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Preface

Full text search engines like Apache Lucene are very powerful technologies to add efficient

free text search capabilities to applications. However, Lucene suffers several mismatches when

dealing with object domain models. Amongst other things indexes have to be kept up to date and

mismatches between index structure and domain model as well as query mismatches have to

be avoided.

Hibernate Search addresses these shortcomings - it indexes your domain model with the help

of a few annotations, takes care of database/index synchronization and brings back regular

managed objects from free text queries. To achieve this Hibernate Search is combining the power

of Hibernate [http://www.hibernate.org] and Apache Lucene [http://lucene.apache.org].

http://www.hibernate.org
http://www.hibernate.org
http://lucene.apache.org
http://lucene.apache.org
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Getting started
Welcome to Hibernate Search. The following chapter will guide you through the initial steps

required to integrate Hibernate Search into an existing Hibernate ORM enabled application. In

case you are a Hibernate new timer we recommend you start here [http://hibernate.org/quick-

start.html].

1.1. System Requirements

Table 1.1. System requirements

Java Runtime Requires Java version 7 or greater. You

can download a Java Runtime for Windows/

Linux/Solaris here [http://www.oracle.com/

technetwork/java/javase/downloads/

index.html].

Hibernate Search hibernate-search-5.2.1.Final.jar and

all runtime dependencies. You can get the jar

artifacts either from the dist/lib directory

of the Hibernate Search distribution [http://

sourceforge.net/projects/hibernate/files/

hibernate-search/] or you can download them

from the JBoss maven repository [http://

repository.jboss.org/nexus/content/groups/

public-jboss/org/hibernate/].

Hibernate Core You will need hibernate-

core-4.3.9.Final.jar and its

dependencies (either from the distribution

bundle [http://sourceforge.net/projects/

hibernate/files/hibernate4/] or the maven

repository).

JPA 2.1 Hibernate Search can be used without JPA

but the following instructions will use JPA

annotations for basic entity configuration

(@Entity, @Id, @OneToMany,…).

1.2. Migration notes

If you are upgrading an existing application from an earlier version of Hibernate Search to

the latest release, make sure to check the out the migration guide [http://hibernate.org/search/

documentation/migrate/5.0/].

http://hibernate.org/quick-start.html
http://hibernate.org/quick-start.html
http://hibernate.org/quick-start.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://sourceforge.net/projects/hibernate/files/hibernate-search/
http://sourceforge.net/projects/hibernate/files/hibernate-search/
http://sourceforge.net/projects/hibernate/files/hibernate-search/
http://sourceforge.net/projects/hibernate/files/hibernate-search/
http://repository.jboss.org/nexus/content/groups/public-jboss/org/hibernate/
http://repository.jboss.org/nexus/content/groups/public-jboss/org/hibernate/
http://repository.jboss.org/nexus/content/groups/public-jboss/org/hibernate/
http://repository.jboss.org/nexus/content/groups/public-jboss/org/hibernate/
http://sourceforge.net/projects/hibernate/files/hibernate4/
http://sourceforge.net/projects/hibernate/files/hibernate4/
http://sourceforge.net/projects/hibernate/files/hibernate4/
http://sourceforge.net/projects/hibernate/files/hibernate4/
http://hibernate.org/search/documentation/migrate/5.0/
http://hibernate.org/search/documentation/migrate/5.0/
http://hibernate.org/search/documentation/migrate/5.0/


Chapter 1. Getting started

2

1.3. Required libraries

The Hibernate Search library is split in several modules to allow you to pick the minimal set of

dependencies you need. It requires Apache Lucene, Hibernate ORM and some standard APIs

such as the Java Persistence API and the Java Transactions API. Other dependencies are

optional, providing additional integration points. To get the correct jar files on your classpath we

highly recommend to use a dependency manager such as Maven [http://maven.apache.org/],

or similar tools such as Gradle [http://www.gradle.org/] or Ivy [http://ant.apache.org/ivy/]. These

alternatives are also able to consume the artifacts from the Section 1.3.1, “Using Maven” section.

1.3.1. Using Maven

The Hibernate Search artifacts can be found in Maven’s Central Repository [http://

central.sonatype.org/] but are released first in the JBoss Maven Repository [http://

repository.jboss.org/nexus/content/groups/public-jboss/]. See also the Maven Getting Started wiki

page [https://community.jboss.org/wiki/MavenGettingStarted-Users] to use the JBoss repository.

All you have to add to your pom.xml is:

Example 1.1. Maven artifact identifier for Hibernate Search

<dependency>

   <groupId>org.hibernate</groupId>

   <artifactId>hibernate-search-orm</artifactId>

   <version>5.2.1.Final</version>

</dependency>

Example 1.2. Optional Maven dependencies for Hibernate Search

<dependency>

<!-- If using JPA, add: -->

<dependency>

   <groupId>org.hibernate</groupId>

   <artifactId>hibernate-entitymanager</artifactId>

   <version>4.3.9.Final</version>

</dependency>

<!-- Infinispan integration: -->

<dependency>

   <groupId>org.hibernate</groupId>

   <artifactId>hibernate-search-infinispan</artifactId>

   <version>5.2.1.Final</version>

</dependency>

Only the hibernate-search-orm dependency is mandatory. hibernate-entitymanager is only

required if you want to use Hibernate Search in conjunction with JPA.

http://maven.apache.org/
http://maven.apache.org/
http://www.gradle.org/
http://www.gradle.org/
http://ant.apache.org/ivy/
http://ant.apache.org/ivy/
http://central.sonatype.org/
http://central.sonatype.org/
http://central.sonatype.org/
http://repository.jboss.org/nexus/content/groups/public-jboss/
http://repository.jboss.org/nexus/content/groups/public-jboss/
http://repository.jboss.org/nexus/content/groups/public-jboss/
https://community.jboss.org/wiki/MavenGettingStarted-Users
https://community.jboss.org/wiki/MavenGettingStarted-Users
https://community.jboss.org/wiki/MavenGettingStarted-Users
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1.3.2. Manual library management

You can download zip bundles from Sourcefroge containing all needed Hibernate Search

[http://sourceforge.net/projects/hibernate/files/hibernate-search/5.2.1.Final/] dependencies. This

includes - among others - the latest compatible version of Hibernate ORM. However, only

the essential parts you need to start experimenting with are included. You will probably need

to combine this with downloads from the other projects, for example the Hibernate ORM

distribution on Sourceforge [http://sourceforge.net/projects/hibernate/files/hibernate4/4.3.9.Final/

] also provides the modules to enable caching or use a connection pool.

1.4. Deploying on WildFly

If you are creating an application to be deployed on WildFly you’re lucky: Hibernate Search is

included in the application server. This means that you don’t need to package it along with your

application but remember that you need to activate the module, see Section 3.9, “Hibernate Search

as a WildFly module” for details.

Due to he modular design of WildFly, you can also bundle a more recent version of Hibernate

Search than the one included in the popular application server. This is also explained further in

Section 3.9, “Hibernate Search as a WildFly module”.

1.5. Configuration

Once you have added all required dependencies to your application you have to add a couple

of properties to your Hibernate configuration file. If you are using Hibernate directly this can be

done in hibernate.properties or hibernate.cfg.xml. If you are using Hibernate via JPA you

can also add the properties to persistence.xml. The good news is that for standard use most

properties offer a sensible default. An example persistence.xml configuration could look like

this:

Example 1.3. Basic configuration options to be added to hibernate.properties,

hibernate.cfg.xml or persistence.xml

...

<property name="hibernate.search.default.directory_provider"

          value="filesystem"/>

<property name="hibernate.search.default.indexBase"

          value="/var/lucene/indexes"/>

...

First you have to tell Hibernate Search which DirectoryProvider to use. This can be achieved

by setting the hibernate.search.default.directory_provider property. Apache Lucene has

the notion of a Directory to store the index files. Hibernate Search handles the initialization

and configuration of a Lucene Directory instance via a DirectoryProvider. In this tutorial we

will use a a directory provider which stores the index on the file system. This will give us the

http://sourceforge.net/projects/hibernate/files/hibernate-search/5.2.1.Final/
http://sourceforge.net/projects/hibernate/files/hibernate-search/5.2.1.Final/
http://sourceforge.net/projects/hibernate/files/hibernate4/4.3.9.Final/
http://sourceforge.net/projects/hibernate/files/hibernate4/4.3.9.Final/
http://sourceforge.net/projects/hibernate/files/hibernate4/4.3.9.Final/
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ability to inspect the Lucene indexes created by Hibernate Search (eg via Luke [https://github.com/

DmitryKey/luke/]). Once you have a working configuration you can start experimenting with other

directory providers (see Section 3.3, “Directory configuration”). You also have to specify the default

base directory for all indexes via hibernate.search.default.indexBase. This defines the path

where indexes are stored.

Let’s assume that your application contains the Hibernate managed classes example.Book and

example.Author and you want to add free text search capabilities to your application in order to

search the books contained in your database.

Example 1.4. Example entities Book and Author before adding Hibernate

Search specific annotations

package example;

...

@Entity

public class Book {

  @Id

  @GeneratedValue

  private Integer id;

  private String title;

  private String subtitle;

  @ManyToMany

  private Set<Author> authors = new HashSet<Author>();

  private Date publicationDate;

  public Book() {}

  // standard getters/setters follow

  ...

}

package example;

...

@Entity

public class Author {

  @Id

  @GeneratedValue

  private Integer id;

  private String name;

  public Author() {}

  // standard getters/setters follow

  ...

https://github.com/DmitryKey/luke/
https://github.com/DmitryKey/luke/
https://github.com/DmitryKey/luke/
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}

To achieve this you have to add a few annotations to the Book and Author class. The first

annotation @Indexed marks Book as indexable. By design Hibernate Search needs to store an

untokenized id in the index to ensure index uniqueness for a given entity (for now don’t worry if

you don’t know what untokenized means, it will soon be clear).

Next you have to mark the fields you want to make searchable. Let’s start with title and subtitle

and annotate both with @Field. The parameter index=Index.YES will ensure that the text will

be indexed, while analyze=Analyze.YES ensures that the text will be analyzed using the default

Lucene analyzer. Usually, analyzing or tokenizing means chunking a sentence into individual

words and potentially excluding common words like "a" or "the". We will talk more about analyzers

a little later on. The third parameter we specify is store=Store.NO, which ensures that the actual

data will not be stored in the index. Whether data is stored in the index or not has nothing to

do with the ability to search for it. It is not necessary to store fields in the index to allow Lucene

to search for them: the benefit of storing them is the ability to retrieve them via projections (see

Section 5.1.3.5, “Projection”).

Without projections, Hibernate Search will per default execute a Lucene query in order to find the

database identifiers of the entities matching the query criteria and use these identifiers to retrieve

managed objects from the database. The decision for or against projection has to be made on

a case by case basis.

Note that index=Index.YES, analyze=Analyze.YES and store=Store.NO are the default values

for these parameters and could be omitted.

After this short look under the hood let’s go back to annotating the Book class. Another annotation

we have not yet discussed is @DateBridge. This annotation is one of the built-in field bridges in

Hibernate Search. The Lucene index is mostly string based, with special support for encoding

numbers. Hibernate Search must convert the data types of the indexed fields to their respective

Lucene encoding and vice versa. A range of predefined bridges is provided for this purpose,

including the DateBridge which will convert a java.util.Date into a numeric value (a long) with

the specified resolution. For more details see Section 4.4.1, “Built-in bridges”.

This leaves us with @IndexedEmbedded. This annotation is used to index associated entities

(@ManyToMany, @*ToOne, @Embedded and @ElementCollection) as part of the owning entity. This

is needed since a Lucene index document is a flat data structure which does not know anything

about object relations. To ensure that the author names will be searchable you have to make

sure that the names are indexed as part of the book itself. On top of @IndexedEmbedded you will

also have to mark all fields of the associated entity you want to have included in the index with

@Indexed. For more details see Section 4.1.3, “Embedded and associated objects”.

These settings should be sufficient for now. For more details on entity mapping refer to Section 4.1,

“Mapping an entity”.
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Example 1.5. Example entities after adding Hibernate Search annotations

package example;

...

@Entity

@Indexed

public class Book {

  @Id

  @GeneratedValue

  private Integer id;

  @Field(index=Index.YES, analyze=Analyze.YES, store=Store.NO)

  private String title;

  @Field(index=Index.YES, analyze=Analyze.YES, store=Store.NO)

  private String subtitle;

  @Field(index = Index.YES, analyze=Analyze.NO, store = Store.YES)

  @DateBridge(resolution = Resolution.DAY)

  private Date publicationDate;

  @IndexedEmbedded

  @ManyToMany

  private Set<Author> authors = new HashSet<Author>();

  public Book() {

  }

  // standard getters/setters follow here

  ...

}

@Entity

public class Author {

  @Id

  @GeneratedValue

  private Integer id;

  @Field

  private String name;

  public Author() {

  }

  // standard getters/setters follow here

  ...

}
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1.6. Indexing

Hibernate Search will transparently index every entity persisted, updated or removed through

Hibernate ORM. However, you have to create an initial Lucene index for the data already present

in your database. Once you have added the above properties and annotations it is time to trigger

an initial batch index of your books. You can achieve this by using one of the following code

snippets (see also Section 6.3, “Rebuilding the whole index”):

Example 1.6. Using Hibernate Session to index data

FullTextSession fullTextSession = Search.getFullTextSession(session);

fullTextSession.createIndexer().startAndWait();

Example 1.7. Using JPA to index data

EntityManager em = entityManagerFactory.createEntityManager();

FullTextEntityManager fullTextEntityManager = Search.getFullTextEntityManager(em);

fullTextEntityManager.createIndexer().startAndWait();

After executing the above code, you should be able to see a Lucene index under /var/lucene/

indexes/example.Book (or based on a different path depending how you configured the property

hibernate.search.default.directory_provider).

Go ahead an inspect this index with Luke [https://github.com/DmitryKey/luke/]: it will help you to

understand how Hibernate Search works.

1.7. Searching

Now it is time to execute a first search. The general approach is to create a Lucene query,

either via the Lucene API (Section 5.1.1, “Building a Lucene query using the Lucene API”) or

via the Hibernate Search query DSL (Section 5.1.2, “Building a Lucene query with the Hibernate

Search query DSL”), and then wrap this query into a org.hibernate.Query in order to get all

the functionality one is used to from the Hibernate API. The following code will prepare a query

against the indexed fields, execute it and return a list of Book instances.

Example 1.8. Using Hibernate Session to create and execute a search

FullTextSession fullTextSession = Search.getFullTextSession(session);

Transaction tx = fullTextSession.beginTransaction();

// create native Lucene query using the query DSL

// alternatively you can write the Lucene query using the Lucene query parser

// or the Lucene programmatic API. The Hibernate Search DSL is recommended though

QueryBuilder qb = fullTextSession.getSearchFactory()

  .buildQueryBuilder().forEntity(Book.class).get();

https://github.com/DmitryKey/luke/
https://github.com/DmitryKey/luke/
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org.apache.lucene.search.Query query = qb

  .keyword()

  .onFields("title", "subtitle", "authors.name")

  .matching("Java rocks!")

  .createQuery();

// wrap Lucene query in a org.hibernate.Query

org.hibernate.Query hibQuery =

    fullTextSession.createFullTextQuery(query, Book.class);

// execute search

List result = hibQuery.list();

tx.commit();

session.close();

Example 1.9. Using JPA to create and execute a search

EntityManager em = entityManagerFactory.createEntityManager();

FullTextEntityManager fullTextEntityManager =

    org.hibernate.search.jpa.Search.getFullTextEntityManager(em);

em.getTransaction().begin();

// create native Lucene query using the query DSL

// alternatively you can write the Lucene query using the Lucene query parser

// or the Lucene programmatic API. The Hibernate Search DSL is recommended though

QueryBuilder qb = fullTextEntityManager.getSearchFactory()

    .buildQueryBuilder().forEntity(Book.class).get();

org.apache.lucene.search.Query query = qb

  .keyword()

  .onFields("title", "subtitle", "authors.name")

  .matching("Java rocks!")

  .createQuery();

// wrap Lucene query in a javax.persistence.Query

javax.persistence.Query persistenceQuery =

    fullTextEntityManager.createFullTextQuery(query, Book.class);

// execute search

List result = persistenceQuery.getResultList();

em.getTransaction().commit();

em.close();

1.8. Analyzer

Let’s make things a little more interesting now. Assume that one of your indexed book entities

has the title "Refactoring: Improving the Design of Existing Code" and you want to get hits for all

of the following queries: "refactor", "refactors", "refactored" and "refactoring". In Lucene this can

be achieved by choosing an analyzer class which applies word stemming during the indexing as

well as the search process. Hibernate Search offers several ways to configure the analyzer to be

used (see Section 4.3.1, “Default analyzer and analyzer by class”):



Analyzer

9

• Setting the hibernate.search.analyzer property in the configuration file. The specified class

will then be the default analyzer.

• Setting the @Analyzer annotation at the entity level.

• Setting the @Analyzer annotation at the field level.

When using the @Analyzer annotation one can either specify the fully qualified classname of the

analyzer to use or one can refer to an analyzer definition defined by the @AnalyzerDef annotation.

In the latter case the analyzer framework with its factories approach is utilized.

To find out more about the factory classes available you can either browse the Lucene

JavaDoc or read the corresponding section on the Solr Wiki [http://wiki.apache.org/solr/

AnalyzersTokenizersTokenFilters].

You can use @AnalyzerDef or @AnalyzerDefs on any: *@Indexed entity regardless of where the

analyzer is applied to; * parent class of an @Indexed entity; * package-info.java of a package

containing an @Indexed entity.

This implies that analyzer definitions are global and their names must be unique.

Note

Why the reference to the Apache Solr wiki?

Apache Solr was historically an indepedent sister project of Apache Lucene and the

analyzer factory framework was originally created in Solr. Since then the Apache

Lucene and Solr projects have merged, but the documentation for these additional

analyzers can still be found in the Solr Wiki. You might find other documentation

referring to the "Solr Analyzer Framework" - just remember you don’t need to

depend on Apache Solr anymore to use it. The required classes are part of the

core Lucene distribution.

In the example below a StandardTokenizerFactory is used followed by two filter factories,

LowerCaseFilterFactory and SnowballPorterFilterFactory. The standard tokenizer splits

words at punctuation characters and hyphens while keeping email addresses and internet

hostnames intact. It is a good general purpose tokenizer. The lowercase filter converts to

lowercase the letters in each token whereas the snowball filter finally applies language specific

stemming.

Generally, when using the Analyzer Framework you have to start with a tokenizer followed by an

arbitrary number of filters.

Example 1.10. Using @AnalyzerDef and the Analyzer Framework to define and

use an analyzer

@Entity

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
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@Indexed

@AnalyzerDef(name = "customanalyzer",

  tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),

  filters = {

    @TokenFilterDef(factory = LowerCaseFilterFactory.class),

    @TokenFilterDef(factory = SnowballPorterFilterFactory.class, params = {

      @Parameter(name = "language", value = "English")

    })

  })

public class Book {

  @Id

  @GeneratedValue

  @DocumentId

  private Integer id;

  @Field

  @Analyzer(definition = "customanalyzer")

  private String title;

  @Field

  @Analyzer(definition = "customanalyzer")

  private String subtitle;

  @IndexedEmbedded

  @ManyToMany

  private Set<Author> authors = new HashSet<Author>();

  @Field(index = Index.YES, analyze = Analyze.NO, store = Store.YES)

  @DateBridge(resolution = Resolution.DAY)

  private Date publicationDate;

  public Book() {

  }

  // standard getters/setters follow here

  ...

}

Using @AnalyzerDef only defines an Analyzer, you still have to apply it to entities and or properties

using @Analyzer. Like in the above example the customanalyzer is defined but not applied on

the entity: it’s applied on the title and subtitle properties only. An analyzer definition is global,

so you can define it on any entity and reuse the definition on other entities.

1.9. What’s next

The above paragraphs helped you getting an overview of Hibernate Search. The next step after

this tutorial is to get more familiar with the overall architecture of Hibernate Search (Chapter 2,

Architecture) and explore the basic features in more detail. Two topics which were only briefly

touched in this tutorial were analyzer configuration (Section 4.3.1, “Default analyzer and analyzer

by class”) and field bridges (Section 4.4, “Bridges”). Both are important features required for

more fine-grained indexing. More advanced topics cover clustering (Section 3.4.1, “JMS Master/
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Slave back end”, Section 3.3.1, “Infinispan Directory configuration”) and large index handling

(Section 10.4, “Sharding indexes”).



12
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Architecture

2.1. Overview

Hibernate Search consists of an indexing component as well as an index search component. Both

are backed by Apache Lucene.

Each time an entity is inserted, updated or removed in/from the database, Hibernate Search keeps

track of this event (through the Hibernate event system) and schedules an index update. All these

updates are handled without you having to interact with the Apache Lucene APIs directly (see

Section 3.1, “Enabling Hibernate Search and automatic indexing”). Instead, the interaction with

the underlying Lucene indexes is handled via so called IndexManagers.

Each Lucene index is managed by one index manager which is uniquely identified by name.

In most cases there is also a one to one relationship between an indexed entity and a single

IndexManager. The exceptions are the use cases of index sharding and index sharing. The former

can be applied when the index for a single entity becomes too big and indexing operations are

slowing down the application. In this case a single entity is indexed into multiple indexes each with

its own index manager (see Section 10.4, “Sharding indexes”). The latter, index sharing, is the

ability to index multiple entities into the same Lucene index (see Section 10.5, “Sharing indexes”).

The index manager abstracts from the specific index configuration. In the case of the default

index manager this includes details about the selected backend, the configured reader strategy

and the chosen DirectoryProvider. These components will be discussed in greater detail later on.

It is recommended that you start with the default index manager which uses different Lucene

Directory types to manage the indexes (see Section 3.3, “Directory configuration”). You can,

however, also provide your own IndexManager implementation (see Section 3.2, “Configuring the

IndexManager”).

Once the index is created, you can search for entities and return lists of managed entities saving

you the tedious object to Lucene Document mapping. The same persistence context is shared

between Hibernate and Hibernate Search. As a matter of fact, the FullTextSession is built on

top of the Hibernate Session so that the application code can use the unified org.hibernate.Query

or javax.persistence.Query APIs exactly the same way a HQL, JPA-QL or native query would do.

To be more efficient Hibernate Search batches the write interactions with the Lucene index. This

batching is the responsibility of the Worker. There are currently two types of batching. Outside a

transaction, the index update operation is executed right after the actual database operation. This

is really a no batching setup. In the case of an ongoing transaction, the index update operation

is scheduled for the transaction commit phase and discarded in case of transaction rollback. The

batching scope is the transaction. There are two immediate benefits:

• Performance: Lucene indexing works better when operation are executed in batch.

• ACIDity: The work executed has the same scoping as the one executed by the database

transaction and is executed if and only if the transaction is committed. This is not ACID in the
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strict sense of it, but ACID behavior is rarely useful for full text search indexes since they can

be rebuilt from the source at any time.

You can think of those two batch modes (no scope vs transactional) as the equivalent of

the (infamous) autocommit vs transactional behavior. From a performance perspective, the

in transaction mode is recommended. The scoping choice is made transparently. Hibernate

Search detects the presence of a transaction and adjust the scoping (see Section 3.4, “Worker

configuration”).

Tip

It is recommended - for both your database and Hibernate Search - to execute

your operations in a transaction, be it JDBC or JTA.

Note

Hibernate Search works perfectly fine in the Hibernate / EntityManager long

conversation pattern aka. atomic conversation.

2.2. Back end

Hibernate Search offers the ability to let the batched work being processed by different back

ends. Several back ends are provided out of the box and you have the option to plugin your

own. It is important to understand that in this context back end encompasses more than just the

configuration option hibernate.search.default.worker.backend. This property just specifies

a implementation of the BackendQueueProcessor interface which is a part of a back end

configuration. In most cases, however, additional configuration settings are needed to successfully

configure a specific backend setup, like for example the JMS back end.

2.2.1. Lucene

In this mode, all index update operations applied on a given node (JVM) will be executed to the

Lucene directories (through the directory providers) by the same node. This mode is typically used

in non clustered environment or in clustered environments where the directory store is shared.
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This mode targets non clustered applications, or clustered applications where the Directory is

taking care of the locking strategy.

The main advantage is simplicity and immediate visibility of the changes in Lucene queries (a

requirement in some applications).

An alternative back end viable for non-clustered and non-shared index configurations is the near-

real-time backend.

2.2.2. JMS

All index update operations applied on a given node are sent to a JMS queue. A unique reader

will then process the queue and update the master index. The master index is then replicated on

a regular basis to the slave copies. This is known as the master/slaves pattern. The master is

the sole responsible for updating the Lucene index. The slaves can accept read as well as write

operations. However, they only process the read operation on their local index copy and delegate

the update operations to the master.
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This mode targets clustered environments where throughput is critical, and index update delays

are affordable. Reliability is ensured by the JMS provider and by having the slaves working on

a local copy of the index.

2.2.3. JGroups

The JGroups based back end works similar to the JMS one and is designed after the same master/

slave pattern. However, instead of JMS the JGroups toolkit is used as a replication mechanism.

This back end can be used as an alternative to JMS when response time is critical, but i.e. JNDI

service is not available.

Note that while JMS can usually be configured to use persistent queues, JGroups talks directly

to other nodes over network. Message delivery to other reachable nodes is guaranteed, but if no

master node is available, index operations are silently discarded. This backend can be configured

to use asynchronous messages, or to wait for each indexing operation to be completed on the

remote node before returning.

The JGroups backend can be configured with static master or slave roles, or can be setup

to perform an auto-election of the master. This mode is particularly useful to have the system

automatically pick a new master in case of failure, but during a reelection process some indexing

operations might be lost. For this reason this mode is not suited for use cases requiring strong

consistency guarantees. When configured to perform an automatic election, the master node is

defined as an hash on the index name: the role is therefore possibly different for each index or

shard.

2.3. Reader strategy

When executing a query, Hibernate Search interacts with the Apache Lucene indexes through a

reader strategy. Choosing a reader strategy will depend on the profile of the application (frequent

updates, read mostly, asynchronous index update etc). See also Section 3.5, “Reader strategy

configuration”

2.3.1. shared

With this strategy, Hibernate Search will share the same IndexReader, for a given Lucene index,

across multiple queries and threads provided that the IndexReader is still up-to-date. If the

IndexReader is not up-to-date, a new one is opened and provided. Each IndexReader is made

of several SegmentReaders. This strategy only reopens segments that have been modified or

created after last opening and shares the already loaded segments from the previous instance.

This strategy is the default.

The name of this strategy is shared.

2.3.2. not-shared

Every time a query is executed, a Lucene IndexReader is opened. This strategy is not the most

efficient since opening and warming up an IndexReader can be a relatively expensive operation.
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The name of this strategy is not-shared.

2.3.3. Custom

You can write your own reader strategy that suits your application needs by implementing

org.hibernate.search.reader.ReaderProvider. The implementation must be thread safe.
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Configuration

3.1. Enabling Hibernate Search and automatic indexing

Let’s start with the most basic configuration question - how do I enable Hibernate Search?

3.1.1. Enabling Hibernate Search

The good news is that Hibernate Search is enabled out of the box when detected

on the classpath by Hibernate Core. If, for some reason you need to disable it, set

hibernate.search.autoregister_listeners to false. Note that there is no performance

penalty when the listeners are enabled but no entities are annotated as indexed.

3.1.2. Automatic indexing

By default, every time an object is inserted, updated or deleted through Hibernate, Hibernate

Search updates the according Lucene index. It is sometimes desirable to disable that features

if either your index is read-only or if index updates are done in a batch way (see Section 6.3,

“Rebuilding the whole index”).

To disable event based indexing, set

hibernate.search.indexing_strategy = manual

Note

In most case, the JMS backend provides the best of both world, a lightweight

event based system keeps track of all changes in the system, and the heavyweight

indexing process is done by a separate process or machine.

3.2. Configuring the IndexManager

The role of the index manager component is described in Chapter 2, Architecture. Hibernate

Search provides two possible implementations for this interface to choose from.

• directory-based: the default implementation which uses the Lucene Directory abstraction to

manage index files.

• near-real-time: avoid flushing writes to disk at each commit. This index manager is also

Directory based, but also makes uses of Lucene’s NRT functionality.

To select an alternative you specify the property:

hibernate.search.[default|<indexname>].indexmanager = near-real-time
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3.2.1. directory-based

The default IndexManager implementation. This is the one mostly referred to in this

documentation. It is highly configurable and allows you to select different settings for the reader

strategy, back ends and directory providers. Refer to Section 3.3, “Directory configuration”,

Section 3.4, “Worker configuration” and Section 3.5, “Reader strategy configuration” for more

details.

3.2.2. near-real-time

The NRTIndexManager is an extension of the default IndexManager, leveraging the Lucene NRT

(Near Real Time) features for extreme low latency index writes. As a trade-off it requires a non-

clustered and non-shared index. In other words, it will ignore configuration settings for alternative

back ends other than lucene and will acquire exclusive write locks on the Directory.

To achieve this low latency writes, the IndexWriter will not flush every change to disk. Queries

will be allowed to read updated state from the unflushed index writer buffers; the downside of this

strategy is that if the application crashes or the IndexWriter is otherwise killed you’ll have to rebuild

the indexes as some updates might be lost.

Because of these downsides, and because a master node in cluster can be configured for good

performance as well, the NRT configuration is only recommended for non clustered websites with

a limited amount of data.

3.2.3. Custom

It is also possible to configure a custom IndexManager implementation by specifying the fully

qualified class name of your custom implementation. This implementation must have a no-

argument constructor:

hibernate.search.[default|<indexname>].indexmanager =

 my.corp.myapp.CustomIndexManager

Tip

Your custom index manager implementation doesn’t need to use the same

components as the default implementations. For example, you can delegate to a

remote indexing service which doesn’t expose a Directory interface.

3.3. Directory configuration

As we have seen in Section 3.2, “Configuring the IndexManager” the default index manager

uses Lucene’s notion of a Directory to store the index files. The Directory implementation can

be customized and Lucene comes bundled with a file system and an in-memory implementation.
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DirectoryProvider is the Hibernate Search abstraction around a Lucene Directory and handles the

configuration and the initialization of the underlying Lucene resources. Table 3.1, “List of built-in

DirectoryProvider” shows the list of the directory providers available in Hibernate Search together

with their corresponding options.

To configure your DirectoryProvider you have to understand that each indexed entity is associated

to a Lucene index (except of the case where multiple entities share the same index - Section 10.5,

“Sharing indexes”). The name of the index is given by the index property of the @Indexed

annotation. If the index property is not specified the fully qualified name of the indexed class will

be used as name (recommended).

Knowing the index name, you can configure the directory provider and any

additional options by using the prefix hibernate.search.<indexname>. The name

default (hibernate.search.default) is reserved and can be used to define properties

which apply to all indexes. Example 3.2, “Configuring directory providers” shows how

hibernate.search.default.directory_provider is used to set the default directory provider

to be the filesystem one. hibernate.search.default.indexBase sets then the default base

directory for the indexes. As a result the index for the entity Status is created in /usr/lucene/

indexes/org.hibernate.example.Status.

The index for the Rule entity, however, is using an in-memory directory, because

the default directory provider for this entity is overridden by the property

hibernate.search.Rules.directory_provider.

Finally the Action entity uses a custom directory provider CustomDirectoryProvider specified

via hibernate.search.Actions.directory_provider.

Example 3.1. Specifying the index name

package org.hibernate.example;

@Indexed

public class Status { ... }

@Indexed(index="Rules")

public class Rule { ... }

@Indexed(index="Actions")

public class Action { ... }

Example 3.2. Configuring directory providers

hibernate.search.default.directory_provider = filesystem

hibernate.search.default.indexBase = /usr/lucene/indexes

hibernate.search.Rules.directory_provider = ram

hibernate.search.Actions.directory_provider =

 com.acme.hibernate.CustomDirectoryProvider
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Tip

Using the described configuration scheme you can easily define common rules like

the directory provider and base directory, and override those defaults later on on

a per index basis.

Table 3.1. List of built-in DirectoryProvider

Name and description Properties

ram: Memory based directory.

The directory will be uniquely identified

(in the same deployment unit) by the

@Indexed.index element

none

filesystem: File system based directory.

The directory used will be <indexBase>/

<indexName>

indexBase : base directory indexName:

override @Indexed.index (useful for

sharded indexes) locking_strategy :

optional, see Section 3.7.2, “LockFactory

configuration” filesystem_access_type:

allows to determine the exact type of

FSDirectory implementation used by this

DirectoryProvider. Allowed values are auto

(the default value, selects NIOFSDirectory on

non Windows systems, SimpleFSDirectory

on Windows), simple (SimpleFSDirectory),

nio (NIOFSDirectory), mmap (MMapDirectory).

Make sure to refer to Javadocs of these

Directory implementations before changing

this setting. Even though NIOFSDirectory

or MMapDirectory can bring substantial

performance boosts they also have their

issues.

filesystem-master: File system based

directory.

Like filesystem. It also copies the index to

a source directory (aka copy directory) on a

regular basis.

The recommended value for the refresh

period is (at least) 50% higher that the time to

copy the information (default 3600 seconds -

60 minutes).

indexBase: base directory indexName:

override @Indexed.index (useful for

sharded indexes) sourceBase: source

(copy) base directory. source: source

directory suffix (default to @Indexed.index).

The actual source directory name being

<sourceBase>/<source> refresh: refresh

period in seconds (the copy will take place

every refresh seconds). If a copy is still

in progress when the following refresh

period elapses, the second copy operation
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Name and description Properties

Note that the copy is based on an incremental

copy mechanism reducing the average copy

time.

DirectoryProvider typically used on the master

node in a JMS back end cluster.

The buffer_size_on_copy optimum

depends on your operating system and

available RAM; most people reported good

results using values between 16 and 64MB.

will be skipped. buffer_size_on_copy:

The amount of MegaBytes to move

in a single low level copy instruction;

defaults to 16MB. locking_strategy :

optional, see Section 3.7.2, “LockFactory

configuration” filesystem_access_type:

allows to determine the exact type of

FSDirectory implementation used by this

DirectoryProvider. Allowed values are auto

(the default value, selects NIOFSDirectory on

non Windows systems, SimpleFSDirectory

on Windows), simple (SimpleFSDirectory),

nio (NIOFSDirectory), mmap (MMapDirectory).

Make sure to refer to Javadocs of these

Directory implementations before changing

this setting. Even though NIOFSDirectory

or MMapDirectory can bring substantial

performance boosts they also have their

issues.

filesystem-slave: File system based directory.

Like filesystem, but retrieves a master

version (source) on a regular basis. To avoid

locking and inconsistent search results, 2

local copies are kept.

The recommended value for the refresh

period is (at least) 50% higher that the time to

copy the information (default 3600 seconds -

60 minutes).

Note that the copy is based on an incremental

copy mechanism reducing the average copy

time. If a copy is still in progress when refresh

period elapses, the second copy operation

will be skipped.

DirectoryProvider typically used on slave

nodes using a JMS back end.

The buffer_size_on_copy optimum

depends on your operating system and

available RAM; most people reported good

results using values between 16 and 64MB.

indexBase: Base directory indexName:

override @Indexed.index (useful for sharded

indexes) sourceBase: Source (copy) base

directory. source: Source directory suffix

(default to @Indexed.index). The actual

source directory name being <sourceBase>/

<source> refresh: refresh period in second

(the copy will take place every refresh

seconds). buffer_size_on_copy: The

amount of MegaBytes to move in a single

low level copy instruction; defaults to

16MB. locking_strategy : optional, see

Section 3.7.2, “LockFactory configuration”

retry_marker_lookup : optional, default to

0. Defines how many times we look for the

marker files in the source directory before

failing. Waiting 5 seconds between each

try. retry_initialize_period : optional,

set an integer value in seconds to enable

the retry initialize feature: if the slave can’t

find the master index it will try again until

it’s found in background, without preventing

the application to start: full-text queries

performed before the index is initialized are
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Name and description Properties

not blocked but will return empty results.

When not enabling the option or explicitly

setting it to zero it will fail with an exception

instead of scheduling a retry timer. To prevent

the application from starting without an

invalid index but still control an initialization

timeout, see retry_marker_lookup

instead. filesystem_access_type:

allows to determine the exact type of

FSDirectory implementation used by this

DirectoryProvider. Allowed values are auto

(the default value, selects NIOFSDirectory on

non Windows systems, SimpleFSDirectory

on Windows), simple (SimpleFSDirectory),

nio (NIOFSDirectory), mmap (MMapDirectory).

Make sure to refer to Javadocs of these

Directory implementations before changing

this setting. Even though NIOFSDirectory

or MMapDirectory can bring substantial

performance boosts they also have their

issues.

infinispan: Infinispan based directory.

Use it to store the index in a distributed

grid, making index changes visible to all

elements of the cluster very quickly. Also

see Section 3.3.1, “Infinispan Directory

configuration” for additional requirements

and configuration settings. Infinispan

needs a global configuration and additional

dependencies; the settings defined here apply

to each different index.

locking_cachename: name of the

Infinispan cache to use to store locks. `

data_cachename : name of the Infinispan

cache to use to store the largest data chunks;

this area will contain the largest objects, use

replication if you have enough memory or

switch to distribution. metadata_cachename:

name of the Infinispan cache to use to store

the metadata relating to the index; this

data is rather small and read very often,

it’s recommended to have this cache setup

using replication. chunk_size: large files

of the index are split in smaller chunks, you

might want to set the highest value efficiently

handled by your network. Networking tuning

might be useful.

Tip

If the built-in directory providers do not fit your needs, you can write your

own directory provider by implementing the org.hibernate.store.DirectoryProvider
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interface. In this case, pass the fully qualified class name of your provider into the

directory_provider property. You can pass any additional properties using the

prefix hibernate.search.<indexname>.

3.3.1. Infinispan Directory configuration

Infinispan is a distributed, scalable, cloud friendly data grid platform, which Hibernate Search

can use to store the Lucene index. Your application can benefits in this case from Infinispan’s

distribution capabilities making index updates available on all nodes with short latency.

This section describes how to configure Hibernate Search to use an Infinispan Lucene Directory.

When using an Infinispan Directory the index is stored in memory and shared across multiple

nodes. It is considered a single directory distributed across all participating nodes: if a node

updates the index, all other nodes are updated as well. Updates on one node can be immediately

searched for in the whole cluster.

The default configuration replicates all data which defines the index across all nodes, thus

consuming a significant amount of memory but providing the best query performance. For large

indexes it’s suggested to enable data distribution, so that each piece of information is replicated to

a subset of all cluster members. The distribution option will reduce the amount of memory required

for each node but is less efficient as it will cause high network usage among the nodes.

It is also possible to offload part or most information to a CacheStore, such as plain filesystem,

Amazon S3, Cassandra, MongoDB or standard relational databases. You can configure it to have

a CacheStore on each node or have a single centralized one shared by each node.

A popular choice is to use a replicated index aiming to keep the whole index in memory, combined

with a CacheStore as safety valve in case the index gets larger than expected.

See the Infinispan documentation [http://infinispan.org/documentation/] for all Infinispan

configuration options.

3.3.1.1. Requirements

To use the Infinispan directory via Maven, add the following dependencies:

Example 3.3. Maven dependencies for Hibernate Search

<dependency>

   <groupId>org.hibernate</groupId>

   <artifactId>hibernate-search</artifactId>

   <version>5.2.1.Final</version>

</dependency>

<dependency>

   <groupId>org.hibernate</groupId>

   <artifactId>hibernate-search-infinispan</artifactId>

   <version>5.2.1.Final</version>

http://infinispan.org/documentation/
http://infinispan.org/documentation/
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</dependency>

For the non-maven users, add hibernate-search-infinispan.jar, infinispan-lucene-

directory.jar, infinispan-core.jar and infinispan-commons.jar to your application

classpath. These last three jars are distributed by the Infinispan project downloads [http://

infinispan.org/download/].

3.3.1.2. Architecture

Even when using an Infinispan directory it’s still recommended to use the JMS Master/Slave or

JGroups backend, because in Infinispan all nodes will share the same index and it is likely that

IndexWriter instances being active on different nodes will try to acquire the lock on the same

index. So instead of sending updates directly to the index, send it to a JMS queue or JGroups

channel and have a single node apply all changes on behalf of all other nodes.

Configuring a non-default backend is not a requirement but a performance optimization as locks

are enabled to have a single node writing.

To configure a JMS slave only the backend must be replaced, the directory provider must be set

to infinispan; set the same directory provider on the master, they will connect without the need

to setup the copy job across nodes. Using the JGroups backend is very similar - just combine the

backend configuration with the infinispan directory provider.

3.3.1.3. Infinispan Configuration

The most simple configuration only requires to enable the backend:

hibernate.search.[default|<indexname>].directory_provider = infinispan

That’s all what is needed to get a cluster-replicated index, but the default configuration does not

enable any form of permanent persistence for the index; to enable such a feature an Infinispan

configuration file should be provided.

To use Infinispan, Hibernate Search requires a CacheManager; it can lookup and reuse an existing

CacheManager, via JNDI, or start and manage a new one. In the latter case Hibernate Search

will start and stop it ( closing occurs when the Hibernate SessionFactory is closed).

To use and existing CacheManager via JNDI (optional parameter):

hibernate.search.infinispan.cachemanager_jndiname = [jndiname]

To start a new CacheManager from a configuration file (optional parameter):

hibernate.search.infinispan.configuration_resourcename = [infinispan

 configuration filename]

If both parameters are defined, JNDI will have priority. If none of these is defined, Hibernate Search

will use the default Infinispan configuration included in hibernate-search-infinispan.jar. This

http://infinispan.org/download/
http://infinispan.org/download/
http://infinispan.org/download/
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configuration should work fine in most cases but does not store the index in a persistent cache

store.

As mentioned in Table 3.1, “List of built-in DirectoryProvider”, each index makes use of

three caches, so three different caches should be configured as shown in the default-

hibernatesearch-infinispan.xml provided in the hibernate-search-infinispan.jar.

Several indexes can share the same caches.

Infinispan relies on JGroups for its networking functionality, so unless you are using Infinispan on a

single node, an Infinispan configuration file will refer to a JGroups configuration file. This coupling

is not always practical and we provide a property to override the used JGroups configuration file:

hibernate.search.infinispan.configuration.transport_override_resourcename =

 jgroups-ec2.xml

This allows to just switch the JGroups configuration while keeping the rest of the Infinispan

configuration.

The file jgroups-ec2.xml used in the example above is one of the several JGroups configurations

included in Infinispan. It is a good starting point to run on Amazon EC2 networks. For more details

and examples see usage of pre-configured JGroups stacks [http://infinispan.org/docs/7.0.x/

user_guide/user_guide.html#_use_one_of_the_pre_configured_jgroups_files] in the Infinispan

configuration guide.

3.4. Worker configuration

It is possible to refine how Hibernate Search interacts with Lucene through the worker

configuration. There exist several architectural components and possible extension points. Let’s

have a closer look.

First there is a Worker. An implementation of the Worker interface is responsible for receiving

all entity changes, queuing them by context and applying them once a context ends. The most

intuitive context, especially in connection with ORM, is the transaction. For this reason Hibernate

Search will per default use the TransactionalWorker to scope all changes per transaction. One

can, however, imagine a scenario where the context depends for example on the number of entity

changes or some other application (lifecycle) events. For this reason the Worker implementation

is configurable as shown in Table 3.2, “Scope configuration”.

Table 3.2. Scope configuration

Property Description

hibernate.search.default.worker.scope The fully qualified class name of the Worker

implementation to use. If this property is

not set, empty or transaction the default

TransactionalWorker is used.

hibernate.search.default.worker.* All configuration properties prefixed with

hibernate.search.default.worker are

http://infinispan.org/docs/7.0.x/user_guide/user_guide.html#_use_one_of_the_pre_configured_jgroups_files
http://infinispan.org/docs/7.0.x/user_guide/user_guide.html#_use_one_of_the_pre_configured_jgroups_files
http://infinispan.org/docs/7.0.x/user_guide/user_guide.html#_use_one_of_the_pre_configured_jgroups_files
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passed to the Worker during initialization.

This allows adding custom, worker specific

parameters.

Once a context ends it is time to prepare and apply the index changes. This can be done

synchronously or asynchronously from within a new thread. Synchronous updates have the

advantage that the index is at all times in sync with the databases. Asynchronous updates, on the

other hand, can help to minimize the user response time. The drawback is potential discrepancies

between database and index states. Lets look at the configuration options shown in Table 3.3,

“Execution configuration”.

Note

The following options can be different on each index; in fact they need the

indexName prefix or use default to set the default value for all indexes.

Table 3.3. Execution configuration

Property Description

hibernate.search.<indexName>.

worker.execution

sync: synchronous execution (default)

async: asynchronous execution

So far all work is done within the same Virtual Machine (VM), no matter which execution mode.

The total amount of work has not changed for the single VM. Luckily there is a better approach,

namely delegation. It is possible to send the indexing work to a different server by configuring

hibernate.search.default.worker.backend - see Table 3.4, “Backend configuration”. Again this

option can be configured differently for each index.

Table 3.4. Backend configuration

Property Description

hibernate.search.<indexName>.

worker.backend

lucene: The default backend which runs

index updates in the same VM. Also used

when the property is undefined or empty.

jms: JMS backend. Index updates are send to

a JMS queue to be processed by an indexing

master. See Table 3.5, “JMS backend

configuration” for additional configuration

options and Section 3.4.1, “JMS Master/Slave

back end” for a more detailed description of

this setup.

jgroupsMaster, jgroupsSlave or

jgroups: Backend using JGroups [http://

http://www.jgroups.org/
http://www.jgroups.org/
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www.jgroups.org/] as communication layer.

See Section 3.4.2, “JGroups Master/Slave

back end” for a more detailed description of

this setup.

blackhole: Mainly a test/developer setting

which ignores all indexing work

You can also specify the fully qualified

name of a class implementing

BackendQueueProcessor. This way you

can implement your own communication

layer. The implementation is responsible

for returning a Runnable instance which on

execution will process the index work.

Table 3.5. JMS backend configuration

Property Description

hibernate.search.<indexName>.worker.jndi.* Defines the JNDI properties to initiate the

InitialContext (if needed). JNDI is only used

by the JMS back end.

hibernate.search.<indexName>.

worker.jms.connection_factory

Mandatory for the JMS back end. Defines

the JNDI name to lookup the JMS connection

factory from (/ConnectionFactory by default

in JBoss AS)

hibernate.search.<indexName>.

worker.jms.queue

Mandatory for the JMS back end. Defines

the JNDI name to lookup the JMS queue

from. The queue will be used to post work

messages.

hibernate.search.<indexName>.

worker.jms.login

Optional for the JMS slaves. Use it when your

queue requires login credentials to define

your login.

hibernate.search.<indexName>.

worker.jms.login

Optional for the JMS slaves. Use it when your

queue requires login credentials to define

your password.

Warning

As you probably noticed, some of the shown properties are correlated which means

that not all combinations of property values make sense. In fact you can end up with

a non-functional configuration. This is especially true for the case that you provide

your own implementations of some of the shown interfaces. Make sure to study

http://www.jgroups.org/
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the existing code before you write your own Worker or BackendQueueProcessor

implementation.

3.4.1. JMS Master/Slave back end

This section describes in greater detail how to configure the Master/Slave Hibernate Search

architecture.

JMS back end configuration.

3.4.1.1. Slave nodes

Every index update operation is sent to a JMS queue. Index querying operations are executed

on a local index copy.

Example 3.4. JMS Slave configuration

### slave configuration

## DirectoryProvider

# (remote) master location

hibernate.search.default.sourceBase = /mnt/mastervolume/lucenedirs/

mastercopy

# local copy location

hibernate.search.default.indexBase = /Users/prod/lucenedirs

# refresh every half hour

hibernate.search.default.refresh = 1800

# appropriate directory provider

hibernate.search.default.directory_provider = filesystem-slave

## Backend configuration

hibernate.search.default.worker.backend = jms

hibernate.search.default.worker.jms.connection_factory = /ConnectionFactory

hibernate.search.default.worker.jms.queue = queue/hibernatesearch

#optionally authentication credentials:

hibernate.search.default.worker.jms.login = myname

hibernate.search.default.worker.jms.password = wonttellyou

#optional jndi configuration (check your JMS provider for more information)

## Optional asynchronous execution strategy

# hibernate.search.default.worker.execution = async



JMS Master/Slave back end

31

Tip

A file system local copy is recommended for faster search results.

3.4.1.2. Master node

Every index update operation is taken from a JMS queue and executed. The master index is

copied on a regular basis.

Example 3.5. JMS Master configuration

### master configuration

## DirectoryProvider

# (remote) master location where information is copied to

hibernate.search.default.sourceBase = /mnt/mastervolume/lucenedirs/

mastercopy

# local master location

hibernate.search.default.indexBase = /Users/prod/lucenedirs

# refresh every half hour

hibernate.search.default.refresh = 1800

# appropriate directory provider

hibernate.search.default.directory_provider = filesystem-master

## Backend configuration

#Backend is the default lucene one

Tip

It is recommended that the refresh period be higher than the expected copy time; if

a copy operation is still being performed when the next refresh triggers, the second

refresh is skipped: it’s safe to set this value low even when the copy time is not

known.

In addition to the Hibernate Search framework configuration, a Message Driven Bean has to be

written and set up to process the index works queue through JMS.

Example 3.6. Message Driven Bean processing the indexing queue

@MessageDriven(activationConfig = {
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      @ActivationConfigProperty(propertyName="destinationType",

                                propertyValue="javax.jms.Queue"),

      @ActivationConfigProperty(propertyName="destination",

                                propertyValue="queue/hibernatesearch")

   } )

public class MDBSearchController extends AbstractJMSHibernateSearchController

                                 implements MessageListener {

    @PersistenceContext EntityManager em;

    @Override

    protected SearchFactory getSearchFactory() {

        FullTextEntityManager fullTextEntityManager = Search.getFullTextEntityManager(em);

        return fullTextEntityManager.getSearchFactory();

    }

}

This example inherits from the abstract JMS controller class available in the Hibernate Search

source code and implements a JavaEE MDB. This implementation is given as an example

and can be adjusted to make use of non Java EE Message Driven Beans. Essentially what

you need to do is to connect the specific JMS Queue with the SearchFactory instance of the

EntityManager. As an advanced alternative, you can implement your own logic by not extending

AbstractJMSHibernateSearchController but rather to use it as an implementation example.

3.4.2. JGroups Master/Slave back end

This section describes how to configure the JGroups Master/Slave back end. The master and

slave roles are similar to what is illustrated in Section 3.4.1, “JMS Master/Slave back end”, only a

different backend (hibernate.search.default.worker.backend) needs to be set.

A specific backend can be configured to act either as a slave using jgroupsSlave, as a master

using jgroupsMaster, or can automatically switch between the roles as needed by using jgroups.

Note

Either you specify a single jgroupsMaster and a set of jgroupsSlave instances,

or you specify all instances as jgroups. Never mix the two approaches!

All backends configured to use JGroups share the same channel. The JGroups JChannel is

the main communication link across all nodes participating in the same cluster group; since it

is convenient to have just one channel shared across all backends, the Channel configuration

properties are not defined on a per-worker section but are defined globally. See Section 3.4.2.4,

“JGroups channel configuration”.

Table Table 3.6, “JGroups backend configuration properties” contains all configuration options

which can be set independently on each index backend. These apply to all three variants of the

backend: jgroupsSlave, jgroupsMaster, jgroups. It is very unlikely that you need to change

any of these from their defaults.
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Table 3.6. JGroups backend configuration properties

Property Description

hibernate.search.<indexName>.jgroups.block_waiting_ackSet to either true or false. False is more

efficient but will not wait for the operation to

be delivered to the peers. Defaults to true

when the backend is synchronous, to false

when the backend is async.

hibernate.search.<indexName>.jgroups.

messages_timeout

The timeout of waiting for a single command

to be acknowledged and executed

when block_waiting_ack is true, or

just acknowledged otherwise. Value in

milliseconds, defaults to 20000.

hibernate.search.<indexName>.jgroups.delegate_backendThe master node receiving indexing

operations forwards them to a standard

backend to be performed. Defaults to lucene.

See also Table 3.4, “Backend configuration”

for other options, but probably the only

useful option is blackhole, or a custom

implementation, to help isolating network

latency problems.

3.4.2.1. Slave nodes

Every index update operation is sent through a JGroups channel to the master node. Index

querying operations are executed on a local index copy. Enabling the JGroups worker only makes

sure the index operations are sent to the master, you still have to synchronize configuring an

appropriate directory (See filesystem-master, filesystem-slave or infinispan options in

Section 3.3, “Directory configuration”).

Example 3.7. JGroups Slave configuration

### slave configuration

hibernate.search.default.worker.backend = jgroupsSlave

3.4.2.2. Master node

Every index update operation is taken from a JGroups channel and executed. The master index

is copied on a regular basis.

Example 3.8. JGroups Master configuration

### master configuration

hibernate.search.default.worker.backend = jgroupsMaster
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3.4.2.3. Automatic master election

Important

This feature is considered experimental. In particular during a re-election process

there is a small window of time in which indexing requests could be lost.

In this mode the different nodes will autonomously elect a master node. When a master fails, a

new node is elected automatically.

When setting this backend it is expected that all Hibernate Search instances in the same cluster

use the same backend for each specific index: this configuration is an alternative to the static

jgroupsMaster and jgroupsSlave approach so make sure to not mix them.

To synchronize the indexes in this configuration avoid filesystem-master and filesystem-

slave directory providers as their behaviour can not be switched dynamically; use the Infinispan

Directory instead, which has no need for different configurations on each instance and allows

dynamic switching of writers; see also Section 3.3.1, “Infinispan Directory configuration”.

Example 3.9. JGroups configuration for automatic master configuration

### automatic configuration

hibernate.search.default.worker.backend = jgroups

Tip

Should you use jgroups or the couple jgroupsMaster, jgroupsSlave?

The dynamic jgroups backend is better suited for environments in which your

master is more likely to need to failover to a different machine, as in clouds. The

static configuration has the benefit of keeping the master at a well known location:

your architecture might take advantage of it by sending most write requests to the

known master. Also optimisation and MassIndexer operations need to be triggered

on the master node.

3.4.2.4. JGroups channel configuration

Configuring the JGroups channel essentially entails specifying the transport in terms of a

network protocol stack. To configure the JGroups transport, point the configuration property

hibernate.search.services.jgroups.configurationFile to a JGroups configuration file; this can be

either a file path or a Java resource name.
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Tip

If no property is explicitly specified it is assumed that the JGroups default

configuration file flush-udp.xml is used. This example configuration is known to

work in most scenarios, with the notable exception of Amazon AWS; refer to the

JGroups manual [http://www.jgroups.org/manual-3.x/html/] for more examples and

protocol configuration details.

The default cluster name is Hibernate Search Cluster which can be configured as seen in

Example 3.10, “JGroups cluster name configuration”.

Example 3.10. JGroups cluster name configuration

hibernate.search.services.jgroups.clusterName = My-Custom-Cluster-Id

The cluster name is what identifies a group: by changing the name you can run different clusters

in the same network in isolation.

3.4.2.4.1. JGroups channel instance injection

For programmatic configurations, one additional option is available to configure the JGroups

channel: to pass an existing channel instance to Hibernate Search directly using the property

hibernate.search.services.jgroups.providedChannel, as shown in the following example.

import org.hibernate.search.backend.impl.jgroups.JGroupsChannelProvider;

org.jgroups.JChannel channel = ...

Map<String,String> properties = new HashMap<String,String)(1);

properties.put( JGroupsChannelProvider.CHANNEL_INJECT, channel );

EntityManagerFactory emf = Persistence.createEntityManagerFactory( "userPU", properties );

3.5. Reader strategy configuration

The different reader strategies are described in Section 2.3, “Reader strategy”. Out of the box

strategies are:

• shared: share index readers across several queries. This strategy is the most efficient.

• not-shared: create an index reader for each individual query

The default reader strategy is shared. This can be adjusted:

hibernate.search.[default|<indexname>].reader.strategy = not-shared

Adding this property switches to the not-shared strategy.

http://www.jgroups.org/manual-3.x/html/
http://www.jgroups.org/manual-3.x/html/
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Or if you have a custom reader strategy:

hibernate.search.[default|<indexname>].reader.strategy =

 my.corp.myapp.CustomReaderProvider

where my.corp.myapp.CustomReaderProvider is the custom strategy implementation.

3.6. Exception handling

Hibernate Search allows you to configure how exceptions are handled during the indexing

process. If no configuration is provided then exceptions are logged to the log output by default. It

is possible to explicitly declare the exception logging mechanism as seen below:

hibernate.search.error_handler = log

The default exception handling occurs for both synchronous and asynchronous indexing.

Hibernate Search provides an easy mechanism to override the default error handling

implementation.

In order to provide your own implementation you must implement the ErrorHandler interface,

which provides the handle(ErrorContext context) method. ErrorContext provides a reference to

the primary LuceneWork instance, the underlying exception and any subsequent LuceneWork

instances that could not be processed due to the primary exception.

public interface ErrorContext {

   List<LuceneWork> getFailingOperations();

   LuceneWork getOperationAtFault();

   Throwable getThrowable();

   boolean hasErrors();

}

To register this error handler with Hibernate Search you must declare the fully qualified classname

of your ErrorHandler implementation in the configuration properties:

hibernate.search.error_handler = CustomerErrorHandler

Alternatively, an ErrorHandler instance may be passed via the configuration value map used when

bootstrapping Hibernate Search programmatically.

3.7. Lucene configuration

Even though Hibernate Search will try to shield you as much as possible from Lucene specifics,

there are several Lucene specifics which can be directly configured, either for performance

reasons or for satisfying a specific use case. The following sections discuss these configuration

options.
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3.7.1. Tuning indexing performance

Hibernate Search allows you to tune the Lucene indexing performance by specifying a set of

parameters which are passed through to underlying Lucene IndexWriter such as mergeFactor,

maxMergeDocs and maxBufferedDocs. You can specify these parameters either as default values

applying for all indexes, on a per index basis, or even per shard.

There are several low level IndexWriter settings which can be tuned for different use cases.

These parameters are grouped by the indexwriter keyword:

hibernate.search.[default|<indexname>].indexwriter.<parameter_name>

If no value is set for an indexwriter value in a specific shard configuration, Hibernate Search

will look at the index section, then at the default section.

Example 3.11. Example performance option configuration

hibernate.search.Animals.2.indexwriter.max_merge_docs = 10

hibernate.search.Animals.2.indexwriter.merge_factor = 20

hibernate.search.Animals.2.indexwriter.term_index_interval = default

hibernate.search.default.indexwriter.max_merge_docs = 100

hibernate.search.default.indexwriter.ram_buffer_size = 64

The configuration in Example 3.11, “Example performance option configuration” will result in these

settings applied on the second shard of the Animal index:

• max_merge_docs = 10

• merge_factor = 20

• ram_buffer_size = 64MB

• term_index_interval = Lucene default

All other values will use the defaults defined in Lucene.

The default for all values is to leave them at Lucene’s own default. The values listed in Table 3.7,

“List of indexing performance and behavior properties” depend for this reason on the version of

Lucene you are using. The values shown are relative to version 2.4. For more information about

Lucene indexing performance, please refer to the Lucene documentation.

Table 3.7. List of indexing performance and behavior properties

Property Description Default Value

hibernate.search.[default|

<indexname>].exclusive_index_use

Set to true when no other process

will need to write to the same index.

This will enable Hibernate Search to

work in exclusive mode on the index

true (improved

performance,

releases

locks only at

shutdown)
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Property Description Default Value

and improve performance when

writing changes to the index.

hibernate.search.[default|

<indexname>].max_queue_length

Each index has a separate

"pipeline" which contains the

updates to be applied to the index.

When this queue is full adding more

operations to the queue becomes a

blocking operation. Configuring this

setting doesn’t make much sense

unless the worker.execution is

configured as async.

1000

hibernate.search.[default|

<indexname>].index_flush_interval

The interval in milliseconds between

flushes of write operations to the

index storage. Ignored unless

worker.execution is configured as

async.

1000

hibernate.search.

[default|<indexname>].

indexwriter.max_buffered_delete_terms

Determines the minimal number of

delete terms required before the

buffered in-memory delete terms

are applied and flushed. If there are

documents buffered in memory at

the time, they are merged and a

new segment is created.

Disabled (flushes

by RAM usage)

hibernate.search.

[default|<indexname>].

indexwriter.max_buffered_docs

Controls the amount of documents

buffered in memory during indexing.

The bigger the more RAM is

consumed.

Disabled (flushes

by RAM usage)

hibernate.search.

[default|<indexname>].

indexwriter.max_merge_docs

Defines the largest number of

documents allowed in a segment.

Smaller values perform better

on frequently changing indexes,

larger values provide better search

performance if the index does not

change often.

Unlimited

(Integer.MAX_VALUE)

hibernate.search.

[default|<indexname>].

indexwriter.merge_factor

Controls segment merge frequency

and size. Determines how often

segment indexes are merged

when insertion occurs. With

smaller values, less RAM is used

while indexing, and searches on

unoptimized indexes are faster,

10
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Property Description Default Value

but indexing speed is slower.

With larger values, more RAM is

used during indexing, and while

searches on unoptimized indexes

are slower, indexing is faster. Thus

larger values (> 10) are best for

batch index creation, and smaller

values (< 10) for indexes that are

interactively maintained. The value

must not be lower than 2.

hibernate.search.

[default|<indexname>].

indexwriter.merge_min_size

Controls segment merge frequency

and size. Segments smaller

than this size (in MB) are always

considered for the next segment

merge operation. ` Setting this too

large might result in expensive

merge operations, even tough

they are less frequent. See also

org.apache.lucene.index.LogDocMergePolicy.minMergeSize.

0 MB (actually

~1K)

hibernate.search.

[default|<indexname>].

indexwriter.merge_max_size

Controls segment merge frequency

and size. Segments larger than

this size (in MB) are never merged

in bigger segments. This helps

reduce memory requirements and

avoids some merging operations

at the cost of optimal search

speed. When optimizing an index

this value is ignored. ` See also

org.apache.lucene.index.LogDocMergePolicy.maxMergeSize.

Unlimited

hibernate.search.

[default|<indexname>].

indexwriter.merge_max_optimize_size

Controls segment merge frequency

and size. Segments larger

than this size (in MB) are not

merged in bigger segments

even when optimizing the

index (see merge_max_size

setting as well). Applied to

org.apache.lucene.index.LogDocMergePolicy.maxMergeSizeForOptimize.

Unlimited

hibernate.search.

[default|<indexname>].

indexwriter.merge_calibrate_by_deletes

Controls segment merge

frequency and size. Set to

false to not consider deleted

documents when estimating

true
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Property Description Default Value

the merge policy. Applied to

org.apache.lucene.index.LogMergePolicy.calibrateSizeByDeletes.

hibernate.search.

[default|<indexname>].

indexwriter.ram_buffer_size

Controls the amount of RAM

in MB dedicated to document

buffers. When used together

max_buffered_docs a flush occurs

for whichever event happens

first. Generally for faster indexing

performance it’s best to flush by

RAM usage instead of document

count and use as large a RAM

buffer as you can.

16 MB

hibernate.search.

[default|<indexname>].

indexwriter.term_index_interval

Expert: Set the interval between

indexed terms. Large values

cause less memory to be used by

IndexReader, but slow random-

access to terms. Small values cause

more memory to be used by an

IndexReader, and speed random-

access to terms. See Lucene

documentation for more details.

128

hibernate.search.

enable_dirty_check

Not all entity changes require an

update of the Lucene index. If all

of the updated entity properties

(dirty properties) are not indexed

Hibernate Search will skip the re-

indexing work. Disable this option

if you use a custom FieldBridge

which need to be invoked at each

update event (even though the

property for which the field bridge

is configured has not changed).

This optimization will not be applied

on classes using a @ClassBridge

or a @DynamicBoost. Boolean

parameter, use "true" or "false".

true

hibernate.search.

[default|<indexname>].

indexwriter.max_thread_states

Lucene’s IndexWriter can apply

writes in parallel, but this property

controls the limit of parallelism.

If you have many cores and

contention on the internal structures

of the IndexWriter becomes a

8
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Property Description Default Value

bottleneck you should configure an

higher value, at the cost of slightly

higher memory consumption.

hibernate.search.

[default|<indexname>].

indexwriter.infostream

Enable low level trace information

about Lucene’s internal

components. Will cause significant

performance degradation: should

only be used for troubleshooting

purposes.

false

Tip

When your architecture permits it, always keep

hibernate.search.default.exclusive_index_use=true as it greatly improves

efficiency in index writing. This is the default since Hibernate Search version 4.

Tip

To tune the indexing speed it might be useful to time the object loading from

database in isolation from the writes to the index. To achieve this set the blackhole

as worker backend and start your indexing routines. This backend does not disable

Hibernate Search: it will still generate the needed changesets to the index, but

will discard them instead of flushing them to the index. In contrast to setting

the hibernate.search.indexing_strategy to manual, using blackhole will

possibly load more data from the database. because associated entities are re-

indexed as well.

hibernate.search.[default|<indexname>].worker.backend blackhole

The recommended approach is to focus first on optimizing the object loading, and

then use the timings you achieve as a baseline to tune the indexing process.

Warning

The blackhole backend is not meant to be used in production, only as a tool to

identify indexing bottlenecks.
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3.7.1.1. Control segment size

The options merge_max_size, merge_max_optimize_size, merge_calibrate_by_deletes give

you control on the maximum size of the segments being created, but you need to understand

how they affect file sizes. If you need to hard limit the size, consider that merging a segment is

about adding it together with another existing segment to form a larger one, so you might want to

set the max_size for merge operations to less than half of your hard limit. Also segments might

initially be generated larger than your expected size at first creation time: before they are ever

merged. A segment is never created much larger than ram_buffer_size, but the threshold is

checked as an estimate.

Example:

//to be fairly confident no files grow above 15MB, use:

hibernate.search.default.indexwriter.ram_buffer_size = 10

hibernate.search.default.indexwriter.merge_max_optimize_size = 7

hibernate.search.default.indexwriter.merge_max_size = 7

Tip

When using the Infinispan Directory to cluster indexes make sure that your

segments are smaller than the chunk_size so that you avoid fragmenting

segments in the grid. Note that the chunk_size of the Infinispan Directory is

expressed in bytes, while the index tuning options are in MB.

3.7.1.2. Troubleshooting: enable Lucene’s Infostream

Apache Lucene allows to log a very detailed trace log from its internals using a feature called

"infostream". To access these details, Hibernate Search can be configured to capture this internal

trace from Apache Lucene and redirect it to your logger.

• Enable TRACE level logging for the category

org.hibernate.search.backend.lucene.infostream

• Activate the feature on the index you want to inspect: hibernate.search.[default|

<indexname>].indexwriter.infostream=true

Keep in mind that this feature has a performance cost, and although most logger frameworks

allow the TRACE level to be reconfigured at runtime, enabling the infostream property will slow

you down even if the logger is disabled.

3.7.2. LockFactory configuration

Lucene Directorys have default locking strategies which work generally good enough for most

cases, but it’s possible to specify for each index managed by Hibernate Search a specific

LockingFactory you want to use. This is generally not needed but could be useful.
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Some of these locking strategies require a filesystem level lock and may be used even on RAM

based indexes, this combination is valid but in this case the indexBase configuration option usually

needed only for filesystem based Directory instances must be specified to point to a filesystem

location where to store the lock marker files.

To select a locking factory, set the hibernate.search.<index>.locking_strategy option to

one of simple, native, single or none. Alternatively set it to the fully qualified name of an

implementation of org.hibernate.search.store.LockFactoryProvider.

Table 3.8. List of available LockFactory implementations

name Class Description

simple org.apache.lucene.store.

SimpleFSLockFactory

Safe implementation based

on Java’s File API, it marks

the usage of the index by

creating a marker file.

If for some reason you had

to kill your application, you

will need to remove this file

before restarting it.

native org.apache.lucene.store.

NativeFSLockFactory

As does simple this also

marks the usage of the index

by creating a marker file, but

this one is using native OS

file locks so that even if the

JVM is terminated the locks

will be cleaned up.

This implementation has

known problems on NFS,

avoid it on network shares.

native is the default

implementation for the

filesystem, filesystem-

master and filesystem-

slave directory providers.

single org.apache.lucene.store.

SingleInstanceLockFactory

This LockFactory doesn’t use

a file marker but is a Java

object lock held in memory;

therefore it’s possible to use

it only when you are sure

the index is not going to be

shared by any other process.
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name Class Description

This is the default

implementation for the ram

directory provider.

none org.apache.lucene.store.

NoLockFactory

All changes to this index are

not coordinated by any lock;

test your application carefully

and make sure you know

what it means.

Configuration example:

hibernate.search.default.locking_strategy = simple

hibernate.search.Animals.locking_strategy = native

hibernate.search.Books.locking_strategy =

 org.custom.components.MyLockingFactory

The Infinispan Directory uses a custom implementation; it’s still possible to override it but make

sure you understand how that will work, especially with clustered indexes.

3.7.3. Index format compatibility

While Hibernate Search strives to offer a backwards compatible API making it easy to port your

application to newer versions, it still delegates to Apache Lucene to handle the index writing and

searching. This creates a dependency to the Lucene index format. The Lucene developers of

course attempt to keep a stable index format, but sometimes a change in the format can not be

avoided. In those cases you either have to re-index all your data or use an index upgrade tool.

Sometimes Lucene is also able to read the old format so you don’t need to take specific actions

(besides making backup of your index).

While an index format incompatibility is a rare event, it can happen more often that Lucene’s

Analyzer implementations might slightly change its behavior. This can lead to a poor recall score,

possibly missing many hits from the results.

Hibernate Search exposes a configuration property hibernate.search.lucene_version which

instructs the analyzers and other Lucene classes to conform to their behavior as defined in an

(older) specific version of Lucene. See also org.apache.lucene.util.Version contained in the

lucene-core.jar. Depending on the specific version of Lucene you’re using you might have different

options available. When this option is not specified, Hibernate Search will instruct Lucene to use

the default version, which is usually the best option for new projects. Still it’s recommended to

define the version you’re using explicitly in the configuration so that when you happen to upgrade

Lucene the analyzers will not change behavior. You can then choose to update this value at a

later time, when you for example have the chance to rebuild the index from scratch.
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Example 3.12. Force Analyzers to be compatible with a Lucene 4.7 created

index

hibernate.search.lucene_version = LUCENE_47

This option is global for the configured SearchFactory and affects all Lucene APIs having such

a parameter, as this should be applied consistently. So if you are also making use of Lucene

bypassing Hibernate Search, make sure to apply the same value too.

3.8. Metadata API

After looking at all these different configuration options, it is time to have a look at an API which

allows you to programmatically access parts of the configuration. Via the metadata API you can

determine the indexed types and also how they are mapped (see Chapter 4, Mapping entities

to the index structure) to the index structure. The entry point into this API is the SearchFactory.

It offers two methods, namely getIndexedTypes() and getIndexedTypeDescriptor(Class<?

>). The former returns a set of all indexed type, where as the latter allows to retrieve a so called

IndexedTypeDescriptorfor a given type. This descriptor allows you determine whether the type

is indexed at all and, if so, whether the index is for example sharded or not (see Section 10.4,

“Sharding indexes”). It also allows you to determine the static boost of the type (see Section 4.2.1,

“Static index time boosting”) as well as its dynamic boost strategy (see Section 4.2.2, “Dynamic

index time boosting”). Most importantly, however, you get information about the indexed properties

and generated Lucene Document fields. This is exposed via PropertyDescriptors respectively

FieldDescriptors. The easiest way to get to know the API is to explore it via the IDE or its javadocs.

Note

All descriptor instances of the metadata API are read only. They do not allow to

change any runtime configuration.

3.9. Hibernate Search as a WildFly module

Hibernate Search is included in the WildFly 8 application server, but you need to activate the

module for your deployment to be able to take advantage of it.

You can either activate the modules already included in your WildFly distribution, or download and

unzip a different version provided by Hibernate Search. The modules system in WildFly allows to

safely run multiple versions of Hibernate ORM and Hibernate Search in parallel. You can pick the

one you need for each deployment.

3.9.1. Use the Hibernate Search version included in WildFly

To activate the Hibernate Search modules in wildfly, you have to declare the dependency by either

adding a line in the MANIFEST.MF of your deployment archive, or by including a resource named
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jboss-deployment-structure.xml. This resource should be placed in the top level deployment,

in META-INF (or WEB-INF for web deployments).

Using the manifest

Add the following entry to the MANIFEST.MF in your archive:

Dependencies: org.hibernate.search.orm services

Using jboss-deployment-structure.xml

add a resource named jboss-deployment-structure.xml in your top level deployment, in

META-INF (or WEB-INF for web deployments).

<jboss-deployment-structure>

    <deployment>

        <dependencies>

            <module

                name="org.hibernate.search.orm"

                services="export" />

        </dependencies>

    </deployment>

</jboss-deployment-structure>

3.9.2. Update and activate latest Hibernate Search version in

WildFly

You can also download the latest Hibernate Search provided module and install it. This is often the

best approach as you will benefit from all the latest improvements of Hibernate Search. Because of

the modular design in WildFly, these additional modules can coexist with the embedded modules

and won’t affect any other application, unless you explicitly reconfigure it to use the newer module.

You can download the latest pre-packaged Hibernate Search modules

from Sourceforge [http://sourceforge.net/projects/hibernate/files/hibernate-search/5.2.1.Final/

hibernate-search-modules-5.2.1.Final-wildfly-8-dist.zip/download]. As a convenience these

zip files are also distributed as Maven artifacts: org.hibernate:hibernate-search-

modules-5.2.1.Final-wildfly-8-dist:zip [https://repository.jboss.org/nexus/index.html#nexus-

search;gav~org.hibernate~hibernate-search-modules~{hibernateSearchVersion}~~].

Unpack the modules in your WildFly modules directory: this will create modules for Hibernate

Search and Apache Lucene. The Hibernate Search modules are:

• org.hibernate.search.orm, for users of Hibernate Search with Hibernate; this will transitively

include Hibernate ORM.

• org.hibernate.search.engine, for projects depending on the internal indexing engine that don’t

require other dependencies to Hibernate.

http://sourceforge.net/projects/hibernate/files/hibernate-search/5.2.1.Final/hibernate-search-modules-5.2.1.Final-wildfly-8-dist.zip/download
http://sourceforge.net/projects/hibernate/files/hibernate-search/5.2.1.Final/hibernate-search-modules-5.2.1.Final-wildfly-8-dist.zip/download
http://sourceforge.net/projects/hibernate/files/hibernate-search/5.2.1.Final/hibernate-search-modules-5.2.1.Final-wildfly-8-dist.zip/download
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.hibernate~hibernate-search-modules~{hibernateSearchVersion}~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.hibernate~hibernate-search-modules~{hibernateSearchVersion}~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.hibernate~hibernate-search-modules~{hibernateSearchVersion}~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.hibernate~hibernate-search-modules~{hibernateSearchVersion}~~
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• org.hibernate.search.backend-jms, in case you want to use the JMS backend described in JMS

Architecture.

Using the manifest

Add the following entry to the MANIFEST.MF in your archive:

Dependencies: org.hibernate.search.orm:5.2.1.Final services

Using jboss-deployment-structure.xml

add a resource named jboss-deployment-structure.xml in your top level deployment, in

META-INF (or WEB-INF for web deployments).

<jboss-deployment-structure>

    <deployment>

        <dependencies>

            <module

                name="org.hibernate.search.orm"

                slot="5.2.1.Final"

                services="export" />

        </dependencies>

    </deployment>

</jboss-deployment-structure>

Tip

Modular classloading is a feature of JBoss EAP 6 as well, but if you are using JBoss

EAP, you’re reading the wrong version of the user guide! JBoss EAP subscriptions

include official support for Hibernate Search (as part of the WFK) and come with a

different edition of this guide specifically tailored for EAP users.

More information about the modules configuration in WildFly can be found in the Class Loading

in WildFly 8 [https://docs.jboss.org/author/display/WFLY8/Class+Loading+in+WildFly] wiki.

3.9.3. Using Infinispan with Hibernate Search on WildFly

The Infinispan project is also included in WildFly so you can use the feature without additional

downloads.

If you are updating the version of Hibernate Search in WildFly as described in the previous

paragraph, you might need to update Infinispan as well. The process is very similar: download the

modules from Infinispan project downloads [http://infinispan.org/download/], picking a compatible

version, and decompress the modules into the modules directory of your WildFly installation.

Hibernate Search version 5.2.1.Final was compiled and tested with Infinispan version

7.2.0.Final; generally a more recent version of either project is expected to be backwards

https://docs.jboss.org/author/display/WFLY8/Class+Loading+in+WildFly
https://docs.jboss.org/author/display/WFLY8/Class+Loading+in+WildFly
https://docs.jboss.org/author/display/WFLY8/Class+Loading+in+WildFly
http://infinispan.org/download/
http://infinispan.org/download/
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compatible for cross-project integration purposes as long as they have the same "major.minor"

family version.

For example for a version of Hibernate Search depending on Infinispan 7.0.3.Final it should be

safe to upgrade Infinispan to 7.0.6.Final, but an upgrade to 7.1.0.Final might not work.
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Mapping entities to the index

structure

4.1. Mapping an entity

In Chapter 1, Getting started you have already seen that all the metadata information needed to

index entities is described through annotations. There is no need for XML mapping files. You can

still use Hibernate mapping files for the basic Hibernate configuration, but the Hibernate Search

specific configuration has to be expressed via annotations.

Note

There is no XML configuration available for Hibernate Search but we provide a

programmatic mapping API that elegantly replaces this kind of deployment form

(see Section 4.7, “Programmatic API” for more information).

If you want to contribute the XML mapping implementation, see HSEARCH-210

[https://hibernate.onjira.com/browse/HSEARCH-210].

4.1.1. Basic mapping

Lets start with the most commonly used annotations when mapping an entity.

4.1.1.1. @Indexed

Foremost you must declare a persistent class as indexable by annotating the class with @Indexed.

All entities not annotated with @Indexed will be ignored by the indexing process.

Example 4.1. Making a class indexable with @Indexed

@Entity

@Indexed

public class Essay {

    ...

}

You can optionally specify the Indexed.index attribute to change the default name of the index.

For more information regarding index naming see Section 3.3, “Directory configuration”.

You can also specify an optional indexing interceptor. For more information see conditional

indexing.

https://hibernate.onjira.com/browse/HSEARCH-210
https://hibernate.onjira.com/browse/HSEARCH-210
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4.1.1.2. @Field

For each property of your entity, you have the ability to describe whether and how it will be indexed.

Adding the @Field annotation declares a property as indexed and allows you to configure various

aspects of the indexing process. Without @Field the property is ignored by the indexing process.

Hibernate Search tries to determine the best way to index your property. In most cases this will

be as string, but for the types int, long, double and float (and their respective Java wrapper types)

Lucene’s numeric field encoding (see Section 4.1.1.3, “@NumericField”) is used. This numeric

encoding uses a so called Trie structure [http://en.wikipedia.org/wiki/Trie] which allows for efficient

range queries and sorting, resulting in query response times being orders of magnitude faster than

with the plain string encoding. Byte and short properties will only be encoded in numeric fields if

explicitly marked with the @NumericField annotation.

Caution

Prior to Search 5, numeric field encoding was only chosen if explicitly

requested via @NumericField. As of Search 5 this encoding is

automatically chosen for numeric types. To avoid numeric encoding you

can explicitly specify a non numeric field bridge via @Field.bridge

or @FieldBridge. The package org.hibernate.search.bridge.builtin

contains a set of bridges which encode numbers as strings, for example

org.hibernate.search.bridge.builtin.IntegerBridge.

The following attributes of the @Field annotation help you control the indexing outcome:

• name: describes under which name the property should be stored in the Lucene Document. The

default value is the property name (following the JavaBeans convention)

• store: describes whether or not the property is stored in the Lucene index. You can store

the value Store.YES (consuming more space in the index but allowing projection), store it in

a compressed way Store.COMPRESS (this does consume more CPU), or avoid any storage

Store.NO (this is the default value). When a property is stored, you can retrieve its original

value from the Lucene Document. Storing the property has no impact on whether the value is

searchable or not.

• index: describes whether the property is indexed or not. The different values are Index.NO (no

indexing, meaning the value cannot be found by a query), Index.YES (the element gets indexed

and is searchable). The default value is Index.YES. Index.NO can be useful for cases where a

property is not required to be searchable, but needed for projection.

http://en.wikipedia.org/wiki/Trie
http://en.wikipedia.org/wiki/Trie
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Tip

Index.NO in combination with Analyze.YES or Norms.YES is not useful, since

analyze and norms require the property to be indexed

• analyze: determines whether the property is analyzed (Analyze.YES) or not (Analyze.NO). The

default value is Analyze.YES.

Tip

Whether or not you want to analyze a property depends on whether you wish to

search the element as is, or by the words it contains. It make sense to analyze

a text field, but probably not a date field.

Tip

Fields used for sorting or faceting must not be analyzed.

• norms: describes whether index time boosting information should be stored (Norms.YES) or not

(Norms.NO). Not storing the norms can save a considerable amount of memory, but index time

boosting will not be available in this case. The default value is Norms.YES.

• termVector: describes collections of term-frequency pairs. This attribute enables the storing of

the term vectors within the documents during indexing. The default value is TermVector.NO.

The different values of this attribute are:

Value Definition

TermVector.YES Store the term vectors of each document.

This produces two synchronized arrays,

one contains document terms and the other

contains the term’s frequency.

TermVector.NO Do not store term vectors.

TermVector.WITH_OFFSETS Store the term vector and token offset

information. This is the same as

TermVector.YES plus it contains the starting

and ending offset position information for the

terms.

TermVector.WITH_POSITIONS Store the term vector and token position

information. This is the same as
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Value Definition

TermVector.YES plus it contains the ordinal

positions of each occurrence of a term in a

document.

TermVector.WITH_POSITION_OFFSETS Store the term vector, token position and

offset information. This is a combination

of the YES, WITH_OFFSETS and

WITH_POSITIONS.

• indexNullAs: Per default null values are ignored and not indexed. However, using

indexNullAs you can specify a string which will be inserted as token for the null value. Per

default this value is set to org.hibernate.search.annotations.Field.DO_NOT_INDEX_NULL

indicating that null values should not be indexed. You can set this value to DEFAULT_NULL_TOKEN

to indicate that a default null token should be used. This default null token can be specified in

the configuration using hibernate.search.default_null_token. If this property is not set the

string "null" will be used as default.

Note

When indexNullAs is used, it is important to use the chosen null token in search

queries (see Chapter 5, Querying) in order to find null values. It is also advisable

to use this feature only with un-analyzed fields (analyze=Analyze.NO).

Note

When implementing a custom FieldBridge or TwoWayFieldBridge it is up

to the developer to handle the indexing of null values (see JavaDocs of

LuceneOptions.indexNullAs()).

• boost: Refer to section about boosting

• bridge: Refer to section about field bridges

4.1.1.3. @NumericField

@NumericField is a companion annotation to @Field. It can be specified in the same scope as

@Field, but only on properties of numeric type like byte, short, int, long, double and float (and

their respective Java wrapper types). It allows to define a custom precisionStep for the numeric

encoding of the property value.

@NumericField accepts the following parameters:
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Value Definition

forField (Optional) Specify the name of of the related

@Field that will be indexed numerically. It’s

only mandatory when the property contains

more than a @Field declaration

precisionStep (Optional) Change the way that the Trie

structure is stored in the index. Smaller

precisionSteps lead to more disk space

usage and faster range and sort queries.

Larger values lead to less space used and

range query performance more close to the

range query using string encoding. Default

value is 4.

Lucene supports the numeric types: Double, Long, Integer and Float. For properties of types

Byte and Short, an Integer field will be used in the index. Other numeric types should use

the default string encoding (via @Field), unless the application can deal with a potential loss in

precision, in which case a custom NumericFieldBridge can be used. See Example 4.2, “Defining

a custom NumericFieldBridge for BigDecimal”.

Example 4.2. Defining a custom NumericFieldBridge for BigDecimal

public class BigDecimalNumericFieldBridge extends NumericFieldBridge {

    private static final BigDecimal storeFactor = BigDecimal.valueOf(100);

    @Override

    public void set(String name, Object value, Document document, LuceneOptions luceneOptions) {

        if ( value != null ) {

            BigDecimal decimalValue = (BigDecimal) value;

            long tmpLong = decimalValue.multiply( storeFactor ).longValue();

            Long indexedValue = Long.valueOf( tmpLong );

            luceneOptions.addNumericFieldToDocument( name, indexedValue, document );

        }

    }

    @Override

    public Object get(String name, Document document) {

        String fromLucene = document.get( name );

        BigDecimal storedBigDecimal = new BigDecimal( fromLucene );

        return storedBigDecimal.divide( storeFactor );

    }

}

You would use this custom bridge like seen in Example 4.3, “Use of

BigDecimalNumericFieldBridge”. In this case three annotations are used - @Field,

@NumericField and @FieldBridge. @Field is required to mark the property for being indexed (a

standalone @NumericField is never allowed). @NumericField might be omitted in this specific

case, because the used @FieldBridge annotation refers already to a NumericFieldBridge
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instance. However, the use of @NumericField makes the use of the property as numeric value

explicit.

Example 4.3. Use of BigDecimalNumericFieldBridge

@Entity

@Indexed

public static class Item {

    @Id

    @GeneratedValue

    private int id;

    @Field

    @NumericField

    @FieldBridge(impl = BigDecimalNumericFieldBridge.class)

    private BigDecimal price;

    public int getId() {

        return id;

    }

    public BigDecimal getPrice() {

       return price;

    }

    public void setPrice(BigDecimal price) {

        this.price = price;

    }

}

4.1.1.4. @Id

Finally, the id property of an entity is a special property used by Hibernate Search to ensure

index unicity of a given entity. By design, an id has to be stored and must not be tokenized. It is

also always string encoded, even if the id is a number. To mark a property as index id, use the

@DocumentId annotation. If you are using JPA and you are using @Id you can omit @DocumentId.

The chosen entity id will also be used as document id.

Example 4.4. Specifying indexed properties

@Entity

@Indexed

public class Essay {

    ...

    @Id

    @DocumentId

    public Long getId() { return id; }

    @Field(name="Abstract", store=Store.YES)

    public String getSummary() { return summary; }
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    @Lob

    @Field

    public String getText() { return text; }

    @Field

    @NumericField(precisionStep = 6)

    public float getGrade() { return grade; }

}

Example 4.4, “Specifying indexed properties” defines an index with four fields: id, Abstract,

text and grade. Note that by default the field name is de-capitalized, following the JavaBean

specification. The grade field is annotated as Numeric with a slightly larger precisionStep than

the default.

4.1.2. Mapping properties multiple times

Sometimes one has to map a property multiple times per index, with slightly different indexing

strategies. For example, sorting a query by field requires the field to be un-analyzed. If one wants

to search by words in this property and still sort it, one need to index it twice - once analyzed and

once un-analyzed. @Fields allows to achieve this goal.

Example 4.5. Using @Fields to map a property multiple times

@Entity

@Indexed(index = "Book")

public class Book {

    @Fields( {

            @Field,

            @Field(name = "summary_forSort", analyze = Analyze.NO, store = Store.YES)

            } )

    public String getSummary() {

        return summary;

    }

    // ...

}

In Example 4.5, “Using @Fields to map a property multiple times” the field summary is indexed

twice, once as summary in a tokenized way, and once as summary_forSort in an un-tokenized

way. @Field supports 2 attributes useful when @Fields is used:

• analyzer: defines a @Analyzer annotation per field rather than per property

• bridge: defines a @FieldBridge annotation per field rather than per property

See below for more information about analyzers and field bridges.
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4.1.3. Embedded and associated objects

Associated objects as well as embedded objects can be indexed as part of the root entity index.

This is useful if you expect to search a given entity based on properties of the associated objects.

In the example Example 4.6, “Indexing associations” the aim is to return places where

the associated city is Atlanta (in Lucene query parser language, it would translate into

address.city:Atlanta). All place fields are added to the Place index, but also the address

related fields address.street, and address.city will be added and made queryable. The

embedded object id, address.id, is not added per default. To include it you need to also set

@IndexedEmbedded(includeEmbeddedObjectId=true, …).

Tip

Only actual indexed fields (properties annotated with @Field) are added to the root

entity index when embedded objects are indexed. The embedded object identifiers

are treated differently and need to be included explicitly.

Example 4.6. Indexing associations

@Entity

@Indexed

public class Place {

    @Id

    @GeneratedValue

    private Long id;

    @Field

    private String name;

    @OneToOne(cascade = { CascadeType.PERSIST, CascadeType.REMOVE })

    @IndexedEmbedded

    private Address address;

    ....

}

@Entity

public class Address {

    @Id

    @GeneratedValue

    private Long id;

    @Field

    private String street;

    @Field

    private String city;

    @ContainedIn
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    @OneToMany(mappedBy="address")

    private Set<Place> places;

    ...

}

Be careful. Because the data is de-normalized in the Lucene index when using the

@IndexedEmbedded technique, Hibernate Search needs to be aware of any change in the Place

object and any change in the Address object to keep the index up to date. To make sure the Place

Lucene document is updated when it’s Address changes, you need to mark the other side of the

bidirectional relationship with @ContainedIn.

Tip

@ContainedIn is useful on both associations pointing to entities and on embedded

(collection of) objects.

Let’s make Example 4.6, “Indexing associations” a bit more complex by nesting

@IndexedEmbedded as seen in Example 4.7, “Nested usage of @IndexedEmbedded and

@ContainedIn”.

Example 4.7. Nested usage of @IndexedEmbedded and @ContainedIn

@Entity

@Indexed

public class Place {

    @Id

    @GeneratedValue

    private Long id;

    @Field

    private String name;

    @OneToOne(cascade = { CascadeType.PERSIST, CascadeType.REMOVE })

    @IndexedEmbedded

    private Address address;

    // ...

}

@Entity

public class Address {

    @Id

    @GeneratedValue

    private Long id;

    @Field

    private String street;
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    @Field

    private String city;

    @IndexedEmbedded(depth = 1, prefix = "ownedBy_")

    private Owner ownedBy;

    @ContainedIn

    @OneToMany(mappedBy="address")

    private Set<Place> places;

    // ...

}

@Embeddable

public class Owner {

    @Field

    private String name;

    // ...

}

As you can see, any @*ToMany, @*ToOne or @Embedded attribute can be annotated with

@IndexedEmbedded. The attributes of the associated class will then be added to the main entity

index. In Example 4.7, “Nested usage of @IndexedEmbedded and @ContainedIn” the index will

contain the following fields

• id

• name

• address.street

• address.city

• address.ownedBy_name

The default prefix is propertyName., following the traditional object navigation convention. You

can override it using the prefix attribute as it is shown on the ownedBy property.

Note

The prefix cannot be set to the empty string.

The depth property is necessary when the object graph contains a cyclic dependency of classes

(not instances). For example, if Owner points to Place. Hibernate Search will stop including

indexed embedded attributes after reaching the expected depth (or the object graph boundaries

are reached). A class having a self reference is an example of cyclic dependency. In our example,

because depth is set to 1, any @IndexedEmbedded attribute in Owner (if any) will be ignored.
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Using @IndexedEmbedded for object associations allows you to express queries (using Lucene’s

query syntax) such as:

• Return places where name contains JBoss and where address city is Atlanta. In Lucene query

this would be

+name:jboss +address.city:atlanta

• Return places where name contains JBoss and where owner’s name contain Joe. In Lucene

query this would be

+name:jboss +address.ownedBy_name:joe

In a way it mimics the relational join operation in a more efficient way (at the cost of data

duplication). Remember that, out of the box, Lucene indexes have no notion of association, the

join operation is simply non-existent. It might help to keep the relational model normalized while

benefiting from the full text index speed and feature richness.

Note

An associated object can itself (but does not have to) be @Indexed

When @IndexedEmbedded points to an entity, the association has to be directional and the other

side has to be annotated with @ContainedIn. If not, Hibernate Search has no way to update the

root index when the associated entity is updated (in our example, a Place index document has to

be updated when the associated Address instance is updated).

Sometimes, the object type annotated by @IndexedEmbedded is not the object type targeted by

Hibernate and Hibernate Search. This is especially the case when interfaces are used in lieu

of their implementation. For this reason you can override the object type targeted by Hibernate

Search using the targetElement parameter.

Example 4.8. Using the targetElement property of @IndexedEmbedded

@Entity

@Indexed

public class Address {

    @Id

    @GeneratedValue

    private Long id;

    @Field

    private String street;

    @IndexedEmbedded(depth = 1, prefix = "ownedBy_", targetElement = Owner.class)

    @Target(Owner.class)

    private Person ownedBy;
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    // ...

}

@Embeddable

public class Owner implements Person { ... }

4.1.3.1. Limiting object embedding to specific paths

The @IndexedEmbedded annotation provides also an attribute includePaths which can be used

as an alternative to depth, or in combination with it.

When using only depth all indexed fields of the embedded type will be added recursively at the

same depth; this makes it harder to pick only a specific path without adding all other fields as well,

which might not be needed.

To avoid unnecessarily loading and indexing entities you can specify exactly which paths are

needed. A typical application might need different depths for different paths, or in other words it

might need to specify paths explicitly, as shown in Example 4.9, “Using the includePaths property

of @IndexedEmbedded”

Example 4.9. Using the includePaths property of @IndexedEmbedded

@Entity

@Indexed

public class Person {

   @Id

   public int getId() {

      return id;

   }

   @Field

   public String getName() {

      return name;

   }

   @Field

   public String getSurname() {

      return surname;

   }

   @OneToMany

   @IndexedEmbedded(includePaths = { "name" })

   public Set<Person> getParents() {

      return parents;

   }

   @ContainedIn

   @ManyToOne

   public Human getChild() {
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      return child;

   }

   // ... other fields omitted

Using a mapping as in Example 4.9, “Using the includePaths property of @IndexedEmbedded”,

you would be able to search on a Person by name and/or surname, and/or the name of the parent.

It will not index the surname of the parent, so searching on parent’s surnames will not be possible

but speeds up indexing, saves space and improve overall performance.

The @IndexedEmbedded.includePaths will include the specified paths in addition to what you

would index normally specifying a limited value for depth. Using includePaths with a undefined

(default) value for depth is equivalent to setting depth=0: only the included paths are indexed.

Example 4.10. Using the includePaths property of @IndexedEmbedded

@Entity

@Indexed

public class Human {

   @Id

   public int getId() {

      return id;

   }

   @Field

   public String getName() {

      return name;

   }

   @Field

   public String getSurname() {

      return surname;

   }

   @OneToMany

   @IndexedEmbedded(depth = 2, includePaths = { "parents.parents.name" })

   public Set<Human> getParents() {

      return parents;

   }

   @ContainedIn

   @ManyToOne

   public Human getChild() {

      return child;

   }

    // ... other fields omitted

In Example 4.10, “Using the includePaths property of @IndexedEmbedded”, every human will

have it’s name and surname attributes indexed. The name and surname of parents will be indexed

too, recursively up to second line because of the depth attribute. It will be possible to search by
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name or surname, of the person directly, his parents or of his grand parents. Beyond the second

level, we will in addition index one more level but only the name, not the surname.

This results in the following fields in the index:

• id - as primary key

• _hibernate_class - stores entity type

• name - as direct field

• surname - as direct field

• parents.name - as embedded field at depth 1

• parents.surname - as embedded field at depth 1

• parents.parents.name - as embedded field at depth 2

• parents.parents.surname - as embedded field at depth 2

• parents.parents.parents.name - as additional path as specified by includePaths. The first

parents. is inferred from the field name, the remaining path is the attribute of includePaths

Tip

You can explicitly include the id of the embedded object using includePath,

for example @IndexedEmbedded(includePaths = { "parents.id" }). This

will work regardless of the includeEmbeddedObjectId attribute. However, it is

recommended to just set includeEmbeddedObjectId=true.

Tip

Having explicit control of the indexed paths might be easier if you’re designing your

application by defining the needed queries first, as at that point you might know

exactly which fields you need, and which other fields are unnecessary to implement

your use case.

4.1.4. Associated objects: building a dependency graph with

@ContainedIn

While @ContainedIn is often seen as the counterpart of @IndexedEmbedded, it can also be used

on its own to build an indexing dependency graph.

When an entity is reindexed, all the entities pointed by @ContainedIn are also going to be

reindexed.
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4.2. Boosting

Lucene has the notion of boosting which allows you to give certain documents or fields more or

less importance than others. Lucene differentiates between index and search time boosting. The

following sections show you how you can achieve index time boosting using Hibernate Search.

4.2.1. Static index time boosting

To define a static boost value for an indexed class or property you can use the @Boost annotation.

You can use this annotation within @Field or specify it directly on method or class level.

Example 4.11. Different ways of using @Boost

@Entity

@Indexed

@Boost(1.7f)

public class Essay {

    ...

    @Id

    @DocumentId

    public Long getId() { return id; }

    @Field(name="Abstract", store=Store.YES, boost=@Boost(2f))

    @Boost(1.5f)

    public String getSummary() { return summary; }

    @Lob

    @Field(boost=@Boost(1.2f))

    public String getText() { return text; }

    @Field

    public String getISBN() { return isbn; }

}

In Example 4.11, “Different ways of using @Boost”, Essay’s probability to reach the top of the

search list will be multiplied by 1.7. The summary field will be 3.0 (2 * 1.5, because @Field.boost

and @Boost on a property are cumulative) more important than the isbn field. The text field will be

1.2 times more important than the isbn field. Note that this explanation is wrong in strictest terms,

but it is simple and close enough to reality for all practical purposes. Please check the Lucene

documentation or the excellent Lucene In Action from Otis Gospodnetic and Erik Hatcher.

4.2.2. Dynamic index time boosting

The @Boost annotation used in Section 4.2.1, “Static index time boosting” defines a static boost

factor which is independent of the state of of the indexed entity at runtime. However, there are

use cases in which the boost factor may depend on the actual state of the entity. In this case you

can use the @DynamicBoost annotation together with an accompanying custom BoostStrategy.
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Example 4.12. Dynamic boost example

public enum PersonType {

    NORMAL,

    VIP

}

@Entity

@Indexed

@DynamicBoost(impl = VIPBoostStrategy.class)

public class Person {

    private PersonType type;

    // ...

}

public class VIPBoostStrategy implements BoostStrategy {

    public float defineBoost(Object value) {

        Person person = ( Person ) value;

        if ( person.getType().equals( PersonType.VIP ) ) {

            return 2.0f;

        }

        else {

            return 1.0f;

        }

    }

}

In Example 4.12, “Dynamic boost example” a dynamic boost is defined on class level specifying

VIPBoostStrategy as implementation of the BoostStrategy interface to be used at indexing time.

You can place the @DynamicBoost either at class or field level. Depending on the placement of

the annotation either the whole entity is passed to the defineBoost method or just the annotated

field/property value. It’s up to you to cast the passed object to the correct type. In the example all

indexed values of a VIP person would be double as important as the values of a normal person.

Note

The specified BoostStrategy implementation must define a public no-arg

constructor.

Of course you can mix and match @Boost and @DynamicBoost annotations in your entity. All

defined boost factors are cumulative.
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4.3. Analysis

Analysis is the process of converting text into single terms (words) and can be considered as one

of the key features of a fulltext search engine. Lucene uses the concept of Analyzers to control this

process. In the following section we cover the multiple ways Hibernate Search offers to configure

the analyzers.

4.3.1. Default analyzer and analyzer by class

The default analyzer class used to index tokenized fields is configurable through

the hibernate.search.analyzer property. The default value for this property is

org.apache.lucene.analysis.standard.StandardAnalyzer.

You can also define the analyzer class per entity, property and even per @Field (useful when

multiple fields are indexed from a single property).

Example 4.13. Different ways of using @Analyzer

@Entity

@Indexed

@Analyzer(impl = EntityAnalyzer.class)

public class MyEntity {

    @Id

    @GeneratedValue

    @DocumentId

    private Integer id;

    @Field

    private String name;

    @Field

    @Analyzer(impl = PropertyAnalyzer.class)

    private String summary;

    @Field(analyzer = @Analyzer(impl = FieldAnalyzer.class)

    private String body;

    ...

}

In this example, EntityAnalyzer is used to index all tokenized properties (eg. name), except summary

and body which are indexed with PropertyAnalyzer and FieldAnalyzer respectively.

Caution

Mixing different analyzers in the same entity is most of the time a bad practice. It

makes query building more complex and results less predictable (for the novice),

especially if you are using a QueryParser (which uses the same analyzer for the
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whole query). As a rule of thumb, for any given field the same analyzer should be

used for indexing and querying.

4.3.2. Named analyzers

Analyzers can become quite complex to deal with. For this reason introduces Hibernate Search

the notion of analyzer definitions. An analyzer definition can be reused by many @Analyzer

declarations and is composed of:

• a name: the unique string used to refer to the definition

• a list of char filters: each char filter is responsible to pre-process input characters before the

tokenization. Char filters can add, change or remove characters; one common usage is for

characters normalization

• a tokenizer: responsible for tokenizing the input stream into individual words

• a list of filters: each filter is responsible to remove, modify or sometimes even add words into

the stream provided by the tokenizer

This separation of tasks - a list of char filters, and a tokenizer followed by a list of filters - allows

for easy reuse of each individual component and let you build your customized analyzer in a very

flexible way (just like Lego). Generally speaking the char filters do some pre-processing in the

character input, then the Tokenizer starts the tokenizing process by turning the character input

into tokens which are then further processed by the TokenFilters. Hibernate Search supports this

infrastructure by utilizing the advanced analyzers provided by Lucene; this is often referred to as

the Analyzer Framework.

Note

Some of the analyzers and filters will require additional dependencies. For

example to use the snowball stemmer you have to also include the lucene-

snowball jar and for the PhoneticFilterFactory you need the commons-codec

[http://commons.apache.org/codec] jar. Your distribution of Hibernate Search

provides these dependencies in its lib/optional directory. Have a look at Table 4.2,

“Example of available tokenizers” and Table 4.3, “Examples of available filters” to

see which analyzers and filters have additional dependencies

Prior to Hibernate Search 5 it was required to add the Apache Solr dependency to

your project as well; this is no longer required.

Let’s have a look at a concrete example now - Example 4.14, “@AnalyzerDef and the Analyzer

Framework”. First a char filter is defined by its factory. In our example, a mapping char filter is

used, and will replace characters in the input based on the rules specified in the mapping file.

Next a tokenizer is defined. This example uses the standard tokenizer. Last but not least, a list of

http://commons.apache.org/codec
http://commons.apache.org/codec
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filters is defined by their factories. In our example, the StopFilter filter is built reading the dedicated

words property file. The filter is also expected to ignore case.

Example 4.14. @AnalyzerDef and the Analyzer Framework

@AnalyzerDef(name="customanalyzer",

  charFilters = {

    @CharFilterDef(factory = MappingCharFilterFactory.class, params = {

      @Parameter(name = "mapping",

        value = "org/hibernate/search/test/analyzer/mapping-chars.properties")

    })

  },

  tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),

  filters = {

    @TokenFilterDef(factory = ASCIIFoldingFilterFactory.class),

    @TokenFilterDef(factory = LowerCaseFilterFactory.class),

    @TokenFilterDef(factory = StopFilterFactory.class, params = {

      @Parameter(name="words",

        value= "org/hibernate/search/test/analyzer/stoplist.properties" ),

      @Parameter(name="ignoreCase", value="true")

    })

})

public class Team {

    // ...

}

Tip

Filters and char filters are applied in the order they are defined in the @AnalyzerDef

annotation. Order matters!

Some tokenizers, token filters or char filters load resources like a configuration or metadata file.

This is the case for the stop filter and the synonym filter.

Example 4.15. Use a specific charset to load the property file

@AnalyzerDef(name="customanalyzer",

  charFilters = {

    @CharFilterDef(factory = MappingCharFilterFactory.class, params = {

      @Parameter(name = "mapping",

        value = "org/hibernate/search/test/analyzer/mapping-chars.properties")

    })

  },

  tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),

  filters = {

    @TokenFilterDef(factory = ASCIIFoldingFilterFactory.class),

    @TokenFilterDef(factory = LowerCaseFilterFactory.class),

    @TokenFilterDef(factory = StopFilterFactory.class, params = {

      @Parameter(name="words",

        value= "org/hibernate/search/test/analyzer/stoplist.properties" ),
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      @Parameter(name="ignoreCase", value="true")

  })

})

public class Team {

    // ...

}

Once defined, an analyzer definition can be reused by an @Analyzer declaration as seen in

Example 4.16, “Referencing an analyzer by name”.

Example 4.16. Referencing an analyzer by name

@Entity

@Indexed

@AnalyzerDef(name="customanalyzer", ... )

public class Team {

    @Id

    @DocumentId

    @GeneratedValue

    private Integer id;

    @Field

    private String name;

    @Field

    private String location;

    @Field

    @Analyzer(definition = "customanalyzer")

    private String description;

}

Analyzer instances declared by @AnalyzerDef are also available by their name in the

SearchFactory which is quite useful wen building queries.

Analyzer analyzer = fullTextSession.getSearchFactory().getAnalyzer("customanalyzer");

Fields in queries should be analyzed with the same analyzer used to index the field so that they

speak a common "language": the same tokens are reused between the query and the indexing

process. This rule has some exceptions but is true most of the time. Respect it unless you know

what you are doing.

4.3.2.1. Available analyzers

Apache Lucene comes with a lot of useful default char filters, tokenizers and filters. You can find a

complete list of char filter factories, tokenizer factories and filter factories at http://wiki.apache.org/

solr/AnalyzersTokenizersTokenFilters. Let’s check a few of them.

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
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Table 4.1. Example of available char filters

Factory Description Parameters Additional

dependencies

MappingCharFilterFactoryReplaces one or

more characters

with one or more

characters, based on

mappings specified in

the resource file

mapping: points

to a resource file

containing the

mappings using the

format: "á" ⇒ "a" "ñ"

⇒ "n" "ø" ⇒ "o"

lucene-analyzers-

common

HTMLStripCharFilterFactoryRemove HTML

standard tags,

keeping the text

none lucene-analyzers-

common

Table 4.2. Example of available tokenizers

Factory Description Parameters Additional

dependencies

StandardTokenizerFactoryUse the Lucene

StandardTokenizer

none lucene-analyzers-

common

HTMLStripCharFilterFactoryRemove HTML

tags, keep the text

and pass it to a

StandardTokenizer.

none lucene-analyzers-

common

PatternTokenizerFactoryBreaks text at the

specified regular

expression pattern.

pattern: the regular

expression to use for

tokenizing

group: says which

pattern group to

extract into tokens

lucene-analyzers-

common

Table 4.3. Examples of available filters

Factory Description Parameters Additional

dependencies

StandardFilterFactory Remove dots from

acronyms and 's from

words

none lucene-analyzers-

common

LowerCaseFilterFactoryLowercases all words none lucene-analyzers-

common

StopFilterFactory Remove words

(tokens) matching a

list of stop words

words: points to

a resource file

lucene-analyzers-

common
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Factory Description Parameters Additional

dependencies

containing the stop

words

ignoreCase: true

if case should

be ignore when

comparing stop

words, false

otherwise

SnowballPorterFilterFactoryReduces a word to

it’s root in a given

language. (eg.

protect, protects,

protection share the

same root). Using

such a filter allows

searches matching

related words.

language: Danish,

Dutch, English,

Finnish, French,

German, Italian,

Norwegian,

Portuguese, Russian,

Spanish, Swedish

and a few more

lucene-analyzers-

common

ASCIIFoldingFilterFactoryRemove accents for

languages like French

none lucene-analyzers-

common

PhoneticFilterFactory Inserts phonetically

similar tokens into the

token stream

encoder: One of

DoubleMetaphone,

Metaphone, Soundex

or RefinedSoundex

inject: true will add

tokens to the stream,

false will replace the

existing token

maxCodeLength:

sets the maximum

length of the code

to be generated.

Supported only for

Metaphone and

DoubleMetaphone

encodings

lucene-analyzers-

phonetic and

commons-codec

CollationKeyFilterFactoryConverts each

token into its

java.text.CollationKey,

and then encodes

custom, language,

country, variant,

strength,

`decomposition

lucene-analyzers-

common and commons-

io
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Factory Description Parameters Additional

dependencies

the CollationKey with

IndexableBinaryStringTools,

to allow it to be stored

as an index term.

`see Lucene’s

CollationKeyFilter

javadocs for more

info

We recommend to check out the implementations of

org.apache.lucene.analysis.util.TokenizerFactory and

org.apache.lucene.analysis.util.TokenFilterFactory in your IDE to see the implementations

available.

4.3.3. Dynamic analyzer selection

So far all the introduced ways to specify an analyzer were static. However, there are use cases

where it is useful to select an analyzer depending on the current state of the entity to be indexed,

for example in a multilingual applications. For an BlogEntry class for example the analyzer could

depend on the language property of the entry. Depending on this property the correct language

specific stemmer should be chosen to index the actual text.

To enable this dynamic analyzer selection Hibernate Search introduces the AnalyzerDiscriminator

annotation. Example 4.17, “Usage of @AnalyzerDiscriminator” demonstrates the usage of this

annotation.

Example 4.17. Usage of @AnalyzerDiscriminator

@Entity

@Indexed

@AnalyzerDefs({

  @AnalyzerDef(name = "en",

    tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),

    filters = {

      @TokenFilterDef(factory = LowerCaseFilterFactory.class),

      @TokenFilterDef(factory = EnglishPorterFilterFactory.class

      )

    }),

  @AnalyzerDef(name = "de",

    tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),

    filters = {

      @TokenFilterDef(factory = LowerCaseFilterFactory.class),

      @TokenFilterDef(factory = GermanStemFilterFactory.class)

    })

})

public class BlogEntry {

    @Id

    @GeneratedValue

    @DocumentId

    private Integer id;
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    @Field

    @AnalyzerDiscriminator(impl = LanguageDiscriminator.class)

    private String language;

    @Field

    private String text;

    private Set<BlogEntry> references;

    // standard getter/setter

    // ...

}

public class LanguageDiscriminator implements Discriminator {

    public String getAnalyzerDefinitionName(Object value, Object entity, String field) {

        if ( value == null || !( entity instanceof Article ) ) {

            return null;

        }

        return (String) value;

    }

}

The prerequisite for using @AnalyzerDiscriminator is that all analyzers which are going to be

used dynamically are predefined via @AnalyzerDef definitions. If this is the case, one can

place the @AnalyzerDiscriminator annotation either on the class or on a specific property

of the entity for which to dynamically select an analyzer. Via the impl parameter of the

AnalyzerDiscriminator you specify a concrete implementation of the Discriminator interface. It is

up to you to provide an implementation for this interface. The only method you have to implement

is getAnalyzerDefinitionName() which gets called for each field added to the Lucene document.

The entity which is getting indexed is also passed to the interface method. The value parameter

is only set if the AnalyzerDiscriminator is placed on property level instead of class level. In this

case the value represents the current value of this property.

An implementation of the Discriminator interface has to return the name of an existing analyzer

definition or null if the default analyzer should not be overridden. Example 4.17, “Usage of

@AnalyzerDiscriminator” assumes that the language parameter is either 'de' or 'en' which matches

the specified names in the @AnalyzerDefs.

4.3.4. Retrieving an analyzer

In some situations retrieving analyzers can be handy. For example, if your domain model makes

use of multiple analyzers (maybe to benefit from stemming, use phonetic approximation and so

on), you need to make sure to use the same analyzers when you build your query.
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Note

This rule can be broken but you need a good reason for it. If you are unsure, use

the same analyzers. If you use the Hibernate Search query DSL (see Section 5.1.2,

“Building a Lucene query with the Hibernate Search query DSL”), you don’t have

to think about it. The query DSL does use the right analyzer transparently for you.

Whether you are using the Lucene programmatic API or the Lucene query parser, you can retrieve

the scoped analyzer for a given entity. A scoped analyzer is an analyzer which applies the right

analyzers depending on the field indexed. Remember, multiple analyzers can be defined on a

given entity each one working on an individual field. A scoped analyzer unifies all these analyzers

into a context-aware analyzer. While the theory seems a bit complex, using the right analyzer in

a query is very easy.

Example 4.18. Using the scoped analyzer when building a full-text query

org.apache.lucene.queryparser.classic.QueryParser parser = new QueryParser(

    "title",

    fullTextSession.getSearchFactory().getAnalyzer( Song.class )

);

org.apache.lucene.search.Query luceneQuery =

    parser.parse( "title:sky Or title_stemmed:diamond" );

org.hibernate.Query fullTextQuery =

    fullTextSession.createFullTextQuery( luceneQuery, Song.class );

List result = fullTextQuery.list(); //return a list of managed objects

In the example above, the song title is indexed in two fields: the standard analyzer is used in the

field title and a stemming analyzer is used in the field title_stemmed. By using the analyzer

provided by the search factory, the query uses the appropriate analyzer depending on the field

targeted.

Tip

You can also retrieve analyzers defined via @AnalyzerDef by their definition name

using searchFactory.getAnalyzer(String).

4.4. Bridges

When discussing the basic mapping for an entity one important fact was so far disregarded. In

Lucene all index fields have to be represented as strings. All entity properties annotated with

@Field have to be converted to strings to be indexed. The reason we have not mentioned it so
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far is, that for most of your properties Hibernate Search does the translation job for you thanks

to a set of built-in bridges. However, in some cases you need a more fine grained control over

the translation process.

4.4.1. Built-in bridges

Hibernate Search comes bundled with a set of built-in bridges between a Java property type and

its full text representation.

null

Per default null elements are not indexed. Lucene does not support null elements. However,

in some situation it can be useful to insert a custom token representing the null value. See

Section 4.1.1.2, “@Field” for more information.

java.lang.String

Strings are indexed as are

short, Short, integer, Integer, long, Long, float, Float, double, Double

Are per default indexed numerically using a Trie structure [http://en.wikipedia.org/wiki/Trie].

You need to use a NumericRangeQuery to search for values. See also Section 4.1.1.2,

“@Field” and Section 4.1.1.3, “@NumericField”

BigInteger, BigDecimal

BigInteger and BigDecimal are converted into their string representation and indexed.

Note that in this form the values cannot be compared by Lucene using for example a

TermRangeQuery. For that the string representation would need to be padded. An alternative

using numeric encoding with a potential loss in precision can be seen in Example 4.2, “Defining

a custom NumericFieldBridge for BigDecimal”.

java.util.Date, java.util.Calendar

Dates are indexed as long value representing the number of milliseconds since January

1, 1970, 00:00:00 GMT. You shouldn’t really bother with the internal format. It is important,

however, to query a numerically indexed date via a NumericRangeQuery.

Usually, storing the date up to the millisecond is not necessary. @DateBridge defines the

appropriate resolution you are willing to store in the index.

@Entity

@Indexed

public class Meeting {

    @Field(analyze=Analyze.NO)

    @DateBridge(resolution=Resolution.MINUTE)

    private Date date;

    // ...

You can also choose to encode the date as string using the encoding=EncodingType.STRING

of DateBridge. In this case the dates are stored in the format yyyyMMddHHmmssSSS (using

GMT time).

http://en.wikipedia.org/wiki/Trie
http://en.wikipedia.org/wiki/Trie
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Important

A Date whose resolution is lower than MILLISECOND cannot be a @DocumentId

Important

The default date bridge uses Lucene’s DateTools to convert from Date or

Calendar to its indexed value. This means that all dates are expressed in GMT

time. If your requirements are to store dates in a fixed time zone you have to

implement a custom date bridge. Make sure you understand the requirements

of your applications regarding to date indexing and searching.

java.net.URI, java.net.URL

URI and URL are converted to their string representation

java.lang.Class

Classes are converted to their fully qualified class name. The thread context classloader is

used when the class is rehydrated

4.4.2. Tika bridge

Hibernate Search allows you to extract text from various document types using the built-in

TikaBridge which utilizes Apache Tika [http://tika.apache.org] to extract text and metadata from

the provided documents. The TikaBridge annotation can be used with String, URI, byte[] or

java.sql.Blob properties. In the case of String and URI the bridge interprets the values are file

paths and tries to open a file to parse the document. In the case of byte[] and Blob the values are

directly passed to Tika for parsing.

Tika uses metadata as in- and output of the parsing process and it also allows to provide additional

context information. This process is described in Parser interface [http://tika.apache.org/1.1/

parser.html#apiorgapachetikametadataMetadata.html]. The Hibernate Search Tika bridge allows

you to make use of these additional configuration options by providing two interfaces in conjunction

with TikaBridge. The first interface is the TikaParseContextProvider. It allows you to create a

custom ParseContext for the document parsing. The second interface is TikaMetadataProcessor

which has two methods - prepareMetadata() and set(String, Object, Document, LuceneOptions,

Metadata metadata). The former allows to add additional metadata to the parsing process (for

example the file name) and the latter allows you to index metadata discovered during the parsing

process.

TikaParseContextProvider as well as TikaMetadataProcessor implementation classes can both

be specified as parameters on the TikaBridge annotation.

http://tika.apache.org
http://tika.apache.org
http://tika.apache.org/1.1/parser.html#apiorgapachetikametadataMetadata.html
http://tika.apache.org/1.1/parser.html#apiorgapachetikametadataMetadata.html
http://tika.apache.org/1.1/parser.html#apiorgapachetikametadataMetadata.html


Chapter 4. Mapping entities t...

76

Example 4.19. Example mapping with Apache Tika

@Entity

@Indexed

public class Song {

    @Id

    @GeneratedValue

    long id;

    @Field

    @TikaBridge(metadataProcessor = Mp3TikaMetadataProcessor.class)

    String mp3FileName;

    // ...

}

QueryBuilder queryBuilder = fullTextSession.getSearchFactory()

    .buildQueryBuilder()

    .forEntity( Song.class )

    .get();

Query query = queryBuilder.keyword()

    .onField( "mp3FileName" )

    .ignoreFieldBridge() //mandatory

    .matching( "Apes" )

    .createQuery();

List result = fullTextSession.createFullTextQuery( query ).list();

In the Example 4.19, “Example mapping with Apache Tika” the property mp3FileName represents

a path to an MP3 file; the headers of this file will be indexed and so the performed query will be

able to match the MP3 metadata.

Warning

TikaBridge does not implement TwoWayFieldBridge: queries built using the DSL

(as in the Example 4.19, “Example mapping with Apache Tika”) need to explicitly

enable the option ignoreFieldBridge().

4.4.3. Custom bridges

Sometimes, the built-in bridges of Hibernate Search do not cover some of your property types,

or the String representation used by the bridge does not meet your requirements. The following

paragraphs describe several solutions to this problem.

4.4.3.1. StringBridge

The simplest custom solution is to give Hibernate Search an implementation of

your expected Object to String bridge. To do so you need to implement the
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org.hibernate.search.bridge.StringBridge interface. All implementations have to be

thread-safe as they are used concurrently.

Example 4.20. Custom StringBridge implementation

/**

 * Padding Integer bridge.

 * All numbers will be padded with 0 to match 5 digits

 *

 * @author Emmanuel Bernard

 */

public class PaddedIntegerBridge implements StringBridge {

    private int padding = 5;

    public String objectToString(Object object) {

        String rawInteger = ((Integer) object).toString();

        if (rawInteger.length() > padding)

            throw new IllegalArgumentException("Number too big to be padded");

        StringBuilder paddedInteger = new StringBuilder();

        for (int padIndex = rawInteger.length(); padIndex < padding; padIndex++) {

            paddedInteger.append('0');

        }

        return paddedInteger.append( rawInteger ).toString();

    }

}

Given the string bridge defined in Example 4.20, “Custom StringBridge implementation”, any

property or field can use this bridge thanks to the @FieldBridge annotation:

@FieldBridge(impl = PaddedIntegerBridge.class)

private Integer length;

4.4.3.1.1. Parameterized bridge

Parameters can also be passed to the bridge implementation making it more flexible.

Example 4.21, “Passing parameters to your bridge implementation” implements a

ParameterizedBridge interface and parameters are passed through the @FieldBridge annotation.

Example 4.21. Passing parameters to your bridge implementation

public class PaddedIntegerBridge implements StringBridge, ParameterizedBridge {

    public static String PADDING_PROPERTY = "padding";

    private int padding = 5; //default

    public void setParameterValues(Map<String,String> parameters) {

        String padding = parameters.get( PADDING_PROPERTY );

        if (padding != null) this.padding = Integer.parseInt( padding );

    }
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    public String objectToString(Object object) {

        String rawInteger = ((Integer) object).toString();

        if (rawInteger.length() > padding)

            throw new IllegalArgumentException("Number too big to be padded");

        StringBuilder paddedInteger = new StringBuilder( );

        for (int padIndex = rawInteger.length(); padIndex < padding; padIndex++) {

            paddedInteger.append('0');

        }

        return paddedInteger.append(rawInteger).toString();

    }

}

//on the property:

@FieldBridge(impl = PaddedIntegerBridge.class,

             params = @Parameter(name="padding", value="10")

            )

private Integer length;

The ParameterizedBridge interface can be implemented by StringBridge, TwoWayStringBridge,

FieldBridge implementations.

All implementations have to be thread-safe, but the parameters are set during initialization and

no special care is required at this stage.

4.4.3.1.2. Type aware bridge

It is sometimes useful to get the type the bridge is applied on:

• the return type of the property for field/getter-level bridges

• the class type for class-level bridges

An example is a bridge that deals with enums in a custom fashion but needs to access the actual

enum type. Any bridge implementing AppliedOnTypeAwareBridge will get the type the bridge is

applied on injected. Like parameters, the type injected needs no particular care with regard to

thread-safety.

4.4.3.1.3. Two-way bridge

If you expect to use your bridge implementation on an id property (ie annotated with @DocumentId

), you need to use a slightly extended version of StringBridge named TwoWayStringBridge.

Hibernate Search needs to read the string representation of the identifier and generate the object

out of it. There is no difference in the way the @FieldBridge annotation is used.

Example 4.22. Implementing a TwoWayStringBridge usable for id properties

public class PaddedIntegerBridge implements TwoWayStringBridge, ParameterizedBridge {
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    public static String PADDING_PROPERTY = "padding";

    private int padding = 5; //default

    public void setParameterValues(Map parameters) {

        Object padding = parameters.get(PADDING_PROPERTY);

        if (padding != null) this.padding = (Integer) padding;

    }

    public String objectToString(Object object) {

        String rawInteger = ((Integer) object).toString();

        if (rawInteger.length() > padding)

            throw new IllegalArgumentException("Number too big to be padded");

        StringBuilder paddedInteger = new StringBuilder();

        for (int padIndex = rawInteger.length(); padIndex < padding ; padIndex++) {

            paddedInteger.append('0');

        }

        return paddedInteger.append(rawInteger).toString();

    }

    public Object stringToObject(String stringValue) {

        return new Integer(stringValue);

    }

}

//On an id property:

@DocumentId

@FieldBridge(impl = PaddedIntegerBridge.class,

             params = @Parameter(name="padding", value="10")

private Integer id;

Important

It is important for the two-way process to be idempotent (ie object =

stringToObject(objectToString( object ) ) ).

4.4.3.2. FieldBridge

Some use cases require more than a simple object to string translation when mapping a property

to a Lucene index. To give you the greatest possible flexibility you can also implement a bridge

as a FieldBridge. This interface gives you a property value and let you map it the way you want

in your Lucene Document. You can for example store a property in two different document fields.

The interface is very similar in its concept to the Hibernate ORM UserTypes.

Example 4.23. Implementing the FieldBridge interface

/**

 * Store the date in 3 different fields - year, month, day - to ease the creation of RangeQuery per

 * year, month or day (eg get all the elements of December for the last 5 years).
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 * @author Emmanuel Bernard

 */

public class DateSplitBridge implements FieldBridge {

    private final static TimeZone GMT = TimeZone.getTimeZone("GMT");

    public void set(String name, Object value, Document document,

                    LuceneOptions luceneOptions) {

        Date date = (Date) value;

        Calendar cal = GregorianCalendar.getInstance(GMT);

        cal.setTime(date);

        int year = cal.get(Calendar.YEAR);

        int month = cal.get(Calendar.MONTH) + 1;

        int day = cal.get(Calendar.DAY_OF_MONTH);

        // set year

        luceneOptions.addFieldToDocument(

            name + ".year",

            String.valueOf( year ),

            document );

        // set month and pad it if needed

        luceneOptions.addFieldToDocument(

            name + ".month",

            month < 10 ? "0" : "" + String.valueOf( month ),

            document );

        // set day and pad it if needed

        luceneOptions.addFieldToDocument(

            name + ".day",

            day < 10 ? "0" : "" + String.valueOf( day ),

            document );

    }

}

//property

@FieldBridge(impl = DateSplitBridge.class)

private Date date;

In Example 4.23, “Implementing the FieldBridge interface” the fields are not added directly to

Document. Instead the addition is delegated to the LuceneOptions helper; this helper will apply

the options you have selected on @Field, like Store or TermVector, or apply the chosen @Boost

value. It is especially useful to encapsulate the complexity of COMPRESS implementations. Even

though it is recommended to delegate to LuceneOptions to add fields to the Document, nothing

stops you from editing the Document directly and ignore the LuceneOptions in case you need to.

Tip

Classes like LuceneOptions are created to shield your application from changes

in Lucene API and simplify your code. Use them if you can, but if you need more

flexibility you’re not required to.
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4.4.3.3. ClassBridge

It is sometimes useful to combine more than one property of a given entity and index

this combination in a specific way into the Lucene index. The @ClassBridge respectively

@ClassBridges annotations can be defined at class level (as opposed to the property level).

In this case the custom field bridge implementation receives the entity instance as the value

parameter instead of a particular property. Though not shown in Example 4.24, “Implementing a

class bridge”, @ClassBridge supports the termVector attribute discussed in section Section 4.1.1,

“Basic mapping”.

Example 4.24. Implementing a class bridge

@Entity

@Indexed

@ClassBridge(name="branchnetwork",

             store=Store.YES,

             impl = CatFieldsClassBridge.class,

             params = @Parameter( name="sepChar", value=" " ) )

public class Department {

    private int id;

    private String network;

    private String branchHead;

    private String branch;

    private Integer maxEmployees

    // ...

}

public class CatFieldsClassBridge implements FieldBridge, ParameterizedBridge {

    private String sepChar;

    public void setParameterValues(Map parameters) {

        this.sepChar = (String) parameters.get( "sepChar" );

    }

    public void set(

        String name, Object value, Document document, LuceneOptions luceneOptions) {

        // In this particular class the name of the new field was passed

        // from the name field of the ClassBridge Annotation. This is not

        // a requirement. It just works that way in this instance. The

        // actual name could be supplied by hard coding it below.

        Department dep = (Department) value;

        String fieldValue1 = dep.getBranch();

        if ( fieldValue1 == null ) {

            fieldValue1 = "";

        }

        String fieldValue2 = dep.getNetwork();

        if ( fieldValue2 == null ) {

            fieldValue2 = "";

        }

        String fieldValue = fieldValue1 + sepChar + fieldValue2;

        Field field = new Field( name, fieldValue, luceneOptions.getStore(),

            luceneOptions.getIndex(), luceneOptions.getTermVector() );
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        field.setBoost( luceneOptions.getBoost() );

        document.add( field );

   }

}

In this example, the particular CatFieldsClassBridge is applied to the department instance, the

field bridge then concatenate both branch and network and index the concatenation.

4.4.4. BridgeProvider: associate a bridge to a given return type

Custom field bridges are very flexible, but it can be tedious and error prone to apply the same

custom @FieldBridge annotation every time a property of a given type is present in your domain

model. That is what BridgeProviders are for.

Let’s imagine that you have a type Currency in your application and that you want to apply your

very own CurrencyFieldBridge every time an indexed property returns Currency. You can do it

the hard way:

Example 4.25. Applying the same @FieldBridge for a type the hard way

@Entity @Indexed

public class User {

    @FieldBridge(impl=CurrencyFieldBridge.class)

    public Currency getDefaultCurrency();

    // ...

}

@Entity @Indexed

public class Account {

    @FieldBridge(impl=CurrencyFieldBridge.class)

    public Currency getCurrency();

    // ...

}

// continue to add @FieldBridge(impl=CurrencyFieldBridge.class) everywhere Currency is

Or you can write your own BridgeProvider implementation for Currency.

Example 4.26. Writing a BridgeProvider

public class CurrencyBridgeProvider implements BridgeProvider {

    //needs a default no-arg constructor

    @Override

    public FieldBridge provideFieldBridge(BridgeContext bridgeProviderContext) {

        if ( bridgeProviderContext.getReturnType().equals( Currency.class ) ) {

            return CurrencyFieldBridge.INSTANCE;
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        }

        return null;

    }

}

# service file named META-INF/services/

org.hibernate.search.bridge.spi.BridgeProvider

com.acme.myapps.hibernatesearch.CurrencyBridgeProvider

You need to implement BridgeProvider and create a service file named META-INF/services/

org.hibernate.search.bridge.spi.BridgeProvider. This file must contain the fully qualified class

name(s) of the BridgeProvider implementations. This is the classic Service Loader discovery

mechanism.

Now, any indexed property of type Currency will use CurrencyFieldBridge automatically.

Example 4.27. An explicit @FieldBrige is no longer needed

@Entity @Indexed

public class User {

    @Field

    public Currency getDefaultCurrency();

    // ...

}

@Entity @Indexed

public class Account {

    @Field

    public Currency getCurrency();

    // ...

}

//CurrencyFieldBridge is applied automatically everywhere Currency is found on an indexed property

A few more things you need to know:

• a BridgeProvider must have a no-arg constructor

• if a BridgeProvider only returns FieldBridge instances if it is meaningful for the calling context.

Null otherwise. In our example, the return type must be Currency to be meaningful to our

provider.

• if two or more bridge providers return a FieldBridge instance for a given return type, an exception

will be raised.



Chapter 4. Mapping entities t...

84

What is a calling context

A calling context is represented by the BridgeContext object and represents the

environment for which we are looking for a bridge. BridgeContext gives access to

the return type of the indexed property as well as the ServiceManager which gives

access to the ClassLoaderService for everything class loader related.

ClassLoaderService classLoaderService =

 serviceManager.requestService( ClassLoaderService.class );

//use the classLoaderService

serviceManager.releaseService( ClassLoaderService.class );

4.5. Conditional indexing

Important

This feature is considered experimental. More operation types might be added in

the future depending on user feedback.

In some situations, you want to index an entity only when it is in a given state, for example:

• only index blog entries marked as published

• no longer index invoices when they are marked archived

This serves both functional and technical needs. You don’t want your blog readers to find your

draft entries and filtering them off the query is a bit annoying. Very few of your entities are actually

required to be indexed and you want to limit indexing overhead and keep indexes small and fast.

Hibernate Search lets you intercept entity indexing operations and override them. It is quite simple:

• Write an EntityIndexingInterceptor class with your entity state based logic

• Mark the entity as intercepted by this implementation

Let’s look at the blog example at Example 4.28, “Index blog entries only when they are published

and remove them when they are in a different state”

Example 4.28. Index blog entries only when they are published and remove

them when they are in a different state

/**

 * Only index blog when it is in published state

 *

 * @author Emmanuel Bernard <emmanuel@hibernate.org>
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 */

public class IndexWhenPublishedInterceptor implements EntityIndexingInterceptor<Blog> {

    @Override

    public IndexingOverride onAdd(Blog entity) {

        if (entity.getStatus() == BlogStatus.PUBLISHED) {

            return IndexingOverride.APPLY_DEFAULT;

        }

        return IndexingOverride.SKIP;

    }

    @Override

    public IndexingOverride onUpdate(Blog entity) {

        if (entity.getStatus() == BlogStatus.PUBLISHED) {

            return IndexingOverride.UPDATE;

        }

        return IndexingOverride.REMOVE;

    }

    @Override

    public IndexingOverride onDelete(Blog entity) {

        return IndexingOverride.APPLY_DEFAULT;

    }

    @Override

    public IndexingOverride onCollectionUpdate(Blog entity) {

        return onUpdate(entity);

    }

}

@Entity

@Indexed(interceptor=IndexWhenPublishedInterceptor.class)

public class Blog {

    @Id

    @GeneratedValue

    public Integer getId() { return id; }

    public void setId(Integer id) {  this.id = id; }

    private Integer id;

    @Field

    public String getTitle() { return title; }

    public void setTitle(String title) {  this.title = title; }

    private String title;

    public BlogStatus getStatus() { return status; }

    public void setStatus(BlogStatus status) {  this.status = status; }

    private BlogStatus status;

    // ...

}

We mark the Blog entity with @Indexed.interceptor. As you can see,

IndexWhenPublishedInterceptor implements EntityIndexingInterceptor and accepts Blog entities

(it could have accepted super classes as well - for example Object if you create a generic

interceptor.
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You can react to several planned indexing events:

• when an entity is added to your datastore

• when an entity is updated in your datastore

• when an entity is deleted from your datastore

• when a collection own by this entity is updated in your datastore

For each occurring event you can respond with one of the following actions:

• APPLY_DEFAULT: that’s the basic operation that lets Hibernate Search update the index as

expected - creating, updating or removing the document

• SKIP: ask Hibernate Search to not do anything to the index for this event - data will not be

created, updated or removed from the index in any way

• REMOVE: ask Hibernate Search to remove indexing data about this entity - you can safely ask

for REMOVE even if the entity has not yet been indexed

• UPDATE: ask Hibernate Search to either index or update the index for this entity - it is safe to

ask for UPDATE even if the entity has never been indexed

Note

Be careful, not every combination makes sense: for example, asking to UPDATE the

index upon onDelete. Note that you could ask for SKIP in this situation if saving

indexing time is critical for you. That’s rarely the case though.

By default, no interceptor is applied on an entity. You have to explicitly define an interceptor via the

@Indexed annotation (see Section 4.1.1.1, “@Indexed”) or programmatically (see Section 4.7,

“Programmatic API”). This class and all its subclasses will then be intercepted. You can stop or

change the interceptor used in a subclass by overriding @Indexed.interceptor. Hibernate Search

provides DontInterceptEntityInterceptor which will explicitly not intercept any call. This is useful to

reset interception within a class hierarchy.

Note

Dirty checking optimization is disabled when interceptors are used. Dirty checking

optimization does check what has changed in an entity and only triggers an

index update if indexed properties are changed. The reason is simple, your

interceptor might depend on a non indexed property which would be ignored by

this optimization.
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Warning

An EntityIndexingInterceptor can never override an explicit indexing

operation such as index(T), purge(T, id) or purgeAll(class).

4.6. Providing your own id

You can provide your own id for Hibernate Search if you are extending the internals. You will have

to generate a unique value so it can be given to Lucene to be indexed. This will have to be given

to Hibernate Search when you create an org.hibernate.search.Work object - the document id is

required in the constructor.

4.6.1. The ProvidedId annotation

Unlike @DocumentIdwhich is applied on field level, @ProvidedId is used on the class level.

Optionally you can specify your own bridge implementation using the bridge property. Also, if you

annotate a class with @ProvidedId, your subclasses will also get the annotation - but it is not done

by using the java.lang.annotations.@Inherited. Be sure however, to not use this annotation with

@DocumentId as your system will break.

Example 4.29. Providing your own id

@ProvidedId(bridge = org.my.own.package.MyCustomBridge)

@Indexed

public class MyClass{

    @Field

    String MyString;

    ...

}

4.7. Programmatic API

Although the recommended approach for mapping indexed entities is to use annotations, it is

sometimes more convenient to use a different approach:

• the same entity is mapped differently depending on deployment needs (customization for

clients)

• some automation process requires the dynamic mapping of many entities sharing common traits

While it has been a popular demand in the past, the Hibernate team never found the idea of an

XML alternative to annotations appealing due to its heavy duplication, lack of code refactoring

safety, because it did not cover all the use case spectrum and because we are in the 21st century :)
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The idea of a programmatic API was much more appealing and has now become a reality. You

can programmatically define your mapping using a programmatic API: you define entities and

fields as indexable by using mapping classes which effectively mirror the annotation concepts in

Hibernate Search. Note that fan(s) of XML approach can design their own schema and use the

programmatic API to create the mapping while parsing the XML stream.

In order to use the programmatic model you must first construct a SearchMapping object which

you can do in two ways:

• directly

• via a factory

You can pass the SearchMapping object directly via the property key

hibernate.search.model_mapping or the constant Environment.MODEL_MAPPING. Use the

Configuration API or the Map passed to the JPA Persistence bootstrap methods.

Example 4.30. Programmatic mapping

SearchMapping mapping = new SearchMapping();

// ... configure mapping

Configuration config = new Configuration();

config.getProperties().put( Environment.MODEL_MAPPING, mapping );

SessionFactory sf = config.buildSessionFactory();

Example 4.31. Programmatic mapping with JPA

SearchMapping mapping = new SearchMapping();

// ... configure mapping

Map props = new HashMap();

props.put( Environment.MODEL_MAPPING, mapping );

EntityManagerFactory emf = Persistence.createEntityManagerFactory( "userPU", props );

Alternatively, you can create a factory class (ie hosting a method annotated with

@Factory) whose factory method returns the SearchMapping object. The factory

class must have a no-arg constructor and its fully qualified class name is passed

to the property key hibernate.search.model_mapping or its type-safe representation

Environment.MODEL_MAPPING. This approach is useful when you do not necessarily control

the bootstrap process like in a Java EE, CDI or Spring Framework container.

Example 4.32. Use a mapping factory

public class MyAppSearchMappingFactory {

    @Factory

    public SearchMapping getSearchMapping() {

        SearchMapping mapping = new SearchMapping();



Mapping an entity as indexable

89

        mapping

                .analyzerDef( "ngram", StandardTokenizerFactory.class )

                    .filter( LowerCaseFilterFactory.class )

                    .filter( NGramFilterFactory.class )

                        .param( "minGramSize", "3" )

                        .param( "maxGramSize", "3" );

        return mapping;

    }

}

<persistence ...>

    <persistence-unit name="users">

        ...

        <properties>

            <property name="hibernate.search.model_mapping"

                      value="com.acme.MyAppSearchMappingFactory"/>

        </properties>

    </persistence-unit>

</persistence>

The SearchMapping is the root object which contains all the necessary indexable entities and

fields. From there, the SearchMapping object exposes a fluent (and thus intuitive) API to express

your mappings: it contextually exposes the relevant mapping options in a type-safe way. Just let

your IDE auto-completion feature guide you through.

Today, the programmatic API cannot be used on a class annotated with Hibernate Search

annotations, chose one approach or the other. Also note that the same default values apply in

annotations and the programmatic API. For example, the @Field.name is defaulted to the property

name and does not have to be set.

Each core concept of the programmatic API has a corresponding example to depict how the

same definition would look using annotation. Therefore seeing an annotation example of the

programmatic approach should give you a clear picture of what Hibernate Search will build with

the marked entities and associated properties.

4.7.1. Mapping an entity as indexable

The first concept of the programmatic API is to define an entity as indexable. Using the annotation

approach a user would mark the entity as @Indexed, the following example demonstrates how

to programmatically achieve this.

Example 4.33. Marking an entity indexable

SearchMapping mapping = new SearchMapping();

mapping.entity(Address.class)

           .indexed()

               .indexName("Address_Index") //optional

               .interceptor(IndexWhenPublishedInterceptor.class); //optional
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cfg.getProperties().put("hibernate.search.model_mapping", mapping);

As you can see you must first create a SearchMapping object which is the root object that

is then passed to the Configuration object as property. You must declare an entity and if you

wish to make that entity as indexable then you must call the indexed() method. The indexed()

method has an optional indexName(String indexName) which can be used to change the

default index name that is created by Hibernate Search. Likewise, an interceptor(Class<?

extends EntityIndexedInterceptor>) is available. Using the annotation model the above can

be achieved as:

Example 4.34. Annotation example of indexing entity

@Entity

@Indexed(index="Address_Index", interceptor=IndexWhenPublishedInterceptor.class)

public class Address {

   // ...

}

4.7.2. Adding DocumentId to indexed entity

To set a property as a document id:

Example 4.35. Enabling document id with programmatic model

SearchMapping mapping = new SearchMapping();

mapping.entity(Address.class).indexed()

           .property("addressId", ElementType.FIELD) //field access

               .documentId()

                   .name("id");

cfg.getProperties().put( "hibernate.search.model_mapping", mapping);

The above is equivalent to annotating a property in the entity as @DocumentId as seen in the

following example:

Example 4.36. DocumentId annotation definition

@Entity

@Indexed

public class Address {

 @Id

 @GeneratedValue

 @DocumentId(name="id")

 private Long addressId;
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 // ...

}

4.7.3. Defining analyzers

Analyzers can be programmatically defined using the analyzerDef(String analyzerDef,

Class<? extends TokenizerFactory> tokenizerFactory) method. This method also enables

you to define filters for the analyzer definition. Each filter that you define can optionally take in

parameters as seen in the following example :

Example 4.37. Defining analyzers using programmatic model

SearchMapping mapping = new SearchMapping();

mapping

    .analyzerDef( "ngram", StandardTokenizerFactory.class )

        .filter( LowerCaseFilterFactory.class )

        .filter( NGramFilterFactory.class )

            .param( "minGramSize", "3" )

            .param( "maxGramSize", "3" )

    .analyzerDef( "en", StandardTokenizerFactory.class )

        .filter( LowerCaseFilterFactory.class )

        .filter( EnglishPorterFilterFactory.class )

    .analyzerDef( "de", StandardTokenizerFactory.class )

        .filter( LowerCaseFilterFactory.class )

        .filter( GermanStemFilterFactory.class )

    .entity(Address.class).indexed()

        .property("addressId", ElementType.METHOD) //getter access

            .documentId()

                .name("id");

cfg.getProperties().put( "hibernate.search.model_mapping", mapping );

The analyzer mapping defined above is equivalent to the annotation model using @AnalyzerDef

in conjunction with @AnalyzerDefs:

Example 4.38. Analyzer definition using annotation

@Indexed

@Entity

@AnalyzerDefs({

  @AnalyzerDef(name = "ngram",

    tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),

    filters = {

      @TokenFilterDef(factory = LowerCaseFilterFactory.class),

      @TokenFilterDef(factory = NGramFilterFactory.class,

        params = {

          @Parameter(name = "minGramSize",value = "3"),

          @Parameter(name = "maxGramSize",value = "3")

       })

   }),
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  @AnalyzerDef(name = "en",

    tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),

    filters = {

      @TokenFilterDef(factory = LowerCaseFilterFactory.class),

      @TokenFilterDef(factory = EnglishPorterFilterFactory.class)

   }),

  @AnalyzerDef(name = "de",

    tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),

    filters = {

      @TokenFilterDef(factory = LowerCaseFilterFactory.class),

      @TokenFilterDef(factory = GermanStemFilterFactory.class)

  })

})

public class Address {

   // ...

}

4.7.4. Defining full text filter definitions

The programmatic API provides easy mechanism for defining full text filter definitions which is

available via @FullTextFilterDef and @FullTextFilterDefs (see Section 5.3, “Filters”). The next

example depicts the creation of full text filter definition using the fullTextFilterDef method.

Example 4.39. Defining full text definition programmatically

SearchMapping mapping = new SearchMapping();

mapping

    .analyzerDef( "en", StandardTokenizerFactory.class )

        .filter( LowerCaseFilterFactory.class )

        .filter( EnglishPorterFilterFactory.class )

    .fullTextFilterDef("security", SecurityFilterFactory.class)

            .cache(FilterCacheModeType.INSTANCE_ONLY)

    .entity(Address.class)

        .indexed()

        .property("addressId", ElementType.METHOD)

            .documentId()

                .name("id")

        .property("street1", ElementType.METHOD)

            .field()

                .analyzer("en")

                .store(Store.YES)

            .field()

                .name("address_data")

                .analyzer("en")

                .store(Store.NO);

cfg.getProperties().put( "hibernate.search.model_mapping", mapping );

The previous example can effectively been seen as annotating your entity with @FullTextFilterDef

like below:
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Example 4.40. Using annotation to define full text filter definition

@Entity

@Indexed

@AnalyzerDefs({

  @AnalyzerDef(name = "en",

    tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),

    filters = {

      @TokenFilterDef(factory = LowerCaseFilterFactory.class),

      @TokenFilterDef(factory = EnglishPorterFilterFactory.class)

   })

})

@FullTextFilterDefs({

 @FullTextFilterDef(name = "security", impl = SecurityFilterFactory.class, cache =

 FilterCacheModeType.INSTANCE_ONLY)

})

public class Address {

 @Id

 @GeneratedValue

 @DocumentId(name="id")

 public Long getAddressId() {...};

 @Fields({

      @Field(store=Store.YES, analyzer=@Analyzer(definition="en")),

      @Field(name="address_data", analyzer=@Analyzer(definition="en"))

 })

 public String getAddress1() {...};

 // ...

}

4.7.5. Defining fields for indexing

When defining fields for indexing using the programmatic API, call field() on the

property(String propertyName, ElementType elementType) method. From field() you

can specify the name, index, store, bridge and analyzer definitions.

Example 4.41. Indexing fields using programmatic API

SearchMapping mapping = new SearchMapping();

mapping

    .analyzerDef( "en", StandardTokenizerFactory.class )

        .filter( LowerCaseFilterFactory.class )

        .filter( EnglishPorterFilterFactory.class )

    .entity(Address.class).indexed()

        .property("addressId", ElementType.METHOD)

            .documentId()

                .name("id")

        .property("street1", ElementType.METHOD)

            .field()
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                .analyzer("en")

                .store(Store.YES)

            .field()

                .name("address_data")

                .analyzer("en");

cfg.getProperties().put( "hibernate.search.model_mapping", mapping );

The above example of marking fields as indexable is equivalent to defining fields using @Field

as seen below:

Example 4.42. Indexing fields using annotation

@Entity

@Indexed

@AnalyzerDefs({

  @AnalyzerDef(name = "en",

    tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),

    filters = {

      @TokenFilterDef(factory = LowerCaseFilterFactory.class),

      @TokenFilterDef(factory = EnglishPorterFilterFactory.class)

   })

})

public class Address {

 @Id

 @GeneratedValue

 @DocumentId(name="id")

 private Long getAddressId() {...};

 @Fields({

      @Field(store=Store.YES, analyzer=@Analyzer(definition="en")),

      @Field(name="address_data", analyzer=@Analyzer(definition="en"))

 })

 public String getAddress1() {...}

 // ...

}

Note

When using a programmatic mapping for a given type X, you can only refer to fields

defined on X. Fields or methods inherited from a super type are not configurable. In

case you need to configure a super class property, you need to either override the

property in X or create a programmatic mapping for the super class. This mimics

the usage of annotations where you cannot annotate a field or method of a super

class either, unless it is redefined in the given type.
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4.7.6. Programmatically defining embedded entities

In this section you will see how to programmatically define entities to be embedded into the indexed

entity similar to using the @IndexedEmbedded model. In order to define this you must mark the

property as indexEmbedded.There is the option to add a prefix to the embedded entity definition

which can be done by calling prefix as seen in the example below:

Example 4.43. Programmatically defining embedded entities

SearchMapping mapping = new SearchMapping();

mapping

    .entity(ProductCatalog.class)

        .indexed()

        .property("catalogId", ElementType.METHOD)

            .documentId()

                .name("id")

        .property("title", ElementType.METHOD)

            .field()

                .index(Index.YES)

                .store(Store.NO)

        .property("description", ElementType.METHOD)

             .field()

                 .index(Index.YES)

                 .store(Store.NO)

        .property("items", ElementType.METHOD)

            .indexEmbedded()

                .prefix("catalog.items"); //optional

cfg.getProperties().put( "hibernate.search.model_mapping", mapping )

The next example shows the same definition using annotation (@IndexedEmbedded):

Example 4.44. Using @IndexedEmbedded

@Entity

@Indexed

public class ProductCatalog {

 @Id

 @GeneratedValue

 @DocumentId(name="id")

 public Long getCatalogId() {...}

 @Field

 public String getTitle() {...}

 @Field

 public String getDescription();

 @OneToMany(fetch = FetchType.LAZY)

 @IndexColumn(name = "list_position")

 @Cascade(org.hibernate.annotations.CascadeType.ALL)
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 @IndexedEmbedded(prefix="catalog.items")

 public List<Item> getItems() {...}

 // ...

}

4.7.7. Contained In definition

@ContainedIn can be defined as seen in the example below:

Example 4.45. Programmatically defining ContainedIn

SearchMapping mapping = new SearchMapping();

mapping

    .entity(ProductCatalog.class)

        .indexed()

        .property("catalogId", ElementType.METHOD)

            .documentId()

        .property("title", ElementType.METHOD)

            .field()

        .property("description", ElementType.METHOD)

            .field()

        .property("items", ElementType.METHOD)

            .indexEmbedded()

    .entity(Item.class)

        .property("description", ElementType.METHOD)

            .field()

        .property("productCatalog", ElementType.METHOD)

            .containedIn();

cfg.getProperties().put( "hibernate.search.model_mapping", mapping );

This is equivalent to defining @ContainedIn in your entity:

Example 4.46. Annotation approach for ContainedIn

@Entity

@Indexed

public class ProductCatalog {

 @Id

 @GeneratedValue

 @DocumentId

 public Long getCatalogId() {...}

 @Field

 public String getTitle() {...}

 @Field

 public String getDescription() {...}
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 @OneToMany(fetch = FetchType.LAZY)

 @IndexColumn(name = "list_position")

 @Cascade(org.hibernate.annotations.CascadeType.ALL)

 @IndexedEmbedded

 private List<Item> getItems() {...}

 // ...

}

@Entity

public class Item {

 @Id

 @GeneratedValue

 private Long itemId;

 @Field

 public String getDescription() {...}

 @ManyToOne( cascade = { CascadeType.PERSIST, CascadeType.REMOVE } )

 @ContainedIn

 public ProductCatalog getProductCatalog() {...}

 // ...

}

4.7.8. Date/Calendar Bridge

In order to define a calendar or date bridge mapping, call the dateBridge(Resolution resolution)

or calendarBridge(Resolution resolution) methods after you have defined a field() in the

SearchMapping hierarchy.

Example 4.47. Programmatic model for defining calendar/date bridge

SearchMapping mapping = new SearchMapping();

mapping

    .entity(Address.class)

        .indexed()

        .property("addressId", ElementType.FIELD)

            .documentId()

    .property("street1", ElementType.FIELD()

        .field()

    .property("createdOn", ElementType.FIELD)

        .field()

        .dateBridge(Resolution.DAY)

    .property("lastUpdated", ElementType.FIELD)

        .calendarBridge(Resolution.DAY);

cfg.getProperties().put( "hibernate.search.model_mapping", mapping );
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See below for defining the above using @CalendarBridge and @DateBridge:

Example 4.48. @CalendarBridge and @DateBridge definition

@Entity

@Indexed

public class Address {

 @Id

 @GeneratedValue

 @DocumentId

 private Long addressId;

 @Field

 private String address1;

 @Field

 @DateBridge(resolution=Resolution.DAY)

 private Date createdOn;

 @CalendarBridge(resolution=Resolution.DAY)

 private Calendar lastUpdated;

 // ...

}

4.7.9. Declaring bridges

It is possible to associate bridges to programmatically defined fields. When you define a

field() programmatically you can use the bridge(Class<?> impl) to associate a FieldBridge

implementation class. The bridge method also provides optional methods to include any

parameters required for the bridge class. The below shows an example of programmatically

defining a bridge:

Example 4.49. Declaring field bridges programmatically

SearchMapping mapping = new SearchMapping();

mapping

    .entity(Address.class)

        .indexed()

        .property("addressId", ElementType.FIELD)

            .documentId()

        .property("street1", ElementType.FIELD)

            .field()

            .field()

                .name("street1_abridged")

                .bridge( ConcatStringBridge.class )

                    .param( "size", "4" );

cfg.getProperties().put( "hibernate.search.model_mapping", mapping );
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The above can equally be defined using annotations, as seen in the next example.

Example 4.50. Declaring field bridges using annotation

@Entity

@Indexed

public class Address {

 @Id

 @GeneratedValue

 @DocumentId(name="id")

 private Long addressId;

 @Fields({

      @Field,

      @Field(name="street1_abridged",

             bridge = @FieldBridge( impl = ConcatStringBridge.class,

             params = @Parameter( name="size", value="4" ))

 })

 private String address1;

 // ...

}

4.7.10. Mapping class bridge

You can define class bridges on entities programmatically. This is shown in the next example:

Example 4.51. Defining class bridges using API

SearchMapping mapping = new SearchMapping();

mapping

    .entity(Departments.class)

      .classBridge(CatDeptsFieldsClassBridge.class)

         .name("branchnetwork")

         .index(Index.YES)

         .store(Store.YES)

         .param("sepChar", " ")

      .classBridge(EquipmentType.class)

         .name("equiptype")

         .index(Index.YES)

         .store(Store.YES)

         .param("C", "Cisco")

         .param("D", "D-Link")

         .param("K", "Kingston")

         .param("3", "3Com")

      .indexed();

cfg.getProperties().put( "hibernate.search.model_mapping", mapping );

The above is similar to using @ClassBridge as seen in the next example:
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Example 4.52. Using @ClassBridge

@Entity

@Indexed

@ClassBridges ( {

  @ClassBridge(name="branchnetwork",

     store= Store.YES,

     impl = CatDeptsFieldsClassBridge.class,

     params = @Parameter( name="sepChar", value=" " ) ),

  @ClassBridge(name="equiptype",

     store= Store.YES,

     impl = EquipmentType.class,

     params = {@Parameter( name="C", value="Cisco" ),

        @Parameter( name="D", value="D-Link" ),

        @Parameter( name="K", value="Kingston" ),

        @Parameter( name="3", value="3Com" )

   })

})

public class Departments {

   // ...

}

4.7.11. Mapping dynamic boost

You can apply a dynamic boost factor on either a field or a whole entity:

Example 4.53. DynamicBoost mapping using programmatic model

SearchMapping mapping = new SearchMapping();

mapping

  .entity(DynamicBoostedDescLibrary.class)

   .indexed()

   .dynamicBoost(CustomBoostStrategy.class)

  .property("libraryId", ElementType.FIELD)

    .documentId().name("id")

  .property("name", ElementType.FIELD)

    .dynamicBoost(CustomFieldBoostStrategy.class);

    .field()

      .store(Store.YES)

cfg.getProperties().put( "hibernate.search.model_mapping", mapping );

The next example shows the equivalent mapping using the @DynamicBoost annotation:

Example 4.54. Using the @DynamicBoost

@Entity

@Indexed

@DynamicBoost(impl = CustomBoostStrategy.class)

public class DynamicBoostedDescriptionLibrary {
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 @Id

 @GeneratedValue

 @DocumentId

 private int id;

 private float dynScore;

 @Field(store = Store.YES)

 @DynamicBoost(impl = CustomFieldBoostStrategy.class)

 private String name;

 public DynamicBoostedDescriptionLibrary() {

  dynScore = 1.0f;

 }

 // ...

}
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Querying
The second most important capability of Hibernate Search is the ability to execute Lucene queries

and retrieve entities managed by a Hibernate session. The search provides the power of Lucene

without leaving the Hibernate paradigm, giving another dimension to the Hibernate classic search

mechanisms (HQL, Criteria query, native SQL query).

Preparing and executing a query consists of four simple steps:

• Creating a FullTextSession

• Creating a Lucene query either via the Hibernate Search query DSL (recommended) or by

utilizing the Lucene query API

• Wrapping the Lucene query using an org.hibernate.Query

• Executing the search by calling for example list() or scroll()

To access the querying facilities, you have to use a FullTextSession. This Search specific

session wraps a regular org.hibernate.Session in order to provide query and indexing

capabilities.

Example 5.1. Creating a FullTextSession

Session session = sessionFactory.openSession();

//...

FullTextSession fullTextSession = Search.getFullTextSession(session);

Once you have a FullTextSession you have two options to build the full-text query: the Hibernate

Search query DSL or the native Lucene query.

If you use the Hibernate Search query DSL, it will look like this:

QueryBuilder b = fullTextSession.getSearchFactory()

    .buildQueryBuilder().forEntity(Myth.class).get();

org.apache.lucene.search.Query luceneQuery =

    b.keyword()

        .onField("history").boostedTo(3)

        .matching("storm")

        .createQuery();

org.hibernate.Query fullTextQuery = fullTextSession.createFullTextQuery(luceneQuery);

List result = fullTextQuery.list(); //return a list of managed objects

You can alternatively write your Lucene query either using the Lucene query parser or Lucene

programmatic API.
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Example 5.2. Creating a Lucene query via the QueryParser

SearchFactory searchFactory = fullTextSession.getSearchFactory();

org.apache.lucene.queryparser.classic.QueryParser parser =

    new QueryParser("title", searchFactory.getAnalyzer(Myth.class));

try {

    org.apache.lucene.search.Query luceneQuery = parser.parse("history:storm^3");

}

catch (ParseException e) {

    //handle parsing failure

}

org.hibernate.Query fullTextQuery = fullTextSession.createFullTextQuery(luceneQuery);

List result = fullTextQuery.list(); //return a list of managed objects

Note

The Hibernate query built on top of the Lucene query is a regular

org.hibernate.Query, which means you are in the same paradigm as the

other Hibernate query facilities (HQL, Native or Criteria). The regular list() ,

uniqueResult(), iterate() and scroll() methods can be used.

In case you are using the Java Persistence APIs of Hibernate, the same extensions exist:

Example 5.3. Creating a Search query using the JPA API

EntityManager em = entityManagerFactory.createEntityManager();

FullTextEntityManager fullTextEntityManager =

    org.hibernate.search.jpa.Search.getFullTextEntityManager(em);

// ...

QueryBuilder b = fullTextEntityManager.getSearchFactory()

    .buildQueryBuilder().forEntity( Myth.class ).get();

org.apache.lucene.search.Query luceneQuery =

    b.keyword()

        .onField("history").boostedTo(3)

        .matching("storm")

        .createQuery();

javax.persistence.Query fullTextQuery =

    fullTextEntityManager.createFullTextQuery( luceneQuery );

List result = fullTextQuery.getResultList(); //return a list of managed objects
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Note

The following examples we will use the Hibernate APIs but the same example can

be easily rewritten with the Java Persistence API by just adjusting the way the

FullTextQuery is retrieved.

5.1. Building queries

Hibernate Search queries are built on top of Lucene queries which gives you total freedom on the

type of Lucene query you want to execute. However, once built, Hibernate Search wraps further

query processing using org.hibernate.Query as your primary query manipulation API.

5.1.1. Building a Lucene query using the Lucene API

Using the Lucene API, you have several options. You can use the query parser (fine for simple

queries) or the Lucene programmatic API (for more complex use cases). It is out of the scope

of this documentation on how to exactly build a Lucene query. Please refer to the online Lucene

documentation or get hold of a copy of Lucene In Action or Hibernate Search in Action.

5.1.2. Building a Lucene query with the Hibernate Search query

DSL

Writing full-text queries with the Lucene programmatic API is quite complex. It’s even more

complex to understand the code once written. Besides the inherent API complexity, you have to

remember to convert your parameters to their string equivalent as well as make sure to apply the

correct analyzer to the right field (a ngram analyzer will for example use several ngrams as the

tokens for a given word and should be searched as such).

The Hibernate Search query DSL makes use of a style of API called a fluent API. This API has

a few key characteristics:

• it has meaningful method names making a succession of operations reads almost like English

• it limits the options offered to what makes sense in a given context (thanks to strong typing and

IDE auto-completion).

• it often uses the chaining method pattern

• it’s easy to use and even easier to read

Let’s see how to use the API. You first need to create a query builder that is attached to a given

indexed entity type. This QueryBuilder will know what analyzer to use and what field bridge to

apply. You can create several QueryBuilder instances (one for each entity type involved in the

root of your query). You get the QueryBuilder from the SearchFactory.
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QueryBuilder mythQB = searchFactory.buildQueryBuilder().forEntity( Myth.class ).get();

You can also override the analyzer used for a given field or fields. This is rarely needed and should

be avoided unless you know what you are doing.

QueryBuilder mythQB = searchFactory.buildQueryBuilder()

    .forEntity( Myth.class )

        .overridesForField("history","stem_analyzer_definition")

    .get();

Using the query builder, you can then build queries. It is important to realize that the end result of a

QueryBuilder is a Lucene query. For this reason you can easily mix and match queries generated

via Lucene’s query parser or Query objects you have assembled with the Lucene programmatic

API and use them with the Hibernate Search DSL. Just in case the DSL is missing some features.

5.1.2.1. Keyword queries

Let’s start with the most basic use case - searching for a specific word:

Query luceneQuery = mythQB.keyword().onField("history").matching("storm").createQuery();

keyword() means that you are trying to find a specific word. onField() specifies in which Lucene

field to look. matching() tells what to look for. And finally createQuery() creates the Lucene

query object. A lot is going on with this line of code.

• The value storm is passed through the history FieldBridge: it does not matter here but you will

see that it’s quite handy when dealing with numbers or dates.

• The field bridge value is then passed to the analyzer used to index the field history. This

ensures that the query uses the same term transformation than the indexing (lower case, n-

gram, stemming and so on). If the analyzing process generates several terms for a given word,

a boolean query is used with the SHOULD logic (roughly an OR logic).

We make the example a little more advanced now and have a look at how to search a field that

uses ngram analyzers. ngram analyzers index succession of ngrams of your words which helps

to recover from user typos. For example the 3-grams of the word hibernate are hib, ibe, ber, rna,

nat, ate.

@AnalyzerDef(name = "ngram",

  tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class ),

  filters = {

    @TokenFilterDef(factory = StandardFilterFactory.class),

    @TokenFilterDef(factory = LowerCaseFilterFactory.class),

    @TokenFilterDef(factory = StopFilterFactory.class),
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    @TokenFilterDef(factory = NGramFilterFactory.class,

      params = {

        @Parameter(name = "minGramSize", value = "3"),

        @Parameter(name = "maxGramSize", value = "3") } )

  }

)

@Entity

@Indexed

public class Myth {

  @Field(analyzer=@Analyzer(definition="ngram")

  public String getName() { return name; }

  public String setName(String name) { this.name = name; }

  private String name;

  ...

}

Query luceneQuery = mythQb.keyword().onField("name").matching("Sisiphus")

   .createQuery();

The matching word "Sisiphus" will be lower-cased and then split into 3-grams: sis, isi, sip, phu,

hus. Each of these n-gram will be part of the query. We will then be able to find the Sysiphus myth

(with a y). All that is transparently done for you.

Note

If for some reason you do not want a specific field to use the field bridge or the

analyzer you can call the ignoreAnalyzer() or ignoreFieldBridge() functions.

To search for multiple possible words in the same field, simply add them all in the matching clause.

//search document with storm or lightning in their history

Query luceneQuery =

    mythQB.keyword().onField("history").matching("storm lightning").createQuery();

To search the same word on multiple fields, use the onFields method.

Query luceneQuery = mythQB

    .keyword()

    .onFields("history","description","name")

    .matching("storm")

    .createQuery();

Sometimes, one field should be treated differently from another field even if searching the same

term, you can use the andField() method for that.

Query luceneQuery = mythQB.keyword()
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    .onField("history")

    .andField("name")

      .boostedTo(5)

    .andField("description")

    .matching("storm")

    .createQuery();

In the previous example, only field name is boosted to 5.

5.1.2.2. Fuzzy queries

To execute a fuzzy query (based on the Levenshtein distance algorithm), start like a keyword

query and add the fuzzy flag.

Query luceneQuery = mythQB

    .keyword()

      .fuzzy()

        .withThreshold(.8f)

        .withPrefixLength(1)

    .onField("history")

    .matching("starm")

    .createQuery();

threshold is the limit above which two terms are considering matching. It’s a decimal between

0 and 1 and defaults to 0.5. prefixLength is the length of the prefix ignored by the "fuzzyness":

while it defaults to 0, a non zero value is recommended for indexes containing a huge amount

of distinct terms.

5.1.2.3. Wildcard queries

You can also execute wildcard queries (queries where some of parts of the word are unknown).

The character ? represents a single character and * represents any character sequence. Note

that for performance purposes, it is recommended that the query does not start with either ? or *.

Query luceneQuery = mythQB

    .keyword()

      .wildcard()

    .onField("history")

    .matching("sto*")

    .createQuery();

Note

Wildcard queries do not apply the analyzer on the matching terms. Otherwise the

risk of * or ? being mangled is too high.
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5.1.2.4. Phrase queries

So far we have been looking for words or sets of words, you can also search exact or approximate

sentences. Use phrase() to do so.

Query luceneQuery = mythQB

    .phrase()

    .onField("history")

    .sentence("Thou shalt not kill")

    .createQuery();

You can search approximate sentences by adding a slop factor. The slop factor represents the

number of other words permitted in the sentence: this works like a within or near operator

Query luceneQuery = mythQB

    .phrase()

      .withSlop(3)

    .onField("history")

    .sentence("Thou kill")

    .createQuery();

5.1.2.5. Range queries

After looking at all these query examples for searching for to a given word, it is time to introduce

range queries (on numbers, dates, strings etc). A range query searches for a value in between

given boundaries (included or not) or for a value below or above a given boundary (included or

not).

//look for 0 <= starred < 3

Query luceneQuery = mythQB

    .range()

    .onField("starred")

    .from(0).to(3).excludeLimit()

    .createQuery();

//look for myths strictly BC

Date beforeChrist = ...;

Query luceneQuery = mythQB

    .range()

    .onField("creationDate")

    .below(beforeChrist).excludeLimit()

    .createQuery();

5.1.2.6. Spatial (or geolocation) queries

This set of queries has its own chapter, check out Chapter 9, Spatial.
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5.1.2.7. More Like This queries

Important

This feature is considered experimental.

Have you ever looked at an article or document and thought: "I want to find more like this"? Have

you ever appreciated an e-commerce website that gives you similar articles to the one you are

exploring?

More Like This queries are achieving just that. You feed it an entity (or its identifier) and Hibernate

Search returns the list of entities that are similar.

How does it work?

For each (selected) field of the targeted entity, we look at the most meaningful

terms. Then we create a query matching the most meaningful terms per field.

This is a slight variation compared to the original Lucene MoreLikeThisQuery

implementation.

The query DSL API should be self explaining. Let’s look at some usage examples.

QueryBuilder qb = fullTextSession.getSearchFactory()

        .buildQueryBuilder()

        .forEntity( Coffee.class )

        .get();

Query mltQuery = qb

        .moreLikeThis()

            .comparingAllFields()

            .toEntityWithId( coffeeId )

            .createQuery();

List<Object[]> results = (List<Object[]>) fullTextSession

        .createFullTextQuery( mltQuery, Coffee.class )

        .setProjection( ProjectionConstants.THIS, ProjectionConstants.SCORE )

        .list();

This first example takes the id of an Coffee entity and finds the matching coffees across all fields.

To be fair, this is not across all fields. To be included in the More Like This query, fields need

to store term vectors or the actual field value. Id fields (of the root entity as well as embedded

entities) and numeric fields are excluded. The latter exclusion might change in future versions.

Looking at the Coffee class, the following fields are considered: name as it is stored, description

as it stores the term vector. id and internalDescription are excluded.
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@Entity @Indexed

public class Coffee {

    @Id @GeneratedValue

    public Integer getId() { return id; }

    @Field(termVector = TermVector.NO, store = Store.YES)

    public String getName() { return name; }

    @Field(termVector = TermVector.YES)

    public String getSummary() { return summary; }

    @Column(length = 2000)

    @Field(termVector = TermVector.YES)

    public String getDescription() { return description; }

    public int getIntensity() { return intensity; }

    // Not stored nor term vector, i.e. cannot be used for More Like This

    @Field

    public String getInternalDescription() { return internalDescription; }

    // ...

}

In the example above we used projection to retrieve the relative score of each element. We might

use the score to only display the results for which the score is high enough.

Tip

For best performance and best results, store the term vectors for the fields you

want to include in a More Like This query.

Often, you are only interested in a few key fields to find similar entities. Plus some fields are more

important than others and should be boosted.

Query mltQuery = qb

        .moreLikeThis()

            .comparingField("summary").boostedTo(10f)

            .andField("description")

            .toEntityWithId( coffeeId )

            .createQuery();

In this example, we look for similar entities by summary and description. But similar summaries are

more important than similar descriptions. This is a critical tool to make More Like This meaningful

for your data set.

Instead of providing the entity id, you can pass the full entity object. If the entity contains the

identifier, we will use it to find the term vectors or field values. This means that we will compare
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the entity state as stored in the Lucene index. If the identifier cannot be retrieved (for example if

the entity has not been persisted yet), we will look at each of the entity properties to find the most

meaningful terms. The latter is slower and won’t give the best results - avoid it if possible.

Here is how you pass the entity instance you want to compare with:

Coffee coffee = ...; //managed entity from somewhere

Query mltQuery = qb

        .moreLikeThis()

            .comparingField("summary").boostedTo(10f)

            .andField("description")

            .toEntity( coffee )

            .createQuery();

Note

By default, the results contain at the top the entity you are comparing with. This is

particularly useful to compare relative scores. If you don’t need it, you can exclude

it.

Query mltQuery = qb

        .moreLikeThis()

            .excludeEntityUsedForComparison()

            .comparingField("summary").boostedTo(10f)

            .andField("description")

            .toEntity( coffee )

            .createQuery();

You can ask Hibernate Search to give a higher score to the very similar entities and downgrade the

score of mildly similar entities. We do that by boosting each meaningful terms by their individual

overall score. Start with a boost factor of 1 and adjust from there.

Query mltQuery = qb

        .moreLikeThis()

            .favorSignificantTermsWithFactor(1f)

            .comparingField("summary").boostedTo(10f)

            .andField("description")

            .toEntity( coffee )

            .createQuery();

Remember, more like this is a very subjective meaning and will vary depending on your data and

the rules of your domain. With the various options offered, Hibernate Search arms you with the

tools to adjust this weapon. Make sure to continuously test the results against your data set.
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5.1.2.8. Combining queries

Finally, you can aggregate (combine) queries to create more complex queries. The following

aggregation operators are available:

• SHOULD: the query query should contain the matching elements of the subquery

• MUST: the query must contain the matching elements of the subquery

• MUST NOT: the query must not contain the matching elements of the subquery

The sub-queries can be any Lucene query including a boolean query itself. Let’s look at a few

examples:

//look for popular modern myths that are not urban

Date twentiethCentury = ...;

Query luceneQuery = mythQB

    .bool()

      .must( mythQB.keyword().onField("description").matching("urban").createQuery() )

        .not()

      .must( mythQB.range().onField("starred").above(4).createQuery() )

      .must( mythQB

        .range()

        .onField("creationDate")

        .above(twentiethCentury)

        .createQuery() )

    .createQuery();

//look for popular myths that are preferably urban

Query luceneQuery = mythQB

    .bool()

      .should( mythQB.keyword().onField("description").matching("urban").createQuery() )

      .must( mythQB.range().onField("starred").above(4).createQuery() )

    .createQuery();

//look for all myths except religious ones

Query luceneQuery = mythQB

    .all()

      .except( monthQb

        .keyword()

        .onField( "description_stem" )

        .matching( "religion" )

        .createQuery()

      )

    .createQuery();

5.1.2.9. Query options

We already have seen several query options in the previous example, but lets summarize again

the options for query types and fields:

• boostedTo (on query type and on field): boost the whole query or the specific field to a given

factor
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• withConstantScore (on query): all results matching the query have a constant score equals

to the boost

• filteredBy(Filter) (on query): filter query results using the Filter instance

• ignoreAnalyzer (on field): ignore the analyzer when processing this field

• ignoreFieldBridge (on field): ignore field bridge when processing this field

Let’s check out an example using some of these options

Query luceneQuery = mythQB

    .bool()

      .should( mythQB.keyword().onField("description").matching("urban").createQuery() )

      .should( mythQB

        .keyword()

        .onField("name")

          .boostedTo(3)

          .ignoreAnalyzer()

        .matching("urban").createQuery() )

      .must( mythQB

        .range()

          .boostedTo(5).withConstantScore()

        .onField("starred").above(4).createQuery() )

    .createQuery();

As you can see, the Hibernate Search query DSL is an easy to use and easy to read query API

and by accepting and producing Lucene queries, you can easily incorporate query types not (yet)

supported by the DSL. Please give us feedback!

5.1.3. Building a Hibernate Search query

So far we only covered the process of how to create your Lucene query (see Section 5.1, “Building

queries”). However, this is only the first step in the chain of actions. Let’s now see how to build

the Hibernate Search query from the Lucene query.

5.1.3.1. Generality

Once the Lucene query is built, it needs to be wrapped into an Hibernate Query. If not specified

otherwise, the query will be executed against all indexed entities, potentially returning all types

of indexed classes.

Example 5.4. Wrapping a Lucene query into a Hibernate Query

FullTextSession fullTextSession = Search.getFullTextSession( session );

org.hibernate.Query fullTextQuery = fullTextSession.createFullTextQuery( luceneQuery );

It is advised, from a performance point of view, to restrict the returned types:
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Example 5.5. Filtering the search result by entity type

fullTextQuery = fullTextSession

    .createFullTextQuery(luceneQuery, Customer.class);

// or

fullTextQuery = fullTextSession

    .createFullTextQuery(luceneQuery, Item.class, Actor.class);

In Example 5.5, “Filtering the search result by entity type” the first example returns only matching

Customer instances, the second returns matching Actor and Item instances. The type restriction

is fully polymorphic which means that if there are two indexed subclasses Salesman and Customer

of the baseclass Person, it is possible to just specify Person.class in order to filter on result types.

5.1.3.2. Pagination

Out of performance reasons it is recommended to restrict the number of returned objects per

query. In fact is a very common use case anyway that the user navigates from one page to an

other. The way to define pagination is exactly the way you would define pagination in a plain HQL

or Criteria query.

Example 5.6. Defining pagination for a search query

org.hibernate.Query fullTextQuery =

    fullTextSession.createFullTextQuery(luceneQuery, Customer.class);

fullTextQuery.setFirstResult(15); //start from the 15th element

fullTextQuery.setMaxResults(10); //return 10 elements

Tip

It is still possible to get the total number of matching elements regardless of the

pagination via fulltextQuery.getResultSize()

5.1.3.3. Sorting

Apache Lucene provides a very flexible and powerful way to sort results. While the default sorting

(by relevance) is appropriate most of the time, it can be interesting to sort by one or several other

properties. In order to do so set the Lucene Sort object to apply a Lucene sorting strategy.

Example 5.7. Specifying a Lucene Sort in order to sort the result

org.hibernate.search.FullTextQuery query = s.createFullTextQuery( query, Book.class );
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org.apache.lucene.search.Sort sort = new Sort(

    new SortField("title", SortField.STRING));

query.setSort(sort);

List results = query.list();

Tip

Be aware that fields used for sorting must not be tokenized (see Section 4.1.1.2,

“@Field”).

5.1.3.4. Fetching strategy

When you restrict the return types to one class, Hibernate Search loads the objects using a single

query. It also respects the static fetching strategy defined in your domain model.

It is often useful, however, to refine the fetching strategy for a specific use case.

Example 5.8. Specifying FetchMode on a query

Criteria criteria =

    s.createCriteria(Book.class).setFetchMode("authors", FetchMode.JOIN);

s.createFullTextQuery(luceneQuery).setCriteriaQuery(criteria);

In this example, the query will return all Books matching the luceneQuery. The authors collection

will be loaded from the same query using an SQL outer join.

When defining a criteria query, it is not necessary to restrict the returned entity types when creating

the Hibernate Search query from the full text session: the type is guessed from the criteria query

itself.

Important

Only fetch mode can be adjusted, refrain from applying any other restriction. While

it is known to work as of Hibernate Search 4, using restriction (ie a where clause)

on your Criteria query should be avoided when possible. getResultSize() will

throw a SearchException if used in conjunction with a Criteria with restriction.

Important

You cannot use setCriteriaQuery if more than one entity type is expected to be

returned.
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5.1.3.5. Projection

For some use cases, returning the domain object (including its associations) is overkill. Only a

small subset of the properties is necessary. Hibernate Search allows you to return a subset of

properties:

Example 5.9. Using projection instead of returning the full domain object

org.hibernate.search.FullTextQuery query =

    s.createFullTextQuery(luceneQuery, Book.class);

setProjection("id", "summary", "body", "mainAuthor.name");

List results = query.list();

Object[] firstResult = (Object[]) results.get(0);

Integer id = firstResult[0];

String summary = firstResult[1];

String body = firstResult[2];

String authorName = firstResult[3];

Hibernate Search extracts the properties from the Lucene index and convert them back to their

object representation, returning a list of Object[]. Projections avoid a potential database round

trip (useful if the query response time is critical). However, it also has several constraints:

• the properties projected must be stored in the index (@Field(store=Store.YES)), which

increases the index size

• the properties projected must use a FieldBridge implementing

org.hibernate.search.bridge.TwoWayFieldBridge or

org.hibernate.search.bridge.TwoWayStringBridge, the latter being the simpler version.

Note

All Hibernate Search built-in types are two-way.

• you can only project simple properties of the indexed entity or its embedded associations. This

means you cannot project a whole embedded entity.

• projection does not work on collections or maps which are indexed via @IndexedEmbedded

Projection is also useful for another kind of use case. Lucene can provide metadata information

about the results. By using some special projection constants, the projection mechanism can

retrieve this metadata:

Example 5.10. Using projection in order to retrieve meta data

org.hibernate.search.FullTextQuery query =
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    s.createFullTextQuery(luceneQuery, Book.class);

query.setProjection(

    FullTextQuery.SCORE,

    FullTextQuery.THIS,

    "mainAuthor.name" );

List results = query.list();

Object[] firstResult = (Object[]) results.get(0);

float score = firstResult[0];

Book book = firstResult[1];

String authorName = firstResult[2];

You can mix and match regular fields and projection constants. Here is the list of the available

constants:

• FullTextQuery.THIS: returns the initialized and managed entity (as a non projected query

would have done).

• FullTextQuery.DOCUMENT: returns the Lucene Document related to the object projected.

• FullTextQuery.OBJECT_CLASS: returns the class of the indexed entity.

• FullTextQuery.SCORE: returns the document score in the query. Scores are handy to compare

one result against an other for a given query but are useless when comparing the result of

different queries.

• FullTextQuery.ID: the id property value of the projected object.

• FullTextQuery.DOCUMENT_ID: the Lucene document id. Careful, Lucene document id can

change overtime between two different IndexReader opening.

• FullTextQuery.EXPLANATION: returns the Lucene Explanation object for the matching object/

document in the given query. Do not use if you retrieve a lot of data. Running explanation

typically is as costly as running the whole Lucene query per matching element. Make sure you

use projection!

5.1.3.6. Customizing object initialization strategies

By default, Hibernate Search uses the most appropriate strategy to initialize entities matching your

full text query. It executes one (or several) queries to retrieve the required entities. This is the best

approach to minimize database round trips in a scenario where none / few of the retrieved entities

are present in the persistence context (ie the session) or the second level cache.

If most of your entities are present in the second level cache, you can force Hibernate Search to

look into the cache before retrieving an object from the database.

Example 5.11. Check the second-level cache before using a query

FullTextQuery query = session.createFullTextQuery(luceneQuery, User.class);

query.initializeObjectWith(
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    ObjectLookupMethod.SECOND_LEVEL_CACHE,

    DatabaseRetrievalMethod.QUERY

);

ObjectLookupMethod defines the strategy used to check if an object is easily accessible (without

database round trip). Other options are:

• ObjectLookupMethod.PERSISTENCE_CONTEXT: useful if most of the matching entities are

already in the persistence context (ie loaded in the Session or EntityManager)

• ObjectLookupMethod.SECOND_LEVEL_CACHE: check first the persistence context and then the

second-level cache.

Note

Note that to search in the second-level cache, several settings must be in place:

• the second level cache must be properly configured and active

• the entity must have enabled second-level cache (eg via @Cacheable)

• the Session, EntityManager or Query must allow access to the second-level

cache for read access (ie CacheMode.NORMAL in Hibernate native APIs or

CacheRetrieveMode.USE in JPA 2 APIs).

Warning

Avoid using ObjectLookupMethod.SECOND_LEVEL_CACHE unless your second

level cache implementation is either EHCache or Infinispan; other second level

cache providers don’t currently implement this operation efficiently.

You can also customize how objects are loaded from the database (if not found before). Use

DatabaseRetrievalMethod for that:

• QUERY (default): use a (set of) queries to load several objects in batch. This is usually the best

approach.

• FIND_BY_ID: load objects one by one using the Session.get or EntityManager.find

semantic. This might be useful if batch-size is set on the entity (in which case, entities will be

loaded in batch by Hibernate Core). QUERY should be preferred almost all the time.

The defaults for both methods, the object lookup as well as the database

retrieval can also be configured via configuration properties. This way you

don’t have to specify your preferred methods on each query creation.
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The property names are hibernate.search.query.object_lookup_method and

hibernate.search.query.database_retrieval_method respectively. As value use the name

of the method (upper- or lowercase). For example:

Example 5.12. Setting object lookup and database retrieval methods via

configuration properties

hibernate.search.query.object_lookup_method = second_level_cache

hibernate.search.query.database_retrieval_method = query

5.1.3.7. Limiting the time of a query

You can limit the time a query takes in Hibernate Search in two ways:

• raise an exception when the limit is reached

• limit to the number of results retrieved when the time limit is raised

5.1.3.7.1. Raise an exception on time limit

You can decide to stop a query if when it takes more than a predefined amount of time. Note that

this is a best effort basis but if Hibernate Search still has significant work to do and if we are beyond

the time limit, a QueryTimeoutException will be raised (org.hibernate.QueryTimeoutException or

javax.persistence.QueryTimeoutException depending on your programmatic API).

To define the limit when using the native Hibernate APIs, use one of the following approaches

Example 5.13. Defining a timeout in query execution

Query luceneQuery = ...;

FullTextQuery query = fullTextSession.createFullTextQuery(luceneQuery, User.class);

//define the timeout in seconds

query.setTimeout(5);

//alternatively, define the timeout in any given time unit

query.setTimeout(450, TimeUnit.MILLISECONDS);

try {

    query.list();

}

catch (org.hibernate.QueryTimeoutException e) {

    //do something, too slow

}

Likewise getResultSize(), iterate() and scroll() honor the timeout but only until the end of

the method call. That simply means that the methods of Iterable or the ScrollableResults ignore

the timeout.
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Note

explain() does not honor the timeout: this method is used for debug purposes

and in particular to find out why a query is slow

When using JPA, simply use the standard way of limiting query execution time.

Example 5.14. Defining a timeout in query execution

Query luceneQuery = ...;

FullTextQuery query = fullTextEM.createFullTextQuery(luceneQuery, User.class);

//define the timeout in milliseconds

query.setHint( "javax.persistence.query.timeout", 450 );

try {

    query.getResultList();

}

catch (javax.persistence.QueryTimeoutException e) {

    //do something, too slow

}

Important

Remember, this is a best effort approach and does not guarantee to stop exactly

on the specified timeout.

5.1.3.7.2. Limit the number of results when the time limit is reached

Alternatively, you can return the number of results which have already been fetched by the time

the limit is reached. Note that only the Lucene part of the query is influenced by this limit. It is

possible that, if you retrieve managed object, it takes longer to fetch these objects.

Warning

This approach is not compatible with the setTimeout approach.

To define this soft limit, use the following approach

Example 5.15. Defining a time limit in query execution

Query luceneQuery = ...;

FullTextQuery query = fullTextSession.createFullTextQuery(luceneQuery, User.class);
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//define the timeout in seconds

query.limitExecutionTimeTo(500, TimeUnit.MILLISECONDS);

List results = query.list();

Likewise getResultSize(), iterate() and scroll() honor the time limit but only until the end

of the method call. That simply means that the methods of Iterable or the ScrollableResults

ignore the timeout.

You can determine if the results have been partially loaded by invoking the hasPartialResults

method.

Example 5.16. Determines when a query returns partial results

Query luceneQuery = ...;

FullTextQuery query = fullTextSession.createFullTextQuery(luceneQuery, User.class);

//define the timeout in seconds

query.limitExecutionTimeTo(500, TimeUnit.MILLISECONDS);

List results = query.list();

if ( query.hasPartialResults() ) {

    displayWarningToUser();

}

If you use the JPA API, limitExecutionTimeTo and hasPartialResults are also available to you.

5.2. Retrieving the results

Once the Hibernate Search query is built, executing it is in no way different than executing a HQL

or Criteria query. The same paradigm and object semantic applies. All the common operations

are available: list(), uniqueResult(), iterate(), scroll().

5.2.1. Performance considerations

If you expect a reasonable number of results (for example using pagination) and expect to work on

all of them, list() or uniqueResult() are recommended. list() work best if the entity batch-

size is set up properly. Note that Hibernate Search has to process all Lucene Hits elements

(within the pagination) when using list() , uniqueResult() and iterate().

If you wish to minimize Lucene document loading, scroll() is more appropriate. Don’t forget to

close the ScrollableResults object when you’re done, since it keeps Lucene resources. If you

expect to use scroll, but wish to load objects in batch, you can use query.setFetchSize(). When

an object is accessed, and if not already loaded, Hibernate Search will load the next fetchSize

objects in one pass.
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Important

Pagination is preferred over scrolling.

5.2.2. Result size

It is sometimes useful to know the total number of matching documents:

• for the Google-like feature "1-10 of about 888,000,000"

• to implement a fast pagination navigation

• to implement a multi step search engine (adding approximation if the restricted query return no

or not enough results)

Of course it would be too costly to retrieve all the matching documents. Hibernate Search allows

you to retrieve the total number of matching documents regardless of the pagination parameters.

Even more interesting, you can retrieve the number of matching elements without triggering a

single object load.

Example 5.17. Determining the result size of a query

org.hibernate.search.FullTextQuery query =

    s.createFullTextQuery(luceneQuery, Book.class);

//return the number of matching books without loading a single one

assert 3245 == query.getResultSize();

org.hibernate.search.FullTextQuery query =

    s.createFullTextQuery(luceneQuery, Book.class);

query.setMaxResult(10);

List results = query.list();

//return the total number of matching books regardless of pagination

assert 3245 == query.getResultSize();

Note

Like Google, the number of results is an approximation if the index is not fully up-

to-date with the database (asynchronous cluster for example).

5.2.3. ResultTransformer

As seen in Section 5.1.3.5, “Projection” projection results are returns as Object arrays. This data

structure is not always matching the application needs. In this cases It is possible to apply a

ResultTransformer which post query execution can build the needed data structure:
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Example 5.18. Using ResultTransformer in conjunction with projections

org.hibernate.search.FullTextQuery query =

    s.createFullTextQuery(luceneQuery, Book.class);

query.setProjection("title", "mainAuthor.name");

query.setResultTransformer(

    new StaticAliasToBeanResultTransformer(

        BookView.class,

        "title",

        "author" )

);

ListBookView>; results = (List<BookView>) query.list();

for (BookView view : results) {

    log.info("Book: " + view.getTitle() + ", " + view.getAuthor());

}

Examples of ResultTransformer implementations can be found in the Hibernate Core codebase.

5.2.4. Understanding results

You will find yourself sometimes puzzled by a result showing up in a query or a result not showing

up in a query. Luke is a great tool to understand those mysteries. However, Hibernate Search

also gives you access to the Lucene Explanation object for a given result (in a given query). This

class is considered fairly advanced to Lucene users but can provide a good understanding of the

scoring of an object. You have two ways to access the Explanation object for a given result:

• Use the fullTextQuery.explain(int) method

• Use projection

The first approach takes a document id as a parameter and return the Explanation object. The

document id can be retrieved using projection and the FullTextQuery.DOCUMENT_ID constant.

Warning

The Document id has nothing to do with the entity id. Do not mess up these two

notions.

In the second approach you project the Explanation object using the

FullTextQuery.EXPLANATION constant.

Example 5.19. Retrieving the Lucene Explanation object using projection

FullTextQuery ftQuery = s.createFullTextQuery( luceneQuery, Dvd.class )

        .setProjection(
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             FullTextQuery.DOCUMENT_ID,

             FullTextQuery.EXPLANATION,

             FullTextQuery.THIS );

@SuppressWarnings("unchecked") List<Object[]> results = ftQuery.list();

for (Object[] result : results) {

    Explanation e = (Explanation) result[1];

    display( e.toString() );

}

Be careful, building the explanation object is quite expensive, it is roughly as expensive as running

the Lucene query again. Don’t do it if you don’t need the object

5.3. Filters

Apache Lucene has a powerful feature that allows to filter query results according to a custom

filtering process. This is a very powerful way to apply additional data restrictions, especially since

filters can be cached and reused. Some interesting use cases are:

• security

• temporal data (eg. view only last month’s data)

• population filter (eg. search limited to a given category)

• and many more

Hibernate Search pushes the concept further by introducing the notion of parameterizable named

filters which are transparently cached. For people familiar with the notion of Hibernate Core filters,

the API is very similar:

Example 5.20. Enabling fulltext filters for a given query

fullTextQuery = s.createFullTextQuery(query, Driver.class);

fullTextQuery.enableFullTextFilter("bestDriver");

fullTextQuery.enableFullTextFilter("security").setParameter("login", "andre");

fullTextQuery.list(); //returns only best drivers where andre has credentials

In this example we enabled two filters on top of the query. You can enable (or disable) as many

filters as you like.

Declaring filters is done through the @FullTextFilterDef annotation. You can use

@FullTextFilterDef or @FullTextFilterDefs on any: *@Indexed entity regardless of the query

the filter is later applied to * Parent class of an @Indexed entity * package-info.java of a package

containing an @Indexed entity

This implies that filter definitions are global and their names must be unique. A SearchException

is thrown in case two different @FullTextFilterDef annotations with the same name are defined.

Each named filter has to specify its actual filter implementation.
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Example 5.21. Defining and implementing a Filter

@Entity

@Indexed

@FullTextFilterDefs( {

    @FullTextFilterDef(name = "bestDriver", impl = BestDriversFilter.class),

    @FullTextFilterDef(name = "security", impl = SecurityFilterFactory.class)

})

public class Driver { ... }

public class BestDriversFilter extends org.apache.lucene.search.Filter {

    public DocIdSet getDocIdSet(IndexReader reader) throws IOException {

        OpenBitSet bitSet = new OpenBitSet( reader.maxDoc() );

        TermDocs termDocs = reader.termDocs( new Term( "score", "5" ) );

        while ( termDocs.next() ) {

            bitSet.set( termDocs.doc() );

        }

        return bitSet;

    }

}

BestDriversFilter is an example of a simple Lucene filter which reduces the result

set to drivers whose score is 5. In this example the specified filter implements the

org.apache.lucene.search.Filter directly and contains a no-arg constructor.

If your Filter creation requires additional steps or if the filter you want to use does not have a no-

arg constructor, you can use the factory pattern:

Example 5.22. Creating a filter using the factory pattern

@Entity

@Indexed

@FullTextFilterDef(name = "bestDriver", impl = BestDriversFilterFactory.class)

public class Driver { ... }

public class BestDriversFilterFactory {

    @Factory

    public Filter getFilter() {

        //some additional steps to cache the filter results per IndexReader

        Filter bestDriversFilter = new BestDriversFilter();

        return new CachingWrapperFilter(bestDriversFilter);

    }

}

Hibernate Search will look for a @Factory annotated method and use it to build the filter instance.

The factory must have a no-arg constructor.
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Named filters come in handy where parameters have to be passed to the filter. For example a

security filter might want to know which security level you want to apply:

Example 5.23. Passing parameters to a defined filter

fullTextQuery = s.createFullTextQuery(query, Driver.class);

fullTextQuery.enableFullTextFilter("security").setParameter("level", 5);

Each parameter must have an associated setter on either the filter or filter factory of the targeted

named filter definition.

Example 5.24. Using parameters in the actual filter implementation

public class SecurityFilterFactory {

    private Integer level;

    /**

     * injected parameter

     */

    public void setLevel(Integer level) {

        this.level = level;

    }

    @Factory

    public Filter getFilter() {

        Query query = new TermQuery( new Term( "level", level.toString() ) );

        return new CachingWrapperFilter( new QueryWrapperFilter(query) );

    }

}

Filters will be cached once created, based on all their parameter names and values. Caching

happens using a combination of hard and soft references to allow disposal of memory when

needed. The hard reference cache keeps track of the most recently used filters and transforms

the ones least used to SoftReferences when needed. Once the limit of the hard reference cache is

reached additional filters are cached as SoftReferences. To adjust the size of the hard reference

cache, use hibernate.search.filter.cache_strategy.size (defaults to 128). For advanced

use of filter caching, you can implement your own FilterCachingStrategy. The classname is defined

by hibernate.search.filter.cache_strategy.

This filter caching mechanism should not be confused with caching the actual filter

results. In Lucene it is common practice to wrap filters using the IndexReader around

a CachingWrapperFilter. The wrapper will cache the DocIdSet returned from the

getDocIdSet(IndexReader reader) method to avoid expensive re-computation. It is important

to mention that the computed DocIdSet is only cachable for the same IndexReader instance,

because the reader effectively represents the state of the index at the moment it was opened.

The document list cannot change within an opened IndexReader. A different/new IndexReader
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instance, however, works potentially on a different set of Documents (either from a different index

or simply because the index has changed), hence the cached DocIdSet has to be recomputed.

Hibernate Search also helps with this aspect of caching. Per default the cache flag of

@FullTextFilterDef is set to FilterCacheModeType.INSTANCE_AND_DOCIDSETRESULTS which

will automatically cache the filter instance as well as wrap the specified filter around

a Hibernate specific implementation of CachingWrapperFilter. In contrast to Lucene’s

version of this class SoftReferences are used together with a hard reference count

(see discussion about filter cache). The hard reference count can be adjusted using

hibernate.search.filter.cache_docidresults.size (defaults to 5). The wrapping behavior

can be controlled using the @FullTextFilterDef.cache parameter. There are three different

values for this parameter:

Value Definition

FilterCacheModeType.NONE No filter instance and no result is cached by

Hibernate Search. For every filter call, a new

filter instance is created. This setting might

be useful for rapidly changing data sets or

heavily memory constrained environments.

FilterCacheModeType.INSTANCE_ONLY The filter instance is cached and reused

across concurrent Filter.getDocIdSet()

calls. DocIdSet results are not cached. This

setting is useful when a filter uses its own

specific caching mechanism or the filter

results change dynamically due to application

specific events making DocIdSet caching in

both cases unnecessary.

FilterCacheModeType.INSTANCE_AND_DOCIDSETRESULTSBoth the filter instance and the DocIdSet

results are cached. This is the default value.

Last but not least - why should filters be cached? There are two areas where filter caching shines:

• the system does not update the targeted entity index often (in other words, the IndexReader

is reused a lot)

• the Filter’s DocIdSet is expensive to compute (compared to the time spent to execute the query)

5.3.1. Using filters in a sharded environment

It is possible, in a sharded environment to execute queries on a subset of the available shards.

This can be done in two steps:

• create a sharding strategy that does select a subset of IndexManagers depending on some

filter configuration
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• activate the proper filter at query time

Let’s first look at an example of sharding strategy that query on a specific customer shard if the

customer filter is activated.

public class CustomerShardingStrategy implements IndexShardingStrategy {

 // stored IndexManagers in a array indexed by customerID

 private IndexManager[] indexManagers;

 public void initialize(Properties properties, IndexManager[] indexManagers) {

   this.indexManagers = indexManagers;

 }

 public IndexManager[] getIndexManagersForAllShards() {

   return indexManagers;

 }

 public IndexManager getIndexManagerForAddition(

     Class<?> entity, Serializable id, String idInString, Document document) {

   Integer customerID = Integer.parseInt(document.getFieldable("customerID").stringValue());

   return indexManagers[customerID];

 }

 public IndexManager[] getIndexManagersForDeletion(

     Class<?> entity, Serializable id, String idInString) {

   return getIndexManagersForAllShards();

 }

  /**

  * Optimization; don't search ALL shards and union the results; in this case, we

  * can be certain that all the data for a particular customer Filter is in a single

  * shard; simply return that shard by customerID.

  */

 public IndexManager[] getIndexManagersForQuery(

     FullTextFilterImplementor[] filters) {

   FullTextFilter filter = getCustomerFilter(filters, "customer");

   if (filter == null) {

     return getIndexManagersForAllShards();

   }

   else {

     return new IndexManager[] { indexManagers[Integer.parseInt(

       filter.getParameter("customerID").toString())] };

   }

 }

 private FullTextFilter getCustomerFilter(FullTextFilterImplementor[] filters, String name) {

   for (FullTextFilterImplementor filter: filters) {

     if (filter.getName().equals(name)) return filter;

   }

   return null;

 }

}
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In this example, if the filter named customer is present, we make sure to only use the shard

dedicated to this customer. Otherwise, we return all shards. A given Sharding strategy can react

to one or more filters and depends on their parameters.

The second step is simply to activate the filter at query time. While the filter can be a regular filter

(as defined in Section 5.3, “Filters”) which also filters Lucene results after the query, you can make

use of a special filter that will only be passed to the sharding strategy and otherwise ignored for the

rest of the query. Simply use the ShardSensitiveOnlyFilter class when declaring your filter.

@Entity @Indexed

@FullTextFilterDef(name="customer", impl=ShardSensitiveOnlyFilter.class)

public class Customer {

   // ...

}

FullTextQuery query = ftEm.createFullTextQuery(luceneQuery, Customer.class);

query.enableFulltextFilter("customer").setParameter("CustomerID", 5);

@SuppressWarnings("unchecked")

List<Customer> results = query.getResultList();

Note that by using the ShardSensitiveOnlyFilter, you do not have to implement any Lucene

filter. Using filters and sharding strategy reacting to these filters is recommended to speed up

queries in a sharded environment.

5.4. Faceting

Faceted search [http://en.wikipedia.org/wiki/Faceted_search] is a technique which allows to divide

the results of a query into multiple categories. This categorization includes the calculation of

hit counts for each category and the ability to further restrict search results based on these

facets (categories). Figure 5.1, “Facets Example on Amazon” shows a faceting example. The

search for 'Hibernate Search' results in fifteen hits which are displayed on the main part of the

page. The navigation bar on the left, however, shows the categoryComputers & Internet with

its subcategories Programming, Computer Science, Databases, Software, Web Development,

Networking and Home Computing. For each of these subcategories the number of books is shown

matching the main search criteria and belonging to the respective subcategory. This division of

the category Computers & Internet is one facet of this search. Another one is for example the

average customer review rating.

http://en.wikipedia.org/wiki/Faceted_search
http://en.wikipedia.org/wiki/Faceted_search
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Figure 5.1. Facets Example on Amazon
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In Hibernate Search the classes QueryBuilder and FullTextQuery are the entry point to the

faceting API. The former allows to create faceting requests whereas the latter gives access to the

so called FacetManager. With the help of the FacetManager faceting requests can be applied on

a query and selected facets can be added to an existing query in order to refine search results.

The following sections will describe the faceting process in more detail. The examples will use the

entity Cd as shown in Example 5.25, “Example entity for faceting”:

Example 5.25. Example entity for faceting

@Entity

@Indexed

public class Cd {

    @Id

    @GeneratedValue

    private int id;

    @Fields( {

        @Field,

        @Field(name = "name_un_analyzed", analyze = Analyze.NO)

    })

    private String name;

    @Field(analyze = Analyze.NO)

    private int price;

    Field(analyze = Analyze.NO)

    @DateBridge(resolution = Resolution.YEAR)

    private Date releaseYear;

    @Field(analyze = Analyze.NO)

    private String label;

// setter/getter

// ...

5.4.1. Creating a faceting request

The first step towards a faceted search is to create the FacetingRequest. Currently two types

of faceting requests are supported. The first type is called discrete faceting and the second type

range faceting request.

5.4.1.1. Discrete faceting request

In the case of a discrete faceting request, you start with giving the request a unique name. This

name will later be used to retrieve the facet values (see Section 5.4.4, “Interpreting a Facet result”).

Then you need to specify on which index field you want to categorize on and which faceting options

to apply. An example for a discrete faceting request can be seen in Example 5.26, “Creating a

discrete faceting request”:
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Example 5.26. Creating a discrete faceting request

QueryBuilder builder = fullTextSession.getSearchFactory()

    .buildQueryBuilder()

        .forEntity(Cd.class)

            .get();

FacetingRequest labelFacetingRequest = builder.facet()

    .name("labelFacetRequest")

    .onField("label")

    .discrete()

    .orderedBy(FacetSortOrder.COUNT_DESC)

    .includeZeroCounts(false)

    .maxFacetCount(3)

    .createFacetingRequest();

When executing this faceting request a Facet instance will be created for each discrete value

for the indexed field label. The Facet instance will record the actual field value including how

often this particular field value occurs within the original query results. Parameters orderedBy,

includeZeroCounts and maxFacetCount are optional and can be applied on any faceting request.

Parameter orderedBy allows to specify in which order the created facets will be returned. The

default is FacetSortOrder.COUNT_DESC, but you can also sort on the field value. Parameter

includeZeroCount determines whether facets with a count of 0 will be included in the result (by

default they are) and maxFacetCount allows to limit the maximum amount of facets returned.

Note

There are several preconditions an indexed field has to meet in order to categorize

(facet) on it:

• The indexed property must be of type String, Date or of the numeric type int,

long, double or float (or their respective Java wrapper types).

• For numeric and date values you need to make sure that the values are string

encoded by explicitly specifying a non numeric field bridge via @Field.bridge

or @FieldBridge. The package org. hibernate.search.bridge.builtin

contains a set of bridges which encode numbers as strings, for example

org.hibernate.search.bridge.builtin.IntegerBridge.

• The property has to be indexed with Analyze.NO.

• null values should be avoided.

When you need conflicting options, we suggest to index the property twice and use

the appropriate field depending on the use case:

@Fields({
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  @Field(name="price"),

  @Field(name="price_facet",

         analyze=Analyze.NO,

         bridge=@FieldBridge(impl = IntegerBridge.class))

})

private int price;

5.4.1.2. Creating a range faceting request

The creation of a range faceting request is similar. We also start with a name for the request and

the field to facet on. Then we have to specify ranges for the field values. A range faceting request

can be seen in Example 5.27, “Creating a range faceting request”. There, three different price

ranges are specified. below and above can only be specified once, but you can specify as many

from - to ranges as you want. For each range boundary you can also specify via excludeLimit

whether it is included into the range or not.

Example 5.27. Creating a range faceting request

QueryBuilder builder = fullTextSession.getSearchFactory()

    .buildQueryBuilder()

        .forEntity(Cd.class)

            .get();

FacetingRequest priceFacetingRequest = builder.facet()

    .name("priceFaceting")

    .onField("price_facet")

    .range()

    .below(1000)

    .from(1001).to(1500)

    .above(1500).excludeLimit()

    .createFacetingRequest();

5.4.2. Setting the facet sort order

The result of applying a faceting request is a list of Facet instances as seen in Example 5.28,

“Applying a faceting request”. The order within the list is given by the FacetSortOrder

parameter specified via orderedBy when creating the faceting request. The default value is

FacetSortOrder.COUNT_DESC, meaning facets are ordered by their count in descending order

(highest count first). Other values are COUNT_ASC, FIELD_VALUE and RANGE_DEFINITION_ORDER.

COUNT_ASC returns the facets in ascending count order whereas FIELD_VALUE will return them in

alphabetical order of the facet/category value (see Section 5.4.4, “Interpreting a Facet result”).

RANGE_DEFINITION_ORDER only applies for range faceting request and returns the facets in the

same order in which the ranges are defined. For Example 5.27, “Creating a range faceting request”

this would mean the facet for the range of below 1000 would be returned first, followed by the

facet for the range 1001 to 1500 and finally the facet for above 1500.
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5.4.3. Applying a faceting request

In Section 5.4.1, “Creating a faceting request” we have seen how to create a faceting request.

Now it is time to apply it on a query. The key is the FacetManager which can be retrieved via the

FullTextQuery (see Example 5.28, “Applying a faceting request”).

Example 5.28. Applying a faceting request

// create a fulltext query

Query luceneQuery = builder.all().createQuery(); // match all query

FullTextQuery fullTextQuery = fullTextSession.createFullTextQuery(luceneQuery, Cd.class);

// retrieve facet manager and apply faceting request

FacetManager facetManager = fullTextQuery.getFacetManager();

facetManager.enableFaceting(priceFacetingRequest);

// get the list of Cds

List<Cd> cds = fullTextQuery.list();

...

// retrieve the faceting results

List<Facet> facets = facetManager.getFacets("priceFaceting");

...

You need to enable the faceting request before you execute the query. You do that via

facetManager.enableFaceting(<facetName>). You can enable as many faceting requests as

you like, then you execute the query and retrieve the facet results for a given request via

facetManager.getFacets(<facetname>). For each request you will get a list of Facet instances.

Facet requests stay active and get applied to the fulltext query until they are either explicitly

disabled via disableFaceting(<facetName>) or the query is discarded.

5.4.4. Interpreting a Facet result

Each facet request results in a list of Facet instances. Each instance represents one facet/category

value. In the CD example (Example 5.26, “Creating a discrete faceting request”) where we want

to categorize on the CD labels, there would for example be a Facet for each of the record labels

Universal, Sony and Warner. Example 5.29, “Facet API” shows the API of Facet.

Example 5.29. Facet API

public interface Facet {

    /**

     * @return the faceting name this {@code Facet} belongs to.

     *

     * @see org.hibernate.search.query.facet.FacetingRequest#getFacetingName()

     */

    String getFacetingName();

    /**
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     * Return the {@code Document} field name this facet is targeting.

     * The field needs to be indexed with {@code Analyze.NO}.

     *

     * @return the {@code Document} field name this facet is targeting.

     */

    String getFieldName();

    /**

     * @return the value of this facet. In case of a discrete facet it is the actual

     *         {@code Document} field value. In case of a range query the value is a

     *         string representation of the range.

     */

    String getValue();

    /**

     * @return the facet count.

     */

    int getCount();

    /**

     * @return a Lucene {@link Query} which can be executed to retrieve all

     *         documents matching the value of this facet.

     */

    Query getFacetQuery();

}

getFacetingName() and getFieldName() are returning the facet request name and the targeted

document field name as specified by the underlying FacetRequest. For example "Example 5.26,

“Creating a discrete faceting request”" that would be labelFacetRequest and label respectively.

The interesting information is provided by getValue() and getCount(). The former is the actual

facet/category value, for example a concrete record label like Universal. The latter returns the

count for this value. To stick with the example again, the count value tells you how many Cds are

released under the Universal label. Last but not least, getFacetQuery() returns a Lucene query

which can be used to retrieve the entities counted in this facet.

5.4.5. Restricting query results

A common use case for faceting is a "drill-down" functionality which allows you to narrow your

original search by applying a given facet on it. To do this, you can apply any of the returned Facet

instances as additional criteria on your original query via FacetSelection. FacetSelections are

available via the FacetManager and allow you to select a facet as query criteria (selectFacets),

remove a facet restriction (deselectFacets), remove all facet restrictions (clearSelectedFacets)

and retrieve all currently selected facets (getSelectedFacets). Example 5.30, “Restricting query

results via the application of a FacetSelection” shows an example.

Example 5.30. Restricting query results via the application of a

FacetSelection

// create a fulltext query

Query luceneQuery = builder.all().createQuery(); // match all query
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FullTextQuery fullTextQuery = fullTextSession.createFullTextQuery( luceneQuery, clazz );

// retrieve facet manager and apply faceting request

FacetManager facetManager = fullTextQuery.getFacetManager();

facetManager.enableFaceting( priceFacetingRequest );

// get the list of Cd

List<Cd> cds = fullTextQuery.list();

assertTrue(cds.size() == 10);

// retrieve the faceting results

List<Facet> facets = facetManager.getFacets( "priceFaceting" );

assertTrue(facets.get(0).getCount() == 2)

// apply first facet as additional search criteria

FacetSelection facetSelection = facetManager.getFacetGroup( "priceFaceting" );

facetSelection.selectFacets( facets.get( 0 ) );

// re-execute the query

cds = fullTextQuery.list();

assertTrue(cds.size() == 2);

5.5. Optimizing the query process

Query performance depends on several criteria:

• the Lucene query itself: read the literature on this subject.

• the number of loaded objects: use pagination and / or index projection (if needed).

• the way Hibernate Search interacts with the Lucene readers: defines the appropriate

Section 2.3, “Reader strategy”.

• caching frequently extracted values from the index: see Section 5.5.1, “Caching index values:

FieldCache”.

5.5.1. Caching index values: FieldCache

The primary function of a Lucene index is to identify matches to your queries, still after the query is

performed the results must be analyzed to extract useful information: typically Hibernate Search

might need to extract the Class type and the primary key.

Extracting the needed values from the index has a performance cost, which in some cases might

be very low and not noticeable, but in some other cases might be a good candidate for caching.

What is exactly needed depends on the kind of Projections being used (see Section 5.1.3.5,

“Projection”), and in some cases the Class type is not needed as it can be inferred from the query

context or other means.

Using the @CacheFromIndex annotation you can experiment different kinds of caching of the main

metadata fields required by Hibernate Search:
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import static org.hibernate.search.annotations.FieldCacheType.CLASS;

import static org.hibernate.search.annotations.FieldCacheType.ID;

@Indexed

@CacheFromIndex( { CLASS, ID } )

public class Essay {

// ...

}

It is currently possible to cache Class types and IDs using this annotation:

• CLASS: Hibernate Search will use a Lucene FieldCache to improve performance of the Class

type extraction from the index.

This value is enabled by default, and is what Hibernate Search will apply if you don’t specify the

@CacheFromIndex annotation.

• ID: Extracting the primary identifier will use a cache. This is likely providing the best performing

queries, but will consume much more memory which in turn might reduce performance.

Note

Measure the performance and memory consumption impact after warm-up

(executing some queries): enabling Field Caches is likely to improve performance

but this is not always the case.

Using a FieldCache has two downsides to consider:

• Memory usage: these caches can be quite memory hungry. Typically the CLASS cache has

lower requirements than the ID cache.

• Index warm-up: when using field caches, the first query on a new index or segment will be

slower than when you don’t have caching enabled.

With some queries the class type won’t be needed at all, in that case even if you enabled the

CLASS field cache, this might not be used; for example if you are targeting a single class, obviously

all returned values will be of that type (this is evaluated at each Query execution).

For the ID FieldCache to be used, the ids of targeted entities must be using a TwoWayFieldBridge

(as all built-in bridges), and all types being loaded in a specific query must use the field name for

the id, and have ids of the same type (this is evaluated at each Query execution).
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Manual index changes
As Hibernate core applies changes to the Database, Hibernate Search detects these changes and

will update the index automatically (unless the EventListeners are disabled). Sometimes changes

are made to the database without using Hibernate, as when backup is restored or your data is

otherwise affected; for these cases Hibernate Search exposes the Manual Index APIs to explicitly

update or remove a single entity from the index, or rebuild the index for the whole database, or

remove all references to a specific type.

All these methods affect the Lucene Index only, no changes are applied to the Database.

6.1. Adding instances to the index

Using FullTextSession.index(T entity) you can directly add or update a specific object

instance to the index. If this entity was already indexed, then the index will be updated. Changes

to the index are only applied at transaction commit.

Example 6.1. Indexing an entity via FullTextSession.index(T entity)

FullTextSession fullTextSession = Search.getFullTextSession(session);

Transaction tx = fullTextSession.beginTransaction();

Object customer = fullTextSession.load( Customer.class, 8 );

fullTextSession.index(customer);

tx.commit(); //index only updated at commit time

In case you want to add all instances for a type, or for all indexed types, the recommended

approach is to use a MassIndexer: see Section 6.3.2, “Using a MassIndexer” for more details.

The method FullTextSession.index(T entity) is considered an explicit indexing operation,

so any registered EntityIndexingInterceptor won’t be applied in this case. For more information on

EntityIndexingInterceptor see Section 4.5, “Conditional indexing”.

6.2. Deleting instances from the index

It is equally possible to remove an entity or all entities of a given type from a Lucene index without

the need to physically remove them from the database. This operation is named purging and is

also done through the FullTextSession.

Example 6.2. Purging a specific instance of an entity from the index

FullTextSession fullTextSession = Search.getFullTextSession(session);

Transaction tx = fullTextSession.beginTransaction();

for (Customer customer : customers) {

    fullTextSession.purge( Customer.class, customer.getId() );

}
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tx.commit(); //index is updated at commit time

Purging will remove the entity with the given id from the Lucene index but will not touch the

database.

If you need to remove all entities of a given type, you can use the purgeAll method. This operation

removes all entities of the type passed as a parameter as well as all its subtypes.

Example 6.3. Purging all instances of an entity from the index

FullTextSession fullTextSession = Search.getFullTextSession(session);

Transaction tx = fullTextSession.beginTransaction();

fullTextSession.purgeAll( Customer.class );

//optionally optimize the index

//fullTextSession.getSearchFactory().optimize( Customer.class );

tx.commit(); //index changes are applied at commit time

As in the previous example, it is suggested to optimize the index after many purge operation to

actually free the used space.

As is the case with method FullTextSession.index(T entity), also purge and purgeAll are

considered explicit indexing operations: any registered EntityIndexingInterceptor won’t be

applied. For more information on EntityIndexingInterceptor see Section 4.5, “Conditional

indexing”.

Note

Methods index, purge and purgeAll are available on FullTextEntityManager as well.

Note

All manual indexing methods (index, purge and purgeAll) only affect the index,

not the database, nevertheless they are transactional and as such they won’t

be applied until the transaction is successfully committed, or you make use of

flushToIndexes.

6.3. Rebuilding the whole index

If you change the entity mapping to the index, chances are that the whole Index needs to be

updated; For example if you decide to index a an existing field using a different analyzer you’ll

need to rebuild the index for affected types. Also if the Database is replaced (like restored from a

backup, imported from a legacy system) you’ll want to be able to rebuild the index from existing

data. Hibernate Search provides two main strategies to choose from:
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• Using FullTextSession.flushToIndexes() periodically, while using FullTextSession.index()

on all entities.

• Use a MassIndexer.

6.3.1. Using flushToIndexes()

This strategy consists in removing the existing index and then adding all entities back to the

index using FullTextSession.purgeAll() and FullTextSession.index(), however there are

some memory and efficiency constraints. For maximum efficiency Hibernate Search batches

index operations and executes them at commit time. If you expect to index a lot of data you

need to be careful about memory consumption since all documents are kept in a queue until

the transaction commit. You can potentially face an OutOfMemoryException if you don’t empty

the queue periodically: to do this you can use fullTextSession.flushToIndexes(). Every time

fullTextSession.flushToIndexes() is called (or if the transaction is committed), the batch

queue is processed applying all index changes. Be aware that, once flushed, the changes cannot

be rolled back.

Example 6.4. Index rebuilding using index() and flushToIndexes()

fullTextSession.setFlushMode(FlushMode.MANUAL);

fullTextSession.setCacheMode(CacheMode.IGNORE);

transaction = fullTextSession.beginTransaction();

//Scrollable results will avoid loading too many objects in memory

ScrollableResults results = fullTextSession.createCriteria( Email.class )

    .setFetchSize(BATCH_SIZE)

    .scroll(ScrollMode.FORWARD_ONLY);

int index = 0;

while(results.next()) {

    index++;

    fullTextSession.index(results.get(0)); //index each element

    if (index % BATCH_SIZE == 0) {

        fullTextSession.flushToIndexes(); //apply changes to indexes

        fullTextSession.clear(); //free memory since the queue is processed

    }

}

transaction.commit();

Try to use a batch size that guarantees that your application will not run out of memory: with a

bigger batch size objects are fetched faster from database but more memory is needed.

6.3.2. Using a MassIndexer

Hibernate Search’s MassIndexer uses several parallel threads to rebuild the index; you can

optionally select which entities need to be reloaded or have it reindex all entities. This approach is

optimized for best performance but requires to set the application in maintenance mode: making

queries to the index is not recommended when a MassIndexer is busy.
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Example 6.5. Index rebuilding using a MassIndexer

fullTextSession.createIndexer().startAndWait();

This will rebuild the index, deleting it and then reloading all entities from the database. Although

it’s simple to use, some tweaking is recommended to speed up the process: there are several

parameters configurable.

Warning

During the progress of a MassIndexer the content of the index is undefined! If a

query is performed while the MassIndexer is working most likely some results will

be missing.

Example 6.6. Using a tuned MassIndexer

fullTextSession

 .createIndexer( User.class )

 .batchSizeToLoadObjects( 25 )

 .cacheMode( CacheMode.NORMAL )

 .threadsToLoadObjects( 12 )

 .idFetchSize( 150 )

 .progressMonitor( monitor ) //a MassIndexerProgressMonitor implementation

 .startAndWait();

This will rebuild the index of all User instances (and subtypes), and will create 12 parallel threads

to load the User instances using batches of 25 objects per query; these same 12 threads will also

need to process indexed embedded relations and custom FieldBridges or ClassBridges, to finally

output a Lucene document. In this conversion process these threads are likely going to need to

trigger lazy loading of additional attributes, so you will probably need a high number of threads

working in parallel.

As of Hibernate Search 4.4.0, instead of indexing all the types in parallel, the MassIndexer is

configured by default to index only one type in parallel. It prevents resource exhaustion especially

database connections and usually does not slow down the indexing. You can however configure

this behavior using MassIndexer.typesToIndexInParallel(int threadsToIndexObjects):

Example 6.7. Configuring the MassIndexer to index several types in parallel

fullTextSession

 .createIndexer( User.class, Customer.class )

 .typesToIndexInParallel( 2 )

 .batchSizeToLoadObjects( 25 )

 .cacheMode( CacheMode.NORMAL )
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 .threadsToLoadObjects( 5 )

 .idFetchSize( 150 )

 .progressMonitor( monitor ) //a MassIndexerProgressMonitor implementation

 .startAndWait();

Generally we suggest to leave cacheMode to CacheMode.IGNORE (the default), as in most

reindexing situations the cache will be a useless additional overhead; it might be useful to enable

some other CacheMode depending on your data: it could increase performance if the main entity

is relating to enum-like data included in the index.

Note

The MassIndexer was designed for speed and is unaware of transactions, so there

is no need to begin one or committing. Also because it is not transactional it is not

recommended to let users use the system during its processing, as it is unlikely

people will be able to find results and the system load might be too high anyway.

6.3.2.1. MassIndexer using threads and JDBC connections

The MassIndexer was designed to finish the re-indexing task as quickly as possible, but this

requires a bit of care in its configuration to behave fairly with your server resources.

There is a simple formula to understand how the different options applied to the MassIndexer affect

the number of used worker threads and connections: each thread will require a JDBC connection.

threads = typesToIndexInParallel * (threadsToLoadObjects + 1);

required JDBC connections = threads;

Let’s see some suggestions for a roughly sane tuning starting point:

1. Option typesToIndexInParallel should probably be a low value, like 1 or 2, depending on

how much of your CPUs have spare cycles and how slow a database round trip will be.

2. Before tuning a parallel run, experiment with options to tune your primary indexed entities in

isolation.

3. Making threadsToLoadObjects higher increases the pre-loading rate for the picked entities

from the database, but also increases memory usage and the pressure on the threads working

on subsequent indexing.

4. Increasing parallelism usually helps as the bottleneck usually is the latency to the database

connection: it’s probably worth it to experiment with values significantly higher than the number

of actual cores available, but make sure your database can handle all the multiple requests.

5. This advice might not apply to you: always measure the effects! We’re providing this as a means

to help you understand how these options are related.
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Warning

Running the MassIndexer with many threads will require many connections to the

database. If you don’t have a sufficiently large connection pool, the MassIndexer

itself and/or your other applications could starve being unable to serve other

requests: make sure you size your connection pool accordingly to the options as

explained in the above paragraph.

Tip

The "sweet spot" of number of threads to achieve best performance is highly

dependent on your overall architecture, database design and even data values. All

internal thread groups have meaningful names so they should be easily identified

with most diagnostic tools, including simply thread dumps.

6.3.2.2. Using a custom MassIndexer implementation

The provided MassIndexer is quite general purpose, and while we believe it’s a robust approach,

you might be able to squeeze some better performance by writing a custom implementation. To

run your own MassIndexer instead of using the one shipped with Hibernate Search you have to:

1. create an implementation of the org.hibernate.search.spi.MassIndexerFactory

interface;

2. set the property hibernate.search.massindexer.factoryclass with the qualified class

name of the factory implementation.

Example 6.8. Custom MassIndexerFactory example

package org.myproject

import org.hibernate.search.spi.MassIndexerFactory

// ...

public class CustomIndexerFactory implements MassIndexerFactory {

  public void initialize(Properties properties) {

  }

  public MassIndexer createMassIndexer(...) {

    return new CustomIndexer();

  }

}
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hibernate.search.massindexer.factoryclass =

 org.myproject.CustomIndexerFactory

6.3.3. Useful parameters for batch indexing

Other parameters which affect indexing time and memory consumption are:

• hibernate.search.[default|<indexname>].exclusive_index_use

• hibernate.search.[default|<indexname>].indexwriter.max_buffered_docs

• hibernate.search.[default|<indexname>].indexwriter.max_merge_docs

• hibernate.search.[default|<indexname>].indexwriter.merge_factor

• hibernate.search.[default|<indexname>].indexwriter.merge_min_size

• hibernate.search.[default|<indexname>].indexwriter.merge_max_size

• hibernate.search.[default|<indexname>].indexwriter.merge_max_optimize_size

• hibernate.search.[default|

<indexname>].indexwriter.merge_calibrate_by_deletes

• hibernate.search.[default|<indexname>].indexwriter.ram_buffer_size

• hibernate.search.[default|<indexname>].indexwriter.term_index_interval

Previous versions also had a max_field_length but this was removed from Lucene, it’s possible

to obtain a similar effect by using a LimitTokenCountAnalyzer.

All .indexwriter parameters are Lucene specific and Hibernate Search is just passing these

parameters through - see Section 3.7.1, “Tuning indexing performance” for more details.

The MassIndexer uses a forward only scrollable result to iterate on the primary keys to be

loaded, but MySQL’s JDBC driver will load all values in memory; to avoid this "optimization" set

idFetchSize to Integer.MIN_VALUE.
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Index Optimization
This section explains some low level tricks to keep your indexes at peak performance. We cover

some Lucene details which in most cases you don’t have to know about: Hibernate Search will

handle these operations optimally and transparently in most cases without the need for further

configuration. Still, it is good to know that there are ways to configure the behavior, if the need

arises.

The index is physically stored in several smaller segments. Each segment is immutable and

represents a generation of index writes. Index segments are periodically compacted, both to

merge smaller segments and to remove stale entries; this merging process happens constantly

in the background and can be tuned with the options specified in Section 3.7.1, “Tuning indexing

performance”, but you can also define policies to fully run index optimizations when it is most

suited for your specific workload.

With older versions of Lucene it was important to frequently optimize the index to maintain

good performance, but with current Lucene versions this doesn’t apply anymore. The benefit of

explicit optimization is very low, and in certain cases even counter-productive. During an explicit

optimization the whole index is processed and rewritten inflicting a significant performance cost.

Optimization is for this reason a double-edged sword.

Another reason to avoid optimizing the index too often is that an optimization will, as a side effect,

invalidate cached filters and field caches and internal buffers need to be refreshed.

Tip

Optimizing the index is often not needed, does not benefit write (update)

performance at all, and is a slow operation: make sure you need it before activating

it.

Of course optimizing the index does not only present drawbacks: after the optimization process

is completed and new IndexReader instances have loaded their buffers, queries will perform at

peak performance and you will have reclaimed all disk space potentially used by stale entries.

It is recommended to not schedule any optimization, but if you wish to perform it periodically you

should run it:

• on an idle system or when the searches are less frequent

• after a lot of index modifications

When using a MassIndexer (see Section 6.3.2, “Using a MassIndexer”) it will optimize involved

indexes by default at the start and at the end of processing; you can change this behavior

by using MassIndexer.optimizeAfterPurge and MassIndexer.optimizeOnFinish respectively. The
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initial optimization is actually very cheap as it is performed on an empty index: its purpose is to

release the storage space occupied by the old index.

7.1. Automatic optimization

While in most cases this is not needed, Hibernate Search can automatically optimize an index

after:

• a certain amount of write operations

• or after a certain amount of transactions

The configuration for automatic index optimization can be defined on a global level or per index:

Example 7.1. Defining automatic optimization parameters

hibernate.search.default.optimizer.operation_limit.max = 1000

hibernate.search.default.optimizer.transaction_limit.max = 100

hibernate.search.Animal.optimizer.transaction_limit.max = 50

With the above example an optimization will be triggered to the Animal index as soon as either:

• the number of additions and deletions reaches 1000

• the number of transactions reaches 50

(hibernate.search.Animal.optimizer.transaction_limit.max having priority over

hibernate.search.default.optimizer.transaction_limit.max)

If none of these parameters are defined, no optimization is processed automatically.

The default implementation of OptimizerStrategy can be overridden by

implementing org.hibernate.search.store.optimization.OptimizerStrategy and setting

the optimizer.implementation property to the fully qualified name of your implementation. This

implementation must implement the interface, be a public class and have a public constructor

taking no arguments.

Example 7.2. Loading a custom OptimizerStrategy

hibernate.search.default.optimizer.implementation =

 com.acme.worlddomination.SmartOptimizer

hibernate.search.default.optimizer.SomeOption = CustomConfigurationValue

hibernate.search.humans.optimizer.implementation = default

The keyword default can be used to select the Hibernate Search default implementation; all

properties after the .optimizer key separator will be passed to the implementation’s initialize

method at start.
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7.2. Manual optimization

You can programmatically optimize (defragment) a Lucene index from Hibernate Search through

the SearchFactory:

Example 7.3. Programmatic index optimization

FullTextSession fullTextSession = Search.getFullTextSession(regularSession);

SearchFactory searchFactory = fullTextSession.getSearchFactory();

searchFactory.optimize(Order.class);

// or

searchFactory.optimize();

The first example optimizes the Lucene index holding Orders; the second, optimizes all indexes.

Note

searchFactory.optimize() has no effect on a JMS or JGroups backend: you

must apply the optimize operation on the Master node.

7.3. Adjusting optimization

The Lucene index is constantly being merged in the background to keep a good balance between

write and read performance; in a sense this is a form of background optimization which is always

applied.

The following match attributes of Lucene’s IndexWriter and are commonly used to tune how often

merging occurs and how aggressive it is applied. They are exposed by Hibernate Search via:

• hibernate.search.[default|<indexname>].indexwriter.max_buffered_docs

• hibernate.search.[default|<indexname>].indexwriter.max_merge_docs

• hibernate.search.[default|<indexname>].indexwriter.merge_factor

• hibernate.search.[default|<indexname>].indexwriter.ram_buffer_size

• hibernate.search.[default|<indexname>].indexwriter.term_index_interval

See Section 3.7.1, “Tuning indexing performance” for a description of these properties.
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Monitoring
Hibernate Search offers access to a Statistics object via SearchFactory.getStatistics().

It allows you for example to determine which classes are indexed and how many

entities are in the index. This information is always available. However, by specifying the

hibernate.search.generate_statistics property in your configuration you can also collect

total and average Lucene query and object loading timings.

8.1. JMX

You can also enable access to the statistics via JMX. Setting

the property hibernate.search.jmx_enabled will automatically register the

StatisticsInfoMBean. Depending on your the configuration the IndexControlMBean and

IndexingProgressMonitorMBean will also be registered. In case you are having more than

one JMX enabled Hibernate Search instance running within a single JVM, you should also set

hibernate.search.jmx_bean_suffix to a different value for each of the instances. The specified

suffix will be used to distinguish between the different MBean instances. Let’s have a closer look

at the mentioned MBeans.

Tip

If you want to access your JMX beans remotely via JConsole make sure to set the

system property com.sun.management.jmxremote to true.

8.1.1. StatisticsInfoMBean

This MBean gives you access to Statistics object as described in the previous section.

8.1.2. IndexControlMBean

This MBean allows to build, optimize and purge the index for a given entity. Indexing occurs

via the mass indexing API (see Section 6.3.2, “Using a MassIndexer”). A requirement for

this bean to be registered in JMX is, that the Hibernate SessionFactory is bound to JNDI

via the hibernate.session_factory_name property. Refer to the Hibernate Core manual for

more information on how to configure JNDI. The IndexControlMBean and its API are for now

experimental.

8.1.3. IndexingProgressMonitorMBean

This MBean is an implementation MassIndexerProgressMonitor interface. If

hibernate.search.jmx_enabled is enabled and the mass indexer API is used the indexing

progress can be followed via this bean. The bean will only be bound to JMX while indexing is in

progress. Once indexing is completed the MBean is not longer available.
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Spatial
With the spatial extensions you can combine full-text queries with distance restrictions, filter results

based on distances or sort results on such a distance criteria.

The spatial support of Hibernate Search has the following goals:

• Enable spatial search on entities: find entities within x km from a given location (latitude,

longitude) on Earth

• Provide an easy way to enable spatial indexing via expressive annotations

• Provide a simple way for querying

• Hide geographical complexity

For example, you might search for restaurants somewhere in a 2 km radius around your office.

In order to use the spatial extensions for an indexed entity, you need to add the @Spatial

annotation (org.hibernate.search.annotations.Spatial) and specify one or more sets of

coordinates.

9.1. Enable indexing of Spatial Coordinates

There are different techniques to index point coordinates. Hibernate Search Spatial offers a choice

between two strategies:

• index as numbers

• index as labeled spatial hashes

We will now describe both methods, so you can make a suitable choice. You can pick a different

strategy for each set of coordinates. The strategy is selected by specifying the spatialMode

attribute of the @Spatial annotation.

9.1.1. Indexing coordinates for range queries

When setting the @Spatial.spatialMode attribute to SpatialMode.RANGE (which is the default)

coordinates are indexed as numeric fields, so that range queries can be performed to narrow

down the initial area of interest.

Pros:

• Is quick on small data sets (< 100k entities)

• Is very simple: straightforward to debug/analyze
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• Impact on index size is moderate

Cons:

• Poor performance on large data sets

• Poor performance if your data set is distributed across the whole world (for example when

indexing points of interest in the United States, in Europe and in Asia, large areas collide

because they share the same latitude. The latitude range query returns large amounts of data

that need to be cross checked with those returned by the longitude range).

To index your entities for range querying you have to:

• add the @Spatial annotation on your entity

• add the @Latitude and @Longitude annotations on your properties representing the

coordinates; these must be of type Double

Example 9.1. Sample Spatial indexing: Hotel class

import org.hibernate.search.annotations.*;

@Entity

@Indexed

@Spatial

public class Hotel {

  @Latitude

  Double latitude

  @Longitude

  Double longitude

  // ...

9.1.2. Indexing coordinates in a grid with spatial hashes

When setting @Spatial.spatialMode to SpatialMode.HASH the coordinates are encoded in

several fields representing different zoom levels. Each box for each level is labeled so coordinates

are assigned matching labels for each zoom level. This results in a grid encoding of labels called

spatial hashes.

Pros :

• Good performance even with large data sets

• World wide data distribution independent
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Cons :

• Index size is larger: need to encode multiple labels per pair of coordinates

To index your entities you have to:

• add the @Spatial annotation on the entity with the SpatialMode set to GRID :

@Spatial(spatialMode = SpatialMode.HASH)

• add the @Latitude and @Longitude annotations on the properties representing your

coordinates; these must be of type Double

Example 9.2. Indexing coordinates in a grid using spatial hashes

@Spatial(spatialMode = SpatialMode.HASH)

@Indexed

@Entity

public class Hotel {

  @Latitude

  Double latitude;

  @Longitude

  Double longitude;

  // ...

9.1.3. Implementing the Coordinates interface

Instead of using the @Latitude and @Longitude annotations you can choose to implement the

org.hibernate.search.spatial.Coordinates interface.

Example 9.3. Implementing the Coordinates interface

import org.hibernate.search.annotations.*;

import org.hibernate.search.spatial.Coordinates;

@Entity

@Indexed

@Spatial

public class Song implements Coordinates {

  @Id long id;

  double latitude;

  double longitude;

  // ...

  @Override

  Double getLatitude() {

    return latitude;
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  }

  @Override

  Double getLongitude() {

    return longitude;

  }

  // ...

As we will see in the section Section 9.3, “Multiple Coordinate pairs”, an entity can have multiple

@Spatial annotations; when having the entity implement Coordinates, the implemented methods

refer to the default @Spatial annotation with the default pair of coordinates.

Tip

The default (field) name in case @Spatial is placed on the entity level is

org.hibernate.search.annotations.Spatial.COORDINATES_DEFAULT_FIELD.

An alternative is to use properties implementing the Coordinates interface; this way you can have

multiple Spatial instances:

Example 9.4. Using attributes of type Coordinates

@Entity

@Indexed

public class Event {

  @Id

  Integer id;

  @Field(store = Store.YES)

  String name;

  double latitude;

  double longitude;

  @Spatial(spatialMode = SpatialMode.HASH)

  public Coordinates getLocation() {

    return new Coordinates() {

      @Override

      public Double getLatitude() {

        return latitude;

      }

      @Override

      public Double getLongitude() {

        return longitude;

      }

    };

  }

// ...
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When using this form the @Spatial.name automatically defaults to the property name. In the

above case to location.

9.2. Performing Spatial Queries

You can use the Hibernate Search query DSL to build a query to search around a pair of

coordinates (latitude, longitude) or around a bean implementing the Coordinates interface.

As with any full-text query, the spatial query creation flow looks like:

1. retrieve a QueryBuilder from the SearchFactory

2. use the DSL to build a spatial query, defining search center and radius

3. optionally combine the resulting Query with other filters

4. call the createFullTextQuery() and use the resulting query like any standard Hibernate or

JPA query

Example 9.5. Search for an Hotel by distance

QueryBuilder builder = fullTextSession.getSearchFactory()

  .buildQueryBuilder().forEntity( Hotel.class ).get();

org.apache.lucene.search.Query luceneQuery = builder

  .spatial()

  .within( radius, Unit.KM )

    .ofLatitude( centerLatitude )

    .andLongitude( centerLongitude )

  .createQuery();

org.hibernate.Query hibQuery = fullTextSession

  .createFullTextQuery( luceneQuery, Hotel.class );

List results = hibQuery.list();

Note

In the above example we did not explicitly specify the field name to use. The

default coordinates field name was used implicitly. To target an alternative pair

of coordinates at query time, we need to specify the field name as well. See

Section 9.3, “Multiple Coordinate pairs”.

A fully working example can be found in the test-suite

of the source code [https://github.com/hibernate/hibernate-search]. Refer to

SpatialIndexingTest.testSpatialAnnotationOnClassLevel() and its corresponding Hotel

test class.

https://github.com/hibernate/hibernate-search
https://github.com/hibernate/hibernate-search
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Alternatively to passing separate latitude and longitude values, you can also pass an instance

implementing the Coordinates interface:

Example 9.6. DSL example with Coordinates

Coordinates coordinates = Point.fromDegrees(24d, 31.5d);

Query query = builder

  .spatial()

    .within( 51, Unit.KM )

      .ofCoordinates( coordinates )

  .createQuery();

List results = fullTextSession.createFullTextQuery( query, POI.class ).list();

9.2.1. Returning distance to query point in the search results

9.2.1.1. Returning distance to the center in the results

To retrieve the actual distance values you need to use projection (see Section 5.1.3.5,

“Projection”):

Example 9.7. Distance projection example

double centerLatitude = 24.0d;

double centerLongitude= 32.0d;

QueryBuilder builder = fullTextSession.getSearchFactory()

  .buildQueryBuilder().forEntity(POI.class).get();

org.apache.lucene.search.Query luceneQuery = builder

  .spatial()

     .onField("location")

     .within(100, Unit.KM)

       .ofLatitude(centerLatitude)

       .andLongitude(centerLongitude)

  .createQuery();

FullTextQuery hibQuery = fullTextSession.createFullTextQuery(luceneQuery, POI.class);

hibQuery.setProjection(FullTextQuery.SPATIAL_DISTANCE, FullTextQuery.THIS);

hibQuery.setSpatialParameters(centerLatitude, centerLongitude, "location");

List results = hibQuery.list();

• Use FullTextQuery.setProjection with FullTextQuery.SPATIAL_DISTANCE as one of the

projected fields.

• Call FullTextQuery.setSpatialParameters with the latitude, longitude and the name of the

spatial field used to build the spatial query. Note that using coordinates different than the center

used for the query will have unexpected results.
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Tip

The default (field) name in case @Spatial is placed on the entity level is

org.hibernate.search.annotations.Spatial.COORDINATES_DEFAULT_FIELD.

Distance projection and null values

Using distance projection on non @Spatial enabled entities and/or with a non

spatial Query will have unexpected results as entities not spatially indexed and/

or having null values for latitude or longitude will be considered to be at (0,0)/

(lat,0)/(0,long).

Using distance projection with a spatial query on spatially indexed entities having,

eventually, null values for latitude and/or longitude is safe as they will not be found

by the spatial query and won’t have distance calculated.

9.2.1.2. Sorting by distance

To sort the results by distance to the center of the search you will have to build a Sort instance

using a DistanceSortField:

Example 9.8. Distance sort example

double centerLatitude = 24.0d;

double centerLongitude = 32.0d;

QueryBuilder builder = fullTextSession.getSearchFactory()

   .buildQueryBuilder().forEntity( POI.class ).get();

org.apache.lucene.search.Query luceneQuery = builder

  .spatial()

    .onField("location")

      .within(100, Unit.KM)

      .ofLatitude(centerLatitude)

      .andLongitude(centerLongitude)

  .createQuery();

FullTextQuery hibQuery = fullTextSession.createFullTextQuery(luceneQuery, POI.class);

Sort distanceSort = new Sort(

 new DistanceSortField(centerLatitude, centerLongitude, "location"));

hibQuery.setSort(distanceSort);

The DistanceSortField must be constructed using the same coordinates on the same spatial

field used to build the spatial query otherwise the sorting will occur with another center than the

query. This repetition is needed to allow you to define Queries with any tool.
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Sorting and null values

Using distance sort on non @Spatial enabled entities and/or with a non spatial

Query will have also unexpected results as entities non spatially indexed and/or

with null values for latitude or longitude will be considered to be at (0,0)/(lat,0)/

(0,long)

Using distance sort with a spatial query on spatially indexed entities having,

potentially, null values for latitude and/or longitude is safe as they will not be found

by the spatial query and so won’t be sorted

9.3. Multiple Coordinate pairs

You can associate multiple pairs of coordinates to the same entity, as long as each pair is uniquely

identified by using a different name. This is achieved by stacking multiple @Spatial annotations

within a single @Spatials annotation and specifying the name attribute on the individual @Spatial

annotations.

Example 9.9. Multiple sets of coordinates

import org.hibernate.search.annotations.*;

@Entity

@Indexed

@Spatials({

  @Spatial,

  @Spatial(name="work",  spatialMode = SpatialMode.HASH)

})

public class UserEx {

  @Id

  Integer id;

  @Latitude

  Double homeLatitude;

  @Longitude

  Double homeLongitude;

  @Latitude(of="work")

  Double workLatitude;

  @Longitude(of="work")

  Double workLongitude;

To target an alternative pair of coordinates at query time, we need to specify the pair by name

using onField(String):
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Example 9.10. Querying on non-default coordinate set

QueryBuilder builder = fullTextSession.getSearchFactory()

  .buildQueryBuilder().forEntity( UserEx.class ).get();

org.apache.lucene.search.Query luceneQuery = builder

  .spatial()

  .onField( "work" )

  .within( radius, Unit.KM )

    .ofLatitude( centerLatitude )

    .andLongitude( centerLongitude )

  .createQuery();

org.hibernate.Query hibQuery = fullTextSession.createFullTextQuery( luceneQuery,

   Hotel.class );

List results = hibQuery.list();

9.4. Insight: implementation details of spatial hashes

indexing

The following chapter is meant to provide a technical insight in spatial hash (grid) indexing. It

discusses how coordinates are mapped to the index and how queries are implemented.

9.4.1. At indexing level

When Hibernate Search indexes an entity annotated with @Spatial, it instantiates a

SpatialFieldBridge to transform the latitude and longitude fields accessed via the Coordinates

interface to the multiple index fields stored in the Lucene index.

Principle of the spatial index: the spatial index used in Hibernate Search is a grid based spatial

index [http://en.wikipedia.org/wiki/Grid_(spatial_index)#Grid-based_spatial_indexing] where grid

ids are hashes derived from latitude and longitude.

To make computations easier the latitude and longitude field values will be projected into

a flat coordinate system with the help of a sinusoidal projection [http://en.wikipedia.org/wiki/

Sinusoidal_projection]. Origin value space is :

[-90 → +90],]-180 →; 180]

for latitude,longitude coordinates and projected space is:

]-pi → +pi],[-pi/2 → +pi/2]

for Cartesian x,y coordinates (beware of fields order inversion: x is longitude and y is latitude).

The index is divided into n levels labeled from 0 to n-1.

At the level 0 the projected space is the whole Earth. At the level 1 the projected space is divided

into 4 rectangles (called boxes as in bounding box):

http://en.wikipedia.org/wiki/Grid_(spatial_index)#Grid-based_spatial_indexing
http://en.wikipedia.org/wiki/Grid_(spatial_index)#Grid-based_spatial_indexing
http://en.wikipedia.org/wiki/Grid_(spatial_index)#Grid-based_spatial_indexing
http://en.wikipedia.org/wiki/Sinusoidal_projection
http://en.wikipedia.org/wiki/Sinusoidal_projection
http://en.wikipedia.org/wiki/Sinusoidal_projection
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[-pi,-pi/2]#[0,0], [-pi,0]#[0,+pi/2], [0,-pi/2]#[+pi,0] and [0,0]#[+pi,+pi/2]

At level n+1 each box of level n is divided into 4 new boxes and so on. The numbers of boxes

at a given level is 4^n.

Each box is given an id, in this format: [Box index on the X axis]|[Box index on the Y axis]. To

calculate the index of a box on an axis we divide the axis range in 2^n slots and find the slot the

box belongs to. At the n level the indexes on an axis are from -(2^n)/2 to (2^n)/2. For instance,

the 5th level has 4^5 = 1024 boxes with 32 indexes on each axis (32x32 is 1024) and the box of

Id "0|8" is covering the [0,8/32*pi/2]#[1/32*pi,9/32*pi/2] rectangle is projected space.

Beware! The boxes are rectangles in projected space but the related area on Earth is not

rectangular!

Now that we have all these boxes at all these levels, we index points "into" them.

For a point (lat,long) we calculate its projection (x,y) and then we calculate for each level of the

spatial index, the ids of the boxes it belongs to.

At each level the point is in one and only one box. For points on the edges the box are considered

exclusive n the left side and inclusive on the right i-e ]start,end] (the points are normalized before

projection to [-90,+90],]-180,+180]).

We store in the Lucene document corresponding to the entity to index one field for each level of

the spatial hash grid. The field is named: HSSI[n]. [spatial index fields name] is given either by

the parameter at class level annotation or derived from the name of the spatial annotated method

of the entity, HSSI stands for Hibernate Search Spatial Index and n is the level of the spatial

hashes grid.

We also store the latitude and longitude as a numeric field under [spatial index fields

name]_HSSI_Latitude and [spatial index fields name]_HSSI_Longitude fields. They will be used

to filter precisely results by distance in the second stage of the search.

9.4.2. At search level

Now that we have all these fields, what are they used for?

When you ask for a spatial search by providing a search discus (center+radius) we will calculate

the box ids that do cover the search discus in the projected space, fetch all the documents that

belong to these boxes (thus narrowing the number of documents for which we will have to calculate

distance to the center) and then filter this subset with a real distance calculation. This is called

two level spatial filtering.

9.4.2.1. Step 1: Compute the best spatial hashes grid level for the

search discus

For a given search radius there is an optimal hash grid level where the number of boxes to retrieve

shall be minimal without bringing back to many documents (level 0 has only 1 box but retrieve

all documents). The optimal hash grid level is the maximum level where the width of each box is



At search level

163

larger than the search area. Near the equator line where projection deformation is minimal, this

will lead to the retrieval of at most 4 boxes. Towards the poles where the deformation is more

significant, it might need to examine more boxes but as the sinusoidal projection has a simple

Tissot’s indicatrix (see Sinusoidal projection [http://en.wikipedia.org/wiki/Sinusoidal_projection])

in populated areas, the overhead is minimal.

9.4.2.2. Step 2: Compute ids of the corresponding covering boxes at

that level

Now that we have chosen the optimal level, we can compute the ids of the boxes covering the

search discus (which is not a discus in projected space anymore).

This is done by

org.hibernate.search.spatial.impl.SpatialHelper.getSpatialHashCellsIds(Point

center, double radius, int spatialHashLevel)

It will calculate the bounding box of the search discus and then call

org.hibernate.search.spatial.impl.SpatialHelper.getSpatialHashCellsIds(Point

lowerLeft, Point upperRight, int spatialHashLevel) that will do the actual computation.

If the bounding box crosses the meridian line it will cut the search in two and make two calls to

getSpatialHashCellsIds(Point lowerLeft, Point upperRight, int spatialHashLevel)

with left and right parts of the box.

There are some geo related hacks (search radius too large, search radius

crossing the poles) that are handled in bounding box computations done by

Rectangle.fromBoundingCircle(Coordinates center, double radius) (see http://

janmatuschek.de/LatitudeLongitudeBoundingCoordinates for reference on those subjects).

The SpatialHelper.getSpatialHashCellsIds(Point lowerLeft, Point upperRight, int

spatialHashLevel) project the defining points of the bounding box and compute the boxes they

belong to. It returns all the box Ids between the lower left to the upper right corners, thus covering

the area.

9.4.2.3. Step 3: Lucene index lookup

The query is built with theses Ids searching for documents having a HSSI[n] (n the level found at

Step 1) field valued with one of the ids of Step 2.

See also the implementation of org.hibernate.search.spatial.impl.SpatialHashFilter.

This query will return all documents in the boxes covering the projected bounding box of the

search discus. So it is too large and needs refining. But we have narrowed the distance calculation

problems to a subset of our data.

9.4.2.4. Step 4: Refine

A distance calculation filter is set after the Lucene index lookup query of Step 3 to exclude false

candidates from the result list.

http://en.wikipedia.org/wiki/Sinusoidal_projection
http://en.wikipedia.org/wiki/Sinusoidal_projection
http://janmatuschek.de/LatitudeLongitudeBoundingCoordinates
http://janmatuschek.de/LatitudeLongitudeBoundingCoordinates
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See SpatialQueryBuilderFromCoordinates.buildSpatialQuery(Coordinates center,

double radius, String fieldName)
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Advanced features
In this final chapter we are offering a smörgåsbord of tips and tricks which might become useful

as you dive deeper and deeper into Hibernate Search.

10.1. Accessing the SearchFactory

The SearchFactory object keeps track of the underlying Lucene resources for Hibernate Search.

It is a convenient way to access Lucene natively. The SearchFactory can be accessed from a

FullTextSession:

Example 10.1. Accessing the SearchFactory

FullTextSession fullTextSession = Search.getFullTextSession(regularSession);

SearchFactory searchFactory = fullTextSession.getSearchFactory();

10.2. Using an IndexReader

Queries in Lucene are executed on an IndexReader. Hibernate Search caches index readers

to maximize performance and implements other strategies to retrieve updated IndexReaders in

order to minimize IO operations. Your code can access these cached resources, but you have to

follow some "good citizen" rules.

Example 10.2. Accessing an IndexReader

IndexReader reader = searchFactory.getIndexReaderAccessor().open(Order.class);

try {

   //perform read-only operations on the reader

}

finally {

   searchFactory.getIndexReaderAccessor().close(reader);

}

In this example the SearchFactory figures out which indexes are needed to query this entity. Using

the configured ReaderProvider (described in Section 2.3, “Reader strategy”) on each index, it

returns a compound IndexReader on top of all involved indexes. Because this IndexReader is

shared amongst several clients, you must adhere to the following rules:

• Never call indexReader.close(), but always call readerProvider.closeReader(reader),

using a finally block.

• Don’t use this IndexReader for modification operations: it’s a read-only instace, you would get

an exception.
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Aside from those rules, you can use the IndexReader freely, especially to do native Lucene

queries. Using this shared IndexReaders will be more efficient than by opening one directly from

- for example - the filesystem.

As an alternative to the method open(Class… types) you can use open(String… indexNames)

in this case you pass in one or more index names; using this strategy you can also select a subset

of the indexes for any indexed type if sharding is used.

Example 10.3. Accessing an IndexReader by index names

IndexReader reader = searchFactory

      .getIndexReaderAccessor()

      .open("Products.1", "Products.3");

10.3. Accessing a Lucene Directory

A Directory is the most common abstraction used by Lucene to represent the index storage;

Hibernate Search doesn’t interact directly with a Lucene Directory but abstracts these interactions

via an IndexManager: an index does not necessarily need to be implemented by a Directory.

If you are certain that your index is represented as a Directory and need to access it, you can get a

reference to the Directory via the IndexManager. You will have to cast the IndexManager instance

to a DirectoryBasedIndexManager and then use getDirectoryProvider().getDirectory() to

get a reference to the underlying Directory. This is not recommended, if you need low level access

to the index using Lucene APIs we suggest to see Section 10.2, “Using an IndexReader” instead.

10.4. Sharding indexes

In some cases it can be useful to split (shard) the data into several Lucene indexes. There are

two main use use cases:

• A single index is so big that index update times are slowing the application down. In this case

static sharding can be used to split the data into a pre-defined number of shards.

• Data is naturally segmented by customer, region, language or other application parameter and

the index should be split according to these segments. This is a use case for dynamic sharding.

Tip

By default sharding is not enabled.
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10.4.1. Static sharding

To enable static sharding set the

hibernate.search.<indexName>.sharding_strategy.nbr_of_shards property as seen in

Example 10.4, “Enabling index sharding”.

Example 10.4. Enabling index sharding

hibernate.search.[default|<indexName>].sharding_strategy.nbr_of_shards = 5

The default sharding strategy which gets enabled by setting this property, splits the data

according to the hash value of the document id (generated by the FieldBridge). This ensures

a fairly balanced sharding. You can replace the default strategy by implementing a custom

IndexShardingStrategy. To use your custom strategy you have to set the hibernate.search.

[default|<indexName>].sharding_strategy property to the fully qualified class name of your custom

IndexShardingStrategy.

Example 10.5. Registering a custom IndexShardingStrategy

hibernate.search.[default|<indexName>].sharding_strategy =

 my.custom.RandomShardingStrategy

10.4.2. Dynamic sharding

Dynamic sharding allows you to manage the shards yourself and even create new shards

on the fly. To do so you need to implement the interface ShardIdentifierProvider and set the

hibernate.search.[default|<indexName>].sharding_strategy property to the fully qualified name of

this class. Note that instead of implementing the interface directly, you should rather derive your

implementation from org.hibernate.search.store.ShardIdentifierProviderTemplate which provides

a basic implementation. Let’s look at Example 10.6, “Custom ShardIdentifierProvider” for an

example.

Example 10.6. Custom ShardIdentifierProvider

public static class AnimalShardIdentifierProvider extends ShardIdentifierProviderTemplate {

 @Override

 public String getShardIdentifier(Class<?> entityType, Serializable id,

         String idAsString, Document document) {

    if (entityType.equals(Animal.class)) {

       String typeValue = document.getField("type").stringValue();

       addShard(typeValue);

       return typeValue;

    }

    throw new RuntimeException("Animal expected but found " + entityType);

 }

 @Override
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 protected Set<String> loadInitialShardNames(Properties properties, BuildContext buildContext) {

    ServiceManager serviceManager = buildContext.getServiceManager();

    SessionFactory sessionFactory = serviceManager.requestService(

        HibernateSessionFactoryService.class).getSessionFactory();

    Session session = sessionFactory.openSession();

    try {

       Criteria initialShardsCriteria = session.createCriteria(Animal.class);

       initialShardsCriteria.setProjection(Projections.distinct(Property.forName("type")));

       List<String> initialTypes = initialShardsCriteria.list();

       return new HashSet<String>(initialTypes);

    }

    finally {

       session.close();

    }

 }

}

The are several things happening in AnimalShardIdentifierProvider. First off its purpose is

to create one shard per animal type (e.g. mammal, insect, etc.). It does so by inspecting the class

type and the Lucene document passed to the getShardIdentifier() method. It extracts the type

field from the document and uses it as shard name. getShardIdentifier() is called for every

addition to the index and a new shard will be created with every new animal type encountered.

The base class ShardIdentifierProviderTemplate maintains a set with all known shards to

which any identifier must be added by calling addShard().

It is important to understand that Hibernate Search cannot know which shards already

exist when the application starts. When using ShardIdentifierProviderTemplate as base

class of a ShardIdentifierProvider implementation, the initial set of shard identifiers

must be returned by the loadInitialShardNames() method. How this is done will depend

on the use case. However, a common case in combination with Hibernate ORM is

that the initial shard set is defined by the the distinct values of a given database

column. Example 10.6, “Custom ShardIdentifierProvider” shows how to handle such a case.

AnimalShardIdentifierProvider makes in its loadInitialShardNames() implementation use

of a service called HibernateSessionFactoryService (see also Section 10.6, “Using external

services”) which is available within an ORM environment. It allows to request a Hibernate

SessionFactory instance which can be used to run a Criteria query in order to determine the

initial set of shard identifiers.

Last but not least, the ShardIdentifierProvider also allows for optimizing searches by selecting

which shard to run a query against. By activating a filter (see Section 5.3.1, “Using filters in a

sharded environment”), a sharding strategy can select a subset of the shards used to answer

a query (getShardIdentifiersForQuery(), not shown in the example) and thus speed up the

query execution.

Important

This ShardIdentifierProvider is considered experimental. We might need to apply

some changes to the defined method signatures to accommodate for unforeseen
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use cases. Please provide feedback if you have ideas, or just to let us know how

you’re using this API.

10.5. Sharing indexes

It is technically possible to store the information of more than one entity into a single Lucene index.

There are two ways to accomplish this:

• Configuring the underlying directory providers to point to the same physical index

directory. In practice, you set the property hibernate.search.[fully qualified entity

name].indexName to the same value. As an example, let’s use the same index (directory) for

the Furniture and Animal entities. We just set indexName for both entities to "Animal". Both

entities will then be stored in the Animal directory:

hibernate.search.org.hibernate.search.test.shards.Furniture.indexName =

 Animal

hibernate.search.org.hibernate.search.test.shards.Animal.indexName = Animal

• Setting the @Indexed annotation’s index attribute of the entities you want to merge to the same

value. If we again wanted all Furniture instances to be indexed in the Animal index along with all

instances of Animal we would specify @Indexed(index="Animal") on both Animal and Furniture

classes.

Note

This is only presented here so that you know the option is available. There is really

not much benefit in sharing indexes.

10.6. Using external services

A Service in Hibernate Search is a class implementing the interface

org.hibernate.search.engine.service.spi.Service and providing a default no-arg

constructor. Theoretically that’s all that is needed to request a given service type from the

Hibernate Search ServiceManager. In practice you want probably want to add some service life

cycle methods (implement Startable and Stoppable) as well as actual methods providing some

functionality.

Hibernate Search uses the service approach to decouple different components of the system.

Let’s have a closer look at services and how they are used.

10.6.1. Using a Service

Many of of the pluggable contracts of Hibernate Search can use services. Services are accessible

via the BuildContext interface as in the following example.
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Example 10.7. Example of a custom DirectoryProvider using a

ClassLoaderService

public CustomDirectoryProvider implements DirectoryProvider<RAMDirectory> {

    private ServiceManager serviceManager;

    private ClassLoaderService classLoaderService;

    public void initialize(

        String directoryProviderName,

        Properties properties,

        BuildContext context) {

        //get a reference to the ServiceManager

        this.serviceManager = context.getServiceManager();

    }

    public void start() {

        //get the current ClassLoaderService

        classLoaderService = serviceManager.requestService(ClassLoaderService.class);

    }

    public RAMDirectory getDirectory() {

        //use the ClassLoaderService

    }

    public stop() {

        //make sure to release all services

        serviceManager.releaseService(ClassLoaderService.class);

    }

}

When you request a service, an instance of the requested service type is returned to you.

Make sure release the service via ServiceManager.releaseService once you don’t need it

anymore. Note that the service can be released in the DirectoryProvider.stop method if the

DirectoryProvider uses the service during its lifetime or could be released right away if the

service is only needed during initialization time.

10.6.2. Implementing a Service

To implement a service, you need to create an interface which identifies it and extends

org.hibernate.search.engine.service.spi.Service. You can then add additional methods

to your service interface as needed.

Naturally you will also need to provide an implementation of your service interface. This

implementation must have a public no-arg constructor. Optionally your service can also

implement the life cycle methods org.hibernate.search.engine.service.spi.Startable

and/or org.hibernate.search.engine.service.spi.Stoppable. These methods will be called

by the ServiceManager when the service is created respectively the last reference to a requested

service is released.

Services are retrieved from the ServiceManager.requestService using the Class object of the

interface you define as a key.
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10.6.2.1. Managed services

To transparently discover services Hibernate Search uses the Java ServiceLoader mechanism.

This means you need to add a service file to your jar under /META-INF/services/ named after

the fully qualified classname of your service interface. The content of the file contains the fully

qualified classname of your service implementation.

Example 10.8. Service file for the Infinispan CacheManagerService service

/META-INF/services/org.hibernate.search.infinispan.CacheManagerService

Example 10.9. Content of META-INF/services/

org.hibernate.search.infinispan.CacheManagerService

org.hibernate.search.infinispan.DefaultCacheManagerService

Note

Hibernate Search only supports a single service implementation of a given service.

There is no mechanism to select between multiple versions of a service. It is an

error to have multiple jars defining each a different implementation for the same

service. If you want to override the implementation of a already existing service at

runtime you will need to look at Section 10.6.2.2, “Provided services”.

10.6.2.2. Provided services

Important

Provided services are usually used by frameworks integrating with Hibernate

Search and not by library users themselves.

As an alternative to manages services, a service can be provided by the environment

bootstrapping Hibernate Search. For example, Infinispan which uses Hibernate Search as its

internal search engine, passes the CacheContainer to Hibernate Search. In this case, the

CacheContainer instance is not managed by Hibernate Search and the start/stop methods

defined by optional Stoppable and Startable interfaces will be ignored.

A Service implementation which is only used as a Provided Service doesn’t need to have a public

constructor taking no arguments.
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Note

Provided services have priority over managed services. If a provided service is

registered with the same ServiceManager instance as a managed service, the

provided service will be used.

The provided services are passed to Hibernate Search via the SearchConfiguration interface:

as implementor of method getProvidedServices you can return a Map of all services you need

to provide.

Note

When implementing a custom

org.hibernate.search.cfg.spi.SearchConfiguration we recommend you

extend the base class

org.hibernate.search.cfg.spi.SearchConfigurationBase: that will improve

compatibility by not breaking your code when we need to add new methods to this

interface.

10.7. Customizing Lucene’s scoring formula

Lucene allows the user to customize its scoring formula by extending

org.apache.lucene.search.similarities.Similarity. The abstract methods defined in this class match

the factors of the following formula calculating the score of query q for document d:

score(q,d) = coord(q,d) · queryNorm(q) · ∑ ~t in q~ ( tf(t in d) · idf(t) 2 · t.getBoost() · norm(t,d) )

Factor Description

tf(t ind) Term frequency factor for the term (t) in the

document (d).

idf(t) Inverse document frequency of the term.

coord(q,d) Score factor based on how many of the query

terms are found in the specified document.

queryNorm(q) Normalizing factor used to make scores

between queries comparable.

t.getBoost() Field boost.

norm(t,d) Encapsulates a few (indexing time) boost and

length factors.

It is beyond the scope of this manual to explain this formula in more detail. Please refer to

Similarity’s Javadocs for more information.
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Hibernate Search provides two ways to modify Lucene’s similarity calculation.

First you can set the default similarity by specifying the fully specified classname of your

Similarity implementation using the property hibernate.search.similarity. The default value is

org.apache.lucene.search.similarities.DefaultSimilarity.

Secondly, you can override the similarity used for a specific index by setting the similarity

property for this index (see Section 3.3, “Directory configuration” for more information about index

configuration):

hibernate.search.[default|<indexname>].similarity = my.custom.Similarity

As an example, let’s assume it is not important how often a term appears in a document.

Documents with a single occurrence of the term should be scored the same as documents with

multiple occurrences. In this case your custom implementation of the method tf(float freq)

should return 1.0.

Note

When two entities share the same index they must declare the same Similarity

implementation.

10.8. Multi-tenancy

10.8.1. What is multi-tenancy?

The term multi-tenancy in general is applied to software development to indicate an architecture in

which a single running instance of an application simultaneously serves multiple clients (tenants).

Isolating information (data, customizations, etc) pertaining to the various tenants is a particular

challenge in these systems. This includes the data owned by each tenant stored in the database.

You will find more details on how to enable multi-tenancy with Hibernate in the Hibernate ORM

developer’s guide [http://docs.jboss.org/hibernate/orm/4.3/devguide/en-US/html/ch16.html].

10.8.2. Using a tenant-aware FullTextSession

Hibernate Search supports multi-tenancy on top of Hibernate ORM, it stores the tenant identifier

in the document and automatically filters the query results.

The FullTextSession will be bound to the specific tenant ("client-A" in the example) and the

mass indexer will only index the entities associated to that tenant identifier.

Example 10.10. Bind the session to a tenant

Session session = getSessionFactory()

http://docs.jboss.org/hibernate/orm/4.3/devguide/en-US/html/ch16.html
http://docs.jboss.org/hibernate/orm/4.3/devguide/en-US/html/ch16.html
http://docs.jboss.org/hibernate/orm/4.3/devguide/en-US/html/ch16.html
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                      .withOptions()

                          .tenantIdentifier( "client-A" )

                  .openSession();

FullTextSession session = Search.getFullTextSession( session );

The use of a tenant identifier will have the following effects:

1. Every document saved or updated in the index will have an additional field

__HSearch_TenantId containing the tenant identifier.

2. Every search will be filtered using the tenant identifier.

3. The MassIndexer (see Section 6.3.2, “Using a MassIndexer”) will only affect the currently

selected tenant.

Note that not using a tenant will return all the matching results for all the tenants in the index.
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Further reading
Last but not least, a few pointers to further information. We highly recommend you to get a copy

of Hibernate Search in Action [http://www.manning.com/bernard/]. This excellent book covers

Hibernate Search in much more depth than this online documentation can and has a great range

of additional examples. If you want to increase your knowledge of Lucene we recommend Lucene

in Action (Second Edition) [http://www.manning.com/hatcher3/].

Because Hibernate Search’s functionality is tightly coupled to Hibernate ORM it is a good

idea to understand Hibernate. Start with the online documentation [http://hibernate.org/orm/

documentation/] or get hold of a copy of Java Persistence with Hibernate, Second Edition [http://

www.manning.com/bauer3/].

If you have any further questions regarding Hibernate Search or want to share some of your use

cases have a look at the Hibernate Search Wiki [https://community.jboss.org/en/hibernate/search]

and the Hibernate Search Forum [https://forum.hibernate.org/viewforum.php?f=9]. We are looking

forward hearing from you.

In case you would like to report a bug use the Hibernate Search JIRA [https://

hibernate.atlassian.net/browse/HSEARCH] instance. Feedback is always welcome!

http://www.manning.com/bernard/
http://www.manning.com/bernard/
http://www.manning.com/hatcher3/
http://www.manning.com/hatcher3/
http://www.manning.com/hatcher3/
http://hibernate.org/orm/documentation/
http://hibernate.org/orm/documentation/
http://hibernate.org/orm/documentation/
http://www.manning.com/bauer3/
http://www.manning.com/bauer3/
http://www.manning.com/bauer3/
https://community.jboss.org/en/hibernate/search
https://community.jboss.org/en/hibernate/search
https://forum.hibernate.org/viewforum.php?f=9
https://forum.hibernate.org/viewforum.php?f=9
https://hibernate.atlassian.net/browse/HSEARCH
https://hibernate.atlassian.net/browse/HSEARCH
https://hibernate.atlassian.net/browse/HSEARCH


176


	Hibernate Search
	Table of Contents
	Preface
	Chapter 1. Getting started
	1.1. System Requirements
	1.2. Migration notes
	1.3. Required libraries
	1.3.1. Using Maven
	1.3.2. Manual library management

	1.4. Deploying on WildFly
	1.5. Configuration
	1.6. Indexing
	1.7. Searching
	1.8. Analyzer
	1.9. What’s next

	Chapter 2. Architecture
	2.1. Overview
	2.2. Back end
	2.2.1. Lucene
	2.2.2. JMS
	2.2.3. JGroups

	2.3. Reader strategy
	2.3.1. shared
	2.3.2. not-shared
	2.3.3. Custom


	Chapter 3. Configuration
	3.1. Enabling Hibernate Search and automatic indexing
	3.1.1. Enabling Hibernate Search
	3.1.2. Automatic indexing

	3.2. Configuring the IndexManager
	3.2.1. directory-based
	3.2.2. near-real-time
	3.2.3. Custom

	3.3. Directory configuration
	3.3.1. Infinispan Directory configuration
	3.3.1.1. Requirements
	3.3.1.2. Architecture
	3.3.1.3. Infinispan Configuration


	3.4. Worker configuration
	3.4.1. JMS Master/Slave back end
	3.4.1.1. Slave nodes
	3.4.1.2. Master node

	3.4.2. JGroups Master/Slave back end
	3.4.2.1. Slave nodes
	3.4.2.2. Master node
	3.4.2.3. Automatic master election
	3.4.2.4. JGroups channel configuration
	3.4.2.4.1. JGroups channel instance injection



	3.5. Reader strategy configuration
	3.6. Exception handling
	3.7. Lucene configuration
	3.7.1. Tuning indexing performance
	3.7.1.1. Control segment size
	3.7.1.2. Troubleshooting: enable Lucene’s Infostream

	3.7.2. LockFactory configuration
	3.7.3. Index format compatibility

	3.8. Metadata API
	3.9. Hibernate Search as a WildFly module
	3.9.1. Use the Hibernate Search version included in WildFly
	3.9.2. Update and activate latest Hibernate Search version in WildFly
	3.9.3. Using Infinispan with Hibernate Search on WildFly


	Chapter 4. Mapping entities to the index structure
	4.1. Mapping an entity
	4.1.1. Basic mapping
	4.1.1.1. @Indexed
	4.1.1.2. @Field
	4.1.1.3. @NumericField
	4.1.1.4. @Id

	4.1.2. Mapping properties multiple times
	4.1.3. Embedded and associated objects
	4.1.3.1. Limiting object embedding to specific paths

	4.1.4. Associated objects: building a dependency graph with @ContainedIn

	4.2. Boosting
	4.2.1. Static index time boosting
	4.2.2. Dynamic index time boosting

	4.3. Analysis
	4.3.1. Default analyzer and analyzer by class
	4.3.2. Named analyzers
	4.3.2.1. Available analyzers

	4.3.3. Dynamic analyzer selection
	4.3.4. Retrieving an analyzer

	4.4. Bridges
	4.4.1. Built-in bridges
	4.4.2. Tika bridge
	4.4.3. Custom bridges
	4.4.3.1. StringBridge
	4.4.3.1.1. Parameterized bridge
	4.4.3.1.2. Type aware bridge
	4.4.3.1.3. Two-way bridge

	4.4.3.2. FieldBridge
	4.4.3.3. ClassBridge

	4.4.4. BridgeProvider: associate a bridge to a given return type

	4.5. Conditional indexing
	4.6. Providing your own id
	4.6.1. The ProvidedId annotation

	4.7. Programmatic API
	4.7.1. Mapping an entity as indexable
	4.7.2. Adding DocumentId to indexed entity
	4.7.3. Defining analyzers
	4.7.4. Defining full text filter definitions
	4.7.5. Defining fields for indexing
	4.7.6. Programmatically defining embedded entities
	4.7.7. Contained In definition
	4.7.8. Date/Calendar Bridge
	4.7.9. Declaring bridges
	4.7.10. Mapping class bridge
	4.7.11. Mapping dynamic boost


	Chapter 5. Querying
	5.1. Building queries
	5.1.1. Building a Lucene query using the Lucene API
	5.1.2. Building a Lucene query with the Hibernate Search query DSL
	5.1.2.1. Keyword queries
	5.1.2.2. Fuzzy queries
	5.1.2.3. Wildcard queries
	5.1.2.4. Phrase queries
	5.1.2.5. Range queries
	5.1.2.6. Spatial (or geolocation) queries
	5.1.2.7. More Like This queries
	5.1.2.8. Combining queries
	5.1.2.9. Query options

	5.1.3. Building a Hibernate Search query
	5.1.3.1. Generality
	5.1.3.2. Pagination
	5.1.3.3. Sorting
	5.1.3.4. Fetching strategy
	5.1.3.5. Projection
	5.1.3.6. Customizing object initialization strategies
	5.1.3.7. Limiting the time of a query
	5.1.3.7.1. Raise an exception on time limit
	5.1.3.7.2. Limit the number of results when the time limit is reached



	5.2. Retrieving the results
	5.2.1. Performance considerations
	5.2.2. Result size
	5.2.3. ResultTransformer
	5.2.4. Understanding results

	5.3. Filters
	5.3.1. Using filters in a sharded environment

	5.4. Faceting
	5.4.1. Creating a faceting request
	5.4.1.1. Discrete faceting request
	5.4.1.2. Creating a range faceting request

	5.4.2. Setting the facet sort order
	5.4.3. Applying a faceting request
	5.4.4. Interpreting a Facet result
	5.4.5. Restricting query results

	5.5. Optimizing the query process
	5.5.1. Caching index values: FieldCache


	Chapter 6. Manual index changes
	6.1. Adding instances to the index
	6.2. Deleting instances from the index
	6.3. Rebuilding the whole index
	6.3.1. Using flushToIndexes()
	6.3.2. Using a MassIndexer
	6.3.2.1. MassIndexer using threads and JDBC connections
	6.3.2.2. Using a custom MassIndexer implementation

	6.3.3. Useful parameters for batch indexing


	Chapter 7. Index Optimization
	7.1. Automatic optimization
	7.2. Manual optimization
	7.3. Adjusting optimization

	Chapter 8. Monitoring
	8.1. JMX
	8.1.1. StatisticsInfoMBean
	8.1.2. IndexControlMBean
	8.1.3. IndexingProgressMonitorMBean


	Chapter 9. Spatial
	9.1. Enable indexing of Spatial Coordinates
	9.1.1. Indexing coordinates for range queries
	9.1.2. Indexing coordinates in a grid with spatial hashes
	9.1.3. Implementing the Coordinates interface

	9.2. Performing Spatial Queries
	9.2.1. Returning distance to query point in the search results
	9.2.1.1. Returning distance to the center in the results
	9.2.1.2. Sorting by distance


	9.3. Multiple Coordinate pairs
	9.4. Insight: implementation details of spatial hashes indexing
	9.4.1. At indexing level
	9.4.2. At search level
	9.4.2.1. Step 1: Compute the best spatial hashes grid level for the search discus
	9.4.2.2. Step 2: Compute ids of the corresponding covering boxes at that level
	9.4.2.3. Step 3: Lucene index lookup
	9.4.2.4. Step 4: Refine



	Chapter 10. Advanced features
	10.1. Accessing the SearchFactory
	10.2. Using an IndexReader
	10.3. Accessing a Lucene Directory
	10.4. Sharding indexes
	10.4.1. Static sharding
	10.4.2. Dynamic sharding

	10.5. Sharing indexes
	10.6. Using external services
	10.6.1. Using a Service
	10.6.2. Implementing a Service
	10.6.2.1. Managed services
	10.6.2.2. Provided services


	10.7. Customizing Lucene’s scoring formula
	10.8. Multi-tenancy
	10.8.1. What is multi-tenancy?
	10.8.2. Using a tenant-aware FullTextSession


	Chapter 11. Further reading

