1.2. Part 1 - The first Hibernate Application

Let's assume we need a small database application that can store events we want to attend, and information about the host(s) of these events. We will use an in-memory, Java database named HSQLDB to avoid describing installation/setup of any particular database servers. Feel free to tweak this tutorial to use whatever database you feel comfortable using.

The first thing we need to do is set up our development environment, and specifically to setup all the required dependencies to Hibernate as well as other libraries. Hibernate is built using Maven which amongst other features provides dependecy management; moreover it provides transitive dependecy management which simply means that to use Hibernate we can simply define our dependency on Hibernate, Hibernate itself defines the dependencies it needs which then become transitive dependencies of our project.

.
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

    ...

    <dependencies>
        <dependency>
            <groupId>${groupId}</groupId>
            <artifactId>hibernate-core</artifactId>
        </dependency>

        <!-- Because this is a web app, we also have a dependency on the servlet api. -->
        <dependency>
            <groupId>javax.servlet</groupId>
            <artifactId>servlet-api</artifactId>
        </dependency>
    </dependencies>

</project>

Note

Essentially we are describing here the /tutorials/web/pom.xml file. See the Maven site for more information.

Tip

While not strictly necessary, most IDEs have integration with Maven to read these POM files and automatically set up a project for you which can save lots of time and effort.

Next we create a class that represents the event we want to store in database.

1.2.1. The first class

Our first persistent class is a simple JavaBean class with some properties:

package org.hibernate.tutorial.domain;

import java.util.Date;

public class Event {
    private Long id;

    private String title;
    private Date date;

    public Event() {}

    public Long getId() {
        return id;
    }

    private void setId(Long id) {
        this.id = id;
    }

    public Date getDate() {
        return date;
    }

    public void setDate(Date date) {
        this.date = date;
    }

    public String getTitle() {
        return title;
    }

    public void setTitle(String title) {
        this.title = title;
    }
}

You can see that this class uses standard JavaBean naming conventions for property getter and setter methods, as well as private visibility for the fields. This is a recommended design - but not required. Hibernate can also access fields directly, the benefit of accessor methods is robustness for refactoring. The no-argument constructor is required to instantiate an object of this class through reflection.

The id property holds a unique identifier value for a particular event. All persistent entity classes (there are less important dependent classes as well) will need such an identifier property if we want to use the full feature set of Hibernate. In fact, most applications (esp. web applications) need to distinguish objects by identifier, so you should consider this a feature rather than a limitation. However, we usually don't manipulate the identity of an object, hence the setter method should be private. Only Hibernate will assign identifiers when an object is saved. You can see that Hibernate can access public, private, and protected accessor methods, as well as (public, private, protected) fields directly. The choice is up to you and you can match it to fit your application design.

The no-argument constructor is a requirement for all persistent classes; Hibernate has to create objects for you, using Java Reflection. The constructor can be private, however, package visibility is required for runtime proxy generation and efficient data retrieval without bytecode instrumentation.

Place this Java source file in a directory called src in the development folder, and in its correct package. The directory should now look like this:

.
+lib
  <Hibernate and third-party libraries>
+src
  +events
    Event.java

In the next step, we tell Hibernate about this persistent class.

1.2.2. The mapping file

Hibernate needs to know how to load and store objects of the persistent class. This is where the Hibernate mapping file comes into play. The mapping file tells Hibernate what table in the database it has to access, and what columns in that table it should use.

The basic structure of a mapping file looks like this:

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
        "-//Hibernate/Hibernate Mapping DTD 3.0//EN"
        "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>
[...]
</hibernate-mapping>

Note that the Hibernate DTD is very sophisticated. You can use it for auto-completion of XML mapping elements and attributes in your editor or IDE. You also should open up the DTD file in your text editor - it's the easiest way to get an overview of all elements and attributes and to see the defaults, as well as some comments. Note that Hibernate will not load the DTD file from the web, but first look it up from the classpath of the application. The DTD file is included in hibernate3.jar as well as in the src/ directory of the Hibernate distribution.

We will omit the DTD declaration in future examples to shorten the code. It is of course not optional.

Between the two hibernate-mapping tags, include a class element. All persistent entity classes (again, there might be dependent classes later on, which are not first-class entities) need such a mapping, to a table in the SQL database:

<hibernate-mapping>

    <class name="events.Event" table="EVENTS">

    </class>

</hibernate-mapping>

So far we told Hibernate how to persist and load object of class Event to the table EVENTS, each instance represented by a row in that table. Now we continue with a mapping of the unique identifier property to the tables primary key. In addition, as we don't want to care about handling this identifier, we configure Hibernate's identifier generation strategy for a surrogate primary key column:

<hibernate-mapping>

    <class name="events.Event" table="EVENTS">
        <id name="id" column="EVENT_ID">
            <generator class="native"/>
        </id>
    </class>

</hibernate-mapping>

The id element is the declaration of the identifier property, name="id" declares the name of the Java property - Hibernate will use the getter and setter methods to access the property. The column attribute tells Hibernate which column of the EVENTS table we use for this primary key. The nested generator element specifies the identifier generation strategy, in this case we used native, which picks the best strategy depending on the configured database (dialect). Hibernate supports database generated, globally unique, as well as application assigned identifiers (or any strategy you have written an extension for).

Finally we include declarations for the persistent properties of the class in the mapping file. By default, no properties of the class are considered persistent:

<hibernate-mapping>

    <class name="events.Event" table="EVENTS">
        <id name="id" column="EVENT_ID">
            <generator class="native"/>
        </id>
        <property name="date" type="timestamp" column="EVENT_DATE"/>
        <property name="title"/>
    </class>

</hibernate-mapping>

Just as with the id element, the name attribute of the property element tells Hibernate which getter and setter methods to use. So, in this case, Hibernate will look for getDate()/setDate(), as well as getTitle()/setTitle().

Why does the date property mapping include the column attribute, but the title doesn't? Without the column attribute Hibernate by default uses the property name as the column name. This works fine for title. However, date is a reserved keyword in most database, so we better map it to a different name.

The next interesting thing is that the title mapping also lacks a type attribute. The types we declare and use in the mapping files are not, as you might expect, Java data types. They are also not SQL database types. These types are so called Hibernate mapping types, converters which can translate from Java to SQL data types and vice versa. Again, Hibernate will try to determine the correct conversion and mapping type itself if the type attribute is not present in the mapping. In some cases this automatic detection (using Reflection on the Java class) might not have the default you expect or need. This is the case with the date property. Hibernate can't know if the property (which is of java.util.Date) should map to a SQL date, timestamp, or time column. We preserve full date and time information by mapping the property with a timestamp converter.

This mapping file should be saved as Event.hbm.xml, right in the directory next to the Event Java class source file. The naming of mapping files can be arbitrary, however the hbm.xml suffix is a convention in the Hibernate developer community. The directory structure should now look like this:

.
+lib
  <Hibernate and third-party libraries>
+src
  +events
    Event.java
    Event.hbm.xml

We continue with the main configuration of Hibernate.

1.2.3. Hibernate configuration

We now have a persistent class and its mapping file in place. It is time to configure Hibernate. Before we do this, we will need a database. HSQL DB, a java-based SQL DBMS, can be downloaded from the HSQL DB website(http://hsqldb.org/). Actually, you only need the hsqldb.jar from this download. Place this file in the lib/ directory of the development folder.

Create a directory called data in the root of the development directory - this is where HSQL DB will store its data files. Now start the database by running java -classpath ../lib/hsqldb.jar org.hsqldb.Server in this data directory. You can see it start up and bind to a TCP/IP socket, this is where our application will connect later. If you want to start with a fresh database during this tutorial, shutdown HSQL DB (press CTRL + C in the window), delete all files in the data/ directory, and start HSQL DB again.

Hibernate is the layer in your application which connects to this database, so it needs connection information. The connections are made through a JDBC connection pool, which we also have to configure. The Hibernate distribution contains several open source JDBC connection pooling tools, but will use the Hibernate built-in connection pool for this tutorial. Note that you have to copy the required library into your classpath and use different connection pooling settings if you want to use a production-quality third party JDBC pooling software.

For Hibernate's configuration, we can use a simple hibernate.properties file, a slightly more sophisticated hibernate.cfg.xml file, or even complete programmatic setup. Most users prefer the XML configuration file:

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-configuration PUBLIC
        "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
        "http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<hibernate-configuration>

    <session-factory>

        <!-- Database connection settings -->
        <property name="connection.driver_class">org.hsqldb.jdbcDriver</property>
        <property name="connection.url">jdbc:hsqldb:hsql://localhost</property>
        <property name="connection.username">sa</property>
        <property name="connection.password"></property>

        <!-- JDBC connection pool (use the built-in) -->
        <property name="connection.pool_size">1</property>

        <!-- SQL dialect -->
        <property name="dialect">org.hibernate.dialect.HSQLDialect</property>

        <!-- Enable Hibernate's automatic session context management -->
        <property name="current_session_context_class">thread</property>

        <!-- Disable the second-level cache  -->
        <property name="cache.provider_class">org.hibernate.cache.NoCacheProvider</property>

        <!-- Echo all executed SQL to stdout -->
        <property name="show_sql">true</property>

        <!-- Drop and re-create the database schema on startup -->
        <property name="hbm2ddl.auto">create</property>

        <mapping resource="events/Event.hbm.xml"/>

    </session-factory>

</hibernate-configuration>

Note that this XML configuration uses a different DTD. We configure Hibernate's SessionFactory - a global factory responsible for a particular database. If you have several databases, use several <session-factory> configurations, usually in several configuration files (for easier startup).

The first four property elements contain the necessary configuration for the JDBC connection. The dialect property element specifies the particular SQL variant Hibernate generates. Hibernate's automatic session management for persistence contexts will come in handy as you will soon see. The hbm2ddl.auto option turns on automatic generation of database schemas - directly into the database. This can of course also be turned off (by removing the config option) or redirected to a file with the help of the SchemaExport Ant task. Finally, we add the mapping file(s) for persistent classes to the configuration.

Copy this file into the source directory, so it will end up in the root of the classpath. Hibernate automatically looks for a file called hibernate.cfg.xml in the root of the classpath, on startup.

1.2.4. Building with Ant

We'll now build the tutorial with Ant. You will need to have Ant installed - get it from the Ant download page. How to install Ant will not be covered here. Please refer to the Ant manual. After you have installed Ant, we can start to create the buildfile. It will be called build.xml and placed directly in the development directory.

A basic build file looks like this:

<project name="hibernate-tutorial" default="compile">

    <property name="sourcedir" value="${basedir}/src"/>
    <property name="targetdir" value="${basedir}/bin"/>
    <property name="librarydir" value="${basedir}/lib"/>

    <path id="libraries">
        <fileset dir="${librarydir}">
            <include name="*.jar"/>
        </fileset>
    </path>

    <target name="clean">
        <delete dir="${targetdir}"/>
        <mkdir dir="${targetdir}"/>
    </target>

    <target name="compile" depends="clean, copy-resources">
      <javac srcdir="${sourcedir}"
             destdir="${targetdir}"
             classpathref="libraries"/>
    </target>

    <target name="copy-resources">
        <copy todir="${targetdir}">
            <fileset dir="${sourcedir}">
                <exclude name="**/*.java"/>
            </fileset>
        </copy>
    </target>

</project>

This will tell Ant to add all files in the lib directory ending with .jar to the classpath used for compilation. It will also copy all non-Java source files to the target directory, e.g. configuration and Hibernate mapping files. If you now run Ant, you should get this output:

C:\hibernateTutorial\>ant
Buildfile: build.xml

copy-resources:
     [copy] Copying 2 files to C:\hibernateTutorial\bin

compile:
    [javac] Compiling 1 source file to C:\hibernateTutorial\bin

BUILD SUCCESSFUL
Total time: 1 second 

1.2.5. Startup and helpers

It's time to load and store some Event objects, but first we have to complete the setup with some infrastructure code. We have to startup Hibernate. This startup includes building a global SessionFactory object and to store it somewhere for easy access in application code. A SessionFactory can open up new Session's. A Session represents a single-threaded unit of work, the SessionFactory is a thread-safe global object, instantiated once.

We'll create a HibernateUtil helper class which takes care of startup and makes accessing a SessionFactory convenient. Let's have a look at the implementation:

package util;

import org.hibernate.*;
import org.hibernate.cfg.*;

public class HibernateUtil {

    private static final SessionFactory sessionFactory;

    static {
        try {
            // Create the SessionFactory from hibernate.cfg.xml
            sessionFactory = new Configuration().configure().buildSessionFactory();
        } catch (Throwable ex) {
            // Make sure you log the exception, as it might be swallowed
            System.err.println("Initial SessionFactory creation failed." + ex);
            throw new ExceptionInInitializerError(ex);
        }
    }

    public static SessionFactory getSessionFactory() {
        return sessionFactory;
    }

}

This class does not only produce the global SessionFactory in its static initializer (called once by the JVM when the class is loaded), but also hides the fact that it uses a static singleton. It might as well lookup the SessionFactory from JNDI in an application server.

If you give the SessionFactory a name in your configuration file, Hibernate will in fact try to bind it to JNDI after it has been built. To avoid this code completely you could also use JMX deployment and let the JMX-capable container instantiate and bind a HibernateService to JNDI. These advanced options are discussed in the Hibernate reference documentation.

Place HibernateUtil.java in the development source directory, in a package next to events:

.
+lib
  <Hibernate and third-party libraries>
+src
  +events
    Event.java
    Event.hbm.xml
  +util
    HibernateUtil.java
  hibernate.cfg.xml
+data
build.xml

This should again compile without problems. We finally need to configure a logging system - Hibernate uses commons logging and leaves you the choice between Log4j and JDK 1.4 logging. Most developers prefer Log4j: copy log4j.properties from the Hibernate distribution (it's in the etc/ directory) to your src directory, next to hibernate.cfg.xml. Have a look at the example configuration and change the settings if you like to have more verbose output. By default, only Hibernate startup message are shown on stdout.

The tutorial infrastructure is complete - and we are ready to do some real work with Hibernate.

1.2.6. Loading and storing objects

Finally, we can use Hibernate to load and store objects. We write an EventManager class with a main() method:

package events;
import org.hibernate.Session;

import java.util.Date;

import util.HibernateUtil;

public class EventManager {

    public static void main(String[] args) {
        EventManager mgr = new EventManager();

        if (args[0].equals("store")) {
            mgr.createAndStoreEvent("My Event", new Date());
        }

        HibernateUtil.getSessionFactory().close();
    }

    private void createAndStoreEvent(String title, Date theDate) {

        Session session = HibernateUtil.getSessionFactory().getCurrentSession();

        session.beginTransaction();

        Event theEvent = new Event();
        theEvent.setTitle(title);
        theEvent.setDate(theDate);

        session.save(theEvent);

        session.getTransaction().commit();
    }

}

We create a new Event object, and hand it over to Hibernate. Hibernate now takes care of the SQL and executes INSERTs on the database. Let's have a look at the Session and Transaction-handling code before we run this.

A Session is a single unit of work. For now we'll keep things simple and assume a one-to-one granularity between a Hibernate Session and a database transaction. To shield our code from the actual underlying transaction system (in this case plain JDBC, but it could also run with JTA) we use the Transaction API that is available on the Hibernate Session.

What does sessionFactory.getCurrentSession() do? First, you can call it as many times and anywhere you like, once you get hold of your SessionFactory (easy thanks to HibernateUtil). The getCurrentSession() method always returns the "current" unit of work. Remember that we switched the configuration option for this mechanism to "thread" in hibernate.cfg.xml? Hence, the current unit of work is bound to the current Java thread that executes our application. However, this is not the full picture, you also have to consider scope, when a unit of work begins and when it ends.

A Session begins when it is first needed, when the first call to getCurrentSession() is made. It is then bound by Hibernate to the current thread. When the transaction ends, either through commit or rollback, Hibernate automatically unbinds the Session from the thread and closes it for you. If you call getCurrentSession() again, you get a new Session and can start a new unit of work. This thread-bound programming model is the most popular way of using Hibernate, as it allows flexible layering of your code (transaction demarcation code can be separated from data access code, we'll do this later in this tutorial).

Related to the unit of work scope, should the Hibernate Session be used to execute one or several database operations? The above example uses one Session for one operation. This is pure coincidence, the example is just not complex enough to show any other approach. The scope of a Hibernate Session is flexible but you should never design your application to use a new Hibernate Session for every database operation. So even if you see it a few more times in the following (very trivial) examples, consider session-per-operation an anti-pattern. A real (web) application is shown later in this tutorial.

Have a look at Chapter 11, Transactions And Concurrency for more information about transaction handling and demarcation. We also skipped any error handling and rollback in the previous example.

To run this first routine we have to add a callable target to the Ant build file:

<target name="run" depends="compile">
    <java fork="true" classname="events.EventManager" classpathref="libraries">
        <classpath path="${targetdir}"/>
        <arg value="${action}"/>
    </java>
</target>

The value of the action argument is set on the command line when calling the target:

C:\hibernateTutorial\>ant run -Daction=store

You should see, after compilation, Hibernate starting up and, depending on your configuration, lots of log output. At the end you will find the following line:

[java] Hibernate: insert into EVENTS (EVENT_DATE, title, EVENT_ID) values (?, ?, ?)

This is the INSERT executed by Hibernate, the question marks represent JDBC bind parameters. To see the values bound as arguments, or to reduce the verbosity of the log, check your log4j.properties.

Now we'd like to list stored events as well, so we add an option to the main method:

if (args[0].equals("store")) {
    mgr.createAndStoreEvent("My Event", new Date());
}
else if (args[0].equals("list")) {
    List events = mgr.listEvents();
    for (int i = 0; i < events.size(); i++) {
        Event theEvent = (Event) events.get(i);
        System.out.println("Event: " + theEvent.getTitle() +
                           " Time: " + theEvent.getDate());
    }
}

We also add a new listEvents() method:

private List listEvents() {

    Session session = HibernateUtil.getSessionFactory().getCurrentSession();

    session.beginTransaction();

    List result = session.createQuery("from Event").list();

    session.getTransaction().commit();

    return result;
}

What we do here is use an HQL (Hibernate Query Language) query to load all existing Event objects from the database. Hibernate will generate the appropriate SQL, send it to the database and populate Event objects with the data. You can create more complex queries with HQL, of course.

Now, to execute and test all of this, follow these steps:

  • Run ant run -Daction=store to store something into the database and, of course, to generate the database schema before through hbm2ddl.

  • Now disable hbm2ddl by commenting out the property in your hibernate.cfg.xml file. Usually you only leave it turned on in continuous unit testing, but another run of hbm2ddl would drop everything you have stored - the create configuration setting actually translates into "drop all tables from the schema, then re-create all tables, when the SessionFactory is build".

If you now call Ant with -Daction=list, you should see the events you have stored so far. You can of course also call the store action a few times more.

Note: Most new Hibernate users fail at this point and we see questions about Table not found error messages regularly. However, if you follow the steps outlined above you will not have this problem, as hbm2ddl creates the database schema on the first run, and subsequent application restarts will use this schema. If you change the mapping and/or database schema, you have to re-enable hbm2ddl once again.