Hibernate Search

Apache Lucene™
Integration

Reference Guide

3.2.1.Final

o (=] = Vo = SO Vii
1. GeLtiNG STAMTEA ...oiiiiiiieii e ettt e et 1
S Yy (=T I =T [1T (=T 4=) 1

1.2, USING MAVEN .ot ettt e e et e e eaans 1

I T @ 10 [0 - i) o PN 3

O | o =] o O PSP SUPPTTRN 7

ST Y T o 11T [8

1.6, ANAIYZET <.t ea e 9

T o o = T AP 11

B AN o] oY1 (=T o] AU = S 13
B T O Y= g T PP 13

A = Y- od G = o T PP 14
2.2.1. BACK €N tYPES ..nieiiieiiii e et 14

2.2.2. WOIK @XECULION ..uiiitie et e e e e e e 16

DA T = (=T Lo [gy - | (=T | P 16
A T T o - o [16

2.3.2. NOE-SNAreA ...t 17

A TR T O 1= (0] o ¢ T PP UPRPR 17

G T 10 11 To [V 1= Lo I 19
3.1. Directory CONfIQUIALIONuuueiiiii ettt e e 19

3.2, Sharding INAEXEScveiiiiiiiei e e e e e e e aanas 21

3.3. Sharing indexes (two entities into the same directory)cccooevvveiiiiiiiiiiinieeennnn, 23

3.4, Worker CONfIQUIAtIONiiiiiieii e e e e e e e e e e e e e e eaas 24

3.5. IMS Master/Slave CONfIgUIationoooouuiiiiiiiii e 25
T I F= 1Y I g (o T [PPN 25

IR /- TS (=T o o = 26

3.6. JGroups Master/Slave configurationcccoeeiiiioiiiiiiii e 28
TG o1 = 1Y T To (=P 28

3.6.2. MASEEN NOUE ...oviiiiiii et 28

3.6.3. JGroups channel configurationccceuiiiiiiiiiiii e 28

3.7. Reader strategy CONfiQUIrationc.couieiiiioiiiii e e 30

3.8. Enabling Hibernate Search and automatic indexingcccooveeviiiinniiiiiinneiciien. 30
3.8.1. Enabling Hibernate Searchcccoooiiiiiiiiiii e, 30

3.8.2. AULOMALIC INAEXING ..eevtiiiiiiiii et 31

3.9. Tuning Lucene indexing PerformanCeccccuiiiiiieiiii e 32
3.10. LockFactory ConfiQUIatioNc..uuiiieiuiniiiiiii e 36
3.11. Exception Handling Configurationcc.ieiiiiiiiiicii e e e 38

4. Mapping entities to the INdeX SIIUCTUIE ..o 41
o I \V =Y o] o1 o =T =Y 01 () Y/ PP 41
4.1.1. BASIC MAPPING +.neeeetneetiiii ettt ettt e et e et e e et e e 41

4.1.2. Mapping properties multiple timescccoiviiiiiiiiiiii e 43

4.1.3. Embedded and associated ObJECEScccouuiiiiiiiiiiiiiiii e 44

I = o o) A - T (o] P 48

4.1.5. Dynamic DOOSt TACIONuuiiiiiiiiee e 49

Hibernate Search

A.0.6. ANAIYZEL ..o 50

4.2, Property/Field Bridgeo..uiiiiiiieii e 58
o W U1 T T o o o =P 58
4.2.2. CUSLOM BIIAQE ...eeiiiiiiiieeii e 59

4.3, Providing YOUr OWN 0uuiiiiiii e e e e e e e e e e ea e ean s 65
4.3.1. The Providedld annotationooiiiiiiiiiie e 65

4.4, ProgrammatiC AP ... 65
4.4.1. Mapping an entity as indexable ... 67
4.4.2. Adding Documentld to indexed entityccooevviiiiiiiiiiieci e 67
4.4.3. DefiNiNg @nalYZEISiiiiiiiieiii e 68
4.4.4. Defining full text filter definitionsccocoiiiiii i 69
4.4.5. Defining fields for iINAeXiNgoiiiiiiiiiii e 71
4.4.6. Programmatically defining embedded entitiescccoeeviiiiiiiiiiiineiinnens 72
4.4.7. Contained In definitiono 74
4.4.8. Date/Calendar Bridgecveiuieiiiiiiii e e e 75
4.4.9. DefiNiNg DIIAQES ... coeeeiieieii e 76
4.4.10. Mapping class bridgecc.oeviiiiii i 78
4.4.11. Mapping dynamiC DOOSEuiiiiiiiiieiiii e 79

LT O 10 1= Yo Yo TP 81
5.1, BUIdING QUETIES ...t 82
5.1.1. BUildiNg @ LUCENE QUETYiiiieiiii i et e e e e e e e aens 82
5.1.2. Building a Hibernate Search queryccooiiiiiiiiii e 82

5.2. Retrieving the reSUILSoiii i 86
5.2.1. Performance CONSIAErationSoveeuuieiiieiiieeie e 86
B5.2.2. RESUIL SIZE .eeiiieiiii e e e 86
5.2.3. RESURTIaNSTOMMET .. ceeiiiiie et 87
5.2.4. Understanding rESUILSooeuuiiiiiiiiiie e e e e e 88

LR T 11 1= 88
5.3.1. Using filters in a sharded environmentc.cccoeeviiiiiiiineciin e 93

5.4. Optimizing the QUENY PIrOCESSciiiiiieeeiiii ettt et e e et eeeens 94
5.5. Native LUCENE QUETIES ...vuiiiii e ittt e e e e e e e e e e e aan s 95
6. Manual INdeX CRANGES ..o et 97
6.1. Adding instances t0 the INAEXcccouiiiiii i 97
6.2. Deleting instances from the Index: PUrgingccoooiiiiiiiiiieiiiiiiieccieeeei e 97
6.3. Rebuilding the Whole INAeXc..uiiiiiiii e 98
6.3.1. Using flUuShTOINAEXES() .. .cevvuniiiiiiiiee e 99
6.3.2. USING @ MASSINAEXETiiviieiiiiei ettt e e e e e 100

7. INAdEX OPLIMIZALION iiiiiiieeii et e e 103
7.1, Automatic OPLIMIZALIONcoiueiii e e e e e e e aens 103
7.2. Manual OPtIMIZALIONciiiiiiiei et eaees 104
7.3. Adjusting OptiMIZAtIONiiiiiiii e e 104
T AN V2= g Tod=To I 1= L UL =L 107
8.1, SEAIChFACIONY ..o 107
8.2. AcCesSIiNg @ LUCENE DIFECLONYiiiiiiiiieeiiii ettt 107

8.3. Using an IndexReader

8.4. Customizing Lucene's scoring formula

vi

Preface

Full text search engines like Apache Lucene are very powerful technologies to add efficient
free text search capabilities to applications. However, Lucene suffers several mismatches when
dealing with object domain model. Amongst other things indexes have to be kept up to date and
mismatches between index structure and domain model as well as query mismatches have to
be avoided.

Hibernate Search addresses these shortcomings - it indexes your domain model with the help
of a few annotations, takes care of database/index synchronization and brings back regular
managed objects from free text queries. To achieve this Hibernate Search is combining the power
of Hibernate [http://www.hibernate.org] and Apache Lucene [http://lucene.apache.org].

Vii

http://www.hibernate.org
http://www.hibernate.org
http://lucene.apache.org
http://lucene.apache.org

viii

Chapter 1.

Getting started

Welcome to Hibernate Search. The following chapter will guide you through the initial steps
required to integrate Hibernate Search into an existing Hibernate enabled application. In case you
are a Hibernate new timer we recommend you start here [http://hibernate.org/152.html].

1.1. System Requirements

Table 1.1. System requirements

Java Runtime A JDK or JRE version 5 or greater. You
can download a Java Runtime for Windows/
Linux/Solaris here [http://java.sun.com/javase/
downloads/].

Hibernate Search hi bernate-search.jar and all runtime
dependencies from the di st/ i b directory of
the Hibernate Search distribution.

Hibernate Core This instructions have been tested against
Hibernate 3.5. You will need hi bernate-
core. j ar and its transitive dependencies from
the Iib directory of the distribution. Refer
to README. txt in the lib directory of the
distribution to determine the minimum runtime
requirements.

Hibernate Annotations Even though Hibernate Search can
be used without Hibernate Annotations
the following instructions will use them
for basic entity configuration (@Entity,
@ld, @OneToMany,...). This part of the
configuration could also be expressed in xml
or code. However, Hibernate Search itself
has its own set of annotations (@Indexed,
@Documentld, @Field,...) for which there
exists so far no alternative configuration.
The tutorial is tested against version 3.5 of
Hibernate Annotations (part of the Hibernate
Core distribution).

You can download all dependencies from the Hibernate download site.

1.2. Using Maven

Instead of managing all dependencies manually, maven users have the possibility to use the JBoss
maven repository [https://repository.jboss.org/nexus/content/groups/public/]. Add the following to

http://hibernate.org/152.html
http://hibernate.org/152.html
http://java.sun.com/javase/downloads/
http://java.sun.com/javase/downloads/
http://java.sun.com/javase/downloads/
https://repository.jboss.org/nexus/content/groups/public/
https://repository.jboss.org/nexus/content/groups/public/
https://repository.jboss.org/nexus/content/groups/public/

Chapter 1. Getting started

your Maven settings.xm file (see also Maven Getting Started [http://community.jboss.org/
wiki/MavenGettingStarted-Users]):

Example 1.1. Adding the JBoss maven repository to settings. xn

<settings>
<profil es>

<profile>
<i d>j boss-publ i c-reposi tory</id>
<repositories>
<repository>
<i d>j boss- publ i c-repository-group</id>
<name>JBoss Public Maven Repository G oup</nane>
<url >https://repository.jboss. org/ nexus/content/groups/ public/</url>
<l ayout >def aul t </ | ayout >
<rel eases>
<enabl ed>t r ue</ enabl ed>
<updat ePol i cy>never </ updat ePol i cy>
</rel eases>
<snapshot s>
<enabl ed>t r ue</ enabl ed>
<updat ePol i cy>never </ updat ePol i cy>
</ snapshot s>
</repository>
</repositories>
<pl ugi nReposi tori es>
<pl ugi nReposi t ory>
<i d>j boss- publ i c-reposi tory-group</id>
<name>JBoss Public Maven Repository G oup</nanme>
<url >https://repository.jboss. org/ nexus/content/groups/ public/</url>
<l ayout >def aul t </ | ayout >
<rel eases>
<enabl ed>t r ue</ enabl ed>
<updat ePol i cy>never </ updat ePol i cy>
</rel eases>
<snapshot s>
<enabl ed>t r ue</ enabl ed>
<updat ePol i cy>never </ updat ePol i cy>
</ snapshot s>
</ pl ugi nReposi tory>
</ pl ugi nReposi tori es>
</profile>

</profil es>

<activeProfil es>

http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users

Configuration

<activeProfil e> boss-public-repository</activeProfil e>
</ activeProfil es>

</settings>

Then add the following dependencies to your pom.xmil:

Example 1.2. Maven dependencies for Hibernate Search

<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifactl| d>hi bernate-search</artifactld>
<versi on>3. 2. 1. Fi nal </ ver si on>
</ dependency>
<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifactld>hi bernate-entitymnager</artifactld>
<versi on>3. 5. 0- Fi nal </ ver si on>
</ dependency>

Only the hibernate-search dependency is mandatory, because it contains together with its
required transitive dependencies all required classes needed to use Hibernate Search. hibernate-
entitymanager is only required if you want to use Hibernate Search in conjunction with JPA.

@ Note

There is no XML configuration available for Hibernate Search but we provide a
powerful programmatic mapping API that elegantly replace this kind of deployment

form (see for more information).

1.3. Configuration

Once you have downloaded and added all required dependencies to your application you have to
add a couple of properties to your hibernate configuration file. If you are using Hibernate directly
this can be done in hi ber nat e. properti es or hi bernate. cf g. xm . If you are using Hibernate
via JPA you can also add the properties to per si st ence. xnil . The good news is that for standard
use most properties offer a sensible default. An example persi st ence. xm configuration could

look like this:

Chapter 1. Getting started

Example 1.3. Basic configuration options to be added to hi ber nat e. properti es,

hi ber nat e. cfg. xm OF persi stence. xm

<property nane="hi bernate. search. default.directory_provider"
val ue="or g. hi bernat e. search. store. FSDi rect oryProvi der"/>

<property nane="hi bernate. search. defaul t.indexBase"
val ue="/var/| ucene/i ndexes"/ >

First you have to tell Hibernate Search which Di r ect or yPr ovi der to use. This can be achieved
by setting the hi ber nat e. sear ch. defaul t. di rectory_provi der property. Apache Lucene has
the notion of a Directory to store the index files. Hibernate Search handles the initialization
and configuration of a Lucene Directory instance via a Di rect oryProvi der. In this tutorial
we will use a subclass of DirectoryProvider called FSDirectoryProvider. This will give
us the ability to physically inspect the Lucene indexes created by Hibernate Search (eg
via Luke [http://www.getopt.org/luke/]). Once you have a working configuration you can start
experimenting with other directory providers (see Section 3.1, “Directory configuration”). Next
to the directory provider you also have to specify the default root directory for all indexes via
hi ber nat e. search. def aul t. i ndexBase.

Lets assume that your application contains the Hibernate managed classes exanpl e. Book and
exanpl e. Aut hor and you want to add free text search capabilities to your application in order to
search the books contained in your database.

Example 1.4. Example entities Book and Author before adding Hibernate
Search specific annotations

package exanpl e;

@ntity
public class Book {

@d

@:ener at edVal ue
private |Integer id;
private String title;

private String subtitle;

@anyToMany
private Set<Aut hor> authors = new HashSet <Aut hor >() ;

http://www.getopt.org/luke/
http://www.getopt.org/luke/

Configuration

private Date publicationDate;
public Book() {}

/'l standard getters/setters follow here

package exanpl e;

@ntity
public class Author {

@d
@:zener at edVal ue
private Integer id;

private String nane;
public Author() {}

// standard getters/setters follow here

To achieve this you have to add a few annotations to the Book and Aut hor class. The first
annotation @ ndexed marks Book as indexable. By design Hibernate Search needs to store an
untokenized id in the index to ensure index unicity for a given entity. @ocunent | d marks the
property to use for this purpose and is in most cases the same as the database primary key. In
fact since the 3.1.0 release of Hibernate Search @ocurnent | d is optional in the case where an
@ d annotation exists.

Next you have to mark the fields you want to make searchable. Let's startwithtitl eandsubtitle
and annotate both with @i el d. The parameter i ndex=I ndex. TOKENI ZED will ensure that the
text will be tokenized using the default Lucene analyzer. Usually, tokenizing means chunking a
sentence into individual words and potentially excluding common words like ' a' or 't he'. We
will talk more about analyzers a little later on. The second parameter we specify within @i el d,
st or e=St or e. NO, ensures that the actual data will not be stored in the index. Whether this data
is stored in the index or not has nothing to do with the ability to search for it. From Lucene's
perspective it is not necessary to keep the data once the index is created. The benefit of storing
it is the ability to retrieve it via projections (Section 5.1.2.5, “Projection”).

Without projections, Hibernate Search will per default execute a Lucene query in order to find the
database identifiers of the entities matching the query critera and use these identifiers to retrieve
managed objects from the database. The decision for or against projection has to be made on a

Chapter 1. Getting started

case to case basis. The default behaviour - St or e. NO- is recommended since it returns managed
objects whereas projections only return object arrays.

After this short look under the hood let's go back to annotating the Book class. Another annotation
we have not yet discussed is @at eBri dge. This annotation is one of the built-in field bridges in
Hibernate Search. The Lucene index is purely string based. For this reason Hibernate Search must
convert the data types of the indexed fields to strings and vice versa. A range of predefined bridges
are provided, including the Dat eBri dge which will convert aj ava. util . Date into a Stri ng with
the specified resolution. For more details see Section 4.2, “Property/Field Bridge”.

This leaves us with @ ndexedEnbedded. This annotation is used to index associated entities
(@anyToMany, @ ToOne and @nbedded) as part of the owning entity. This is needed since a
Lucene index document is a flat data structure which does not know anything about object
relations. To ensure that the authors' name wil be searchable you have to make sure that the
names are indexed as part of the book itself. On top of @ ndexedEnbedded you will also have to
mark all fields of the associated entity you want to have included in the index with @ ndexed. For
more details see Section 4.1.3, “Embedded and associated objects”.

These settings should be sufficient for now. For more details on entity mapping refer to Section 4.1,
“Mapping an entity”.

Example 1.5. Example entities after adding Hibernate Search annotations

package exanmpl e;

@ntity
@ ndexed
public class Book {

@d
@:ener at edVal ue
private |Integer id;

@i el d(i ndex=I ndex. TOKENI ZED, st or e=St or e. NO)
private String title;

@i el d(i ndex=I ndex. TOKENI ZED, st or e=St or e. NO)
private String subtitle;

@ ndexedEnbedded
@manyToMany
private Set<Aut hor> authors = new HashSet <Aut hor >();

@i el d(index = I ndex. UN_ TOKENI ZED, store = Store. YES)
@pat eBri dge(resol uti on = Resol uti on. DAY)

private Date publicationDate;

publ i c Book() ({

Indexing

/1 standard getters/setters foll ow here

package exanpl e;

@ntity
public class Author {

@d
@:ener at edVal ue
private |Integer id;

@i el d(i ndex=I ndex. TOKENI ZED, st ore=Store. NO
private String nane;

public Author() {
}

// standard getters/setters follow here

1.4. Indexing

Hibernate Search will transparently index every entity persisted, updated or removed through
Hibernate Core. However, you have to create an initial Lucene index for the data already present
in your database. Once you have added the above properties and annotations it is time to trigger
an initial batch index of your books. You can achieve this by using one of the following code
snippets (see also Section 6.3, “Rebuilding the whole Index”):

Example 1.6. Using Hibernate Session to index data

Ful | Text Sessi on ful | Text Sessi on = Search. get Ful | Text Sessi on(sessi on);
ful | Text Sessi on. creat el ndexer (). start AndWait();

Example 1.7. Using JPA to index data

EntityManager em = entityManager Factory. creat eEntityManager();
Ful | Text Enti t yManager ful | Text EntityManager =
Sear ch. get Ful | Text Enti t yManager (em ;

Chapter 1. Getting started

ful | Text EntityManager. createl ndexer().start AndWait();

After executing the above code, you should be able to see a Lucene index under / var/ | ucene/
i ndexes/ exanpl e. Book. Go ahead an inspect this index with Luke [http://www.getopt.org/luke/].
It will help you to understand how Hibernate Search works.

1.5. Searching

Now it is time to execute a first search. The general approach is to create a native Lucene query
and then wrap this query into a org.hibernate.Query in order to get all the functionality one is used
to from the Hibernate API. The following code will prepare a query against the indexed fields,
execute it and return a list of Books.

Example 1.8. Using Hibernate Session to create and execute a search

Ful | Text Sessi on ful | Text Sessi on = Search. get Ful | Text Sessi on(sessi on);
Transaction tx = full Text Sessi on. begi nTransaction();

/] create native Lucene query

String[] fields = new String[]{"title", "subtitle", "aut hors. nane",
"publicationDate"};
Mul ti Fi el dQuer yPar ser par ser = new MiltiFieldQeryParser(fields, new

St andar dAnal yzer ());
org. apache. | ucene. search. Query query = parser.parse("Java rocks!");

/'l wrap Lucene query in a org.hi bernate. Query
org. hi bernate. Query hi bQuery = full Text Sessi on. creat eFul | Text Query(query,
Book. cl ass) ;

/] execute search
List result = hibQuery.list();

tx.commit();
session. cl ose();

Example 1.9. Using JPA to create and execute a search

EntityManager em = entityManager Factory. createEntityManager();
Ful | Text EntityManager full Text EntityManager =

org. hi bernat e. search. j pa. Sear ch. get Ful | Text Enti t yManager (em ;
em get Transacti on() . begi n();

/'l create native Lucene query
String[] fields = new String[]{"title", "subtitle", "aut hors. nane",
"publicationDate"};

http://www.getopt.org/luke/
http://www.getopt.org/luke/

Analyzer

Mul ti Fi el dQuer yPar ser par ser = new Ml tiFieldQeryParser(fields, new
St andar dAnal yzer ());
org. apache. | ucene. search. Query query = parser.parse("Java rocks!");

/1l wrap Lucene query in a javax.persistence. Query
j avax. persi stence. Query persi stenceQuery =
ful |l Text EntityManager. creat eFul | Text Query(query, Book.cl ass);

/| execute search
List result = persistenceQuery.getResultlList();

em get Transaction().comit();
em cl ose();

1.6. Analyzer

Let's make things a little more interesting now. Assume that one of your indexed book entities
has the title "Refactoring: Improving the Design of Existing Code" and you want to get hits for all
of the following queries: "refactor", "refactors"”, "refactored" and "refactoring". In Lucene this can
be achieved by choosing an analyzer class which applies word stemming during the indexing as
well as search process. Hibernate Search offers several ways to configure the analyzer to use

(see Section 4.1.6, “Analyzer”):

« Setting the hi ber nat e. sear ch. anal yzer property in the configuration file. The specified class
will then be the default analyzer.

» Setting the @nal yzer annotation at the entity level.
« Setting the @nal yzer annotation at the field level.

When using the @nal yzer annotation one can either specify the fully qualified classname of
the analyzer to use or one can refer to an analyzer definition defined by the @nal yzer Def
annotation. In the latter case the Solr analyzer framework with its factories approach is
utilized. To find out more about the factory classes available you can either browse the
Solr JavaDoc or read the corresponding section on the Solr Wiki. [http://wiki.apache.org/solr/
AnalyzersTokenizersTokenFilters]

In the example below a St andar dTokeni zer Factory is used followed by two filter factories,
Lower CaseFi |l t er Fact ory and Snowbal | Porter Fil t er Fact ory. The standard tokenizer splits
words at punctuation characters and hyphens while keeping email addresses and internet
hostnames intact. It is a good general purpose tokenizer. The lowercase filter lowercases the
letters in each token whereas the snowball filter finally applies language specific stemming.

Generally, when using the Solr framework you have to start with a tokenizer followed by an
arbitrary number of filters.

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

Chapter 1. Getting started

Example 1.10. Using @nal yzerDef and the Solr framework to define and use
an analyzer

package exanpl e;

@ntity

@ ndexed

@\nal yzer Def (name = "custonmanal yzer",
t okeni zer = @okeni zerDef (factory = StandardTokeni zer Factory. cl ass),
filters = {

@okenFil terDef (factory = Lower CaseFilterFactory.cl ass),
@okenFil terDef (factory = Snowbal | PorterFilterFactory.class, parans = {
@Par anet er (nane = "l anguage", value = "English")
})
})

public class Book {

@d

@cener at edVal ue
@ocunent | d
private Integer id;

@i el d(i ndex=I ndex. TOKENI ZED, st or e=St or e. NO)
@\nal yzer(definition = "customanal yzer")
private String title;

@i el d(i ndex=I ndex. TOKENI ZED, st or e=St or e. NO)
@\nal yzer (definition = "customanal yzer")
private String subtitle;

@ ndexedEnbedded
@anyToMany
private Set<Aut hor> authors = new HashSet <Aut hor >() ;

@i el d(index = | ndex. UN_TOKENI ZED, store = Store. YES)
@pat eBri dge(resol uti on = Resol uti on. DAY)
private Date publicationDate;

publ i c Book() {
}

// standard getters/setters follow here

10

What's next

1.7. What's next

The above paragraphs helped you getting an overview of Hibernate Search. The next step after
this tutorial is to get more familiar with the overall architecture of Hibernate Search (Chapter 2,
Architecture) and explore the basic features in more detail. Two topics which were only briefly
touched in this tutorial were analyzer configuration (Section 4.1.6, “Analyzer”) and field bridges
(Section 4.2, “Property/Field Bridge”), both important features required for more fine-grained
indexing. More advanced topics cover clustering (Section 3.5, “JMS Master/Slave configuration”)
and large indexes handling (Section 3.2, “Sharding indexes”).

11

12

Chapter 2.

Architecture

2.1. Overview

Hibernate Search consists of an indexing component and an index search component. Both are
backed by Apache Lucene.

Each time an entity is inserted, updated or removed in/from the database, Hibernate Search keeps
track of this event (through the Hibernate event system) and schedules an index update. All the
index updates are handled without you having to use the Apache Lucene APIs (see Section 3.8,
“Enabling Hibernate Search and automatic indexing”).

To interact with Apache Lucene indexes, Hibernate Search has the notion of
Di rect oryProvi ders. A directory provider will manage a given Lucene Directory type. You
can configure directory providers to adjust the directory target (see Section 3.1, “Directory
configuration”).

Hibernate Search uses the Lucene index to search an entity and return a list of managed entities
saving you the tedious object to Lucene document mapping. The same persistence context is
shared between Hibernate and Hibernate Search. As a matter of fact, the Ful | Text Sessi on
is built on top of the Hibernate Session. so that the application code can use the unified
or g. hi bernat e. Query or j avax. per si st ence. Query APIs exactly the way a HQL, JPA-QL or
native queries would do.

To be more efficient, Hibernate Search batches the write interactions with the Lucene index. There
is currently two types of batching depending on the expected scope. Outside a transaction, the
index update operation is executed right after the actual database operation. This scope is really
a no scoping setup and no batching is performed. However, it is recommended - for both your
database and Hibernate Search - to execute your operation in a transaction be it JDBC or JTA.
When in a transaction, the index update operation is scheduled for the transaction commit phase
and discarded in case of transaction rollback. The batching scope is the transaction. There are
two immediate benefits:

« Performance: Lucene indexing works better when operation are executed in batch.

« ACIDity: The work executed has the same scoping as the one executed by the database
transaction and is executed if and only if the transaction is committed. This is not ACID in the
strict sense of it, but ACID behavior is rarely useful for full text search indexes since they can
be rebuilt from the source at any time.

You can think of those two scopes (no scope vs transactional) as the equivalent of the (infamous)
autocommit vs transactional behavior. From a performance perspective, the in transaction mode is
recommended. The scoping choice is made transparently. Hibernate Search detects the presence
of a transaction and adjust the scoping.

13

Chapter 2. Architecture

(3

(3

2.2. Back end

Hibernate Search offers the ability to let the scoped work being processed by different back ends.
Two back ends are provided out of the box for two different scenarios.

2.2.1. Back end types
2.2.1.1. Lucene
In this mode, all index update operations applied on a given node (JVM) will be executed to the

Lucene directories (through the directory providers) by the same node. This mode is typically used
in non clustered environment or in clustered environments where the directory store is shared.

Search request
Index update

Search reqm'l_at
L Index update .

Lucene back end configuration.

This mode targets non clustered applications, or clustered applications where the Directory is
taking care of the locking strategy.

The main advantage is simplicity and immediate visibility of the changes in Lucene queries (a
requirement in some applications).

14

Back end types

2.2.1.2. IMS

All index update operations applied on a given node are sent to a JMS queue. A unique reader
will then process the queue and update the master index. The master index is then replicated on
a regular basis to the slave copies. This is known as the master/slaves pattern. The master is
the sole responsible for updating the Lucene index. The slaves can accept read as well as write
operations. However, they only process the read operation on their local index copy and delegate
the update operations to the master.

Lucena
Directory
(Index)
Copy

Search request
Hibernate \

+ R
Hib Search .

Slave

Index update order

Hibernate
+

@ Process — Hibernate Search R

Master Lucene
Directory
{Indlex)
Master

Undex update order

Hibernate

+
Hibernate Search

Slave

Search request

R
Lucene N3
Directory -
(index) |*
Copy

JMS back end configuration.

This mode targets clustered environments where throughput is critical, and index update delays
are affordable. Reliability is ensured by the JMS provider and by having the slaves working on
a local copy of the index.

2.2.1.3. JGroups

The JGroups based back end works similarly as the JMS one. Designed on the same master/
slave pattern, instead of JMS the JGroups toolkit is used as a replication mechanism. This back
end can be used as an alternative to JMS one when response time is still critical, but i.e. JNDI
service is not available.

15

Chapter 2. Architecture

Note
Hibernate Search is an extensible architecture. Feel free to drop ideas for other
third party back ends to hi ber nat e- dev@i st s. j boss. org.

2.2.2. Work execution

The indexing work (done by the back end) can be executed synchronously with the transaction
commit (or update operation if out of transaction), or asynchronously.

2.2.2.1. Synchronous

This is the safe mode where the back end work is executed in concert with the transaction
commit. Under highly concurrent environment, this can lead to throughput limitations (due to the
Apache Lucene lock mechanism) and it can increase the system response time if the backend is
significantly slower than the transactional process and if a lot of IO operations are involved.

2.2.2.2. Asynchronous

This mode delegates the work done by the back end to a different thread. That way, throughput
and response time are (to a certain extend) decorrelated from the back end performance. The
drawback is that a small delay appears between the transaction commit and the index update and
a small overhead is introduced to deal with thread management.

It is recommended to use synchronous execution first and evaluate asynchronous execution if
performance problems occur and after having set up a proper benchmark (ie not a lonely cowboy
hitting the system in a completely unrealistic way).

2.3. Reader strategy

When executing a query, Hibernate Search interacts with the Apache Lucene indexes through a
reader strategy. Choosing a reader strategy will depend on the profile of the application (frequent
updates, read mostly, asynchronous index update etc). See also Section 3.7, “Reader strategy
configuration”

2.3.1. Shared

With this strategy, Hibernate Search will share the same | ndexReader , for a given Lucene index,
across multiple queries and threads provided that the | ndexReader is still up-to-date. If the
I ndexReader is not up-to-date, a new one is opened and provided. Each | ndexReader is made
of several Segnment Reader s. This strategy only reopens segments that have been modified or
created after last opening and shares the already loaded segments from the previous instance.
This strategy is the default.

The name of this strategy is shar ed.

16

Not-shared

2.3.2. Not-shared

Every time a query is executed, a Lucene | ndexReader is opened. This strategy is not the most
efficient since opening and warming up an | ndexReader can be a relatively expensive operation.

The name of this strategy is not - shar ed.

2.3.3. Custom

You can write your own reader strategy that suits your application needs by implementing
or g. hi ber nat e. sear ch. r eader . Reader Pr ovi der . The implementation must be thread safe.

17

18

Chapter 3.

Configuratio

n

3.1. Directory configuration

Apache Lucene has a notion of Di r ect or y to store the index files. The Di r ect or y implementation
can be customized, but Lucene comes bundled with a file system (FSDi r ect or yPr ovi der) and
an in memory (RAMDI r ect or yPr ovi der) implementation. Di r ect or yPr ovi der s are the Hibernate
Search abstraction around a Lucene Di r ect or y and handle the configuration and the initialization
of the underlying Lucene resources. Table 3.1, “List of built-in Directory Providers” shows the list
of the directory providers bundled with Hibernate Search.

Table 3.1. List of built-in

Class

org.hibernate.search.store.RAN

Directory Providers

Description

IMieectoyy Besadedirectory, the

directory will be uniquely
identified (in the same
deployment unit) by the

@ ndexed. i ndex element

Properties

none

org.hibernate.search.store.FSO

org.hibernate.search.store.FSN

iFdltosyBtenidbased directory.
The directory used will be
<indexBase>/< indexName >

|&slerBystetonibasediatirectory.
Like FSDirectoryProvider. It
also copies the index to a
source directory (aka copy
directory) on a regular basis.

The recommended value for
the refresh period is (at least)
50% higher that the time to
copy the information (default
3600 seconds - 60 minutes).
Note that the copy is
based on an incremental
copy mechanism reducing the
average copy time.

i ndexBase : Base directory

i ndexNane: override
@Indexed.index (useful for
sharded indexes)

| ocki ng_strategy : optional,
see 3.10,
“LockFactory configuration”

Section

i ndexBase: Base directory

i ndexNane: override
@Indexed.index (useful for
sharded indexes)

sour ceBase:
base directory.

Source (copy)

source: Source directory
suffix (default to
@ ndexed. i ndex). The actual
source directory name being
<sour ceBase>/ <sour ce>

19

Chapter 3. Configuration

Class

Description

Properties

org.hibernate.search.store.FSS

DirectoryProvider typically
used on the master node in a
JMS back end cluster.

The buffer_size_on_copy
optimum depends on your
operating system and
available RAM; most people
reported good results using
values between 16 and 64MB.

|&ile Dingsttery Rrasaterdirectory.
Like FSDirectoryProvider, but
retrieves a master
(source) on a regular basis. To
avoid locking and inconsistent
search results, 2 local copies
are kept.

version

The recommended value for
the refresh period is (at least)
50% higher that the time to
copy the information (default
3600 seconds - 60 minutes).

Note that the
based on an
copy mechanism reducing the
average copy time.

copy is
incremental

DirectoryProvider typically
used on slave nodes using a
JMS back end.

The buffer_size _on_copy
optimum depends on your
operating system and
available RAM; most people
reported good results using
values between 16 and 64MB.

refresh: refresh period in
second (the copy will take

place every refresh seconds).

buffer_size_on_copy: The
amount of MegaBytes to move
in a single low level copy
instruction; defaults to 16MB.

| ocki ng_strat egy : optional,
see Section 3.10,
“LockFactory configuration”

i ndexBase: Base directory
i ndexName: override

@Indexed.index (useful for
sharded indexes)

sour ceBase:
base directory.

Source (copy)

source: Source directory
suffix (default to
@ ndexed. i ndex). The actual
source directory name being
<sour ceBase>/ <sour ce>

refresh: refresh period in
second (the copy will take

place every refresh seconds).

buf fer_si ze_on_copy: The
amount of MegaBytes to move
in a single low level copy
instruction; defaults to 16MB.

| ocki ng_strat egy : optional,
see 3.10,
“LockFactory configuration”

Section

If the built-in directory providers do not fit your needs, you can write your own directory provider
by implementing the or g. hi ber nat e. st ore. Di rect or yPr ovi der interface.

20

Sharding indexes

Each indexed entity is associated to a Lucene index (an index can be shared by several entities
but this is not usually the case). You can configure the index through properties prefixed by
hi ber nat e. sear ch. i ndexname . Default properties inherited to all indexes can be defined using
the prefix hi ber nat e. search. def aul t .

To define the directory provider of a given index, you use the
hi ber nat e. search. i ndexnane. di rectory_provi der

Example 3.1. Configuring directory providers

hi ber nat e. search. defaul t. di rectory_provider

org. hi bernate. search. store. FSDi r ect or yPr ovi der
hi ber nat e. search. def aul t. i ndexBase=/usr/| ucene/i ndexes
hi ber nat e. search. Rul es. directory_provi der

org. hi bernat e. search. st ore. RAMD rect or yProvi der

applied on

Example 3.2. Specifying the index name using thei ndex parameter of @ ndexed

@ ndexed(i ndex="Stat us")
public class Status { ... }

@ ndexed(i ndex="Rul es")
public class Rule { ... }

will create a file system directory in / usr/ | ucene/ i ndexes/ St at us where the Status entities will
be indexed, and use an in memory directory named Rul es where Rule entities will be indexed.

You can easily define common rules like the directory provider and base directory, and override
those defaults later on on a per index basis.

Writing your own Di r ect or yPr ovi der, you can utilize this configuration mechanism as well.

3.2. Sharding indexes

In some cases, it is hecessary to split (shard) the indexing data of a given entity type into several
Lucene indexes. This solution is not recommended unless there is a pressing need because by
default, searches will be slower as all shards have to be opened for a single search. In other words
don't do it until you have problems :)

For example, sharding may be desirable if:

» A single index is so huge that index update times are slowing the application down.

21

Chapter 3. Configuration

« A typical search will only hit a sub-set of the index, such as when data is naturally segmented
by customer, region or application.

Hibernate Search allows you to index a given entity type into several sub indexes. Data is sharded
into the different sub indexes thanks to an | ndexShar di ngSt r at egy. By default, no sharding
strategy is enabled, unless the number of shards is configured. To configure the number of shards
use the following property

Example 3.3. Enabling index sharding by specifying nbr_of_shards for a
specific index

hi ber nat e. sear ch. <i ndexName>. shar di ng_st rat egy. nbr _of _shards 5

This will use 5 different shards.

The default sharding strategy, when shards are set up, splits the data according to the hash value
of the id string representation (generated by the Field Bridge). This ensures a fairly balanced
sharding. You can replace the strategy by implementing | ndexShar di ngSt r at egy and by setting
the following property

Example 3.4. Specifying a custom sharding strategy

hi ber nat e. sear ch. <i ndexNane>. shar di ng_st r at egy
my. shar di ngstrat egy. | npl ement ati on

Using a custom | ndexShar di ngSt r at egy implementation, it's possible to define what shard a
given entity is indexed to.

It also allows for optimizing searches by selecting which shard to run the query onto.
By activating a filter (see Section 5.3.1, “Using filters in a sharded environment”),
a sharding strategy can select a subset of the shards used to answer a query
(I ndexShar di ngSt r at egy. get Di r ect or yPr ovi der sFor Query) and thus speed up the query
execution.

Each shard has an independent directory provider configuration as described in Section 3.1,
“Directory configuration”. The Di rect or yProvi der default name for the previous example are
<i ndexNanme>. 0 to <i ndexNane>. 4. In other words, each shard has the name of it's owning index
followed by . (dot) and its index number.

Example 3.5. Configuring the sharding configuration for an example entity
Ani mal

hi bernat e. search. defaul t. i ndexBase /usr/| ucene/i ndexes

22

Sharing indexes (two entities into the same directory)

hi ber nat e. search. Ani nal . shardi ng_strat egy. nbr_of _shards 5
hi ber nat e. search. Ani nal . di rectory_provi der

org. hi bernate. search. store. FSDi r ect or yPr ovi der

hi ber nat e. search. Ani nal . 0. i ndexNanme Ani mal 00

hi ber nat e. search. Ani mal . 3. i ndexBase /usr/ | ucene/ shar ded
hi ber nat e. search. Ani nal . 3. i ndexName Ani nmal 03

This configuration uses the default id string hashing strategy and shards the Animal index into 5
subindexes. All subindexes are FSDi r ect or yProvi der instances and the directory where each
subindex is stored is as followed:

for subindex 0: /usr/lucene/indexes/Animal00 (shared indexBase but overridden indexName)

for subindex 1: /usr/lucene/indexes/Animal.1 (shared indexBase, default indexName)

« for subindex 2: /usr/lucene/indexes/Animal.2 (shared indexBase, default indexName)

for subindex 3: /usr/lucene/shared/Animal03 (overridden indexBase, overridden indexName)

for subindex 4: /usr/lucene/indexes/Animal.4 (shared indexBase, default indexName)

3.3. Sharing indexes (two entities into the same
directory)

@ Note

This is only presented here so that you know the option is available. There is really
not much benefit in sharing indexes.

Itis technically possible to store the information of more than one entity into a single Lucene index.
There are two ways to accomplish this:

« Configuring the underlying directory providers to point to the same physical index
directory. In practice, you set the property hi bernate. search.[fully qualified entity
nane] . i ndexNane to the same value. As an example let's use the same index (directory) for the
Fur ni t ure and Ani nal entity. We just set i ndexNane for both entities to for example “Animal”.
Both entities will then be stored in the Animal directory

hi ber nat e. search. or g. hi bernat e. search. test. shards. Furni ture. i ndexNane =
Ani mal
hi ber nat e. search. org. hi bernate. search. test. shards. Ani nal . i ndexNane = Ani nal

« Setting the @ ndexed annotation’s i ndex attribute of the entities you want to merge to the same
value. If we again wanted all Fur ni t ur e instances to be indexed in the Ani mal index along

23

Chapter 3. Configuration

with all instances of Ani mal we would specify @ ndexed(i ndex="Ani mal ”) on both Ani nal

and Fur ni t ur e classes.

3.4. Worker configuration

It is possible to refine how Hibernate Search interacts with Lucene through the worker
configuration. The work can be executed to the Lucene directory or sent to a JMS queue for later
processing. When processed to the Lucene directory, the work can be processed synchronously
or asynchronously to the transaction commit.

You can define the worker configuration using the following properties

Table 3.2. worker configuration

Property

hi ber nat e. sear ch.

wor ker

Description

. backend Out of the box support for the Apache Lucene
back end and the JMS back end. Default
to | ucene. Supports also jns, bl ackhol e,
j groupsMast er andj groupsSl ave.

hi ber nat e. sear ch.

wor ker

. execution Supports synchronous and asynchronous
execution. Default to sync. Supports also
async.

hi ber nat e. sear ch.

hi ber nat e. sear ch.

hi ber nat e. sear ch.

wor ker

wor ker

wor ker

.thread_pool . si zdDefines the number of threads in the
pool. useful only for asynchronous execution.
Default to 1.

. buf f er _queue. mmDefines the maximal number of work queue
if the thread poll is starved. Useful only for
asynchronous execution. Default to infinite. If
the limit is reached, the work is done by the
main thread.

.jndi . * Defines the JNDI properties to initiate the
InitialContext (if needed). JNDI is only used by
the JMS back end.

hi ber nat e. sear ch.

hi ber nat e. sear ch.

wor ker

wor ker

.j ms. connect i on_fMandatory for the JMS back end. Defines
the JNDI name to lookup the JMS connection
factory from (/ Connecti onFact ory by default
in JBoss AS)

.j ms. queue Mandatory for the JMS back end. Defines the
JNDI name to lookup the JMS queue from. The
gueue will be used to post work messages.

hi ber nat e. sear ch.

wor ker

.j groups. cl ust er ptonal for JGroups back end. Defines the
name of JGroups channel.

24

JMS Master/Slave configuration

hi ber nat e. sear ch. wor ker . j gr oups. conf i gur@piion&i J&roups network stack configuration.
Defines the name of a JGroups configuration
file, which must exist on classpath.

hi ber nat e. sear ch. wor ker . j gr oups. conf i gur@piionaxhdGroups network stack configuration.
Defines a String representing JGroups
configuration as XML.

hi ber nat e. sear ch. wor ker . j gr oups. conf i gur@ptionat JGngups network stack configuration.
Provides JGroups configuration in plain text.

3.5. JMS Master/Slave configuration

This section describes in greater detail how to configure the Master / Slaves Hibernate Search
architecture.

Search reguest \

Hibernate A\

+
Hibernate Search

Slave

Index update order

Hibernate

+
@ Process — | Hibernate Search
Master

Undex update order

Hibernate

+
Hibernate Search

Slave

Search request

.
Lucene _F
Directary -
(index) |
Copy

JMS back end configuration.

3.5.1. Slave nodes

Every index update operation is sent to a JMS queue. Index querying operations are executed
on a local index copy.

25

Chapter 3. Configuration

Example 3.6. JMS Slave configuration

sl ave configuration

DirectoryProvider
(renmote) naster |ocation
hi ber nat e. search. def aul t. sourceBase = / mt/ mast er vol une/ | ucenedi r s/ nast er copy

| ocal copy |ocation
hi ber nat e. search. defaul t.i ndexBase = /Users/prod/ | ucenedirs

refresh every half hour
hi bernate. search. default.refresh = 1800

appropriate directory provider
hi ber nat e. search. defaul t. di rectory_provider =
or g. hi bernat e. sear ch. st ore. FSS| aveDi r ect or yPr ovi der

Backend configuration

hi ber nat e. sear ch. wor ker . backend = jns

hi ber nat e. search. worker. j nms. connecti on_factory = /Connecti onFactory

hi ber nat e. search. wor ker . j ms. queue = queue/ hi ber nat esear ch

#optional jndi configuration (check your JMS provider for nmore infornmation)

Optional asynchronous execution strategy
hi bernat e. search. worker. executi on = async
hi bernat e. search. worker.thread_pool . size
hi ber nat e. sear ch. wor ker . buf f er _queue. nax

1
N

50

A file system local copy is recommended for faster search results.

The refresh period should be higher that the expected time copy.

3.5.2. Master node

Every index update operation is taken from a JMS gqueue and executed. The master index is
copied on a regular basis.

Example 3.7. JMS Master configuration

master configuration

DirectoryProvider
(renote) master |ocation where information is copied to
hi ber nat e. search. def aul t. sourceBase = / mt/ mast er vol une/ | ucenedi r s/ nast er copy

26

Master node

|l ocal naster |ocation
hi ber nat e. search. defaul t.i ndexBase = /Users/prod/ | ucenedirs

refresh every half hour
hi bernate. search. default.refresh = 1800

appropriate directory provider
hi ber nat e. search. defaul t. di rectory_provider =
or g. hi bernat e. search. st ore. FSMast er Di r ect or yPr ovi der

Backend configuration
#Backend is the default |ucene one

The refresh period should be higher that the expected time copy.

In addition to the Hibernate Search framework configuration, a Message Driven Bean should be
written and set up to process the index works queue through JMS.

Example 3.8. Message Driven Bean processing the indexing queue

@kssageDriven(activationConfig = {
@\ct i vati onConfi gProperty(propertyNane="desti nati onType"
propertyVal ue="j avax. j ms. Queue"),
@\ct i vati onConfi gProperty(propertyNane="destinati on", propertyVal ue="queue/
hi ber nat esearch"),

@A\cti vati onConfi gProperty(propertyNane="DLQVaxResent", propertyVal ue="1")
)
public class NDBSearchController extends AbstractJVMSH bernateSearchControll er
i mpl ements Messageli st ener {
@er si st enceCont ext EntityManager em

//method retrieving the appropriate session
protected Session getSession() {
return (Session) em getDel egate();

//potentially close the session opened in #getSession(), not needed here
protected voi d cl eanSessi onl f Needed(Sessi on sessi on)

}

This example inherits from the abstract JMS controller class available in the Hibernate Search
source code and implements a JavaEE 5 MDB. This implementation is given as an example and,
while most likely be more complex, can be adjusted to make use of non Java EE Message Driven
Beans. For more information about the get Sessi on() and cl eanSessi onl f Needed(), please
check Abst r act JMSHi ber nat eSear chCont rol | er's javadoc

27

Chapter 3. Configuration

3.6. JGroups Master/Slave configuration

Describes how to configure JGroups Master/Slave back end. Configuration examples illustrated
in JMS Master/Slave configuration section (Section 3.5, “JMS Master/Slave configuration”) also
apply here, only a different backend needs to be set.

3.6.1. Slave nodes

Every index update operation is sent through a JGroups channel to the master node. Index
querying operations are executed on a local index copy.

Example 3.9. JGroups Slave configuration

slave configuration
Backend configuration
hi ber nat e. sear ch. wor ker . backend = j groupsS| ave

3.6.2. Master node

Every index update operation is taken from a JGroups channel and executed. The master index
is copied on a regular basis.

Example 3.10. JGroups Master configuration

master configuration
Backend configuration
hi ber nat e. sear ch. wor ker . backend = j gr oupsMast er

3.6.3. JGroups channel configuration

Optionally configuration for JGroups transport protocols (UDP, TCP) and channel name can be
defined. It can be applied to both master and slave nodes. There are several ways to configure
JGroups transport details. If it is not defined explicity, configuration found in the fI ush-udp. xni
file is used.

Example 3.11. JGroups transport protocols configuration

configuration

28

JGroups channel configuration

#udp.xm file needs to be located in the classpath
hi ber nat e. sear ch. wor ker . backend. j groups. confi gurationFile = udp. xm

#protocol stack configuration provided in XM format
hi ber nat e. sear ch. wor ker . backend. j gr oups. confi gurati onXm =

<config xm ns="urn: org:jgroups"”

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="urn:org:jgroups file:schema/JG oups-2. 8. xsd">
<UDP

ncast _addr =" ${j gr oups. udp. ntast _addr: 228. 10. 10. 10}"
ncast _port ="${j groups. udp. ncast _port:45588}"
tos="8"

t hread_nami ng_pattern="pl"

t hr ead_pool . enabl ed="t rue"

t hread_pool . ni n_t hreads="2"

t hread_pool . max_t hr eads="8"

t hread_pool . keep_al i ve_ti me="5000"

t hr ead_pool . queue_enabl ed="f al se"

t hr ead_pool . queue_nmax_si ze="100"

t hread_pool . rej ecti on_policy="Run"/>

<PI NG ti meout ="1000" num.nitial menmbers="3"/>
<MERGE2 max_i nt erval ="30000" m n_i nterval ="10000"/ >
<FD_SOCK/ >

<FD ti neout ="3000" max_tries="3"/>

<VERI FY_SUSPECT ti neout =" 1500"/ >

<pbcast. STREAM NG_STATE_TRANSFER/ >

<pbcast. FLUSH ti neout =" 0"/ >

</ confi g>

#protocol stack configuration provided in "old style" jgroups format
hi ber nat e. sear ch. wor ker . backend. j groups. configurationString =

UDP(ncast _addr=228. 1. 2. 3; ntast _port =45566; i p_ttl =32): PI N ti neout =3000;
num.i ni tial _nmenber s=6): FD(t i meout =5000) : VERI FY_SUSPECT(t i neout =1500) :

pbcast. NAKACK(gc_| ag=10;retransm t_ti meout =3000) : UNI CAST(t i meout =5000) :
FRAG pbcast . GVB5(j oi n_t i meout =3000; shun=f al se; pri nt _| ocal _addr =true)

Master and slave nodes communicate over JGroups channel that is identified by this same name.
Name of the channel can be defined explicity, if not default HSear chCl ust er is used.

Example 3.12. JGroups channel name configuration

Backend configuration

29

Chapter 3. Configuration

hi ber nat e. sear ch. wor ker . backend. j gr oups. cl ust er Nane = Hi ber nat e- Search-d ust er

3.7. Reader strategy configuration

The different reader strategies are described in Reader strategy. Out of the box strategies are:

» shar ed: share index readers across several queries. This strategy is the most efficient.
* not - shar ed: create an index reader for each individual query

The default reader strategy is shar ed. This can be adjusted:
hi ber nat e. search. reader. strategy = not-shared

Adding this property switches to the not - shar ed strategy.

Or if you have a custom reader strategy:
hi ber nat e. search. reader. strategy = ny. corp. nyapp. Cust onReader Pr ovi der

where ny. cor p. nyapp. Cust onReader Pr ovi der is the custom strategy implementation.

3.8. Enabling Hibernate Search and automatic indexing

3.8.1. Enabling Hibernate Search

Hibernate Search is enabled out of the box when using Hibernate Annotations
or Hibernate EntityManager. If, for some reason you need to disable it, set
hi bernat e. search. autoregi ster_listeners to false. Note that there is no performance
penalty when the listeners are enabled but no entities are annotated as indexed.

To enable Hibernate Search in Hibernate Core (ie. if you don't use Hibernate Annotations), add
the Ful | Text I ndexEvent Li st ener for the following six Hibernate events and also add it after the
default Def aul t Fl ushEvent Li st ener, as in the following example.

Example 3.13. Explicitly enabling Hibernate Search by configuring the

Ful | Text | ndexEvent Li st ener

<hi ber nat e- confi gurati on>

30

Automatic indexing

<session-factory>

<event type="post-update">

<listener
cl ass="org. hi bernat e. sear ch. event. Ful | Text | ndexEvent Li st ener"/>
</ event >
<event type="post-insert">
<listener
cl ass="org. hi bernat e. sear ch. event. Ful | Text | ndexEvent Li st ener"/>
</ event >
<event type="post-delete">
<listener
cl ass="org. hi bernat e. sear ch. event. Ful | Text | ndexEvent Li st ener"/>
</ event >
<event type="post-collection-recreate">
<listener
cl ass="org. hi bernat e. sear ch. event. Ful | Text | ndexEvent Li st ener"/>
</ event >
<event type="post-collection-renove">
<listener
cl ass="org. hi bernat e. search. event. Ful | Text | ndexEvent Li st ener"/>
</ event >
<event type="post-collection-update">
<listener

cl ass="org. hi bernat e. sear ch. event. Ful | Text | ndexEvent Li st ener"/>
</ event >
<event type="flush">
<l i stener class="org. hi bernate. event. def. Def aul t Fl ushEvent Li st ener"/>
<listener
cl ass="org. hi bernat e. search. event. Ful | Text | ndexEvent Li st ener"/>
</ event >
</ session-factory>
</ hi ber nat e- confi gurati on>

3.8.2. Automatic indexing

By default, every time an object is inserted, updated or deleted through Hibernate, Hibernate
Search updates the according Lucene index. It is sometimes desirable to disable that features
if either your index is read-only or if index updates are done in a batch way (see Section 6.3,
“Rebuilding the whole Index”).

To disable event based indexing, set

hi ber nat e. search. i ndexi ng_strat egy nanua

31

Chapter 3. Configuration

® Note

In most case, the JMS backend provides the best of both world, a lightweight
event based system keeps track of all changes in the system, and the heavyweight
indexing process is done by a separate process or machine.

3.9. Tuning Lucene indexing performance

Hibernate Search allows you to tune the Lucene indexing performance by specifying a set of
parameters which are passed through to underlying Lucene | ndexW i t er such as ner geFact or,
maxMer geDocs and maxBuf f er edDocs. You can specify these parameters either as default values
applying for all indexes, on a per index basis, or even per shard.

There are two sets of parameters allowing for different performance settings depending on the
use case. During indexing operations triggered by database modifications, the parameters are
grouped by the t r ansact i on keyword:

hi ber nat e. search. [def aul t |
<i ndexnanme>] . i ndexwriter.transaction. <paranet er _nanme>

When indexing occurs via Ful | Text Sessi on. i ndex() or via a Massl ndexer (see Section 6.3,
“Rebuilding the whole Index”), the used properties are those grouped under the bat ch keyword:

hi ber nat e. sear ch. [def aul t | <i ndexname>] . i ndexwri t er. bat ch. <par anet er _nane>

If no value is set for a . bat ch value in a specific shard configuration, Hibernate Search will look
at the index section, then at the default section:

hi ber nat e. search. Ani mal s. 2. i ndexwriter.transacti on. max_merge_docs 10
hi ber nat e. search. Ani nal s. 2. i ndexwriter.transaction. merge_factor 20
hi ber nat e. search. defaul t.i ndexwiter. batch. max_merge_docs 100

This configuration will result in these settings applied to the second shard of Animals index:

e transaction. max_nerge_docs =10
e bat ch. max_ner ge_docs = 100
e transaction. nerge_factor =20

e batch. merge_f act or = Lucene default

32

Tuning Lucene indexing performance

All other values will use the defaults defined in Lucene.

The default for all values is to leave them at Lucene's own default, so the listed values in the
following table actually depend on the version of Lucene you are using; values shown are relative
to version 2. 4. For more information about Lucene indexing performances, please refer to the
Lucene documentation.

Warning

Previous versions had the bat ch parameters inherit from t r ansact i on properties.
This needs now to be explicitly set.

Table 3.3. List of indexing performance and behavior properties

Property Description Default Value
hi ber nat e. sear ch. Set to true when no false (releases locks as soon
[defaul t| other process will need as possible)

<i ndexnane>] . excl usi ve_i ndéa_userite to the same
index: this will enable
Hibernate Search to work in
exlusive mode on the index
and improve performance in
writing changes to the index.

hi ber nat e. sear ch. Determines the minimal Disabled (flushes by RAM
[defaul t| number of delete terms usage)

<i ndexnane>] . i ndexwriter. required before the buffered

[transacti on| in-memory delete terms are

bat ch] . max_buf f er ed_del et ¢ apgliesl and flushed. If there
are documents buffered in
memory at the time, they are
merged and a new segment is

created.
hi ber nat e. sear ch. Controls the amount of Disabled (flushes by RAM
[defaul t] documents buffered in usage)
<i ndexnane>] . i ndexwri ter. | memory during indexing. The
[transacti on| bigger the more RAM is

bat ch] . max_buf fered_docs | consumed.

hi ber nat e. sear ch. The maximum number of 10000
[defaul t] terms that will be indexed for
<i ndexnane>] . i ndexwiter. | a single field. This limits the
[transacti on| amount of memory required

batch] . max_field_l ength for indexing so that very large
data will not crash the indexing

33

Chapter 3. Configuration

Property

Description

Default Value

hi ber nat e. sear ch.
[defaul t|

<i ndexnanme>] .i ndexwriter.

[transacti on]|

bat ch] . max_mer ge_docs

process by running out of
memory. This setting refers to
the number of running terms,
not to the number of different
terms.

This silently truncates large
documents, excluding from
the index all terms that
occur further in the document.
If you know your source
documents are large, be
sure to set this value high
enough to accommodate the
expected size. If you set it
to Integer.MAX_VALUE, then
the only limit is your memory,
but you should anticipate an

OutOfMemoryError.
If setting this value in
batch differently than in

transaction you may get
different data (and results) in
your index depending on the
indexing mode.

Defines the largest number

segment. Larger values are
best for batched indexing
and speedier searches. Small
values are best for transaction
indexing.

Unlimited
of documents allowed in a (Integer.MAX_VALUE)

hi ber nat e. sear ch.
[defaul t|

<i ndexnane>].i ndexwiter.

[transacti on|
bat ch] . merge_f actor

Controls segment merge
frequency and size.
Determines how often

segment indexes are merged
when insertion occurs. With
smaller values, less RAM
is used while indexing,
and searches on unoptimized
indexes are faster, but

10

34

Tuning Lucene indexing performance

Property

Default Value

Description
indexing speed is slower.
With larger values, more

RAM is used during indexing,
and searches on
unoptimized indexes are
slower, indexing is faster. Thus
larger values (> 10) are best
for batch index creation, and
smaller values (< 10) for
indexes that are interactively
maintained. The value must no
be lower than 2.

while

hi ber nat e. sear ch.

[defaul t|

<i ndexnane>].i ndexwiter.
[transacti on|

bat ch] . ram buffer_size

hi ber nat e. sear ch.

[defaul t]

<i ndexnane>] . i ndexwiter.
[transacti on]|

bat ch] .term.i ndex_i nterval

hi ber nat e. sear ch.

[defaul t]

<i ndexnane>] . i ndexwiter.
[transacti on]|

bat ch] . use_conpound_file

Controls the amount of RAM
in MB dedicated to document
buffers. When used together
max_buffered_docs a flush
occurs for whichever event
happens first.

Generally for faster indexing
performance it's best to flush
by RAM usage instead of
document count and use as
large a RAM buffer as you can.

Expert: Set the interval

between indexed terms.

less
used
slow
terms.

Large values cause
memory to be
by IndexReader, but
random-access to
Small values cause more
memory used by
an IndexReader, and speed
random-access to terms. See
Lucene documentation for
more details.

to be

The advantage of using the
compound file format is that
less file descriptors are used.
The disadvantage is that
indexing takes more time and
temporary disk space. You can

16 MB

128

true

35

Chapter 3. Configuration

Property Description Default Value

set this parameter to fal se
in an attempt to improve the
indexing time, but you could
run out of file descriptors if
mer geFact or is also large.

Boolean parameter, use
"true" or "f al se". The default
value for this option is t r ue.

Tip

When your architecture permits it, always set
hi ber nat e. sear ch. def aul t . excl usi ve_i ndex_use=t r ue as it greatly improves
efficiency in index writing.

To tune the indexing speed it might be useful to time the object loading from database in isolation
from the writes to the index. To achieve this set the bl ackhol e as worker backend and start you
indexing routines. This backend does not disable Hibernate Search: it will still generate the needed
changesets to the index, but will discard them instead of flushing them to the index. As opposite
to setting the hi ber nat e. sear ch. i ndexi ng_st rat egy to manual when using bl ackhol e it will
possibly load more data to rebuild the index from associated entities.

hi ber nat e. sear ch. wor ker . backend bl ackhol e
The recommended approach is to focus first on optimizing the object loading, and then use the

timings you achieve as a baseline to tune the indexing process.

The bl ackhol e backend is not meant to be used in production, only as a tool to identify indexing
bottlenecks.

3.10. LockFactory configuration

Lucene Directories have default locking strategies which work well for most cases, but it's possible
to specify for each index managed by Hibernate Search which LockingFactory you want to use.

Some of these locking strategies require a filesystem level lock and may be used even on RAM
based indexes, but this is not recommended and of no practical use.

To select a locking factory, set the hi ber nat e. sear ch. <i ndex>. | ocki ng_st r at egy option to
one of si npl e, nati ve, si ngl e or none, or set it to the fully qualified name of an implementation

36

LockFactory configuration

of org. hi bernat e. search. st ore. LockFact or yFact ory; Implementing this interface you can

provide a custom or g. apache. | ucene. st ore. LockFact ory.

Table 3.4. List of available LockFactory implementations

name

Class

Description

simple

native

org.apache.lucene.store.Simple Safmtkplstwytation based on

Java's File API, it marks the
usage of the index by creating
a marker file.

If for some reason you had to
kill your application, you will
need to remove this file before
restarting it.

This is the default
implementation for
FSDi r ect or yPr ovi der ,FSMast
and

FSSI aveDi rect or yProvi der .

org.apache.lucene.store.Native”3_odkEacterympl e this also

marks the usage of the index
by creating a marker file, but
this one is using native OS
file locks so that even if your
application crashes the locks
will be cleaned up.

This implementation has
known problems on NFS.

single

none

org.apache.lucene.store.SingleliisteBntetkEkEBItOIYOESN't USE

a file marker but is a Java
object lock held in memory;
therefore it's possible to use
it only when you are sure the
index is not going to be shared
by any other process.

This is the default
implementation for
RANDI r ect or yPr ovi der .

org.apache.lucene.store.NoLockMadoaynges to this index are

not coordinated by any lock;

test your application carefully

37

erDi rectoryProvi

Chapter 3. Configuration

name Class Description

and make sure you know what
it means.

Configuration example:

hi ber nat e. search. defaul t. | ocki ng_strategy sinple
hi ber nat e. search. Ani mal s. | ocki ng_strategy native
hi ber nat e. sear ch. Books. | ocki ng_strategy org. custom conponents. MyLocki ngFactory

3.11. Exception Handling Configuration

Hibernate Search allows you to configure how exceptions are handled during the indexing
process. If no configuration is provided then exceptions are logged to the log output by default. It
is possible to explicitly declare the exception logging mechanism as seen below:

hi ber nat e. search. error_handl er | og

The default exception handling occurs for both synchronous and asynchronous indexing.
Hibernate Search provides an easy mechanism to override the default error handling
implementation.

In order to provide your own implementation you must implement the Err or Handl er interface,
which provides handl e (ErrorContext context) method. The Error Cont ext provides a
reference to the primary LuceneWr k that failed, the underlying exception and any subsequent
LuceneWr k that could not be processed due to the primary exception.

public interface ErrorContext {
Li st <LuceneWdr k> get Fai | i ngOper ati ons();
LuceneWr k get Operati onAt Fault();
Thr owabl e get Thr owabl e() ;
bool ean hasErrors();

The following provides an example implementation of Er r or Handl er :

public class CustonErrorHandl er inmplenments ErrorHandl er {
public void handle (ErrorContext context) {

[/ publish error context to sone internal error handling system

38

Exception Handling Configuration

To register this error handler with Hibernate Search you must declare the Cust onEr r or Handl er
fully qualified classname in the configuration properties:

hi ber nat e. search. error_handl er Cust oner Error Handl er

39

40

Chapter 4.

Mapping entities to the index
structure

All the metadata information needed to index entities is described through annotations.
There is no need for xml mapping files. In fact there is currently no xml configuration
option available (see HSEARCH-210 [http://opensource.atlassian.com/projects/hibernate/
browse/HSEARCH-210]). You can still use Hibernate mapping files for the basic Hibernate
configuration, but the Hibernate Search specific configuration has to be expressed via annotations.

4.1. Mapping an entity

4.1.1. Basic mapping

First, we must declare a persistent class as indexable. This is done by annotating the class with
@ ndexed (all entities not annotated with @ ndexed will be ignored by the indexing process):

Example 4.1. Making a class indexable using the @ndexed annotation

@ntity
@ ndexed(i ndex="i ndexes/ essays")
public class Essay {

The i ndex attribute tells Hibernate what the Lucene directory name is (usually a directory
on your file system). It is recommended to define a base directory for all Lucene
indexes using the hibernate. search. default.indexBase property in your configuration
file. Alternatively you can specify a base directory per indexed entity by specifying
hi ber nat e. sear ch. <i ndex>. i ndexBase, where <i ndex> is the fully qualified classname of the
indexed entity. Each entity instance will be represented by a Lucene Docunent inside the given
index (aka Directory).

For each property (or attribute) of your entity, you have the ability to describe how it will be indexed.
The default (no annotation present) means that the property is ignored by the indexing process.
@i el d does declare a property as indexed. When indexing an element to a Lucene document
you can specify how it is indexed:

» name : describe under which name, the property should be stored in the Lucene Document. The
default value is the property name (following the JavaBeans convention)

e store : describe whether or not the property is stored in the Lucene index. You can
store the value Store.YES (consuming more space in the index but allowing projection,

41

http://opensource.atlassian.com/projects/hibernate/browse/HSEARCH-210
http://opensource.atlassian.com/projects/hibernate/browse/HSEARCH-210
http://opensource.atlassian.com/projects/hibernate/browse/HSEARCH-210

Chapter 4. Mapping entities t...

see Section 5.1.2.5, “Projection” for more information), store it in a compressed way
St or e. COVPRESS (this does consume more CPU), or avoid any storage St or e. NO (this is the
default value). When a property is stored, you can retrieve its original value from the Lucene
Document. This is not related to whether the element is indexed or not.

 index: describe how the element is indexed and the type of information store. The different
values are | ndex. NO (no indexing, ie cannot be found by a query), | ndex. TOKENI ZED (use
an analyzer to process the property), | ndex. UN_TOKENI ZED (no analyzer pre-processing),
I ndex. NO_NORMS (do not store the normalization data). The default value is TOKENI ZED.

« termVector: describes collections of term-frequency pairs. This attribute enables term vectors
being stored during indexing so they are available within documents. The default value is

TermVector.NO.

The different values of this attribute are:

Value

TermVector.YES

Definition
Store the term vectors of each document.
This produces two synchronized arrays,
one contains document terms and the other
contains the term's frequency.

TermVector.NO
TermVector. WITH_OFFSETS

TermVector.WITH_POSITIONS

Do not store term vectors.

Store the term vector and token offset
information. This is the same as
TermVector.YES plus it contains the starting
and ending offset position information for the
terms.

Store the term vector and token position
information. This is the same as
TermVector.YES plus it contains the ordinal
positions of each occurrence of a term in a
document.

TermVector. WITH_POSITION_OFFSETS

Store the term vector, token position and
offset information. This is a combination
of the YES, WITH_OFFSETS and
WITH_POSITIONS.

Whether or not you want to store the original data in the index depends on how you wish to use the
index query result. For a regular Hibernate Search usage storing is not necessary. However you
might want to store some fields to subsequently project them (see Section 5.1.2.5, “Projection”

for more information).

Whether or not you want to tokenize a property depends on whether you wish to search the
element as is, or by the words it contains. It make sense to tokenize a text field, but probably

not a date field.

42

Mapping properties multiple times

Note

Fields used for sorting must not be tokenized.

Finally, the id property of an entity is a special property used by Hibernate Search to ensure index
unicity of a given entity. By design, an id has to be stored and must not be tokenized. To mark
a property as index id, use the @ocunent | d annotation. If you are using Hibernate Annotations
and you have specified @Id you can omit @Documentld. The chosen entity id will also be used
as document id.

Example 4.2. Adding @ocunent 1 d ad @i el d annotations to an indexed entity

@ntity
@ ndexed(i ndex="i ndexes/ essays")
public class Essay {

@d
@ocunent | d
public Long getld() { return id; }

@i el d(name="Abstract", index=lndex. TOKENI ZED, st ore=Store. YES)
public String getSummary() { return sumuary; }

@ob
@i el d(i ndex=I ndex. TOKENI ZED)
public String getText() { return text; }

Example 4.2, “Adding @Documentld ad @Field annotations to an indexed entity” define an index
with three fields: i d , Abstract and t ext . Note that by default the field name is decapitalized,
following the JavaBean specification

4.1.2. Mapping properties multiple times

Sometimes one has to map a property multiple times per index, with slightly different indexing
strategies. For example, sorting a query by field requires the field to be UN_TOKENI ZED. If one
wants to search by words in this property and still sort it, one need to index it twice - once tokenized
and once untokenized. @Fields allows to achieve this goal.

Example 4.3. Using @Fields to map a property multiple times

@ntity
@ ndexed(i ndex = "Book")

43

Chapter 4. Mapping entities t...

public class Book {

@i el ds({
@i el d(i ndex = | ndex. TOKENI ZED) ,
@ield(namre = "summary_forSort", index = Index. UN TOKENI ZED, store
= Store. YES)
)

public String getSummary() {
return summary;

In Example 4.3, “Using @Fields to map a property multiple times” the field sunmary is indexed
twice, once as summary in a tokenized way, and once as sunmary_for Sort in an untokenized
way. @Field supports 2 attributes useful when @Fields is used:

» analyzer: defines a @Analyzer annotation per field rather than per property
 bridge: defines a @FieldBridge annotation per field rather than per property

See below for more information about analyzers and field bridges.

4.1.3. Embedded and associated objects

Associated objects as well as embedded objects can be indexed as part of the root entity index.
This is useful if you expect to search a given entity based on properties of associated objects.
In the following example the aim is to return places where the associated city is Atlanta (In the
Lucene query parser language, it would translate into addr ess. ci ty: At | ant a).

Example 4.4. Using @IndexedEmbedded to index associations

@ntity

@ ndexed

public class Place {
@d
@:zener at edVal ue
@ocunent | d
private Long id;

@ield(index = | ndex. TOKENI ZED)
private String nane;

@neToOne(cascade = { CascadeType. PERSI ST, CascadeType. REMOVE })
@ ndexedEnmbedded
private Address address;

44

Embedded and associated objects

}
@ntity
public class Address {
@d
@zener at edVal ue
private Long id;
@i el d(i ndex=I ndex. TOKENI ZED)
private String street;
@i el d(i ndex=I ndex. TOKENI ZED)
private String city;
@cont ai nedl n
@neToMany(mappedBy="addr ess")
private Set<Pl ace> pl aces;
}

In this example, the place fields will be indexed in the Pl ace index. The Pl ace index documents
will also contain the fields addr ess. i d, addr ess. st reet, and address. ci ty which you will be
able to query. This is enabled by the @ ndexedEnbedded annotation.

Be careful. Because the data is denormalized in the Lucene index when using the
@ ndexedEnbedded technique, Hibernate Search needs to be aware of any change in the Pl ace
object and any change in the Addr ess object to keep the index up to date. To make sure the Pl ace
Lucene document is updated when it's Addr ess changes, you need to mark the other side of the
bidirectional relationship with @ont ai nedl n.

@ont ai nedl n is only useful on associations pointing to entities as opposed to embedded
(collection of) objects.

Let's make our example a bit more complex:

Example 4.5. Nested usage of @ ndexedEnbedded and @ont ai nedI n

@ntity

@ ndexed

public class Place {
@d
@:ener at edVal ue
@ocunent | d
private Long id;

@i el d(index = | ndex. TOKENI ZED)
private String nane;

45

Chapter 4. Mapping entities t...

@neToOne(cascade = { CascadeType. PERSI ST, CascadeType. REMOVE })
@ ndexedEnmbedded
private Address address;

@ntity

public class Address {
@d
@:zener at edVal ue
private Long id;

@i el d(i ndex=I ndex. TOKENI ZED)
private String street;

@i el d(i ndex=I ndex. TOKENI ZED)
private String city;

@ ndexedEnmbedded(depth = 1, prefix = "ownedBy_")
private Oaner ownedBy;

@ont ai nedl n

@neToMany(mappedBy="addr ess")
private Set<Pl ace> pl aces;

@nbeddabl e

public class Omer {
@i el d(i ndex = | ndex. TOKEN ZED)
private String nane;

Any @ ToMany, @ ToOne and @nbedded attribute can be annotated with @ ndexedEnbedded.
The attributes of the associated class will then be added to the main entity index. In the previous
example, the index will contain the following fields

e id

e name

» address.street
 address.city

* address.ownedBy_name

46

Embedded and associated objects

The default prefix is propert yName. , following the traditional object navigation convention. You
can override it using the pr ef i x attribute as it is shown on the ownedBy property.

Note

The prefix cannot be set to the empty string.

The dept h property is necessary when the object graph contains a cyclic dependency of classes
(not instances). For example, if Owner points to Pl ace. Hibernate Search will stop including
Indexed embedded attributes after reaching the expected depth (or the object graph boundaries
are reached). A class having a self reference is an example of cyclic dependency. In our example,
because dept h is set to 1, any @ ndexedEnmbedded attribute in Owner (if any) will be ignored.

Using @ ndexedEnbedded for object associations allows you to express queries such as:

« Return places where name contains JBoss and where address city is Atlanta. In Lucene query
this would be

+name: j boss +address.city:atlanta

« Return places where name contains JBoss and where owner's name contain Joe. In Lucene
query this would be

+nane: j boss +addr ess. or der By_nane: j oe

In a way it mimics the relational join operation in a more efficient way (at the cost of data
duplication). Remember that, out of the box, Lucene indexes have no notion of association, the
join operation is simply non-existent. It might help to keep the relational model normalized while
benefiting from the full text index speed and feature richness.

@ Note

An associated object can itself (but does not have to) be @ ndexed

When @IndexedEmbedded points to an entity, the association has to be directional and the other
side has to be annotated @Cont ai nedl n (as seen in the previous example). If not, Hibernate
Search has no way to update the root index when the associated entity is updated (in our example,
a Pl ace index document has to be updated when the associated Addr ess instance is updated).

Sometimes, the object type annotated by @ ndexedEnbedded is not the object type targeted by
Hibernate and Hibernate Search. This is especially the case when interfaces are used in lieu

47

Chapter 4. Mapping entities t...

of their implementation. For this reason you can override the object type targeted by Hibernate
Search using the t ar get El ement parameter.

Example 4.6. Using the target El enent property of @ ndexedenbedded

@ntity

@ ndexed

public class Address {
@d
@:ener at edVal ue
@ocunent | d

private Long id;

@i el d(i ndex= | ndex. TOKENI ZED)
private String street;

@ ndexedEnmbedded(depth = 1, prefix = "ownedBy_", targetEl enent = Omer. cl ass)
@rar get (Oaner. cl ass)
private Person ownedBy;

}
@nbeddabl e
public class Omer inplenents Person { ... }

4.1.4. Boost factor

Lucene has the notion of boost factor. It's a way to give more weight to a field or to an indexed
element over others during the indexation process. You can use @oost at the @Field, method
or class level.

Example 4.7. Using different ways of increasing the weight of an indexed
element using a boost factor

@ntity

@ ndexed(i ndex="i ndexes/ essays")
@oost (1. 7f)

public class Essay {

@d
@ocunent | d
public Long getld() { returnid; }

48

Dynamic boost factor

@i el d(name="Abstract", i ndex=I ndex. TOKENI ZED, st ore=St or e. YES,
boost =@Boost (2f))
@oost (1. 5f)
public String getSummary() { return sumuary; }

@ob
@i el d(i ndex=I ndex. TOKENI ZED, boost =@oost (1. 2f))
public String getText() { return text; }

@ield
public String getl SBN() { return isbn; }

In our example, Essay's probability to reach the top of the search list will be multiplied by 1.7. The
sumar y field will be 3.0 (2 * 1.5 - @i el d. boost and @oost on a property are cumulative) more
important than the i sbn field. The t ext field will be 1.2 times more important than the i sbn field.
Note that this explanation in strictest terms is actually wrong, but it is simple and close enough to
reality for all practical purposes. Please check the Lucene documentation or the excellent Lucene
In Action from Otis Gospodnetic and Erik Hatcher.

4.1.5. Dynamic boost factor

The @oost annotation used in Section 4.1.4, “Boost factor” defines a static boost factor which
is is independent of the state of of the indexed entity at runtime. However, there are usecases in
which the boost factor may depends on the actual state of the entity. In this case you can use the
@ynani cBoost annotation together with an accompanying custom Boost St r at egy.

Example 4.8. Dynamic boost examle

publ i c enum PersonType {
NORVAL,
VI P

@ntity
@ ndexed
@ynam cBoost (i npl = VI PBoost Strat egy. cl ass)
public class Person {
private PersonType type;

I
public class VIPBoostStrategy inplenents BoostStrategy {

public float defineBoost(Ohject value) {
Person person = (Person) val ue;

49

Chapter 4. Mapping entities t...

if (person.getType().equal s(PersonType.VIP)) {

return 2. 0f;
}
el se {

return 1.0f;
}

In Example 4.8, “Dynamic boost examle” a dynamic boost is defined on class level specifying
VI PBoost St rat egy as implementation of the Boost St r at egy interface to be used at indexing
time. You can place the @ynani cBoost either at class or field level. Depending on the placement
of the annotation either the whole entity is passed to the def i neBoost method or just the annotated
field/property value. It's up to you to cast the passed object to the correct type. In the example all
indexed values of a VIP person would be double as important as the values of a normal person.

Note

The specified Boost Strategy implementation must define a public no-arg
constructor.

Of course you can mix and match @oost and @ynani cBoost annotations in your entity. All
defined boost factors are cummulative as described in Section 4.1.4, “Boost factor”.

4.1.6. Analyzer

The default analyzer class used to index tokenized fields is configurable through
the hibernate.search. anal yzer property. The default value for this property is
or g. apache. | ucene. anal ysi s. st andar d. St andar dAnal yzer.

You can also define the analyzer class per entity, property and even per @Field (useful when
multiple fields are indexed from a single property).

Example 4.9. Different ways of specifying an analyzer

@ntity
@ ndexed
@\nal yzer (i mpl = EntityAnal yzer.cl ass)
public class MyEntity {
@d
@:ener at edVal ue
@ocunentl d
private |nteger id;

@i el d(i ndex = | ndex. TOKENI ZED)

50

Analyzer

private String naneg;

@i el d(i ndex = | ndex. TOKENI ZED)
@nal yzer (i mpl = PropertyAnal yzer. cl ass)
private String sunmmary;

@ield(index = |ndex. TOKEN ZED, analyzer = @\nal yzer (i npl =
Fi el dAnal yzer. cl ass)
private String body;

In this example, EntityAnal yzer is used to index all tokenized properties (eg. nane), except
sumar y and body which are indexed with Propert yAnal yzer and Fi el dAnal yzer respectively.

>

4.1.6.1. Analyzer definitions

Analyzers can become quite complex to deal with for which reason Hibernate Search introduces
the notion of analyzer definitions. An analyzer definition can be reused by many @nal yzer
declarations. An analyzer definition is composed of:

» aname: the unique string used to refer to the definition

a list of char filters: each char filter is responsible to pre-process input characters before the
tokenization. Char filters can add, change or remove characters; one common usage is for
characters normalization

 atokenizer: responsible for tokenizing the input stream into individual words

a list of filters: each filter is responsible to remove, modify or sometimes even add words into
the stream provided by the tokenizer

This separation of tasks - a list of char filters, and a tokenizer followed by a list of filters - allows
for easy reuse of each individual component and let you build your customized analyzer in a very
flexible way (just like Lego). Generally speaking the char filt er s do some pre-processing in the
character input, then the Tokeni zer starts the tokenizing process by turning the character input
into tokens which are then further processed by the TokenFi | t er s. Hibernate Search supports

51

Chapter 4. Mapping entities t...

this infrastructure by utilizing the Solr analyzer framework. Make sure to add sol r-core. jar and
sol r-sol rj.jar to your classpath to use analyzer definitions. In case you also want to use the
snowball stemmer also include the | ucene- snowbal | . j ar. Other Solr analyzers might depend
on more libraries. For example, the Phonet i cFi | t er Fact or y depends on commons-codec [http://
commons.apache.org/codec]. Your distribution of Hibernate Search provides these dependencies
inits i b directory.

Example 4.10. @nal yzer Def and the Solr framework

@\nal yzer Def (name="cust omanal yzer",
charFilters = {
@har Fi |l ter Def (factory = Mappi ngChar Fi | ter Factory. cl ass, parans = {
@par anet er (name = "mappi ng", value = "org/hi bernate/search/
test/anal yzer/sol r/ mappi ng- chars. properties")
}
}
t okeni zer = @okeni zer Def (factory = StandardTokeni zer Factory. cl ass),
filters = {
@okenFilterDef (factory = | SOLati nlAccentFilterFactory. cl ass),
@okenFil terDef (factory = Lower CaseFilterFactory.cl ass),
@okenFil terDef (factory = StopFilterFactory.class, params = {
@par anet er (nane="wor ds", val ue= "org/ hi bernate/search/
test/anal yzer/solr/stoplist.properties"),
@Par anet er (nane="i gnor eCase", val ue="true")

})
)

public class Team {

A char filter is defined by its factory which is responsible for building the char filter and using
the optional list of parameters. In our example, a mapping char filter is used, and will replace
characters in the input based on the rules specified in the mapping file. A tokenizer is also defined
by its factory. This example use the standard tokenizer. A filter is defined by its factory which
is responsible for creating the filter instance using the optional parameters. In our example, the
StopFilter filter is built reading the dedicated words property file and is expected to ignore case.
The list of parameters is dependent on the tokenizer or filter factory.

Warning

Filters and char filters are applied in the order they are defined in the @nal yzer Def
annotation. Make sure to think twice about this order.

Once defined, an analyzer definition can be reused by an @nal yzer declaration using the
definition name rather than declaring an implementation class.

52

http://commons.apache.org/codec
http://commons.apache.org/codec
http://commons.apache.org/codec

Analyzer

Example 4.11. Referencing an analyzer by name

@ntity
@ ndexed
@\nal yzer Def (name="cust onanal yzer", ...)
public class Team {
@d
@ocunent | d

@zener at edVal ue
private |nteger id;

@ield

private String nane;

@Field
private String |ocation;

@ield @nal yzer(definition = "customanal yzer")
private String description;

Analyzer instances declared by @nal yzer Def are available by their name in the Sear chFact ory.

Anal yzer anal yzer =
ful | Text Sessi on. get Sear chFactory(). get Anal yzer ("cust omanal yzer");

This is quite useful wen building queries. Fields in queries should be analyzed with the same
analyzer used to index the field so that they speak a common "language”: the same tokens are
reused between the query and the indexing process. This rule has some exceptions but is true
most of the time. Respect it unless you know what you are doing.

4.1.6.2. Available analyzers

Solr and Lucene come with a lot of useful default char filters, tokenizers and filters. You can find a
complete list of char filter factories, tokenizer factories and filter factories at http://wiki.apache.org/
solr/AnalyzersTokenizersTokenFilters. Let check a few of them.

Table 4.1. Some of the available char filters

Factory Description parameters

MappingCharFilterFactory Replaces one or more napping: points to a resource
characters with one or file containing the mappings
more characters, based on using the format:

mappings specified in the

resource file

53

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

Chapter 4. Mapping entities t...

Factory

Description

parameters

HTMLStripCharFilterFactory | Remove HTML standard tags, none
keeping the text
Table 4.2. Some of the available tokenizers
Factory Description parameters
StandardTokenizerFactory Use the Lucene none
StandardTokenizer
HTMLStripStandardTokenizerFdewmove HTML tags, keep none
the text and pass it
to a StandardTokenizer.
@Deprecated, use the
HTMLStripCharFilterFactory
instead
Table 4.3. Some of the available filters
Factory Description parameters
StandardFilterFactory Remove dots from acronyms none
and 's from words
LowerCaseFilterFactory Lowercase words none

StopFilterFactory

SnowballPorterFilterFactory

ISOLatin1AccentFilterFactory

remove words (tokens)

matching a list of stop words

Reduces a word to it's root in
a given language. (eg. protect,
protects, protection share the
same root). Using such a
filter allows searches matching
related words.

remove accents for languages
like French

wor ds: points to a resource file
containing the stop words

ignoreCase: true if
should be ignore
comparing stop words, f al se
otherwise

case
when

| anguage: Danish, Dutch,
English, Finnish, French,
German, lItalian, Norwegian,
Portuguese, Russian,
Spanish, Swedish and a few
more

none

54

Analyzer

We recommend to check all the implementations of
org. apache. sol r. anal ysi s. Tokeni zer Fact ory and
or g. apache. sol r. anal ysi s. TokenFi | ter Factory in your IDE to see the implementations
available.

4.1.6.3. Analyzer discriminator (experimental)

So far all the introduced ways to specify an analyzer were static. However, there are use cases
where it is useful to select an analyzer depending on the current state of the entity to be indexed,
for example in multilingual applications. For an Bl ogEnt ry class for example the analyzer could
depend on the language property of the entry. Depending on this property the correct language
specific stemmer should be chosen to index the actual text.

To enable this dynamic analyzer selection Hibernate Search introduces the
Anal yzer Di scri mi nat or annotation. The following example demonstrates the usage of this
annotation:

Example 4.12. Usage of @AnalyzerDiscriminator in order to select an
analyzer depending on the entity state

@ntity
@ ndexed
@nal yzer Def s({
@\nal yzer Def (name = "en",
t okeni zer = @okeni zer Def (factory = StandardTokeni zer Factory. cl ass),
filters = {
@okenFilterDef(factory = Lower CaseFilterFactory.cl ass),
@okenFil terDef (factory = EnglishPorterFilterFactory.class
)
1.
@\nal yzer Def (nane = "de",
t okeni zer = @okeni zer Def (factory = StandardTokeni zer Fact ory. cl ass),
filters = {
@okenFil terDef (factory Lower CaseFi |l ter Factory. cl ass),
@okenFilterDef (factory = GermanSt enFilterFactory. cl ass)

9]

3]

public class BlogEntry {
@d
@:zener at edVal ue
@ocunent | d

private Integer id;

@ield
@\nal yzerDi scrim nator (i npl = LanguageDi scri m nator. cl ass)
private String | anguage;

55

Chapter 4. Mapping entities t...

@ield
private String text;

private Set<Bl ogEntry> references;

/1 standard getter/setter

public class LanguageDi scrim nator inplements Discrimnator {

public String getAnal yzerDefinitionNane(Object value, Object entity, String
field) {
if (value == null || !'(entity instanceof Article)) {
return null;

}

return (String) val ue;

The prerequisite for using @nal yzer Di scri mi nat or is that all analyzers which are going to
be used are predefined via @nal yzer Def definitions. If this is the case one can place the
@nal yzer Di scri mi nat or annotation either on the class or on a specific property of the entity for
which to dynamically select an analyzer. Via the i npl parameter of the Anal yzer Di scri mi nat or
you specify a concrete implementation of the Di scrim nator interface. It is up to you to
provide an implementation for this interface. The only method you have to implement is
get Anal yzer Def i ni ti onNane() which gets called for each field added to the Lucene document.
The entity which is getting indexed is also passed to the interface method. The val ue parameter
is only set if the Anal yzer Di scri ni nat or is placed on property level instead of class level. In this
case the value represents the current value of this property.

An implemention of the Di scri nmi nat or interface has to return the name of an existing analyzer
definition if the analyzer should be set dynamically or nul | if the default analyzer should not be
overridden. The given example assumes that the language parameter is either 'de’ or ‘en’' which
matches the specified names in the @nal yzer Def s.

@ Note

The @nnal yzer Di scri i nat or is currently still experimental and the APl might
still change. We are hoping for some feedback from the community about the
usefulness and usability of this feature.

56

Analyzer

4.1.6.4. Retrieving an analyzer

During indexing time, Hibernate Search is using analyzers under the hood for you. In some
situations, retrieving analyzers can be handy. If your domain model makes use of multiple
analyzers (maybe to benefit from stemming, use phonetic approximation and so on), you need to
make sure to use the same analyzers when you build your query.

@ Note

This rule can be broken but you need a good reason for it. If you are unsure, use
the same analyzers.

You can retrieve the scoped analyzer for a given entity used at indexing time by Hibernate Search.
A scoped analyzer is an analyzer which applies the right analyzers depending on the field indexed:
multiple analyzers can be defined on a given entity each one working on an individual field, a
scoped analyzer unify all these analyzers into a context-aware analyzer. While the theory seems
a bit complex, using the right analyzer in a query is very easy.

Example 4.13. Using the scoped analyzer when building a full-text query

or g. apache. | ucene. quer yPar ser. Quer yPar ser parser = new QueryParser (
"title",
ful | Text Sessi on. get SearchFactory(). get Anal yzer(Song. cl ass)

)5

or g. apache. | ucene. search. Query | uceneQuery =
parser.parse("title:sky O title_stemed: di anond");

org. hi bernate. Query full Text Query =
ful | Text Sessi on. creat eFul | Text Query(| uceneQuery, Song.class);

List result = full TextQuery.list(); //return a |ist of managed objects

In the example above, the song title is indexed in two fields: the standard analyzer is used in the
field tit1 e and a stemming analyzer is used in the field ti t| e_st ermed. By using the analyzer
provided by the search factory, the query uses the appropriate analyzer depending on the field
targeted.

If your query targets more that one query and you wish to use your standard analyzer, make sure
to describe it using an analyzer definition. You can retrieve analyzers by their definition name
using sear chFact ory. get Anal yzer (String).

57

Chapter 4. Mapping entities t...

4.2. Property/Field Bridge

In Lucene all index fields have to be represented as Strings. For this reason all entity properties
annotated with @i el d have to be indexed in a String form. For most of your properties, Hibernate
Search does the translation job for you thanks to a built-in set of bridges. In some cases, though
you need a more fine grain control over the translation process.

4.2.1. Built-in bridges

Hibernate Search comes bundled with a set of built-in bridges between a Java property type and
its full text representation.

null
null elements are not indexed. Lucene does not support null elements and this does not make
much sense either.

java.lang.String
String are indexed as is

short, Short, integer, Integer, long, Long, float, Float, double, Double, Biginteger, BigDecimal
Numbers are converted in their String representation. Note that numbers cannot be compared
by Lucene (ie used in ranged queries) out of the box: they have to be padded

Note

Using a Range query is debatable and has drawbacks, an alternative approach
is to use a Filter query which will filter the result query to the appropriate range.

Hibernate Search will support a padding mechanism

java.util.Date
Dates are stored as yyyyMMddHHmMmMssSSS in GMT time (200611072203012 for Nov 7th of
2006 4:03PM and 12ms EST). You shouldn't really bother with the internal format. What is
important is that when using a DateRange Query, you should know that the dates have to
be expressed in GMT time.

Usually, storing the date up to the millisecond is not necessary. @ateBridge
defines the appropriate resolution you are wiling to store in the index (
@at eBri dge(resol uti on=Resol uti on. DAY)). The date pattern will then be truncated
accordingly.

@ntity
@ ndexed
public class Meeting {
@i el d(i ndex=I ndex. UN_TOKENI ZED)

58

Custom Bridge

@pat eBr i dge(resol uti on=Resol uti on. M NUTE)
private Date date;

Warning

A Date whose resolution is lower than M LLI SECOND cannot be a @ocunent | d

java.net.URI, java.net.URL
URI and URL are converted to their string representation

java.lang.Class
Class are converted to their fully qualified class name. The thread context classloader is used
when the class is rehydrated

4.2.2. Custom Bridge

Sometimes, the built-in bridges of Hibernate Search do not cover some of your property types,
or the String representation used by the bridge does not meet your requirements. The following
paragraphs describe several solutions to this problem.

4.2.2.1. StringBridge

The simplest custom solution is to give Hibernate Search an implementation of
your expected Object to String bridge. To do so you need to implements the
org. hi bernate. search. bridge. StringBridge interface. All implementations have to be
thread-safe as they are used concurrently.

Example 4.14. Implementing your own Stri ngBri dge

/**

* Paddi ng | nteger bridge.

* All nunbers will be padded with O to match 5 digits

*

* @ut hor Enmanuel Bernard

*/

publi c cl ass Paddedl ntegerBridge inplements StringBridge {

private int PADDI NG = 5;

public String objectToString(Object object) {
String rawi nteger = ((Integer) object).toString();
if (rawinteger.length() > PADDI NG
throw new I | | egal Argument Exception("Try to pad on a nunber too big");
StringBui | der paddedl nteger = new StringBuilder();

59

Chapter 4. Mapping entities t...

for (int padlndex = rawi nteger.length() ; padlndex < PADDI NG ; padl ndex

++) {
paddedl nt eger. append(' 0');

}
return paddedl nt eger. append(rawi nteger).toString();

Then any property or field can use this bridge thanks to the @i el dBri dge annotation

@i el dBri dge(i npl = Paddedl nt eger Bri dge. cl ass)
private |nteger |ength;

Parameters can be passed to the Bridge implementation making it more flexible. The Bridge
implementation implements a Par amet eri zedBr i dge interface, and the parameters are passed
through the @i el dBri dge annotation.

Example 4.15. Passing parameters to your bridge implementation

public class Paddedl nt egerBridge inplenents StringBridge, ParameterizedBridge {

public static String PADDI NG PROPERTY = "paddi ng";
private int padding = 5; //default

public void set Paranet er Val ues(Map paraneters) {
Obj ect paddi ng = paranmeters. get (PADDI NG PROPERTY) ;
if (padding !'= null) this.padding = (Integer) padding;

public String objectToString(Object object) {

String rawi nteger = ((Integer) object).toString();
if (rawinteger.length() > padding)

throw new I | | egal Argunent Exception("Try to pad on a nunber too big");
StringBuil der paddedl nteger = new StringBuilder();
for (int padlndex = rawl nteger.length() ; padl ndex < paddi ng ; padl ndex

++) {
padded| nt eger . append(' 0');

}
return paddedl nt eger. append(rawi nteger).toString();

/| property
@i el dBri dge(i npl = PaddedI nt eger Bri dge. cl ass,

60

Custom Bridge

paranms = @pPar anet er (name="paddi ng", val ue="10")

)

private |nteger |ength;

The ParaneterizedBridge interface can be implemented by StringBridge,
TwoWaySt ri ngBri dge, Fi el dBri dge implementations.

All implementations have to be thread-safe, but the parameters are set during initialization and
no special care is required at this stage.

If you expect to use your bridge implementation on an id property (ie annotated with @ocunent | d
), you need to use a slightly extended version of Stri ngBri dge named TwoWaySt ri ngBri dge.
Hibernate Search needs to read the string representation of the identifier and generate the object
out of it. There is no difference in the way the @i el dBri dge annotation is used.

Example 4.16. Implementing a TwoWayStringBridge which can for example
be used for id properties

public cl ass PaddedI nt eger Bri dge i mpl enent s TwoVWay St ri ngBri dge,
Par anmet eri zedBri dge {

public static String PADDI NG PROPERTY = "paddi ng";
private int padding = 5; //default

public void set Paranet er Val ues(Map paraneters) {
hj ect paddi ng = paraneters. get (PADDI NG_PROPERTY);
if (padding !'= null) this.padding = (Integer) padding;

public String objectToString(Object object) {

String raw nteger = ((Integer) object).toString();
if (rawinteger.length() > padding)

throw new I | | egal Argunment Exception("Try to pad on a nunber too big");
StringBui | der paddedl nteger = new StringBuilder();
for (int padlndex = rawinteger.length() ; padlndex < padding ; padl ndex

++) {
padded| nt eger . append(' 0');

}
return paddedl nt eger. append(raw nteger).toString();

public Object stringToQhject(String stringValue) {
return new | nteger(stringVal ue);

61

Chapter 4. Mapping entities t...

//id property
@ocunent 1 d
@i el dBri dge(i npl = Paddedl nt eger Bri dge. cl ass,
parans = @pPar anet er (nane="paddi ng", val ue="10")
private |Integer id;

It is critically important for the two-way process to be idempotent (ie object =
stringToObject(objectToString(object))).

4.2.2.2. FieldBridge

Some use cases require more than a simple object to string translation when mapping a property
to a Lucene index. To give you the greatest possible flexibility you can also implement a bridge
as a Fi el dBri dge. This interface gives you a property value and let you map it the way you want
in your Lucene Docunent . The interface is very similar in its concept to the Hibernate User Types.

You can for example store a given property in two different document fields:

Example 4.17. Implementing the FieldBridge interface in order to a given
property into multiple document fields

/**
* Storethe datein 3 different fields - year, nonth, day - to ease Range Query per
* year, nonth or day (eg get all the el ements of Decenber for the |last 5 years).
* @ut hor Enmanuel Bernard
*/
public class DateSplitBridge inplenments Fiel dBridge {
private final static TimeZone GMI = Ti neZone. get Ti neZone(" GMI™) ;

public void set(String name, Object val ue, Docunent documnent,
LuceneOptions | uceneOptions) {
Date date = (Date) val ue;
Cal endar cal = GregorianCal endar. getl nstance(GVI) ;
cal .setTinme(date);
int year = cal.get(Cal endar. YEAR);
int month = cal . get(Cal endar. MONTH) + 1;
int day = cal.get(Cal endar. DAY_OF_MONTH) ;

/] set year

| uceneOpt i ons. addFi el dToDocunent (
nane + ".year",
String. val ued (year),
docunent);

/1l set nonth and pad it if needed
| uceneOpt i ons. addFi el dToDocunent (

62

Custom Bridge

name + ".nonth",
nonth < 10 ? "0" : "" + String.valueO(nonth),
docurnent);

/] set day and pad it if needed

| uceneOpt i ons. addFi el dToDocunent (
name + ".day",
day < 10 ? "0" : "" + String.valueO(day),
docunent);

/| property
@i el dBri dge(inpl = DateSplitBridge.class)
private Date date;

In the previous example the fields where not added directly to Document but we where delegating
this task to the LuceneOpt i ons helper; this will apply the options you have selected on @i el d,
like St ore or Ter nWect or options, or apply the choosen @oost value. It is especially useful to
encapsulate the complexity of COVPRESS implementations so it's recommended to delegate to
LuceneOpt i ons to add fields to the Docunent , but nothing stops you from editing the Docunent
directly and ignore the LuceneOpt i ons in case you need to.

Tip

Classes like LuceneOpt i ons are created to shield your application from changes
in Lucene API and simplify your code. Use them if you can, but if you need more
flexibility you're not required to.

4.2.2.3. ClassBridge

It is sometimes useful to combine more than one property of a given entity and index this
combination in a specific way into the Lucene index. The @ assBridge and @ assBri dge
annotations can be defined at the class level (as opposed to the property level). In this case the
custom field bridge implementation receives the entity instance as the value parameter instead of
a particular property. Though not shown in this example, @ assBri dge supports the t er nvect or
attribute discussed in section Section 4.1.1, “Basic mapping”.

Example 4.18. Implementing a class bridge

@ntity

@ ndexed

@ assBri dge(name="br anchnet wor k",
i ndex=I ndex. TOKENI ZED,
st ore=St or e. YES,

63

Chapter 4. Mapping entities t...

inpl = CatFieldsC assBri dge. cl ass,
paranms = @pParaneter(nanme="sepChar", value=" "))
public class Departnment {
private int id;
private String network;
private String branchHead;
private String branch;
private | nteger maxEnpl oyees

public class CatFiel dsC assBridge i npl enents Fiel dBri dge, ParameterizedBridge {
private String sepChar;

public void set Paranet er Val ues(Map paraneters) {
this.sepChar = (String) paraneters.get("sepChar");

public void set(String nane, Cbject val ue, Docunment docunent, LuceneOptions
| uceneOptions) {
/1l In this particular class the name of the new field was passed
/1 fromthe name field of the ClassBridge Annotation. This is not
/1 a requirenent. It just works that way in this instance. The
/1 actual name could be supplied by hard coding it bel ow
Departnent dep = (Departnent) val ue;
String fieldvaluel = dep. get Branch();
if (fieldvaluel == null) {
fieldvaluel = ""
}
String fiel dval ue2 = dep. get Net work();
if (fieldvalue2 == null) {
fieldvalue2 = ""
}
String fieldvalue = fieldValuel + sepChar + fiel dval ue2;
Field field = new Field(nane, fieldValue, |uceneOptions.getStore(),
| uceneOpti ons. get I ndex(), |uceneOptions. get TernVector());
field.setBoost(|uceneOptions. getBoost());
docurent . add(field);

In this example, the particular Cat Fi el dsd assBri dge is applied to the depar t nent instance, the
field bridge then concatenate both branch and network and index the concatenation.

64

Providing your own id

4.3. Providing your own id

Warning

This part of the documentation is a work in progress.

You can provide your own id for Hibernate Search if you are extending the internals. You will have
to generate a unigue value so it can be given to Lucene to be indexed. This will have to be given
to Hibernate Search when you create an org.hibernate.search.Work object - the document id is
required in the constructor.

4.3.1. The Providedld annotation

Unlike conventional Hibernate Search APl and @Documentld, this annotation is used on the
class and not a field. You also can provide your own bridge implementation when you put in
this annotation by calling the bridge() which is on @Providedld. Also, if you annotate a class
with @Providedld, your subclasses will also get the annotation - but it is not done by using the
java.lang.annotations.@Inherited. Be sure however, to not use this annotation with @Documentld
as your system will break.

Example 4.19. Providing your own id

@rovidedld (bridge = org. my. own. package. MyCust onBri dge)
@ ndexed
public class M/ ass{

@Field

String MyString;

4.4. Programmatic API

Warning

This feature is considered experimental. While stable code-wise, the API is subject
to change in the future.

Although the recommended approach for mapping indexed entities is to use annotations, it is
sometimes more convenient to use a different approach:

« the same entity is mapped differently depending on deployment needs (customization for
clients)

65

Chapter 4. Mapping entities t...

e some automatization process requires the dynamic mapping of many entities sharing a common
traits

While it has been a popular demand in the past, the Hibernate team never found the idea of an
XML alternative to annotations appealing due to it's heavy duplication, lack of code refactoring
safety, because it did not cover all the use case spectrum and because we are in the 21st century :)

Th idea of a programmatic APl was much more appealing and has how become a reality. You can
programmatically and safely define your mapping using a programmatic API: you define entities
and fields as indexable by using mapping classes which effectively mirror the annotation concepts
in Hibernate Search. Note that fan(s) of XML approach can design their own schema and use the
programmatic API to create the mapping while parsing the XML stream.

In order to use the programmatic model you must first construct a Sear chMappi ng object.
This object is passed to Hibernate Search via a property set to the Configuration
object. The property key is hi ber nat e. sear ch. nodel _mappi ng or it's type-safe representation
Envi r onnent . MODEL_MAPPI NG.

Sear chMappi ng mappi ng = new Sear chMappi ng() ;

[...]
configuration.setProperty(Environnent. MODEL_MAPPI NG mapping);

[lor in JPA

Sear chMappi ng mappi ng = new Sear chiappi ng() ;

(-]

Map<String, String> properties = new HashMap<String, String)(1);

properties. put(Environment. MODEL_MAPPI NG napping);

EntityManager Factory enf = Persistence.createEntityManagerFactory("userPU',
properties);

The Sear chMappi ng is the root object which contains all the necessary indexable entities and
fields. From there, the Sear chMappi ng object exposes a fluent (and thus intuitive) API to express
your mappings: it contextually exposes the relevant mapping options in a type-safe way, just let
your IDE autocompletion feature guide you through.

Today, the programmatic API cannot be used on a class annotated with Hibernate Search
annotations, chose one approach or the other. Also note that the same default values apply in
annotations and the programmatic API. For example, the @i el d. nane is defaulted to the property
name and does not have to be set.

Each core concept of the programmatic APl has a corresponding example to depict how the
same definition would look using annotation. Therefore seeing an annotation example of the
programmatic approach should give you a clear picture of what Hibernate Search will build with
the marked entities and associated properties.

66

Mapping an entity as indexable

4.4.1. Mapping an entity as indexable

The first concept of the programmatic API is to define an entity as indexable. Using the annotation
approach a user would mark the entity as @ ndexed, the following example demonstrates how to
programmatically achieve this.

Example 4.20. Marking an entity indexable

Sear chMappi ng mappi ng = new Sear chMappi ng() ;

mappi ng. enti ty(Addr ess. cl ass)
. i ndexed()
. i ndexName(" Address_I ndex"); //optional

cfg.getProperties().put("hibernate.search. nodel _mappi ng", nmapping);

As you can see you must first create a Sear chMappi ng object which is the root object that is then
passed to the Confi gur ati on object as property. You must declare an entity and if you wish to
make that entity as indexable then you must call the i ndexed() method. The i ndexed() method
has an optional i ndexNanme(Stri ng i ndexName) which can be used to change the default index
name that is created by Hibernate Search. Using the annotation model the above can be achieved
as:

Example 4.21. Annotation example of indexing entity
@ntity

@ ndexed(i ndex="Addr ess_| ndex")
public class Address {

4.4.2. Adding Documentld to indexed entity

To set a property as a document id:

Example 4.22. Enabling document id with programmatic model

Sear chMappi ng mappi ng = new Sear chMappi ng() ;

mappi ng. enti ty(Address. cl ass) . i ndexed()
.property("addressld", ElementType.FIELD) //field access
.docunent | d()
.nanme("id");

67

Chapter 4. Mapping entities t...

cfg.getProperties().put("hibernate.search. nodel _nmappi ng", mapping);

The above is equivalent to annotating a property in the entity as @ocunent I d as seen in the
following example:

Example 4.23. Documentld annotation definition

@ntity

@ ndexed

public class Address {
@d
@ener at edVal ue
@ocunent | d(nane="i d")
private Long addressld;

The next section demonstrates how to programmatically define analyzers.

4.4.3. Defining analyzers

Analyzers can be programmatically defined using the anal yzerDef (String anal yzer Def,
Cl ass<? ext ends Tokeni zer Fact or y> t okeni zer Fact ory) method. This method also enables
you to define filters for the analyzer definition. Each filter that you define can optionally take in
parameters as seen in the following example :

Example 4.24. Defining analyzers using programmatic model

Sear chMappi ng mappi ng = new Sear chMappi ng() ;

nmappi ng
.anal yzer Def ("ngran', StandardTokeni zerFactory.class)
.filter(LowerCaseFilterFactory.class)
.filter(NG anFilterFactory.class)
.param "m nG anti ze", "3")
. paranm("nmaxG anti ze", "3")
.anal yzerDef ("en", StandardTokeni zer Factory. cl ass)
.filter(LowerCaseFilterFactory.class)
.filter(EnglishPorterFilterFactory.class)
.anal yzerDef ("de", StandardTokeni zerFactory.cl ass)
.filter(LowerCaseFilterFactory.class)
.filter(GermanStentilterFactory.class)
.entity(Address.class).indexed()
. property("addressld", ElenmentType. METHOD) //getter access

68

Defining full text filter definitions

. document | d()
.name("id");

cfg.getProperties().put("hibernate.search. nodel _mappi ng", nmapping);

The analyzer mapping defined above is equivalent to the annotation model using @nal yzer Def
in conjunction with @nal yzer Def s:

Example 4.25. Analyzer definition using annotation

@ ndexed
@ntity
@\nal yzer Def s({
@\nal yzer Def (nane = "ngrant',
t okeni zer = @okeni zerDef (factory = StandardTokeni zer Factory. cl ass),
filters = {
@okenFi | terDef (factory
@okenFi | terDef (factory
parans = {

Lower CaseFi |l t er Factory. cl ass),
NG anfi | t er Fact ory. cl ass,

@Par anet er (nane = "m nG anSi ze", val ue = "3"),
@par anet er (nane = "maxG anti ze", val ue = "3")
b
1,
@\nal yzer Def (name = "en",

t okeni zer = @okeni zer Def (factory = StandardTokeni zer Fact ory. cl ass),
filters = {
@okenFil terDef (factory = LowerCaseFilterFactory.cl ass),

@okenFilterDef (factory = EnglishPorterFilterFactory.cl ass)
1.

@\nal yzer Def (name = "de",

t okeni zer = @okeni zerDef (factory = StandardTokeni zer Factory. cl ass),
filters = {

@okenFi | terDef (factory Lower CaseFi |l t er Factory. cl ass),
@okenFil terDef (factory = GermanStentil t er Factory. cl ass)

1)

})

public class Address {

4.4.4. Defining full text filter definitions

The programmatic API provides easy mechanism for defining full text filter definitions which
is available via @ul | TextFilterDef and @ul | TextFilterDefs. Note that contrary to the

69

Chapter 4. Mapping entities t...

annotation equivalent, full text filter definitions are a global construct and are not tied to an entity.
The next example depicts the creation of full text filter definition using the f ul | Text Fi | t er Def
method.

Example 4.26. Defining full text definition programmatically

Sear chMappi ng mappi ng = new Sear chappi ng() ;

mappi ng
.anal yzerDef ("en", StandardTokeni zerFactory.cl ass)
.filter(LowerCaseFilterFactory.class)
.filter(EnglishPorterFilterFactory.class)
full TextFilterDef ("security", SecurityFilterFactory.class)
.cache(FilterCacheMbdeType. | NSTANCE_ONLY)
.entity(Address. cl ass)
. i ndexed()
. property("addressld", El enentType. METHOD)
. docunent | d()

.name("id")
.property("streetl", El enmentType. METHOD)
Cfield()

.anal yzer("en")

.store(Store. YES)
Lfield()

. hame(" address_dat a")

.anal yzer("en")

.store(Store. NO ;

cfg.getProperties().put("hibernate.search. nodel _nmappi ng", mapping);

The previous example can effectively been seen as annotating your entity with
@ul | Text Fi | ter Def like below:

Example 4.27. Using annotation to define full text filter definition

@ntity
@ ndexed
@nal yzer Def s({
@\nal yzer Def (name = "en",
t okeni zer = @okeni zer Def (factory = StandardTokeni zer Factory. cl ass),
filters = {
@okenFilterDef (factory = Lower CaseFilterFactory.cl ass),
@okenFil terDef (factory = EnglishPorterFilterFactory.class)

})

})
@ul | Text Fil terDefs({

70

Defining fields for indexing

@rul | TextFilterDef(nane = "security", inpl = SecurityFilterFactory.class, cache
= Fil ter CacheMbdeType. | NSTANCE_ONLY)
})

public class Address {

@d

@ener at edVal ue

@ocunent | d(nane="i d")

pubblic Long get Addressid() {...};

@i el ds({
@i el d(i ndex=I ndex. TOKENI ZED, st ore=Store. YES,
anal yzer =@\nal yzer (defini ti on="en")),
@i el d(name="addr ess_dat a", anal yzer=@\nal yzer(definition="en"))
})
public String getAddressi() {...};

4.4.5. Defining fields for indexing

When defining fields for indexing using the programmatic API, call field() on the
property(String propertyName, El enment Type el enent Type) method. From fiel d() you
can specify the name, i ndex, store, bridge and anal yzer definitions.

Example 4.28. Indexing fields using programmatic API

Sear chMappi ng mappi ng = new Sear chMappi ng() ;

nmappi ng
.anal yzerDef ("en", StandardTokeni zerFactory.cl ass)
.filter(LowerCaseFilterFactory.class)
.filter(EnglishPorterFilterFactory.class)
.entity(Address.cl ass).indexed()
. property("addressld", El enentType. METHCOD)
. docunent | d()
.name("id")
.property("streetl", El enmentType. METHOD)
Lfield()
.anal yzer("en")
.store(Store. YES)
.index(Index. TOKENI ZED) //no useful here as it's the default
Lfield()
. nanme("address_data")
.anal yzer("en");

71

Chapter 4. Mapping entities t...

cfg.getProperties().put("hibernate.search. nodel _mappi ng", nmapping);

The above example of marking fields as indexable is equivalent to defining fields using @i el d
as seen below:

Example 4.29. Indexing fields using annotation

@ntity
@ ndexed
@\nal yzer Def s({
@\nal yzer Def (name = "en",
t okeni zer = @okeni zer Def (factory = StandardTokeni zer Factory. cl ass),
filters = {
@okenFi | terDef (factory Lower CaseFi |l t er Factory. cl ass),
@okenFi |l terDef (factory = EnglishPorterFilterFactory. class)

})
1)

public class Address {

@d

@:ener at edVal ue

@ocunent | d(nane="i d")

private Long get Addressld() {...};

@i el ds({
@i el d(i ndex=I ndex. TOKENI ZED, st ore=St ore. YES,
anal yzer =@\nal yzer (definition="en")),
@i el d(name="addr ess_data", anal yzer=@\nal yzer (definition="en"))

})
public String getAddress1() {...}

4.4.6. Programmatically defining embedded entities

In this section you will see how to programmatically define entities to be embedded into the
indexed entity similar to using the @ ndexEnbedded model. In order to define this you must mark
the property asi ndexEnbedded. The is the option to add a prefix to the embedded entity definition
and this can be done by calling pr ef i x as seen in the example below:

72

Programmatically defining embedded entities

Example 4.30. Programmatically defining embedded entites

Sear chMappi ng mappi ng = new Sear chMappi ng() ;

nmapppi ng
.entity(Product Catal og. cl ass)
. i ndexed()
. property("catal ogld", ElenentType. METHOD)
. document | d()
.name("id")
.property("title", El enentType. METHOD)
Lfield()
. i ndex (I ndex. TOKENI ZED)
.store(Store. NO
. property("description", ElenmentType. METHOD)
Lfield()
. i ndex(1 ndex. TOKENI ZED)
.store(Store. NO
.property("itens", El enentType. METHOD)
. i ndexEnbedded()
.prefix("catalog.itens"); //optional

cfg.getProperties().put("hibernate.search. nodel _mappi ng", napping);

The next example shows the same definition using annotation (@ ndexEnbedded):

Example 4.31. Using @IndexEmbedded

@ntity
@ ndexed
public class ProductCatal og {
@d
@zener at edVal ue
@ocunent | d(nane="i d")
public Long getCatalogld() {...}

@i el d(store=Store. NO, index=Index. TOKENI ZED)
public String getTitle() {...}

@i el d(store=Store. NO, index=lndex. TOKEN ZED)
public String getDescription();

@neToMany(fetch = FetchType. LAZY)

@ ndexCol um(nanme = "list_position")

@Cascade(or g. hi bernat e. annot ati ons. CascadeType. ALL)
@ ndexEnbedded(prefi x="catal og.itens")

73

Chapter 4. Mapping entities t...

public List<lten> getltens() {...}

4.4.7. Contained In definition

@ont ai nedl n can be define as seen in the example below:

Example 4.32. Programmatically defining Containedin

Sear chMappi ng mappi ng = new Sear chMappi ng() ;

mapppi ng
.entity(Product Catal og. cl ass)
. i ndexed()
. property("catal ogld", El enentType. METHOD)
. docunent | d()
.property("title", ElenentType. METHOD)

Lfield()

. property("description", ElementType. METHOD)
Lfield()

.property("itens", ElenentType. METHOD)
. i ndexEnbedded()

.entity(ltem cl ass)
. property("description", ElenmentType. METHOD)
Lfield()
. property("product Cat al og", El ement Type. METHOD)
.contai nedln();

cfg.getProperties().put("hibernate.search. nodel _nmappi ng", mapping)

This is equivalent to defining @ont ai nedl n in your entity:

Example 4.33. Annotation approach for Containedin

@ntity
@ ndexed
public class Product Catal og {

@d
@:ener at edVal ue
@ocunent | d

74

Date/Calendar Bridge

public Long getCatalogld() {...}

@ield
public String getTitle() {...}

@ield
public String getDescription() {...}

@neToMany(fetch = FetchType. LAZY)

@ ndexCol um(nanme = "list_position")
@Cascade(or g. hi bernat e. annot ati ons. CascadeType. ALL)
@ ndexEnbedded

private List<ltenr getltens() {...}

@ntity

public class Item {

@d
@c:ener at edVal ue
private Long item d;

@ield
public String getDescription() {...}

@manyToOne(cascade = { CascadeType. PERSI ST, CascadeType. REMOVE })

@Cont ai nedl n
publ i ¢ Product Catal og get Product Catal og() {...}

4.4.8. Date/Calendar Bridge
In order to define a calendar or date bridge mapping, call the dateBri dge(Resol ution

resol uti on) orcal endarBri dge(Resol ution resol uti on) methods after you have defined a
fiel d() inthe Sear chMappi ng hierarchy.

Example 4.34. Programmatic model for defining calendar/date bridge

Sear chMappi ng mappi ng = new Sear chMappi ng() ;

mappi ng

75

Chapter 4. Mapping entities t...

.entity(Address. cl ass)
. i ndexed()
. property("addressl d", ElenentType. Fl ELD)

. docunent | d()

.property("streetl", ElenmentType.Fl ELD)
Lfield()

. property("createdOn", El enentType. Fl ELD)
Lfield()
. dat eBri dge(Resol uti on. DAY)

. property("l ast Updat ed", El enent Type. Fl ELD)
. cal endar Bri dge(Resol uti on. DAY) ;

cfg.getProperties().put("hibernate.search. nodel _mappi ng", nmapping);

See below for defining the above using @al endar Bri dge and @at eBri dge:

Example 4.35. @CalendarBridge and @DateBridge definition

@ntity
@ ndexed
public class Address {

@d

@scener at edVal ue
@ocunent 1 d

private Long addressld;

@ield
private String addressi;

@ield
@pat eBri dge(resol uti on=Resol uti on. DAY)
private Date createdOn;

@Cal endar Bri dge(resol uti on=Resol uti on. DAY)
private Cal endar | astUpdat ed;

4.4.9. Defining bridges

It is possible to associate bridges to programmatically defined fields. When you define a
fi el d() programmatically you can use the bri dge(C ass<?> i npl) to associate aFi el dBri dge
implementation class. The bridge method also provides optional methods to include any

76

Defining bridges

parameters required for the bridge class. The below shows an example of programmatically
defining a bridge:

Example 4.36. Defining field bridges programmatically

Sear chMappi ng mappi ng = new Sear chMappi ng() ;

mappi ng
.entity(Address. cl ass)
. i ndexed()
. property("addressl d", ElenentType. Fl ELD)
. document | d()
.property("streetl", ElenmentType. Fl ELD)
Lfield()
Lfield()
.name("street1_abridged")
. bridge(ConcatStringBridge.class)
. param("size", "4");

cfg.getProperties().put("hibernate.search. nodel _mappi ng", nmapping);

The above can equally be defined using annotations, as seen in the next example.

Example 4.37. Defining field bridges using annotation

@ntity
@ ndexed

public class Address {

@d

@zener at edVal ue
@ocunent | d(nane="i d")
private Long addressld;

@i el ds({
@i el d,
@i el d(name="street1_abri dged",
bridge = @i el dBridge(inpl = Concat StringBridge. cl ass,
paranms = @pParaneter(name="size", value="4"))

})

private String addressi;

77

Chapter 4. Mapping entities t...

4.4.10. Mapping class bridge
You can define class bridges on entities programmatically. This is shown in the next example:

Example 4.38. Defining class briges using API

Sear chMappi ng mappi ng = new Sear chMappi ng() ;

nmappi ng
.entity(Departnents. cl ass)
.cl assBri dge(Cat Dept sFi el dsCl assBri dge. cl ass)

. name(" branchnet wor k")
. i ndex(1 ndex. TOKENI ZED)
.store(Store. YES)
. param("sepChar", " ")

. cl assBri dge(Equi pnent Type. cl ass)
. nane("equi ptype")
. i ndex(1 ndex. TOKENI ZED)
.store(Store. YES)
.param("C', "Cisco")
.param("D', "D-Link")
. param(" K", "Kingston")
. param("3", "3Cont)

. i ndexed();

cfg.getProperties().put("hibernate.search. nodel _mappi ng", nmapping);

The above is similar to using @ assBri dge as seen in the next example:

Example 4.39. Using @ClassBridge

@ntity
@ ndexed
@ assBridges ({
@ assBri dge(name="br anchnet wor k",
i ndex= | ndex. TOKENI ZED,
store= Store. YES,
i mpl = Cat Dept sFi el dsCl assBri dge. cl ass,
parans = @Paraneter(nane="sepChar", value=" ")),
@ assBri dge(nane="equi pt ype",
i ndex= | ndex. TOKENI ZED,
store= Store. YES,
i mpl = Equi pnent Type. cl ass,
parans = {@Paraneter(nane="C', value="Ci sco"),
@par anet er (nane="D", val ue="D-Link"),

78

Mapping dynamic boost

@rar anet er (name="K", val ue="Ki ngston"),
@rar anet er (nane="3", val ue="3Coni)
b
})

public class Departnments {

4.4.11. Mapping dynamic boost

You can apply a dynamic boost factor on either a field or a whole entity:

Example 4.40. DynamicBoost mapping using programmatic model

Sear chMappi ng mappi ng = new Sear chMappi ng() ;

nmappi ng
.entity(Dynam cBoost edDesclLi brary. cl ass)
. i ndexed()
. dynami cBoost (Cust onBoost St r at egy. cl ass)
.property("libraryld", ElenentType.FlELD)
.docunment 1 d(). name("i d")
. property("nanme", ElenmentType. Fl ELD)
. dynam cBoost (Cust onFi el dBoost St r at egy. cl ass) ;
Lfield()
.store(Store. YES)

cfg.getProperties().put("hibernate.search. nodel _mappi ng", nmapping);

The next example shows the equivalent mapping using the @ynani cBoost annotation:

Example 4.41. Using the @DynamicBoost

@ntity

@ ndexed

@ynam cBoost (i mpl = Cust onBoost Strat egy. cl ass)
public class Dynani cBoostedDescriptionLibrary {

@d

@szener at edVal ue
@ocurnent | d
private int id;

79

Chapter 4. Mapping entities t...

private float dynScore;
@ield(store = Store. YES)
@ynani cBoost (i npl = Custonfi el dBoost Strat egy. cl ass)

private String nane;

publ i ¢ Dynami cBoost edDescri ptionLi brary() {
dynScore = 1.0f;

80

Chapter 5.

Querying

The second most important capability of Hibernate Search is the ability to execute a Lucene query
and retrieve entities managed by an Hibernate session, providing the power of Lucene without
leaving the Hibernate paradigm, and giving another dimension to the Hibernate classic search
mechanisms (HQL, Criteria query, native SQL query). Preparing and executing a query consists
of four simple steps:

e Creating a Ful | Text Sessi on

+ Creating a Lucene query

« Wrapping the Lucene query using a or g. hi ber nat e. Query

» Executing the search by calling for example | i st () or scrol | ()

To access the querying facilities, you have to use an Ful | Text Sessi on. This Search specific
session wraps a regular or g. hi ber nat e. Sessi on to provide query and indexing capabilities.

Example 5.1. Creating a FullTextSession

Sessi on session = sessi onFactory. openSessi on();

Ful | Text Sessi on ful | Text Sessi on = Search. get Ful | Text Sessi on(sessi on);

The actual search facility is built on native Lucene queries which the following example illustrates.

Example 5.2. Creating a Lucene query

org. apache. | ucene. queryPar ser. Quer yPar ser parser =
new QueryParser("title", new StopAnalyzer());

org. apache. | ucene. search. Query luceneQuery = parser.parse("summary: Festina O
br and: Sei ko");

or g. hi bernate. Query ful | Text Query =
ful | Text Sessi on. creat eFul | Text Query(| uceneQuery);

List result = full TextQuery.list(); //return a list of managed objects

The Hibernate query built on top of the Lucene query is a regular or g. hi ber nat e. Query, which
means you are in the same paradigm as the other Hibernate query facilities (HQL, Native or
Criteria). The regular!i st () ,uni queResul t(),iterate() andscrol | () methods can be used.

In case you are using the Java Persistence APIs of Hibernate (aka EJB 3.0 Persistence), the
same extensions exist:

81

Chapter 5. Querying

Example 5.3. Creating a Search query using the JPA API

EntityManager em = entityManager Factory. creat eEntityManager();
Ful | Text Enti t yManager full Text EntityManager =
org. hi bernat e. search. j pa. Sear ch. get Ful | Text Enti t yManager (em
or g. apache. | ucene. quer yPar ser. Quer yPar ser parser =
new QueryParser("title", new StopAnalyzer());
org. apache. | ucene. search. Query luceneQuery = parser.parse("sunmary: Festina O
br and: Sei ko");
j avax. persi stence. Query ful | Text Query =
ful |l Text EntityManager. creat eFul | Text Query(| uceneQuery);
List result = full Text Query.getResultList(); //return alist of managed objects

The following examples we will use the Hibernate APIs but the same example can be easily
rewritten with the Java Persistence API by just adjusting the way the Ful | Text Query is retrieved.

5.1. Building queries

Hibernate Search queries are built on top of Lucene queries which gives you total freedom on the
type of Lucene query you want to execute. However, once built, Hibernate Search wraps further
query processing using or g. hi ber nat e. Quer y as your primary query manipulation API.

5.1.1. Building a Lucene query

It is out of the scope of this documentation on how to exactly build a Lucene query. Please refer
to the online Lucene documentation or get hold of a copy of either Lucene In Action or Hibernate
Search in Action.

5.1.2. Building a Hibernate Search query

5.1.2.1. Generality

Once the Lucene query is built, it needs to be wrapped into an Hibernate Query.

Example 5.4. Wrapping a Lucene query into a Hibernate Query

Ful | Text Sessi on ful | Text Sessi on = Sear ch. get Ful | Text Sessi on(session);
org. hi bernat e. Query ful | Text Query =
ful | Text Sessi on. creat eFul | Text Query(| uceneQuery);

82

Building a Hibernate Search query

If not specified otherwise, the query will be executed against all indexed entities, potentially
returning all types of indexed classes. It is advised, from a performance point of view, to restrict
the returned types:

Example 5.5. Filtering the search result by entity type

org. hi bernate. Query ful | Text Query =
ful | Text Sessi on. creat eFul | Text Query(| uceneQuery, Customer.class);

/'l or

full Text Query = full Text Session. creat eFul | Text Query(|uceneQuery, Itemclass,
Actor.cl ass);

The first example returns only matching Cust oner s, the second returns matching Act or s and
Itenms. The type restriction is fully polymorphic which means that if there are two indexed
subclasses Sal esman and Customer of the baseclass Person, it is possible to just specify
Per son. cl ass in order to filter on result types.

5.1.2.2. Pagination

Out of performance reasons it is recommended to restrict the number of returned objects per
query. In fact is a very common use case anyway that the user navigates from one page to an
other. The way to define pagination is exactly the way you would define pagination in a plain HQL
or Criteria query.

Example 5.6. Defining pagination for a search query

org. hi bernate. Query ful | Text Query =
ful | Text Sessi on. creat eFul | Text Query(| uceneQuery, Custoner.class);

full Text Query. setFirstResult(15); //start fromthe 15th el ement

ful | Text Query. set MaxResul ts(10); //return 10 el enents

@ Note

It is still possible to get the total number of matching elements regardless of the
pagination via f ul | t ext Query. get Resul t Si ze()

5.1.2.3. Sorting

Apache Lucene provides a very flexible and powerful way to sort results. While the default sorting
(by relevance) is appropriate most of the time, it can be interesting to sort by one or several other
properties. In order to do so set the Lucene Sort object to apply a Lucene sorting strategy.

83

Chapter 5. Querying

Example 5.7. Specifying a Lucene sort in order to sort the results

org. hi bernate. search. Ful | Text Query query = s.createFull Text Query(query,
Book. cl ass) ;

org. apache. | ucene. search. Sort sort = new Sort(new SortField("title"));

guery. set Sort(sort);

List results = query.list();

One can notice the Ful | Text Query interface which is a sub interface of or g. hi ber nat e. Query.
Be aware that fields used for sorting must not be tokenized.

5.1.2.4. Fetching strategy

When you restrict the return types to one class, Hibernate Search loads the objects using a single
query. It also respects the static fetching strategy defined in your domain model.

It is often useful, however, to refine the fetching strategy for a specific use case.

Example 5.8. Specifying Fet chvode ONn a query

Criteria criteria = s.createCriteria(Book.class).setFetchMde("authors",
Fet chMode. JO N) ;
s.creat eFul | Text Query(luceneQuery).setCriteriaQuery(criteria);

In this example, the query will return all Books matching the luceneQuery. The authors collection
will be loaded from the same query using an SQL outer join.

When defining a criteria query, it is not needed to restrict the entity types returned while creating
the Hibernate Search query from the full text session: the type is guessed from the criteria query
itself. Only fetch mode can be adjusted, refrain from applying any other restriction.

One cannot use set Cri t eri aQuery if more than one entity type is expected to be returned.
5.1.2.5. Projection

For some use cases, returning the domain object (graph) is overkill. Only a small subset of the
properties is necessary. Hibernate Search allows you to return a subset of properties:

Example 5.9. Using projection instead of returning the full domain object

org. hi bernate. search. Ful | Text Query query = s.createFul | Text Query(|uceneQuery,
Book. cl ass);

query.setProjection("id", "summary", "body", "mai nAuthor.name");

List results = query.list();

oject[] firstResult = (Object[]) results.get(0);

84

Building a Hibernate Search query

Integer id = firstResult[O0];
String summary = firstResult[1];
String body = firstResult[2];
String authorName = firstResult[3];

Hibernate Search extracts the properties from the Lucene index and convert them back to their
object representation, returning a list of Obj ect [] . Projections avoid a potential database round
trip (useful if the query response time is critical), but has some constraints:

» the properties projected must be stored in the index (@i el d(store=Store. YES)), which
increase the index size

* the properties projected must use a Fi el dBri dge implementing
or g. hi bernat e. search. bri dge. TwoWayFi el dBri dge or
or g. hi ber nat e. sear ch. bri dge. TwoWay St ri ngBri dge, the latter being the simpler version.
All Hibernate Search built-in types are two-way.

« you can only project simple properties of the indexed entity or its embedded associations. This
means you cannot project a whole embedded entity.

 projection does not work on collections or maps which are indexed via @ ndexedEnbedded

Projection is useful for another kind of use cases. Lucene provides some metadata information
to the user about the results. By using some special placeholders, the projection mechanism can
retrieve them:

Example 5.10. Using projection in order to retrieve meta data

org. hi bernat e. search. Ful | Text Query query = s.createFul | Text Query(|uceneQuery,
Book. cl ass) ;

query. set Proj ecti on(Ful | Text Query. SCORE, Ful | Text Query. TH' S,
" mai nAut hor . nane");

List results = query.list();

oject[] firstResult = (Object[]) results.get(0);

float score = firstResult[O0];

Book book = firstResul t[1];

String authorName = firstResult[2];

You can mix and match regular fields and special placeholders. Here is the list of available
placeholders:

» FullTextQuery.THIS: returns the initialized and managed entity (as a non projected query would
have done).

* FullTextQuery.DOCUMENT: returns the Lucene Document related to the object projected.

* FullTextQuery.OBJECT_CLASS: returns the class of the indexed entity.

85

Chapter 5. Querying

» FullTextQuery.SCORE: returns the document score in the query. Scores are handy to compare
one result against an other for a given query but are useless when comparing the result of
different queries.

* FullTextQuery.ID: the id property value of the projected object.

e FullTextQuery.DOCUMENT _ID: the Lucene document id. Careful, Lucene document id can
change overtime between two different IndexReader opening (this feature is experimental).

* FullTextQuery.EXPLANATION: returns the Lucene Explanation object for the matching object/
document in the given query. Do not use if you retrieve a lot of data. Running explanation
typically is as costly as running the whole Lucene query per matching element. Make sure you
use projection!

5.2. Retrieving the results

Once the Hibernate Search query is built, executing it is in no way different than executing a HQL
or Criteria query. The same paradigm and object semantic applies. All the common operations
are available: i st (), uni queResul t(),iterate(),scroll ().

5.2.1. Performance considerations

If you expect a reasonable number of results (for example using pagination) and expect to work on
all of them, | i st () oruni queResul t () are recommended. | i st () work best if the entity bat ch-
si ze is set up properly. Note that Hibernate Search has to process all Lucene Hits elements
(within the pagination) when using | i st () , uni queResul t () anditerate().

If you wish to minimize Lucene document loading, scrol | () is more appropriate. Don't forget to
close the Scrol | abl eResul t s object when you're done, since it keeps Lucene resources. If you
expect to use scrol |, but wish to load objects in batch, you can use query. set Fet chSi ze().
When an object is accessed, and if not already loaded, Hibernate Search will load the next
f et chSi ze objects in one pass.

Pagination is a preferred method over scrolling though.

5.2.2. Result size

It is sometime useful to know the total number of matching documents:

« for the Google-like feature 1-10 of about 888,000,000
 to implement a fast pagination navigation

« to implement a multi step search engine (adding approximation if the restricted query return no
or not enough results)

Of course it would be too costly to retrieve all the matching documents. Hibernate Search allows
you to retrieve the total number of matching documents regardless of the pagination parameters.

86

ResultTransformer

Even more interesting, you can retrieve the number of matching elements without triggering a
single object load.

Example 5.11. Determining the result size of a query

org. hi bernate. search. Ful | Text Query query = s.createFul | Text Query(|uceneQuery,
Book. cl ass);

assert 3245 == query.getResultSize(); //return the nunber of matching books
wi t hout | oading a single one

org. hi bernat e. search. Ful | Text Query query = s.createFul | Text Query(|uceneQuery,
Book. cl ass) ;

query. set MaxResul t (10);

List results = query.list();

assert 3245 == query.getResultSize(); //return the total nunber of matchi ng books
regardl ess of pagination

Note

Like Google, the number of results is approximative if the index is not fully up-to-
date with the database (asynchronous cluster for example).

5.2.3. ResultTransformer

Especially when using projection, the data structure returned by a query (an object array in this
case), is not always matching the application needs. It is possible to apply a Resul t Tr ansf or mer
operation post query to match the targeted data structure:

Example 5.12. Using ResultTransformer in conjunction with projections

org. hi bernate. search. Ful | Text Query query = s.createFul | Text Query(|uceneQuery,
Book. cl ass);
query.setProjection("title", "mainAuthor.nanme");

query. set Resul t Tr ansf or ner (
new St ati cAl i asToBeanResul t Tr ansf or mer (BookVi ew. cl ass, "title", "author")
)
Li st <BookVi ew> results = (List<BookView>) query.list();
for(BookView view : results) {
|l og.info("Book: " + viewgetTitle() + ", " + view getAuthor());

Examples of Resul t Tr ansf or mer implementations can be found in the Hibernate Core codebase.

87

Chapter 5. Querying

5.2.4. Understanding results

You will find yourself sometimes puzzled by a result showing up in a query or a result not showing
up in a query. Luke is a great tool to understand those mysteries. However, Hibernate Search
also gives you access to the Lucene Expl anat i on object for a given result (in a given query). This
class is considered fairly advanced to Lucene users but can provide a good understanding of the
scoring of an object. You have two ways to access the Explanation object for a given result:

« Use the ful | Text Query. expl ai n(i nt) method
» Use projection

The first approach takes a document id as a parameter and return the Explanation object. The
document id can be retrieved using projection and the Ful | Text Quer y. DOCUMENT_| D constant.

Warning

The Document id has nothing to do with the entity id. Do not mess up these two
notions.

The second approach let's you project the Explanation object using the
Ful | Text Query. EXPLANATI ON constant.

Example 5.13. Retrieving the Lucene Explanation object using projection

Ful | Text Query ftQuery = s.createFul | Text Query(| uceneQuery, Dvd.class)
.setProjection(Full TextQuery. DOCUMENT_I D, Ful | Text Query. EXPLANATI ON,
Ful | Text Query. THI S);
@Buppr essWar ni ngs("unchecked") List<Object[]> results = ftQuery.list();
for (Object[] result : results) {
Expl anation e = (Explanation) result[1];
di splay(e.toString());

Be careful, building the explanation object is quite expensive, it is roughly as expensive as running
the Lucene query again. Don't do it if you don't need the object

5.3. Filters

Apache Lucene has a powerful feature that allows to filter query results according to a custom
filtering process. This is a very powerful way to apply additional data restrictions, especially since
filters can be cached and reused. Some interesting use cases are:

* security

» temporal data (eg. view only last month's data)

88

Filters

 population filter (eg. search limited to a given category)
* and many more

Hibernate Search pushes the concept further by introducing the notion of parameterizable named
filters which are transparently cached. For people familiar with the notion of Hibernate Core filters,
the API is very similar:

Example 5.14. Enabling fulltext filters for a given query

ful |l Text Query = s.createFul | Text Query(query, Driver.class);

ful | Text Query. enabl eFul | TextFilter("bestDriver");

ful |l Text Query. enabl eFul | TextFilter("security").setParaneter("l ogi n",
"andre");

full TextQuery.list(); //returns only best drivers where andre has credentials

In this example we enabled two filters on top of the query. You can enable (or disable) as many
filters as you like.

Declaring filters is done through the @ul | Text Fi | t er Def annotation. This annotation can be on
any @ ndexed entity regardless of the query the filter is later applied to. This implies that filter
definitions are global and their names must be unique. A Sear chExcept i on is thrown in case two
different @ul | Text Fi | t er Def annotations with the same name are defined. Each named filter
has to specify its actual filter implementation.

Example 5.15. Defining and implementing a Filter

@ntity

@ ndexed

@ul | TextFilterDefs({
@ul | Text Fi |l t er Def (nane "bestDriver", inmpl = BestDriversFilter.class),
@ul | TextFil terDef (nane = "security", inpl = SecurityFilterFactory.class)

})

public class Driver { ... }

public class BestDriversFilter extends org.apache.lucene.search.Filter {

publ i c Docl dSet get Docl dSet (| ndexReader reader) throws | OException {
OpenBit Set bitSet = new OpenBit Set(reader. maxDoc());
TermDocs ternDocs = reader.ternDocs(new Tern{ "score", "5"));
while (ternmDocs. next()) {
bitSet.set(termnmDocs.doc());

}
return bitSet;

89

Chapter 5. Querying

BestDriversFilter is an example of a simple Lucene filter which reduces the result
set to drivers whose score is 5. In this example the specified filter implements the
or g. apache. | ucene. sear ch. Fi | t er directly and contains a no-arg constructor.

If your Filter creation requires additional steps or if the filter you want to use does not have a no-
arg constructor, you can use the factory pattern:

Example 5.16. Creating a filter using the factory pattern

@ntity

@ ndexed

@ul | TextFilterDef(nane = "bestDriver", inpl = BestDriversFilterFactory.class)
public class Driver { ... }

public class BestDriversFilterFactory {

@actory

public Filter getFilter() {
//some additional steps to cache the filter results per |ndexReader
Filter bestDriversFilter = new BestDriversFilter();
return new Cachi ngW apperFilter(bestDriversFilter);

Hibernate Search will look for a @act or y annotated method and use it to build the filter instance.
The factory must have a no-arg constructor. For people familiar with JBoss Seam, this is similar
to the component factory pattern, but the annotation is different!

Named filters come in handy where parameters have to be passed to the filter. For example a
security filter might want to know which security level you want to apply:

Example 5.17. Passing parameters to a defined filter

full Text Query = s.createFul | Text Query(query, Driver.class);
full Text Query. enabl eFul | TextFilter("security").setParaneter("level", 5);

Each parameter name should have an associated setter on either the filter or filter factory of the
targeted named filter definition.

Example 5.18. Using parameters in the actual filter implementation

public class SecurityFilterFactory {

90

Filters

private |Integer |evel

/**

* injected paraneter

*/
public void setlLevel (Integer level) {
this.level = level;
}
@ey

public FilterKey getKey() {
St andar dFi | ter Key key = new StandardFilterKey();
key. addParameter(| evel);
return key;

}

@actory

public Filter getFilter() {
Query query = new TernmQuery(new Tern("level", level.toString()));
return new Cachi ngWapperFilter(new QueryWapperFilter(query));

}

Note the method annotated @ey returning a Fi | t er Key object. The returned object has a special
contract: the key object must implement equal s() / hashCode() so that 2 keys are equal if and
only if the given Fi | ter types are the same and the set of parameters are the same. In other
words, 2 filter keys are equal if and only if the filters from which the keys are generated can be
interchanged. The key object is used as a key in the cache mechanism.

@Xey methods are needed only if:

« you enabled the filter caching system (enabled by default)
« your filter has parameters

In most cases, using the St andar dFi | t er Key implementation will be good enough. It delegates
the equal s() / hashCode() implementation to each of the parameters equals and hashcode
methods.

As mentioned before the defined filters are per default cached and the cache uses a combination
of hard and soft references to allow disposal of memory when needed. The hard reference
cache keeps track of the most recently used filters and transforms the ones least used to
Sof t Ref er ences when needed. Once the limit of the hard reference cache is reached additional
filters are cached as Soft Ref erences. To adjust the size of the hard reference cache, use
hi bernate. search. filter.cache_strategy. si ze (defaults to 128). For advanced use of filter
caching, you can implement your own Fi | t er Cachi ngSt r at egy. The classname is defined by
hi bernate. search.filter.cache_strategy.

91

Chapter 5. Querying

This filter caching mechanism should not be confused with caching the actual filter
results. In Lucene it is common practice to wrap filters using the | ndexReader around
a CachingWapperFilter. The wrapper will cache the DocldSet returned from the
get Docl dSet (1 ndexReader reader) method to avoid expensive recomputation. It is important
to mention that the computed Docl dSet is only cachable for the same | ndexReader instance,
because the reader effectively represents the state of the index at the moment it was opened.
The document list cannot change within an opened | ndexReader . A different/new | ndexReader
instance, however, works potentially on a different set of Docunent s (either from a different index
or simply because the index has changed), hence the cached Docl dSet has to be recomputed.

Hibernate Search also helps with this aspect of caching. Per default the cache flag
of @ull TextFilterDef is set to FilterCacheMvdeType. | NSTANCE AND DOCI DSETRESULTS
which will automatically cache the filter instance as well as wrap the
specified filter around a Hibernate specific implementation of Cachi ngW apperFilter
(org. hi bernate.search.filter.Cachi ngWapperFilter). In contrast to Lucene's version
of this class SoftReferences are used together with a hard reference count (see
discussion about filter cache). The hard reference count can be adjusted using
hi bernate. search. filter.cache_docidresults. si ze (defaults to 5). The wrapping behaviour
can be controlled using the @ul | Text Fi | t er Def . cache parameter. There are three different
values for this parameter:

Value Definition

FilterCacheModeType.NONE No filter instance and no result is cached by
Hibernate Search. For every filter call, a new
filter instance is created. This setting might
be useful for rapidly changing data sets or
heavily memory constrained environments.

FilterCacheModeType.INSTANCE_ONLY The filter instance is cached and reused
across concurrent Fi | t er. get Docl dSet ()
calls. Docl dSet results are not cached. This
setting is useful when a filter uses its own
specific caching mechanism or the filter
results change dynamically due to application
specific events making Docl dSet caching in
both cases unnecessary.

FilterCacheModeType.INSTANCE_AND_DOCIERHT RESleTiBstance and the Docl dSet
results are cached. This is the default value.

Last but not least - why should filters be cached? There are two areas where filter caching shines:

« the system does not update the targeted entity index often (in other words, the IndexReader
is reused a lot)

« the Filter's DocldSet is expensive to compute (compared to the time spent to execute the query)

92

Using filters in a sharded environment

5.3.1. Using filters in a sharded environment

It is possible, in a sharded environment to execute queries on a subset of the available shards.
This can be done in two steps:

 create a sharding strategy that does select a subset of Di rect or yProvi der s depending on
sone filter configuration

* activate the proper filter at query time

Let's first look at an example of sharding strategy that query on a specific customer shard if the
customer filter is activated.

public class CustonerShardi ngStrategy inplenents | ndexShardi ngStrategy {

/1 stored DirectoryProviders in a array indexed by custonerlD
private DirectoryProvider<?>[] providers;

public voidinitialize(Properties properties, DirectoryProvider<?>[] providers)
{

this.providers = providers;

}

public DirectoryProvider<?>[] getDirectoryProvidersForAll Shards() {
return providers;

}

public DirectoryProvider<?> getDirectoryProviderForAdditi on(Cl ass<?> entity,
Serializable id, String idlnString, Document docunent) {
I nt eger custonerl| D =
I nt eger. parsel nt (docunent . get Fi el d("custonerI D").stringVal ue());
return providers[custonerlD];

}

public DirectoryProvider<?>[] getDirectoryProvi dersForDel etion(d ass<?> entity,
Serializable id, String idlnString) {
return getDirectoryProvidersForAll Shards();

}

/**
* Optimzation; don't search ALL shards and union the results; inthis case, we
* can be certain that all the data for a particular customer Filter isinasingle
* shard; sinply return that shard by custonerlD.
*/

public Di rect oryProvi der <?>[]
getDirectoryProvi dersFor Query(Ful | TextFilterlnmplementor[] filters) {
FFul | TextFilter filter = getCustonerFilter(filters, "customer");
if (filter == null) {

93

Chapter 5. Querying

return getDirectoryProvi dersFor Al | Shards();
}

el se {
return new DirectoryProvider[]
{ providers[Integer.parselnt(filter.getParaneter("customerlD").toString())] };

}
}

private Full TextFilter getFilter(Full TextFilterlnplenentor[] filters, String
nane) {

for (Full TextFilterlnmplenentor filter: filters) {

if (filter.getNane().equals(nane)) return filter;

}

return null;

}

In this example, if the filter named cust oner is present, we make sure to only use the shard
dedicated to this customer. Otherwise, we return all shards. A given Sharding strategy can react
to one or more filters and depends on their parameters.

The second step is simply to activate the filter at query time. While the filter can be a regular filter
(as defined in Section 5.3, “Filters”) which also filters Lucene results after the query, you can make
use of a special filter that will only be passed to the sharding strategy and otherwise ignored for the
rest of the query. Simply use the Shar dSensi ti veOnl yFi | t er class when declaring your filter.

@ntity @ndexed
@-ul | Text Fil t er Def (nane="custoner", i npl=ShardSensitiveOnlyFilter.class)
public class Customer {

Ful | Text Query query = ft Em createFul | Text Query(l uceneQuery, Custoner.class);
query. enabl eFul | textFilter("customer"). set Paraneter("Custonerl D', 5);

@uppr essWar ni ngs(" unchecked")

Li st <Custoner> results = query. get Resul tList();

Note that by using the Shar dSensi ti veOnl yFi | t er, you do not have to implement any Lucene
filter. Using filters and sharding strategy reacting to these filters is recommended to speed up
queries in a sharded environment.

5.4. Optimizing the query process

Query performance depends on several criteria:

94

Native Lucene Queries

 the Lucene query itself: read the literature on this subject
» the number of object loaded: use pagination (always ;-)) or index projection (if needed)

« the way Hibernate Search interacts with the Lucene readers: defines the appropriate Reader
strategy.

5.5. Native Lucene Queries

If you wish to use some specific features of Lucene, you can always run Lucene specific queries.
Check Chapter 8, Advanced features for more information.

95

96

Chapter 6.

Manual index changes

As Hibernate core applies changes to the Database, Hibernate Search detects these changes and
will update the index automatically (unless the EventListeners are disabled). Sometimes changes
are made to the database without using Hibernate, as when backup is restored or your data is
otherwise affected; for these cases Hibernate Search exposes the Manual Index APIs to explicitly
update or remove a single entity from the index, or rebuild the index for the whole database, or
remove all references to a specific type.

All these methods affect the Lucene Index only, no changes are applied to the Database.

6.1. Adding instances to the Index

Using Ful | Text Sessi on.i ndex(T entity) you can directly add or update a specific object
instance to the index. If this entity was already indexed, then the index will be updated. Changes
to the index are only applied at transaction commit.

Example 6.1. Indexing an entity via Ful | Text Sessi on. i ndex(T entity)

Ful | Text Sessi on ful | Text Sessi on = Search. get Ful | Text Sessi on(sessi on);
Transaction tx = full Text Sessi on. begi nTransacti on();

oj ect custoner = full Text Sessi on. | oad(Custoner.class, 8);

ful | Text Sessi on. i ndex(customer);

tx.commit(); //index only updated at commit tinme

In case you want to add all instances for a type, or for all indexed types, the recommended
approach is to use a Massl ndexer : see Section 6.3.2, “Using a MassIndexer” for more details.

6.2. Deleting instances from the Index: Purging

It is equally possible to remove an entity or all entities of a given type from a Lucene index without
the need to physically remove them from the database. This operation is named purging and is
also done through the Ful | Text Sessi on.

Example 6.2. Purging a specific instance of an entity from the index

Ful | Text Sessi on ful | Text Sessi on = Search. get Ful | Text Sessi on(sessi on);
Transaction tx = full Text Sessi on. begi nTransaction();
for (Custoner custoner : custoners) {

ful | Text Sessi on. purge(Custoner.cl ass, custoner.getld());

}

tx.commit(); //index is updated at commit tine

97

Chapter 6. Manual index changes

Purging will remove the entity with the given id from the Lucene index but will not touch the
database.

If you need to remove all entities of a given type, you can use the pur geAl I method. This operation
removes all entities of the type passed as a parameter as well as all its subtypes.

Example 6.3. Purging all instances of an entity from the index

Ful | Text Sessi on ful | Text Sessi on = Sear ch. get Ful | Text Sessi on(sessi on);
Transaction tx = full Text Sessi on. begi nTransaction();

ful | Text Sessi on. purgeAl |l (Custoner.class);

//optionally optim ze the index

/1 full Text Sessi on. get Sear chFactory().opti m ze(Custoner.class);
tx.commt(); //index changes are applied at commt tinme

It is recommended to optimize the index after such an operation.

(3

(3

6.3. Rebuilding the whole Index

If you change the entity mapping to the index, chances are that the whole Index needs to be
updated; For example if you decide to index a an existing field using a different analyzer you'll
need to rebuild the index for affected types. Also if the Database is replaced (like restored from a
backup, imported from a legacy system) you'll want to be able to rebuild the index from existing
data. Hibernate Search provides two main strategies to choose from:

» Using Ful | Text Sessi on.fl ushTol ndexes() periodically, while using
Ful | Text Sessi on.i ndex() on all entities.

e Use a Massl ndexer.

Using flushTolndexes()

6.3.1. Using flushTolndexes()

This strategy consists in removing the existing index and then adding all entities back to the
index using Ful | Text Sessi on.pur geAl | () and Ful | Text Sessi on.i ndex(), however there are
some memory and efficiency contraints. For maximum efficiency Hibernate Search batches index
operations and executes them at commit time. If you expect to index a lot of data you need
to be careful about memory consumption since all documents are kept in a queue until the
transaction commit. You can potentially face an Qut Of Menor yExcept i on if you don't empty the
queue periodically: to do this you can use ful | Text Sessi on. f | ushTol ndexes() . Every time
ful | Text Sessi on. fl ushTol ndexes() is called (or if the transaction is committed), the batch
queue is processed applying all index changes. Be aware that, once flushed, the changes cannot
be rolled back.

Example 6.4. Index rebuilding using index() and flushTolndexes()

ful | Text Sessi on. set Fl ushMode(Fl ushMbde. MANUAL) ;
ful | Text Sessi on. set CacheMdde(CacheMode. | GNORE) ;
transaction = ful |l Text Sessi on. begi nTransacti on();
//Scrollable results will avoid | oading too nany objects in nenory
Scrol | abl eResults results = full Text Session.createCriteria(Email.class)
. set Fet chSi ze(BATCH_SI ZE)
.scroll (Scroll Mode. FORWARD _ONLY);
int index = 0;
while(results.next()) {
i ndex++;
ful | Text Session.index(results.get(0)); //index each el ement
i f (index % BATCH SI ZE == 0) ({
full Text Session. fl ushTol ndexes(); //apply changes to indexes
ful | Text Session.clear(); //free nenory since the queue is processed

}

transaction.comit();

® Note

hi ber nat e. sear ch. wor ker . bat ch_si ze has been deprecated in favor of this
explicit API which provides better control

Try to use a batch size that guarantees that your application will not run out of memory: with a
bigger batch size objects are fetched faster from database but more memory is needed.

99

Chapter 6. Manual index changes

6.3.2. Using a MassIndexer

Hibernate Search's Massl ndexer uses several parallel threads to rebuild the index; you can
optionally select which entities need to be reloaded or have it reindex all entities. This approach is
optimized for best performance but requires to set the application in maintenance mode: making
queries to the index is not recommended when a MassIndexer is busy.

Example 6.5. Index rebuilding using a MassIndexer

ful | Text Sessi on. creat el ndexer (). start AndWait();

This will rebuild the index, deleting it and then reloading all entities from the database. Although
it's simple to use, some tweaking is recommended to speed up the process: there are several
parameters configurable.

Warning

During the progress of a MassIndexer the content of the index is undefined, make
sure that nobody will try to make some query during index rebuilding! If somebody
should query the index it will not corrupt but most results will likely be missing.

Example 6.6. Using a tuned MassIndexer

ful | Text Sessi on
.createl ndexer(User.class)
. bat chSi zeToLoadOhj ect s(25)
. cacheMbde(CacheMbde. NORMAL)
.threadsToLoadObj ects(5)
.t hreadsFor Subsequent Fet chi ng(20)
.start AndWai t();

This will rebuild the index of all User instances (and subtypes), and will create 5 parallel threads
to load the User instances using batches of 25 objects per query; these loaded User instances
are then pipelined to 20 parallel threads to load the attached lazy collections of User containing
some information needed for the index.

It is recommended to leave cacheMode to CacheMode. | GNORE (the default), as in most reindexing
situations the cache will be a useless additional overhead; it might be useful to enable some other
CacheMode depending on your data: it might increase performance if the main entity is relating to
enum-like data included in the index.

100

Using a MassIndexer

Tip

The "sweet spot" of number of threads to achieve best performance is highly
dependent on your overall architecture, database design and even data values. To
find out the best number of threads for your application it is recommended to use
a profiler: all internal thread groups have meaningful names to be easily identified
with most tools.

Other parameters which also affect indexing time and memory consumption are:

* hi bernate. search. [def aul t| <i ndexnane>] . excl usi ve_i ndex_use

* hi bernate. search. [defaul t| <i ndexname>] . i ndexwiter.batch. max_buffered_docs
* hibernate. search.[defaul t| <i ndexnanme>].indexwiter.batch. max_field_|length

* hi bernate. search. [defaul t|<i ndexname>].indexwiter.batch. max_nerge_docs

* hi bernate. search. [defaul t| <i ndexnanme>].indexwiter.batch. merge_factor

* hi bernate. search. [def aul t| <i ndexnanme>] . i ndexwriter. batch.ram buffer_size

* hi bernate. search. [def aul t| <i ndexname>] . i ndexwiter.batch.term.index_interva

All . i ndexwriter parameters are Lucene specific and Hibernate Search is just passing these
parameters through - see Section 3.9, “Tuning Lucene indexing performance” for more details.

101

102

Chapter 7.

Index Optimization

From time to time, the Lucene index needs to be optimized. The process is essentially a
defragmentation. Until an optimization is triggered Lucene only marks deleted documents as such,
no physical deletions are applied. During the optimization process the deletions will be applied
which also effects the number of files in the Lucene Directory.

Optimizing the Lucene index speeds up searches but has no effect on the indexation (update)
performance. During an optimization, searches can be performed, but will most likely be slowed
down. All index updates will be stopped. It is recommended to schedule optimization:

< on an idle system or when the searches are less frequent

» after a lot of index modifications

When using a Massl ndexer (see Section 6.3.2, “Using a MassIndexer”) it will optimize involved
indexes by default at the start and at the end of processing; you can change this behavior by using
respectively Massl ndexer .opt i n zeAf t er Pur ge and Massl ndexer .opt i m zeOnFi ni sh.

7.1. Automatic optimization

Hibernate Search can automatically optimize an index after:

 a certain amount of operations (insertion, deletion)
* or a certain amount of transactions

The configuration for automatic index optimization can be defined on a global level or per index:

Example 7.1. Defining automatic optimization parameters

hi ber nat e. search. defaul t. optim zer.operation_limt.mx = 1000
hi ber nat e. search. default.optim zer.transaction_|limt.nax = 100
hi ber nat e. search. Ani nal . opti m zer.transaction_|limt.max = 50

An optimization will be triggered to the Ani nal index as soon as either:

« the number of additions and deletions reaches 1000

* the number of transactions reaches 50
(hi ber nat e. search. Ani nal . opti m zer.transaction_limt.max having priority over
hi ber nat e. search. defaul t. opti m zer.transaction_linmit. nax)

If none of these parameters are defined, no optimization is processed automatically.

103

Chapter 7. Index Optimization

7.2. Manual optimization

You can programmatically optimize (defragment) a Lucene index from Hibernate Search through
the Sear chFact ory:

Example 7.2. Programmatic index optimization

Ful | Text Sessi on ful | Text Sessi on = Search. get Ful | Text Sessi on(regul ar Sessi on) ;
Sear chFactory searchFactory = ful | Text Sessi on. get Sear chFactory();

searchFactory. opti m ze(Order. cl ass);
Il or
sear chFactory. optim ze();

The first example optimizes the Lucene index holding O der s; the second, optimizes all indexes.

@ Note

sear chFact ory. opti ni ze() has no effect on a JMS backend. You must apply
the optimize operation on the Master node.

7.3. Adjusting optimization

Apache Lucene has a few parameters to influence how optimization is performed. Hibernate
Search exposes those parameters.

Further index optimization parameters include:

* hi bernate. search. [defaul t|<i ndexnane>].indexwriter.[batch]|

transaction] . max_buf f ered_docs

* hi bernate. search. [defaul t|<i ndexnane>].indexwiter.[batch]|

transaction].max_field_|l ength

* hi bernate. search. [defaul t| <i ndexnane>] . i ndexwriter.[batch]|

transaction] . max_mer ge_docs

* hi bernate. search. [def aul t| <i ndexnane>] . i ndexwriter.[batch]|

transaction] . merge_f actor

* hi bernate. search. [def aul t| <i ndexnane>] . i ndexwriter.[batch]|

transaction].ram buffer_size

* hi bernate. search. [def aul t| <i ndexnane>] . i ndexwriter.[batch]|

transaction].term.index_interval

104

Adjusting optimization

See Section 3.9, “Tuning Lucene indexing performance” for more details.

105

106

Chapter 8.

Advanced features

8.1. SearchFactory

The Sear chFact or y object keeps track of the underlying Lucene resources for Hibernate Search,
it's also a convenient way to access Lucene natively. The Sear chFact ory can be accessed from
a Ful | Text Sessi on:

Example 8.1. Accessing the searchFactory

Ful | Text Sessi on ful | Text Sessi on = Sear ch. get Ful | Text Sessi on(regul ar Sessi on) ;
Sear chFactory searchFactory = full Text Sessi on. get Sear chFactory();

8.2. Accessing a Lucene Directory

You can always access the Lucene directories through plain Lucene, the Directory structure is
in no way different with or without Hibernate Search. However there are some more convenient
ways to access a given Directory. The Sear chFact or y keeps track of the Di rect or yProvi der s
per indexed class. One directory provider can be shared amongst several indexed classes if the
classes share the same underlying index directory. While usually not the case, a given entity can
have several Di r ect or yPr ovi der s if the index is sharded (see Section 3.2, “Sharding indexes”).

Example 8.2. Accessing the Lucene Directory

Di rectoryProvider[] provi der =
searchFactory. get Direct oryProvi ders(Order. cl ass);
org. apache. l ucene.store.Directory directory = provider[0].getDi rectory();

In this example, directory points to the lucene index storing Or der s information. Note that the
obtained Lucene directory must not be closed (this is Hibernate Search responsibility).

8.3. Using an IndexReader

Queries in Lucene are executed on an | ndexReader . Hibernate Search caches all index readers
to maximize performance. Your code can access this cached resources, but you have to follow
some "good citizen" rules.

Example 8.3. Accessing an I ndexReader

Di rect oryProvi der or der Provi der =
searchFactory. get Di rect oryProvi ders(Order. cl ass)[0];

107

Chapter 8. Advanced features

Di rect oryProvi der cl i ent Provi der =
searchFactory. getDirectoryProviders(Cient.class)[0];

Reader Provi der readerProvider = searchFactory. get Reader Provi der () ;
I ndexReader reader = readerProvider.openReader (orderProvider, clientProvider);

try {
//do read-only operations on the reader
}
finally {
reader Provi der. cl oseReader (reader) ;
}

The ReaderProvider (described in Reader strategy), will open an IndexReader on top of the
index(es) referenced by the directory providers. Because this | ndexReader is shared amongst
several clients, you must adhere to the following rules:

» Never call indexReader.close(), but always call readerProvider.closeReader(reader), preferably
in a finally block.

« Don't use this | ndexReader for modification operations (you would get an exception). If you
want to use a read/write index reader, open one from the Lucene Directory object.

Aside from those rules, you can use the IndexReader freely, especially to do native queries. Using
the shared | ndexReader s will make most queries more efficient.

8.4. Customizing Lucene's scoring formula

Lucene allows the user to customize its scoring formula by extending
or g. apache. | ucene. search. Si nm | ari ty. The abstract methods defined in this class match the
factors of the following formula calculating the score of query g for document d:

score(q,d) = coord(q,d) - queryNorm(q) - Sting (tftind) - idf(t)2 -t.getBoost() - norm(t,d))

Factor Description

tf(t ind) Term frequency factor for the term (t) in the
document (d).

idf(t) Inverse document frequency of the term.

coord(q,d) Score factor based on how many of the query
terms are found in the specified document.

queryNorm(q) Normalizing factor used to make scores
between queries comparable.

t.getBoost() Field boost.

norm(t,d) Encapsulates a few (indexing time) boost and
length factors.

108

Customizing Lucene's scoring formula

It is beyond the scope of this manual to explain this formula in more detail. Please refer to
Similarity's Javadocs for more information.

Hibernate Search provides two ways to modify Lucene's similarity calculation. First you can
set the default similarity by specifying the fully specified classname of your Sinmilarity
implementation using the property hi bernate.search.sinilarity. The default value is
or g. apache. | ucene. search. Defaul t Sini | ari ty. Additionally you can override the default
similarity on class level using the @i ni | ari t y annotation.

@ntity

@ ndexed

@ mlarity(inpl = DunmySinmlarity.class)
public class Book {

As an example, let's assume it is not important how often a term appears in a document.
Documents with a single occurrence of the term should be scored the same as documents with
multiple occurrences. In this case your custom implementation of the method tf (fl oat freq)
should return 1.0.

Warning

When two entities share the same index they must declare the same Sinilarity
implementation. Classes in the same class hierarchy always share the index, so
it's not allowed to override the Si i | ari t y implementation in a subtype.

109

110

	Hibernate Search
	Table of Contents
	Preface
	Chapter 1. Getting started
	1.1. System Requirements
	1.2. Using Maven
	1.3. Configuration
	1.4. Indexing
	1.5. Searching
	1.6. Analyzer
	1.7. What's next

	Chapter 2. Architecture
	2.1. Overview
	2.2. Back end
	2.2.1. Back end types
	2.2.1.1. Lucene
	2.2.1.2. JMS
	2.2.1.3. JGroups

	2.2.2. Work execution
	2.2.2.1. Synchronous
	2.2.2.2. Asynchronous

	2.3. Reader strategy
	2.3.1. Shared
	2.3.2. Not-shared
	2.3.3. Custom

	Chapter 3. Configuration
	3.1. Directory configuration
	3.2. Sharding indexes
	3.3. Sharing indexes (two entities into the same directory)
	3.4. Worker configuration
	3.5. JMS Master/Slave configuration
	3.5.1. Slave nodes
	3.5.2. Master node

	3.6. JGroups Master/Slave configuration
	3.6.1. Slave nodes
	3.6.2. Master node
	3.6.3. JGroups channel configuration

	3.7. Reader strategy configuration
	3.8. Enabling Hibernate Search and automatic indexing
	3.8.1. Enabling Hibernate Search
	3.8.2. Automatic indexing

	3.9. Tuning Lucene indexing performance
	3.10. LockFactory configuration
	3.11. Exception Handling Configuration

	Chapter 4. Mapping entities to the index structure
	4.1. Mapping an entity
	4.1.1. Basic mapping
	4.1.2. Mapping properties multiple times
	4.1.3. Embedded and associated objects
	4.1.4. Boost factor
	4.1.5. Dynamic boost factor
	4.1.6. Analyzer
	4.1.6.1. Analyzer definitions
	4.1.6.2. Available analyzers
	4.1.6.3. Analyzer discriminator (experimental)
	4.1.6.4. Retrieving an analyzer

	4.2. Property/Field Bridge
	4.2.1. Built-in bridges
	4.2.2. Custom Bridge
	4.2.2.1. StringBridge
	4.2.2.2. FieldBridge
	4.2.2.3. ClassBridge

	4.3. Providing your own id
	4.3.1. The ProvidedId annotation

	4.4. Programmatic API
	4.4.1. Mapping an entity as indexable
	4.4.2. Adding DocumentId to indexed entity
	4.4.3. Defining analyzers
	4.4.4. Defining full text filter definitions
	4.4.5. Defining fields for indexing
	4.4.6. Programmatically defining embedded entities
	4.4.7. Contained In definition
	4.4.8. Date/Calendar Bridge
	4.4.9. Defining bridges
	4.4.10. Mapping class bridge
	4.4.11. Mapping dynamic boost

	Chapter 5. Querying
	5.1. Building queries
	5.1.1. Building a Lucene query
	5.1.2. Building a Hibernate Search query
	5.1.2.1. Generality
	5.1.2.2. Pagination
	5.1.2.3. Sorting
	5.1.2.4. Fetching strategy
	5.1.2.5. Projection

	5.2. Retrieving the results
	5.2.1. Performance considerations
	5.2.2. Result size
	5.2.3. ResultTransformer
	5.2.4. Understanding results

	5.3. Filters
	5.3.1. Using filters in a sharded environment

	5.4. Optimizing the query process
	5.5. Native Lucene Queries

	Chapter 6. Manual index changes
	6.1. Adding instances to the Index
	6.2. Deleting instances from the Index: Purging
	6.3. Rebuilding the whole Index
	6.3.1. Using flushToIndexes()
	6.3.2. Using a MassIndexer

	Chapter 7. Index Optimization
	7.1. Automatic optimization
	7.2. Manual optimization
	7.3. Adjusting optimization

	Chapter 8. Advanced features
	8.1. SearchFactory
	8.2. Accessing a Lucene Directory
	8.3. Using an IndexReader
	8.4. Customizing Lucene's scoring formula

