
Hibernate Search

Apache Lucene™

Integration

Reference Guide
3.2.1.Final

iii

Preface .. vii

1. Getting started ... 1

1.1. System Requirements ... 1

1.2. Using Maven .. 1

1.3. Configuration .. 3

1.4. Indexing ... 7

1.5. Searching ... 8

1.6. Analyzer ... 9

1.7. What's next .. 11

2. Architecture ... 13

2.1. Overview .. 13

2.2. Back end .. 14

2.2.1. Back end types .. 14

2.2.2. Work execution .. 16

2.3. Reader strategy .. 16

2.3.1. Shared .. 16

2.3.2. Not-shared ... 17

2.3.3. Custom .. 17

3. Configuration ... 19

3.1. Directory configuration ... 19

3.2. Sharding indexes .. 21

3.3. Sharing indexes (two entities into the same directory) ... 23

3.4. Worker configuration ... 24

3.5. JMS Master/Slave configuration ... 25

3.5.1. Slave nodes ... 25

3.5.2. Master node .. 26

3.6. JGroups Master/Slave configuration ... 28

3.6.1. Slave nodes ... 28

3.6.2. Master node .. 28

3.6.3. JGroups channel configuration .. 28

3.7. Reader strategy configuration .. 30

3.8. Enabling Hibernate Search and automatic indexing ... 30

3.8.1. Enabling Hibernate Search ... 30

3.8.2. Automatic indexing ... 31

3.9. Tuning Lucene indexing performance ... 32

3.10. LockFactory configuration .. 36

3.11. Exception Handling Configuration ... 38

4. Mapping entities to the index structure ... 41

4.1. Mapping an entity ... 41

4.1.1. Basic mapping ... 41

4.1.2. Mapping properties multiple times ... 43

4.1.3. Embedded and associated objects .. 44

4.1.4. Boost factor ... 48

4.1.5. Dynamic boost factor .. 49

Hibernate Search

iv

4.1.6. Analyzer .. 50

4.2. Property/Field Bridge ... 58

4.2.1. Built-in bridges ... 58

4.2.2. Custom Bridge ... 59

4.3. Providing your own id ... 65

4.3.1. The ProvidedId annotation .. 65

4.4. Programmatic API ... 65

4.4.1. Mapping an entity as indexable ... 67

4.4.2. Adding DocumentId to indexed entity .. 67

4.4.3. Defining analyzers .. 68

4.4.4. Defining full text filter definitions .. 69

4.4.5. Defining fields for indexing .. 71

4.4.6. Programmatically defining embedded entities ... 72

4.4.7. Contained In definition .. 74

4.4.8. Date/Calendar Bridge ... 75

4.4.9. Defining bridges ... 76

4.4.10. Mapping class bridge .. 78

4.4.11. Mapping dynamic boost .. 79

5. Querying .. 81

5.1. Building queries .. 82

5.1.1. Building a Lucene query ... 82

5.1.2. Building a Hibernate Search query .. 82

5.2. Retrieving the results .. 86

5.2.1. Performance considerations .. 86

5.2.2. Result size ... 86

5.2.3. ResultTransformer .. 87

5.2.4. Understanding results ... 88

5.3. Filters ... 88

5.3.1. Using filters in a sharded environment ... 93

5.4. Optimizing the query process .. 94

5.5. Native Lucene Queries .. 95

6. Manual index changes ... 97

6.1. Adding instances to the Index .. 97

6.2. Deleting instances from the Index: Purging ... 97

6.3. Rebuilding the whole Index ... 98

6.3.1. Using flushToIndexes() ... 99

6.3.2. Using a MassIndexer .. 100

7. Index Optimization ... 103

7.1. Automatic optimization ... 103

7.2. Manual optimization .. 104

7.3. Adjusting optimization .. 104

8. Advanced features ... 107

8.1. SearchFactory ... 107

8.2. Accessing a Lucene Directory .. 107

v

8.3. Using an IndexReader ... 107

8.4. Customizing Lucene's scoring formula .. 108

vi

vii

Preface

Full text search engines like Apache Lucene are very powerful technologies to add efficient

free text search capabilities to applications. However, Lucene suffers several mismatches when

dealing with object domain model. Amongst other things indexes have to be kept up to date and

mismatches between index structure and domain model as well as query mismatches have to

be avoided.

Hibernate Search addresses these shortcomings - it indexes your domain model with the help

of a few annotations, takes care of database/index synchronization and brings back regular

managed objects from free text queries. To achieve this Hibernate Search is combining the power

of Hibernate [http://www.hibernate.org] and Apache Lucene [http://lucene.apache.org].

http://www.hibernate.org
http://www.hibernate.org
http://lucene.apache.org
http://lucene.apache.org

viii

Chapter 1.

1

Getting started
Welcome to Hibernate Search. The following chapter will guide you through the initial steps

required to integrate Hibernate Search into an existing Hibernate enabled application. In case you

are a Hibernate new timer we recommend you start here [http://hibernate.org/152.html].

1.1. System Requirements

Table 1.1. System requirements

Java Runtime A JDK or JRE version 5 or greater. You

can download a Java Runtime for Windows/

Linux/Solaris here [http://java.sun.com/javase/

downloads/].

Hibernate Search hibernate-search.jar and all runtime

dependencies from the dist/lib directory of

the Hibernate Search distribution.

Hibernate Core This instructions have been tested against

Hibernate 3.5. You will need hibernate-

core.jar and its transitive dependencies from

the lib directory of the distribution. Refer

to README.txt in the lib directory of the

distribution to determine the minimum runtime

requirements.

Hibernate Annotations Even though Hibernate Search can

be used without Hibernate Annotations

the following instructions will use them

for basic entity configuration (@Entity,

@Id, @OneToMany,...). This part of the

configuration could also be expressed in xml

or code. However, Hibernate Search itself

has its own set of annotations (@Indexed,

@DocumentId, @Field,...) for which there

exists so far no alternative configuration.

The tutorial is tested against version 3.5 of

Hibernate Annotations (part of the Hibernate

Core distribution).

You can download all dependencies from the Hibernate download site.

1.2. Using Maven

Instead of managing all dependencies manually, maven users have the possibility to use the JBoss

maven repository [https://repository.jboss.org/nexus/content/groups/public/]. Add the following to

http://hibernate.org/152.html
http://hibernate.org/152.html
http://java.sun.com/javase/downloads/
http://java.sun.com/javase/downloads/
http://java.sun.com/javase/downloads/
https://repository.jboss.org/nexus/content/groups/public/
https://repository.jboss.org/nexus/content/groups/public/
https://repository.jboss.org/nexus/content/groups/public/

Chapter 1. Getting started

2

your Maven settings.xml file (see also Maven Getting Started [http://community.jboss.org/

wiki/MavenGettingStarted-Users]):

Example 1.1. Adding the JBoss maven repository to settings.xml

<settings>

 ...

 <profiles>

 ...

 <profile>

 <id>jboss-public-repository</id>

 <repositories>

 <repository>

 <id>jboss-public-repository-group</id>

 <name>JBoss Public Maven Repository Group</name>

 <url>https://repository.jboss.org/nexus/content/groups/public/</url>

 <layout>default</layout>

 <releases>

 <enabled>true</enabled>

 <updatePolicy>never</updatePolicy>

 </releases>

 <snapshots>

 <enabled>true</enabled>

 <updatePolicy>never</updatePolicy>

 </snapshots>

 </repository>

 </repositories>

 <pluginRepositories>

 <pluginRepository>

 <id>jboss-public-repository-group</id>

 <name>JBoss Public Maven Repository Group</name>

 <url>https://repository.jboss.org/nexus/content/groups/public/</url>

 <layout>default</layout>

 <releases>

 <enabled>true</enabled>

 <updatePolicy>never</updatePolicy>

 </releases>

 <snapshots>

 <enabled>true</enabled>

 <updatePolicy>never</updatePolicy>

 </snapshots>

 </pluginRepository>

 </pluginRepositories>

 </profile>

 </profiles>

 <activeProfiles>

http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users

Configuration

3

 <activeProfile>jboss-public-repository</activeProfile>

 </activeProfiles>

 ...

</settings>

Then add the following dependencies to your pom.xml:

Example 1.2. Maven dependencies for Hibernate Search

<dependency>

 <groupId>org.hibernate</groupId>

 <artifactId>hibernate-search</artifactId>

 <version>3.2.1.Final</version>

</dependency>

<dependency>

 <groupId>org.hibernate</groupId>

 <artifactId>hibernate-entitymanager</artifactId>

 <version>3.5.0-Final</version>

</dependency>

Only the hibernate-search dependency is mandatory, because it contains together with its

required transitive dependencies all required classes needed to use Hibernate Search. hibernate-

entitymanager is only required if you want to use Hibernate Search in conjunction with JPA.

Note

There is no XML configuration available for Hibernate Search but we provide a

powerful programmatic mapping API that elegantly replace this kind of deployment

form (see Section 4.4, “Programmatic API” for more information).

1.3. Configuration

Once you have downloaded and added all required dependencies to your application you have to

add a couple of properties to your hibernate configuration file. If you are using Hibernate directly

this can be done in hibernate.properties or hibernate.cfg.xml. If you are using Hibernate

via JPA you can also add the properties to persistence.xml. The good news is that for standard

use most properties offer a sensible default. An example persistence.xml configuration could

look like this:

Chapter 1. Getting started

4

Example 1.3. Basic configuration options to be added to hibernate.properties,

hibernate.cfg.xml or persistence.xml

...

<property name="hibernate.search.default.directory_provider"

 value="org.hibernate.search.store.FSDirectoryProvider"/>

<property name="hibernate.search.default.indexBase"

 value="/var/lucene/indexes"/>

...

First you have to tell Hibernate Search which DirectoryProvider to use. This can be achieved

by setting the hibernate.search.default.directory_provider property. Apache Lucene has

the notion of a Directory to store the index files. Hibernate Search handles the initialization

and configuration of a Lucene Directory instance via a DirectoryProvider. In this tutorial

we will use a subclass of DirectoryProvider called FSDirectoryProvider. This will give

us the ability to physically inspect the Lucene indexes created by Hibernate Search (eg

via Luke [http://www.getopt.org/luke/]). Once you have a working configuration you can start

experimenting with other directory providers (see Section 3.1, “Directory configuration”). Next

to the directory provider you also have to specify the default root directory for all indexes via

hibernate.search.default.indexBase.

Lets assume that your application contains the Hibernate managed classes example.Book and

example.Author and you want to add free text search capabilities to your application in order to

search the books contained in your database.

Example 1.4. Example entities Book and Author before adding Hibernate

Search specific annotations

package example;

...

@Entity

public class Book {

 @Id

 @GeneratedValue

 private Integer id;

 private String title;

 private String subtitle;

 @ManyToMany

 private Set<Author> authors = new HashSet<Author>();

http://www.getopt.org/luke/
http://www.getopt.org/luke/

Configuration

5

 private Date publicationDate;

 public Book() {}

 // standard getters/setters follow here

 ...

}

package example;

...

@Entity

public class Author {

 @Id

 @GeneratedValue

 private Integer id;

 private String name;

 public Author() {}

 // standard getters/setters follow here

 ...

}

To achieve this you have to add a few annotations to the Book and Author class. The first

annotation @Indexed marks Book as indexable. By design Hibernate Search needs to store an

untokenized id in the index to ensure index unicity for a given entity. @DocumentId marks the

property to use for this purpose and is in most cases the same as the database primary key. In

fact since the 3.1.0 release of Hibernate Search @DocumentId is optional in the case where an

@Id annotation exists.

Next you have to mark the fields you want to make searchable. Let's start with title and subtitle

and annotate both with @Field. The parameter index=Index.TOKENIZED will ensure that the

text will be tokenized using the default Lucene analyzer. Usually, tokenizing means chunking a

sentence into individual words and potentially excluding common words like 'a' or 'the'. We

will talk more about analyzers a little later on. The second parameter we specify within @Field,

store=Store.NO, ensures that the actual data will not be stored in the index. Whether this data

is stored in the index or not has nothing to do with the ability to search for it. From Lucene's

perspective it is not necessary to keep the data once the index is created. The benefit of storing

it is the ability to retrieve it via projections (Section 5.1.2.5, “Projection”).

Without projections, Hibernate Search will per default execute a Lucene query in order to find the

database identifiers of the entities matching the query critera and use these identifiers to retrieve

managed objects from the database. The decision for or against projection has to be made on a

Chapter 1. Getting started

6

case to case basis. The default behaviour - Store.NO - is recommended since it returns managed

objects whereas projections only return object arrays.

After this short look under the hood let's go back to annotating the Book class. Another annotation

we have not yet discussed is @DateBridge. This annotation is one of the built-in field bridges in

Hibernate Search. The Lucene index is purely string based. For this reason Hibernate Search must

convert the data types of the indexed fields to strings and vice versa. A range of predefined bridges

are provided, including the DateBridge which will convert a java.util.Date into a String with

the specified resolution. For more details see Section 4.2, “Property/Field Bridge”.

This leaves us with @IndexedEmbedded. This annotation is used to index associated entities

(@ManyToMany, @*ToOne and @Embedded) as part of the owning entity. This is needed since a

Lucene index document is a flat data structure which does not know anything about object

relations. To ensure that the authors' name wil be searchable you have to make sure that the

names are indexed as part of the book itself. On top of @IndexedEmbedded you will also have to

mark all fields of the associated entity you want to have included in the index with @Indexed. For

more details see Section 4.1.3, “Embedded and associated objects”.

These settings should be sufficient for now. For more details on entity mapping refer to Section 4.1,

“Mapping an entity”.

Example 1.5. Example entities after adding Hibernate Search annotations

package example;

...

@Entity

@Indexed

public class Book {

 @Id

 @GeneratedValue

 private Integer id;

 @Field(index=Index.TOKENIZED, store=Store.NO)

 private String title;

 @Field(index=Index.TOKENIZED, store=Store.NO)

 private String subtitle;

 @IndexedEmbedded

 @ManyToMany

 private Set<Author> authors = new HashSet<Author>();

 @Field(index = Index.UN_TOKENIZED, store = Store.YES)

 @DateBridge(resolution = Resolution.DAY)

 private Date publicationDate;

 public Book() {

Indexing

7

 }

 // standard getters/setters follow here

 ...

}

package example;

...

@Entity

public class Author {

 @Id

 @GeneratedValue

 private Integer id;

 @Field(index=Index.TOKENIZED, store=Store.NO)

 private String name;

 public Author() {

 }

 // standard getters/setters follow here

 ...

}

1.4. Indexing

Hibernate Search will transparently index every entity persisted, updated or removed through

Hibernate Core. However, you have to create an initial Lucene index for the data already present

in your database. Once you have added the above properties and annotations it is time to trigger

an initial batch index of your books. You can achieve this by using one of the following code

snippets (see also Section 6.3, “Rebuilding the whole Index”):

Example 1.6. Using Hibernate Session to index data

FullTextSession fullTextSession = Search.getFullTextSession(session);

fullTextSession.createIndexer().startAndWait();

Example 1.7. Using JPA to index data

EntityManager em = entityManagerFactory.createEntityManager();

FullTextEntityManager fullTextEntityManager =

 Search.getFullTextEntityManager(em);

Chapter 1. Getting started

8

fullTextEntityManager.createIndexer().startAndWait();

After executing the above code, you should be able to see a Lucene index under /var/lucene/

indexes/example.Book. Go ahead an inspect this index with Luke [http://www.getopt.org/luke/].

It will help you to understand how Hibernate Search works.

1.5. Searching

Now it is time to execute a first search. The general approach is to create a native Lucene query

and then wrap this query into a org.hibernate.Query in order to get all the functionality one is used

to from the Hibernate API. The following code will prepare a query against the indexed fields,

execute it and return a list of Books.

Example 1.8. Using Hibernate Session to create and execute a search

FullTextSession fullTextSession = Search.getFullTextSession(session);

Transaction tx = fullTextSession.beginTransaction();

// create native Lucene query

String[] fields = new String[]{"title", "subtitle", "authors.name",

 "publicationDate"};

MultiFieldQueryParser parser = new MultiFieldQueryParser(fields, new

 StandardAnalyzer());

org.apache.lucene.search.Query query = parser.parse("Java rocks!");

// wrap Lucene query in a org.hibernate.Query

org.hibernate.Query hibQuery = fullTextSession.createFullTextQuery(query,

 Book.class);

// execute search

List result = hibQuery.list();

tx.commit();

session.close();

Example 1.9. Using JPA to create and execute a search

EntityManager em = entityManagerFactory.createEntityManager();

FullTextEntityManager fullTextEntityManager =

 org.hibernate.search.jpa.Search.getFullTextEntityManager(em);

em.getTransaction().begin();

// create native Lucene query

String[] fields = new String[]{"title", "subtitle", "authors.name",

 "publicationDate"};

http://www.getopt.org/luke/
http://www.getopt.org/luke/

Analyzer

9

MultiFieldQueryParser parser = new MultiFieldQueryParser(fields, new

 StandardAnalyzer());

org.apache.lucene.search.Query query = parser.parse("Java rocks!");

// wrap Lucene query in a javax.persistence.Query

javax.persistence.Query persistenceQuery =

 fullTextEntityManager.createFullTextQuery(query, Book.class);

// execute search

List result = persistenceQuery.getResultList();

em.getTransaction().commit();

em.close();

1.6. Analyzer

Let's make things a little more interesting now. Assume that one of your indexed book entities

has the title "Refactoring: Improving the Design of Existing Code" and you want to get hits for all

of the following queries: "refactor", "refactors", "refactored" and "refactoring". In Lucene this can

be achieved by choosing an analyzer class which applies word stemming during the indexing as

well as search process. Hibernate Search offers several ways to configure the analyzer to use

(see Section 4.1.6, “Analyzer”):

• Setting the hibernate.search.analyzer property in the configuration file. The specified class

will then be the default analyzer.

• Setting the @Analyzer annotation at the entity level.

• Setting the @Analyzer annotation at the field level.

When using the @Analyzer annotation one can either specify the fully qualified classname of

the analyzer to use or one can refer to an analyzer definition defined by the @AnalyzerDef

annotation. In the latter case the Solr analyzer framework with its factories approach is

utilized. To find out more about the factory classes available you can either browse the

Solr JavaDoc or read the corresponding section on the Solr Wiki. [http://wiki.apache.org/solr/

AnalyzersTokenizersTokenFilters]

In the example below a StandardTokenizerFactory is used followed by two filter factories,

LowerCaseFilterFactory and SnowballPorterFilterFactory. The standard tokenizer splits

words at punctuation characters and hyphens while keeping email addresses and internet

hostnames intact. It is a good general purpose tokenizer. The lowercase filter lowercases the

letters in each token whereas the snowball filter finally applies language specific stemming.

Generally, when using the Solr framework you have to start with a tokenizer followed by an

arbitrary number of filters.

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

Chapter 1. Getting started

10

Example 1.10. Using @AnalyzerDef and the Solr framework to define and use

an analyzer

package example;

...

@Entity

@Indexed

@AnalyzerDef(name = "customanalyzer",

 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),

 filters = {

 @TokenFilterDef(factory = LowerCaseFilterFactory.class),

 @TokenFilterDef(factory = SnowballPorterFilterFactory.class, params = {

 @Parameter(name = "language", value = "English")

 })

 })

public class Book {

 @Id

 @GeneratedValue

 @DocumentId

 private Integer id;

 @Field(index=Index.TOKENIZED, store=Store.NO)

 @Analyzer(definition = "customanalyzer")

 private String title;

 @Field(index=Index.TOKENIZED, store=Store.NO)

 @Analyzer(definition = "customanalyzer")

 private String subtitle;

 @IndexedEmbedded

 @ManyToMany

 private Set<Author> authors = new HashSet<Author>();

 @Field(index = Index.UN_TOKENIZED, store = Store.YES)

 @DateBridge(resolution = Resolution.DAY)

 private Date publicationDate;

 public Book() {

 }

 // standard getters/setters follow here

 ...

}

What's next

11

1.7. What's next

The above paragraphs helped you getting an overview of Hibernate Search. The next step after

this tutorial is to get more familiar with the overall architecture of Hibernate Search (Chapter 2,

Architecture) and explore the basic features in more detail. Two topics which were only briefly

touched in this tutorial were analyzer configuration (Section 4.1.6, “Analyzer”) and field bridges

(Section 4.2, “Property/Field Bridge”), both important features required for more fine-grained

indexing. More advanced topics cover clustering (Section 3.5, “JMS Master/Slave configuration”)

and large indexes handling (Section 3.2, “Sharding indexes”).

12

Chapter 2.

13

Architecture

2.1. Overview

Hibernate Search consists of an indexing component and an index search component. Both are

backed by Apache Lucene.

Each time an entity is inserted, updated or removed in/from the database, Hibernate Search keeps

track of this event (through the Hibernate event system) and schedules an index update. All the

index updates are handled without you having to use the Apache Lucene APIs (see Section 3.8,

“Enabling Hibernate Search and automatic indexing”).

To interact with Apache Lucene indexes, Hibernate Search has the notion of

DirectoryProviders. A directory provider will manage a given Lucene Directory type. You

can configure directory providers to adjust the directory target (see Section 3.1, “Directory

configuration”).

Hibernate Search uses the Lucene index to search an entity and return a list of managed entities

saving you the tedious object to Lucene document mapping. The same persistence context is

shared between Hibernate and Hibernate Search. As a matter of fact, the FullTextSession

is built on top of the Hibernate Session. so that the application code can use the unified

org.hibernate.Query or javax.persistence.Query APIs exactly the way a HQL, JPA-QL or

native queries would do.

To be more efficient, Hibernate Search batches the write interactions with the Lucene index. There

is currently two types of batching depending on the expected scope. Outside a transaction, the

index update operation is executed right after the actual database operation. This scope is really

a no scoping setup and no batching is performed. However, it is recommended - for both your

database and Hibernate Search - to execute your operation in a transaction be it JDBC or JTA.

When in a transaction, the index update operation is scheduled for the transaction commit phase

and discarded in case of transaction rollback. The batching scope is the transaction. There are

two immediate benefits:

• Performance: Lucene indexing works better when operation are executed in batch.

• ACIDity: The work executed has the same scoping as the one executed by the database

transaction and is executed if and only if the transaction is committed. This is not ACID in the

strict sense of it, but ACID behavior is rarely useful for full text search indexes since they can

be rebuilt from the source at any time.

You can think of those two scopes (no scope vs transactional) as the equivalent of the (infamous)

autocommit vs transactional behavior. From a performance perspective, the in transaction mode is

recommended. The scoping choice is made transparently. Hibernate Search detects the presence

of a transaction and adjust the scoping.

Chapter 2. Architecture

14

Note
Hibernate Search works perfectly fine in the Hibernate / EntityManager long

conversation pattern aka. atomic conversation.

Note
Depending on user demand, additional scoping will be considered, the pluggability

mechanism being already in place.

2.2. Back end

Hibernate Search offers the ability to let the scoped work being processed by different back ends.

Two back ends are provided out of the box for two different scenarios.

2.2.1. Back end types

2.2.1.1. Lucene

In this mode, all index update operations applied on a given node (JVM) will be executed to the

Lucene directories (through the directory providers) by the same node. This mode is typically used

in non clustered environment or in clustered environments where the directory store is shared.

Lucene back end configuration.

This mode targets non clustered applications, or clustered applications where the Directory is

taking care of the locking strategy.

The main advantage is simplicity and immediate visibility of the changes in Lucene queries (a

requirement in some applications).

Back end types

15

2.2.1.2. JMS

All index update operations applied on a given node are sent to a JMS queue. A unique reader

will then process the queue and update the master index. The master index is then replicated on

a regular basis to the slave copies. This is known as the master/slaves pattern. The master is

the sole responsible for updating the Lucene index. The slaves can accept read as well as write

operations. However, they only process the read operation on their local index copy and delegate

the update operations to the master.

JMS back end configuration.

This mode targets clustered environments where throughput is critical, and index update delays

are affordable. Reliability is ensured by the JMS provider and by having the slaves working on

a local copy of the index.

2.2.1.3. JGroups

The JGroups based back end works similarly as the JMS one. Designed on the same master/

slave pattern, instead of JMS the JGroups toolkit is used as a replication mechanism. This back

end can be used as an alternative to JMS one when response time is still critical, but i.e. JNDI

service is not available.

Chapter 2. Architecture

16

Note
Hibernate Search is an extensible architecture. Feel free to drop ideas for other

third party back ends to hibernate-dev@lists.jboss.org.

2.2.2. Work execution

The indexing work (done by the back end) can be executed synchronously with the transaction

commit (or update operation if out of transaction), or asynchronously.

2.2.2.1. Synchronous

This is the safe mode where the back end work is executed in concert with the transaction

commit. Under highly concurrent environment, this can lead to throughput limitations (due to the

Apache Lucene lock mechanism) and it can increase the system response time if the backend is

significantly slower than the transactional process and if a lot of IO operations are involved.

2.2.2.2. Asynchronous

This mode delegates the work done by the back end to a different thread. That way, throughput

and response time are (to a certain extend) decorrelated from the back end performance. The

drawback is that a small delay appears between the transaction commit and the index update and

a small overhead is introduced to deal with thread management.

It is recommended to use synchronous execution first and evaluate asynchronous execution if

performance problems occur and after having set up a proper benchmark (ie not a lonely cowboy

hitting the system in a completely unrealistic way).

2.3. Reader strategy

When executing a query, Hibernate Search interacts with the Apache Lucene indexes through a

reader strategy. Choosing a reader strategy will depend on the profile of the application (frequent

updates, read mostly, asynchronous index update etc). See also Section 3.7, “Reader strategy

configuration”

2.3.1. Shared

With this strategy, Hibernate Search will share the same IndexReader, for a given Lucene index,

across multiple queries and threads provided that the IndexReader is still up-to-date. If the

IndexReader is not up-to-date, a new one is opened and provided. Each IndexReader is made

of several SegmentReaders. This strategy only reopens segments that have been modified or

created after last opening and shares the already loaded segments from the previous instance.

This strategy is the default.

The name of this strategy is shared.

Not-shared

17

2.3.2. Not-shared

Every time a query is executed, a Lucene IndexReader is opened. This strategy is not the most

efficient since opening and warming up an IndexReader can be a relatively expensive operation.

The name of this strategy is not-shared.

2.3.3. Custom

You can write your own reader strategy that suits your application needs by implementing

org.hibernate.search.reader.ReaderProvider. The implementation must be thread safe.

18

Chapter 3.

19

Configuration

3.1. Directory configuration

Apache Lucene has a notion of Directory to store the index files. The Directory implementation

can be customized, but Lucene comes bundled with a file system (FSDirectoryProvider) and

an in memory (RAMDirectoryProvider) implementation. DirectoryProviders are the Hibernate

Search abstraction around a Lucene Directory and handle the configuration and the initialization

of the underlying Lucene resources. Table 3.1, “List of built-in Directory Providers” shows the list

of the directory providers bundled with Hibernate Search.

Table 3.1. List of built-in Directory Providers

Class Description Properties

org.hibernate.search.store.RAMDirectoryProviderMemory based directory, the

directory will be uniquely

identified (in the same

deployment unit) by the

@Indexed.index element

none

org.hibernate.search.store.FSDirectoryProviderFile system based directory.

The directory used will be

<indexBase>/< indexName >

indexBase : Base directory

indexName: override

@Indexed.index (useful for

sharded indexes)

locking_strategy : optional,

see Section 3.10,

“LockFactory configuration”

org.hibernate.search.store.FSMasterDirectoryProviderFile system based directory.

Like FSDirectoryProvider. It

also copies the index to a

source directory (aka copy

directory) on a regular basis.

The recommended value for

the refresh period is (at least)

50% higher that the time to

copy the information (default

3600 seconds - 60 minutes).

Note that the copy is

based on an incremental

copy mechanism reducing the

average copy time.

indexBase: Base directory

indexName: override

@Indexed.index (useful for

sharded indexes)

sourceBase: Source (copy)

base directory.

source: Source directory

suffix (default to

@Indexed.index). The actual

source directory name being

<sourceBase>/<source>

Chapter 3. Configuration

20

Class Description Properties

DirectoryProvider typically

used on the master node in a

JMS back end cluster.

The buffer_size_on_copy

optimum depends on your

operating system and

available RAM; most people

reported good results using

values between 16 and 64MB.

refresh: refresh period in

second (the copy will take

place every refresh seconds).

buffer_size_on_copy: The

amount of MegaBytes to move

in a single low level copy

instruction; defaults to 16MB.

locking_strategy : optional,

see Section 3.10,

“LockFactory configuration”

org.hibernate.search.store.FSSlaveDirectoryProviderFile system based directory.

Like FSDirectoryProvider, but

retrieves a master version

(source) on a regular basis. To

avoid locking and inconsistent

search results, 2 local copies

are kept.

The recommended value for

the refresh period is (at least)

50% higher that the time to

copy the information (default

3600 seconds - 60 minutes).

Note that the copy is

based on an incremental

copy mechanism reducing the

average copy time.

DirectoryProvider typically

used on slave nodes using a

JMS back end.

The buffer_size_on_copy

optimum depends on your

operating system and

available RAM; most people

reported good results using

values between 16 and 64MB.

indexBase: Base directory

indexName: override

@Indexed.index (useful for

sharded indexes)

sourceBase: Source (copy)

base directory.

source: Source directory

suffix (default to

@Indexed.index). The actual

source directory name being

<sourceBase>/<source>

refresh: refresh period in

second (the copy will take

place every refresh seconds).

buffer_size_on_copy: The

amount of MegaBytes to move

in a single low level copy

instruction; defaults to 16MB.

locking_strategy : optional,

see Section 3.10,

“LockFactory configuration”

If the built-in directory providers do not fit your needs, you can write your own directory provider

by implementing the org.hibernate.store.DirectoryProvider interface.

Sharding indexes

21

Each indexed entity is associated to a Lucene index (an index can be shared by several entities

but this is not usually the case). You can configure the index through properties prefixed by

hibernate.search.indexname . Default properties inherited to all indexes can be defined using

the prefix hibernate.search.default.

To define the directory provider of a given index, you use the

hibernate.search.indexname.directory_provider

Example 3.1. Configuring directory providers

hibernate.search.default.directory_provider

 org.hibernate.search.store.FSDirectoryProvider

hibernate.search.default.indexBase=/usr/lucene/indexes

hibernate.search.Rules.directory_provider

 org.hibernate.search.store.RAMDirectoryProvider

applied on

Example 3.2. Specifying the index name using the index parameter of @Indexed

@Indexed(index="Status")

public class Status { ... }

@Indexed(index="Rules")

public class Rule { ... }

will create a file system directory in /usr/lucene/indexes/Status where the Status entities will

be indexed, and use an in memory directory named Rules where Rule entities will be indexed.

You can easily define common rules like the directory provider and base directory, and override

those defaults later on on a per index basis.

Writing your own DirectoryProvider, you can utilize this configuration mechanism as well.

3.2. Sharding indexes

In some cases, it is necessary to split (shard) the indexing data of a given entity type into several

Lucene indexes. This solution is not recommended unless there is a pressing need because by

default, searches will be slower as all shards have to be opened for a single search. In other words

don't do it until you have problems :)

For example, sharding may be desirable if:

• A single index is so huge that index update times are slowing the application down.

Chapter 3. Configuration

22

• A typical search will only hit a sub-set of the index, such as when data is naturally segmented

by customer, region or application.

Hibernate Search allows you to index a given entity type into several sub indexes. Data is sharded

into the different sub indexes thanks to an IndexShardingStrategy. By default, no sharding

strategy is enabled, unless the number of shards is configured. To configure the number of shards

use the following property

Example 3.3. Enabling index sharding by specifying nbr_of_shards for a

specific index

hibernate.search.<indexName>.sharding_strategy.nbr_of_shards 5

This will use 5 different shards.

The default sharding strategy, when shards are set up, splits the data according to the hash value

of the id string representation (generated by the Field Bridge). This ensures a fairly balanced

sharding. You can replace the strategy by implementing IndexShardingStrategy and by setting

the following property

Example 3.4. Specifying a custom sharding strategy

hibernate.search.<indexName>.sharding_strategy

 my.shardingstrategy.Implementation

Using a custom IndexShardingStrategy implementation, it's possible to define what shard a

given entity is indexed to.

It also allows for optimizing searches by selecting which shard to run the query onto.

By activating a filter (see Section 5.3.1, “Using filters in a sharded environment”),

a sharding strategy can select a subset of the shards used to answer a query

(IndexShardingStrategy.getDirectoryProvidersForQuery) and thus speed up the query

execution.

Each shard has an independent directory provider configuration as described in Section 3.1,

“Directory configuration”. The DirectoryProvider default name for the previous example are

<indexName>.0 to <indexName>.4. In other words, each shard has the name of it's owning index

followed by . (dot) and its index number.

Example 3.5. Configuring the sharding configuration for an example entity

Animal

hibernate.search.default.indexBase /usr/lucene/indexes

Sharing indexes (two entities into the same directory)

23

hibernate.search.Animal.sharding_strategy.nbr_of_shards 5

hibernate.search.Animal.directory_provider

 org.hibernate.search.store.FSDirectoryProvider

hibernate.search.Animal.0.indexName Animal00

hibernate.search.Animal.3.indexBase /usr/lucene/sharded

hibernate.search.Animal.3.indexName Animal03

This configuration uses the default id string hashing strategy and shards the Animal index into 5

subindexes. All subindexes are FSDirectoryProvider instances and the directory where each

subindex is stored is as followed:

• for subindex 0: /usr/lucene/indexes/Animal00 (shared indexBase but overridden indexName)

• for subindex 1: /usr/lucene/indexes/Animal.1 (shared indexBase, default indexName)

• for subindex 2: /usr/lucene/indexes/Animal.2 (shared indexBase, default indexName)

• for subindex 3: /usr/lucene/shared/Animal03 (overridden indexBase, overridden indexName)

• for subindex 4: /usr/lucene/indexes/Animal.4 (shared indexBase, default indexName)

3.3. Sharing indexes (two entities into the same

directory)

Note

This is only presented here so that you know the option is available. There is really

not much benefit in sharing indexes.

It is technically possible to store the information of more than one entity into a single Lucene index.

There are two ways to accomplish this:

• Configuring the underlying directory providers to point to the same physical index

directory. In practice, you set the property hibernate.search.[fully qualified entity

name].indexName to the same value. As an example let’s use the same index (directory) for the

Furniture and Animal entity. We just set indexName for both entities to for example “Animal”.

Both entities will then be stored in the Animal directory

hibernate.search.org.hibernate.search.test.shards.Furniture.indexName =

 Animal

hibernate.search.org.hibernate.search.test.shards.Animal.indexName = Animal

• Setting the @Indexed annotation’s index attribute of the entities you want to merge to the same

value. If we again wanted all Furniture instances to be indexed in the Animal index along

Chapter 3. Configuration

24

with all instances of Animal we would specify @Indexed(index=”Animal”) on both Animal

and Furniture classes.

3.4. Worker configuration

It is possible to refine how Hibernate Search interacts with Lucene through the worker

configuration. The work can be executed to the Lucene directory or sent to a JMS queue for later

processing. When processed to the Lucene directory, the work can be processed synchronously

or asynchronously to the transaction commit.

You can define the worker configuration using the following properties

Table 3.2. worker configuration

Property Description

hibernate.search.worker.backend Out of the box support for the Apache Lucene

back end and the JMS back end. Default

to lucene. Supports also jms, blackhole,

jgroupsMaster and jgroupsSlave.

hibernate.search.worker.execution Supports synchronous and asynchronous

execution. Default to sync. Supports also

async.

hibernate.search.worker.thread_pool.sizeDefines the number of threads in the

pool. useful only for asynchronous execution.

Default to 1.

hibernate.search.worker.buffer_queue.maxDefines the maximal number of work queue

if the thread poll is starved. Useful only for

asynchronous execution. Default to infinite. If

the limit is reached, the work is done by the

main thread.

hibernate.search.worker.jndi.* Defines the JNDI properties to initiate the

InitialContext (if needed). JNDI is only used by

the JMS back end.

hibernate.search.worker.jms.connection_factoryMandatory for the JMS back end. Defines

the JNDI name to lookup the JMS connection

factory from (/ConnectionFactory by default

in JBoss AS)

hibernate.search.worker.jms.queue Mandatory for the JMS back end. Defines the

JNDI name to lookup the JMS queue from. The

queue will be used to post work messages.

hibernate.search.worker.jgroups.clusterNameOptional for JGroups back end. Defines the

name of JGroups channel.

JMS Master/Slave configuration

25

hibernate.search.worker.jgroups.configurationFileOptional JGroups network stack configuration.

Defines the name of a JGroups configuration

file, which must exist on classpath.

hibernate.search.worker.jgroups.configurationXmlOptional JGroups network stack configuration.

Defines a String representing JGroups

configuration as XML.

hibernate.search.worker.jgroups.configurationStringOptional JGroups network stack configuration.

Provides JGroups configuration in plain text.

3.5. JMS Master/Slave configuration

This section describes in greater detail how to configure the Master / Slaves Hibernate Search

architecture.

JMS back end configuration.

3.5.1. Slave nodes

Every index update operation is sent to a JMS queue. Index querying operations are executed

on a local index copy.

Chapter 3. Configuration

26

Example 3.6. JMS Slave configuration

slave configuration

DirectoryProvider

(remote) master location

hibernate.search.default.sourceBase = /mnt/mastervolume/lucenedirs/mastercopy

local copy location

hibernate.search.default.indexBase = /Users/prod/lucenedirs

refresh every half hour

hibernate.search.default.refresh = 1800

appropriate directory provider

hibernate.search.default.directory_provider =

 org.hibernate.search.store.FSSlaveDirectoryProvider

Backend configuration

hibernate.search.worker.backend = jms

hibernate.search.worker.jms.connection_factory = /ConnectionFactory

hibernate.search.worker.jms.queue = queue/hibernatesearch

#optional jndi configuration (check your JMS provider for more information)

Optional asynchronous execution strategy

hibernate.search.worker.execution = async

hibernate.search.worker.thread_pool.size = 2

hibernate.search.worker.buffer_queue.max = 50

A file system local copy is recommended for faster search results.

The refresh period should be higher that the expected time copy.

3.5.2. Master node

Every index update operation is taken from a JMS queue and executed. The master index is

copied on a regular basis.

Example 3.7. JMS Master configuration

master configuration

DirectoryProvider

(remote) master location where information is copied to

hibernate.search.default.sourceBase = /mnt/mastervolume/lucenedirs/mastercopy

Master node

27

local master location

hibernate.search.default.indexBase = /Users/prod/lucenedirs

refresh every half hour

hibernate.search.default.refresh = 1800

appropriate directory provider

hibernate.search.default.directory_provider =

 org.hibernate.search.store.FSMasterDirectoryProvider

Backend configuration

#Backend is the default lucene one

The refresh period should be higher that the expected time copy.

In addition to the Hibernate Search framework configuration, a Message Driven Bean should be

written and set up to process the index works queue through JMS.

Example 3.8. Message Driven Bean processing the indexing queue

@MessageDriven(activationConfig = {

 @ActivationConfigProperty(propertyName="destinationType",

 propertyValue="javax.jms.Queue"),

 @ActivationConfigProperty(propertyName="destination", propertyValue="queue/

hibernatesearch"),

 @ActivationConfigProperty(propertyName="DLQMaxResent", propertyValue="1")

 })

public class MDBSearchController extends AbstractJMSHibernateSearchController

 implements MessageListener {

 @PersistenceContext EntityManager em;

 //method retrieving the appropriate session

 protected Session getSession() {

 return (Session) em.getDelegate();

 }

 //potentially close the session opened in #getSession(), not needed here

 protected void cleanSessionIfNeeded(Session session)

 }

}

This example inherits from the abstract JMS controller class available in the Hibernate Search

source code and implements a JavaEE 5 MDB. This implementation is given as an example and,

while most likely be more complex, can be adjusted to make use of non Java EE Message Driven

Beans. For more information about the getSession() and cleanSessionIfNeeded(), please

check AbstractJMSHibernateSearchController's javadoc.

Chapter 3. Configuration

28

3.6. JGroups Master/Slave configuration

Describes how to configure JGroups Master/Slave back end. Configuration examples illustrated

in JMS Master/Slave configuration section (Section 3.5, “JMS Master/Slave configuration”) also

apply here, only a different backend needs to be set.

3.6.1. Slave nodes

Every index update operation is sent through a JGroups channel to the master node. Index

querying operations are executed on a local index copy.

Example 3.9. JGroups Slave configuration

slave configuration

Backend configuration

hibernate.search.worker.backend = jgroupsSlave

3.6.2. Master node

Every index update operation is taken from a JGroups channel and executed. The master index

is copied on a regular basis.

Example 3.10. JGroups Master configuration

master configuration

Backend configuration

hibernate.search.worker.backend = jgroupsMaster

3.6.3. JGroups channel configuration

Optionally configuration for JGroups transport protocols (UDP, TCP) and channel name can be

defined. It can be applied to both master and slave nodes. There are several ways to configure

JGroups transport details. If it is not defined explicity, configuration found in the flush-udp.xml

file is used.

Example 3.11. JGroups transport protocols configuration

configuration

JGroups channel configuration

29

#udp.xml file needs to be located in the classpath

hibernate.search.worker.backend.jgroups.configurationFile = udp.xml

#protocol stack configuration provided in XML format

hibernate.search.worker.backend.jgroups.configurationXml =

<config xmlns="urn:org:jgroups"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="urn:org:jgroups file:schema/JGroups-2.8.xsd">

<UDP

mcast_addr="${jgroups.udp.mcast_addr:228.10.10.10}"

mcast_port="${jgroups.udp.mcast_port:45588}"

tos="8"

thread_naming_pattern="pl"

thread_pool.enabled="true"

thread_pool.min_threads="2"

thread_pool.max_threads="8"

thread_pool.keep_alive_time="5000"

thread_pool.queue_enabled="false"

thread_pool.queue_max_size="100"

thread_pool.rejection_policy="Run"/>

<PING timeout="1000" num_initial_members="3"/>

<MERGE2 max_interval="30000" min_interval="10000"/>

<FD_SOCK/>

<FD timeout="3000" max_tries="3"/>

<VERIFY_SUSPECT timeout="1500"/>

<pbcast.STREAMING_STATE_TRANSFER/>

<pbcast.FLUSH timeout="0"/>

</config>

#protocol stack configuration provided in "old style" jgroups format

hibernate.search.worker.backend.jgroups.configurationString =

UDP(mcast_addr=228.1.2.3;mcast_port=45566;ip_ttl=32):PING(timeout=3000;

num_initial_members=6):FD(timeout=5000):VERIFY_SUSPECT(timeout=1500):

pbcast.NAKACK(gc_lag=10;retransmit_timeout=3000):UNICAST(timeout=5000):

FRAG:pbcast.GMS(join_timeout=3000;shun=false;print_local_addr=true)

Master and slave nodes communicate over JGroups channel that is identified by this same name.

Name of the channel can be defined explicity, if not default HSearchCluster is used.

Example 3.12. JGroups channel name configuration

Backend configuration

Chapter 3. Configuration

30

hibernate.search.worker.backend.jgroups.clusterName = Hibernate-Search-Cluster

3.7. Reader strategy configuration

The different reader strategies are described in Reader strategy. Out of the box strategies are:

• shared: share index readers across several queries. This strategy is the most efficient.

• not-shared: create an index reader for each individual query

The default reader strategy is shared. This can be adjusted:

hibernate.search.reader.strategy = not-shared

Adding this property switches to the not-shared strategy.

Or if you have a custom reader strategy:

hibernate.search.reader.strategy = my.corp.myapp.CustomReaderProvider

where my.corp.myapp.CustomReaderProvider is the custom strategy implementation.

3.8. Enabling Hibernate Search and automatic indexing

3.8.1. Enabling Hibernate Search

Hibernate Search is enabled out of the box when using Hibernate Annotations

or Hibernate EntityManager. If, for some reason you need to disable it, set

hibernate.search.autoregister_listeners to false. Note that there is no performance

penalty when the listeners are enabled but no entities are annotated as indexed.

To enable Hibernate Search in Hibernate Core (ie. if you don't use Hibernate Annotations), add

the FullTextIndexEventListener for the following six Hibernate events and also add it after the

default DefaultFlushEventListener, as in the following example.

Example 3.13. Explicitly enabling Hibernate Search by configuring the

FullTextIndexEventListener

<hibernate-configuration>

Automatic indexing

31

 <session-factory>

 ...

 <event type="post-update">

 <listener

 class="org.hibernate.search.event.FullTextIndexEventListener"/>

 </event>

 <event type="post-insert">

 <listener

 class="org.hibernate.search.event.FullTextIndexEventListener"/>

 </event>

 <event type="post-delete">

 <listener

 class="org.hibernate.search.event.FullTextIndexEventListener"/>

 </event>

 <event type="post-collection-recreate">

 <listener

 class="org.hibernate.search.event.FullTextIndexEventListener"/>

 </event>

 <event type="post-collection-remove">

 <listener

 class="org.hibernate.search.event.FullTextIndexEventListener"/>

 </event>

 <event type="post-collection-update">

 <listener

 class="org.hibernate.search.event.FullTextIndexEventListener"/>

 </event>

 <event type="flush">

 <listener class="org.hibernate.event.def.DefaultFlushEventListener"/>

 <listener

 class="org.hibernate.search.event.FullTextIndexEventListener"/>

 </event>

 </session-factory>

</hibernate-configuration>

3.8.2. Automatic indexing

By default, every time an object is inserted, updated or deleted through Hibernate, Hibernate

Search updates the according Lucene index. It is sometimes desirable to disable that features

if either your index is read-only or if index updates are done in a batch way (see Section 6.3,

“Rebuilding the whole Index”).

To disable event based indexing, set

hibernate.search.indexing_strategy manual

Chapter 3. Configuration

32

Note

In most case, the JMS backend provides the best of both world, a lightweight

event based system keeps track of all changes in the system, and the heavyweight

indexing process is done by a separate process or machine.

3.9. Tuning Lucene indexing performance

Hibernate Search allows you to tune the Lucene indexing performance by specifying a set of

parameters which are passed through to underlying Lucene IndexWriter such as mergeFactor,

maxMergeDocs and maxBufferedDocs. You can specify these parameters either as default values

applying for all indexes, on a per index basis, or even per shard.

There are two sets of parameters allowing for different performance settings depending on the

use case. During indexing operations triggered by database modifications, the parameters are

grouped by the transaction keyword:

hibernate.search.[default|

<indexname>].indexwriter.transaction.<parameter_name>

When indexing occurs via FullTextSession.index() or via a MassIndexer (see Section 6.3,

“Rebuilding the whole Index”), the used properties are those grouped under the batch keyword:

hibernate.search.[default|<indexname>].indexwriter.batch.<parameter_name>

If no value is set for a .batch value in a specific shard configuration, Hibernate Search will look

at the index section, then at the default section:

hibernate.search.Animals.2.indexwriter.transaction.max_merge_docs 10

hibernate.search.Animals.2.indexwriter.transaction.merge_factor 20

hibernate.search.default.indexwriter.batch.max_merge_docs 100

This configuration will result in these settings applied to the second shard of Animals index:

• transaction.max_merge_docs = 10

• batch.max_merge_docs = 100

• transaction.merge_factor = 20

• batch.merge_factor = Lucene default

Tuning Lucene indexing performance

33

All other values will use the defaults defined in Lucene.

The default for all values is to leave them at Lucene's own default, so the listed values in the

following table actually depend on the version of Lucene you are using; values shown are relative

to version 2.4. For more information about Lucene indexing performances, please refer to the

Lucene documentation.

Warning

Previous versions had the batch parameters inherit from transaction properties.

This needs now to be explicitly set.

Table 3.3. List of indexing performance and behavior properties

Property Description Default Value

hibernate.search.

[default|

<indexname>].exclusive_index_use

Set to true when no

other process will need

to write to the same

index: this will enable

Hibernate Search to work in

exlusive mode on the index

and improve performance in

writing changes to the index.

false (releases locks as soon

as possible)

hibernate.search.

[default|

<indexname>].indexwriter.

[transaction|

batch].max_buffered_delete_terms

Determines the minimal

number of delete terms

required before the buffered

in-memory delete terms are

applied and flushed. If there

are documents buffered in

memory at the time, they are

merged and a new segment is

created.

Disabled (flushes by RAM

usage)

hibernate.search.

[default|

<indexname>].indexwriter.

[transaction|

batch].max_buffered_docs

Controls the amount of

documents buffered in

memory during indexing. The

bigger the more RAM is

consumed.

Disabled (flushes by RAM

usage)

hibernate.search.

[default|

<indexname>].indexwriter.

[transaction|

batch].max_field_length

The maximum number of

terms that will be indexed for

a single field. This limits the

amount of memory required

for indexing so that very large

data will not crash the indexing

10000

Chapter 3. Configuration

34

Property Description Default Value

process by running out of

memory. This setting refers to

the number of running terms,

not to the number of different

terms.

This silently truncates large

documents, excluding from

the index all terms that

occur further in the document.

If you know your source

documents are large, be

sure to set this value high

enough to accommodate the

expected size. If you set it

to Integer.MAX_VALUE, then

the only limit is your memory,

but you should anticipate an

OutOfMemoryError.

If setting this value in

batch differently than in

transaction you may get

different data (and results) in

your index depending on the

indexing mode.

hibernate.search.

[default|

<indexname>].indexwriter.

[transaction|

batch].max_merge_docs

Defines the largest number

of documents allowed in a

segment. Larger values are

best for batched indexing

and speedier searches. Small

values are best for transaction

indexing.

Unlimited

(Integer.MAX_VALUE)

hibernate.search.

[default|

<indexname>].indexwriter.

[transaction|

batch].merge_factor

Controls segment merge

frequency and size.

Determines how often

segment indexes are merged

when insertion occurs. With

smaller values, less RAM

is used while indexing,

and searches on unoptimized

indexes are faster, but

10

Tuning Lucene indexing performance

35

Property Description Default Value

indexing speed is slower.

With larger values, more

RAM is used during indexing,

and while searches on

unoptimized indexes are

slower, indexing is faster. Thus

larger values (> 10) are best

for batch index creation, and

smaller values (< 10) for

indexes that are interactively

maintained. The value must no

be lower than 2.

hibernate.search.

[default|

<indexname>].indexwriter.

[transaction|

batch].ram_buffer_size

Controls the amount of RAM

in MB dedicated to document

buffers. When used together

max_buffered_docs a flush

occurs for whichever event

happens first.

Generally for faster indexing

performance it's best to flush

by RAM usage instead of

document count and use as

large a RAM buffer as you can.

16 MB

hibernate.search.

[default|

<indexname>].indexwriter.

[transaction|

batch].term_index_interval

Expert: Set the interval

between indexed terms.

Large values cause less

memory to be used

by IndexReader, but slow

random-access to terms.

Small values cause more

memory to be used by

an IndexReader, and speed

random-access to terms. See

Lucene documentation for

more details.

128

hibernate.search.

[default|

<indexname>].indexwriter.

[transaction|

batch].use_compound_file

The advantage of using the

compound file format is that

less file descriptors are used.

The disadvantage is that

indexing takes more time and

temporary disk space. You can

true

Chapter 3. Configuration

36

Property Description Default Value

set this parameter to false

in an attempt to improve the

indexing time, but you could

run out of file descriptors if

mergeFactor is also large.

Boolean parameter, use

"true" or "false". The default

value for this option is true.

Tip

When your architecture permits it, always set

hibernate.search.default.exclusive_index_use=true as it greatly improves

efficiency in index writing.

To tune the indexing speed it might be useful to time the object loading from database in isolation

from the writes to the index. To achieve this set the blackhole as worker backend and start you

indexing routines. This backend does not disable Hibernate Search: it will still generate the needed

changesets to the index, but will discard them instead of flushing them to the index. As opposite

to setting the hibernate.search.indexing_strategy to manual when using blackhole it will

possibly load more data to rebuild the index from associated entities.

hibernate.search.worker.backend blackhole

The recommended approach is to focus first on optimizing the object loading, and then use the

timings you achieve as a baseline to tune the indexing process.

The blackhole backend is not meant to be used in production, only as a tool to identify indexing

bottlenecks.

3.10. LockFactory configuration

Lucene Directories have default locking strategies which work well for most cases, but it's possible

to specify for each index managed by Hibernate Search which LockingFactory you want to use.

Some of these locking strategies require a filesystem level lock and may be used even on RAM

based indexes, but this is not recommended and of no practical use.

To select a locking factory, set the hibernate.search.<index>.locking_strategy option to

one of simple, native, single or none, or set it to the fully qualified name of an implementation

LockFactory configuration

37

of org.hibernate.search.store.LockFactoryFactory; Implementing this interface you can

provide a custom org.apache.lucene.store.LockFactory.

Table 3.4. List of available LockFactory implementations

name Class Description

simple org.apache.lucene.store.SimpleFSLockFactorySafe implementation based on

Java's File API, it marks the

usage of the index by creating

a marker file.

If for some reason you had to

kill your application, you will

need to remove this file before

restarting it.

This is the default

implementation for

FSDirectoryProvider,FSMasterDirectoryProvider

and

FSSlaveDirectoryProvider.

native org.apache.lucene.store.NativeFSLockFactoryAs does simple this also

marks the usage of the index

by creating a marker file, but

this one is using native OS

file locks so that even if your

application crashes the locks

will be cleaned up.

This implementation has

known problems on NFS.

single org.apache.lucene.store.SingleInstanceLockFactoryThis LockFactory doesn't use

a file marker but is a Java

object lock held in memory;

therefore it's possible to use

it only when you are sure the

index is not going to be shared

by any other process.

This is the default

implementation for

RAMDirectoryProvider.

none org.apache.lucene.store.NoLockFactoryAll changes to this index are

not coordinated by any lock;

test your application carefully

Chapter 3. Configuration

38

name Class Description

and make sure you know what

it means.

Configuration example:

hibernate.search.default.locking_strategy simple

hibernate.search.Animals.locking_strategy native

hibernate.search.Books.locking_strategy org.custom.components.MyLockingFactory

3.11. Exception Handling Configuration

Hibernate Search allows you to configure how exceptions are handled during the indexing

process. If no configuration is provided then exceptions are logged to the log output by default. It

is possible to explicitly declare the exception logging mechanism as seen below:

hibernate.search.error_handler log

The default exception handling occurs for both synchronous and asynchronous indexing.

Hibernate Search provides an easy mechanism to override the default error handling

implementation.

In order to provide your own implementation you must implement the ErrorHandler interface,

which provides handle (ErrorContext context) method. The ErrorContext provides a

reference to the primary LuceneWork that failed, the underlying exception and any subsequent

LuceneWork that could not be processed due to the primary exception.

public interface ErrorContext {

 List<LuceneWork> getFailingOperations();

 LuceneWork getOperationAtFault();

 Throwable getThrowable();

 boolean hasErrors();

}

The following provides an example implementation of ErrorHandler:

public class CustomErrorHandler implements ErrorHandler {

 public void handle (ErrorContext context) {

 ...

 //publish error context to some internal error handling system

 ...

Exception Handling Configuration

39

 }

}

To register this error handler with Hibernate Search you must declare the CustomErrorHandler

fully qualified classname in the configuration properties:

hibernate.search.error_handler CustomerErrorHandler

40

Chapter 4.

41

Mapping entities to the index

structure
All the metadata information needed to index entities is described through annotations.

There is no need for xml mapping files. In fact there is currently no xml configuration

option available (see HSEARCH-210 [http://opensource.atlassian.com/projects/hibernate/

browse/HSEARCH-210]). You can still use Hibernate mapping files for the basic Hibernate

configuration, but the Hibernate Search specific configuration has to be expressed via annotations.

4.1. Mapping an entity

4.1.1. Basic mapping

First, we must declare a persistent class as indexable. This is done by annotating the class with

@Indexed (all entities not annotated with @Indexed will be ignored by the indexing process):

Example 4.1. Making a class indexable using the @Indexed annotation

@Entity

@Indexed(index="indexes/essays")

public class Essay {

 ...

}

The index attribute tells Hibernate what the Lucene directory name is (usually a directory

on your file system). It is recommended to define a base directory for all Lucene

indexes using the hibernate.search.default.indexBase property in your configuration

file. Alternatively you can specify a base directory per indexed entity by specifying

hibernate.search.<index>.indexBase, where <index> is the fully qualified classname of the

indexed entity. Each entity instance will be represented by a Lucene Document inside the given

index (aka Directory).

For each property (or attribute) of your entity, you have the ability to describe how it will be indexed.

The default (no annotation present) means that the property is ignored by the indexing process.

@Field does declare a property as indexed. When indexing an element to a Lucene document

you can specify how it is indexed:

• name : describe under which name, the property should be stored in the Lucene Document. The

default value is the property name (following the JavaBeans convention)

• store : describe whether or not the property is stored in the Lucene index. You can

store the value Store.YES (consuming more space in the index but allowing projection,

http://opensource.atlassian.com/projects/hibernate/browse/HSEARCH-210
http://opensource.atlassian.com/projects/hibernate/browse/HSEARCH-210
http://opensource.atlassian.com/projects/hibernate/browse/HSEARCH-210

Chapter 4. Mapping entities t...

42

see Section 5.1.2.5, “Projection” for more information), store it in a compressed way

Store.COMPRESS (this does consume more CPU), or avoid any storage Store.NO (this is the

default value). When a property is stored, you can retrieve its original value from the Lucene

Document. This is not related to whether the element is indexed or not.

• index: describe how the element is indexed and the type of information store. The different

values are Index.NO (no indexing, ie cannot be found by a query), Index.TOKENIZED (use

an analyzer to process the property), Index.UN_TOKENIZED (no analyzer pre-processing),

Index.NO_NORMS (do not store the normalization data). The default value is TOKENIZED.

• termVector: describes collections of term-frequency pairs. This attribute enables term vectors

being stored during indexing so they are available within documents. The default value is

TermVector.NO.

The different values of this attribute are:

Value Definition

TermVector.YES Store the term vectors of each document.

This produces two synchronized arrays,

one contains document terms and the other

contains the term's frequency.

TermVector.NO Do not store term vectors.

TermVector.WITH_OFFSETS Store the term vector and token offset

information. This is the same as

TermVector.YES plus it contains the starting

and ending offset position information for the

terms.

TermVector.WITH_POSITIONS Store the term vector and token position

information. This is the same as

TermVector.YES plus it contains the ordinal

positions of each occurrence of a term in a

document.

TermVector.WITH_POSITION_OFFSETS Store the term vector, token position and

offset information. This is a combination

of the YES, WITH_OFFSETS and

WITH_POSITIONS.

Whether or not you want to store the original data in the index depends on how you wish to use the

index query result. For a regular Hibernate Search usage storing is not necessary. However you

might want to store some fields to subsequently project them (see Section 5.1.2.5, “Projection”

for more information).

Whether or not you want to tokenize a property depends on whether you wish to search the

element as is, or by the words it contains. It make sense to tokenize a text field, but probably

not a date field.

Mapping properties multiple times

43

Note

Fields used for sorting must not be tokenized.

Finally, the id property of an entity is a special property used by Hibernate Search to ensure index

unicity of a given entity. By design, an id has to be stored and must not be tokenized. To mark

a property as index id, use the @DocumentId annotation. If you are using Hibernate Annotations

and you have specified @Id you can omit @DocumentId. The chosen entity id will also be used

as document id.

Example 4.2. Adding @DocumentId ad @Field annotations to an indexed entity

@Entity

@Indexed(index="indexes/essays")

public class Essay {

 ...

 @Id

 @DocumentId

 public Long getId() { return id; }

 @Field(name="Abstract", index=Index.TOKENIZED, store=Store.YES)

 public String getSummary() { return summary; }

 @Lob

 @Field(index=Index.TOKENIZED)

 public String getText() { return text; }

}

Example 4.2, “Adding @DocumentId ad @Field annotations to an indexed entity” define an index

with three fields: id , Abstract and text . Note that by default the field name is decapitalized,

following the JavaBean specification

4.1.2. Mapping properties multiple times

Sometimes one has to map a property multiple times per index, with slightly different indexing

strategies. For example, sorting a query by field requires the field to be UN_TOKENIZED. If one

wants to search by words in this property and still sort it, one need to index it twice - once tokenized

and once untokenized. @Fields allows to achieve this goal.

Example 4.3. Using @Fields to map a property multiple times

@Entity

@Indexed(index = "Book")

Chapter 4. Mapping entities t...

44

public class Book {

 @Fields({

 @Field(index = Index.TOKENIZED),

 @Field(name = "summary_forSort", index = Index.UN_TOKENIZED, store

 = Store.YES)

 })

 public String getSummary() {

 return summary;

 }

 ...

}

In Example 4.3, “Using @Fields to map a property multiple times” the field summary is indexed

twice, once as summary in a tokenized way, and once as summary_forSort in an untokenized

way. @Field supports 2 attributes useful when @Fields is used:

• analyzer: defines a @Analyzer annotation per field rather than per property

• bridge: defines a @FieldBridge annotation per field rather than per property

See below for more information about analyzers and field bridges.

4.1.3. Embedded and associated objects

Associated objects as well as embedded objects can be indexed as part of the root entity index.

This is useful if you expect to search a given entity based on properties of associated objects.

In the following example the aim is to return places where the associated city is Atlanta (In the

Lucene query parser language, it would translate into address.city:Atlanta).

Example 4.4. Using @IndexedEmbedded to index associations

@Entity

@Indexed

public class Place {

 @Id

 @GeneratedValue

 @DocumentId

 private Long id;

 @Field(index = Index.TOKENIZED)

 private String name;

 @OneToOne(cascade = { CascadeType.PERSIST, CascadeType.REMOVE })

 @IndexedEmbedded

 private Address address;

Embedded and associated objects

45

}

@Entity

public class Address {

 @Id

 @GeneratedValue

 private Long id;

 @Field(index=Index.TOKENIZED)

 private String street;

 @Field(index=Index.TOKENIZED)

 private String city;

 @ContainedIn

 @OneToMany(mappedBy="address")

 private Set<Place> places;

 ...

}

In this example, the place fields will be indexed in the Place index. The Place index documents

will also contain the fields address.id, address.street, and address.city which you will be

able to query. This is enabled by the @IndexedEmbedded annotation.

Be careful. Because the data is denormalized in the Lucene index when using the

@IndexedEmbedded technique, Hibernate Search needs to be aware of any change in the Place

object and any change in the Address object to keep the index up to date. To make sure the Place

Lucene document is updated when it's Address changes, you need to mark the other side of the

bidirectional relationship with @ContainedIn.

@ContainedIn is only useful on associations pointing to entities as opposed to embedded

(collection of) objects.

Let's make our example a bit more complex:

Example 4.5. Nested usage of @IndexedEmbedded and @ContainedIn

@Entity

@Indexed

public class Place {

 @Id

 @GeneratedValue

 @DocumentId

 private Long id;

 @Field(index = Index.TOKENIZED)

 private String name;

Chapter 4. Mapping entities t...

46

 @OneToOne(cascade = { CascadeType.PERSIST, CascadeType.REMOVE })

 @IndexedEmbedded

 private Address address;

}

@Entity

public class Address {

 @Id

 @GeneratedValue

 private Long id;

 @Field(index=Index.TOKENIZED)

 private String street;

 @Field(index=Index.TOKENIZED)

 private String city;

 @IndexedEmbedded(depth = 1, prefix = "ownedBy_")

 private Owner ownedBy;

 @ContainedIn

 @OneToMany(mappedBy="address")

 private Set<Place> places;

 ...

}

@Embeddable

public class Owner {

 @Field(index = Index.TOKENIZED)

 private String name;

 ...

}

Any @*ToMany, @*ToOne and @Embedded attribute can be annotated with @IndexedEmbedded.

The attributes of the associated class will then be added to the main entity index. In the previous

example, the index will contain the following fields

• id

• name

• address.street

• address.city

• address.ownedBy_name

Embedded and associated objects

47

The default prefix is propertyName., following the traditional object navigation convention. You

can override it using the prefix attribute as it is shown on the ownedBy property.

Note

The prefix cannot be set to the empty string.

The depth property is necessary when the object graph contains a cyclic dependency of classes

(not instances). For example, if Owner points to Place. Hibernate Search will stop including

Indexed embedded attributes after reaching the expected depth (or the object graph boundaries

are reached). A class having a self reference is an example of cyclic dependency. In our example,

because depth is set to 1, any @IndexedEmbedded attribute in Owner (if any) will be ignored.

Using @IndexedEmbedded for object associations allows you to express queries such as:

• Return places where name contains JBoss and where address city is Atlanta. In Lucene query

this would be

+name:jboss +address.city:atlanta

• Return places where name contains JBoss and where owner's name contain Joe. In Lucene

query this would be

+name:jboss +address.orderBy_name:joe

In a way it mimics the relational join operation in a more efficient way (at the cost of data

duplication). Remember that, out of the box, Lucene indexes have no notion of association, the

join operation is simply non-existent. It might help to keep the relational model normalized while

benefiting from the full text index speed and feature richness.

Note

An associated object can itself (but does not have to) be @Indexed

When @IndexedEmbedded points to an entity, the association has to be directional and the other

side has to be annotated @ContainedIn (as seen in the previous example). If not, Hibernate

Search has no way to update the root index when the associated entity is updated (in our example,

a Place index document has to be updated when the associated Address instance is updated).

Sometimes, the object type annotated by @IndexedEmbedded is not the object type targeted by

Hibernate and Hibernate Search. This is especially the case when interfaces are used in lieu

Chapter 4. Mapping entities t...

48

of their implementation. For this reason you can override the object type targeted by Hibernate

Search using the targetElement parameter.

Example 4.6. Using the targetElement property of @IndexedEmbedded

@Entity

@Indexed

public class Address {

 @Id

 @GeneratedValue

 @DocumentId

 private Long id;

 @Field(index= Index.TOKENIZED)

 private String street;

 @IndexedEmbedded(depth = 1, prefix = "ownedBy_", targetElement = Owner.class)

 @Target(Owner.class)

 private Person ownedBy;

 ...

}

@Embeddable

public class Owner implements Person { ... }

4.1.4. Boost factor

Lucene has the notion of boost factor. It's a way to give more weight to a field or to an indexed

element over others during the indexation process. You can use @Boost at the @Field, method

or class level.

Example 4.7. Using different ways of increasing the weight of an indexed

element using a boost factor

@Entity

@Indexed(index="indexes/essays")

@Boost(1.7f)

public class Essay {

 ...

 @Id

 @DocumentId

 public Long getId() { return id; }

Dynamic boost factor

49

 @Field(name="Abstract", index=Index.TOKENIZED, store=Store.YES,

 boost=@Boost(2f))

 @Boost(1.5f)

 public String getSummary() { return summary; }

 @Lob

 @Field(index=Index.TOKENIZED, boost=@Boost(1.2f))

 public String getText() { return text; }

 @Field

 public String getISBN() { return isbn; }

}

In our example, Essay's probability to reach the top of the search list will be multiplied by 1.7. The

summary field will be 3.0 (2 * 1.5 - @Field.boost and @Boost on a property are cumulative) more

important than the isbn field. The text field will be 1.2 times more important than the isbn field.

Note that this explanation in strictest terms is actually wrong, but it is simple and close enough to

reality for all practical purposes. Please check the Lucene documentation or the excellent Lucene

In Action from Otis Gospodnetic and Erik Hatcher.

4.1.5. Dynamic boost factor

The @Boost annotation used in Section 4.1.4, “Boost factor” defines a static boost factor which

is is independent of the state of of the indexed entity at runtime. However, there are usecases in

which the boost factor may depends on the actual state of the entity. In this case you can use the

@DynamicBoost annotation together with an accompanying custom BoostStrategy.

Example 4.8. Dynamic boost examle

public enum PersonType {

 NORMAL,

 VIP

}

@Entity

@Indexed

@DynamicBoost(impl = VIPBoostStrategy.class)

public class Person {

 private PersonType type;

 //

}

public class VIPBoostStrategy implements BoostStrategy {

 public float defineBoost(Object value) {

 Person person = (Person) value;

Chapter 4. Mapping entities t...

50

 if (person.getType().equals(PersonType.VIP)) {

 return 2.0f;

 }

 else {

 return 1.0f;

 }

 }

}

In Example 4.8, “Dynamic boost examle” a dynamic boost is defined on class level specifying

VIPBoostStrategy as implementation of the BoostStrategy interface to be used at indexing

time. You can place the @DynamicBoost either at class or field level. Depending on the placement

of the annotation either the whole entity is passed to the defineBoost method or just the annotated

field/property value. It's up to you to cast the passed object to the correct type. In the example all

indexed values of a VIP person would be double as important as the values of a normal person.

Note

The specified BoostStrategy implementation must define a public no-arg

constructor.

Of course you can mix and match @Boost and @DynamicBoost annotations in your entity. All

defined boost factors are cummulative as described in Section 4.1.4, “Boost factor”.

4.1.6. Analyzer

The default analyzer class used to index tokenized fields is configurable through

the hibernate.search.analyzer property. The default value for this property is

org.apache.lucene.analysis.standard.StandardAnalyzer.

You can also define the analyzer class per entity, property and even per @Field (useful when

multiple fields are indexed from a single property).

Example 4.9. Different ways of specifying an analyzer

@Entity

@Indexed

@Analyzer(impl = EntityAnalyzer.class)

public class MyEntity {

 @Id

 @GeneratedValue

 @DocumentId

 private Integer id;

 @Field(index = Index.TOKENIZED)

Analyzer

51

 private String name;

 @Field(index = Index.TOKENIZED)

 @Analyzer(impl = PropertyAnalyzer.class)

 private String summary;

 @Field(index = Index.TOKENIZED, analyzer = @Analyzer(impl =

 FieldAnalyzer.class)

 private String body;

 ...

}

In this example, EntityAnalyzer is used to index all tokenized properties (eg. name), except

summary and body which are indexed with PropertyAnalyzer and FieldAnalyzer respectively.

Caution

Mixing different analyzers in the same entity is most of the time a bad practice. It

makes query building more complex and results less predictable (for the novice),

especially if you are using a QueryParser (which uses the same analyzer for the

whole query). As a rule of thumb, for any given field the same analyzer should be

used for indexing and querying.

4.1.6.1. Analyzer definitions

Analyzers can become quite complex to deal with for which reason Hibernate Search introduces

the notion of analyzer definitions. An analyzer definition can be reused by many @Analyzer

declarations. An analyzer definition is composed of:

• a name: the unique string used to refer to the definition

• a list of char filters: each char filter is responsible to pre-process input characters before the

tokenization. Char filters can add, change or remove characters; one common usage is for

characters normalization

• a tokenizer: responsible for tokenizing the input stream into individual words

• a list of filters: each filter is responsible to remove, modify or sometimes even add words into

the stream provided by the tokenizer

This separation of tasks - a list of char filters, and a tokenizer followed by a list of filters - allows

for easy reuse of each individual component and let you build your customized analyzer in a very

flexible way (just like Lego). Generally speaking the char filters do some pre-processing in the

character input, then the Tokenizer starts the tokenizing process by turning the character input

into tokens which are then further processed by the TokenFilters. Hibernate Search supports

Chapter 4. Mapping entities t...

52

this infrastructure by utilizing the Solr analyzer framework. Make sure to add solr-core.jar and

solr-solrj.jar to your classpath to use analyzer definitions. In case you also want to use the

snowball stemmer also include the lucene-snowball.jar. Other Solr analyzers might depend

on more libraries. For example, the PhoneticFilterFactory depends on commons-codec [http://

commons.apache.org/codec]. Your distribution of Hibernate Search provides these dependencies

in its lib directory.

Example 4.10. @AnalyzerDef and the Solr framework

@AnalyzerDef(name="customanalyzer",

 charFilters = {

 @CharFilterDef(factory = MappingCharFilterFactory.class, params = {

 @Parameter(name = "mapping", value = "org/hibernate/search/

test/analyzer/solr/mapping-chars.properties")

 })

 },

 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),

 filters = {

 @TokenFilterDef(factory = ISOLatin1AccentFilterFactory.class),

 @TokenFilterDef(factory = LowerCaseFilterFactory.class),

 @TokenFilterDef(factory = StopFilterFactory.class, params = {

 @Parameter(name="words", value= "org/hibernate/search/

test/analyzer/solr/stoplist.properties"),

 @Parameter(name="ignoreCase", value="true")

 })

})

public class Team {

 ...

}

A char filter is defined by its factory which is responsible for building the char filter and using

the optional list of parameters. In our example, a mapping char filter is used, and will replace

characters in the input based on the rules specified in the mapping file. A tokenizer is also defined

by its factory. This example use the standard tokenizer. A filter is defined by its factory which

is responsible for creating the filter instance using the optional parameters. In our example, the

StopFilter filter is built reading the dedicated words property file and is expected to ignore case.

The list of parameters is dependent on the tokenizer or filter factory.

Warning

Filters and char filters are applied in the order they are defined in the @AnalyzerDef

annotation. Make sure to think twice about this order.

Once defined, an analyzer definition can be reused by an @Analyzer declaration using the

definition name rather than declaring an implementation class.

http://commons.apache.org/codec
http://commons.apache.org/codec
http://commons.apache.org/codec

Analyzer

53

Example 4.11. Referencing an analyzer by name

@Entity

@Indexed

@AnalyzerDef(name="customanalyzer", ...)

public class Team {

 @Id

 @DocumentId

 @GeneratedValue

 private Integer id;

 @Field

 private String name;

 @Field

 private String location;

 @Field @Analyzer(definition = "customanalyzer")

 private String description;

}

Analyzer instances declared by @AnalyzerDef are available by their name in the SearchFactory.

Analyzer analyzer =

 fullTextSession.getSearchFactory().getAnalyzer("customanalyzer");

This is quite useful wen building queries. Fields in queries should be analyzed with the same

analyzer used to index the field so that they speak a common "language": the same tokens are

reused between the query and the indexing process. This rule has some exceptions but is true

most of the time. Respect it unless you know what you are doing.

4.1.6.2. Available analyzers

Solr and Lucene come with a lot of useful default char filters, tokenizers and filters. You can find a

complete list of char filter factories, tokenizer factories and filter factories at http://wiki.apache.org/

solr/AnalyzersTokenizersTokenFilters. Let check a few of them.

Table 4.1. Some of the available char filters

Factory Description parameters

MappingCharFilterFactory Replaces one or more

characters with one or

more characters, based on

mappings specified in the

resource file

mapping: points to a resource

file containing the mappings

using the format:

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

Chapter 4. Mapping entities t...

54

Factory Description parameters

 "á" => "a"

 "ñ" => "n"

 "ø" => "o"

HTMLStripCharFilterFactory Remove HTML standard tags,

keeping the text

none

Table 4.2. Some of the available tokenizers

Factory Description parameters

StandardTokenizerFactory Use the Lucene

StandardTokenizer

none

HTMLStripStandardTokenizerFactoryRemove HTML tags, keep

the text and pass it

to a StandardTokenizer.

@Deprecated, use the

HTMLStripCharFilterFactory

instead

none

Table 4.3. Some of the available filters

Factory Description parameters

StandardFilterFactory Remove dots from acronyms

and 's from words

none

LowerCaseFilterFactory Lowercase words none

StopFilterFactory remove words (tokens)

matching a list of stop words

words: points to a resource file

containing the stop words

ignoreCase: true if case

should be ignore when

comparing stop words, false

otherwise

SnowballPorterFilterFactory Reduces a word to it's root in

a given language. (eg. protect,

protects, protection share the

same root). Using such a

filter allows searches matching

related words.

language: Danish, Dutch,

English, Finnish, French,

German, Italian, Norwegian,

Portuguese, Russian,

Spanish, Swedish and a few

more

ISOLatin1AccentFilterFactory remove accents for languages

like French

none

Analyzer

55

We recommend to check all the implementations of

org.apache.solr.analysis.TokenizerFactory and

org.apache.solr.analysis.TokenFilterFactory in your IDE to see the implementations

available.

4.1.6.3. Analyzer discriminator (experimental)

So far all the introduced ways to specify an analyzer were static. However, there are use cases

where it is useful to select an analyzer depending on the current state of the entity to be indexed,

for example in multilingual applications. For an BlogEntry class for example the analyzer could

depend on the language property of the entry. Depending on this property the correct language

specific stemmer should be chosen to index the actual text.

To enable this dynamic analyzer selection Hibernate Search introduces the

AnalyzerDiscriminator annotation. The following example demonstrates the usage of this

annotation:

Example 4.12. Usage of @AnalyzerDiscriminator in order to select an

analyzer depending on the entity state

@Entity

@Indexed

@AnalyzerDefs({

 @AnalyzerDef(name = "en",

 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),

 filters = {

 @TokenFilterDef(factory = LowerCaseFilterFactory.class),

 @TokenFilterDef(factory = EnglishPorterFilterFactory.class

)

 }),

 @AnalyzerDef(name = "de",

 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),

 filters = {

 @TokenFilterDef(factory = LowerCaseFilterFactory.class),

 @TokenFilterDef(factory = GermanStemFilterFactory.class)

 })

})

public class BlogEntry {

 @Id

 @GeneratedValue

 @DocumentId

 private Integer id;

 @Field

 @AnalyzerDiscriminator(impl = LanguageDiscriminator.class)

 private String language;

Chapter 4. Mapping entities t...

56

 @Field

 private String text;

 private Set<BlogEntry> references;

 // standard getter/setter

 ...

}

public class LanguageDiscriminator implements Discriminator {

 public String getAnalyzerDefinitionName(Object value, Object entity, String

 field) {

 if (value == null || !(entity instanceof Article)) {

 return null;

 }

 return (String) value;

 }

}

The prerequisite for using @AnalyzerDiscriminator is that all analyzers which are going to

be used are predefined via @AnalyzerDef definitions. If this is the case one can place the

@AnalyzerDiscriminator annotation either on the class or on a specific property of the entity for

which to dynamically select an analyzer. Via the impl parameter of the AnalyzerDiscriminator

you specify a concrete implementation of the Discriminator interface. It is up to you to

provide an implementation for this interface. The only method you have to implement is

getAnalyzerDefinitionName() which gets called for each field added to the Lucene document.

The entity which is getting indexed is also passed to the interface method. The value parameter

is only set if the AnalyzerDiscriminator is placed on property level instead of class level. In this

case the value represents the current value of this property.

An implemention of the Discriminator interface has to return the name of an existing analyzer

definition if the analyzer should be set dynamically or null if the default analyzer should not be

overridden. The given example assumes that the language parameter is either 'de' or 'en' which

matches the specified names in the @AnalyzerDefs.

Note

The @AnalyzerDiscriminator is currently still experimental and the API might

still change. We are hoping for some feedback from the community about the

usefulness and usability of this feature.

Analyzer

57

4.1.6.4. Retrieving an analyzer

During indexing time, Hibernate Search is using analyzers under the hood for you. In some

situations, retrieving analyzers can be handy. If your domain model makes use of multiple

analyzers (maybe to benefit from stemming, use phonetic approximation and so on), you need to

make sure to use the same analyzers when you build your query.

Note

This rule can be broken but you need a good reason for it. If you are unsure, use

the same analyzers.

You can retrieve the scoped analyzer for a given entity used at indexing time by Hibernate Search.

A scoped analyzer is an analyzer which applies the right analyzers depending on the field indexed:

multiple analyzers can be defined on a given entity each one working on an individual field, a

scoped analyzer unify all these analyzers into a context-aware analyzer. While the theory seems

a bit complex, using the right analyzer in a query is very easy.

Example 4.13. Using the scoped analyzer when building a full-text query

org.apache.lucene.queryParser.QueryParser parser = new QueryParser(

 "title",

 fullTextSession.getSearchFactory().getAnalyzer(Song.class)

);

org.apache.lucene.search.Query luceneQuery =

 parser.parse("title:sky Or title_stemmed:diamond");

org.hibernate.Query fullTextQuery =

 fullTextSession.createFullTextQuery(luceneQuery, Song.class);

List result = fullTextQuery.list(); //return a list of managed objects

In the example above, the song title is indexed in two fields: the standard analyzer is used in the

field title and a stemming analyzer is used in the field title_stemmed. By using the analyzer

provided by the search factory, the query uses the appropriate analyzer depending on the field

targeted.

If your query targets more that one query and you wish to use your standard analyzer, make sure

to describe it using an analyzer definition. You can retrieve analyzers by their definition name

using searchFactory.getAnalyzer(String).

Chapter 4. Mapping entities t...

58

4.2. Property/Field Bridge

In Lucene all index fields have to be represented as Strings. For this reason all entity properties

annotated with @Field have to be indexed in a String form. For most of your properties, Hibernate

Search does the translation job for you thanks to a built-in set of bridges. In some cases, though

you need a more fine grain control over the translation process.

4.2.1. Built-in bridges

Hibernate Search comes bundled with a set of built-in bridges between a Java property type and

its full text representation.

null

null elements are not indexed. Lucene does not support null elements and this does not make

much sense either.

java.lang.String

String are indexed as is

short, Short, integer, Integer, long, Long, float, Float, double, Double, BigInteger, BigDecimal

Numbers are converted in their String representation. Note that numbers cannot be compared

by Lucene (ie used in ranged queries) out of the box: they have to be padded

Note

Using a Range query is debatable and has drawbacks, an alternative approach

is to use a Filter query which will filter the result query to the appropriate range.

Hibernate Search will support a padding mechanism

java.util.Date

Dates are stored as yyyyMMddHHmmssSSS in GMT time (200611072203012 for Nov 7th of

2006 4:03PM and 12ms EST). You shouldn't really bother with the internal format. What is

important is that when using a DateRange Query, you should know that the dates have to

be expressed in GMT time.

Usually, storing the date up to the millisecond is not necessary. @DateBridge

defines the appropriate resolution you are willing to store in the index (

@DateBridge(resolution=Resolution.DAY)). The date pattern will then be truncated

accordingly.

@Entity

@Indexed

public class Meeting {

 @Field(index=Index.UN_TOKENIZED)

Custom Bridge

59

 @DateBridge(resolution=Resolution.MINUTE)

 private Date date;

 ...

Warning

A Date whose resolution is lower than MILLISECOND cannot be a @DocumentId

java.net.URI, java.net.URL

URI and URL are converted to their string representation

java.lang.Class

Class are converted to their fully qualified class name. The thread context classloader is used

when the class is rehydrated

4.2.2. Custom Bridge

Sometimes, the built-in bridges of Hibernate Search do not cover some of your property types,

or the String representation used by the bridge does not meet your requirements. The following

paragraphs describe several solutions to this problem.

4.2.2.1. StringBridge

The simplest custom solution is to give Hibernate Search an implementation of

your expected Object to String bridge. To do so you need to implements the

org.hibernate.search.bridge.StringBridge interface. All implementations have to be

thread-safe as they are used concurrently.

Example 4.14. Implementing your own StringBridge

/**

 * Padding Integer bridge.

 * All numbers will be padded with 0 to match 5 digits

 *

 * @author Emmanuel Bernard

 */

public class PaddedIntegerBridge implements StringBridge {

 private int PADDING = 5;

 public String objectToString(Object object) {

 String rawInteger = ((Integer) object).toString();

 if (rawInteger.length() > PADDING)

 throw new IllegalArgumentException("Try to pad on a number too big");

 StringBuilder paddedInteger = new StringBuilder();

Chapter 4. Mapping entities t...

60

 for (int padIndex = rawInteger.length() ; padIndex < PADDING ; padIndex

++) {

 paddedInteger.append('0');

 }

 return paddedInteger.append(rawInteger).toString();

 }

}

Then any property or field can use this bridge thanks to the @FieldBridge annotation

@FieldBridge(impl = PaddedIntegerBridge.class)

private Integer length;

Parameters can be passed to the Bridge implementation making it more flexible. The Bridge

implementation implements a ParameterizedBridge interface, and the parameters are passed

through the @FieldBridge annotation.

Example 4.15. Passing parameters to your bridge implementation

public class PaddedIntegerBridge implements StringBridge, ParameterizedBridge {

 public static String PADDING_PROPERTY = "padding";

 private int padding = 5; //default

 public void setParameterValues(Map parameters) {

 Object padding = parameters.get(PADDING_PROPERTY);

 if (padding != null) this.padding = (Integer) padding;

 }

 public String objectToString(Object object) {

 String rawInteger = ((Integer) object).toString();

 if (rawInteger.length() > padding)

 throw new IllegalArgumentException("Try to pad on a number too big");

 StringBuilder paddedInteger = new StringBuilder();

 for (int padIndex = rawInteger.length() ; padIndex < padding ; padIndex

++) {

 paddedInteger.append('0');

 }

 return paddedInteger.append(rawInteger).toString();

 }

}

//property

@FieldBridge(impl = PaddedIntegerBridge.class,

Custom Bridge

61

 params = @Parameter(name="padding", value="10")

)

private Integer length;

The ParameterizedBridge interface can be implemented by StringBridge,

TwoWayStringBridge, FieldBridge implementations.

All implementations have to be thread-safe, but the parameters are set during initialization and

no special care is required at this stage.

If you expect to use your bridge implementation on an id property (ie annotated with @DocumentId

), you need to use a slightly extended version of StringBridge named TwoWayStringBridge.

Hibernate Search needs to read the string representation of the identifier and generate the object

out of it. There is no difference in the way the @FieldBridge annotation is used.

Example 4.16. Implementing a TwoWayStringBridge which can for example

be used for id properties

public class PaddedIntegerBridge implements TwoWayStringBridge,

 ParameterizedBridge {

 public static String PADDING_PROPERTY = "padding";

 private int padding = 5; //default

 public void setParameterValues(Map parameters) {

 Object padding = parameters.get(PADDING_PROPERTY);

 if (padding != null) this.padding = (Integer) padding;

 }

 public String objectToString(Object object) {

 String rawInteger = ((Integer) object).toString();

 if (rawInteger.length() > padding)

 throw new IllegalArgumentException("Try to pad on a number too big");

 StringBuilder paddedInteger = new StringBuilder();

 for (int padIndex = rawInteger.length() ; padIndex < padding ; padIndex

++) {

 paddedInteger.append('0');

 }

 return paddedInteger.append(rawInteger).toString();

 }

 public Object stringToObject(String stringValue) {

 return new Integer(stringValue);

 }

}

Chapter 4. Mapping entities t...

62

//id property

@DocumentId

@FieldBridge(impl = PaddedIntegerBridge.class,

 params = @Parameter(name="padding", value="10")

private Integer id;

It is critically important for the two-way process to be idempotent (ie object =

stringToObject(objectToString(object))).

4.2.2.2. FieldBridge

Some use cases require more than a simple object to string translation when mapping a property

to a Lucene index. To give you the greatest possible flexibility you can also implement a bridge

as a FieldBridge. This interface gives you a property value and let you map it the way you want

in your Lucene Document. The interface is very similar in its concept to the Hibernate UserTypes.

You can for example store a given property in two different document fields:

Example 4.17. Implementing the FieldBridge interface in order to a given

property into multiple document fields

/**

 * Store the date in 3 different fields - year, month, day - to ease Range Query per

 * year, month or day (eg get all the elements of December for the last 5 years).

 * @author Emmanuel Bernard

 */

public class DateSplitBridge implements FieldBridge {

 private final static TimeZone GMT = TimeZone.getTimeZone("GMT");

 public void set(String name, Object value, Document document,

 LuceneOptions luceneOptions) {

 Date date = (Date) value;

 Calendar cal = GregorianCalendar.getInstance(GMT);

 cal.setTime(date);

 int year = cal.get(Calendar.YEAR);

 int month = cal.get(Calendar.MONTH) + 1;

 int day = cal.get(Calendar.DAY_OF_MONTH);

 // set year

 luceneOptions.addFieldToDocument(

 name + ".year",

 String.valueOf(year),

 document);

 // set month and pad it if needed

 luceneOptions.addFieldToDocument(

Custom Bridge

63

 name + ".month",

 month < 10 ? "0" : "" + String.valueOf(month),

 document);

 // set day and pad it if needed

 luceneOptions.addFieldToDocument(

 name + ".day",

 day < 10 ? "0" : "" + String.valueOf(day),

 document);

 }

}

//property

@FieldBridge(impl = DateSplitBridge.class)

private Date date;

In the previous example the fields where not added directly to Document but we where delegating

this task to the LuceneOptions helper; this will apply the options you have selected on @Field,

like Store or TermVector options, or apply the choosen @Boost value. It is especially useful to

encapsulate the complexity of COMPRESS implementations so it's recommended to delegate to

LuceneOptions to add fields to the Document, but nothing stops you from editing the Document

directly and ignore the LuceneOptions in case you need to.

Tip

Classes like LuceneOptions are created to shield your application from changes

in Lucene API and simplify your code. Use them if you can, but if you need more

flexibility you're not required to.

4.2.2.3. ClassBridge

It is sometimes useful to combine more than one property of a given entity and index this

combination in a specific way into the Lucene index. The @ClassBridge and @ClassBridge

annotations can be defined at the class level (as opposed to the property level). In this case the

custom field bridge implementation receives the entity instance as the value parameter instead of

a particular property. Though not shown in this example, @ClassBridge supports the termVector

attribute discussed in section Section 4.1.1, “Basic mapping”.

Example 4.18. Implementing a class bridge

@Entity

@Indexed

@ClassBridge(name="branchnetwork",

 index=Index.TOKENIZED,

 store=Store.YES,

Chapter 4. Mapping entities t...

64

 impl = CatFieldsClassBridge.class,

 params = @Parameter(name="sepChar", value=" "))

public class Department {

 private int id;

 private String network;

 private String branchHead;

 private String branch;

 private Integer maxEmployees

 ...

}

public class CatFieldsClassBridge implements FieldBridge, ParameterizedBridge {

 private String sepChar;

 public void setParameterValues(Map parameters) {

 this.sepChar = (String) parameters.get("sepChar");

 }

 public void set(String name, Object value, Document document, LuceneOptions

 luceneOptions) {

 // In this particular class the name of the new field was passed

 // from the name field of the ClassBridge Annotation. This is not

 // a requirement. It just works that way in this instance. The

 // actual name could be supplied by hard coding it below.

 Department dep = (Department) value;

 String fieldValue1 = dep.getBranch();

 if (fieldValue1 == null) {

 fieldValue1 = "";

 }

 String fieldValue2 = dep.getNetwork();

 if (fieldValue2 == null) {

 fieldValue2 = "";

 }

 String fieldValue = fieldValue1 + sepChar + fieldValue2;

 Field field = new Field(name, fieldValue, luceneOptions.getStore(),

 luceneOptions.getIndex(), luceneOptions.getTermVector());

 field.setBoost(luceneOptions.getBoost());

 document.add(field);

 }

}

In this example, the particular CatFieldsClassBridge is applied to the department instance, the

field bridge then concatenate both branch and network and index the concatenation.

Providing your own id

65

4.3. Providing your own id

Warning

This part of the documentation is a work in progress.

You can provide your own id for Hibernate Search if you are extending the internals. You will have

to generate a unique value so it can be given to Lucene to be indexed. This will have to be given

to Hibernate Search when you create an org.hibernate.search.Work object - the document id is

required in the constructor.

4.3.1. The ProvidedId annotation

Unlike conventional Hibernate Search API and @DocumentId, this annotation is used on the

class and not a field. You also can provide your own bridge implementation when you put in

this annotation by calling the bridge() which is on @ProvidedId. Also, if you annotate a class

with @ProvidedId, your subclasses will also get the annotation - but it is not done by using the

java.lang.annotations.@Inherited. Be sure however, to not use this annotation with @DocumentId

as your system will break.

Example 4.19. Providing your own id

@ProvidedId (bridge = org.my.own.package.MyCustomBridge)

@Indexed

public class MyClass{

 @Field

 String MyString;

 ...

}

4.4. Programmatic API

Warning

This feature is considered experimental. While stable code-wise, the API is subject

to change in the future.

Although the recommended approach for mapping indexed entities is to use annotations, it is

sometimes more convenient to use a different approach:

• the same entity is mapped differently depending on deployment needs (customization for

clients)

Chapter 4. Mapping entities t...

66

• some automatization process requires the dynamic mapping of many entities sharing a common

traits

While it has been a popular demand in the past, the Hibernate team never found the idea of an

XML alternative to annotations appealing due to it's heavy duplication, lack of code refactoring

safety, because it did not cover all the use case spectrum and because we are in the 21st century :)

Th idea of a programmatic API was much more appealing and has now become a reality. You can

programmatically and safely define your mapping using a programmatic API: you define entities

and fields as indexable by using mapping classes which effectively mirror the annotation concepts

in Hibernate Search. Note that fan(s) of XML approach can design their own schema and use the

programmatic API to create the mapping while parsing the XML stream.

In order to use the programmatic model you must first construct a SearchMapping object.

This object is passed to Hibernate Search via a property set to the Configuration

object. The property key is hibernate.search.model_mapping or it's type-safe representation

Environment.MODEL_MAPPING.

SearchMapping mapping = new SearchMapping();

[...]

configuration.setProperty(Environment.MODEL_MAPPING, mapping);

//or in JPA

SearchMapping mapping = new SearchMapping();

[...]

Map<String,String> properties = new HashMap<String,String)(1);

properties.put(Environment.MODEL_MAPPING, mapping);

EntityManagerFactory emf = Persistence.createEntityManagerFactory("userPU",

 properties);

The SearchMapping is the root object which contains all the necessary indexable entities and

fields. From there, the SearchMapping object exposes a fluent (and thus intuitive) API to express

your mappings: it contextually exposes the relevant mapping options in a type-safe way, just let

your IDE autocompletion feature guide you through.

Today, the programmatic API cannot be used on a class annotated with Hibernate Search

annotations, chose one approach or the other. Also note that the same default values apply in

annotations and the programmatic API. For example, the @Field.name is defaulted to the property

name and does not have to be set.

Each core concept of the programmatic API has a corresponding example to depict how the

same definition would look using annotation. Therefore seeing an annotation example of the

programmatic approach should give you a clear picture of what Hibernate Search will build with

the marked entities and associated properties.

Mapping an entity as indexable

67

4.4.1. Mapping an entity as indexable

The first concept of the programmatic API is to define an entity as indexable. Using the annotation

approach a user would mark the entity as @Indexed, the following example demonstrates how to

programmatically achieve this.

Example 4.20. Marking an entity indexable

SearchMapping mapping = new SearchMapping();

mapping.entity(Address.class)

 .indexed()

 .indexName("Address_Index"); //optional

cfg.getProperties().put("hibernate.search.model_mapping", mapping);

As you can see you must first create a SearchMapping object which is the root object that is then

passed to the Configuration object as property. You must declare an entity and if you wish to

make that entity as indexable then you must call the indexed() method. The indexed() method

has an optional indexName(String indexName) which can be used to change the default index

name that is created by Hibernate Search. Using the annotation model the above can be achieved

as:

Example 4.21. Annotation example of indexing entity

@Entity

@Indexed(index="Address_Index")

public class Address {

....

}

4.4.2. Adding DocumentId to indexed entity

To set a property as a document id:

Example 4.22. Enabling document id with programmatic model

SearchMapping mapping = new SearchMapping();

mapping.entity(Address.class).indexed()

 .property("addressId", ElementType.FIELD) //field access

 .documentId()

 .name("id");

Chapter 4. Mapping entities t...

68

cfg.getProperties().put("hibernate.search.model_mapping", mapping);

The above is equivalent to annotating a property in the entity as @DocumentId as seen in the

following example:

Example 4.23. DocumentId annotation definition

@Entity

@Indexed

public class Address {

 @Id

 @GeneratedValue

 @DocumentId(name="id")

 private Long addressId;

}

The next section demonstrates how to programmatically define analyzers.

4.4.3. Defining analyzers

Analyzers can be programmatically defined using the analyzerDef(String analyzerDef,

Class<? extends TokenizerFactory> tokenizerFactory) method. This method also enables

you to define filters for the analyzer definition. Each filter that you define can optionally take in

parameters as seen in the following example :

Example 4.24. Defining analyzers using programmatic model

SearchMapping mapping = new SearchMapping();

mapping

 .analyzerDef("ngram", StandardTokenizerFactory.class)

 .filter(LowerCaseFilterFactory.class)

 .filter(NGramFilterFactory.class)

 .param("minGramSize", "3")

 .param("maxGramSize", "3")

 .analyzerDef("en", StandardTokenizerFactory.class)

 .filter(LowerCaseFilterFactory.class)

 .filter(EnglishPorterFilterFactory.class)

 .analyzerDef("de", StandardTokenizerFactory.class)

 .filter(LowerCaseFilterFactory.class)

 .filter(GermanStemFilterFactory.class)

 .entity(Address.class).indexed()

 .property("addressId", ElementType.METHOD) //getter access

Defining full text filter definitions

69

 .documentId()

 .name("id");

cfg.getProperties().put("hibernate.search.model_mapping", mapping);

The analyzer mapping defined above is equivalent to the annotation model using @AnalyzerDef

in conjunction with @AnalyzerDefs:

Example 4.25. Analyzer definition using annotation

@Indexed

@Entity

@AnalyzerDefs({

 @AnalyzerDef(name = "ngram",

 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),

 filters = {

 @TokenFilterDef(factory = LowerCaseFilterFactory.class),

 @TokenFilterDef(factory = NGramFilterFactory.class,

 params = {

 @Parameter(name = "minGramSize",value = "3"),

 @Parameter(name = "maxGramSize",value = "3")

 })

 }),

 @AnalyzerDef(name = "en",

 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),

 filters = {

 @TokenFilterDef(factory = LowerCaseFilterFactory.class),

 @TokenFilterDef(factory = EnglishPorterFilterFactory.class)

 }),

 @AnalyzerDef(name = "de",

 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),

 filters = {

 @TokenFilterDef(factory = LowerCaseFilterFactory.class),

 @TokenFilterDef(factory = GermanStemFilterFactory.class)

 })

})

public class Address {

...

}

4.4.4. Defining full text filter definitions

The programmatic API provides easy mechanism for defining full text filter definitions which

is available via @FullTextFilterDef and @FullTextFilterDefs. Note that contrary to the

Chapter 4. Mapping entities t...

70

annotation equivalent, full text filter definitions are a global construct and are not tied to an entity.

The next example depicts the creation of full text filter definition using the fullTextFilterDef

method.

Example 4.26. Defining full text definition programmatically

SearchMapping mapping = new SearchMapping();

mapping

 .analyzerDef("en", StandardTokenizerFactory.class)

 .filter(LowerCaseFilterFactory.class)

 .filter(EnglishPorterFilterFactory.class)

 .fullTextFilterDef("security", SecurityFilterFactory.class)

 .cache(FilterCacheModeType.INSTANCE_ONLY)

 .entity(Address.class)

 .indexed()

 .property("addressId", ElementType.METHOD)

 .documentId()

 .name("id")

 .property("street1", ElementType.METHOD)

 .field()

 .analyzer("en")

 .store(Store.YES)

 .field()

 .name("address_data")

 .analyzer("en")

 .store(Store.NO);

cfg.getProperties().put("hibernate.search.model_mapping", mapping);

The previous example can effectively been seen as annotating your entity with

@FullTextFilterDef like below:

Example 4.27. Using annotation to define full text filter definition

@Entity

@Indexed

@AnalyzerDefs({

 @AnalyzerDef(name = "en",

 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),

 filters = {

 @TokenFilterDef(factory = LowerCaseFilterFactory.class),

 @TokenFilterDef(factory = EnglishPorterFilterFactory.class)

 })

})

@FullTextFilterDefs({

Defining fields for indexing

71

 @FullTextFilterDef(name = "security", impl = SecurityFilterFactory.class, cache

 = FilterCacheModeType.INSTANCE_ONLY)

})

public class Address {

 @Id

 @GeneratedValue

 @DocumentId(name="id")

 pubblic Long getAddressId() {...};

 @Fields({

 @Field(index=Index.TOKENIZED, store=Store.YES,

 analyzer=@Analyzer(definition="en")),

 @Field(name="address_data", analyzer=@Analyzer(definition="en"))

 })

 public String getAddress1() {...};

}

4.4.5. Defining fields for indexing

When defining fields for indexing using the programmatic API, call field() on the

property(String propertyName, ElementType elementType) method. From field() you

can specify the name, index, store, bridge and analyzer definitions.

Example 4.28. Indexing fields using programmatic API

SearchMapping mapping = new SearchMapping();

mapping

 .analyzerDef("en", StandardTokenizerFactory.class)

 .filter(LowerCaseFilterFactory.class)

 .filter(EnglishPorterFilterFactory.class)

 .entity(Address.class).indexed()

 .property("addressId", ElementType.METHOD)

 .documentId()

 .name("id")

 .property("street1", ElementType.METHOD)

 .field()

 .analyzer("en")

 .store(Store.YES)

 .index(Index.TOKENIZED) //no useful here as it's the default

 .field()

 .name("address_data")

 .analyzer("en");

Chapter 4. Mapping entities t...

72

cfg.getProperties().put("hibernate.search.model_mapping", mapping);

The above example of marking fields as indexable is equivalent to defining fields using @Field

as seen below:

Example 4.29. Indexing fields using annotation

@Entity

@Indexed

@AnalyzerDefs({

 @AnalyzerDef(name = "en",

 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),

 filters = {

 @TokenFilterDef(factory = LowerCaseFilterFactory.class),

 @TokenFilterDef(factory = EnglishPorterFilterFactory.class)

 })

})

public class Address {

 @Id

 @GeneratedValue

 @DocumentId(name="id")

 private Long getAddressId() {...};

 @Fields({

 @Field(index=Index.TOKENIZED, store=Store.YES,

 analyzer=@Analyzer(definition="en")),

 @Field(name="address_data", analyzer=@Analyzer(definition="en"))

 })

 public String getAddress1() {...}

}

4.4.6. Programmatically defining embedded entities

In this section you will see how to programmatically define entities to be embedded into the

indexed entity similar to using the @IndexEmbedded model. In order to define this you must mark

the property as indexEmbedded. The is the option to add a prefix to the embedded entity definition

and this can be done by calling prefix as seen in the example below:

Programmatically defining embedded entities

73

Example 4.30. Programmatically defining embedded entites

SearchMapping mapping = new SearchMapping();

mappping

 .entity(ProductCatalog.class)

 .indexed()

 .property("catalogId", ElementType.METHOD)

 .documentId()

 .name("id")

 .property("title", ElementType.METHOD)

 .field()

 .index(Index.TOKENIZED)

 .store(Store.NO)

 .property("description", ElementType.METHOD)

 .field()

 .index(Index.TOKENIZED)

 .store(Store.NO)

 .property("items", ElementType.METHOD)

 .indexEmbedded()

 .prefix("catalog.items"); //optional

cfg.getProperties().put("hibernate.search.model_mapping", mapping);

The next example shows the same definition using annotation (@IndexEmbedded):

Example 4.31. Using @IndexEmbedded

@Entity

@Indexed

public class ProductCatalog {

 @Id

 @GeneratedValue

 @DocumentId(name="id")

 public Long getCatalogId() {...}

 @Field(store=Store.NO, index=Index.TOKENIZED)

 public String getTitle() {...}

 @Field(store=Store.NO, index=Index.TOKENIZED)

 public String getDescription();

 @OneToMany(fetch = FetchType.LAZY)

 @IndexColumn(name = "list_position")

 @Cascade(org.hibernate.annotations.CascadeType.ALL)

 @IndexEmbedded(prefix="catalog.items")

Chapter 4. Mapping entities t...

74

 public List<Item> getItems() {...}

 ...

}

4.4.7. Contained In definition

@ContainedIn can be define as seen in the example below:

Example 4.32. Programmatically defining ContainedIn

SearchMapping mapping = new SearchMapping();

mappping

 .entity(ProductCatalog.class)

 .indexed()

 .property("catalogId", ElementType.METHOD)

 .documentId()

 .property("title", ElementType.METHOD)

 .field()

 .property("description", ElementType.METHOD)

 .field()

 .property("items", ElementType.METHOD)

 .indexEmbedded()

 .entity(Item.class)

 .property("description", ElementType.METHOD)

 .field()

 .property("productCatalog", ElementType.METHOD)

 .containedIn();

cfg.getProperties().put("hibernate.search.model_mapping", mapping);

This is equivalent to defining @ContainedIn in your entity:

Example 4.33. Annotation approach for ContainedIn

@Entity

@Indexed

public class ProductCatalog {

 @Id

 @GeneratedValue

 @DocumentId

Date/Calendar Bridge

75

 public Long getCatalogId() {...}

 @Field

 public String getTitle() {...}

 @Field

 public String getDescription() {...}

 @OneToMany(fetch = FetchType.LAZY)

 @IndexColumn(name = "list_position")

 @Cascade(org.hibernate.annotations.CascadeType.ALL)

 @IndexEmbedded

 private List<Item> getItems() {...}

 ...

}

@Entity

public class Item {

 @Id

 @GeneratedValue

 private Long itemId;

 @Field

 public String getDescription() {...}

 @ManyToOne(cascade = { CascadeType.PERSIST, CascadeType.REMOVE })

 @ContainedIn

 public ProductCatalog getProductCatalog() {...}

 ...

}

4.4.8. Date/Calendar Bridge

In order to define a calendar or date bridge mapping, call the dateBridge(Resolution

resolution) or calendarBridge(Resolution resolution) methods after you have defined a

field() in the SearchMapping hierarchy.

Example 4.34. Programmatic model for defining calendar/date bridge

SearchMapping mapping = new SearchMapping();

mapping

Chapter 4. Mapping entities t...

76

 .entity(Address.class)

 .indexed()

 .property("addressId", ElementType.FIELD)

 .documentId()

 .property("street1", ElementType.FIELD()

 .field()

 .property("createdOn", ElementType.FIELD)

 .field()

 .dateBridge(Resolution.DAY)

 .property("lastUpdated", ElementType.FIELD)

 .calendarBridge(Resolution.DAY);

cfg.getProperties().put("hibernate.search.model_mapping", mapping);

See below for defining the above using @CalendarBridge and @DateBridge:

Example 4.35. @CalendarBridge and @DateBridge definition

@Entity

@Indexed

public class Address {

 @Id

 @GeneratedValue

 @DocumentId

 private Long addressId;

 @Field

 private String address1;

 @Field

 @DateBridge(resolution=Resolution.DAY)

 private Date createdOn;

 @CalendarBridge(resolution=Resolution.DAY)

 private Calendar lastUpdated;

 ...

}

4.4.9. Defining bridges

It is possible to associate bridges to programmatically defined fields. When you define a

field() programmatically you can use the bridge(Class<?> impl) to associate a FieldBridge

implementation class. The bridge method also provides optional methods to include any

Defining bridges

77

parameters required for the bridge class. The below shows an example of programmatically

defining a bridge:

Example 4.36. Defining field bridges programmatically

SearchMapping mapping = new SearchMapping();

mapping

 .entity(Address.class)

 .indexed()

 .property("addressId", ElementType.FIELD)

 .documentId()

 .property("street1", ElementType.FIELD)

 .field()

 .field()

 .name("street1_abridged")

 .bridge(ConcatStringBridge.class)

 .param("size", "4");

cfg.getProperties().put("hibernate.search.model_mapping", mapping);

The above can equally be defined using annotations, as seen in the next example.

Example 4.37. Defining field bridges using annotation

@Entity

@Indexed

public class Address {

 @Id

 @GeneratedValue

 @DocumentId(name="id")

 private Long addressId;

 @Fields({

 @Field,

 @Field(name="street1_abridged",

 bridge = @FieldBridge(impl = ConcatStringBridge.class,

 params = @Parameter(name="size", value="4"))

 })

 private String address1;

 ...

}

Chapter 4. Mapping entities t...

78

4.4.10. Mapping class bridge

You can define class bridges on entities programmatically. This is shown in the next example:

Example 4.38. Defining class briges using API

SearchMapping mapping = new SearchMapping();

mapping

 .entity(Departments.class)

 .classBridge(CatDeptsFieldsClassBridge.class)

 .name("branchnetwork")

 .index(Index.TOKENIZED)

 .store(Store.YES)

 .param("sepChar", " ")

 .classBridge(EquipmentType.class)

 .name("equiptype")

 .index(Index.TOKENIZED)

 .store(Store.YES)

 .param("C", "Cisco")

 .param("D", "D-Link")

 .param("K", "Kingston")

 .param("3", "3Com")

 .indexed();

cfg.getProperties().put("hibernate.search.model_mapping", mapping);

The above is similar to using @ClassBridge as seen in the next example:

Example 4.39. Using @ClassBridge

@Entity

@Indexed

@ClassBridges ({

 @ClassBridge(name="branchnetwork",

 index= Index.TOKENIZED,

 store= Store.YES,

 impl = CatDeptsFieldsClassBridge.class,

 params = @Parameter(name="sepChar", value=" ")),

 @ClassBridge(name="equiptype",

 index= Index.TOKENIZED,

 store= Store.YES,

 impl = EquipmentType.class,

 params = {@Parameter(name="C", value="Cisco"),

 @Parameter(name="D", value="D-Link"),

Mapping dynamic boost

79

 @Parameter(name="K", value="Kingston"),

 @Parameter(name="3", value="3Com")

 })

})

public class Departments {

....

}

4.4.11. Mapping dynamic boost

You can apply a dynamic boost factor on either a field or a whole entity:

Example 4.40. DynamicBoost mapping using programmatic model

SearchMapping mapping = new SearchMapping();

mapping

 .entity(DynamicBoostedDescLibrary.class)

 .indexed()

 .dynamicBoost(CustomBoostStrategy.class)

 .property("libraryId", ElementType.FIELD)

 .documentId().name("id")

 .property("name", ElementType.FIELD)

 .dynamicBoost(CustomFieldBoostStrategy.class);

 .field()

 .store(Store.YES)

cfg.getProperties().put("hibernate.search.model_mapping", mapping);

The next example shows the equivalent mapping using the @DynamicBoost annotation:

Example 4.41. Using the @DynamicBoost

@Entity

@Indexed

@DynamicBoost(impl = CustomBoostStrategy.class)

public class DynamicBoostedDescriptionLibrary {

 @Id

 @GeneratedValue

 @DocumentId

 private int id;

Chapter 4. Mapping entities t...

80

 private float dynScore;

 @Field(store = Store.YES)

 @DynamicBoost(impl = CustomFieldBoostStrategy.class)

 private String name;

 public DynamicBoostedDescriptionLibrary() {

 dynScore = 1.0f;

 }

}

Chapter 5.

81

Querying
The second most important capability of Hibernate Search is the ability to execute a Lucene query

and retrieve entities managed by an Hibernate session, providing the power of Lucene without

leaving the Hibernate paradigm, and giving another dimension to the Hibernate classic search

mechanisms (HQL, Criteria query, native SQL query). Preparing and executing a query consists

of four simple steps:

• Creating a FullTextSession

• Creating a Lucene query

• Wrapping the Lucene query using a org.hibernate.Query

• Executing the search by calling for example list() or scroll()

To access the querying facilities, you have to use an FullTextSession. This Search specific

session wraps a regular org.hibernate.Session to provide query and indexing capabilities.

Example 5.1. Creating a FullTextSession

Session session = sessionFactory.openSession();

...

FullTextSession fullTextSession = Search.getFullTextSession(session);

The actual search facility is built on native Lucene queries which the following example illustrates.

Example 5.2. Creating a Lucene query

org.apache.lucene.queryParser.QueryParser parser =

 new QueryParser("title", new StopAnalyzer());

org.apache.lucene.search.Query luceneQuery = parser.parse("summary:Festina Or

 brand:Seiko");

org.hibernate.Query fullTextQuery =

 fullTextSession.createFullTextQuery(luceneQuery);

List result = fullTextQuery.list(); //return a list of managed objects

The Hibernate query built on top of the Lucene query is a regular org.hibernate.Query, which

means you are in the same paradigm as the other Hibernate query facilities (HQL, Native or

Criteria). The regular list() , uniqueResult(), iterate() and scroll() methods can be used.

In case you are using the Java Persistence APIs of Hibernate (aka EJB 3.0 Persistence), the

same extensions exist:

Chapter 5. Querying

82

Example 5.3. Creating a Search query using the JPA API

EntityManager em = entityManagerFactory.createEntityManager();

FullTextEntityManager fullTextEntityManager =

 org.hibernate.search.jpa.Search.getFullTextEntityManager(em);

...

org.apache.lucene.queryParser.QueryParser parser =

 new QueryParser("title", new StopAnalyzer());

org.apache.lucene.search.Query luceneQuery = parser.parse("summary:Festina Or

 brand:Seiko");

javax.persistence.Query fullTextQuery =

 fullTextEntityManager.createFullTextQuery(luceneQuery);

List result = fullTextQuery.getResultList(); //return a list of managed objects

The following examples we will use the Hibernate APIs but the same example can be easily

rewritten with the Java Persistence API by just adjusting the way the FullTextQuery is retrieved.

5.1. Building queries

Hibernate Search queries are built on top of Lucene queries which gives you total freedom on the

type of Lucene query you want to execute. However, once built, Hibernate Search wraps further

query processing using org.hibernate.Query as your primary query manipulation API.

5.1.1. Building a Lucene query

It is out of the scope of this documentation on how to exactly build a Lucene query. Please refer

to the online Lucene documentation or get hold of a copy of either Lucene In Action or Hibernate

Search in Action.

5.1.2. Building a Hibernate Search query

5.1.2.1. Generality

Once the Lucene query is built, it needs to be wrapped into an Hibernate Query.

Example 5.4. Wrapping a Lucene query into a Hibernate Query

FullTextSession fullTextSession = Search.getFullTextSession(session);

org.hibernate.Query fullTextQuery =

 fullTextSession.createFullTextQuery(luceneQuery);

Building a Hibernate Search query

83

If not specified otherwise, the query will be executed against all indexed entities, potentially

returning all types of indexed classes. It is advised, from a performance point of view, to restrict

the returned types:

Example 5.5. Filtering the search result by entity type

org.hibernate.Query fullTextQuery =

 fullTextSession.createFullTextQuery(luceneQuery, Customer.class);

// or

fullTextQuery = fullTextSession.createFullTextQuery(luceneQuery, Item.class,

 Actor.class);

The first example returns only matching Customers, the second returns matching Actors and

Items. The type restriction is fully polymorphic which means that if there are two indexed

subclasses Salesman and Customer of the baseclass Person, it is possible to just specify

Person.class in order to filter on result types.

5.1.2.2. Pagination

Out of performance reasons it is recommended to restrict the number of returned objects per

query. In fact is a very common use case anyway that the user navigates from one page to an

other. The way to define pagination is exactly the way you would define pagination in a plain HQL

or Criteria query.

Example 5.6. Defining pagination for a search query

org.hibernate.Query fullTextQuery =

 fullTextSession.createFullTextQuery(luceneQuery, Customer.class);

fullTextQuery.setFirstResult(15); //start from the 15th element

fullTextQuery.setMaxResults(10); //return 10 elements

Note

It is still possible to get the total number of matching elements regardless of the

pagination via fulltextQuery.getResultSize()

5.1.2.3. Sorting

Apache Lucene provides a very flexible and powerful way to sort results. While the default sorting

(by relevance) is appropriate most of the time, it can be interesting to sort by one or several other

properties. In order to do so set the Lucene Sort object to apply a Lucene sorting strategy.

Chapter 5. Querying

84

Example 5.7. Specifying a Lucene Sort in order to sort the results

org.hibernate.search.FullTextQuery query = s.createFullTextQuery(query,

 Book.class);

org.apache.lucene.search.Sort sort = new Sort(new SortField("title"));

query.setSort(sort);

List results = query.list();

One can notice the FullTextQuery interface which is a sub interface of org.hibernate.Query.

Be aware that fields used for sorting must not be tokenized.

5.1.2.4. Fetching strategy

When you restrict the return types to one class, Hibernate Search loads the objects using a single

query. It also respects the static fetching strategy defined in your domain model.

It is often useful, however, to refine the fetching strategy for a specific use case.

Example 5.8. Specifying FetchMode on a query

Criteria criteria = s.createCriteria(Book.class).setFetchMode("authors",

 FetchMode.JOIN);

s.createFullTextQuery(luceneQuery).setCriteriaQuery(criteria);

In this example, the query will return all Books matching the luceneQuery. The authors collection

will be loaded from the same query using an SQL outer join.

When defining a criteria query, it is not needed to restrict the entity types returned while creating

the Hibernate Search query from the full text session: the type is guessed from the criteria query

itself. Only fetch mode can be adjusted, refrain from applying any other restriction.

One cannot use setCriteriaQuery if more than one entity type is expected to be returned.

5.1.2.5. Projection

For some use cases, returning the domain object (graph) is overkill. Only a small subset of the

properties is necessary. Hibernate Search allows you to return a subset of properties:

Example 5.9. Using projection instead of returning the full domain object

org.hibernate.search.FullTextQuery query = s.createFullTextQuery(luceneQuery,

 Book.class);

query.setProjection("id", "summary", "body", "mainAuthor.name");

List results = query.list();

Object[] firstResult = (Object[]) results.get(0);

Building a Hibernate Search query

85

Integer id = firstResult[0];

String summary = firstResult[1];

String body = firstResult[2];

String authorName = firstResult[3];

Hibernate Search extracts the properties from the Lucene index and convert them back to their

object representation, returning a list of Object[]. Projections avoid a potential database round

trip (useful if the query response time is critical), but has some constraints:

• the properties projected must be stored in the index (@Field(store=Store.YES)), which

increase the index size

• the properties projected must use a FieldBridge implementing

org.hibernate.search.bridge.TwoWayFieldBridge or

org.hibernate.search.bridge.TwoWayStringBridge, the latter being the simpler version.

All Hibernate Search built-in types are two-way.

• you can only project simple properties of the indexed entity or its embedded associations. This

means you cannot project a whole embedded entity.

• projection does not work on collections or maps which are indexed via @IndexedEmbedded

Projection is useful for another kind of use cases. Lucene provides some metadata information

to the user about the results. By using some special placeholders, the projection mechanism can

retrieve them:

Example 5.10. Using projection in order to retrieve meta data

org.hibernate.search.FullTextQuery query = s.createFullTextQuery(luceneQuery,

 Book.class);

query.setProjection(FullTextQuery.SCORE, FullTextQuery.THIS,

 "mainAuthor.name");

List results = query.list();

Object[] firstResult = (Object[]) results.get(0);

float score = firstResult[0];

Book book = firstResult[1];

String authorName = firstResult[2];

You can mix and match regular fields and special placeholders. Here is the list of available

placeholders:

• FullTextQuery.THIS: returns the initialized and managed entity (as a non projected query would

have done).

• FullTextQuery.DOCUMENT: returns the Lucene Document related to the object projected.

• FullTextQuery.OBJECT_CLASS: returns the class of the indexed entity.

Chapter 5. Querying

86

• FullTextQuery.SCORE: returns the document score in the query. Scores are handy to compare

one result against an other for a given query but are useless when comparing the result of

different queries.

• FullTextQuery.ID: the id property value of the projected object.

• FullTextQuery.DOCUMENT_ID: the Lucene document id. Careful, Lucene document id can

change overtime between two different IndexReader opening (this feature is experimental).

• FullTextQuery.EXPLANATION: returns the Lucene Explanation object for the matching object/

document in the given query. Do not use if you retrieve a lot of data. Running explanation

typically is as costly as running the whole Lucene query per matching element. Make sure you

use projection!

5.2. Retrieving the results

Once the Hibernate Search query is built, executing it is in no way different than executing a HQL

or Criteria query. The same paradigm and object semantic applies. All the common operations

are available: list(), uniqueResult(), iterate(), scroll().

5.2.1. Performance considerations

If you expect a reasonable number of results (for example using pagination) and expect to work on

all of them, list() or uniqueResult() are recommended. list() work best if the entity batch-

size is set up properly. Note that Hibernate Search has to process all Lucene Hits elements

(within the pagination) when using list() , uniqueResult() and iterate().

If you wish to minimize Lucene document loading, scroll() is more appropriate. Don't forget to

close the ScrollableResults object when you're done, since it keeps Lucene resources. If you

expect to use scroll, but wish to load objects in batch, you can use query.setFetchSize().

When an object is accessed, and if not already loaded, Hibernate Search will load the next

fetchSize objects in one pass.

Pagination is a preferred method over scrolling though.

5.2.2. Result size

It is sometime useful to know the total number of matching documents:

• for the Google-like feature 1-10 of about 888,000,000

• to implement a fast pagination navigation

• to implement a multi step search engine (adding approximation if the restricted query return no

or not enough results)

Of course it would be too costly to retrieve all the matching documents. Hibernate Search allows

you to retrieve the total number of matching documents regardless of the pagination parameters.

ResultTransformer

87

Even more interesting, you can retrieve the number of matching elements without triggering a

single object load.

Example 5.11. Determining the result size of a query

org.hibernate.search.FullTextQuery query = s.createFullTextQuery(luceneQuery,

 Book.class);

assert 3245 == query.getResultSize(); //return the number of matching books

 without loading a single one

org.hibernate.search.FullTextQuery query = s.createFullTextQuery(luceneQuery,

 Book.class);

query.setMaxResult(10);

List results = query.list();

assert 3245 == query.getResultSize(); //return the total number of matching books

 regardless of pagination

Note

Like Google, the number of results is approximative if the index is not fully up-to-

date with the database (asynchronous cluster for example).

5.2.3. ResultTransformer

Especially when using projection, the data structure returned by a query (an object array in this

case), is not always matching the application needs. It is possible to apply a ResultTransformer

operation post query to match the targeted data structure:

Example 5.12. Using ResultTransformer in conjunction with projections

org.hibernate.search.FullTextQuery query = s.createFullTextQuery(luceneQuery,

 Book.class);

query.setProjection("title", "mainAuthor.name");

query.setResultTransformer(

 new StaticAliasToBeanResultTransformer(BookView.class, "title", "author")

);

List<BookView> results = (List<BookView>) query.list();

for(BookView view : results) {

 log.info("Book: " + view.getTitle() + ", " + view.getAuthor());

}

Examples of ResultTransformer implementations can be found in the Hibernate Core codebase.

Chapter 5. Querying

88

5.2.4. Understanding results

You will find yourself sometimes puzzled by a result showing up in a query or a result not showing

up in a query. Luke is a great tool to understand those mysteries. However, Hibernate Search

also gives you access to the Lucene Explanation object for a given result (in a given query). This

class is considered fairly advanced to Lucene users but can provide a good understanding of the

scoring of an object. You have two ways to access the Explanation object for a given result:

• Use the fullTextQuery.explain(int) method

• Use projection

The first approach takes a document id as a parameter and return the Explanation object. The

document id can be retrieved using projection and the FullTextQuery.DOCUMENT_ID constant.

Warning

The Document id has nothing to do with the entity id. Do not mess up these two

notions.

The second approach let's you project the Explanation object using the

FullTextQuery.EXPLANATION constant.

Example 5.13. Retrieving the Lucene Explanation object using projection

FullTextQuery ftQuery = s.createFullTextQuery(luceneQuery, Dvd.class)

 .setProjection(FullTextQuery.DOCUMENT_ID, FullTextQuery.EXPLANATION,

 FullTextQuery.THIS);

@SuppressWarnings("unchecked") List<Object[]> results = ftQuery.list();

for (Object[] result : results) {

 Explanation e = (Explanation) result[1];

 display(e.toString());

}

Be careful, building the explanation object is quite expensive, it is roughly as expensive as running

the Lucene query again. Don't do it if you don't need the object

5.3. Filters

Apache Lucene has a powerful feature that allows to filter query results according to a custom

filtering process. This is a very powerful way to apply additional data restrictions, especially since

filters can be cached and reused. Some interesting use cases are:

• security

• temporal data (eg. view only last month's data)

Filters

89

• population filter (eg. search limited to a given category)

• and many more

Hibernate Search pushes the concept further by introducing the notion of parameterizable named

filters which are transparently cached. For people familiar with the notion of Hibernate Core filters,

the API is very similar:

Example 5.14. Enabling fulltext filters for a given query

fullTextQuery = s.createFullTextQuery(query, Driver.class);

fullTextQuery.enableFullTextFilter("bestDriver");

fullTextQuery.enableFullTextFilter("security").setParameter("login",

 "andre");

fullTextQuery.list(); //returns only best drivers where andre has credentials

In this example we enabled two filters on top of the query. You can enable (or disable) as many

filters as you like.

Declaring filters is done through the @FullTextFilterDef annotation. This annotation can be on

any @Indexed entity regardless of the query the filter is later applied to. This implies that filter

definitions are global and their names must be unique. A SearchException is thrown in case two

different @FullTextFilterDef annotations with the same name are defined. Each named filter

has to specify its actual filter implementation.

Example 5.15. Defining and implementing a Filter

@Entity

@Indexed

@FullTextFilterDefs({

 @FullTextFilterDef(name = "bestDriver", impl = BestDriversFilter.class),

 @FullTextFilterDef(name = "security", impl = SecurityFilterFactory.class)

})

public class Driver { ... }

public class BestDriversFilter extends org.apache.lucene.search.Filter {

 public DocIdSet getDocIdSet(IndexReader reader) throws IOException {

 OpenBitSet bitSet = new OpenBitSet(reader.maxDoc());

 TermDocs termDocs = reader.termDocs(new Term("score", "5"));

 while (termDocs.next()) {

 bitSet.set(termDocs.doc());

 }

 return bitSet;

 }

Chapter 5. Querying

90

}

BestDriversFilter is an example of a simple Lucene filter which reduces the result

set to drivers whose score is 5. In this example the specified filter implements the

org.apache.lucene.search.Filter directly and contains a no-arg constructor.

If your Filter creation requires additional steps or if the filter you want to use does not have a no-

arg constructor, you can use the factory pattern:

Example 5.16. Creating a filter using the factory pattern

@Entity

@Indexed

@FullTextFilterDef(name = "bestDriver", impl = BestDriversFilterFactory.class)

public class Driver { ... }

public class BestDriversFilterFactory {

 @Factory

 public Filter getFilter() {

 //some additional steps to cache the filter results per IndexReader

 Filter bestDriversFilter = new BestDriversFilter();

 return new CachingWrapperFilter(bestDriversFilter);

 }

}

Hibernate Search will look for a @Factory annotated method and use it to build the filter instance.

The factory must have a no-arg constructor. For people familiar with JBoss Seam, this is similar

to the component factory pattern, but the annotation is different!

Named filters come in handy where parameters have to be passed to the filter. For example a

security filter might want to know which security level you want to apply:

Example 5.17. Passing parameters to a defined filter

fullTextQuery = s.createFullTextQuery(query, Driver.class);

fullTextQuery.enableFullTextFilter("security").setParameter("level", 5);

Each parameter name should have an associated setter on either the filter or filter factory of the

targeted named filter definition.

Example 5.18. Using parameters in the actual filter implementation

public class SecurityFilterFactory {

Filters

91

 private Integer level;

 /**

 * injected parameter

 */

 public void setLevel(Integer level) {

 this.level = level;

 }

 @Key

 public FilterKey getKey() {

 StandardFilterKey key = new StandardFilterKey();

 key.addParameter(level);

 return key;

 }

 @Factory

 public Filter getFilter() {

 Query query = new TermQuery(new Term("level", level.toString()));

 return new CachingWrapperFilter(new QueryWrapperFilter(query));

 }

}

Note the method annotated @Key returning a FilterKey object. The returned object has a special

contract: the key object must implement equals() / hashCode() so that 2 keys are equal if and

only if the given Filter types are the same and the set of parameters are the same. In other

words, 2 filter keys are equal if and only if the filters from which the keys are generated can be

interchanged. The key object is used as a key in the cache mechanism.

@Key methods are needed only if:

• you enabled the filter caching system (enabled by default)

• your filter has parameters

In most cases, using the StandardFilterKey implementation will be good enough. It delegates

the equals() / hashCode() implementation to each of the parameters equals and hashcode

methods.

As mentioned before the defined filters are per default cached and the cache uses a combination

of hard and soft references to allow disposal of memory when needed. The hard reference

cache keeps track of the most recently used filters and transforms the ones least used to

SoftReferences when needed. Once the limit of the hard reference cache is reached additional

filters are cached as SoftReferences. To adjust the size of the hard reference cache, use

hibernate.search.filter.cache_strategy.size (defaults to 128). For advanced use of filter

caching, you can implement your own FilterCachingStrategy. The classname is defined by

hibernate.search.filter.cache_strategy.

Chapter 5. Querying

92

This filter caching mechanism should not be confused with caching the actual filter

results. In Lucene it is common practice to wrap filters using the IndexReader around

a CachingWrapperFilter. The wrapper will cache the DocIdSet returned from the

getDocIdSet(IndexReader reader) method to avoid expensive recomputation. It is important

to mention that the computed DocIdSet is only cachable for the same IndexReader instance,

because the reader effectively represents the state of the index at the moment it was opened.

The document list cannot change within an opened IndexReader. A different/new IndexReader

instance, however, works potentially on a different set of Documents (either from a different index

or simply because the index has changed), hence the cached DocIdSet has to be recomputed.

Hibernate Search also helps with this aspect of caching. Per default the cache flag

of @FullTextFilterDef is set to FilterCacheModeType.INSTANCE_AND_DOCIDSETRESULTS

which will automatically cache the filter instance as well as wrap the

specified filter around a Hibernate specific implementation of CachingWrapperFilter

(org.hibernate.search.filter.CachingWrapperFilter). In contrast to Lucene's version

of this class SoftReferences are used together with a hard reference count (see

discussion about filter cache). The hard reference count can be adjusted using

hibernate.search.filter.cache_docidresults.size (defaults to 5). The wrapping behaviour

can be controlled using the @FullTextFilterDef.cache parameter. There are three different

values for this parameter:

Value Definition

FilterCacheModeType.NONE No filter instance and no result is cached by

Hibernate Search. For every filter call, a new

filter instance is created. This setting might

be useful for rapidly changing data sets or

heavily memory constrained environments.

FilterCacheModeType.INSTANCE_ONLY The filter instance is cached and reused

across concurrent Filter.getDocIdSet()

calls. DocIdSet results are not cached. This

setting is useful when a filter uses its own

specific caching mechanism or the filter

results change dynamically due to application

specific events making DocIdSet caching in

both cases unnecessary.

FilterCacheModeType.INSTANCE_AND_DOCIDSETRESULTSBoth the filter instance and the DocIdSet

results are cached. This is the default value.

Last but not least - why should filters be cached? There are two areas where filter caching shines:

• the system does not update the targeted entity index often (in other words, the IndexReader

is reused a lot)

• the Filter's DocIdSet is expensive to compute (compared to the time spent to execute the query)

Using filters in a sharded environment

93

5.3.1. Using filters in a sharded environment

It is possible, in a sharded environment to execute queries on a subset of the available shards.

This can be done in two steps:

• create a sharding strategy that does select a subset of DirectoryProviders depending on

sone filter configuration

• activate the proper filter at query time

Let's first look at an example of sharding strategy that query on a specific customer shard if the

customer filter is activated.

public class CustomerShardingStrategy implements IndexShardingStrategy {

 // stored DirectoryProviders in a array indexed by customerID

 private DirectoryProvider<?>[] providers;

 public void initialize(Properties properties, DirectoryProvider<?>[] providers)

 {

 this.providers = providers;

 }

 public DirectoryProvider<?>[] getDirectoryProvidersForAllShards() {

 return providers;

 }

 public DirectoryProvider<?> getDirectoryProviderForAddition(Class<?> entity,

 Serializable id, String idInString, Document document) {

 Integer customerID =

 Integer.parseInt(document.getField("customerID").stringValue());

 return providers[customerID];

 }

 public DirectoryProvider<?>[] getDirectoryProvidersForDeletion(Class<?> entity,

 Serializable id, String idInString) {

 return getDirectoryProvidersForAllShards();

 }

 /**

 * Optimization; don't search ALL shards and union the results; in this case, we

 * can be certain that all the data for a particular customer Filter is in a single

 * shard; simply return that shard by customerID.

 */

 public DirectoryProvider<?>[]

 getDirectoryProvidersForQuery(FullTextFilterImplementor[] filters) {

 FFullTextFilter filter = getCustomerFilter(filters, "customer");

 if (filter == null) {

Chapter 5. Querying

94

 return getDirectoryProvidersForAllShards();

 }

 else {

 return new DirectoryProvider[]

 { providers[Integer.parseInt(filter.getParameter("customerID").toString())] };

 }

 }

 private FullTextFilter getFilter(FullTextFilterImplementor[] filters, String

 name) {

 for (FullTextFilterImplementor filter: filters) {

 if (filter.getName().equals(name)) return filter;

 }

 return null;

 }

}

In this example, if the filter named customer is present, we make sure to only use the shard

dedicated to this customer. Otherwise, we return all shards. A given Sharding strategy can react

to one or more filters and depends on their parameters.

The second step is simply to activate the filter at query time. While the filter can be a regular filter

(as defined in Section 5.3, “Filters”) which also filters Lucene results after the query, you can make

use of a special filter that will only be passed to the sharding strategy and otherwise ignored for the

rest of the query. Simply use the ShardSensitiveOnlyFilter class when declaring your filter.

@Entity @Indexed

@FullTextFilterDef(name="customer", impl=ShardSensitiveOnlyFilter.class)

public class Customer {

 ...

}

FullTextQuery query = ftEm.createFullTextQuery(luceneQuery, Customer.class);

query.enableFulltextFilter("customer").setParameter("CustomerID", 5);

@SuppressWarnings("unchecked")

List<Customer> results = query.getResultList();

Note that by using the ShardSensitiveOnlyFilter, you do not have to implement any Lucene

filter. Using filters and sharding strategy reacting to these filters is recommended to speed up

queries in a sharded environment.

5.4. Optimizing the query process

Query performance depends on several criteria:

Native Lucene Queries

95

• the Lucene query itself: read the literature on this subject

• the number of object loaded: use pagination (always ;-)) or index projection (if needed)

• the way Hibernate Search interacts with the Lucene readers: defines the appropriate Reader

strategy.

5.5. Native Lucene Queries

If you wish to use some specific features of Lucene, you can always run Lucene specific queries.

Check Chapter 8, Advanced features for more information.

96

Chapter 6.

97

Manual index changes
As Hibernate core applies changes to the Database, Hibernate Search detects these changes and

will update the index automatically (unless the EventListeners are disabled). Sometimes changes

are made to the database without using Hibernate, as when backup is restored or your data is

otherwise affected; for these cases Hibernate Search exposes the Manual Index APIs to explicitly

update or remove a single entity from the index, or rebuild the index for the whole database, or

remove all references to a specific type.

All these methods affect the Lucene Index only, no changes are applied to the Database.

6.1. Adding instances to the Index

Using FullTextSession.index(T entity) you can directly add or update a specific object

instance to the index. If this entity was already indexed, then the index will be updated. Changes

to the index are only applied at transaction commit.

Example 6.1. Indexing an entity via FullTextSession.index(T entity)

FullTextSession fullTextSession = Search.getFullTextSession(session);

Transaction tx = fullTextSession.beginTransaction();

Object customer = fullTextSession.load(Customer.class, 8);

fullTextSession.index(customer);

tx.commit(); //index only updated at commit time

In case you want to add all instances for a type, or for all indexed types, the recommended

approach is to use a MassIndexer: see Section 6.3.2, “Using a MassIndexer” for more details.

6.2. Deleting instances from the Index: Purging

It is equally possible to remove an entity or all entities of a given type from a Lucene index without

the need to physically remove them from the database. This operation is named purging and is

also done through the FullTextSession.

Example 6.2. Purging a specific instance of an entity from the index

FullTextSession fullTextSession = Search.getFullTextSession(session);

Transaction tx = fullTextSession.beginTransaction();

for (Customer customer : customers) {

 fullTextSession.purge(Customer.class, customer.getId());

}

tx.commit(); //index is updated at commit time

Chapter 6. Manual index changes

98

Purging will remove the entity with the given id from the Lucene index but will not touch the

database.

If you need to remove all entities of a given type, you can use the purgeAll method. This operation

removes all entities of the type passed as a parameter as well as all its subtypes.

Example 6.3. Purging all instances of an entity from the index

FullTextSession fullTextSession = Search.getFullTextSession(session);

Transaction tx = fullTextSession.beginTransaction();

fullTextSession.purgeAll(Customer.class);

//optionally optimize the index

//fullTextSession.getSearchFactory().optimize(Customer.class);

tx.commit(); //index changes are applied at commit time

It is recommended to optimize the index after such an operation.

Note

Methods index, purge and purgeAll are available on FullTextEntityManager

as well.

Note

All manual indexing methods (index, purge and purgeAll) only affect the index,

not the database, nevertheless they are transactional and as such they won't

be applied until the transaction is successfully committed, or you make use of

flushToIndexes.

6.3. Rebuilding the whole Index

If you change the entity mapping to the index, chances are that the whole Index needs to be

updated; For example if you decide to index a an existing field using a different analyzer you'll

need to rebuild the index for affected types. Also if the Database is replaced (like restored from a

backup, imported from a legacy system) you'll want to be able to rebuild the index from existing

data. Hibernate Search provides two main strategies to choose from:

• Using FullTextSession.flushToIndexes() periodically, while using

FullTextSession.index() on all entities.

• Use a MassIndexer.

Using flushToIndexes()

99

6.3.1. Using flushToIndexes()

This strategy consists in removing the existing index and then adding all entities back to the

index using FullTextSession.purgeAll() and FullTextSession.index(), however there are

some memory and efficiency contraints. For maximum efficiency Hibernate Search batches index

operations and executes them at commit time. If you expect to index a lot of data you need

to be careful about memory consumption since all documents are kept in a queue until the

transaction commit. You can potentially face an OutOfMemoryException if you don't empty the

queue periodically: to do this you can use fullTextSession.flushToIndexes(). Every time

fullTextSession.flushToIndexes() is called (or if the transaction is committed), the batch

queue is processed applying all index changes. Be aware that, once flushed, the changes cannot

be rolled back.

Example 6.4. Index rebuilding using index() and flushToIndexes()

fullTextSession.setFlushMode(FlushMode.MANUAL);

fullTextSession.setCacheMode(CacheMode.IGNORE);

transaction = fullTextSession.beginTransaction();

//Scrollable results will avoid loading too many objects in memory

ScrollableResults results = fullTextSession.createCriteria(Email.class)

 .setFetchSize(BATCH_SIZE)

 .scroll(ScrollMode.FORWARD_ONLY);

int index = 0;

while(results.next()) {

 index++;

 fullTextSession.index(results.get(0)); //index each element

 if (index % BATCH_SIZE == 0) {

 fullTextSession.flushToIndexes(); //apply changes to indexes

 fullTextSession.clear(); //free memory since the queue is processed

 }

}

transaction.commit();

Note

hibernate.search.worker.batch_size has been deprecated in favor of this

explicit API which provides better control

Try to use a batch size that guarantees that your application will not run out of memory: with a

bigger batch size objects are fetched faster from database but more memory is needed.

Chapter 6. Manual index changes

100

6.3.2. Using a MassIndexer

Hibernate Search's MassIndexer uses several parallel threads to rebuild the index; you can

optionally select which entities need to be reloaded or have it reindex all entities. This approach is

optimized for best performance but requires to set the application in maintenance mode: making

queries to the index is not recommended when a MassIndexer is busy.

Example 6.5. Index rebuilding using a MassIndexer

fullTextSession.createIndexer().startAndWait();

This will rebuild the index, deleting it and then reloading all entities from the database. Although

it's simple to use, some tweaking is recommended to speed up the process: there are several

parameters configurable.

Warning

During the progress of a MassIndexer the content of the index is undefined, make

sure that nobody will try to make some query during index rebuilding! If somebody

should query the index it will not corrupt but most results will likely be missing.

Example 6.6. Using a tuned MassIndexer

fullTextSession

 .createIndexer(User.class)

 .batchSizeToLoadObjects(25)

 .cacheMode(CacheMode.NORMAL)

 .threadsToLoadObjects(5)

 .threadsForSubsequentFetching(20)

 .startAndWait();

This will rebuild the index of all User instances (and subtypes), and will create 5 parallel threads

to load the User instances using batches of 25 objects per query; these loaded User instances

are then pipelined to 20 parallel threads to load the attached lazy collections of User containing

some information needed for the index.

It is recommended to leave cacheMode to CacheMode.IGNORE (the default), as in most reindexing

situations the cache will be a useless additional overhead; it might be useful to enable some other

CacheMode depending on your data: it might increase performance if the main entity is relating to

enum-like data included in the index.

Using a MassIndexer

101

Tip

The "sweet spot" of number of threads to achieve best performance is highly

dependent on your overall architecture, database design and even data values. To

find out the best number of threads for your application it is recommended to use

a profiler: all internal thread groups have meaningful names to be easily identified

with most tools.

Note

The MassIndexer was designed for speed and is unaware of transactions, so there

is no need to begin one or committing. Also because it is not transactional it is not

recommended to let users use the system during it's processing, as it is unlikely

people will be able to find results and the system load might be too high anyway.

Other parameters which also affect indexing time and memory consumption are:

• hibernate.search.[default|<indexname>].exclusive_index_use

• hibernate.search.[default|<indexname>].indexwriter.batch.max_buffered_docs

• hibernate.search.[default|<indexname>].indexwriter.batch.max_field_length

• hibernate.search.[default|<indexname>].indexwriter.batch.max_merge_docs

• hibernate.search.[default|<indexname>].indexwriter.batch.merge_factor

• hibernate.search.[default|<indexname>].indexwriter.batch.ram_buffer_size

• hibernate.search.[default|<indexname>].indexwriter.batch.term_index_interval

All .indexwriter parameters are Lucene specific and Hibernate Search is just passing these

parameters through - see Section 3.9, “Tuning Lucene indexing performance” for more details.

102

Chapter 7.

103

Index Optimization
From time to time, the Lucene index needs to be optimized. The process is essentially a

defragmentation. Until an optimization is triggered Lucene only marks deleted documents as such,

no physical deletions are applied. During the optimization process the deletions will be applied

which also effects the number of files in the Lucene Directory.

Optimizing the Lucene index speeds up searches but has no effect on the indexation (update)

performance. During an optimization, searches can be performed, but will most likely be slowed

down. All index updates will be stopped. It is recommended to schedule optimization:

• on an idle system or when the searches are less frequent

• after a lot of index modifications

When using a MassIndexer (see Section 6.3.2, “Using a MassIndexer”) it will optimize involved

indexes by default at the start and at the end of processing; you can change this behavior by using

respectively MassIndexer.optimizeAfterPurge and MassIndexer.optimizeOnFinish.

7.1. Automatic optimization

Hibernate Search can automatically optimize an index after:

• a certain amount of operations (insertion, deletion)

• or a certain amount of transactions

The configuration for automatic index optimization can be defined on a global level or per index:

Example 7.1. Defining automatic optimization parameters

hibernate.search.default.optimizer.operation_limit.max = 1000

hibernate.search.default.optimizer.transaction_limit.max = 100

hibernate.search.Animal.optimizer.transaction_limit.max = 50

An optimization will be triggered to the Animal index as soon as either:

• the number of additions and deletions reaches 1000

• the number of transactions reaches 50

(hibernate.search.Animal.optimizer.transaction_limit.max having priority over

hibernate.search.default.optimizer.transaction_limit.max)

If none of these parameters are defined, no optimization is processed automatically.

Chapter 7. Index Optimization

104

7.2. Manual optimization

You can programmatically optimize (defragment) a Lucene index from Hibernate Search through

the SearchFactory:

Example 7.2. Programmatic index optimization

FullTextSession fullTextSession = Search.getFullTextSession(regularSession);

SearchFactory searchFactory = fullTextSession.getSearchFactory();

searchFactory.optimize(Order.class);

// or

searchFactory.optimize();

The first example optimizes the Lucene index holding Orders; the second, optimizes all indexes.

Note

searchFactory.optimize() has no effect on a JMS backend. You must apply

the optimize operation on the Master node.

7.3. Adjusting optimization

Apache Lucene has a few parameters to influence how optimization is performed. Hibernate

Search exposes those parameters.

Further index optimization parameters include:

• hibernate.search.[default|<indexname>].indexwriter.[batch|

transaction].max_buffered_docs

• hibernate.search.[default|<indexname>].indexwriter.[batch|

transaction].max_field_length

• hibernate.search.[default|<indexname>].indexwriter.[batch|

transaction].max_merge_docs

• hibernate.search.[default|<indexname>].indexwriter.[batch|

transaction].merge_factor

• hibernate.search.[default|<indexname>].indexwriter.[batch|

transaction].ram_buffer_size

• hibernate.search.[default|<indexname>].indexwriter.[batch|

transaction].term_index_interval

Adjusting optimization

105

See Section 3.9, “Tuning Lucene indexing performance” for more details.

106

Chapter 8.

107

Advanced features

8.1. SearchFactory

The SearchFactory object keeps track of the underlying Lucene resources for Hibernate Search,

it's also a convenient way to access Lucene natively. The SearchFactory can be accessed from

a FullTextSession:

Example 8.1. Accessing the SearchFactory

FullTextSession fullTextSession = Search.getFullTextSession(regularSession);

SearchFactory searchFactory = fullTextSession.getSearchFactory();

8.2. Accessing a Lucene Directory

You can always access the Lucene directories through plain Lucene, the Directory structure is

in no way different with or without Hibernate Search. However there are some more convenient

ways to access a given Directory. The SearchFactory keeps track of the DirectoryProviders

per indexed class. One directory provider can be shared amongst several indexed classes if the

classes share the same underlying index directory. While usually not the case, a given entity can

have several DirectoryProviders if the index is sharded (see Section 3.2, “Sharding indexes”).

Example 8.2. Accessing the Lucene Directory

DirectoryProvider[] provider =

 searchFactory.getDirectoryProviders(Order.class);

org.apache.lucene.store.Directory directory = provider[0].getDirectory();

In this example, directory points to the lucene index storing Orders information. Note that the

obtained Lucene directory must not be closed (this is Hibernate Search responsibility).

8.3. Using an IndexReader

Queries in Lucene are executed on an IndexReader. Hibernate Search caches all index readers

to maximize performance. Your code can access this cached resources, but you have to follow

some "good citizen" rules.

Example 8.3. Accessing an IndexReader

DirectoryProvider orderProvider =

 searchFactory.getDirectoryProviders(Order.class)[0];

Chapter 8. Advanced features

108

DirectoryProvider clientProvider =

 searchFactory.getDirectoryProviders(Client.class)[0];

ReaderProvider readerProvider = searchFactory.getReaderProvider();

IndexReader reader = readerProvider.openReader(orderProvider, clientProvider);

try {

 //do read-only operations on the reader

}

finally {

 readerProvider.closeReader(reader);

}

The ReaderProvider (described in Reader strategy), will open an IndexReader on top of the

index(es) referenced by the directory providers. Because this IndexReader is shared amongst

several clients, you must adhere to the following rules:

• Never call indexReader.close(), but always call readerProvider.closeReader(reader), preferably

in a finally block.

• Don't use this IndexReader for modification operations (you would get an exception). If you

want to use a read/write index reader, open one from the Lucene Directory object.

Aside from those rules, you can use the IndexReader freely, especially to do native queries. Using

the shared IndexReaders will make most queries more efficient.

8.4. Customizing Lucene's scoring formula

Lucene allows the user to customize its scoring formula by extending

org.apache.lucene.search.Similarity. The abstract methods defined in this class match the

factors of the following formula calculating the score of query q for document d:

score(q,d) = coord(q,d) · queryNorm(q) · ∑t in q (tf(t in d) · idf(t)2 · t.getBoost() · norm(t,d))

Factor Description

tf(t ind) Term frequency factor for the term (t) in the

document (d).

idf(t) Inverse document frequency of the term.

coord(q,d) Score factor based on how many of the query

terms are found in the specified document.

queryNorm(q) Normalizing factor used to make scores

between queries comparable.

t.getBoost() Field boost.

norm(t,d) Encapsulates a few (indexing time) boost and

length factors.

Customizing Lucene's scoring formula

109

It is beyond the scope of this manual to explain this formula in more detail. Please refer to

Similarity's Javadocs for more information.

Hibernate Search provides two ways to modify Lucene's similarity calculation. First you can

set the default similarity by specifying the fully specified classname of your Similarity

implementation using the property hibernate.search.similarity. The default value is

org.apache.lucene.search.DefaultSimilarity. Additionally you can override the default

similarity on class level using the @Similarity annotation.

@Entity

@Indexed

@Similarity(impl = DummySimilarity.class)

public class Book {

 ...

}

As an example, let's assume it is not important how often a term appears in a document.

Documents with a single occurrence of the term should be scored the same as documents with

multiple occurrences. In this case your custom implementation of the method tf(float freq)

should return 1.0.

Warning

When two entities share the same index they must declare the same Similarity

implementation. Classes in the same class hierarchy always share the index, so

it's not allowed to override the Similarity implementation in a subtype.

110

	Hibernate Search
	Table of Contents
	Preface
	Chapter 1. Getting started
	1.1. System Requirements
	1.2. Using Maven
	1.3. Configuration
	1.4. Indexing
	1.5. Searching
	1.6. Analyzer
	1.7. What's next

	Chapter 2. Architecture
	2.1. Overview
	2.2. Back end
	2.2.1. Back end types
	2.2.1.1. Lucene
	2.2.1.2. JMS
	2.2.1.3. JGroups

	2.2.2. Work execution
	2.2.2.1. Synchronous
	2.2.2.2. Asynchronous

	2.3. Reader strategy
	2.3.1. Shared
	2.3.2. Not-shared
	2.3.3. Custom

	Chapter 3. Configuration
	3.1. Directory configuration
	3.2. Sharding indexes
	3.3. Sharing indexes (two entities into the same directory)
	3.4. Worker configuration
	3.5. JMS Master/Slave configuration
	3.5.1. Slave nodes
	3.5.2. Master node

	3.6. JGroups Master/Slave configuration
	3.6.1. Slave nodes
	3.6.2. Master node
	3.6.3. JGroups channel configuration

	3.7. Reader strategy configuration
	3.8. Enabling Hibernate Search and automatic indexing
	3.8.1. Enabling Hibernate Search
	3.8.2. Automatic indexing

	3.9. Tuning Lucene indexing performance
	3.10. LockFactory configuration
	3.11. Exception Handling Configuration

	Chapter 4. Mapping entities to the index structure
	4.1. Mapping an entity
	4.1.1. Basic mapping
	4.1.2. Mapping properties multiple times
	4.1.3. Embedded and associated objects
	4.1.4. Boost factor
	4.1.5. Dynamic boost factor
	4.1.6. Analyzer
	4.1.6.1. Analyzer definitions
	4.1.6.2. Available analyzers
	4.1.6.3. Analyzer discriminator (experimental)
	4.1.6.4. Retrieving an analyzer

	4.2. Property/Field Bridge
	4.2.1. Built-in bridges
	4.2.2. Custom Bridge
	4.2.2.1. StringBridge
	4.2.2.2. FieldBridge
	4.2.2.3. ClassBridge

	4.3. Providing your own id
	4.3.1. The ProvidedId annotation

	4.4. Programmatic API
	4.4.1. Mapping an entity as indexable
	4.4.2. Adding DocumentId to indexed entity
	4.4.3. Defining analyzers
	4.4.4. Defining full text filter definitions
	4.4.5. Defining fields for indexing
	4.4.6. Programmatically defining embedded entities
	4.4.7. Contained In definition
	4.4.8. Date/Calendar Bridge
	4.4.9. Defining bridges
	4.4.10. Mapping class bridge
	4.4.11. Mapping dynamic boost

	Chapter 5. Querying
	5.1. Building queries
	5.1.1. Building a Lucene query
	5.1.2. Building a Hibernate Search query
	5.1.2.1. Generality
	5.1.2.2. Pagination
	5.1.2.3. Sorting
	5.1.2.4. Fetching strategy
	5.1.2.5. Projection

	5.2. Retrieving the results
	5.2.1. Performance considerations
	5.2.2. Result size
	5.2.3. ResultTransformer
	5.2.4. Understanding results

	5.3. Filters
	5.3.1. Using filters in a sharded environment

	5.4. Optimizing the query process
	5.5. Native Lucene Queries

	Chapter 6. Manual index changes
	6.1. Adding instances to the Index
	6.2. Deleting instances from the Index: Purging
	6.3. Rebuilding the whole Index
	6.3.1. Using flushToIndexes()
	6.3.2. Using a MassIndexer

	Chapter 7. Index Optimization
	7.1. Automatic optimization
	7.2. Manual optimization
	7.3. Adjusting optimization

	Chapter 8. Advanced features
	8.1. SearchFactory
	8.2. Accessing a Lucene Directory
	8.3. Using an IndexReader
	8.4. Customizing Lucene's scoring formula

