
Hibernate Search

Apache Lucene™

Integration

Reference Guide
3.3.0.Final

iii

Preface .. vii

1. Getting started ... 1

1.1. System Requirements ... 1

1.2. Using Maven .. 2

1.3. Configuration .. 3

1.4. Indexing ... 7

1.5. Searching ... 7

1.6. Analyzer ... 8

1.7. What's next .. 10

2. Architecture ... 11

2.1. Overview .. 11

2.2. Back end .. 12

2.2.1. Back end types .. 12

2.2.2. Work execution .. 14

2.3. Reader strategy .. 14

2.3.1. Shared .. 14

2.3.2. Not-shared ... 15

2.3.3. Custom .. 15

3. Configuration ... 17

3.1. Enabling Hibernate Search and automatic indexing ... 17

3.1.1. Enabling Hibernate Search ... 17

3.1.2. Automatic indexing ... 17

3.2. Directory configuration ... 17

3.3. Sharding indexes .. 23

3.4. Sharing indexes .. 24

3.5. Worker configuration ... 25

3.6. JMS Master/Slave configuration ... 28

3.6.1. Slave nodes ... 28

3.6.2. Master node .. 29

3.7. JGroups Master/Slave configuration ... 31

3.7.1. Slave nodes ... 31

3.7.2. Master node .. 31

3.7.3. JGroups channel configuration .. 31

3.8. Infinispan Directory configuration ... 33

3.8.1. Requirements ... 33

3.8.2. Architecture .. 34

3.8.3. Infinispan Configuration .. 34

3.9. Reader strategy configuration .. 34

3.10. Tuning Lucene indexing performance ... 35

3.11. LockFactory configuration .. 40

3.12. Exception Handling Configuration ... 41

4. Mapping entities to the index structure ... 43

4.1. Mapping an entity ... 43

4.1.1. Basic mapping ... 43

Hibernate Search

iv

4.1.2. Mapping properties multiple times ... 47

4.1.3. Embedded and associated objects .. 47

4.2. Boosting ... 51

4.2.1. Static index time boosting ... 51

4.2.2. Dynamic index time boosting .. 52

4.3. Analysis .. 53

4.3.1. Default analyzer and analyzer by class .. 53

4.3.2. Named analyzers ... 54

4.3.3. Dynamic analyzer selection (experimental) ... 60

4.3.4. Retrieving an analyzer .. 62

4.4. Bridges ... 63

4.4.1. Built-in bridges ... 63

4.4.2. Custom bridges .. 64

4.5. Providing your own id ... 70

4.5.1. The ProvidedId annotation .. 70

4.6. Programmatic API ... 70

4.6.1. Mapping an entity as indexable ... 71

4.6.2. Adding DocumentId to indexed entity .. 72

4.6.3. Defining analyzers .. 73

4.6.4. Defining full text filter definitions .. 74

4.6.5. Defining fields for indexing .. 76

4.6.6. Programmatically defining embedded entities ... 77

4.6.7. Contained In definition .. 78

4.6.8. Date/Calendar Bridge ... 79

4.6.9. Defining bridges ... 80

4.6.10. Mapping class bridge .. 81

4.6.11. Mapping dynamic boost .. 82

5. Querying .. 85

5.1. Building queries .. 87

5.1.1. Building a Lucene query using the Lucene API ... 87

5.1.2. Building a Lucene query with the Hibernate Search query DSL 87

5.1.3. Building a Hibernate Search query .. 94

5.2. Retrieving the results .. 100

5.2.1. Performance considerations .. 100

5.2.2. Result size ... 101

5.2.3. ResultTransformer .. 102

5.2.4. Understanding results ... 102

5.3. Filters ... 103

5.3.1. Using filters in a sharded environment ... 107

5.4. Optimizing the query process ... 109

6. Manual index changes ... 111

6.1. Adding instances to the index .. 111

6.2. Deleting instances from the index .. 111

6.3. Rebuilding the whole index .. 112

v

6.3.1. Using flushToIndexes() ... 112

6.3.2. Using a MassIndexer .. 113

7. Index Optimization ... 117

7.1. Automatic optimization ... 117

7.2. Manual optimization .. 118

7.3. Adjusting optimization .. 118

8. Monitoring .. 121

8.1. JMX ... 121

8.1.1. StatisticsInfoMBean .. 121

8.1.2. IndexControlMBean .. 121

8.1.3. IndexingProgressMonitorMBean .. 121

9. Advanced features ... 123

9.1. Accessing the SearchFactory ... 123

9.2. Accessing a Lucene Directory .. 123

9.3. Using an IndexReader ... 123

9.4. Use external services in Hibernate Search components (experimental) 124

9.4.1. Exposing a service ... 125

9.4.2. Using a service .. 126

9.5. Customizing Lucene's scoring formula .. 127

10. Further reading .. 129

vi

vii

Preface

Full text search engines like Apache Lucene are very powerful technologies to add efficient

free text search capabilities to applications. However, Lucene suffers several mismatches when

dealing with object domain models. Amongst other things indexes have to be kept up to date and

mismatches between index structure and domain model as well as query mismatches have to

be avoided.

Hibernate Search addresses these shortcomings - it indexes your domain model with the help

of a few annotations, takes care of database/index synchronization and brings back regular

managed objects from free text queries. To achieve this Hibernate Search is combining the power

of Hibernate [http://www.hibernate.org] and Apache Lucene [http://lucene.apache.org].

http://www.hibernate.org
http://www.hibernate.org
http://lucene.apache.org
http://lucene.apache.org

viii

Chapter 1.

1

Getting started
Welcome to Hibernate Search. The following chapter will guide you through the initial steps

required to integrate Hibernate Search into an existing Hibernate enabled application. In case you

are a Hibernate new timer we recommend you start here [http://hibernate.org/quick-start.html].

1.1. System Requirements

Table 1.1. System requirements

Java Runtime A JDK or JRE version 5 or

greater. You can download a

Java Runtime for Windows/Linux/Solaris

here [http://www.oracle.com/technetwork/java/

javase/downloads/index.html].

Hibernate Search hibernate-search-3.3.0.Final.jar and

all runtime dependencies. You can

get the jar artifacts either from the

dist/lib directory of the Hibernate

Search distribution [http://sourceforge.net/

projects/hibernate/files/hibernate-search/] or

you can download them from the JBoss

maven repository [http://repository.jboss.org/

nexus/content/groups/public-jboss/].

Hibernate Core This instructions have been tested

against Hibernate 3.6. You will need

hibernate-core-3.6.0.Final.jar and its

transitive dependencies (either from the

distribution bundle [http://sourceforge.net/

projects/hibernate/files/hibernate3/] or the

maven repository).

JPA 2 Even though Hibernate Search can

be used without JPA annotations the

following instructions will use them

for basic entity configuration (@Entity,

@Id, @OneToMany,...). This part of the

configuration could also be expressed in xml or

code.

Hibernate Search, however, has itself its own

set of annotations (@Indexed, @DocumentId,

@Field,...) for which there exists so far no

alternative configuration.

http://hibernate.org/quick-start.html
http://hibernate.org/quick-start.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://sourceforge.net/projects/hibernate/files/hibernate-search/
http://sourceforge.net/projects/hibernate/files/hibernate-search/
http://sourceforge.net/projects/hibernate/files/hibernate-search/
http://sourceforge.net/projects/hibernate/files/hibernate-search/
http://repository.jboss.org/nexus/content/groups/public-jboss/
http://repository.jboss.org/nexus/content/groups/public-jboss/
http://repository.jboss.org/nexus/content/groups/public-jboss/
http://repository.jboss.org/nexus/content/groups/public-jboss/
http://sourceforge.net/projects/hibernate/files/hibernate3/
http://sourceforge.net/projects/hibernate/files/hibernate3/
http://sourceforge.net/projects/hibernate/files/hibernate3/

Chapter 1. Getting started

2

1.2. Using Maven

Instead of managing all dependencies manually, maven users have the possibility to use

the JBoss maven repository [http://repository.jboss.org/nexus/content/groups/public-jboss/]. Add

the following to your Maven settings.xml file (see also Maven Getting Started [http://

community.jboss.org/wiki/MavenGettingStarted-Users]):

Example 1.1. Adding the JBoss maven repository to settings.xml

<settings>

 ...

 <profiles>

 ...

 <profile>

 <id>jboss-public-repository</id>

 <repositories>

 <repository>

 <id>jboss-public-repository-group</id>

 <name>JBoss Public Maven Repository Group</name>

 <url>https://repository.jboss.org/nexus/content/groups/public-jboss/</url>

 <layout>default</layout>

 <releases>

 <enabled>true</enabled>

 <updatePolicy>never</updatePolicy>

 </releases>

 <snapshots>

 <enabled>true</enabled>

 <updatePolicy>never</updatePolicy>

 </snapshots>

 </repository>

 </repositories>

 <pluginRepositories>

 <pluginRepository>

 <id>jboss-public-repository-group</id>

 <name>JBoss Public Maven Repository Group</name>

 <url>https://repository.jboss.org/nexus/content/groups/public-jboss/</url>

 <layout>default</layout>

 <releases>

 <enabled>true</enabled>

 <updatePolicy>never</updatePolicy>

 </releases>

 <snapshots>

 <enabled>true</enabled>

 <updatePolicy>never</updatePolicy>

 </snapshots>

 </pluginRepository>

 </pluginRepositories>

 </profile>

 </profiles>

 <activeProfiles>

 <activeProfile>jboss-public-repository</activeProfile>

 </activeProfiles>

 ...

http://repository.jboss.org/nexus/content/groups/public-jboss/
http://repository.jboss.org/nexus/content/groups/public-jboss/
http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users

Configuration

3

</settings>

Then add the following dependencies to your pom.xml:

Example 1.2. Maven dependencies for Hibernate Search

<dependency>

 <groupId>org.hibernate</groupId>

 <artifactId>hibernate-search</artifactId>

 <version>3.3.0.Final</version>

</dependency>

<dependency>

 <groupId>org.hibernate</groupId>

 <artifactId>hibernate-entitymanager</artifactId>

 <version>3.6.0.Final</version>

</dependency>

Only the hibernate-search dependency is mandatory, because it contains together with its

required transitive dependencies all required classes needed to use Hibernate Search. hibernate-

entitymanager is only required if you want to use Hibernate Search in conjunction with JPA.

Note

There is no XML configuration available for Hibernate Search but we provide a

powerful programmatic mapping API that elegantly replace this kind of deployment

form (see Section 4.6, “Programmatic API” for more information).

1.3. Configuration

Once you have downloaded and added all required dependencies to your application you have to

add a couple of properties to your hibernate configuration file. If you are using Hibernate directly

this can be done in hibernate.properties or hibernate.cfg.xml. If you are using Hibernate

via JPA you can also add the properties to persistence.xml. The good news is that for standard

use most properties offer a sensible default. An example persistence.xml configuration could

look like this:

Example 1.3. Basic configuration options to be added to hibernate.properties,

hibernate.cfg.xml or persistence.xml

...

<property name="hibernate.search.default.directory_provider"

 value="filesystem"/>

<property name="hibernate.search.default.indexBase"

 value="/var/lucene/indexes"/>

Chapter 1. Getting started

4

...

First you have to tell Hibernate Search which DirectoryProvider to use. This can be achieved

by setting the hibernate.search.default.directory_provider property. Apache Lucene has

the notion of a Directory to store the index files. Hibernate Search handles the initialization

and configuration of a Lucene Directory instance via a DirectoryProvider. In this tutorial

we will use a a directory provider storing the index in the file system. This will give us

the ability to physically inspect the Lucene indexes created by Hibernate Search (eg via

Luke [http://code.google.com/p/luke/]). Once you have a working configuration you can start

experimenting with other directory providers (see Section 3.2, “Directory configuration”). Next

to the directory provider you also have to specify the default base directory for all indexes via

hibernate.search.default.indexBase.

Lets assume that your application contains the Hibernate managed classes example.Book and

example.Author and you want to add free text search capabilities to your application in order to

search the books contained in your database.

Example 1.4. Example entities Book and Author before adding Hibernate

Search specific annotations

package example;

...

@Entity

public class Book {

 @Id

 @GeneratedValue

 private Integer id;

 private String title;

 private String subtitle;

 @ManyToMany

 private Set<Author> authors = new HashSet<Author>();

 private Date publicationDate;

 public Book() {}

 // standard getters/setters follow here

 ...

}

package example;

...

@Entity

public class Author {

http://code.google.com/p/luke/
http://code.google.com/p/luke/

Configuration

5

 @Id

 @GeneratedValue

 private Integer id;

 private String name;

 public Author() {}

 // standard getters/setters follow here

 ...

}

To achieve this you have to add a few annotations to the Book and Author class. The first

annotation @Indexed marks Book as indexable. By design Hibernate Search needs to store an

untokenized id in the index to ensure index unicity for a given entity. @DocumentId marks the

property to use for this purpose and is in most cases the same as the database primary key. The

@DocumentId annotation is optional in the case where an @Id annotation exists.

Next you have to mark the fields you want to make searchable. Let's start with title and subtitle

and annotate both with @Field. The parameter index=Index.TOKENIZED will ensure that the

text will be tokenized using the default Lucene analyzer. Usually, tokenizing means chunking a

sentence into individual words and potentially excluding common words like 'a' or 'the'. We

will talk more about analyzers a little later on. The second parameter we specify within @Field,

store=Store.NO, ensures that the actual data will not be stored in the index. Whether this data

is stored in the index or not has nothing to do with the ability to search for it. From Lucene's

perspective it is not necessary to keep the data once the index is created. The benefit of storing

it is the ability to retrieve it via projections (see Section 5.1.3.5, “Projection”).

Without projections, Hibernate Search will per default execute a Lucene query in order to find the

database identifiers of the entities matching the query critera and use these identifiers to retrieve

managed objects from the database. The decision for or against projection has to be made on

a case to case basis. The default behaviour is recommended since it returns managed objects

whereas projections only return object arrays.

After this short look under the hood let's go back to annotating the Book class. Another annotation

we have not yet discussed is @DateBridge. This annotation is one of the built-in field bridges in

Hibernate Search. The Lucene index is purely string based. For this reason Hibernate Search must

convert the data types of the indexed fields to strings and vice versa. A range of predefined bridges

are provided, including the DateBridge which will convert a java.util.Date into a String with

the specified resolution. For more details see Section 4.4, “Bridges”.

This leaves us with @IndexedEmbedded. This annotation is used to index associated entities

(@ManyToMany, @*ToOne and @Embedded) as part of the owning entity. This is needed since a

Lucene index document is a flat data structure which does not know anything about object

relations. To ensure that the authors' name will be searchable you have to make sure that the

names are indexed as part of the book itself. On top of @IndexedEmbedded you will also have to

mark all fields of the associated entity you want to have included in the index with @Indexed. For

more details see Section 4.1.3, “Embedded and associated objects”.

Chapter 1. Getting started

6

These settings should be sufficient for now. For more details on entity mapping refer to Section 4.1,

“Mapping an entity”.

Example 1.5. Example entities after adding Hibernate Search annotations

package example;

...

@Entity

@Indexed

public class Book {

 @Id

 @GeneratedValue

 private Integer id;

 @Field(index=Index.TOKENIZED, store=Store.NO)

 private String title;

 @Field(index=Index.TOKENIZED, store=Store.NO)

 private String subtitle;

 @IndexedEmbedded

 @ManyToMany

 private Set<Author> authors = new HashSet<Author>();

 @Field(index = Index.UN_TOKENIZED, store = Store.YES)

 @DateBridge(resolution = Resolution.DAY)

 private Date publicationDate;

 public Book() {

 }

 // standard getters/setters follow here

 ...

}

package example;

...

@Entity

public class Author {

 @Id

 @GeneratedValue

 private Integer id;

 @Field(index=Index.TOKENIZED, store=Store.NO)

 private String name;

 public Author() {

 }

 // standard getters/setters follow here

 ...

}

Indexing

7

1.4. Indexing

Hibernate Search will transparently index every entity persisted, updated or removed through

Hibernate Core. However, you have to create an initial Lucene index for the data already present

in your database. Once you have added the above properties and annotations it is time to trigger

an initial batch index of your books. You can achieve this by using one of the following code

snippets (see also Section 6.3, “Rebuilding the whole index”):

Example 1.6. Using Hibernate Session to index data

FullTextSession fullTextSession = Search.getFullTextSession(session);

fullTextSession.createIndexer().startAndWait();

Example 1.7. Using JPA to index data

EntityManager em = entityManagerFactory.createEntityManager();

FullTextEntityManager fullTextEntityManager = Search.getFullTextEntityManager(em);

fullTextEntityManager.createIndexer().startAndWait();

After executing the above code, you should be able to see a Lucene index under /var/lucene/

indexes/example.Book. Go ahead an inspect this index with Luke [http://code.google.com/p/

luke/]. It will help you to understand how Hibernate Search works.

1.5. Searching

Now it is time to execute a first search. The general approach is to create a Lucene query

(either via the Lucene API (Section 5.1.1, “Building a Lucene query using the Lucene API”) or

via the Hibernate Search query DSL (Section 5.1.2, “Building a Lucene query with the Hibernate

Search query DSL”)) and then wrap this query into a org.hibernate.Query in order to get all

the functionality one is used to from the Hibernate API. The following code will prepare a query

against the indexed fields, execute it and return a list of Books.

Example 1.8. Using Hibernate Session to create and execute a search

FullTextSession fullTextSession = Search.getFullTextSession(session);

Transaction tx = fullTextSession.beginTransaction();

// create native Lucene query unsing the query DSL

// alternatively you can write the Lucene query using the Lucene query parser

// or the Lucene programmatic API. The Hibernate Search DSL is recommended though

QueryBuilder qb = fullTextSession.getSearchFactory()

 .buildQueryBuilder().forEntity(Book.class).get();

org.apache.lucene.search.Query query = qb

 .keyword()

 .onFields("title", "subtitle", "authors.name", "publicationDate")

 .matching("Java rocks!");

http://code.google.com/p/luke/
http://code.google.com/p/luke/
http://code.google.com/p/luke/

Chapter 1. Getting started

8

 .createQuery();

// wrap Lucene query in a org.hibernate.Query

org.hibernate.Query hibQuery =

 fullTextSession.createFullTextQuery(query, Book.class);

// execute search

List result = hibQuery.list();

tx.commit();

session.close();

Example 1.9. Using JPA to create and execute a search

EntityManager em = entityManagerFactory.createEntityManager();

FullTextEntityManager fullTextEntityManager =

 org.hibernate.search.jpa.Search.getFullTextEntityManager(em);

em.getTransaction().begin();

// create native Lucene query unsing the query DSL

// alternatively you can write the Lucene query using the Lucene query parser

// or the Lucene programmatic API. The Hibernate Search DSL is recommended though

QueryBuilder qb = fullTextSession.getSearchFactory()

 .buildQueryBuilder().forEntity(Book.class).get();

org.apache.lucene.search.Query query = qb

 .keyword()

 .onFields("title", "subtitle", "authors.name", "publicationDate")

 .matching("Java rocks!");

 .createQuery();

// wrap Lucene query in a javax.persistence.Query

javax.persistence.Query persistenceQuery =

 fullTextEntityManager.createFullTextQuery(query, Book.class);

// execute search

List result = persistenceQuery.getResultList();

em.getTransaction().commit();

em.close();

1.6. Analyzer

Let's make things a little more interesting now. Assume that one of your indexed book entities

has the title "Refactoring: Improving the Design of Existing Code" and you want to get hits for all

of the following queries: "refactor", "refactors", "refactored" and "refactoring". In Lucene this can

be achieved by choosing an analyzer class which applies word stemming during the indexing as

well as the search process. Hibernate Search offers several ways to configure the analyzer to be

used (see Section 4.3.1, “Default analyzer and analyzer by class”):

• Setting the hibernate.search.analyzer property in the configuration file. The specified class

will then be the default analyzer.

Analyzer

9

• Setting the @Analyzer annotation at the entity level.

• Setting the @Analyzer annotation at the field level.

When using the @Analyzer annotation one can either specify the fully qualified classname of

the analyzer to use or one can refer to an analyzer definition defined by the @AnalyzerDef

annotation. In the latter case the Solr analyzer framework with its factories approach is

utilized. To find out more about the factory classes available you can either browse the

Solr JavaDoc or read the corresponding section on the Solr Wiki. [http://wiki.apache.org/solr/

AnalyzersTokenizersTokenFilters]

In the example below a StandardTokenizerFactory is used followed by two filter factories,

LowerCaseFilterFactory and SnowballPorterFilterFactory. The standard tokenizer splits

words at punctuation characters and hyphens while keeping email addresses and internet

hostnames intact. It is a good general purpose tokenizer. The lowercase filter lowercases the

letters in each token whereas the snowball filter finally applies language specific stemming.

Generally, when using the Solr framework you have to start with a tokenizer followed by an

arbitrary number of filters.

Example 1.10. Using @AnalyzerDef and the Solr framework to define and use

an analyzer

package example;

...

@Entity

@Indexed

@AnalyzerDef(name = "customanalyzer",

 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),

 filters = {

 @TokenFilterDef(factory = LowerCaseFilterFactory.class),

 @TokenFilterDef(factory = SnowballPorterFilterFactory.class, params = {

 @Parameter(name = "language", value = "English")

 })

 })

public class Book {

 @Id

 @GeneratedValue

 @DocumentId

 private Integer id;

 @Field(index=Index.TOKENIZED, store=Store.NO)

 @Analyzer(definition = "customanalyzer")

 private String title;

 @Field(index=Index.TOKENIZED, store=Store.NO)

 @Analyzer(definition = "customanalyzer")

 private String subtitle;

 @IndexedEmbedded

 @ManyToMany

 private Set<Author> authors = new HashSet<Author>();

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

Chapter 1. Getting started

10

 @Field(index = Index.UN_TOKENIZED, store = Store.YES)

 @DateBridge(resolution = Resolution.DAY)

 private Date publicationDate;

 public Book() {

 }

 // standard getters/setters follow here

 ...

}

1.7. What's next

The above paragraphs helped you getting an overview of Hibernate Search. The next step after

this tutorial is to get more familiar with the overall architecture of Hibernate Search (Chapter 2,

Architecture) and explore the basic features in more detail. Two topics which were only briefly

touched in this tutorial were analyzer configuration (Section 4.3.1, “Default analyzer and analyzer

by class”) and field bridges (Section 4.4, “Bridges”). Both are important features required for

more fine-grained indexing. More advanced topics cover clustering (Section 3.6, “JMS Master/

Slave configuration”, Section 3.8, “Infinispan Directory configuration”) and large index handling

(Section 3.3, “Sharding indexes”).

Chapter 2.

11

Architecture

2.1. Overview

Hibernate Search consists of an indexing and an index search component. Both are backed by

Apache Lucene.

Each time an entity is inserted, updated or removed in/from the database, Hibernate Search keeps

track of this event (through the Hibernate event system) and schedules an index update. All the

index updates are handled without you having to use the Apache Lucene APIs (see Section 3.1,

“Enabling Hibernate Search and automatic indexing”).

To interact with Apache Lucene indexes, Hibernate Search has the notion of

DirectoryProviders. A directory provider will manage a given Lucene Directory type. You

can configure directory providers to adjust the directory target (see Section 3.2, “Directory

configuration”).

Hibernate Search uses the Lucene index to search an entity and return a list of managed entities

saving you the tedious object to Lucene document mapping. The same persistence context is

shared between Hibernate and Hibernate Search. As a matter of fact, the FullTextSession

is built on top of the Hibernate Session so that the application code can use the unified

org.hibernate.Query or javax.persistence.Query APIs exactly the same way a HQL, JPA-

QL or native query would do.

To be more efficient Hibernate Search batches the write interactions with the Lucene index. There

are currently two types of batching. Outside a transaction, the index update operation is executed

right after the actual database operation. This is really a no batching setup. In the case of an

ongoing transaction, the index update operation is scheduled for the transaction commit phase

and discarded in case of transaction rollback. The batching scope is the transaction. There are

two immediate benefits:

• Performance: Lucene indexing works better when operation are executed in batch.

• ACIDity: The work executed has the same scoping as the one executed by the database

transaction and is executed if and only if the transaction is committed. This is not ACID in the

strict sense of it, but ACID behavior is rarely useful for full text search indexes since they can

be rebuilt from the source at any time.

You can think of those two batch modes (no scope vs transactional) as the equivalent of

the (infamous) autocommit vs transactional behavior. From a performance perspective, the in

transaction mode is recommended. The scoping choice is made transparently. Hibernate Search

detects the presence of a transaction and adjust the scoping.

Chapter 2. Architecture

12

Tip

It is recommended - for both your database and Hibernate Search - to execute

your operations in a transaction, be it JDBC or JTA.

Note
Hibernate Search works perfectly fine in the Hibernate / EntityManager long

conversation pattern aka. atomic conversation.

Note
Depending on user demand, additional scoping will be considered, the pluggability

mechanism being already in place.

2.2. Back end

Hibernate Search offers the ability to let the batched work being processed by different back

ends. Three back ends are provided out of the box and you have the option to plugin in your own

implementation.

2.2.1. Back end types

2.2.1.1. Lucene

In this mode, all index update operations applied on a given node (JVM) will be executed to the

Lucene directories (through the directory providers) by the same node. This mode is typically used

in non clustered environment or in clustered environments where the directory store is shared.

Lucene back end configuration.

Back end types

13

This mode targets non clustered applications, or clustered applications where the Directory is

taking care of the locking strategy.

The main advantage is simplicity and immediate visibility of the changes in Lucene queries (a

requirement in some applications).

2.2.1.2. JMS

All index update operations applied on a given node are sent to a JMS queue. A unique reader

will then process the queue and update the master index. The master index is then replicated on

a regular basis to the slave copies. This is known as the master/slaves pattern. The master is

the sole responsible for updating the Lucene index. The slaves can accept read as well as write

operations. However, they only process the read operation on their local index copy and delegate

the update operations to the master.

JMS back end configuration.

This mode targets clustered environments where throughput is critical, and index update delays

are affordable. Reliability is ensured by the JMS provider and by having the slaves working on

a local copy of the index.

Chapter 2. Architecture

14

2.2.1.3. JGroups

The JGroups based back end works similar to the JMS one and is designed after the same master/

slave pattern. However, instead of JMS the JGroups toolkit is used as a replication mechanism.

This back end can be used as an alternative to JMS when response time is critical, but i.e. JNDI

service is not available.

Note
Hibernate Search is an extensible architecture. Feel free to drop ideas for other

third party back ends to hibernate-dev@lists.jboss.org.

2.2.2. Work execution

The indexing work (done by the back end) can be executed synchronously with the transaction

commit (or update operation if out of transaction), or asynchronously.

2.2.2.1. Synchronous

This is the safe mode where the back end work is executed in concert with the transaction

commit. Under highly concurrent environment, this can lead to throughput limitations (due to the

Apache Lucene lock mechanism) and it can increase the system response time if the backend is

significantly slower than the transactional process and if a lot of IO operations are involved.

2.2.2.2. Asynchronous

This mode delegates the work done by the back end to a different thread. That way, throughput

and response time are (to a certain extend) decorrelated from the back end performance. The

drawback is that a small delay appears between the transaction commit and the index update and

a small overhead is introduced to deal with thread management.

It is recommended to use synchronous execution first and evaluate asynchronous execution if

performance problems occur and after having set up a proper benchmark.

2.3. Reader strategy

When executing a query, Hibernate Search interacts with the Apache Lucene indexes through a

reader strategy. Choosing a reader strategy will depend on the profile of the application (frequent

updates, read mostly, asynchronous index update etc). See also Section 3.9, “Reader strategy

configuration”

2.3.1. Shared

With this strategy, Hibernate Search will share the same IndexReader, for a given Lucene index,

across multiple queries and threads provided that the IndexReader is still up-to-date. If the

IndexReader is not up-to-date, a new one is opened and provided. Each IndexReader is made

Not-shared

15

of several SegmentReaders. This strategy only reopens segments that have been modified or

created after last opening and shares the already loaded segments from the previous instance.

This strategy is the default.

The name of this strategy is shared.

2.3.2. Not-shared

Every time a query is executed, a Lucene IndexReader is opened. This strategy is not the most

efficient since opening and warming up an IndexReader can be a relatively expensive operation.

The name of this strategy is not-shared.

2.3.3. Custom

You can write your own reader strategy that suits your application needs by implementing

org.hibernate.search.reader.ReaderProvider. The implementation must be thread safe.

16

Chapter 3.

17

Configuration

3.1. Enabling Hibernate Search and automatic indexing

Let's start with the most basic configuration question - how to enable Hibernate Search in your

system.

3.1.1. Enabling Hibernate Search

The good news is that Hibernate Search is enabled out of the box when detected

on the classpath by Hibernate Core. If, for some reason you need to disable it, set

hibernate.search.autoregister_listeners to false. Note that there is no performance

penalty when the listeners are enabled but no entities are annotated as indexed.

3.1.2. Automatic indexing

By default, every time an object is inserted, updated or deleted through Hibernate, Hibernate

Search updates the according Lucene index. It is sometimes desirable to disable that features

if either your index is read-only or if index updates are done in a batch way (see Section 6.3,

“Rebuilding the whole index”).

To disable event based indexing, set

hibernate.search.indexing_strategy = manual

Note

In most case, the JMS backend provides the best of both world, a lightweight

event based system keeps track of all changes in the system, and the heavyweight

indexing process is done by a separate process or machine.

3.2. Directory configuration

Apache Lucene has a notion of a Directory to store the index files. The Directory

implementation can be customized and Lucene comes bundled with a file system and an in-

memory implementation. DirectoryProvider is the Hibernate Search abstraction around a

Lucene Directory and handles the configuration and the initialization of the underlying Lucene

resources. Table 3.1, “List of built-in DirectoryProviders” shows the list of the directory providers

available in Hibernate Search together with their corresponding options.

To configure your DirectoryProvider you have to understand that each indexed entity is

associated to a Lucene index (except of the case where multiple entities share the same index

- Section 3.4, “Sharing indexes”). The name of the index is given by the index property of the

Chapter 3. Configuration

18

@Indexed annotation. If the index property is not specified the fully qualified name of the indexed

class will be used as name.

Knowing the index name, you can configure the directory provider and any additional

options by using the prefix hibernate.search.<indexname>. The name default

(hibernate.search.default) is reserved and can be used to define properties which

apply to all indexes. Example 3.2, “Configuring directory providers” shows how

hibernate.search.default.directory_provider is used to set the default directory provider

to be the filesystem one. hibernate.search.default.indexBase sets then the default base

directory for the indexes. As a result the index for the entity Status is created in /usr/lucene/

indexes/org.hibernate.example.Status.

The index for the Rule entity, however, is using an in-memory directory,

because the default directory provider for this entity is overriden by the property

hibernate.search.Rules.directory_provider.

Finally the Action entity uses a custom directory provider CustomDirectoryProvider specified

via hibernate.search.Actions.directory_provider.

Example 3.1. Specifying the index name

package org.hibernate.example;

@Indexed

public class Status { ... }

@Indexed(index="Rules")

public class Rule { ... }

@Indexed(index="Actions")

public class Action { ... }

Example 3.2. Configuring directory providers

hibernate.search.default.directory_provider filesystem

hibernate.search.default.indexBase=/usr/lucene/indexes

hibernate.search.Rules.directory_provider ram

hibernate.search.Actions.directory_provider

 com.acme.hibernate.provider.CustomDirectoryProvider

Tip

Using the described configuration scheme you can easily define common rules like

the directory provider and base directory, and override those defaults later on on

a per index basis.

Directory configuration

19

Table 3.1. List of built-in DirectoryProviders

Class or shortcut name Description Properties

ram Memory based directory, the

directory will be uniquely

identified (in the same

deployment unit) by the

@Indexed.index element

none

filesystem File system based directory.

The directory used will be

<indexBase>/< indexName >

indexBase : Base directory

indexName: override

@Indexed.index (useful for

sharded indexes)

locking_strategy : optional,

see Section 3.11,

“LockFactory configuration”

filesystem_access_type:

allows to determine the

exact type of FSDirectory

implementation used by

this DirectoryProvider.

Allowed values are

auto (the default value,

selects NIOFSDirectory on

non Windows systems,

SimpleFSDirectory on

Windows), simple

(SimpleFSDirectory), nio

(NIOFSDirectory), mmap

(MMapDirectory). Make sure

to refer to Javadocs of these

Directory implementations

before changing this setting.

Even though NIOFSDirectory

or MMapDirectory can bring

substantial performace boosts

they also have their issues.

filesystem-master File system based directory.

Like filesystem. It also

copies the index to a source

directory (aka copy directory)

on a regular basis.

indexBase: Base directory

indexName: override

@Indexed.index (useful for

sharded indexes)

Chapter 3. Configuration

20

Class or shortcut name Description Properties

The recommended value for

the refresh period is (at least)

50% higher that the time to

copy the information (default

3600 seconds - 60 minutes).

Note that the copy is

based on an incremental

copy mechanism reducing the

average copy time.

DirectoryProvider typically

used on the master node in a

JMS back end cluster.

The buffer_size_on_copy

optimum depends on your

operating system and

available RAM; most people

reported good results using

values between 16 and 64MB.

sourceBase: Source (copy)

base directory.

source: Source directory

suffix (default to

@Indexed.index). The actual

source directory name being

<sourceBase>/<source>

refresh: refresh period in

second (the copy will take

place every refresh seconds).

buffer_size_on_copy: The

amount of MegaBytes to move

in a single low level copy

instruction; defaults to 16MB.

locking_strategy : optional,

see Section 3.11,

“LockFactory configuration”

filesystem_access_type:

allows to determine the

exact type of FSDirectory

implementation used by

this DirectoryProvider.

Allowed values are

auto (the default value,

selects NIOFSDirectory on

non Windows systems,

SimpleFSDirectory on

Windows), simple

(SimpleFSDirectory), nio

(NIOFSDirectory), mmap

(MMapDirectory). Make sure

to refer to Javadocs of these

Directory implementations

before changing this setting.

Even though NIOFSDirectory

or MMapDirectory can bring

substantial performace boosts

they also have their issues.

Directory configuration

21

Class or shortcut name Description Properties

filesystem-slave File system based directory.

Like filesystem, but retrieves

a master version (source)

on a regular basis. To

avoid locking and inconsistent

search results, 2 local copies

are kept.

The recommended value for

the refresh period is (at least)

50% higher that the time to

copy the information (default

3600 seconds - 60 minutes).

Note that the copy is

based on an incremental

copy mechanism reducing the

average copy time.

DirectoryProvider typically

used on slave nodes using a

JMS back end.

The buffer_size_on_copy

optimum depends on your

operating system and

available RAM; most people

reported good results using

values between 16 and 64MB.

indexBase: Base directory

indexName: override

@Indexed.index (useful for

sharded indexes)

sourceBase: Source (copy)

base directory.

source: Source directory

suffix (default to

@Indexed.index). The actual

source directory name being

<sourceBase>/<source>

refresh: refresh period in

second (the copy will take

place every refresh seconds).

buffer_size_on_copy: The

amount of MegaBytes to move

in a single low level copy

instruction; defaults to 16MB.

locking_strategy : optional,

see Section 3.11,

“LockFactory configuration”

retry_marker_lookup :

optional, default to 0. Defines

how many times, we look

for the marker files in the

source directory before failing.

Waiting 5 seconds between

each try.

filesystem_access_type:

allows to determine the

exact type of FSDirectory

implementation used by

this DirectoryProvider.

Allowed values are

auto (the default value,

selects NIOFSDirectory on

non Windows systems,

SimpleFSDirectory on

Chapter 3. Configuration

22

Class or shortcut name Description Properties

Windows), simple

(SimpleFSDirectory), nio

(NIOFSDirectory), mmap

(MMapDirectory). Make sure

to refer to Javadocs of these

Directory implementations

before changing this setting.

Even though NIOFSDirectory

or MMapDirectory can bring

substantial performace boosts

they also have their issues.

infinispan Infinispan based directory.

Use it to store the index in a

distributed grid, making index

changes visible to all elements

of the cluster very quickly. Also

see Section 3.8, “Infinispan

Directory configuration” for

additional requirements and

configuration settings.

Infinispan needs a global

configuration and additional

dependencies; the settings

defined here apply to each

different index.

locking_cachename: name of

the Infinispan cache to use to

store locks.

data_cachename : name of

the Infinispan cache to use to

store the largest data chunks;

this area will contain the

largest objects, use replication

if you have enough memory or

switch to distribution.

metadata_cachename: name

of the Infinispan cache to use

to store the metadata relating

to the index; this data is rather

small and read very often,

it's recommended to have this

cache setup using replication.

chunk_size: large files of the

index are split in smaller

chunks, you might want to

set the highest value efficiently

handled by your network.

Networking tuning might be

useful.

Tip

If the built-in directory providers do not fit your needs, you

can write your own directory provider by implementing the

Sharding indexes

23

org.hibernate.store.DirectoryProvider interface. In this case, pass the

fully qualified class name of your provider into the directory_provider

property. You can pass any additional properties using the prefix

hibernate.search.<indexname>.

3.3. Sharding indexes

In some cases it can be useful to split (shard) the indexed data of a given entity into several

Lucene indexes.

Warning

This solution is not recommended unless there is a pressing need. Searches will

be slower as all shards have to be opened for a single search. Don't do it until you

have a real use case!

Possible use cases for sharding are:

• A single index is so huge that index update times are slowing the application down.

• A typical search will only hit a sub-set of the index, such as when data is naturally segmented

by customer, region or application.

By default sharding is not enabled unless the number of shards is configured. To do this use

the hibernate.search.<indexName>.sharding_strategy.nbr_of_shards property as seen in

Example 3.3, “Enabling index sharding”. In this example 5 shards are enabled.

Example 3.3. Enabling index sharding

hibernate.search.<indexName>.sharding_strategy.nbr_of_shards 5

Responsible for splitting the data into sub-indexes is the IndexShardingStrategy. The default

sharding strategy splits the data according to the hash value of the id string representation

(generated by the FieldBridge). This ensures a fairly balanced sharding. You can replace the

default strategy by implementing a custom IndexShardingStrategy. To use your custom strategy

you have to set the hibernate.search.<indexName>.sharding_strategy property.

Example 3.4. Specifying a custom sharding strategy

hibernate.search.<indexName>.sharding_strategy my.shardingstrategy.Implementation

The IndexShardingStrategy also allows for optimizing searches by selecting which shard

to run the query against. By activating a filter (see Section 5.3.1, “Using filters in a sharded

Chapter 3. Configuration

24

environment”), a sharding strategy can select a subset of the shards used to answer a query

(IndexShardingStrategy.getDirectoryProvidersForQuery) and thus speed up the query

execution.

Each shard has an independent directory provider configuration. The DirectoryProvider index

names for the Animal entity in Example 3.5, “Sharding configuration for entity Animal” are

Animal.0 to Animal.4. In other words, each shard has the name of it's owning index followed by

. (dot) and its index number (see also Section 3.2, “Directory configuration”).

Example 3.5. Sharding configuration for entity Animal

hibernate.search.default.indexBase /usr/lucene/indexes

hibernate.search.Animal.sharding_strategy.nbr_of_shards 5

hibernate.search.Animal.directory_provider filesystem

hibernate.search.Animal.0.indexName Animal00

hibernate.search.Animal.3.indexBase /usr/lucene/sharded

hibernate.search.Animal.3.indexName Animal03

In Example 3.5, “Sharding configuration for entity Animal”, the configuration uses the default id

string hashing strategy and shards the Animal index into 5 sub-indexes. All sub-indexes are

filesystem instances and the directory where each sub-index is stored is as followed:

• for sub-index 0: /usr/lucene/indexes/Animal00 (shared indexBase but overridden

indexName)

• for sub-index 1: /usr/lucene/indexes/Animal.1 (shared indexBase, default indexName)

• for sub-index 2: /usr/lucene/indexes/Animal.2 (shared indexBase, default indexName)

• for sub-index 3: /usr/lucene/shared/Animal03 (overridden indexBase, overridden

indexName)

• for sub-index 4: /usr/lucene/indexes/Animal.4 (shared indexBase, default indexName)

3.4. Sharing indexes

It is technically possible to store the information of more than one entity into a single Lucene index.

There are two ways to accomplish this:

• Configuring the underlying directory providers to point to the same physical index

directory. In practice, you set the property hibernate.search.[fully qualified entity

name].indexName to the same value. As an example let’s use the same index (directory) for the

Furniture and Animal entity. We just set indexName for both entities to for example “Animal”.

Both entities will then be stored in the Animal directory.

hibernate.search.org.hibernate.search.test.shards.Furniture.indexName = Animal

Worker configuration

25

hibernate.search.org.hibernate.search.test.shards.Animal.indexName = Animal

• Setting the @Indexed annotation’s index attribute of the entities you want to merge to the same

value. If we again wanted all Furniture instances to be indexed in the Animal index along

with all instances of Animal we would specify @Indexed(index="Animal") on both Animal

and Furniture classes.

Note

This is only presented here so that you know the option is available. There is

really not much benefit in sharing indexes.

3.5. Worker configuration

It is possible to refine how Hibernate Search interacts with Lucene through the worker

configuration. There exist several architectural components and possible extension points. Let's

have a closer look.

First there is a Worker. An implementation of the Worker interface is reponsible for receiving

all entity changes, queuing them by context and applying them once a context ends. The most

intuative context, especially in connection with ORM, is the transaction. For this reason Hibernate

Search will per default use the TransactionalWorker to scope all changes per transaction. One

can, however, imagine a scenario where the context depends for example on the number of entity

changes or some other application (lifecycle) events. For this reason the Worker implementation

is configurable as shown in Table 3.2, “Scope configuration”.

Table 3.2. Scope configuration

Property Description

hibernate.search.worker.scope The fully qualifed class name of the Worker

implementation to use. If this property is

not set, empty or transaction the default

TransactionalWorker is used.

hibernate.search.worker.* All configuration properties prefixed with

hibernate.search.worker are passed to the

Worker during initialization. This allows adding

custom, worker specific parameters.

hibernate.search.worker.batch_size Defines the maximum number of indexing

operation batched per context. Once the

limit is reached indexing will be triggered

even though the context has not ended

yet. This property only works if the Worker

implementation delegates the queued work to

Chapter 3. Configuration

26

BatchedQueueingProcessor (which is what the

TransactionalWorker does)

Once a context ends it is time to prepare and apply the index changes. This can be done

synchronously or asynchronously from within a new thread. Synchronous updates have the

advantage that the index is at all times in sync with the databases. Asynchronous updates, on the

other hand, can help to minimize the user response time. The drawback is potential discrepancies

between database and index states. Lets look at the configuration options shown in Table 3.3,

“Execution configuration”.

Table 3.3. Execution configuration

Property Description

hibernate.search.worker.execution sync: synchronous execution (default)

async: asynchronous execution

hibernate.search.worker.thread_pool.sizeDefines the number of threads in the pool for

asynchronous execution. Defaults to 1.

hibernate.search.worker.buffer_queue.maxDefines the maximal number of work queue

if the thread poll is starved. Useful only for

asynchronous execution. Default to infinite. If

the limit is reached, the work is done by the

main thread.

So far all work is done within the same Virtual Machine (VM), no matter which execution mode.

The total amount of work has not changed for the single VM. Luckily there is a better approach,

namely delegation. It is possible to send the indexing work to a different server by configuring

hibernate.search.worker.backend - see Table 3.4, “Backend configuration”.

Table 3.4. Backend configuration

Property Description

hibernate.search.worker.backend lucene: The default backend which runs index

updates in the same VM. Also used when the

property is undefined or empty.

jms: JMS backend. Index updates are

send to a JMS queue to be processed

by an indexing master. See Table 3.5,

“JMS backend configuration” for additional

configuration options and Section 3.6, “JMS

Master/Slave configuration” for a more detailed

descripton of this setup.

jgroupsMaster or jgroupsSlave: Backend

using JGroups [http://www.jgroups.org/] as

http://www.jgroups.org/
http://www.jgroups.org/

Worker configuration

27

communication layer. See Table 3.6,

“JGroups backend configuration” for additional

configuration options and Section 3.7,

“JGroups Master/Slave configuration” for a

more detailed description of this setup.

blackhole: Mainly a test/developer setting

which ignores all indexing work

You can also specify the fully

qualified name of a class implementing

BackendQueueProcessorFactory. This way

you can implement your own communication

layer. The implementation is responsilbe for

returning a Runnable instance which on

execution will process the index work.

Table 3.5. JMS backend configuration

Property Description

hibernate.search.worker.jndi.* Defines the JNDI properties to initiate the

InitialContext (if needed). JNDI is only used by

the JMS back end.

hibernate.search.worker.jms.connection_factoryMandatory for the JMS back end. Defines

the JNDI name to lookup the JMS connection

factory from (/ConnectionFactory by default

in JBoss AS)

hibernate.search.worker.jms.queue Mandatory for the JMS back end. Defines the

JNDI name to lookup the JMS queue from. The

queue will be used to post work messages.

Table 3.6. JGroups backend configuration

Property Description

hibernate.search.worker.jgroups.clusterNameOptional for JGroups back end. Defines the

name of JGroups channel.

hibernate.search.worker.jgroups.configurationFileOptional JGroups network stack configuration.

Defines the name of a JGroups configuration

file, which must exist on classpath.

hibernate.search.worker.jgroups.configurationXmlOptional JGroups network stack configuration.

Defines a String representing JGroups

configuration as XML.

hibernate.search.worker.jgroups.configurationStringOptional JGroups network stack configuration.

Provides JGroups configuration in plain text.

Chapter 3. Configuration

28

Warning

As you probably noticed, some of the shown properties are correlated which

means that not all combinations of property values make sense. In fact you can

end up with a non-functional configuration. This is especially true for the case

that you provide your own implementations of some of the shown interfaces.

Make sure to study the existing code before you write your own Worker or

BackendQueueProcessorFactory implementation.

3.6. JMS Master/Slave configuration

This section describes in greater detail how to configure the Master/Slave Hibernate Search

architecture.

JMS back end configuration.

3.6.1. Slave nodes

Every index update operation is sent to a JMS queue. Index querying operations are executed

on a local index copy.

Master node

29

Example 3.6. JMS Slave configuration

slave configuration

DirectoryProvider

(remote) master location

hibernate.search.default.sourceBase = /mnt/mastervolume/lucenedirs/mastercopy

local copy location

hibernate.search.default.indexBase = /Users/prod/lucenedirs

refresh every half hour

hibernate.search.default.refresh = 1800

appropriate directory provider

hibernate.search.default.directory_provider = filesystem-slave

Backend configuration

hibernate.search.worker.backend = jms

hibernate.search.worker.jms.connection_factory = /ConnectionFactory

hibernate.search.worker.jms.queue = queue/hibernatesearch

#optional jndi configuration (check your JMS provider for more information)

Optional asynchronous execution strategy

hibernate.search.worker.execution = async

hibernate.search.worker.thread_pool.size = 2

hibernate.search.worker.buffer_queue.max = 50

Tip

A file system local copy is recommended for faster search results.

Tip

The refresh period should be higher that the expected copy time.

3.6.2. Master node

Every index update operation is taken from a JMS queue and executed. The master index is

copied on a regular basis.

Example 3.7. JMS Master configuration

master configuration

DirectoryProvider

(remote) master location where information is copied to

hibernate.search.default.sourceBase = /mnt/mastervolume/lucenedirs/mastercopy

Chapter 3. Configuration

30

local master location

hibernate.search.default.indexBase = /Users/prod/lucenedirs

refresh every half hour

hibernate.search.default.refresh = 1800

appropriate directory provider

hibernate.search.default.directory_provider = filesystem-master

Backend configuration

#Backend is the default lucene one

Tip

The refresh period should be higher that the expected time copy.

In addition to the Hibernate Search framework configuration, a Message Driven Bean has to be

written and set up to process the index works queue through JMS.

Example 3.8. Message Driven Bean processing the indexing queue

@MessageDriven(activationConfig = {

 @ActivationConfigProperty(propertyName="destinationType",

 propertyValue="javax.jms.Queue"),

 @ActivationConfigProperty(propertyName="destination",

 propertyValue="queue/hibernatesearch"),

 @ActivationConfigProperty(propertyName="DLQMaxResent", propertyValue="1")

 })

public class MDBSearchController extends AbstractJMSHibernateSearchController

 implements MessageListener {

 @PersistenceContext EntityManager em;

 //method retrieving the appropriate session

 protected Session getSession() {

 return (Session) em.getDelegate();

 }

 //potentially close the session opened in #getSession(), not needed here

 protected void cleanSessionIfNeeded(Session session)

 }

}

This example inherits from the abstract JMS controller class available in the Hibernate

Search source code and implements a JavaEE 5 MDB. This implementation is given as

an example and can be adjusted to make use of non Java EE Message Driven Beans.

For more information about the getSession() and cleanSessionIfNeeded(), please check

AbstractJMSHibernateSearchController's javadoc.

JGroups Master/Slave configuration

31

3.7. JGroups Master/Slave configuration

This section describes how to configure the JGroups Master/Slave back end. The configuration

examples illustrated in Section 3.6, “JMS Master/Slave configuration” also apply here, only a

different backend (hibernate.search.worker.backend) needs to be set.

3.7.1. Slave nodes

Every index update operation is sent through a JGroups channel to the master node. Index

querying operations are executed on a local index copy.

Example 3.9. JGroups Slave configuration

slave configuration

hibernate.search.worker.backend = jgroupsSlave

3.7.2. Master node

Every index update operation is taken from a JGroups channel and executed. The master index

is copied on a regular basis.

Example 3.10. JGroups Master configuration

master configuration

hibernate.search.worker.backend = jgroupsMaster

3.7.3. JGroups channel configuration

Optionally the configuration for the JGroups transport protocols and channel

name can be defined and applied to master and slave nodes. There

are several ways to configure the JGroups transport details. You can

either set the hibernate.search.worker.backend.jgroups.configurationFile property

and specify a file containing the JGroups configuration or you can

use the property hibernate.search.worker.backend.jgroups.configurationXml or

hibernate.search.worker.backend.jgroups.configurationString to directly embed either

the xml or string JGroups configuration into your Hibernate configuration file. All three options are

shown in Example 3.11, “JGroups transport protocol configuration”.

Tip

If no property is explicitly specified it is assumed that the JGroups default

configuration file flush-udp.xml is used.

Chapter 3. Configuration

32

Example 3.11. JGroups transport protocol configuration

JGroups configuration options

OPTION 1 - udp.xml file needs to be located in the classpath

hibernate.search.worker.backend.jgroups.configurationFile = udp.xml

OPTION 2 - protocol stack configuration provided in XML format

hibernate.search.worker.backend.jgroups.configurationXml =

<config xmlns="urn:org:jgroups"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="urn:org:jgroups file:schema/JGroups-2.8.xsd">

<UDP

mcast_addr="${jgroups.udp.mcast_addr:228.10.10.10}"

mcast_port="${jgroups.udp.mcast_port:45588}"

tos="8"

thread_naming_pattern="pl"

thread_pool.enabled="true"

thread_pool.min_threads="2"

thread_pool.max_threads="8"

thread_pool.keep_alive_time="5000"

thread_pool.queue_enabled="false"

thread_pool.queue_max_size="100"

thread_pool.rejection_policy="Run"/>

<PING timeout="1000" num_initial_members="3"/>

<MERGE2 max_interval="30000" min_interval="10000"/>

<FD_SOCK/>

<FD timeout="3000" max_tries="3"/>

<VERIFY_SUSPECT timeout="1500"/>

<pbcast.STREAMING_STATE_TRANSFER/>

<pbcast.FLUSH timeout="0"/>

</config>

OPTION 3 - protocol stack configuration provided in "old style" jgroups format

hibernate.search.worker.backend.jgroups.configurationString =

UDP(mcast_addr=228.1.2.3;mcast_port=45566;ip_ttl=32):PING(timeout=3000;

num_initial_members=6):FD(timeout=5000):VERIFY_SUSPECT(timeout=1500):

pbcast.NAKACK(gc_lag=10;retransmit_timeout=3000):UNICAST(timeout=5000):

FRAG:pbcast.GMS(join_timeout=3000;shun=false;print_local_addr=true)

In this JGroups master/slave configuration nodes communicate over a JGroups channel. The

default channel name is HSearchCluster which can be configured as seen in Example 3.12,

“JGroups channel name configuration”.

Example 3.12. JGroups channel name configuration

hibernate.search.worker.backend.jgroups.clusterName = Hibernate-Search-Cluster

Infinispan Directory configuration

33

3.8. Infinispan Directory configuration

Infinispan is a distributed scalable, highly available data grid platform which supports

autodiscovery of peer nodes. It is possible to store the Lucene index in Infinispan, making it easy to

setup a clustering configuration with Hibernate Search and having updates to the index available

on other nodes very quickly.

This section describes in greater detail how to configure Hibernate Search to use an Infinispan

Lucene Directory.

Using an Infinispan Directory the index is stored in memory and shared across multiple nodes.

It is considered a single directory across all participating nodes. If a node updates the index, all

other nodes are affected as well. Updates on one node can be immediately searched for in the

whole cluster.

The default configuration replicates all data defining the index across all nodes, thus consuming

a significant amount of memory. For large indexes it's suggested to enable data distribution, so

that each piece of information is replicated to a subset of all cluster members.

It is also possible to offload part or most information to a single centralized CacheStore, such as

plain filesystem, Amazon S3, Cassandra, Berkley DB, JDBC standard databases. You can also

have a CacheStore on each node or chain cachestores. See the Infinispan documentation [http://

www.jboss.org/infinispan/] for all options and configuration details.

3.8.1. Requirements

Infinispan requires Java 6 and an updated version of JGroups. To use the Infinispan directory via

maven, add the following dependencies:

Example 3.13. Maven dependencies for Hibernate Search

<dependency>

 <groupId>org.hibernate</groupId>

 <artifactId>hibernate-search</artifactId>

 <version>3.3.0.Final</version>

</dependency>

<dependency>

 <groupId>org.hibernate</groupId>

 <artifactId>hibernate-search-infinispan</artifactId>

 <version>3.3.0.Final</version>

</dependency>

For the non-maven users, add hibernate-search-infinispan.jar, infinispan-lucene-

directory.jar and infinispan-core.jar to your application classpath. These last two jars

are distributed by Infinispan [http://sourceforge.net/projects/infinispan/files/]. Also make sure to

update JGroups to a version matching the Infinispan package. The version normally distributed

with Hibernate Search is older to maintain Java 5 compatibility.

http://www.jboss.org/infinispan/
http://www.jboss.org/infinispan/
http://www.jboss.org/infinispan/
http://sourceforge.net/projects/infinispan/files/
http://sourceforge.net/projects/infinispan/files/

Chapter 3. Configuration

34

3.8.2. Architecture

Even when using an Infinispan directory it's still recommended to use the JMS Master/Slave or

JGroups backend, because in Infinispan all nodes will share the same index and it is likely that

IndexWriters being active on different nodes will try to acquire the lock on the same index. So

instead of sending updates directly to the index, it is recommended to send it to a JMS queue or

JGroups channel and have a single node apply all changes on behalf of all other nodes.

To configure a JMS slave only the backend must be replaced, the directory provider must be set

to infinispan; set the same directory provider on the master, they will connect without the need

to setup the copy job across nodes. Using the JGroups backend is very similar, just combine the

backend configuration with the infinispan directory provider.

3.8.3. Infinispan Configuration

To use Infinispan, a CacheManager must be started from an Infinispan configuration file. Hibernate

Search can take and reuse an existing CacheManager, look it up via JNDI, or start a new one. In

the latter case Hibernate Search will start and stop it (closing occurs at SessionFactory close).

To use and existing CacheManager from JNDI (optional parameter):

hibernate.search.infinispan.cachemanager_jndiname = [jndiname]

To start a new CacheManager from a configuration file (optional parameter):

hibernate.search.infinispan.configuration_resourcename = [infinispan configuration filename]

If both parameters are defined, JNDI will have priority. If none of these is defined, Hibernate

Search will use the example Infinispan configuration provided in the hibernate-search-

infinispan.jar

As mentioned in infinispan configuration in Table 3.1, “List of built-in DirectoryProviders”, each

index actually makes use of three caches, so three different caches should be configured as

shown in the default-hibernatesearch-infinispan.xml provided in the hibernate-search-

infinispan.jar. Several indexes can share the same caches, they are differentiated by using

the index name as it is the case with the other Directory implementations.

3.9. Reader strategy configuration

The different reader strategies are described in Reader strategy. Out of the box strategies are:

• shared: share index readers across several queries. This strategy is the most efficient.

• not-shared: create an index reader for each individual query

The default reader strategy is shared. This can be adjusted:

Tuning Lucene indexing performance

35

hibernate.search.reader.strategy = not-shared

Adding this property switches to the not-shared strategy.

Or if you have a custom reader strategy:

hibernate.search.reader.strategy = my.corp.myapp.CustomReaderProvider

where my.corp.myapp.CustomReaderProvider is the custom strategy implementation.

3.10. Tuning Lucene indexing performance

Hibernate Search allows you to tune the Lucene indexing performance by specifying a set of

parameters which are passed through to underlying Lucene IndexWriter such as mergeFactor,

maxMergeDocs and maxBufferedDocs. You can specify these parameters either as default values

applying for all indexes, on a per index basis, or even per shard.

There are two sets of parameters allowing for different performance settings depending on the

use case. During indexing operations triggered by database modifications, the parameters are

grouped by the transaction keyword:

hibernate.search.[default|<indexname>].indexwriter.transaction.<parameter_name>

When indexing occurs via FullTextSession.index() or via a MassIndexer (see Section 6.3,

“Rebuilding the whole index”), the used properties are those grouped under the batch keyword:

hibernate.search.[default|<indexname>].indexwriter.batch.<parameter_name>

If no value is set for a batch value in a specific shard configuration, Hibernate Search will look at

the index section, then at the default section.

Example 3.14. Example performance option configuration

hibernate.search.Animals.2.indexwriter.transaction.max_merge_docs 10

hibernate.search.Animals.2.indexwriter.transaction.merge_factor 20

hibernate.search.default.indexwriter.batch.max_merge_docs 100

The configuration in Example 3.14, “Example performance option configuration” will result in these

settings applied on the second shard of the Animal index:

• transaction.max_merge_docs = 10

Chapter 3. Configuration

36

• batch.max_merge_docs = 100

• transaction.merge_factor = 20

• batch.merge_factor = Lucene default

All other values will use the defaults defined in Lucene.

The default for all values is to leave them at Lucene's own default. The values listed in Table 3.7,

“List of indexing performance and behavior properties” depend for this reason on the version of

Lucene you are using. The values shown are relative to version 2.4. For more information about

Lucene indexing performance, please refer to the Lucene documentation.

Warning

Previous versions had the batch parameters inherit from transaction properties.

This needs now to be explicitly set.

Table 3.7. List of indexing performance and behavior properties

Property Description Default Value

hibernate.search.

[default|

<indexname>].exclusive_index_use

Set to true when no other

process will need to write

to the same index. This

will enable Hibernate Search

to work in exlusive mode

on the index and improve

performance when writing

changes to the index.

false (releases locks as soon

as possible)

hibernate.search.

[default|

<indexname>].indexwriter.

[transaction|

batch].max_buffered_delete_terms

Determines the minimal

number of delete terms

required before the buffered

in-memory delete terms are

applied and flushed. If there

are documents buffered in

memory at the time, they are

merged and a new segment is

created.

Disabled (flushes by RAM

usage)

hibernate.search.

[default|

<indexname>].indexwriter.

[transaction|

batch].max_buffered_docs

Controls the amount of

documents buffered in

memory during indexing. The

bigger the more RAM is

consumed.

Disabled (flushes by RAM

usage)

hibernate.search.

[default|

The maximum number of

terms that will be indexed for

10000

Tuning Lucene indexing performance

37

Property Description Default Value

<indexname>].indexwriter.

[transaction|

batch].max_field_length

a single field. This limits the

amount of memory required

for indexing so that very large

data will not crash the indexing

process by running out of

memory. This setting refers to

the number of running terms,

not to the number of different

terms.

This silently truncates large

documents, excluding from

the index all terms that

occur further in the document.

If you know your source

documents are large, be

sure to set this value high

enough to accommodate the

expected size. If you set it

to Integer.MAX_VALUE, then

the only limit is your memory,

but you should anticipate an

OutOfMemoryError.

If setting this value in

batch differently than in

transaction you may get

different data (and results) in

your index depending on the

indexing mode.

hibernate.search.

[default|

<indexname>].indexwriter.

[transaction|

batch].max_merge_docs

Defines the largest number

of documents allowed in a

segment. Larger values are

best for batched indexing

and speedier searches. Small

values are best for transaction

indexing.

Unlimited

(Integer.MAX_VALUE)

hibernate.search.

[default|

<indexname>].indexwriter.

[transaction|

batch].merge_factor

Controls segment merge

frequency and size.

Determines how often

segment indexes are merged

when insertion occurs. With

10

Chapter 3. Configuration

38

Property Description Default Value

smaller values, less RAM

is used while indexing,

and searches on unoptimized

indexes are faster, but

indexing speed is slower.

With larger values, more

RAM is used during indexing,

and while searches on

unoptimized indexes are

slower, indexing is faster. Thus

larger values (> 10) are best

for batch index creation, and

smaller values (< 10) for

indexes that are interactively

maintained. The value must no

be lower than 2.

hibernate.search.

[default|

<indexname>].indexwriter.

[transaction|

batch].ram_buffer_size

Controls the amount of RAM

in MB dedicated to document

buffers. When used together

max_buffered_docs a flush

occurs for whichever event

happens first.

Generally for faster indexing

performance it's best to flush

by RAM usage instead of

document count and use as

large a RAM buffer as you can.

16 MB

hibernate.search.

[default|

<indexname>].indexwriter.

[transaction|

batch].term_index_interval

Expert: Set the interval

between indexed terms.

Large values cause less

memory to be used

by IndexReader, but slow

random-access to terms.

Small values cause more

memory to be used by

an IndexReader, and speed

random-access to terms. See

Lucene documentation for

more details.

128

hibernate.search.

[default|

The advantage of using the

compound file format is that

true

Tuning Lucene indexing performance

39

Property Description Default Value

<indexname>].indexwriter.

[transaction|

batch].use_compound_file

less file descriptors are used.

The disadvantage is that

indexing takes more time and

temporary disk space. You can

set this parameter to false

in an attempt to improve the

indexing time, but you could

run out of file descriptors if

mergeFactor is also large.

Boolean parameter, use

"true" or "false". The default

value for this option is true.

Tip

When your architecture permits it, always set

hibernate.search.default.exclusive_index_use=true as it greatly improves

efficiency in index writing.

Tip

To tune the indexing speed it might be useful to time the object loading from

database in isolation from the writes to the index. To achieve this set the blackhole

as worker backend and start you indexing routines. This backend does not disable

Hibernate Search: it will still generate the needed changesets to the index, but

will discard them instead of flushing them to the index. In contrast to setting

the hibernate.search.indexing_strategy to manual, using blackhole will

possibly load more data from the database. because associated entities are re-

indexed as well.

hibernate.search.worker.backend blackhole

The recommended approach is to focus first on optimizing the object loading, and

then use the timings you achieve as a baseline to tune the indexing process.

Chapter 3. Configuration

40

Warning

The blackhole backend is not meant to be used in production, only as a tool to

identify indexing bottlenecks.

3.11. LockFactory configuration

Lucene Directorys have default locking strategies which work well for most cases, but it's

possible to specify for each index managed by Hibernate Search which LockingFactory you

want to use.

Some of these locking strategies require a filesystem level lock and may be used even on RAM

based indexes, but this is not recommended and of no practical use.

To select a locking factory, set the hibernate.search.<index>.locking_strategy option to

one of simple, native, single or none. Alternatively set it to the fully qualified name of an

implementation of org.hibernate.search.store.LockFactoryFactory.

Table 3.8. List of available LockFactory implementations

name Class Description

simple org.apache.lucene.store.SimpleFSLockFactorySafe implementation based on

Java's File API, it marks the

usage of the index by creating

a marker file.

If for some reason you had to

kill your application, you will

need to remove this file before

restarting it.

This is the default

implementation for the

filesystem, filesystem-

master and filesystem-

slave directory providers.

native org.apache.lucene.store.NativeFSLockFactoryAs does simple this also

marks the usage of the index

by creating a marker file, but

this one is using native OS

file locks so that even if your

application crashes the locks

will be cleaned up.

Exception Handling Configuration

41

name Class Description

This implementation has

known problems on NFS.

single org.apache.lucene.store.SingleInstanceLockFactoryThis LockFactory doesn't use

a file marker but is a Java

object lock held in memory;

therefore it's possible to use

it only when you are sure the

index is not going to be shared

by any other process.

This is the default

implementation for the ram

directory provider.

none org.apache.lucene.store.NoLockFactoryAll changes to this index are

not coordinated by any lock;

test your application carefully

and make sure you know what

it means.

Configuration example:

hibernate.search.default.locking_strategy simple

hibernate.search.Animals.locking_strategy native

hibernate.search.Books.locking_strategy org.custom.components.MyLockingFactory

3.12. Exception Handling Configuration

Hibernate Search allows you to configure how exceptions are handled during the indexing

process. If no configuration is provided then exceptions are logged to the log output by default. It

is possible to explicitly declare the exception logging mechanism as seen below:

hibernate.search.error_handler log

The default exception handling occurs for both synchronous and asynchronous indexing.

Hibernate Search provides an easy mechanism to override the default error handling

implementation.

In order to provide your own implementation you must implement the ErrorHandler interface,

which provides the handle(ErrorContext context) method. ErrorContext provides a

reference to the primary LuceneWork instance, the underlying exception and any subsequent

LuceneWork instances that could not be processed due to the primary exception.

Chapter 3. Configuration

42

public interface ErrorContext {

 List<LuceneWork> getFailingOperations();

 LuceneWork getOperationAtFault();

 Throwable getThrowable();

 boolean hasErrors();

}

To register this error handler with Hibernate Search you must declare the fully qualified classname

of your ErrorHandler implementation in the configuration properties:

hibernate.search.error_handler CustomerErrorHandler

Chapter 4.

43

Mapping entities to the index

structure

4.1. Mapping an entity

In Chapter 1, Getting started you have already learned that all the metadata information needed

to index entities is described through annotations. There is no need for xml mapping files. You can

still use Hibernate mapping files for the basic Hibernate configuration, but the Hibernate Search

specific configuration has to be expressed via annotations.

Note

There is currently no xml configuration option available (see HSEARCH-210 [http://

opensource.atlassian.com/projects/hibernate/browse/HSEARCH-210]).

4.1.1. Basic mapping

Lets start with the most commonly used annotations for mapping an entity.

4.1.1.1. @Indexed

Foremost we must declare a persistent class as indexable. This is done by annotating the class

with @Indexed (all entities not annotated with @Indexed will be ignored by the indexing process):

Example 4.1. Making a class indexable with @Indexed

@Entity

@Indexed

public class Essay {

 ...

}

You can optionially specify the index attribute of the @Indexed annotation to change the default

name of the index. For more information see Section 3.2, “Directory configuration”.

4.1.1.2. @Field

For each property (or attribute) of your entity, you have the ability to describe how it will be indexed.

The default (no annotation present) means that the property is ignored by the indexing process.

@Field does declare a property as indexed and allows to configure several aspects of the indexing

process by setting one or more of the following attributes:

http://opensource.atlassian.com/projects/hibernate/browse/HSEARCH-210
http://opensource.atlassian.com/projects/hibernate/browse/HSEARCH-210
http://opensource.atlassian.com/projects/hibernate/browse/HSEARCH-210

Chapter 4. Mapping entities t...

44

• name : describe under which name, the property should be stored in the Lucene Document. The

default value is the property name (following the JavaBeans convention)

• store : describe whether or not the property is stored in the Lucene index. You can

store the value Store.YES (consuming more space in the index but allowing projection,

see Section 5.1.3.5, “Projection”), store it in a compressed way Store.COMPRESS (this does

consume more CPU), or avoid any storage Store.NO (this is the default value). When a property

is stored, you can retrieve its original value from the Lucene Document. This is not related to

whether the element is indexed or not.

• index: describe how the element is indexed and the type of information store. The different

values are Index.NO (no indexing, ie cannot be found by a query), Index.TOKENIZED (use

an analyzer to process the property), Index.UN_TOKENIZED (no analyzer pre-processing),

Index.NO_NORMS (do not store the normalization data). The default value is TOKENIZED.

Tip

Whether or not you want to tokenize a property depends on whether you wish to

search the element as is, or by the words it contains. It make sense to tokenize

a text field, but probably not a date field.

Tip

Fields used for sorting must not be tokenized.

• termVector: describes collections of term-frequency pairs. This attribute enables the storing of

the term vectors within the documents during indexing. The default value is TermVector.NO.

The different values of this attribute are:

Value Definition

TermVector.YES Store the term vectors of each document.

This produces two synchronized arrays,

one contains document terms and the other

contains the term's frequency.

TermVector.NO Do not store term vectors.

TermVector.WITH_OFFSETS Store the term vector and token offset

information. This is the same as

TermVector.YES plus it contains the starting

and ending offset position information for the

terms.

TermVector.WITH_POSITIONS Store the term vector and token position

information. This is the same as

Basic mapping

45

Value Definition

TermVector.YES plus it contains the ordinal

positions of each occurrence of a term in a

document.

TermVector.WITH_POSITION_OFFSETS Store the term vector, token position and

offset information. This is a combination

of the YES, WITH_OFFSETS and

WITH_POSITIONS.

• indexNullAs : Per default null values are ignored and not indexed. However, using

indexNullAs you can specify a string which will be inserted as token for the null value. Per

default this value is set to Field.DO_NOT_INDEX_NULL indicating that null values should not

be indexed. You can set this value to Field.DEFAULT_NULL_TOKEN to indicate that a default

null token should be used. This default null token can be specified in the configuration

using hibernate.search.default_null_token. If this property is not set and you specify

Field.DEFAULT_NULL_TOKEN the string "_null_" will be used as default.

Note

When the indexNullAs parameter is used it is important to use the same token

in the search query (see Querying) to search for null values. It is also advisable

to use this feature only with un-tokenized fields (Index.UN_TOKENIZED).

Warning

When implementing a custom FieldBridge or TwoWayFieldBridge it is up

to the developer to handle the indexing of null values (see JavaDocs of

LuceneOptions.indexNullAs()).

4.1.1.3. @NumericField

There is a companion annotation to @Field called @NumericField that can be specified in the

same scope as @Field or @DocumentId. It can be specified for Integer, Long, Float and Double

properties. At index time the value will be indexed using a Trie structure [http://en.wikipedia.org/

wiki/Trie]. When a property is indexed as numeric field, it enables efficient range query and sorting,

orders of magnitude faster than doing the same query on standard @Field properties. The

@NumericField annotation accept the following parameters:

Value Definition

forField (Optional) Specify the name of of the related

@Field that will be indexed as numeric. It's

http://en.wikipedia.org/wiki/Trie
http://en.wikipedia.org/wiki/Trie
http://en.wikipedia.org/wiki/Trie

Chapter 4. Mapping entities t...

46

Value Definition

only mandatory when the property contains

more than a @Field declaration

precisionStep (Optional) Change the way that the Trie

structure is stored in the index. Smaller

precisionSteps lead to more disk space usage

and faster range and sort queries. Larger

values lead to less space used and range

query performance more close to the range

query in normal @Fields. Default value is 4.

Note

Lucene marks the numeric field API still as experimental and warns for

incompatible changes in coming releases. Using Hibernate Search will hopefully

shield you from any underlying API changes, but that is not guaranteed.

4.1.1.4. @Id

Finally, the id property of an entity is a special property used by Hibernate Search to ensure index

unicity of a given entity. By design, an id has to be stored and must not be tokenized. To mark a

property as index id, use the @DocumentId annotation. If you are using JPA and you have specified

@Id you can omit @DocumentId. The chosen entity id will also be used as document id.

Example 4.2. Specifying indexed properties

@Entity

@Indexed

public class Essay {

 ...

 @Id

 @DocumentId

 public Long getId() { return id; }

 @Field(name="Abstract", index=Index.TOKENIZED, store=Store.YES)

 public String getSummary() { return summary; }

 @Lob

 @Field(index=Index.TOKENIZED)

 public String getText() { return text; }

 @Field

 @NumericField(precisionStep = 6)

 public float getGrade() { return grade; }

}

Mapping properties multiple times

47

Example 4.2, “Specifying indexed properties” defines an index with four fields: id , Abstract,

text and grade . Note that by default the field name is decapitalized, following the JavaBean

specification. The grade field is annotated as Numeric with a slightly larger precisionStep than

the default.

4.1.2. Mapping properties multiple times

Sometimes one has to map a property multiple times per index, with slightly different indexing

strategies. For example, sorting a query by field requires the field to be UN_TOKENIZED. If one

wants to search by words in this property and still sort it, one need to index it twice - once tokenized

and once untokenized. @Fields allows to achieve this goal.

Example 4.3. Using @Fields to map a property multiple times

@Entity

@Indexed(index = "Book")

public class Book {

 @Fields({

 @Field(index = Index.TOKENIZED),

 @Field(name = "summary_forSort", index = Index.UN_TOKENIZED, store = Store.YES)

 })

 public String getSummary() {

 return summary;

 }

 ...

}

In Example 4.3, “Using @Fields to map a property multiple times” the field summary is indexed

twice, once as summary in a tokenized way, and once as summary_forSort in an untokenized

way. @Field supports 2 attributes useful when @Fields is used:

• analyzer: defines a @Analyzer annotation per field rather than per property

• bridge: defines a @FieldBridge annotation per field rather than per property

See below for more information about analyzers and field bridges.

4.1.3. Embedded and associated objects

Associated objects as well as embedded objects can be indexed as part of the root entity index.

This is useful if you expect to search a given entity based on properties of associated objects.

In Example 4.4, “Indexing associations”t the aim is to return places where the associated city is

Atlanta (In the Lucene query parser language, it would translate into address.city:Atlanta).

The place fields will be indexed in the Place index. The Place index documents will also contain

the fields address.id, address.street, and address.city which you will be able to query.

Chapter 4. Mapping entities t...

48

Example 4.4. Indexing associations

@Entity

@Indexed

public class Place {

 @Id

 @GeneratedValue

 @DocumentId

 private Long id;

 @Field(index = Index.TOKENIZED)

 private String name;

 @OneToOne(cascade = { CascadeType.PERSIST, CascadeType.REMOVE })

 @IndexedEmbedded

 private Address address;

}

@Entity

public class Address {

 @Id

 @GeneratedValue

 private Long id;

 @Field(index=Index.TOKENIZED)

 private String street;

 @Field(index=Index.TOKENIZED)

 private String city;

 @ContainedIn

 @OneToMany(mappedBy="address")

 private Set<Place> places;

 ...

}

Be careful. Because the data is denormalized in the Lucene index when using the

@IndexedEmbedded technique, Hibernate Search needs to be aware of any change in the Place

object and any change in the Address object to keep the index up to date. To make sure the Place

Lucene document is updated when it's Address changes, you need to mark the other side of the

bidirectional relationship with @ContainedIn.

Tip

@ContainedIn is only useful on associations pointing to entities as opposed to

embedded (collection of) objects.

Let's make Example 4.4, “Indexing associations” a bit more complex by nesting @IndexEmbedded

as seen in Example 4.5, “Nested usage of @IndexedEmbedded and @ContainedIn”.

Embedded and associated objects

49

Example 4.5. Nested usage of @IndexedEmbedded and @ContainedIn

@Entity

@Indexed

public class Place {

 @Id

 @GeneratedValue

 @DocumentId

 private Long id;

 @Field(index = Index.TOKENIZED)

 private String name;

 @OneToOne(cascade = { CascadeType.PERSIST, CascadeType.REMOVE })

 @IndexedEmbedded

 private Address address;

}

@Entity

public class Address {

 @Id

 @GeneratedValue

 private Long id;

 @Field(index=Index.TOKENIZED)

 private String street;

 @Field(index=Index.TOKENIZED)

 private String city;

 @IndexedEmbedded(depth = 1, prefix = "ownedBy_")

 private Owner ownedBy;

 @ContainedIn

 @OneToMany(mappedBy="address")

 private Set<Place> places;

 ...

}

@Embeddable

public class Owner {

 @Field(index = Index.TOKENIZED)

 private String name;

 ...

}

As you can see, any @*ToMany, @*ToOne and @Embedded attribute can be annotated with

@IndexedEmbedded. The attributes of the associated class will then be added to the main entity

index. In Example 4.5, “Nested usage of @IndexedEmbedded and @ContainedIn” the index will

contain the following fields

• id

• name

Chapter 4. Mapping entities t...

50

• address.street

• address.city

• address.ownedBy_name

The default prefix is propertyName., following the traditional object navigation convention. You

can override it using the prefix attribute as it is shown on the ownedBy property.

Note

The prefix cannot be set to the empty string.

The depth property is necessary when the object graph contains a cyclic dependency of classes

(not instances). For example, if Owner points to Place. Hibernate Search will stop including

Indexed embedded attributes after reaching the expected depth (or the object graph boundaries

are reached). A class having a self reference is an example of cyclic dependency. In our example,

because depth is set to 1, any @IndexedEmbedded attribute in Owner (if any) will be ignored.

Using @IndexedEmbedded for object associations allows you to express queries (using Lucene's

query syntax) such as:

• Return places where name contains JBoss and where address city is Atlanta. In Lucene query

this would be

+name:jboss +address.city:atlanta

• Return places where name contains JBoss and where owner's name contain Joe. In Lucene

query this would be

+name:jboss +address.orderBy_name:joe

In a way it mimics the relational join operation in a more efficient way (at the cost of data

duplication). Remember that, out of the box, Lucene indexes have no notion of association, the

join operation is simply non-existent. It might help to keep the relational model normalized while

benefiting from the full text index speed and feature richness.

Note

An associated object can itself (but does not have to) be @Indexed

When @IndexedEmbedded points to an entity, the association has to be directional and the other

side has to be annotated @ContainedIn (as seen in the previous example). If not, Hibernate

Boosting

51

Search has no way to update the root index when the associated entity is updated (in our example,

a Place index document has to be updated when the associated Address instance is updated).

Sometimes, the object type annotated by @IndexedEmbedded is not the object type targeted by

Hibernate and Hibernate Search. This is especially the case when interfaces are used in lieu

of their implementation. For this reason you can override the object type targeted by Hibernate

Search using the targetElement parameter.

Example 4.6. Using the targetElement property of @IndexedEmbedded

@Entity

@Indexed

public class Address {

 @Id

 @GeneratedValue

 @DocumentId

 private Long id;

 @Field(index= Index.TOKENIZED)

 private String street;

 @IndexedEmbedded(depth = 1, prefix = "ownedBy_", targetElement = Owner.class)

 @Target(Owner.class)

 private Person ownedBy;

 ...

}

@Embeddable

public class Owner implements Person { ... }

4.2. Boosting

Lucene has the notion of boosting which allows you to give certain documents or fields more or

less importance than others. Lucene differentiates between index and search time boosting. The

following sections show you how you can achieve index time boosting using Hibernate Search.

4.2.1. Static index time boosting

To define a static boost value for an indexed class or property you can use the @Boost annotation.

You can use this annotation within @Field or specify it directly on method or class level.

Example 4.7. Different ways of using @Boost

@Entity

@Indexed

@Boost(1.7f)

public class Essay {

Chapter 4. Mapping entities t...

52

 ...

 @Id

 @DocumentId

 public Long getId() { return id; }

 @Field(name="Abstract", index=Index.TOKENIZED, store=Store.YES, boost=@Boost(2f))

 @Boost(1.5f)

 public String getSummary() { return summary; }

 @Lob

 @Field(index=Index.TOKENIZED, boost=@Boost(1.2f))

 public String getText() { return text; }

 @Field

 public String getISBN() { return isbn; }

}

In Example 4.7, “Different ways of using @Boost”, Essay's probability to reach the top of the search

list will be multiplied by 1.7. The summary field will be 3.0 (2 * 1.5, because @Field.boost and

@Boost on a property are cumulative) more important than the isbn field. The text field will be

1.2 times more important than the isbn field. Note that this explanation is wrong in strictest terms,

but it is simple and close enough to reality for all practical purposes. Please check the Lucene

documentation or the excellent Lucene In Action from Otis Gospodnetic and Erik Hatcher.

4.2.2. Dynamic index time boosting

The @Boost annotation used in Section 4.2.1, “Static index time boosting” defines a static boost

factor which is independent of the state of of the indexed entity at runtime. However, there are

usecases in which the boost factor may depends on the actual state of the entity. In this case you

can use the @DynamicBoost annotation together with an accompanying custom BoostStrategy.

Example 4.8. Dynamic boost examle

public enum PersonType {

 NORMAL,

 VIP

}

@Entity

@Indexed

@DynamicBoost(impl = VIPBoostStrategy.class)

public class Person {

 private PersonType type;

 //

}

public class VIPBoostStrategy implements BoostStrategy {

 public float defineBoost(Object value) {

 Person person = (Person) value;

 if (person.getType().equals(PersonType.VIP)) {

Analysis

53

 return 2.0f;

 }

 else {

 return 1.0f;

 }

 }

}

In Example 4.8, “Dynamic boost examle” a dynamic boost is defined on class level specifying

VIPBoostStrategy as implementation of the BoostStrategy interface to be used at indexing

time. You can place the @DynamicBoost either at class or field level. Depending on the placement

of the annotation either the whole entity is passed to the defineBoost method or just the annotated

field/property value. It's up to you to cast the passed object to the correct type. In the example all

indexed values of a VIP person would be double as important as the values of a normal person.

Note

The specified BoostStrategy implementation must define a public no-arg

constructor.

Of course you can mix and match @Boost and @DynamicBoost annotations in your entity. All

defined boost factors are cummulative.

4.3. Analysis

Analysis is the process of converting text into single terms (words) and can be considered as

one of the key features of a fulltext search engine. Lucene uses the concept of Analyzers to

control this process. In the following section we cover the multiple ways Hibernate Search offers

to configure the analyzers.

4.3.1. Default analyzer and analyzer by class

The default analyzer class used to index tokenized fields is configurable through

the hibernate.search.analyzer property. The default value for this property is

org.apache.lucene.analysis.standard.StandardAnalyzer.

You can also define the analyzer class per entity, property and even per @Field (useful when

multiple fields are indexed from a single property).

Example 4.9. Different ways of using @Analyzer

@Entity

@Indexed

@Analyzer(impl = EntityAnalyzer.class)

public class MyEntity {

 @Id

Chapter 4. Mapping entities t...

54

 @GeneratedValue

 @DocumentId

 private Integer id;

 @Field(index = Index.TOKENIZED)

 private String name;

 @Field(index = Index.TOKENIZED)

 @Analyzer(impl = PropertyAnalyzer.class)

 private String summary;

 @Field(index = Index.TOKENIZED, analyzer = @Analyzer(impl = FieldAnalyzer.class)

 private String body;

 ...

}

In this example, EntityAnalyzer is used to index all tokenized properties (eg. name), except

summary and body which are indexed with PropertyAnalyzer and FieldAnalyzer respectively.

Caution

Mixing different analyzers in the same entity is most of the time a bad practice. It

makes query building more complex and results less predictable (for the novice),

especially if you are using a QueryParser (which uses the same analyzer for the

whole query). As a rule of thumb, for any given field the same analyzer should be

used for indexing and querying.

4.3.2. Named analyzers

Analyzers can become quite complex to deal with. For this reason introduces Hibernate Search

the notion of analyzer definitions. An analyzer definition can be reused by many @Analyzer

declarations and is composed of:

• a name: the unique string used to refer to the definition

• a list of char filters: each char filter is responsible to pre-process input characters before the

tokenization. Char filters can add, change or remove characters; one common usage is for

characters normalization

• a tokenizer: responsible for tokenizing the input stream into individual words

• a list of filters: each filter is responsible to remove, modify or sometimes even add words into

the stream provided by the tokenizer

This separation of tasks - a list of char filters, and a tokenizer followed by a list of filters - allows

for easy reuse of each individual component and let you build your customized analyzer in a very

Named analyzers

55

flexible way (just like Lego). Generally speaking the char filters do some pre-processing in the

character input, then the Tokenizer starts the tokenizing process by turning the character input

into tokens which are then further processed by the TokenFilters. Hibernate Search supports

this infrastructure by utilizing the Solr analyzer framework.

Warning

Prior to Search version 3.3.0.Beta2 it was required to add the Solr dependency

org.apache.solr:solr-core when you wanted to use the analyzer definition

framework. As of version 3.3.0.Beta2 this is not the case anymore. The

required Solr code is encapsulated in the artifact org.hibernate:hibernate-search-

analyzers. In case you are using maven just add the following dependency (see

also HSEARCH-593 [http://opensource.atlassian.com/projects/hibernate/browse/

HSEARCH-593]):

<dependency>

 <groupId>org.hibernate</groupId>

 <artifactId>hibernate-search-analyzers</artifactId>

 <version>3.3.0.Final</version>

<dependency>

Tip

Some of the analyzers and filters will require additional dependencies. For example

to use the snowball stemmer you have to also include the lucene-snowball

jar and for the PhoneticFilterFactory you need the commons-codec [http://

commons.apache.org/codec] jar. Your distribution of Hibernate Search provides

these dependencies in its lib/optional directory. Have a look at Table 4.2,

“Example of available tokenizers” and Table 4.3, “Examples of available filters” to

see which anaylzers and filters have additional dependencies

Let's have a look at a concrete example now - Example 4.10, “@AnalyzerDef and the Solr

framework”. First a char filter is defined by its factory. In our example, a mapping char filter is used,

and will replace characters in the input based on the rules specified in the mapping file. Next a

tokenizer is defined. This example uses the standard tokenizer. Last but not least, a list of filters

is defined by their factories. In our example, the StopFilter filter is built reading the dedicated

words property file. The filter is also expected to ignore case.

Example 4.10. @AnalyzerDef and the Solr framework

@AnalyzerDef(name="customanalyzer",

 charFilters = {

http://opensource.atlassian.com/projects/hibernate/browse/HSEARCH-593
http://opensource.atlassian.com/projects/hibernate/browse/HSEARCH-593
http://opensource.atlassian.com/projects/hibernate/browse/HSEARCH-593
http://commons.apache.org/codec
http://commons.apache.org/codec
http://commons.apache.org/codec

Chapter 4. Mapping entities t...

56

 @CharFilterDef(factory = MappingCharFilterFactory.class, params = {

 @Parameter(name = "mapping", value = "org/hibernate/search/test/analyzer/solr/mapping-

chars.properties")

 })

 },

 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),

 filters = {

 @TokenFilterDef(factory = ISOLatin1AccentFilterFactory.class),

 @TokenFilterDef(factory = LowerCaseFilterFactory.class),

 @TokenFilterDef(factory = StopFilterFactory.class, params = {

 @Parameter(name="words", value= "org/hibernate/search/test/analyzer/solr/

stoplist.properties"),

 @Parameter(name="ignoreCase", value="true")

 })

})

public class Team {

 ...

}

Tip

Filters and char filters are applied in the order they are defined in the @AnalyzerDef

annotation. Order matters!

Some tokenizers, token filters or char filters load resources like a configuration or metadata file.

This is the case for the stop filter and the synonym filter. If the resource charset is not using the

VM default, you can explicitly specify it by adding a resource_charset parameter.

Example 4.11. Use a specific charset to load the property file

@AnalyzerDef(name="customanalyzer",

 charFilters = {

 @CharFilterDef(factory = MappingCharFilterFactory.class, params = {

 @Parameter(name = "mapping", value = "org/hibernate/search/test/analyzer/solr/mapping-

chars.properties")

 })

 },

 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),

 filters = {

 @TokenFilterDef(factory = ISOLatin1AccentFilterFactory.class),

 @TokenFilterDef(factory = LowerCaseFilterFactory.class),

 @TokenFilterDef(factory = StopFilterFactory.class, params = {

 @Parameter(name="words", value= "org/hibernate/search/test/analyzer/solr/

stoplist.properties"),

 @Parameter(name="resource_charset", value = "UTF-16BE"),

 @Parameter(name="ignoreCase", value="true")

 })

})

public class Team {

 ...

}

Named analyzers

57

Once defined, an analyzer definition can be reused by an @Analyzer declaration as seen in

Example 4.12, “Referencing an analyzer by name”.

Example 4.12. Referencing an analyzer by name

@Entity

@Indexed

@AnalyzerDef(name="customanalyzer", ...)

public class Team {

 @Id

 @DocumentId

 @GeneratedValue

 private Integer id;

 @Field

 private String name;

 @Field

 private String location;

 @Field

 @Analyzer(definition = "customanalyzer")

 private String description;

}

Analyzer instances declared by @AnalyzerDef are also available by their name in the

SearchFactory which is quite useful wen building queries.

Analyzer analyzer = fullTextSession.getSearchFactory().getAnalyzer("customanalyzer");

Fields in queries should be analyzed with the same analyzer used to index the field so that they

speak a common "language": the same tokens are reused between the query and the indexing

process. This rule has some exceptions but is true most of the time. Respect it unless you know

what you are doing.

4.3.2.1. Available analyzers

Solr and Lucene come with a lot of useful default char filters, tokenizers and filters. You can find a

complete list of char filter factories, tokenizer factories and filter factories at http://wiki.apache.org/

solr/AnalyzersTokenizersTokenFilters. Let's check a few of them.

Table 4.1. Example of available char filters

Factory Description Parameters Additional

dependencies

MappingCharFilterFactoryReplaces one or more

characters with one

mapping: points to

a resource file

none

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

Chapter 4. Mapping entities t...

58

Factory Description Parameters Additional

dependencies

or more characters,

based on mappings

specified in the

resource file

containing the

mappings using the

format:

 "á" =>

 "a"

 "ñ" =>

 "n"

 "ø" =>

 "o"

HTMLStripCharFilterFactoryRemove HTML

standard tags,

keeping the text

none none

Table 4.2. Example of available tokenizers

Factory Description Parameters Additional

dependencies

StandardTokenizerFactoryUse the Lucene

StandardTokenizer

none none

HTMLStripStandardTokenizerFactoryRemove HTML tags,

keep the text

and pass it to

a StandardTokenizer.

@Deprecated, use

the

HTMLStripCharFilterFactory

instead

none none

PatternTokenizerFactoryBreaks text at

the specified regular

expression pattern.

pattern: the regular

expression to use for

tokenizing

group: says which

pattern group to

extract into tokens

commons-io

Named analyzers

59

Table 4.3. Examples of available filters

Factory Description Parameters Additional

dependencies

StandardFilterFactoryRemove dots from

acronyms and 's from

words

none none

LowerCaseFilterFactoryLowercases all words none none

StopFilterFactory Remove words

(tokens) matching a

list of stop words

words: points to

a resource file

containing the stop

words

ignoreCase: true if

case should be ignore

when comparing

stop words, false

otherwise

none

SnowballPorterFilterFactoryReduces a word

to it's root in

a given language.

(eg. protect, protects,

protection share the

same root). Using

such a filter allows

searches matching

related words.

language: Danish,

Dutch, English,

Finnish, French,

German, Italian,

Norwegian,

Portuguese, Russian,

Spanish, Swedish and

a few more

lucene-snowball

ISOLatin1AccentFilterFactoryRemove accents for

languages like French

none none

PhoneticFilterFactoryInserts phonetically

similar tokens into the

token stream

encoder: One of

DoubleMetaphone,

Metaphone, Soundex

or RefinedSoundex

inject: true will add

tokens to the stream,

false will replace the

existing token

maxCodeLength: sets

the maximum length

of the code to be

generated. Supported

only for Metaphone

commons-codec

Chapter 4. Mapping entities t...

60

Factory Description Parameters Additional

dependencies

and

DoubleMetaphone

encodings

CollationKeyFilterFactoryConverts each token

into its

java.text.CollationKey,

and then encodes the

CollationKey with

IndexableBinaryStringTools,

to allow it to be stored

as an index term.

custom, language,

country, variant,

strength,

decomposition see

Lucene's

CollationKeyFilter

javadocs for more info

lucene-collation,

commons-io

We recommend to check all the implementations of

org.apache.solr.analysis.TokenizerFactory and

org.apache.solr.analysis.TokenFilterFactory in your IDE to see the implementations

available.

4.3.3. Dynamic analyzer selection (experimental)

So far all the introduced ways to specify an analyzer were static. However, there are use cases

where it is useful to select an analyzer depending on the current state of the entity to be indexed,

for example in a multilingual applications. For an BlogEntry class for example the analyzer could

depend on the language property of the entry. Depending on this property the correct language

specific stemmer should be chosen to index the actual text.

To enable this dynamic analyzer selection Hibernate Search introduces the

AnalyzerDiscriminator annotation. Example 4.13, “Usage of @AnalyzerDiscriminator”

demonstrates the usage of this annotation.

Example 4.13. Usage of @AnalyzerDiscriminator

@Entity

@Indexed

@AnalyzerDefs({

 @AnalyzerDef(name = "en",

 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),

 filters = {

 @TokenFilterDef(factory = LowerCaseFilterFactory.class),

 @TokenFilterDef(factory = EnglishPorterFilterFactory.class

)

 }),

 @AnalyzerDef(name = "de",

 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),

 filters = {

 @TokenFilterDef(factory = LowerCaseFilterFactory.class),

 @TokenFilterDef(factory = GermanStemFilterFactory.class)

Dynamic analyzer selection (experimental)

61

 })

})

public class BlogEntry {

 @Id

 @GeneratedValue

 @DocumentId

 private Integer id;

 @Field

 @AnalyzerDiscriminator(impl = LanguageDiscriminator.class)

 private String language;

 @Field

 private String text;

 private Set<BlogEntry> references;

 // standard getter/setter

 ...

}

public class LanguageDiscriminator implements Discriminator {

 public String getAnalyzerDefinitionName(Object value, Object entity, String field) {

 if (value == null || !(entity instanceof Article)) {

 return null;

 }

 return (String) value;

 }

}

The prerequisite for using @AnalyzerDiscriminator is that all analyzers which are going to

be used are predefined via @AnalyzerDef definitions. If this is the case one can place the

@AnalyzerDiscriminator annotation either on the class or on a specific property of the entity for

which to dynamically select an analyzer. Via the impl parameter of the AnalyzerDiscriminator

you specify a concrete implementation of the Discriminator interface. It is up to you to

provide an implementation for this interface. The only method you have to implement is

getAnalyzerDefinitionName() which gets called for each field added to the Lucene document.

The entity which is getting indexed is also passed to the interface method. The value parameter

is only set if the AnalyzerDiscriminator is placed on property level instead of class level. In this

case the value represents the current value of this property.

An implemention of the Discriminator interface has to return the name of an existing analyzer

definition if the analyzer should be set dynamically or null if the default analyzer should not be

overridden. The given example assumes that the language parameter is either 'de' or 'en' which

matches the specified names in the @AnalyzerDefs.

Chapter 4. Mapping entities t...

62

Note

The @AnalyzerDiscriminator is currently still experimental and the API might

still change. We are hoping for some feedback from the community about the

usefulness and usability of this feature.

4.3.4. Retrieving an analyzer

In some situations retrieving analyzers can be handy. For example, if your domain model makes

use of multiple analyzers (maybe to benefit from stemming, use phonetic approximation and so

on), you need to make sure to use the same analyzers when you build your query.

Note

This rule can be broken but you need a good reason for it. If you are unsure, use

the same analyzers. If you use the Hibernate Search query DSL (see Section 5.1.2,

“Building a Lucene query with the Hibernate Search query DSL”), you don't have

to think about it. The query DSL does use the right analyzer transparently for you.

Whether you are using the Lucene programmatic API or the Lucene query parser, you can retrieve

the scoped analyzer for a given entity. A scoped analyzer is an analyzer which applies the right

analyzers depending on the field indexed. Remember, multiple analyzers can be defined on a

given entity each one working on an individual field. A scoped analyzer unifies all these analyzers

into a context-aware analyzer. While the theory seems a bit complex, using the right analyzer in

a query is very easy.

Example 4.14. Using the scoped analyzer when building a full-text query

org.apache.lucene.queryParser.QueryParser parser = new QueryParser(

 "title",

 fullTextSession.getSearchFactory().getAnalyzer(Song.class)

);

org.apache.lucene.search.Query luceneQuery =

 parser.parse("title:sky Or title_stemmed:diamond");

org.hibernate.Query fullTextQuery =

 fullTextSession.createFullTextQuery(luceneQuery, Song.class);

List result = fullTextQuery.list(); //return a list of managed objects

In the example above, the song title is indexed in two fields: the standard analyzer is used in the

field title and a stemming analyzer is used in the field title_stemmed. By using the analyzer

Bridges

63

provided by the search factory, the query uses the appropriate analyzer depending on the field

targeted.

Tip

You can also retrieve analyzers defined via @AnalyzerDef by their definition name

using searchFactory.getAnalyzer(String).

4.4. Bridges

When discussing the basic mapping for an entity one important fact was so far disregarded. In

Lucene all index fields have to be represented as strings. All entity properties annotated with

@Field have to be converted to strings to be indexed. The reason we have not mentioned it so

far is, that for most of your properties Hibernate Search does the translation job for you thanks

to set of built-in bridges. However, in some cases you need a more fine grained control over the

translation process.

4.4.1. Built-in bridges

Hibernate Search comes bundled with a set of built-in bridges between a Java property type and

its full text representation.

null

Per default null elements are not indexed. Lucene does not support null elements. However,

in some situation it can be useful to insert a custom token representing the null value. See

Section 4.1.1.2, “@Field” for more information.

java.lang.String

Strings are indexed as are

short, Short, integer, Integer, long, Long, float, Float, double, Double, BigInteger, BigDecimal

Numbers are converted into their string representation. Note that numbers cannot be

compared by Lucene (ie used in ranged queries) out of the box: they have to be padded

Note

Using a Range query is debatable and has drawbacks, an alternative approach

is to use a Filter query which will filter the result query to the appropriate range.

Hibernate Search will support a padding mechanism

java.util.Date

Dates are stored as yyyyMMddHHmmssSSS in GMT time (200611072203012 for Nov 7th of

2006 4:03PM and 12ms EST). You shouldn't really bother with the internal format. What is

Chapter 4. Mapping entities t...

64

important is that when using a DateRange Query, you should know that the dates have to

be expressed in GMT time.

Usually, storing the date up to the millisecond is not necessary. @DateBridge

defines the appropriate resolution you are willing to store in the index (

@DateBridge(resolution=Resolution.DAY)). The date pattern will then be truncated

accordingly.

@Entity

@Indexed

public class Meeting {

 @Field(index=Index.UN_TOKENIZED)

 @DateBridge(resolution=Resolution.MINUTE)

 private Date date;

 ...

Warning

A Date whose resolution is lower than MILLISECOND cannot be a @DocumentId

java.net.URI, java.net.URL

URI and URL are converted to their string representation

java.lang.Class

Class are converted to their fully qualified class name. The thread context classloader is used

when the class is rehydrated

4.4.2. Custom bridges

Sometimes, the built-in bridges of Hibernate Search do not cover some of your property types,

or the String representation used by the bridge does not meet your requirements. The following

paragraphs describe several solutions to this problem.

4.4.2.1. StringBridge

The simplest custom solution is to give Hibernate Search an implementation of

your expected Object to String bridge. To do so you need to implement the

org.hibernate.search.bridge.StringBridge interface. All implementations have to be

thread-safe as they are used concurrently.

Example 4.15. Custom StringBridge implementation

/**

 * Padding Integer bridge.

 * All numbers will be padded with 0 to match 5 digits

Custom bridges

65

 *

 * @author Emmanuel Bernard

 */

public class PaddedIntegerBridge implements StringBridge {

 private int PADDING = 5;

 public String objectToString(Object object) {

 String rawInteger = ((Integer) object).toString();

 if (rawInteger.length() > PADDING)

 throw new IllegalArgumentException("Try to pad on a number too big");

 StringBuilder paddedInteger = new StringBuilder();

 for (int padIndex = rawInteger.length() ; padIndex < PADDING ; padIndex++) {

 paddedInteger.append('0');

 }

 return paddedInteger.append(rawInteger).toString();

 }

}

Given the string bridge defined in Example 4.15, “Custom StringBridge implementation”, any

property or field can use this bridge thanks to the @FieldBridge annotation:

@FieldBridge(impl = PaddedIntegerBridge.class)

private Integer length;

4.4.2.1.1. Parameterized bridge

Parameters can also be passed to the bridge implementation making it more flexible.

Example 4.16, “Passing parameters to your bridge implementation” implements a

ParameterizedBridge interface and parameters are passed through the @FieldBridge

annotation.

Example 4.16. Passing parameters to your bridge implementation

public class PaddedIntegerBridge implements StringBridge, ParameterizedBridge {

 public static String PADDING_PROPERTY = "padding";

 private int padding = 5; //default

 public void setParameterValues(Map parameters) {

 Object padding = parameters.get(PADDING_PROPERTY);

 if (padding != null) this.padding = (Integer) padding;

 }

 public String objectToString(Object object) {

 String rawInteger = ((Integer) object).toString();

 if (rawInteger.length() > padding)

 throw new IllegalArgumentException("Try to pad on a number too big");

 StringBuilder paddedInteger = new StringBuilder();

 for (int padIndex = rawInteger.length() ; padIndex < padding ; padIndex++) {

 paddedInteger.append('0');

 }

Chapter 4. Mapping entities t...

66

 return paddedInteger.append(rawInteger).toString();

 }

}

//property

@FieldBridge(impl = PaddedIntegerBridge.class,

 params = @Parameter(name="padding", value="10")

)

private Integer length;

The ParameterizedBridge interface can be implemented by StringBridge,

TwoWayStringBridge, FieldBridge implementations.

All implementations have to be thread-safe, but the parameters are set during initialization and

no special care is required at this stage.

4.4.2.1.2. Type aware bridge

It is sometimes useful to get the type the bridge is applied on:

• the return type of the property for field/getter-level bridges

• the class type for class-level bridges

An example is a bridge that deals with enums in a custom fashion but needs to access the actual

enum type. Any bridge implementing AppliedOnTypeAwareBridge will get the type the bridge is

applied on injected. Like parameters, the type injected needs no particular care with regard to

thread-safety.

4.4.2.1.3. Two-way bridge

If you expect to use your bridge implementation on an id property (ie annotated with @DocumentId

), you need to use a slightly extended version of StringBridge named TwoWayStringBridge.

Hibernate Search needs to read the string representation of the identifier and generate the object

out of it. There is no difference in the way the @FieldBridge annotation is used.

Example 4.17. Implementing a TwoWayStringBridge usable for id properties

public class PaddedIntegerBridge implements TwoWayStringBridge, ParameterizedBridge {

 public static String PADDING_PROPERTY = "padding";

 private int padding = 5; //default

 public void setParameterValues(Map parameters) {

 Object padding = parameters.get(PADDING_PROPERTY);

 if (padding != null) this.padding = (Integer) padding;

 }

 public String objectToString(Object object) {

Custom bridges

67

 String rawInteger = ((Integer) object).toString();

 if (rawInteger.length() > padding)

 throw new IllegalArgumentException("Try to pad on a number too big");

 StringBuilder paddedInteger = new StringBuilder();

 for (int padIndex = rawInteger.length() ; padIndex < padding ; padIndex++) {

 paddedInteger.append('0');

 }

 return paddedInteger.append(rawInteger).toString();

 }

 public Object stringToObject(String stringValue) {

 return new Integer(stringValue);

 }

}

//id property

@DocumentId

@FieldBridge(impl = PaddedIntegerBridge.class,

 params = @Parameter(name="padding", value="10")

private Integer id;

Important

It is important for the two-way process to be idempotent (ie object =

stringToObject(objectToString(object))).

4.4.2.2. FieldBridge

Some use cases require more than a simple object to string translation when mapping a property

to a Lucene index. To give you the greatest possible flexibility you can also implement a bridge

as a FieldBridge. This interface gives you a property value and let you map it the way you want

in your Lucene Document. You can for example store a property in two different document fields.

The interface is very similar in its concept to the Hibernate UserTypes.

Example 4.18. Implementing the FieldBridge interface

/**

 * Store the date in 3 different fields - year, month, day - to ease Range Query per

 * year, month or day (eg get all the elements of December for the last 5 years).

 * @author Emmanuel Bernard

 */

public class DateSplitBridge implements FieldBridge {

 private final static TimeZone GMT = TimeZone.getTimeZone("GMT");

 public void set(String name, Object value, Document document,

 LuceneOptions luceneOptions) {

 Date date = (Date) value;

 Calendar cal = GregorianCalendar.getInstance(GMT);

 cal.setTime(date);

Chapter 4. Mapping entities t...

68

 int year = cal.get(Calendar.YEAR);

 int month = cal.get(Calendar.MONTH) + 1;

 int day = cal.get(Calendar.DAY_OF_MONTH);

 // set year

 luceneOptions.addFieldToDocument(

 name + ".year",

 String.valueOf(year),

 document);

 // set month and pad it if needed

 luceneOptions.addFieldToDocument(

 name + ".month",

 month < 10 ? "0" : "" + String.valueOf(month),

 document);

 // set day and pad it if needed

 luceneOptions.addFieldToDocument(

 name + ".day",

 day < 10 ? "0" : "" + String.valueOf(day),

 document);

 }

}

//property

@FieldBridge(impl = DateSplitBridge.class)

private Date date;

In Example 4.18, “Implementing the FieldBridge interface” the fields are not added directly to

Document. Instead the addition is delegated to the LuceneOptions helper; this helper will apply

the options you have selected on @Field, like Store or TermVector, or apply the choosen @Boost

value. It is especially useful to encapsulate the complexity of COMPRESS implementations. Even

though it is recommended to delegate to LuceneOptions to add fields to the Document, nothing

stops you from editing the Document directly and ignore the LuceneOptions in case you need to.

Tip

Classes like LuceneOptions are created to shield your application from changes

in Lucene API and simplify your code. Use them if you can, but if you need more

flexibility you're not required to.

4.4.2.3. ClassBridge

It is sometimes useful to combine more than one property of a given entity and index

this combination in a specific way into the Lucene index. The @ClassBridge respectively

@ClassBridges annotations can be defined at class level (as opposed to the property level). In this

case the custom field bridge implementation receives the entity instance as the value parameter

instead of a particular property. Though not shown in Example 4.19, “Implementing a class

bridge”, @ClassBridge supports the termVector attribute discussed in section Section 4.1.1,

“Basic mapping”.

Custom bridges

69

Example 4.19. Implementing a class bridge

@Entity

@Indexed

@ClassBridge(name="branchnetwork",

 index=Index.TOKENIZED,

 store=Store.YES,

 impl = CatFieldsClassBridge.class,

 params = @Parameter(name="sepChar", value=" "))

public class Department {

 private int id;

 private String network;

 private String branchHead;

 private String branch;

 private Integer maxEmployees

 ...

}

public class CatFieldsClassBridge implements FieldBridge, ParameterizedBridge {

 private String sepChar;

 public void setParameterValues(Map parameters) {

 this.sepChar = (String) parameters.get("sepChar");

 }

 public void set(String name, Object value, Document document, LuceneOptions luceneOptions) {

 // In this particular class the name of the new field was passed

 // from the name field of the ClassBridge Annotation. This is not

 // a requirement. It just works that way in this instance. The

 // actual name could be supplied by hard coding it below.

 Department dep = (Department) value;

 String fieldValue1 = dep.getBranch();

 if (fieldValue1 == null) {

 fieldValue1 = "";

 }

 String fieldValue2 = dep.getNetwork();

 if (fieldValue2 == null) {

 fieldValue2 = "";

 }

 String fieldValue = fieldValue1 + sepChar + fieldValue2;

 Field field = new Field(name, fieldValue, luceneOptions.getStore(),

 luceneOptions.getIndex(), luceneOptions.getTermVector());

 field.setBoost(luceneOptions.getBoost());

 document.add(field);

 }

}

In this example, the particular CatFieldsClassBridge is applied to the department instance, the

field bridge then concatenate both branch and network and index the concatenation.

Chapter 4. Mapping entities t...

70

4.5. Providing your own id

Warning

This part of the documentation is a work in progress.

You can provide your own id for Hibernate Search if you are extending the internals. You will have

to generate a unique value so it can be given to Lucene to be indexed. This will have to be given

to Hibernate Search when you create an org.hibernate.search.Work object - the document id is

required in the constructor.

4.5.1. The ProvidedId annotation

Unlike @DocumentIdwhich is applied on field level, @ProvidedId is used on the class level.

Optionally you can specify your own bridge implementation using the bridge property. Also, if

you annotate a class with @ProvidedId, your subclasses will also get the annotation - but it is not

done by using the java.lang.annotations.@Inherited. Be sure however, to not use this annotation

with @DocumentId as your system will break.

Example 4.20. Providing your own id

@ProvidedId (bridge = org.my.own.package.MyCustomBridge)

@Indexed

public class MyClass{

 @Field

 String MyString;

 ...

}

4.6. Programmatic API

Warning

This feature is considered experimental. While stable code-wise, the API is subject

to change in the future.

Although the recommended approach for mapping indexed entities is to use annotations, it is

sometimes more convenient to use a different approach:

• the same entity is mapped differently depending on deployment needs (customization for

clients)

• some automatization process requires the dynamic mapping of many entities sharing common

traits

Mapping an entity as indexable

71

While it has been a popular demand in the past, the Hibernate team never found the idea of an

XML alternative to annotations appealing due to it's heavy duplication, lack of code refactoring

safety, because it did not cover all the use case spectrum and because we are in the 21st century :)

The idea of a programmatic API was much more appealing and has now become a reality. You

can programmatically define your mapping using a programmatic API: you define entities and

fields as indexable by using mapping classes which effectively mirror the annotation concepts in

Hibernate Search. Note that fan(s) of XML approach can design their own schema and use the

programmatic API to create the mapping while parsing the XML stream.

In order to use the programmatic model you must first construct a SearchMapping object.

This object is passed to Hibernate Search via a property set to the Configuration

object. The property key is hibernate.search.model_mapping or it's type-safe representation

Environment.MODEL_MAPPING.

SearchMapping mapping = new SearchMapping();

[...]

configuration.setProperty(Environment.MODEL_MAPPING, mapping);

//or in JPA

SearchMapping mapping = new SearchMapping();

[...]

Map<String,String> properties = new HashMap<String,String)(1);

properties.put(Environment.MODEL_MAPPING, mapping);

EntityManagerFactory emf = Persistence.createEntityManagerFactory("userPU", properties);

The SearchMapping is the root object which contains all the necessary indexable entities and

fields. From there, the SearchMapping object exposes a fluent (and thus intuitive) API to express

your mappings: it contextually exposes the relevant mapping options in a type-safe way. Just let

your IDE autocompletion feature guide you through.

Today, the programmatic API cannot be used on a class annotated with Hibernate Search

annotations, chose one approach or the other. Also note that the same default values apply in

annotations and the programmatic API. For example, the @Field.name is defaulted to the property

name and does not have to be set.

Each core concept of the programmatic API has a corresponding example to depict how the

same definition would look using annotation. Therefore seeing an annotation example of the

programmatic approach should give you a clear picture of what Hibernate Search will build with

the marked entities and associated properties.

4.6.1. Mapping an entity as indexable

The first concept of the programmatic API is to define an entity as indexable. Using the annotation

approach a user would mark the entity as @Indexed, the following example demonstrates how to

programmatically achieve this.

Chapter 4. Mapping entities t...

72

Example 4.21. Marking an entity indexable

SearchMapping mapping = new SearchMapping();

mapping.entity(Address.class)

 .indexed()

 .indexName("Address_Index"); //optional

cfg.getProperties().put("hibernate.search.model_mapping", mapping);

As you can see you must first create a SearchMapping object which is the root object that is then

passed to the Configuration object as property. You must declare an entity and if you wish to

make that entity as indexable then you must call the indexed() method. The indexed() method

has an optional indexName(String indexName) which can be used to change the default index

name that is created by Hibernate Search. Using the annotation model the above can be achieved

as:

Example 4.22. Annotation example of indexing entity

@Entity

@Indexed(index="Address_Index")

public class Address {

....

}

4.6.2. Adding DocumentId to indexed entity

To set a property as a document id:

Example 4.23. Enabling document id with programmatic model

SearchMapping mapping = new SearchMapping();

mapping.entity(Address.class).indexed()

 .property("addressId", ElementType.FIELD) //field access

 .documentId()

 .name("id");

cfg.getProperties().put("hibernate.search.model_mapping", mapping);

The above is equivalent to annotating a property in the entity as @DocumentId as seen in the

following example:

Defining analyzers

73

Example 4.24. DocumentId annotation definition

@Entity

@Indexed

public class Address {

 @Id

 @GeneratedValue

 @DocumentId(name="id")

 private Long addressId;

}

The next section demonstrates how to programmatically define analyzers.

4.6.3. Defining analyzers

Analyzers can be programmatically defined using the analyzerDef(String analyzerDef,

Class<? extends TokenizerFactory> tokenizerFactory) method. This method also enables

you to define filters for the analyzer definition. Each filter that you define can optionally take in

parameters as seen in the following example :

Example 4.25. Defining analyzers using programmatic model

SearchMapping mapping = new SearchMapping();

mapping

 .analyzerDef("ngram", StandardTokenizerFactory.class)

 .filter(LowerCaseFilterFactory.class)

 .filter(NGramFilterFactory.class)

 .param("minGramSize", "3")

 .param("maxGramSize", "3")

 .analyzerDef("en", StandardTokenizerFactory.class)

 .filter(LowerCaseFilterFactory.class)

 .filter(EnglishPorterFilterFactory.class)

 .analyzerDef("de", StandardTokenizerFactory.class)

 .filter(LowerCaseFilterFactory.class)

 .filter(GermanStemFilterFactory.class)

 .entity(Address.class).indexed()

 .property("addressId", ElementType.METHOD) //getter access

 .documentId()

 .name("id");

cfg.getProperties().put("hibernate.search.model_mapping", mapping);

The analyzer mapping defined above is equivalent to the annotation model using @AnalyzerDef

in conjunction with @AnalyzerDefs:

Chapter 4. Mapping entities t...

74

Example 4.26. Analyzer definition using annotation

@Indexed

@Entity

@AnalyzerDefs({

 @AnalyzerDef(name = "ngram",

 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),

 filters = {

 @TokenFilterDef(factory = LowerCaseFilterFactory.class),

 @TokenFilterDef(factory = NGramFilterFactory.class,

 params = {

 @Parameter(name = "minGramSize",value = "3"),

 @Parameter(name = "maxGramSize",value = "3")

 })

 }),

 @AnalyzerDef(name = "en",

 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),

 filters = {

 @TokenFilterDef(factory = LowerCaseFilterFactory.class),

 @TokenFilterDef(factory = EnglishPorterFilterFactory.class)

 }),

 @AnalyzerDef(name = "de",

 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),

 filters = {

 @TokenFilterDef(factory = LowerCaseFilterFactory.class),

 @TokenFilterDef(factory = GermanStemFilterFactory.class)

 })

})

public class Address {

...

}

4.6.4. Defining full text filter definitions

The programmatic API provides easy mechanism for defining full text filter definitions which

is available via @FullTextFilterDef and @FullTextFilterDefs (see Section 5.3, “Filters”).

The next example depicts the creation of full text filter definition using the fullTextFilterDef

method.

Example 4.27. Defining full text definition programmatically

SearchMapping mapping = new SearchMapping();

mapping

 .analyzerDef("en", StandardTokenizerFactory.class)

 .filter(LowerCaseFilterFactory.class)

 .filter(EnglishPorterFilterFactory.class)

 .fullTextFilterDef("security", SecurityFilterFactory.class)

 .cache(FilterCacheModeType.INSTANCE_ONLY)

 .entity(Address.class)

 .indexed()

Defining full text filter definitions

75

 .property("addressId", ElementType.METHOD)

 .documentId()

 .name("id")

 .property("street1", ElementType.METHOD)

 .field()

 .analyzer("en")

 .store(Store.YES)

 .field()

 .name("address_data")

 .analyzer("en")

 .store(Store.NO);

cfg.getProperties().put("hibernate.search.model_mapping", mapping);

The previous example can effectively been seen as annotating your entity with

@FullTextFilterDef like below:

Example 4.28. Using annotation to define full text filter definition

@Entity

@Indexed

@AnalyzerDefs({

 @AnalyzerDef(name = "en",

 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),

 filters = {

 @TokenFilterDef(factory = LowerCaseFilterFactory.class),

 @TokenFilterDef(factory = EnglishPorterFilterFactory.class)

 })

})

@FullTextFilterDefs({

 @FullTextFilterDef(name = "security", impl = SecurityFilterFactory.class, cache =

 FilterCacheModeType.INSTANCE_ONLY)

})

public class Address {

 @Id

 @GeneratedValue

 @DocumentId(name="id")

 pubblic Long getAddressId() {...};

 @Fields({

 @Field(index=Index.TOKENIZED, store=Store.YES,

 analyzer=@Analyzer(definition="en")),

 @Field(name="address_data", analyzer=@Analyzer(definition="en"))

 })

 public String getAddress1() {...};

}

Chapter 4. Mapping entities t...

76

4.6.5. Defining fields for indexing

When defining fields for indexing using the programmatic API, call field() on the

property(String propertyName, ElementType elementType) method. From field() you

can specify the name, index, store, bridge and analyzer definitions.

Example 4.29. Indexing fields using programmatic API

SearchMapping mapping = new SearchMapping();

mapping

 .analyzerDef("en", StandardTokenizerFactory.class)

 .filter(LowerCaseFilterFactory.class)

 .filter(EnglishPorterFilterFactory.class)

 .entity(Address.class).indexed()

 .property("addressId", ElementType.METHOD)

 .documentId()

 .name("id")

 .property("street1", ElementType.METHOD)

 .field()

 .analyzer("en")

 .store(Store.YES)

 .index(Index.TOKENIZED) //no useful here as it's the default

 .field()

 .name("address_data")

 .analyzer("en");

cfg.getProperties().put("hibernate.search.model_mapping", mapping);

The above example of marking fields as indexable is equivalent to defining fields using @Field

as seen below:

Example 4.30. Indexing fields using annotation

@Entity

@Indexed

@AnalyzerDefs({

 @AnalyzerDef(name = "en",

 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),

 filters = {

 @TokenFilterDef(factory = LowerCaseFilterFactory.class),

 @TokenFilterDef(factory = EnglishPorterFilterFactory.class)

 })

})

public class Address {

 @Id

 @GeneratedValue

 @DocumentId(name="id")

 private Long getAddressId() {...};

 @Fields({

Programmatically defining embedded entities

77

 @Field(index=Index.TOKENIZED, store=Store.YES,

 analyzer=@Analyzer(definition="en")),

 @Field(name="address_data", analyzer=@Analyzer(definition="en"))

 })

 public String getAddress1() {...}

}

4.6.6. Programmatically defining embedded entities

In this section you will see how to programmatically define entities to be embedded into the indexed

entity similar to using the @IndexEmbedded model. In order to define this you must mark the

property as indexEmbedded.There is the option to add a prefix to the embedded entity definition

which can be done by calling prefix as seen in the example below:

Example 4.31. Programmatically defining embedded entites

SearchMapping mapping = new SearchMapping();

mappping

 .entity(ProductCatalog.class)

 .indexed()

 .property("catalogId", ElementType.METHOD)

 .documentId()

 .name("id")

 .property("title", ElementType.METHOD)

 .field()

 .index(Index.TOKENIZED)

 .store(Store.NO)

 .property("description", ElementType.METHOD)

 .field()

 .index(Index.TOKENIZED)

 .store(Store.NO)

 .property("items", ElementType.METHOD)

 .indexEmbedded()

 .prefix("catalog.items"); //optional

cfg.getProperties().put("hibernate.search.model_mapping", mapping);

The next example shows the same definition using annotation (@IndexEmbedded):

Example 4.32. Using @IndexEmbedded

@Entity

@Indexed

public class ProductCatalog {

 @Id

 @GeneratedValue

 @DocumentId(name="id")

 public Long getCatalogId() {...}

Chapter 4. Mapping entities t...

78

 @Field(store=Store.NO, index=Index.TOKENIZED)

 public String getTitle() {...}

 @Field(store=Store.NO, index=Index.TOKENIZED)

 public String getDescription();

 @OneToMany(fetch = FetchType.LAZY)

 @IndexColumn(name = "list_position")

 @Cascade(org.hibernate.annotations.CascadeType.ALL)

 @IndexEmbedded(prefix="catalog.items")

 public List<Item> getItems() {...}

 ...

}

4.6.7. Contained In definition

@ContainedIn can be define as seen in the example below:

Example 4.33. Programmatically defining ContainedIn

SearchMapping mapping = new SearchMapping();

mappping

 .entity(ProductCatalog.class)

 .indexed()

 .property("catalogId", ElementType.METHOD)

 .documentId()

 .property("title", ElementType.METHOD)

 .field()

 .property("description", ElementType.METHOD)

 .field()

 .property("items", ElementType.METHOD)

 .indexEmbedded()

 .entity(Item.class)

 .property("description", ElementType.METHOD)

 .field()

 .property("productCatalog", ElementType.METHOD)

 .containedIn();

cfg.getProperties().put("hibernate.search.model_mapping", mapping);

This is equivalent to defining @ContainedIn in your entity:

Example 4.34. Annotation approach for ContainedIn

@Entity

@Indexed

public class ProductCatalog {

Date/Calendar Bridge

79

 @Id

 @GeneratedValue

 @DocumentId

 public Long getCatalogId() {...}

 @Field

 public String getTitle() {...}

 @Field

 public String getDescription() {...}

 @OneToMany(fetch = FetchType.LAZY)

 @IndexColumn(name = "list_position")

 @Cascade(org.hibernate.annotations.CascadeType.ALL)

 @IndexEmbedded

 private List<Item> getItems() {...}

 ...

}

@Entity

public class Item {

 @Id

 @GeneratedValue

 private Long itemId;

 @Field

 public String getDescription() {...}

 @ManyToOne(cascade = { CascadeType.PERSIST, CascadeType.REMOVE })

 @ContainedIn

 public ProductCatalog getProductCatalog() {...}

 ...

}

4.6.8. Date/Calendar Bridge

In order to define a calendar or date bridge mapping, call the dateBridge(Resolution

resolution) or calendarBridge(Resolution resolution) methods after you have defined a

field() in the SearchMapping hierarchy.

Example 4.35. Programmatic model for defining calendar/date bridge

SearchMapping mapping = new SearchMapping();

mapping

 .entity(Address.class)

 .indexed()

 .property("addressId", ElementType.FIELD)

 .documentId()

Chapter 4. Mapping entities t...

80

 .property("street1", ElementType.FIELD()

 .field()

 .property("createdOn", ElementType.FIELD)

 .field()

 .dateBridge(Resolution.DAY)

 .property("lastUpdated", ElementType.FIELD)

 .calendarBridge(Resolution.DAY);

cfg.getProperties().put("hibernate.search.model_mapping", mapping);

See below for defining the above using @CalendarBridge and @DateBridge:

Example 4.36. @CalendarBridge and @DateBridge definition

@Entity

@Indexed

public class Address {

 @Id

 @GeneratedValue

 @DocumentId

 private Long addressId;

 @Field

 private String address1;

 @Field

 @DateBridge(resolution=Resolution.DAY)

 private Date createdOn;

 @CalendarBridge(resolution=Resolution.DAY)

 private Calendar lastUpdated;

 ...

}

4.6.9. Defining bridges

It is possible to associate bridges to programmatically defined fields. When you define a

field() programmatically you can use the bridge(Class<?> impl) to associate a FieldBridge

implementation class. The bridge method also provides optional methods to include any

parameters required for the bridge class. The below shows an example of programmatically

defining a bridge:

Example 4.37. Defining field bridges programmatically

SearchMapping mapping = new SearchMapping();

mapping

 .entity(Address.class)

 .indexed()

Mapping class bridge

81

 .property("addressId", ElementType.FIELD)

 .documentId()

 .property("street1", ElementType.FIELD)

 .field()

 .field()

 .name("street1_abridged")

 .bridge(ConcatStringBridge.class)

 .param("size", "4");

cfg.getProperties().put("hibernate.search.model_mapping", mapping);

The above can equally be defined using annotations, as seen in the next example.

Example 4.38. Defining field bridges using annotation

@Entity

@Indexed

public class Address {

 @Id

 @GeneratedValue

 @DocumentId(name="id")

 private Long addressId;

 @Fields({

 @Field,

 @Field(name="street1_abridged",

 bridge = @FieldBridge(impl = ConcatStringBridge.class,

 params = @Parameter(name="size", value="4"))

 })

 private String address1;

 ...

}

4.6.10. Mapping class bridge

You can define class bridges on entities programmatically. This is shown in the next example:

Example 4.39. Defining class briges using API

SearchMapping mapping = new SearchMapping();

mapping

 .entity(Departments.class)

 .classBridge(CatDeptsFieldsClassBridge.class)

 .name("branchnetwork")

 .index(Index.TOKENIZED)

 .store(Store.YES)

 .param("sepChar", " ")

 .classBridge(EquipmentType.class)

Chapter 4. Mapping entities t...

82

 .name("equiptype")

 .index(Index.TOKENIZED)

 .store(Store.YES)

 .param("C", "Cisco")

 .param("D", "D-Link")

 .param("K", "Kingston")

 .param("3", "3Com")

 .indexed();

cfg.getProperties().put("hibernate.search.model_mapping", mapping);

The above is similar to using @ClassBridge as seen in the next example:

Example 4.40. Using @ClassBridge

@Entity

@Indexed

@ClassBridges ({

 @ClassBridge(name="branchnetwork",

 index= Index.TOKENIZED,

 store= Store.YES,

 impl = CatDeptsFieldsClassBridge.class,

 params = @Parameter(name="sepChar", value=" ")),

 @ClassBridge(name="equiptype",

 index= Index.TOKENIZED,

 store= Store.YES,

 impl = EquipmentType.class,

 params = {@Parameter(name="C", value="Cisco"),

 @Parameter(name="D", value="D-Link"),

 @Parameter(name="K", value="Kingston"),

 @Parameter(name="3", value="3Com")

 })

})

public class Departments {

....

}

4.6.11. Mapping dynamic boost

You can apply a dynamic boost factor on either a field or a whole entity:

Example 4.41. DynamicBoost mapping using programmatic model

SearchMapping mapping = new SearchMapping();

mapping

 .entity(DynamicBoostedDescLibrary.class)

 .indexed()

 .dynamicBoost(CustomBoostStrategy.class)

Mapping dynamic boost

83

 .property("libraryId", ElementType.FIELD)

 .documentId().name("id")

 .property("name", ElementType.FIELD)

 .dynamicBoost(CustomFieldBoostStrategy.class);

 .field()

 .store(Store.YES)

cfg.getProperties().put("hibernate.search.model_mapping", mapping);

The next example shows the equivalent mapping using the @DynamicBoost annotation:

Example 4.42. Using the @DynamicBoost

@Entity

@Indexed

@DynamicBoost(impl = CustomBoostStrategy.class)

public class DynamicBoostedDescriptionLibrary {

 @Id

 @GeneratedValue

 @DocumentId

 private int id;

 private float dynScore;

 @Field(store = Store.YES)

 @DynamicBoost(impl = CustomFieldBoostStrategy.class)

 private String name;

 public DynamicBoostedDescriptionLibrary() {

 dynScore = 1.0f;

 }

}

84

Chapter 5.

85

Querying
The second most important capability of Hibernate Search is the ability to execute Lucene queries

and retrieve entities managed by a Hibernate session. The search provides the power of Lucene

without leaving the Hibernate paradigm, giving another dimension to the Hibernate classic search

mechanisms (HQL, Criteria query, native SQL query).

Preparing and executing a query consists of four simple steps:

• Creating a FullTextSession

• Creating a Lucene query either via the Hibernate Search query DSL (recommended) or by

utilizing the Lucene query API

• Wrapping the Lucene query using an org.hibernate.Query

• Executing the search by calling for example list() or scroll()

To access the querying facilities, you have to use a FullTextSession. This Search specific

session wraps a regular org.hibernate.Session in order to provide query and indexing

capabilities.

Example 5.1. Creating a FullTextSession

Session session = sessionFactory.openSession();

...

FullTextSession fullTextSession = Search.getFullTextSession(session);

Once you have a FullTextSession you have two options to build the full-text query: the Hibernate

Search query DSL or the native Lucene query.

If you use the Hibernate Search query DSL, it will look like this:

final QueryBuilder b = fullTextSession.getSearchFactory()

 .buildQueryBuilder().forEntity(Myth.class).get();

org.apache.lucene.search.Query luceneQuery =

 b.keyword()

 .onField("history").boostedTo(3)

 .matching("storm")

 .createQuery();

org.hibernate.Query fullTextQuery = fullTextSession.createFullTextQuery(luceneQuery);

List result = fullTextQuery.list(); //return a list of managed objects

You can alternatively write your Lucene query either using the Lucene query parser or Lucene

programmatic API.

Chapter 5. Querying

86

Example 5.2. Creating a Lucene query via the QueryParser

SearchFactory searchFactory = fullTextSession.getSearchFactory();

org.apache.lucene.queryParser.QueryParser parser =

 new QueryParser("title", searchFactory.getAnalyzer(Myth.class));

try {

 org.apache.lucene.search.Query luceneQuery = parser.parse("history:storm^3");

}

catch (ParseException e) {

 //handle parsing failure

}

org.hibernate.Query fullTextQuery = fullTextSession.createFullTextQuery(luceneQuery);

List result = fullTextQuery.list(); //return a list of managed objects

Note

The Hibernate query built on top of the Lucene query is a regular

org.hibernate.Query, which means you are in the same paradigm as the

other Hibernate query facilities (HQL, Native or Criteria). The regular list() ,

uniqueResult(), iterate() and scroll() methods can be used.

In case you are using the Java Persistence APIs of Hibernate, the same extensions exist:

Example 5.3. Creating a Search query using the JPA API

EntityManager em = entityManagerFactory.createEntityManager();

FullTextEntityManager fullTextEntityManager =

 org.hibernate.search.jpa.Search.getFullTextEntityManager(em);

...

final QueryBuilder b = fullTextEntityManager.getSearchFactory()

 .buildQueryBuilder().forEntity(Myth.class).get();

org.apache.lucene.search.Query luceneQuery =

 b.keyword()

 .onField("history").boostedTo(3)

 .matching("storm")

 .createQuery();

javax.persistence.Query fullTextQuery =

 fullTextEntityManager.createFullTextQuery(luceneQuery);

List result = fullTextQuery.getResultList(); //return a list of managed objects

Building queries

87

Note

The following examples we will use the Hibernate APIs but the same example can

be easily rewritten with the Java Persistence API by just adjusting the way the

FullTextQuery is retrieved.

5.1. Building queries

Hibernate Search queries are built on top of Lucene queries which gives you total freedom on the

type of Lucene query you want to execute. However, once built, Hibernate Search wraps further

query processing using org.hibernate.Query as your primary query manipulation API.

5.1.1. Building a Lucene query using the Lucene API

Using the Lucene API, you have several options. You can use the query parser (fine for simple

queries) or the Lucene programmatic API (for more complex use cases). It is out of the scope

of this documentation on how to exactly build a Lucene query. Please refer to the online Lucene

documentation or get hold of a copy of Lucene In Action or Hibernate Search in Action.

5.1.2. Building a Lucene query with the Hibernate Search query

DSL

Writing full-text queries with the Lucene programmatic API is quite complex. It's even more

complex to understand the code once written. Besides the inherent API complexity, you have to

remember to convert your parameters to their string equivalent as well as make sure to apply the

correct analyzer to the right field (a ngram analyzer will for example use several ngrams as the

tokens for a given word and should be searched as such).

The Hibernate Search query DSL makes use of a style of API called a fluent API. This API has

a few key characteristics:

• it has meaningful method names making a succession of operations reads almost like English

• it limits the options offered to what makes sense in a given context (thanks to strong typing and

IDE autocompletion).

• It often uses the chaining method pattern

• it's easy to use and even easier to read

Let's see how to use the API. You first need to create a query builder that is attached to a given

indexed entity type. This QueryBuilder will know what analyzer to use and what field bridge to

apply. You can create several QueryBuilders (one for each entity type involved in the root of

your query). You get the QueryBuilder from the SearchFactory.

Chapter 5. Querying

88

QueryBuilder mythQB = searchFactory.buildQueryBuilder().forEntity(Myth.class).get();

You can also override the analyzer used for a given field or fields. This is rarely needed and should

be avoided unless you know what you are doing.

QueryBuilder mythQB = searchFactory.buildQueryBuilder()

 .forEntity(Myth.class)

 .overridesForField("history","stem_analyzer_definition")

 .get();

Using the query builder, you can then build queries. It is important to realize that the end result of a

QueryBuilder is a Lucene query. For this reason you can easily mix and match queries generated

via Lucene's query parser or Query objects you have assembled with the Lucene programmatic

API and use them with the Hibernate Search DSL. Just in case the DSL is missing some features.

5.1.2.1. Keyword queries

Let's start with the most basic use case - searching for a specific word:

Query luceneQuery = mythQB.keyword().onField("history").matching("storm").createQuery();

keyword() means that you are trying to find a specific word. onField() specifies in which Lucene

field to look. matching() tells what to look for. And finally createQuery() creates the Lucene

query object. A lot is going on with this line of code.

• The value storm is passed through the history FieldBridge: it does not matter here but you

will see that it's quite handy when dealing with numbers or dates.

• The field bridge value is then passed to the analyzer used to index the field history. This

ensures that the query uses the same term transformation than the indexing (lower case, n-

gram, stemming and so on). If the analyzing process generates several terms for a given word,

a boolean query is used with the SHOULD logic (roughly an OR logic).

Let's see how you can search a property that is not of type string.

@Entity

@Indexed

public class Myth {

 @Field(index = Index.UN_TOKENIZED)

 @DateBridge(resolution = Resolution.YEAR)

 public Date getCreationDate() { return creationDate; }

 public Date setCreationDate(Date creationDate) { this.creationDate = creationDate; }

 private Date creationDate;

Building a Lucene query with the Hibernate Search query DSL

89

 ...

}

Date birthdate = ...;

Query luceneQuery = mythQb.keywork().onField("creationDate").matching(birthdate).createQuery();

Note

In plain Lucene, you would have had to convert the Date object to its string

representation (in this case the year).

This conversion works for any object, not just Date, provided that the FieldBridge has an

objectToString method (and all built-in FieldBridge implementations do).

We make the example a little more advanced now and have a look at how to search a field that

uses ngram analyzers. ngram analyzers index succession of ngrams of your words which helps

to recover from user typos. For example the 3-grams of the word hibernate are hib, ibe, ber, rna,

nat, ate.

@AnalyzerDef(name = "ngram",

 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),

 filters = {

 @TokenFilterDef(factory = StandardFilterFactory.class),

 @TokenFilterDef(factory = LowerCaseFilterFactory.class),

 @TokenFilterDef(factory = StopFilterFactory.class),

 @TokenFilterDef(factory = NGramFilterFactory.class,

 params = {

 @Parameter(name = "minGramSize", value = "3"),

 @Parameter(name = "maxGramSize", value = "3") })

 }

)

@Entity

@Indexed

public class Myth {

 @Field(analyzer=@Analyzer(definition="ngram")

 @DateBridge(resolution = Resolution.YEAR)

 public String getName() { return name; }

 public String setName(Date name) { this.name = name; }

 private String name;

 ...

}

Date birthdate = ...;

Query luceneQuery = mythQb.keyword().onField("name").matching("Sisiphus").createQuery();

The matching word "Sisiphus" will be lower-cased and then split into 3-grams: sis, isi, sip, phu,

hus. Each of these n-gram will be part of the query. We will then be able to find the Sysiphus myth

(with a y). All that is transparently done for you.

Chapter 5. Querying

90

Note

If for some reason you do not want a specific field to use the field bridge or the

analyzer you can call the ignoreAnalyzer() or ignoreFieldBridge() functions

To search for multiple possible words in the same field, simply add them all in the matching clause.

//search document with storm or lightning in their history

Query luceneQuery =

 mythQB.keyword().onField("history").matching("storm lightning").createQuery();

To search the same word on multiple fields, use the onFields method.

Query luceneQuery = mythQB

 .keyword()

 .onFields("history","description","name")

 .matching("storm")

 .createQuery();

Sometimes, one field should be treated differently from another field even if searching the same

term, you can use the andField() method for that.

Query luceneQuery = mythQB.keyword()

 .onField("history")

 .andField("name")

 .boostedTo(5)

 .andField("description")

 .matching("storm")

 .createQuery();

In the previous example, only field name is boosted to 5.

5.1.2.2. Fuzzy queries

To execute a fuzzy query (based on the Levenshtein distance algorithm), start like a keyword

query and add the fuzzy flag.

Query luceneQuery = mythQB

 .keyword()

 .fuzzy()

 .withThreshold(.8f)

 .withPrefixLength(1)

 .onField("history")

 .matching("starm")

Building a Lucene query with the Hibernate Search query DSL

91

 .createQuery();

threshold is the limit above which two terms are considering matching. It's a decimal between

0 and 1 and defaults to 0.5. prefixLength is the length of the prefix ignored by the "fuzzyness":

while it defaults to 0, a non zero value is recommended for indexes containing a huge amount

of distinct terms.

5.1.2.3. Wildcard queries

You can also execute wildcard queries (queries where some of parts of the word are unknown). ?

represents a single character and * represents any character sequence. Note that for performance

purposes, it is recommended that the query does not start with either ? or *.

Query luceneQuery = mythQB

 .keyword()

 .wildcard()

 .onField("history")

 .matching("sto*")

 .createQuery();

Note

Wildcard queries do not apply the analyzer on the matching terms. Otherwise the

risk of * or ? being mangled is too high.

5.1.2.4. Phrase queries

So far we have been looking for words or sets of words, you can also search exact or approximate

sentences. Use phrase() to do so.

Query luceneQuery = mythQB

 .phrase()

 .onField("history")

 .matching("Thou shalt not kill")

 .createQuery();

You can search approximate sentences by adding a slop factor. The slop factor represents the

number of other words permitted in the sentence: this works like a within or near operator

Query luceneQuery = mythQB

 .phrase()

 .withSlop(3)

 .onField("history")

 .matching("Thou kill")

Chapter 5. Querying

92

 .createQuery();

5.1.2.5. Range queries

After looking at all these query examples for searching for to a given word, it is time to introduce

range queries (on numbers, dates, strings etc). A range query searches for a value in between

given boundaries (included or not) or for a value below or above a given boundary (included or

not).

//look for 0 <= starred < 3

Query luceneQuery = mythQB

 .range()

 .onField("starred")

 .from(0).to(3).excludeLimit()

 .createQuery();

//look for myths strictly BC

Date beforeChrist = ...;

Query luceneQuery = mythQB

 .range()

 .onField("creationDate")

 .below(beforeChrist).excludeLimit()

 .createQuery();

5.1.2.6. Combining queries

Finally, you can aggregate (combine) queries to create more complex queries. The following

aggregation operators are available:

• SHOULD: the query query should contain the matching elements of the subquery

• MUST: the query must contain the matching elements of the subquery

• MUST NOT: the query must not contain the matching elements of the subquery

The subqueries can be any Lucene query including a boolean query itself. Let's look at a few

examples:

//look for popular modern myths that are not urban

Date twentiethCentury = ...;

Query luceneQuery = mythQB

 .bool()

 .must(mythQB.keyword().onField("description").matching("urban").createQuery())

 .not()

 .must(mythQB.range().onField("starred").above(4).createQuery())

 .must(mythQB

 .range()

 .onField("creationDate")

 .above(twentiethCentury)

Building a Lucene query with the Hibernate Search query DSL

93

 .createQuery())

 .createQuery();

//look for popular myths that are preferably urban

Query luceneQuery = mythQB

 .bool()

 .should(mythQB.keyword().onField("description").matching("urban").createQuery())

 .must(mythQB.range().onField("starred").above(4).createQuery())

 .createQuery();

//look for all myths except religious ones

Query luceneQuery = mythQB

 .all()

 .except(monthQb

 .keyword()

 .onField("description_stem"

 .matching("religion")

 .createQuery()

)

 .createQuery();

5.1.2.7. Query options

We already have seen several query options in the previous example, but lets summarize again

the options for query types and fields:

• boostedTo (on query type and on field): boost the whole query or the specific field to a given

factor

• withConstantScore (on query): all results matching the query have a constant score equals

to the boost

• filteredBy(Filter) (on query): filter query results using the Filter instance

• ignoreAnalyzer (on field): ignore the analyzer when processing this field

• ignoreFieldBridge (on field): ignore field bridge when processing this field

Let's check out an example using some of these options

Query luceneQuery = mythQB

 .bool()

 .should(mythQB.keyword().onField("description").matching("urban").createQuery())

 .should(mythQB

 .keyword()

 .onField("name")

 .boostedTo(3)

 .ignoreAnalyzer()

 .matching("urban").createQuery())

 .must(mythQB

 .range()

 .boostedTo(5).withConstantScore()

 .onField("starred").above(4).createQuery())

Chapter 5. Querying

94

 .createQuery();

As you can see, the Hibernate Search query DSL is an easy to use and easy to read query API

and by accepting and producing Lucene queries, you can easily incorporate query types not (yet)

supported by the DSL. Please give us feedback!

5.1.3. Building a Hibernate Search query

So far we only covered the process of how to create your Lucene query (see Section 5.1, “Building

queries”). However, this is only the first step in the chain of actions. Let's now see how to build

the Hibernate Search query from the Lucene query.

5.1.3.1. Generality

Once the Lucene query is built, it needs to be wrapped into an Hibernate Query. If not specified

otherwise, the query will be executed against all indexed entities, potentially returning all types

of indexed classes.

Example 5.4. Wrapping a Lucene query into a Hibernate Query

FullTextSession fullTextSession = Search.getFullTextSession(session);

org.hibernate.Query fullTextQuery = fullTextSession.createFullTextQuery(luceneQuery);

It is advised, from a performance point of view, to restrict the returned types:

Example 5.5. Filtering the search result by entity type

fullTextQuery = fullTextSession.createFullTextQuery(luceneQuery, Customer.class);

// or

fullTextQuery = fullTextSession.createFullTextQuery(luceneQuery, Item.class, Actor.class);

In Example 5.5, “Filtering the search result by entity type” the first example returns only

matching Customers, the second returns matching Actors and Items. The type restriction is fully

polymorphic which means that if there are two indexed subclasses Salesman and Customer of

the baseclass Person, it is possible to just specify Person.class in order to filter on result types.

5.1.3.2. Pagination

Out of performance reasons it is recommended to restrict the number of returned objects per

query. In fact is a very common use case anyway that the user navigates from one page to an

other. The way to define pagination is exactly the way you would define pagination in a plain HQL

or Criteria query.

Building a Hibernate Search query

95

Example 5.6. Defining pagination for a search query

org.hibernate.Query fullTextQuery =

 fullTextSession.createFullTextQuery(luceneQuery, Customer.class);

fullTextQuery.setFirstResult(15); //start from the 15th element

fullTextQuery.setMaxResults(10); //return 10 elements

Tip

It is still possible to get the total number of matching elements regardless of the

pagination via fulltextQuery.getResultSize()

5.1.3.3. Sorting

Apache Lucene provides a very flexible and powerful way to sort results. While the default sorting

(by relevance) is appropriate most of the time, it can be interesting to sort by one or several other

properties. In order to do so set the Lucene Sort object to apply a Lucene sorting strategy.

Example 5.7. Specifying a Lucene Sort in order to sort the results

org.hibernate.search.FullTextQuery query = s.createFullTextQuery(query, Book.class);

org.apache.lucene.search.Sort sort = new Sort(new SortField("title"), SortField.STRING);

query.setSort(sort);

List results = query.list();

Tip

Be aware that fields used for sorting must not be tokenized (see Section 4.1.1.2,

“@Field”).

5.1.3.4. Fetching strategy

When you restrict the return types to one class, Hibernate Search loads the objects using a single

query. It also respects the static fetching strategy defined in your domain model.

It is often useful, however, to refine the fetching strategy for a specific use case.

Example 5.8. Specifying FetchMode on a query

Criteria criteria =

 s.createCriteria(Book.class).setFetchMode("authors", FetchMode.JOIN);

Chapter 5. Querying

96

s.createFullTextQuery(luceneQuery).setCriteriaQuery(criteria);

In this example, the query will return all Books matching the luceneQuery. The authors collection

will be loaded from the same query using an SQL outer join.

When defining a criteria query, it is not necessary to restrict the returned entity types when creating

the Hibernate Search query from the full text session: the type is guessed from the criteria query

itself.

Important

Only fetch mode can be adjusted, refrain from applying any other restriction.

Important

One cannot use setCriteriaQuery if more than one entity type is expected to

be returned.

5.1.3.5. Projection

For some use cases, returning the domain object (including its associations) is overkill. Only a

small subset of the properties is necessary. Hibernate Search allows you to return a subset of

properties:

Example 5.9. Using projection instead of returning the full domain object

org.hibernate.search.FullTextQuery query =

 s.createFullTextQuery(luceneQuery, Book.class);

query.setProjection("id", "summary", "body", "mainAuthor.name");

List results = query.list();

Object[] firstResult = (Object[]) results.get(0);

Integer id = firstResult[0];

String summary = firstResult[1];

String body = firstResult[2];

String authorName = firstResult[3];

Hibernate Search extracts the properties from the Lucene index and convert them back to their

object representation, returning a list of Object[]. Projections avoid a potential database round

trip (useful if the query response time is critical). However, it also has several constraints:

• the properties projected must be stored in the index (@Field(store=Store.YES)), which

increases the index size

Building a Hibernate Search query

97

• the properties projected must use a FieldBridge implementing

org.hibernate.search.bridge.TwoWayFieldBridge or

org.hibernate.search.bridge.TwoWayStringBridge, the latter being the simpler version.

Note

All Hibernate Search built-in types are two-way.

• you can only project simple properties of the indexed entity or its embedded associations. This

means you cannot project a whole embedded entity.

• projection does not work on collections or maps which are indexed via @IndexedEmbedded

Projection is also useful for another kind of use case. Lucene can provide metadata information

about the results. By using some special projection constants, the projection mechanism can

retrieve this metadata:

Example 5.10. Using projection in order to retrieve meta data

org.hibernate.search.FullTextQuery query =

 s.createFullTextQuery(luceneQuery, Book.class);

query.setProjection(

 FullTextQuery.SCORE,

 FullTextQuery.THIS,

 "mainAuthor.name");

List results = query.list();

Object[] firstResult = (Object[]) results.get(0);

float score = firstResult[0];

Book book = firstResult[1];

String authorName = firstResult[2];

You can mix and match regular fields and projection constants. Here is the list of the available

constants:

• FullTextQuery.THIS: returns the initialized and managed entity (as a non projected query

would have done).

• FullTextQuery.DOCUMENT: returns the Lucene Document related to the object projected.

• FullTextQuery.OBJECT_CLASS: returns the class of the indexed entity.

• FullTextQuery.SCORE: returns the document score in the query. Scores are handy to compare

one result against an other for a given query but are useless when comparing the result of

different queries.

• FullTextQuery.ID: the id property value of the projected object.

Chapter 5. Querying

98

• FullTextQuery.DOCUMENT_ID: the Lucene document id. Careful, Lucene document id can

change overtime between two different IndexReader opening (this feature is experimental).

• FullTextQuery.EXPLANATION: returns the Lucene Explanation object for the matching object/

document in the given query. Do not use if you retrieve a lot of data. Running explanation

typically is as costly as running the whole Lucene query per matching element. Make sure you

use projection!

5.1.3.6. Limiting the time of a query

You can limit the time a query takes in Hibernate Search in two ways:

• raise an exception when the limit is reached

• limit to the number of results retrieved when the time limit is raised

5.1.3.6.1. Raise an exception on time limit

You can decide to stop a query if when it takes more than a predefined amount of

time. Note that this is a best effort basis but if Hibernate Search still has significant

work to do and if we are beyond the time limit, a QueryTimeoutException will be raised

(org.hibernate.QueryTimeoutException or javax.persistence.QueryTimeoutException

depending on your programmatic API).

To define the limit when using the native Hibernate APIs, use one of the following approaches

Example 5.11. Defining a timeout in query execution

Query luceneQuery = ...;

FullTextQuery query = fullTextSession.createFullTextQuery(luceneQuery, User.class);

//define the timeout in seconds

query.setTimeout(5);

//alternatively, define the timeout in any given time unit

query.setTimeout(450, TimeUnit.MILLISECONDS);

try {

 query.list();

}

catch (org.hibernate.QueryTimeoutException e) {

 //do something, too slow

}

Likewise getResultSize(), iterate() and scroll() honor the timeout but only until the end

of the method call. That simply means that the methods of Iterable or the ScrollableResults

ignore the timeout.

Building a Hibernate Search query

99

Note

explain() does not honor the timeout: this method is used for debug purposes

and in particular to find out why a query is slow

When using JPA, simply use the standard way of limiting query execution time.

Example 5.12. Defining a timeout in query execution

Query luceneQuery = ...;

FullTextQuery query = fullTextEM.createFullTextQuery(luceneQuery, User.class);

//define the timeout in milliseconds

query.setHint("javax.persistence.query.timeout", 450);

try {

 query.getResultList();

}

catch (javax.persistence.QueryTimeoutException e) {

 //do something, too slow

}

Important

Remember, this is a best effort approach and does not guarantee to stop exactly

on the specified timeout.

5.1.3.7. Limit the number of results when the time limit is reached

(EXPERIMENTAL)

Alternatively, you can return the number of results which have already been fetched by the time

the limit is reached. Note that only the Lucene part of the query is influenced by this limit. It is

possible that, if you retrieve managed object, it takes longer to fetch these objects.

Warning

This approach is not compatible with the setTimeout approach.

To define this soft limit, use the following approach

Example 5.13. Defining a time limit in query execution

Query luceneQuery = ...;

Chapter 5. Querying

100

FullTextQuery query = fullTextSession.createFullTextQuery(luceneQuery, User.class);

//define the timeout in seconds

query.limitExecutionTimeTo(500, TimeUnit.MILLISECONDS);

List results = query.list();

Likewise getResultSize(), iterate() and scroll() honor the time limit but only until the end

of the method call. That simply means that the methods of Iterable or the ScrollableResults

ignore the timeout.

You can determine if the results have been partially loaded by invoking the hasPartialResults

method.

Example 5.14. Determines when a query returns partial results

Query luceneQuery = ...;

FullTextQuery query = fullTextSession.createFullTextQuery(luceneQuery, User.class);

//define the timeout in seconds

query.limitExecutionTimeTo(500, TimeUnit.MILLISECONDS);

List results = query.list();

if (query.hasPartialResults()) {

 displayWarningToUser();

}

If you use the JPA API, limitExecutionTimeTo and hasPartialResults are also available to

you.

Warning

This approach is considered experimental

5.2. Retrieving the results

Once the Hibernate Search query is built, executing it is in no way different than executing a HQL

or Criteria query. The same paradigm and object semantic applies. All the common operations

are available: list(), uniqueResult(), iterate(), scroll().

5.2.1. Performance considerations

If you expect a reasonable number of results (for example using pagination) and expect to work on

all of them, list() or uniqueResult() are recommended. list() work best if the entity batch-

size is set up properly. Note that Hibernate Search has to process all Lucene Hits elements

(within the pagination) when using list() , uniqueResult() and iterate().

Result size

101

If you wish to minimize Lucene document loading, scroll() is more appropriate. Don't forget to

close the ScrollableResults object when you're done, since it keeps Lucene resources. If you

expect to use scroll, but wish to load objects in batch, you can use query.setFetchSize().

When an object is accessed, and if not already loaded, Hibernate Search will load the next

fetchSize objects in one pass.

Important

Pagination is a preferred over scrolling.

5.2.2. Result size

It is sometime useful to know the total number of matching documents:

• for the Google-like feature "1-10 of about 888,000,000"

• to implement a fast pagination navigation

• to implement a multi step search engine (adding approximation if the restricted query return no

or not enough results)

Of course it would be too costly to retrieve all the matching documents. Hibernate Search allows

you to retrieve the total number of matching documents regardless of the pagination parameters.

Even more interesting, you can retrieve the number of matching elements without triggering a

single object load.

Example 5.15. Determining the result size of a query

org.hibernate.search.FullTextQuery query =

 s.createFullTextQuery(luceneQuery, Book.class);

//return the number of matching books without loading a single one

assert 3245 == query.getResultSize();

org.hibernate.search.FullTextQuery query =

 s.createFullTextQuery(luceneQuery, Book.class);

query.setMaxResult(10);

List results = query.list();

//return the total number of matching books regardless of pagination

assert 3245 == query.getResultSize();

Note

Like Google, the number of results is approximative if the index is not fully up-to-

date with the database (asynchronous cluster for example).

Chapter 5. Querying

102

5.2.3. ResultTransformer

As seen in Section 5.1.3.5, “Projection” projection results are returns as Object arrays. This data

structure is not always matching the application needs. In this cases It is possible to apply a

ResultTransformer which post query execution can build the needed data structure:

Example 5.16. Using ResultTransformer in conjunction with projections

org.hibernate.search.FullTextQuery query =

 s.createFullTextQuery(luceneQuery, Book.class);

query.setProjection("title", "mainAuthor.name");

query.setResultTransformer(

 new StaticAliasToBeanResultTransformer(

 BookView.class,

 "title",

 "author")

);

List<BookView> results = (List<BookView>) query.list();

for(BookView view : results) {

 log.info("Book: " + view.getTitle() + ", " + view.getAuthor());

}

Examples of ResultTransformer implementations can be found in the Hibernate Core codebase.

5.2.4. Understanding results

You will find yourself sometimes puzzled by a result showing up in a query or a result not showing

up in a query. Luke is a great tool to understand those mysteries. However, Hibernate Search

also gives you access to the Lucene Explanation object for a given result (in a given query). This

class is considered fairly advanced to Lucene users but can provide a good understanding of the

scoring of an object. You have two ways to access the Explanation object for a given result:

• Use the fullTextQuery.explain(int) method

• Use projection

The first approach takes a document id as a parameter and return the Explanation object. The

document id can be retrieved using projection and the FullTextQuery.DOCUMENT_ID constant.

Warning

The Document id has nothing to do with the entity id. Do not mess up these two

notions.

The second approach let's you project the Explanation object using the

FullTextQuery.EXPLANATION constant.

Filters

103

Example 5.17. Retrieving the Lucene Explanation object using projection

FullTextQuery ftQuery = s.createFullTextQuery(luceneQuery, Dvd.class)

 .setProjection(

 FullTextQuery.DOCUMENT_ID,

 FullTextQuery.EXPLANATION,

 FullTextQuery.THIS);

@SuppressWarnings("unchecked") List<Object[]> results = ftQuery.list();

for (Object[] result : results) {

 Explanation e = (Explanation) result[1];

 display(e.toString());

}

Be careful, building the explanation object is quite expensive, it is roughly as expensive as running

the Lucene query again. Don't do it if you don't need the object

5.3. Filters

Apache Lucene has a powerful feature that allows to filter query results according to a custom

filtering process. This is a very powerful way to apply additional data restrictions, especially since

filters can be cached and reused. Some interesting use cases are:

• security

• temporal data (eg. view only last month's data)

• population filter (eg. search limited to a given category)

• and many more

Hibernate Search pushes the concept further by introducing the notion of parameterizable named

filters which are transparently cached. For people familiar with the notion of Hibernate Core filters,

the API is very similar:

Example 5.18. Enabling fulltext filters for a given query

fullTextQuery = s.createFullTextQuery(query, Driver.class);

fullTextQuery.enableFullTextFilter("bestDriver");

fullTextQuery.enableFullTextFilter("security").setParameter("login", "andre");

fullTextQuery.list(); //returns only best drivers where andre has credentials

In this example we enabled two filters on top of the query. You can enable (or disable) as many

filters as you like.

Declaring filters is done through the @FullTextFilterDef annotation. This annotation can be on

any @Indexed entity regardless of the query the filter is later applied to. This implies that filter

Chapter 5. Querying

104

definitions are global and their names must be unique. A SearchException is thrown in case two

different @FullTextFilterDef annotations with the same name are defined. Each named filter

has to specify its actual filter implementation.

Example 5.19. Defining and implementing a Filter

@Entity

@Indexed

@FullTextFilterDefs({

 @FullTextFilterDef(name = "bestDriver", impl = BestDriversFilter.class),

 @FullTextFilterDef(name = "security", impl = SecurityFilterFactory.class)

})

public class Driver { ... }

public class BestDriversFilter extends org.apache.lucene.search.Filter {

 public DocIdSet getDocIdSet(IndexReader reader) throws IOException {

 OpenBitSet bitSet = new OpenBitSet(reader.maxDoc());

 TermDocs termDocs = reader.termDocs(new Term("score", "5"));

 while (termDocs.next()) {

 bitSet.set(termDocs.doc());

 }

 return bitSet;

 }

}

BestDriversFilter is an example of a simple Lucene filter which reduces the result

set to drivers whose score is 5. In this example the specified filter implements the

org.apache.lucene.search.Filter directly and contains a no-arg constructor.

If your Filter creation requires additional steps or if the filter you want to use does not have a no-

arg constructor, you can use the factory pattern:

Example 5.20. Creating a filter using the factory pattern

@Entity

@Indexed

@FullTextFilterDef(name = "bestDriver", impl = BestDriversFilterFactory.class)

public class Driver { ... }

public class BestDriversFilterFactory {

 @Factory

 public Filter getFilter() {

 //some additional steps to cache the filter results per IndexReader

 Filter bestDriversFilter = new BestDriversFilter();

 return new CachingWrapperFilter(bestDriversFilter);

 }

}

Filters

105

Hibernate Search will look for a @Factory annotated method and use it to build the filter instance.

The factory must have a no-arg constructor.

Named filters come in handy where parameters have to be passed to the filter. For example a

security filter might want to know which security level you want to apply:

Example 5.21. Passing parameters to a defined filter

fullTextQuery = s.createFullTextQuery(query, Driver.class);

fullTextQuery.enableFullTextFilter("security").setParameter("level", 5);

Each parameter name should have an associated setter on either the filter or filter factory of the

targeted named filter definition.

Example 5.22. Using parameters in the actual filter implementation

public class SecurityFilterFactory {

 private Integer level;

 /**

 * injected parameter

 */

 public void setLevel(Integer level) {

 this.level = level;

 }

 @Key

 public FilterKey getKey() {

 StandardFilterKey key = new StandardFilterKey();

 key.addParameter(level);

 return key;

 }

 @Factory

 public Filter getFilter() {

 Query query = new TermQuery(new Term("level", level.toString()));

 return new CachingWrapperFilter(new QueryWrapperFilter(query));

 }

}

Note the method annotated @Key returning a FilterKey object. The returned object has a special

contract: the key object must implement equals() / hashCode() so that 2 keys are equal if and

only if the given Filter types are the same and the set of parameters are the same. In other

words, 2 filter keys are equal if and only if the filters from which the keys are generated can be

interchanged. The key object is used as a key in the cache mechanism.

@Key methods are needed only if:

• you enabled the filter caching system (enabled by default)

Chapter 5. Querying

106

• your filter has parameters

In most cases, using the StandardFilterKey implementation will be good enough. It delegates

the equals() / hashCode() implementation to each of the parameters equals and hashcode

methods.

As mentioned before the defined filters are per default cached and the cache uses a combination

of hard and soft references to allow disposal of memory when needed. The hard reference

cache keeps track of the most recently used filters and transforms the ones least used to

SoftReferences when needed. Once the limit of the hard reference cache is reached additional

filters are cached as SoftReferences. To adjust the size of the hard reference cache, use

hibernate.search.filter.cache_strategy.size (defaults to 128). For advanced use of filter

caching, you can implement your own FilterCachingStrategy. The classname is defined by

hibernate.search.filter.cache_strategy.

This filter caching mechanism should not be confused with caching the actual filter

results. In Lucene it is common practice to wrap filters using the IndexReader around

a CachingWrapperFilter. The wrapper will cache the DocIdSet returned from the

getDocIdSet(IndexReader reader) method to avoid expensive recomputation. It is important

to mention that the computed DocIdSet is only cachable for the same IndexReader instance,

because the reader effectively represents the state of the index at the moment it was opened.

The document list cannot change within an opened IndexReader. A different/new IndexReader

instance, however, works potentially on a different set of Documents (either from a different index

or simply because the index has changed), hence the cached DocIdSet has to be recomputed.

Hibernate Search also helps with this aspect of caching. Per default the cache flag

of @FullTextFilterDef is set to FilterCacheModeType.INSTANCE_AND_DOCIDSETRESULTS

which will automatically cache the filter instance as well as wrap the

specified filter around a Hibernate specific implementation of CachingWrapperFilter

(org.hibernate.search.filter.CachingWrapperFilter). In contrast to Lucene's version

of this class SoftReferences are used together with a hard reference count (see

discussion about filter cache). The hard reference count can be adjusted using

hibernate.search.filter.cache_docidresults.size (defaults to 5). The wrapping behaviour

can be controlled using the @FullTextFilterDef.cache parameter. There are three different

values for this parameter:

Value Definition

FilterCacheModeType.NONE No filter instance and no result is cached by

Hibernate Search. For every filter call, a new

filter instance is created. This setting might

be useful for rapidly changing data sets or

heavily memory constrained environments.

FilterCacheModeType.INSTANCE_ONLY The filter instance is cached and reused

across concurrent Filter.getDocIdSet()

calls. DocIdSet results are not cached. This

setting is useful when a filter uses its own

Using filters in a sharded environment

107

Value Definition

specific caching mechanism or the filter

results change dynamically due to application

specific events making DocIdSet caching in

both cases unnecessary.

FilterCacheModeType.INSTANCE_AND_DOCIDSETRESULTSBoth the filter instance and the DocIdSet

results are cached. This is the default value.

Last but not least - why should filters be cached? There are two areas where filter caching shines:

• the system does not update the targeted entity index often (in other words, the IndexReader

is reused a lot)

• the Filter's DocIdSet is expensive to compute (compared to the time spent to execute the query)

5.3.1. Using filters in a sharded environment

It is possible, in a sharded environment to execute queries on a subset of the available shards.

This can be done in two steps:

• create a sharding strategy that does select a subset of DirectoryProviders depending on

sone filter configuration

• activate the proper filter at query time

Let's first look at an example of sharding strategy that query on a specific customer shard if the

customer filter is activated.

public class CustomerShardingStrategy implements IndexShardingStrategy {

 // stored DirectoryProviders in a array indexed by customerID

 private DirectoryProvider<?>[] providers;

 public void initialize(Properties properties, DirectoryProvider<?>[] providers) {

 this.providers = providers;

 }

 public DirectoryProvider<?>[] getDirectoryProvidersForAllShards() {

 return providers;

 }

 public DirectoryProvider<?> getDirectoryProviderForAddition(Class<?> entity, Serializable id,

 String idInString, Document document) {

 Integer customerID = Integer.parseInt(document.getField("customerID").stringValue());

 return providers[customerID];

 }

 public DirectoryProvider<?>[] getDirectoryProvidersForDeletion(Class<?> entity, Serializable

 id, String idInString) {

Chapter 5. Querying

108

 return getDirectoryProvidersForAllShards();

 }

 /**

 * Optimization; don't search ALL shards and union the results; in this case, we

 * can be certain that all the data for a particular customer Filter is in a single

 * shard; simply return that shard by customerID.

 */

 public DirectoryProvider<?>[] getDirectoryProvidersForQuery(FullTextFilterImplementor[]

 filters) {

 FFullTextFilter filter = getCustomerFilter(filters, "customer");

 if (filter == null) {

 return getDirectoryProvidersForAllShards();

 }

 else {

 return new DirectoryProvider[]

 { providers[Integer.parseInt(filter.getParameter("customerID").toString())] };

 }

 }

 private FullTextFilter getFilter(FullTextFilterImplementor[] filters, String name) {

 for (FullTextFilterImplementor filter: filters) {

 if (filter.getName().equals(name)) return filter;

 }

 return null;

 }

}

In this example, if the filter named customer is present, we make sure to only use the shard

dedicated to this customer. Otherwise, we return all shards. A given Sharding strategy can react

to one or more filters and depends on their parameters.

The second step is simply to activate the filter at query time. While the filter can be a regular filter

(as defined in Section 5.3, “Filters”) which also filters Lucene results after the query, you can make

use of a special filter that will only be passed to the sharding strategy and otherwise ignored for the

rest of the query. Simply use the ShardSensitiveOnlyFilter class when declaring your filter.

@Entity @Indexed

@FullTextFilterDef(name="customer", impl=ShardSensitiveOnlyFilter.class)

public class Customer {

 ...

}

FullTextQuery query = ftEm.createFullTextQuery(luceneQuery, Customer.class);

query.enableFulltextFilter("customer").setParameter("CustomerID", 5);

@SuppressWarnings("unchecked")

List<Customer> results = query.getResultList();

Note that by using the ShardSensitiveOnlyFilter, you do not have to implement any Lucene

filter. Using filters and sharding strategy reacting to these filters is recommended to speed up

queries in a sharded environment.

Optimizing the query process

109

5.4. Optimizing the query process

Query performance depends on several criteria:

• the Lucene query itself: read the literature on this subject

• the number of object loaded: use pagination (always ;-)) or index projection (if needed)

• the way Hibernate Search interacts with the Lucene readers: defines the appropriate Reader

strategy.

110

Chapter 6.

111

Manual index changes
As Hibernate core applies changes to the Database, Hibernate Search detects these changes and

will update the index automatically (unless the EventListeners are disabled). Sometimes changes

are made to the database without using Hibernate, as when backup is restored or your data is

otherwise affected; for these cases Hibernate Search exposes the Manual Index APIs to explicitly

update or remove a single entity from the index, or rebuild the index for the whole database, or

remove all references to a specific type.

All these methods affect the Lucene Index only, no changes are applied to the Database.

6.1. Adding instances to the index

Using FullTextSession.index(T entity) you can directly add or update a specific object

instance to the index. If this entity was already indexed, then the index will be updated. Changes

to the index are only applied at transaction commit.

Example 6.1. Indexing an entity via FullTextSession.index(T entity)

FullTextSession fullTextSession = Search.getFullTextSession(session);

Transaction tx = fullTextSession.beginTransaction();

Object customer = fullTextSession.load(Customer.class, 8);

fullTextSession.index(customer);

tx.commit(); //index only updated at commit time

In case you want to add all instances for a type, or for all indexed types, the recommended

approach is to use a MassIndexer: see Section 6.3.2, “Using a MassIndexer” for more details.

6.2. Deleting instances from the index

It is equally possible to remove an entity or all entities of a given type from a Lucene index without

the need to physically remove them from the database. This operation is named purging and is

also done through the FullTextSession.

Example 6.2. Purging a specific instance of an entity from the index

FullTextSession fullTextSession = Search.getFullTextSession(session);

Transaction tx = fullTextSession.beginTransaction();

for (Customer customer : customers) {

 fullTextSession.purge(Customer.class, customer.getId());

}

tx.commit(); //index is updated at commit time

Purging will remove the entity with the given id from the Lucene index but will not touch the

database.

Chapter 6. Manual index changes

112

If you need to remove all entities of a given type, you can use the purgeAll method. This operation

removes all entities of the type passed as a parameter as well as all its subtypes.

Example 6.3. Purging all instances of an entity from the index

FullTextSession fullTextSession = Search.getFullTextSession(session);

Transaction tx = fullTextSession.beginTransaction();

fullTextSession.purgeAll(Customer.class);

//optionally optimize the index

//fullTextSession.getSearchFactory().optimize(Customer.class);

tx.commit(); //index changes are applied at commit time

It is recommended to optimize the index after such an operation.

Note

Methods index, purge and purgeAll are available on FullTextEntityManager

as well.

Note

All manual indexing methods (index, purge and purgeAll) only affect the index,

not the database, nevertheless they are transactional and as such they won't

be applied until the transaction is successfully committed, or you make use of

flushToIndexes.

6.3. Rebuilding the whole index

If you change the entity mapping to the index, chances are that the whole Index needs to be

updated; For example if you decide to index a an existing field using a different analyzer you'll

need to rebuild the index for affected types. Also if the Database is replaced (like restored from a

backup, imported from a legacy system) you'll want to be able to rebuild the index from existing

data. Hibernate Search provides two main strategies to choose from:

• Using FullTextSession.flushToIndexes() periodically, while using

FullTextSession.index() on all entities.

• Use a MassIndexer.

6.3.1. Using flushToIndexes()

This strategy consists in removing the existing index and then adding all entities back to the

index using FullTextSession.purgeAll() and FullTextSession.index(), however there are

some memory and efficiency contraints. For maximum efficiency Hibernate Search batches index

Using a MassIndexer

113

operations and executes them at commit time. If you expect to index a lot of data you need

to be careful about memory consumption since all documents are kept in a queue until the

transaction commit. You can potentially face an OutOfMemoryException if you don't empty the

queue periodically: to do this you can use fullTextSession.flushToIndexes(). Every time

fullTextSession.flushToIndexes() is called (or if the transaction is committed), the batch

queue is processed applying all index changes. Be aware that, once flushed, the changes cannot

be rolled back.

Example 6.4. Index rebuilding using index() and flushToIndexes()

fullTextSession.setFlushMode(FlushMode.MANUAL);

fullTextSession.setCacheMode(CacheMode.IGNORE);

transaction = fullTextSession.beginTransaction();

//Scrollable results will avoid loading too many objects in memory

ScrollableResults results = fullTextSession.createCriteria(Email.class)

 .setFetchSize(BATCH_SIZE)

 .scroll(ScrollMode.FORWARD_ONLY);

int index = 0;

while(results.next()) {

 index++;

 fullTextSession.index(results.get(0)); //index each element

 if (index % BATCH_SIZE == 0) {

 fullTextSession.flushToIndexes(); //apply changes to indexes

 fullTextSession.clear(); //free memory since the queue is processed

 }

}

transaction.commit();

Note

hibernate.search.worker.batch_size has been deprecated in favor of this

explicit API which provides better control

Try to use a batch size that guarantees that your application will not run out of memory: with a

bigger batch size objects are fetched faster from database but more memory is needed.

6.3.2. Using a MassIndexer

Hibernate Search's MassIndexer uses several parallel threads to rebuild the index; you can

optionally select which entities need to be reloaded or have it reindex all entities. This approach is

optimized for best performance but requires to set the application in maintenance mode: making

queries to the index is not recommended when a MassIndexer is busy.

Example 6.5. Index rebuilding using a MassIndexer

fullTextSession.createIndexer().startAndWait();

Chapter 6. Manual index changes

114

This will rebuild the index, deleting it and then reloading all entities from the database. Although

it's simple to use, some tweaking is recommended to speed up the process: there are several

parameters configurable.

Warning

During the progress of a MassIndexer the content of the index is undefined, make

sure that nobody will try to make some query during index rebuilding! If somebody

should query the index it will not corrupt but most results will likely be missing.

Example 6.6. Using a tuned MassIndexer

fullTextSession

 .createIndexer(User.class)

 .batchSizeToLoadObjects(25)

 .cacheMode(CacheMode.NORMAL)

 .threadsToLoadObjects(5)

 .threadsForSubsequentFetching(20)

 .startAndWait();

This will rebuild the index of all User instances (and subtypes), and will create 5 parallel threads

to load the User instances using batches of 25 objects per query; these loaded User instances

are then pipelined to 20 parallel threads to load the attached lazy collections of User containing

some information needed for the index.

It is recommended to leave cacheMode to CacheMode.IGNORE (the default), as in most reindexing

situations the cache will be a useless additional overhead; it might be useful to enable some other

CacheMode depending on your data: it might increase performance if the main entity is relating to

enum-like data included in the index.

Tip

The "sweet spot" of number of threads to achieve best performance is highly

dependent on your overall architecture, database design and even data values. To

find out the best number of threads for your application it is recommended to use

a profiler: all internal thread groups have meaningful names to be easily identified

with most tools.

Note

The MassIndexer was designed for speed and is unaware of transactions, so there

is no need to begin one or committing. Also because it is not transactional it is not

Using a MassIndexer

115

recommended to let users use the system during it's processing, as it is unlikely

people will be able to find results and the system load might be too high anyway.

Other parameters which also affect indexing time and memory consumption are:

• hibernate.search.[default|<indexname>].exclusive_index_use

• hibernate.search.[default|<indexname>].indexwriter.batch.max_buffered_docs

• hibernate.search.[default|<indexname>].indexwriter.batch.max_field_length

• hibernate.search.[default|<indexname>].indexwriter.batch.max_merge_docs

• hibernate.search.[default|<indexname>].indexwriter.batch.merge_factor

• hibernate.search.[default|<indexname>].indexwriter.batch.ram_buffer_size

• hibernate.search.[default|<indexname>].indexwriter.batch.term_index_interval

All .indexwriter parameters are Lucene specific and Hibernate Search is just passing these

parameters through - see Section 3.10, “Tuning Lucene indexing performance” for more details.

116

Chapter 7.

117

Index Optimization
From time to time, the Lucene index needs to be optimized. The process is essentially a

defragmentation. Until an optimization is triggered Lucene only marks deleted documents as such,

no physical deletions are applied. During the optimization process the deletions will be applied

which also effects the number of files in the Lucene Directory.

Optimizing the Lucene index speeds up searches but has no effect on the indexation (update)

performance. During an optimization, searches can be performed, but will most likely be slowed

down. All index updates will be stopped. It is recommended to schedule optimization:

• on an idle system or when the searches are less frequent

• after a lot of index modifications

When using a MassIndexer (see Section 6.3.2, “Using a MassIndexer”) it will optimize involved

indexes by default at the start and at the end of processing; you can change this behavior by using

respectively MassIndexer.optimizeAfterPurge and MassIndexer.optimizeOnFinish.

7.1. Automatic optimization

Hibernate Search can automatically optimize an index after:

• a certain amount of operations (insertion, deletion)

• or a certain amount of transactions

The configuration for automatic index optimization can be defined on a global level or per index:

Example 7.1. Defining automatic optimization parameters

hibernate.search.default.optimizer.operation_limit.max = 1000

hibernate.search.default.optimizer.transaction_limit.max = 100

hibernate.search.Animal.optimizer.transaction_limit.max = 50

An optimization will be triggered to the Animal index as soon as either:

• the number of additions and deletions reaches 1000

• the number of transactions reaches 50

(hibernate.search.Animal.optimizer.transaction_limit.max having priority over

hibernate.search.default.optimizer.transaction_limit.max)

If none of these parameters are defined, no optimization is processed automatically.

Chapter 7. Index Optimization

118

7.2. Manual optimization

You can programmatically optimize (defragment) a Lucene index from Hibernate Search through

the SearchFactory:

Example 7.2. Programmatic index optimization

FullTextSession fullTextSession = Search.getFullTextSession(regularSession);

SearchFactory searchFactory = fullTextSession.getSearchFactory();

searchFactory.optimize(Order.class);

// or

searchFactory.optimize();

The first example optimizes the Lucene index holding Orders; the second, optimizes all indexes.

Note

searchFactory.optimize() has no effect on a JMS backend. You must apply

the optimize operation on the Master node.

7.3. Adjusting optimization

Apache Lucene has a few parameters to influence how optimization is performed. Hibernate

Search exposes those parameters.

Further index optimization parameters include:

• hibernate.search.[default|<indexname>].indexwriter.[batch|

transaction].max_buffered_docs

• hibernate.search.[default|<indexname>].indexwriter.[batch|

transaction].max_field_length

• hibernate.search.[default|<indexname>].indexwriter.[batch|

transaction].max_merge_docs

• hibernate.search.[default|<indexname>].indexwriter.[batch|

transaction].merge_factor

• hibernate.search.[default|<indexname>].indexwriter.[batch|

transaction].ram_buffer_size

• hibernate.search.[default|<indexname>].indexwriter.[batch|

transaction].term_index_interval

Adjusting optimization

119

See Section 3.10, “Tuning Lucene indexing performance” for more details.

120

Chapter 8.

121

Monitoring
Hibernate Search offers access to a Statistics object via SearchFactory.getStatistics().

It allows you for example to determine which classes are indexed and how many

entities are in the index. This information is always available. However, by specifying the

hibernate.search.generate_statistics property in your configuration you can also collect

total and average Lucene query and object loading timings.

8.1. JMX

You can also enable access to the statistics via JMX. Setting

the property hibernate.search.jmx_enabled will automatically register the

StatisticsInfoMBean. Depending on your the configuration the IndexControlMBean and

IndexingProgressMonitorMBean will also be registered. Lets have a closer look at the different

MBeans.

Tip

If you want to access your JMX beans remotely via JConsole make sure to set the

system property com.sun.management.jmxremote to true.

8.1.1. StatisticsInfoMBean

This MBean gives you access to Statistics object as desribed in the previous section.

8.1.2. IndexControlMBean

This MBean allows to build, optimize and purge the index for a given entity. Indexing occurs

via the mass indexing API (seeSection 6.3.2, “Using a MassIndexer”). A requirement for this

bean to be registered in JMX is, that the Hibernate SessionFactory is bound to JNDI via

the hibernate.session_factory_name property. Refer to the Hibernate Core manual for more

information on how to configure JNDI. The IndexControlMBean and its API are for now

experimental.

8.1.3. IndexingProgressMonitorMBean

This MBean is an implementation MassIndexerProgressMonitor interface. If

hibernate.search.jmx_enabled is enabled and the mass indexer API is used the indexing

progress can be followed via this bean. The bean will only be bound to JMX while indexing is in

progress. Once indexing is completed the MBean is not longer available.

122

Chapter 9.

123

Advanced features
In this final chapter we are offering a smorgasbord of tips and tricks which might become useful

as you dive deeper and deeper into Hibernate Search.

9.1. Accessing the SearchFactory

The SearchFactory object keeps track of the underlying Lucene resources for Hibernate Search.

It is a convenient way to access Lucene natively. The SearchFactory can be accessed from a

FullTextSession:

Example 9.1. Accessing the SearchFactory

FullTextSession fullTextSession = Search.getFullTextSession(regularSession);

SearchFactory searchFactory = fullTextSession.getSearchFactory();

9.2. Accessing a Lucene Directory

You can always access the Lucene directories through plain Lucene. The Directory structure is

in no way different with or without Hibernate Search. However there are some more convenient

ways to access a given Directory. The SearchFactory keeps track of the DirectoryProviders

per indexed class. One directory provider can be shared amongst several indexed classes, if the

classes share the same underlying index directory. While usually not the case, a given entity can

have several DirectoryProviders if the index is sharded (see Section 3.3, “Sharding indexes”).

Example 9.2. Accessing the Lucene Directory

DirectoryProvider[] provider = searchFactory.getDirectoryProviders(Order.class);

org.apache.lucene.store.Directory directory = provider[0].getDirectory();

In this example, directory points to the lucene index storing Orders information. Note that the

obtained Lucene directory must not be closed (this is Hibernate Search's responsibility).

9.3. Using an IndexReader

Queries in Lucene are executed on an IndexReader. Hibernate Search caches all index readers

to maximize performance. Your code can access this cached resources, but you have to follow

some "good citizen" rules.

Example 9.3. Accessing an IndexReader

DirectoryProvider orderProvider = searchFactory.getDirectoryProviders(Order.class)[0];

Chapter 9. Advanced features

124

DirectoryProvider clientProvider = searchFactory.getDirectoryProviders(Client.class)[0];

ReaderProvider readerProvider = searchFactory.getReaderProvider();

IndexReader reader = readerProvider.openReader(orderProvider, clientProvider);

try {

 //do read-only operations on the reader

}

finally {

 readerProvider.closeReader(reader);

}

The ReaderProvider (described inReader strategy), will open an IndexReader on top of the

index(es) referenced by the directory providers. Because this IndexReader is shared amongst

several clients, you must adhere to the following rules:

• Never call indexReader.close(), but always call readerProvider.closeReader(reader), preferably

in a finally block.

• Don't use this IndexReader for modification operations (you would get an exception). If you

want to use a read/write index reader, open one from the Lucene Directory object.

Aside from those rules, you can use the IndexReader freely, especially to do native queries. Using

the shared IndexReaders will make most queries more efficient.

9.4. Use external services in Hibernate Search

components (experimental)

By components, this section means any of the pluggable contracts - DirectoryProvider being

the most useful use case:

• DirectoryProvider

• ReaderProvider

• OptimizerStrategy

• BackendQueueProcessorFactory

• Worker

Some of these compnents need to access a service which is either available in the environment

or whose lifecycle is bound to the SearchFactory. Sometimes, you even want the same service

to be shared amongst several instances of these contract. One example is the ability the share an

Infinispan cache instance between several directory providers to store the various indexes using

the same underlying infrastructure.

Exposing a service

125

9.4.1. Exposing a service

To expose a service, you need to implement

org.hibernate.search.spi.ServiceProvider<T>. T is the type of the service you want to use.

Services are retrieved by components via their ServiceProvider class implementation.

9.4.1.1. Managed services

If your service ought to be started when Hibernate Search starts and stopped when Hibernate

Search stops, you can use a managed service. Make sure to properly implement the start and

stop methods of ServiceProvider. When the service is requested, the getService method is

called.

Example 9.4. Example of ServiceProvider implementation

public class CacheServiceProvider implements ServiceProvider<Cache> {

 private CacheManager manager;

 public void start(Properties properties) {

 //read configuration

 manager = new CacheManager(properties);

 }

 public Cache getService() {

 return manager.getCache(DEFAULT);

 }

 void stop() {

 manager.close();

 }

}

Note

The ServiceProvider implementation must have a no-arg constructor.

To be transparently discoverable, such service should have an accompanying META-INF/

services/org.hibernate.search.spi.ServiceProvider whose content list the (various)

service provider implementation(s).

Example 9.5. Content of META-INF/services/

org.hibernate.search.spi.ServiceProvider

com.acme.infra.hibernate.CacheServiceProvider

Chapter 9. Advanced features

126

9.4.1.2. Provided services

Alternatively, the service can be provided by the environment bootstrapping Hibernate Search.

For example, Infinispan which uses Hibernate Search as its internal search engine can pass the

CacheContainer to Hibernate Search. In this case, the CacheContainer instance is not managed

by Hibernate Search and the start/stop methods of its corresponding service provider will not

be used.

Note

Provided services have priority over managed services. If a provider service is

registered with the same ServiceProvider class as a managed service, the

provided service will be used.

The provided services are passed to Hibernate Search via the SearchConfiguration interface

(getProvidedServices).

Important

Provided services are used by frameworks controlling the lifecycle of Hibernate

Search and not by traditional users.

If, as a user, you want to retrieve a service instance from the environment, use registry services

like JNDI and look the service up in the provider.

9.4.2. Using a service

Many of of the pluggable contracts of Hibernate Search can use services. Services are accessible

via the BuildContext interface.

Example 9.6. Example of a directory provider using a cache service

public CustomDirectoryProvider implements DirectoryProvider<RAMDirectory> {

 private BuildContext context;

 public void initialize(

 String directoryProviderName,

 Properties properties,

 BuildContext context) {

 //initialize

 this.context = context;

 }

 public void start() {

 Cache cache = context.requestService(CacheServiceProvider.class);

 //use cache

Customizing Lucene's scoring formula

127

 }

 public RAMDirectory getDirectory() {

 // use cache

 }

 public stop() {

 //stop services

 context.releaseService(CacheServiceProvider.class);

 }

}

When you request a service, an instance of the service is served to you. Make sure to

then release the service. This is fundamental. Note that the service can be released in the

DirectoryProvider.stop method if the DirectoryProvider uses the service during its lifetime

or could be released right away of the service is simply used at initialization time.

9.5. Customizing Lucene's scoring formula

Lucene allows the user to customize its scoring formula by extending

org.apache.lucene.search.Similarity. The abstract methods defined in this class match the

factors of the following formula calculating the score of query q for document d:

score(q,d) = coord(q,d) · queryNorm(q) · ∑ t in q (tf(t in d) · idf(t) 2 · t.getBoost() · norm(t,d))

Factor Description

tf(t ind) Term frequency factor for the term (t) in the

document (d).

idf(t) Inverse document frequency of the term.

coord(q,d) Score factor based on how many of the query

terms are found in the specified document.

queryNorm(q) Normalizing factor used to make scores

between queries comparable.

t.getBoost() Field boost.

norm(t,d) Encapsulates a few (indexing time) boost and

length factors.

It is beyond the scope of this manual to explain this formula in more detail. Please refer to

Similarity's Javadocs for more information.

Hibernate Search provides three ways to modify Lucene's similarity calculation.

First you can set the default similarity by specifying the fully specified classname of your

Similarity implementation using the property hibernate.search.similarity. The default

value is org.apache.lucene.search.DefaultSimilarity.

You can also override the similarity used for a specific index by setting the similarity property

Chapter 9. Advanced features

128

hibernate.search.default.similarity my.custom.Similarity

Finally you can override the default similarity on class level using the @Similarity annotation.

@Entity

@Indexed

@Similarity(impl = DummySimilarity.class)

public class Book {

...

}

As an example, let's assume it is not important how often a term appears in a document.

Documents with a single occurrence of the term should be scored the same as documents with

multiple occurrences. In this case your custom implementation of the method tf(float freq)

should return 1.0.

Warning

When two entities share the same index they must declare the same Similarity

implementation. Classes in the same class hierarchy always share the index, so

it's not allowed to override the Similarity implementation in a subtype.

Likewise, it does not make sense to define the similarity via the index setting and

the class-level setting as they would conflict. Such a configuration will be rejected.

Chapter 10.

129

Further reading
Last but not least, a few pointers to further information. He highly recommend you to get a

copy Hibernate Search in Action [http://www.manning.com/bernard/]. This excellent book covers

Hibernate Search in much more depth than this online documentation can and has a great range

of additional examples. If you want to increase your knowledge in Lucene we recommend Lucene

in Action (Second Edition) [http://www.manning.com/hatcher3/]. Because Hibernate Search's

functionality is tightly coupled to Hibernate Core is it a good idea to understand Hibernate in more

detail. Start with the online documentation [http://www.hibernate.org/docs] or get hold of a copy

of Java Persistence with Hibernate [http://www.manning.com/bauer2/].

If you have any further questions regarding Hibernate Search or want to share some of your use

cases have a look at the Hibernate Search Wiki [http://community.jboss.org/en/hibernate/search]

and the Hibernate Search Forum [https://forum.hibernate.org/viewforum.php?f=9]. We are looking

forward hearing from you.

In case you would like to report a bug use the Hibernate Search Jira [http://

opensource.atlassian.com/projects/hibernate/browse/HSEARCH] instance. Feedback is always

welcome!

http://www.manning.com/bernard/
http://www.manning.com/bernard/
http://www.manning.com/hatcher3/
http://www.manning.com/hatcher3/
http://www.manning.com/hatcher3/
http://www.hibernate.org/docs
http://www.hibernate.org/docs
http://www.manning.com/bauer2/
http://www.manning.com/bauer2/
http://community.jboss.org/en/hibernate/search
http://community.jboss.org/en/hibernate/search
https://forum.hibernate.org/viewforum.php?f=9
https://forum.hibernate.org/viewforum.php?f=9
http://opensource.atlassian.com/projects/hibernate/browse/HSEARCH
http://opensource.atlassian.com/projects/hibernate/browse/HSEARCH
http://opensource.atlassian.com/projects/hibernate/browse/HSEARCH

130

	Hibernate Search
	Table of Contents
	Preface
	Chapter 1. Getting started
	1.1. System Requirements
	1.2. Using Maven
	1.3. Configuration
	1.4. Indexing
	1.5. Searching
	1.6. Analyzer
	1.7. What's next

	Chapter 2. Architecture
	2.1. Overview
	2.2. Back end
	2.2.1. Back end types
	2.2.1.1. Lucene
	2.2.1.2. JMS
	2.2.1.3. JGroups

	2.2.2. Work execution
	2.2.2.1. Synchronous
	2.2.2.2. Asynchronous

	2.3. Reader strategy
	2.3.1. Shared
	2.3.2. Not-shared
	2.3.3. Custom

	Chapter 3. Configuration
	3.1. Enabling Hibernate Search and automatic indexing
	3.1.1. Enabling Hibernate Search
	3.1.2. Automatic indexing

	3.2. Directory configuration
	3.3. Sharding indexes
	3.4. Sharing indexes
	3.5. Worker configuration
	3.6. JMS Master/Slave configuration
	3.6.1. Slave nodes
	3.6.2. Master node

	3.7. JGroups Master/Slave configuration
	3.7.1. Slave nodes
	3.7.2. Master node
	3.7.3. JGroups channel configuration

	3.8. Infinispan Directory configuration
	3.8.1. Requirements
	3.8.2. Architecture
	3.8.3. Infinispan Configuration

	3.9. Reader strategy configuration
	3.10. Tuning Lucene indexing performance
	3.11. LockFactory configuration
	3.12. Exception Handling Configuration

	Chapter 4. Mapping entities to the index structure
	4.1. Mapping an entity
	4.1.1. Basic mapping
	4.1.1.1. @Indexed
	4.1.1.2. @Field
	4.1.1.3. @NumericField
	4.1.1.4. @Id

	4.1.2. Mapping properties multiple times
	4.1.3. Embedded and associated objects

	4.2. Boosting
	4.2.1. Static index time boosting
	4.2.2. Dynamic index time boosting

	4.3. Analysis
	4.3.1. Default analyzer and analyzer by class
	4.3.2. Named analyzers
	4.3.2.1. Available analyzers

	4.3.3. Dynamic analyzer selection (experimental)
	4.3.4. Retrieving an analyzer

	4.4. Bridges
	4.4.1. Built-in bridges
	4.4.2. Custom bridges
	4.4.2.1. StringBridge
	4.4.2.1.1. Parameterized bridge
	4.4.2.1.2. Type aware bridge
	4.4.2.1.3. Two-way bridge

	4.4.2.2. FieldBridge
	4.4.2.3. ClassBridge

	4.5. Providing your own id
	4.5.1. The ProvidedId annotation

	4.6. Programmatic API
	4.6.1. Mapping an entity as indexable
	4.6.2. Adding DocumentId to indexed entity
	4.6.3. Defining analyzers
	4.6.4. Defining full text filter definitions
	4.6.5. Defining fields for indexing
	4.6.6. Programmatically defining embedded entities
	4.6.7. Contained In definition
	4.6.8. Date/Calendar Bridge
	4.6.9. Defining bridges
	4.6.10. Mapping class bridge
	4.6.11. Mapping dynamic boost

	Chapter 5. Querying
	5.1. Building queries
	5.1.1. Building a Lucene query using the Lucene API
	5.1.2. Building a Lucene query with the Hibernate Search query DSL
	5.1.2.1. Keyword queries
	5.1.2.2. Fuzzy queries
	5.1.2.3. Wildcard queries
	5.1.2.4. Phrase queries
	5.1.2.5. Range queries
	5.1.2.6. Combining queries
	5.1.2.7. Query options

	5.1.3. Building a Hibernate Search query
	5.1.3.1. Generality
	5.1.3.2. Pagination
	5.1.3.3. Sorting
	5.1.3.4. Fetching strategy
	5.1.3.5. Projection
	5.1.3.6. Limiting the time of a query
	5.1.3.6.1. Raise an exception on time limit

	5.1.3.7. Limit the number of results when the time limit is reached (EXPERIMENTAL)

	5.2. Retrieving the results
	5.2.1. Performance considerations
	5.2.2. Result size
	5.2.3. ResultTransformer
	5.2.4. Understanding results

	5.3. Filters
	5.3.1. Using filters in a sharded environment

	5.4. Optimizing the query process

	Chapter 6. Manual index changes
	6.1. Adding instances to the index
	6.2. Deleting instances from the index
	6.3. Rebuilding the whole index
	6.3.1. Using flushToIndexes()
	6.3.2. Using a MassIndexer

	Chapter 7. Index Optimization
	7.1. Automatic optimization
	7.2. Manual optimization
	7.3. Adjusting optimization

	Chapter 8. Monitoring
	8.1. JMX
	8.1.1. StatisticsInfoMBean
	8.1.2. IndexControlMBean
	8.1.3. IndexingProgressMonitorMBean

	Chapter 9. Advanced features
	9.1. Accessing the SearchFactory
	9.2. Accessing a Lucene Directory
	9.3. Using an IndexReader
	9.4. Use external services in Hibernate Search components (experimental)
	9.4.1. Exposing a service
	9.4.1.1. Managed services
	9.4.1.2. Provided services

	9.4.2. Using a service

	9.5. Customizing Lucene's scoring formula

	Chapter 10. Further reading

