HIBERNATE

Hibernate Search

Apache Lucene™ |[ntegration

Reference Guide

3.1.1.GA

Hibernate Search

I 1= 1 AT Lo = = L (=T PP 1
1.1. System ReqUIrEMENLScouviiiiii e e e 2
1.2. USING MAVEN ..ottt 3
1.3, CoNfIQUIALION ... 5
1.4, INEXING eeiieiiiiiiittie et e e e e 10
ST T =TT (o o1 o TR 11
1.6, ANAIYZEr (oo, 12
1.7 WRAL'S NEXE oo 15

P2 AN o3 o 1 (=T ox (U1 PSSP 17
2.1, OVEIVIEBW ..o 17
2.2. BACK €N coooveeiiieeeeeeeeeee e 18

2.2.1. Back end typesccccviiiiiiii 18
2.2.1.1. LUCENE ...ttt 18

2.2.1.2. IMS oo 19

2.2.2. WOrK @XeCULION ..coeeieiieeieeee e 20
2.2.2.1. SYNCAIONOUSocoeeiiiiiiiiiiiiieee et 20

2.2.2.2. ASYNCNIONOUSoovviiiiiiiiiiiiiiiiice e 20

2.3. ReAdEr SrAtEQYvvvvvvrrurrriririrriiriiinrrrrrrsnrrrsrrserrrerrrere————————. 20
2.3.1. SNAIEA ..ooiiieiiii e 20
2.3.2. Not-shared ... 21
2.3.3. CUSEOM L. 21

3. CONFIGQUIALION ooeiiiieie e 23
3.1. Directory CONfIQUIAtIONccceeriiiiiiiiiiieeeee s e e e 23
3.2. Sharding INAEXESccvvviiiiiiiieiiieeeeeee e, 25
3.3. Sharing indexes (two entities into the same directory) 27
3.4. Worker configurationcccceeveeeiiiieiiiiie e 28
3.5. JMS Master/Slave configurationccccoeeeiiiii 29

3.5.1. SIaVe NOUES ...oeviiieiiiiiiiiiieeeeeeeeeeeee et e e eeeees 29
3.5.2. MASLEr NOUE ..o, 30
3.6. Reader strategy configurationccccccvvvvvieviiiiiiiiiieiieceeeeeee e, 32
3.7. Enabling Hibernate Search and automatic indexing 33
3.7.1. Enabling Hibernate Searchccccccoeeiiiiiiiiiiiiiiei e, 33
3.7.2. Automatic iNAEXING ...uvueeeiiieiiiieeiiii e e 34
3.8. Tuning Lucene indexing Performanceccccvveeeeeeenniiinveeneenn 35

4. Mapping entities to the index Structureccccevviiiic e, 39

4.1. MappiNg @n ENLILYvvriieiieeeiiiiiieieee e 39
o I = 7= T Tl 4 = o) o 11 o [39
4.1.2. Mapping properties multiple timesccccceeeee. 42
4.1.3. Embedded and associated Objectscevvrvviiiiiiiinenenn. 42
g O S = T T 1= A - VX o 47
4.1.5. ANAIYZET ..o 48

4.1.5.1. Analyzer definitionscccvveviiiiiiiiiiieee e 49

Hibernate 3.1.1.GA iii

4.1.5.2. Available analyzersccccvvveeeieeieeiiieiiieeieeeeeeeeen, 51

4.1.5.3. Analyzer discriminator (experimental) 52

4.1.5.4. Retrieving an analyzercccooeeevvievviiiiiiiieeeeeeennnns 55

4.2. Property/Field Bridgeccoooiiiiiiiiiiieeeeeeeiiieeee e 56
4.2.1. BUilt-in Dridges ... 56

4.2.2. CUStOM Bridgeoooiiiiiiiieie e 58

o S ([0o | 2T o [0 [T 58

4.2.2.2. FIieldBridgeccccoooiiiiiiiiiiiiiiiiiiniierinneenneeennennees 60

4.2.2.3. ClassBridge ...ccccooeviiiiiieiiiii e, 63

4.3. Providing YOour OWN idovviiiiieiiniiiiieee e 65
4.3.1. The Providedld annotationeeeveeeveeeeeereeeeeeeeeennne. 65

5. QUETYIND ceeiiiiiee ittt e e e e e e e a e e 67
L0 O = TW 1 o T o T [0 1= [68
5.1.1. Building a Lucene qUEerycccccccvvviiiiiiiii 68

5.1.2. Building a Hibernate Search querycccoooovveiviivviviinnnn. 68

5.1.2.1. Generalityococvimiiiiieeiieiieee e 68

5.1.2.2. PAgINAtiONc.coviiiiiiieiiiiiieeeee e 69

5.1.2.3. SOMING ..eeviiiiiieieiiiiiiie et 70

5.1.2.4. Fetching strategyccccceeevviiiiiii 70

5.1.2.5. Projectioncccccceiiiiiii 71

5.2. Retrieving the reSults ... 72
5.2.1. Performance considerationscccccceveieiieieieeieeeee, 73

5.2.2. RESUIL SIZE oo, 73

5.2.3. ResultTransformercccccce i, 74

5.2.4. Understanding resultsccccccccvvvviiiviiiiie, 74

5.3 FIIEIS et 75

5.4. Optimizing the qUErY PrOCESSccoieeeiiiieeiiiiine e eee e e e e e eeeenns 80

5.5. Native Lucene QUETIESccoeuviiiiiii i eeeeeeeiiien s e e e e ee e e e e e eeaes 80

6. Manual INAEXING ..oocoiiiiiiiiiiii e e e e 81
6.1, INUEXING ..eeeeiiieeeiiiittee e e e e e 81

72 =¥ (o |1 o TSP 82

7. Index OPtiMIZatioNocovviiiiiiiiiiiiiiiieeeeeeeeeeeeee e 85
7.1. Automatic oOptimiZationccevuiiiiiiii e 85

7.2. Manual optimizationeeeeeeeeieeiieeiieieeeeeeeeeeeeeeeeeeeeeee e 86

7.3. Adjusting OPLIMIZALIONcevvieiiiiiiiiiiiie e 86

T AN AVF= TaTod o I =T L (UL T P 87
8.1. SEArCNFACIONY ...cceeiiiiiiiiiiiiee ettt 87

8.2. Accessing a Lucene DIrectoryccccceeeeeiii, 87

8.3. Using an IndexReadercooooiiiiiiiiiiiei e 87

8.4. Customizing Lucene's scoring formulacccccoeeeiiiiiinieiiiinnnnn. 88

Hibernate 3.1.1.GA

Preface

Full text search engines like Apache Lucene are very powerful technologies
to add efficient free text search capabilities to applications. However,
Lucene suffers several mismatches when dealing with object domain model.
Amongst other things indexes have to be kept up to date and mismatches
between index structure and domain model as well as query mismatches
have to be avoided.

Hibernate Search addresses these shortcomings - it indexes your domain
model with the help of a few annotations, takes care of database/index
synchronization and brings back regular managed objects from free

text queries. To achieve this Hibernate Search is combining the

power of Hibernate [http://www.hibernate.org] and Apache Lucene
[http://lucene.apache.orq].

Hibernate 3.1.1.GA

http://www.hibernate.org
http://www.hibernate.org
http://lucene.apache.org
http://lucene.apache.org

Vi

Hibernate 3.1.1.GA

Chapter 1. Getting started

Welcome to Hibernate Search! The following chapter will guide you through
the initial steps required to integrate Hibernate Search into an existing
Hibernate enabled application. In case you are a Hibernate new timer we
recommend you start here [http://hibernate.org/152.html].

Hibernate 3.1.1.GA 1

http://hibernate.org/152.html
http://hibernate.org/152.html

Chapter 1. Getting started

1.1. System Requirements

Table 1.1. System requirements

Java Runtime A JDK or JRE version 5 or greater.
You can download a Java Runtime
for Windows/Linux/Solaris here [http:/
/java.sun.com/javase/downloads/].

Hibernate Search hi ber nat e- sear ch. j ar and all runtime
dependencies from the 1 i b directory
of the Hibernate Search distribution.
Please refer to README. t xt in the

lib directory to understand which
dependencies are required.

Hibernate Core This instructions have been tested
against Hibernate 3.3.x. You will
need hi bernate-core. jar and its
transitive dependencies fromthe lib
directory of the distribution. Refer to
README. t xt in the I'i b directory of the
distribution to determine the minimum
runtime requirements.

Hibernate Annotations Even though Hibernate Search

can be used without Hibernate
Annotations the following instructions
will use them for basic entity
configuration (@Entity, @Id,
@OneToMany,...). This part of

the configuration could also be
expressed in xml or code. However,
Hibernate Search itself has its own
set of annotations (@Indexed,
@Documentld, @Field,...) for which
there exists so far no alternative
configuration. The tutorial is tested
against version 3.4.x of Hibernate
Annotations.

You can download all dependencies from the Hibernate download
site [http://www.hibernate.org/6.html]. You can also verify the
dependency versions against the Hibernate Compatibility Matrix
[http://www.hibernate.org/6.html#A3].

2 Hibernate 3.1.1.GA

http://java.sun.com/javase/downloads/
http://java.sun.com/javase/downloads/
http://java.sun.com/javase/downloads/
http://www.hibernate.org/6.html
http://www.hibernate.org/6.html
http://www.hibernate.org/6.html
http://www.hibernate.org/6.html#A3
http://www.hibernate.org/6.html#A3

Using Maven

1.2. Using Maven

Instead of managing all dependencies manually, maven

users have the possibility to use the JBoss maven repository
[http://repository.jboss.com/maven2]. Just add the JBoss repository url to the
repositories section of your pom xni Or settings. xn :

Example 1.1. Adding the JBoss maven repository to

settings. xnl

<reposi tory>
<i d>repository.jboss.org</id>
<name>JBoss Maven Repository</nanme>
<url>http://repository.jboss. org/ maven2</url >
<l ayout >def aul t </ | ayout >

</repository>

Then add the following dependencies to your pom.xml:

Hibernate 3.1.1.GA

http://repository.jboss.com/maven2
http://repository.jboss.com/maven2

Chapter 1. Getting started

Example 1.2. Maven dependencies for Hibernate Search

<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifactld>hi bernate-search</artifactld>
<version>3. 1. 1. GA</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifactld>hi bernate-annotations</artifactld>
<ver si on>3. 4. 0. GA</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifact!|d>hi bernate-entitymanager</artifactld>
<versi on>3. 4. 0. GA</ ver si on>

</ dependency>

<dependency>
<groupl d>or g. apache. sol r </ gr oupl d>
<artifactld>solr-comon</artifactld>
<versi on>1. 3. 0</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. apache. sol r </ groupl d>
<artifactld>solr-core</artifactld>
<versi on>1. 3. 0</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. apache. | ucene</ gr oupl d>
<artifactld>l ucene-snowbal | </artifactld>
<versi on>2. 4. 1</ versi on>

</ dependency>

Not all dependencies are required. Only the hibernate-search dependency
is mandatory. This dependency, together with its required transitive
dependencies, contain all required classes needed to use Hibernate Search.
hibernate-annotations is only needed if you want to use annotations to
configure your domain model as we do in this tutorial. However, even if you
choose not to use Hibernate Annotations you still have to use the Hibernate
Search specific annotations, which are bundled with the hibernate-search jar
file, to configure your Lucene index. Currently there is no XML configuration
available for Hibernate Search. hibernate-entitymanager is required if

you want to use Hibernate Search in conjunction with JPA. The Solr
dependencies are needed if you want to utilize Solr's analyzer framework.
More about this later. And finally, the | ucene- snowbal I dependency is needed
if you want to use Lucene's snowball stemmer.

4 Hibernate 3.1.1.GA

Configuration

1.3. Configuration

Once you have downloaded and added all required dependencies to

your application you have to add a couple of properties to your hibernate
configuration file. If you are using Hibernate directly this can be done in

hi ber nat e. properti es Or hi bernat e. cf g. xni . If you are using Hibernate via
JPA you can also add the properties to per si st ence. xm . The good news is
that for standard use most properties offer a sensible default. An example
persi stence. xm configuration could look like this:

Example 1.3. Basic configuration options to be added to

hi ber nat e. properties, hibernate.cfg.xm OI persi stence. xn

<property nane="hi bernate. search. defaul t.directory_provider"
val ue="or g. hi bernat e. search. store. FSDi rect oryProvi der"/ >

<property nane="hi bernate. search. defaul t.i ndexBase"
val ue="/var/| ucene/ i ndexes"/ >

First you have to tell Hibernate Search which

Di rect oryProvi der to use. This can be achieved by setting the

hi ber nat e. sear ch. def aul t . di rect ory_provi der property. Apache Lucene
has the notion of a bi rect ory to store the index files. Hibernate Search
handles the initialization and configuration of a Lucene Di rect ory

instance via a Di rect or yProvi der . In this tutorial we will use a subclass

of Di rect oryProvi der called FSDi rect or yProvi der . This will give us the
ability to physically inspect the Lucene indexes created by Hibernate
Search (eg via Luke [http://www.getopt.org/luke/]). Once you have a
working configuration you can start experimenting with other directory
providers (see Section 3.1, “Directory configuration”). Next to the directory
provider you also have to specify the default root directory for all indexes via

hi ber nat e. search. def aul t. i ndexBase.

Lets assume that your application contains the Hibernate managed classes
exanpl e. Book and exanpl e. Aut hor and you want to add free text search
capabilities to your application in order to search the books contained in your
database.

Hibernate 3.1.1.GA 5

http://www.getopt.org/luke/
http://www.getopt.org/luke/

Chapter 1. Getting started

Example 1.4. Example entities Book and Author before
adding Hibernate Search specific annotations

package exanpl e;

@ntity

public class Book {

@d

@:cener at edVal ue
private |Integer id;
private String title;

private String subtitle;

@manyToMany
private Set<Aut hor> authors = new HashSet <Aut hor>();

private Date publicationDate;

public Book() ({
}

[/ standard getters/setters follow here

package exanpl e;

@ntity
public class Author {

@d
@:cener at edVal ue
private |Integer id;

private String nane;

public Author() {
}

/] standard getters/setters follow here

To achieve this you have to add a few annotations to the Book and Aut hor
class. The first annotation @ ndexed marks Book as indexable. By design

6 Hibernate 3.1.1.GA

Configuration

Hibernate Search needs to store an untokenized id in the index to ensure
index unicity for a given entity. @ocurent | d marks the property to use for this
purpose and is in most cases the same as the database primary key. In fact
since the 3.1.0 release of Hibernate Search @ocunent | d is optional in the
case where an @ d annotation exists.

Next you have to mark the fields you want to make searchable. Let's start
with titl e and subtitl e and annotate both with @i el d. The parameter

i ndex=1 ndex. TOKENI ZED Will ensure that the text will be tokenized using the
default Lucene analyzer. Usually, tokenizing means chunking a sentence into
individual words and potentially excluding common words like * a' or 't he'.
We will talk more about analyzers a little later on. The second parameter
we specify within @i el d, store=St ore. NO, ensures that the actual data will
not be stored in the index. Whether this data is stored in the index or not
has nothing to do with the ability to search for it. From Lucene's perspective
it is not necessary to keep the data once the index is created. The benefit
of storing it is the ability to retrieve it via projections (Section 5.1.2.5,
“Projection”).

Without projections, Hibernate Search will per default execute a Lucene
query in order to find the database identifiers of the entities matching the
query critera and use these identifiers to retrieve managed objects from the
database. The decision for or against projection has to be made on a case
to case basis. The default behaviour - st ore. NO- is recommended since it
returns managed objects whereas projections only return object arrays.

After this short look under the hood let's go back to annotating the Book

class. Another annotation we have not yet discussed is @at ebri dge. This
annotation is one of the built-in field bridges in Hibernate Search. The Lucene
index is purely string based. For this reason Hibernate Search must convert
the data types of the indexed fields to strings and vice versa. A range of
predefined bridges are provided, including the Dat eBri dge which will convert
ajava.util.Date into a String with the specified resolution. For more details
see Section 4.2, “Property/Field Bridge”.

This leaves us with @ ndexedEnbedded. This annotation is used to index
associated entities (@anyToMany, @ Toone and @nbedded) as part of the
owning entity. This is needed since a Lucene index document is a flat data
structure which does not know anything about object relations. To ensure
that the authors' name wil be searchable you have to make sure that the
names are indexed as part of the book itself. On top of @ ndexedEnbedded
you will also have to mark all fields of the associated entity you want to have
included in the index with @ ndexed. For more details see Section 4.1.3,
“Embedded and associated objects”.

Hibernate 3.1.1.GA 7

Chapter 1. Getting started

These settings should be sufficient for now. For more details on entity
mapping refer to Section 4.1, “Mapping an entity”.

8 Hibernate 3.1.1.GA

Hibernate

Configuration

Example 1.5. Example entities after adding Hibernate
Search annotations

package exanpl e;

@ntity
@ ndexed
public class Book {

@d

@xner at edVal ue
@ocunent | d
private |nteger id;

@i el d(i ndex=l ndex. TOKENI ZED, st ore=Store. NO
private String title;

@i el d(i ndex=l ndex. TOKENI ZED, st ore=Store. NO
private String subtitle;

@ ndexedEnbedded
@manyToMany
private Set<Aut hor> authors = new HashSet <Aut hor>();

@i el d(i ndex = I ndex. UN_ TOKENI ZED, store = Store. YES)

@pat eBri dge(resol uti on = Resol uti on. DAY)
private Date publicationDate;

publ i c Book() {
}

/] standard getters/setters follow here

package exanpl e;

@ntity

public class Author {

@d
@cener at edVal ue
private |Integer id;

@i el d(i ndex=I ndex. TOKENI ZED, st or e=St ore. NO
private String nane;

public Author() {
}

[/ standard getters/setters follow here

Chapter 1. Getting started

1.4. Indexing

10

Hibernate Search will transparently index every entity persisted, updated

or removed through Hibernate Core. However, you have to trigger an initial
indexing to populate the Lucene index with the data already present in your
database. Once you have added the above properties and annotations it

is time to trigger an initial batch index of your books. You can achieve this
by using one of the following code snippets (see also Chapter 6, Manual
indexing):

Example 1.6. Using Hibernate Session to index data

Ful | Text Sessi on ful | Text Sessi on =
Sear ch. get Ful | Text Sessi on(sessi on);
Transaction tx = ful | Text Sessi on. begi nTransaction();

Li st books = session.createQuery("from Book as book").list();
for (Book book : books) {
ful | Text Sessi on. i ndex(book);

}

tx.commit(); //index is witten at commit tine

Example 1.7. Using JPA to index data

EntityManager em = entityManager Factory. creat eEntityManager () ;
Ful | Text Enti t yManager full Text EntityManager =

Sear ch. get Ful | Text Enti t yManager (en);
em get Transacti on() . begi n();

Li st books = em createQery("sel ect book from Book as
book") . get Resul t Li st ();
for (Book book : books) {
ful |l Text EntityManager. i ndex(book);

}

em get Transacti on().commit();
em cl ose();

After executing the above code, you should be able to see a Lucene index
under / var /| ucene/ i ndexes/ exanpl e. Book. GO ahead an inspect this index
with Luke [http://www.getopt.org/luke/]. It will help you to understand how

Hibernate Search works.

Hibernate 3.1.1.GA

http://www.getopt.org/luke/
http://www.getopt.org/luke/

Searching

1.5. Searching

Now it is time to execute a first search. The general approach is to create a
native Lucene query and then wrap this query into a org.hibernate.Query in
order to get all the functionality one is used to from the Hibernate API. The
following code will prepare a query against the indexed fields, execute it and
return a list of Books.

Example 1.8. Using Hibernate Session to create and
execute a search

Ful | Text Sessi on ful | Text Sessi on =
Sear ch. get Ful | Text Sessi on(sessi on);
Transaction tx = full Text Sessi on. begi nTransacti on();

/'l create native Lucene query

String[] fields = new String[]{"title", "subtitle", "authors.nane"
"publicationDate"}

Mul ti Fi el dQueryParser parser = new Milti Fi el dQueryParser(fields, new
St andar dAnal yzer ());

org. apache. | ucene. search. Query query = parser.parse("Java rocks!"

)

/1l wrap Lucene query in a org.hi bernate. Query
org. hi bernate. Query hi bQuery =
ful | Text Sessi on. creat eFul | Text Query(query, Book. cl ass);

/'l execute search
List result = hibQuery.list();

tx.commit();
sessi on. cl ose();

Hibernate 3.1.1.GA 11

Chapter 1. Getting started

Example 1.9. Using JPA to create and execute a search

EntityManager em = entityManager Fact ory. creat eEntityManager();
Ful | Text Enti t yManager full Text EntityManager =

or g. hi ber nat e. hi ber nat e. sear ch. j pa. Sear ch. get Ful | Text Enti t yManager (em ;
em get Transacti on() . begi n();

I/ create native Lucene query

String[] fields = new String[]{"title", "subtitle", "authors.nane",
"publicationDate"};

Mul ti Fi el dQueryParser parser = new MiltiFi el dQueryParser(fields, new
St andar dAnal yzer());

org. apache. | ucene. search. Query query = parser.parse("Java rocks!"

)

/1 wap Lucene query in a javax.persistence. Query
j avax. persi stence. Query persi stenceQuery =
full Text EntityManager. creat eFul | Text Query(query, Book. cl ass);

/| execute search
List result = persistenceQuery.getResultList();

em get Transacti on().commit();
em cl ose();

1.6. Analyzer

12

Let's make things a little more interesting now. Assume that one of your
indexed book entities has the title "Refactoring: Improving the Design of
Existing Code" and you want to get hits for all of the following queries:
"refactor”, "refactors", "refactored" and "refactoring”. In Lucene this can be
achieved by choosing an analyzer class which applies word stemming during
the indexing as well as search process. Hibernate Search offers several

ways to configure the analyzer to use (see Section 4.1.5, “Analyzer”):

» Setting the hi ber nat e. sear ch. anal yzer property in the configuration file.
The specified class will then be the default analyzer.

« Setting the @wnal yzer annotation at the entity level.
e Setting the @nal yzer annotation at the field level.

When using the @nal yzer annotation one can either specify the fully
qualified classname of the analyzer to use or one can refer to an analyzer
definition defined by the @nal yzer Def annotation. In the latter case the

Hibernate 3.1.1.GA

Analyzer

Solr analyzer framewaork with its factories approach is utilized. To find

out more about the factory classes available you can either browse

the Solr JavaDoc or read the corresponding section on the Solr Wiki.
[http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters] Note that
depending on the chosen factory class additional libraries on top of the Solr
dependencies might be required. For example, the Phoneti cFi | t er Fact ory
depends on commons-codec [http://commons.apache.org/codec].

In the example below a st andar dTokeni zer Fact ory is used followed by two
filter factories, Lower CaseFi | t er Fact ory and Snowbal | Port er Fi | t er Fact ory.
The standard tokenizer splits words at punctuation characters and hyphens
while keeping email addresses and internet hostnames intact. It is a good
general purpose tokenizer. The lowercase filter lowercases the letters in each
token whereas the snowball filter finally applies language specific stemming.

Generally, when using the Solr framework you have to start with a tokenizer
followed by an arbitrary number of filters.

Hibernate 3.1.1.GA 13

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
http://commons.apache.org/codec
http://commons.apache.org/codec

Chapter 1. Getting started

14

Example 1.10. Using @nal yzer Def and the Solr framework to
define and use an analyzer

package exanpl e;

@ntity
@ ndexed
@\nal yzer Def (name = "cust ormanal yzer",
t okeni zer = @okeni zer Def (factory =
St andar dTokeni zer Fact ory. cl ass),
filters = {
@okenFi |l terDef (factory = Lower CaseFilterFactory.cl ass),
@okenFil terDef(factory = Snowbal | PorterFilterFactory. cl ass,
params = {
@par anet er (nane = "l anguage", value = "English")

})

})

public class Book {

@d

@:cener at edVal ue
@ocunent | d
private |nteger id;

@i el d(i ndex=I ndex. TOKENI ZED, st ore=St ore. NO
@\nal yzer (definition = "customanal yzer")
private String title;

@i el d(i ndex=l ndex. TOKENI ZED, st ore=Store. NO
@\nal yzer (definition = "customanal yzer")
private String subtitle;

@ ndexedEnbedded
@manyToMany
private Set<Aut hor> authors = new HashSet <Aut hor>();

@i el d(i ndex = I ndex. UN TOKENI ZED, store = Store. YES)
@pat eBri dge(resol uti on = Resol uti on. DAY)
private Date publicationDate;

public Book() {
}

/] standard getters/setters follow here

Hibernate 3.1.1.GA

What's next

1.7. What's next

The above paragraphs hopefully helped you getting an overview of Hibernate
Search. Using the maven archetype plugin and the following command you
can create an initial runnable maven project structure populated with the
example code of this tutorial.

Example 1.11. Using the Maven archetype to create tutorial
sources

mv/n archetype: create \
- Dar chet ypeG oupl d=or g. hi bernate \
- Darchet ypeArti fact| d=hi bernat e- search-qui ckstart \
- Dar chet ypeVersion=3.1. 1. GA \
- Dgr oupl d=ny. conpany -Dartifactl|d=qui ckstart

Using the maven project you can execute the examples, inspect the file
system based index and search and retrieve a list of managed objects. Just
run mvn package to compile the sources and run the unit tests.

The next step after this tutorial is to get more familiar with the overall
architecture of Hibernate Search (Chapter 2, Architecture) and explore the
basic features in more detail. Two topics which were only briefly touched

in this tutorial were analyzer configuration (Section 4.1.5, “Analyzer”) and
field bridges (Section 4.2, “Property/Field Bridge”), both important features
required for more fine-grained indexing. More advanced topics cover
clustering (Section 3.5, “JMS Master/Slave configuration”) and large indexes
handling (Section 3.2, “Sharding indexes”).

Hibernate 3.1.1.GA 15

16

Hibernate 3.1.1.GA

Chapter 2. Architecture

2.1. Overview

Hibernate Search consists of an indexing component and an index search
component. Both are backed by Apache Lucene.

Each time an entity is inserted, updated or removed in/from the database,
Hibernate Search keeps track of this event (through the Hibernate event
system) and schedules an index update. All the index updates are handled
without you having to use the Apache Lucene APIs (see Section 3.7,
“Enabling Hibernate Search and automatic indexing”).

To interact with Apache Lucene indexes, Hibernate Search has the notion
of Di rect oryProvi der S. A directory provider will manage a given Lucene

Di rectory type. You can configure directory providers to adjust the directory
target (see Section 3.1, “Directory configuration”).

Hibernate Search uses the Lucene index to search an entity and return a
list of managed entities saving you the tedious object to Lucene document
mapping. The same persistence context is shared between Hibernate and
Hibernate Search. As a matter of fact, the Ful | Text Sessi on is built on top
of the Hibernate Session. so that the application code can use the unified
org. hi bernat e. Query Or j avax. persi st ence. Query APIs exactly the way a
HQL, JPA-QL or native queries would do.

To be more efficient, Hibernate Search batches the write interactions with
the Lucene index. There is currently two types of batching depending on

the expected scope. Outside a transaction, the index update operation is
executed right after the actual database operation. This scope is really a no
scoping setup and no batching is performed. However, it is recommended

- for both your database and Hibernate Search - to execute your operation

in a transaction be it JDBC or JTA. When in a transaction, the index update
operation is scheduled for the transaction commit phase and discarded in
case of transaction rollback. The batching scope is the transaction. There are
two immediate benefits:

» Performance: Lucene indexing works better when operation are executed
in batch.

« ACIDity: The work executed has the same scoping as the one executed by
the database transaction and is executed if and only if the transaction is
committed. This is not ACID in the strict sense of it, but ACID behavior is

Hibernate 3.1.1.GA 17

Chapter 2. Architecture

rarely useful for full text search indexes since they can be rebuilt from the

source at any time.

You can think of those two scopes (no scope vs transactional) as the
equivalent of the (infamous) autocommit vs transactional behavior. From
a performance perspective, the in transaction mode is recommended.
The scoping choice is made transparently. Hibernate Search detects the

presence of a transaction and adjust the scoping.

Note

Hibernate Search works perfectly fine in the Hibernate /
EntityManager long conversation pattern aka. atomic conversation.

Note

Depending on user demand, additional scoping will be considered,

the pluggability mechanism being al

2.2. Back end

Hibernate Search offers the ability to let the scoped work being processed
by different back ends. Two back ends are provided out of the box for two

different scenarios.
2.2.1. Back end types

2.2.1.1. Lucene

In this mode, all index update operations applied on a given node (JVM) will
be executed to the Lucene directories (through the directory providers) by the
in non clustered environment or in
clustered environments where the directory store is shared.

same node. This mode is typically used

Hibernate
+
Hibernate Search
Search request
Index update

Search reque'st

_________________ Index update

| L

I Hibernate

| + |

: Hibernate Search :

I |

1 [}

18

ready in place.

x‘\ Lucene
Diractary
- {Indlex)

Hibernate 3.1.1.GA

Back end types

Lucene back end configuration.

This mode targets non clustered applications, or clustered applications where
the Directory is taking care of the locking strategy.

The main advantage is simplicity and immediate visibility of the changes in
Lucene queries (a requirement in some applications).

2.2.1.2. IMS

All index update operations applied on a given node are sent to a JMS
queue. A unique reader will then process the queue and update the master
index. The master index is then replicated on a regular basis to the slave
copies. This is known as the master/slaves pattern. The master is the sole
responsible for updating the Lucene index. The slaves can accept read as
well as write operations. However, they only process the read operation on
their local index copy and delegate the update operations to the master.

Lucene
Directary
(Index)

Copy 8

Search request \
Hibernate \
+ R
Search i’

Slave

Index update order

Hibernate

+
@ Process — Hibernate Search f--------------- e SR
Master

Index update Lucene
Directory

(Index)
Master

Undex update order

Hibernate

+
Hibernate Search

Slave

Search request P

Lucene s
Directory -
(Index)
Copy

JMS back end configuration.

This mode targets clustered environments where throughput is critical, and
index update delays are affordable. Reliability is ensured by the JMS provider
and by having the slaves working on a local copy of the index.

Hibernate 3.1.1.GA 19

Chapter 2. Architecture

Note

Hibernate Search is an extensible architecture. Feel free to drop ideas
for other third party back ends to hi ber nat e-dev@i st s. j boss. org.

2.2.2. Work execution

The indexing work (done by the back end) can be executed synchronously
with the transaction commit (or update operation if out of transaction), or
asynchronously.

2.2.2.1. Synchronous

This is the safe mode where the back end work is executed in concert with
the transaction commit. Under highly concurrent environment, this can lead
to throughput limitations (due to the Apache Lucene lock mechanism) and it
can increase the system response time if the backend is significantly slower
than the transactional process and if a lot of IO operations are involved.

2.2.2.2. Asynchronous

This mode delegates the work done by the back end to a different

thread. That way, throughput and response time are (to a certain extend)
decorrelated from the back end performance. The drawback is that a small
delay appears between the transaction commit and the index update and a
small overhead is introduced to deal with thread management.

It is recommended to use synchronous execution first and evaluate
asynchronous execution if performance problems occur and after having
set up a proper benchmark (ie not a lonely cowboy hitting the system in a
completely unrealistic way).

2.3. Reader strategy

When executing a query, Hibernate Search interacts with the Apache Lucene
indexes through a reader strategy. Choosing a reader strategy will depend on
the profile of the application (frequent updates, read mostly, asynchronous
index update etc). See also Section 3.6, “Reader strategy configuration”

2.3.1. Shared

With this strategy, Hibernate Search will share the same | ndexReader , for
a given Lucene index, across multiple queries and threads provided that
the | ndexReader is still up-to-date. If the | ndexReader is not up-to-date, a
new one is opened and provided. Each | ndexReader is made of several

20 Hibernate 3.1.1.GA

Not-shared

Segnent Reader S. This strategy only reopens segments that have been
modified or created after last opening and shares the already loaded
segments from the previous instance. This strategy is the default.

The name of this strategy is shar ed.

2.3.2. Not-shared

Every time a query is executed, a Lucene | ndexReader is opened. This
strategy is not the most efficient since opening and warming up an
| ndexReader can be a relatively expensive operation.

The name of this strategy is not - shar ed.

2.3.3. Custom

You can write your own reader strategy that suits your application needs
by implementing or g. hi ber nat e. sear ch. r eader . Reader Provi der. The
implementation must be thread safe.

Hibernate 3.1.1.GA

21

22

Hibernate 3.1.1.GA

Chapter 3. Configuration

3.1. Directory configuration

Apache Lucene has a notion of Di rect ory to store the index files. The

Di rect ory implementation can be customized, but Lucene comes

bundled with a file system (FSDi r ect or yPr ovi der) and an in memory

(RAMDI r ect or yPr ovi der) implementation. Di r ect or yProvi der S are the
Hibernate Search abstraction around a Lucene bDi rect ory and handle the
configuration and the initialization of the underlying Lucene resources.
Table 3.1, “List of built-in Directory Providers” shows the list of the directory
providers bundled with Hibernate Search.

Hibernate 3.1.1.GA 23

Chapter 3

3. Configuration

yYUL VPRI oy ottt
and available RAM;
most people reported
good results using
values between 16 and
64MB.

bR eInhid 4840 LM

directory. Like
FSDirectoryProvider,
but retrieves a master
version (source) on a
regular basis. To avoid
locking and inconsistent
search results, 2 local
copies are kept.

The recommended
value for the refresh
period is (at least) 50%
higher that the time to
copy the information
(default 3600 seconds -
60 minutes).

Note that the copy is
based on an incremental
copy mechanism
reducing the average
copy time.

DirectoryProvider
typically used on slave
nodes using a JMS back
end.

The

buf fer _si ze_on_copy
optimum depends on
your operating system
and available RAM;
most people reported
good results using
values between 16 and
64MB.

s [ER R PFONAE RIS Base: Base

directory

i ndexName: override
@Indexed.index (useful
for sharded indexes)

sour ceBase: Source
(copy) base directory.

sour ce: Source directory
suffix (default to

@ ndexed. i ndex).

The actual source
directory name being

<sour ceBase>/ <sour ce>

refresh: refresh period
in second (the copy will
take place every refresh
seconds).

buf fer _si ze_on_copy:
The amount of
MegaBytes to move in
a single low level copy
instruction; defaults to
16MB.

org.hibernate.search.stor

dVieAMdDieaseyProvider
directory, the directory
will be uniquely
identified (in the same
deployment unit) by the
@ ndexed. i ndex element

24

none

Hibernate 3.1.1.GA

Sharding indexes

If the built-in directory providers do not fit your needs, you
can write your own directory provider by implementing the
org. hi bernate. store. Di rectoryProvi der interface.

Each indexed entity is associated to a Lucene index (an index can be
shared by several entities but this is not usually the case). You can configure
the index through properties prefixed by hi ber nat e. sear ch. i ndexnane .
Default properties inherited to all indexes can be defined using the prefix

hi ber nat e. search. defaul t.

To define the directory provider of a given index, you use the

hi ber nat e. sear ch. i ndexnane. di rect ory_provi der

Example 3.1. Configuring directory providers

hi ber nat e. search. defaul t. di rectory_provi der

or g. hi bernat e. search. store. FSDi rect or yProvi der
hi ber nat e. search. def aul t. i ndexBase=/ usr/ | ucene/ i ndexes
hi ber nat e. search. Rul es. di rectory_provi der

or g. hi bernat e. search. st ore. RAMD r ect or yProvi der

applied on

Example 3.2. Specifying the index name using the i ndex
parameter of @ ndexed

@ ndexed(i ndex="St at us")
public class Status { ... }

@ ndexed(i ndex="Rul es")
public class Rule { ... }

will create a file system directory in / usr/ 1 ucene/ i ndexes/ St at us where the
Status entities will be indexed, and use an in memory directory named Rul es
where Rule entities will be indexed.

You can easily define common rules like the directory provider and base
directory, and override those defaults later on on a per index basis.

Writing your own Di r ect or yPr ovi der, you can utilize this configuration
mechanism as well.

3.2. Sharding indexes

In some extreme cases involving huge indexes (in size), it is necessary to
split (shard) the indexing data of a given entity type into several Lucene
indexes. This solution is not recommended until you reach significant index

Hibernate 3.1.1.GA 25

Chapter 3. Configuration

26

sizes and index update times are slowing the application down. The main
drawback of index sharding is that searches will end up being slower since
more files have to be opened for a single search. In other words don't do it
until you have problems :)

Despite this strong warning, Hibernate Search allows you to index a given
entity type into several sub indexes. Data is sharded into the different sub
indexes thanks to an I ndexShar di ngSt r at egy. By default, no sharding strategy
is enabled, unless the number of shards is configured. To configure the
number of shards use the following property

Example 3.3. Enabling index sharding by specifying
nbr_of_shards for a specific index

hi ber nat e. sear ch. <i ndexNane>. shar di ng_strat egy. nbr _of _shards 5

This will use 5 different shards.

The default sharding strategy, when shards are set up, splits the data
according to the hash value of the id string representation (generated by the
Field Bridge). This ensures a fairly balanced sharding. You can replace the
strategy by implementing | ndexShar di ngSt r at egy and by setting the following

property

Example 3.4. Specifying a custom sharding strategy

hi ber nat e. sear ch. <i ndexNanme>. shar di ng_st r at egy
ny. shardi ngstrat egy. | npl enent ati on

Each shard has an independent directory provider configuration as described
in Section 3.1, “Directory configuration”. The DirectoryProvider default name
for the previous example are <i ndexName>. 0 t0 <i ndexName>. 4. In other words,
each shard has the name of it's owning index followed by . (dot) and its index
number.

Example 3.5. Configuring the sharding configuration for an
example entity Ani mal

hi ber nat e. search. def aul t. i ndexBase /usr/| ucene/i ndexes

hi ber nat e. search. Ani nal . shardi ng_strategy. nbr_of _shards 5
hi ber nat e. search. Ani nal . di rect ory_provi der

org. hi bernat e. search. store. FSDi rect oryProvi der

hi ber nat e. search. Ani nal . 0. i ndexNane Ani mal 00

hi ber nat e. search. Ani mal . 3. i ndexBase /usr/| ucene/ sharded
hi ber nat e. sear ch. Ani nal . 3. i ndexNanme Ani mal 03

Hibernate 3.1.1.GA

Sharing indexes (two entities into the same

directory)
This configuration uses the default id string hashing strategy and shards the

Animal index into 5 subindexes. All subindexes are FSDi r ect or yPr ovi der
instances and the directory where each subindex is stored is as followed:

« for subindex 0: /usr/lucene/indexes/Animal00 (shared indexBase but
overridden indexName)

« for subindex 1: /usr/lucene/indexes/Animal.1 (shared indexBase, default
indexName)

« for subindex 2: /usr/lucene/indexes/Animal.2 (shared indexBase, default
indexName)

« for subindex 3: /usr/lucene/shared/Animal03 (overridden indexBase,
overridden indexName)

« for subindex 4: /usr/lucene/indexes/Animal.4 (shared indexBase, default
indexName)

3.3. Sharing indexes (two entities into the same
directory)

Note

This is only presented here so that you know the option is available.
There is really not much benefit in sharing indexes.

It is technically possible to store the information of more than one entity into a
single Lucene index. There are two ways to accomplish this:

» Configuring the underlying directory providers to point to the same physical
index directory. In practice, you set the property hi bernat e. search. [ful l y
qualified entity nane].indexNane to the same value. As an example let's
use the same index (directory) for the Furni t ure and Ani mal entity. We just
set i ndexNane for both entities to for example “Animal”. Both entities will
then be stored in the Animal directory

hi ber nat e. sear ch. or g. hi bernat e. search. test. shards. Furni ture. i ndexName = Ani nal

hi ber nat e. sear ch. org. hi ber nat e. search. test. shards. Ani mal . i ndexName = Ani mal

» Setting the @ ndexed annotation’s i ndex attribute of the entities you want
to merge to the same value. If we again wanted all Fur ni t ur e instances to
be indexed in the Ani mal index along with all instances of Ani mal we would
specify @ ndexed(i ndex="Ani mal ”) on both Ani mal and Fur ni t ure classes.

Hibernate 3.1.1.GA 27

Chapter 3. Configuration

3.4. Worker configuration

It is possible to refine how Hibernate Search interacts with Lucene through
the worker configuration. The work can be executed to the Lucene directory
or sent to a JMS queue for later processing. When processed to the Lucene
directory, the work can be processed synchronously or asynchronously to the

transaction commit.

You can define the worker configuration using the following properties

Table 3.2. worker configuration

Property

Description

hi ber nat e. sear ch. wor ker. backend

Out of the box support for the Apache
Lucene back end and the JMS back
end. Default to | ucene. Supports also

jms.

hi ber nat e. sear ch. wor ker . executi on

Supports synchronous and
asynchronous execution. Default to
sync. Supports also async.

h

ber nat e. sear ch. wor ker . t hread_pool . s

Defines the number of threads in the
pool. useful only for asynchronous
execution. Default to 1.

h

per nat e. sear ch. wor ker . buf f er _queue. n

mxefines the maximal number of

work queue if the thread poll is
starved. Useful only for asynchronous
execution. Default to infinite. If the
limit is reached, the work is done by
the main thread.

hi ber nat e. search. worker . jndi.*

Defines the JNDI properties to initiate
the InitialContext (if needed). JNDI is
only used by the JMS back end.

hi bern

at e. search. worker.jns. connection_fa

cMandatory for the JMS back end.
Defines the JNDI name to lookup
the JMS connection factory from
(/ Connect i onFact ory by default in
JBoss AS)

hi ber nat e. sear ch. wor ker . j nms. queue

Mandatory for the JIMS back end.
Defines the JNDI name to lookup the
JMS queue from. The queue will be

used to post work messages.

28

Hibernate 3.1.1.GA

JMS Master/Slave configuration

3.5. JMS Master/Slave configuration

This section describes in greater detail how to configure the Master / Slaves
Hibernate Search architecture.

Lucene
Directory

{Index)
GCopy

Search reguest \

Hibernate A\

+
Hibernate Search

Slave

Index update order

Hibernate

+
Process —#=| Hib Search
queue

Master

Undex update order

Index update

Hibernate

+
Hibernate Search /

Slave

Search request p

.
Lucene _F
Directary -
(index) |+
Copy

JMS Master/Slave architecture overview.

3.5.1. Slave nodes

Every index update operation is sent to a JMS queue. Index querying
operations are executed on a local index copy.

Hibernate 3.1.1.GA 29

Chapter 3. Configuration

Example 3.6. IMS Slave configuration

sl ave configuration

DirectoryProvider

(renote) naster |ocation

hi ber nat e. search. def aul t. sour ceBase =

/ mt / mast er vol une/ | ucenedi r s/ mast er copy

| ocal copy |ocation
hi ber nat e. search. defaul t. i ndexBase = /Users/prod/|ucenedirs

refresh every half hour
hi ber nat e. search. default.refresh = 1800

appropriate directory provider
hi ber nat e. search. defaul t. directory_provi der =
org. hi bernat e. search. store. FSSI aveDi r ect or yPr ovi der

Backend configuration
hi ber nat e. sear ch. wor ker . backend = j s
hi ber nat e. sear ch. wor ker. j ms. connection_factory = /Connecti onFactory
hi ber nat e. search. wor ker. j ms. queue = queue/ hi ber nat esearch
#optional jndi configuration (check your JMS provider for nore
i nf ormation)

Optional asynchronous execution strategy
hi ber nat e. search. wor ker. executi on = async
hi bernat e. search. worker. t hread_pool . size = 2
hi ber nat e. search. wor ker. buf fer _queue. nax = 50

A file system local copy is recommended for faster search results.

The refresh period should be higher that the expected time copy.

3.5.2. Master node

Every index update operation is taken from a JMS queue and executed. The
master index is copied on a regular basis.

30 Hibernate 3.1.1.GA

Master node

Example 3.7. JIMS Master configuration

master configuration

DirectoryProvider

(renpte) naster |ocation where information is copied to
hi ber nat e. search. def aul t. sour ceBase =

/ mt / mast er vol une/ | ucenedi r s/ mast er copy

| ocal nmaster |ocation
hi ber nat e. search. defaul t. i ndexBase = /Users/prod/|ucenedirs

refresh every half hour
hi ber nat e. search. default.refresh = 1800

appropriate directory provider
hi ber nat e. search. defaul t. directory_provi der =
org. hi bernate. search. store. FSMast er Di r ect or yPr ovi der

Backend configuration
#Backend is the default |ucene one

The refresh period should be higher that the expected time copy.
In addition to the Hibernate Search framework configuration, a Message

Driven Bean should be written and set up to process the index works queue
through JMS.

Hibernate 3.1.1.GA 31

Chapter 3. Configuration

Example 3.8. Message Driven Bean processing the indexing
queue

@essageDriven(activationConfig = {

@Acti vat i onConfi gProperty(propertyNane="desti nati onType"
propertyVal ue="j avax. j ms. Queue"),

@\ct i vati onConfi gProperty(propertyNane="desti nati on"
propertyVal ue="queue/ hi ber nat esearch"),

@\ct i vat i onConfi gProperty(propertyNanme="DLQVaxResent "

)

public class MDBSearchControl |l er extends
Abst ract JMSH ber nat eSearchControl | er inplenments Messageli stener {
@er si st enceCont ext EntityManager em

[/ method retrieving the appropriate session
protected Session getSession() {
return (Session) em getDel egate();

}

//potentially close the session opened in #get Session(), not
needed here
protected void cl eanSessi onl f Needed(Sessi on sessi on)

}

This example inherits from the abstract JMS controller class
available in the Hibernate Search source code and implements

a JavaEE 5 MDB. This implementation is given as an example
and, while most likely be more complex, can be adjusted to make
use of non Java EE Message Driven Beans. For more information
about the get Sessi on() and cl eanSessi onl f Needed() , please check
Abst r act IMSHi ber nat eSear chCont rol | er's javadoc.

3.6. Reader strategy configuration

The different reader strategies are described in Reader strategy. Out of the
box strategies are:

 shared: share index readers across several queries. This strategy is the
most efficient.

* not - shar ed: create an index reader for each individual query
The default reader strategy is shar ed. This can be adjusted:

hi ber nat e. search. reader. strategy = not -shared

Adding this property switches to the not - shar ed strategy.

32 Hibernate 3.1.1.GA

Enabling Hibernate Search and automatic
indexing
Or if you have a custom reader strategy:

hi ber nat e. search. reader. strategy =
ny. cor p. nyapp. Cust onReader Pr ovi der

where ny. cor p. nyapp. Cust onReader Pr ovi der iS the custom strategy
implementation.

3.7. Enabling Hibernate Search and automatic
indexing

3.7.1. Enabling Hibernate Search

Hibernate Search is enabled out of the box when using Hibernate
Annotations or Hibernate EntityManager. If, for some reason you need to
disable it, set hi ber nat e. search. aut oregi ster_| i steners to false. Note that
there is no performance penalty when the listeners are enabled even though
no entities are indexed.

To enable Hibernate Search in Hibernate Core (ie. if you don't use Hibernate
Annotations), add the Ful | Text | ndexEvent Li st ener for the following six
Hibernate events and also add it after the default Def aul t FI ushEvent Li st ener,
as in the following example.

Hibernate 3.1.1.GA 33

Chapter 3. Configuration

Example 3.9. Explicitly enabling Hibernate Search by
configuring the Ful | Text | ndexEvent Li st ener

<hi ber nat e- confi gurati on>
<sessi on-factory>
<event type="post-update">
<l i stener
cl ass="org. hi ber nat e. search. event . Ful | Text | ndexEvent Li st ener"/>
</ event >
<event type="post-insert">
<l i stener
cl ass="org. hi bernat e. sear ch. event. Ful | Text | ndexEvent Li st ener"/>
</ event >
<event type="post-delete">
<l i stener
cl ass="org. hi bernat e. search. event . Ful | Text | ndexEvent Li st ener"/ >
</ event >
<event type="post-collection-recreate">
<l i stener
cl ass="org. hi ber nat e. search. event . Ful | Text | ndexEvent Li st ener"/>
</ event >
<event type="post-collection-renove">
<l i stener
cl ass="org. hi bernat e. search. event. Ful | Text | ndexEvent Li st ener"/>
</ event >
<event type="post-collection-update">
<l i stener
cl ass="org. hi bernat e. search. event . Ful | Text | ndexEvent Li st ener"/ >
</ event >
<event type="flush">
<l i stener
cl ass="org. hi ber nat e. event . def . Def aul t Fl ushEvent Li st ener "/ >
<l i stener
cl ass="org. hi bernat e. search. event . Ful | Text | ndexEvent Li st ener"/ >
</ event >
</ sessi on-factory>
</ hi ber nat e-confi gurati on>

3.7.2. Automatic indexing

34

By default, every time an object is inserted, updated or deleted through
Hibernate, Hibernate Search updates the according Lucene index. It is
sometimes desirable to disable that features if either your index is read-only
or if index updates are done in a batch way (see Chapter 6, Manual
indexing).

To disable event based indexing, set

hi ber nat e. search. i ndexi ng_strategy manua

Hibernate 3.1.1.GA

Tuning Lucene indexing performance

Note

In most case, the JMS backend provides the best of both world, a
lightweight event based system keeps track of all changes in the
system, and the heavyweight indexing process is done by a separate
process or machine.

3.8. Tuning Lucene indexing performance

Hibernate Search allows you to tune the Lucene indexing performance

by specifying a set of parameters which are passed through to underlying
Lucene I ndexWi ter such as ner geFact or, maxMer geDocs and maxBuf f er edDocs.
You can specify these parameters either as default values applying for all
indexes, on a per index basis, or even per shard.

There are two sets of parameters allowing for different performance settings
depending on the use case. During indexing operations triggered by
database modifications, the parameters are grouped by the transacti on
keyword:

‘ hi ber nat e. search. [def aul t | <i ndexnane>] . i ndexwriter.transaction. <paranet er _nane>

When indexing occurs via Ful | Text Sessi on. i ndex() (see Chapter 6, Manual
indexing), the used properties are those grouped under the bat ch keyword:

‘ hi ber nat e. sear ch. [def aul t | <i ndexnane>] . i ndexwri t er. bat ch. <par anet er _nane>

Unless the corresponding . bat ch property is explicitly set, the value will
default to the . transact i on property. If no value is set for a . bat ch value in a
specific shard configuration, Hibernate Search will look at the index section,
then at the default section and after that it will look for a . transacti on in the
same order:

hi ber nat e. search. Ani nal s. 2. i ndexwriter.transaction. max_nerge_docs 10
hi ber nat e. search. Ani mal s. 2. i ndexwriter.transaction. merge_factor 20
hi ber nat e. search. defaul t. i ndexwriter.batch. nax_merge_docs 100

This configuration will result in these settings applied to the second shard of
Animals index:

e transaction. max_mnerge_docs =10
¢ batch. max_nerge_docs = 100
e transaction. merge_factor =20

e batch. nmerge_factor =20

Hibernate 3.1.1.GA 35

Chapter 3. Configuration

36

All other values will use the defaults defined in Lucene.

The default for all values is to leave them at Lucene's own default, so

the listed values in the following table actually depend on the version of
Lucene you are using; values shown are relative to version 2. 4. For more
information about Lucene indexing performances, please refer to the Lucene
documentation.

Hibernate 3.1.1.GA

Table 3.3. List of ind
properties

U vvLuaniiclit vulicio.
When used together
max_buffered_docs

a flush occursfghing Luc
whichever event
happens first.

exing performance i
Generally for faster

indexing performance
it's best to flush by

RAM usage instead of
document count and use
as large a RAM buffer
as you can.

ene indexing performance

and behavior

hi ber nat e. sear ch. [def aul

Exgerde Setrig interasalr i
between indexed terms.

Large values cause
less memory to be used
by IndexReader, but
slow random-access

to terms. Small values
cause more memory

to be used by an
IndexReader, and
speed random-access
to terms. See Lucene
documentation for more
detalils.

E28[transaction| batch].

term.index_inter

hi ber nat e. sear ch. [def aul

The adwantagg afndsbng i
the compound file
format is that less file
descriptors are used.
The disadvantage is
that indexing takes more
time and temporary

disk space. You can

set this parameter to

fal se in an attempt to
improve the indexing
time, but you could run
out of file descriptors

if mer geFact or is also
large.

Boolean parameter, use
"true" or "fal se". The
default value for this

sueg transacti on| batch].

option is tr ue.

use_compound_fil

Hibernate 3.1.1.GA

37

38

Hibernate 3.1.1.GA

Chapter 4. Mapping entities to the
Index structure

All the metadata information needed to index entities is described through
annotations. There is no need for xml mapping files. In fact there is

currently no xml configuration option available (see HSEARCH-210
[http://opensource.atlassian.com/projects/hibernate/browse/HSEARCH-210]).
You can still use hibernate mapping files for the basic Hibernate
configuration, but the Search specific configuration has to be expressed via
annotations.

4.1. Mapping an entity

4.1.1. Basic mapping

First, we must declare a persistent class as indexable. This is done by
annotating the class with @ ndexed (all entities not annotated with @ ndexed
will be ignored by the indexing process):

Example 4.1. Making a class indexable using the @ ndexed
annotation

@ntity
@ ndexed(i ndex="i ndexes/ essays")
public class Essay {

}

The i ndex attribute tells Hibernate what the Lucene directory name

is (usually a directory on your file system). It is recommended

to define a base directory for all Lucene indexes using the

hi ber nat e. sear ch. def aul t . i ndexBase property in your configuration file.
Alternatively you can specify a base directory per indexed entity by specifying
hi ber nat e. sear ch. <i ndex>. i ndexBase, Wwhere <i ndex> is the fully qualified
classname of the indexed entity. Each entity instance will be represented by
a Lucene Docurrent inside the given index (aka Directory).

For each property (or attribute) of your entity, you have the ability to describe
how it will be indexed. The default (no annotation present) means that the
property is completely ignored by the indexing process. @i el d does declare
a property as indexed. When indexing an element to a Lucene document you
can specify how it is indexed:

Hibernate 3.1.1.GA 39

http://opensource.atlassian.com/projects/hibernate/browse/HSEARCH-210
http://opensource.atlassian.com/projects/hibernate/browse/HSEARCH-210

Chapter 4. Mapping entities to thei...

 nare : describe under which name, the property should be stored in the
Lucene Document. The default value is the property name (following the
JavaBeans convention)

» store : describe whether or not the property is stored in the Lucene index.
You can store the value st or e. YES (consuming more space in the index but
allowing projection, see Section 5.1.2.5, “Projection” for more information),
store it in a compressed way St or e. COMPRESS (this does consume more
CPU), or avoid any storage st or e. NO (this is the default value). When
a property is stored, you can retrieve its original value from the Lucene
Document. This is not related to whether the element is indexed or not.

« index: describe how the element is indexed and the type of information
store. The different values are | ndex. NO (no indexing, ie cannot be found
by a query), I ndex. TOKENI ZED (Use an analyzer to process the property),
| ndex. UN_TOKENI ZED (nO analyzer pre-processing), | ndex. NO_NORMS (do not
store the normalization data). The default value is TOKENI ZED.

« termVector: describes collections of term-frequency pairs. This attribute
enables term vectors being stored during indexing so they are available
within documents. The default value is TermVector.NO.

The different values of this attribute are:

Value Definition

TermVector.YES Store the term vectors of each
document. This produces two
synchronized arrays, one contains
document terms and the other
contains the term's frequency.

TermVector.NO Do not store term vectors.

TermVector. WITH_OFFSETS Store the term vector and token
offset information. This is the same
as TermVector.YES plus it contains
the starting and ending offset
position information for the terms.

TermVector. WITH_POSITIONS Store the term vector and token
position information. This is the
same as TermVector.YES plus it
contains the ordinal positions of
each occurrence of atermin a
document.

TermVector.WITH_POSITION_OFFSETS

40 Hibernate 3.1.1.GA

Basic mapping

Value Definition

Store the term vector, token
position and offset information.
This is a combination of the
YES, WITH_OFFSETS and
WITH_POSITIONS.

Whether or not you want to store the original data in the index depends on
how you wish to use the index query result. For a regular Hibernate Search
usage storing is not necessary. However you might want to store some fields
to subsequently project them (see Section 5.1.2.5, “Projection” for more
information).

Whether or not you want to tokenize a property depends on whether you
wish to search the element as is, or by the words it contains. It make sense
to tokenize a text field, but tokenizing a date field probably not. Note that
fields used for sorting must not be tokenized.

Finally, the id property of an entity is a special property used by Hibernate
Search to ensure index unicity of a given entity. By design, an id has to be
stored and must not be tokenized. To mark a property as index id, use the
@ocurent | d annotation. If you are using Hibernate Annotations and you have
specified @Id you can omit @Documentld. The chosen entity id will also be
used as document id.

Example 4.2. Adding @ocurent I d ad @i el d annotations to an
indexed entity

@ntity
@ ndexed(i ndex="i ndexes/ essays")
public class Essay {

@d
@ocunent | d
public Long getld() { returnid; }

@i el d(name="Abstract", index=lndex. TOKENI ZED, st ore=Store. YES)
public String getSummary() { return sunmary; }

@ob
@i el d(i ndex=I ndex. TOKENI ZED)
public String getText() { return text; }

Hibernate 3.1.1.GA 41

Chapter 4. Mapping entities to thei...

The above annotations define an index with three fields: i d , Abstract and
text . Note that by default the field name is decapitalized, following the
JavaBean specification

4.1.2. Mapping properties multiple times

Sometimes one has to map a property multiple times per index, with

slightly different indexing strategies. For example, sorting a query by field
requires the field to be UN_TOKENI ZED. If one wants to search by words in this
property and still sort it, one need to index it twice - once tokenized and once
untokenized. @Fields allows to achieve this goal.

Example 4.3. Using @Fields to map a property multiple
times

@ntity
@ ndexed(i ndex = "Book")
public class Book {

@i el ds({
@i el d(i ndex = | ndex. TOKENI ZED) ,
@ield(name = "sunmary_forSort", index =

| ndex. UN_TOKENI ZED, store = Store. YES)
})
public String getSummary() {
return sunmary;

}

}

The field sunmary is indexed twice, once as summary in a tokenized way, and

once as summary_for Sort in an untokenized way. @Field supports 2 attributes
useful when @Fields is used:

« analyzer: defines a @Analyzer annotation per field rather than per property

 bridge: defines a @FieldBridge annotation per field rather than per
property

See below for more information about analyzers and field bridges.
4.1.3. Embedded and associated objects

Associated objects as well as embedded objects can be indexed as part

of the root entity index. This is useful if you expect to search a given entity
based on properties of associated objects. In the following example the aim
is to return places where the associated city is Atlanta (In the Lucene query
parser language, it would translate into address. city: At | ant a).

42 Hibernate 3.1.1.GA

Embedded and associated objects

Example 4.4. Using @IndexedEmbedded to index
associations

@ntity

@ ndexed

public class Place {
@d
@zener at edVal ue
@ocunent | d
private Long id;

@ield(index = |Index. TOKEN ZED)
private String nane;

@neToOne(cascade = { CascadeType. PERSI ST, CascadeType. REMOVE }

@ ndexedEnbedded
private Address address;

}

@ntity

public class Address {
@d
@:zener at edVal ue
private Long id;

@i el d(i ndex=l ndex. TOKENI ZED)
private String street;

@i el d(i ndex=l ndex. TOKENI ZED)
private String city;

@cont ai nedl n
@neToMany(mappedBy="addr ess")
private Set<Pl ace> pl aces;

In this example, the place fields will be indexed in the Pl ace index. The Pl ace
index documents will also contain the fields addr ess. i d, addr ess. street,

and addr ess. ci ty which you will be able to query. This is enabled by the

@ ndexedEnbedded annotation.

Be careful. Because the data is denormalized in the Lucene index when
using the @ ndexedEnbedded technique, Hibernate Search needs to be aware
of any change in the Pl ace object and any change in the Addr ess object

to keep the index up to date. To make sure the riace Lucene document is
updated when it's Addr ess changes, you need to mark the other side of the
bidirectional relationship with @ont ai nedl n.

Hibernate 3.1.1.GA 43

Chapter 4. Mapping entities to thei...
@ont ai ned! n is only useful on associations pointing to entities as opposed to
embedded (collection of) objects.

Let's make our example a bit more complex:

44 Hibernate 3.1.1.GA

Embedded and associated objects

Example 4.5. Nested usage of @ ndexedEnbedded and
@ont ai nedl n

}

}

@ntity
@ ndexed
public class Place {

@d

@:cener at edVal ue
@ocunent | d
private Long id;

@ield(index = |Index. TOKEN ZED)
private String nane;

@neToOne(cascade = { CascadeType. PERSI ST,

@ ndexedEnbedded
private Address address;

@ntity

public class Address {

@d
@:zener at edVal ue
private Long id;

@i el d(i ndex=l ndex. TOKENI ZED)
private String street;

@i el d(i ndex=l ndex. TOKENI ZED)
private String city;

CascadeType. REMOVE }

@ ndexedEnbedded(depth = 1, prefix = "ownedBy_")

private Omner ownedBy;

@cont ai nedl n
@neToMany(mappedBy="addr ess")
private Set<Pl ace> pl aces;

@nbeddabl e
public class Oaner {

@i el d(i ndex = | ndex. TOKENI ZED)
private String nane;

Any @ Tovany, @ ToOne and @nbedded attribute can be annotated with
@ ndexedEnbedded. The attributes of the associated class will then be added

Hibernate 3.1.1.GA

45

Chapter 4. Mapping entities to thei...

46

to the main entity index. In the previous example, the index will contain the
following fields

e id

* name

» address.street

e address.city

» address.ownedBy_name

The default prefix is proper t yNare. , following the traditional object navigation
convention. You can override it using the prefi x attribute as it is shown on
the ownedBy property.

Note

The prefix cannot be set to the empty string.

The dept h property is necessary when the object graph contains a cyclic
dependency of classes (not instances). For example, if omer points to Pl ace.
Hibernate Search will stop including Indexed embedded attributes after
reaching the expected depth (or the object graph boundaries are reached).
A class having a self reference is an example of cyclic dependency. In our
example, because dept h is set to 1, any @ ndexedEnbedded attribute in Owner
(if any) will be ignored.

Using @ ndexedEnbedded for object associations allows you to express queries
such as:

* Return places where name contains JBoss and where address city is
Atlanta. In Lucene query this would be

+nane: j boss +address.city:atlanta

» Return places where name contains JBoss and where owner's hame
contain Joe. In Lucene query this would be

+nane: j boss +addr ess. order By _nane: j oe

In a way it mimics the relational join operation in a more efficient way (at the
cost of data duplication). Remember that, out of the box, Lucene indexes
have no notion of association, the join operation is simply non-existent. It
might help to keep the relational model normalized while benefiting from the
full text index speed and feature richness.

Hibernate 3.1.1.GA

Boost factor

Note

An associated object can itself (but does not have to) be @ ndexed

When @IndexedEmbedded points to an entity, the association has to be
directional and the other side has to be annotated @ont ai nedl n (as seen in
the previous example). If not, Hibernate Search has no way to update the
root index when the associated entity is updated (in our example, a Pl ace
index document has to be updated when the associated Addr ess instance is
updated).

Sometimes, the object type annotated by @ ndexedEnbedded is not the object
type targeted by Hibernate and Hibernate Search. This is especially the case
when interfaces are used in lieu of their implementation. For this reason

you can override the object type targeted by Hibernate Search using the

tar get El ement parameter.

Example 4.6. Using the tar get El enent property of
@ ndexedEnbedded

@ntity

@ ndexed

public class Address {
@d
@cener at edVal ue
@ocunent | d

private Long id;

@i el d(i ndex= | ndex. TOKENI ZED)
private String street;

@ ndexedEnbedded(depth = 1, prefix = "ownedBy_", targetEl enent =
Owner . cl ass)

@rar get (Onner . cl ass)

private Person ownedBy;

}

@nbeddabl e
public class Omer inplenents Person { ... }

4.1.4. Boost factor

Lucene has the notion of boost factor. It's a way to give more weight to a field
or to an indexed element over others during the indexation process. You can
use @oost at the @Field, method or class level.

Hibernate 3.1.1.GA 47

Chapter 4. Mapping entities to thei...

Example 4.7. Using different ways of increasing the weight
of an indexed element using a boost factor

@ntity

@ ndexed(i ndex="i ndexes/ essays")
@Boost (1. 7f)

public class Essay {

@d
@ocunent | d
public Long getld() { returnid; }

@i el d(nanme="Abstract", index=lndex. TOKENI ZED, store=Store. YES,
boost =@Boost (2f))

@Boost (1. 5f)

public String getSummary() { return summary; }

@ob
@i el d(i ndex=I ndex. TOKENI ZED, boost =@Boost (1. 2f))
public String getText() { return text; }

@ield
public String getl SBN() { return isbn; }

In our example, Essay's probability to reach the top of the search list will be
multiplied by 1.7. The summry field will be 3.0 (2 * 1.5 - @i el d. boost and
@oost 0N a property are cumulative) more important than the i sbn field.

The text field will be 1.2 times more important than the i sbn field. Note

that this explanation in strictest terms is actually wrong, but it is simple and
close enough to reality for all practical purposes. Please check the Lucene
documentation or the excellent Lucene In Action from Otis Gospodnetic and
Erik Hatcher.

4.1.5. Analyzer

The default analyzer class used to index tokenized fields is configurable
through the hi ber nat e. sear ch. anal yzer property. The default value for this
property is or g. apache. | ucene. anal ysi s. st andar d. St andar dAnal yzer .

You can also define the analyzer class per entity, property and even per
@Field (useful when multiple fields are indexed from a single property).

48 Hibernate 3.1.1.GA

Analyzer

Example 4.8. Different ways of specifying an analyzer

@ntity
@ ndexed
@\nal yzer (impl = EntityAnal yzer. cl ass)
public class M/Entity {
@d
@ener at edVal ue
@ocunent | d
private |nteger id;

@i el d(i ndex = | ndex. TOKENI ZED)
private String nane;

@i el d(i ndex = | ndex. TOKENI ZED)
@\nal yzer (i mpl = PropertyAnal yzer. cl ass)
private String sunmary;

@i el d(i ndex = | ndex. TOKENI ZED, anal yzer = @\nal yzer (i npl =
Fi el dAnal yzer. cl ass)
private String body;

In this example, Enti tyAnal yzer is used to index all tokenized properties (eg.
name), except summary and body which are indexed with pr opert yAnal yzer and
Fi el dAnal yzer respectively.

Caution

Mixing different analyzers in the same entity is most of the time a
bad practice. It makes query building more complex and results less
predictable (for the novice), especially if you are using a QueryParser
(which uses the same analyzer for the whole query). As a rule of
thumb, for any given field the same analyzer should be used for
indexing and querying.

4.1.5.1. Analyzer definitions

Analyzers can become quite complex to deal with for which reason Hibernate
Search introduces the notion of analyzer definitions. An analyzer definition
can be reused by many @nal yzer declarations. An analyzer definition is
composed of:

« aname: the unique string used to refer to the definition

 atokenizer: responsible for tokenizing the input stream into individual
words

Hibernate 3.1.1.GA 49

Chapter 4. Mapping entities to thei...

« a list of filters: each filter is responsible to remove, modify or sometimes
even add words into the stream provided by the tokenizer

This separation of tasks - a tokenizer followed by a list of filters - allows for
easy reuse of each individual component and let you build your customized
analyzer in a very flexible way (just like Lego). Generally speaking the
Tokeni zer starts the analysis process by turning the character input into
tokens which are then further processed by the TokenFi | t er s. Hibernate
Search supports this infrastructure by utilizing the Solr analyzer framework.
Make sure to add solr-core.jar and sol r-common. j ar to your classpath

to use analyzer definitions. In case you also want to utilizing a snowball
stemmer also include the | ucene-snowbal | . j ar. Other Solr analyzers might
depend on more libraries. For example, the Phonet i cFi | t er Fact ory depends
on commons-codec [http://commons.apache.org/codec]. Your distribution of
Hibernate Search provides these dependencies in its I i b directory.

Example 4.9. @nal yzer Def and the Solr framework

@\nal yzer Def (nanme="cust onanal yzer",
tokeni zer = @okeni zer Def (factory =
St andar dTokeni zer Fact ory. cl ass),
filters = {
@okenFil terDef(factory
| SOLati n1lAccent Fil terFactory. cl ass),
@okenFi | terDef (factory
Lower CaseFi | ter Fact ory. cl ass),
@okenFi |l terDef (factory = StopFilterFactory. cl ass,

paranms = {
@par anet er (nane="wor ds", val ue=
"or g/ hi bernat e/ search/test/anal yzer/solr/stoplist.properties"),
@Par anet er (nane="i gnor eCase", val ue="true")
})
b

public class Team {

}

A tokenizer is defined by its factory which is responsible for building the
tokenizer and using the optional list of parameters. This example use the
standard tokenizer. A filter is defined by its factory which is responsible for
creating the filter instance using the optional parameters. In our example,

the StopFilter filter is built reading the dedicated words property file and is
expected to ignore case. The list of parameters is dependent on the tokenizer
or filter factory.

50 Hibernate 3.1.1.GA

http://commons.apache.org/codec
http://commons.apache.org/codec

Analyzer

Warning

Filters are applied in the order they are defined in the @nal yzer Def
annotation. Make sure to think twice about this order.

Once defined, an analyzer definition can be reused by an @nal yzer
declaration using the definition name rather than declaring an implementation
class.

Example 4.10. Referencing an analyzer by name

@ntity
@ ndexed
@\nal yzer Def (nane="cust onanal yzer", ...)
public class Team {
@d
@ocunent | d

@ener at edVal ue
private |Integer id;

@ield

private String nane;

@ield

private String | ocation;

@ield @nal yzer(definition = "customanal yzer")
private String description;

Analyzer instances declared by @nal yzer Def are available by their name in
the Sear chFactory.

Anal yzer anal yzer =
ful | Text Sessi on. get Sear chFact ory(). get Anal yzer ("cust onanal yzer");

This is quite useful wen building queries. Fields in queries should be
analyzed with the same analyzer used to index the field so that they speak a
common "language": the same tokens are reused between the query and the
indexing process. This rule has some exceptions but is true most of the time.
Respect it unless you know what you are doing.

4.1.5.2. Available analyzers

Solr and Lucene come with a lot of useful default tokenizers and filters.

You can find a complete list of tokenizer factories and filter factories at
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters. Let check a few
of them.

Hibernate 3.1.1.GA 51

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

Chapter 4. Mapping entities to thei...

Table 4.1. Some of the available tokenizers

Factory Description parameters
StandardTokenizerFactonyse the Lucene none
StandardTokenizer
HTMLStripStandard Tokenrzemtactdiy ML tags, none
keep the text and pass it
to a StandardTokenizer
Table 4.2. Some of the available filters
Factory Description parameters
StandardFilterFactory Remove dots from none
acronyms and 's from
words
LowerCaseFilterFactory |Lowercase words none

StopFilterFactory

remove words (tokens)
matching a list of stop
words

wor ds: points to a
resource file containing
the stop words

ignoreCase: true if case
should be ignore when
comparing stop words,
fal se otherwise

SnowballPorterFilterFactc

Reduces a word to it's
root in a given language.
(eg. protect, protects,
protection share the
same root). Using such
a filter allows searches
matching related words.

| anguage: Danish,
Dutch, English, Finnish,
French, German, Italian,
Norwegian, Portuguese,
Russian, Spanish,
Swedish

and a few more

ISOLatin1AccentFilterFag

rterpove accents for

languages like French

none

We recommend to check all the implementations of

org. apache. sol r. anal ysi s

. Tokeni zer Fact ory and

org. apache. sol r. anal ysi s. TokenFi | t er Fact ory in your IDE to see the
implementations available.

4.1.5.3. Analyzer discriminator (experimental)

So far all the introduced ways to specify an analyzer were static. However,
there are use cases where it is useful to select an analyzer depending on

Hibernate 3.1.1.GA

Analyzer

the current state of the entity to be indexed, for example in multilingual
application. For an Bl ogEnt ry class for example the analyzer could depend
on the language property of the entry. Depending on this property the correct
language specific stemmer should be chosen to index the actual text.

To enable this dynamic analyzer selection Hibernate Search introduces the
Anal yzer Di scri mi nat or annotation. The following example demonstrates the
usage of this annotation:

Hibernate 3.1.1.GA 53

Chapter 4. Mapping entities to thei...

Example 4.11. Usage of @AnalyzerDiscriminator in order to
select an analyzer depending on the entity state

@ntity
@ ndexed
@\nal yzer Def s({
@\nal yzer Def (nanme = "en",
t okeni zer = @okeni zer Def (factory =
St andar dTokeni zer Fact ory. cl ass),
filters = {
@okenFil terDef (factory
@okenFi | terDef (factory
)
.
@\nal yzer Def (name = "de",
t okeni zer = @okeni zerDef (factory =
St andar dTokeni zer Fact ory. cl ass),
filters = {
@okenFi | terDef (factory
@okenFil terDef (factory

Lower CaseFi | t er Factory. cl ass),
Engl i shPorterFilterFactory. cl ass

Lower CaseFi | ter Fact ory. cl ass),
Ger manSt enFi | t er Fact ory. cl ass)

b

})

public class BlogEntry {
@d
@:cener at edVal ue
@ocunent I d

private |nteger id;

@ield
@\nal yzerDi scrim nator (i npl = LanguageDi scrim nator. cl ass)
private String |anguage;

@ield

private String text;
private Set<Bl ogEntry> references;

/] standard getter/setter

public class LanguageDi scrim nator inplenments Discrimnator {

public String getAnanyzerDefinitionName(Cbject val ue, bject
entity, String field) {

if (value == null || !(entity instanceof Article)) {
return null;

}

return (String) val ue;

54 Hibernate 3.1.1.GA

Analyzer

The prerequisite for using @nal yzer Di scri mi nat or is that all analyzers which
are going to be used are predefined via @nal yzer Def definitions. If this is
the case one can place the @nal yzer bi scri i nat or annotation either on the
class or on a specific property of the entity for which to dynamically select an
analyzer. Via the i npl parameter of the Anal yzer Di scri ni nat or you specify
a concrete implementation of the bi scri ni nat or interface. It is up to you

to provide an implementation for this interface. The only method you have

to implement is get Ananyzer Def i ni ti onNare() which gets called for each
field added to the Lucene document. The entity which is getting indexed is
also passed to the interface method. The val ue parameter is only set if the
Anal yzer Di scri mi nat or is placed on property level instead of class level. In
this case the value represents the current value of this property.

An implemention of the Di scri ni nat or interface has to return the name of an

existing analyzer definition if the analyzer should be set dynamically or nul |

if the default analyzer should not be overridden. The given example assumes
that the language parameter is either 'de’ or 'en’ which matches the specified
names in the @nal yzer Def S.

Note

The @nal yzer b scri ni nat or is currently still experimental and the
API might still change. We are hoping for some feedback from the
community about the usefulness and usability of this feature.

4.1.5.4. Retrieving an analyzer

During indexing time, Hibernate Search is using analyzers under the hood

for you. In some situations, retrieving analyzers can be handy. If your domain
model makes use of multiple analyzers (maybe to benefit from stemming, use
phonetic approximation and so on), you need to make sure to use the same
analyzers when you build your query.

Note

This rule can be broken but you need a good reason for it. If you are
unsure, use the same analyzers.

You can retrieve the scoped analyzer for a given entity used at indexing time
by Hibernate Search. A scoped analyzer is an analyzer which applies the
right analyzers depending on the field indexed: multiple analyzers can be
defined on a given entity each one working on an individual field, a scoped
analyzer unify all these analyzers into a context-aware analyzer. While the
theory seems a bit complex, using the right analyzer in a query is very easy.

Hibernate 3.1.1.GA 55

Chapter 4. Mapping entities to thei...

Example 4.12. Using the scoped analyzer when building a
full-text query

org. apache. | ucene. quer yPar ser. QueryPar ser parser = new QueryPar ser (
"title",
ful | Text Sessi on. get Sear chFactory(). get Anal yzer(Song. cl ass)

)

or g. apache. | ucene. search. Query | uceneQuery =
parser.parse("title:sky O title_stemmed: di anond");

org. hi bernate. Query ful |l Text Query =
ful | Text Sessi on. creat eFul | Text Query(| uceneQuery, Song.class);

List result = full TextQuery.list(); //return a |ist of nanaged
obj ects

In the example above, the song title is indexed in two fields: the standard
analyzer is used in the field ti t1 e and a stemming analyzer is used in the
field title_stemed. By using the analyzer provided by the search factory, the
query uses the appropriate analyzer depending on the field targeted.

If your query targets more that one query and you wish to use

your standard analyzer, make sure to describe it using an analyzer
definition. You can retrieve analyzers by their definition name using
sear chFactory. get Anal yzer (String).

4.2. Property/Field Bridge

In Lucene all index fields have to be represented as Strings. For this reason
all entity properties annotated with @i el d have to be indexed in a String
form. For most of your properties, Hibernate Search does the translation job
for you thanks to a built-in set of bridges. In some cases, though you need a
more fine grain control over the translation process.

4.2.1. Built-in bridges

Hibernate Search comes bundled with a set of built-in bridges between a
Java property type and its full text representation.

null
null elements are not indexed. Lucene does not support null elements
and this does not make much sense either.

java.lang.String
String are indexed as is

56 Hibernate 3.1.1.GA

Built-in bridges

short, Short, integer, Integer, long, Long, float, Float, double, Double,
Biglinteger, BigDecimal
Numbers are converted in their String representation. Note that numbers
cannot be compared by Lucene (ie used in ranged queries) out of the
box: they have to be padded

Note

Using a Range query is debatable and has drawbacks, an
alternative approach is to use a Filter query which will filter the
result query to the appropriate range.

Hibernate Search will support a padding mechanism

java.util.Date
Dates are stored as yyyyMMddHHmMmMssSSS in GMT time
(200611072203012 for Nov 7th of 2006 4:03PM and 12ms EST). You
shouldn't really bother with the internal format. What is important is that
when using a DateRange Query, you should know that the dates have to
be expressed in GMT time.

Usually, storing the date up to the millisecond is not necessary.

@at eBri dge defines the appropriate resolution you are willing to store in
the index (@at eBri dge(resol uti on=Resol uti on. DAY)) The date pattern will
then be truncated accordingly.

@ntity

@ ndexed

public class Meeting {
@i el d(i ndex=I ndex. UN_TOKENI ZED)
@pat eBri dge(resol uti on=Resol uti on. M NUTE)
private Date date;

Warning

A Date whose resolution is lower than M LLI SECOND cannot be a
@ocunent | d

java.net.URI, java.net.URL
URI and URL are converted to their string representation

java.lang.Class

Class are converted to their fully qualified class hame. The thread context
classloader is used when the class is rehydrated

Hibernate 3.1.1.GA 57

Chapter 4. Mapping entities to thei...

4.2.2. Custom Bridge

Sometimes, the built-in bridges of Hibernate Search do not cover some of
your property types, or the String representation used by the bridge does not
meet your requirements. The following paragraphs describe several solutions
to this problem.

4.2.2.1. StringBridge

58

The simplest custom solution is to give Hibernate Search an implementation
of your expected bj ect to String bridge. To do so you need to implements
the or g. hi ber nat e. sear ch. bri dge. Stri ngBri dge interface. All implementations
have to be thread-safe as they are used concurrently.

Example 4.13. Implementing your own Stri ngBri dge

/**

* Paddi ng | nteger bridge.

* All nunbers will be padded with O to match 5 digits

*

* @ut hor Emmanuel Bernard

*/

public class Paddedl nt egerBridge inplenents StringBridge {

private int PADDI NG = 5;

public String objectToString(Qbject object) {
String rawi nteger = ((Integer) object).toString();
if (rawl nteger.|ength() > PADD NG
throw new ||| egal Argunent Exception("Try to pad on a
nunber too big");
StringBui |l der paddedl nteger = new StringBuilder();
for (int padlndex = raw nteger.length() ; padlndex <
PADDI NG ; padl ndex++) {
paddedl nt eger . append(' 0');

}
return paddedl nt eger. append(rawi nteger).toString();

Then any property or field can use this bridge thanks to the @i el dBri dge
annotation

@i el dBri dge(i npl = Paddedl nt eger Bri dge. cl ass)
private |nteger |ength;

Parameters can be passed to the Bridge implementation making it more
flexible. The Bridge implementation implements a Par anet eri zedBr i dge

Hibernate 3.1.1.GA

Custom Bridge

interface, and the parameters are passed through the @i el dBri dge
annotation.

Example 4.14. Passing parameters to your bridge
iImplementation

public class Paddedl nt egerBridge inplements StringBridge,
Par anmet eri zedBri dge {

public static String PADDI NG PROPERTY = "paddi ng";
private int padding = 5; //default

public void set Paranet erVal ues(Map paraneters) {
Chj ect paddi ng = paraneters. get (PADD NG _PROPERTY);
if (padding !'= null) this.padding = (Integer) padding;
}

public String objectToString(Qbject object) {
String raw nteger = ((Integer) object).toString();
if (rawinteger.length() > padding)
throw new ||| egal Argunent Exception("Try to pad on a
nunber too big");
StringBui |l der paddedl nteger = new StringBuil der();
for (int padlndex = rawinteger.length() ; padlndex <
paddi ng ; padl ndex++) {
paddedI nt eger . append(' 0');

}
return paddedl nt eger. append(raw nteger).toString();

/] property
@i el dBri dge(i npl = PaddedI nt eger Bri dge. cl ass,
paranms = @par anet er (name="paddi ng", val ue="10")

)

private |nteger |ength;

The Par anet eri zedBri dge interface can be implemented by St ri ngBri dge,
TwoVy St ri ngBri dge, Fi el dBri dge implementations.

All implementations have to be thread-safe, but the parameters are set
during initialization and no special care is required at this stage.

If you expect to use your bridge implementation on an id property (ie
annotated with @ocurent 1 d), you need to use a slightly extended version of
StringBri dge named TwoWaySt ri ngBri dge. Hibernate Search needs to read
the string representation of the identifier and generate the object out of it.
There is not difference in the way the @i el dBri dge annotation is used.

Hibernate 3.1.1.GA 59

Chapter 4. Mapping entities to thei...

Example 4.15. Implementing a TwoWayStringBridge which
can for example be used for id properties

public class Paddedl nt egerBridge inplenents TwoWayStri ngBri dge,
Par anet eri zedBri dge {

public static String PADD NG PROPERTY = "paddi ng";
private int padding = 5; //default

public void setParaneterVal ues(Map paraneters) {
Obj ect paddi ng = paranet ers. get (PADDI NG_PROPERTY) ;
if (padding != null) this.padding = (Integer) padding;
}

public String objectToString(Object object) {
String rawi nteger = ((Integer) object).toString();
if (rawl nteger.|length() > padding)
throw new ||| egal Argunent Exception("Try to pad on a
nunber too big");
StringBui |l der paddedl nteger = new StringBuilder();
for (int padlndex = raw nteger.length() ; padlndex <
paddi ng ; padl ndex++) {
paddedl| nt eger . append(' 0');

}
return paddedl nt eger. append(rawi nteger).toString();

}

public Object stringToChject(String stringValue) {
return new | nteger(stringVal ue);

}

/1id property
@ocunent | d
@i el dBridge(inmpl = Paddedl nt eger Bri dge. cl ass,
parans = @par anet er (nanme="paddi ng", val ue="10")
private |nteger id;

It is critically important for the two-way process to be idempotent (ie object =
stringToObject(objectToString(object))).

4.2.2.2. FieldBridge

60

Some use cases require more than a simple object to string translation when
mapping a property to a Lucene index. To give you the greatest possible
flexibility you can also implement a bridge as a Fi el dBri dge. This interface
gives you a property value and let you map it the way you want in your
Lucene Docunent .The interface is very similar in its concept to the Hibernate
User TypesS.

Hibernate 3.1.1.GA

Custom Bridge

You can for example store a given property in two different document fields:

Hibernate 3.1.1.GA 61

Chapter 4. Mapping entities to thei...

Example 4.16. Implementing the FieldBridge interface in
order to a given property into multiple document fields

/**
* Store the date in 3 different fields - year, nonth, day - to ease
Range Query per
* year, nonth or day (eg get all the elenments of Decenber for the
| ast 5 years).
*
* @ut hor Emmanuel Bernard
*/
public class DateSplitBridge inplenents FieldBridge {
private final static TinmeZone GMI = Ti neZone. get Ti meZone(" GVI") ;

public void set(String name, Object value, Document document,
LuceneOptions | uceneOptions) {
Date date = (Date) val ue;
Cal endar cal = GregorianCal endar. getl nstance(GVI) ;
cal . set Ti ne(date);
int year = cal.get(Cal endar. YEAR);
int month = cal.get(Cal endar. MONTH) + 1;
int day = cal.get(Cal endar. DAY_OF_MONTH) ;

[l set year
Field field = new Field(name + ".year",
String. val ueO (year),
| uceneOptions. getStore(), |uceneOptions. getlndex(),
| uceneOpti ons. get TernVector());
field. setBoost (|l uceneOptions. get Boost());
docunent . add(fi el d);

/'l set month and pad it if needed
field = new Field(name + ".nonth", month < 10 ? "0O"
+ String.val ue (nmonth), |uceneQOptions. getStore(),
| uceneOpti ons. get | ndex(),
| uceneOpti ons. get TernVector());
field.setBoost(luceneOptions. getBoost ());
docunent . add(fi el d);

/] set day and pad it if needed
field = new Fi el d(name + ".day", day < 10 ? "0O"
+ String.val ued (day), |uceneOptions.getStore(),
| uceneOpti ons. get | ndex(),
| uceneOpt i ons. get Ter nVector());
field.setBoost(luceneOptions. getBoost());
docunent . add(fi el d);

}

[/ property
@i el dBri dge(inpl = DateSplitBridge.class)
private Date date;

62 Hibernate 3.1.1.GA

Custom Bridge

4.2.2.3. ClassBridge

It is sometimes useful to combine more than one property of a given entity
and index this combination in a specific way into the Lucene index. The

@ assBridge and @ assBri dge annotations can be defined at the class
level (as opposed to the property level). In this case the custom field bridge
implementation receives the entity instance as the value parameter instead
of a particular property. Though not shown in this example, @ assBri dge
supports the t er mvect or attribute discussed in section Section 4.1.1, “Basic

mapping”.

Hibernate 3.1.1.GA 63

Chapter 4. Mapping entities to thei...

Example 4.17. Implementing a class bridge

@ntity
@ ndexed
@ assBridge(nanme="br anchnet wor k",
i ndex=I ndex. TOKENI ZED,
st or e=St or e. YES,
i mpl = CatFi el dsCl assBri dge. cl ass,
parans = @pParaneter(nane="sepChar", value=" "))
public class Departnment {
private int id,;
private String network;
private String branchHead;
private String branch;
private | nteger maxEnpl oyees

public class CatFieldsC assBridge inplements Fiel dBridge,
Par anet eri zedBri dge {
private String sepChar;

public void setParaneterVal ues(Map paraneters) {
this.sepChar = (String) paraneters.get("sepChar");

}

public void set(String name, Object value, Document docunent,

LuceneOptions | uceneOptions) {

/1 In this particular class the nanme of the new field was
passed

/1 fromthe name field of the ClassBridge Annotation. This
i s not

/[l a requirenment. It just works that way in this instance.
The

/1 actual name could be supplied by hard coding it bel ow.

Departnent dep = (Departnent) val ue;

String fieldValuel = dep. getBranch();

if (fieldvaluel == null) {

fieldvaluel = "";

}

String fieldValue2 = dep. get Network();

if (fieldvalue2 == null) {

fieldvalue2 = "";

}

String fieldValue = fieldValuel + sepChar + fiel dval ue2;

Field field = new Field(nane, fieldVvalue,
| uceneOptions. getStore(), |uceneOptions. getl ndex(),
| uceneOpti ons. get TernVector ());

field. setBoost(|uceneOptions.getBoost());

docunent . add(field);

Hibernate 3.1.1.GA

Providing your own id

In this example, the particular cat Fi el dsd assBri dge is applied to the
depart ment instance, the field bridge then concatenate both branch and
network and index the concatenation.

4.3. Providing your own id

Warning
This part of the documentation is a work in progress.

You can provide your own id for Hibernate Search if you are extending the
internals. You will have to generate a unique value so it can be given to
Lucene to be indexed. This will have to be given to Hibernate Search when
you create an org.hibernate.search.Work object - the document id is required
in the constructor.

4.3.1. The Providedld annotation

Unlike conventional Hibernate Search API and @Documentld, this
annotation is used on the class and not a field. You also can provide your
own bridge implementation when you put in this annotation by calling

the bridge() which is on @Providedld. Also, if you annotate a class with
@Providedld, your subclasses will also get the annotation - but it is not done
by using the java.lang.annotations.@Inherited. Be sure however, to not use
this annotation with @Documentld as your system will break.

Example 4.18. Providing your own id

@rovidedld (bridge = org. my.own. package. MyCust onBri dge)
@ ndexed
public class MyC ass{

@ield

String MyString;

Hibernate 3.1.1.GA 65

66

Hibernate 3.1.1.GA

Chapter 5. Querying

The second most important capability of Hibernate Search is the ability to
execute a Lucene query and retrieve entities managed by an Hibernate
session, providing the power of Lucene without leaving the Hibernate
paradigm, and giving another dimension to the Hibernate classic search
mechanisms (HQL, Criteria query, native SQL query). Preparing and
executing a query consists of four simple steps:

» Creating a Ful | Text Sessi on
« Creating a Lucene query

» Wrapping the Lucene query using a or g. hi ber nat e. Query

Executing the search by calling for example 1i st () or scrol | ()

To access the querying facilities, you have to use an Ful | Text Sessi on. This
Search specific session wraps a regular or g. hi ber nat e. Sessi on to provide
query and indexing capabilities.

Example 5.1. Creating a FullTextSession

Sessi on session = sessi onFactory. openSessi on();

Ful | Text Sessi on ful | Text Sessi on =
Sear ch. get Ful | Text Sessi on(sessi on);

The actual search facility is built on native Lucene queries which the following
example illustrates.

Example 5.2. Creating a Lucene query

or g. apache. | ucene. quer yPar ser. QueryPar ser parser =
new QueryParser("title", new StopAnalyzer());

org. apache. | ucene. search. Query | uceneQuery = parser. parse(
"summary: Festi na O brand: Sei ko");

org. hi bernate. Query full Text Query =
ful | Text Sessi on. creat eFul | Text Query(| uceneQery);

List result = full TextQuery.list(); //return a |ist of managed
obj ects

The Hibernate query built on top of the Lucene query is a regular

or g. hi ber nat e. Query, which means you are in the same paradigm as the
other Hibernate query facilities (HQL, Native or Criteria). The regular 1i st () ,
uni queResul t (), iterate() and scrol | () methods can be used.

Hibernate 3.1.1.GA 67

Chapter 5. Querying

In case you are using the Java Persistence APIs of Hibernate (aka EJB 3.0
Persistence), the same extensions exist:

Example 5.3. Creating a Search query using the JPA API

EntityManager em = entityManager Fact ory. creat eEntityManager();

Ful | Text Enti t yManager full Text EntityManager =

or g. hi ber nat e. hi ber nat e. sear ch. j pa. Sear ch. get Ful | Text Enti t yManager (en)
org. apache. | ucene. quer yPar ser. QueryPar ser parser =

new QueryParser("title", new StopAnal yzer())

or g. apache. | ucene. search. Query | uceneQuery = parser. parse(

"summary: Festina O brand: Sei ko");
j avax. persi stence. Query ful | Text Query =

full Text EntityManager. creat eFul | Text Query(| uceneQuery);

List result = full TextQuery.getResultList(); //return a list of
managed obj ects

The following examples we will use the Hibernate APIs but the same
example can be easily rewritten with the Java Persistence API by just
adjusting the way the Ful | Text Query is retrieved.

5.1. Building queries
Hibernate Search queries are built on top of Lucene queries which gives
you total freedom on the type of Lucene query you want to execute.

However, once built, Hibernate Search wraps further query processing using
or g. hi ber nat e. Query as your primary query manipulation API.

5.1.1. Building a Lucene query

It is out of the scope of this documentation on how to exactly build a Lucene
query. Please refer to the online Lucene documentation or get hold of a copy
of either Lucene In Action or Hibernate Search in Action.

5.1.2. Building a Hibernate Search query

5.1.2.1. Generality

Once the Lucene query is built, it needs to be wrapped into an Hibernate
Query.

68 Hibernate 3.1.1.GA

Building a Hibernate Search query

Example 5.4. Wrapping a Lucene query into a Hibernate
Query

Ful | Text Sessi on ful |l Text Sessi on = Search. get Ful | Text Sessi on(sessi on
)

org. hi bernate. Query ful |l Text Query =
ful | Text Sessi on. creat eFul | Text Query(| uceneQery);

If not specified otherwise, the query will be executed against all indexed

entities, potentially returning all types of indexed classes. It is advised, from a
performance point of view, to restrict the returned types:

Example 5.5. Filtering the search result by entity type

org. hi bernate. Query full Text Query =
ful | Text Sessi on. creat eFul | Text Query(| uceneQuery, Custoner.class);
/'l or
full Text Query = full Text Sessi on. creat eFul | Text Query(| uceneQuery,
Itemcl ass, Actor.class);

The first example returns only matching cust oner s, the second returns
matching Act or s and I t ens. The type restriction is fully polymorphic which
means that if there are two indexed subclasses sal esman and cust oner of the
baseclass Person, it is possible to just specify Per son. cl ass in order to filter
on result types.

5.1.2.2. Pagination

Out of performance reasons it is recommended to restrict the number of
returned objects per query. In fact is a very common use case anyway that
the user navigates from one page to an other. The way to define pagination
is exactly the way you would define pagination in a plain HQL or Criteria

query.

Example 5.6. Defining pagination for a search query

org. hi bernate. Query full Text Query =

ful | Text Sessi on. creat eFul | Text Query(| uceneQuery, Custoner.class);
full Text Query. setFirstResult(15); //start fromthe 15th el enent
full Text Query. set MaxResul ts(10); //return 10 el ements

Note

It is still possible to get the total number of matching elements
regardless of the pagination via f ul | t ext Query. get Resul t Si ze()

Hibernate 3.1.1.GA 69

Chapter 5. Querying

5.1.2.3. Sorting

Apache Lucene provides a very flexible and powerful way to sort results.
While the default sorting (by relevance) is appropriate most of the time, it can
be interesting to sort by one or several other properties. In order to do so set
the Lucene Sort object to apply a Lucene sorting strategy.

Example 5.7. Specifying a Lucene sort in order to sort the
results

org. hi bernat e. search. Ful | Text Query query = s.createFul | Text Query(
query, Book.class);

or g. apache. | ucene. search. Sort sort = new Sort (new
SortField("title"));

query. set Sort(sort);

List results = query.list();

One can notice the Ful | Text Query interface which is a sub interface of
or g. hi ber nat e. Query. Be aware that fields used for sorting must not be
tokenized.

5.1.2.4. Fetching strategy

70

When you restrict the return types to one class, Hibernate Search loads
the objects using a single query. It also respects the static fetching strategy
defined in your domain model.

It is often useful, however, to refine the fetching strategy for a specific use
case.

Example 5.8. Specifying Fet chMode on a query

Criteria criteria = s.createCriteria(Book.class).setFetchMde(
"aut hors", FetchMbde.JO N);
s.creat eFul | Text Query(luceneQuery).setCriteriaQuery(criteria);

In this example, the query will return all Books matching the luceneQuery.
The authors collection will be loaded from the same query using an SQL
outer join.

When defining a criteria query, it is not needed to restrict the entity types
returned while creating the Hibernate Search query from the full text session:
the type is guessed from the criteria query itself. Only fetch mode can be
adjusted, refrain from applying any other restriction.

One cannot use set Cri teri aQuery if more than one entity type is expected to
be returned.

Hibernate 3.1.1.GA

Building a Hibernate Search query

5.1.2.5. Projection

For some use cases, returning the domain object (graph) is overkill. Only a
small subset of the properties is necessary. Hibernate Search allows you to
return a subset of properties:

Example 5.9. Using projection instead of returning the full
domain object

org. hi bernate. search. Ful | Text Query query = s.createFul | Text Query(
| uceneQuery, Book.class);

query.setProjection("id", "summary", "body", "mainAuthor.nanme");
List results = query.list();

bject[] firstResult = (oject[]) results.get(0);

Integer id = firstResult[0];

String sunmary = firstResult[1];

String body = firstResult[2];

String authorNanme = firstResult[3];

Hibernate Search extracts the properties from the Lucene index and
convert them back to their object representation, returning a list of Qj ect[].
Projections avoid a potential database round trip (useful if the query
response time is critical), but has some constraints:

« the properties projected must be stored in the index
(@Fi el d(store=Store. YES)), which increase the index size

« the properties projected must use a Fi el dBri dge implementing
org. hi bernat e. search. bri dge. TwoWayFi el dBri dge Or
or g. hi ber nat e. sear ch. bri dge. TwoWay St ri ngBri dge, the latter being the
simpler version. All Hibernate Search built-in types are two-way.

» you can only project simple properties of the indexed entity or its
embedded associations. This means you cannot project a whole
embedded entity.

 projection does not work on collections or maps which are indexed via
@ ndexedEnbedded

Projection is useful for another kind of use cases. Lucene provides some
metadata information to the user about the results. By using some special
placeholders, the projection mechanism can retrieve them:

Hibernate 3.1.1.GA 71

Chapter 5. Querying

Example 5.10. Using projection in order to retrieve meta
data

org. hi bernate. search. Ful | Text Query query = s.createFul | Text Query(
| uceneQuery, Book.class);

query. set Proj ection(Full Text Query. SCORE, Ful |l Text Query. TH'S,
"mai nAut hor . nanme");

List results = query.list();

bject[] firstResult = (Object[]) results.get(0);

float score = firstResult[0];

Book book = firstResult[1];

String authorName = firstResult[2];

You can mix and match regular fields and special placeholders. Here is the
list of available placeholders:

FullTextQuery.THIS: returns the initialized and managed entity (as a non
projected query would have done).

FullTextQuery. DOCUMENT: returns the Lucene Document related to the
object projected.

FullTextQuery.OBJECT_CLASS: returns the class of the indexed entity.

FullTextQuery.SCORE: returns the document score in the query. Scores
are handy to compare one result against an other for a given query but are
useless when comparing the result of different queries.

FullTextQuery.ID: the id property value of the projected object.

FullTextQuery.DOCUMENT _ID: the Lucene document id. Careful, Lucene
document id can change overtime between two different IndexReader
opening (this feature is experimental).

FullTextQuery.EXPLANATION: returns the Lucene Explanation object for
the matching object/document in the given query. Do not use if you retrieve
a lot of data. Running explanation typically is as costly as running the
whole Lucene query per matching element. Make sure you use projection!

5.2. Retrieving the results

72

Once the Hibernate Search query is built, executing it is in no way different
than executing a HQL or Criteria query. The same paradigm and object
semantic applies. All the common operations are available: 1i st (),

uni queResult(),iterate(), scroll ().

Hibernate 3.1.1.GA

Performance considerations

5.2.1. Performance considerations

If you expect a reasonable number of results (for example using
pagination) and expect to work on all of them, Ii st () oOr uni queResul t () are
recommended. | i st () work best if the entity bat ch-si ze iS set up properly.
Note that Hibernate Search has to process all Lucene Hits elements (within
the pagination) when using list() , uni queResult () anditerate().

If you wish to minimize Lucene document loading, scrol | () is more
appropriate. Don't forget to close the scrol | abl eResul t s object when you're
done, since it keeps Lucene resources. If you expect to use scrol I, but wish
to load objects in batch, you can use query. set Fet chSi ze() . When an object
is accessed, and if not already loaded, Hibernate Search will load the next

f et chSi ze objects in one pass.

Pagination is a preferred method over scrolling though.

5.2.2. Result size

It is sometime useful to know the total number of matching documents:
« for the Google-like feature 1-10 of about 888,000,000
» to implement a fast pagination navigation

 to implement a multi step search engine (adding approximation if the
restricted query return no or not enough results)

Of course it would be too costly to retrieve all the matching documents.
Hibernate Search allows you to retrieve the total number of matching
documents regardless of the pagination parameters. Even more interesting,
you can retrieve the number of matching elements without triggering a single
object load.

Example 5.11. Determining the result size of a query

or g. hi bernat e. search. Ful | Text Query query = s.createFul | Text Query(
| uceneQuery, Book.class);

assert 3245 == query.getResultSize(); //return the nunber of
mat chi ng books wi thout | oading a single one

org. hi bernate. search. Ful | Text Query query = s.createFul | Text Query(
| uceneQuery, Book.class);

query. set MaxResul t (10);

List results = query.list();

assert 3245 == query.getResultSize(); //return the total number of
mat chi ng books regardl ess of pagi nation

Hibernate 3.1.1.GA 73

Chapter 5. Querying

Note

Like Google, the number of results is approximative if the index is not
fully up-to-date with the database (asynchronous cluster for example).

5.2.3. ResultTransformer

Especially when using projection, the data structure returned by a query (an
object array in this case), is not always matching the application needs. It

is possible to apply a Resul t Transf or ner operation post query to match the
targeted data structure:

Example 5.12. Using ResultTransformer in conjunction with
projections

or g. hi bernat e. search. Ful | Text Query query = s.createFul | Text Query(
| uceneQuery, Book.class);
query.setProjection("title", "nmainAuthor.nane");

query. set Resul t Tr ansf or mer (
new Stati cAliasToBeanResul t Tr ansf or mer (BookVi ew. cl ass, "title",
"aut hor")
DE
Li st <BookVi ew> results = (List<BookView>) query.list();
for(BookView view : results) {
|l og.info("Book: " + viewgetTitle() + ", " + view getAuthor()
DE
}

Examples of Resul t Tr ansf or ner implementations can be found in the
Hibernate Core codebase.

5.2.4. Understanding results

You will find yourself sometimes puzzled by a result showing up in a query
or a result not showing up in a query. Luke is a great tool to understand
those mysteries. However, Hibernate Search also gives you access to

the Lucene Expl anat i on object for a given result (in a given query). This
class is considered fairly advanced to Lucene users but can provide a good
understanding of the scoring of an object. You have two ways to access the
Explanation object for a given result:

* Use the ful | Text Query. expl ai n(i nt) method

» Use projection

74 Hibernate 3.1.1.GA

Filters

The first approach takes a document id as a parameter and return the
Explanation object. The document id can be retrieved using projection and
the Ful | Text Query. DOCUMENT _| D constant.

Warning

The Document id has nothing to do with the entity id. Do not mess up
these two notions.

The second approach let's you project the Expl anat i on Object using the
Ful | Text Quer y. EXPLANATI ON constant.

Example 5.13. Retrieving the Lucene Explanation object
using projection

Ful | Text Query ftQuery = s.createFul | Text Query(| uceneQuery,
Dvd. cl ass)
.setProjection(Full Text Query. DOCUVENT_I D,
Ful | Text Query. EXPLANATI ON, Ful | Text Query. TH' S);
@uppr essWar ni ngs("unchecked") List<Object[]> results =
ftQuery.list();
for (Object[] result : results) {
Expl anation e = (Explanation) result[1];
di splay(e.toString());

Be careful, building the explanation object is quite expensive, it is roughly as
expensive as running the Lucene query again. Don't do it if you don't need
the object

5.3. Filters

Apache Lucene has a powerful feature that allows to filter query results
according to a custom filtering process. This is a very powerful way to apply
additional data restrictions, especially since filters can be cached and reused.
Some interesting use cases are:

e security

temporal data (eg. view only last month's data)

« population filter (eg. search limited to a given category)

and many more

Hibernate Search pushes the concept further by introducing the notion of
parameterizable named filters which are transparently cached. For people
familiar with the notion of Hibernate Core filters, the APl is very similar:

Hibernate 3.1.1.GA 75

Chapter 5. Querying

76

Example 5.14. Enabling fulltext filters for a given query

full Text Query = s.createFul | Text Query(query, Driver.class);

ful | Text Query. enabl eFul | TextFilter("bestDriver");

full Text Query. enabl eFul | TextFilter("security").setParameter(
"l ogin", "andre");

full TextQuery.list(); //returns only best drivers where andre has
credential s

In this example we enabled two filters on top of the query. You can enable (or
disable) as many filters as you like.

Declaring filters is done through the @ul | Text Fi | t er Def annotation. This
annotation can be on any @ ndexed entity regardless of the query the filter
is later applied to. This implies that filter definitions are global and their
names must be unigue. A Sear chExcept i on is thrown in case two different
@ul | Text Fi | ter Def annotations with the same name are defined. Each
named filter has to specify its actual filter implementation.

Example 5.15. Defining and implementing a Filter

@ntity
@ ndexed
@ul |l TextFilterDefs({
@ul | TextFil terDef (nane = "bestDriver", inpl =
Best Dri versFilter.class),
@ul | TextFilterDef(name = "security", inpl =
SecurityFilterFactory. cl ass)

})

public class Driver { ... }

public class BestDriversFilter extends
org. apache. | ucene. search. Filter {

publ i c Docl dSet get Docl dSet (I ndexReader reader) throws
| OException {
OpenBi t Set bi t Set new QOpenBit Set (reader. maxDoc());
TernmDocs ternDocs = reader.ternDocs(new Term("score", "5"

))
while (termDocs.next()) {
bitSet.set(ternDocs.doc());
}
return bitSet;
}

Best Dri versFi | ter is an example of a simple Lucene filter which reduces
the result set to drivers whose score is 5. In this example the specified filter
implements the or g. apache. | ucene. sear ch. Fi | ter directly and contains a
no-arg constructor.

Hibernate 3.1.1.GA

Filters

If your Filter creation requires additional steps or if the filter you want to use
does not have a no-arg constructor, you can use the factory pattern:

Example 5.16. Creating a filter using the factory pattern

@ntity

@ ndexed

@ul | TextFilterDef(name = "bestDriver", inpl =
Best Dri versFilterFactory. cl ass)

public class Driver { ... }

public class BestDriversFilterFactory {

@ractory
public Filter getFilter() {
//sone additional steps to cache the filter results per
| ndexReader
Filter bestDriversFilter = new BestDriversFilter();
return new Cachi ngWapperFilter(bestDriversFilter);

Hibernate Search will look for a @act ory annotated method and use it to
build the filter instance. The factory must have a no-arg constructor. For
people familiar with JBoss Seam, this is similar to the component factory
pattern, but the annotation is different!

Named filters come in handy where parameters have to be passed to the
filter. For example a security filter might want to know which security level
you want to apply:

Example 5.17. Passing parameters to a defined filter

full Text Query = s.createFul | Text Query(query, Driver.class);
full Text Query. enabl eFul | TextFilter("security").setParaneter(
"level", 5);

Each parameter name should have an associated setter on either the filter or
filter factory of the targeted named filter definition.

Hibernate 3.1.1.GA 77

Chapter 5. Querying

78

Example 5.18. Using parameters in the actual filter
implementation

public class SecurityFilterFactory {
private |nteger |evel;

/**
* injected paraneter
*/
public void setlLevel (Integer |level) {
this.level = 1|evel;

}

@ey

public FilterKey getKey() {
St andar dFi | t er Key key = new StandardFil terKey();
key. addPar aneter(|evel);
return key;

}

@actory
public Filter getFilter() {
Query query = new Termuery(new Tern("level ",
level .toString()));
return new Cachi ngW apperFilter(new
QueryW apperFi | ter (query));
}

Note the method annotated @xey returning a Fi | t er Key object. The returned
object has a special contract: the key object must implement equal s() /
hashCode() SO that 2 keys are equal if and only if the given Fi | ter types are
the same and the set of parameters are the same. In other words, 2 filter
keys are equal if and only if the filters from which the keys are generated can
be interchanged. The key object is used as a key in the cache mechanism.

@ey methods are needed only if:
« you enabled the filter caching system (enabled by default)
« your filter has parameters

In most cases, using the st andar dFi | t er Key implementation will be good
enough. It delegates the equal s() / hashCode() implementation to each of the
parameters equals and hashcode methods.

As mentioned before the defined filters are per default cached and the

cache uses a combination of hard and soft references to allow disposal of
memory when needed. The hard reference cache keeps track of the most
recently used filters and transforms the ones least used to Sof t Ref er ences

Hibernate 3.1.1.GA

Filters

when needed. Once the limit of the hard reference cache is reached
additional filters are cached as Sof t Ref er ences. To adjust the size of the
hard reference cache, use hi bernate. search.filter.cache_strategy.si ze
(defaults to 128). For advanced use of filter caching, you can implement
your Own Fi | t er Cachi ngSt r at egy. The classname is defined by

hi bernat e. search.filter.cache_strategy.

This filter caching mechanism should not be confused with caching the
actual filter results. In Lucene it is common practice to wrap filters using the
| ndexReader around a Cachi ngw apper Fi | ter. The wrapper will cache the
Docl dSet returned from the get Docl dSet (| ndexReader reader) method to
avoid expensive recomputation. It is important to mention that the computed
Docl dSet is only cachable for the same | ndexReader instance, because the
reader effectively represents the state of the index at the moment it was
opened. The document list cannot change within an opened | ndexReader . A
different/new | ndexReader instance, however, works potentially on a different
set of bocurent s (either from a different index or simply because the index
has changed), hence the cached Docl dset has to be recomputed.

Hibernate Search also helps with this aspect of caching.

Per default the cache flag of @ul | Text Fil t er Def is setto

Fi | t er CacheMbdeType. | NSTANCE_AND DOCI DSETRESULTS which will

automatically cache the filter instance as well as wrap the specified filter
around a Hibernate specific implementation of Cachi ngW apper Fi | ter

(org. hi bernate.search.filter. Cachi ngWapperFilter). In contrast to
Lucene's version of this class Sof t Ref er ences are used together with a hard
reference count (see discussion about filter cache). The hard reference count
can be adjusted using hi bernat e. search. filter.cache_doci dresul ts. si ze
(defaults to 5). The wrapping behaviour can be controlled using the

@ul | Text Fi | t er Def . cache parameter. There are three different values for this
parameter:

Value Definition

FilterCacheModeType.NONE No filter instance and no result is
cached by Hibernate Search. For
every filter call, a new filter instance
is created. This setting might be
useful for rapidly changing data
sets or heavily memory constrained
environments.

FilterCacheModeType.INSTANCE_ONTNe filter instance is cached

and reused across concurrent

Fi |l ter.getDocl dSet () calls. Docl dSet
results are not cached. This setting

Hibernate 3.1.1.GA 79

Chapter 5. Querying

Value Definition

is useful when a filter uses its own
specific caching mechanism or the
filter results change dynamically
due to application specific events
making Docl dSet caching in both
cases unnecessary.

FilterCacheModeType.INSTANCE _ANBoDQit Diber TRESIHeTEd the
Docl dSet results are cached. This is
the default value.

Last but not least - why should filters be cached? There are two areas where
filter caching shines:

« the system does not update the targeted entity index often (in other words,
the IndexReader is reused a lot)

« the Filter's DocldSet is expensive to compute (compared to the time spent
to execute the query)

5.4. Optimizing the query process

Query performance depends on several criteria:
» the Lucene query itself: read the literature on this subject

« the number of object loaded: use pagination (always ;-)) or index
projection (if needed)

» the way Hibernate Search interacts with the Lucene readers: defines the
appropriate Reader strategy.

5.5. Native Lucene Queries

If you wish to use some specific features of Lucene, you can always run
Lucene specific queries. Check Chapter 8, Advanced features for more
information.

80 Hibernate 3.1.1.GA

Chapter 6. Manual indexing

6.1. Indexing
It is sometimes useful to index an entity even if this entity is not inserted or

updated to the database. This is for example the case when you want to build
your index for the first time. Ful | Text Sessi on.i ndex() allows you to do so.

Example 6.1. Indexing an entity via Ful | Text Sessi on. i ndex()

Ful | Text Sessi on ful | Text Sessi on =
Sear ch. get Ful | Text Sessi on(sessi on);
Transaction tx = full Text Sessi on. begi nTransaction();
for (Customer custonmer : custoners) {
ful | Text Sessi on. i ndex(customer);

}

tx.commit(); //index are witten at commit tine

For maximum efficiency, Hibernate Search batches index operations

and executes them at commit time. If you expect to index a lot of

data, however, you need to be careful about memory consumption

since all documents are kept in a queue until the transaction commit.

You can potentially face an cut O Menor yExcept i on. To avoid this

exception, you can use f ul | Text Sessi on. f1 ushTol ndexes() . Every time

ful | Text Sessi on. f1 ushTol ndexes() is called (or if the transaction is
committed), the batch queue is processed (freeing memaory) applying all
index changes. Be aware that once flushed changes cannot be rolled back.

Note

hi ber nat e. sear ch. wor ker . bat ch_si ze has been deprecated in favor of
this explicit AP which provides better control

Other parameters which also can affect indexing time and memory
consumption are:

* hi bernate. search. [defaul t| <i ndexnane>].indexwiter.[batch|transaction].max_buffered_dd
* hi bernate.search.[defaul t|<i ndexnanme>].indexwiter.[batch|transaction].nmax_field_| engt
* hi bernate.search.[defaul t|<i ndexname>].indexwriter.[batch|transaction].nax_nerge_docs
* hi bernate. search. [defaul t|<i ndexnane>].indexwiter.[batch|transaction].nerge_factor

* hi bernate.search.[defaul t|<i ndexname>].indexwiter.[batch|transaction].ram buffer_size

Hibernate 3.1.1.GA 81

Chapter 6. Manual indexing

* hi bernate.search.[defaul t|<i ndexname>].indexwiter.[batch|transaction].term.index_inte

These parameters are Lucene specific and Hibernate Search is just passing
these parameters through - see Section 3.8, “Tuning Lucene indexing
performance” for more details.

Example 6.2. Efficiently indexing a given class (useful for
index (re)initialization)

ful | Text Sessi on. set Fl ushivbde(Fl ushMode. MANUAL) ;
ful | Text Sessi on. set CacheMbde(CacheMode. | GNORE)
transaction = full Text Sessi on. begi nTransacti on();
//Scrollable results will avoid | oading too nmany objects in nenory
Scrol | abl eResults results = full Text Session.createCriteria(
Enei | . cl ass)
. set Fet chSi ze(BATCH_SI ZE)
.scroll (Scroll Mbde. FORWARD_ONLY)
int index =0
while(results.next()) {
i ndex++
ful |l Text Session.index(results.get(0)); //index each el enent
i f (index % BATCH SI ZE == 0) {
ful | Text Sessi on. fl ushTol ndexes(); //apply changes to indexes
full Text Session.clear(); //clear since the queue is
processed
}
}

transaction.comit ();

Try to use a batch size that guarantees that your application will not run out
of memory.

6.2. Purging

It is equally possible to remove an entity or all entities of a given type
from a Lucene index without the need to physically remove them from the
database. This operation is hamed purging and is also done through the

Ful | Text Sessi on.

Example 6.3. Purging a specific instance of an entity from
the index

Ful | Text Sessi on ful | Text Sessi on =
Sear ch. get Ful | Text Sessi on(sessi on);
Transaction tx = full Text Sessi on. begi nTransacti on();
for (Customer custonmer : customers) {
ful | Text Sessi on. purge(Custoner.class, custoner.getld());

}

tx.commt(); //index are witten at commt tine

82 Hibernate 3.1.1.GA

Purging

Purging will remove the entity with the given id from the Lucene index but will
not touch the database.

If you need to remove all entities of a given type, you can use the pur geAl |
method. This operation remove all entities of the type passed as a parameter
as well as all its subtypes.

Example 6.4. Purging all instances of an entity from the
index

Ful | Text Sessi on ful | Text Session =
Sear ch. get Ful | Text Sessi on(sessi on);
Transaction tx = full Text Sessi on. begi nTransaction();
ful | Text Sessi on. purgeAl | (Custoner.class);
//optionally optimze the index
[/ full Text Sessi on. get SearchFactory().optim ze(Custoner.class);
tx.commit(); //index are witten at commt tine

It is recommended to optimize the index after such an operation.

Note

Methods i ndex, purge and pur geAl | are available on
Ful | Text Ent it yManager as well.

Hibernate 3.1.1.GA 83

84

Hibernate 3.1.1.GA

Chapter 7. Index Optimization

From time to time, the Lucene index needs to be optimized. The process is
essentially a defragmentation. Until an optimization is triggered Lucene only
marks deleted documents as such, no physical deletions are applied. During
the optimization process the deletions will be applied which also effects the
number of files in the Lucene Directory.

Optimizing the Lucene index speeds up searches but has no effect on the
indexation (update) performance. During an optimization, searches can be
performed, but will most likely be slowed down. All index updates will be
stopped. It is recommended to schedule optimization:

< on an idle system or when the searches are less frequent

 after a lot of index modifications

7.1. Automatic optimization

Hibernate Search can automatically optimize an index after:
 a certain amount of operations (insertion, deletion)
 or a certain amount of transactions

The configuration for automatic index optimization can be defined on a global
level or per index:

Example 7.1. Defining automatic optimization parameters

hi ber nat e. search. defaul t. optini zer.operation_|limt.mx = 1000
hi ber nat e. search. defaul t.optim zer.transaction_limt.mx = 100
hi ber nat e. search. Ani mal . optim zer.transaction_|limt.nmx = 50

An optimization will be triggered to the aAni mal index as soon as either:
 the number of additions and deletions reaches 1000

+ the number of transactions reaches 50
(hi ber nat e. sear ch. Ani mal . opti mi zer. transaction_linmit.max having priority

OVer hi bernate. search. defaul t. optim zer.transaction_linmt. rmx)

If none of these parameters are defined, no optimization is processed
automatically.

Hibernate 3.1.1.GA 85

Chapter 7. Index Optimization

7.2. Manual optimization

You can programmatically optimize (defragment) a Lucene index from
Hibernate Search through the Sear chFact ory:

Example 7.2. Programmatic index optimization

Ful | Text Sessi on ful | Text Sessi on =
Sear ch. get Ful | Text Sessi on(regul ar Sessi on) ;
Sear chFactory searchFactory = full Text Sessi on. get Sear chFactory();

sear chFactory. opti m ze(Or der. cl ass);
/'l or
sear chFactory. optim ze();

The first example optimizes the Lucene index holding o der s; the second,
optimizes all indexes.

Note

sear chFactory. opti i ze() has no effect on a IMS backend. You must
apply the optimize operation on the Master node.

7.3. Adjusting optimization

86

Apache Lucene has a few parameters to influence how optimization is
performed. Hibernate Search exposes those parameters.

Further index optimization parameters include:

* hi bernate.search.[defaul t|<i ndexname>].indexwiter.[batch|transaction].

* hi bernate.search.[defaul t|<i ndexname>].indexwiter.[batch|transact

* hi bernate.search.[defaul t|<i ndexname>].indexwiter.[batch|transact

* hi bernate.search.[defaul t|<i ndexname>].indexwiter.[batch|transact

* hi bernate.search.[defaul t|<i ndexname>].indexwiter.[batch|transact

* hi bernate.search.[defaul t|<i ndexname>].indexwiter.[batch|transact

See Section 3.8, “Tuning Lucene indexing performance” for more details.

on].

on].

on].

on].

on].

Hibernate 3.1.1.GA

max_buf f er ed_d

max_fi el d_| engt

max_nmer ge_docs

nmer ge_f act or

ram buf f er_si ze

term.index_inte

Chapter 8. Advanced features

8.1. SearchFactory

The Sear chFact ory object keeps track of the underlying Lucene resources for
Hibernate Search, it's also a convenient way to access Lucene natively. The
Sear chFact ory can be accessed from a Ful | Text Sessi on:

Example 8.1. Accessing the Sear chFactory

Ful | Text Sessi on ful | Text Sessi on =
Sear ch. get Ful | Text Sessi on(regul ar Sessi on) ;
Sear chFactory searchFactory = ful |l Text Sessi on. get Sear chFactory();

8.2. Accessing a Lucene Directory

You can always access the Lucene directories through plain Lucene, the
Directory structure is in no way different with or without Hibernate Search.
However there are some more convenient ways to access a given Directory.
The sear chFact ory keeps track of the Di rect or yProvi der s per indexed class.
One directory provider can be shared amongst several indexed classes if
the classes share the same underlying index directory. While usually not
the case, a given entity can have several Di rect or yProvi der s if the index is
sharded (see Section 3.2, “Sharding indexes”).

Example 8.2. Accessing the Lucene Directory

DirectoryProvider[] provider =
sear chFactory. get Di rect or yProvi der s(Order. cl ass) ;
org. apache. | ucene. store.Directory directory =
provider[0].getDirectory();

In this example, directory points to the lucene index storing o der s

information. Note that the obtained Lucene directory must not be closed (this
is Hibernate Search responsibility).

8.3. Using an IndexReader

Queries in Lucene are executed on an | ndexReader . Hibernate Search
caches all index readers to maximize performance. Your code can access
this cached resources, but you have to follow some "good citizen" rules.

Hibernate 3.1.1.GA 87

Chapter 8. Advanced features

Example 8.3. Accessing an I ndexReader

DirectoryProvi der orderProvider =

searchFactory. get Direct oryProvi ders(Order.class)[0];
DirectoryProvi der clientProvider =

searchFactory. getDirectoryProviders(dient.class)[0];

Reader Provi der readerProvi der = searchFactory. get Reader Provi der () ;
| ndexReader reader = readerProvi der.openReader (order Provider,
client Provider);

try {
//do read-only operations on the reader

}
finally {
reader Provi der. cl oseReader (r eader) ;

}

The ReaderProvider (described in Reader strategy), will open an
IndexReader on top of the index(es) referenced by the directory providers.
Because this | ndexReader is shared amongst several clients, you must
adhere to the following rules:

» Never call indexReader.close(), but always call
readerProvider.closeReader(reader), preferably in a finally block.

e Don't use this | ndexReader for modification operations (you would get an
exception). If you want to use a read/write index reader, open one from the
Lucene Directory object.

Aside from those rules, you can use the IndexReader freely, especially to do
native queries. Using the shared | ndexReader s will make most queries more
efficient.

8.4. Customizing Lucene's scoring formula

88

Lucene allows the user to customize its scoring formula by extending

org. apache. | ucene. search. Sinil ari ty. The abstract methods defined in this
class match the factors of the following formula calculating the score of query
g for document d:

score(q,d) = coord(q,d) - queryNorm(q) - #;in o (tf(tin d) - idf(t)2 :
t.getBoost() - norm(t,d))

Factor Description

tf(t ind) Term frequency factor for the term (t)
in the document (d).

Hibernate 3.1.1.GA

Customizing Lucene's scoring formula

Factor Description
idf(t) Inverse document frequency of the
term.
coord(q,d) Score factor based on how many

of the query terms are found in the
specified document.

gueryNorm(q) Normalizing factor used to make
scores between queries comparable.

t.getBoost() Field boost.

norm(t,d) Encapsulates a few (indexing time)

boost and length factors.

It is beyond the scope of this manual to explain this formula in more detail.
Please refer to sinil arity's Javadocs for more information.

Hibernate Search provides two ways to modify Lucene's similarity
calculation. First you can set the default similarity by specifying the

fully specified classname of your Si ni | ari ty implementation using

the property hi ber nat e. sear ch. si mi | ari ty. The default value is

org. apache. | ucene. sear ch. Defaul t Si mi | ari t y. Additionally you can override
the default similarity on class level using the @i ni | ari ty annotation.

@ntity

@ ndexed

@imlarity(inpl = DunmySimlarity.class)
public class Book {

}

As an example, let's assume it is not important how often a term appears in a
document. Documents with a single occurrence of the term should be scored
the same as documents with multiple occurrences. In this case your custom
implementation of the method tf (f1 oat freq) should return 1.0.

Hibernate 3.1.1.GA 89

90

Hibernate 3.1.1.GA

	Hibernate Search
	Table of Contents
	Preface
	Chapter 1. Getting started
	1.1. System Requirements
	1.2. Using Maven
	1.3. Configuration
	1.4. Indexing
	1.5. Searching
	1.6. Analyzer
	1.7. What's next

	Chapter 2. Architecture
	2.1. Overview
	2.2. Back end
	2.2.1. Back end types
	2.2.1.1. Lucene
	2.2.1.2. JMS

	2.2.2. Work execution
	2.2.2.1. Synchronous
	2.2.2.2. Asynchronous

	2.3. Reader strategy
	2.3.1. Shared
	2.3.2. Not-shared
	2.3.3. Custom

	Chapter 3. Configuration
	3.1. Directory configuration
	3.2. Sharding indexes
	3.3. Sharing indexes (two entities into the same directory)
	3.4. Worker configuration
	3.5. JMS Master/Slave configuration
	3.5.1. Slave nodes
	3.5.2. Master node

	3.6. Reader strategy configuration
	3.7. Enabling Hibernate Search and automatic indexing
	3.7.1. Enabling Hibernate Search
	3.7.2. Automatic indexing

	3.8. Tuning Lucene indexing performance

	Chapter 4. Mapping entities to the index structure
	4.1. Mapping an entity
	4.1.1. Basic mapping
	4.1.2. Mapping properties multiple times
	4.1.3. Embedded and associated objects
	4.1.4. Boost factor
	4.1.5. Analyzer
	4.1.5.1. Analyzer definitions
	4.1.5.2. Available analyzers
	4.1.5.3. Analyzer discriminator (experimental)
	4.1.5.4. Retrieving an analyzer

	4.2. Property/Field Bridge
	4.2.1. Built-in bridges
	4.2.2. Custom Bridge
	4.2.2.1. StringBridge
	4.2.2.2. FieldBridge
	4.2.2.3. ClassBridge

	4.3. Providing your own id
	4.3.1. The ProvidedId annotation

	Chapter 5. Querying
	5.1. Building queries
	5.1.1. Building a Lucene query
	5.1.2. Building a Hibernate Search query
	5.1.2.1. Generality
	5.1.2.2. Pagination
	5.1.2.3. Sorting
	5.1.2.4. Fetching strategy
	5.1.2.5. Projection

	5.2. Retrieving the results
	5.2.1. Performance considerations
	5.2.2. Result size
	5.2.3. ResultTransformer
	5.2.4. Understanding results

	5.3. Filters
	5.4. Optimizing the query process
	5.5. Native Lucene Queries

	Chapter 6. Manual indexing
	6.1. Indexing
	6.2. Purging

	Chapter 7. Index Optimization
	7.1. Automatic optimization
	7.2. Manual optimization
	7.3. Adjusting optimization

	Chapter 8. Advanced features
	8.1. SearchFactory
	8.2. Accessing a Lucene Directory
	8.3. Using an IndexReader
	8.4. Customizing Lucene's scoring formula

