTextSession.

Example 6.3. Purging a specific instance of an entity from
the index

FullTextSession fullTextSession =

 Search.getFullTextSession(session);

Transaction tx = fullTextSession.beginTransaction();

for (Customer customer : customers) {

 fullTextSession.purge(Customer.class, customer.getId());

}

tx.commit(); //index are written at commit time

Purging

Hibernate 3.1.1.GA 83

Purging will remove the entity with the given id from the Lucene index but will
not touch the database.

If you need to remove all entities of a given type, you can use the purgeAll
method. This operation remove all entities of the type passed as a parameter
as well as all its subtypes.

Example 6.4. Purging all instances of an entity from the
index

FullTextSession fullTextSession =

 Search.getFullTextSession(session);

Transaction tx = fullTextSession.beginTransaction();

fullTextSession.purgeAll(Customer.class);

//optionally optimize the index

//fullTextSession.getSearchFactory().optimize(Customer.class);

tx.commit(); //index are written at commit time

It is recommended to optimize the index after such an operation.

Note

Methods index, purge and purgeAll are available on
FullTextEntityManager as well.

84 Hibernate 3.1.1.GA

Hibernate 3.1.1.GA 85

Chapter 7. Index Optimization
From time to time, the Lucene index needs to be optimized. The process is
essentially a defragmentation. Until an optimization is triggered Lucene only
marks deleted documents as such, no physical deletions are applied. During
the optimization process the deletions will be applied which also effects the
number of files in the Lucene Directory.

Optimizing the Lucene index speeds up searches but has no effect on the
indexation (update) performance. During an optimization, searches can be
performed, but will most likely be slowed down. All index updates will be
stopped. It is recommended to schedule optimization:

• on an idle system or when the searches are less frequent

• after a lot of index modifications

7.1. Automatic optimization

Hibernate Search can automatically optimize an index after:

• a certain amount of operations (insertion, deletion)

• or a certain amount of transactions

The configuration for automatic index optimization can be defined on a global
level or per index:

Example 7.1. Defining automatic optimization parameters

hibernate.search.default.optimizer.operation_limit.max = 1000

hibernate.search.default.optimizer.transaction_limit.max = 100

hibernate.search.Animal.optimizer.transaction_limit.max = 50

An optimization will be triggered to the Animal index as soon as either:

• the number of additions and deletions reaches 1000

• the number of transactions reaches 50
(hibernate.search.Animal.optimizer.transaction_limit.max having priority
over hibernate.search.default.optimizer.transaction_limit.max)

If none of these parameters are defined, no optimization is processed
automatically.

Chapter 7. Index Optimization

86 Hibernate 3.1.1.GA

7.2. Manual optimization

You can programmatically optimize (defragment) a Lucene index from
Hibernate Search through the SearchFactory:

Example 7.2. Programmatic index optimization

FullTextSession fullTextSession =

 Search.getFullTextSession(regularSession);

SearchFactory searchFactory = fullTextSession.getSearchFactory();

searchFactory.optimize(Order.class);

// or

searchFactory.optimize();

The first example optimizes the Lucene index holding Orders; the second,
optimizes all indexes.

Note

searchFactory.optimize() has no effect on a JMS backend. You must
apply the optimize operation on the Master node.

7.3. Adjusting optimization

Apache Lucene has a few parameters to influence how optimization is
performed. Hibernate Search exposes those parameters.

Further index optimization parameters include:

• hibernate.search.[default|<indexname>].indexwriter.[batch|transaction].max_buffered_docs

• hibernate.search.[default|<indexname>].indexwriter.[batch|transaction].max_field_length

• hibernate.search.[default|<indexname>].indexwriter.[batch|transaction].max_merge_docs

• hibernate.search.[default|<indexname>].indexwriter.[batch|transaction].merge_factor

• hibernate.search.[default|<indexname>].indexwriter.[batch|transaction].ram_buffer_size

• hibernate.search.[default|<indexname>].indexwriter.[batch|transaction].term_index_interval

See Section 3.8, “Tuning Lucene indexing performance” for more details.

Hibernate 3.1.1.GA 87

Chapter 8. Advanced features

8.1. SearchFactory

The SearchFactory object keeps track of the underlying Lucene resources for
Hibernate Search, it's also a convenient way to access Lucene natively. The
SearchFactory can be accessed from a FullTextSession:

Example 8.1. Accessing the SearchFactory

FullTextSession fullTextSession =

 Search.getFullTextSession(regularSession);

SearchFactory searchFactory = fullTextSession.getSearchFactory();

8.2. Accessing a Lucene Directory

You can always access the Lucene directories through plain Lucene, the
Directory structure is in no way different with or without Hibernate Search.
However there are some more convenient ways to access a given Directory.
The SearchFactory keeps track of the DirectoryProviders per indexed class.
One directory provider can be shared amongst several indexed classes if
the classes share the same underlying index directory. While usually not
the case, a given entity can have several DirectoryProviders if the index is
sharded (see Section 3.2, “Sharding indexes”).

Example 8.2. Accessing the Lucene Directory

DirectoryProvider[] provider =

 searchFactory.getDirectoryProviders(Order.class);

org.apache.lucene.store.Directory directory =

 provider[0].getDirectory();

In this example, directory points to the lucene index storing Orders
information. Note that the obtained Lucene directory must not be closed (this
is Hibernate Search responsibility).

8.3. Using an IndexReader

Queries in Lucene are executed on an IndexReader. Hibernate Search
caches all index readers to maximize performance. Your code can access
this cached resources, but you have to follow some "good citizen" rules.

Chapter 8. Advanced features

88 Hibernate 3.1.1.GA

Example 8.3. Accessing an IndexReader

DirectoryProvider orderProvider =

 searchFactory.getDirectoryProviders(Order.class)[0];

DirectoryProvider clientProvider =

 searchFactory.getDirectoryProviders(Client.class)[0];

ReaderProvider readerProvider = searchFactory.getReaderProvider();

IndexReader reader = readerProvider.openReader(orderProvider,

 clientProvider);

try {

 //do read-only operations on the reader

}

finally {

 readerProvider.closeReader(reader);

}

The ReaderProvider (described in Reader strategy), will open an
IndexReader on top of the index(es) referenced by the directory providers.
Because this IndexReader is shared amongst several clients, you must
adhere to the following rules:

• Never call indexReader.close(), but always call
readerProvider.closeReader(reader), preferably in a finally block.

• Don't use this IndexReader for modification operations (you would get an
exception). If you want to use a read/write index reader, open one from the
Lucene Directory object.

Aside from those rules, you can use the IndexReader freely, especially to do
native queries. Using the shared IndexReaders will make most queries more
efficient.

8.4. Customizing Lucene's scoring formula

Lucene allows the user to customize its scoring formula by extending
org.apache.lucene.search.Similarity. The abstract methods defined in this
class match the factors of the following formula calculating the score of query
q for document d:

score(q,d) = coord(q,d) · queryNorm(q) · #t in q (tf(t in d) · idf(t)2 ·

t.getBoost() · norm(t,d))

Factor Description

tf(t ind) Term frequency factor for the term (t)
in the document (d).

Customizing Lucene's scoring formula

Hibernate 3.1.1.GA 89

Factor Description

idf(t) Inverse document frequency of the
term.

coord(q,d) Score factor based on how many
of the query terms are found in the
specified document.

queryNorm(q) Normalizing factor used to make
scores between queries comparable.

t.getBoost() Field boost.

norm(t,d) Encapsulates a few (indexing time)
boost and length factors.

It is beyond the scope of this manual to explain this formula in more detail.
Please refer to Similarity's Javadocs for more information.

Hibernate Search provides two ways to modify Lucene's similarity
calculation. First you can set the default similarity by specifying the
fully specified classname of your Similarity implementation using
the property hibernate.search.similarity. The default value is
org.apache.lucene.search.DefaultSimilarity. Additionally you can override
the default similarity on class level using the @Similarity annotation.

@Entity

@Indexed

@Similarity(impl = DummySimilarity.class)

public class Book {

 ...

}

As an example, let's assume it is not important how often a term appears in a
document. Documents with a single occurrence of the term should be scored
the same as documents with multiple occurrences. In this case your custom
implementation of the method tf(float freq) should return 1.0.

90 Hibernate 3.1.1.GA

	Hibernate Search
	Table of Contents
	Preface
	Chapter 1. Getting started
	1.1. System Requirements
	1.2. Using Maven
	1.3. Configuration
	1.4. Indexing
	1.5. Searching
	1.6. Analyzer
	1.7. What's next

	Chapter 2. Architecture
	2.1. Overview
	2.2. Back end
	2.2.1. Back end types
	2.2.1.1. Lucene
	2.2.1.2. JMS

	2.2.2. Work execution
	2.2.2.1. Synchronous
	2.2.2.2. Asynchronous

	2.3. Reader strategy
	2.3.1. Shared
	2.3.2. Not-shared
	2.3.3. Custom

	Chapter 3. Configuration
	3.1. Directory configuration
	3.2. Sharding indexes
	3.3. Sharing indexes (two entities into the same directory)
	3.4. Worker configuration
	3.5. JMS Master/Slave configuration
	3.5.1. Slave nodes
	3.5.2. Master node

	3.6. Reader strategy configuration
	3.7. Enabling Hibernate Search and automatic indexing
	3.7.1. Enabling Hibernate Search
	3.7.2. Automatic indexing

	3.8. Tuning Lucene indexing performance

	Chapter 4. Mapping entities to the index structure
	4.1. Mapping an entity
	4.1.1. Basic mapping
	4.1.2. Mapping properties multiple times
	4.1.3. Embedded and associated objects
	4.1.4. Boost factor
	4.1.5. Analyzer
	4.1.5.1. Analyzer definitions
	4.1.5.2. Available analyzers
	4.1.5.3. Analyzer discriminator (experimental)
	4.1.5.4. Retrieving an analyzer

	4.2. Property/Field Bridge
	4.2.1. Built-in bridges
	4.2.2. Custom Bridge
	4.2.2.1. StringBridge
	4.2.2.2. FieldBridge
	4.2.2.3. ClassBridge

	4.3. Providing your own id
	4.3.1. The ProvidedId annotation

	Chapter 5. Querying
	5.1. Building queries
	5.1.1. Building a Lucene query
	5.1.2. Building a Hibernate Search query
	5.1.2.1. Generality
	5.1.2.2. Pagination
	5.1.2.3. Sorting
	5.1.2.4. Fetching strategy
	5.1.2.5. Projection

	5.2. Retrieving the results
	5.2.1. Performance considerations
	5.2.2. Result size
	5.2.3. ResultTransformer
	5.2.4. Understanding results

	5.3. Filters
	5.4. Optimizing the query process
	5.5. Native Lucene Queries

	Chapter 6. Manual indexing
	6.1. Indexing
	6.2. Purging

	Chapter 7. Index Optimization
	7.1. Automatic optimization
	7.2. Manual optimization
	7.3. Adjusting optimization

	Chapter 8. Advanced features
	8.1. SearchFactory
	8.2. Accessing a Lucene Directory
	8.3. Using an IndexReader
	8.4. Customizing Lucene's scoring formula

