Hibernate Search

Apache Lucene™
Integration

Reference Guide

3.4.2.Final

g (=] = o1 <Y Vii

I 1= 1 o T3 = =T PN 1
1.1. SyStem REQUIFEIMENTSoiiiiiiieeiiii ettt e e e e e e e 1
I U LT o Y = Y= o PN 2
IS R O] o1 To U] 7= 11T] o PP PPTT R PPPPT 3
S [Vo =] o 7
1.5, SEAICIING .ttt e e e et e aee 7
1.6, ANAIYZET e 8
R VAT o T = 1= P 10

A N o 11 (=T o] AU = TSP 11
N O 1YY YT P 11
2.2, BACK BN oiiii e 12

2.2.1. BACK €N LYPES ..ovieiiiiii ettt 12
2.2.2. WOIK @XECULION ...iiiiiieiiiii e et e e e e et e e 14
2.3. REAGERT SITALEY .. eieeriieeiiti ettt et e ettt 14
2.3.1. SNAIEA ..ciiiieee e 14
2.3.2. NOE-SNAIEA ...ciici e e 15
A TR T O 1 1= (o] o PP UPTPT 15

T ©7o] o) 1o U1 2= 11T o] o H PP TOPPPTR PPN 17

3.1. Enabling Hibernate Search and automatic indexingccc.cccovvviiieeiiiieiiineeeneennn, 17
3.1.1. Enabling Hibernate Searchccooiiiiiiiiiiii e 17
3.1.2. AULOMALIC INAEXING ...civeneiiii i e e e e et e e e e eaes 17

3.2. Directory CONfIQUIALIONc.uuuiiiiiieieii ettt 17

3.3. Sharding INAEXEScouiiiiiiiiii e e e e e e e aanas 23

3.4, SNAING INUEXES ...euiiiiiiie ettt et e e et e e e e e aaa s 25

3.5. WOrker CONfIQUIAtIONiiiiiiiii e e e e e e e e e et e e e e eeas 25

3.6. IMS Master/Slave CONfIQUIAtIoNoooiiuiiiiiiiiiie e 28
G T8 I F= 1Y T g (o T [PP 29
BT /- T3 (=T g o o = 30

3.7. JGroups Master/Slave configurationcccoeeiiiiiii i 31
T T o1 = 1Y T To (=P 31
I A IV - 13 (T g g T T [PP 32
3.7.3. JGroups channel configurationocoeuiiiiiiiiiniii e 32

3.8. Infinispan Directory configurationccooeiiiiiiiiiiiii e 33
3.8.1. REQUITEMENTS ..ottt e e e e e e 34
3.8.2. AICRILECIUNE ...iieiii it 34
3.8.3. Infinispan ConfigUurationcooeiiiiiiiiiiii e 35

3.9. Reader strategy CONfIQUIrationcocouiiiiiiiiiiie e e e 36

3.10. Tuning Lucene indeXing PerformMancCecoocieuuiiiiiiiiieeiii e 36

3.11. LockFactory Configurationceceuuiiiiiiiiiiie e e e e e e e e 41

3.12. Exception Handling Configurationoiieiiiiiiiiiiiee e 42

4. Mapping entities to the iNdeX StrUCTUIEc.oiiiii i 45
4.1, MaPPING @N ENEILY ..oeeitiiiiii e 45

O O - =Y o 0 = o] o 11 o 45

Hibernate Search

4.1.2. Mapping properties multiple timescoov i 49
4.1.3. Embedded and associated ObJECtScooviiiiiiiiii i, 49

N = To T 11 1] o T P TUP PP PPPPPIN 53
4.2.1. Static index time DOOSINGcc.uiiiiiiiiiie e 53
4.2.2. Dynamic indeX time DOOSHINGcoovuuiiiiiiiiie e 54

O T Y =)£ 1PN 55
4.3.1. Default analyzer and analyzer by Classcoouiiiiiiiiiiiiiiiin e, 55
4.3.2. Named @NAIYZEISuuiiiiiiiii e 56
4.3.3. Dynamic analyzer selection (experimental)cccoveviiiiiiiiiiiinieiiiiieeeeen 62
4.3.4. Retrieving an @nalyZEercocuuiiiiieiii e 63

o = 1o [o =2 S PP P TR PPPPT 64
o T W[T T o] o o = 64
4.4.2. CUSLOM DIAGES ..ovniiiiiii e 66

4.5, Providing YOUr OWN 0ou.iiiiiiii e e e e e e e e e et e e e e eaa s 71
4.5.1. The Providedld annotationcc.oveiiiiiiiiiiie e 71

4.6. ProgrammatiC AP ... 72
4.6.1. Mapping an entity as indexable ..., 73
4.6.2. Adding Documentld to indexed entityccooevviiiiiiiiiiie i 74
4.6.3. DefiNing @nalYZErSoiiiiiiiiiiiii e 74
4.6.4. Defining full text filter definitionsccocoiiiiiii i 76
4.6.5. Defining fields for iINAeXiNgovviiiiiiiiii e 77
4.6.6. Programmatically defining embedded entitiescccoevviiiiiiiiiciiinecinnens 78
4.6.7. Contained In definitioncooiiiiiiiii 79
4.6.8. Date/Calendar Bridgeooeiuiiiiiieiii e e e 81
4.6.9. DefiNiNg DIIAQEScoviiiiiiiii e 82
4.6.10. Mapping Class bridgecoeiiiiiiiiiic e 83
4.6.11. Mapping dynamiC DOOSEuiiiiiiiiiieiii e 84

LT O 10 1= Y41 o Yo T 85
5.1, BUIldING QUETIES ...ttt 87
5.1.1. Building a Lucene query using the Lucene APlocoiiiiiiiiiiiiiiineeennn, 87
5.1.2. Building a Lucene query with the Hibernate Search query DSL 87
5.1.3. Building a Hibernate Search qUEeryccccoiiiiiiiiiiiciii e 94

5.2. Retrieving the reSUILScoooiiiiii e 101
5.2.1. Performance CONSIAEratioNSoiiiiiuiiiieiiiiinieieiieee et e et e e 102
5.2.2. RESUIL SIZE ..oeneiiiii e 102
5.2.3. RESURTIANSTOMMEN ..uuiiiiiiii it 103
5.2.4. Understanding reSUILScouuiiiiiiiiieiiii e 103

LR T 11 = SPUTTPPI 104
5.3.1. Using filters in a sharded environmentc.coooeviiiiiiiiiiinieii e, 108

L - Vo =1 1] o [P 110
5.4.1. Creating a faceting reqUESTcocuuuiiiiiiiii e 112
5.4.2. Applying a faceting reqUESEviiiiiiiiii e 113
5.4.3. ReStricting QUETY FESUILSiiiiiiiiiiiii e 114

5.5. Optimizing the qQUEIY PrOCESSuuiiiiiiiii e e e 115

5.5.1. Caching index values: FieldCachecccooiiiiiiiiiiiiii e 115

6. Manual INAEX CRANGES ...ciiiiiii e e e e e e e e aens 117
6.1. Adding insStances to the INAEXc.uiiiiiiiiii e 117

6.2. Deleting instances from the iNdeXcccoiiiiiiii i 117

6.3. Rebuilding the Whole INAEeXoiiiiiiiii e 118
6.3.1. Using fluShTOINAEXES() «.evvneeinieiiieiie e e e e e 118

6.3.2. USING @ MASSINAEXETciiiiiiiiiiii et 119

A Yo L=y @ o 4112 4 o] o 123
7.1. Automatic OPLIMIZALIONuiiiiii e 123

7.2. Manual OptimIZAtIONoiiuniiiii e e e e 124

7.3. Adjusting OPtIMIZALIONcouuniiiiii e 124

ST\ Lo T a1 (Y 1 o N 125
S0 TN 11/ PSP 125
8.1.1. StatisticSINFOMBEANuiiiiiiiii e 125

8.1.2. INdeXCONLIOIMBEANiieiiiieiee et e e e e ean e 125

8.1.3. IndexingProgressMonitorMBEaNcc.uveiiiiiiiiiieiii e 125

LS I AN V=Yg Tod=To I 1= L UL =P 127
9.1. Accessing the SearChFaCIOrYc..oviiiiiiiiii e e 127

9.2. AcCesSSING @ LUCENE DIFECLONYuiiiiiiiieeeiiii et 127

9.3. UsiNg an INAEXREAUETciiiiiiii e e e e 127

9.4. Use external services in Hibernate Search components (experimental) 128
9.4.1. EXPOSING @ SEIVICE ..cevuiiiiiiiiiiieiiii et et e e e et e e e e e e e e et e e et e eaneens 129

9.4.2. USING @ SEIVICE ...ttt e e et e e et e e eeba e eens 130

9.5. Customizing Lucene's scoring formulac.ccooeeiiiiiiiiiiiii e, 131

O U T d g L= N =Y To [o Lo PP SPPPTT 133

Vi

Preface

Full text search engines like Apache Lucene are very powerful technologies to add efficient
free text search capabilities to applications. However, Lucene suffers several mismatches when
dealing with object domain models. Amongst other things indexes have to be kept up to date and
mismatches between index structure and domain model as well as query mismatches have to
be avoided.

Hibernate Search addresses these shortcomings - it indexes your domain model with the help
of a few annotations, takes care of database/index synchronization and brings back regular
managed objects from free text queries. To achieve this Hibernate Search is combining the power
of Hibernate [http://www.hibernate.org] and Apache Lucene [http://lucene.apache.org].

Vii

http://www.hibernate.org
http://www.hibernate.org
http://lucene.apache.org
http://lucene.apache.org

viii

Chapter 1.

Getting started

Welcome to Hibernate Search. The following chapter will guide you through the initial steps
required to integrate Hibernate Search into an existing Hibernate enabled application. In case you
are a Hibernate new timer we recommend you start here [http://hibernate.org/quick-start.html].

1.1. System Requirements

Table 1.1. System requirements

Java Runtime A JDK or JRE version 5 or
greater. You can download a
Java Runtime for Windows/Linux/Solaris
here [http://www.oracle.com/technetwork/java/
javase/downloads/index.html]. If using Java
version 7 make sure you avoid builds 0 and 1:
those versions contained an optimisation bug
which would be triggered by Lucene.

Hibernate Search hi bernat e-search-3.4.2.Final.jar and
all runtime dependencies. You can
get the jar artifacts either from the
dist/lib directory of the Hibernate
Search distribution [http://sourceforge.net/
projects/hibernate/files/hibernate-search/] or
you can download them from the JBoss
maven repository [http://repository.jboss.org/
nexus/content/groups/public-jboss/].

Hibernate Core This instructions have been tested
against Hibernate 3.6. You will need
hi bernate-core-3.6.7.Final .jar and its
transitive dependencies (either from the
distribution bundle [http://sourceforge.net/
projects/hibernateffiles/hibernate3/] or the
maven repository).

JPA 2 Even though Hibernate Search can
be wused without JPA annotations the
following instructions will use them
for basic entity configuration (@Entity,
@Id, @OneToMany,...). This part of the
configuration could also be expressed in xml or
code.

http://hibernate.org/quick-start.html
http://hibernate.org/quick-start.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://sourceforge.net/projects/hibernate/files/hibernate-search/
http://sourceforge.net/projects/hibernate/files/hibernate-search/
http://sourceforge.net/projects/hibernate/files/hibernate-search/
http://sourceforge.net/projects/hibernate/files/hibernate-search/
http://repository.jboss.org/nexus/content/groups/public-jboss/
http://repository.jboss.org/nexus/content/groups/public-jboss/
http://repository.jboss.org/nexus/content/groups/public-jboss/
http://repository.jboss.org/nexus/content/groups/public-jboss/
http://sourceforge.net/projects/hibernate/files/hibernate3/
http://sourceforge.net/projects/hibernate/files/hibernate3/
http://sourceforge.net/projects/hibernate/files/hibernate3/

Chapter 1. Getting started

Hibernate Search, however, has itself its own
set of annotations (@Indexed, @Documentld,
@Field,...) for which there exists so far no
alternative configuration.

1.2. Using Maven

Instead of managing all dependencies manually, maven users have the possibility to use
the JBoss maven repository [http://repository.jboss.org/nexus/content/groups/public-jboss/]. Add
the following to your Maven settings.xm file (see also Maven Getting Started [http://
community.jboss.org/wiki/MavenGettingStarted-Users]):

Example 1.1. Adding the JBoss maven repository to settings. xn

<settings>
<profil es>

<profile>
<i d>j boss- publ i c-repository</id>
<repositories>
<repository>
<i d>j boss- publ i c-reposi tory-group</id>
<nane>JBoss Public Maven Repository G oup</nanme>
<url >https://repository.jboss. org/ nexus/content/groups/public-jboss/</url>
<l ayout >def aul t </ | ayout >
<r el eases>
<enabl ed>t rue</ enabl ed>
<updat ePol i cy>never </ updat ePol i cy>
</rel eases>
<snapshot s>
<enabl ed>t r ue</ enabl ed>
<updat ePol i cy>never </ updat ePol i cy>
</ snapshot s>
</ repository>
</repositories>
<pl ugi nReposi tori es>
<pl ugi nReposi tory>
<i d>j boss- publ i c-reposi tory-group</id>
<nane>JBoss Public Maven Repository G oup</nanme>
<url >https://repository.jboss. org/ nexus/content/groups/public-jboss/</url>
<l ayout >def aul t </ | ayout >
<rel eases>
<enabl ed>t rue</ enabl ed>
<updat ePol i cy>never </ updat ePol i cy>
</rel eases>
<snapshot s>
<enabl ed>t r ue</ enabl ed>
<updat ePol i cy>never </ updat ePol i cy>
</ snapshot s>
</ pl ugi nReposi t ory>
</ pl ugi nReposi tori es>
</ profile>

http://repository.jboss.org/nexus/content/groups/public-jboss/
http://repository.jboss.org/nexus/content/groups/public-jboss/
http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users

Configuration

</profil es>

<activeProfiles>
<activeProfil e> boss-public-repository</activeProfile>
</ activeProfiles>

</settings>

Then add the following dependencies to your pom.xmi:

Example 1.2. Maven dependencies for Hibernate Search

<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifactl|d>hi bernate-search</artifactld>
<ver si on>3. 4. 2. Fi nal </ ver si on>
</ dependency>
<dependency>
<groupl d>or g. hi ber nat e</ gr oupl d>
<artifact!ld>hi bernate-entitymanager</artifactld>
<version>3. 6. 7. Fi nal </ ver si on>
</ dependency>

Only the hibernate-search dependency is mandatory, because it contains together with its
required transitive dependencies all required classes needed to use Hibernate Search. hibernate-
entitymanager is only required if you want to use Hibernate Search in conjunction with JPA.

@ Note

There is no XML configuration available for Hibernate Search but we provide a
powerful programmatic mapping API that elegantly replace this kind of deployment

form (see for more information).

1.3. Configuration

Once you have downloaded and added all required dependencies to your application you have to
add a couple of properties to your hibernate configuration file. If you are using Hibernate directly
this can be done in hi ber nat e. properti es or hi bernate. cf g. xm . If you are using Hibernate
via JPA you can also add the properties to per si st ence. xnl . The good news is that for standard
use most properties offer a sensible default. An example persi st ence. xm configuration could

look like this:

Example 1.3. Basic configuration options to be added to hi ber nat e. properti es,

hi ber nat e. cfg. xm OFI persi stence. xm

Chapter 1. Getting started

<property name="hi bernate. search. defaul t.directory_provider"
val ue="fil esystent'/>

<property nane="hi bernate. search. defaul t.i ndexBase"
val ue="/var/l ucene/ i ndexes"/ >

First you have to tell Hibernate Search which Di r ect or yPr ovi der to use. This can be achieved
by setting the hi ber nat e. search. defaul t. directory_provi der property. Apache Lucene has
the notion of a Directory to store the index files. Hibernate Search handles the initialization
and configuration of a Lucene Directory instance via a Di rect oryProvi der. In this tutorial
we will use a a directory provider storing the index in the file system. This will give us
the ability to physically inspect the Lucene indexes created by Hibernate Search (eg via
Luke [http://code.google.com/p/luke/]). Once you have a working configuration you can start
experimenting with other directory providers (see Section 3.2, “Directory configuration”). Next
to the directory provider you also have to specify the default base directory for all indexes via
hi ber nat e. search. def aul t . i ndexBase.

Lets assume that your application contains the Hibernate managed classes exanpl e. Book and
exanpl e. Aut hor and you want to add free text search capabilities to your application in order to
search the books contained in your database.

Example 1.4. Example entities Book and Author before adding Hibernate
Search specific annotations

package exanpl e;

@ntity

public class Book {
@d
@=ner at edVal ue
private Integer id;
private String title;

private String subtitle;

@mnyToMany
private Set<Author> authors = new HashSet <Aut hor>();

private Date publicationDate;
public Book() {}

/| standard getters/setters follow here

http://code.google.com/p/luke/
http://code.google.com/p/luke/

Configuration

package exanpl e;

@ntity
public class Author {

@d
@cener at edVal ue
private Integer id;

private String naneg;
public Author() {}

/'l standard getters/setters follow here

To achieve this you have to add a few annotations to the Book and Aut hor class. The first
annotation @ ndexed marks Book as indexable. By design Hibernate Search needs to store an
untokenized id in the index to ensure index unicity for a given entity. @ocunent | d marks the
property to use for this purpose and is in most cases the same as the database primary key. The
@ocunent | d annotation is optional in the case where an @ d annotation exists.

Next you have to mark the fields you want to make searchable. Let's startwithtitl eandsubtitl e
and annotate both with @i el d. The parameter i ndex=I ndex. TOKENI ZED will ensure that the
text will be tokenized using the default Lucene analyzer. Usually, tokenizing means chunking a
sentence into individual words and potentially excluding common words like ' a' or 't he'. We
will talk more about analyzers a little later on. The second parameter we specify within @i el d,
st or e=St or e. NO, ensures that the actual data will not be stored in the index. Whether this data
is stored in the index or not has nothing to do with the ability to search for it. From Lucene's
perspective it is not necessary to keep the data once the index is created. The benefit of storing
it is the ability to retrieve it via projections (see Section 5.1.3.5, “Projection”).

Without projections, Hibernate Search will per default execute a Lucene query in order to find the
database identifiers of the entities matching the query critera and use these identifiers to retrieve
managed objects from the database. The decision for or against projection has to be made on
a case to case basis. The default behaviour is recommended since it returns managed objects
whereas projections only return object arrays.

After this short look under the hood let's go back to annotating the Book class. Another annotation
we have not yet discussed is @at eBri dge. This annotation is one of the built-in field bridges in
Hibernate Search. The Lucene index is purely string based. For this reason Hibernate Search must
convert the data types of the indexed fields to strings and vice versa. A range of predefined bridges
are provided, including the Dat eBri dge which will convert aj ava. util . Dat e into a St ri ng with
the specified resolution. For more details see Section 4.4, “Bridges”.

This leaves us with @ ndexedEnbedded. This annotation is used to index associated entities
(@anyToMany, @ ToOne and @nbedded) as part of the owning entity. This is needed since a
Lucene index document is a flat data structure which does not know anything about object

Chapter 1. Getting started

relations. To ensure that the authors' name will be searchable you have to make sure that the
names are indexed as part of the book itself. On top of @ ndexedEnbedded you will also have to
mark all fields of the associated entity you want to have included in the index with @ ndexed. For
more details see Section 4.1.3, “Embedded and associated objects”.

These settings should be sufficient for now. For more details on entity mapping refer to Section 4.1,
“Mapping an entity”.

Example 1.5. Example entities after adding Hibernate Search annotations

package exanpl e;

@ntity
@ ndexed
public class Book {

@d
@cener at edVal ue
private Integer id;

@i el d(i ndex=I ndex. TOKENI ZED, st ore=Store. NO
private String title;

@i el d(i ndex=I ndex. TOKENI ZED, st ore=St ore. NO
private String subtitle;

@ ndexedEnbedded

@mnyToMany

private Set<Author> authors = new HashSet <Aut hor >();
@i el d(i ndex = I ndex. UN_TOKENI ZED, store = Store. YES)
@at eBri dge(resol uti on = Resol uti on. DAY)

private Date publicationDate;

public Book() {
}

/| standard getters/setters follow here

package exanpl e;

@ntity

public class Author {
@d

@xner at edVal ue
private Integer id;

@i el d(i ndex=I ndex. TOKENI ZED, st ore=Store. NO
private String nang;

public Author() {

Indexing

}

/| standard getters/setters follow here

1.4. Indexing

Hibernate Search will transparently index every entity persisted, updated or removed through
Hibernate Core. However, you have to create an initial Lucene index for the data already present
in your database. Once you have added the above properties and annotations it is time to trigger
an initial batch index of your books. You can achieve this by using one of the following code
snippets (see also Section 6.3, “Rebuilding the whole index”):

Example 1.6. Using Hibernate Session to index data

Ful | Text Sessi on full Text Sessi on = Search. get Ful | Text Sessi on(sessi on);
ful | Text Sessi on. creat el ndexer().start AndWait();

Example 1.7. Using JPA to index data

EntityManager em = entityManager Factory. creat eEntityManager();
Ful | Text EntityManager full TextEntityManager = Search. get Ful | Text EntityManager (emn;
ful | Text EntityManager . createl ndexer().startAndWait();

After executing the above code, you should be able to see a Lucene index under / var/ | ucene/
i ndexes/ exanpl e. Book. Go ahead an inspect this index with Luke [http://code.google.com/p/
luke/]. It will help you to understand how Hibernate Search works.

1.5. Searching

Now it is time to execute a first search. The general approach is to create a Lucene query
(either via the Lucene API (Section 5.1.1, “Building a Lucene query using the Lucene API”) or
via the Hibernate Search query DSL (Section 5.1.2, “Building a Lucene query with the Hibernate
Search query DSL")) and then wrap this query into a or g. hi ber nat e. Query in order to get all
the functionality one is used to from the Hibernate API. The following code will prepare a query
against the indexed fields, execute it and return a list of Books.

Example 1.8. Using Hibernate Session to create and execute a search

Ful | Text Sessi on ful |l Text Sessi on = Search. get Ful | Text Sessi on(sessi on);
Transaction tx = full Text Sessi on. begi nTransacti on();

/] create native Lucene query unsing the query DSL

http://code.google.com/p/luke/
http://code.google.com/p/luke/
http://code.google.com/p/luke/

Chapter 1. Getting started

/1 alternatively you can wite the Lucene query using the Lucene query parser
/1 or the Lucene programmatic API. The Hi bernate Search DSL is recomended though
Quer yBui | der gb = full Text Sessi on. get Sear chFact ory()
. bui | dQueryBui I der().forEntity(Book.class).get();

or g. apache. | ucene. search. Query query = gb

. keywor d()

.onFields("title", "subtitle", "authors.nanme", "publicationDate")

. mat chi ng("Java rocks!");

.createQuery();

/1 wrap Lucene query in a org.hibernate. Query
org. hi bernate. Query hi bQuery =
ful | Text Sessi on. creat eFul | Text Query(query, Book. cl ass);

/'l execute search
List result = hibQuery.list();

tx.commit();
session. cl ose();

Example 1.9. Using JPA to create and execute a search

EntityManager em = entityManager Factory. creat eEntityManager();
Ful | Text Enti tyManager full Text EntityManager =

or g. hi bernat e. search. j pa. Sear ch. get Ful | Text Enti t yManager (en);
em get Transaction() . begin();

/'l create native Lucene query unsing the query DSL
/1 alternatively you can wite the Lucene query using the Lucene query parser
/1 or the Lucene programmatic APlI. The Hi bernate Search DSL is recommended though
Quer yBui Il der gb = full Text EntityManager. get SearchFactory()
. bui I dQueryBui I der().forEntity(Book.class).get();

or g. apache. | ucene. search. Query query = gb

. keywor d()

.onFields("title", "subtitle", "authors.name", "publicationDate")

. mat chi ng("Java rocks!")

.createQuery();

/1 wrap Lucene query in a javax.persistence. Query
j avax. persi stence. Query persistenceQuery =

ful | Text EntityManager. creat eFul | Text Query(query, Book.cl ass);

/| execute search
List result = persistenceQuery.getResultList();

em get Transaction().commit();
em cl ose();

1.6. Analyzer

Let's make things a little more interesting now. Assume that one of your indexed book entities
has the title "Refactoring: Improving the Design of Existing Code" and you want to get hits for all

Analyzer

of the following queries: "refactor”, "refactors”, "refactored" and "refactoring”. In Lucene this can
be achieved by choosing an analyzer class which applies word stemming during the indexing as
well as the search process. Hibernate Search offers several ways to configure the analyzer to be
used (see Section 4.3.1, “Default analyzer and analyzer by class”):

« Setting the hi ber nat e. sear ch. anal yzer property in the configuration file. The specified class
will then be the default analyzer.

« Setting the @nal yzer annotation at the entity level.
» Setting the @nal yzer annotation at the field level.

When using the @nal yzer annotation one can either specify the fully qualified classname of
the analyzer to use or one can refer to an analyzer definition defined by the @nal yzer Def
annotation. In the latter case the Solr analyzer framework with its factories approach is
utilized. To find out more about the factory classes available you can either browse the
Solr JavaDoc or read the corresponding section on the Solr Wiki. [http://wiki.apache.org/solr/
AnalyzersTokenizersTokenFilters]

In the example below a St andar dTokeni zer Factory is used followed by two filter factories,
Lower CaseFi |l ter Factory and Snowbal | Porter Fi |l t er Fact ory. The standard tokenizer splits
words at punctuation characters and hyphens while keeping email addresses and internet
hostnames intact. It is a good general purpose tokenizer. The lowercase filter lowercases the
letters in each token whereas the snowball filter finally applies language specific stemming.

Generally, when using the Solr framework you have to start with a tokenizer followed by an
arbitrary number of filters.

Example 1.10. Using @nal yzer bef and the Solr framework to define and use
an analyzer

@ntity
@ ndexed
@\nal yzer Def (name = "cust omanal yzer",
tokeni zer = @okeni zer Def (factory = StandardTokeni zer Factory. cl ass),
filters = {
@okenFilterDef (factory = Lower CaseFilterFactory.class),
@okenFilterDef (factory = Snowbal | PorterFilterFactory.class, parans = {
@rar anet er (name = "l anguage", value = "English")
})
b

public class Book {

@d

@ener at edVal ue
@ocunent | d
private Integer id;

@i el d(i ndex=I ndex. TOKENI ZED, st ore=St ore. NO
@\nal yzer (definition = "customanal yzer")

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

Chapter 1. Getting started

private String title;

@i el d(i ndex=I ndex. TOKENI ZED, st ore=St ore. NO
@\nal yzer (definition = "customanal yzer")
private String subtitle;

@ ndexedEnbedded

@mnyToMany

private Set<Author> authors = new HashSet <Aut hor>();
@i el d(i ndex = I ndex. UN_TOKENI ZED, store = Store. YES)
@pat eBri dge(resol uti on = Resol ution. DAY)

private Date publicationDate;

public Book() {
}

/'l standard getters/setters follow here

1.7. What's next

The above paragraphs helped you getting an overview of Hibernate Search. The next step after
this tutorial is to get more familiar with the overall architecture of Hibernate Search (Chapter 2,
Architecture) and explore the basic features in more detail. Two topics which were only briefly
touched in this tutorial were analyzer configuration (Section 4.3.1, “Default analyzer and analyzer
by class”) and field bridges (Section 4.4, “Bridges”). Both are important features required for
more fine-grained indexing. More advanced topics cover clustering (Section 3.6, “JMS Master/
Slave configuration”, Section 3.8, “Infinispan Directory configuration”) and large index handling
(Section 3.3, “Sharding indexes”).

10

Chapter 2.

Architecture

2.1. Overview

Hibernate Search consists of an indexing and an index search component. Both are backed by
Apache Lucene.

Each time an entity is inserted, updated or removed in/from the database, Hibernate Search keeps
track of this event (through the Hibernate event system) and schedules an index update. All the
index updates are handled without you having to use the Apache Lucene APIs (see Section 3.1,
“Enabling Hibernate Search and automatic indexing”).

To interact with Apache Lucene indexes, Hibernate Search has the notion of
Di rect oryProvi ders. A directory provider will manage a given Lucene Di rectory type. You
can configure directory providers to adjust the directory target (see Section 3.2, “Directory
configuration”).

Hibernate Search uses the Lucene index to search an entity and return a list of managed entities
saving you the tedious object to Lucene document mapping. The same persistence context is
shared between Hibernate and Hibernate Search. As a matter of fact, the Ful | Text Sessi on
is built on top of the Hibernate Session so that the application code can use the unified
or g. hi bernate. Query orj avax. persi st ence. Query APIs exactly the same way a HQL, JPA-
QL or native query would do.

To be more efficient Hibernate Search batches the write interactions with the Lucene index. There
are currently two types of batching. Outside a transaction, the index update operation is executed
right after the actual database operation. This is really a no batching setup. In the case of an
ongoing transaction, the index update operation is scheduled for the transaction commit phase
and discarded in case of transaction rollback. The batching scope is the transaction. There are
two immediate benefits:

« Performance: Lucene indexing works better when operation are executed in batch.

« ACIDity: The work executed has the same scoping as the one executed by the database
transaction and is executed if and only if the transaction is committed. This is not ACID in the
strict sense of it, but ACID behavior is rarely useful for full text search indexes since they can
be rebuilt from the source at any time.

You can think of those two batch modes (no scope vs transactional) as the equivalent of
the (infamous) autocommit vs transactional behavior. From a performance perspective, the in
transaction mode is recommended. The scoping choice is made transparently. Hibernate Search
detects the presence of a transaction and adjust the scoping.

11

Chapter 2. Architecture

E Tip
: It is recommended - for both your database and Hibernate Search - to execute
your operations in a transaction, be it JDBC or JTA.

(3

2.2. Back end

Hibernate Search offers the ability to let the batched work being processed by different back
ends. Three back ends are provided out of the box and you have the option to plugin in your own
implementation.

2.2.1. Back end types

2.2.1.1. Lucene

In this mode, all index update operations applied on a given node (JVM) will be executed to the
Lucene directories (through the directory providers) by the same node. This mode is typically used
in non clustered environment or in clustered environments where the directory store is shared.

Search request
Index update

Search request
_________________ Index update .

Lucene back end configuration.

12

Back end types

This mode targets non clustered applications, or clustered applications where the Directory is
taking care of the locking strategy.

The main advantage is simplicity and immediate visibility of the changes in Lucene queries (a
requirement in some applications).

2.2.1.2. IMS

All index update operations applied on a given node are sent to a JMS queue. A unique reader
will then process the queue and update the master index. The master index is then replicated on
a regular basis to the slave copies. This is known as the master/slaves pattern. The master is
the sole responsible for updating the Lucene index. The slaves can accept read as well as write
operations. However, they only process the read operation on their local index copy and delegate
the update operations to the master.

Lucene
Directory

(Index)
Copy

Search request \

Hibernate A\

+
Hibernate Search

Slave

Index update order

Hibernate

+
@ Process — = Hibernate Search ettt S

Master Lucene
Directory
{Index)
Master

Undex update order

Hibernate K

+
Hibernate Search

Slave

Search request

Lucene
Directory -
{Inciex)

CDD}'

JMS back end configuration.

This mode targets clustered environments where throughput is critical, and index update delays
are affordable. Reliability is ensured by the JMS provider and by having the slaves working on
a local copy of the index.

13

Chapter 2. Architecture

2.2.1.3. JGroups

The JGroups based back end works similar to the JMS one and is designed after the same master/
slave pattern. However, instead of JMS the JGroups toolkit is used as a replication mechanism.
This back end can be used as an alternative to JMS when response time is critical, but i.e. JINDI
service is not available.

Note
Hibernate Search is an extensible architecture. Feel free to drop ideas for other
third party back ends to hi ber nat e-dev@i sts. j boss. org.

2.2.2. Work execution

The indexing work (done by the back end) can be executed synchronously with the transaction
commit (or update operation if out of transaction), or asynchronously.

2.2.2.1. Synchronous

This is the safe mode where the back end work is executed in concert with the transaction
commit. Under highly concurrent environment, this can lead to throughput limitations (due to the
Apache Lucene lock mechanism) and it can increase the system response time if the backend is
significantly slower than the transactional process and if a lot of IO operations are involved.

2.2.2.2. Asynchronous

This mode delegates the work done by the back end to a different thread. That way, throughput
and response time are (to a certain extend) decorrelated from the back end performance. The
drawback is that a small delay appears between the transaction commit and the index update and
a small overhead is introduced to deal with thread management.

It is recommended to use synchronous execution first and evaluate asynchronous execution if
performance problems occur and after having set up a proper benchmark.

2.3. Reader strategy

When executing a query, Hibernate Search interacts with the Apache Lucene indexes through a
reader strategy. Choosing a reader strategy will depend on the profile of the application (frequent
updates, read mostly, asynchronous index update etc). See also Section 3.9, “Reader strategy
configuration”

2.3.1. Shared

With this strategy, Hibernate Search will share the same | ndexReader , for a given Lucene index,
across multiple queries and threads provided that the | ndexReader is still up-to-date. If the
I ndexReader is not up-to-date, a new one is opened and provided. Each | ndexReader is made

14

Not-shared

of several Segnment Reader s. This strategy only reopens segments that have been modified or
created after last opening and shares the already loaded segments from the previous instance.
This strategy is the default.

The name of this strategy is shar ed.

2.3.2. Not-shared

Every time a query is executed, a Lucene | ndexReader is opened. This strategy is not the most
efficient since opening and warming up an | ndexReader can be a relatively expensive operation.

The name of this strategy is not - shar ed.

2.3.3. Custom

You can write your own reader strategy that suits your application needs by implementing
or g. hi ber nat e. sear ch. r eader . Reader Pr ovi der . The implementation must be thread safe.

15

16

Chapter 3.

Configuration

3.1. Enabling Hibernate Search and automatic indexing

Let's start with the most basic configuration question - how to enable Hibernate Search in your
system.

3.1.1. Enabling Hibernate Search

The good news is that Hibernate Search is enabled out of the box when detected
on the classpath by Hibernate Core. If, for some reason you need to disable it, set
hi ber nat e. search. autoregi ster_listeners to false. Note that there is no performance
penalty when the listeners are enabled but no entities are annotated as indexed.

3.1.2. Automatic indexing

By default, every time an object is inserted, updated or deleted through Hibernate, Hibernate
Search updates the according Lucene index. It is sometimes desirable to disable that features
if either your index is read-only or if index updates are done in a batch way (see Section 6.3,
“Rebuilding the whole index”).

To disable event based indexing, set

hi ber nat e. sear ch. i ndexi ng_strategy = manual

@ Note

In most case, the JMS backend provides the best of both world, a lightweight
event based system keeps track of all changes in the system, and the heavyweight
indexing process is done by a separate process or machine.

3.2. Directory configuration

Apache Lucene has a notion of a Directory to store the index files. The Directory
implementation can be customized and Lucene comes bundled with a file system and an in-
memory implementation. Di rect oryProvi der is the Hibernate Search abstraction around a
Lucene Di rect ory and handles the configuration and the initialization of the underlying Lucene
resources. Table 3.1, “List of built-in DirectoryProviders” shows the list of the directory providers
available in Hibernate Search together with their corresponding options.

To configure your DirectoryProvider you have to understand that each indexed entity is
associated to a Lucene index (except of the case where multiple entities share the same index
- Section 3.4, “Sharing indexes”). The name of the index is given by the i ndex property of the

17

Chapter 3. Configuration

@ ndexed annotation. If the i ndex property is not specified the fully qualified name of the indexed
class will be used as name.

Knowing the index name, you can configure the directory provider and any additional
options by wusing the prefix hibernate.search. <i ndexnane>. The name default
(hi ber nat e. search. default) is reserved and can be used to define properties which
apply to all indexes. Example 3.2, “Configuring directory providers” shows how
hi ber nat e. search. defaul t. di rectory_provi der is used to set the default directory provider
to be the filesystem one. hi ber nat e. search. def aul t . i ndexBase sets then the default base
directory for the indexes. As a result the index for the entity St at us is created in / usr/ | ucene/
i ndexes/ or g. hi ber nat e. exanpl e. St at us.

The index for the Rule entity, however, is using an in-memory directory,
because the default directory provider for this entity is overriden by the property
hi ber nat e. search. Rul es. directory_provi der.

Finally the Act i on entity uses a custom directory provider Cust onDi r ect or yPr ovi der specified
via hi ber nat e. search. Acti ons. directory_provider.

Example 3.1. Specifying the index name

package org. hi ber nat e. exanpl e;

@ ndexed
public class Status { ... }

@ ndexed(i ndex="Rul es")
public class Rule { ... }

@ ndexed(i ndex="Actions")
public class Action { ... }

Example 3.2. Configuring directory providers

hi ber nat e. search. defaul t.directory_provider fil esystem

hi ber nat e. sear ch. def aul t. i ndexBase=/ usr/| ucene/ i ndexes

hi ber nat e. search. Rul es. di rectory_provi der ram

hi ber nat e. search. Actions. directory_provi der com acne. hi ber nat e. Cust onDi r ect or yPr ovi der

Tip

Using the described configuration scheme you can easily define common rules like
the directory provider and base directory, and override those defaults later on on
a per index basis.

18

Directory configuration

Table 3.1. List of built-in birectoryProvi derS

Class or shortcut name

ram

filesystem

Description

Memory based directory, the

directory will be uniquely
identified (in the same
deployment unit) by the

@ ndexed. i ndex element

File system based directory.
The directory used will be
<indexBase>/< indexName >

Properties

none

i ndexBase : Base directory

i ndexNane: override
@Indexed.index (useful for
sharded indexes)

| ocki ng_strat egy : optional,
see Section 3.11,
“LockFactory configuration”

fil esystem access_type:

allows to determine the
exact type of FSDirectory
implementation used by

this Di rect oryProvi der.
Allowed values are
auto (the default value,
selects NI OFSDirectory on
non Windows systems,
Si npl eFSDi rectory on
Windows), simpl e
(Simpl eFSDirectory), nio
(NI OFSDi rect ory), mrap

(MvapDi rect ory). Make sure
to refer to Javadocs of these
Directory implementations
before changing this setting.
Even though NI OFSDi rectory
or MvapDirectory can bring
substantial performace boosts
they also have their issues.

filesystem-master

File system based directory.
Like also
copies the index to a source
directory (aka copy directory)
on a regular basis.

filesystem It

i ndexBase: Base directory

i ndexNane: override
@Indexed.index (useful for
sharded indexes)

19

Chapter 3. Configuration

Class or shortcut name

Description
The recommended value for
the refresh period is (at least)
50% higher that the time to
copy the information (default
3600 seconds - 60 minutes).

Note that the copy is
based on an incremental
copy mechanism reducing the
average copy time.

DirectoryProvider typically
used on the master node in a
JMS back end cluster.

The
optimum depends on your
operating system and
available RAM; most people
reported good results using
values between 16 and 64MB.

buf fer _size_on_copy

Properties

sour ceBase:
base directory.

Source (copy)

source: Source directory

(default to
@ ndexed. i ndex). The actual
source directory name being

<sour ceBase>/ <sour ce>

suffix

refresh: refresh period in
second (the copy will take

place every refresh seconds).

buffer_size on_copy: The
amount of MegaBytes to move
in a single low level copy
instruction; defaults to 16MB.

| ocki ng_strat egy : optional,
see 3.11,
“LockFactory configuration”

Section

fil esystem access_type:
allows to the
exact type of FSDirectory
implementation used by
this
Allowed

aut o

determine

Di rect oryProvi der.
values are
(the default value,
selects NI OFSDirectory on
non Windows systems,
Si npl eFSDi rectory on
Windows), simpl e
(Sinpl eFSDirectory), nio
(NI OFSDi r ect ory), mrap
(MvepDi rect ory). Make sure
to refer to Javadocs of these
Directory implementations
before changing this setting.
Even though NI OFSDi r ect ory
or MvapDirectory can bring
substantial performace boosts
they also have their issues.

20

Directory configuration

Class or shortcut name

filesystem-slave

Description

File system based directory.
Likefi | esyst em but retrieves
a master version (source)
on a regular basis. To
avoid locking and inconsistent
search results, 2 local copies
are kept.

The recommended value for
the refresh period is (at least)
50% higher that the time to
copy the information (default
3600 seconds - 60 minutes).

Note that the copy is
based on an incremental
copy mechanism reducing the
average copy time.

DirectoryProvider typically
used on slave nodes using a
JMS back end.

The
optimum depends on your
operating system and
available RAM; most people
reported good results using
values between 16 and 64MB.

buf fer _si ze_on_copy

Properties
i ndexBase: Base directory
i ndexNane: override

@Indexed.index (useful for
sharded indexes)

sour ceBase:
base directory.

Source (copy)

source: Source directory
suffix (default to
@ ndexed. i ndex). The actual
source directory name being

<sour ceBase>/ <sour ce>

refresh: refresh period in
second (the copy will take
place every refresh seconds).

buffer_size_on_copy: The
amount of MegaBytes to move
in a single low level copy
instruction; defaults to 16MB.

| ocki ng_strat egy : optional,
see Section 3.11,
“LockFactory configuration”

retry_marker _| ookup
optional, default to 0. Defines
how many times we look
for the marker files in the
source directory before failing.
Waiting 5 seconds between
each try.

retry_initialize_period :
optional, set an integer value
in seconds to enable the
retry initialize feature: if the
slave can't find the master
index it will try again until it's
found in background, without
preventing the application
to start: fullText queries
performed before the index is

21

Chapter 3. Configuration

Class or shortcut name

Description

Properties

initialized are not blocked but
will return empty results. When
not enabling the option or
explicitly setting it to zero it will
fail with an exception instead
of scheduling a retry timer.
To prevent the application
from starting without an
invalid index but still control
an initialization timeout,
see retry_marker_I| ookup
instead.

fil esystem access_type:

allows to determine the
exact type of FSDirectory
implementation used by
this Di rect oryProvi der.
Allowed values are
auto (the default value,
selects NI OFSDirectory on
non Windows systems,
Si npl eFSDi rectory on
Windows), simpl e
(Simpl eFSDirectory), nio
(NI OFSDi rect ory), mrap
(MvapDi rect ory). Make sure
to refer to Javadocs of these
Directory implementations
before changing this setting.
Even though NI OFSDi rect ory
or MvapDirectory can bring
substantial performace boosts
they also have their issues.

infinispan

Infinispan based directory.
Use it to store the index in a
distributed grid, making index
changes visible to all elements
of the cluster very quickly. Also
see Section 3.8, “Infinispan
Directory configuration” for
additional requirements and
configuration settings.

| ocki ng_cachenane: name of
the Infinispan cache to use to
store locks.

dat a_cachenane name of
the Infinispan cache to use to
store the largest data chunks;
this area will contain the
largest objects, use replication

22

Sharding indexes

Class or shortcut name

Description

Infinispan needs a global
configuration and additional
dependencies; the settings
defined here apply to each
different index.

Properties

if you have enough memory or
switch to distribution.

nmet adat a_cachenane: name
of the Infinispan cache to use

to store the metadata relating
to the index; this data is rather
small and read very often,
it's recommended to have this
cache setup using replication.

chunk_si ze: large files of the
index are split in smaller
chunks, you might want to
set the highest value efficiently
handled by your network.
Networking tuning might be
useful.

Tip

If the
can

built-in directory providers do not fit your needs, you
write your own directory provider by implementing the
org. hi bernate. store. DirectoryProvi der interface. In this case, pass the
fully qualified class name of your provider into the directory_provider
property. You can pass any additional properties using the prefix
hi ber nat e. sear ch. <i ndexnane>.

3.3. Sharding indexes

In some cases it can be useful to split (shard) the indexed data of a given entity into several
Lucene indexes.

Warning

This solution is not recommended unless there is a pressing need. Searches will

be slower as all shards have to be opened for a single search. Don't do it until you
have a real use case!

Possible use cases for sharding are:

» A single index is so huge that index update times are slowing the application down.

23

Chapter 3. Configuration

» A typical search will only hit a sub-set of the index, such as when data is naturally segmented
by customer, region or application.

By default sharding is not enabled unless the number of shards is configured. To do this use
the hi ber nat e. sear ch. <i ndexNanme>. shar di ng_strat egy. nbr _of _shar ds property as seenin
Example 3.3, “Enabling index sharding”. In this example 5 shards are enabled.

Example 3.3. Enabling index sharding

hi ber nat e. sear ch. <i ndexNane>. shar di ng_strat egy. nbr _of _shards 5

Responsible for splitting the data into sub-indexes is the | ndexShar di ngSt r at egy. The default
sharding strategy splits the data according to the hash value of the id string representation
(generated by the Fi el dBri dge). This ensures a fairly balanced sharding. You can replace the
default strategy by implementing a custom | ndexShar di ngSt r at egy. To use your custom strategy
you have to set the hi ber nat e. sear ch. <i ndexNanme>. shar di ng_str at egy property.

Example 3.4. Specifying a custom sharding strategy

hi ber nat e. sear ch. <i ndexNane>. shar di ng_strategy ny.shardi ngstrategy.|nplenmentation

The | ndexShardi ngStrategy also allows for optimizing searches by selecting which shard
to run the query against. By activating a filter (see Section 5.3.1, “Using filters in a sharded
environment”), a sharding strategy can select a subset of the shards used to answer a query
(I ndexShar di ngSt r at egy. get Di r ect or yPr ovi der sFor Query) and thus speed up the query
execution.

Each shard has an independent directory provider configuration. The Di r ect or yPr ovi der index
names for the Animal entity in Example 3.5, “Sharding configuration for entity Animal” are
Ani mal . 0 to Ani mal . 4. In other words, each shard has the name of it's owning index followed by
. (dot) and its index number (see also Section 3.2, “Directory configuration”).

Example 3.5. Sharding configuration for entity Ani mal

hi ber nat e. sear ch. def aul t. i ndexBase /usr/| ucene/i ndexes

hi ber nat e. sear ch. Ani mal . shardi ng_strat egy. nbr _of _shards 5
hi ber nat e. search. Ani mal . directory_provi der filesystem

hi ber nat e. sear ch. Ani mal . 0. i ndexNane Ani mal 00

hi ber nat e. sear ch. Ani nal . 3. i ndexBase /usr/| ucene/ shar ded
hi ber nat e. sear ch. Ani mal . 3. i ndexNane Ani mal 03

24

Sharing indexes

In Example 3.5, “Sharding configuration for entity Animal”, the configuration uses the default id
string hashing strategy and shards the Ani mal index into 5 sub-indexes. All sub-indexes are

filesystem instances and the directory where each sub-index is stored is as followed:

for sub-index 0: /usr/lucene/indexes/ Ani mal 00 (shared indexBase but overridden
indexName)

for sub-index 1: / usr/ | ucene/ i ndexes/ Ani mal . 1 (shared indexBase, default indexName)
for sub-index 2: / usr/ | ucene/ i ndexes/ Ani mal . 2 (shared indexBase, default indexName)

for sub-index 3: /usr/lucene/shared/ Animal 03 (overridden indexBase, overridden
indexName)

for sub-index 4: / usr/ | ucene/ i ndexes/ Ani mal . 4 (shared indexBase, default indexName)

3.4. Sharing indexes

It is technically possible to store the information of more than one entity into a single Lucene index.

There are two ways to accomplish this:

« Configuring the underlying directory providers to point to the same physical index
directory. In practice, you set the property hi bernate.search.[fully qualified entity
nane] . i ndexNane to the same value. As an example let's use the same index (directory) for the
Fur ni t ure and Ani nal entity. We just set i ndexNane for both entities to for example “Animal”.
Both entities will then be stored in the Animal directory.

hi ber nat e. search. org. hi bernat e. search. test. shards. Furni ture. i ndexNane = Ani nal
hi ber nat e. sear ch. org. hi ber nat e. search. t est. shards. Ani mal . i ndexNane = Ani nal

Setting the @ ndexed annotation’s i ndex attribute of the entities you want to merge to the same
value. If we again wanted all Fur ni t ur e instances to be indexed in the Ani mal index along
with all instances of Ani mal we would specify @ ndexed(i ndex="Ani mal ") on both Ani nal
and Fur ni t ur e classes.

@ Note

This is only presented here so that you know the option is available. There is
really not much benefit in sharing indexes.

3.5. Worker configuration

It is possible to refine how Hibernate Search interacts with Lucene through the worker
configuration. There exist several architectural components and possible extension points. Let's

have a closer look.

25

Chapter 3. Configuration

First there is a Wor ker. An implementation of the Wor ker interface is reponsible for receiving
all entity changes, queuing them by context and applying them once a context ends. The most
intuative context, especially in connection with ORM, is the transaction. For this reason Hibernate
Search will per default use the Tr ansact i onal Wor ker to scope all changes per transaction. One
can, however, imagine a scenario where the context depends for example on the number of entity
changes or some other application (lifecycle) events. For this reason the Wor ker implementation
is configurable as shown in Table 3.2, “Scope configuration”.

Table 3.2. Scope configuration

Property Description

hi ber nat e. sear ch. wor ker . scope The fully qualifed class name of the Wor ker
implementation to use. If this property is
not set, empty or transaction the default
Transact i onal Wr ker is used.

hi ber nat e. sear ch. wor ker . * All configuration properties prefixed with
hi ber nat e. sear ch. wor ker are passed to the
Worker during initialization. This allows adding
custom, worker specific parameters.

hi ber nat e. sear ch. wor ker . bat ch_si ze Defines the maximum number of indexing
operation batched per context. Once the
limit is reached indexing will be triggered
even though the context has not ended
yet. This property only works if the Worker
implementation delegates the queued work to
BatchedQueueingProcessor (which is what the
Transact i onal Wor ker does)

Once a context ends it is time to prepare and apply the index changes. This can be done
synchronously or asynchronously from within a new thread. Synchronous updates have the
advantage that the index is at all times in sync with the databases. Asynchronous updates, on the
other hand, can help to minimize the user response time. The drawback is potential discrepancies
between database and index states. Lets look at the configuration options shown in Table 3.3,
“Execution configuration”.

Table 3.3. Execution configuration

Property Description

hi ber nat e. sear ch. wor ker . execut i on sync: synchronous execution (default)

async: asynchronous execution

hi ber nat e. sear ch. wor ker . t hr ead_pool . si zdefines the number of threads in the pool for
asynchronous execution. Defaults to 1.

hi ber nat e. sear ch. wor ker . buf f er _queue. mwDefines the maximal number of work queue
if the thread poll is starved. Useful only for

26

Worker configuration

asynchronous execution. Default to infinite. If
the limit is reached, the work is done by the
main thread.

So far all work is done within the same Virtual Machine (VM), no matter which execution mode.
The total amount of work has not changed for the single VM. Luckily there is a better approach,
namely delegation. It is possible to send the indexing work to a different server by configuring
hibernate.search.worker.backend - see Table 3.4, “Backend configuration”.

Table 3.4. Backend configuration

Property

hi ber nat e. sear ch. wor ker . backend

Description

| ucene: The default backend which runs index
updates in the same VM. Also used when the
property is undefined or empty.

jms: JMS backend. Index updates are
send to a JMS queue to be processed
by an indexing master. See Table 3.5,
“JMS backend configuration” for additional
configuration options and Section 3.6, “JMS
Master/Slave configuration” for a more detailed
descripton of this setup.

j groupsMaster or jgroupsSlave: Backend
using JGroups [http://www.jgroups.org/] as
communication layer. See Table 3.6,
“JGroups backend configuration” for additional
configuration options and Section 3.7,
“JGroups Master/Slave configuration” for a
more detailed description of this setup.

bl ackhol e: Mainly a test/developer setting
which ignores all indexing work

You can also specify the fully
qualified name of a class implementing
BackendQueuePr ocessor Factory. This way
you can implement your own communication
layer. The implementation is responsilbe for
returning a Runnabl e instance which on
execution will process the index work.

Table 3.5. IMS backend configuration

Property

Description

27

http://www.jgroups.org/
http://www.jgroups.org/

Chapter 3. Configuration

hi ber nat e. sear ch. worker. j ndi . * Defines the JNDI properties to initiate the
InitialContext (if needed). JNDI is only used by
the JMS back end.

hi ber nat e. sear ch. wor ker . j ms. connect i on_fMandatory for the JMS back end. Defines
the JNDI name to lookup the JMS connection
factory from (/ Connecti onFact ory by default
in JBoss AS)

hi ber nat e. sear ch. wor ker . j ms. queue Mandatory for the JMS back end. Defines the
JNDI name to lookup the JMS queue from. The
gueue will be used to post work messages.

Table 3.6. JGroups backend configuration

Property Description

hi ber nat e. sear ch. wor ker . j gr oups. cl ust er K@pt#onal for JGroups back end. Defines the
name of JGroups channel.

hi ber nat e. sear ch. wor ker . j gr oups. conf i gur@piion&i J&roups network stack configuration.
Defines the name of a JGroups configuration
file, which must exist on classpath.

hi ber nat e. sear ch. wor ker . j gr oups. conf i gur@piionahdGroups network stack configuration.
Defines a String representing JGroups
configuration as XML.

hi ber nat e. sear ch. wor ker . j gr oups. conf i gur@piionat JGngups network stack configuration.
Provides JGroups configuration in plain text.

Warning

As you probably noticed, some of the shown properties are correlated which
means that not all combinations of property values make sense. In fact you can
end up with a non-functional configuration. This is especially true for the case
that you provide your own implementations of some of the shown interfaces.
Make sure to study the existing code before you write your own Worker or
BackendQueuePr ocessor Fact or y implementation.

3.6. JMS Master/Slave configuration

This section describes in greater detail how to configure the Master/Slave Hibernate Search
architecture.

28

Slave nodes

Hibernate

+
Hibernate Search

Lucena
Directary
{Index)

Copy

Search request \

Slave

Index update order

@ Process —

Undex update order

Hibernate
+
- Hibernate Search

Master Lucene

Directory
(Index)
Master

Hibernate

+
Hibernate Search

Slave

Search reguest

Lucene .
Directory -
(Index) o
Copy

3.6.1. Slave nodes

JMS back end configuration.

Every index update operation is sent to a JMS queue. Index querying operations are executed

on a local index copy.

Example 3.6. JMS Slave configuration

sl ave configuration

DirectoryProvider
(renpte) naster |ocation

hi ber nat e. sear ch. def aul t. sour ceBase =

local copy location

hi ber nat e. sear ch. def aul t. i ndexBas

refresh every half hour
hi ber nat e. sear ch. defaul t. refresh

appropriate directory provider
hi ber nat e. search. defaul t. di rector

Backend configuration

e = /Users/prod/lucenedirs

= 1800

y_provider = fil esystemslave

/ mt / mast er vol une/ | ucenedi r s/ mast er copy

29

Chapter 3. Configuration

hi ber nat e. sear ch. wor ker . backend = j s

hi ber nat e. sear ch. wor ker . j ms. connecti on_factory = /ConnectionFactory

hi ber nat e. sear ch. wor ker. j ms. queue = queue/ hi ber nat esear ch

#optional jndi configuration (check your JMS provider for nore information)

Optional asynchronous execution strategy
hi bernate. search. wor ker. executi on = async
hibernate. search. worker . t hread_pool . size =
hibernate. search. wor ker . buf f er_queue. max

|
N

50

Tip

A file system local copy is recommended for faster search results.

Tip

The refresh period should be higher that the expected copy time.

3.6.2. Master node

Every index update operation is taken from a JMS queue and executed. The master index is
copied on a regular basis.

Example 3.7. IMS Master configuration

master configuration

DirectoryProvider
(rempte) master |ocation where infornmation is copied to
hi ber nat e. sear ch. def aul t. sour ceBase = / mt/ nast ervol une/ | ucenedi r s/ nast er copy

local master |ocation
hi ber nat e. search. defaul t. i ndexBase = /Users/prod/lucenedirs

refresh every half hour
hi ber nat e. search. defaul t. refresh = 1800

appropriate directory provider
hi ber nat e. search. defaul t.directory_provider = fil esystem naster

Backend configuration
#Backend is the default |ucene one

30

JGroups Master/Slave configuration

- Tip

e

The refresh period should be higher that the expected time copy.

In addition to the Hibernate Search framework configuration, a Message Driven Bean has to be
written and set up to process the index works queue through JMS.

Example 3.8. Message Driven Bean processing the indexing queue

@essageDriven(activationConfig = {
@\ct i vati onConfi gProperty(propertyNane="destinati onType",
propertyVal ue="j avax. j ms. Queue"),
@A\cti vati onConfi gProperty(propertyNane="desti nation",
propertyVal ue="queue/ hi ber nat esearch"),
@\ctivationConfi gProperty(propertyNane="DLQVaxResent", propertyVal ue="1")

)
public class NMDBSearchController extends AbstractJMSH ber nat eSearchControl | er

i npl enents MessagelLi st ener {
@ersi st enceCont ext EntityManager em

/I method retrieving the appropriate session
protected Session getSession() {
return (Session) em getDel egate();

}

//potentially close the session opened in #getSession(), not needed here
protected void cl eanSessi onl f Needed(Sessi on sessi on)

}

This example inherits from the abstract JMS controller class available in the Hibernate
Search source code and implements a JavaEE 5 MDB. This implementation is given as
an example and can be adjusted to make use of non Java EE Message Driven Beans.
For more information about the get Sessi on() and cl eanSessi onl f Needed(), please check
Abst ract JMBHi ber nat eSear chCont r ol | er's javadoc.

3.7. JGroups Master/Slave configuration

This section describes how to configure the JGroups Master/Slave back end. The configuration
examples illustrated in Section 3.6, “JMS Master/Slave configuration” also apply here, only a
different backend (hi ber nat e. sear ch. wor ker . backend) needs to be set.

3.7.1. Slave nodes

Every index update operation is sent through a JGroups channel to the master node. Index
querying operations are executed on a local index copy.

31

Chapter 3. Configuration

Example 3.9. JGroups Slave configuration

sl ave configuration
hi ber nat e. sear ch. wor ker . backend = j groupsSl ave

3.7.2. Master node

Every index update operation is taken from a JGroups channel and executed. The master index
is copied on a regular basis.

Example 3.10. JGroups Master configuration

master configuration
hi ber nat e. sear ch. wor ker . backend = j gr oupsMast er

3.7.3. JGroups channel configuration

Optionally the configuration for the JGroups transport protocols and channel
name can be defined and applied to master and slave nodes. There
are several ways to configure the JGroups transport details. You can
either set the hi bernate. search. wor ker . backend. j gr oups. confi gurati onFil e property
and specify a file containing the JGroups configuration or you can
use the property hibernate.search. worker.backend.jgroups. configurationXm or
hi ber nat e. sear ch. wor ker . backend. j groups. confi gurati onStri ng to directly embed either
the xml or string JGroups configuration into your Hibernate configuration file. All three options are
shown in Example 3.11, “JGroups transport protocol configuration”.

Tip

If no property is explicitly specified it is assumed that the JGroups default
configuration file f | ush- udp. xm is used.

Example 3.11. JGroups transport protocol configuration

JG oups configuration options
OPTION 1 - udp.xm file needs to be located in the classpath
hi ber nat e. sear ch. wor ker . backend. j gr oups. confi gurationFile = udp. xn

OPTION 2 - protocol stack configuration provided in XM fornat
hi ber nat e. sear ch. wor ker . backend. j groups. confi gurati onXm =

<config xm ns="urn:org:jgroups"
xm ns: xsi ="http://ww.w3. or g/ 2001/ XM_Schen®- i nst ance"
xsi : schemalLocati on="urn:org:jgroups file:schema/JG& oups- 2. 8. xsd" >

32

Infinispan Directory configuration

<UDP

ntast _addr="${j gr oups. udp. ntast _addr: 228. 10. 10. 10} "
nctast _port="${j groups. udp. ntast _port: 45588} "
tos="8"

thread_nam ng_pattern="pl"

t hread_pool . enabl ed="t rue"

t hread_pool . mi n_t hreads="2"

t hread_pool . max_t hr eads="8"

t hread_pool . keep_al i ve_t i ne="5000"

t hread_pool . queue_enabl ed="f al se"

t hread_pool . queue_nax_si ze="100"
thread_pool . rejection_policy="Run"/>

<PI NG ti neout ="1000" num. nitial _nmenbers="3"/>
<MERGE2 max_i nt erval ="30000" mi n_i nterval ="10000"/>
<FD_SOCK/ >

<FD ti neout ="3000" max_tries="3"/>

<VERI FY_SUSPECT ti neout ="1500"/ >

<pbcast . STREAM NG_STATE_TRANSFER/ >

<pbcast. FLUSH ti meout ="0"/ >

</ config>

OPTION 3 - protocol stack configuration provided in "old style" jgroups format
hi ber nat e. sear ch. wor ker . backend. j gr oups. confi gurati onString =

UDP(ntast _addr =228. 1. 2. 3; ntast _port =45566; i p_ttl =32): PI NG ti meout =3000
num.i ni tial _menbers=6): FD(ti neout =5000) : VERI FY_SUSPECT(t i meout =1500)
pbcast . NAKACK(gc_I| ag=10; retransm t _ti meout =3000) : UNI CAST(t i meout =5000)
FRAG pbcast . GVB(j oi n_t i meout =3000; shun=f al se; pri nt _| ocal _addr =t rue)

In this JGroups master/slave configuration nodes communicate over a JGroups channel. The
default channel name is HSear chC ust er which can be configured as seen in Example 3.12,
“JGroups channel name configuration”.

Example 3.12. JGroups channel name configuration

hi ber nat e. sear ch. wor ker . backend. j groups. cl ust er Nane = Hi ber nat e- Sear ch- Cl ust er

3.8. Infinispan Directory configuration

Infinispan is a distributed, scalable, highly available data grid platform which supports
autodiscovery of peer nodes. Using Infinispan and Hibernate Search in combination, it is possible
to store the Lucene index in a distributed environment where index updates are quickly available
on all nodes.

This section describes in greater detail how to configure Hibernate Search to use an Infinispan
Lucene Directory.

When using an Infinispan Directory the index is stored in memory and shared across multiple
nodes. It is considered a single directory across all participating nodes. If a node updates the
index, all other nodes are updated as well. Updates on one node can be immediately searched
for in the whole cluster.

33

Chapter 3. Configuration

The default configuration replicates all data defining the index across all nodes, thus consuming
a significant amount of memory. For large indexes it's suggested to enable data distribution, so
that each piece of information is replicated to a subset of all cluster members.

It is also possible to offload part or most information to a CacheSt or e, such as plain filesystem,
Amazon S3, Cassandra, Berkley DB or standard relational databases. You can configure it to
have a CacheSt or e on each node or have a single centralized one shared by each node.

See the Infinispan documentation [http://www.jboss.org/infinispan/] for all Infinispan configuration
options.

3.8.1. Requirements

Infinispan requires Java 6 and an updated version of JGroups. To use the Infinispan directory via
Maven, add the following dependencies:

Example 3.13. Maven dependencies for Hibernate Search

<dependency>
<groupl d>or g. hi ber nat e</ gr oupl d>
<artifactl|d>hi bernate-search</artifactld>
<version>3. 4. 2. Fi nal </ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifact!| d>hi bernate-search-infinispan</artifact|d>
<version>3.4.2. Final </version>

</ dependency>

For the non-maven users, add hi ber nat e-search-infini span.jar, infinispan-lucene-
directory.jar and infinispan-core.jar to your application classpath. These last two jars
are distributed by Infinispan [http://sourceforge.net/projects/infinispan/files/]. Also make sure
to update JGroups to a version matching the Infinispan requirements. The version normally
distributed with Hibernate Search is older to maintain Java 5 compatibility.

3.8.2. Architecture

Even when using an Infinispan directory it's still recommended to use the JMS Master/Slave or
JGroups backend, because in Infinispan all nodes will share the same index and it is likely that
I ndexW i t er s being active on different nodes will try to acquire the lock on the same index. So
instead of sending updates directly to the index, send it to a IMS queue or JGroups channel and
have a single node apply all changes on behalf of all other nodes.

Configuring a non-default backend is not a requirement but a performance optimization as locks
are enabled to have a single node writing.

To configure a JMS slave only the backend must be replaced, the directory provider must be set
to i nfi ni span; set the same directory provider on the master, they will connect without the need

34

http://www.jboss.org/infinispan/
http://www.jboss.org/infinispan/
http://sourceforge.net/projects/infinispan/files/
http://sourceforge.net/projects/infinispan/files/

Infinispan Configuration

to setup the copy job across nodes. Using the JGroups backend is very similar - just combine the
backend configuration with the i nfi ni span directory provider.

3.8.3. Infinispan Configuration

The most simple configuration only requires to enable the backend:

hi ber nat e. search. defaul t. directory_provider infinispan

That's all what is needed to get a cluster-replicated index, but the default configuration does not
enable any form of permanent persistence for the index; to enable such a feature an Infinispan
configuration file should be provided.

To use Infinispan, Hibernate Search requirest a CacheManager ; it can lookup and reuse an existing
CacheManager, via JNDI, or start and manage a new one. In the latter case Hibernate Search will
start and stop it (closing occurs when the Hibernate Sessi onFact ory is closed).

To use and existing CacheManager via JNDI (optional parameter):

hi ber nat e. sear ch. i nfi ni span. cachemanager _j ndi name = [ndi nane]

To start a new CacheManager from a configuration file (optional parameter):

hi ber nat e. sear ch. i nfini span. confi gurati on_resourcenane = [infinispan configuration filenane]

If both parameters are defined, JNDI will have priority. If none of these is defined, Hibernate Search
will use the default Infinispan configuration included in hi ber nat e- sear ch-i nfi ni span. j ar. This
configuration should work fine in most cases but does not store the index in a persistent cache
store.

As mentioned in Table 3.1, “List of built-in DirectoryProviders”, each index makes use of
three caches, so three different caches should be configured as shown in the default-
hi ber nat esear ch-i nfi ni span. xm provided in the hibernate-search-infinispan.jar.
Several indexes can share the same caches.

Warning

Infinispan uses JGroups, which requires the VA
property j ava. net . pref erl Pv4St ack be set to true: -
Dj ava. net. pref er | Pv4St ack=t rue

35

Chapter 3. Configuration

3.9. Reader strategy configuration

The different reader strategies are described in Reader strategy. Out of the box strategies are:

 shar ed: share index readers across several queries. This strategy is the most efficient.
e not - shar ed: create an index reader for each individual query

The default reader strategy is shar ed. This can be adjusted:

hi ber nat e. sear ch. reader. strategy = not-shared

Adding this property switches to the not - shar ed strategy.

Or if you have a custom reader strategy:

hi ber nat e. search. reader. strategy = ny. corp. nyapp. Cust onReader Provi der

where ny. cor p. nyapp. Cust onReader Pr ovi der is the custom strategy implementation.

3.10. Tuning Lucene indexing performance

Hibernate Search allows you to tune the Lucene indexing performance by specifying a set of
parameters which are passed through to underlying Lucene | ndexW i t er such as ner geFact or,
maxMer geDocs and maxBuf f er edDocs. You can specify these parameters either as default values
applying for all indexes, on a per index basis, or even per shard.

There are two sets of parameters allowing for different performance settings depending on the
use case. During indexing operations triggered by database modifications, the parameters are
grouped by the t r ansact i on keyword:

hi ber nat e. sear ch. [def aul t| <i ndexname>] . i ndexwriter.transaction. <paraneter_nanme>

When indexing occurs via Ful | Text Sessi on. i ndex() or via a Massl ndexer (see Section 6.3,
“Rebuilding the whole index”), the used properties are those grouped under the bat ch keyword:

hi ber nat e. sear ch. [def aul t| <i ndexname>] . i ndexwri t er. bat ch. <par anet er _nane>

If no value is set for a bat ch value in a specific shard configuration, Hibernate Search will look at
the index section, then at the default section.

36

Tuning Lucene indexing performance

Example 3.14. Example performance option configuration

hi ber nat e. sear ch. Ani mal s. 2. i ndexwriter.transaction. max_nerge_docs 10
hi ber nat e. search. Ani nal s. 2. i ndexwriter.transaction. merge_factor 20
hi ber nat e. search. defaul t.i ndexwiter. batch. max_merge_docs 100

The configuration in Example 3.14, “Example performance option configuration” will result in these
settings applied on the second shard of the Ani nal index:

e transaction. max_nerge_docs =10

¢ bat ch. max_ner ge_docs = 100

e transaction. nerge_factor =20

* batch. merge_fact or = Lucene default

All other values will use the defaults defined in Lucene.

The default for all values is to leave them at Lucene's own default. The values listed in Table 3.7,
“List of indexing performance and behavior properties” depend for this reason on the version of
Lucene you are using. The values shown are relative to version 2. 4. For more information about
Lucene indexing performance, please refer to the Lucene documentation.

Warning

Previous versions had the bat ch parameters inherit from t r ansact i on properties.
This needs now to be explicitly set.

Table 3.7. List of indexing performance and behavior properties

Property Description Default Value
hi ber nat e. sear ch. Set to true when no other fal se (releases locks as soon
[defaul t] process will need to write as possible)

<i ndexnane>] . excl usi ve_i ndéa_uthe same index. This
will enable Hibernate Search
to work in exlusive mode
on the index and improve
performance when writing
changes to the index.

hi ber nat e. sear ch. Each index has a separate 1000
[defaul t] "pipeline” which contains
<i ndexnane>] . max_queue_| englhd updates to be applied
to the index. When this
queue is full adding more

37

Chapter 3. Configuration

Property

hi ber nat e. sear ch.
[defaul t]
<i ndexnane>] . i ndexwiter.

[transacti on|

bat ch] . max_buf f ered_del et e

hi ber nat e. sear ch.

[defaul t]

<i ndexnanme>] .i ndexwriter.
[transacti on]|

bat ch] . max_buf f er ed_docs

Description

operations to the queue
becomes a blocking operation.
Configuring this setting
doesn't make much sense
unless the wor ker . execut i on
is configured as async.

Determines the minimal
number of delete terms
required before the buffered
in-memory delete terms are
> appliesl and flushed. If there
are documents buffered in
memory at the time, they are
merged and a new segment is
created.

Controls the amount of
documents buffered in
memory during indexing. The
bigger the more RAM is

consumed.

Default Value

Disabled (flushes by RAM
usage)

Disabled (flushes by RAM
usage)

hi ber nat e. sear ch.

[defaul t|

<i ndexnane>].i ndexwiter.
[transacti on|

bat ch] . max_ner ge_docs

Defines the largest number
of documents allowed
segment. Larger values are
batched indexing
and speedier searches. Small
values are best for transaction
indexing.

in a

best for

Unlimited
(Integer.MAX_VALUE)

hi ber nat e. sear ch.

[defaul t|

<i ndexnane>] . i ndexwriter.
[transacti on|

bat ch] . merge_f act or

Controls segment merge
frequency and size.
Determines how often

segment indexes are merged
when insertion occurs. With
smaller values, less RAM
is used indexing,
and searches on unoptimized
indexes faster, but
indexing speed is slower.
With larger values,
RAM is used during indexing,
and
unoptimized

while

are

more

searches
indexes

while on

are

10

38

Tuning Lucene indexing performance

Property

Description

slower, indexing is faster. Thus
larger values (> 10) are best
for batch index creation, and
smaller values (< 10) for
indexes that are interactively
maintained. The value must no
be lower than 2.

Default Value

hi ber nat e. sear ch.

[defaul t|

<i ndexnanme>] . i ndexwriter.
[transacti on|

bat ch].ram buffer_size

hi ber nat e. sear ch.

[defaul t]

<i ndexnane>] . i ndexwiter.
[transacti on]|

bat ch].term.i ndex_i nterval

hi ber nat e. sear ch.

[defaul t]

<i ndexnane>] . i ndexwiter.
[transacti on]|

bat ch] . use_conpound_file

Controls the amount of RAM
in MB dedicated to document
buffers. When used together
max_buffered_docs a flush
occurs for whichever event
happens first.

Generally for faster indexing
performance it's best to flush
by RAM usage instead of
document count and use as
large a RAM buffer as you can.

Expert: Set the interval

between indexed terms.

less
used

Large values cause
memory to be
by IndexReader, but slow
random-access to terms.
Small values cause more
memory to be used by
an IndexReader, and speed
random-access to terms. See
Lucene documentation for
more details.

The advantage of using the
compound file format is that
less file descriptors are used.
The disadvantage is that
indexing takes more time and
temporary disk space. You can
set this parameter to fal se
in an attempt to improve the
indexing time, but you could
run out of file descriptors if
mer geFact or is also large.

16 MB

128

true

39

Chapter 3. Configuration

Property Description Default Value

Boolean parameter, use
"true" or "f al se". The default
value for this option is t r ue.

hi ber nat e. sear ch. enabl e_di Ngt_ahegkity changes require true
an update of the Lucene index.

If all of the updated entity
properties (dirty properties)

are not indexed Hibernate
Search will skip the re-
indexing work.

Disable this option if you use
custom Fi el dBri dges which
need to be invoked at each
update event (even though the
property for which the field
bridge is configured has not
changed).

This optimization will not
be applied on classes
using a @ assBridge or a
@ynamni cBoost .

Boolean parameter, use
"true" or "f al se". The default
value for this option is t r ue.

Tip

When your architecture permits it, always set
hi ber nat e. sear ch. def aul t . excl usi ve_i ndex_use=t r ue as it greatly improves
efficiency in index writing.

Tip

To tune the indexing speed it might be useful to time the object loading from
database in isolation from the writes to the index. To achieve this set the bl ackhol e
as worker backend and start your indexing routines. This backend does not disable
Hibernate Search: it will still generate the needed changesets to the index, but
will discard them instead of flushing them to the index. In contrast to setting
the hi bernat e. sear ch. i ndexi ng_strategy to manual , using bl ackhol e will

40

LockFactory configuration

possibly load more data from the database. because associated entities are re-
indexed as well.

The recommended approach is to focus first on optimizing the object loading, and
then use the timings you achieve as a baseline to tune the indexing process.

Warning

The bl ackhol e backend is not meant to be used in production, only as a tool to
identify indexing bottlenecks.

3.11. LockFactory configuration

Lucene Directorys have default locking strategies which work well for most cases, but it's
possible to specify for each index managed by Hibernate Search which Locki ngFact ory you
want to use.

Some of these locking strategies require a filesystem level lock and may be used even on RAM
based indexes, but this is not recommended and of no practical use.

To select a locking factory, set the hi ber nat e. sear ch. <i ndex>. | ocki ng_st r at egy option to
one of sinple, native, single or none. Alternatively set it to the fully qualified name of an
implementation of or g. hi ber nat e. sear ch. st ore. LockFact or yFact ory.

Table 3.8. List of available LockFactory implementations

name Class Description

simple org.apache.lucene.store.SimpleSafookpltwytation based on
Java's File API, it marks the
usage of the index by creating
a marker file.

If for some reason you had to
kill your application, you will
need to remove this file before
restarting it.

This is the default
implementation for the
filesystem filesystem
master and filesystem
sl ave directory providers.

41

Chapter 3. Configuration

name

native

Class

org.apache.lucene.store.NativeF#&l_odkEacteiypl e this also

Description

marks the usage of the index
by creating a marker file, but
this one is using native OS
file locks so that even if your
application crashes the locks
will be cleaned up.

This implementation has
known problems on NFS.

single

org.apache.lucene.store.SinglelistantetkERERIIIOIJOESN't USE

a file marker but is a Java
object lock held in memory;
therefore it's possible to use
it only when you are sure the
index is not going to be shared
by any other process.

This is the default
implementation for the ram
directory provider.

none

org.apache.lucene.store.NoLockMactoaynges to this index are

not coordinated by any lock;
test your application carefully
and make sure you know what
it means.

Configuration example:

hi ber nat e. search. defaul t. | ocki ng_strategy sinple
hi ber nat e. sear ch. Ani mal s. | ocki ng_strategy native
hi ber nat e. sear ch. Books. | ocki ng_strategy org.custom conponents. MyLocki ngFact ory

3.12. Exception Handling Configuration

Hibernate Search allows you to configure how exceptions are handled during the indexing
process. If no configuration is provided then exceptions are logged to the log output by default. It
is possible to explicitly declare the exception logging mechanism as seen below:

hi ber nat e. search. error_handl er | og

42

Exception Handling Configuration

The default exception handling occurs for both synchronous and asynchronous indexing.
Hibernate Search provides an easy mechanism to override the default error handling
implementation.

In order to provide your own implementation you must implement the Err or Handl er interface,
which provides the handl e(Error Context context) method. ErrorContext provides a
reference to the primary LuceneWr k instance, the underlying exception and any subsequent
LuceneWr k instances that could not be processed due to the primary exception.

public interface ErrorContext {
Li st <LuceneWor k> get Fai | i ngOperati ons();
LuceneWor k get Operati onAt Fault();
Thr owabl e get Thr owabl e() ;
bool ean hasErrors();

To register this error handler with Hibernate Search you must declare the fully qualified classname
of your Er r or Handl er implementation in the configuration properties:

hi ber nat e. sear ch. error_handl er Cust oner Err or Handl er

43

44

Chapter 4.

Mapping entities to the index
structure

4.1. Mapping an entity

In Chapter 1, Getting started you have already learned that all the metadata information needed
to index entities is described through annotations. There is no need for xml mapping files. You can
still use Hibernate mapping files for the basic Hibernate configuration, but the Hibernate Search
specific configuration has to be expressed via annotations.

Note
There is currently no xml configuration option available (see [http://
opensource.atlassian.com/projects/hibernate/browse/HSEARCH-210]).

4.1.1. Basic mapping

Lets start with the most commonly used annotations for mapping an entity.

4.1.1.1. @Indexed

Foremost we must declare a persistent class as indexable. This is done by annotating the class
with @ ndexed (all entities not annotated with @ ndexed will be ignored by the indexing process):

Example 4.1. Making a class indexable with @ ndexed

@ntity
@ ndexed
public class Essay {

}

You can optionially specify the i ndex attribute of the @Indexed annotation to change the default
name of the index. For more information see Section 3.2, “Directory configuration”.

4.1.1.2. @Field

For each property (or attribute) of your entity, you have the ability to describe how it will be indexed.
The default (no annotation present) means that the property is ignored by the indexing process.
@i el d does declare a property as indexed and allows to configure several aspects of the indexing
process by setting one or more of the following attributes:

45

http://opensource.atlassian.com/projects/hibernate/browse/HSEARCH-210
http://opensource.atlassian.com/projects/hibernate/browse/HSEARCH-210
http://opensource.atlassian.com/projects/hibernate/browse/HSEARCH-210

Chapter 4. Mapping entities t...

« nane : describe under which name, the property should be stored in the Lucene Document. The
default value is the property name (following the JavaBeans convention)

e store : describe whether or not the property is stored in the Lucene index. You can
store the value Store.YES (consuming more space in the index but allowing projection,
see Section 5.1.3.5, “Projection”), store it in a compressed way St or e. COVPRESS (this does
consume more CPU), or avoid any storage St or e. NO(this is the default value). When a property
is stored, you can retrieve its original value from the Lucene Document. This is not related to
whether the element is indexed or not.

« index: describe how the element is indexed and the type of information store. The different
values are | ndex. NO (no indexing, ie cannot be found by a query), | ndex. TOKENI ZED (use
an analyzer to process the property), | ndex. UN_ TOKENI ZED (no analyzer pre-processing),
I ndex. NO_NORMS (do not store the normalization data). The default value is TOKENI ZED.

Tip

Whether or not you want to tokenize a property depends on whether you wish to
search the element as is, or by the words it contains. It make sense to tokenize
a text field, but probably not a date field.

Tip

Fields used for sorting must not be tokenized.

» termVector: describes collections of term-frequency pairs. This attribute enables the storing of
the term vectors within the documents during indexing. The default value is TermVector.NO.

The different values of this attribute are:

Value Definition

TermVector.YES Store the term vectors of each document.
This produces two synchronized arrays,
one contains document terms and the other
contains the term's frequency.

TermVector.NO Do not store term vectors.

TermVector WITH_OFFSETS Store the term vector and token offset
information. This is the same as
TermVector.YES plus it contains the starting
and ending offset position information for the
terms.

TermVector. WITH_POSITIONS Store the term vector and token position
information. This is the same as

46

Basic mapping

Value

Definition

positions of each occurrence of a term in a
document.

TermVector.YES plus it contains the ordinal

TermVector. WITH_POSITION_OFFSETS

Store the term vector, token position and
offset information. This is a combination
of the YES, WITH_OFFSETS and
WITH_POSITIONS.

e indexNul | As : Per default null values are ignored and not indexed. However, using
i ndexNul | As you can specify a string which will be inserted as token for the nul I value. Per
default this value is set to Fi el d. DO_NOT_I NDEX_NULL indicating that nul | values should not
be indexed. You can set this value to Fi el d. DEFAULT_NULL_TOKEN to indicate that a default
nul I token should be used. This default nul | token can be specified in the configuration
using hi ber nat e. sear ch. defaul t _nul | _t oken. If this property is not set and you specify
Fi el d. DEFAULT_NULL_TOKEN the string " _null_" will be used as default.

@ Note

When the i ndexNul | As parameter is used it is important to use the same token
) to search for nul | values. Itis also advisable
to use this feature only with un-tokenized fields (I ndex. UN_TOKENI ZED).

in the search query (see

Warning

When implementing a custom Fi el dBri dge or TwoWayFi el dBri dge it is up
to the developer to handle the indexing of null values (see JavaDocs of
LuceneOpti ons. i ndexNul | As()).

4.1.1.3. @NumericField

There is a companion annotation to @i el d called @wuneri cFi el d that can be specified in the
same scope as @i el d or @ocunent | d. It can be specified for Integer, Long, Float and Double
properties. At index time the value will be indexed using a Trie structure [http://en.wikipedia.org/
wiki/Trie]. When a property is indexed as humeric field, it enables efficient range query and sorting,
orders of magnitude faster than doing the same query on standard @i el d properties. The
@wuneri cFi el d annotation accept the following parameters:

Value

Definition

forField

(Optional) Specify the name of of the related
@Field that will be indexed as numeric. It's

47

http://en.wikipedia.org/wiki/Trie
http://en.wikipedia.org/wiki/Trie
http://en.wikipedia.org/wiki/Trie

Chapter 4. Mapping entities t...

Value Definition

only mandatory when the property contains
more than a @Field declaration

precisionStep (Optional) Change the way that the Trie
structure is stored in the index. Smaller
precisionSteps lead to more disk space usage
and faster range and sort queries. Larger
values lead to less space used and range
qguery performance more close to the range
guery in normal @Fields. Default value is 4.

@ Note

Lucene marks the numeric field API still as experimental and warns for
incompatible changes in coming releases. Using Hibernate Search will hopefully
shield you from any underlying API changes, but that is not guaranteed.

4.1.1.4. @ld

Finally, the id property of an entity is a special property used by Hibernate Search to ensure index
unicity of a given entity. By design, an id has to be stored and must not be tokenized. To mark a
property as index id, use the @ocunent | d annotation. If you are using JPA and you have specified
@ d you can omit @ocunent | d. The chosen entity id will also be used as document id.

Example 4.2. Specifying indexed properties

@ntity
@ ndexed
public class Essay {

@d
@ocunent | d
public Long getld() { returnid; }

@i el d(name="Abstract", index=Index. TOKENI ZED, store=Store. YES)
public String getSumary() { return summary; }

@.ob
@i el d(i ndex=Il ndex. TOKENI ZED)
public String getText() { return text; }

@ield
@\urreri cFi el d(precisionStep = 6)
public float getGade() { return grade; }

48

Mapping properties multiple times

Example 4.2, “Specifying indexed properties” defines an index with four fields: i d , Abstract,
text and grade . Note that by default the field name is decapitalized, following the JavaBean
specification. The gr ade field is annotated as Numeric with a slightly larger precisionStep than
the default.

4.1.2. Mapping properties multiple times

Sometimes one has to map a property multiple times per index, with slightly different indexing
strategies. For example, sorting a query by field requires the field to be UN_TOKENI ZED. If one
wants to search by words in this property and still sort it, one need to index it twice - once tokenized
and once untokenized. @Fields allows to achieve this goal.

Example 4.3. Using @Fields to map a property multiple times

@ntity
@ ndexed(i ndex = "Book")
public class Book {

@ields({
@i el d(i ndex = | ndex. TOKENI ZED) ,
@ield(nanme = "summary_forSort", index = | ndex. UN TOKENI ZED, store = Store. YES)

)
public String getSumary() {
return sunmary;

}

In Example 4.3, “Using @Fields to map a property multiple times” the field summary is indexed
twice, once as summary in a tokenized way, and once as sunmary_f or Sort in an untokenized
way. @Field supports 2 attributes useful when @Fields is used:

« analyzer: defines a @Analyzer annotation per field rather than per property
« bridge: defines a @FieldBridge annotation per field rather than per property

See below for more information about analyzers and field bridges.

4.1.3. Embedded and associated objects

Associated objects as well as embedded objects can be indexed as part of the root entity index.
This is useful if you expect to search a given entity based on properties of associated objects.
In Example 4.4, “Indexing associations”t the aim is to return places where the associated city is
Atlanta (In the Lucene query parser language, it would translate into addr ess. city: Atl ant a).
The place fields will be indexed in the Pl ace index. The Pl ace index documents will also contain
the fields addr ess. i d, addr ess. st reet, and addr ess. ci t y which you will be able to query.

49

Chapter 4. Mapping entities t...

Example 4.4. Indexing associations

@ntity

@ ndexed

public class Place {
@d
@zener at edVal ue
@ocunent | d
private Long id;

@ield(index = I ndex. TOKENI ZED)
private String nang;

@neToOne(cascade = { CascadeType. PERSI ST, CascadeType. REMOVE })
@ ndexedEnbedded
private Address address;

}

@ntity

public class Address {
@d
@zener at edVal ue
private Long id;

@i el d(i ndex=I ndex. TOKENI ZED)
private String street;

@i el d(i ndex=I ndex. TOKENI ZED)
private String city;

@ont ai nedl n
@neToMany(mappedBy="addr ess")
private Set<Place> pl aces;

Be careful. Because the data is denormalized in the Lucene index when using the
@ ndexedEnbedded technique, Hibernate Search needs to be aware of any change in the Pl ace
object and any change in the Addr ess object to keep the index up to date. To make sure the Pl ace
Lucene document is updated when it's Addr ess changes, you need to mark the other side of the
bidirectional relationship with @ont ai nedI n.

Tip

Q

@ont ai nedl n is only useful on associations pointing to entities as opposed to
embedded (collection of) objects.

Let's make Example 4.4, “Indexing associations” a bit more complex by nesting @IndexEmbedded
as seen in Example 4.5, “Nested usage of @IndexedEmbedded and @ContainedIn”.

50

Embedded and associated objects

Example 4.5. Nested usage of @ ndexedEnbedded and @ont ai nedl n

@ntity

@ ndexed

public class Place {
@d
@zener at edVal ue
@ocunent | d
private Long id;

@ield(index = I ndex. TOKENI ZED)
private String nang;

@neToOne(cascade = { CascadeType. PERSI ST, CascadeType. REMOVE })
@ ndexedEnbedded
private Address address;

@ntity

public class Address {
@d
@zener at edVal ue
private Long id;

@i el d(i ndex=Il ndex. TOKENI ZED)
private String street;

@i el d(i ndex=I ndex. TOKENI ZED)
private String city;

@ ndexedEnbedded(depth = 1, prefix = "ownedBy_")
private Oamner ownedBy;

@ont ai nedl n
@neToMany(mappedBy="addr ess")
private Set<Place> pl aces;

@nbeddabl e

public class Omer {
@i el d(i ndex = | ndex. TOKENI ZED)
private String nang;

As you can see, any @ ToMany, @ ToOne and @nbedded attribute can be annotated with
@ ndexedEnbedded. The attributes of the associated class will then be added to the main entity
index. In Example 4.5, “Nested usage of @IndexedEmbedded and @ContainedIn” the index will
contain the following fields

+ id

* name

51

Chapter 4. Mapping entities t...

* address.street
 address.city
* address.ownedBy_name

The default prefix is pr opert yName. , following the traditional object navigation convention. You
can override it using the pr ef i x attribute as it is shown on the ownedBy property.

@ Note

The prefix cannot be set to the empty string.

The dept h property is necessary when the object graph contains a cyclic dependency of classes
(not instances). For example, if Omer points to Pl ace. Hibernate Search will stop including
Indexed embedded attributes after reaching the expected depth (or the object graph boundaries
are reached). A class having a self reference is an example of cyclic dependency. In our example,
because dept h is set to 1, any @ ndexedEnbedded attribute in Owner (if any) will be ignored.

Using @ ndexedEnmbedded for object associations allows you to express queries (using Lucene's
query syntax) such as:

» Return places where name contains JBoss and where address city is Atlanta. In Lucene query
this would be

+nane: j boss +address.city:atlanta

« Return places where name contains JBoss and where owner's name contain Joe. In Lucene
guery this would be

+nane: j boss +address. or der By_nane: j oe

In a way it mimics the relational join operation in a more efficient way (at the cost of data
duplication). Remember that, out of the box, Lucene indexes have no notion of association, the
join operation is simply non-existent. It might help to keep the relational model normalized while
benefiting from the full text index speed and feature richness.

@ Note

An associated object can itself (but does not have to) be @ ndexed

When @IndexedEmbedded points to an entity, the association has to be directional and the other
side has to be annotated @Cont ai nedl n (as seen in the previous example). If not, Hibernate

52

Boosting

Search has no way to update the root index when the associated entity is updated (in our example,
a Pl ace index document has to be updated when the associated Addr ess instance is updated).

Sometimes, the object type annotated by @ ndexedEnbedded is not the object type targeted by
Hibernate and Hibernate Search. This is especially the case when interfaces are used in lieu
of their implementation. For this reason you can override the object type targeted by Hibernate
Search using the t ar get El enent parameter.

Example 4.6. Using the target El enent property of @ ndexedenbedded

@ntity

@ ndexed

public class Address {
@d
@xner at edVal ue
@ocunent | d

private Long id;

@i el d(i ndex= | ndex. TOKENI ZED)
private String street;

@ ndexedEnbedded(depth = 1, prefix = "ownedBy_", targetEl ement = Oaner. cl ass)

@rar get (Oaner . cl ass)
private Person ownedBy;

}

@nbeddabl e
public class Omer inplenments Person { ... }
4.2. Boosting

Lucene has the notion of boosting which allows you to give certain documents or fields more or
less importance than others. Lucene differentiates between index and search time boosting. The
following sections show you how you can achieve index time boosting using Hibernate Search.

4.2.1. Static index time boosting

To define a static boost value for an indexed class or property you can use the @oost annotation.
You can use this annotation within @Field or specify it directly on method or class level.

Example 4.7. Different ways of using @Boost

@Entity

@ ndexed

@Boost (1. 7f)

public class Essay {

53

Chapter 4. Mapping entities t...

@d
@ocunent | d
public Long getld() { return id; }

@i el d(nane="Abstract", index=lIndex. TOKENI ZED, store=Store.YES, boost=@Boost (2f))
@Boost (1. 5f)
public String getSumary() { return summary; }

@.ob
@i el d(i ndex=I ndex. TOKENI ZED, boost =@Boost (1. 2f))
public String getText() { return text; }

@ield
public String getIl SBN() { return isbn; }

In Example 4.7, “Different ways of using @Boost”, Essay's probability to reach the top of the search
list will be multiplied by 1.7. The sunmary field will be 3.0 (2 * 1.5, because @i el d. boost and
@Boost on a property are cumulative) more important than the i sbn field. The t ext field will be
1.2 times more important than the i sbn field. Note that this explanation is wrong in strictest terms,
but it is simple and close enough to reality for all practical purposes. Please check the Lucene
documentation or the excellent Lucene In Action from Otis Gospodnetic and Erik Hatcher.

4.2.2. Dynamic index time boosting

The @oost annotation used in Section 4.2.1, “Static index time boosting” defines a static boost
factor which is independent of the state of of the indexed entity at runtime. However, there are
usecases in which the boost factor may depends on the actual state of the entity. In this case you
can use the @ynani cBoost annotation together with an accompanying custom Boost St r at egy.

Example 4.8. Dynamic boost examle

public enum PersonType {
NORMAL,
VI P

}

@Entity
@ ndexed
@ynani cBoost (i npl = VI PBoost Strat egy. cl ass)
public class Person {
private PersonType type;

1. ..
}

public class VI PBoostStrategy inplenments BoostStrategy {
public float defineBoost(Ohject value) {
Person person = (Person) val ue;
if (person.getType().equal s(PersonType.VIP)) {
return 2.0f;

54

Analysis

}

el se {
return 1.0f;

}

In Example 4.8, “Dynamic boost examle” a dynamic boost is defined on class level specifying
VI PBoost St rat egy as implementation of the Boost St r at egy interface to be used at indexing
time. You can place the @ynani cBoost either at class or field level. Depending on the placement
of the annotation either the whole entity is passed to the def i neBoost method or just the annotated
field/property value. It's up to you to cast the passed object to the correct type. In the example all
indexed values of a VIP person would be double as important as the values of a normal person.

@ Note

The specified Boost Strategy implementation must define a public no-arg
constructor.

Of course you can mix and match @oost and @ynani cBoost annotations in your entity. All
defined boost factors are cummulative.

4.3. Analysis

Anal ysi s is the process of converting text into single terms (words) and can be considered as
one of the key features of a fulltext search engine. Lucene uses the concept of Anal yzers to
control this process. In the following section we cover the multiple ways Hibernate Search offers
to configure the analyzers.

4.3.1. Default analyzer and analyzer by class

The default analyzer class used to index tokenized fields is configurable through
the hibernate. search. anal yzer property. The default value for this property is
org. apache. | ucene. anal ysi s. st andar d. St andar dAnal yzer.

You can also define the analyzer class per entity, property and even per @Field (useful when
multiple fields are indexed from a single property).

Example 4.9. Different ways of using @Analyzer

@ntity
@ ndexed
@\nal yzer (i npl = EntityAnal yzer. cl ass)
public class MyEntity {
@d
@:xner at edVal ue
@ocunent | d

55

Chapter 4. Mapping entities t...

private |nteger id;

@i el d(i ndex = | ndex. TOKENI ZED)
private String nang;

@i el d(i ndex = | ndex. TOKENI ZED)
@\nal yzer (i npl = PropertyAnal yzer. cl ass)
private String summary;

@i el d(index = I ndex. TOKENI ZED, anal yzer = @\nal yzer (i npl = Fi el dAnal yzer. cl ass)
private String body;

In this example, EntityAnal yzer is used to index all tokenized properties (eg. nane), except
sunmar y and body which are indexed with Propert yAnal yzer and Fi el dAnal yzer respectively.

¥

4.3.2. Named analyzers

Analyzers can become quite complex to deal with. For this reason introduces Hibernate Search
the notion of analyzer definitions. An analyzer definition can be reused by many @nal yzer
declarations and is composed of:

« a name: the unique string used to refer to the definition

« a list of char filters: each char filter is responsible to pre-process input characters before the
tokenization. Char filters can add, change or remove characters; one common usage is for
characters normalization

 atokenizer: responsible for tokenizing the input stream into individual words

a list of filters: each filter is responsible to remove, modify or sometimes even add words into
the stream provided by the tokenizer

This separation of tasks - a list of char filters, and a tokenizer followed by a list of filters - allows
for easy reuse of each individual component and let you build your customized analyzer in a very
flexible way (just like Lego). Generally speaking the char filters do some pre-processing in the
character input, then the Tokeni zer starts the tokenizing process by turning the character input
into tokens which are then further processed by the TokenFi | t er s. Hibernate Search supports
this infrastructure by utilizing the Solr analyzer framework.

56

Named analyzers

commons-codec

Table 4.2,
“Example of available tokenizers” Table 4.3, “Examples of available filters”

<dependency>
<groupl d>or g. hi ber nat e</ gr oupl d>
<artifactl|d>hi bernate-search-anal yzers</artifactld>
<ver si on>3. 4. 2. Fi nal </ ver si on>

<dependency>

Let's have a look at a concrete example now - Example 4.10, “@AnalyzerDef and the Solr
framework”. First a char filter is defined by its factory. In our example, a mapping char filter is used,
and will replace characters in the input based on the rules specified in the mapping file. Next a
tokenizer is defined. This example uses the standard tokenizer. Last but not least, a list of filters
is defined by their factories. In our example, the St opFi | t er filter is built reading the dedicated
words property file. The filter is also expected to ignore case.

Example 4.10. @nal yzer Def and the Solr framework

@\nal yzer Def (name="cust omanal yzer",
charFilters = {
@har Fi | t er Def (factory = Mappi ngCharFi |l terFactory. cl ass, paranms = {

@ar anet er (nane = "mappi ng",
val ue = "org/ hi bernate/search/test/anal yzer/ sol r/ nappi ng- chars. properties")
)]
Do
tokeni zer = @okeni zer Def (factory = StandardTokeni zer Factory. cl ass),
filters ={

@okenFil terDef(factory = | SOLati nlAccent FilterFactory.cl ass),
@okenFil terDef(factory = Lower CaseFilterFactory. class),
@okenFil terDef(factory = StopFilterFactory.class, params = {
@Par anet er (nane="wor ds"
val ue= "or g/ hi bernat e/ search/test/anal yzer/sol r/stoplist.properties"),
@Par anet er (nane="i gnor eCase", val ue="true")

9]

57

http://commons.apache.org/codec
http://commons.apache.org/codec
http://commons.apache.org/codec

Chapter 4. Mapping entities t...

9]

public class Team {

}

Tip

Filters and char filters are applied in the order they are defined in the @nal yzer Def
annotation. Order matters!

Some tokenizers, token filters or char filters load resources like a configuration or metadata file.
This is the case for the stop filter and the synonym filter. If the resource charset is not using the
VM default, you can explicitly specify it by adding a r esour ce_char set parameter.

Example 4.11. Use a specific charset to load the property file

@\nal yzer Def (nanme="cust onanal yzer",
charFilters = {
@char Fi |l terDef (factory = Mappi ngCharFilterFactory.class, parans = {

@rar anet er (name = "nappi ng",
val ue = "org/ hi bernate/search/test/anal yzer/sol r/ mappi ng-chars. properties")
})
I
tokeni zer = @okeni zer Def (factory = StandardTokeni zer Factory. cl ass),
filters = {

@okenFil terDef(factory = | SOLati nlAccentFilterFactory. cl ass),
@okenFil terDef(factory = Lower CaseFilterFactory.cl ass),
@okenFi |l terDef (factory = StopFilterFactory.class, params = {
@rar aret er (name="wor ds",
val ue= "org/ hi bernat e/ search/test/anal yzer/sol r/stoplist.properties"),
@par anet er (nane="resour ce_charset", value = "UTF-16BE"),
@Par anet er (nane="i gnor eCase", val ue="true")

9]
})

public class Team {

Once defined, an analyzer definition can be reused by an @nal yzer declaration as seen in
Example 4.12, “Referencing an analyzer by name”.

Example 4.12. Referencing an analyzer by name

@Entity
@ ndexed
@\nal yzer Def (nane="cust onanal yzer", ...)
public class Team {
@d
@ocunent | d

58

Named analyzers

@=xner at edVal ue
private |nteger id;

@ield
private String nane;

@Field
private String |ocation;

@ield
@\nal yzer (definition = "custonanal yzer")
private String description;

Analyzer instances declared by @nal yzerDef are also available by their name in the
Sear chFact or y which is quite useful wen building queries.

Anal yzer anal yzer = full Text Sessi on. get Sear chFactory().get Anal yzer ("customanal yzer");

Fields in queries should be analyzed with the same analyzer used to index the field so that they
speak a common "language": the same tokens are reused between the query and the indexing
process. This rule has some exceptions but is true most of the time. Respect it unless you know
what you are doing.

4.3.2.1. Available analyzers

Solr and Lucene come with a lot of useful default char filters, tokenizers and filters. You can find a
complete list of char filter factories, tokenizer factories and filter factories at http://wiki.apache.org/
solr/AnalyzersTokenizersTokenFilters. Let's check a few of them.

Table 4.1. Example of available char filters

Factory Description Parameters Additional
dependencies

Mappi ngChar Fi | t er FaciReplaces one or more mappi ng: points to none
characters with one a resource file
or more characters, containing the
based on mappings mappings using the
specified in the format:
resource file

59

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

Chapter 4. Mapping entities t...

Factory Description Parameters Additional
dependencies
HTM_St ri pChar Fi | t er FRetuoye HTML none none
standard tags,
keeping the text
Table 4.2. Example of available tokenizers
Factory Description Parameters Additional
dependencies
St andar dTokeni zer Factysey the Lucene none none
StandardTokenizer
HTM.St ri pChar Fi | t er FHRetmowe HTML tags, none solr-core

keep the text and
pass it to a
StandardTokenizer.

Pat t er nTokeni zer FactBrgaks text at
the specified regular
expression pattern.

pattern: the regular solr-core
expression to use for

tokenizing
group: says Wwhich
pattern group to

extract into tokens

Table 4.3. Examples of available filters

Factory Description Parameters Additional
dependencies
St andar dFi | t er Fact orRemove dots from none solr-core
acronyms and 's from
words
Lower CaseFi | t er Fact dc@wercases all words none solr-core
StopFilterFactory Remove words words: points to solr-core
(tokens) matching a a resource file
list of stop words containing the stop
words
ignoreCase: true if
case should be ignore
when comparing
stop words, false
otherwise

60

Named analyzers

Factory Description Parameters Additional
dependencies

Snowbal | PorterFilterRaeduceg a word |anguage: Danish, solr-core

to it's root in Dutch, English,
a given language. Finnish, French,
(eg. protect, protects, German, Italian,

protection share the Norwegian,

same root). Using Portuguese, Russian,
such a filter allows Spanish, Swedish and
searches matching a few more

related words.

| SOLat i n1Accent Fi | t éREauave yaccents for none solr-core
languages like French

Phonet i cFi |l t er Fact oripserts phonetically encoder: One of solr-core and
similar tokens into the DoubleMetaphone, commons- codec
token stream Metaphone, Soundex
or RefinedSoundex

inject: true will add
tokens to the stream,
f al se will replace the
existing token

maxCodelLengt h: sets
the maximum length
of the code to be
generated. Supported
only for Metaphone

and
DoubleMetaphone
encodings
Col | ati onKeyFi | t er FaCoawgrts each token custom | anguage, solr-core and
into its country, variant, commons-io

java. text. Col | ati onketyr,engt h,

and then encodes the deconposition see
Col | ati onKey with Lucene's

I ndexabl eBi nar ySt ri n@dldodtsi,onKeyFi | t er
to allow it to be stored javadocs for more info
as an index term.

We recommend to check all the implementations of
org. apache. sol r. anal ysi s. Tokeni zer Factory and
or g. apache. sol r. anal ysi s. TokenFi | ter Factory in your IDE to see the implementations
available.

61

Chapter 4. Mapping entities t...

4.3.3. Dynamic analyzer selection (experimental)

So far all the introduced ways to specify an analyzer were static. However, there are use cases
where it is useful to select an analyzer depending on the current state of the entity to be indexed,
for example in a multilingual applications. For an Bl ogEnt ry class for example the analyzer could
depend on the language property of the entry. Depending on this property the correct language
specific stemmer should be chosen to index the actual text.

To enable this dynamic analyzer selection Hibernate Search introduces the
Anal yzerDi scri mi nator annotation. Example 4.13, “Usage of @AnalyzerDiscriminator”
demonstrates the usage of this annotation.

Example 4.13. Usage of @AnalyzerDiscriminator

@ntity
@ ndexed
@\nal yzer Def s({
@\nal yzer Def (namre = "en",
t okeni zer = @okeni zer Def (factory = StandardTokeni zer Factory. cl ass),
filters = {
@okenFi |l terDef (factory = Lower CaseFilterFactory.class),
@okenFi |l terDef (factory Engli shPorterFilterFactory.cl ass
)
b,
@\nal yzer Def (nane = "de",
tokeni zer = @okeni zer Def (factory = StandardTokeni zer Factory. cl ass),
filters = {
@okenFilterDef(factory = LowerCaseFilterFactory.class),
@okenFil terDef (factory = GermanStenfilterFactory.cl ass)

9]

9]
public class BlogEntry {

@d

@xner at edVal ue
@ocunent | d
private |nteger id;

@ield
@\nal yzer Di scrim nator (i npl = LanguageDi scri m nator. cl ass)

private String | anguage;

@Field
private String text;

private Set<Bl ogEntry> references;

/] standard getter/setter

public class LanguageDi scrim nator inplenents Discrimnator {

62

Retrieving an analyzer

public String getAnal yzerDefinitionName(CObject value, Object entity, String field) {
if (value == null || !'(entity instanceof Article)) {
return null;

}

return (String) val ue;

The prerequisite for using @nal yzer Di scri nmi nat or is that all analyzers which are going to
be used are predefined via @nal yzer Def definitions. If this is the case one can place the
@nal yzer Di scri nmi nat or annotation either on the class or on a specific property of the entity for
which to dynamically select an analyzer. Via the i npl parameter of the Anal yzer Di scri ni nat or
you specify a concrete implementation of the Di scrimi nator interface. It is up to you to
provide an implementation for this interface. The only method you have to implement is
get Anal yzer Defi ni ti onNanme() which gets called for each field added to the Lucene document.
The entity which is getting indexed is also passed to the interface method. The val ue parameter
is only set if the Anal yzer Di scri ni nat or is placed on property level instead of class level. In this
case the value represents the current value of this property.

An implemention of the Di scri mi nat or interface has to return the name of an existing analyzer
definition if the analyzer should be set dynamically or nul | if the default analyzer should not be
overridden. The given example assumes that the language parameter is either 'de' or 'en' which
matches the specified names in the @nal yzer Def s.

(3

4.3.4. Retrieving an analyzer
In some situations retrieving analyzers can be handy. For example, if your domain model makes

use of multiple analyzers (maybe to benefit from stemming, use phonetic approximation and so
on), you need to make sure to use the same analyzers when you build your query.

Section 5.1.2,

“Building a Lucene query with the Hibernate Search query DSL”

63

Chapter 4. Mapping entities t...

Whether you are using the Lucene programmatic API or the Lucene query parser, you can retrieve
the scoped analyzer for a given entity. A scoped analyzer is an analyzer which applies the right
analyzers depending on the field indexed. Remember, multiple analyzers can be defined on a
given entity each one working on an individual field. A scoped analyzer unifies all these analyzers
into a context-aware analyzer. While the theory seems a bit complex, using the right analyzer in
a query is very easy.

Example 4.14. Using the scoped analyzer when building a full-text query

org. apache. | ucene. quer yPar ser. QueryPar ser parser = new QueryParser (
"title",
ful | Text Sessi on. get Sear chFactory(). get Anal yzer(Song. cl ass)

)

org. apache. | ucene. search. Query | uceneQuery =
parser.parse("title:sky O title_stemmed:di anond");

org. hi bernate. Query full Text Query =
ful | Text Sessi on. creat eFul | Text Query(| uceneQuery, Song.class);

List result = full TextQuery.list(); //return a list of managed objects

In the example above, the song title is indexed in two fields: the standard analyzer is used in the
field titl e and a stemming analyzer is used in the field ti t| e_st enmed. By using the analyzer
provided by the search factory, the query uses the appropriate analyzer depending on the field
targeted.

Q

You can also retrieve analyzers defined via @nal yzer Def by their definition name
using sear chFact ory. get Anal yzer (Stri ng) .

4.4. Bridges

When discussing the basic mapping for an entity one important fact was so far disregarded. In
Lucene all index fields have to be represented as strings. All entity properties annotated with
@i el d have to be converted to strings to be indexed. The reason we have not mentioned it so
far is, that for most of your properties Hibernate Search does the translation job for you thanks
to set of built-in bridges. However, in some cases you need a more fine grained control over the
translation process.

4.4.1. Built-in bridges

Hibernate Search comes bundled with a set of built-in bridges between a Java property type and
its full text representation.

64

Built-in bridges

null
Per default nul I elements are not indexed. Lucene does not support null elements. However,
in some situation it can be useful to insert a custom token representing the nul | value. See
Section 4.1.1.2, “@Field” for more information.

java.lang.String
Strings are indexed as are

short, Short, integer, Integer, long, Long, float, Float, double, Double, Biginteger, BigDecimal
Numbers are converted into their string representation. Note that numbers cannot be
compared by Lucene (ie used in ranged queries) out of the box: they have to be padded

@ Note

Using a Range query is debatable and has drawbacks, an alternative approach
is to use a Filter query which will filter the result query to the appropriate range.

Hibernate Search will support a padding mechanism

java.util.Date
Dates are stored as yyyyMMddHHmMmssSSS in GMT time (200611072203012 for Nov 7th of
2006 4:03PM and 12ms EST). You shouldn't really bother with the internal format. What is
important is that when using a DateRange Query, you should know that the dates have to
be expressed in GMT time.

Usually, storing the date up to the millisecond is not necessary. @pateBridge
defines the appropriate resolution you are wiling to store in the index (
@at eBri dge(resol uti on=Resol uti on. DAY)). The date pattern will then be truncated
accordingly.

@ntity

@ ndexed

public class Meeting {
@i el d(i ndex=Il ndex. UN_TOKENI ZED)
@at eBri dge(resol uti on=Resol uti on. M NUTE)
private Date date;

Warning

A Date whose resolution is lower than M LLI SECOND cannot be a @ocunent | d

java.net.URI, java.net.URL
URI and URL are converted to their string representation

65

Chapter 4. Mapping entities t...

java.lang.Class
Class are converted to their fully qualified class name. The thread context classloader is used
when the class is rehydrated

4.4.2. Custom bridges

Sometimes, the built-in bridges of Hibernate Search do not cover some of your property types,
or the String representation used by the bridge does not meet your requirements. The following
paragraphs describe several solutions to this problem.

4.4.2.1. StringBridge

The simplest custom solution is to give Hibernate Search an implementation of
your expected Cbject to String bridge. To do so you need to implement the
or g. hi bernat e. search. bri dge. StringBri dge interface. All implementations have to be
thread-safe as they are used concurrently.

Example 4.15. Custom stringBri dge implementation

| **

* Paddi ng | nteger bridge.

* All nunbers will be padded with O to match 5 digits

* Emmanuel Bernard

*/

public class Paddedl ntegerBridge inplenments StringBridge {

private int PADDI NG = 5;

public String objectToString(Object object) {
String raw nteger = ((Integer) object).toString();
if (rawinteger.length() > PADD NG
throw new ||| egal Argunent Exception("Try to pad on a nunber too big");
StringBuil der paddedl nteger = new StringBuilder();
for (int padlndex = rawl nteger.length() ; padlndex < PADDI NG ; padl ndex++) {
paddedl nt eger . append(' 0");

}
return paddedl nt eger. append(rawi nteger).toString();

Given the string bridge defined in Example 4.15, “Custom StringBridge implementation”, any
property or field can use this bridge thanks to the @i el dBri dge annotation:

@i el dBri dge(i npl = Paddedl nt eger Bri dge. cl ass)
private Integer |ength;

66

Custom bridges

4.4.2.1.1. Parameterized bridge

Parameters can also be passed to the bridge implementation making it more flexible.
Example 4.16, “Passing parameters to your bridge implementation” implements a
Par anmet eri zedBri dge interface and parameters are passed through the @i el dBridge
annotation.

Example 4.16. Passing parameters to your bridge implementation

public class Paddedl ntegerBridge inplenments StringBridge, ParaneterizedBridge {

public static String PADDI NG PROPERTY = "paddi ng";
private int padding = 5; //default

public void setParaneterVal ues(Map paraneters) {
Obj ect paddi ng = paraneters. get(PADDI NG PROPERTY);
if (padding !'= null) this.padding = (Integer) padding;
}

public String objectToString(Object object) {
String raw nteger = ((Integer) object).toString();
if (rawi nteger.length() > padding)
throw new Il egal Argunent Exception("Try to pad on a nunber too big");
StringBui |l der paddedl nteger = new StringBuilder();
for (int padlndex = rawl nteger.length() ; padlndex < padding ; padl ndex++) {
paddedl nt eger . append(' 0");

}
return paddedl nteger. append(rawl nteger).toString();

/| property
@i el dBri dge(i npl = Paddedl nt eger Bri dge. cl ass,
paranms = @ar anet er (nane="paddi ng", val ue="10")

)

private Integer |ength;
The ParaneterizedBridge interface can be implemented by StringBridge,
TwoWaySt ri ngBri dge, Fi el dBri dge implementations.

All implementations have to be thread-safe, but the parameters are set during initialization and
no special care is required at this stage.

4.4.2.1.2. Type aware bridge

It is sometimes useful to get the type the bridge is applied on:

« the return type of the property for field/getter-level bridges

« the class type for class-level bridges

67

Chapter 4. Mapping entities t...

An example is a bridge that deals with enums in a custom fashion but needs to access the actual
enum type. Any bridge implementing Appl i edOnTypeAwar eBr i dge will get the type the bridge is
applied on injected. Like parameters, the type injected needs no particular care with regard to
thread-safety.

4.4.2.1.3. Two-way bridge

If you expect to use your bridge implementation on an id property (ie annotated with @ocunent | d
), you need to use a slightly extended version of Stri ngBri dge named TwoWaySt ri ngBri dge.
Hibernate Search needs to read the string representation of the identifier and generate the object
out of it. There is no difference in the way the @i el dBri dge annotation is used.

Example 4.17. Implementing a TwoWayStringBridge usable for id properties

public class Paddedl nt egerBridge inpl enments TwoWayStri ngBri dge, ParaneterizedBridge {

public static String PADDI NG PROPERTY = "paddi ng";
private int padding = 5; //default

public void setParaneterVal ues(Map paraneters) {
Obj ect paddi ng = paraneters. get(PADDI NG PROPERTY);
if (padding !'= null) this.padding = (Integer) padding;
}

public String objectToString(Cbject object) {
String rawi nteger = ((Integer) object).toString();
if (rawinteger.length() > padding)
throw new |11 egal Argunent Exception("Try to pad on a nunber too big");
StringBuil der paddedl nteger = new StringBuilder();
for (int padlndex = rawl nteger.length() ; padlndex < padding ; padl ndex++) {
paddedl nt eger . append(' 0");
}
return paddedl nt eger. append(rawi nteger).toString();
}

public Object stringToObject(String stringValue) {
return new I nteger(stringVal ue);

}

//id property
@ocurnent | d
@i el dBri dge(i npl = Paddedl nt eger Bri dge. cl ass,
paranms = @par anet er (nane="paddi ng", val ue="10")
private Integer id;

68

Custom bridges

D) Important

It is important for the two-way process to be idempotent (ie object =
stringToObject(objectToString(object))).

4.4.2.2. FieldBridge

Some use cases require more than a simple object to string translation when mapping a property
to a Lucene index. To give you the greatest possible flexibility you can also implement a bridge
as a Fi el dBri dge. This interface gives you a property value and let you map it the way you want
in your Lucene Docunent . You can for example store a property in two different document fields.
The interface is very similar in its concept to the Hibernate User Types.

Example 4.18. Implementing the FieldBridge interface

/**
* Store the date in 3 different fields - year, nonth, day - to ease Range Query per
* year, nonth or day (eg get all the elenents of Decenber for the last 5 years).
* @ut hor Emmanuel Bernard
*/
public class DateSplitBridge inplenents FieldBridge {
private final static TimeZone GMI = Ti meZone. get Ti meZone(" GMI") ;

public void set(String nane, Cbject value, Docunment docunent,
LuceneOptions | uceneOptions) {
Date date = (Date) val ue;
Cal endar cal = GregorianCal endar. getl nstance(GVI);
cal . setTi ne(date);
int year = cal.get(Cal endar. YEAR);
int nonth = cal.get(Cal endar. MONTH) + 1;
int day = cal.get(Cal endar. DAY_OF_MONTH) ;

/] set year

| uceneOpt i ons. addFi el dToDocunent (
nane + ".year",
String.val ueO(year),
docunent);

/] set month and pad it if needed

| uceneOpt i ons. addFi el dToDocunent (
name + ".nonth",
month < 10 ? "0" : "" + String.valueO'(nonth),
docunent);

/] set day and pad it if needed

| uceneOpt i ons. addFi el dToDocurnent (
name + ".day",
day < 10 ? "0" : "" + String.valueO(day),
docunent);

69

Chapter 4. Mapping entities t...

/| property
@i el dBridge(inpl = DateSplitBridge.class)
private Date date;

In Example 4.18, “Implementing the FieldBridge interface” the fields are not added directly to
Document. Instead the addition is delegated to the LuceneOpt i ons helper; this helper will apply
the options you have selected on @i el d, like St or e or Ter nvect or, or apply the choosen @oost
value. It is especially useful to encapsulate the complexity of COVPRESS implementations. Even
though it is recommended to delegate to LuceneOpt i ons to add fields to the Docunent , nothing
stops you from editing the Docunent directly and ignore the LuceneOpt i ons in case you need to.

Tip

Classes like LuceneOpt i ons are created to shield your application from changes
in Lucene API and simplify your code. Use them if you can, but if you need more
flexibility you're not required to.

4.4.2.3. ClassBridge

It is sometimes useful to combine more than one property of a given entity and index
this combination in a specific way into the Lucene index. The @ assBri dge respectively
@ assBri dges annotations can be defined at class level (as opposed to the property level). In this
case the custom field bridge implementation receives the entity instance as the value parameter
instead of a particular property. Though not shown in Example 4.19, “Implementing a class
bridge”, @ assBri dge supports the t er nvect or attribute discussed in section Section 4.1.1,
“Basic mapping”.

Example 4.19. Implementing a class bridge

@ntity
@ ndexed
@ assBri dge(name="br anchnet wor k",
i ndex=I ndex. TOKENI ZED,
st ore=Store. YES,
inpl = CatFieldsCl assBri dge. cl ass,
parans = @Paraneter(name="sepChar", value=" "))
public class Departnment {
private int id;
private String network;
private String branchHead;
private String branch;
private Integer maxEnpl oyees

}

public class CatFieldsC assBridge inplenents FieldBridge, ParaneterizedBridge {
private String sepChar;

70

Providing your own id

public void setParaneterVal ues(Map paraneters) {
this.sepChar = (String) paraneters.get("sepChar");

public void set(
String nane, Object value, Docunent docunent, LuceneQptions |uceneOptions) {
/1 In this particular class the nane of the new field was passed
[/l fromthe nane field of the Cl assBridge Annotation. This is not
/1l a requirenent. It just works that way in this instance. The
/1 actual nane coul d be supplied by hard coding it bel ow.
Department dep = (Departnent) val ue;
String fieldVal uel = dep. getBranch();
if (fieldvaluel == null) {
fieldvaluel = "";
}
String fieldValue2 = dep. get Net work();
if (fieldvalue2 == null) {
fieldvalue2 = ""
}
String fieldValue = fieldValuel + sepChar + fiel dVal ue2;
Field field = new Field(name, fieldValue, |uceneOptions.getStore(),
| uceneOpti ons. get I ndex(), |uceneOptions. get TernVector());
field. setBoost(|uceneOptions.getBoost());
docunent . add(field);

In this example, the particular Cat Fi el dsd assBri dge is applied to the depart ment instance, the
field bridge then concatenate both branch and network and index the concatenation.

4.5. Providing your own id

Warning

This part of the documentation is a work in progress.

You can provide your own id for Hibernate Search if you are extending the internals. You will have
to generate a unigue value so it can be given to Lucene to be indexed. This will have to be given
to Hibernate Search when you create an org.hibernate.search.Work object - the document id is
required in the constructor.

45.1. The Providedld annotation

Unlike @ocurment | dwhich is applied on field level, @r ovi dedl d is used on the class level.
Optionally you can specify your own bridge implementation using the bri dge property. Also, if
you annotate a class with @ ovi dedl d, your subclasses will also get the annotation - but it is not
done by using the java.lang.annotations.@Inherited. Be sure however, to not use this annotation
with @Documentld as your system will break.

71

Chapter 4. Mapping entities t...

Example 4.20. Providing your own id

@rovidedld (bridge = org. ny. own. package. MyCust onBri dge)
@ ndexed
public class MO ass{

@Field

String MString;

4.6. Programmatic API

Warning

This feature is considered experimental. While stable code-wise, the API is subject
to change in the future.

Although the recommended approach for mapping indexed entities is to use annotations, it is
sometimes more convenient to use a different approach:

» the same entity is mapped differently depending on deployment needs (customization for
clients)

e some automatization process requires the dynamic mapping of many entities sharing common
traits

While it has been a popular demand in the past, the Hibernate team never found the idea of an
XML alternative to annotations appealing due to it's heavy duplication, lack of code refactoring
safety, because it did not cover all the use case spectrum and because we are in the 21st century :)

The idea of a programmatic APl was much more appealing and has now become a reality. You
can programmatically define your mapping using a programmatic API: you define entities and
fields as indexable by using mapping classes which effectively mirror the annotation concepts in
Hibernate Search. Note that fan(s) of XML approach can design their own schema and use the
programmatic API to create the mapping while parsing the XML stream.

In order to use the programmatic model you must first construct a Sear chMappi ng object.
This object is passed to Hibernate Search via a property set to the Configuration
object. The property key is hi ber nat e. sear ch. nodel _mappi ng or it's type-safe representation
Envi r onnent . MODEL_MAPPI NG.

Sear chMappi ng mappi ng = new Sear chMappi ng() ;
[...]
configuration.setProperty(Environnent. MODEL_MAPPI NG napping);

/lor in JPA

72

Mapping an entity as indexable

Sear chMappi ng mappi ng = new Sear chMappi ng() ;

[...]

Map<String, String> properties = new HashMap<String, String)(1);

properties. put(Environment. MODEL_MAPPI NG napping);

EntityManager Factory enf = Persistence. createEntityManager Factory("userPU', properties);

The Sear chMappi ng is the root object which contains all the necessary indexable entities and
fields. From there, the Sear chMappi ng object exposes a fluent (and thus intuitive) API to express
your mappings: it contextually exposes the relevant mapping options in a type-safe way. Just let
your IDE autocompletion feature guide you through.

Today, the programmatic API cannot be used on a class annotated with Hibernate Search
annotations, chose one approach or the other. Also note that the same default values apply in
annotations and the programmatic API. For example, the @i el d. nane is defaulted to the property
name and does not have to be set.

Each core concept of the programmatic APl has a corresponding example to depict how the
same definition would look using annotation. Therefore seeing an annotation example of the
programmatic approach should give you a clear picture of what Hibernate Search will build with
the marked entities and associated properties.

4.6.1. Mapping an entity as indexable

The first concept of the programmatic API is to define an entity as indexable. Using the annotation
approach a user would mark the entity as @ ndexed, the following example demonstrates how to
programmatically achieve this.

Example 4.21. Marking an entity indexable

Sear chMappi ng mappi ng = new Sear chMappi ng() ;

mappi ng. enti ty(Address. cl ass)
. i ndexed()
.i ndexNanme("Address_I ndex"); //optional

cfg.getProperties().put("hibernate.search. nodel _mappi ng", mapping);

As you can see you must first create a Sear chMappi ng object which is the root object that is then
passed to the Confi gur ati on object as property. You must declare an entity and if you wish to
make that entity as indexable then you must call the i ndexed() method. The i ndexed() method
has an optional i ndexNane(Stri ng i ndexName) which can be used to change the default index
name that is created by Hibernate Search. Using the annotation model the above can be achieved
as:

Example 4.22. Annotation example of indexing entity

@ntity

73

Chapter 4. Mapping entities t...

@ ndexed(i ndex="Addr ess_| ndex")
public class Address {

}

4.6.2. Adding Documentld to indexed entity

To set a property as a document id:

Example 4.23. Enabling document id with programmatic model

Sear chiappi ng mappi ng = new Sear chMappi ng() ;

mappi ng. enti ty(Address. cl ass). i ndexed()
.property("addressld", ElenmentType.FIELD) //field access
. docurent 1 d()
.name("id");

cfg.getProperties().put("hibernate.search. nodel _nmappi ng", mappi ng);

The above is equivalent to annotating a property in the entity as @ocunent I d as seen in the
following example:

Example 4.24. Documentld annotation definition

@ntity

@ ndexed

public class Address {
@d
@=xner at edVal ue
@ocunent | d(nane="i d")
private Long addressld;

The next section demonstrates how to programmatically define analyzers.

4.6.3. Defining analyzers

Analyzers can be programmatically defined using the anal yzer Def (String anal yzer Def,
Cl ass<? ext ends Tokeni zer Fact or y> t okeni zer Fact ory) method. This method also enables
you to define filters for the analyzer definition. Each filter that you define can optionally take in
parameters as seen in the following example :

74

Defining analyzers

Example 4.25. Defining analyzers using programmatic model

Sear chiappi ng mappi ng = new Sear chMappi ng() ;

mappi ng
.anal yzer Def ("ngran', StandardTokeni zerFactory. class)
.filter(LowerCaseFilterFactory.class)
.filter(NG anFilterFactory.class)
.paranm "m nG anSi ze", "3")
.paran("nmaxG anSi ze", "3")
.anal yzerDef ("en", StandardTokenizerFactory.class)
.filter(LowerCaseFilterFactory.class)
.filter(EnglishPorterFilterFactory.class)
.anal yzer Def ("de", StandardTokeni zer Factory.class)
.filter(LowerCaseFilterFactory.class)
.filter(GermanStenfilterFactory.class)
.entity(Address. cl ass).indexed()
.property("addressld", ElenmentType. METHOD) //getter access
. docunent 1 d()
.name("id");

cfg.getProperties().put("hibernate.search. nodel _mappi ng", mapping);

The analyzer mapping defined above is equivalent to the annotation model using @nal yzer Def
in conjunction with @nal yzer Def s:

Example 4.26. Analyzer definition using annotation

@ ndexed
@ntity
@\nal yzer Def s({
@\nal yzer Def (nane = "ngrant',
tokeni zer = @okeni zer Def (factory = StandardTokeni zer Factory. cl ass),
filters = {
@okenFilterDef(factory = Lower CaseFilterFactory. class),
@okenFilterDef(factory = NG anFilterFactory.cl ass,

paranms = {
@rar anet er (name = "m nG anti ze", value = "3"),
@rar anet er (name = "naxG anti ze", value = "3")
9]

1
@\nal yzer Def (nane = "en",
t okeni zer = @okeni zer Def (factory = StandardTokeni zer Factory. cl ass),
filters = {
@okenFil terDef (factory Lower CaseFi |l ter Factory. cl ass),
@okenFilterDef(factory = EnglishPorterFilterFactory. class)
5o

@\nal yzer Def (nane = "de",
tokeni zer = @okeni zer Def (factory = StandardTokeni zer Factory. cl ass),
filters = {
@okenFilterDef(factory = Lower CaseFilterFactory.class),
@okenFil terDef (factory GermanSt enfi | t er Fact ory. cl ass)

b

75

Chapter 4. Mapping entities t...

9]

public class Address {

}

4.6.4. Defining full text filter definitions

The programmatic API provides easy mechanism for defining full text filter definitions which
is available via @ul | TextFilterDef and @ul | TextFilterDefs (see Section 5.3, “Filters”).
The next example depicts the creation of full text filter definition using the f ul | Text Fi | t er Def
method.

Example 4.27. Defining full text definition programmatically

Sear chiappi ng mappi ng = new Sear chMappi ng() ;

mappi ng
.anal yzerDef ("en", StandardTokeni zerFactory.class)
.filter(LowerCaseFilterFactory.class)
.filter(EnglishPorterFilterFactory.class)
.full TextFilterDef("security", SecurityFilterFactory.class)
.cache(FilterCacheModeType. | NSTANCE_ONLY)
.entity(Address. cl ass)
. i ndexed()
. property("addressld", ElenentType. METHOD)
.docunent | d()

.name("id")
.property("streetl", ElenentType. METHOD)
.field()

.anal yzer("en")

.store(Store. YES)
.field()

. name("address_data")

.anal yzer ("en")

.store(Store.NO;

cfg.getProperties().put("hibernate.search. nodel _nmappi ng", mapping);

The previous example can effectively been seen as annotating your entity with
@ul | Text Fil terDef like below:

Example 4.28. Using annotation to define full text filter definition

@ntity
@ ndexed
@\nal yzer Def s({
@\nal yzer Def (name = "en",
t okeni zer = @okeni zer Def (factory = StandardTokeni zer Factory. cl ass),
filters = {
@okenFilterDef(factory = Lower CaseFilterFactory.class),

76

Defining fields for indexing

@okenFil terDef(factory = EnglishPorterFilterFactory.class)

})
9]
@ul |l TextFilterDefs({
@ul | TextFilterDef(nane = "security", inpl = SecurityFilterFactory.class, cache = FilterCacheMbdeType. | NSTANCE_O

})

public class Address {

@d

@cener at edVal ue

@ocunent | d(name="i d")

pubblic Long get Addressld() {...};

@i el ds({
@i el d(i ndex=I ndex. TOKENI ZED, st ore=Store. YES,
anal yzer =@\nal yzer (definition="en")),
@i el d(name="address_data", anal yzer=@\nal yzer(definition="en"))

1)
public String get Addressi() {...};

4.6.5. Defining fields for indexing

When defining fields for indexing using the programmatic API, call field() on the
property(String propertyNane, ElenentType el enent Type) method. From fiel d() you
can specify the name, i ndex, store, bri dge and anal yzer definitions.

Example 4.29. Indexing fields using programmatic API

Sear chivappi ng mappi ng = new Sear chMappi ng() ;

mappi ng
.anal yzerDef ("en", StandardTokeni zerFactory.class)
.filter(LowerCaseFilterFactory.class)
.filter(EnglishPorterFilterFactory.class)
.entity(Address. cl ass).indexed()
. property("addressld", ElenmentType. METHOD)
. docurent 1 d()

.name("id")
.property("streetl", ElenentType. METHOD)
Lfield()

.anal yzer("en")

.store(Store. YES)

.index(lIndex. TOKENI ZED) //no useful here as it's the default
Lfield()

.name("address_data")

.anal yzer("en");

cfg.getProperties().put("hibernate.search. nodel _mappi ng", mapping);

77

Chapter 4. Mapping entities t...

The above example of marking fields as indexable is equivalent to defining fields using @i el d
as seen below:

Example 4.30. Indexing fields using annotation

@ntity
@ ndexed
@\nal yzer Def s({
@\nal yzer Def (name = "en",
tokeni zer = @okeni zer Def (factory = StandardTokeni zer Factory. cl ass),
filters = {
@okenFilterDef(factory = Lower CaseFilterFactory. cl ass),
@okenFilterDef(factory = EnglishPorterFilterFactory. class)

})

})

public class Address {

@d

@zener at edVal ue

@ocunent | d(name="i d")

private Long get Addressld() {...};

@i el ds({
@i el d(i ndex=Il ndex. TOKENI ZED, st ore=St ore. YES,
anal yzer =@\nal yzer (definition="en")),
@i el d(nane="addr ess_dat a", anal yzer=@\nal yzer (definition="en"))

1)
public String get Address1() {...}

4.6.6. Programmatically defining embedded entities

In this section you will see how to programmatically define entities to be embedded into the indexed
entity similar to using the @ ndexEnbedded model. In order to define this you must mark the
property as i ndexEnmbedded. There is the option to add a prefix to the embedded entity definition
which can be done by calling pr ef i x as seen in the example below:

Example 4.31. Programmatically defining embedded entites

Sear chiappi ng mappi ng = new Sear chMappi ng() ;

mapppi ng
.entity(Product Catal og. cl ass)
. i ndexed()
.property("catal ogld', ElenentType. METHOD)
.docunent | d()
.name("id")
.property("title", El enentType. METHOD)
.field()
. i ndex (| ndex. TOKENI ZED)

78

Contained In definition

.store(Store. NO
. property("description", ElenentType. METHOD)
Lfield()
. i ndex(| ndex. TOKENI ZED)
.store(Store. NO
.property("itens", El enentType. METHOD)
. i ndexEnmbedded()
.prefix("catalog.itens"); //optional

cfg.getProperties().put("hibernate.search. nodel _mappi ng", mapping);

The next example shows the same definition using annotation (@ ndexEnbedded):

Example 4.32. Using @IndexEmbedded

@ntity
@ ndexed
public class ProductCatal og {
@d
@zener at edVal ue
@ocunent | d(name="i d")
public Long getCatalogld() {...}

@i el d(store=Store. NO, index=Index. TOKENI ZED)
public String getTitle() {...}

@i el d(store=Store. NO index=l ndex. TOKENI ZED)
public String getDescription();

@neToMany(fetch = FetchType. LAZY)

@ ndexCol um(nane = "list_position")

@ascade(org. hi bernat e. annot ati ons. CascadeType. ALL)
@ ndexEnbedded(prefix="catal og.itens")

public List<ltenr getltems() {...}

4.6.7. Contained In definition

@ont ai nedl n can be define as seen in the example below:

Example 4.33. Programmatically defining Containedin

Sear chMappi ng mappi ng = new Sear chMappi ng() ;

mapppi ng
.entity(Product Catal og. cl ass)
. i ndexed()
.property("catal ogld", ElenmentType. METHOD)
. docurnent 1 d()

79

Chapter 4. Mapping entities t...

.property("title", El ementType. METHOD)

Lfield()

.property("description", ElenmentType. METHOD)
Lfield()

.property("itens", El enentType. METHOD)
. i ndexEnmbedded()

.entity(ltemclass)
.property("description", ElenentType. METHOD)
.field()
. property("product Catal og", El enment Type. METHOD)
.contai nedin();

cfg.getProperties().put("hibernate.search. nodel _mappi ng", mapping);

This is equivalent to defining @ont ai nedl! n in your entity:

Example 4.34. Annotation approach for Containedin

@Entity
@ ndexed
public class Product Catal og {

@d

@=xner at edVal ue

@pocurent 1 d

public Long getCatalogld() {...}

@ield
public String getTitle() {...}

@ield
public String getDescription() {...}

@neToMany(fetch = FetchType. LAZY)

@ ndexCol um(nane = "list_position")

@ascade(org. hi ber nat e. annot ati ons. CascadeType. ALL)
@ ndexEnbedded

private List<ltem> getltens() {...}

@Entity
public class Item{

@d
@zener at edVal ue
private Long itemd;

@ield
public String getDescription() {...}

@manyToOne(cascade = { CascadeType. PERSI ST, CascadeType. REMOVE })

@Cont ai nedl n
public Product Catal og get Product Catal og() {...}

80

Date/Calendar Bridge

4.6.8. Date/Calendar Bridge

In order to define a calendar or date bridge mapping, call the dateBri dge(Resol ution
resol uti on) orcal endarBri dge(Resol ution resol uti on) methods after you have defined a
fiel d() inthe Sear chMappi ng hierarchy.

Example 4.35. Programmatic model for defining calendar/date bridge

Sear chMappi ng mappi ng = new Sear chMappi ng() ;

mappi ng

.entity(Address. cl ass)
. i ndexed()
.property("addressld", ElenentType.Fl ELD)

. docurent 1 d()

.property("streetl", ElenentType.Fl ELDX)
Lfield()

.property("createdOn", ElenentType. Fl ELD)
Lfield()
. dat eBri dge(Resol uti on. DAY)

.property("l ast Updat ed", El ement Type. Fl ELD)
. cal endar Bri dge(Resol uti on. DAY) ;

cfg.getProperties().put("hibernate.search. nodel _mappi ng", mapping);

See below for defining the above using @al endar Bri dge and @at eBr i dge:

Example 4.36. @CalendarBridge and @DateBridge definition

@ntity
@ ndexed
public class Address {

@d

@zener at edVal ue
@ocunent | d

private Long addressld;

@ield
private String addressi;

@ield
@at eBri dge(resol uti on=Resol uti on. DAY)
private Date createdOn;

@Cal endar Bri dge(resol uti on=Resol uti on. DAY)
private Cal endar | astUpdat ed;

81

Chapter 4. Mapping entities t...

4.6.9. Defining bridges

It is possible to associate bridges to programmatically defined fields. When you define a
fi el d() programmatically you can use the bri dge(d ass<?> i npl) to associate aFi el dBri dge
implementation class. The bridge method also provides optional methods to include any
parameters required for the bridge class. The below shows an example of programmatically
defining a bridge:

Example 4.37. Defining field bridges programmatically

Sear chivappi ng mappi ng = new Sear chMappi ng() ;

mappi ng
.entity(Address.cl ass)
. i ndexed()
.property("addressld", ElenentType.Fl ELD)
. docunent 1 d()
.property("streetl", El enentType.FlELD)
.field()
.field()
.name("street1_abridged")
.bridge(ConcatStringBridge.class)
.paran("size", "4");

cfg.getProperties().put("hibernate.search. nodel _mappi ng", mapping);

The above can equally be defined using annotations, as seen in the next example.

Example 4.38. Defining field bridges using annotation

@ntity
@ ndexed
public class Address {

@d

@cener at edVal ue
@ocunent | d(name="i d")
private Long addressld;

@i el ds({
@Field,
@i el d(nane="street 1_abridged",
bridge = @ieldBridge(inpl = ConcatStringBridge.class,
parans = @araneter(nanme="size", value="4"))
1)

private String addressl;

82

Mapping class bridge

4.6.10. Mapping class bridge

You can define class bridges on entities programmatically. This is shown in the next example:

Example 4.39. Defining class briges using API

Sear chiappi ng mappi ng = new Sear chMappi ng() ;

mappi ng
.entity(Departnments.class)
. cl assBri dge(Cat Dept sFi el dsd assBri dge. cl ass)

. name(" branchnet wor k")
. i ndex(| ndex. TOKENI ZED)
.store(Store. YES)
. paran("sepChar", " ")

. cl assBri dge(Equi prent Type. cl ass)
. name("equi ptype")
. i ndex(1 ndex. TOKENI ZED)
.store(Store. YES)
.param("C', "Cisco")
.param("D', "D-Link")
.paran("K"', "Kingston")
. param("3", "3Cont)

.indexed();

cfg.getProperties().put("hibernate.search. nodel _nmappi ng", mapping);

The above is similar to using @ assBri dge as seen in the next example:

Example 4.40. Using @ClassBridge

@ntity
@ ndexed
@ assBridges ({
@ assBridge(nanme="branchnet wor k",
i ndex= | ndex. TOKENI ZED,
store= Store. YES,
i npl = Cat Dept sFi el dsCl assBri dge. cl ass,
parans = @pParaneter(nane="sepChar", value=" ")),
@ assBridge(nanme="equi ptype",
i ndex= | ndex. TOKENI ZED,
store= Store. YES,
i nmpl = Equi prent Type. cl ass,
params = {@raraneter(nanme="C', value="C sco"),
@par anet er (nane="D", val ue="D-Li nk"),
@par anet er (nane="K", val ue="Ki ngston"),
@par anet er (nane="3", val ue="3Cont")
9]
9]

public class Departnents {

83

Chapter 4. Mapping entities t...

4.6.11. Mapping dynamic boost

You can apply a dynamic boost factor on either a field or a whole entity:

Example 4.41. DynamicBoost mapping using programmatic model

Sear chMappi ng mappi ng = new Sear chMappi ng() ;

mappi ng
.entity(Dynam cBoost edDesclLi brary. cl ass)
. i ndexed()
. dynami cBoost (Cust omBoost St r at egy. cl ass)
.property("libraryld", ElenentType.FlELD)
.docunent 1 d() . nane("id")
.property("nane", El enmentType. Fl ELD)
. dynani cBoost (Cust onFi el dBoost Strat egy. cl ass);
Lfield()
.store(Store. YES)

cfg.getProperties().put("hibernate.search. nodel _mappi ng", mapping);

The next example shows the equivalent mapping using the @ynani cBoost annotation:

Example 4.42. Using the @DynamicBoost

@ntity

@ ndexed

@ynani cBoost (i npl = Cust onBoost Strat egy. cl ass)
public class Dynam cBoostedDescriptionLibrary {

@d

@cener at edVal ue
@ocunent | d
private int id;

private float dynScore;

@i eld(store = Store. YES)

@ynam cBoost (i npl = Custonfi el dBoost Strat egy. cl ass)
private String nang;

publ i c Dynam cBoost edDescri ptionLi brary() {

dynScore = 1.0f;

84

Chapter 5.

Querying

The second most important capability of Hibernate Search is the ability to execute Lucene queries
and retrieve entities managed by a Hibernate session. The search provides the power of Lucene
without leaving the Hibernate paradigm, giving another dimension to the Hibernate classic search
mechanisms (HQL, Criteria query, native SQL query).

Preparing and executing a query consists of four simple steps:

» Creating a Ful | Text Sessi on

e Creating a Lucene query either via the Hibernate Search query DSL (recommended) or by
utilizing the Lucene query API

« Wrapping the Lucene query using an or g. hi ber nat e. Query
» Executing the search by calling for example I i st () orscroll ()

To access the querying facilities, you have to use a Ful | Text Sessi on. This Search specific
session wraps a regular org. hi ber nat e. Sessi on in order to provide query and indexing
capabilities.

Example 5.1. Creating a FullTextSession

Sessi on session = sessionFactory. openSessi on();

Ful | Text Sessi on full Text Sessi on = Search. get Ful | Text Sessi on(sessi on);

Once you have a Ful | Text Sessi on you have two options to build the full-text query: the Hibernate
Search query DSL or the native Lucene query.

If you use the Hibernate Search query DSL, it will look like this:

final QueryBuilder b = full Text Sessi on. get SearchFactory()
. bui | dQueryBui l der().forEntity(Myth.class).get();

or g. apache. | ucene. search. Query | uceneQuery =
b. keywor d()
.onFi el d("history").boostedTo(3)
. mat chi ng("storn')
.createQuery();

org. hi bernate. Query full TextQuery = full Text Sessi on. creat eFul | Text Query(| uceneQuery);
List result = full TextQuery.list(); //return a list of managed objects

You can alternatively write your Lucene query either using the Lucene query parser or Lucene
programmatic API.

85

Chapter 5. Querying

Example 5.2. Creating a Lucene query via the Queryparser

Sear chFactory searchFactory = full Text Sessi on. get Sear chFactory();
org. apache. | ucene. queryPar ser. Quer yPar ser parser =
new QueryParser("title", searchFactory. getAnalyzer(Mth.class));
try {
org. apache. | ucene. search. Query | uceneQuery = parser.parse("history:storn3");
}
catch (ParseException e) {
//handl e parsing failure

org. hi bernate. Query full Text Query = ful | Text Sessi on. creat eFul | Text Query(l uceneQuery);
List result = full TextQuery.list(); //return a list of managed objects

(3

In case you are using the Java Persistence APIs of Hibernate, the same extensions exist:

Example 5.3. Creating a Search query using the JPA API

EntityManager em = entityManager Factory. creat eEntityManager();

Ful | Text EntityManager full TextEntityManager =
org. hi bernat e. search. j pa. Sear ch. get Ful | Text Enti t yManager (em ;

final QueryBuilder b = full TextEntityManager. get SearchFactory()
. bui I dQueryBui l der().forEntity(Myth.class).get();

org. apache. | ucene. search. Query | uceneQuery =
b. keywor d()
.onField("history").boostedTo(3)
. mat chi ng("stornt)
.createQuery();
j avax. persi stence. Query full Text Query =
full Text EntityManager. createFul | Text Query(| uceneQuery);

List result = full TextQuery.getResultList(); //return a |list of managed objects

86

Building queries

@ Note

The following examples we will use the Hibernate APIs but the same example can
be easily rewritten with the Java Persistence API by just adjusting the way the
Ful | Text Query is retrieved.

5.1. Building queries

Hibernate Search queries are built on top of Lucene queries which gives you total freedom on the
type of Lucene query you want to execute. However, once built, Hibernate Search wraps further
query processing using or g. hi ber nat e. Query as your primary query manipulation API.

5.1.1. Building a Lucene query using the Lucene API

Using the Lucene API, you have several options. You can use the query parser (fine for simple
queries) or the Lucene programmatic API (for more complex use cases). It is out of the scope
of this documentation on how to exactly build a Lucene query. Please refer to the online Lucene
documentation or get hold of a copy of Lucene In Action or Hibernate Search in Action.

5.1.2. Building a Lucene query with the Hibernate Search query
DSL

Writing full-text queries with the Lucene programmatic API is quite complex. It's even more
complex to understand the code once written. Besides the inherent APl complexity, you have to
remember to convert your parameters to their string equivalent as well as make sure to apply the
correct analyzer to the right field (a ngram analyzer will for example use several ngrams as the
tokens for a given word and should be searched as such).

The Hibernate Search query DSL makes use of a style of API called a fluent API. This API has
a few key characteristics:

* it has meaningful method names making a succession of operations reads almost like English

« it limits the options offered to what makes sense in a given context (thanks to strong typing and
IDE autocompletion).

« It often uses the chaining method pattern
« it's easy to use and even easier to read

Let's see how to use the API. You first need to create a query builder that is attached to a given
indexed entity type. This Quer yBui | der will know what analyzer to use and what field bridge to
apply. You can create several QueryBui | der s (one for each entity type involved in the root of
your query). You get the Quer yBui | der from the Sear chFact ory.

87

Chapter 5. Querying

Quer yBui | der nmyt hQB = searchFactory. bui |l dQueryBuilder().forEntity(Mith.class).get();

You can also override the analyzer used for a given field or fields. This is rarely needed and should
be avoided unless you know what you are doing.

Quer yBui | der nmyt h@B = searchFactory. bui | dQueryBui | der ()
.forEntity(Myth.class)
.overridesForField("history","stem anal yzer_definition")

.get();

Using the query builder, you can then build queries. Itis important to realize that the end result of a
Quer yBui | der is aLucene query. For this reason you can easily mix and match queries generated
via Lucene's query parser or Quer y objects you have assembled with the Lucene programmatic
API and use them with the Hibernate Search DSL. Just in case the DSL is missing some features.

5.1.2.1. Keyword queries

Let's start with the most basic use case - searching for a specific word:

Query luceneQuery = nyth@B. keyword().onField("history").mtching("stornl').createQery();

keywor d() means that you are trying to find a specific word. onFi el d() specifies in which Lucene
field to look. mat chi ng() tells what to look for. And finally cr eat eQuery() creates the Lucene
query object. A lot is going on with this line of code.

» The value storm is passed through the hi st ory Fi el dBri dge: it does not matter here but you
will see that it's quite handy when dealing with numbers or dates.

« The field bridge value is then passed to the analyzer used to index the field hi st ory. This
ensures that the query uses the same term transformation than the indexing (lower case, n-
gram, stemming and so on). If the analyzing process generates several terms for a given word,
a boolean query is used with the SHOULD logic (roughly an OR logic).

Let's see how you can search a property that is not of type string.

@ntity
@ ndexed
public class Myth {
@i el d(i ndex = I ndex. UN_TOKENI ZED)
@pat eBri dge(resol uti on = Resol ution. YEAR)
public Date getCreationDate() { return creationDate; }
public Date setCreationDate(Date creationDate) { this.creationDate = creationDate; }
private Date creationDate;

88

Building a Lucene query with the Hibernate Search query DSL

Date birthdate = ...;
Query luceneQuery = nyt hQb. keyword().onFi el d("creationDate"). matchi ng(birthdate).createQery();

@ Note

In plain Lucene, you would have had to convert the Date object to its string
representation (in this case the year).

This conversion works for any object, not just Dat e, provided that the Fi el dBri dge has an
obj ect ToSt ri ng method (and all built-in Fi el dBri dge implementations do).

We make the example a little more advanced now and have a look at how to search a field that
uses ngram analyzers. ngram analyzers index succession of ngrams of your words which helps
to recover from user typos. For example the 3-grams of the word hibernate are hib, ibe, ber, rna,
nat, ate.

@\nal yzer Def (nanme = "ngrant,
t okeni zer = @okeni zer Def (factory = StandardTokeni zer Factory.class),
filters ={
@okenFil terDef(factory = StandardFilterFactory.cl ass),
@okenFi | terDef (factory Lower CaseFi |l ter Factory. cl ass),
@okenFi |l terDef (factory = StopFilterFactory. class),
@okenFi |l terDef (factory = NG anFilterFactory. cl ass,

params = {
@par anet er (nane = "m nG anti ze", value = "3"),
@par anet er (nane = "maxG anti ze", value = "3") })
}
)
@ntity
@ ndexed

public class Myth {
@i el d(anal yzer =@\nal yzer (defi ni ti on="ngrant")
@at eBri dge(resol uti on = Resol ution. YEAR)
public String getName() { return nane; }
public String setNane(Date nanme) { this.name = name; }
private String naneg;

Date birthdate = ...;
Query luceneQuery = nythQb. keyword().onFi el d("nane"). nat chi ng("Si si phus")
.createQuery();

The matching word "Sisiphus" will be lower-cased and then split into 3-grams: sis, isi, sip, phu,
hus. Each of these n-gram will be part of the query. We will then be able to find the Sysiphus myth
(with a y). All that is transparently done for you.

89

Chapter 5. Querying

@ Note

If for some reason you do not want a specific field to use the field bridge or the
analyzer you can call the i gnor eAnal yzer () ori gnoreFi el dBri dge() functions

To search for multiple possible words in the same field, simply add them all in the matching clause.

/I search docunent with stormor lightning in their history

Query luceneQuery =
myt h@B. keywor d() . onFi el d("history"). matching("storm lightning").createQuery();

To search the same word on multiple fields, use the onFi el ds method.

Query luceneQuery = nyth@B
. keywor d()
.onFi el ds("history", "description", "nane")
. mat chi ng("storn')
.createQuery();

Sometimes, one field should be treated differently from another field even if searching the same
term, you can use the andFi el d() method for that.

Query luceneQuery = nythQ@B. keyword()
.onFi el d("history")
.andFi el d("nane")
. boost edTo(5)
. andFi el d("description")
. mat chi ng("stornt')
.createQuery();

In the previous example, only field name is boosted to 5.

5.1.2.2. Fuzzy queries

To execute a fuzzy query (based on the Levenshtein distance algorithm), start like a keyword
query and add the fuzzy flag.

Query luceneQuery = nyth@B
. keywor d()
.fuzzy()
.w thThreshol d(.8f)
.withPrefixLength(1)
.onField("history")
. mat chi ng("starnt)

90

Building a Lucene query with the Hibernate Search query DSL

.createQuery();

t hreshol d is the limit above which two terms are considering matching. It's a decimal between
0 and 1 and defaults to 0.5. pr ef i xLengt h is the length of the prefix ignored by the "fuzzyness":
while it defaults to 0, a non zero value is recommended for indexes containing a huge amount
of distinct terms.

5.1.2.3. Wildcard queries

You can also execute wildcard queries (queries where some of parts of the word are unknown). ?
represents a single character and * represents any character sequence. Note that for performance
purposes, it is recommended that the query does not start with either ? or *.

Query luceneQuery = nyth@B
. keywor d()
. Wil dcard()
.onFi el d("history")
. mat chi ng("sto*")
.createQuery();

Note

Wildcard queries do not apply the analyzer on the matching terms. Otherwise the
risk of * or ? being mangled is too high.

5.1.2.4. Phrase queries

So far we have been looking for words or sets of words, you can also search exact or approximate
sentences. Use phrase() to do so.

Query luceneQuery = nyth@B
. phrase()
.onFi el d("history")
.mat chi ng("Thou shalt not kill")
.createQuery();

You can search approximate sentences by adding a slop factor. The slop factor represents the
number of other words permitted in the sentence: this works like a within or near operator

Query luceneQuery = nyth@B
. phrase()
.wi t hSl op(3)
.onField("history")
.mat chi ng("Thou kill")

91

Chapter 5. Querying

.createQuery();

5.1.2.5. Range queries

After looking at all these query examples for searching for to a given word, it is time to introduce
range queries (on numbers, dates, strings etc). A range query searches for a value in between
given boundaries (included or not) or for a value below or above a given boundary (included or
not).

//1ook for O <= starred < 3
Query luceneQuery = nyth@B
.range()
.onField("starred")
.from(0).to(3).excludeLimt()
.createQuery();

/11 ook for nyths strictly BC
Date beforeChrist = ...;
Query luceneQuery = nyth@B
.range()
.onField("creationDate")
. bel ow bef oreChri st). excl udeLimt()
.createQuery();

5.1.2.6. Combining queries

Finally, you can aggregate (combine) queries to create more complex queries. The following
aggregation operators are available:

e SHOULD: the query query should contain the matching elements of the subquery
e MJST: the query must contain the matching elements of the subquery
e MUST NOT: the query must not contain the matching elements of the subquery

The subqueries can be any Lucene query including a boolean query itself. Let's look at a few
examples:

/11 ook for popular nmodern nyths that are not urban
Date twentiethCentury = ...;
Query luceneQuery = nyth@B
. bool ()
.must (nyt hQB. keywor d() . onFi el d("description").matching("urban").createQery())
.not ()
.must (nythQB.range().onFiel d("starred").above(4).createQuery())
.must (mythQ@B
.range()
.onField("creationDate")
. above(twentiethCentury)

92

Building a Lucene query with the Hibernate Search query DSL

.createQuery())
.createQuery();

/11 ook for popular nmyths that are preferably urban
Query luceneQuery = nyth@B
. bool ()
.shoul d(nyt hQB. keywor d() . onFi el d("description"). natching("urban").createQuery())
.must (nmyt h@B.range().onField("starred").above(4).createQuery())
.createQuery();

//1ook for all nyths except religious ones
Query luceneQuery = nyth@B
Lall()
.except (mont hQb

. keywor d()

.onFi el d("description_stent

.matching("religion")

.createQuery()

)
.createQuery();

5.1.2.7. Query options

We already have seen several query options in the previous example, but lets summarize again
the options for query types and fields:

boost edTo (on query type and on field): boost the whole query or the specific field to a given
factor

* wi t hConst ant Scor e (on query): all results matching the query have a constant score equals
to the boost

o filteredBy(Filter) (on query): filter query results using the Fi | t er instance
 ignoreAnal yzer (on field): ignore the analyzer when processing this field
* i gnoreFi el dBri dge (on field): ignore field bridge when processing this field

Let's check out an example using some of these options

Query luceneQuery = nyth@
. bool ()
. shoul d(myt h@B. keywor d() . onFi el d("description").matchi ng("urban").createQery())
. shoul d(myt hQB
. keywor d()
.onFi el d("nane")
. boost edTo(3)
.ignoreAnal yzer ()
. mat chi ng("urban").createQery())
.must (mythQ@B
.range()
. boost edTo(5) . wi t hConst ant Scor e()
.onField("starred").above(4).createQuery())

93

Chapter 5. Querying

.createQuery();

As you can see, the Hibernate Search query DSL is an easy to use and easy to read query API
and by accepting and producing Lucene queries, you can easily incorporate query types not (yet)
supported by the DSL. Please give us feedback!

5.1.3. Building a Hibernate Search query

So far we only covered the process of how to create your Lucene query (see Section 5.1, “Building
queries”). However, this is only the first step in the chain of actions. Let's now see how to build
the Hibernate Search query from the Lucene query.

5.1.3.1. Generality

Once the Lucene query is built, it needs to be wrapped into an Hibernate Query. If not specified
otherwise, the query will be executed against all indexed entities, potentially returning all types
of indexed classes.

Example 5.4. Wrapping a Lucene query into a Hibernate Query

Ful | Text Sessi on full Text Sessi on = Search. get Ful | Text Sessi on(session);
org. hi bernate. Query full Text Query = full Text Sessi on. creat eFul | Text Query(| uceneQuery);

It is advised, from a performance point of view, to restrict the returned types:

Example 5.5. Filtering the search result by entity type

full Text Query = full Text Sessi on
.creat eFul | Text Query(| uceneQuery, Custoner.class);

/1l or

full Text Query = full Text Sessi on
.createFul | Text Query(luceneQuery, Itemclass, Actor.class);

In Example 5.5, “Filtering the search result by entity type” the first example returns only
matching Cust oner s, the second returns matching Act or s and | t ens. The type restriction is fully
polymorphic which means that if there are two indexed subclasses Sal esnman and Cust oner of
the baseclass Per son, it is possible to just specify Per son. cl ass in order to filter on result types.

5.1.3.2. Pagination

Out of performance reasons it is recommended to restrict the number of returned objects per
query. In fact is a very common use case anyway that the user navigates from one page to an
other. The way to define pagination is exactly the way you would define pagination in a plain HQL
or Criteria query.

94

Building a Hibernate Search query

Example 5.6. Defining pagination for a search query

org. hi bernate. Query full Text Query =

ful | Text Sessi on. creat eFul | Text Query(|uceneQuery, Custoner.class);
full Text Query. setFirstResult(15); //start fromthe 15th el enent
full Text Query. set MaxResul ts(10); //return 10 el enents

Tip

Q

It is still possible to get the total number of matching elements regardless of the
pagination via f ul | t ext Query. get Resul t Si ze()

5.1.3.3. Sorting

Apache Lucene provides a very flexible and powerful way to sort results. While the default sorting
(by relevance) is appropriate most of the time, it can be interesting to sort by one or several other
properties. In order to do so set the Lucene Sort object to apply a Lucene sorting strategy.

Example 5.7. Specifying a Lucene sort in order to sort the results

org. hi bernat e. search. Ful | Text Query query = s. createFul | Text Query(query, Book.class);
org. apache. |l ucene. search. Sort sort = new Sort (
new SortField("title", SortField. STRING);
query.setSort(sort);
List results = query.list();

Tip

Q

Be aware that fields used for sorting must not be tokenized (see Section 4.1.1.2,
“@Field").

5.1.3.4. Fetching strategy

When you restrict the return types to one class, Hibernate Search loads the objects using a single
query. It also respects the static fetching strategy defined in your domain model.

It is often useful, however, to refine the fetching strategy for a specific use case.

Example 5.8. Specifying Fet chvode ONn a query

Criteria criteria =

95

Chapter 5. Querying

s.createCriteria(Book.class).setFetchMde("authors", FetchMde.JON);
s.createFul | Text Query(luceneQuery).setCriteriaQuery(criteria);

In this example, the query will return all Books matching the luceneQuery. The authors collection
will be loaded from the same query using an SQL outer join.

When defining a criteria query, it is not necessary to restrict the returned entity types when creating
the Hibernate Search query from the full text session: the type is guessed from the criteria query
itself.

S | Important

Only fetch mode can be adjusted, refrain from applying any other restriction.

Important

One cannot use set Cri teri aQuery if more than one entity type is expected to
be returned.

5.1.3.5. Projection

For some use cases, returning the domain object (including its associations) is overkill. Only a
small subset of the properties is necessary. Hibernate Search allows you to return a subset of
properties:

Example 5.9. Using projection instead of returning the full domain object

org. hi bernat e. search. Ful | Text Query query =
s. creat eFul | Text Query(|uceneQuery, Book.class);
query.setProjection("id", "summary", "body", "mainAuthor.nane");
List results = query.list();
Cbject[] firstResult = (Qoject[]) results.get(0);
Integer id = firstResult[0];
String sunmary = firstResult[1];
String body = firstResult[2];
String authorName = firstResul t[3];

Hibernate Search extracts the properties from the Lucene index and convert them back to their
object representation, returning a list of Obj ect [] . Projections avoid a potential database round
trip (useful if the query response time is critical). However, it also has several constraints:

 the properties projected must be stored in the index (@i el d(store=Store. YES)), which
increases the index size

96

Building a Hibernate Search query

* the properties projected must use a Fi el dBri dge implementing
or g. hi bernat e. search. bri dge. TwoWayFi el dBri dge or
or g. hi ber nat e. sear ch. bri dge. TwoVWay St ri ngBr i dge, the latter being the simpler version.

Note

All Hibernate Search built-in types are two-way.

« you can only project simple properties of the indexed entity or its embedded associations. This
means you cannot project a whole embedded entity.

 projection does not work on collections or maps which are indexed via @ ndexedEnmbedded

Projection is also useful for another kind of use case. Lucene can provide metadata information
about the results. By using some special projection constants, the projection mechanism can
retrieve this metadata:

Example 5.10. Using projection in order to retrieve meta data

or g. hi bernat e. search. Ful | Text Query query =
s. createFul | Text Query(|uceneQuery, Book.class);
query. set Proj ection(
Ful | Text Query. SCORE,
Ful | Text Query. TH' S,
" mai nAut hor . name");
List results = query.list();
Object[] firstResult = (Object[]) results.get(0);
float score = firstResult[O0];
Book book = firstResult[1];
String authorNane = firstResult[2];

You can mix and match regular fields and projection constants. Here is the list of the available
constants:

e Ful | Text Query. THI S: returns the initialized and managed entity (as a non projected query
would have done).

e Ful | Text Quer y. DOCUMENT: returns the Lucene Document related to the object projected.
e Ful | Text Query. OBJECT_CLASS: returns the class of the indexed entity.

* Ful | Text Query. SCORE: returns the document score in the query. Scores are handy to compare
one result against an other for a given query but are useless when comparing the result of
different queries.

e Ful | Text Query. | D: the id property value of the projected object.

97

Chapter 5. Querying

e Ful | Text Query. DOCUVENT I D: the Lucene document id. Careful, Lucene document id can
change overtime between two different IndexReader opening (this feature is experimental).

* Ful | Text Query. EXPLANATI ON: returns the Lucene Explanation object for the matching object/
document in the given query. Do not use if you retrieve a lot of data. Running explanation
typically is as costly as running the whole Lucene query per matching element. Make sure you
use projection!

5.1.3.6. Customizing object initialization strategies

By default, Hibernate Search uses the most appropriate strategy to initialize entities matching your
full text query. It executes one (or several) queries to retrieve the required entities. This is the best
approach to minimize database round trips in a scenario where none / few of the retrieved entities
are present in the persistence context (ie the session) or the second level cache.

If most of your entities are present in the second level cache, you can force Hibernate Search to
look into the cache before retrieving an object from the database.

Example 5.11. Check the second-level cache before using a query

Ful | Text Query query = session. createFul | Text Query(luceneQuery, User.class);
query.initializeCObjectWth(

Obj ect LookupMet hod. SECOND_LEVEL _CACHE,

Dat abaseRet ri eval Met hod. QUERY

Obj ect LookupMet hod defines the strategy used to check if an object is easily accessible (without
database round trip). Other options are:

e (bj ect LookupMet hod. PERSI STENCE_CONTEXT: useful if most of the matching entities are
already in the persistence context (ie loaded in the Sessi on or Ent i t yManager)

e (bj ect LookupMet hod. SECOND_LEVEL_CACHE: check first the persistence context and then the
second-level cache.

@ Note

Note that to search in the second-level cache, several settings must be in place:

 the second level cache must be properly configured and active
« the entity must have enabled second-level cache (eg via @acheabl e)

e the Sessi on, EntityManager or Query must allow access to the second-level
cache for read access (ie CacheMode. NORMAL in Hibernate native APIs or
CacheRet ri eveMode. USE in JPA 2 APIs).

98

Building a Hibernate Search query

Warning

Avoid using Obj ect LookupMet hod. SECOND_LEVEL_CACHE unless your second
level cache implementation is either EHCache or Infinispan; other second level
cache providers don't currently implement this operation efficiently.

You can also customize how objects are loaded from the database (if not found before). Use
Dat abaseRet ri eval Met hod for that:

* QUERY (default): use a (set of) queries to load several objects in batch. This is usually the best
approach.

* FI ND_BY_I D: load objects one by one using the Sessi on.get or Enti t yManager .f i nd semantic.
This might be useful if batch-size is set on the entity (in which case, entities will be loaded in
batch by Hibernate Core). QUERY should be preferred almost all the time.

5.1.3.7. Limiting the time of a query
You can limit the time a query takes in Hibernate Search in two ways:

* raise an exception when the limit is reached

« |imit to the number of results retrieved when the time limit is raised
5.1.3.7.1. Raise an exception on time limit

You can decide to stop a query if when it takes more than a predefined amount of
time. Note that this is a best effort basis but if Hibernate Search still has significant
work to do and if we are beyond the time limit, a QueryTi neout Excepti on will be raised
(or g. hi ber nat e. Quer yTi neout Exception or javax. persistence. QueryTi meout Excepti on
depending on your programmatic API).

To define the limit when using the native Hibernate APIs, use one of the following approaches

Example 5.12. Defining a timeout in query execution

Query luceneQuery = ...;
Ful | Text Query query = full Text Sessi on. creat eFul | Text Query(l uceneQuery, User.cl ass);

//define the tineout in seconds
query. set Ti meout (5);

/lalternatively, define the timeout in any given time unit
query. set Ti meout (450, Ti meUnit. M LLI SECONDS) ;

try {
query.list();

}

catch (org. hi bernate. QueryTi meout Exception e) {
//do sonet hing, too slow

99

Chapter 5. Querying

Likewise get Resul t Si ze(), i terate() and scrol | () honor the timeout but only until the end
of the method call. That simply means that the methods of | t er abl e or the Scrol | abl eResul ts
ignore the timeout.

Note

expl ai n() does not honor the timeout: this method is used for debug purposes
and in particular to find out why a query is slow

When using JPA, simply use the standard way of limiting query execution time.

Example 5.13. Defining a timeout in query execution

Query luceneQuery = ...;
Ful | Text Query query = full Text EM creat eFul | Text Query(l uceneQuery, User.cl ass);

//define the tineout in mlliseconds
query.setHint("javax. persistence.query.tineout", 450);

try {
query. get Resul tList();

}
catch (javax. persi stence. QueryTi neout Exception e) {
//do sonet hing, too slow

}

Important

Remember, this is a best effort approach and does not guarantee to stop exactly
on the specified timeout.

5.1.3.7.2. Limit the number of results when the time limit is reached
(EXPERIMENTAL)

Alternatively, you can return the number of results which have already been fetched by the time
the limit is reached. Note that only the Lucene part of the query is influenced by this limit. It is
possible that, if you retrieve managed object, it takes longer to fetch these objects.

Warning

This approach is not compatible with the set Ti meout approach.

100

Retrieving the results

To define this soft limit, use the following approach

Example 5.14. Defining a time limit in query execution

Query luceneQuery = ...;
Ful | Text Query query = full Text Sessi on. creat eFul | Text Query(l uceneQuery, User.cl ass);

//define the tinmeout in seconds
query. limtExecutionTi neTo(500, TineUnit.M LLI SECONDS);
List results = query.list();

Likewise get Resul t Si ze(),iterate() and scrol | () honor the time limit but only until the end
of the method call. That simply means that the methods of | t er abl e or the Scrol | abl eResul ts
ignore the timeout.

You can determine if the results have been partially loaded by invoking the hasParti al Resul ts
method.

Example 5.15. Determines when a query returns partial results

Query luceneQuery = ...;
Ful | Text Query query = full Text Sessi on. creat eFul | Text Query(l uceneQuery, User.cl ass);

//define the tineout in seconds
query. limtExecutionTi neTo(500, TineUnit.M LLI SECONDS);
List results = query.list();

if (query.hasPartial Results()) {
di spl ayWar ni ngToUser () ;
}

If you use the JPA API, | i ni t ExecutionTi meTo and hasParti al Resul ts are also available to
you.

Warning

This approach is considered experimental

5.2. Retrieving the results

Once the Hibernate Search query is built, executing it is in no way different than executing a HQL
or Criteria query. The same paradigm and object semantic applies. All the common operations
are available: i st (), uni queResul t(),iterate(),scroll ().

101

Chapter 5. Querying

5.2.1. Performance considerations

If you expect a reasonable number of results (for example using pagination) and expect to work on
all of them, | i st () oruni queResul t () are recommended. | i st () work best if the entity bat ch-
si ze is set up properly. Note that Hibernate Search has to process all Lucene Hits elements
(within the pagination) when using | i st () , uni queResul t () anditerate().

If you wish to minimize Lucene document loading, scrol | () is more appropriate. Don't forget to
close the Scrol | abl eResul t s object when you're done, since it keeps Lucene resources. If you
expect to use scrol |, but wish to load objects in batch, you can use query. set Fet chSi ze().
When an object is accessed, and if not already loaded, Hibernate Search will load the next
f et chSi ze objects in one pass.

o | Important

Pagination is preferred over scrolling.

5.2.2. Result size

It is sometime useful to know the total number of matching documents:

« for the Google-like feature "1-10 of about 888,000,000"
 to implement a fast pagination navigation

 to implement a multi step search engine (adding approximation if the restricted query return no
or not enough results)

Of course it would be too costly to retrieve all the matching documents. Hibernate Search allows
you to retrieve the total number of matching documents regardless of the pagination parameters.
Even more interesting, you can retrieve the number of matching elements without triggering a
single object load.

Example 5.16. Determining the result size of a query

or g. hi bernat e. search. Ful | Text Query query =

s. creat eFul | Text Query(|uceneQuery, Book.class)
//return the nunber of matching books without |oading a single one
assert 3245 == query. get Resul t Si ze()

org. hi bernat e. search. Ful | Text Query query =
s. creat eFul | Text Query(|uceneQuery, Book.class)
query. set MaxResul t (10)
List results = query.list();
//return the total nunber of matching books regardl ess of pagi nation

102

ResultTransformer

assert 3245 == query. get Resul t Si ze();

@ Note

Like Google, the number of results is approximative if the index is not fully up-to-
date with the database (asynchronous cluster for example).

5.2.3. ResultTransformer

As seen in Section 5.1.3.5, “Projection” projection results are returns as Obj ect arrays. This data
structure is not always matching the application needs. In this cases It is possible to apply a
Resul t Tr ansf or ner which post query execution can build the needed data structure:

Example 5.17. Using ResultTransformer in conjunction with projections

or g. hi bernat e. search. Ful | Text Query query =
s. creat eFul | Text Query(|uceneQuery, Book.class);
query.setProjection("title", "mainAuthor.nane");
query. set Resul t Tr ansf or mer (
new Stati cAliasToBeanResul t Tr ansf or ner (
BookVi ew. cl ass,
"title",
"aut hor")
DE
Li st <BookVi ew> results = (List<BookView>) query.list();
for(BookView view : results) {
log.info("Book: " + view.getTitle() + ", " + view getAuthor());

}

Examples of Resul t Tr ansf or ner implementations can be found in the Hibernate Core codebase.

5.2.4. Understanding results

You will find yourself sometimes puzzled by a result showing up in a query or a result not showing
up in a query. Luke is a great tool to understand those mysteries. However, Hibernate Search
also gives you access to the Lucene Expl anat i on object for a given result (in a given query). This
class is considered fairly advanced to Lucene users but can provide a good understanding of the
scoring of an object. You have two ways to access the Explanation object for a given result:

e Use the ful | Text Query. expl ai n(i nt) method
» Use projection

The first approach takes a document id as a parameter and return the Explanation object. The
document id can be retrieved using projection and the Ful | Text Quer y. DOCUMENT_I D constant.

103

Chapter 5. Querying

Warning

The Document id has nothing to do with the entity id. Do not mess up these two
notions.

The second approach let's you project the Explanation object wusing the
Ful | Text Query. EXPLANATI ON constant.

Example 5.18. Retrieving the Lucene Explanation object using projection

Ful | Text Query ftQuery = s.createFul | Text Query(|uceneQuery, Dvd.class)
.setProjection(
Ful | Text Query. DOCUVENT_I D,
Ful | Text Query. EXPLANATI ON,
Ful | Text Query. THI'S);
@uppr essWar ni ngs("unchecked") List<Object[]> results = ftQuery.list();
for (Object[] result : results) {
Expl anation e = (Explanation) result[1];
display(e.toString());

Be careful, building the explanation object is quite expensive, it is roughly as expensive as running
the Lucene query again. Don't do it if you don't need the object

5.3. Filters

Apache Lucene has a powerful feature that allows to filter query results according to a custom
filtering process. This is a very powerful way to apply additional data restrictions, especially since
filters can be cached and reused. Some interesting use cases are:

e security

temporal data (eg. view only last month's data)
 population filter (eg. search limited to a given category)
* and many more

Hibernate Search pushes the concept further by introducing the notion of parameterizable named
filters which are transparently cached. For people familiar with the notion of Hibernate Core filters,
the API is very similar:

Example 5.19. Enabling fulltext filters for a given query

full Text Query = s.createFul | Text Query(query, Driver.class);

104

Filters

full Text Query. enabl eFul | TextFilter("bestDriver");
full Text Query. enabl eFul | TextFilter("security").setParaneter("login", "andre");
full TextQuery.list(); //returns only best drivers where andre has credentials

In this example we enabled two filters on top of the query. You can enable (or disable) as many
filters as you like.

Declaring filters is done through the @ul | Text Fi | t er Def annotation. This annotation can be on
any @ ndexed entity regardless of the query the filter is later applied to. This implies that filter
definitions are global and their names must be unique. A Sear chExcept i on is thrown in case two
different @ul | Text Fi | t er Def annotations with the same name are defined. Each named filter
has to specify its actual filter implementation.

Example 5.20. Defining and implementing a Filter

@ntity
@ ndexed
@ul | TextFilterDefs({
@ul | TextFilterDef (nane = "bestDriver", inpl = BestDriversFilter.class),
@ul | TextFilterDef(name = "security", inpl = SecurityFilterFactory. class)
})
public class Driver { ... }

public class BestDriversFilter extends org.apache.lucene.search.Filter {

public Docl dSet get Docl dSet (I ndexReader reader) throws | OException {
OpenBit Set bitSet = new OpenBitSet(reader.maxDoc());
TernDocs ternDocs = reader.ternDocs(new Tern("score", "5"));
while (termDocs.next()) {
bit Set.set(ternDocs.doc());

}

return bitSet;

BestDriversFilter is an example of a simple Lucene filter which reduces the result
set to drivers whose score is 5. In this example the specified filter implements the
or g. apache. | ucene. sear ch. Fi | t er directly and contains a no-arg constructor.

If your Filter creation requires additional steps or if the filter you want to use does not have a no-
arg constructor, you can use the factory pattern:

Example 5.21. Creating a filter using the factory pattern

@ntity
@ ndexed
@ul | TextFilterDef (nane = "bestDriver", inpl = BestDriversFilterFactory.cl ass)

105

Chapter 5. Querying

public class Driver { ... }
public class BestDriversFilterFactory {

@actory

public Filter getFilter() {
//some additional steps to cache the filter results per |ndexReader
Filter bestDriversFilter = new BestDriversFilter();
return new Cachi ngWapperFilter(bestDriversFilter);

Hibernate Search will look for a @act or y annotated method and use it to build the filter instance.
The factory must have a no-arg constructor.

Named filters come in handy where parameters have to be passed to the filter. For example a
security filter might want to know which security level you want to apply:

Example 5.22. Passing parameters to a defined filter

full Text Query = s.createFul | Text Query(query, Driver.class);
ful |l Text Query. enabl eFul | TextFilter("security").setParaneter("level", 5);

Each parameter name should have an associated setter on either the filter or filter factory of the
targeted named filter definition.

Example 5.23. Using parameters in the actual filter implementation

public class SecurityFilterFactory {
private Integer |evel;

| **

* injected paraneter

&y
public void setlLevel (Integer level) {
this.level = level;
}
@ey

public FilterKey getKey() {
St andardFi | terKey key = new StandardFilterKey();
key. addPar anmeter (| evel);
return key;

}

@ractory

public Filter getFilter() {
Query query = new TernmQuery(new Term("level", level.toString()));
return new Cachi ngWapperFilter(new QueryWapperFilter(query));

}

106

Filters

Note the method annotated @ey returning a Fi | t er Key object. The returned object has a special
contract: the key object must implement equal s() / hashCode() so that 2 keys are equal if and
only if the given Fi | ter types are the same and the set of parameters are the same. In other
words, 2 filter keys are equal if and only if the filters from which the keys are generated can be
interchanged. The key object is used as a key in the cache mechanism.

@ey methods are needed only if:

« you enabled the filter caching system (enabled by default)
« your filter has parameters

In most cases, using the St andar dFi | t er Key implementation will be good enough. It delegates
the equal s() / hashCode() implementation to each of the parameters equals and hashcode
methods.

As mentioned before the defined filters are per default cached and the cache uses a combination
of hard and soft references to allow disposal of memory when needed. The hard reference
cache keeps track of the most recently used filters and transforms the ones least used to
Sof t Ref er ences when needed. Once the limit of the hard reference cache is reached additional
filters are cached as Sof t Ref erences. To adjust the size of the hard reference cache, use
hi bernate. search.filter.cache_strategy. si ze (defaults to 128). For advanced use of filter
caching, you can implement your own Fi | t er Cachi ngSt r at egy. The classname is defined by
hi bernate. search.filter.cache_strategy.

This filter caching mechanism should not be confused with caching the actual filter
results. In Lucene it is common practice to wrap filters using the | ndexReader around
a CachingWapperFilter. The wrapper will cache the DocldSet returned from the
get Docl dSet (1 ndexReader reader) method to avoid expensive recomputation. It is important
to mention that the computed Docl dSet is only cachable for the same | ndexReader instance,
because the reader effectively represents the state of the index at the moment it was opened.
The document list cannot change within an opened | ndexReader . A different/new | ndexReader
instance, however, works potentially on a different set of Docunment s (either from a different index
or simply because the index has changed), hence the cached Docl dSet has to be recomputed.

Hibernate Search also helps with this aspect of caching. Per default the cache flag
of @ull TextFilterDef s set to FilterCacheMbdeType. | NSTANCE AND DOCI DSETRESULTS
which will automatically cache the filter instance as well as wrap the
specified filter around a Hibernate specific implementation of Cachi ngW apperFilter
(org. hi bernate.search.filter.Cachi ngWapperFilter). In contrast to Lucene's version
of this class SoftReferences are used together with a hard reference count (see
discussion about filter cache). The hard reference count can be adjusted using
hi bernat e. search. filter.cache_docidresults. si ze (defaults to 5). The wrapping behaviour
can be controlled using the @ul | Text Fi | t er Def. cache parameter. There are three different
values for this parameter:

107

Chapter 5. Querying

Value Definition

FilterCacheModeType.NONE No filter instance and no result is cached by
Hibernate Search. For every filter call, a new
filter instance is created. This setting might
be useful for rapidly changing data sets or
heavily memory constrained environments.

FilterCacheModeType.INSTANCE_ONLY The filter instance is cached and reused
across concurrent Fi | t er. get Docl dSet ()
calls. Docl dSet results are not cached. This
setting is useful when a filter uses its own
specific caching mechanism or the filter
results change dynamically due to application
specific events making Docl dSet caching in
both cases unnecessary.

FilterCacheModeType.INSTANCE_AND_DOCIERHET tRiESUieTi®Stance and the Docl dSet
results are cached. This is the default value.

Last but not least - why should filters be cached? There are two areas where filter caching shines:

« the system does not update the targeted entity index often (in other words, the IndexReader
is reused a lot)

« the Filter's DocldSet is expensive to compute (compared to the time spent to execute the query)

5.3.1. Using filters in a sharded environment

It is possible, in a sharded environment to execute queries on a subset of the available shards.
This can be done in two steps:

« create a sharding strategy that does select a subset of Di r ect or yProvi der s depending on
sone filter configuration

« activate the proper filter at query time

Let's first look at an example of sharding strategy that query on a specific customer shard if the
customer filter is activated.

public class CustonerShardi ngStrategy inplenents | ndexShardi ngStrategy {

/] stored DirectoryProviders in a array indexed by custonerl|D
private DirectoryProvider<?>[] providers;

public void initialize(Properties properties, DirectoryProvider<?>[] providers) {
this.providers = providers;

}

public DirectoryProvider<?>[] getDirectoryProvidersForAll Shards() {
return providers;

}

108

Using filters in a sharded environment

public DirectoryProvi der<?> getDirectoryProvi der For Addi ti on(
Class<?> entity, Serializable id, String idInString, Docunent document) {
I nteger custonerl D = | nteger. parsel nt(docunent. getField("custonerlD").stringValue());
return providers[custonerlD];

}

public DirectoryProvider<?>[] getDirectoryProvi dersForDel eti on(
Class<?> entity, Serializable id, String idinString) {
return getDirectoryProvidersFor Al |l Shards();
}

/**

* Optimzation; don't search ALL shards and union the results; in this case, we
* can be certain that all the data for a particular custoner Filter is in a single
* shard; sinply return that shard by custonerlD.

*/
public DirectoryProvi der<?>[] getDirectoryProvi dersForQuery(

Ful | TextFilterlnplenmentor[] filters) {

FFul | TextFilter filter = getCustonerFilter(filters, "custoner");

if (filter == null) {

return getDirectoryProvidersForAl |l Shards();

}

el se {

return new DirectoryProvider[] { providers[Integer.parselnt(

filter.getParameter("custonmerlD').toString())] };

private Full TextFilter getFilter(Full TextFilterlnplementor[] filters, String nane) {
for (FullTextFilterlnplenentor filter: filters) {
if (filter.getNanme().equal s(name)) return filter;

}

return null;
}
}

In this example, if the filter named cust oner is present, we make sure to only use the shard
dedicated to this customer. Otherwise, we return all shards. A given Sharding strategy can react
to one or more filters and depends on their parameters.

The second step is simply to activate the filter at query time. While the filter can be a regular filter
(as defined in Section 5.3, “Filters”) which also filters Lucene results after the query, you can make
use of a special filter that will only be passed to the sharding strategy and otherwise ignored for the
rest of the query. Simply use the Shar dSensi ti veOnl yFi | t er class when declaring your filter.

@ntity @ndexed
@ul | Text Fil terDef (nane="customer", inpl=ShardSensitiveOnlyFilter.class)
public class Custoner {

Ful | Text Query query = ft Em creat eFul | Text Query(l uceneQuery, Custoner.class);
query. enabl eFul | textFilter("custoner").setParaneter("Custonerl D', 5);
@uppr essWar ni ngs("unchecked")

109

Chapter 5. Querying

Li st<Custoner> results = query. getResul tList();

Note that by using the Shar dSensi ti veOnl yFi | t er, you do not have to implement any Lucene
filter. Using filters and sharding strategy reacting to these filters is recommended to speed up
queries in a sharded environment.

5.4. Faceting

Faceted search [http://en.wikipedia.org/wiki/Faceted_search] is a technique which allows to divide
the results of a query into multiple categories. This categorisation includes the calculation of hit
counts for each category and the ability to further restrict search results based on these facets
(categories). Example 5.24, “Search for 'Hibernate Search' on Amazon” shows a faceting example.
The search results in fifteen hits which are displayed on the main part of the page. The navigation
bar on the left, however, shows the category Computers & Internet with its subcategories
Programming, Computer Science, Databases, Software, Web Development, Networking and
Home Computing. For each of these subcategories the number of books is shown matching the
main search criteria and belonging to the respective subcategory. This division of the category
Computers & Internet is one concrete search facet. Another one is for example the average
customer review.

110

http://en.wikipedia.org/wiki/Faceted_search
http://en.wikipedia.org/wiki/Faceted_search

Faceting

Example 5.24. Search for 'Hibernate Search' on Amazon

CEETON Computers & Internet + JHibernate Search

Books Advanced Search Browse Subjecis New Releases Besisellers Tt
Department Books > Computers & Internet : "Hibernate Search”
<« Any Department
Showing 1 - 12 of 15 Results
< Books
Computers & Internet 1 . . N
. L. LOOKINSIDE! yihernate Search in Action |
Programming (14
Computer Science (4 TPy (3 customer reviews)
Databases (2 Formats
Software (2 Papeﬂ;ack
Web Development (2] Ordar in the next 2 hours to gat it by
Monday, Apr 18 F45-

MNetworking (1 Orily 1 left in stock - order soon.

Home Computing (1
Eligible for FREE Super Saver Shipping.

Format E t - Page 1: "... breaking th
xcerpt - Page 1: "... breaking the sus|
P back {15)
aperbac Surprise me! See a random page in th
Author
Any Author 2. Spring Persistence with Hib
Joe Vitale (1 (Nov 2, 2010)

TPy (5 customer reviews)

Formats

Shipping Option (what's this?}
Any Shipping Option

Paperback

Ordar in the next 19 hours to get it by &

Monday, Apr 18

Kindle Edition

Free Super Saver Shipping

Avg. Customer Review
Any Avg. Customer Review

i B Up 12 . Auto-delivered wiralassly
FOARETT & Up (14 Other Formats: Paperback
I allp Some formats eligible for FREE Super S
P Excerpt - Page 11: "... In Chapter 10, »
Conditi resolving these issues. Hibernate-Sear
ondition . Surprise me! See a random page in th
Any Condition
Used (15
. 1 . "
Meww r1a 3. LOOKINSIDE! | \;cene in Action, Second Ed
e Hatcher and Otis Gospodnetic |

In Hibernate Search the classes Quer yBui | der and Ful | Text Query are the entry point into the
faceting API. The former allows to create faceting requests whereas the latter gives access to the
so called Facet Manager . With the help of the Facet Manager faceting requests can be applied on
a query and selected facets can be added to an existing query in order to refine search results.
The following sections will describe the faceting process in more detail. The examples will use the
entity Cd as shown in Example 5.25, “Entity Cd":

Example 5.25. Entity Cd

@Entity
@ ndexed
public class Cd {

111

Chapter 5. Querying

@d
@=xner at edVal ue
private int id;

@ields({

@ield,

@i el d(nane = "nane_un_anal yzed", index = | ndex. UN_TOKEN ZED)
b

private String nang;

@i el d(i ndex = | ndex. UN_TOKENI ZED)
@\unericField
private int price;

Fi el d(i ndex = | ndex. UN_TOKEN ZED)
@at eBri dge(resol uti on = Resol uti on. YEAR)
private Date rel easeYear;

@i el d(i ndex = | ndex. UN_TOKENI ZED)
private String | abel;

Il setter/getter

5.4.1. Creating a faceting request

The first step towards a faceted search is to create the Facet i ngRequest . Currently two types
of faceting requests are supported. The first type is called discrete faceting and the second type
range faceting request. In the case of a discrete faceting request you specify on which index field
you want to facet (categorize) and which faceting options to apply. An example for a discrete
faceting request can be seen in Example 5.26, “Creating a discrete faceting request”:

Example 5.26. Creating a discrete faceting request

Quer yBui | der builder = full Text Sessi on. get Sear chFact ory()
. bui | dQuer yBui | der ()
.forEntity(Cd.class)
.get();
Facet i ngRequest | abel Faceti ngRequest = buil der. facet ()
.name("l abel Faceting")
.onField("label™")
.discrete()
.orderedBy(Facet Sort Order. COUNT_DESC)
.includeZeroCounts(false)
. maxFacet Count (1)
. creat eFaceti ngRequest () ;

When executing this faceting request a Facet instace will be created for each discrete value for
the indexed field | abel . The Facet instance will record the actual field value including how often
this particular field value occurs within the orginial query results. or der edBy, i ncl udeZer oCount s
and maxFacet Count are optional parameters which can be applied on any faceting request.

112

Applying a faceting request

orderedBy allows to specify in which order the created facets will be returned. The default is
Facet Sort Or der . COUNT_DESC, but you can also sort on the field value or the order in which ranges
were specified. i ncl udeZer oCount determines whether facets with a count of O will be included
in the result (per default they are) and maxFacet Count allows to limit the maximum amount of
facets returned.

Tip

At the moment there are several preconditions an indexed field has to meet in order
to apply faceting on it. The indexed property must be of type String, Date or a
subtype of Nunber and nul | values should be avoided. Furthermore the property
has to be indexed with | ndex. UN TOKENI ZED and in case of a numeric property
@wuneri cFi el d needs to be specified.

The creation of a range faceting request is quite similar except that we have to specify ranges
for the field values we are faceting on. A range faceting request can be seen in Example 5.27,
“Creating a range faceting request” where three different price ranges are specified. bel ow and
above can only be specified once, but you can specify as many from- t o ranges as you want.
For each range boundary you can also specify via excl udeLi m t whether it is included into the
range or not.

Example 5.27. Creating a range faceting request

Quer yBui | der builder = full Text Sessi on. get Sear chFactory()
. bui | dQuer yBui | der ()
.forEntity(Cd.class)
.get();
Faceti ngRequest priceacetingRequest = queryBuilder(Cd.class).facet()
.name("priceFaceting")
.onField("price")
.range()
. bel owm(1000)
.from 1001).to(1500)
. above(1500).excl udeLimt()
. creat eFaceti ngRequest () ;

5.4.2. Applying a faceting request
In Section 5.4.1, “Creating a faceting request” we have seen how to create a faceting request.
Now it is time to apply it on a query. The key is the Facet Manager which can be retrieved via the

Ful | Text Query (see Example 5.28, “Applying a faceting request”).

Example 5.28. Applying a faceting request

/1 create a fulltext query

113

Chapter 5. Querying

QueryBui | der builder = queryBuilder(Cd.class);
Query luceneQuery = builder.all().createQuery(); // match all query
Ful | Text Query full Text Query = full Text Sessi on. creat eFul | Text Query(|uceneQuery, Cd.class);

/] retrieve facet manager and apply faceting request
Facet Manager facet Manager = query. get Facet Manager () ;
f acet Manager . enabl eFaceti ng(pri ceFaceti ngRequest);

/'l get the list of Cds
Li st<Cd> cds = full TextQuery.list();

/]l retrieve the faceting results
Li st <Facet> facets = facet Manager. get Facets("priceFaceting");

You can enable as many faceting requests as you like and retrieve them afterwards via
get Facet s() specifiying the faceting request name. There is also a di sabl eFacet i ng() method
which allows you to disable a faceting request by specifying its name.

5.4.3. Restricting query results

Last but not least, you can apply any of the returned Facets as additional criteria on your
original query in order to implement a "drill-down" functionality. For this purpose Facet Sel ecti on
can be utilized. Facet Sel ections are available via the Facet Manager and allow you to
select a facet as query criteria (sel ect Facet s), remove a facet restriction (desel ect Facet s),
remove all facet restrictions (cl ear Sel ect edFacet s) and retrieve all currently selected facets
(get Sel ect edFacet s). Example 5.29, “Restricting query results via the application of a
FacetSelection” shows an example.

Example 5.29. Restricting query results viathe application of a Facet Sel ecti on

/1 create a fulltext query

Quer yBui | der buil der = queryBuilder(Cd.class);

Query luceneQuery = builder.all().createQuery(); // match all query

Ful | Text Query full Text Query = full Text Sessi on. creat eFul | Text Query(|uceneQuery, clazz);

/] retrieve facet manager and apply faceting request
Facet Manager facet Manager = query. get Facet Manager () ;
f acet Manager . enabl eFaceti ng(priceFaceti ngRequest);

/1 get the list of Cd
Li st<Cd> cds = full TextQuery.list();
assert True(cds. si ze() == 10);

/] retrieve the faceting results
Li st <Facet> facets = facet Manager. get Facets("priceFaceting");

assert True(facets. get(0).getCount() == 2)

/] apply first facet as additional search criteria
f acet Manager . get Facet Group("pri ceFaceting"”).sel ect Facets(facets.get(0));

/'l re-execute the query

114

Optimizing the query process

cds = full TextQuery.list();
assert True(cds. si ze() == 2);

5.5. Optimizing the query process

Query performance depends on several criteria:

 the Lucene query itself: read the literature on this subject

« the number of object loaded: use pagination (always ;-)) or index projection (if needed)

the way Hibernate Search interacts with the Lucene readers: defines the appropriate Reader
strategy.

 caching frequently extracted values from the index: see Section 5.5.1, “Caching index values:
FieldCache”.

5.5.1. Caching index values: FieldCache

The primary function of a Lucene index is to identify matches to your queries, still after the query is
performed the results must be analyzed to extract useful information: typically Hibernate Search
might need to extract the Class type and the primary key.

Extracting the needed values from the index has a performance cost, which in some cases might
be very low and not noticeable, but in some other cases might be a good candidate for caching.

What is exactly needed depends on the kind of Projections being used (see Section 5.1.3.5,
“Projection”), and in some cases the Class type is not needed as it can be inferred from the query
context or other means.

Using the @CacheFr om ndex annotation you can experiment different kinds of caching of the
main metadata fields required by Hibernate Search:

inport static org. hibernate.search. annotati ons. Fi el dCacheType. CLASS;
inport static org. hibernate.search. annotati ons. Fi el dCacheType. | D

@ ndexed

@acheFrom ndex({ CLASS, ID})
public class Essay {

It is currently possible to cache Class types and IDs using this annotation:

e CLASS: Hibernate Search will use a Lucene FieldCache to improve peformance of the Class
type extraction from the index.

115

Chapter 5. Querying

This value is enabled by default, and is what Hibernate Search will apply if you don't specify
the @CacheFr om ndex annotation.

| D: Extracting the primary identifier will use a cache. This is likely providing the best performing
queries, but will consume much more memory which in turn might reduce performance.

@ Note

Measure the performance and memory consumption impact after warmup
(executing some queries): enabling Field Caches is likely to improve performance
but this is not always the case.

Using a FieldCache has two downsides to consider:

« Memory usage: these caches can be quite memory hungry. Typically the CLASS cache has
lower requirements than the ID cache.

« Index warmup: when using field caches, the first query on a new index or segment will be slower
than when you don't have caching enabled.

With some queries the classtype won't be needed at all, in that case even if you enabled the CLASS
field cache, this might not be used; for example if you are targeting a single class, obviously all
returned values will be of that type (this is evaluated at each Query execution).

For the ID FieldCache to be used, the ids of targeted entities must be using a TwoWayFi el dBri dge
(as all builting bridges), and all types being loaded in a specific query must use the fieldname for
the id, and have ids of the same type (this is evaluated at each Query execution).

116

Chapter 6.

Manual index changes

As Hibernate core applies changes to the Database, Hibernate Search detects these changes and
will update the index automatically (unless the EventListeners are disabled). Sometimes changes
are made to the database without using Hibernate, as when backup is restored or your data is
otherwise affected; for these cases Hibernate Search exposes the Manual Index APIs to explicitly
update or remove a single entity from the index, or rebuild the index for the whole database, or
remove all references to a specific type.

All these methods affect the Lucene Index only, no changes are applied to the Database.

6.1. Adding instances to the index

Using Ful | Text Sessi on.i ndex(T entity) you can directly add or update a specific object
instance to the index. If this entity was already indexed, then the index will be updated. Changes
to the index are only applied at transaction commit.

Example 6.1. Indexing an entity via Ful | Text Sessi on. i ndex(T entity)

Ful | Text Sessi on full Text Sessi on = Search. get Ful | Text Sessi on(sessi on);
Transaction tx = full Text Sessi on. begi nTransacti on();

Obj ect custoner = full Text Session.|oad(Custoner.class, 8);

ful | Text Sessi on. i ndex(custoner);

tx.commit(); //index only updated at comit tine

In case you want to add all instances for a type, or for all indexed types, the recommended
approach is to use a Mass| ndexer : see Section 6.3.2, “Using a MassIndexer” for more details.

6.2. Deleting instances from the index

It is equally possible to remove an entity or all entities of a given type from a Lucene index without
the need to physically remove them from the database. This operation is named purging and is
also done through the Ful | Text Sessi on.

Example 6.2. Purging a specific instance of an entity from the index

Ful | Text Sessi on full Text Sessi on = Search. get Ful | Text Sessi on(sessi on);
Transaction tx = full Text Sessi on. begi nTransacti on();
for (Customer customer : custoners) {

ful | Text Sessi on. purge(Custoner.class, custoner.getld());

}

tx.commit(); //index is updated at commit tine

Purging will remove the entity with the given id from the Lucene index but will not touch the
database.

117

Chapter 6. Manual index changes

If you need to remove all entities of a given type, you can use the pur geAl I method. This operation
removes all entities of the type passed as a parameter as well as all its subtypes.

Example 6.3. Purging all instances of an entity from the index

Ful | Text Sessi on ful | Text Sessi on = Sear ch. get Ful | Text Sessi on(sessi on);
Transaction tx = full Text Sessi on. begi nTransacti on();

ful | Text Sessi on. purgeAl |l (Customner.class);

/loptionally optimze the index

/1 full Text Sessi on. get SearchFactory().optim ze(Custoner.class);
tx.commt(); //index changes are applied at commt tinme

It is recommended to optimize the index after such an operation.

(3

(3

6.3. Rebuilding the whole index

If you change the entity mapping to the index, chances are that the whole Index needs to be
updated; For example if you decide to index a an existing field using a different analyzer you'll
need to rebuild the index for affected types. Also if the Database is replaced (like restored from a
backup, imported from a legacy system) you'll want to be able to rebuild the index from existing
data. Hibernate Search provides two main strategies to choose from:

» Using Ful | Text Sessi on.f | ushTol ndexes() periodically, while using
Ful | Text Sessi on.i ndex() on all entities.

e Use a Massl ndexer.

6.3.1. Using flushTolndexes()

This strategy consists in removing the existing index and then adding all entities back to the
index using Ful | Text Sessi on.pur geAl | () and Ful | Text Sessi on.i ndex(), however there are
some memory and efficiency contraints. For maximum efficiency Hibernate Search batches index

Using a MassIndexer

operations and executes them at commit time. If you expect to index a lot of data you need
to be careful about memory consumption since all documents are kept in a queue until the
transaction commit. You can potentially face an Qut Of Menor yExcept i on if you don't empty the
queue periodically: to do this you can use f ul | Text Sessi on. f| ushTol ndexes() . Every time
ful | Text Sessi on. fl ushTol ndexes() is called (or if the transaction is committed), the batch
queue is processed applying all index changes. Be aware that, once flushed, the changes cannot
be rolled back.

Example 6.4. Index rebuilding using index() and flushTolndexes()

ful | Text Sessi on. set Fl ushibde(Fl ushMbde. MANUAL) ;
ful | Text Sessi on. set CacheMbde(CacheMode. | GNORE) ;
transaction = full Text Sessi on. begi nTransacti on();
/1Scrollable results will avoid | oading too nany objects in nenory
Scrol | abl eResults results = full Text Sessi on.createCriteria(Email.class)
. set Fet chSi ze(BATCH_SI ZE)
.scroll (Scroll Mpde. FORWARD_ONLY) ;
int index = O;
while(results.next()) {
i ndex++;
ful | Text Session.index(results.get(0)); //index each el enent
if (index % BATCH SI ZE == 0) {
ful | Text Sessi on. fl ushTol ndexes(); //apply changes to indexes
full Text Session.clear(); //free nmenory since the queue is processed
}
}

transaction.commit();

@ Note

hi ber nat e. sear ch. wor ker . bat ch_si ze has been deprecated in favor of this
explicit API which provides better control

Try to use a batch size that guarantees that your application will not run out of memory: with a
bigger batch size objects are fetched faster from database but more memory is needed.

6.3.2. Using a MassIndexer

Hibernate Search's Massl ndexer uses several parallel threads to rebuild the index; you can
optionally select which entities need to be reloaded or have it reindex all entities. This approach is
optimized for best performance but requires to set the application in maintenance mode: making
queries to the index is not recommended when a MassIndexer is busy.

Example 6.5. Index rebuilding using a Massindexer

ful | Text Sessi on. createl ndexer().start AndWait();

119

Chapter 6. Manual index changes

This will rebuild the index, deleting it and then reloading all entities from the database. Although
it's simple to use, some tweaking is recommended to speed up the process: there are several
parameters configurable.

Warning

During the progress of a MassIndexer the content of the index is undefined, make
sure that nobody will try to make some query during index rebuilding! If somebody
should query the index it will not corrupt but most results will likely be missing.

Example 6.6. Using a tuned MassIndexer

ful | Text Sessi on
.createl ndexer(User.class)
. bat chSi zeToLoadObj ects(25)
. cacheMode(CacheMode. NORVAL)
.threadsToLoadObj ects(5)
.threadsFor | ndexWiter(3)
. t hr eadsFor Subsequent Fet chi ng(20)
.progresshnitor(nmonitor) //a Masslndexer Progresshbnitor inplenentation
.start AndWai t ();

This will rebuild the index of all User instances (and subtypes), and will create 5 parallel threads
to load the User instances using batches of 25 objects per query; these loaded User instances
are then pipelined to 20 parallel threads to load the attached lazy collections of User containing
some information needed for the index. Finally, 3 parallel threads are being used to Analyze the
text and write to the index.

Itis recommended to leave cacheMode to CacheMbde. | GNORE (the default), as in most reindexing
situations the cache will be a useless additional overhead; it might be useful to enable some other
CacheMbde depending on your data: it might increase performance if the main entity is relating to
enum-like data included in the index.

Tip

The "sweet spot" of number of threads to achieve best performance is highly
dependent on your overall architecture, database design and even data values. To
find out the best number of threads for your application it is recommended to use
a profiler: all internal thread groups have meaningful names to be easily identified
with most tools.

120

Using a MassIndexer

Other parameters which affect indexing time and memory consumption are:

¢ hi bernate. search

¢ hi bernate. search

¢ hi bernate. search

¢ hi bernate. search

* hi bernate.search

¢ hi bernate.search

¢ hi bernate. search

. [def aul t | <i ndexname>] . excl usi ve_i ndex_use

. [defaul t| <i ndexnane>] . i ndexwriter.
. [defaul t] <i ndexnanme>] . i ndexwriter.
.[defaul t| <i ndexname>].i ndexwriter.
.[defaul t| <i ndexnanme>] . i ndexwiter.
.[defaul t| <i ndexnane>] . i ndexwriter.

. bat chbackend. concurrent_writers

bat ch. max_buf f er ed_docs
bat ch. max_ner ge_docs
bat ch. nerge_f act or

bat ch. ram buf fer_si ze

bat ch. term.i ndex_i nterval

Previous versions also had a max_f i el d_I engt h but this was removed from Lucene, it's possible

to obtain a similar effect by using a Li i t TokenCount Anal yzer .

All . i ndexwriter parameters are Lucene specific and Hibernate Search is just passing these
parameters through - see Section 3.10, “Tuning Lucene indexing performance” for more details.

hi ber nat e. sear ch. bat chbackend. concurrent _writers defaults to 2 and represent the
number of threads being used at the Analysis and indexwriter stage of the MassIndexing pipeline.
The Massl ndexer .t hreadsFor | ndexW i ter (i nt) method overrides this value.

121

122

Chapter 7.

Index Optimization

From time to time, the Lucene index needs to be optimized. The process is essentially a
defragmentation. Until an optimization is triggered Lucene only marks deleted documents as such,
no physical deletions are applied. During the optimization process the deletions will be applied
which also effects the number of files in the Lucene Directory.

Optimizing the Lucene index speeds up searches but has no effect on the indexation (update)
performance. During an optimization, searches can be performed, but will most likely be slowed
down. All index updates will be stopped. It is recommended to schedule optimization:

< on an idle system or when the searches are less frequent

 after a lot of index modifications

When using a Massl ndexer (see Section 6.3.2, “Using a MassIndexer”) it will optimize involved
indexes by default at the start and at the end of processing; you can change this behavior by using
respectively Massl ndexer .opti nm zeAf t er Pur ge and Massl ndexer .opt i m zeOnFi ni sh.

7.1. Automatic optimization

Hibernate Search can automatically optimize an index after:

 a certain amount of operations (insertion, deletion)
 or a certain amount of transactions

The configuration for automatic index optimization can be defined on a global level or per index:

Example 7.1. Defining automatic optimization parameters

hi bernat e. search. defaul t. optim zer.operation_limt.max = 1000
hi ber nat e. search. defaul t. optim zer.transaction_limt.max = 100
hi ber nat e. sear ch. Ani mal . optim zer.transaction_linmt.nmx = 50

An optimization will be triggered to the Ani nal index as soon as either:

+ the number of additions and deletions reaches 1000

« the number of transactions reaches 50
(hi ber nat e. search. Ani nal . opti m zer.transaction_linmit.max having priority over
hi ber nat e. search. defaul t. optim zer.transaction_limt.nmax)

If none of these parameters are defined, no optimization is processed automatically.

123

Chapter 7. Index Optimization

7.2. Manual optimization

You can programmatically optimize (defragment) a Lucene index from Hibernate Search through
the Sear chFact ory:

Example 7.2. Programmatic index optimization

Ful | Text Sessi on ful | Text Sessi on = Sear ch. get Ful | Text Sessi on(regul ar Sessi on) ;
Sear chFact ory searchFactory = ful | Text Sessi on. get Sear chFactory();

sear chFactory. opti m ze(Order. cl ass);

/1l or
sear chFactory. optim ze();

The first example optimizes the Lucene index holding Or der s; the second, optimizes all indexes.

@ Note

sear chFact ory. opti mi ze() has no effect on a JMS backend. You must apply
the optimize operation on the Master node.

7.3. Adjusting optimization

Apache Lucene has a few parameters to influence how optimization is performed. Hibernate
Search exposes those parameters.

Further index optimization parameters include:
* hi bernate. search. [def aul t| <i ndexnane>] . i ndexwriter.[batch]|
transaction]. max_buffered_docs

* hi bernate. search. [def aul t| <i ndexnane>] . i ndexwriter.[batch]|
transaction]. max_nerge_docs

* hi bernate. search. [defaul t|<i ndexnane>].indexwiter.[batch]|
transaction]. merge_factor

* hi bernate. search. [def aul t| <i ndexnane>] . i ndexwriter.[batch]|
transaction].rambuffer_size

* hi bernate. search. [def aul t| <i ndexnane>] . i ndexwriter.[batch]|
transaction].term.index_interval

See Section 3.10, “Tuning Lucene indexing performance” for more details.

124

Chapter 8.

Monitoring

Hibernate Search offers access to a St ati sti cs object via Sear chFactory. get Stati stics().
It allows you for example to determine which classes are indexed and how many
entities are in the index. This information is always available. However, by specifying the
hi ber nat e. sear ch. generat e_stati stics property in your configuration you can also collect
total and average Lucene query and object loading timings.

8.1. IMX

You can also enable access to the statistics via JMX. Setting
the property hibernate.search.jnmx_enabled will automatically register the
St ati sticsl nfoMBean. Depending on your the configuration the | ndexControl MBean and
I ndexi ngPr ogr essMoni t or MBean Will also be registered. Lets have a closer look at the different
MBeans.

Tip

If you want to access your JMX beans remotely via JConsole make sure to set the
system property com sun. managenent . j nxrenot e to t r ue.

8.1.1. StatisticsiInfoMBean

This MBean gives you access to St ati sti cs object as desribed in the previous section.

8.1.2. IndexControlMBean

This MBean allows to build, optimize and purge the index for a given entity. Indexing occurs
via the mass indexing API (seeSection 6.3.2, “Using a MassIndexer”). A requirement for this
bean to be registered in JMX is, that the Hibernate Sessi onFactory is bound to JNDI via
the hi ber nat e. sessi on_f act ory_nane property. Refer to the Hibernate Core manual for more
information on how to configure JNDI. The I ndexControl MBean and its API are for now
experimental.

8.1.3. IndexingProgressMonitorMBean

This MBean is an implementation Masslndexer Progresshonitor interface. If
hi ber nat e. sear ch. j nx_enabl ed is enabled and the mass indexer API is used the indexing
progress can be followed via this bean. The bean will only be bound to JMX while indexing is in
progress. Once indexing is completed the MBean is not longer available.

125

126

Chapter 9.

Advanced features

In this final chapter we are offering a smorgasbord of tips and tricks which might become useful
as you dive deeper and deeper into Hibernate Search.

9.1. Accessing the SearchFactory

The Sear chFact or y object keeps track of the underlying Lucene resources for Hibernate Search.
It is a convenient way to access Lucene natively. The Sear chFact ory can be accessed from a
Ful | Text Sessi on:

Example 9.1. Accessing the searchFactory

Ful | Text Sessi on ful | Text Sessi on = Search. get Ful | Text Sessi on(regul ar Sessi on) ;
Sear chFact ory searchFactory = full Text Sessi on. get Sear chFactory();

9.2. Accessing a Lucene Directory

You can always access the Lucene directories through plain Lucene. The Di r ect or y structure is
in no way different with or without Hibernate Search. However there are some more convenient
ways to access a given Directory. The Sear chFact ory keeps track of the Di r ect or yPr ovi der s
per indexed class. One directory provider can be shared amongst several indexed classes, if the
classes share the same underlying index directory. While usually not the case, a given entity can
have several Di r ect or yPr ovi der s if the index is sharded (see Section 3.3, “Sharding indexes”).

Example 9.2. Accessing the Lucene Directory

DirectoryProvider[] provider = searchFactory. getDirectoryProviders(Order.class);
org. apache. l ucene.store.Directory directory = provider[O].getDirectory();

In this example, directory points to the lucene index storing Or der s information. Note that the
obtained Lucene directory must not be closed (this is Hibernate Search's responsibility).

9.3. Using an IndexReader

Queries in Lucene are executed on an | ndexReader . Hibernate Search caches all index readers
to maximize performance. Your code can access this cached resources, but you have to follow
some "good citizen" rules.

Example 9.3. Accessing an I ndexReader

Di rect oryProvi der orderProvi der = searchFactory.getDirectoryProviders(Order.class)[0];

127

Chapter 9. Advanced features

Di rectoryProvider clientProvider = searchFactory. getDirectoryProviders(Cient.class)[0];

Reader Provi der readerProvi der = searchFactory. get Reader Provi der () ;
I ndexReader reader = readerProvi der.openReader (orderProvider, clientProvider);

try {
//do read-only operations on the reader

}
finally {
reader Provi der . cl oseReader (reader) ;

}

The ReaderProvider (described inReader strategy), will open an IndexReader on top of the
index(es) referenced by the directory providers. Because this | ndexReader is shared amongst
several clients, you must adhere to the following rules:

» Never call indexReader.close(), but always call readerProvider.closeReader(reader), preferably
in a finally block.

« Don't use this | ndexReader for modification operations (you would get an exception). If you
want to use a read/write index reader, open one from the Lucene Directory object.

Aside from those rules, you can use the | ndexReader freely, especially to do native queries. Using
the shared | ndexReader s will make most queries more efficient.

9.4. Use external services in Hibernate Search
components (experimental)

By components, this section means any of the pluggable contracts - Di r ect or yPr ovi der being
the most useful use case:

e DirectoryProvider

* Reader Provi der

e OptimzerStrategy

* BackendQueueProcessor Factory
* Wrker

Some of these compnents need to access a service which is either available in the environment
or whose lifecycle is bound to the Sear chFact ory. Sometimes, you even want the same service
to be shared amongst several instances of these contract. One example is the ability the share an
Infinispan cache instance between several directory providers to store the various indexes using
the same underlying infrastructure.

128

Exposing a service

9.4.1. Exposing a service

To expose a service, you need to implement
or g. hi ber nat e. sear ch. spi . Servi ceProvi der <T>. T is the type of the service you want to use.
Services are retrieved by components via their Ser vi cePr ovi der class implementation.

9.4.1.1. Managed services

If your service ought to be started when Hibernate Search starts and stopped when Hibernate
Search stops, you can use a managed service. Make sure to properly implement the st art and
st op methods of Servi ceProvi der. When the service is requested, the get Servi ce method is
called.

Example 9.4. Example of ServiceProvider implementation

public class CacheServiceProvider inplenments ServiceProvider<Cache> {
private CacheManager nanager

public void start(Properties properties) {
/'l read configuration
manager = new CacheManager (properties)

}

publ i c Cache get Service() {
return manager. get Cache(DEFAULT)
}

void stop() {
manager . cl ose();

}

@ Note

The Ser vi ceProvi der implementation must have a no-arg constructor.

To be transparently discoverable, such service should have an accompanying META- | NF/
servi ces/ org. hi bernat e. sear ch. spi . Servi ceProvi der whose content list the (various)
service provider implementation(s).

Example 9.5. Content of META-INF/services/
org.hibernate.search.spi.ServiceProvider

com acne. i nfra. hi bernat e. CacheSer vi cePr ovi der

129

Chapter 9. Advanced features

9.4.1.2. Provided services

Alternatively, the service can be provided by the environment bootstrapping Hibernate Search.
For example, Infinispan which uses Hibernate Search as its internal search engine can pass the
CacheCont ai ner to Hibernate Search. In this case, the CacheCont ai ner instance is not managed
by Hibernate Search and the st ar t /st op methods of its corresponding service provider will not
be used.

@ Note

Provided services have priority over managed services. If a provider service is
registered with the same Servi ceProvi der class as a managed service, the
provided service will be used.

The provided services are passed to Hibernate Search via the Sear chConfi gur ati on interface
(get Provi dedSer vi ces).

S | Important

Provided services are used by frameworks controlling the lifecycle of Hibernate
Search and not by traditional users.

If, as a user, you want to retrieve a service instance from the environment, use registry services
like JNDI and look the service up in the provider.

9.4.2. Using a service

Many of of the pluggable contracts of Hibernate Search can use services. Services are accessible
via the Bui | dCont ext interface.

Example 9.6. Example of a directory provider using a cache service

public CustonDirectoryProvider inplenents DirectoryProvider<RAMD rectory> {
private Buil dContext context;

public void initialize(
String directoryProvi der Nane,
Properties properties
Bui | dCont ext context) {
[linitialize
t hi s. context = context;

}

public void start() {
Cache cache = context.request Servi ce(CacheServiceProvider.class);
/luse cache

130

Customizing Lucene's scoring formula

}

public RAMDi rectory getDirectory() {
/] use cache

}

public stop() {
/] stop services
context.rel easeServi ce(CacheServiceProvider.class)

When you request a service, an instance of the service is served to you. Make sure to
then release the service. This is fundamental. Note that the service can be released in the
Di rect oryProvi der . st op method if the Di r ect or yPr ovi der uses the service during its lifetime
or could be released right away of the service is simply used at initialization time.

9.5. Customizing Lucene's scoring formula

Lucene allows the user to customize its scoring formula by extending
or g. apache. | ucene. search. Si ni | ari ty. The abstract methods defined in this class match the
factors of the following formula calculating the score of query g for document d:

score(qg,d) = coord(q,d) - queryNorm(q) - S ting (tf(tin d) - idf(t) 2 - t.getBoost() - norm(t,d))

Factor Description

tf(t ind) Term frequency factor for the term (t) in the
document (d).

idf(t) Inverse document frequency of the term.

coord(q,d) Score factor based on how many of the query
terms are found in the specified document.

queryNorm(q) Normalizing factor used to make scores
between queries comparable.

t.getBoost() Field boost.

norm(t,d) Encapsulates a few (indexing time) boost and
length factors.

It is beyond the scope of this manual to explain this formula in more detail. Please refer to
Similarity's Javadocs for more information.

Hibernate Search provides three ways to modify Lucene's similarity calculation.

First you can set the default similarity by specifying the fully specified classname of your
Sinmlarity implementation using the property hi bernate. search.sinilarity. The default
value is or g. apache. | ucene. search. Defaul tSinilarity.

You can also override the similarity used for a specific index by setting the si mi | ari ty property

131

Chapter 9. Advanced features

hi bernat e. search.default.simlarity nmy.customSinmlarity
Finally you can override the default similarity on class level using the @5i ri | ari t y annotation.

@Entity

@ ndexed

@imlarity(inpl = DummySinilarity.class)
public class Book {

}

As an example, let's assume it is not important how often a term appears in a document.
Documents with a single occurrence of the term should be scored the same as documents with
multiple occurrences. In this case your custom implementation of the method tf (fl oat freq)
should return 1.0.

Warning

When two entities share the same index they must declare the same Sinil arity
implementation. Classes in the same class hierarchy always share the index, so
it's not allowed to override the Si ni | ari t y implementation in a subtype.

Likewise, it does not make sense to define the similarity via the index setting and
the class-level setting as they would conflict. Such a configuration will be rejected.

132

Chapter 10.

Further reading

Last but not least, a few pointers to further information. He highly recommend you to get a
copy Hibernate Search in Action [http://www.manning.com/bernard/]. This excellent book covers
Hibernate Search in much more depth than this online documentation can and has a great range
of additional examples. If you want to increase your knowledge in Lucene we recommend Lucene
in Action (Second Edition) [http://www.manning.com/hatcher3/]. Because Hibernate Search's
functionality is tightly coupled to Hibernate Core is it a good idea to understand Hibernate in more
detail. Start with the online documentation [http://www.hibernate.org/docs] or get hold of a copy
of Java Persistence with Hibernate [http://www.manning.com/bauer2/].

If you have any further questions regarding Hibernate Search or want to share some of your use
cases have a look at the Hibernate Search Wiki [http://community.jboss.org/en/hibernate/search]
and the Hibernate Search Forum [https://forum.hibernate.org/viewforum.php?f=9]. We are looking
forward hearing from you.

In case you would like to report a bug use the Hibernate Search Jira [http://
opensource.atlassian.com/projects/hibernate/browse/HSEARCH] instance. Feedback is always
welcome!

133

http://www.manning.com/bernard/
http://www.manning.com/bernard/
http://www.manning.com/hatcher3/
http://www.manning.com/hatcher3/
http://www.manning.com/hatcher3/
http://www.hibernate.org/docs
http://www.hibernate.org/docs
http://www.manning.com/bauer2/
http://www.manning.com/bauer2/
http://community.jboss.org/en/hibernate/search
http://community.jboss.org/en/hibernate/search
https://forum.hibernate.org/viewforum.php?f=9
https://forum.hibernate.org/viewforum.php?f=9
http://opensource.atlassian.com/projects/hibernate/browse/HSEARCH
http://opensource.atlassian.com/projects/hibernate/browse/HSEARCH
http://opensource.atlassian.com/projects/hibernate/browse/HSEARCH

134

	Hibernate Search
	Table of Contents
	Preface
	Chapter 1. Getting started
	1.1. System Requirements
	1.2. Using Maven
	1.3. Configuration
	1.4. Indexing
	1.5. Searching
	1.6. Analyzer
	1.7. What's next

	Chapter 2. Architecture
	2.1. Overview
	2.2. Back end
	2.2.1. Back end types
	2.2.1.1. Lucene
	2.2.1.2. JMS
	2.2.1.3. JGroups

	2.2.2. Work execution
	2.2.2.1. Synchronous
	2.2.2.2. Asynchronous

	2.3. Reader strategy
	2.3.1. Shared
	2.3.2. Not-shared
	2.3.3. Custom

	Chapter 3. Configuration
	3.1. Enabling Hibernate Search and automatic indexing
	3.1.1. Enabling Hibernate Search
	3.1.2. Automatic indexing

	3.2. Directory configuration
	3.3. Sharding indexes
	3.4. Sharing indexes
	3.5. Worker configuration
	3.6. JMS Master/Slave configuration
	3.6.1. Slave nodes
	3.6.2. Master node

	3.7. JGroups Master/Slave configuration
	3.7.1. Slave nodes
	3.7.2. Master node
	3.7.3. JGroups channel configuration

	3.8. Infinispan Directory configuration
	3.8.1. Requirements
	3.8.2. Architecture
	3.8.3. Infinispan Configuration

	3.9. Reader strategy configuration
	3.10. Tuning Lucene indexing performance
	3.11. LockFactory configuration
	3.12. Exception Handling Configuration

	Chapter 4. Mapping entities to the index structure
	4.1. Mapping an entity
	4.1.1. Basic mapping
	4.1.1.1. @Indexed
	4.1.1.2. @Field
	4.1.1.3. @NumericField
	4.1.1.4. @Id

	4.1.2. Mapping properties multiple times
	4.1.3. Embedded and associated objects

	4.2. Boosting
	4.2.1. Static index time boosting
	4.2.2. Dynamic index time boosting

	4.3. Analysis
	4.3.1. Default analyzer and analyzer by class
	4.3.2. Named analyzers
	4.3.2.1. Available analyzers

	4.3.3. Dynamic analyzer selection (experimental)
	4.3.4. Retrieving an analyzer

	4.4. Bridges
	4.4.1. Built-in bridges
	4.4.2. Custom bridges
	4.4.2.1. StringBridge
	4.4.2.1.1. Parameterized bridge
	4.4.2.1.2. Type aware bridge
	4.4.2.1.3. Two-way bridge

	4.4.2.2. FieldBridge
	4.4.2.3. ClassBridge

	4.5. Providing your own id
	4.5.1. The ProvidedId annotation

	4.6. Programmatic API
	4.6.1. Mapping an entity as indexable
	4.6.2. Adding DocumentId to indexed entity
	4.6.3. Defining analyzers
	4.6.4. Defining full text filter definitions
	4.6.5. Defining fields for indexing
	4.6.6. Programmatically defining embedded entities
	4.6.7. Contained In definition
	4.6.8. Date/Calendar Bridge
	4.6.9. Defining bridges
	4.6.10. Mapping class bridge
	4.6.11. Mapping dynamic boost

	Chapter 5. Querying
	5.1. Building queries
	5.1.1. Building a Lucene query using the Lucene API
	5.1.2. Building a Lucene query with the Hibernate Search query DSL
	5.1.2.1. Keyword queries
	5.1.2.2. Fuzzy queries
	5.1.2.3. Wildcard queries
	5.1.2.4. Phrase queries
	5.1.2.5. Range queries
	5.1.2.6. Combining queries
	5.1.2.7. Query options

	5.1.3. Building a Hibernate Search query
	5.1.3.1. Generality
	5.1.3.2. Pagination
	5.1.3.3. Sorting
	5.1.3.4. Fetching strategy
	5.1.3.5. Projection
	5.1.3.6. Customizing object initialization strategies
	5.1.3.7. Limiting the time of a query
	5.1.3.7.1. Raise an exception on time limit
	5.1.3.7.2. Limit the number of results when the time limit is reached (EXPERIMENTAL)

	5.2. Retrieving the results
	5.2.1. Performance considerations
	5.2.2. Result size
	5.2.3. ResultTransformer
	5.2.4. Understanding results

	5.3. Filters
	5.3.1. Using filters in a sharded environment

	5.4. Faceting
	5.4.1. Creating a faceting request
	5.4.2. Applying a faceting request
	5.4.3. Restricting query results

	5.5. Optimizing the query process
	5.5.1. Caching index values: FieldCache

	Chapter 6. Manual index changes
	6.1. Adding instances to the index
	6.2. Deleting instances from the index
	6.3. Rebuilding the whole index
	6.3.1. Using flushToIndexes()
	6.3.2. Using a MassIndexer

	Chapter 7. Index Optimization
	7.1. Automatic optimization
	7.2. Manual optimization
	7.3. Adjusting optimization

	Chapter 8. Monitoring
	8.1. JMX
	8.1.1. StatisticsInfoMBean
	8.1.2. IndexControlMBean
	8.1.3. IndexingProgressMonitorMBean

	Chapter 9. Advanced features
	9.1. Accessing the SearchFactory
	9.2. Accessing a Lucene Directory
	9.3. Using an IndexReader
	9.4. Use external services in Hibernate Search components (experimental)
	9.4.1. Exposing a service
	9.4.1.1. Managed services
	9.4.1.2. Provided services

	9.4.2. Using a service

	9.5. Customizing Lucene's scoring formula

	Chapter 10. Further reading

