Hibernate Search

Apache Lucene™
Integration

Reference Guide

5.2.1.Final

by Emmanuel Bernard, Hardy Ferentschik, Gustavo Fernandes,
Sanne Grinovero, Nabeel Ali Memon, and Gunnar Morling

g (=] = o1 <Y Vii

I 1= 1 o T3 = =T PN 1
1.1. SyStem REQUIFEIMENTSoiiiiiiieeiiii ettt e e e e e e e 1
I V[T | = 11T T T 1 (= P 1
1.3. ReqQUIred lIDFaIIES .. .oeveiiiiiii e e 2

0 R U 1 T 1Y/ = =T o 2

1.3.2. Manual library managementcc.uuiieiiiiiieiiii e 3
1.4. Deploying on WIIAFIYcouiiii e e e e e e e 3
ST O] a1 To [N] 7= 11 To] o PP PP TPPPPRT 3
G TR [T 2] o R 7
1.7, SEAICIING vttt e e et e e et et aee 7
L8, ANAIYZET e 8
S T VAT g T S 1= AP 10

A N o 11 (=T o] AU = PP 13
N O 1YY T PP 13
2.2, BACK BN oiiii e 14

2.2. 0. LUCENE ot 14
2.2.2. IS e 15
2.2.3. JGIOUPS ettt et e 17
DG T = (=T Lo [gy 1 - | (=T | P 17
2.3. 1 SNAIEA .. 17
2.3.2. NOE-SNATEA ...ovviiiiii e e et e 17
A TR TR O 1= (0] o T PRSPPI 18

G T 0 1 To [U1 = Lo I 19

3.1. Enabling Hibernate Search and automatic indexingccccoevveveiiinneiiiiineeeiiinen. 19
3.1.1. Enabling Hibernate Searchcccooiiiiiiiiiiii e, 19
3.1.2. AULOMALIC INAEXING ..eevtieeeiii e 19

3.2. Configuring the INAEXMAaNAGETuieiiiieiiii e aaas 19
3.2.1. dIreCtOry-DaSEAuiiiiiiii e 20
3.2.2. NEAI-TEAI-LIME .ieiii i e 20
I J0 0 TR O 1 1= (0] o ¢ T PRSPPI 20

3.3. Directory ConfigUrationc..oiiiiiiiiiiii e e e e e e e 20
3.3.1. Infinispan Directory configurationccoooiieiiiiiniiiiiii e 25

3.4, Worker CONfIQUIAtIONiiiiieii e e e e e e e e e et e e e eeas 27
3.4.1. JMS Master/Slave back endcooiiiiiiiiiiiii 30
3.4.2. JGroups Master/Slave back endccoocoiiiiiiiiiiin 32

3.5. Reader strategy CONfIQUIALIONuuiiiiiiiiiiiiiii e 35

3.6. EXCeption handliNgcccuiiiiiiiii e 36

3.7. Lucene CONFIQUIALIONuiiiiiiieiiii et e e e eaanns 36
3.7.1. Tuning indexing PerformMancCeccocvuieiiiieiiii e 37
3.7.2. LockFactory configurationcc.uiieiiiinioiiiii e 42
3.7.3. Index format compatibilityccocouiiiiiiiiii 44

3.8, Metadata APl ... e 45

3.9. Hibernate Search as a WildFly modulecccooiiiiiiiiiie e, 45

Hibernate Search

3.9.1. Use the Hibernate Search version included in WildFlycccccoeoeevnnnnen. 45
3.9.2. Update and activate latest Hibernate Search version in WildFly 46
3.9.3. Using Infinispan with Hibernate Search on WildFlyc.cc.ocoiiiiiiiinnnnnn. 47

4. Mapping entities to the iNndeX StrUCTUIEc..ciiiii i 49
4.1, MaPPING @N ENEILY .eeietiieiiii et 49
e O O - = o 0 = o] o 11 o 49
4.1.2. Mapping properties multiple timescooviiiiiiiii e 55
4.1.3. Embedded and associated 0ObJECtScciviiiiiiiiii i, 56
4.1.4. Associated objects: building a dependency graph with @Containedin 62

A = 1o To 1) 1] Vo 63
4.2.1. Static indeX time DOOSHNGoiiiiiiiiiiiii e 63
4.2.2. Dynamic index time BoOStNGccooviiiiiiiiii e 63

4.3, ANAIYSIS ..t 65
4.3.1. Default analyzer and analyzer by classcccooeeiiiiiiiiii e, 65
4.3.2. Named @NAIYZEISiiiiiiiiieei e 66
4.3.3. Dynamic analyzer SEIECHONcccuiiiiiii e 71
4.3.4. Retrieving an @nalYZEeroviiiiiiiiiiiii e 72

T o o = 73
4.4.1. BUIlt-IN DIAGES ooveieieiiiee e 74
O 1= W o 1 o [TP 75
4.4.3. CUSLOM DIAGES ..oveiiiieii e 76
4.4.4. BridgeProvider: associate a bridge to a given return typeccooeeevnnnens 82

4.5, ConditioNal INAEXING ... ceeeiiieiiii et 84
4.6. Providing YOUr OWN 0uiiiiiiei e e e e e e e e et e e e eaaas 87
4.6.1. The Providedld annotationco.oeeiiiiiiiiiiee e 87

4.7. ProgrammatiCc AP ... 87
4.7.1. Mapping an entity as indexable ..., 89
4.7.2. Adding Documentld to indexed entityccooovviiiiiiiiiiiieiie e 90
4.7.3. DefiNing @nalYZEISuiiiiiiiiiiei e 91
4.7.4. Defining full text filter definitionNscoocoiiiiiii i 92
4.7.5. Defining fields for iNAeXiNgooviiiiiiiiii e 93
4.7.6. Programmatically defining embedded entitiescccoeveiiiiiiiiiciiineeinnens 95
4.7.7. Contained In definitioncooiiiiiiii 96
4.7.8. Date/Calendar Bridgecoeiuiiiiiiiiii e e 97
4.7.9. Declaring bridgescooeuuiiiiiii e 98
4.7.10. Mapping Class bridgeoooiiiiiiiiiic e 99
4.7.11. Mapping dynamiC DOOSEuiiiiiiiiiiiiii e 100

LT @ 10 1= Yo Yo T 103
5.1. BUIldING QUETIES ... et e e 105
5.1.1. Building a Lucene query using the Lucene APlcocoiieiiiiiiiiinceineeenn, 105
5.1.2. Building a Lucene query with the Hibernate Search query DSL 105
5.1.3. Building a Hibernate Search querycccciiviiiiiiii i, 114

5.2. Retrieving the reSUILScooiiiiiiii e 122
5.2.1. Performance CONSIAEratioNSuiieiiiiiiieiiiiinieieiin et e et e e 122

B.2.2. RESUIL SIZE oottt a e 123

5.2.3. RESURTIANSTOINMEN ..uuiiiiiiii e 123

5.2.4. Understanding reSUILScouuiiiiiiiiieiiiii e 124

LR T 11 = ST 125
5.3.1. Using filters in a sharded environmentcccoooeiiiiiiiiiiiinieii e, 128

L - Vo =1 1] o [P 130
5.4.1. Creating a faceting reqUESTcccuuuiiiiiiiiiiii e 132

5.4.2. Setting the facet SOrt Ordercooiiiiiiiiii e 134

5.4.3. Applying a faceting reqUESToveiiiiiiiiiiiii e 135

5.4.4. Interpreting a Facet resultccoooiiiiii i 135

5.4.5. ReStricting qUETY FESUILSoiiiiiiiiiiiii e 136

5.5. Optimizing the qQUEIY PrOCESSuuiiiiiiiiiii e e e e e e e 137
5.5.1. Caching index values: FieldCacheccccoiiiiiiiiiiiiiii e 137

6. Manual INAEX CRANGES ...ciiiiiii e e e e e e e e eaens 139
6.1. Adding instances to the INAEXc.uiiiiiiiiii e 139

6.2. Deleting instances from the iINAeXccccoiiiiiii i 139

6.3. Rebuilding the Whole INAeXoiiiiiiiiii e 140
6.3.1. Using fluUShTOINAEXES() «.cvvneeinieiii e e e e 141

6.3.2. USING @ MASSINAEXETciiiiiiiiiiiii et 141

6.3.3. Useful parameters for batch indexingcccoocvoiveiiiiiiiiiii e, 145

7. INAEX OPLIMIZALION .iiiiiiieiii e et e e e 147
7.1. Automatic OPLIMIZALIONciiieiiii e e e e e e e aens 148

7.2. Manual OPtIMIZALIONoiiiiiiiei e e e e eaees 149

7.3. Adjusting OPtiMIZALIONiiiiiiii e 149

Y, (o] 11 (o] 41 o Yo [PPSR UPPPTTR PPN 151
S0 I 11 PSP 151
8.1.1. StatistiCSINFOMBEANoveiiiiiie e e 151

8.1.2. INdeXCONLrOIMBEEANieiiiiiiieiiiie e 151

8.1.3. IndexingProgressMOoNItoOrMBEANiviiiiiiiiiiiiiie e 151

LS TR o - 1 - | P 153
9.1. Enable indexing of Spatial Coordinatesccoveiiiiiiiiiiiiiiei e 153
9.1.1. Indexing coordinates for range QUETIEScc.cvevuieiiiiieiiieeeieeee e eeenn 153

9.1.2. Indexing coordinates in a grid with spatial hashescccooeviiiin, 154

9.1.3. Implementing the Coordinates interfacecccoeeeiiviiiiiiiiiieiii e 155

9.2. Performing Spatial QUETIESiiiiiiiiiieiii e 157
9.2.1. Returning distance to query point in the search resultsc...coe.. 158

9.3. Multiple CoOrdiNAtE PAIIScieeiiieieii et 160

9.4. Insight: implementation details of spatial hashes indexingc...ccoeveiiiiinnn. 161
9.4.1. At Iindexing leVel ..o 161

9.4.2. At SEAICN IBVEI ..uuiiiiii i 162

10. AAVANCEA FRALUIES ..iuuiiiii e e e e e e e e et e e e e e ean s 165
10.1. Accessing the SearchFactorycccciiiiiii i 165
10.2. USIiNG aNn INAEXREAUEToiiiiiiiieiiii et 165
10.3. Accessing a LUCENE DIrECIONYccuuiiiiiiiiieii et e e aens 166

Hibernate Search

10.4. Sharding INAEXESccoeuiiiiiiii et e et e eeeaa e aees 166
10.4.1. Static SNArdinNgcccvuiiiiiieiir e 167
10.4.2. DYNamicC Shardingoveiiiuiieiiiiie et 167

10.5. SharinNg INAEXES ...vuiiiiiiiii e e e e e e e e et e eaaees 169

10.6. USING EXEINAI SEIVICESuuiiiiiiiiieeiiii et 169
10.6.1. USING @ SEIVICE ..ivvuiiiiiiiiii i et e et e e e e e e e e e e e eanees 169
10.6.2. ImpIemeNting @ SEIVICEccuuuiiiiiiiii e 170

10.7. Customizing Lucene’s scoring formulaccooeeiiiiiiiii i, 172

10.8. MUILI-EENANCY ..eeetiiieiii ettt e et e e e e eaan s 173
10.8.1. What is MUItI-tENANCY?cvviiiii e 173
10.8.2. Using a tenant-aware Ful | TeXt SESSi ONvevuuieirnieiiieeeiieeiiieeieeeenneeees 173

5 T d g = == Vo T o N 175

Vi

Preface

Full text search engines like Apache Lucene are very powerful technologies to add efficient
free text search capabilities to applications. However, Lucene suffers several mismatches when
dealing with object domain models. Amongst other things indexes have to be kept up to date and
mismatches between index structure and domain model as well as query mismatches have to
be avoided.

Hibernate Search addresses these shortcomings - it indexes your domain model with the help
of a few annotations, takes care of database/index synchronization and brings back regular
managed objects from free text queries. To achieve this Hibernate Search is combining the power
of Hibernate [http://www.hibernate.org] and Apache Lucene [http://lucene.apache.org].

Vii

http://www.hibernate.org
http://www.hibernate.org
http://lucene.apache.org
http://lucene.apache.org

viii

Chapter 1.

Getting started

Welcome to Hibernate Search. The following chapter will guide you through the initial steps
required to integrate Hibernate Search into an existing Hibernate ORM enabled application. In
case you are a Hibernate new timer we recommend you start here [http://hibernate.org/quick-
start.html].

1.1. System Requirements

Table 1.1. System requirements

Java Runtime Requires Java version 7 or greater. You
can download a Java Runtime for Windows/
Linux/Solaris here [http://www.oracle.com/
technetwork/javal/javase/downloads/
index.html].

Hibernate Search hi ber nat e-search-5.2. 1. Final .jar and
all runtime dependencies. You can get the jar
artifacts either from the di st/ 1 i b directory
of the Hibernate Search distribution [http://
sourceforge.net/projects/hibernate/files/
hibernate-search/] or you can download them
from the JBoss maven repository [http://
repository.jboss.org/nexus/content/groups/
public-jboss/org/hibernate/].

Hibernate Core You will need hi ber nat e-
core-4.3.9.Final.jar and its
dependencies (either from the distribution
bundle [http://sourceforge.net/projects/
hibernate/files/hibernate4/] or the maven
repository).

JPA 2.1 Hibernate Search can be used without JPA
but the following instructions will use JPA
annotations for basic entity configuration
(@ntity, @d, @neToMany,...).

1.2. Migration notes

If you are upgrading an existing application from an earlier version of Hibernate Search to
the latest release, make sure to check the out the migration guide [http://hibernate.org/search/
documentation/migrate/5.0/].

http://hibernate.org/quick-start.html
http://hibernate.org/quick-start.html
http://hibernate.org/quick-start.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://sourceforge.net/projects/hibernate/files/hibernate-search/
http://sourceforge.net/projects/hibernate/files/hibernate-search/
http://sourceforge.net/projects/hibernate/files/hibernate-search/
http://sourceforge.net/projects/hibernate/files/hibernate-search/
http://repository.jboss.org/nexus/content/groups/public-jboss/org/hibernate/
http://repository.jboss.org/nexus/content/groups/public-jboss/org/hibernate/
http://repository.jboss.org/nexus/content/groups/public-jboss/org/hibernate/
http://repository.jboss.org/nexus/content/groups/public-jboss/org/hibernate/
http://sourceforge.net/projects/hibernate/files/hibernate4/
http://sourceforge.net/projects/hibernate/files/hibernate4/
http://sourceforge.net/projects/hibernate/files/hibernate4/
http://sourceforge.net/projects/hibernate/files/hibernate4/
http://hibernate.org/search/documentation/migrate/5.0/
http://hibernate.org/search/documentation/migrate/5.0/
http://hibernate.org/search/documentation/migrate/5.0/

Chapter 1. Getting started

1.3. Required libraries

The Hibernate Search library is split in several modules to allow you to pick the minimal set of
dependencies you need. It requires Apache Lucene, Hibernate ORM and some standard APls
such as the Java Persistence AP| and the Java Transactions API. Other dependencies are
optional, providing additional integration points. To get the correct jar files on your classpath we
highly recommend to use a dependency manager such as Maven [http://maven.apache.org/],
or similar tools such as Gradle [http://www.gradle.org/] or Ivy [http://ant.apache.org/ivy/]. These
alternatives are also able to consume the artifacts from the Section 1.3.1, “Using Maven” section.

1.3.1. Using Maven

The Hibernate Search artifacts can be found in Maven's Central Repository [http://
central.sonatype.org/] but are released first in the JBoss Maven Repository [http:/
repository.jboss.org/nexus/content/groups/public-jboss/]. See also the Maven Getting Started wiki
page [https://community.jboss.org/wiki/MavenGettingStarted-Users] to use the JBoss repository.

All you have to add to your pom.xml is:

Example 1.1. Maven artifact identifier for Hibernate Search

<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifact!d>hi bernate-search-ornx/artifactld>
<ver si on>5. 2. 1. Fi nal </ ver si on>

</ dependency>

Example 1.2. Optional Maven dependencies for Hibernate Search

<dependency>

<l-- If using JPA, add: -->

<dependency>
<groupl d>or g. hi ber nat e</ gr oupl d>
<artifactld>hi bernate-entitymanager</artifactld>
<version>4. 3. 9. Fi nal </ versi on>

</ dependency>

<l-- Infinispan integration: -->

<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifact!d>hi bernate-search-infinispan</artifactld>
<version>5. 2. 1. Fi nal </ versi on>

</ dependency>

Only the hibernate-search-orm dependency is mandatory. hibernate-entitymanager is only
required if you want to use Hibernate Search in conjunction with JPA.

http://maven.apache.org/
http://maven.apache.org/
http://www.gradle.org/
http://www.gradle.org/
http://ant.apache.org/ivy/
http://ant.apache.org/ivy/
http://central.sonatype.org/
http://central.sonatype.org/
http://central.sonatype.org/
http://repository.jboss.org/nexus/content/groups/public-jboss/
http://repository.jboss.org/nexus/content/groups/public-jboss/
http://repository.jboss.org/nexus/content/groups/public-jboss/
https://community.jboss.org/wiki/MavenGettingStarted-Users
https://community.jboss.org/wiki/MavenGettingStarted-Users
https://community.jboss.org/wiki/MavenGettingStarted-Users

Manual library management

1.3.2. Manual library management

You can download zip bundles from Sourcefroge containing all needed Hibernate Search
[http://sourceforge.net/projects/hibernate/files/hibernate-search/5.2.1.Final/] dependencies. This
includes - among others - the latest compatible version of Hibernate ORM. However, only
the essential parts you need to start experimenting with are included. You will probably need
to combine this with downloads from the other projects, for example the Hibernate ORM
distribution on Sourceforge [http://sourceforge.net/projects/hibernate/files/hibernate4/4.3.9.Final/
] also provides the modules to enable caching or use a connection pool.

1.4. Deploying on WildFly

If you are creating an application to be deployed on WildFly you're lucky: Hibernate Search is
included in the application server. This means that you don’t need to package it along with your
application but remember that you need to activate the module, see Section 3.9, “Hibernate Search
as a WildFly module” for details.

Due to he modular design of WildFly, you can also bundle a more recent version of Hibernate
Search than the one included in the popular application server. This is also explained further in
Section 3.9, “Hibernate Search as a WildFly module”.

1.5. Configuration

Once you have added all required dependencies to your application you have to add a couple
of properties to your Hibernate configuration file. If you are using Hibernate directly this can be
done in hi ber nat e. properti es or hi ber nat e. cf g. xn . If you are using Hibernate via JPA you
can also add the properties to per si st ence. xnl . The good news is that for standard use most
properties offer a sensible default. An example per si st ence. xm configuration could look like
this:

Example 1.3. Basic configuration options to be added to hi ber nat e. properti es,

hi ber nat e. cf g. xm OFI persi stence. xm

<property nanme="hi bernate. search. defaul t.directory_provider"
val ue="fil esystent/>

<property nane="hi bernate. search. defaul t.i ndexBase"
val ue="/var/lucene/ i ndexes"/>

First you have to tell Hibernate Search which Di r ect or yPr ovi der to use. This can be achieved
by setting the hi ber nat e. search. defaul t. di rectory_provi der property. Apache Lucene has
the notion of a Directory to store the index files. Hibernate Search handles the initialization
and configuration of a Lucene Di rect ory instance via a Di r ect or yPr ovi der . In this tutorial we
will use a a directory provider which stores the index on the file system. This will give us the

http://sourceforge.net/projects/hibernate/files/hibernate-search/5.2.1.Final/
http://sourceforge.net/projects/hibernate/files/hibernate-search/5.2.1.Final/
http://sourceforge.net/projects/hibernate/files/hibernate4/4.3.9.Final/
http://sourceforge.net/projects/hibernate/files/hibernate4/4.3.9.Final/
http://sourceforge.net/projects/hibernate/files/hibernate4/4.3.9.Final/

Chapter 1. Getting started

ability to inspect the Lucene indexes created by Hibernate Search (eg via Luke [https://github.com/
DmitryKey/luke/]). Once you have a working configuration you can start experimenting with other
directory providers (see Section 3.3, “Directory configuration”). You also have to specify the default
base directory for all indexes via hi ber nat e. sear ch. def aul t. i ndexBase. This defines the path
where indexes are stored.

Let's assume that your application contains the Hibernate managed classes exanpl e. Book and
exanpl e. Aut hor and you want to add free text search capabilities to your application in order to
search the books contained in your database.

Example 1.4. Example entities Book and Author before adding Hibernate
Search specific annotations

package exanpl e;

@ntity

public class Book {
@d
@=ner at edVal ue
private Integer id;
private String title;

private String subtitle;

@mnyToMany
private Set<Author> authors = new HashSet <Aut hor >();

private Date publicationDate;
public Book() {}

/] standard getters/setters follow

package exanpl e;
@Entity
public class Author {

@d

@zener at edVval ue
private Integer id;
private String nang;

public Author() {}

/] standard getters/setters follow

https://github.com/DmitryKey/luke/
https://github.com/DmitryKey/luke/
https://github.com/DmitryKey/luke/

Configuration

To achieve this you have to add a few annotations to the Book and Aut hor class. The first
annotation @ ndexed marks Book as indexable. By design Hibernate Search needs to store an
untokenized id in the index to ensure index uniqueness for a given entity (for now don’t worry if
you don’t know what untokenized means, it will soon be clear).

Next you have to mark the fields you want to make searchable. Let's startwithtitl eandsubtitle
and annotate both with @i el d. The parameter i ndex=I ndex. YES will ensure that the text will
be indexed, while anal yze=Anal yze. YES ensures that the text will be analyzed using the default
Lucene analyzer. Usually, analyzing or tokenizing means chunking a sentence into individual
words and potentially excluding common words like "a" or "the". We will talk more about analyzers
a little later on. The third parameter we specify is st or e=St or e. NO, which ensures that the actual
data will not be stored in the index. Whether data is stored in the index or not has nothing to
do with the ability to search for it. It is not necessary to store fields in the index to allow Lucene
to search for them: the benefit of storing them is the ability to retrieve them via projections (see
Section 5.1.3.5, “Projection”).

Without projections, Hibernate Search will per default execute a Lucene query in order to find the
database identifiers of the entities matching the query criteria and use these identifiers to retrieve
managed objects from the database. The decision for or against projection has to be made on
a case by case basis.

Note that i ndex=I ndex. YES, anal yze=Anal yze. YES and st or e=St or e. NOare the default values
for these parameters and could be omitted.

After this short look under the hood let's go back to annotating the Book class. Another annotation
we have not yet discussed is @at eBri dge. This annotation is one of the built-in field bridges in
Hibernate Search. The Lucene index is mostly string based, with special support for encoding
numbers. Hibernate Search must convert the data types of the indexed fields to their respective
Lucene encoding and vice versa. A range of predefined bridges is provided for this purpose,
including the Dat eBri dge which will convertaj ava. uti| . Dat e into a numeric value (al ong) with
the specified resolution. For more details see Section 4.4.1, “Built-in bridges”.

This leaves us with @ ndexedEnbedded. This annotation is used to index associated entities
(@anyToMany, @ ToOne, @nbedded and @&l enent Col | ect i on) as part of the owning entity. This
is needed since a Lucene index document is a flat data structure which does not know anything
about object relations. To ensure that the author names will be searchable you have to make
sure that the names are indexed as part of the book itself. On top of @ ndexedEnbedded you will
also have to mark all fields of the associated entity you want to have included in the index with
@ ndexed. For more details see Section 4.1.3, “Embedded and associated objects”.

These settings should be sufficient for now. For more details on entity mapping refer to Section 4.1,
“Mapping an entity”.

Chapter 1. Getting started

Example 1.5. Example entities after adding Hibernate Search annotations

package exanpl e;

@ntity
@ ndexed
public class Book {

@d
@cener at edVal ue
private Integer id;

@i el d(i ndex=I ndex. YES, anal yze=Anal yze. YES, store=Store. NO
private String title;

@i el d(i ndex=I ndex. YES, anal yze=Anal yze. YES, store=Store. NO
private String subtitle;

@i el d(i ndex = I ndex. YES, anal yze=Anal yze. NO, store = Store. YES)
@pat eBri dge(resol uti on = Resol ution. DAY)
private Date publicationDate;

@ ndexedEnbedded

@manyToMany

private Set<Author> authors = new HashSet <Aut hor >();
public Book() {

}

/] standard getters/setters follow here

@Entity

public class Author {

@d
@cener at edVal ue
private Integer id;

@ield
private String nang;

public Author() {
}

/] standard getters/setters follow here

Indexing

1.6. Indexing

Hibernate Search will transparently index every entity persisted, updated or removed through
Hibernate ORM. However, you have to create an initial Lucene index for the data already present
in your database. Once you have added the above properties and annotations it is time to trigger
an initial batch index of your books. You can achieve this by using one of the following code
snippets (see also Section 6.3, “Rebuilding the whole index”):

Example 1.6. Using Hibernate Session to index data

Ful | Text Sessi on ful | Text Sessi on = Search. get Ful | Text Sessi on(sessi on);
ful | Text Sessi on. createl ndexer().start AndWait();

Example 1.7. Using JPA to index data

EntityManager em = entityManager Factory. creat eEntityManager();
Ful | Text EntityManager full TextEntityManager = Search. get Ful | Text Enti t yManager (em) ;
ful | Text EntityManager. creat el ndexer().start AndWait();

After executing the above code, you should be able to see a Lucene index under / var/ | ucene/
i ndexes/ exanpl e. Book (or based on a different path depending how you configured the property
hi ber nat e. search. defaul t. di rectory_provi der).

Go ahead an inspect this index with Luke [https://github.com/DmitryKey/luke/]: it will help you to
understand how Hibernate Search works.

1.7. Searching

Now it is time to execute a first search. The general approach is to create a Lucene query,
either via the Lucene API (Section 5.1.1, “Building a Lucene query using the Lucene API”) or
via the Hibernate Search query DSL (Section 5.1.2, “Building a Lucene query with the Hibernate
Search query DSL"), and then wrap this query into a or g. hi ber nat e. Query in order to get all
the functionality one is used to from the Hibernate API. The following code will prepare a query
against the indexed fields, execute it and return a list of Book instances.

Example 1.8. Using Hibernate Session to create and execute a search

Ful | Text Sessi on full Text Sessi on = Search. get Ful | Text Sessi on(sessi on);
Transaction tx = full Text Sessi on. begi nTransaction();

Il create native Lucene query using the query DSL
/1 alternatively you can wite the Lucene query using the Lucene query parser
/'l or the Lucene programmatic API. The Hi bernate Search DSL is recomrended though
Quer yBui I der gb = full Text Sessi on. get Sear chFact ory()
. bui I dQuer yBui I der (). forEntity(Book.class).get();

https://github.com/DmitryKey/luke/
https://github.com/DmitryKey/luke/

Chapter 1. Getting started

org. apache. |l ucene. search. Query query = gb
. keywor d()
.onFields("title", "subtitle", "authors.nanme")
. mat chi ng("Java rocks!")
.createQuery();

/1 wrap Lucene query in a org.hibernate. Query
org. hi bernate. Query hi bQuery =
ful | Text Sessi on. creat eFul | Text Query(query, Book.cl ass);

/| execute search
List result = hibQuery.list();

tx.commt();
session. cl ose();

Example 1.9. Using JPA to create and execute a search

EntityManager em = entityManager Factory. creat eEntityManager();
Ful | Text EntityManager full TextEntityManager =

or g. hi bernat e. search. j pa. Sear ch. get Ful | Text Enti t yManager (em ;
em get Transaction(). begin();

/1 create native Lucene query using the query DSL
/1 alternatively you can wite the Lucene query using the Lucene query parser
/] or the Lucene programmatic APl. The Hi bernate Search DSL is recomrended though
QueryBui |l der gb = full Text EntityManager. get SearchFactory()
. bui | dQueryBui I der (). forEntity(Book.class).get();

org. apache. |l ucene. search. Query query = gb

. keywor d()

.onFields("title", "subtitle", "authors.nanme")

. mat chi ng("Java rocks!")

.createQuery();

/] wrap Lucene query in a javax.persistence. Query
j avax. persi stence. Query persistenceQuery =
ful | Text EntityManager . creat eFul | Text Query(query, Book. cl ass);

/| execute search
List result = persistenceQuery.getResultList();

em get Transaction().commit();
em cl ose();

1.8. Analyzer

Let's make things a little more interesting now. Assume that one of your indexed book entities
has the title "Refactoring: Improving the Design of Existing Code" and you want to get hits for all
of the following queries: "refactor", "refactors”, "refactored" and "refactoring". In Lucene this can
be achieved by choosing an analyzer class which applies word stemming during the indexing as
well as the search process. Hibernate Search offers several ways to configure the analyzer to be

used (see Section 4.3.1, “Default analyzer and analyzer by class”):

Analyzer

« Setting the hi ber nat e. sear ch. anal yzer property in the configuration file. The specified class
will then be the default analyzer.

» Setting the @nal yzer annotation at the entity level.
« Setting the @nal yzer annotation at the field level.

When using the @nal yzer annotation one can either specify the fully qualified classname of the
analyzer to use or one can refer to an analyzer definition defined by the @nal yzer Def annotation.
In the latter case the analyzer framework with its factories approach is utilized.

To find out more about the factory classes available you can either browse the Lucene
JavaDoc or read the corresponding section on the Solr Wiki [http://wiki.apache.org/solr/
AnalyzersTokenizersTokenFilters].

You can use @nal yzer Def or @nal yzer Def s on any: *@ ndexed entity regardless of where the
analyzer is applied to; * parent class of an @ ndexed entity; * package-info.java of a package
containing an @ ndexed entity.

This implies that analyzer definitions are global and their names must be unique.

@ Note

Why the reference to the Apache Solr wiki?

Apache Solr was historically an indepedent sister project of Apache Lucene and the
analyzer factory framework was originally created in Solr. Since then the Apache
Lucene and Solr projects have merged, but the documentation for these additional
analyzers can still be found in the Solr Wiki. You might find other documentation
referring to the "Solr Analyzer Framework" - just remember you don’t need to
depend on Apache Solr anymore to use it. The required classes are part of the
core Lucene distribution.

In the example below a St andar dTokeni zer Factory is used followed by two filter factories,
Lower CaseFi |l t er Fact ory and Snowbal | Porter Fi | t er Fact ory. The standard tokenizer splits
words at punctuation characters and hyphens while keeping email addresses and internet
hostnames intact. It is a good general purpose tokenizer. The lowercase filter converts to
lowercase the letters in each token whereas the snowball filter finally applies language specific
stemming.

Generally, when using the Analyzer Framework you have to start with a tokenizer followed by an
arbitrary number of filters.

Example 1.10. Using @nal yzer Def and the Analyzer Framework to define and
use an analyzer

@ntity

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

Chapter 1. Getting started

@ ndexed

@\nal yzer Def (nanme = "custonanal yzer",
t okeni zer = @okeni zer Def (factory = StandardTokeni zer Factory. cl ass),
filters ={

@okenFil terDef(factory = Lower CaseFilterFactory.cl ass),
@okenFi |l terDef(factory = Snowbal | PorterFilterFactory.class, paranms = {
@rar anet er (name = "l anguage", value = "English")
b
b

public class Book {

@d

@cener at edVal ue
@ocunent | d
private Integer id;

@ield
@\nal yzer (definition = "custonanal yzer")
private String title;

@ield
@\nal yzer (definition = "customanal yzer")
private String subtitle;

@ ndexedEnbedded
@manyToMany
private Set<Author> authors = new HashSet <Aut hor >();

@i el d(index = Index. YES, analyze = Analyze.NO, store = Store. YES)
@pat eBri dge(resol uti on = Resol ution. DAY)
private Date publicationDate;

publ i c Book() {
}

/] standard getters/setters follow here

Using @nal yzer Def only defines an Analyzer, you still have to apply it to entities and or properties
using @nal yzer. Like in the above example the cust omanal yzer is defined but not applied on
the entity: it's applied onthetit| e and subti t | e properties only. An analyzer definition is global,
so you can define it on any entity and reuse the definition on other entities.

1.9. What's next

The above paragraphs helped you getting an overview of Hibernate Search. The next step after
this tutorial is to get more familiar with the overall architecture of Hibernate Search (Chapter 2,
Architecture) and explore the basic features in more detail. Two topics which were only briefly
touched in this tutorial were analyzer configuration (Section 4.3.1, “Default analyzer and analyzer
by class”) and field bridges (Section 4.4, “Bridges”). Both are important features required for
more fine-grained indexing. More advanced topics cover clustering (Section 3.4.1, “JMS Master/

10

What's next

Slave back end”, Section 3.3.1, “Infinispan Directory configuration”) and large index handling
(Section 10.4, “Sharding indexes”).

11

12

Chapter 2.

Architecture

2.1. Overview

Hibernate Search consists of an indexing component as well as an index search component. Both
are backed by Apache Lucene.

Each time an entity is inserted, updated or removed in/from the database, Hibernate Search keeps
track of this event (through the Hibernate event system) and schedules an index update. All these
updates are handled without you having to interact with the Apache Lucene APIs directly (see
Section 3.1, “Enabling Hibernate Search and automatic indexing”). Instead, the interaction with
the underlying Lucene indexes is handled via so called IndexManagers.

Each Lucene index is managed by one index manager which is uniquely identified by name.
In most cases there is also a one to one relationship between an indexed entity and a single
IndexManager. The exceptions are the use cases of index sharding and index sharing. The former
can be applied when the index for a single entity becomes too big and indexing operations are
slowing down the application. In this case a single entity is indexed into multiple indexes each with
its own index manager (see Section 10.4, “Sharding indexes”). The latter, index sharing, is the
ability to index multiple entities into the same Lucene index (see Section 10.5, “Sharing indexes”).

The index manager abstracts from the specific index configuration. In the case of the default
index manager this includes details about the selected backend, the configured reader strategy
and the chosen DirectoryProvider. These components will be discussed in greater detail later on.
It is recommended that you start with the default index manager which uses different Lucene
Directory types to manage the indexes (see Section 3.3, “Directory configuration”). You can,
however, also provide your own IndexManager implementation (see Section 3.2, “Configuring the
IndexManager”).

Once the index is created, you can search for entities and return lists of managed entities saving
you the tedious object to Lucene Document mapping. The same persistence context is shared
between Hibernate and Hibernate Search. As a matter of fact, the Ful | Text Sessi on is built on
top of the Hibernate Session so that the application code can use the unified org.hibernate.Query
or javax.persistence.Query APIs exactly the same way a HQL, JPA-QL or native query would do.

To be more efficient Hibernate Search batches the write interactions with the Lucene index. This
batching is the responsibility of the Worker. There are currently two types of batching. Outside a
transaction, the index update operation is executed right after the actual database operation. This
is really a no batching setup. In the case of an ongoing transaction, the index update operation
is scheduled for the transaction commit phase and discarded in case of transaction rollback. The
batching scope is the transaction. There are two immediate benefits:

« Performance: Lucene indexing works better when operation are executed in batch.

< ACIDity: The work executed has the same scoping as the one executed by the database
transaction and is executed if and only if the transaction is committed. This is not ACID in the

13

Chapter 2. Architecture

strict sense of it, but ACID behavior is rarely useful for full text search indexes since they can
be rebuilt from the source at any time.

You can think of those two batch modes (no scope vs transactional) as the equivalent of
the (infamous) autocommit vs transactional behavior. From a performance perspective, the
in transaction mode is recommended. The scoping choice is made transparently. Hibernate
Search detects the presence of a transaction and adjust the scoping (see Section 3.4, “Worker
configuration”).

E Tip
It is recommended - for both your database and Hibernate Search - to execute
your operations in a transaction, be it JDBC or JTA.

(3

2.2. Back end

Hibernate Search offers the ability to let the batched work being processed by different back
ends. Several back ends are provided out of the box and you have the option to plugin your
own. It is important to understand that in this context back end encompasses more than just the
configuration option hi ber nat e. sear ch. def aul t . wor ker . backend. This property just specifies
a implementation of the BackendQueueProcessor interface which is a part of a back end
configuration. In most cases, however, additional configuration settings are needed to successfully
configure a specific backend setup, like for example the JMS back end.

2.2.1. Lucene

In this mode, all index update operations applied on a given node (JVM) will be executed to the
Lucene directories (through the directory providers) by the same node. This mode is typically used
in non clustered environment or in clustered environments where the directory store is shared.

14

JMS

Hibarnate
+
Hibermnate Search

»t

e Search request
Index update

Lucene
Directary

-

-

-

Search reque%t
S - Index update A

L
Hibernate L
+ |

I
|
|
|

Hibernate Search

This mode targets non clustered applications, or clustered applications where the Directory is
taking care of the locking strategy.

The main advantage is simplicity and immediate visibility of the changes in Lucene queries (a
requirement in some applications).

An alternative back end viable for non-clustered and non-shared index configurations is the near-
real-time backend.

2.2.2. IMS

All index update operations applied on a given node are sent to a JMS queue. A unique reader
will then process the queue and update the master index. The master index is then replicated on
a regular basis to the slave copies. This is known as the master/slaves pattern. The master is
the sole responsible for updating the Lucene index. The slaves can accept read as well as write
operations. However, they only process the read operation on their local index copy and delegate
the update operations to the master.

15

Chapter 2. Architecture

Lucena
Directory
{ Inclma)
Copy ~H
Search request “.x
. .,I/ -'..l
Hibernate \
+ \
Hibernate Search \ .
\
Slave |
Copy
1'..
'I".
Index update order \
- - .11..
Hibernate A
+ \
JMS Process —9= Hibernate Search F-----------=-==-)
queus
-...,_H_‘h
Masiar Index update L
e ——— Dir
(h
B
Undex update order
—
I -
I)
" , f
Hibernate y;
i A
Hibermate Search .;-
i
Slave Cnﬁy
7
K
r
Search request ,
1 r"’ .
Lucenea ¥
Directary -
iindex) [
Copy

JGroups

This mode targets clustered environments where throughput is critical, and index update delays
are affordable. Reliability is ensured by the JMS provider and by having the slaves working on
a local copy of the index.

2.2.3. JGroups

The JGroups based back end works similar to the JMS one and is designed after the same master/
slave pattern. However, instead of JMS the JGroups toolkit is used as a replication mechanism.
This back end can be used as an alternative to JMS when response time is critical, but i.e. JNDI
service is not available.

Note that while JMS can usually be configured to use persistent queues, JGroups talks directly
to other nodes over network. Message delivery to other reachable nodes is guaranteed, but if no
master node is available, index operations are silently discarded. This backend can be configured
to use asynchronous messages, or to wait for each indexing operation to be completed on the
remote node before returning.

The JGroups backend can be configured with static master or slave roles, or can be setup
to perform an auto-election of the master. This mode is particularly useful to have the system
automatically pick a new master in case of failure, but during a reelection process some indexing
operations might be lost. For this reason this mode is not suited for use cases requiring strong
consistency guarantees. When configured to perform an automatic election, the master node is
defined as an hash on the index name: the role is therefore possibly different for each index or
shard.

2.3. Reader strategy

When executing a query, Hibernate Search interacts with the Apache Lucene indexes through a
reader strategy. Choosing a reader strategy will depend on the profile of the application (frequent
updates, read mostly, asynchronous index update etc). See also Section 3.5, “Reader strategy
configuration”

2.3.1. shared

With this strategy, Hibernate Search will share the same IndexReader, for a given Lucene index,
across multiple queries and threads provided that the IndexReader is still up-to-date. If the
IndexReader is not up-to-date, a new one is opened and provided. Each IndexReader is made
of several SegmentReaders. This strategy only reopens segments that have been modified or
created after last opening and shares the already loaded segments from the previous instance.
This strategy is the default.

The name of this strategy is shar ed.

2.3.2. not-shared

Every time a query is executed, a Lucene IndexReader is opened. This strategy is not the most
efficient since opening and warming up an IndexReader can be a relatively expensive operation.

17

Chapter 2. Architecture

The name of this strategy is not - shar ed.

2.3.3. Custom

You can write your own reader strategy that suits your application needs by implementing
org.hibernate.search.reader.ReaderProvider. The implementation must be thread safe.

18

Chapter 3.

Configuration

3.1. Enabling Hibernate Search and automatic indexing
Let’s start with the most basic configuration question - how do | enable Hibernate Search?

3.1.1. Enabling Hibernate Search

The good news is that Hibernate Search is enabled out of the box when detected
on the classpath by Hibernate Core. If, for some reason you need to disable it, set
hi ber nat e. search. autoregi ster_listeners to false. Note that there is no performance
penalty when the listeners are enabled but no entities are annotated as indexed.

3.1.2. Automatic indexing

By default, every time an object is inserted, updated or deleted through Hibernate, Hibernate
Search updates the according Lucene index. It is sometimes desirable to disable that features
if either your index is read-only or if index updates are done in a batch way (see Section 6.3,
“Rebuilding the whole index”).

To disable event based indexing, set

@ Note

In most case, the JMS backend provides the best of both world, a lightweight
event based system keeps track of all changes in the system, and the heavyweight
indexing process is done by a separate process or machine.

3.2. Configuring the IndexManager

The role of the index manager component is described in Chapter 2, Architecture. Hibernate
Search provides two possible implementations for this interface to choose from.

« directory- based: the default implementation which uses the Lucene Directory abstraction to
manage index files.

* near-real -tinme: avoid flushing writes to disk at each commit. This index manager is also
Directory based, but also makes uses of Lucene’s NRT functionality.

To select an alternative you specify the property:

19

Chapter 3. Configuration

3.2.1. directory-based

The default IndexManager implementation. This is the one mostly referred to in this
documentation. It is highly configurable and allows you to select different settings for the reader
strategy, back ends and directory providers. Refer to Section 3.3, “Directory configuration”,
Section 3.4, “Worker configuration” and Section 3.5, “Reader strategy configuration” for more
details.

3.2.2. near-real-time

The NRTIndexManager is an extension of the default IndexManager, leveraging the Lucene NRT
(Near Real Time) features for extreme low latency index writes. As a trade-off it requires a non-
clustered and non-shared index. In other words, it will ignore configuration settings for alternative
back ends other than | ucene and will acquire exclusive write locks on the Directory.

To achieve this low latency writes, the IndexWriter will not flush every change to disk. Queries
will be allowed to read updated state from the unflushed index writer buffers; the downside of this
strategy is that if the application crashes or the IndexWriter is otherwise killed you'll have to rebuild
the indexes as some updates might be lost.

Because of these downsides, and because a master node in cluster can be configured for good
performance as well, the NRT configuration is only recommended for non clustered websites with
a limited amount of data.

3.2.3. Custom

It is also possible to configure a custom IndexManager implementation by specifying the fully
qualified class name of your custom implementation. This implementation must have a no-
argument constructor;

Tip

Your custom index manager implementation doesn't need to use the same
components as the default implementations. For example, you can delegate to a
remote indexing service which doesn’t expose a Directory interface.

3.3. Directory configuration

As we have seen in Section 3.2, “Configuring the IndexManager” the default index manager
uses Lucene’s notion of a Directory to store the index files. The Directory implementation can
be customized and Lucene comes bundled with a file system and an in-memory implementation.

20

Directory configuration

DirectoryProvider is the Hibernate Search abstraction around a Lucene Directory and handles the
configuration and the initialization of the underlying Lucene resources. Table 3.1, “List of built-in
DirectoryProvider” shows the list of the directory providers available in Hibernate Search together
with their corresponding options.

To configure your DirectoryProvider you have to understand that each indexed entity is associated
to a Lucene index (except of the case where multiple entities share the same index - Section 10.5,
“Sharing indexes”). The name of the index is given by the index property of the @Indexed
annotation. If the index property is not specified the fully qualified name of the indexed class will
be used as name (recommended).

Knowing the index name, you can configure the directory provider and any
additional options by using the prefix hibernate. search. <i ndexname>. The name
default (hi bernnate. search.default) is reserved and can be used to define properties
which apply to all indexes. Example 3.2, “Configuring directory providers” shows how
hi ber nat e. search. defaul t. di rectory_provi der is used to set the default directory provider
to be the filesystem one. hi ber nat e. sear ch. def aul t. i ndexBase sets then the default base
directory for the indexes. As a result the index for the entity Status is created in / usr/ | ucene/

i ndexes/ or g. hi ber nat e. exanpl e. St at us.

The index for the Rule entity, however, is using an in-memory directory, because
the default directory provider for this entity is overridden by the property
hi ber nat e. search. Rul es. di rectory_provi der.

Finally the Action entity uses a custom directory provider Cust onDi r ect or yPr ovi der specified

via hi ber nat e. search. Acti ons. directory_provi der.

Example 3.1. Specifying the index name

package org. hi bernat e. exanpl e;

@ ndexed
public class Status { ... }

@ ndexed(i ndex="Rul es")
public class Rule { ... }

@ ndexed(i ndex="Actions")
public class Action { ... }

Example 3.2. Configuring directory providers

21

Chapter 3. Configuration

Tip

Using the described configuration scheme you can easily define common rules like
the directory provider and base directory, and override those defaults later on on

a per index basis.

Table 3.1. List of built-in DirectoryProvider

Name and description

Properties

ram: Memory based directory.

The directory will be uniquely identified
(in the same deployment unit) by the
@ ndexed. i ndex element

none

filesystem: File system based directory.

The directory used will be <indexBase>/
<indexName>

filesystem-master: File system based
directory.

Like fil esyst em It also copies the index to
a source directory (aka copy directory) on a
regular basis.

The recommended value for the refresh
period is (at least) 50% higher that the time to
copy the information (default 3600 seconds -
60 minutes).

i ndexBase : base directory i ndexNamne:
override @Indexed.index (useful for

sharded indexes) | ocki ng_strat egy :
optional, see Section 3.7.2, “LockFactory
configuration” fi | esyst em access_t ype:
allows to determine the exact type of
FSDirectory implementation used by this
DirectoryProvider. Allowed values are aut o
(the default value, selects NIOFSDirectory on
non Windows systems, SimpleFSDirectory
on Windows), si npl e (SimpleFSDirectory),
ni o (NIOFSDirectory), mrap (MMapDirectory).
Make sure to refer to Javadocs of these
Directory implementations before changing
this setting. Even though NIOFSDirectory

or MMapDirectory can bring substantial
performance boosts they also have their
issues.

i ndexBase: base directory i ndexNare:
override @Indexed.index (useful for
sharded indexes) sour ceBase: source
(copy) base directory. sour ce: source
directory suffix (default to @ ndexed. i ndex).
The actual source directory name being
<sourceBase>/<source> r ef r esh: refresh
period in seconds (the copy will take place
every refresh seconds). If a copy is still

in progress when the following refresh
period elapses, the second copy operation

22

Directory configuration

Name and description

Note that the copy is based on an incremental
copy mechanism reducing the average copy
time.

DirectoryProvider typically used on the master
node in a JMS back end cluster.

The buf f er _si ze_on_copy optimum
depends on your operating system and
available RAM; most people reported good
results using values between 16 and 64MB.

Properties

will be skipped. buf f er _si ze_on_copy:

The amount of MegaBytes to move

in a single low level copy instruction;

defaults to 16MB. | ocki ng_strategy :
optional, see Section 3.7.2, “LockFactory
configuration” fi | esyst em access_t ype:
allows to determine the exact type of
FSDirectory implementation used by this
DirectoryProvider. Allowed values are aut o
(the default value, selects NIOFSDirectory on
non Windows systems, SimpleFSDirectory
on Windows), si npl e (SimpleFSDirectory),
ni o (NIOFSDirectory), mmap (MMapDirectory).
Make sure to refer to Javadocs of these
Directory implementations before changing
this setting. Even though NIOFSDirectory

or MMapDirectory can bring substantial
performance boosts they also have their
issues.

filesystem-slave: File system based directory.

Like fi | esyst em but retrieves a master
version (source) on a regular basis. To avoid
locking and inconsistent search results, 2
local copies are kept.

The recommended value for the refresh
period is (at least) 50% higher that the time to
copy the information (default 3600 seconds -
60 minutes).

Note that the copy is based on an incremental
copy mechanism reducing the average copy
time. If a copy is still in progress when refresh
period elapses, the second copy operation
will be skipped.

DirectoryProvider typically used on slave
nodes using a JMS back end.

The buf f er _si ze_on_copy optimum
depends on your operating system and
available RAM; most people reported good
results using values between 16 and 64MB.

i ndexBase: Base directory i ndexName:
override @Indexed.index (useful for sharded
indexes) sour ceBase: Source (copy) base
directory. sour ce: Source directory suffix
(default to @ ndexed. i ndex). The actual
source directory name being <sourceBase>/
<source> r ef r esh: refresh period in second
(the copy will take place every refresh
seconds). buf f er _si ze_on_copy: The
amount of MegaBytes to move in a single
low level copy instruction; defaults to

16MB. | ocki ng_strat egy : optional, see
Section 3.7.2, “LockFactory configuration”
retry_mar ker _| ookup : optional, default to
0. Defines how many times we look for the
marker files in the source directory before
failing. Waiting 5 seconds between each
try.retry_initialize_period: optional,
set an integer value in seconds to enable
the retry initialize feature: if the slave can'’t
find the master index it will try again until

it's found in background, without preventing
the application to start: full-text queries
performed before the index is initialized are

23

Chapter 3. Configuration

Name and description Properties

not blocked but will return empty results.
When not enabling the option or explicitly
setting it to zero it will fail with an exception
instead of scheduling a retry timer. To prevent
the application from starting without an
invalid index but still control an initialization
timeout, see retry_mar ker _| ookup

instead. fi | esyst em access_t ype:

allows to determine the exact type of
FSDirectory implementation used by this
DirectoryProvider. Allowed values are aut o
(the default value, selects NIOFSDirectory on
non Windows systems, SimpleFSDirectory
on Windows), si npl e (SimpleFSDirectory),
ni o (NIOFSDirectory), mmap (MMapDirectory).
Make sure to refer to Javadocs of these
Directory implementations before changing
this setting. Even though NIOFSDirectory

or MMapDirectory can bring substantial
performance boosts they also have their
issues.

infinispan: Infinispan based directory. | ocki ng_cachenane: name of the

Infinispan cache to use to store locks.

dat a_cachenane : hame of the Infinispan
cache to use to store the largest data chunks;
this area will contain the largest objects, use
replication if you have enough memory or
switch to distribution. net adat a_cachenane:
name of the Infinispan cache to use to store
the metadata relating to the index; this

data is rather small and read very often,

it's recommended to have this cache setup
using replication. chunk_si ze: large files

of the index are split in smaller chunks, you
might want to set the highest value efficiently
handled by your network. Networking tuning
might be useful.

Use it to store the index in a distributed

grid, making index changes visible to all
elements of the cluster very quickly. Also

see Section 3.3.1, “Infinispan Directory
configuration” for additional requirements

and configuration settings. Infinispan

needs a global configuration and additional
dependencies; the settings defined here apply
to each different index.

Tip

If the built-in directory providers do not fit your needs, you can write your
own directory provider by implementing the org.hibernate.store.DirectoryProvider

24

Infinispan Directory configuration

interface. In this case, pass the fully qualified class name of your provider into the
di rectory_provi der property. You can pass any additional properties using the

prefix hi ber nat e. sear ch. <i ndexnane>.

3.3.1. Infinispan Directory configuration

Infinispan is a distributed, scalable, cloud friendly data grid platform, which Hibernate Search
can use to store the Lucene index. Your application can benefits in this case from Infinispan’s
distribution capabilities making index updates available on all nodes with short latency.

This section describes how to configure Hibernate Search to use an Infinispan Lucene Directory.

When using an Infinispan Directory the index is stored in memory and shared across multiple
nodes. It is considered a single directory distributed across all participating nodes: if a node
updates the index, all other nodes are updated as well. Updates on one node can be immediately
searched for in the whole cluster.

The default configuration replicates all data which defines the index across all nodes, thus
consuming a significant amount of memory but providing the best query performance. For large
indexes it's suggested to enable data distribution, so that each piece of information is replicated to
a subset of all cluster members. The distribution option will reduce the amount of memory required
for each node but is less efficient as it will cause high network usage among the nodes.

It is also possible to offload part or most information to a CacheSt or e, such as plain filesystem,
Amazon S3, Cassandra, MongoDB or standard relational databases. You can configure it to have
a CacheSt or e on each node or have a single centralized one shared by each node.

A popular choice is to use a replicated index aiming to keep the whole index in memory, combined
with a CacheSt or e as safety valve in case the index gets larger than expected.

See the Infinispan documentation [http://infinispan.org/documentation/] for all Infinispan
configuration options.

3.3.1.1. Requirements

To use the Infinispan directory via Maven, add the following dependencies:

Example 3.3. Maven dependencies for Hibernate Search

<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifactld>hi bernate-search</artifactld>
<ver si on>5. 2. 1. Fi nal </ ver si on>
</ dependency>
<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifact!d>hi bernate-search-infinispan</artifactld>
<version>5.2. 1. Fi nal </ versi on>

25

http://infinispan.org/documentation/
http://infinispan.org/documentation/

Chapter 3. Configuration

</ dependency>

For the non-maven users, add hi ber nat e-search-infini span.jar, infinispan-lucene-
directory.jar, infinispan-core.jar and infinispan-conmons.jar to your application
classpath. These last three jars are distributed by the Infinispan project downloads [http:/
infinispan.org/download/].

3.3.1.2. Architecture

Even when using an Infinispan directory it's still recommended to use the JMS Master/Slave or
JGroups backend, because in Infinispan all nodes will share the same index and it is likely that
I ndexW i t er instances being active on different nodes will try to acquire the lock on the same
index. So instead of sending updates directly to the index, send it to a JMS queue or JGroups
channel and have a single node apply all changes on behalf of all other nodes.

Configuring a non-default backend is not a requirement but a performance optimization as locks
are enabled to have a single node writing.

To configure a JMS slave only the backend must be replaced, the directory provider must be set
to i nfi ni span; set the same directory provider on the master, they will connect without the need
to setup the copy job across nodes. Using the JGroups backend is very similar - just combine the
backend configuration with the i nfi ni span directory provider.

3.3.1.3. Infinispan Configuration

The most simple configuration only requires to enable the backend:

That's all what is needed to get a cluster-replicated index, but the default configuration does not
enable any form of permanent persistence for the index; to enable such a feature an Infinispan
configuration file should be provided.

To use Infinispan, Hibernate Search requires a CacheManager; it can lookup and reuse an existing
CacheManager, via JNDI, or start and manage a new one. In the latter case Hibernate Search
will start and stop it (closing occurs when the Hibernate SessionFactory is closed).

To use and existing CacheManager via JNDI (optional parameter):

To start a new CacheManager from a configuration file (optional parameter):

If both parameters are defined, JNDI will have priority. If none of these is defined, Hibernate Search
will use the default Infinispan configuration included in hi ber nat e- sear ch-i nfi ni span. j ar. This

http://infinispan.org/download/
http://infinispan.org/download/
http://infinispan.org/download/

Worker configuration

configuration should work fine in most cases but does not store the index in a persistent cache
store.

As mentioned in Table 3.1, “List of built-in DirectoryProvider”, each index makes use of
three caches, so three different caches should be configured as shown in the defaul t-
hi ber nat esear ch-i nfi ni span. xm provided in the hibernate-search-infinispan.jar.
Several indexes can share the same caches.

Infinispan relies on JGroups for its networking functionality, so unless you are using Infinispan on a
single node, an Infinispan configuration file will refer to a JGroups configuration file. This coupling
is not always practical and we provide a property to override the used JGroups configuration file:

This allows to just switch the JGroups configuration while keeping the rest of the Infinispan
configuration.

The filej gr oups- ec2. xnl used in the example above is one of the several JGroups configurations
included in Infinispan. It is a good starting point to run on Amazon EC2 networks. For more details
and examples see usage of pre-configured JGroups stacks [http://infinispan.org/docs/7.0.x/
user_guide/user_guide.html# use _one_of the pre_configured_jgroups_files] in the Infinispan
configuration guide.

3.4. Worker configuration

It is possible to refine how Hibernate Search interacts with Lucene through the worker
configuration. There exist several architectural components and possible extension points. Let's
have a closer look.

First there is a Worker. An implementation of the Worker interface is responsible for receiving
all entity changes, queuing them by context and applying them once a context ends. The most
intuitive context, especially in connection with ORM, is the transaction. For this reason Hibernate
Search will per default use the TransactionalWorker to scope all changes per transaction. One
can, however, imagine a scenario where the context depends for example on the number of entity
changes or some other application (lifecycle) events. For this reason the Worker implementation
is configurable as shown in Table 3.2, “Scope configuration”.

Table 3.2. Scope configuration

Property Description

hibernate.search.default.worker.scope The fully qualified class name of the Worker
implementation to use. If this property is
not set, empty or t r ansact i on the default
TransactionalWorker is used.

hibernate.search.default.worker.* All configuration properties prefixed with
hi ber nat e. search. def aul t . wor ker are

27

http://infinispan.org/docs/7.0.x/user_guide/user_guide.html#_use_one_of_the_pre_configured_jgroups_files
http://infinispan.org/docs/7.0.x/user_guide/user_guide.html#_use_one_of_the_pre_configured_jgroups_files
http://infinispan.org/docs/7.0.x/user_guide/user_guide.html#_use_one_of_the_pre_configured_jgroups_files

Chapter 3. Configuration

passed to the Worker during initialization.
This allows adding custom, worker specific
parameters.

Once a context ends it is time to prepare and apply the index changes. This can be done
synchronously or asynchronously from within a new thread. Synchronous updates have the
advantage that the index is at all times in sync with the databases. Asynchronous updates, on the
other hand, can help to minimize the user response time. The drawback is potential discrepancies
between database and index states. Lets look at the configuration options shown in Table 3.3,
“Execution configuration”.

@ Note

The following options can be different on each index; in fact they need the
indexName prefix or use def aul t to set the default value for all indexes.

Table 3.3. Execution configuration

Property Description

hibernate.search.<indexName>. sync: synchronous execution (default)
worker.execution

async: asynchronous execution

So far all work is done within the same Virtual Machine (VM), no matter which execution mode.
The total amount of work has not changed for the single VM. Luckily there is a better approach,
namely delegation. It is possible to send the indexing work to a different server by configuring
hibernate.search.default.worker.backend - see Table 3.4, “Backend configuration”. Again this
option can be configured differently for each index.

Table 3.4. Backend configuration

Property Description
hibernate.search.<indexName>. I ucene: The default backend which runs
worker.backend index updates in the same VM. Also used

when the property is undefined or empty.

j ms: JMS backend. Index updates are send to
a JMS queue to be processed by an indexing
master. See Table 3.5, “JMS backend
configuration” for additional configuration
options and Section 3.4.1, “JMS Master/Slave
back end” for a more detailed description of
this setup.

j groupsMast er, j groupsSl ave or
j groups: Backend using JGroups [http://

28

http://www.jgroups.org/
http://www.jgroups.org/

Worker configuration

www.jgroups.org/] as communication layer.
See Section 3.4.2, “JGroups Master/Slave
back end” for a more detailed description of
this setup.

bl ackhol e: Mainly a test/developer setting
which ignores all indexing work

You can also specify the fully qualified
name of a class implementing
BackendQueueProcessor. This way you
can implement your own communication
layer. The implementation is responsible
for returning a Runnable instance which on
execution will process the index work.

Table 3.5. IMS backend configuration

Property Description

hibernate.search.<indexName>.worker.jndi.* | Defines the JNDI properties to initiate the
InitialContext (if needed). JNDI is only used
by the JMS back end.

hibernate.search.<indexName>. Mandatory for the JMS back end. Defines

worker.jms.connection_factory the JNDI name to lookup the JMS connection
factory from (/ Connect i onFact ory by default
in JBoss AS)

hibernate.search.<indexName>. Mandatory for the JMS back end. Defines

worker.jms.queue the JNDI name to lookup the JMS queue
from. The queue will be used to post work
messages.

hibernate.search.<indexName>. Optional for the JMS slaves. Use it when your

worker.jms.login gueue requires login credentials to define
your login.

hibernate.search.<indexName>. Optional for the JMS slaves. Use it when your

worker.jms.login gueue requires login credentials to define
your password.

Warning

As you probably noticed, some of the shown properties are correlated which means
that not all combinations of property values make sense. In fact you can end up with
a non-functional configuration. This is especially true for the case that you provide
your own implementations of some of the shown interfaces. Make sure to study

29

http://www.jgroups.org/

Chapter 3. Configuration

the existing code before you write your own Worker or BackendQueueProcessor

implementation.

3.4.1. IMS Master/Slave back end

This section describes in greater detail how to configure the Master/Slave Hibernate Search
architecture.

JMS back end configuration.

3.4.1.1. Slave nodes

Every index update operation is sent to a JMS queue. Index querying operations are executed
on a local index copy.

Example 3.4. JMS Slave configuration

30

JMS Master/Slave back end

Tip

A file system local copy is recommended for faster search results.

3.4.1.2. Master node

Every index update operation is taken from a JMS queue and executed. The master index is
copied on a regular basis.

Example 3.5. JMS Master configuration

Tip

It is recommended that the refresh period be higher than the expected copy time; if
a copy operation is still being performed when the next refresh triggers, the second
refresh is skipped: it's safe to set this value low even when the copy time is not
known.

In addition to the Hibernate Search framework configuration, a Message Driven Bean has to be
written and set up to process the index works queue through JMS.

Example 3.6. Message Driven Bean processing the indexing queue

@kssageDriven(activationConfig = {

31

Chapter 3. Configuration

@Act i vati onConfi gProperty(propertyNanme="desti nati onType",
propertyVal ue="j avax. j ms. Queue"),

@A\cti vati onConfi gProperty(propertyNane="desti nation",
propertyVal ue="queue/ hi ber nat esearch")

)
public class MDBSearchControl |l er extends AbstractJMSH ber nat eSearchControl | er
i mpl ements MessagelLi st ener {

@ersi st enceCont ext EntityManager em

@verride

protected SearchFactory get SearchFactory() {
Ful | Text EntityManager full Text EntityManager = Search. get Ful | Text Enti t yManager (em ;
return full Text EntityManager. get SearchFactory();

This example inherits from the abstract JMS controller class available in the Hibernate Search
source code and implements a JavaEE MDB. This implementation is given as an example
and can be adjusted to make use of non Java EE Message Driven Beans. Essentially what
you need to do is to connect the specific IMS Queue with the Sear chFact ory instance of the
EntityManager. As an advanced alternative, you can implement your own logic by not extending
Abst ract JMSHI ber nat eSear chCont rol | er but rather to use it as an implementation example.

3.4.2. JGroups Master/Slave back end

This section describes how to configure the JGroups Master/Slave back end. The master and
slave roles are similar to what is illustrated in Section 3.4.1, “JMS Master/Slave back end”, only a
different backend (hibernate.search.default.worker.backend) needs to be set.

A specific backend can be configured to act either as a slave using j gr oupsSl ave, as a master
usingj gr oupsMast er , or can automatically switch between the roles as needed by using j gr oups.

Note

Either you specify a single j gr oupsMast er and a set of j gr oups Sl ave instances,
or you specify all instances as j gr oups. Never mix the two approaches!

All backends configured to use JGroups share the same channel. The JGroups JChannel is
the main communication link across all nodes patrticipating in the same cluster group; since it
is convenient to have just one channel shared across all backends, the Channel configuration
properties are not defined on a per-worker section but are defined globally. See Section 3.4.2.4,
“JGroups channel configuration”.

Table Table 3.6, “JGroups backend configuration properties” contains all configuration options
which can be set independently on each index backend. These apply to all three variants of the
backend: j groupsSl ave, j groupsMast er, j groups. It is very unlikely that you need to change
any of these from their defaults.

32

JGroups Master/Slave back end

Table 3.6. JGroups backend configuration properties

Property

hibernate.search.<indexName>.jgroups.block

Description

Wadlirtg either tr ue or f al se. False is more
efficient but will not wait for the operation to
be delivered to the peers. Defaults to t r ue
when the backend is synchronous, to f al se
when the backend is async.

hibernate.search.<indexName>.jgroups.
messages_timeout

The timeout of waiting for a single command
to be acknowledged and executed

when bl ock_wai ting_ack istrue, or

just acknowledged otherwise. Value in
milliseconds, defaults to 20000.

hibernate.search.<indexName>.jgroups.delega

td Heantaestdr node receiving indexing
operations forwards them to a standard
backend to be performed. Defaults to | ucene.
See also Table 3.4, “Backend configuration”
for other options, but probably the only

useful option is bl ackhol e, or a custom
implementation, to help isolating network
latency problems.

3.4.2.1. Slave nodes

Every index update operation is sent through
guerying operations are executed on a local inde

a JGroups channel to the master node. Index
x copy. Enabling the JGroups worker only makes

sure the index operations are sent to the master, you still have to synchronize configuring an

appropriate directory (See fil esyst em nast er
Section 3.3, “Directory configuration”).

Example 3.7. JGroups Slave configur

3.4.2.2. Master node

, filesystemslave orinfini span options in

ation

Every index update operation is taken from a JGroups channel and executed. The master index

is copied on a regular basis.

Example 3.8. JGroups Master configuration

33

Chapter 3. Configuration

3.4.2.3. Automatic master election

e | Important

This feature is considered experimental. In particular during a re-election process
there is a small window of time in which indexing requests could be lost.

In this mode the different nodes will autonomously elect a master node. When a master fails, a
new node is elected automatically.

When setting this backend it is expected that all Hibernate Search instances in the same cluster
use the same backend for each specific index: this configuration is an alternative to the static
j groupsMast er and j gr oupsSl ave approach so make sure to not mix them.

To synchronize the indexes in this configuration avoid fi |l esystem master and fil esystem
sl ave directory providers as their behaviour can not be switched dynamically; use the Infinispan
Di rect ory instead, which has no need for different configurations on each instance and allows
dynamic switching of writers; see also Section 3.3.1, “Infinispan Directory configuration”.

Example 3.9. JGroups configuration for automatic master configuration

Tip

Should you use j gr oups or the couple j gr oupsMast er, j gr oupsSl ave?

The dynamic j gr oups backend is better suited for environments in which your
master is more likely to need to failover to a different machine, as in clouds. The
static configuration has the benefit of keeping the master at a well known location:
your architecture might take advantage of it by sending most write requests to the
known master. Also optimisation and MassIndexer operations need to be triggered
on the master node.

3.4.2.4. JGroups channel configuration

Configuring the JGroups channel essentially entails specifying the transport in terms of a
network protocol stack. To configure the JGroups transport, point the configuration property
hibernate.search.services.jgroups.configurationFile to a JGroups configuration file; this can be
either a file path or a Java resource name.

34

Reader strategy configuration

Tip

If no property is explicitly specified it is assumed that the JGroups default
configuration file f | ush- udp. xml is used. This example configuration is known to
work in most scenarios, with the notable exception of Amazon AWS,; refer to the
JGroups manual [http://www.jgroups.org/manual-3.x/html/] for more examples and
protocol configuration details.

The default cluster name is H bernate Search d uster which can be configured as seen in
Example 3.10, “JGroups cluster name configuration”.

Example 3.10. JGroups cluster name configuration

The cluster name is what identifies a group: by changing the name you can run different clusters
in the same network in isolation.

3.4.2.4.1. JGroups channel instance injection

For programmatic configurations, one additional option is available to configure the JGroups
channel: to pass an existing channel instance to Hibernate Search directly using the property
hi ber nat e. sear ch. servi ces. j groups. provi dedChannel , as shown in the following example.

inmport org. hi bernate. search. backend. i npl . j groups. JG oupsChannel Provi der;

org.jgroups. JChannel channel = ...

Map<String, String> properties = new HashMap<String, String)(1);

properties. put (JG oupsChannel Provi der. CHANNEL_I NJECT, channel);

EntityManager Factory enf = Persistence. createEntityManager Factory("userPU', properties);

3.5. Reader strategy configuration

The different reader strategies are described in Section 2.3, “Reader strategy”. Out of the box
strategies are:

» shar ed: share index readers across several queries. This strategy is the most efficient.
* not - shar ed: create an index reader for each individual query

The default reader strategy is shar ed. This can be adjusted:

Adding this property switches to the not - shar ed strategy.

35

http://www.jgroups.org/manual-3.x/html/
http://www.jgroups.org/manual-3.x/html/

Chapter 3. Configuration

Or if you have a custom reader strategy:

where my.corp.myapp.CustomReaderProvider is the custom strategy implementation.

3.6. Exception handling

Hibernate Search allows you to configure how exceptions are handled during the indexing
process. If no configuration is provided then exceptions are logged to the log output by default. It
is possible to explicitly declare the exception logging mechanism as seen below:

The default exception handling occurs for both synchronous and asynchronous indexing.
Hibernate Search provides an easy mechanism to override the default error handling
implementation.

In order to provide your own implementation you must implement the ErrorHandler interface,
which provides the handle(ErrorContext context) method. ErrorContext provides a reference to
the primary LuceneWork instance, the underlying exception and any subsequent LuceneWork
instances that could not be processed due to the primary exception.

public interface ErrorContext {
Li st <LuceneWdr k> get Fai | i ngOper ati ons();
LuceneWor k get Operati onAt Faul t();
Thr owabl e get Thr owabl e();
bool ean hasErrors();

=

To register this error handler with Hibernate Search you must declare the fully qualified classname
of your ErrorHandler implementation in the configuration properties:

Alternatively, an ErrorHandler instance may be passed via the configuration value map used when
bootstrapping Hibernate Search programmatically.

3.7. Lucene configuration

Even though Hibernate Search will try to shield you as much as possible from Lucene specifics,
there are several Lucene specifics which can be directly configured, either for performance
reasons or for satisfying a specific use case. The following sections discuss these configuration
options.

Tuning indexing performance

3.7.1. Tuning indexing performance

Hibernate Search allows you to tune the Lucene indexing performance by specifying a set of
parameters which are passed through to underlying Lucene | ndexW i t er such as ner geFact or,
maxMer geDocs and maxBuf f er edDocs. You can specify these parameters either as default values
applying for all indexes, on a per index basis, or even per shard.

There are several low level | ndexW i t er settings which can be tuned for different use cases.
These parameters are grouped by the i ndexwri t er keyword:

If no value is set for an i ndexwrit er value in a specific shard configuration, Hibernate Search
will look at the index section, then at the default section.

Example 3.11. Example performance option configuration

The configuration in Example 3.11, “Example performance option configuration” will result in these
settings applied on the second shard of the Animal index:

* max_nerge_docs =10

* nmerge_factor =20

ram buffer_size = 64MB
e term.index_interval = Lucene default
All other values will use the defaults defined in Lucene.

The default for all values is to leave them at Lucene’s own default. The values listed in Table 3.7,
“List of indexing performance and behavior properties” depend for this reason on the version of
Lucene you are using. The values shown are relative to version 2. 4. For more information about
Lucene indexing performance, please refer to the Lucene documentation.

Table 3.7. List of indexing performance and behavior properties

Property Description Default Value

hibernate.search.[default| Set to t r ue when no other process true (improved

<indexname>].exclusive_index_use | will need to write to the same index. performance,

This will enable Hibernate Searchto releases

work in exclusive mode on the index locks only at
shutdown)

37

Chapter 3. Configuration

Property

hibernate.search.[default|
<indexname>].max_queue_length

hibernate.search.[defaulf|
<indexname>].index_flush_interval

Description

and improve performance when
writing changes to the index.

Each index has a separate
"pipeline" which contains the
updates to be applied to the index.
When this queue is full adding more
operations to the queue becomes a
blocking operation. Configuring this
setting doesn’t make much sense
unless the wor ker . executi on is
configured as async.

The interval in milliseconds between
flushes of write operations to the
index storage. Ignored unless

wor ker . execut i on is configured as

async.

Default Value

1000

1000

hibernate.search.
[default|<indexname>].
indexwriter.max_buffered_delete_tern

Determines the minimal number of
delete terms required before the

nbuffered in-memory delete terms
are applied and flushed. If there are
documents buffered in memory at
the time, they are merged and a
new segment is created.

Disabled (flushes
by RAM usage)

hibernate.search.
[default|<indexname>].
indexwriter.max_buffered_docs

hibernate.search.
[default|<indexname>].
indexwriter.max_merge_docs

Controls the amount of documents
buffered in memory during indexing.
The bigger the more RAM is
consumed.

Defines the largest number of
documents allowed in a segment.
Smaller values perform better

on frequently changing indexes,
larger values provide better search
performance if the index does not
change often.

Disabled (flushes
by RAM usage)

Unlimited

(Integer.MAX_VAL

hibernate.search.
[default|<indexname>].
indexwriter.merge_factor

Controls segment merge frequency
and size. Determines how often
segment indexes are merged
when insertion occurs. With
smaller values, less RAM is used
while indexing, and searches on
unoptimized indexes are faster,

10

38

UE)

Tuning indexing performance

Property

hibernate.search.
[default|<indexname>].
indexwriter.merge_min_size

hibernate.search.
[default|<indexname>].
indexwriter.merge_max_size

Description Default Value

but indexing speed is slower.

With larger values, more RAM is
used during indexing, and while
searches on unoptimized indexes
are slower, indexing is faster. Thus
larger values (> 10) are best for
batch index creation, and smaller
values (< 10) for indexes that are
interactively maintained. The value
must not be lower than 2.

Controls segment merge frequency 0 MB (actually
and size. Segments smaller ~1K)

than this size (in MB) are always

considered for the next segment

merge operation. ~ Setting this too

large might result in expensive

merge operations, even tough

they are less frequent. See also

or g. apache. | ucene. i ndex. LogDocMer gePol i cy. mi nMer geSi ze.

Controls segment merge frequency Unlimited
and size. Segments larger than

this size (in MB) are never merged

in bigger segments. This helps

reduce memory requirements and

avoids some merging operations

at the cost of optimal search

speed. When optimizing an index

this value is ignored. = See also

or g. apache. | ucene. i ndex. LogDocMer gePol i cy. maxMer geSi ze.

hibernate.search.
[default|<indexname>].
indexwriter.merge_max_optimize_siz

a)

Controls segment merge frequency Unlimited
and size. Segments larger

than this size (in MB) are not

merged in bigger segments

even when optimizing the

index (see mer ge_nax_si ze

setting as well). Applied to

or g. apache. | ucene. i ndex. LogDocMer gePol i cy. maxM

hibernate.search.
[default|<indexname>].
indexwriter.merge_calibrate_by delet

Controls segment merge true
frequency and size. Set to
esal se to not consider deleted

documents when estimating

39

2r geSi zeFor Opt i m

Chapter 3. Configuration

Property

hibernate.search.
[default|<indexname>].
indexwriter.ram_buffer_size

Description Default Value

the merge policy. Applied to
or g. apache. | ucene. i ndex. LogMer gePol i cy. cal i br at

Controls the amount of RAM 16 MB
in MB dedicated to document

buffers. When used together
max_buffered_docs a flush occurs

for whichever event happens

first. Generally for faster indexing
performance it's best to flush by

RAM usage instead of document

count and use as large a RAM

buffer as you can.

hibernate.search.
[default|<indexname>].
indexwriter.term_index_interval

Expert: Set the interval between 128
indexed terms. Large values

cause less memory to be used by
IndexReader, but slow random-

access to terms. Small values cause
more memory to be used by an
IndexReader, and speed random-

access to terms. See Lucene
documentation for more details.

hibernate.search.
enable_dirty check

hibernate.search.
[default|<indexname>].
indexwriter.max_thread_states

Not all entity changes require an true
update of the Lucene index. If all

of the updated entity properties
(dirty properties) are not indexed
Hibernate Search will skip the re-
indexing work. Disable this option

if you use a custom Fi el dBri dge
which need to be invoked at each
update event (even though the
property for which the field bridge
is configured has not changed).
This optimization will not be applied
on classes using a @l assBri dge
or a @ynani cBoost . Boolean
parameter, use "true" or "false".

Lucene’s | ndexW i t er can apply 8
writes in parallel, but this property
controls the limit of parallelism.

If you have many cores and

contention on the internal structures

of the I ndexW it er becomes a

40

eSi zeByDel et es.

Tuning indexing performance

Property Description Default Value
bottleneck you should configure an

higher value, at the cost of slightly

higher memory consumption.

hibernate.search. Enable low level trace information false
[default|<indexname>]. about Lucene’s internal
indexwriter.infostream components. Will cause significant

performance degradation: should
only be used for troubleshooting
purposes.

Tip

When your architecture permits it, always keep
hi ber nat e. sear ch. def aul t . excl usi ve_i ndex_use=t r ue as it greatly improves
efficiency in index writing. This is the default since Hibernate Search version 4.

Tip

To tune the indexing speed it might be useful to time the object loading from
database in isolation from the writes to the index. To achieve this set the bl ackhol e
as worker backend and start your indexing routines. This backend does not disable
Hibernate Search: it will still generate the needed changesets to the index, but
will discard them instead of flushing them to the index. In contrast to setting
the hi bernat e. sear ch. i ndexi ng_strategy to manual , using bl ackhol e will
possibly load more data from the database. because associated entities are re-
indexed as well.

hi ber nat e. sear ch. [def aul t | <i ndexnanme>] . wor ker . backend bl ackhol e

The recommended approach is to focus first on optimizing the object loading, and
then use the timings you achieve as a baseline to tune the indexing process.

Warning

The bl ackhol e backend is not meant to be used in production, only as a tool to
identify indexing bottlenecks.

41

Chapter 3. Configuration

3.7.1.1. Control segment size

The options mer ge_nax_si ze, mer ge_nmax_opti mi ze_si ze, merge_cal i br at e_by_del et es give
you control on the maximum size of the segments being created, but you need to understand
how they affect file sizes. If you need to hard limit the size, consider that merging a segment is
about adding it together with another existing segment to form a larger one, so you might want to
set the max_si ze for merge operations to less than half of your hard limit. Also segments might
initially be generated larger than your expected size at first creation time: before they are ever
merged. A segment is never created much larger than ram buf f er _si ze, but the threshold is
checked as an estimate.

Example:

Tip

When using the Infinispan Directory to cluster indexes make sure that your
segments are smaller than the chunk_size so that you avoid fragmenting
segments in the grid. Note that the chunk_si ze of the Infinispan Directory is
expressed in bytes, while the index tuning options are in MB.

3.7.1.2. Troubleshooting: enable Lucene’s Infostream

Apache Lucene allows to log a very detailed trace log from its internals using a feature called
"infostream". To access these details, Hibernate Search can be configured to capture this internal
trace from Apache Lucene and redirect it to your logger.

* Enable TRACE level logging for the category
org. hi bernat e. search. backend. | ucene. i nf ostream

» Activate the feature on the index you want to inspect: hi bernate. search.[defaul t|
<i ndexnane>] . i ndexwriter.infostreanrtrue

Keep in mind that this feature has a performance cost, and although most logger frameworks
allow the TRACE level to be reconfigured at runtime, enabling the i nf ost r eamproperty will slow
you down even if the logger is disabled.

3.7.2. LockFactory configuration

Lucene Directorys have default locking strategies which work generally good enough for most
cases, but it's possible to specify for each index managed by Hibernate Search a specific
LockingFactory you want to use. This is generally not needed but could be useful.

42

LockFactory configuration

Some of these locking strategies require a filesystem level lock and may be used even on RAM
based indexes, this combination is valid but in this case the i ndexBase configuration option usually
needed only for filesystem based Directory instances must be specified to point to a filesystem
location where to store the lock marker files.

To select a locking factory, set the hi ber nat e. sear ch. <i ndex>. | ocki ng_st r at egy option to
one of sinple, native, single or none. Alternatively set it to the fully qualified name of an
implementation of or g. hi ber nat e. sear ch. st ore. LockFact or yPr ovi der .

Table 3.8. List of available LockFactory implementations

name

Class

Description

simple

org.apache.lucene.store.
SimpleFSLockFactory

Safe implementation based
on Java’s File API, it marks
the usage of the index by
creating a marker file.

If for some reason you had
to kill your application, you
will need to remove this file
before restarting it.

native

single

org.apache.lucene.store.
NativeFSLockFactory

org.apache.lucene.store.
SinglelnstanceLockFactory

As does si npl e this also
marks the usage of the index
by creating a marker file, but
this one is using native OS
file locks so that even if the
JVM is terminated the locks
will be cleaned up.

This implementation has
known problems on NFS,
avoid it on network shares.

nati ve is the default
implementation for the
filesystemfilesystem
master and fil esystem
sl ave directory providers.

This LockFactory doesn't use
a file marker but is a Java
object lock held in memory;
therefore it's possible to use
it only when you are sure

the index is not going to be
shared by any other process.

43

Chapter 3. Configuration

name Class Description

This is the default
implementation for the r am
directory provider.

none org.apache.lucene.store. All changes to this index are

NoLockFactory not coordinated by any lock;
test your application carefully
and make sure you know
what it means.

Configuration example:

The Infinispan Directory uses a custom implementation; it's still possible to override it but make
sure you understand how that will work, especially with clustered indexes.

3.7.3. Index format compatibility

While Hibernate Search strives to offer a backwards compatible APl making it easy to port your
application to newer versions, it still delegates to Apache Lucene to handle the index writing and
searching. This creates a dependency to the Lucene index format. The Lucene developers of
course attempt to keep a stable index format, but sometimes a change in the format can not be
avoided. In those cases you either have to re-index all your data or use an index upgrade tool.
Sometimes Lucene is also able to read the old format so you don't need to take specific actions
(besides making backup of your index).

While an index format incompatibility is a rare event, it can happen more often that Lucene’s
Analyzer implementations might slightly change its behavior. This can lead to a poor recall score,
possibly missing many hits from the results.

Hibernate Search exposes a configuration property hi ber nat e. sear ch. | ucene_ver si on which
instructs the analyzers and other Lucene classes to conform to their behavior as defined in an
(older) specific version of Lucene. See also or g. apache. | ucene. uti | . Ver si on contained in the
lucene-core.jar. Depending on the specific version of Lucene you're using you might have different
options available. When this option is not specified, Hibernate Search will instruct Lucene to use
the default version, which is usually the best option for new projects. Still it's recommended to
define the version you're using explicitly in the configuration so that when you happen to upgrade
Lucene the analyzers will not change behavior. You can then choose to update this value at a
later time, when you for example have the chance to rebuild the index from scratch.

44

Metadata API

Example 3.12. Force Analyzers to be compatible with a Lucene 4.7 created
index

This option is global for the configured SearchFactory and affects all Lucene APIs having such
a parameter, as this should be applied consistently. So if you are also making use of Lucene
bypassing Hibernate Search, make sure to apply the same value too.

3.8. Metadata API

After looking at all these different configuration options, it is time to have a look at an APl which
allows you to programmatically access parts of the configuration. Via the metadata API you can
determine the indexed types and also how they are mapped (see Chapter 4, Mapping entities
to the index structure) to the index structure. The entry point into this API is the SearchFactory.
It offers two methods, namely get | ndexedTypes() and get | ndexedTypeDescri pt or (Q ass<?
>) . The former returns a set of all indexed type, where as the latter allows to retrieve a so called
IndexedTypeDescriptorfor a given type. This descriptor allows you determine whether the type
is indexed at all and, if so, whether the index is for example sharded or not (see Section 10.4,
“Sharding indexes”). It also allows you to determine the static boost of the type (see Section 4.2.1,
“Static index time boosting”) as well as its dynamic boost strategy (see Section 4.2.2, “Dynamic
index time boosting”). Most importantly, however, you get information about the indexed properties
and generated Lucene Document fields. This is exposed via PropertyDescriptors respectively
FieldDescriptors. The easiest way to get to know the API is to explore it via the IDE or its javadocs.

@ Note

All descriptor instances of the metadata API are read only. They do not allow to
change any runtime configuration.

3.9. Hibernate Search as a WildFly module

Hibernate Search is included in the WildFly 8 application server, but you need to activate the
module for your deployment to be able to take advantage of it.

You can either activate the modules already included in your WildFly distribution, or download and
unzip a different version provided by Hibernate Search. The modules system in WildFly allows to
safely run multiple versions of Hibernate ORM and Hibernate Search in parallel. You can pick the
one you need for each deployment.

3.9.1. Use the Hibernate Search version included in WildFly

To activate the Hibernate Search modules in wildfly, you have to declare the dependency by either
adding a line in the MANI FEST. MF of your deployment archive, or by including a resource named

45

Chapter 3. Configuration

j boss-depl oyment - struct ure. xm . This resource should be placed in the top level deployment,
in META-INF (or WEB-INF for web deployments).

Using the manifest
Add the following entry to the MANI FEST. MF in your archive:

Using jboss-deployment-structure.xml
add a resource named j boss- depl oynent - st ruct ure. xn in your top level deployment, in
META-INF (or WEB-INF for web deployments).

<j boss-depl oynent - st ruct ur e>
<depl oynent >
<dependenci es>
<nmodul e
name="or g. hi ber nat e. search. ornf
servi ces="export" />
</ dependenci es>
</ depl oynent >
</ j boss-depl oynment - st ruct ur e>

3.9.2. Update and activate latest Hibernate Search version in
WildFly

You can also download the latest Hibernate Search provided module and install it. This is often the
best approach as you will benefit from all the latest improvements of Hibernate Search. Because of
the modular design in WildFly, these additional modules can coexist with the embedded modules
and won't affect any other application, unless you explicitly reconfigure it to use the newer module.

You can download the latest pre-packaged Hibernate Search modules
from Sourceforge [http://sourceforge.net/projects/hibernate/files/hibernate-search/5.2.1.Final/
hibernate-search-modules-5.2.1.Final-wildfly-8-dist.zip/download]. As a convenience these
zip files are also distributed as Maven artifacts: org.hibernate:hibernate-search-
modules-5.2.1.Final-wildfly-8-dist:zip [https://repository.jboss.org/nexus/index.html#nexus-
search;gav~org.hibernate~hibernate-search-modules~{hibernateSearchVersion}~~].

Unpack the modules in your WildFly nodul es directory: this will create modules for Hibernate
Search and Apache Lucene. The Hibernate Search modules are:
 org.hibernate.search.orm, for users of Hibernate Search with Hibernate; this will transitively

include Hibernate ORM.

 org.hibernate.search.engine, for projects depending on the internal indexing engine that don't
require other dependencies to Hibernate.

46

http://sourceforge.net/projects/hibernate/files/hibernate-search/5.2.1.Final/hibernate-search-modules-5.2.1.Final-wildfly-8-dist.zip/download
http://sourceforge.net/projects/hibernate/files/hibernate-search/5.2.1.Final/hibernate-search-modules-5.2.1.Final-wildfly-8-dist.zip/download
http://sourceforge.net/projects/hibernate/files/hibernate-search/5.2.1.Final/hibernate-search-modules-5.2.1.Final-wildfly-8-dist.zip/download
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.hibernate~hibernate-search-modules~{hibernateSearchVersion}~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.hibernate~hibernate-search-modules~{hibernateSearchVersion}~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.hibernate~hibernate-search-modules~{hibernateSearchVersion}~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.hibernate~hibernate-search-modules~{hibernateSearchVersion}~~

Using Infinispan with Hibernate Search on WildFly

 org.hibernate.search.backend-jms, in case you want to use the JMS backend described in IMS
Architecture.

Using the manifest
Add the following entry to the MANI FEST. MF in your archive:

Using jboss-deployment-structure.xml
add a resource named j boss- depl oynent - struct ure. xn in your top level deployment, in
META-INF (or WEB-INF for web deployments).

<j boss-depl oynent - struct ure>
<depl oyment >
<dependenci es>
<nodul e
name="or g. hi ber nat e. search. ornt
slot="5.2.1. Final"
services="export" />
</ dependenci es>
</ depl oynent >
</ j boss-depl oynent - struct ure>

Tip

Modular classloading is a feature of JBoss EAP 6 as well, but if you are using JBoss
EAP, you're reading the wrong version of the user guide! JBoss EAP subscriptions
include official support for Hibernate Search (as part of the WFK) and come with a
different edition of this guide specifically tailored for EAP users.

More information about the modules configuration in WildFly can be found in the Class Loading
in WildFly 8 [https://docs.jboss.org/author/display/WFLY 8/Class+Loading+in+WildFly] wiki.

3.9.3. Using Infinispan with Hibernate Search on WildFly

The Infinispan project is also included in WildFly so you can use the feature without additional
downloads.

If you are updating the version of Hibernate Search in WildFly as described in the previous
paragraph, you might need to update Infinispan as well. The process is very similar: download the
modules from Infinispan project downloads [http://infinispan.org/download/], picking a compatible
version, and decompress the modules into the nodul es directory of your WildFly installation.

Hibernate Search version 5.2.1.Final was compiled and tested with Infinispan version
7.2.0.Final; generally a more recent version of either project is expected to be backwards

47

https://docs.jboss.org/author/display/WFLY8/Class+Loading+in+WildFly
https://docs.jboss.org/author/display/WFLY8/Class+Loading+in+WildFly
https://docs.jboss.org/author/display/WFLY8/Class+Loading+in+WildFly
http://infinispan.org/download/
http://infinispan.org/download/

Chapter 3. Configuration

compatible for cross-project integration purposes as long as they have the same "major.minor"
family version.

For example for a version of Hibernate Search depending on Infinispan 7. 0. 3. Fi nal it should be
safe to upgrade Infinispan to 7. 0. 6. Fi nal , but an upgrade to 7. 1. 0. Fi nal might not work.

48

Chapter 4.

Mapping entities to the index
structure

4.1. Mapping an entity

In Chapter 1, Getting started you have already seen that all the metadata information needed to
index entities is described through annotations. There is no need for XML mapping files. You can
still use Hibernate mapping files for the basic Hibernate configuration, but the Hibernate Search
specific configuration has to be expressed via annotations.

Section 4.7, “Programmatic API”

HSEARCH-210

4.1.1. Basic mapping
Lets start with the most commonly used annotations when mapping an entity.
4.1.1.1. @Indexed

Foremost you must declare a persistent class as indexable by annotating the class with @ ndexed.
All entities not annotated with @ ndexed will be ignored by the indexing process.

Example 4.1. Making a class indexable with @ ndexed

@ntity
@ ndexed
public class Essay {

}

You can optionally specify the | ndexed. i ndex attribute to change the default name of the index.
For more information regarding index naming see Section 3.3, “Directory configuration”.

You can also specify an optional indexing interceptor. For more information see conditional
indexing.

49

https://hibernate.onjira.com/browse/HSEARCH-210
https://hibernate.onjira.com/browse/HSEARCH-210

Chapter 4. Mapping entities t...

4.1.1.2. @Field

For each property of your entity, you have the ability to describe whether and how it will be indexed.
Adding the @i el d annotation declares a property as indexed and allows you to configure various
aspects of the indexing process. Without @i el d the property is ignored by the indexing process.

Hibernate Search tries to determine the best way to index your property. In most cases this will
be as string, but for the types int, long, double and float (and their respective Java wrapper types)
Lucene’s numeric field encoding (see Section 4.1.1.3, “@NumericField”) is used. This numeric
encoding uses a so called Trie structure [http://en.wikipedia.org/wiki/Trie] which allows for efficient
range queries and sorting, resulting in query response times being orders of magnitude faster than
with the plain string encoding. Byte and short properties will only be encoded in humeric fields if
explicitly marked with the @\umer i cFi el d annotation.

¥)

The following attributes of the @i el d annotation help you control the indexing outcome:

« nane: describes under which name the property should be stored in the Lucene Document. The
default value is the property name (following the JavaBeans convention)

« store: describes whether or not the property is stored in the Lucene index. You can store
the value St or e. YES (consuming more space in the index but allowing projection), store it in
a compressed way St or e. COWPRESS (this does consume more CPU), or avoid any storage
St or e. NO (this is the default value). When a property is stored, you can retrieve its original
value from the Lucene Document. Storing the property has no impact on whether the value is
searchable or not.

« i ndex: describes whether the property is indexed or not. The different values are | ndex. NO(ho
indexing, meaning the value cannot be found by a query), | ndex. YES (the element gets indexed
and is searchable). The default value is | ndex. YES. | ndex. NOcan be useful for cases where a
property is not required to be searchable, but needed for projection.

50

http://en.wikipedia.org/wiki/Trie
http://en.wikipedia.org/wiki/Trie

Basic mapping

Tip

Q

I ndex. NO in combination with Anal yze. YES or Nor ns. YES is not useful, since
analyze and norms require the property to be indexed

« anal yze: determines whether the property is analyzed (Anal yze. YES) or not (Anal yze. NO). The
default value is Anal yze. YES.

Tip

Whether or not you want to analyze a property depends on whether you wish to
search the element as is, or by the words it contains. It make sense to analyze
a text field, but probably not a date field.

Tip

Fields used for sorting or faceting must not be analyzed.

« nor ns: describes whether index time boosting information should be stored (Nor ms. YES) or not
(Nor ms. NO). Not storing the norms can save a considerable amount of memory, but index time
boosting will not be available in this case. The default value is Nor ns. YES.

» ternVect or: describes collections of term-frequency pairs. This attribute enables the storing of
the term vectors within the documents during indexing. The default value is Ter mivect or . NO.

The different values of this attribute are:

Value Definition

TermVector.YES Store the term vectors of each document.
This produces two synchronized arrays,
one contains document terms and the other
contains the term’s frequency.

TermVector.NO Do not store term vectors.

TermVector WITH_OFFSETS Store the term vector and token offset
information. This is the same as
TermVector.YES plus it contains the starting
and ending offset position information for the
terms.

TermVector. WITH_POSITIONS Store the term vector and token position
information. This is the same as

51

Chapter 4. Mapping entities t...

Value

Definition

TermVector.YES plus it contains the ordinal
positions of each occurrence of a term in a
document.

TermVector.WITH_POSITION_OFFSETS

Store the term vector, token position and
offset information. This is a combination
of the YES, WITH_OFFSETS and
WITH_POSITIONS.

e indexNul | As: Per default null values are

ignored and not indexed. However, using

i ndexNul | As you can specify a string which will be inserted as token for the null value. Per
default this value is set to or g. hi ber nat e. sear ch. annot at i ons. Fi el d. DO_NOT_| NDEX_NULL
indicating that null values should not be indexed. You can set this value to DEFAULT_NULL_TOKEN
to indicate that a default null token should be used. This default null token can be specified in
the configuration using hi ber nat e. sear ch. def aul t _nul | _t oken. If this property is not set the

string "null" will be used as default.

Chapter 5, Querying

(3)

* boost : Refer to section about boosting

 bridge: Refer to section about field bridges

4.1.1.3. @NumericField

@wuneri cFi el d is a companion annotation to @i el d. It can be specified in the same scope as
@i el d, but only on properties of numeric type like byte, short, int, long, double and float (and
their respective Java wrapper types). It allows to define a custom pr eci si onSt ep for the numeric

encoding of the property value.

@wuneri cFi el d accepts the following parameters:

52

Basic mapping

Value Definition

forField (Optional) Specify the name of of the related
@i el d that will be indexed numerically. It's

only mandatory when the property contains

more than a @i el d declaration

preci si onSt ep (Optional) Change the way that the Trie
structure is stored in the index. Smaller
preci si onSt eps lead to more disk space
usage and faster range and sort queries.
Larger values lead to less space used and
range query performance more close to the
range query using string encoding. Default
value is 4.

Lucene supports the numeric types: Doubl e, Long, | nt eger and Fl oat . For properties of types
Byt e and Short, an | nt eger field will be used in the index. Other numeric types should use
the default string encoding (via @i el d), unless the application can deal with a potential loss in
precision, in which case a custom Nurrer i cFi el dBri dge can be used. See Example 4.2, “Defining
a custom NumericFieldBridge for BigDecimal”.

Example 4.2. Defining a custom NumericFieldBridge for BigDecimal

public class Bi gDeci mal Nuneri cFi el dBri dge extends NunericFi el dBridge {
private static final BigDecinmal storeFactor = BigDecinal.val ueO (100);

@verride
public void set(String nane, Object value, Document docunent, LuceneQOptions |uceneOptions) {
if (value !'= null) {

Bi gDeci mal deci nmal Val ue = (Bi gDeci mal) val ue;

| ong tnpLong = deci mal Val ue. nul ti ply(storeFactor).l ongVal ue();

Long i ndexedVal ue = Long. val ueO(tnpLong);

| uceneOpt i ons. addNuneri cFi el dToDocunment (nane, indexedVal ue, docunent);

}

@verride

public Object get(String name, Document docunent) {
String fromLucene = docunent.get(name);
Bi gDeci mal storedBi gDeci mal = new Bi gDeci mal (froniLucene);
return storedBi gDeci nal . di vide(storeFactor);

You would wuse this custom bridge like seen in Example 4.3, “Use of
Bi gDeci mal Nuneri cFi el dBri dge”. In this case three annotations are used - @ield,
@wuneri cFi el d and @i el dBri dge. @i el d is required to mark the property for being indexed (a
standalone @wuneri cFi el d is never allowed). @wuneri cFi el d might be omitted in this specific
case, because the used @i el dBri dge annotation refers already to a Numeri cFi el dBri dge

53

Chapter 4. Mapping entities t...

instance. However, the use of @uneri cFi el d makes the use of the property as humeric value
explicit.

Example 4.3. Use of Bi gDeci mal Nuneri cFi el dBri dge

@ntity

@ ndexed

public static class Item {
@d
@=xner at edVal ue
private int id;

@ield

@\unreri cFiel d

@i el dBridge(inpl = BigDeci nal Nurreri cFi el dBri dge. cl ass)
private BigDeci mal price;

public int getld() {
return id;

}

public BigDecimal getPrice() {
return price;

}

public void setPrice(BigDecimal price) {
this.price = price;

}

41.1.4. @Id

Finally, the id property of an entity is a special property used by Hibernate Search to ensure
index unicity of a given entity. By design, an id has to be stored and must not be tokenized. It is
also always string encoded, even if the id is a number. To mark a property as index id, use the
@ocunent | d annotation. If you are using JPA and you are using @ d you can omit @ocumnent | d.
The chosen entity id will also be used as document id.

Example 4.4. Specifying indexed properties

@ntity
@ ndexed
public class Essay {

@d
@ocunent | d
public Long getld() { return id; }

@i el d(nane="Abstract", store=Store. YES)
public String getSumary() { return summary; }

54

Mapping properties multiple times

@ob
@ield
public String getText() { return text; }

@ield
@\urrer i cFi el d(preci sionStep = 6)
public float getGade() { return grade; }

Example 4.4, “Specifying indexed properties” defines an index with four fields: i d, Abstract,
text and grade. Note that by default the field name is de-capitalized, following the JavaBean
specification. The gr ade field is annotated as Numeric with a slightly larger precisionStep than
the default.

4.1.2. Mapping properties multiple times

Sometimes one has to map a property multiple times per index, with slightly different indexing
strategies. For example, sorting a query by field requires the field to be un-analyzed. If one wants
to search by words in this property and still sort it, one need to index it twice - once analyzed and
once un-analyzed. @Fields allows to achieve this goal.

Example 4.5. Using @Fields to map a property multiple times

@ntity
@ ndexed(i ndex = "Book")
public class Book {
@ields({
@i el d,
@ield(name = "summary_forSort", analyze = Analyze.NO, store = Store. YES)

1)
public String getSumary() {
return sunmary;

}

...

In Example 4.5, “Using @Fields to map a property multiple times” the field summary is indexed
twice, once as summary in a tokenized way, and once as summary_f or Sort in an un-tokenized
way. @Field supports 2 attributes useful when @Fields is used:

« analyzer: defines a @Analyzer annotation per field rather than per property
« bridge: defines a @FieldBridge annotation per field rather than per property

See below for more information about analyzers and field bridges.

55

Chapter 4. Mapping entities t...

4.1.3. Embedded and associated objects

Associated objects as well as embedded objects can be indexed as part of the root entity index.
This is useful if you expect to search a given entity based on properties of the associated objects.

In the example Example 4.6, “Indexing associations” the aim is to return places where
the associated city is Atlanta (in Lucene query parser language, it would translate into
address. city: Atl anta). All place fields are added to the Pl ace index, but also the address
related fields address. street, and address.city will be added and made queryable. The
embedded object id, address. i d, is not added per default. To include it you need to also set
@ ndexedEnmbedded(i ncl udeEnbeddedbj ect | d=true, ..).

Tip

Only actual indexed fields (properties annotated with @i el d) are added to the root
entity index when embedded objects are indexed. The embedded object identifiers
are treated differently and need to be included explicitly.

Example 4.6. Indexing associations

@ntity

@ ndexed

public class Place {
@d
@zener at edVal ue
private Long id;

@ield
private String nang;

@neToOne(cascade = { CascadeType. PERSI ST, CascadeType. REMOVE })
@ ndexedEnbedded
private Address address;

@Entity

public class Address {
@d
@cener at edVal ue
private Long id;

@Field
private String street;

@ield
private String city;

@ont ai nedl n

56

Embedded and associated objects

@neToMany(mappedBy="addr ess")
private Set<Place> pl aces;

Be careful. Because the data is de-normalized in the Lucene index when using the
@ ndexedEnbedded technique, Hibernate Search needs to be aware of any change in the Pl ace
object and any change in the Addr ess object to keep the index up to date. To make sure the Pl ace
Lucene document is updated when it's Addr ess changes, you need to mark the other side of the
bidirectional relationship with @ont ai nedI n.

Tip

@ont ai nedl n is useful on both associations pointing to entities and on embedded
(collection of) objects.

Let's make Example 4.6, “Indexing associations” a bit more complex by nesting
@ ndexedEnbedded as seen in Example 4.7, “Nested usage of @ ndexedEnbedded and
@ont ai nedl n”.

Example 4.7. Nested usage of @ ndexedEnbedded and @ont ai nedl n

@ntity

@ ndexed

public class Place {
@d
@=ner at edVal ue
private Long id;

@ield
private String nang;

@neToOne(cascade = { CascadeType. PERSI ST, CascadeType. REMOVE })
@ ndexedEnbedded
private Address address;

...

@ntity

public class Address {
@d
@zener at edVal ue
private Long id;

@Field

private String street;

57

Chapter 4. Mapping entities t...

@ield
private String city;

@ ndexedEnbedded(depth = 1, prefix = "ownedBy_")
private Oamner ownedBy;

@ont ai nedl n
@neToMany(mappedBy="addr ess")
private Set<Place> pl aces;

...

@nbeddabl e

public class Omer {
@ield
private String nang;
...

As you can see, any @ ToMany, @ ToOne or @nbedded attribute can be annotated with
@ ndexedEnbedded. The attributes of the associated class will then be added to the main entity
index. In Example 4.7, “Nested usage of @ ndexedEnbedded and @ont ai nedl n” the index will
contain the following fields

e id

* name

+ address.street
 address.city

e address.ownedBy_name

The default prefix is pr opert yNane. , following the traditional object navigation convention. You
can override it using the pref i x attribute as it is shown on the ownedBy property.

Note

The prefix cannot be set to the empty string.

The dept h property is necessary when the object graph contains a cyclic dependency of classes
(not instances). For example, if Omner points to Pl ace. Hibernate Search will stop including
indexed embedded attributes after reaching the expected depth (or the object graph boundaries
are reached). A class having a self reference is an example of cyclic dependency. In our example,
because dept h is set to 1, any @ ndexedEnbedded attribute in Omner (if any) will be ignored.

58

Embedded and associated objects

Using @ ndexedEnmbedded for object associations allows you to express queries (using Lucene’s
query syntax) such as:

* Return places where name contains JBoss and where address city is Atlanta. In Lucene query
this would be

* Return places where name contains JBoss and where owner’'s name contain Joe. In Lucene
query this would be

In a way it mimics the relational join operation in a more efficient way (at the cost of data
duplication). Remember that, out of the box, Lucene indexes have no notion of association, the
join operation is simply non-existent. It might help to keep the relational model normalized while
benefiting from the full text index speed and feature richness.

@ Note

An associated object can itself (but does not have to) be @ ndexed

When @ ndexedEnbedded points to an entity, the association has to be directional and the other
side has to be annotated with @ont ai nedI n. If not, Hibernate Search has no way to update the
root index when the associated entity is updated (in our example, a Pl ace index document has to
be updated when the associated Addr ess instance is updated).

Sometimes, the object type annotated by @ ndexedEnbedded is not the object type targeted by
Hibernate and Hibernate Search. This is especially the case when interfaces are used in lieu
of their implementation. For this reason you can override the object type targeted by Hibernate
Search using the t ar get El enent parameter.

Example 4.8. Using the targetElement property of @IndexedEmbedded

@ntity

@ ndexed

public class Address {
@d
@xner at edVal ue
private Long id;

@ield
private String street;

@ ndexedEnbedded(depth = 1, prefix = "ownedBy_", targetEl ement = Oaner. cl ass)
@rar get (Owner . cl ass)
private Person ownedBy;

Chapter 4. Mapping entities t...

...

@nbeddabl e
public class Omer inplenents Person { ... }

4.1.3.1. Limiting object embedding to specific paths

The @ ndexedEnbedded annotation provides also an attribute i ncl udePat hs which can be used
as an alternative to dept h, or in combination with it.

When using only dept h all indexed fields of the embedded type will be added recursively at the
same depth; this makes it harder to pick only a specific path without adding all other fields as well,
which might not be needed.

To avoid unnecessarily loading and indexing entities you can specify exactly which paths are
needed. A typical application might need different depths for different paths, or in other words it
might need to specify paths explicitly, as shown in Example 4.9, “Using the includePaths property
of @IndexedEmbedded”

Example 4.9. Using the includePaths property of @IndexedEmbedded

@ntity
@ ndexed
public class Person {

@d
public int getld() {
return id;

}

@ield
public String getName() {
return nane;

}

@ield
public String getSurnanme() {
return surname;

}

@neToMany
@ ndexedEnbedded(i ncl udePat hs = { "nane" })
public Set<Person> getParents() {

return parents;

}

@ont ai nedl n
@manyToOne
public Human get Child() {

60

Embedded and associated objects

return child;

/1 ... other fields omtted

Using a mapping as in Example 4.9, “Using the includePaths property of @IndexedEmbedded”,
you would be able to search on a Per son by nanme and/or sur name, and/or the nane of the parent.
It will not index the sur nanme of the parent, so searching on parent’s surnames will not be possible
but speeds up indexing, saves space and improve overall performance.

The @ ndexedEnbedded. i ncl udePat hs will include the specified paths in addition to what you
would index normally specifying a limited value for depth. Using i ncl udePat hs with a undefined
(default) value for dept h is equivalent to setting dept h=0: only the included paths are indexed.

Example 4.10. Using the includePaths property of @IndexedEmbedded

@ntity
@ ndexed
public class Human {

@d
public int getld() {
return id;

}

@Field
public String getName() {
return name;

}

@ield
public String getSurnane() {
return surnane;

}

@neToMany
@ ndexedEnbedded(depth = 2, includePaths = { "parents. parents. name" })
public Set <Human> get Parents() {

return parents;

}

@Cont ai nedl n

@manyToOne

public Human get Child() {
return child;

}

/1 ... other fields omtted

In Example 4.10, “Using the includePaths property of @IndexedEmbedded”, every human will
have it's name and surname attributes indexed. The name and surname of parents will be indexed
too, recursively up to second line because of the depth attribute. It will be possible to search by

61

Chapter 4. Mapping entities t...

name or surname, of the person directly, his parents or of his grand parents. Beyond the second
level, we will in addition index one more level but only the name, not the surname.

This results in the following fields in the index:

* id - as primary key

e _hi bernate_cl ass - stores entity type

* nane - as direct field

* surname - as direct field

» parents. name - as embedded field at depth 1

* parents. surnane - as embedded field at depth 1

e parents. parents. name - as embedded field at depth 2

e parents. parents. surnane - as embedded field at depth 2

e parents. parents. parents. name - as additional path as specified by includePaths. The first
par ent s. is inferred from the field name, the remaining path is the attribute of includePaths

Tip

You can explicitly include the id of the embedded object using i ncl udePat h,
for example @ ndexedEnbedded(i ncl udePaths = { "parents.id" }). This
will work regardless of the i ncl udeEnbeddedObj ect | d attribute. However, it is
recommended to just set i ncl udeEnbeddedCbj ect | d=t r ue.

Tip

Having explicit control of the indexed paths might be easier if you're designing your
application by defining the needed queries first, as at that point you might know
exactly which fields you need, and which other fields are unnecessary to implement
your use case.

4.1.4. Associated objects: building a dependency graph with
@Containedin

While @ont ai nedl n is often seen as the counterpart of @ ndexedEnbedded, it can also be used
on its own to build an indexing dependency graph.

When an entity is reindexed, all the entities pointed by @ont ai nedl n are also going to be
reindexed.

62

Boosting

4.2. Boosting

Lucene has the notion of boosting which allows you to give certain documents or fields more or
less importance than others. Lucene differentiates between index and search time boosting. The
following sections show you how you can achieve index time boosting using Hibernate Search.

4.2.1. Static index time boosting

To define a static boost value for an indexed class or property you can use the @Boost annotation.
You can use this annotation within @Field or specify it directly on method or class level.

Example 4.11. Different ways of using @Boost

@ntity

@ ndexed

@Boost (1. 7f)

public class Essay {

@d
@ocunent | d
public Long getld() { return id; }

@i el d(nane="Abstract", store=Store.YES, boost=@Boost (2f))
@Boost (1. 5f)
public String getSumary() { return summary; }

@.ob
@i el d(boost =@Boost (1. 2f))
public String getText() { return text; }

@ield
public String getIl SBN() { return isbn; }

In Example 4.11, “Different ways of using @Boost”, Essay’s probability to reach the top of the
search list will be multiplied by 1.7. The summary field will be 3.0 (2 * 1.5, because @i el d. boost
and @Boost on a property are cumulative) more important than the i sbn field. The text field will be
1.2 times more important than the i sbn field. Note that this explanation is wrong in strictest terms,
but it is simple and close enough to reality for all practical purposes. Please check the Lucene
documentation or the excellent Lucene In Action from Otis Gospodnetic and Erik Hatcher.

4.2.2. Dynamic index time boosting

The @oost annotation used in Section 4.2.1, “Static index time boosting” defines a static boost
factor which is independent of the state of of the indexed entity at runtime. However, there are
use cases in which the boost factor may depend on the actual state of the entity. In this case you
can use the @ynani cBoost annotation together with an accompanying custom BoostStrategy.

63

Chapter 4. Mapping entities t...

Example 4.12. Dynamic boost example

publ i c enum PersonType {
NORMAL,
VI P

@ntity
@ ndexed
@ynam cBoost (i npl = VI PBoost Strat egy. cl ass)
public class Person {
private PersonType type;

...

public class VIPBoostStrategy inplenments BoostStrategy {
public float defineBoost(Qbject value) {
Person person = (Person) val ue;
if (person.getType().equals(PersonType.VIP)) {
return 2.0f;

}
el se {
return 1.0f;

}

In Example 4.12, “Dynamic boost example” a dynamic boost is defined on class level specifying
VIPBoostStrategy as implementation of the BoostStrategy interface to be used at indexing time.
You can place the @ynani cBoost either at class or field level. Depending on the placement of
the annotation either the whole entity is passed to the defineBoost method or just the annotated
field/property value. It's up to you to cast the passed object to the correct type. In the example all
indexed values of a VIP person would be double as important as the values of a normal person.

® Note

The specified BoostStrategy implementation must define a public no-arg
constructor.

Of course you can mix and match @oost and @ynani cBoost annotations in your entity. All
defined boost factors are cumulative.

64

Analysis

4.3. Analysis

Analysis is the process of converting text into single terms (words) and can be considered as one
of the key features of a fulltext search engine. Lucene uses the concept of Analyzers to control this
process. In the following section we cover the multiple ways Hibernate Search offers to configure
the analyzers.

4.3.1. Default analyzer and analyzer by class

The default analyzer class used to index tokenized fields is configurable through
the hibernate.search. anal yzer property. The default value for this property is
org.apache.lucene.analysis.standard.StandardAnalyzer.

You can also define the analyzer class per entity, property and even per @Field (useful when
multiple fields are indexed from a single property).

Example 4.13. Different ways of using @Analyzer

@Entity
@ ndexed
@\nal yzer (i npl = EntityAnal yzer. cl ass)
public class MEntity {
@d
@zener at edVal ue
@ocurnent | d
private |nteger id;

@Field

private String nang;

@ield
@\nal yzer (i npl = PropertyAnal yzer. cl ass)
private String summary;

@i el d(anal yzer = @\nal yzer (i npl = Fi el dAnal yzer. cl ass)
private String body;

In this example, EntityAnalyzer is used to index all tokenized properties (eg. nane), except sunmar y
and body which are indexed with PropertyAnalyzer and FieldAnalyzer respectively.

>

65

Chapter 4. Mapping entities t...

4.3.2. Named analyzers

Analyzers can become quite complex to deal with. For this reason introduces Hibernate Search
the notion of analyzer definitions. An analyzer definition can be reused by many @Analyzer
declarations and is composed of:

e a name: the unique string used to refer to the definition

a list of char filters: each char filter is responsible to pre-process input characters before the
tokenization. Char filters can add, change or remove characters; one common usage is for
characters normalization

 atokenizer: responsible for tokenizing the input stream into individual words

a list of filters: each filter is responsible to remove, modify or sometimes even add words into
the stream provided by the tokenizer

This separation of tasks - a list of char filters, and a tokenizer followed by a list of filters - allows
for easy reuse of each individual component and let you build your customized analyzer in a very
flexible way (just like Lego). Generally speaking the char filters do some pre-processing in the
character input, then the Tokenizer starts the tokenizing process by turning the character input
into tokens which are then further processed by the TokenFilters. Hibernate Search supports this
infrastructure by utilizing the advanced analyzers provided by Lucene; this is often referred to as
the Analyzer Framework.

commons-codec

Table 4.2,
“Example of available tokenizers” Table 4.3, “Examples of available filters”

Let's have a look at a concrete example now - Example 4.14, “@AnalyzerDef and the Analyzer
Framework”. First a char filter is defined by its factory. In our example, a mapping char filter is
used, and will replace characters in the input based on the rules specified in the mapping file.
Next a tokenizer is defined. This example uses the standard tokenizer. Last but not least, a list of

66

http://commons.apache.org/codec
http://commons.apache.org/codec

Named analyzers

filters is defined by their factories. In our example, the StopFilter filter is built reading the dedicated
words property file. The filter is also expected to ignore case.

Example 4.14. @AnalyzerDef and the Analyzer Framework

@\nal yzer Def (name="cust omanal yzer",
charFilters = {
@harFi |l terDef (factory = Mappi ngCharFil terFactory. cl ass, parans = {
@Par anet er (nane = "mappi ng",
val ue = "org/ hi bernate/search/test/anal yzer/ mappi ng-chars. properties")
})
b
tokeni zer = @okeni zer Def (factory = StandardTokeni zer Factory. cl ass),
filters = {
@okenFilterDef (factory = ASCI I Fol di ngFi |l terFactory. cl ass),
@okenFil terDef (factory = LowerCaseFilterFactory.class),
@okenFilterDef(factory = StopFilterFactory.class, params = {
@par anet er (name="wor ds",
val ue= "org/ hi bernat e/ search/test/anal yzer/stoplist.properties"),
@rar aret er (name="i gnor eCase", val ue="true")

9]

9]

public class Team {
11

}

Tip

Filters and char filters are applied in the order they are defined in the @AnalyzerDef
annotation. Order matters!

Some tokenizers, token filters or char filters load resources like a configuration or metadata file.
This is the case for the stop filter and the synonym filter.

Example 4.15. Use a specific charset to load the property file

@\nal yzer Def (name="cust omanal yzer",
charFilters = {
@harFi |l terDef (factory = Mappi ngCharFil terFactory. cl ass, parans = {
@Par anet er (nane = "mappi ng",
val ue = "org/ hi bernate/search/test/anal yzer/ mappi ng-chars. properties")
})
b
tokeni zer = @okeni zer Def (factory = StandardTokeni zer Factory. cl ass),
filters = {
@okenFilterDef (factory = ASCI | Fol di ngFi |l terFactory. cl ass),
@okenFil terDef (factory = LowerCaseFilterFactory.class),
@okenFilterDef(factory = StopFilterFactory.class, params = {
@par anet er (name="wor ds",
val ue= "org/ hi bernat e/ search/test/anal yzer/stoplist.properties"),

67

Chapter 4. Mapping entities t...

@par anet er (nane="i gnor eCase", val ue="true")

9]
9]
public class Team {
...

}

Once defined, an analyzer definition can be reused by an @Analyzer declaration as seen in
Example 4.16, “Referencing an analyzer by name”.

Example 4.16. Referencing an analyzer by name

@ntity
@ ndexed
@\nal yzer Def (name="cust omanal yzer", ...)
public class Team {
@d
@ocunent | d

@:xner at edVal ue
private Integer id;

@Field
private String nane;

@ield
private String |ocation;

@ield
@\nal yzer (definition = "custonanal yzer")
private String description;

Analyzer instances declared by @AnalyzerDef are also available by their name in the
SearchFactory which is quite useful wen building queries.

Anal yzer anal yzer = full Text Sessi on. get Sear chFactory(). get Anal yzer ("customanal yzer");

Fields in queries should be analyzed with the same analyzer used to index the field so that they
speak a common "language": the same tokens are reused between the query and the indexing
process. This rule has some exceptions but is true most of the time. Respect it unless you know
what you are doing.

4.3.2.1. Available analyzers

Apache Lucene comes with a lot of useful default char filters, tokenizers and filters. You can find a
complete list of char filter factories, tokenizer factories and filter factories at http://wiki.apache.org/
solr/AnalyzersTokenizersTokenFilters. Let's check a few of them.

68

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

Named analyzers

Table 4.1. Example of available char filters

Factory Description

MappingCharFilterFactoReplaces one or
more characters
with one or more
characters, based on
mappings specified in

Parameters

mappi ng: points

to a resource file
containing the
mappings using the
format: "a" 7 "a" "i"

Additional
dependencies

lucene-analyzers-
common

the resource file o "'n""g" "o
HTMLStripCharFilterFadkemove HTML none lucene-analyzers-
standard tags, common
keeping the text
Table 4.2. Example of available tokenizers
Factory Description Parameters Additional
dependencies
StandardTokenizerFactddge the Lucene none lucene-analyzers-
StandardTokenizer common
HTMLStripCharFilterFadRaynove HTML none | ucene- anal yzer s-

tags, keep the text
and pass itto a
StandardTokenizer.

comon

PatternTokenizerFactorBreaks text at the

patt er n: the regular

| ucene-anal yzers-

Remove words
(tokens) matching a
list of stop words

StopFilterFactory

wor ds: points to
a resource file

specified regular expression to use for | common
expression pattern. tokenizing
group: says which
pattern group to
extract into tokens
Table 4.3. Examples of available filters
Factory Description Parameters Additional
dependencies
StandardFilterFactory Remove dots from none | ucene- anal yzer s-
acronyms and 's from conmmmon
words
LowerCaseFilterFactoryLowercases all words ' none | ucene- anal yzer s-

comon

| ucene-anal yzers-
conmon

69

Chapter 4. Mapping entities t...

Factory

Description

Parameters

Additional
dependencies

containing the stop
words

ignoreCase: true
if case should
be ignore when
comparing stop
words, f al se
otherwise

SnowballPorterFilterFacRegduces a word to

it's root in a given
language. (eg.
protect, protects,
protection share the
same root). Using
such a filter allows
searches matching
related words.

ASCIIFoldingFilterFactoRemove accents for

languages like French

| anguage: Danish,
Dutch, English,
Finnish, French,
German, Italian,
Norwegian,
Portuguese, Russian,
Spanish, Swedish
and a few more

none

| ucene-anal yzers-
conmon

| ucene-anal yzers-

comon

PhoneticFilterFactory

Inserts phonetically
similar tokens into the
token stream

CollationKeyFilterFactor€onverts each

token into its
java.text.CollationKey,
and then encodes

encoder : One of
DoubleMetaphone,
Metaphone, Soundex
or RefinedSoundex

inject: true will add
tokens to the stream,
false will replace the
existing token

maxCodelLengt h:
sets the maximum
length of the code
to be generated.
Supported only for
Metaphone and
DoubleMetaphone
encodings

cust om | anguage,
country, vari ant,
strength,
“decomposition

| ucene-anal yzers-
phoneti c and
conmons- codec

| ucene-anal yzers-
comon and conmons-

io

70

Dynamic analyzer selection

Factory Description Parameters Additional
dependencies

the CollationKey with | “see Lucene’s
IndexableBinaryString TddtdlationKeyFilter
to allow it to be stored | javadocs for more

as an index term. info
We recommend to check out the implementations of
org.apache.lucene.analysis.util. TokenizerFactory and

org.apache.lucene.analysis.util. TokenFilterFactory in your IDE to see the implementations
available.

4.3.3. Dynamic analyzer selection

So far all the introduced ways to specify an analyzer were static. However, there are use cases
where it is useful to select an analyzer depending on the current state of the entity to be indexed,
for example in a multilingual applications. For an BlogEntry class for example the analyzer could
depend on the language property of the entry. Depending on this property the correct language
specific stemmer should be chosen to index the actual text.

To enable this dynamic analyzer selection Hibernate Search introduces the AnalyzerDiscriminator
annotation. Example 4.17, “Usage of @AnalyzerDiscriminator” demonstrates the usage of this
annotation.

Example 4.17. Usage of @AnalyzerDiscriminator

@ntity
@ ndexed
@\nal yzer Def s({
@\nal yzer Def (nane = "en",
t okeni zer = @okeni zer Def (factory = StandardTokeni zer Factory. cl ass),
filters = {
@okenFil terDef (factory Lower CaseFi |l ter Factory. cl ass),
@okenFilterDef(factory = EnglishPorterFilterFactory.class
)
.
@\nal yzer Def (nane = "de",
t okeni zer = @okeni zer Def (factory = StandardTokeni zer Factory. cl ass),
filters = {
@okenFilterDef(factory = Lower CaseFilterFactory. class),
@okenFil terDef (factory GermanSt enfi | t er Fact ory. cl ass)
b

})
public class BlogEntry {

@d

@xner at edVal ue
@ocunent | d
private Integer id;

71

Chapter 4. Mapping entities t...

@ield
@\nal yzer Di scrim nator (i npl = LanguageDi scri m nator.cl ass)
private String | anguage;

@ield
private String text;

private Set<Bl ogEntry> references;

/1 standard getter/setter
1o

public class LanguageDi scrim nator inplenments Discrimnator {

public String getAnal yzerDefinitionName(Cbject value, Cbject entity, String field) {
if (value == null || !'(entity instanceof Article)) {
return null;

}

return (String) val ue;

The prerequisite for using @AnalyzerDiscriminator is that all analyzers which are going to be
used dynamically are predefined via @AnalyzerDef definitions. If this is the case, one can
place the @AnalyzerDiscriminator annotation either on the class or on a specific property
of the entity for which to dynamically select an analyzer. Via the i npl parameter of the
AnalyzerDiscriminator you specify a concrete implementation of the Discriminator interface. It is
up to you to provide an implementation for this interface. The only method you have to implement
is getAnalyzerDefinitionName() which gets called for each field added to the Lucene document.
The entity which is getting indexed is also passed to the interface method. The val ue parameter
is only set if the AnalyzerDiscriminator is placed on property level instead of class level. In this
case the value represents the current value of this property.

An implementation of the Discriminator interface has to return the name of an existing analyzer
definition or null if the default analyzer should not be overridden. Example 4.17, “Usage of
@AnalyzerDiscriminator” assumes that the language parameter is either 'de’ or 'en’ which matches
the specified names in the @AnalyzerDefs.

4.3.4. Retrieving an analyzer

In some situations retrieving analyzers can be handy. For example, if your domain model makes
use of multiple analyzers (maybe to benefit from stemming, use phonetic approximation and so
on), you need to make sure to use the same analyzers when you build your query.

72

Bridges

Section 5.1.2,

“Building a Lucene query with the Hibernate Search query DSL”

Whether you are using the Lucene programmatic API or the Lucene query parser, you can retrieve
the scoped analyzer for a given entity. A scoped analyzer is an analyzer which applies the right
analyzers depending on the field indexed. Remember, multiple analyzers can be defined on a
given entity each one working on an individual field. A scoped analyzer unifies all these analyzers
into a context-aware analyzer. While the theory seems a bit complex, using the right analyzer in
a query is very easy.

Example 4.18. Using the scoped analyzer when building a full-text query

org. apache. | ucene. querypar ser. cl assi c. QueryPar ser parser = new QueryPar ser (
"title",
ful | Text Sessi on. get Sear chFactory(). get Anal yzer (Song. cl ass)

)

org. apache. | ucene. search. Query | uceneQuery =
parser.parse("title:sky O title_stenmmed: di anond");

org. hi bernate. Query full Text Query =
ful | Text Sessi on. creat eFul | Text Query(| uceneQuery, Song.class);

List result = full TextQuery.list(); //return a list of managed objects

In the example above, the song title is indexed in two fields: the standard analyzer is used in the
field tit1 e and a stemming analyzer is used in the field ti t| e_st enmed. By using the analyzer
provided by the search factory, the query uses the appropriate analyzer depending on the field
targeted.

Tip

Q

You can also retrieve analyzers defined via @AnalyzerDef by their definition name
using searchFactory.getAnalyzer(String).

4.4. Bridges

When discussing the basic mapping for an entity one important fact was so far disregarded. In
Lucene all index fields have to be represented as strings. All entity properties annotated with
@i el d have to be converted to strings to be indexed. The reason we have not mentioned it so

73

Chapter 4. Mapping entities t...

far is, that for most of your properties Hibernate Search does the translation job for you thanks
to a set of built-in bridges. However, in some cases you need a more fine grained control over
the translation process.

4.4.1. Built-in bridges

Hibernate Search comes bundled with a set of built-in bridges between a Java property type and
its full text representation.

nul |
Perdefaultnul | elements are notindexed. Lucene does not support nul | elements. However,
in some situation it can be useful to insert a custom token representing the nul | value. See
Section 4.1.1.2, “@Field” for more information.

java.lang. String
Strings are indexed as are

short, Short,integer, | nteger,|ong, Long, fl oat, Fl oat, doubl e, Doubl e
Are per default indexed numerically using a Trie structure [http://en.wikipedia.org/wiki/Trie].
You need to use a Numeri cRangeQuery to search for values. See also Section 4.1.1.2,
“@Field” and Section 4.1.1.3, “@NumericField”

Bi gl nt eger, Bi gDeci nal
Bi gl nt eger and Bi gDeci mal are converted into their string representation and indexed.
Note that in this form the values cannot be compared by Lucene using for example a
Ter mRangeQuer y. For that the string representation would need to be padded. An alternative
using numeric encoding with a potential loss in precision can be seen in Example 4.2, “Defining
a custom NumericFieldBridge for BigDecimal.

java.util.Date,java.util.Cal endar
Dates are indexed as | ong value representing the number of milliseconds since January
1, 1970, 00:00:00 GMT. You shouldn't really bother with the internal format. It is important,
however, to query a numerically indexed date via a Numer i cRangeQuery.

Usually, storing the date up to the millisecond is not necessary. @at eBri dge defines the
appropriate resolution you are willing to store in the index.

@ntity
@ ndexed
public class Meeting {
@i el d(anal yze=Anal yze. NO)
@at eBri dge(resol uti on=Resol uti on. M NUTE)
private Date date;
...

You can also choose to encode the date as string using the encodi ng=Encodi ngType. STRI NG
of Dat eBr i dge. In this case the dates are stored in the format yyyyMMddHHmMmssSSS (using
GMT time).

74

http://en.wikipedia.org/wiki/Trie
http://en.wikipedia.org/wiki/Trie

Tika bridge

Important

A Date whose resolution is lower than M LLI SECOND cannot be a @ocunent | d

Important

The default date bridge uses Lucene’s Dat eTool s to convert from Dat e or
Cal endar to its indexed value. This means that all dates are expressed in GMT
time. If your requirements are to store dates in a fixed time zone you have to
implement a custom date bridge. Make sure you understand the requirements
of your applications regarding to date indexing and searching.

java.net.URl,java. net. URL
URI and URL are converted to their string representation

java.l ang. d ass
Classes are converted to their fully qualified class nhame. The thread context classloader is
used when the class is rehydrated

4.4.2. Tika bridge

Hibernate Search allows you to extract text from various document types using the built-in
TikaBridge which utilizes Apache Tika [http://tika.apache.org] to extract text and metadata from
the provided documents. The TikaBridge annotation can be used with String, URI, byte[] or
java.sql.Blob properties. In the case of String and URI the bridge interprets the values are file
paths and tries to open a file to parse the document. In the case of byte[] and Blob the values are
directly passed to Tika for parsing.

Tika uses metadata as in- and output of the parsing process and it also allows to provide additional
context information. This process is described in Parser interface [http://tika.apache.org/1.1/
parser.html#apiorgapachetikametadataMetadata.html]. The Hibernate Search Tika bridge allows
you to make use of these additional configuration options by providing two interfaces in conjunction
with TikaBridge. The first interface is the TikaParseContextProvider. It allows you to create a
custom ParseContext for the document parsing. The second interface is TikaMetadataProcessor
which has two methods - prepareMetadata() and set(String, Object, Document, LuceneOptions,
Metadata metadata). The former allows to add additional metadata to the parsing process (for
example the file name) and the latter allows you to index metadata discovered during the parsing
process.

TikaParseContextProvider as well as TikaMetadataProcessor implementation classes can both
be specified as parameters on the TikaBridge annotation.

75

http://tika.apache.org
http://tika.apache.org
http://tika.apache.org/1.1/parser.html#apiorgapachetikametadataMetadata.html
http://tika.apache.org/1.1/parser.html#apiorgapachetikametadataMetadata.html
http://tika.apache.org/1.1/parser.html#apiorgapachetikametadataMetadata.html

Chapter 4. Mapping entities t...

Example 4.19. Example mapping with Apache Tika

@ntity

@ ndexed

public class Song {
@d
@zener at edVal ue
long id;

@ield
@i kaBri dge(net adat aProcessor = Md3Ti kaMet adat aPr ocessor. cl ass)
String np3Fil eNaneg;

...

Quer yBui | der queryBuil der = full Text Sessi on. get Sear chFactory()
. bui I dQuer yBui | der ()
.forEntity(Song.class)
.get();
Query query = queryBuil der. keyword()
.onField("np3Fil eNarme")
.ignoreFieldBridge() //mandatory
.mat chi ng("Apes")
.createQuery();
List result = full Text Session. createFul | Text Query(query).list();

In the Example 4.19, “Example mapping with Apache Tika” the property mp3FileName represents
a path to an MP3 file; the headers of this file will be indexed and so the performed query will be
able to match the MP3 metadata.

Warning

TikaBridge does not implement TwoWayFieldBridge: queries built using the DSL
(as in the Example 4.19, “Example mapping with Apache Tika”) need to explicitly
enable the option ignoreFieldBridge().

4.4.3. Custom bridges

Sometimes, the built-in bridges of Hibernate Search do not cover some of your property types,
or the String representation used by the bridge does not meet your requirements. The following
paragraphs describe several solutions to this problem.

4.4.3.1. StringBridge

The simplest custom solution is to give Hibernate Search an implementation of
your expected Object to String bridge. To do so you need to implement the

76

Custom bridges

or g. hi bernate. search. bri dge. StringBri dge interface. All implementations have to be
thread-safe as they are used concurrently.

Example 4.20. Custom stringBri dge implementation

/**
* Paddi ng I nteger bridge.
* All nunbers will be padded with O to natch 5 digits

*

* @ut hor Emmanuel Bernard
*/
public class Paddedl nt egerBridge i nplenments StringBridge {

private int padding = 5;

public String objectToString(Cbject object) {
String rawi nteger = ((Integer) object).toString();
if (rawlnteger.length() > padding)
throw new ||| egal Argunent Excepti on("Nunber too big to be padded");
StringBuil der paddedl nteger = new StringBuilder();
for (int padlndex = raw nteger.length(); padlndex < paddi ng; padl ndex++) {
paddedl nt eger . append(' 0');

}
return paddedl nt eger. append(rawi nteger).toString();

Given the string bridge defined in Example 4.20, “Custom St ri ngBri dge implementation”, any
property or field can use this bridge thanks to the @i el dBri dge annotation:

@i el dBri dge(i mpl = Paddedl nt eger Bri dge. cl ass)
private Integer |ength;

4.4.3.1.1. Parameterized bridge

Parameters can also be passed to the bridge implementation making it more flexible.
Example 4.21, “Passing parameters to your bridge implementation” implements a
ParameterizedBridge interface and parameters are passed through the @i el dBr i dge annotation.

Example 4.21. Passing parameters to your bridge implementation

public class Paddedl ntegerBridge inplenments StringBridge, ParaneterizedBridge {

public static String PADDI NG PROPERTY = "paddi ng";
private int padding = 5; //default

public void setParaneterVal ues(Map<String, String> paraneters) {
String paddi ng = paraneters. get(PADDI NG PROPERTY);
if (padding !'= null) this.padding = Integer.parselnt(padding);

77

Chapter 4. Mapping entities t...

public String objectToString(Object object) {
String rawi nteger = ((Integer) object).toString();
if (rawinteger.length() > padding)
throw new I 11 egal Argunent Excepti on(" Nunber too big to be padded");
StringBuil der paddedl nteger = new StringBuilder();
for (int padlndex = rawl nteger.length(); padlndex < paddi ng; padl ndex++) {
paddedl nt eger . append(' 0');

}
return paddedl nt eger. append(raw nteger).toString();

/lon the property:
@i el dBri dge(i npl = Paddedl nt eger Bri dge. cl ass,
parans = @Par anet er (nane="paddi ng", val ue="10")

)

private Integer |ength;

The ParameterizedBridge interface can be implemented by StringBridge, TwoWayStringBridge,
FieldBridge implementations.

All implementations have to be thread-safe, but the parameters are set during initialization and
no special care is required at this stage.

4.4.3.1.2. Type aware bridge

It is sometimes useful to get the type the bridge is applied on:

« the return type of the property for field/getter-level bridges
« the class type for class-level bridges

An example is a bridge that deals with enums in a custom fashion but needs to access the actual
enum type. Any bridge implementing AppliedOnTypeAwareBridge will get the type the bridge is
applied on injected. Like parameters, the type injected needs no particular care with regard to
thread-safety.

4.4.3.1.3. Two-way bridge

If you expect to use your bridge implementation on an id property (ie annotated with @ocunent | d
), you need to use a slightly extended version of Stri ngBri dge named TwoWayStringBridge.
Hibernate Search needs to read the string representation of the identifier and generate the object
out of it. There is no difference in the way the @i el dBri dge annotation is used.

Example 4.22. Implementing a TwoWayStringBridge usable for id properties

public class Paddedl nt egerBridge inpl ements TwoWayStri ngBri dge, ParaneterizedBridge {

78

Custom bridges

public static String PADDI NG PROPERTY = "paddi ng";
private int padding = 5; //default

public void setParaneterVal ues(Map paraneters) {
Obj ect paddi ng = par anet ers. get (PADDI NG_PROPERTY) ;
if (padding !'= null) this.padding = (Integer) padding;

public String objectToString(Object object) {
String raw nteger = ((Integer) object).toString();
if (rawinteger.length() > padding)
throw new |11 egal Argunent Excepti on("Nunber too big to be padded");
StringBuil der paddedl nteger = new StringBuilder();
for (int padlndex = raw nteger.|length(); padlndex < paddi ng ; padl ndex++) {
padded! nt eger . append(' 0');

}
return paddedl nt eger. append(raw nteger).toString();

public Object stringToObject(String stringValue) {
return new I nteger(stringVal ue);

//On an id property:
@ocunent | d
@i el dBri dge(i npl = Paddedl nt eger Bri dge. cl ass,
parans = @par anet er (name="paddi ng", val ue="10")
private Integer id;

£ Important

It is important for the two-way process to be idempotent (ie obj ect
stringToQbj ect (obj ect ToStri ng(object))).

4.4.3.2. FieldBridge

Some use cases require more than a simple object to string translation when mapping a property
to a Lucene index. To give you the greatest possible flexibility you can also implement a bridge
as a Fi el dBri dge. This interface gives you a property value and let you map it the way you want
in your Lucene Docunent . You can for example store a property in two different document fields.
The interface is very similar in its concept to the Hibernate ORM User Types.

Example 4.23. Implementing the FieldBridge interface

| **

* Store the date in 3 different fields - year, nonth, day - to ease the creati on of RangeQuery per
* year, nonth or day (eg get all the elenents of Decenber for the last 5 years).

79

Chapter 4. Mapping entities t...

* @ut hor Emmanuel Bernard
*/
public class DateSplitBridge inplements FieldBridge {
private final static TimeZone GMI = Ti meZone. get Ti meZone(" GMI") ;

public void set(String nanme, Object val ue, Docunent docunent,
LuceneOptions | uceneOptions) {
Date date = (Date) val ue;
Cal endar cal = GregorianCal endar. getl nstance(GVI) ;
cal . setTi ne(date);
int year = cal.get(Cal endar. YEAR);
int nonth = cal.get(Cal endar. MONTH) + 1;
int day = cal.get(Cal endar. DAY_OF_MONTH) ;

Il set year

| uceneOpt i ons. addFi el dToDocunent (
name + ".year",
String.val ue (year),
docunent);

/1 set month and pad it if needed

| uceneOpt i ons. addFi el dToDocurnent (
namre + ".nonth",
month < 10 ? "0" : "" + String.valueO'(nonth),
docunent);

// set day and pad it if needed

| uceneOpt i ons. addFi el dToDocunent (
name + ".day",
day < 10 ? "0" : "" + String.valueO(day),
docunent);

/'l property
@i el dBridge(inpl = DateSplitBridge.class)
private Date date;

In Example 4.23, “Implementing the FieldBridge interface” the fields are not added directly to
Docunent . Instead the addition is delegated to the LuceneOpt i ons helper; this helper will apply
the options you have selected on @i el d, like St or e or Ter n\ect or, or apply the chosen @oost
value. It is especially useful to encapsulate the complexity of COVPRESS implementations. Even
though it is recommended to delegate to LuceneOpti ons to add fields to the Docunent , nothing
stops you from editing the Docunent directly and ignore the LuceneOptions in case you need to.

Tip

Classes like LuceneOptions are created to shield your application from changes
in Lucene API and simplify your code. Use them if you can, but if you need more
flexibility you’re not required to.

80

Custom bridges

4.4.3.3. ClassBridge

It is sometimes useful to combine more than one property of a given entity and index
this combination in a specific way into the Lucene index. The @ClassBridge respectively
@ClassBridges annotations can be defined at class level (as opposed to the property level).
In this case the custom field bridge implementation receives the entity instance as the value
parameter instead of a particular property. Though not shown in Example 4.24, “Implementing a
class bridge”, @ClassBridge supports the termVector attribute discussed in section Section 4.1.1,
“Basic mapping”.

Example 4.24. Implementing a class bridge

@ntity
@ ndexed
@ assBri dge(name="br anchnet wor k",
st ore=St ore. YES,
impl = CatFiel dsd assBri dge. cl ass,
parans = @Paraneter(nanme="sepChar", value=" "))
public class Departnent {
private int id;
private String network;
private String branchHead;
private String branch;
private Integer nmaxEnpl oyees
11

public class CatFieldsC assBridge i npl ements Fiel dBri dge, ParaneterizedBridge {
private String sepChar;

public void setParaneterVal ues(Map paraneters) {
this.sepChar = (String) paraneters.get("sepChar");

public void set(

String nane, Object value, Docunent docunent, LuceneQptions |uceneOptions) {

/1 In this particular class the name of the new field was passed

/1 fromthe nane field of the C assBridge Annotation. This is not

/1l a requirenent. It just works that way in this instance. The

/] actual name could be supplied by hard coding it bel ow

Department dep = (Departnent) val ue;

String fieldValuel = dep. getBranch();

if (fieldvaluel == null) {
fieldvaluel = "";

}

String fieldValue2 = dep. get Net work();

if (fieldvalue2 == null) {
fieldvalue2 = "";

}

String fieldValue = fieldValuel + sepChar + fiel dval ue2;

Field field = new Field(name, fieldValue, |uceneOptions.getStore(),
| uceneOpti ons. get I ndex(), |uceneOptions. get TernVector());

81

Chapter 4. Mapping entities t...

field. set Boost(|uceneOptions. getBoost());
docunent . add(field);

In this example, the particular CatFieldsClassBridge is applied to the depart ment instance, the
field bridge then concatenate both branch and network and index the concatenation.

4.4.4. BridgeProvider: associate a bridge to a given return type

Custom field bridges are very flexible, but it can be tedious and error prone to apply the same
custom @FieldBridge annotation every time a property of a given type is present in your domain
model. That is what BridgeProviders are for.

Let's imagine that you have a type Currency in your application and that you want to apply your
very own CurrencyFieldBridge every time an indexed property returns Currency. You can do it
the hard way:

Example 4.25. Applying the same @FieldBridge for a type the hard way

@ntity @ndexed

public class User {
@i el dBri dge(i npl =CurrencyFi el dBri dge. cl ass)
public Currency getDefaultCurrency();

...

}

@ntity @ndexed

public class Account {
@i el dBri dge(i npl =CurrencyFi el dBri dge. cl ass)
public Currency getCurrency();

Io...
}

/1 continue to add @i el dBri dge(i npl=CurrencyFi el dBridge.cl ass) everywhere Currency is

Or you can write your own BridgeProvider implementation for Currency.

Example 4.26. Writing a BridgeProvider

public class CurrencyBridgeProvider inplenents BridgeProvider {
/I needs a default no-arg constructor

@verride
public FieldBridge provideFi el dBri dge(Bri dgeCont ext bridgeProvi der Cont ext) {
if (bridgeProvi derContext.getReturnType().equals(Currency.class)) {
return CurrencyFi el dBri dge. | NSTANCE;

82

BridgeProvider: associate a bridge to a given return type

}

return null;

You need to implement BridgeProvider and create a service file named META-INF/services/
org.hibernate.search.bridge.spi.BridgeProvider. This file must contain the fully qualified class
name(s) of the BridgeProvider implementations. This is the classic Service Loader discovery
mechanism.

Now, any indexed property of type Currency will use CurrencyFieldBridge automatically.

Example 4.27. An explicit @FieldBrige is no longer needed

@ntity @ndexed
public class User {

@ield
public Currency getDefaultCurrency();

1.
}

@ntity @ ndexed
public class Account {

@ield
public Currency getCurrency();

1.
}

/1 CurrencyFiel dBridge i s applied autonatically everywhere Currency i s found on an i ndexed property

A few more things you need to know:

» a BridgeProvider must have a no-arg constructor

« if a BridgeProvider only returns FieldBridge instances if it is meaningful for the calling context.
Null otherwise. In our example, the return type must be Currency to be meaningful to our
provider.

« iftwo or more bridge providers return a FieldBridge instance for a given return type, an exception
will be raised.

83

Chapter 4. Mapping entities t...

o

What is a calling context

A calling context is represented by the BridgeContext object and represents the
environment for which we are looking for a bridge. BridgeContext gives access to
the return type of the indexed property as well as the ServiceManager which gives
access to the ClassLoaderService for everything class loader related.

Cl assLoader Servi ce cl assLoader Servi ce =
servi ceManager . r equest Servi ce(Cl assLoader Servi ce. class);

/luse the cl assLoader Service

servi ceManager . rel easeServi ce(C assLoader Service.class);

4.5. Conditional indexing

~

Important

This feature is considered experimental. More operation types might be added in
the future depending on user feedback.

In some situations, you want to index an entity only when it is in a given state, for example:

 only index blog entries marked as published

* no longer index invoices when they are marked archived

This serves both functional and technical needs. You don’t want your blog readers to find your
draft entries and filtering them off the query is a bit annoying. Very few of your entities are actually
required to be indexed and you want to limit indexing overhead and keep indexes small and fast.

Hibernate Search lets you intercept entity indexing operations and override them. It is quite simple:

« Write an Entitylndexinglnterceptor class with your entity state based logic

» Mark the entity as intercepted by this implementation

Let's look at the blog example at Example 4.28, “Index blog entries only when they are published
and remove them when they are in a different state”

Example 4.28. Index blog entries only when they are published and remove
them when they are in a different state

[**

* Only index blog when it is in published state

*

* @ut hor Emmanuel Bernard <emmanuel @i ber nat e. or g>

84

Conditional indexing

*/
public class | ndex\WhenPubl i shedl nterceptor inplenments Entityl ndexi ngl nterceptor<Bl og> {
@verride
public I ndexi ngOverride onAdd(Blog entity) {
if (entity.getStatus() == Bl ogStatus. PUBLI SHED) {
return | ndexi ngOverride. APPLY_DEFAULT;

}

return | ndexi ngOverride. SKI P;
}
@verride

public I ndexi ngOverride onUpdate(Blog entity) {
if (entity.getStatus() == Bl ogStatus. PUBLI SHED) {
return | ndexi ngOverri de. UPDATE;

}

return | ndexi ngOverri de. REMOVE;
}
@verride

public I ndexi ngOverride onDel ete(Blog entity) {
return | ndexi ngOverride. APPLY_DEFAULT;

@verride
public I ndexi ngOverri de onCol |l ecti onUpdate(Bl og entity) {
return onUpdate(entity);

@ntity
@ ndexed(i nt er cept or =I ndex\WhenPubl i shedl nt er cept or. cl ass)
public class Blog {
@d
@=ner at edVal ue
public Integer getld() { returnid; }
public void setld(Integer id) { this.id =id; }
private Integer id;

@ield

public String getTitle() { return title; }

public void setTitle(String title) { this.title =title; }
private String title;

public BlogStatus getStatus() { return status; }
public void setStatus(BlogStatus status) { this.status = status; }
private Bl ogStatus status;

Il

We mark the Blog entity with @Indexed.interceptor. As you can see,
IndexWhenPublishedInterceptor implements Entitylndexinglnterceptor and accepts Blog entities
(it could have accepted super classes as well - for example Object if you create a generic
interceptor.

85

Chapter 4. Mapping entities t...

You can react to several planned indexing events:

when an entity is added to your datastore

when an entity is updated in your datastore

when an entity is deleted from your datastore

when a collection own by this entity is updated in your datastore

For each occurring event you can respond with one of the following actions:

APPLY_DEFAULT: that's the basic operation that lets Hibernate Search update the index as
expected - creating, updating or removing the document

e SKI P: ask Hibernate Search to not do anything to the index for this event - data will not be
created, updated or removed from the index in any way

» REMOVE: ask Hibernate Search to remove indexing data about this entity - you can safely ask
for REMOVE even if the entity has not yet been indexed

« UPDATE: ask Hibernate Search to either index or update the index for this entity - it is safe to
ask for UPDATE even if the entity has never been indexed

(3

By default, no interceptor is applied on an entity. You have to explicitly define an interceptor via the
@Indexed annotation (see Section 4.1.1.1, “@Indexed”) or programmatically (see Section 4.7,
“Programmatic API"). This class and all its subclasses will then be intercepted. You can stop or
change the interceptor used in a subclass by overriding @Indexed.interceptor. Hibernate Search
provides DontInterceptEntitylnterceptor which will explicitly not intercept any call. This is useful to
reset interception within a class hierarchy.

(3

Providing your own id

Warning

An Entityl ndexi ngl nterceptor can never override an explicit indexing
operation such as i ndex(T), purge(T, id) orpurgeAll (class).

4.6. Providing your own id

You can provide your own id for Hibernate Search if you are extending the internals. You will have
to generate a unigue value so it can be given to Lucene to be indexed. This will have to be given
to Hibernate Search when you create an org.hibernate.search.Work object - the document id is
required in the constructor.

4.6.1. The Providedld annotation

Unlike @Documentldwhich is applied on field level, @Providedld is used on the class level.
Optionally you can specify your own bridge implementation using the bridge property. Also, if you
annotate a class with @Providedld, your subclasses will also get the annotation - but it is not done
by using the java.lang.annotations.@Inherited. Be sure however, to not use this annotation with
@Documentld as your system will break.

Example 4.29. Providing your own id

@rovi dedl d(bri dge = org. ny. own. package. MyCust onBr i dge)
@ ndexed
public class Myd ass{

@ield

String MyString;

4.7. Programmatic API

Although the recommended approach for mapping indexed entities is to use annotations, it is
sometimes more convenient to use a different approach:

« the same entity is mapped differently depending on deployment needs (customization for
clients)

e some automation process requires the dynamic mapping of many entities sharing common traits

While it has been a popular demand in the past, the Hibernate team never found the idea of an
XML alternative to annotations appealing due to its heavy duplication, lack of code refactoring
safety, because it did not cover all the use case spectrum and because we are in the 21st century :)

87

Chapter 4. Mapping entities t...

The idea of a programmatic APl was much more appealing and has now become a reality. You
can programmatically define your mapping using a programmatic API: you define entities and
fields as indexable by using mapping classes which effectively mirror the annotation concepts in
Hibernate Search. Note that fan(s) of XML approach can design their own schema and use the
programmatic API to create the mapping while parsing the XML stream.

In order to use the programmatic model you must first construct a SearchMapping object which
you can do in two ways:

« directly
* via a factory

You can pass the SearchMapping object directly via the property key
hi ber nat e. sear ch. nodel _mappi ng or the constant Environment. MODEL_MAPPING. Use the
Configuration API or the Map passed to the JPA Persistence bootstrap methods.

Example 4.30. Programmatic mapping

Sear chivappi ng mappi ng = new Sear chMappi ng() ;

/1 ... configure nmapping

Configuration config = new Configuration();
config.getProperties().put(Environment. MODEL_MAPPI NG, napping);
Sessi onFactory sf = config. buil dSessi onFactory();

Example 4.31. Programmatic mapping with JPA

Sear chivappi ng mappi ng = new Sear chMappi ng() ;

/1 ... configure mapping

Map props = new HashMap();

props. put (Envi ronnent . MODEL_MAPPI NG, mapping);

Enti tyManager Factory enf = Persistence. createEntityManagerFactory("userPU', props);

Alternatively, you can create a factory class (ie hosting a method annotated with
@Factory) whose factory method returns the SearchMapping object. The factory
class must have a no-arg constructor and its fully qualified class name is passed
to the property key hibernate. search. nodel _mappi ng or its type-safe representation
Environment. MODEL_MAPPING. This approach is useful when you do not necessarily control
the bootstrap process like in a Java EE, CDI or Spring Framework container.

Example 4.32. Use a mapping factory

public class MyAppSear chMappi ngFactory {
@ractory
publ i c SearchMappi ng get Sear chMappi ng() {
Sear chiappi ng mappi ng = new Sear chMappi ng() ;

88

Mapping an entity as indexable

mappi ng
.anal yzer Def ("ngrant, StandardTokeni zerFactory.class)
.filter(LowerCaseFilterFactory.class)
.filter(NGanFilterFactory.class)
.paran("m nG anSi ze", "3")
.paran("nmaxG anSi ze", "3")
return nmapping;

<persistence ...>
<persi stence-unit name="users">

<properties>
<property nanme="hi bernate. search. nodel _nmappi ng"
val ue="com acne. M\yAppSear chMappi ngFact ory"/ >
</ properties>
</ persi stence-uni t>
</ persi stence>

The SearchMapping is the root object which contains all the necessary indexable entities and
fields. From there, the SearchMapping object exposes a fluent (and thus intuitive) API to express
your mappings: it contextually exposes the relevant mapping options in a type-safe way. Just let
your IDE auto-completion feature guide you through.

Today, the programmatic API cannot be used on a class annotated with Hibernate Search
annotations, chose one approach or the other. Also note that the same default values apply in
annotations and the programmatic API. For example, the @Field.name is defaulted to the property
name and does not have to be set.

Each core concept of the programmatic API has a corresponding example to depict how the
same definition would look using annotation. Therefore seeing an annotation example of the
programmatic approach should give you a clear picture of what Hibernate Search will build with
the marked entities and associated properties.

4.7.1. Mapping an entity as indexable

The first concept of the programmatic API is to define an entity as indexable. Using the annotation
approach a user would mark the entity as @Indexed, the following example demonstrates how
to programmatically achieve this.

Example 4.33. Marking an entity indexable

Sear chMappi ng nmappi ng = new Sear chMappi ng() ;

mappi ng. enti ty(Address. cl ass)
. i ndexed()
. i ndexNane(" Addr ess_I ndex") //optiona
.interceptor(lndexWienPubl i shedl nterceptor.class); //optiona

89

Chapter 4. Mapping entities t...

cfg.getProperties().put("hibernate.search. nodel _mappi ng", mapping);

As you can see you must first create a SearchMapping object which is the root object that
is then passed to the Configuration object as property. You must declare an entity and if you
wish to make that entity as indexable then you must call the indexed() method. The i ndexed()
method has an optional i ndexName(String indexNanme) which can be used to change the
default index name that is created by Hibernate Search. Likewise, an i nt er cept or (Cl ass<?
ext ends Entityl ndexedl nt erceptor>) is available. Using the annotation model the above can
be achieved as:

Example 4.34. Annotation example of indexing entity

@ntity
@ ndexed(i ndex="Addr ess_I ndex", i nterceptor=Index\WhenPubl i shedl nterceptor.class)
public class Address {

...

}

4.7.2. Adding Documentld to indexed entity

To set a property as a document id:

Example 4.35. Enabling document id with programmatic model

Sear chiappi ng mappi ng = new Sear chMappi ng() ;

mappi ng. enti ty(Address. cl ass). i ndexed()
.property("addressld", ElenentType.FIELD) //field access
. docurent 1 d()
.name("id");

cfg.getProperties().put("hibernate.search. nodel _mappi ng", mappi ng);

The above is equivalent to annotating a property in the entity as @Documentld as seen in the
following example:

Example 4.36. Documentld annotation definition

@ntity

@ ndexed

public class Address {
@d
@cener at edVal ue
@ocunent | d(name="i d")
private Long addressld;

90

Defining analyzers

Il

4.7.3. Defining analyzers

Analyzers can be programmatically defined using the anal yzer Def (String anal yzer Def,
Cl ass<? extends Tokeni zer Fact ory> t okeni zer Fact ory) method. This method also enables
you to define filters for the analyzer definition. Each filter that you define can optionally take in
parameters as seen in the following example :

Example 4.37. Defining analyzers using programmatic model

Sear chiappi ng mappi ng = new Sear chMappi ng() ;

mappi ng
.anal yzerDef ("ngrant, StandardTokeni zerFactory.class)
.filter(LowerCaseFilterFactory.class)
filter(NG anfFilterFactory.class)
.param("mi nG anSti ze", "3")
.param "maxG anti ze", "3")
.anal yzerDef ("en", StandardTokenizerFactory.class)
.filter(LowerCaseFilterFactory.class)
.filter(EnglishPorterFilterFactory.class)
.anal yzerDef ("de", StandardTokenizerFactory.class)
.filter(LowerCaseFilterFactory.class)
filter(GermanStenfilterFactory.class)
.entity(Address.cl ass).indexed()
.property("addressld", ElenentType. METHOD) //getter access
. docunent 1 d()
.name("id");

cfg.getProperties().put("hibernate.search. nodel _mappi ng", mapping);

The analyzer mapping defined above is equivalent to the annotation model using @AnalyzerDef
in conjunction with @AnalyzerDefs:

Example 4.38. Analyzer definition using annotation

@ ndexed
@ntity
@\nal yzer Def s({
@\nal yzer Def (nanme = "ngrant',
t okeni zer = @okeni zer Def (factory = StandardTokeni zer Factory. cl ass),
filters = {
@okenFilterDef(factory = LowerCaseFilterFactory.class),
@okenFil terDef(factory = NG anFilterFactory. cl ass,

parans = {
@par anet er (name = "m nG anSi ze", value = "3"),
@rar anet er (name = "nmaxG anSi ze", val ue = "3")
9]

1

91

Chapter 4. Mapping entities t...

@\nal yzer Def (nane = "en",
t okeni zer = @okeni zer Def (factory = StandardTokeni zer Factory. cl ass),
filters = {
@okenFil terDef (factory Lower CaseFi |l ter Factory. cl ass),

@okenFilterDef(factory = EnglishPorterFilterFactory. class)
b,

@\nal yzer Def (name = "de",

t okeni zer = @okeni zer Def (factory = StandardTokeni zer Factory. cl ass),
filters = {

@okenFilterDef(factory = Lower CaseFilterFactory. class),
@okenFil terDef (factory GermanSt enfi | t er Fact ory. cl ass)

b

b
public class Address {
/1

4.7.4. Defining full text filter definitions

The programmatic API provides easy mechanism for defining full text filter definitions which is
available via @FullTextFilterDef and @FullTextFilterDefs (see Section 5.3, “Filters”). The next
example depicts the creation of full text filter definition using the f ul | Text Fi | t er Def method.

Example 4.39. Defining full text definition programmatically

Sear chiappi ng mappi ng = new Sear chMappi ng() ;

mappi ng
.anal yzerDef ("en", StandardTokeni zer Factory.class)
.filter(LowerCaseFilterFactory.class)
.filter(EnglishPorterFilterFactory.class)
.full TextFilterDef("security", SecurityFilterFactory.class)
.cache(Fil terCacheModeType. | NSTANCE_ONLY)
.entity(Address. cl ass)
. i ndexed()
. property("addressld", ElenentType. METHOD)
. docurent 1 d()

.name("id")
.property("streetl", ElenentType. METHOD)
.field()

.anal yzer("en")
.store(Store. YES)
Lfield()
.name("address_data")
.anal yzer ("en")
.store(Store.NO);

cfg.getProperties().put("hibernate.search. nodel _mappi ng", mapping);

The previous example can effectively been seen as annotating your entity with @FullTextFilterDef
like below:

92

Defining fields for indexing

Example 4.40. Using annotation to define full text filter definition

@ntity
@ ndexed
@\nal yzer Def s({
@\nal yzer Def (name = "en",
tokeni zer = @okeni zer Def (factory = StandardTokeni zer Factory. cl ass),
filters = {
@okenFilterDef(factory = Lower CaseFilterFactory. class),
@okenFil terDef (factory Engl i shPorterFilterFactory. cl ass)

9]
9]
@ul | TextFilterDefs({
@ul | TextFilterDef (nane = "security", i mpl = SecurityFilterFactory.class, cache =
Fi | t er CacheMbdeType. | NSTANCE_ONLY)
})

public class Address {

@d

@zener at edVal ue

@pocunent | d(name="i d")

public Long get Addresslid() {...};

@i el ds({
@i el d(store=Store. YES, analyzer=@\nal yzer(definition="en")),
@i el d(nane="addr ess_dat a", anal yzer=@nal yzer (definition="en"))

b
public String get Address1() {...};

...

4.7.5. Defining fields for indexing

When defining fields for indexing using the programmatic API, call field() on the
property(String propertyNane, ElenentType el enent Type) method. From fiel d() you
can specify the name, index, store, bridge and analyzer definitions.

Example 4.41. Indexing fields using programmatic API

Sear chiappi ng mappi ng = new Sear chMappi ng() ;

mappi ng
.anal yzerDef ("en", StandardTokeni zerFactory.class)
.filter(LowerCaseFilterFactory.class)
.filter(EnglishPorterFilterFactory.class)
.entity(Address.cl ass).indexed()
. property("addressld", ElenentType. METHOD)
. docunent 1 d()

.name("id")
.property("streetl”, ElenentType. METHOD)
.field()

93

Chapter 4. Mapping entities t...

.anal yzer("en")

.store(Store. YES)
Lfield()

. hanme("address_data")

.analyzer("en");

cfg.getProperties().put("hibernate.search. nodel _mappi ng", mapping);

The above example of marking fields as indexable is equivalent to defining fields using @Field
as seen below:

Example 4.42. Indexing fields using annotation

@ntity
@ ndexed
@\nal yzer Def s({
@\nal yzer Def (nane = "en",
tokeni zer = @okeni zer Def (factory = StandardTokeni zer Factory. cl ass),
filters = {
@okenFil terDef (factory Lower CaseFi |l ter Factory. cl ass),
@okenFilterDef(factory = EnglishPorterFilterFactory. class)

9]
i3]

public class Address {

@d

@cener at edVal ue

@ocunent | d(name="i d")

private Long get Addresslid() {...};

@i el ds({
@ield(store=Store. YES, anal yzer=@\nal yzer(definition="en")),
@i el d(nane="addr ess_dat a", anal yzer=@\nal yzer (definition="en"))

b
public String getAddressi() {...}

...

(3

94

Programmatically defining embedded entities

4.7.6. Programmatically defining embedded entities

In this section you will see how to programmatically define entities to be embedded into the indexed
entity similar to using the @IndexedEmbedded model. In order to define this you must mark the
property as indexEmbedded.There is the option to add a prefix to the embedded entity definition
which can be done by calling prefix as seen in the example below:

Example 4.43. Programmatically defining embedded entities

Sear chMappi ng mappi ng = new Sear chMappi ng() ;

mappi ng
.entity(Product Catal og. cl ass)
. i ndexed()
.property("catal ogld", ElenentType. METHOD)
. docurent 1 d()
.name("id")
.property("title", El ementType. METHOD)
Lfield()
.i ndex(I ndex. YES)
.store(Store. NO
.property("description", ElenmentType. METHOD)
Lfield()
. i ndex(| ndex. YES)
.store(Store. NO
.property("itens", El ementType. METHOD)
. i ndexEnmbedded()
.prefix("catalog.itens"); //optional

cfg.getProperties().put("hibernate.search. nodel _nmappi ng", mappi ng)

The next example shows the same definition using annotation (@IndexedEmbedded):

Example 4.44. Using @IndexedEmbedded

@ntity
@ ndexed
public class ProductCatal og {
@d
@cener at edVal ue
@ocunent | d(name="i d")
public Long getCatalogld() {...}

@ield
public String getTitle() {...}

@ield
public String getDescription();

@neToMany(fetch = Fet chType. LAZY)
@ ndexCol um(nanme = "list_position")
@ascade(org. hi bernat e. annot ati ons. CascadeType. ALL)

95

Chapter 4. Mapping entities t...

@ ndexedEnbedded(prefi x="catal og.itens")
public List<lten> getltems() {...}

...
}

4.7.7. Contained In definition

@ContainedIn can be defined as seen in the example below:

Example 4.45. Programmatically defining Containedin

Sear chMappi ng mappi ng = new Sear chMappi ng() ;

mappi ng
.entity(Product Catal og. cl ass)
. i ndexed()
.property("catal ogld", ElenmentType. METHOD)
. docurent 1 d()
.property("title", El enentType. METHOD)

Lfield()

.property("description", ElenentType. METHOD)
Lfield()

.property("itens", El enentType. METHOD)
. i ndexEnmbedded()

.entity(ltemclass)
. property("description", ElenentType. METHOD)
Lfield()
. property("product Catal og", El enment Type. METHCOD)
.contai nedin();

cfg.getProperties().put("hibernate.search. nodel _mappi ng", mapping);

This is equivalent to defining @ContainedIn in your entity:

Example 4.46. Annotation approach for Containedin

@Entity
@ ndexed
public class Product Catal og {

@d

@zener at edVal ue

@pocunent 1 d

public Long getCatalogld() {...}

@ield
public String getTitle() {...}

@ield
public String getDescription() {...}

96

Date/Calendar Bridge

@neToMany(fetch = FetchType. LAZY)
@ ndexCol um(nane = "list_position")

@ascade(org. hi bernat e. annot ati ons. CascadeType. ALL)

@ ndexedEnbedded
private List<ltenm> getltens() {...}

/1

@Entity
public class Item{

@d
@zener at edVal ue
private Long itemnld;

@ield
public String getDescription() {...}

@manyToOne(cascade = { CascadeType. PERSI ST, CascadeType. REMOVE })

@cont ai nedl n

publ i c Product Catal og get Product Catal og() {...}

/1

4.7.8. Date/Calendar Bridge

In order to define a calendar or date bridge mapping, call the dateBridge(Resolution resolution)
or calendarBridge(Resolution resolution) methods after you have defined a field() in the

SearchMapping hierarchy.

Example 4.47. Programmatic model for defining calendar/date bridge

Sear chiappi ng mappi ng = new Sear chMappi ng() ;

mappi ng
.entity(Address.cl ass)
. i ndexed()

. property("addressld", ElenentType.Fl ELD)

.docunent | d()
.property("streetl", ElenentType.Fl ELD()
Lfield()
.property("createdOn", El enentType. Fl ELD)
.field()
. dat eBri dge(Resol uti on. DAY)

.property("l astUpdated", ElementType. Fl ELD)

. cal endar Bri dge(Resol uti on. DAY) ;

cfg.getProperties().put("hibernate.search. nodel _nmappi ng",

mapping);

97

Chapter 4. Mapping entities t...

See below for defining the above using @CalendarBridge and @DateBridge:

Example 4.48. @CalendarBridge and @DateBridge definition

@ntity
@ ndexed
public class Address {

@d

@=xner at edVal ue
@ocunent | d

private Long addressld;

@ield
private String addressl;

@ield
@pat eBri dge(resol uti on=Resol uti on. DAY)
private Date createdOn;

@Cal endar Bri dge(resol uti on=Resol uti on. DAY)
private Cal endar | astUpdat ed;

...
}

4.7.9. Declaring bridges

It is possible to associate bridges to programmatically defined fields. When you define a
fiel d() programmatically you can use the bri dge(Cl ass<?> i npl) to associate a FieldBridge
implementation class. The bridge method also provides optional methods to include any
parameters required for the bridge class. The below shows an example of programmatically
defining a bridge:

Example 4.49. Declaring field bridges programmatically

Sear chiappi ng mappi ng = new Sear chMappi ng() ;

mappi ng
.entity(Address.cl ass)
. i ndexed()
. property("addressld", ElenentType.Fl ELD)
. docunent 1 d()
.property("streetl", El enentType.Fl ELD)
.field()
.field()
.name("street 1_abridged")
.bridge(Concat StringBridge.class)
.param "size", "4");

cfg.getProperties().put("hibernate.search. nodel _mappi ng", mapping);

98

Mapping class bridge

The above can equally be defined using annotations, as seen in the next example.

Example 4.50. Declaring field bridges using annotation

@ntity
@ ndexed
public class Address {

@d

@zener at edVal ue
@ocunent | d(name="i d")
private Long addressld;

@i el ds({
@ield,
@i el d(nane="street 1_abri dged",
bridge = @ieldBridge(inpl = ConcatStringBridge.class,
parans = @Paraneter(nanme="size", value="4"))

H

private String addressli;

...
}

4.7.10. Mapping class bridge

You can define class bridges on entities programmatically. This is shown in the next example:

Example 4.51. Defining class bridges using API

Sear chivappi ng mappi ng = new Sear chMappi ng() ;

mappi ng
.entity(Departnents.class)

. cl assBri dge(Cat Dept sFi el dsC assBri dge. cl ass)
. nane(" branchnet wor k")
. i ndex(| ndex. YES)
.store(Store. YES)
. paran("sepChar", " ")

. cl assBri dge(Equi pment Type. cl ass)
. name("equi ptype")
. i ndex(I ndex. YES)
.store(Store. YES)
.param("C', "Cisco")
.param("D', "D-Link")
.paranm("K', "Kingston")
. param(" 3", "3Cont)

.indexed();

cfg.getProperties().put("hibernate.search. nodel _mappi ng", mapping);

The above is similar to using @ClassBridge as seen in the next example:

99

Chapter 4. Mapping entities t...

Example 4.52. Using @ClassBridge

@ntity
@ ndexed
@ assBridges ({
@ assBridge(nanme="branchnet wor k",
store= Store. YES,
i npl = Cat Dept sFi el dsCl assBri dge. cl ass,
paranms = @pPar aneter(nane="sepChar", value=" ")),
@ assBridge(nanme="equi ptype",
store= Store. YES,
i mpl = Equi pnent Type. cl ass,
paranms = {@raraneter(nanme="C', value="C sco"),
@ar anmet er (nane="D", val ue="D-Link"),
@ar anet er (namre="K", val ue="Ki ngston"),
@par anet er (nane="3", val ue="3Conl')
9]
9]
public class Departments {
...
}

4.7.11. Mapping dynamic boost

You can apply a dynamic boost factor on either a field or a whole entity:

Example 4.53. DynamicBoost mapping using programmatic model

Sear chiappi ng mappi ng = new Sear chMappi ng() ;
mappi ng
.entity(Dynani cBoost edDescLi brary. cl ass)
.i ndexed()
. dynam cBoost (Cust onBoost Str at egy. cl ass)
.property("libraryld", ElenentType.FlELD)
.docunent I d().name("id")
. property("nane", El ement Type. Fl ELD)
. dynam cBoost (Cust onFi el dBoost Strat egy. cl ass);
Lfield()
.store(Store. YES)

cfg.getProperties().put("hibernate.search. nodel _nmappi ng", mapping);

The next example shows the equivalent mapping using the @DynamicBoost annotation:

Example 4.54. Using the @DynamicBoost

@ntity

@ ndexed

@ynam cBoost (i npl = Cust onBoost Strat egy. cl ass)
public class Dynani cBoost edDescri ptionLibrary {

100

Mapping dynamic boost

@d

@cener at edVal ue
@ocunent | d
private int id;

private float dynScore;
@i eld(store = Store. YES)
@ynam cBoost (i npl = CustonFi el dBoost Str at egy. cl ass)

private String nang;

publ i ¢ Dynami cBoost edDescri ptionLi brary() {
dynScore = 1.0f;
}

Il

101

102

Chapter 5.

Querying

The second most important capability of Hibernate Search is the ability to execute Lucene queries
and retrieve entities managed by a Hibernate session. The search provides the power of Lucene
without leaving the Hibernate paradigm, giving another dimension to the Hibernate classic search

mechanisms (HQL, Criteria query, native SQL query).

Preparing and executing a query consists of four simple steps:

» Creating a Ful | Text Sessi on

e Creating a Lucene query either via the Hibernate Search query DSL (recommended) or by

utilizing the Lucene query API
« Wrapping the Lucene query using an or g. hi ber nat e. Query

» Executing the search by calling for example I i st () orscroll ()

To access the querying facilities, you have to use a Ful | Text Sessi on. This Search specific
session wraps a regular org. hi ber nat e. Sessi on in order to provide query and indexing

capabilities.

Example 5.1. Creating a FullTextSession

Sessi on session = sessionFactory. openSessi on();
/...
Ful | Text Sessi on full Text Sessi on = Search. get Ful | Text Sessi on(sessi on);

Once you have a Ful | Text Sessi on you have two options to build the full-text query: the Hibernate

Search query DSL or the native Lucene query.

If you use the Hibernate Search query DSL, it will look like this:

QueryBui Il der b = full Text Sessi on. get Sear chFact ory()
. bui | dQueryBui l der().forEntity(Mth.class).get();

or g. apache. | ucene. search. Query | uceneQuery =
b. keywor d()
.onFi el d("history").boostedTo(3)
. mat chi ng("storn')
.createQuery();

org. hi bernate. Query full TextQuery = full Text Sessi on. creat eFul | Text Query(| uceneQuery);

List result = full TextQuery.list(); //return a list of managed objects

You can alternatively write your Lucene query either using the Lucene query parser or Lucene

programmatic API.

103

Chapter 5. Querying

Example 5.2. Creating a Lucene query via the QueryParser

Sear chFactory searchFactory = full Text Sessi on. get Sear chFactory();
org. apache. | ucene. queryparser. cl assi c. QueryPar ser parser =
new QueryParser("title", searchFactory. getAnal yzer(Mth.class));
try {
org. apache. | ucene. search. Query | uceneQuery = parser. parse("history:storm3");
}
catch (ParseException e) {
//handl e parsing failure

org. hi bernate. Query full Text Query = ful | Text Sessi on. creat eFul | Text Query(l uceneQuery);
List result = full TextQuery.list(); //return a list of managed objects

(3

In case you are using the Java Persistence APIs of Hibernate, the same extensions exist:

Example 5.3. Creating a Search query using the JPA API

EntityManager em = entityManager Factory. creat eEntityManager();

Ful | Text EntityManager full TextEntityManager =
org. hi bernat e. search. j pa. Sear ch. get Ful | Text Enti t yManager (em ;

/1
QueryBui | der b = full Text EntityManager. get Sear chFact ory()
. bui | dQueryBui l der().forEntity(Myth.class).get();

org. apache. | ucene. search. Query | uceneQuery =
b. keywor d()
.onFi el d("history").boostedTo(3)
. mat chi ng("stornt)
.createQuery();
j avax. persi stence. Query full Text Query =
full Text EntityManager. createFul | Text Query(| uceneQuery);

List result = full TextQuery.getResultList(); //return a |list of managed objects

104

Building queries

@ Note

The following examples we will use the Hibernate APIs but the same example can
be easily rewritten with the Java Persistence API by just adjusting the way the
FullTextQuery is retrieved.

5.1. Building queries

Hibernate Search queries are built on top of Lucene queries which gives you total freedom on the
type of Lucene query you want to execute. However, once built, Hibernate Search wraps further
query processing using org.hibernate.Query as your primary query manipulation API.

5.1.1. Building a Lucene query using the Lucene API

Using the Lucene API, you have several options. You can use the query parser (fine for simple
queries) or the Lucene programmatic API (for more complex use cases). It is out of the scope
of this documentation on how to exactly build a Lucene query. Please refer to the online Lucene
documentation or get hold of a copy of Lucene In Action or Hibernate Search in Action.

5.1.2. Building a Lucene query with the Hibernate Search query
DSL

Writing full-text queries with the Lucene programmatic API is quite complex. It's even more
complex to understand the code once written. Besides the inherent APl complexity, you have to
remember to convert your parameters to their string equivalent as well as make sure to apply the
correct analyzer to the right field (a ngram analyzer will for example use several ngrams as the
tokens for a given word and should be searched as such).

The Hibernate Search query DSL makes use of a style of API called a fluent API. This API has
a few key characteristics:

* it has meaningful method names making a succession of operations reads almost like English

« it limits the options offered to what makes sense in a given context (thanks to strong typing and
IDE auto-completion).

« it often uses the chaining method pattern
* it's easy to use and even easier to read

Let's see how to use the API. You first need to create a query builder that is attached to a given
indexed entity type. This QueryBuilder will know what analyzer to use and what field bridge to
apply. You can create several Quer yBui | der instances (one for each entity type involved in the
root of your query). You get the Quer yBui | der from the Sear chFact ory.

105

Chapter 5. Querying

Quer yBui | der nmyt hQB = searchFactory. bui |l dQueryBuilder().forEntity(Mith.class).get();

You can also override the analyzer used for a given field or fields. This is rarely needed and should
be avoided unless you know what you are doing.

Quer yBui | der nmyt h@B = searchFactory. bui | dQueryBui | der ()
.forEntity(Myth.class)
.overridesForFiel d("history","stem anal yzer_definition")
.get();

Using the query builder, you can then build queries. It is important to realize that the end result of a
QueryBuilder is a Lucene query. For this reason you can easily mix and match queries generated
via Lucene’s query parser or Query objects you have assembled with the Lucene programmatic
API and use them with the Hibernate Search DSL. Just in case the DSL is missing some features.

5.1.2.1. Keyword queries

Let’s start with the most basic use case - searching for a specific word:

Query luceneQuery = nythQ@B. keyword().onFi el d("history").matching("storm').createQuery();

keywor d() means that you are trying to find a specific word. onFi el d() specifies in which Lucene
field to look. mat chi ng() tells what to look for. And finally cr eat eQuery() creates the Lucene
query object. A lot is going on with this line of code.

« The value storm is passed through the hi st or y FieldBridge: it does not matter here but you will
see that it's quite handy when dealing with numbers or dates.

» The field bridge value is then passed to the analyzer used to index the field hi st ory. This
ensures that the query uses the same term transformation than the indexing (lower case, n-
gram, stemming and so on). If the analyzing process generates several terms for a given word,
a boolean query is used with the SHOULD logic (roughly an OR logic).

We make the example a little more advanced now and have a look at how to search a field that
uses ngram analyzers. ngram analyzers index succession of ngrams of your words which helps
to recover from user typos. For example the 3-grams of the word hibernate are hib, ibe, ber, rna,
nat, ate.

@\nal yzer Def (nane = "ngrant,
tokeni zer = @okeni zer Def (factory = StandardTokeni zer Factory.cl ass),
filters ={
@okenFi |l terDef (factory = StandardFilterFactory.cl ass),
@okenFi | terDef (factory Lower CaseFi |l ter Factory. cl ass),
@okenFi |l terDef (factory = StopFilterFactory. class),

106

Building a Lucene query with the Hibernate Search query DSL

@okenFilterDef (factory = NG anFilterFactory. cl ass,

params = {
@par anet er (nane = "m nG anfSi ze", value = "3"),
@par anet er (nane = "maxG& anfSi ze", value = "3") })
}
)
@ntity
@ ndexed

public class Myth {
@i el d(anal yzer =@\nal yzer (defi ni ti on="ngrant")
public String getNane() { return nane; }
public String setNane(String nane) { this.nane = nane; }
private String nang;

}

Query luceneQuery = nythQb. keyword().onFi el d("nanme"). nat chi ng("Si si phus")
.createQuery();

The matching word "Sisiphus" will be lower-cased and then split into 3-grams: sis, isi, sip, phu,
hus. Each of these n-gram will be part of the query. We will then be able to find the Sysiphus myth
(with a y). All that is transparently done for you.

@ Note

If for some reason you do not want a specific field to use the field bridge or the
analyzer you can call the i gnor eAnal yzer () ori gnoreFi el dBri dge() functions.

To search for multiple possible words in the same field, simply add them all in the matching clause.

|/ search document with stormor lightning in their history
Query luceneQuery =
myt hQB. keywor d() . onFi el d("hi story"). matching("storm lightning").createQery();

To search the same word on multiple fields, use the onFields method.

Query luceneQuery = nyth@B
. keywor d()
.onFi el ds("hi story", "description", "nanme")
. mat chi ng("storn')
.createQuery();

Sometimes, one field should be treated differently from another field even if searching the same
term, you can use the andField() method for that.

Query luceneQuery = nythQ@B. keyword()

107

Chapter 5. Querying

.onField("history")
.andFi el d("nane")

. boost edTo(5)
.andFi el d("description")
. mat chi ng("storm')
.createQuery();

In the previous example, only field name is boosted to 5.

5.1.2.2. Fuzzy queries

To execute a fuzzy query (based on the Levenshtein distance algorithm), start like a keywor d
guery and add the fuzzy flag.

Query luceneQuery = nyth@B
. keywor d()
.fuzzy()
.wi thThreshol d(. 8f)
.wi thPrefixLength(1)
.onFi el d("history")
.mat chi ng("starmn')
.createQuery();

t hr eshol d is the limit above which two terms are considering matching. It's a decimal between
0 and 1 and defaults to 0.5. pr ef i xLengt h is the length of the prefix ignored by the "fuzzyness":
while it defaults to 0, a non zero value is recommended for indexes containing a huge amount
of distinct terms.

5.1.2.3. Wildcard queries

You can also execute wildcard queries (queries where some of parts of the word are unknown).
The character ? represents a single character and * represents any character sequence. Note
that for performance purposes, it is recommended that the query does not start with either ? or *.

Query luceneQuery = nyth@B
. keywor d()
. Wil dcard()
.onFi el d("history")
. mat chi ng("sto*")
.createQuery();

@ Note

Wildcard queries do not apply the analyzer on the matching terms. Otherwise the
risk of * or ? being mangled is too high.

108

Building a Lucene query with the Hibernate Search query DSL

5.1.2.4. Phrase queries

So far we have been looking for words or sets of words, you can also search exact or approximate
sentences. Use phrase() to do so.

Query luceneQuery = nyth@

. phrase()
.onFi el d("history")
.sentence("Thou shalt not kill")

.createQuery();

You can search approximate sentences by adding a slop factor. The slop factor represents the
number of other words permitted in the sentence: this works like a within or near operator

Query luceneQuery = nyth@B
. phrase()

.wi thSl op(3)
.onField("history")
.sentence("Thou kill")
.createQuery();

5.1.2.5. Range queries

After looking at all these query examples for searching for to a given word, it is time to introduce
range queries (on numbers, dates, strings etc). A range query searches for a value in between
given boundaries (included or not) or for a value below or above a given boundary (included or
not).

//1ook for 0 <= starred < 3
Query luceneQuery = nyth@B
.range()
.onField("starred")
.from(0).to(3).excludeLimt()
.createQuery();

/11 ook for nyths strictly BC
Date beforeChrist = ...;
Query luceneQuery = nyth@B
.range()
.onField("creationDate")
. bel om bef oreChrist).excludeLimt()
.createQuery();

5.1.2.6. Spatial (or geolocation) queries

This set of queries has its own chapter, check out Chapter 9, Spatial.

109

Chapter 5. Querying

5.1.2.7. More Like This queries

/‘ Important

-

This feature is considered experimental.

Have you ever looked at an article or document and thought: "I want to find more like this"? Have
you ever appreciated an e-commerce website that gives you similar articles to the one you are
exploring?

More Like This queries are achieving just that. You feed it an entity (or its identifier) and Hibernate
Search returns the list of entities that are similar.

@ How does it work?

For each (selected) field of the targeted entity, we look at the most meaningful
terms. Then we create a query matching the most meaningful terms per field.
This is a slight variation compared to the original Lucene Mor eLi keThi sQuery
implementation.

The query DSL API should be self explaining. Let's look at some usage examples.

QueryBui | der gb = ful |l Text Sessi on. get Sear chFact ory()
. bui | dQuer yBui | der ()
.forEntity(Coffee.class)
-get();

Query nmtQuery = gb
. nor eLi keThi s()
.conmpari ngAl | Fi el ds()
.toEntityWthld(coffeeld)
.createQuery();
Li st<Ooject[]> results = (List<Ooject[]>) full Text Session
.createFul | Text Query(mtQuery, Coffee.class)
.setProjection(ProjectionConstants. TH' S, ProjectionConstants. SCORE)
dist();

This first example takes the id of an Coffee entity and finds the matching coffees across all fields.
To be fair, this is not across all fields. To be included in the More Like This query, fields need
to store term vectors or the actual field value. Id fields (of the root entity as well as embedded
entities) and numeric fields are excluded. The latter exclusion might change in future versions.

Looking at the Cof f ee class, the following fields are considered: nane as itis stored, descri pti on
as it stores the term vector. i d and i nt er nal Descri pti on are excluded.

110

Building a Lucene query with the Hibernate Search query DSL

@ntity @ndexed
public class Coffee {

@d @=ner at edVal ue
public Integer getld() { returnid; }

@ield(ternmVector = TernVector.NO store = Store. YES)
public String getNane() { return nanme; }

@i el d(ternVector = TernVector. YES)
public String getSumary() { return summary; }

@col um(| ength = 2000)

@i el d(ternmVector = TernVect or. YES)

public String getDescription() { return description; }

public int getlintensity() { return intensity; }

/1 Not stored nor termvector, i.e. cannot be used for Mre Like This
@Field

public String getlnternal Description() { return internal Description; }

I

In the example above we used projection to retrieve the relative score of each element. We might
use the score to only display the results for which the score is high enough.

Tip

For best performance and best results, store the term vectors for the fields you
want to include in a More Like This query.

Often, you are only interested in a few key fields to find similar entities. Plus some fields are more
important than others and should be boosted.

Query mtQuery = gb
. mor eLi keThi s()
. conparingFi el d("summary") . boost edTo(10f)
.andFi el d("description")
.toEntityWthld(coffeeld)
.createQuery();

In this example, we look for similar entities by summary and description. But similar summaries are
more important than similar descriptions. This is a critical tool to make More Like This meaningful
for your data set.

Instead of providing the entity id, you can pass the full entity object. If the entity contains the
identifier, we will use it to find the term vectors or field values. This means that we will compare

111

Chapter 5. Querying

the entity state as stored in the Lucene index. If the identifier cannot be retrieved (for example if
the entity has not been persisted yet), we will look at each of the entity properties to find the most
meaningful terms. The latter is slower and won't give the best results - avoid it if possible.

Here is how you pass the entity instance you want to compare with:

Coffee coffee = ...; //managed entity from sonewhere

Query nmtQuery = gb
. nmor eLi keThi s()
.conparingFi el d("summary") . boost edTo(10f)
.andFi el d("description")
.toEntity(coffee)
.createQuery();

@ Note

By default, the results contain at the top the entity you are comparing with. This is
particularly useful to compare relative scores. If you don’t need it, you can exclude
it.

Query mitQuery = gb
. nor eLi keThi s()
. excl udeEnt i t yUsedFor Conpari son()
. conpari ngFi el d("summary") . boost edTo(10f)
.andFi el d("description")
.toEntity(coffee)
.createQuery();

You can ask Hibernate Search to give a higher score to the very similar entities and downgrade the
score of mildly similar entities. We do that by boosting each meaningful terms by their individual
overall score. Start with a boost factor of 1 and adjust from there.

Query mtQuery = gb
. mor eLi keThi s()
.favor Si gni fi cant TermsW t hFact or (1f)
. conmpari ngFi el d("summary") . boost edTo(10f)
.andFi el d("description")
.toEntity(coffee)
.createQuery();

Remember, more like this is a very subjective meaning and will vary depending on your data and
the rules of your domain. With the various options offered, Hibernate Search arms you with the
tools to adjust this weapon. Make sure to continuously test the results against your data set.

112

Building a Lucene query with the Hibernate Search query DSL

5.1.2.8. Combining queries

Finally, you can aggregate (combine) queries to create more complex queries. The following
aggregation operators are available:

* SHOULD: the query query should contain the matching elements of the subquery
« MJUST: the query must contain the matching elements of the subquery
e MJST NOT: the query must not contain the matching elements of the subquery

The sub-queries can be any Lucene query including a boolean query itself. Let's look at a few
examples:

/11 o0k for popular nmodern nyths that are not urban
Date twentiethCentury = ...;
Query luceneQuery = nyth@B
. bool ()
.must (nyt hQB. keywor d() . onFi el d("description").matching("urban").createQery())
.not ()
.must (nythQB.range().onFiel d("starred").above(4).createQuery())
.must (nythQB
.range()
.onField("creationDate")
. above(twentiethCentury)
.createQuery())
.createQuery();

/11 00k for popular nyths that are preferably urban
Query luceneQuery = nyth@B
. bool ()
. shoul d(myt h@B. keywor d() . onFi el d("description").matchi ng("urban").createQuery())
.must (mythQ@B.range().onField("starred").above(4).createQuery())
.createQuery();

//1ook for all nyths except religious ones
Query luceneQuery = nyth@B
Lall()
.except (mont hQb

. keywor d()
.onField("description_steni)
.matching("religion")
.createQuery()

)

.createQuery();
5.1.2.9. Query options

We already have seen several query options in the previous example, but lets summarize again
the options for query types and fields:

» boost edTo (on query type and on field): boost the whole query or the specific field to a given
factor

113

Chapter 5. Querying

* w t hConst ant Scor e (on query): all results matching the query have a constant score equals
to the boost

e filteredBy(Filter) (on query): filter query results using the Filter instance
« ignoreAnal yzer (on field): ignore the analyzer when processing this field
i gnoreFi el dBri dge (on field): ignore field bridge when processing this field

Let’'s check out an example using some of these options

Query luceneQuery = nyth@B
. bool ()
. shoul d(myt h@B. keywor d() . onFi el d("descri ption").matchi ng("urban").createQery())
.shoul d(nyt hQB
. keywor d()
.onFi el d(" nane")
. boost edTo(3)
.ignoreAnal yzer ()
. mat chi ng("urban").createQery())

.must (nmythQ@B
.range()
. boost edTo(5) . wi t hConst ant Scor e()
.onField("starred").above(4).createQuery())
.createQuery();

As you can see, the Hibernate Search query DSL is an easy to use and easy to read query API
and by accepting and producing Lucene queries, you can easily incorporate query types not (yet)
supported by the DSL. Please give us feedback!

5.1.3. Building a Hibernate Search query

So far we only covered the process of how to create your Lucene query (see Section 5.1, “Building
queries”). However, this is only the first step in the chain of actions. Let's how see how to build
the Hibernate Search query from the Lucene query.

5.1.3.1. Generality

Once the Lucene query is built, it needs to be wrapped into an Hibernate Query. If not specified
otherwise, the query will be executed against all indexed entities, potentially returning all types
of indexed classes.

Example 5.4. Wrapping a Lucene query into a Hibernate Query

Ful | Text Sessi on full Text Sessi on = Search. get Ful | Text Sessi on(session);
org. hi bernate. Query full Text Query = full Text Sessi on. creat eFul | Text Query(|uceneQuery);

It is advised, from a performance point of view, to restrict the returned types:

114

Building a Hibernate Search query

Example 5.5. Filtering the search result by entity type

full Text Query = full Text Sessi on
.creat eFul | Text Query(l uceneQuery, Custoner.class);

/1l or

ful | Text Query = full Text Sessi on
. creat eFul | Text Query(l uceneQuery, Itemclass, Actor.class);

In Example 5.5, “Filtering the search result by entity type” the first example returns only matching
Cust orer instances, the second returns matching Act or and I t eminstances. The type restriction
is fully polymorphic which means that if there are two indexed subclasses Sal esman and Cust omer
of the baseclass Per son, itis possible to just specify Per son. cl ass in order to filter on result types.

5.1.3.2. Pagination

Out of performance reasons it is recommended to restrict the number of returned objects per
query. In fact is a very common use case anyway that the user navigates from one page to an
other. The way to define pagination is exactly the way you would define pagination in a plain HQL
or Criteria query.

Example 5.6. Defining pagination for a search query

org. hi bernate. Query full Text Query =

ful | Text Sessi on. creat eFul | Text Query(l uceneQuery, Custoner.class);
full Text Query. setFirstResult(15); //start fromthe 15th el ement
ful | Text Query. set MaxResul ts(10); //return 10 el ements

Tip

It is still possible to get the total number of matching elements regardless of the
pagination via fulltextQuery.getResultSize()

5.1.3.3. Sorting

Apache Lucene provides a very flexible and powerful way to sort results. While the default sorting
(by relevance) is appropriate most of the time, it can be interesting to sort by one or several other
properties. In order to do so set the Lucene Sort object to apply a Lucene sorting strategy.

Example 5.7. Specifying a Lucene sort in order to sort the result

org. hi bernate. search. Ful | Text Query query = s.createFul | Text Query(query, Book.class);

115

Chapter 5. Querying

org. apache. | ucene. search. Sort sort = new Sort (
new SortField("title", SortField. STRING);

query.setSort(sort);

List results = query.list();

Tip

Be aware that fields used for sorting must not be tokenized (see Section 4.1.1.2,
“@Field”).

5.1.3.4. Fetching strategy

When you restrict the return types to one class, Hibernate Search loads the objects using a single
query. It also respects the static fetching strategy defined in your domain model.

It is often useful, however, to refine the fetching strategy for a specific use case.

Example 5.8. Specifying FetchMode on a query

Criteria criteria =
s.createCriteria(Book. cl ass). set Fet chMbde("aut hors", FetchMde.JAN);
s. creat eFul | Text Query(luceneQuery).setCriteriaQuery(criteria);

In this example, the query will return all Books matching the luceneQuery. The authors collection
will be loaded from the same query using an SQL outer join.

When defining a criteria query, it is not necessary to restrict the returned entity types when creating
the Hibernate Search query from the full text session: the type is guessed from the criteria query
itself.

e | Important

Only fetch mode can be adjusted, refrain from applying any other restriction. While
it is known to work as of Hibernate Search 4, using restriction (ie a where clause)
on your Criteria query should be avoided when possible. get Resul t Si ze() will
throw a Sear chExcept i on if used in conjunction with a Criteria with restriction.

Important

You cannot use setCriteriaQuery if more than one entity type is expected to be
returned.

116

Building a Hibernate Search query

5.1.3.5. Projection

For some use cases, returning the domain object (including its associations) is overkill. Only a
small subset of the properties is necessary. Hibernate Search allows you to return a subset of
properties:

Example 5.9. Using projection instead of returning the full domain object

or g. hi bernat e. search. Ful | Text Query query =
s. creat eFul | Text Query(l uceneQuery, Book. cl ass)
setProjection("id", "summary", "body", "nminAuthor.nane")
List results = query.list();
Ooject[] firstResult = (Object[]) results.get(0)
Integer id = firstResult[0];
String summary = firstResult[1];
String body = firstResult[2]
String authorName = firstResult[3];

Hibernate Search extracts the properties from the Lucene index and convert them back to their
object representation, returning a list of Gbj ect [] . Projections avoid a potential database round
trip (useful if the query response time is critical). However, it also has several constraints:

« the properties projected must be stored in the index (@i el d(store=Store. YES)), which
increases the index size

 the properties projected must use a Fi el dBri dge implementing
org.hibernate.search.bridge. TwoWayFieldBridge or
or g. hi ber nat e. sear ch. bri dge. TwoVWay St ri ngBri dge, the latter being the simpler version.

@ Note

All Hibernate Search built-in types are two-way.

» you can only project simple properties of the indexed entity or its embedded associations. This
means you cannot project a whole embedded entity.

« projection does not work on collections or maps which are indexed via @ ndexedEnbedded

Projection is also useful for another kind of use case. Lucene can provide metadata information
about the results. By using some special projection constants, the projection mechanism can
retrieve this metadata:

Example 5.10. Using projection in order to retrieve meta data

or g. hi bernat e. search. Ful | Text Query query =

117

Chapter 5. Querying

s. creat eFul | Text Query(l uceneQuery, Book. cl ass);
query. set Proj ecti on(

Ful | Text Query. SCORE,

Ful | Text Query. TH'S,

" mai nAut hor . nanme");
List results = query.list();
Object[] firstResult = (Object[]) results.get(0);
float score = firstResult[O0];
Book book = firstResult[1];
String authorNane = firstResult[2];

You can mix and match regular fields and projection constants. Here is the list of the available
constants:

e Ful | Text Query. THI S: returns the initialized and managed entity (as a non projected query
would have done).

e Ful | Text Query. DOCUMENT: returns the Lucene Document related to the object projected.

e Ful | Text Query. OBJECT_CLASS: returns the class of the indexed entity.

e Ful | Text Query. SCORE: returns the document score in the query. Scores are handy to compare
one result against an other for a given query but are useless when comparing the result of
different queries.

* Ful | Text Query. | D: the id property value of the projected object.

* Ful | Text Query. DOCUMENT | D: the Lucene document id. Careful, Lucene document id can
change overtime between two different IndexReader opening.

e Ful | Text Query. EXPLANATI ON: returns the Lucene Explanation object for the matching object/
document in the given query. Do not use if you retrieve a lot of data. Running explanation
typically is as costly as running the whole Lucene query per matching element. Make sure you
use projection!

5.1.3.6. Customizing object initialization strategies

By default, Hibernate Search uses the most appropriate strategy to initialize entities matching your
full text query. It executes one (or several) queries to retrieve the required entities. This is the best
approach to minimize database round trips in a scenario where none / few of the retrieved entities
are present in the persistence context (ie the session) or the second level cache.

If most of your entities are present in the second level cache, you can force Hibernate Search to
look into the cache before retrieving an object from the database.

Example 5.11. Check the second-level cache before using a query

Ful | Text Query query = session. creat eFul | Text Query(l uceneQuery, User.cl ass);
query.initializeCbjectWth(

118

Building a Hibernate Search query

Obj ect LookupMet hod. SECOND_LEVEL _ CACHE,
Dat abaseRet ri eval Met hod. QUERY

(bj ect LookupMet hod defines the strategy used to check if an object is easily accessible (without
database round trip). Other options are:

e (bj ect LookupMet hod. PERSI STENCE_CONTEXT: useful if most of the matching entities are
already in the persistence context (ie loaded in the Session or EntityManager)

e (bj ect LookupMet hod. SECOND LEVEL_CACHE: check first the persistence context and then the
second-level cache.

@ Note

Note that to search in the second-level cache, several settings must be in place:

 the second level cache must be properly configured and active
* the entity must have enabled second-level cache (eg via @acheabl e)

e the Sessi on, EntityManager or Query must allow access to the second-level
cache for read access (ie CacheMode. NORMAL in Hibernate native APIs or
CacheRet ri eveMode. USE in JPA 2 APIs).

Warning

Avoid using Obj ect LookupMet hod. SECOND _LEVEL_CACHE unless your second
level cache implementation is either EHCache or Infinispan; other second level
cache providers don't currently implement this operation efficiently.

You can also customize how objects are loaded from the database (if not found before). Use
Dat abaseRet ri eval Met hod for that:

* QUERY (default): use a (set of) queries to load several objects in batch. This is usually the best
approach.

 FIND BY_ID: load objects one by one using the Session.get or EntityManager.find
semantic. This might be useful if batch-size is set on the entity (in which case, entities will be
loaded in batch by Hibernate Core). QUERY should be preferred almost all the time.

The defaults for both methods, the object lookup as well as the database
retrieval can also be configured via configuration properties. This way you
don't have to specify vyour preferred methods on each query creation.

119

Chapter 5. Querying

The property names are hibernate.search. query. object_| ookup_net hod and
hi ber nat e. sear ch. query. dat abase_retri eval _net hod respectively. As value use the name
of the method (upper- or lowercase). For example:

Example 5.12. Setting object lookup and database retrieval methods via
configuration properties

5.1.3.7. Limiting the time of a query

You can limit the time a query takes in Hibernate Search in two ways:

* raise an exception when the limit is reached

* |imit to the number of results retrieved when the time limit is raised
5.1.3.7.1. Raise an exception on time limit

You can decide to stop a query if when it takes more than a predefined amount of time. Note that
this is a best effort basis but if Hibernate Search still has significant work to do and if we are beyond
the time limit, a QueryTimeoutException will be raised (org.hibernate.QueryTimeoutException or
javax.persistence.QueryTimeoutException depending on your programmatic API).

To define the limit when using the native Hibernate APIs, use one of the following approaches

Example 5.13. Defining a timeout in query execution

Query luceneQuery = ...;
Ful | Text Query query = full Text Sessi on. creat eFul | Text Query(l uceneQuery, User.cl ass);

//define the timeout in seconds
query. set Ti meout (5);

/lalternatively, define the tinmeout in any given tine unit
query. set Ti meout (450, Ti meUnit. M LLI SECONDS) ;

try {
query.list();

}

catch (org. hi bernate. QueryTi meout Exception e) {
//do soret hing, too slow

}

Likewise get Resul t Si ze(),iterate() andscroll () honor the timeout but only until the end of
the method call. That simply means that the methods of Iterable or the ScrollableResults ignore
the timeout.

120

Building a Hibernate Search query

Note

expl ai n() does not honor the timeout: this method is used for debug purposes
and in particular to find out why a query is slow

When using JPA, simply use the standard way of limiting query execution time.

Example 5.14. Defining a timeout in query execution

Query luceneQuery = ...;
Ful | Text Query query = full Text EM creat eFul | Text Query(| uceneQuery, User.cl ass);

//define the timeout in nmlliseconds
query.setH nt("javax.persistence.query.tineout", 450);

try {
query. get Resul t Li st ();

}
catch (javax. persi stence. QueryTi meout Exception e) {
//do sonet hing, too slow

}

Important

Remember, this is a best effort approach and does not guarantee to stop exactly
on the specified timeout.

5.1.3.7.2. Limit the number of results when the time limit is reached

Alternatively, you can return the number of results which have already been fetched by the time
the limit is reached. Note that only the Lucene part of the query is influenced by this limit. It is
possible that, if you retrieve managed object, it takes longer to fetch these objects.

Warning

This approach is not compatible with the setTimeout approach.

To define this soft limit, use the following approach

Example 5.15. Defining a time limit in query execution

Query luceneQuery = ...;
Ful | Text Query query = full Text Sessi on. creat eFul | Text Query(l uceneQuery, User.cl ass);

121

Chapter 5. Querying

//define the timeout in seconds
query. limtExecutionTi neTo(500, TineUnit.M LLI SECONDS);
List results = query.list();

Likewise get Resul t Si ze(),iterate() and scrol | () honor the time limit but only until the end
of the method call. That simply means that the methods of Iterable or the Scrol | abl eResul ts
ignore the timeout.

You can determine if the results have been partially loaded by invoking the hasParti al Resul ts
method.

Example 5.16. Determines when a query returns partial results

Query luceneQuery = ...;
Ful | Text Query query = full Text Sessi on. creat eFul | Text Query(l uceneQuery, User.cl ass);

//define the tinmeout in seconds
query. limtExecutionTi neTo(500, TineUnit.M LLI SECONDS);
List results = query.list();

if (query.hasPartial Results()) {
di spl ayWar ni ngToUser () ;
}

If you use the JPA API, limitExecutionTimeTo and hasPartialResults are also available to you.

5.2. Retrieving the results

Once the Hibernate Search query is built, executing it is in no way different than executing a HQL
or Criteria query. The same paradigm and object semantic applies. All the common operations
are available: 1'i st (), uni queResult(),iterate(),scroll ().

5.2.1. Performance considerations

If you expect a reasonable number of results (for example using pagination) and expect to work on
all of them, | i st () oruni queResul t () are recommended. | i st () work best if the entity bat ch-
si ze is set up properly. Note that Hibernate Search has to process all Lucene Hits elements
(within the pagination) when using | i st () , uni queResul t () anditerate().

If you wish to minimize Lucene document loading, scrol | () is more appropriate. Don't forget to
close the Scrol | abl eResul t s object when you're done, since it keeps Lucene resources. If you
expect to use scroll, but wish to load objects in batch, you can use query. set Fet chSi ze() . When
an object is accessed, and if not already loaded, Hibernate Search will load the next f et chSi ze
objects in one pass.

122

Result size

IS | Important

Pagination is preferred over scrolling.

5.2.2. Result size

It is sometimes useful to know the total number of matching documents:

« for the Google-like feature "1-10 of about 888,000,000"
« to implement a fast pagination navigation

 to implement a multi step search engine (adding approximation if the restricted query return no
or not enough results)

Of course it would be too costly to retrieve all the matching documents. Hibernate Search allows
you to retrieve the total number of matching documents regardless of the pagination parameters.
Even more interesting, you can retrieve the number of matching elements without triggering a
single object load.

Example 5.17. Determining the result size of a query

org. hi bernate. search. Ful | Text Query query =

s. creat eFul | Text Query(l uceneQuery, Book. cl ass);
/lreturn the nunmber of natchi ng books without |oading a single one
assert 3245 == query. getResul tSize();

or g. hi bernat e. search. Ful | Text Query query =
s. creat eFul | Text Query(l uceneQuery, Book. cl ass);
query. set MaxResul t (10);
List results = query.list();
//return the total nunber of matching books regardl ess of pagination
assert 3245 == query. getResul tSize();

@ Note

Like Google, the number of results is an approximation if the index is not fully up-
to-date with the database (asynchronous cluster for example).

5.2.3. ResultTransformer

As seen in Section 5.1.3.5, “Projection” projection results are returns as Object arrays. This data
structure is not always matching the application needs. In this cases It is possible to apply a
ResultTransformer which post query execution can build the needed data structure:

123

Chapter 5. Querying

Example 5.18. Using ResultTransformer in conjunction with projections

or g. hi bernat e. search. Ful | Text Query query =
s. creat eFul | Text Query(l uceneQuery, Book. cl ass);
query.setProjection("title", "nainAuthor.nane");

query. set Resul t Tr ansf or mer (
new Stati cAl i asToBeanResul t Tr ansf or mer (
BookVi ew. cl ass,
"title",
"aut hor")
)
Li st BookVi ew>; results = (List<BookView>) query.list();
for (BookView view : results) {
log.info("Book: " + view. getTitle() + ", " + view getAuthor());

}

Examples of ResultTransformer implementations can be found in the Hibernate Core codebase.

5.2.4. Understanding results

You will find yourself sometimes puzzled by a result showing up in a query or a result not showing
up in a query. Luke is a great tool to understand those mysteries. However, Hibernate Search
also gives you access to the Lucene Explanation object for a given result (in a given query). This
class is considered fairly advanced to Lucene users but can provide a good understanding of the
scoring of an object. You have two ways to access the Explanation object for a given result:

* Use the fullTextQuery.explain(int) method

» Use projection

The first approach takes a document id as a parameter and return the Explanation object. The
document id can be retrieved using projection and the Ful | Text Quer y. DOCUMENT _I D constant.

Warning

The Document id has nothing to do with the entity id. Do not mess up these two
notions.

In the second approach you project the Explanation object using the
Ful | Text Query. EXPLANATI ON constant.

Example 5.19. Retrieving the Lucene Explanation object using projection

Ful | Text Query ftQuery = s.createFul | Text Query(|uceneQuery, Dvd.class)
.setProjection(

124

Filters

Ful | Text Query. DOCUVENT_I D,
Ful | Text Query. EXPLANATI ON,
Ful | Text Query. THI'S);
@uppr essWar ni ngs("unchecked") List<Object[]> results = ftQuery.list();
for (Object[] result : results) {
Expl anation e = (Explanation) result[1];
display(e.toString());

Be careful, building the explanation object is quite expensive, it is roughly as expensive as running
the Lucene query again. Don't do it if you don’t need the object

5.3. Filters

Apache Lucene has a powerful feature that allows to filter query results according to a custom
filtering process. This is a very powerful way to apply additional data restrictions, especially since
filters can be cached and reused. Some interesting use cases are:

* security

temporal data (eg. view only last month’s data)

population filter (eg. search limited to a given category)
e and many more

Hibernate Search pushes the concept further by introducing the notion of parameterizable named
filters which are transparently cached. For people familiar with the notion of Hibernate Core filters,
the API is very similar:

Example 5.20. Enabling fulltext filters for a given query

full Text Query = s.createFul | Text Query(query, Driver.class);

ful | Text Query. enabl eFul | TextFilter("bestDriver");

ful | Text Query. enabl eFul | TextFilter("security").setParanmeter("login", "andre");
full TextQuery.list(); //returns only best drivers where andre has credentials

In this example we enabled two filters on top of the query. You can enable (or disable) as many
filters as you like.

Declaring filters is done through the @rull TextFilterDef annotation. You can use
@ul | Text Fi |l ter Def or @ul | Text Fi | t er Def s on any: *@ ndexed entity regardless of the query
the filter is later applied to * Parent class of an @ ndexed entity * package-info.java of a package
containing an @ ndexed entity

This implies that filter definitions are global and their names must be unique. A Sear chExcepti on
is thrown in case two different @ul | Text Fi | t er Def annotations with the same name are defined.
Each named filter has to specify its actual filter implementation.

125

Chapter 5. Querying

Example 5.21. Defining and implementing a Filter

@ntity
@ ndexed
@ul |l TextFilterDefs({
@ul | TextFilterDef (nane = "bestDriver", inpl = BestDriversFilter.class),
@ul | TextFilterDef(name = "security", inpl = SecurityFilterFactory.class)
})
public class Driver { ... }

public class BestDriversFilter extends org.apache. |l ucene.search.Filter {

publ i c Docl dSet get Docl dSet (I ndexReader reader) throws | OException {
OpenBit Set bitSet = new OpenBitSet(reader.maxDoc());
TernDocs ternDocs = reader.ternDocs(new Tern("score", "5"));
while (ternDocs.next()) {
bit Set.set(ternDocs.doc());

}

return bitSet;

BestDriversFilter is an example of a simple Lucene filter which reduces the result
set to drivers whose score is 5. In this example the specified filter implements the
or g. apache. | ucene. sear ch. Fi | t er directly and contains a no-arg constructor.

If your Filter creation requires additional steps or if the filter you want to use does not have a no-
arg constructor, you can use the factory pattern:

Example 5.22. Creating a filter using the factory pattern

@Entity

@ ndexed

@ul | TextFilterDef (nanme = "bestDriver", inpl = BestDriversFilterFactory.cl ass)
public class Driver { ... }

public class BestDriversFilterFactory {

@ractory

public Filter getFilter() {
//some additional steps to cache the filter results per |ndexReader
Filter bestDriversFilter = new BestDriversFilter();
return new Cachi ngW apperFilter(bestDriversFilter);

Hibernate Search will look for a @act or y annotated method and use it to build the filter instance.
The factory must have a no-arg constructor.

126

Filters

Named filters come in handy where parameters have to be passed to the filter. For example a
security filter might want to know which security level you want to apply:

Example 5.23. Passing parameters to a defined filter

full Text Query = s.createFul | Text Query(query, Driver.class);
ful |l Text Query. enabl eFul | TextFilter("security").setParaneter("level", 5);

Each parameter must have an associated setter on either the filter or filter factory of the targeted
named filter definition.

Example 5.24. Using parameters in the actual filter implementation

public class SecurityFilterFactory {
private Integer |evel;

/**
* injected paraneter
*/
public void setlLevel (Integer level) {

this.level = level;
}
@ractory
public Filter getFilter() {
Query query = new TermQuery(new Tern("level", level.toString()));

return new Cachi ngW apperFilter(new QueryWapperFilter(query));

Filters will be cached once created, based on all their parameter names and values. Caching
happens using a combination of hard and soft references to allow disposal of memory when
needed. The hard reference cache keeps track of the most recently used filters and transforms
the ones least used to SoftReferences when needed. Once the limit of the hard reference cache is
reached additional filters are cached as SoftReferences. To adjust the size of the hard reference
cache, use hi bernate. search.filter.cache_strategy.si ze (defaults to 128). For advanced
use of filter caching, you can implement your own FilterCachingStrategy. The classname is defined
by hi bernate. search.filter.cache_strategy.

This filter caching mechanism should not be confused with caching the actual filter
results. In Lucene it is common practice to wrap filters using the IndexReader around
a CachingWapperFilter. The wrapper will cache the DocldSet returned from the
get Docl dSet (1 ndexReader reader) method to avoid expensive re-computation. It is important
to mention that the computed Docl dSet is only cachable for the same IndexReader instance,
because the reader effectively represents the state of the index at the moment it was opened.
The document list cannot change within an opened | ndexReader . A different/new | ndexReader

127

Chapter 5. Querying

instance, however, works potentially on a different set of Documents (either from a different index
or simply because the index has changed), hence the cached DocldSet has to be recomputed.

Hibernate Search also helps with this aspect of caching. Per default the cache flag of
@rul | TextFil terDef issettoFilterCacheMbdeType. | NSTANCE _AND DOCI DSETRESULTS which
will automatically cache the filter instance as well as wrap the specified filter around
a Hibernate specific implementation of Cachi ngW apperFilter. In contrast to Lucene’s
version of this class SoftReferences are used together with a hard reference count
(see discussion about filter cache). The hard reference count can be adjusted using
hi bernat e. search. filter.cache_doci dresul ts. si ze (defaults to 5). The wrapping behavior
can be controlled using the @ul | Text Fi | t er Def . cache parameter. There are three different
values for this parameter:

Value Definition

FilterCacheModeType.NONE No filter instance and no result is cached by
Hibernate Search. For every filter call, a new
filter instance is created. This setting might
be useful for rapidly changing data sets or
heavily memory constrained environments.

FilterCacheModeType.INSTANCE_ONLY The filter instance is cached and reused
across concurrent Filter.getDocldSet()

calls. DocldSet results are not cached. This
setting is useful when a filter uses its own
specific caching mechanism or the filter
results change dynamically due to application
specific events making DocldSet caching in
both cases unnecessary.

FilterCacheModeType.INSTANCE_AND_DOCIIERET RESlikTiBstance and the DocldSet
results are cached. This is the default value.

Last but not least - why should filters be cached? There are two areas where filter caching shines:

» the system does not update the targeted entity index often (in other words, the IndexReader
is reused a lot)

« the Filter's DocldSet is expensive to compute (compared to the time spent to execute the query)

5.3.1. Using filters in a sharded environment

It is possible, in a sharded environment to execute queries on a subset of the available shards.
This can be done in two steps:

 create a sharding strategy that does select a subset of IndexManagers depending on some
filter configuration

128

Using filters in a sharded environment

* activate the proper filter at query time

Let's first look at an example of sharding strategy that query on a specific customer shard if the
customer filter is activated.

public class CustonerShardi ngStrategy inplenents | ndexShardi ngStrategy {

/1 stored IndexManagers in a array indexed by custonerlD
private |IndexManager[] indexManagers;

public void initialize(Properties properties, |IndexManager[] indexManagers) {
thi s.indexManagers = i ndexManagers;

public I ndexManager[] get|ndexManager sFor Al | Shards() {
return i ndexManagers;

publi c I ndexManager getlndexManager For Addi ti on(
Class<?> entity, Serializable id, String idlnString, Docunent document) {
I nteger customerl D = I nteger. parselnt(docunent. getFi el dabl e("custoner| D").stringValue());
return i ndexManager s[custoner! D] ;

public I ndexManager[] getl ndexManager sFor Del eti on(
Class<?> entity, Serializable id, String idinString) {
return getlndexManager sFor Al | Shards();

/**

* Optimzation; don't search ALL shards and union the results; in this case, we

* can be certain that all the data for a particular custoner Filter is in a single
* shard; sinply return that shard by custonerlD.

*/
public I ndexManager[] getl ndexManager sFor Quer y(

Ful | TextFilterlnplementor[] filters) {
Ful |l TextFilter filter = getCustonerFilter(filters, "custoner");

if (filter == null) {

return getlndexManager sFor Al | Shards();
}
el se {

return new | ndexManager[] { indexManagers[| nteger. parsel nt(
filter.getParaneter("custonerlD").toString())] };

private Full TextFilter getCustonmerFilter(Full TextFilterlnplementor[] filters, String nane) {
for (Full TextFilterlnplementor filter: filters) {
if (filter.getNanme().equals(nanme)) return filter;

}

return null;

129

Chapter 5. Querying

In this example, if the filter named cust oner is present, we make sure to only use the shard
dedicated to this customer. Otherwise, we return all shards. A given Sharding strategy can react
to one or more filters and depends on their parameters.

The second step is simply to activate the filter at query time. While the filter can be a regular filter
(as defined in Section 5.3, “Filters”) which also filters Lucene results after the query, you can make
use of a special filter that will only be passed to the sharding strategy and otherwise ignored for the
rest of the query. Simply use the Shar dSensi ti veOnl yFi | t er class when declaring your filter.

@ntity @ ndexed
@ ul | TextFilterDef(name="customer", inpl=ShardSensitiveOnlyFilter.class)
public class Custoner {

...

}

Ful | Text Query query = ft Em creat eFul | Text Query(l uceneQuery, Custoner.class);
query. enabl eFul | textFilter("custoner").set Paraneter("Custonerl D', 5);

@uppr essWar ni ngs("unchecked")

Li st <Custoner> results = query.getResultList();

Note that by using the Shar dSensi ti veOnl yFi | ter, you do not have to implement any Lucene
filter. Using filters and sharding strategy reacting to these filters is recommended to speed up
queries in a sharded environment.

5.4. Faceting

Faceted search [http://en.wikipedia.org/wiki/Faceted_search] is a technique which allows to divide
the results of a query into multiple categories. This categorization includes the calculation of
hit counts for each category and the ability to further restrict search results based on these
facets (categories). Figure 5.1, “Facets Example on Amazon” shows a faceting example. The
search for 'Hibernate Search' results in fifteen hits which are displayed on the main part of the
page. The navigation bar on the left, however, shows the categoryComputers & Internet with
its subcategories Programming, Computer Science, Databases, Software, Web Development,
Networking and Home Computing. For each of these subcategories the number of books is shown
matching the main search criteria and belonging to the respective subcategory. This division of
the category Computers & Internet is one facet of this search. Another one is for example the
average customer review rating.

130

http://en.wikipedia.org/wiki/Faceted_search
http://en.wikipedia.org/wiki/Faceted_search

Faceting

Search

Computers & Internet

Books

Advanced Search

Browse Subjects

MNew Releases

Department
< Any Department

<« Books
Computers & Internet

Programming (14
Computer Science (4
Databases (2)
Software (2
Web Dewvelopment (2]
Metworking (1

Home Computing (1)

Format
Paperback {15)

Author
Any Author

Joe Vitale (1

Shipping Option (what's this?)
Any Shipping Option
Free Super Saver Shipping

Avg. Customer Review
Any Avg. Customer Review

OO & Up (12
R & Up 14
A 8 Up (14
Wi B Up (15
Condition

Any Condition

Figure®l1.IFacets Example on Amazon

MNew (14

Books - Computers & Internet : "Hiberna

Showing 1 - 12 of 15 Results

1. LOOK INSIDE!

LOOK INSIDE!

[t

= -
opring
Parsistence wi

Hibernate

i Lygr e B 7 Vv

LOOK INSIDE!

o Y

Hibernate Se.
IO (3 custor

Formats

Paperback

Order in tha next 2 ho
Monday, Apr 18
Only 1 keft in stock - o

Eligible for FREE S

Excerpt - Page 1:
Surprise me! See

Spring Persis
(Nov 2, 2010)
WA (5 custor

Formats

Paperback
Order in the next 19 h
Monday, Apr 18

Kindle Edition

Auto-delivarad wiralas
Other Formats: Paj

Some formats eligil

Excerpt - Page 11
resalving these issi

Surprise me! See

Lucene in Act
Hatcher and O

131

Chapter 5. Querying

In Hibernate Search the classes Quer yBui | der and Ful | Text Query are the entry point to the
faceting API. The former allows to create faceting requests whereas the latter gives access to the
so called Facet Manager . With the help of the Facet Manager faceting requests can be applied on
a query and selected facets can be added to an existing query in order to refine search results.
The following sections will describe the faceting process in more detail. The examples will use the
entity Cd as shown in Example 5.25, “Example entity for faceting”;

Example 5.25. Example entity for faceting

@Entity
@ ndexed
public class Cd {

@d
@=xner at edVal ue
private int id;

@ields({
@ield,
@i el d(nane = "nane_un_anal yzed", analyze = Anal yze. NO

})

private String nang;

@i el d(anal yze = Anal yze. NO
private int price;

Fi el d(anal yze = Anal yze. NO
@at eBri dge(resol uti on = Resol uti on. YEAR)
private Date rel easeYear;

@i el d(anal yze = Anal yze. NO
private String |abel;

/1 setter/getter
...

5.4.1. Creating a faceting request

The first step towards a faceted search is to create the Facet i ngRequest . Currently two types
of faceting requests are supported. The first type is called discrete faceting and the second type
range faceting request.

5.4.1.1. Discrete faceting request

In the case of a discrete faceting request, you start with giving the request a uniqgue name. This
name will later be used to retrieve the facet values (see Section 5.4.4, “Interpreting a Facet result”).
Then you need to specify on which index field you want to categorize on and which faceting options
to apply. An example for a discrete faceting request can be seen in Example 5.26, “Creating a
discrete faceting request”:

132

Creating a faceting request

Example 5.26. Creating a discrete faceting request

QueryBui | der builder = full Text Sessi on. get SearchFactory()
. bui | dQuer yBui | der ()
.forEntity(Cd.cl ass)
-get();
Faceti ngRequest | abel Faceti ngRequest = buil der.facet()
.nanme("| abel Facet Request")
.onFiel d("l abel ")
.discrete()
. order edBy(Facet Sort Or der . COUNT_DESC)
.includeZeroCounts(fal se)
. maxFacet Count (3)
. creat eFaceti ngRequest () ;

When executing this faceting request a Facet instance will be created for each discrete value
for the indexed field | abel . The Facet instance will record the actual field value including how
often this particular field value occurs within the original query results. Parameters or der edBy,
i ncl udezZer oCount s and naxFacet Count are optional and can be applied on any faceting request.
Parameter or der edBy allows to specify in which order the created facets will be returned. The
default is Facet Sort Or der. COUNT_DESC, but you can also sort on the field value. Parameter
i ncl udezZer oCount determines whether facets with a count of O will be included in the result (by
default they are) and maxFacet Count allows to limit the maximum amount of facets returned.

(3

@i el ds({

133

Chapter 5. Querying

@i el d(nanme="price"),
@i el d(name="price_facet",
anal yze=Anal yze. NO,
bri dge=@i el dBri dge(i npl = IntegerBridge.class))
})

private int price;

5.4.1.2. Creating a range faceting request

The creation of a range faceting request is similar. We also start with a name for the request and
the field to facet on. Then we have to specify ranges for the field values. A range faceting request
can be seen in Example 5.27, “Creating a range faceting request”. There, three different price
ranges are specified. below and above can only be specified once, but you can specify as many
from - to ranges as you want. For each range boundary you can also specify via excludeLimit
whether it is included into the range or not.

Example 5.27. Creating a range faceting request

Quer yBui | der builder = full Text Sessi on. get Sear chFact ory()
. bui | dQuer yBui | der ()
.forEntity(Cd.cl ass)

-get();
Facet i ngRequest priceFaceti ngRequest = buil der. facet()
.name("priceFaceting")
.onField("price_facet")
.range()
. bel owm(1000)
.fronm(1001) .t o(1500)
. above(1500) . excl udeLi m t ()
. creat eFaceti ngRequest () ;

5.4.2. Setting the facet sort order

The result of applying a faceting request is a list of Facet instances as seen in Example 5.28,
“Applying a faceting request”. The order within the list is given by the Facet Sort O der
parameter specified via or der edBy when creating the faceting request. The default value is
Facet Sort Or der . COUNT_DESC, meaning facets are ordered by their count in descending order
(highest count first). Other values are COUNT_ASC, FI ELD_VALUE and RANGE_DEFI NI TI ON_ORDER.
COUNT_ASC returns the facets in ascending count order whereas FI ELD_VALUE will return them in
alphabetical order of the facet/category value (see Section 5.4.4, “Interpreting a Facet result”).
RANGE_DEFI NI TI ON_ORDER only applies for range faceting request and returns the facets in the
same order in which the ranges are defined. For Example 5.27, “Creating a range faceting request”
this would mean the facet for the range of below 1000 would be returned first, followed by the
facet for the range 1001 to 1500 and finally the facet for above 1500.

134

Applying a faceting request

5.4.3. Applying a faceting request

In Section 5.4.1, “Creating a faceting request” we have seen how to create a faceting request.
Now it is time to apply it on a query. The key is the Facet Manager which can be retrieved via the
Ful | Text Query (see Example 5.28, “Applying a faceting request”).

Example 5.28. Applying a faceting request

/1 create a fulltext query
Query luceneQuery = builder.all().createQuery(); // match all query
Ful | Text Query full Text Query = full Text Sessi on. creat eFul | Text Query(l uceneQuery, Cd.cl ass);

/1 retrieve facet manager and apply faceting request
Facet Manager facet Manager = ful |l Text Query. get Facet Manager () ;
facet Manager . enabl eFacet i ng(pri ceFaceti ngRequest);

/1 get the list of Cds
Li st<Cd> cds = full TextQuery.list();

/1l retrieve the faceting results
Li st <Facet> facets = facet Manager. get Facets("pri ceFaceting");

You need to enable the faceting request before you execute the query. You do that via
facetManager.enableFaceting(<facetName>). You can enable as many faceting requests as
you like, then you execute the query and retrieve the facet results for a given request via
facetManager.getFacets(<facetname>). For each request you will get a list of Facet instances.
Facet requests stay active and get applied to the fulltext query until they are either explicitly
disabled via disableFaceting(<facetName>) or the query is discarded.

5.4.4. Interpreting a Facet result

Each facet request results in a list of Facet instances. Each instance represents one facet/category
value. In the CD example (Example 5.26, “Creating a discrete faceting request”) where we want
to categorize on the CD labels, there would for example be a Facet for each of the record labels
Universal, Sony and Warner. Example 5.29, “Facet API” shows the API of Facet.

Example 5.29. Facet API

public interface Facet {

| **

* @eturn the faceting name this {@ode Facet} bel ongs to.

*

* @ee org. hibernate. search. query. facet. Faceti ngRequest #get Facet i ngNane()
*/
String get Faceti ngNane();

[**

135

Chapter 5. Querying

* Return the {@ode Docunent} field name this facet is targeting.
* The field needs to be indexed with {@ode Anal yze. NG .

*

* @eturn the {@ode Docunent} field nane this facet is targeting.

*/

String getFiel dNane();

/**

* @eturn the value of this facet. In case of a discrete facet it is the actual
* {@ode Docunent} field value. In case of a range query the value is a
* string representation of the range.

*/

String getVal ue();

/**

* @eturn the facet count.

*/

int getCount();

/**

* @eturn a Lucene {@ink Query} which can be executed to retrieve all
* docunents matching the value of this facet.

*/

Query get Facet Query();

get Facet i ngName() and get Fi el dNane() are returning the facet request name and the targeted
document field name as specified by the underlying Facet Request . For example "Example 5.26,
“Creating a discrete faceting request™ that would be labelFacetRequest and label respectively.
The interesting information is provided by get Val ue() and get Count () . The former is the actual
facet/category value, for example a concrete record label like Universal. The latter returns the
count for this value. To stick with the example again, the count value tells you how many Cds are
released under the Universal label. Last but not least, get Facet Quer y() returns a Lucene query
which can be used to retrieve the entities counted in this facet.

5.4.5. Restricting query results

A common use case for faceting is a "drill-down" functionality which allows you to narrow your
original search by applying a given facet on it. To do this, you can apply any of the returned Facet
instances as additional criteria on your original query via Facet Sel ect i on. FacetSelections are
available via the Facet Manager and allow you to select a facet as query criteria (selectFacets),
remove a facet restriction (deselectFacets), remove all facet restrictions (clearSelectedFacets)
and retrieve all currently selected facets (getSelectedFacets). Example 5.30, “Restricting query
results via the application of a FacetSelection” shows an example.

Example 5.30. Restricting query results via the application of a
FacetSelection

/1 create a fulltext query
Query luceneQuery = builder.all().createQuery(); // match all query

136

Optimizing the query process

Ful | Text Query ful |l Text Query = full Text Sessi on. creat eFul | Text Query(|uceneQuery, clazz);

/1 retrieve facet manager and apply faceting request
Facet Manager facet Manager = full Text Query. get Facet Manager () ;
f acet Manager . enabl eFaceti ng(pri ceFaceti ngRequest);

/1 get the list of Cd
Li st<Cd> cds = full TextQuery.list();
assert True(cds. si ze() == 10);

/Il retrieve the faceting results

Li st <Facet> facets = facet Manager. get Facets("priceFaceting");

assert True(facets. get (0).getCount() == 2)

/1 apply first facet as additional search criteria

Facet Sel ection facet Sel ecti on = facet Manager. get Facet Group("pri ceFaceting");
facet Sel ection. sel ect Facets(facets.get(0));

/1 re-execute the query

cds = full TextQuery.list();
assert True(cds. size() == 2);

5.5. Optimizing the query process

Query performance depends on several criteria:

 the Lucene query itself: read the literature on this subject.
 the number of loaded objects: use pagination and / or index projection (if needed).

- the way Hibernate Search interacts with the Lucene readers: defines the appropriate
Section 2.3, “Reader strategy”.

 caching frequently extracted values from the index: see Section 5.5.1, “Caching index values:
FieldCache”.

5.5.1. Caching index values: FieldCache

The primary function of a Lucene index is to identify matches to your queries, still after the query is
performed the results must be analyzed to extract useful information: typically Hibernate Search
might need to extract the Class type and the primary key.

Extracting the needed values from the index has a performance cost, which in some cases might
be very low and not noticeable, but in some other cases might be a good candidate for caching.

What is exactly needed depends on the kind of Projections being used (see Section 5.1.3.5,
“Projection”), and in some cases the Class type is not needed as it can be inferred from the query
context or other means.

Using the @acheFr om ndex annotation you can experiment different kinds of caching of the main
metadata fields required by Hibernate Search:

137

Chapter 5. Querying

inmport static org. hibernate.search. annot ati ons. Fi el dCacheType. CLASS;
inmport static org. hibernate.search. annot ati ons. Fi el dCacheType. | D;

@ ndexed

@acheFrom ndex({ CLASS, ID})
public class Essay {

1o

}

It is currently possible to cache Class types and IDs using this annotation:

e CLASS: Hibernate Search will use a Lucene FieldCache to improve performance of the Class
type extraction from the index.

This value is enabled by default, and is what Hibernate Search will apply if you don’t specify the
@acheFr om ndex annotation.

* | D: Extracting the primary identifier will use a cache. This is likely providing the best performing
gueries, but will consume much more memory which in turn might reduce performance.

@ Note

Measure the performance and memory consumption impact after warm-up
(executing some queries): enabling Field Caches is likely to improve performance
but this is not always the case.

Using a FieldCache has two downsides to consider:

« Memory usage: these caches can be quite memory hungry. Typically the CLASS cache has
lower requirements than the ID cache.

« Index warm-up: when using field caches, the first query on a new index or segment will be
slower than when you don’t have caching enabled.

With some queries the class type won't be needed at all, in that case even if you enabled the
CLASS field cache, this might not be used; for example if you are targeting a single class, obviously
all returned values will be of that type (this is evaluated at each Query execution).

For the ID FieldCache to be used, the ids of targeted entities must be using a TwoWayFi el dBri dge
(as all built-in bridges), and all types being loaded in a specific query must use the field name for
the id, and have ids of the same type (this is evaluated at each Query execution).

138

Chapter 6.

Manual index changes

As Hibernate core applies changes to the Database, Hibernate Search detects these changes and
will update the index automatically (unless the EventListeners are disabled). Sometimes changes
are made to the database without using Hibernate, as when backup is restored or your data is
otherwise affected; for these cases Hibernate Search exposes the Manual Index APls to explicitly
update or remove a single entity from the index, or rebuild the index for the whole database, or
remove all references to a specific type.

All these methods affect the Lucene Index only, no changes are applied to the Database.

6.1. Adding instances to the index

Using Ful | Text Sessi on. i ndex(T entity) you can directly add or update a specific object
instance to the index. If this entity was already indexed, then the index will be updated. Changes
to the index are only applied at transaction commit.

Example 6.1. Indexing an entity via Ful | Text Sessi on. i ndex(T entity)

Ful | Text Sessi on ful | Text Sessi on = Search. get Ful | Text Sessi on(sessi on);
Transaction tx = full Text Sessi on. begi nTransaction();

Obj ect custoner = full Text Session. |l oad(Custoner.class, 8);

ful | Text Sessi on. i ndex(custoner);

tx.conmit(); //index only updated at conmit time

In case you want to add all instances for a type, or for all indexed types, the recommended
approach is to use a MassIndexer: see Section 6.3.2, “Using a MassIndexer” for more details.

The method Ful | Text Sessi on. i ndex(T entity) is considered an explicit indexing operation,
so any registered Entitylndexinginterceptor won't be applied in this case. For more information on
EntitylndexingInterceptor see Section 4.5, “Conditional indexing”.

6.2. Deleting instances from the index

It is equally possible to remove an entity or all entities of a given type from a Lucene index without
the need to physically remove them from the database. This operation is named purging and is
also done through the Ful | Text Sessi on.

Example 6.2. Purging a specific instance of an entity from the index

Ful | Text Sessi on ful | Text Sessi on = Search. get Ful | Text Sessi on(sessi on);
Transaction tx = full Text Sessi on. begi nTransacti on();
for (Custonmer customer : custoners) {

ful | Text Sessi on. purge(Custoner.class, custoner.getld());

}

139

Chapter 6. Manual index changes

tx.commt(); //index is updated at conmit tine

Purging will remove the entity with the given id from the Lucene index but will not touch the
database.

If you need to remove all entities of a given type, you can use the purgeAll method. This operation
removes all entities of the type passed as a parameter as well as all its subtypes.

Example 6.3. Purging all instances of an entity from the index

Ful | Text Sessi on full Text Sessi on = Search. get Ful | Text Sessi on(sessi on);
Transaction tx = full Text Sessi on. begi nTransacti on();

ful | Text Sessi on. purgeAl |l (Custoner.class);

/loptionally optimnmze the index

/1 full Text Sessi on. get Sear chFactory().optin ze(Custoner.class);
tx.commt(); //index changes are applied at commt tinme

As in the previous example, it is suggested to optimize the index after many purge operation to
actually free the used space.

As is the case with method Ful | Text Sessi on. i ndex(T entity), also purge and pur geAl | are
considered explicit indexing operations: any registered Enti t yl ndexi ngl nt er cept or won't be
applied. For more information on Entityl ndexi ngl nt er ceptor see Section 4.5, “Conditional
indexing”.

(3

(3

6.3. Rebuilding the whole index

If you change the entity mapping to the index, chances are that the whole Index needs to be
updated; For example if you decide to index a an existing field using a different analyzer you'll
need to rebuild the index for affected types. Also if the Database is replaced (like restored from a
backup, imported from a legacy system) you'll want to be able to rebuild the index from existing
data. Hibernate Search provides two main strategies to choose from:

Using flushTolndexes()

» Using Ful | Text Sessi on. fl ushTol ndexes() periodically, while using FullTextSession.index()
on all entities.

* Use a MasslIndexer.

6.3.1. Using flushTolndexes()

This strategy consists in removing the existing index and then adding all entities back to the
index using Ful | Text Sessi on. pur geAl | () and Ful | Text Sessi on. i ndex(), however there are
some memory and efficiency constraints. For maximum efficiency Hibernate Search batches
index operations and executes them at commit time. If you expect to index a lot of data you
need to be careful about memory consumption since all documents are kept in a queue until
the transaction commit. You can potentially face an Qut Of Menor yExcept i on if you don’'t empty
the queue periodically: to do this you can use f ul | Text Sessi on. f | ushTol ndexes() . Every time
ful | Text Sessi on. fl ushTol ndexes() is called (or if the transaction is committed), the batch
queue is processed applying all index changes. Be aware that, once flushed, the changes cannot
be rolled back.

Example 6.4. Index rebuilding using index() and flushTolndexes()

ful | Text Sessi on. set Fl ushiMbde(Fl ushMode. MANUAL) ;
ful | Text Sessi on. set CacheMbde(CacheMode. | GNORE) ;
transaction = full Text Sessi on. begi nTransacti on();
//Scrollable results will avoid |oading too many objects in nenory
Scrol | abl eResults results = full Text Session.createCriteria(Email.class)
. set Fet chSi ze(BATCH_SI ZE)
.scroll (Scrol | Mode. FORWARD_ONLY) ;
int index = 0;
while(results.next()) {
i ndex++;
ful | Text Sessi on.index(results.get(0)); //index each el enent
if (index % BATCH SI ZE == 0) {
ful | Text Sessi on. flushTol ndexes(); //apply changes to indexes
full Text Session.clear(); //free nenory since the queue is processed
}
}

transaction.commit();

Try to use a batch size that guarantees that your application will not run out of memory: with a
bigger batch size objects are fetched faster from database but more memory is needed.

6.3.2. Using a MassIndexer

Hibernate Search’s MassIndexer uses several parallel threads to rebuild the index; you can
optionally select which entities need to be reloaded or have it reindex all entities. This approach is
optimized for best performance but requires to set the application in maintenance mode: making
gueries to the index is not recommended when a MassIndexer is busy.

141

Chapter 6. Manual index changes

Example 6.5. Index rebuilding using a MassIndexer

ful | Text Sessi on. creat el ndexer ().start AndWait();

This will rebuild the index, deleting it and then reloading all entities from the database. Although
it's simple to use, some tweaking is recommended to speed up the process: there are several
parameters configurable.

Warning

During the progress of a MassIndexer the content of the index is undefined! If a
query is performed while the MassIndexer is working most likely some results will
be missing.

Example 6.6. Using a tuned MassIndexer

ful | Text Sessi on
.createl ndexer(User.class)
. bat chSi zeToLoadObj ects(25)
. cacheMode(CacheMode. NORVAL)
.threadsToLoadCbj ects(12)
.i dFet chSi ze(150)
.progresshnitor(nmonitor) //a MasslndexerProgresshnitor inplenentation
.start AndWai t ();

This will rebuild the index of all User instances (and subtypes), and will create 12 parallel threads
to load the User instances using batches of 25 objects per query; these same 12 threads will also
need to process indexed embedded relations and custom FieldBridges or ClassBridges, to finally
output a Lucene document. In this conversion process these threads are likely going to need to
trigger lazy loading of additional attributes, so you will probably need a high number of threads
working in parallel.

As of Hibernate Search 4.4.0, instead of indexing all the types in parallel, the MassIindexer is
configured by default to index only one type in parallel. It prevents resource exhaustion especially
database connections and usually does not slow down the indexing. You can however configure
this behavior using Massl ndexer . t ypesTol ndex| nParal | el (i nt threadsTol ndexCObj ects):

Example 6.7. Configuring the MassIndexer to index several types in parallel

ful | Text Sessi on
.createl ndexer(User.class, Custoner.class)
.typesTol ndexl nParal lel (2)
. bat chSi zeToLoadbj ects(25)
. cacheMbde(CacheMbde. NORVAL)

142

Using a MassIndexer

.threadsToLoadbj ects(5)

.idFetchSi ze(150)

.progresshonitor(nonitor) //a MasslndexerProgresshnitor inplenentation
.start AndWai t ();

Generally we suggest to leave cacheMode to CacheMbde. | GNORE (the default), as in most
reindexing situations the cache will be a useless additional overhead; it might be useful to enable
some other CacheMode depending on your data: it could increase performance if the main entity
is relating to enum-like data included in the index.

@ Note

The MassIndexer was designed for speed and is unaware of transactions, so there
is no need to begin one or committing. Also because it is not transactional it is not
recommended to let users use the system during its processing, as it is unlikely
people will be able to find results and the system load might be too high anyway.

6.3.2.1. MasslIndexer using threads and JDBC connections

The MassIndexer was designed to finish the re-indexing task as quickly as possible, but this
requires a bit of care in its configuration to behave fairly with your server resources.

There is a simple formula to understand how the different options applied to the MassIndexer affect
the number of used worker threads and connections: each thread will require a JDBC connection.

Let's see some suggestions for a roughly sane tuning starting point:

1. Option t ypesTol ndex! nPar al | el should probably be a low value, like 1 or 2, depending on
how much of your CPUs have spare cycles and how slow a database round trip will be.

2. Before tuning a parallel run, experiment with options to tune your primary indexed entities in
isolation.

3. Making t hr eadsToLoadObj ect s higher increases the pre-loading rate for the picked entities
from the database, but also increases memory usage and the pressure on the threads working
on subsequent indexing.

4. Increasing parallelism usually helps as the bottleneck usually is the latency to the database
connection: it’s probably worth it to experiment with values significantly higher than the number
of actual cores available, but make sure your database can handle all the multiple requests.

5. This advice might not apply to you: always measure the effects! We're providing this as a means
to help you understand how these options are related.

143

Chapter 6. Manual index changes

Warning

Running the MasslIndexer with many threads will require many connections to the
database. If you don’t have a sufficiently large connection pool, the Massindexer
itself and/or your other applications could starve being unable to serve other
requests: make sure you size your connection pool accordingly to the options as
explained in the above paragraph.

Tip

The "sweet spot" of number of threads to achieve best performance is highly
dependent on your overall architecture, database design and even data values. All
internal thread groups have meaningful names so they should be easily identified
with most diagnostic tools, including simply thread dumps.

6.3.2.2. Using a custom MassIndexer implementation

The provided MassIndexer is quite general purpose, and while we believe it's a robust approach,
you might be able to squeeze some better performance by writing a custom implementation. To
run your own Masslindexer instead of using the one shipped with Hibernate Search you have to:

1. create an implementation of the org. hibernate.search.spi.MsslndexerFactory
interface;

2. set the property hi ber nat e. sear ch. massi ndexer . fact orycl ass with the qualified class
name of the factory implementation.

Example 6.8. Custom MassIndexerFactory example

package org. nyproj ect
import org. hi bernate. search. spi . Massl ndexer Fact ory

...
public class Custom ndexerFactory inplenments Massl ndexer Factory {

public void initialize(Properties properties) {

}

publ i c Massl ndexer createMasslndexer(...) {
return new Customl ndexer();

}

144

Useful parameters for batch indexing

6.3.3. Useful parameters for batch indexing

Other parameters which affect indexing time and memory consumption are:

¢ hi bernat e. search

¢ hi bernate.search

¢ hi bernate. search

* hi bernate. search

¢ hi bernate. search

¢ hi ber nat e. search

¢ hi bernat e. search

¢ hi bernate.search

<i ndexnane>] . i ndexwriter. merge_calibrate_by del etes

.[defaul t]<i
.[default]<i
.[defaul t]<i
.[defaul t|<i
.[defaul t|<i
.[defaul t]<i
.[defaul t]<i

.[defaul t]

ndexnane>] .
ndexnanme>] .
ndexnane>] .
ndexname>] .
ndexname>] .
ndexnane>] .

ndexnane>] .

excl usi ve_i ndex_use

i ndexwriter. max_buffered_docs

ndexwiter.

ndexwriter.

ndexwriter.

ndexwriter.

ndexwriter.

max_mner ge_docs
mer ge_f act or

nmerge_m n_si ze
nmer ge_nmax_si ze

mer ge_nmax_optim ze_si ze

* hi bernate. search. [def aul t| <i ndexnanme>] . i ndexwriter.ram buffer_size

* hi bernate. search. [defaul t|<i ndexname>].indexwiter.term.index_interval

Previous versions also had a max_fi el d_I engt h but this was removed from Lucene, it's possible

to obtain a similar effect by using a Li ni t TokenCount Anal yzer .

All . i ndexwri t er parameters are Lucene specific and Hibernate Search is just passing these
parameters through - see Section 3.7.1, “Tuning indexing performance” for more details.

The Massindexer uses a forward only scrollable result to iterate on the primary keys to be
loaded, but MySQL's JDBC driver will load all values in memory; to avoid this "optimization" set
i dFet chSi ze to | nt eger. M N_VALUE.

145

146

Chapter 7.

Index Optimization

This section explains some low level tricks to keep your indexes at peak performance. We cover
some Lucene details which in most cases you don't have to know about: Hibernate Search will
handle these operations optimally and transparently in most cases without the need for further
configuration. Still, it is good to know that there are ways to configure the behavior, if the need
arises.

The index is physically stored in several smaller segments. Each segment is immutable and
represents a generation of index writes. Index segments are periodically compacted, both to
merge smaller segments and to remove stale entries; this merging process happens constantly
in the background and can be tuned with the options specified in Section 3.7.1, “Tuning indexing
performance”, but you can also define policies to fully run index optimizations when it is most
suited for your specific workload.

With older versions of Lucene it was important to frequently optimize the index to maintain
good performance, but with current Lucene versions this doesn’t apply anymore. The benefit of
explicit optimization is very low, and in certain cases even counter-productive. During an explicit
optimization the whole index is processed and rewritten inflicting a significant performance cost.
Optimization is for this reason a double-edged sword.

Another reason to avoid optimizing the index too often is that an optimization will, as a side effect,
invalidate cached filters and field caches and internal buffers need to be refreshed.

Tip

Optimizing the index is often not needed, does not benefit write (update)
performance at all, and is a slow operation: make sure you need it before activating
it.

Of course optimizing the index does not only present drawbacks: after the optimization process
is completed and new IndexReader instances have loaded their buffers, queries will perform at
peak performance and you will have reclaimed all disk space potentially used by stale entries.

It is recommended to not schedule any optimization, but if you wish to perform it periodically you
should run it:

» on an idle system or when the searches are less frequent

« after a lot of index modifications

When using a MassiIndexer (see Section 6.3.2, “Using a MassIndexer”) it will optimize involved
indexes by default at the start and at the end of processing; you can change this behavior
by using MassIndexer.optimizeAfterPurge and MassIndexer.optimizeOnFinish respectively. The

147

Chapter 7. Index Optimization

initial optimization is actually very cheap as it is performed on an empty index: its purpose is to
release the storage space occupied by the old index.

7.1. Automatic optimization

While in most cases this is not needed, Hibernate Search can automatically optimize an index
after:

 a certain amount of write operations

* or after a certain amount of transactions

The configuration for automatic index optimization can be defined on a global level or per index:

Example 7.1. Defining automatic optimization parameters

With the above example an optimization will be triggered to the Ani nal index as soon as either:

* the number of additions and deletions reaches 1000

 the number of transactions reaches 50
(hibernate.search.Animal.optimizer.transaction_limit.max having priority over
hibernate.search.default.optimizer.transaction_limit.max)

If none of these parameters are defined, no optimization is processed automatically.

The default implementation of OptimizerStrategy can be overridden by
implementing or g. hi ber nat e. search. store. optini zati on. Opti nmi zer Strat egy and setting
the opti mi zer. i npl ement at i on property to the fully qualified name of your implementation. This
implementation must implement the interface, be a public class and have a public constructor
taking no arguments.

Example 7.2. Loading a custom OptimizerStrategy

The keyword def aul t can be used to select the Hibernate Search default implementation; all
properties after the . opti mi zer key separator will be passed to the implementation’s initialize
method at start.

Manual optimization

7.2. Manual optimization

You can programmatically optimize (defragment) a Lucene index from Hibernate Search through
the SearchFactory:

Example 7.3. Programmatic index optimization

Ful | Text Sessi on ful | Text Sessi on = Sear ch. get Ful | Text Sessi on(regul ar Sessi on) ;
Sear chFact ory searchFactory = ful | Text Sessi on. get Sear chFactory();

sear chFactory. opti m ze(Order. cl ass);
/1l or
sear chFactory. optim ze();

The first example optimizes the Lucene index holding Orders; the second, optimizes all indexes.

® Note

sear chFact ory. opti m ze() has no effect on a JMS or JGroups backend: you
must apply the optimize operation on the Master node.

7.3. Adjusting optimization

The Lucene index is constantly being merged in the background to keep a good balance between
write and read performance; in a sense this is a form of background optimization which is always
applied.

The following match attributes of Lucene’s IndexWriter and are commonly used to tune how often
merging occurs and how aggressive it is applied. They are exposed by Hibernate Search via:

* hi bernate. search. [def aul t| <i ndexnanme>] . i ndexwriter. max_buffered_docs

* hi bernate. search. [def aul t| <i ndexnanme>] . i ndexwriter. max_mnerge_docs

* hi bernate. search. [defaul t|<i ndexnane>].indexwiter.merge_factor

* hi bernate. search. [defaul t|<i ndexname>].indexwiter.rambuffer_size

* hi bernate. search. [defaul t|<i ndexname>].indexwiter.term.index_interval

See Section 3.7.1, “Tuning indexing performance” for a description of these properties.

149

150

Chapter 8.

Monitoring

Hibernate Search offers access to a St ati sti cs object via Sear chFactory. get Stati stics().
It allows you for example to determine which classes are indexed and how many
entities are in the index. This information is always available. However, by specifying the
hi ber nat e. sear ch. generat e_stati stics property in your configuration you can also collect
total and average Lucene query and object loading timings.

8.1. IMX

You can also enable access to the statistics via JMX. Setting
the property hibernate.search.jnmx_enabled will automatically register the
St ati sticsl nfoMBean. Depending on your the configuration the | ndexControl MBean and
I ndexi ngPr ogr essMoni t or MBean will also be registered. In case you are having more than
one JMX enabled Hibernate Search instance running within a single JVM, you should also set
hi ber nat e. sear ch. j nx_bean_suf f i x to a different value for each of the instances. The specified
suffix will be used to distinguish between the different MBean instances. Let's have a closer look
at the mentioned MBeans.

Tip

Ve
A\

If you want to access your JMX beans remotely via JConsole make sure to set the
system property com sun. managenent . j nxr enot e to true.

8.1.1. StatisticsInfoMBean

This MBean gives you access to Statistics object as described in the previous section.

8.1.2. IndexControlMBean

This MBean allows to build, optimize and purge the index for a given entity. Indexing occurs
via the mass indexing API (see Section 6.3.2, “Using a MassIndexer”). A requirement for
this bean to be registered in JMX is, that the Hibernate SessionFactory is bound to JNDI
via the hi ber nat e. sessi on_f act ory_name property. Refer to the Hibernate Core manual for
more information on how to configure JNDI. The IndexControlIMBean and its API are for now
experimental.

8.1.3. IndexingProgressMonitorMBean

This MBean is an implementation MassindexerProgressMonitor interface. If
hi ber nat e. sear ch. j nx_enabl ed is enabled and the mass indexer API is used the indexing
progress can be followed via this bean. The bean will only be bound to JMX while indexing is in
progress. Once indexing is completed the MBean is not longer available.

151

152

Chapter 9.

Spatial

With the spatial extensions you can combine full-text queries with distance restrictions, filter results

based on distances or sort results on such a distance criteria.

The spatial support of Hibernate Search has the following goals:

« Enable spatial search on entities: find entities within x km from a given location (latitude,
longitude) on Earth

« Provide an easy way to enable spatial indexing via expressive annotations

« Provide a simple way for querying

« Hide geographical complexity

For example, you might search for restaurants somewhere in a 2 km radius around your office.

In order to use the spatial extensions for an indexed entity, you need to add the @pati al
annotation (or g. hi ber nat e. sear ch. annot ati ons. Spati al) and specify one or more sets of
coordinates.

9.1. Enable indexing of Spatial Coordinates

There are different techniques to index point coordinates. Hibernate Search Spatial offers a choice
between two strategies:

* index as numbers

* index as labeled spatial hashes

We will now describe both methods, so you can make a suitable choice. You can pick a different
strategy for each set of coordinates. The strategy is selected by specifying the spati al Mode
attribute of the @pat i al annotation.

9.1.1. Indexing coordinates for range queries

When setting the @pati al . spati al Mbde attribute to Spat i al Mode. RANGE (which is the default)
coordinates are indexed as numeric fields, so that range queries can be performed to narrow
down the initial area of interest.

Pros:

* Is quick on small data sets (< 100k entities)

 Is very simple: straightforward to debug/analyze

153

Chapter 9. Spatial

* Impact on index size is moderate

Cons:

» Poor performance on large data sets

« Poor performance if your data set is distributed across the whole world (for example when
indexing points of interest in the United States, in Europe and in Asia, large areas collide
because they share the same latitude. The latitude range query returns large amounts of data
that need to be cross checked with those returned by the longitude range).

To index your entities for range querying you have to:

« add the @pati al annotation on your entity

« add the @atitude and @ongitude annotations on your properties representing the
coordinates; these must be of type Doubl e

Example 9.1. Sample Spatial indexing: Hotel class

import org. hi bernate. search. annotations. *;

@ntity
@ ndexed
@vpati al
public class Hotel {

@atitude
Doubl e | atitude

@ongi tude
Doubl e | ongi tude

...

9.1.2. Indexing coordinates in a grid with spatial hashes

When setting @spati al . spati al Mode to Spati al Mode. HASH the coordinates are encoded in
several fields representing different zoom levels. Each box for each level is labeled so coordinates
are assigned matching labels for each zoom level. This results in a grid encoding of labels called
spati al hashes.

Pros:

» Good performance even with large data sets

« World wide data distribution independent

154

Implementing the Coordinates interface

Cons :

» Index size is larger: need to encode multiple labels per pair of coordinates

To index your entities you have to:

e add the @spatial annotation on the entity with the Spatial Mode set to GRID
@Spatial(spatialMode = SpatialMode.HASH)

e add the @atitude and @ongitude annotations on the properties representing your
coordinates; these must be of type Doubl e

Example 9.2. Indexing coordinates in a grid using spatial hashes

@Bpati al (spati al Mode = Spati al Mode. HASH)
@ ndexed

@ntity

public class Hotel {

@atitude
Doubl e | atitude;

@ongi t ude
Doubl e | ongi t ude;

...

9.1.3. Implementing the Coordinates interface

Instead of using the @at it ude and @ongi t ude annotations you can choose to implement the
or g. hi bernat e. search. spati al . Coor di nat es interface.

Example 9.3. Implementing the Coordinates interface

import org. hi bernate.search. annotations. *;
inmport org.hibernate. search. spatial . Coordi nat es;

@Entity

@ ndexed

@Bpati al

public class Song inplenments Coordinates {

@d long id;
doubl e | atitude;
doubl e | ongi t ude;
...

@verride
Doubl e getLatitude() {
return |latitude;

155

Chapter 9. Spatial

}

@verride
Doubl e get Longi tude() {
return | ongitude;

}

0l oo

As we will see in the section Section 9.3, “Multiple Coordinate pairs”, an entity can have multiple
@spat i al annotations; when having the entity implement Coor di nat es, the implemented methods
refer to the default @pat i al annotation with the default pair of coordinates.

Tip

Q

The default (field) name in case @patial is placed on the entity level is
or g. hi bernat e. search. annot ati ons. Spati al . COORDI NATES_DEFAULT_FI ELD.

An alternative is to use properties implementing the Coor di nat es interface; this way you can have
multiple Spati al instances:

Example 9.4. Using attributes of type Coordinates

@Entity

@ ndexed

public class Event {
@d
I nteger id;

@ield(store = Store. YES)
String nane;

doubl e | ati tude;
doubl e | ongi t ude;

@ppati al (spati al Mode = Spati al Mode. HASH)
publ i c Coordi nates getlLocation() {
return new Coordinates() {
@verride
public Double getlLatitude() {
return |latitude;

}

@verride
publ i c Doubl e getLongitude() {
return | ongitude;
}
¥
}

...

156

Performing Spatial Queries

When using this form the @pati al . nane automatically defaults to the property name. In the
above case to | ocat i on.

9.2. Performing Spatial Queries

You can use the Hibernate Search query DSL to build a query to search around a pair of
coordinates (latitude, longitude) or around a bean implementing the Coor di nat es interface.

As with any full-text query, the spatial query creation flow looks like:

1. retrieve a Quer yBui | der from the Sear chFact ory
2. use the DSL to build a spatial query, defining search center and radius
3. optionally combine the resulting Quer y with other filters

4. call the creat eFul | Text Query() and use the resulting query like any standard Hibernate or
JPA query

Example 9.5. Search for an Hotel by distance

Quer yBui | der builder = full Text Sessi on. get Sear chFactory()
. bui I dQueryBui I der().forEntity(Hotel.class).get();

or g. apache. | ucene. search. Query | uceneQuery = buil der
.spatial ()
.within(radius, Unit.KM)
.of Lati tude(centerlLatitude)
.andLongi t ude(centerLongitude)

.createQuery();

org. hi bernate. Query hi bQuery = full Text Sessi on
.creat eFul | Text Query(|luceneQuery, Hotel.class);
List results = hibQuery.list();

@ Note

In the above example we did not explicitly specify the field name to use. The
default coordinates field name was used implicitly. To target an alternative pair
of coordinates at query time, we need to specify the field name as well. See

A fully working example can be found in the test-suite
of the source code [https://github.com/hibernate/hibernate-search]. Refer to
Spati al | ndexi ngTest . t est Spati al Annot ati onOnCl assLevel () and its corresponding Hot el
test class.

157

https://github.com/hibernate/hibernate-search
https://github.com/hibernate/hibernate-search

Chapter 9. Spatial

Alternatively to passing separate latitude and longitude values, you can also pass an instance
implementing the Coor di nat es interface:

Example 9.6. DSL example with Coordinates

Coor di nat es coordi nates = Poi nt. fronDegrees(24d, 31.5d);
Query query = buil der
.spatial ()
.within(51, Unit.KM)
. of Coor di nat es(coordi nates)
.createQuery();

List results = full Text Sessi on. creat eFul | Text Query(query, PO .class).list();

9.2.1. Returning distance to query point in the search results

9.2.1.1. Returning distance to the center in the results

To retrieve the actual distance values you need to use projection (see Section 5.1.3.5,
“Projection”):

Example 9.7. Distance projection example

doubl e centerlLatitude = 24.0d;
doubl e centerLongitude= 32.0d;

Quer yBui | der builder = full Text Sessi on. get Sear chFactory()
. bui I dQueryBui l der().forEntity(PO .class).get();
or g. apache. | ucene. search. Query | uceneQuery = buil der
.spatial ()
.onField("location")
.wi t hin(100, Unit.KM
.of Latitude(centerLatitude)
.andLongi t ude(cent er Longi t ude)
.createQuery();

Ful | Text Query hi bQuery = full Text Sessi on. creat eFul | Text Query(l uceneQuery, PO .class);
hi bQuery. set Proj ecti on(Ful | Text Query. SPATI AL_DI STANCE, Ful | Text Query. THI'S);

hi bQuery. set Spati al Par anet er s(cent erLati tude, centerlLongitude, "location");

List results = hibQuery.list();

e Use Ful | Text Query. set Proj ecti on with Ful | Text Query. SPATI AL_DI STANCE as one of the
projected fields.

e Call Ful | Text Query. set Spat i al Par anet er s with the latitude, longitude and the name of the
spatial field used to build the spatial query. Note that using coordinates different than the center
used for the query will have unexpected results.

158

Returning distance to query point in the search results

Tip

Q

The default (field) name in case @patial is placed on the entity level is
or g. hi bernat e. sear ch. annot at i ons. Spati al . COORDI NATES_DEFAULT_FI ELD.

9.2.1.2. Sorting by distance

To sort the results by distance to the center of the search you will have to build a Sort instance
using a Di st anceSort Fi el d:

Example 9.8. Distance sort example

doubl e centerlLatitude = 24.0d;
doubl e centerLongitude = 32.0d;

QueryBui | der builder = full Text Sessi on. get Sear chFact ory()
. bui I dQueryBui I der().forEntity(PO .class).get();
org. apache. | ucene. search. Query | uceneQuery = buil der
.spatial ()
.onField("location")
.w thin(100, Unit.KM
.of Latitude(centerLatitude)
. andLongi t ude(cent er Longi t ude)
.createQuery();

Ful | Text Query hi bQuery = full Text Sessi on. creat eFul | Text Query(l uceneQuery, PO .class);
Sort distanceSort = new Sort (

new Di st anceSortFiel d(centerLatitude, centerLongitude, "location"));
hi bQuery. set Sort (di stanceSort);

The Di st anceSort Fi el d must be constructed using the same coordinates on the same spatial
field used to build the spatial query otherwise the sorting will occur with another center than the
query. This repetition is needed to allow you to define Queries with any tool.

159

Chapter 9. Spatial

(3

9.3. Multiple Coordinate pairs

You can associate multiple pairs of coordinates to the same entity, as long as each pair is uniquely
identified by using a different name. This is achieved by stacking multiple @pat i al annotations
within a single @pat i al s annotation and specifying the nane attribute on the individual @pat i al
annotations.

Example 9.9. Multiple sets of coordinates

import org.hi bernate. search. annotati ons. *;

@ntity
@ ndexed
@patial s({
@pati al ,
@ppati al (name="wor k", spatial Mode = Spati al Mode. HASH)
b
public class UserEx {

@d
I nteger id;

@atitude
Doubl e honeLati t ude;

@ongi tude
Doubl e honelLongi t ude;

@atitude(of ="work")
Doubl e workLat it ude;

@.ongi t ude(of ="work")
Doubl e wor kLongi t ude;

To target an alternative pair of coordinates at query time, we need to specify the pair by name
using onFi el d(String):

160

Insight: implementation details of spatial hashes indexing

Example 9.10. Querying on non-default coordinate set

Quer yBui | der builder = full Text Sessi on. get Sear chFactory()
. bui I dQueryBui I der ().forEntity(UserEx.class).get();

org. apache. | ucene. search. Query | uceneQuery = buil der
.spatial ()
.onField("work")
.within(radius, Unit.KM)
.of Latitude(centerlatitude)
.andLongi t ude(centerLongitude)
.createQuery();

org. hi bernate. Query hi bQuery = full Text Sessi on. creat eFul | Text Query(| uceneQuery,
Hotel . cl ass);
List results = hibQuery.list();

9.4. Insight: implementation details of spatial hashes
iIndexing

The following chapter is meant to provide a technical insight in spatial hash (grid) indexing. It
discusses how coordinates are mapped to the index and how queries are implemented.

9.4.1. At indexing level

When Hibernate Search indexes an entity annotated with @spatial, it instantiates a
Spat i al Fi el dBri dge to transform the latitude and longitude fields accessed via the Coor di nat es
interface to the multiple index fields stored in the Lucene index.

Principle of the spatial index: the spatial index used in Hibernate Search is a grid based spatial
index [http://en.wikipedia.org/wiki/Grid_(spatial_index)#Grid-based_spatial_indexing] where grid
ids are hashes derived from latitude and longitude.

To make computations easier the latitude and longitude field values will be projected into
a flat coordinate system with the help of a sinusoidal projection [http://en.wikipedia.org/wiki/
Sinusoidal_projection]. Origin value space is :

[-90 _, +90]]-180 _, . 180]

for latitude,longitude coordinates and projected space is:

I-pi _, +pil,[-pi/2 _, +pi/2]

for Cartesian x,y coordinates (beware of fields order inversion: x is longitude and y is latitude).
The index is divided into n levels labeled from O to n-1.

At the level 0 the projected space is the whole Earth. At the level 1 the projected space is divided
into 4 rectangles (called boxes as in bounding box):

161

http://en.wikipedia.org/wiki/Grid_(spatial_index)#Grid-based_spatial_indexing
http://en.wikipedia.org/wiki/Grid_(spatial_index)#Grid-based_spatial_indexing
http://en.wikipedia.org/wiki/Grid_(spatial_index)#Grid-based_spatial_indexing
http://en.wikipedia.org/wiki/Sinusoidal_projection
http://en.wikipedia.org/wiki/Sinusoidal_projection
http://en.wikipedia.org/wiki/Sinusoidal_projection

Chapter 9. Spatial

[-pi,~pi/2]#[0,01, [-pi,OJ#[0, +pi/2], [0,-pil2]#[+pi,0] and [0,0]#[+pi,+pi/2]

At level n+1 each box of level n is divided into 4 new boxes and so on. The numbers of boxes
at a given level is 4"n.

Each box is given an id, in this format: [Box index on the X axis]|[Box index on the Y axis]. To
calculate the index of a box on an axis we divide the axis range in 2n slots and find the slot the
box belongs to. At the n level the indexes on an axis are from -(2"n)/2 to (2”n)/2. For instance,
the 5th level has 475 = 1024 boxes with 32 indexes on each axis (32x32 is 1024) and the box of
Id "0|8" is covering the [0,8/32*pi/2]#[1/32*pi,9/32*pi/2] rectangle is projected space.

Beware! The boxes are rectangles in projected space but the related area on Earth is not
rectangular!

Now that we have all these boxes at all these levels, we index points "into" them.

For a point (lat,long) we calculate its projection (x,y) and then we calculate for each level of the
spatial index, the ids of the boxes it belongs to.

At each level the point is in one and only one box. For points on the edges the box are considered
exclusive n the left side and inclusive on the right i-e]start,end] (the points are normalized before
projection to [-90,+90],]-180,+180]).

We store in the Lucene document corresponding to the entity to index one field for each level of
the spatial hash grid. The field is named: HSSI[n]. [spatial index fields name] is given either by
the parameter at class level annotation or derived from the name of the spatial annotated method
of the entity, HSSI stands for Hibernate Search Spatial Index and n is the level of the spatial
hashes grid.

We also store the latitude and longitude as a numeric field under [spatial index fields
name]_HSSI_Latitude and [spatial index fields name]_HSSI_Longitude fields. They will be used
to filter precisely results by distance in the second stage of the search.

9.4.2. At search level

Now that we have all these fields, what are they used for?

When you ask for a spatial search by providing a search discus (center+radius) we will calculate
the box ids that do cover the search discus in the projected space, fetch all the documents that
belong to these boxes (thus narrowing the number of documents for which we will have to calculate
distance to the center) and then filter this subset with a real distance calculation. This is called
two level spatial filtering.

9.4.2.1. Step 1: Compute the best spatial hashes grid level for the
search discus
For a given search radius there is an optimal hash grid level where the number of boxes to retrieve

shall be minimal without bringing back to many documents (level 0 has only 1 box but retrieve
all documents). The optimal hash grid level is the maximum level where the width of each box is

162

At search level

larger than the search area. Near the equator line where projection deformation is minimal, this
will lead to the retrieval of at most 4 boxes. Towards the poles where the deformation is more
significant, it might need to examine more boxes but as the sinusoidal projection has a simple
Tissot's indicatrix (see Sinusoidal projection [http://en.wikipedia.org/wiki/Sinusoidal_projection])
in populated areas, the overhead is minimal.

9.4.2.2. Step 2: Compute ids of the corresponding covering boxes at
that level

Now that we have chosen the optimal level, we can compute the ids of the boxes covering the
search discus (which is not a discus in projected space anymore).

This is done by
org. hi bernate. search. spatial.inpl.Spatial Hel per. get Spati al HashCel | sl ds(Poi nt

center, double radius, int spatial HashLevel)

It will calculate the bounding box of the search discus and then call
org. hi bernate. search. spatial.inpl.Spatial Hel per. get Spati al HashCel | sl ds(Poi nt

| ower Left, Point upperRight, int spatial HashLevel) that will do the actual computation.
If the bounding box crosses the meridian line it will cut the search in two and make two calls to
get Spat i al HashCel | sl ds(Poi nt | owerLeft, Point upperRight, int spatial HashLevel)
with left and right parts of the box.

There are some geo related hacks (search radius too large, search radius
crossing the poles) that are handled in bounding box computations done by
Rect angl e. fronBoundi ngCi rcl e(Coordi nates center, double radius) (see http:/
janmatuschek.de/LatitudeLongitudeBoundingCoordinates for reference on those subjects).

The Spati al Hel per. get Spati al HashCel | sl ds(Poi nt | ower Left, Point upperRi ght, int
spati al HashLevel) project the defining points of the bounding box and compute the boxes they
belong to. It returns all the box Ids between the lower left to the upper right corners, thus covering
the area.

9.4.2.3. Step 3: Lucene index lookup

The query is built with theses Ids searching for documents having a HSSI[n] (n the level found at
Step 1) field valued with one of the ids of Step 2.

See also the implementation of or g. hi ber nat e. search. spati al . i npl . Spati al HashFi l ter.

This query will return all documents in the boxes covering the projected bounding box of the
search discus. So itis too large and needs refining. But we have narrowed the distance calculation
problems to a subset of our data.

9.4.2.4. Step 4: Refine

A distance calculation filter is set after the Lucene index lookup query of Step 3 to exclude false
candidates from the result list.

163

http://en.wikipedia.org/wiki/Sinusoidal_projection
http://en.wikipedia.org/wiki/Sinusoidal_projection
http://janmatuschek.de/LatitudeLongitudeBoundingCoordinates
http://janmatuschek.de/LatitudeLongitudeBoundingCoordinates

Chapter 9. Spatial

See Spati al QueryBui | der Fr onCoor di nat es. bui | dSpat i al Quer y(Coor di nat es center,
doubl e radius, String fiel dName)

164

Chapter 10.

Advanced features

In this final chapter we are offering a smorgasbord of tips and tricks which might become useful
as you dive deeper and deeper into Hibernate Search.

10.1. Accessing the SearchFactory

The SearchFactory object keeps track of the underlying Lucene resources for Hibernate Search.
It is a convenient way to access Lucene natively. The Sear chFact ory can be accessed from a
FullTextSession:

Example 10.1. Accessing the SearchFactory

Ful | Text Sessi on ful | Text Sessi on = Search. get Ful | Text Sessi on(regul ar Sessi on) ;
Sear chFact ory searchFactory = ful |l Text Sessi on. get Sear chFactory();

10.2. Using an IndexReader

Queries in Lucene are executed on an IndexReader. Hibernate Search caches index readers
to maximize performance and implements other strategies to retrieve updated IndexReaders in
order to minimize 10 operations. Your code can access these cached resources, but you have to
follow some "good citizen" rules.

Example 10.2. Accessing an IndexReader

I ndexReader reader = searchFactory. getlndexReader Accessor().open(O der.class);

try {
/I performread-only operations on the reader

}
finally {
sear chFact ory. get | ndexReader Accessor (). cl ose(reader);

}

In this example the SearchFactory figures out which indexes are needed to query this entity. Using
the configured ReaderProvider (described in Section 2.3, “Reader strategy”) on each index, it
returns a compound | ndexReader on top of all involved indexes. Because this IndexReader is
shared amongst several clients, you must adhere to the following rules:

* Never call i ndexReader . cl ose(), but always call r eader Provi der . cl oseReader (reader),
using a finally block.

« Don't use this | ndexReader for modification operations: it's a read-only instace, you would get
an exception.

165

Chapter 10. Advanced features

Aside from those rules, you can use the IndexReader freely, especially to do native Lucene
gueries. Using this shared IndexReaders will be more efficient than by opening one directly from
- for example - the filesystem.

As an alternative to the method open(d ass...t ypes) you can use open(String...i ndexNames)
in this case you pass in one or more index hames; using this strategy you can also select a subset
of the indexes for any indexed type if sharding is used.

Example 10.3. Accessing an IndexReader by index names

I ndexReader reader = searchFactory
. get I ndexReader Accessor ()
.open("Products. 1", "Products.3");

10.3. Accessing a Lucene Directory

A Directory is the most common abstraction used by Lucene to represent the index storage;
Hibernate Search doesn't interact directly with a Lucene Directory but abstracts these interactions
via an IndexManager: an index does not necessarily need to be implemented by a Directory.

If you are certain that your index is represented as a Directory and need to access it, you can get a
reference to the Directory via the IndexManager. You will have to cast the IndexManager instance
to a DirectoryBasedIndexManager and then use get Di rect or yProvi der (). getDirectory() to
get a reference to the underlying Directory. This is not recommended, if you need low level access
to the index using Lucene APIs we suggest to see Section 10.2, “Using an IndexReader” instead.

10.4. Sharding indexes

In some cases it can be useful to split (shard) the data into several Lucene indexes. There are
two main use use cases:

» A single index is so big that index update times are slowing the application down. In this case
static sharding can be used to split the data into a pre-defined number of shards.

» Data is naturally segmented by customer, region, language or other application parameter and
the index should be split according to these segments. This is a use case for dynamic sharding.

Tip

By default sharding is not enabled.

166

Static sharding

10.4.1. Static sharding

To enable static sharding set the
hibernate.search.<indexName>.sharding_strategy.nbr_of shards property as seen in
Example 10.4, “Enabling index sharding”.

Example 10.4. Enabling index sharding

The default sharding strategy which gets enabled by setting this property, splits the data
according to the hash value of the document id (generated by the FieldBridge). This ensures
a fairly balanced sharding. You can replace the default strategy by implementing a custom
IndexShardingStrategy. To use your custom strategy you have to set the hibernate.search.
[default|<indexName>].sharding_strategy property to the fully qualified class name of your custom
IndexShardingStrategy.

Example 10.5. Registering a custom IndexShardingStrategy

10.4.2. Dynamic sharding

Dynamic sharding allows you to manage the shards yourself and even create new shards
on the fly. To do so you need to implement the interface ShardldentifierProvider and set the
hibernate.search.[default|<indexName>].sharding_strategy property to the fully qualified name of
this class. Note that instead of implementing the interface directly, you should rather derive your
implementation from org.hibernate.search.store.ShardldentifierProviderTemplate which provides
a basic implementation. Let's look at Example 10.6, “Custom ShardldentifierProvider” for an
example.

Example 10.6. Custom ShardldentifierProvider

public static class Animal Shardl dentifierProvider extends ShardldentifierProviderTenplate {

@verride
public String getShardldentifier(C ass<?> entityType, Serializable id,
String idAsString, Docunent docunent) {
if (entityType.equal s(Aninal.class)) {
String typeVal ue = docunent. getField("type").stringVal ue();
addShar d(typeVal ue);
return typeval ue;
}

throw new Runti meExcepti on("Ani mal expected but found " + entityType);

}

@verride

167

Chapter 10. Advanced features

protected Set<String> | oadl ni tial Shar dNames(Properties properties, Buil dContext buil dContext) {
Servi ceManager servi ceManager = buil dCont ext . get Servi ceManager () ;
Sessi onFact ory sessionFactory = servi ceManager.request Servi ce(
Hi ber nat eSessi onFact oryServi ce. cl ass) . get Sessi onFactory();
Sessi on session = sessionFactory. openSessi on();

try {
Criteria initial ShardsCriteria = session.createCriteria(Animal.class);
initial ShardsCriteria.setProjection(Projections.distinct(Property.forName("type")));
List<String> initial Types = initial ShardsCriteria.list();
return new HashSet <String>(initial Types);

}
finally {

session. cl ose();

}

The are several things happening in Ani mal Shar dl denti fi er Provi der. First off its purpose is
to create one shard per animal type (e.g. mammal, insect, etc.). It does so by inspecting the class
type and the Lucene document passed to the get Shar dl denti fi er () method. It extracts the type
field from the document and uses it as shard name. get Shardl denti fier () is called for every
addition to the index and a new shard will be created with every new animal type encountered.
The base class Shardl denti fi er Provi der Tenpl at e maintains a set with all known shards to
which any identifier must be added by calling addShar d() .

It is important to understand that Hibernate Search cannot know which shards already
exist when the application starts. When using Shardl denti fi er Provi der Tenpl at e as base
class of a ShardldentifierProvider implementation, the initial set of shard identifiers
must be returned by the | oadl niti al Shar dNames() method. How this is done will depend
on the use case. However, a common case in combination with Hibernate ORM is
that the initial shard set is defined by the the distinct values of a given database
column. Example 10.6, “Custom ShardldentifierProvider” shows how to handle such a case.
Ani mal Shar dl denti fi er Provi der makes inits| oadl ni ti al Shar dNanes() implementation use
of a service called H ber nat eSessi onFact or ySer vi ce (see also Section 10.6, “Using external
services”) which is available within an ORM environment. It allows to request a Hibernate
Sessi onFact ory instance which can be used to run a Criteria query in order to determine the
initial set of shard identifiers.

Last but not least, the Shar dl dent i fi er Provi der also allows for optimizing searches by selecting
which shard to run a query against. By activating a filter (see Section 5.3.1, “Using filters in a
sharded environment”), a sharding strategy can select a subset of the shards used to answer
a query (get Shardl denti fi er sFor Query(), not shown in the example) and thus speed up the
query execution.

/) Important

This ShardldentifierProvider is considered experimental. We might need to apply
some changes to the defined method signatures to accommodate for unforeseen

168

Sharing indexes

use cases. Please provide feedback if you have ideas, or just to let us know how

you're using this API.

10.5. Sharing indexes

Itis technically possible to store the information of more than one entity into a single Lucene index.
There are two ways to accomplish this:

« Configuring the underlying directory providers to point to the same physical index
directory. In practice, you set the property hi bernate. search.[fully qualified entity
nane] . i ndexNarme to the same value. As an example, let's use the same index (directory) for
the Furni ture and Ani mal entities. We just set i ndexName for both entities to "Animal”. Both
entities will then be stored in the Animal directory:

« Setting the @Indexed annotation’s index attribute of the entities you want to merge to the same
value. If we again wanted all Furniture instances to be indexed in the Animal index along with all
instances of Animal we would specify @Indexed(index="Animal") on both Animal and Furniture
classes.

® Note

This is only presented here so that you know the option is available. There is really
not much benefit in sharing indexes.

10.6. Using external services

A Service in Hibernate Search is a class implementing the interface
or g. hi ber nat e. search. engi ne. service. spi. Service and providing a default no-arg
constructor. Theoretically that's all that is needed to request a given service type from the
Hibernate Search Ser vi ceManager . In practice you want probably want to add some service life
cycle methods (implement St ar t abl e and St oppabl e) as well as actual methods providing some
functionality.

Hibernate Search uses the service approach to decouple different components of the system.
Let's have a closer look at services and how they are used.

10.6.1. Using a Service

Many of of the pluggable contracts of Hibernate Search can use services. Services are accessible
via the Bui | dCont ext interface as in the following example.

169

Chapter 10. Advanced features

Example 10.7. Example of a custom DirectoryProvider using a
ClassLoaderService

public CustonDirectoryProvider inplenments DirectoryProvider<RAMD rectory> {
private Servi ceManager servi ceManager;
private C assLoader Servi ce cl assLoader Servi ce;

public void initialize(
String directoryProvi der Nane,
Properties properties,
Bui | dCont ext context) {
//get a reference to the Servi ceManager
t hi s. servi ceManager = context. get Servi ceManager () ;

public void start() {
/1 get the current Cl asslLoader Service
cl assLoader Servi ce = servi ceManager . r equest Servi ce(C assLoader Servi ce. cl ass) ;

public RAMDi rectory getDirectory() {
//use the C assLoader Service

public stop() {
// make sure to rel ease all services
servi ceManager . r el easeServi ce(C assLoader Servi ce. cl ass) ;

When you request a service, an instance of the requested service type is returned to you.
Make sure release the service via Servi ceManager . r el easeServi ce once you don't need it
anymore. Note that the service can be released in the Di r ect or yPr ovi der . st op method if the
Di rect oryProvi der uses the service during its lifetime or could be released right away if the
service is only needed during initialization time.

10.6.2. Implementing a Service

To implement a service, you need to create an interface which identifies it and extends
or g. hi ber nat e. search. engi ne. servi ce. spi . Servi ce. You can then add additional methods
to your service interface as needed.

Naturally you will also need to provide an implementation of your service interface. This
implementation must have a public no-arg constructor. Optionally your service can also
implement the life cycle methods org. hi ber nat e. sear ch. engi ne. servi ce. spi . Startabl e
and/or or g. hi ber nat e. sear ch. engi ne. servi ce. spi . St oppabl e. These methods will be called
by the Ser vi ceManager when the service is created respectively the last reference to a requested
service is released.

Services are retrieved from the Ser vi ceManager . r equest Ser vi ce using the d ass object of the
interface you define as a key.

170

Implementing a Service

10.6.2.1. Managed services

To transparently discover services Hibernate Search uses the Java ServiceLoader mechanism.
This means you need to add a service file to your jar under / META- | NF/ ser vi ces/ named after
the fully qualified classname of your service interface. The content of the file contains the fully
qualified classname of your service implementation.

Example 10.8. Service file for the Infinispan CacheManagerService service

Example 10.9. Content of META-INF/services/
org.hibernate.search.infinispan.CacheManagerService

@ Note

Hibernate Search only supports a single service implementation of a given service.
There is no mechanism to select between multiple versions of a service. It is an
error to have multiple jars defining each a different implementation for the same
service. If you want to override the implementation of a already existing service at
runtime you will need to look at

10.6.2.2. Provided services

/) Important

Provided services are usually used by frameworks integrating with Hibernate
Search and not by library users themselves.

As an alternative to manages services, a service can be provided by the environment
bootstrapping Hibernate Search. For example, Infinispan which uses Hibernate Search as its
internal search engine, passes the CacheCont ai ner to Hibernate Search. In this case, the
CacheCont ai ner instance is not managed by Hibernate Search and the start/stop methods
defined by optional St oppabl e and St ar t abl e interfaces will be ignored.

A Service implementation which is only used as a Provided Service doesn’t need to have a public
constructor taking no arguments.

171

Chapter 10. Advanced features

(3

The provided services are passed to Hibernate Search via the Sear chConf i gur at i on interface:
as implementor of method get Pr ovi dedSer vi ces you can return a Map of all services you need
to provide.

(3

10.7. Customizing Lucene’s scoring formula

Lucene allows the user to customize its scoring formula by extending
org.apache.lucene.search.similarities.Similarity. The abstract methods defined in this class match
the factors of the following formula calculating the score of query g for document d:

score(q,d) =coord(q,d) -queryNorm(q) - y ~t inq~ (tf(tind) -idf(t) 2. t.getBoost() -norm(t,d))

Factor Description

tf(t ind) Term frequency factor for the term (t) in the
document (d).

idf(t) Inverse document frequency of the term.

coord(q,d) Score factor based on how many of the query
terms are found in the specified document.

gueryNorm(q) Normalizing factor used to make scores
between queries comparable.

t.getBoost() Field boost.

norm(t,d) Encapsulates a few (indexing time) boost and
length factors.

It is beyond the scope of this manual to explain this formula in more detail. Please refer to
Similarity’s Javadocs for more information.

Multi-tenancy

Hibernate Search provides two ways to modify Lucene’s similarity calculation.

First you can set the default similarity by specifying the fully specified classname of your
Similarity implementation using the property hibernate.search.similarity. The default value is
org.apache.lucene.search.similarities.DefaultSimilarity.

Secondly, you can override the similarity used for a specific index by setting the simlarity
property for this index (see Section 3.3, “Directory configuration” for more information about index
configuration):

As an example, let's assume it is not important how often a term appears in a document.
Documents with a single occurrence of the term should be scored the same as documents with
multiple occurrences. In this case your custom implementation of the method tf (fl oat freq)
should return 1.0.

Note

When two entities share the same index they must declare the same Similarity
implementation.

10.8. Multi-tenancy

10.8.1. What is multi-tenancy?

The term multi-tenancy in general is applied to software development to indicate an architecture in
which a single running instance of an application simultaneously serves multiple clients (tenants).
Isolating information (data, customizations, etc) pertaining to the various tenants is a particular
challenge in these systems. This includes the data owned by each tenant stored in the database.
You will find more details on how to enable multi-tenancy with Hibernate in the Hibernate ORM
developer’s guide [http://docs.jboss.org/hibernate/orm/4.3/devguide/en-US/html/ch16.html].

10.8.2. Using a tenant-aware rul I Text Sessi on

Hibernate Search supports multi-tenancy on top of Hibernate ORM, it stores the tenant identifier
in the document and automatically filters the query results.

The Ful | Text Sessi on will be bound to the specific tenant (“client-A" in the example) and the
mass indexer will only index the entities associated to that tenant identifier.

Example 10.10. Bind the session to a tenant

Sessi on session = get Sessi onFactory()

173

http://docs.jboss.org/hibernate/orm/4.3/devguide/en-US/html/ch16.html
http://docs.jboss.org/hibernate/orm/4.3/devguide/en-US/html/ch16.html
http://docs.jboss.org/hibernate/orm/4.3/devguide/en-US/html/ch16.html

Chapter 10. Advanced features

. Wi thOptions()
.tenantldentifier("client-A")
.openSession();

Ful | Text Sessi on sessi on = Search. get Ful | Text Sessi on(session);

The use of a tenant identifier will have the following effects:

1. Every document saved or updated in the index will have an additional field
__HSear ch_Tenant I d containing the tenant identifier.

2. Every search will be filtered using the tenant identifier.

3. The MassIndexer (see Section 6.3.2, “Using a MasslIndexer”) will only affect the currently
selected tenant.

Note that not using a tenant will return all the matching results for all the tenants in the index.

174

Chapter 11.

Further reading

Last but not least, a few pointers to further information. We highly recommend you to get a copy
of Hibernate Search in Action [http://www.manning.com/bernard/]. This excellent book covers
Hibernate Search in much more depth than this online documentation can and has a great range
of additional examples. If you want to increase your knowledge of Lucene we recommend Lucene
in Action (Second Edition) [http://www.manning.com/hatcher3/].

Because Hibernate Search’s functionality is tightly coupled to Hibernate ORM it is a good
idea to understand Hibernate. Start with the online documentation [http://hibernate.org/orm/
documentation/] or get hold of a copy of Java Persistence with Hibernate, Second Edition [http://
www.manning.com/bauer3/].

If you have any further questions regarding Hibernate Search or want to share some of your use
cases have a look at the Hibernate Search Wiki [https://community.jboss.org/en/hibernate/search]
and the Hibernate Search Forum [https://forum.hibernate.org/viewforum.php?f=9]. We are looking
forward hearing from you.

In case you would like to report a bug use the Hibernate Search JIRA [https://
hibernate.atlassian.net/browse/HSEARCH] instance. Feedback is always welcome!

175

http://www.manning.com/bernard/
http://www.manning.com/bernard/
http://www.manning.com/hatcher3/
http://www.manning.com/hatcher3/
http://www.manning.com/hatcher3/
http://hibernate.org/orm/documentation/
http://hibernate.org/orm/documentation/
http://hibernate.org/orm/documentation/
http://www.manning.com/bauer3/
http://www.manning.com/bauer3/
http://www.manning.com/bauer3/
https://community.jboss.org/en/hibernate/search
https://community.jboss.org/en/hibernate/search
https://forum.hibernate.org/viewforum.php?f=9
https://forum.hibernate.org/viewforum.php?f=9
https://hibernate.atlassian.net/browse/HSEARCH
https://hibernate.atlassian.net/browse/HSEARCH
https://hibernate.atlassian.net/browse/HSEARCH

176

	Hibernate Search
	Table of Contents
	Preface
	Chapter 1. Getting started
	1.1. System Requirements
	1.2. Migration notes
	1.3. Required libraries
	1.3.1. Using Maven
	1.3.2. Manual library management

	1.4. Deploying on WildFly
	1.5. Configuration
	1.6. Indexing
	1.7. Searching
	1.8. Analyzer
	1.9. What’s next

	Chapter 2. Architecture
	2.1. Overview
	2.2. Back end
	2.2.1. Lucene
	2.2.2. JMS
	2.2.3. JGroups

	2.3. Reader strategy
	2.3.1. shared
	2.3.2. not-shared
	2.3.3. Custom

	Chapter 3. Configuration
	3.1. Enabling Hibernate Search and automatic indexing
	3.1.1. Enabling Hibernate Search
	3.1.2. Automatic indexing

	3.2. Configuring the IndexManager
	3.2.1. directory-based
	3.2.2. near-real-time
	3.2.3. Custom

	3.3. Directory configuration
	3.3.1. Infinispan Directory configuration
	3.3.1.1. Requirements
	3.3.1.2. Architecture
	3.3.1.3. Infinispan Configuration

	3.4. Worker configuration
	3.4.1. JMS Master/Slave back end
	3.4.1.1. Slave nodes
	3.4.1.2. Master node

	3.4.2. JGroups Master/Slave back end
	3.4.2.1. Slave nodes
	3.4.2.2. Master node
	3.4.2.3. Automatic master election
	3.4.2.4. JGroups channel configuration
	3.4.2.4.1. JGroups channel instance injection

	3.5. Reader strategy configuration
	3.6. Exception handling
	3.7. Lucene configuration
	3.7.1. Tuning indexing performance
	3.7.1.1. Control segment size
	3.7.1.2. Troubleshooting: enable Lucene’s Infostream

	3.7.2. LockFactory configuration
	3.7.3. Index format compatibility

	3.8. Metadata API
	3.9. Hibernate Search as a WildFly module
	3.9.1. Use the Hibernate Search version included in WildFly
	3.9.2. Update and activate latest Hibernate Search version in WildFly
	3.9.3. Using Infinispan with Hibernate Search on WildFly

	Chapter 4. Mapping entities to the index structure
	4.1. Mapping an entity
	4.1.1. Basic mapping
	4.1.1.1. @Indexed
	4.1.1.2. @Field
	4.1.1.3. @NumericField
	4.1.1.4. @Id

	4.1.2. Mapping properties multiple times
	4.1.3. Embedded and associated objects
	4.1.3.1. Limiting object embedding to specific paths

	4.1.4. Associated objects: building a dependency graph with @ContainedIn

	4.2. Boosting
	4.2.1. Static index time boosting
	4.2.2. Dynamic index time boosting

	4.3. Analysis
	4.3.1. Default analyzer and analyzer by class
	4.3.2. Named analyzers
	4.3.2.1. Available analyzers

	4.3.3. Dynamic analyzer selection
	4.3.4. Retrieving an analyzer

	4.4. Bridges
	4.4.1. Built-in bridges
	4.4.2. Tika bridge
	4.4.3. Custom bridges
	4.4.3.1. StringBridge
	4.4.3.1.1. Parameterized bridge
	4.4.3.1.2. Type aware bridge
	4.4.3.1.3. Two-way bridge

	4.4.3.2. FieldBridge
	4.4.3.3. ClassBridge

	4.4.4. BridgeProvider: associate a bridge to a given return type

	4.5. Conditional indexing
	4.6. Providing your own id
	4.6.1. The ProvidedId annotation

	4.7. Programmatic API
	4.7.1. Mapping an entity as indexable
	4.7.2. Adding DocumentId to indexed entity
	4.7.3. Defining analyzers
	4.7.4. Defining full text filter definitions
	4.7.5. Defining fields for indexing
	4.7.6. Programmatically defining embedded entities
	4.7.7. Contained In definition
	4.7.8. Date/Calendar Bridge
	4.7.9. Declaring bridges
	4.7.10. Mapping class bridge
	4.7.11. Mapping dynamic boost

	Chapter 5. Querying
	5.1. Building queries
	5.1.1. Building a Lucene query using the Lucene API
	5.1.2. Building a Lucene query with the Hibernate Search query DSL
	5.1.2.1. Keyword queries
	5.1.2.2. Fuzzy queries
	5.1.2.3. Wildcard queries
	5.1.2.4. Phrase queries
	5.1.2.5. Range queries
	5.1.2.6. Spatial (or geolocation) queries
	5.1.2.7. More Like This queries
	5.1.2.8. Combining queries
	5.1.2.9. Query options

	5.1.3. Building a Hibernate Search query
	5.1.3.1. Generality
	5.1.3.2. Pagination
	5.1.3.3. Sorting
	5.1.3.4. Fetching strategy
	5.1.3.5. Projection
	5.1.3.6. Customizing object initialization strategies
	5.1.3.7. Limiting the time of a query
	5.1.3.7.1. Raise an exception on time limit
	5.1.3.7.2. Limit the number of results when the time limit is reached

	5.2. Retrieving the results
	5.2.1. Performance considerations
	5.2.2. Result size
	5.2.3. ResultTransformer
	5.2.4. Understanding results

	5.3. Filters
	5.3.1. Using filters in a sharded environment

	5.4. Faceting
	5.4.1. Creating a faceting request
	5.4.1.1. Discrete faceting request
	5.4.1.2. Creating a range faceting request

	5.4.2. Setting the facet sort order
	5.4.3. Applying a faceting request
	5.4.4. Interpreting a Facet result
	5.4.5. Restricting query results

	5.5. Optimizing the query process
	5.5.1. Caching index values: FieldCache

	Chapter 6. Manual index changes
	6.1. Adding instances to the index
	6.2. Deleting instances from the index
	6.3. Rebuilding the whole index
	6.3.1. Using flushToIndexes()
	6.3.2. Using a MassIndexer
	6.3.2.1. MassIndexer using threads and JDBC connections
	6.3.2.2. Using a custom MassIndexer implementation

	6.3.3. Useful parameters for batch indexing

	Chapter 7. Index Optimization
	7.1. Automatic optimization
	7.2. Manual optimization
	7.3. Adjusting optimization

	Chapter 8. Monitoring
	8.1. JMX
	8.1.1. StatisticsInfoMBean
	8.1.2. IndexControlMBean
	8.1.3. IndexingProgressMonitorMBean

	Chapter 9. Spatial
	9.1. Enable indexing of Spatial Coordinates
	9.1.1. Indexing coordinates for range queries
	9.1.2. Indexing coordinates in a grid with spatial hashes
	9.1.3. Implementing the Coordinates interface

	9.2. Performing Spatial Queries
	9.2.1. Returning distance to query point in the search results
	9.2.1.1. Returning distance to the center in the results
	9.2.1.2. Sorting by distance

	9.3. Multiple Coordinate pairs
	9.4. Insight: implementation details of spatial hashes indexing
	9.4.1. At indexing level
	9.4.2. At search level
	9.4.2.1. Step 1: Compute the best spatial hashes grid level for the search discus
	9.4.2.2. Step 2: Compute ids of the corresponding covering boxes at that level
	9.4.2.3. Step 3: Lucene index lookup
	9.4.2.4. Step 4: Refine

	Chapter 10. Advanced features
	10.1. Accessing the SearchFactory
	10.2. Using an IndexReader
	10.3. Accessing a Lucene Directory
	10.4. Sharding indexes
	10.4.1. Static sharding
	10.4.2. Dynamic sharding

	10.5. Sharing indexes
	10.6. Using external services
	10.6.1. Using a Service
	10.6.2. Implementing a Service
	10.6.2.1. Managed services
	10.6.2.2. Provided services

	10.7. Customizing Lucene’s scoring formula
	10.8. Multi-tenancy
	10.8.1. What is multi-tenancy?
	10.8.2. Using a tenant-aware FullTextSession

	Chapter 11. Further reading

