Hibernate EntityManager

1

User guide

3.5.6-Final

by Emmanuel Bernard, Steve Ebersole, and Gavin King

INtroduCing JPA PEISISIENCEcovniiiii e e e e e e e e aen vii

N o] o T (T AU S 1
1.2, DEFINIIONS ettt 1

1.2. In container environment (€g. EJB 3)cooiiiiiiiiiiii e 2
1.2.1. Container-managed entity MaNAgErc..oeviiiieiiieiiiieeiie e e e e eaaeens 2

1.2.2. Application-managed entity Managercceuuuieiiiuiieieiiireeeei e 2

1.2.3. PErSIStENCE CONEXE SCOPE ..ovuiirneiiieeiii et e et e et e e e e e e e e e e e e e eaaaees 2

1.2.4. Persistence context Propagationcoeuueirererinnereiiee e e 3

1.3. JaVa SE ENVIFONMENES ...uuuiiiiiiiiiiiiiiis ettt e e e e e b e e e e eennnees 4

2. Setup and CONTIGUIATION ... e e e enaens 5
D R S T < (U] o PSPPI 5

2.2. Configuration and DOOISIrAPPINGceevuniiiiiiiiei e 6
2.2.1. PACKAGING ..eetniiiiieie et e et e e e e 6

2.2.2. BOOESITAPPING ..neeeeetieeeiitie ettt e ettt e e e et e e et e e et e e b 11

2.3, EVENE NISTENEIS ..ttt e e 14

2.4. Obtaining an EntityManager in a Java SE environmentccoeviieeiiiinnneeennnnnn. 15

2.5, VAIIOUS ...ttt 16

3. WOrking With ODJECES ... e 17
TN 01112 = (= PP 17

3.2. MaKing ODJECES PEISISIENT ... cieiitieiiii et e e e 17

3.3. Loading an ODJECTccuuiiiii e 17

3.4, QUEIYING ODJECES ...ttt 18
I T = Tod U v Vo o [=T =P 18

3.5. Modifying persiStent ODJECTScocuuuiiiiii e 24

3.6. Detaching @ ObJECTcoovniii i 24

3.7. Modifying detached ODJECLSccouviiiiiiiiii e 24

3.8. Automatic State deteCHIONuvvuiniiiieiiiiiii e 25

3.9. Deleting managed ODJECEScceuuuiiiiiiii e 26
3.10. Flush the persiStenCe CONEXLc.uuiiii e 26
3.10.1. IN @ trANSACHIONiieieiei et e e 26

3.10.2. Outside a tranSACHONcevririiiiiieeei e 28

3.11. TranSitivVe PEISISIENCEiiiiiii ittt e e e e eeeeans 28

K 700 7 o T (Vo 29

I e R O Yo o1 o PSP PR PPPPPT 30
3.14. Checking the state of an OBJECEcoviiiiiii i 30
3.15. Native HIbernate AP oo 31

A, MEEAMOUEL ..ottt 33
4.1, Static MEetaMOUEI 33

5. Transactions and CONCUITENCY ...uuiiiuuiiiieeiiieeei e e e e e et e e et e e e e e e e e e et e e et eeanaeeannes 37
5.1. Entity manager and tranSaction SCOPEScccuuuuiiiiiuiieiiiiieteiir et e e e eeeaans 37
B5.1.1L UNIE OF WOTK v 37

5.1.2. LONG UNItS OF WOTK ...t 38

5.1.3. Considering object identityccoeiiiiiiiiiiie e 40

5.1.4. Common CONCUITeNCY CONLIOl iSSUESc.uuviiiiiiiieiiiiiie e 40

Hibernate EntityManager

5.2. Database transaction demarCationcoveeiiiiiieiiiiiiie e 41
5.2.1. Non-managed EnVIFONMENTooieiuiiiiiiiie e 42
B.2.2. USING JT A ittt 43
5.2.3. Exception handlingooooeiiiiiiii e 44

5.3. EXTENDED Persistence CONEXEviviuiiiiiiiiiie et e e eeaenns 46
5.3.1. Container Managed Entity Manageroooveviiiiiiiiineeiiieeee e 46
5.3.2. Application Managed Entity Managercccovvvviieeiiiieiiieeei e e 46

5.4. OptimistiC CONCUITENCY CONTIOIuuiiiiiii e e a7
5.4.1. Application version checkingccooviiiiiiiiii e a7
5.4.2. Extended entity manager and automatic versioningcccooveeuieeennnnnnn. 48
5.4.3. Detached objects and automatic VErsioningccooeeeiveviieeiiiieriineennnnns 49

6. Entity listeners and Callback methodsccooiiiiiii 51

L0 I B 1= 11 o o PP 51

6.2. Callbacks and listeners iNheritanCeooviiuiiiiiiiiiii e 53

6.3, XML defiNItION ...eieiii i e 53

7. BACN PrOCESSING oetuiiiiiiii ettt ettt et e et et et e e e s 55

8 10| QT oo F= 1 (=Y o (=1 1= = P 55

8. JP-QL: The Object QUErY LANQUAGEuuiiiiiiieiiiiii ettt 57

8.1, CaASE SENSILIVILY .ieviiiiiiiiii it e 57

8.2. The frOM CIAUSE ... e e e e 57

8.3. ASSOCIAtioNS AN JOINS ..iuuuiiii i 58

8.4, The SEIECE ClAUSEuiiiiiiei et e e e e e 59

8.5. Aggregate fUNCLONScoouiiiii e e e e e e 60

8.6. POIYMOIPNIC QUETIES ...t e 61

8.7. The WHEIE CIAUSEcceeeiiiiii e 62

8.8, EXPIrESSIONS ...ttt 64

8.9. The order DY ClauSEcoouiiiiii e 68

8.10. The group BY ClAUSEccoouiiiiii e 68

8.11. SUBQUEIIES . oeeiiiiii et e e e e e e e 69

8.12. JP-QL EXAMPIES ..oeeieiiiii e 70

8.13. Bulk UPDATE & DELETE Statementsccccuuieiiiiiiieiiiiiieeiiin e e e eeenens 72

8.14. TIPS & THICKS ..nieiitiieteitt ettt ettt ettt e e e e e e eneas 72

LS IO] (=T A= T U= 7= 75

9.1. Typed CIItEITA QUEIIESuiieiii ettt ettt et e e 76
9.1.1. Selecting an ENLILY ...ccuuiiiiieii e 76
9.1.2. Selecting @ VAIUEcooouiiiii e 76
9.1.3. Selecting multiple ValUEScccovuiiiiiiiiiie e 77
9.1.4. SeleCting @ WIBPPETceuui ettt ettt e e et e e et e eeeaa e 78

9.2, TUPIE CHLEHA QUETIES ..vuiiiii i et e e e e e e e e e e e e eaes 79
9.2.1. Accessing tuple EleMENLSeiiiiiiii e 80

9.3, FROM ClAUSE ...uuiiiiiiiiee ettt et e et e e e et e e e e et e e e eettaeaees 81
.30 ROOES ettt 81
9.3.2. JOINS it 82
0.3.3. FICNES i e 82

9.4, Path @XPrESSIONS ...ccvniiiii i 83

9.5, USING PArBMELEIS ...ttt ettt ettt e et e e e eaa s 83
O N = LY=o 11 =T oY SN 85
10.1. EXPressing the reSUISELviiiiiiiiiii e e e 85
10.2. Using native SQL QUETIESuiiiiiiii e ee e e e e e e e e e e et e e e eaen 86
10.3. NAMEA QUETIES ...ttt et e ettt e e b 86
REFEIENCES ... it et e et 87

vi

Introducing JPA Persistence

The JPA specification recognizes the interest and the success of the transparent object/
relational mapping paradigm. It standardizes the basic APIs and the metadata needed for any
object/relational persistence mechanism. Hibernate EntityManager implements the programming
interfaces and lifecycle rules as defined by the JPA 2.0 specification. Together with Hibernate
Annotations, this wrapper implements a complete (and standalone) JPA persistence solution on
top of the mature Hibernate Core. You may use a combination of all three together, annotations
without JPA programming interfaces and lifecycle, or even pure native Hibernate Core, depending
on the business and technical needs of your project. You can at all times fall back to Hibernate
native APIs, or if required, even to native JDBC and SQL.

Vii

viii

Chapter 1.

Architecture

1.1. Definitions

JPA 2 is part of the Java EE 6.0 platform. Persistence in JPA is available in containers like EJB
3 or the more modern CDI (Java Context and Dependency Injection), as well as in standalone
Java SE applications that execute outside of a particular container. The following programming
interfaces and artifacts are available in both environments.

Enti t yManager Fact ory
An entity manager factory provides entity manager instances, all instances are configured to
connect to the same database, to use the same default settings as defined by the particular
implementation, etc. You can prepare several entity manager factories to access several data
stores. This interface is similar to the Sessi onFact ory in native Hibernate.

Enti t yManager
The Entit yManager API is used to access a database in a particular unit of work. It is used
to create and remove persistent entity instances, to find entities by their primary key identity,
and to query over all entities. This interface is similar to the Sessi on in Hibernate.

Persistence context
A persistence context is a set of entity instances in which for any persistent entity identity
there is a unigue entity instance. Within the persistence context, the entity instances and their
lifecycle is managed by a particular entity manager. The scope of this context can either be
the transaction, or an extended unit of work.

Persistence unit
The set of entity types that can be managed by a given entity manager is defined by a
persistence unit. A persistence unit defines the set of all classes that are related or grouped
by the application, and which must be collocated in their mapping to a single data store.

Container-managed entity manager
An Entity Manager whose lifecycle is managed by the container

Application-managed entity manager
An Entity Manager whose lifecycle is managed by the application.

JTA entity manager
Entity manager involved in a JTA transaction

Resource-local entity manager
Entity manager using a resource transaction (not a JTA transaction).

Chapter 1. Architecture

1.2. In container environment (eg. EJB 3)

1.2.1. Container-managed entity manager

The most common and widely used entity manager in a Java EE environment is the container-
managed entity manager. In this mode, the container is responsible for the opening and
closing of the entity manager (this is transparent to the application). It is also responsible for
transaction boundaries. A container-managed entity manager is obtained in an application through
dependency injection or through JNDI lookup, A container-managed entity manger requires the
use of a JTA transaction.

1.2.2. Application-managed entity manager

An application-managed entity manager allows you to control the entity manager in application
code. This entity manager is retrieved through the Enti t yManager Fact ory API. An application
managed entity manager can be either involved in the current JTA transaction (a JTA entity
manager), or the transaction may be controlled through the Ent i t yTr ansact i on API (a resource-
local entity manager). The resource-local entity manager transaction maps to a direct resource
transaction (i. e. in Hibernate's case a JDBC transaction). The entity manager type (JTA or
resource-local) is defined at configuration time, when setting up the entity manager factory.

1.2.3. Persistence context scope

An entity manager is the API to interact with the persistence context. Two common strategies can
be used: binding the persistence context to the transaction boundaries, or keeping the persistence
context available across several transactions.

The most common case is to bind the persistence context scope to the current transaction scope.
This is only doable when JTA transactions are used: the persistence context is associated with
the JTA transaction life cycle. When an entity manager is invoked, the persistence context is
also opened, if there is no persistence context associated with the current JTA transaction.
Otherwise, the associated persistence context is used. The persistence context ends when the
JTA transaction completes. This means that during the JTA transaction, an application will be able
to work on managed entities of the same persistence context. In other words, you don't have to
pass the entity manager's persistence context across your managed beans (CDI) or EJBs method
calls, but simply use dependency injection or lookup whenever you need an entity manager.

You can also use an extended persistence context. This can be combined with stateful session
beans, if you use a container-managed entity manager: the persistence context is created when
an entity manager is retrieved from dependency injection or JNDI lookup , and is kept until the
container closes it after the completion of the Renove stateful session bean method. This is a
perfect mechanism for implementing a "long" unit of work pattern. For example, if you have to deal
with multiple user interaction cycles as a single unit of work (e.g. a wizard dialog that has to be fully
completed), you usually model this as a unit of work from the point of view of the application user,
and implement it using an extended persistence context. Please refer to the Hibernate reference
manual or the book Hibernate In Action for more information about this pattern.

Persistence context propagation

JBoss Seam 3 is built on top of CDI and has at it's core concept the notion of conversation and unit
of work. For an application-managed entity manager the persistence context is created when the
entity manager is created and kept until the entity manager is closed. In an extended persistence
context, all modification operations (persist, merge, remove) executed outside a transaction are
queued until the persistence context is attached to a transaction. The transaction typically occurs
at the user process end, allowing the whole process to be committed or rollbacked. For application-
managed entity manager only support the extended persistence context.

A resource-local entity manager or an entity manager created with
Entit yManager Fact ory. creat eEntit yManager () (application-managed) has a one-to-one
relationship with a persistence context. In other situations persistence context propagation occurs.

1.2.4. Persistence context propagation

Persistence context propagation occurs for container-managed entity managers.

In a transaction-scoped container managed entity manager (common case in a Java EE
environment), the JTA transaction propagation is the same as the persistence context resource
propagation. In other words, container-managed transaction-scoped entity managers retrieved
within a given JTA transaction all share the same persistence context. In Hibernate terms, this
means all managers share the same session.

Important: persistence context are never shared between different JTA transactions or between
entity manager that do not came from the same entity manager factory. There are some
noteworthy exceptions for context propagation when using extended persistence contexts:

If a stateless session bean, message-driven bean, or stateful session bean with a transaction-
scoped persistence context calls a stateful session bean with an extended persistence context
in the same JTA transaction, an | | | egal St at eExcept i on is thrown.

« If a stateful session bean with an extended persistence context calls as stateless session bean
or a stateful session bean with a transaction-scoped persistence context in the same JTA
transaction, the persistence context is propagated.

« If a stateful session bean with an extended persistence context calls a stateless or stateful
session bean in a different JTA transaction context, the persistence context is not propagated.

« If a stateful session bean with an extended persistence context instantiates another stateful
session bean with an extended persistence context, the extended persistence context is
inherited by the second stateful session bean. If the second stateful session bean is called with
a different transaction context than the first, an lllegalStateException is thrown.

« If a stateful session bean with an extended persistence context calls a stateful session bean with
a different extended persistence context in the same transaction, an | | | egal St at eExcepti on
is thrown.

Chapter 1. Architecture

1.3. Java SE environments

In a Java SE environment only extended context application-managed entity managers are
available. You can retrieve an entity manger using the EntityManager Factory API. Only
resource-local entity managers are available. In other words, JTA transactions and persistence
context propagation are not supported in Java SE (you will have to propagate the persistence
context yourself, e.g. using the thread local session pattern popular in the Hibernate community).

Extended context means that a persistence context is created when the entity manager is
retrieved (using EntityManager Factory. creat eEntityManager(...)) and closed when the
entity manager is closed. Many resource-local transaction share the same persistence context,
in this case.

Chapter 2.

Setup and configuration

2.1. Setup

The JPA 2.0 compatible Hibernate EntityManager is built on top of the core of Hibernate
and Hibernate Annotations. Starting from version 3.5, we have bundled in a single Hibernate
distribution all the necessary modules:

* Hibernate Core: the native Hibernate APIs and core engine
« Hibernate Annotations: the annotation-based mapping
» Hibernate EntityManager: the JPA 2.0 APIs and livecycle semantic implementation

Download the Hibernate Core distribution. Set up your classpath (after you have created a new
project in your favorite IDE):

« Copy hi bernat e3. j ar and the required 3rd party libraries available in I i b/ r equi r ed.

e Copylib/jpalhibernate-jpa-2.0-api-1.0.0.Final.jar toyour classpath as well.

@ What is hibernate-jpa-2.0-api-x.y.z.jar?

This is the JAR containing the JPA 2.0 API, it provides all the interfaces and
concrete classes that the specification defines as public API. Said otherwise, you
can use this JAR to bootstrap any JPA provider implementation. Note that you
typically don't need it when you deploy your application in a Java EE 6 application
server (like JBoss AS 6 for example).

Alternatively, if you use Maven, add the following dependencies

<project ...>

<dependenci es>
<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifact|d>hi bernate-entitymanager</artifactl|d>
<ver si on>%{ hi ber nat e- cor e- ver si on} </ ver si on>
</ dependency>
</ dependenci es>
</ proj ect >

All the required dependencies like hibernate-core and hibernate-annotations will be dragged
transitively.

We recommend you use Hibernate Validator [http://validator.hibernate.org] and the Bean
Validation specification capabilities as its integration with Java Persistence 2 has been

http://validator.hibernate.org
http://validator.hibernate.org

Chapter 2. Setup and configur...

standardized. Download Hibernate Validator 4 or above from the Hibernate website and add
hi bernate-val i dator.jar and val i dation-api.jar in your classpath. Alternatively add the
following dependency in your pom xni .

<proj ect >

<dependenci es>
<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifactld>hi bernate-validator</artifactld>
<versi on>${ hi ber nat e-val i dat or - ver si on} </ ver si on>
</ dependency>

</ dependenci es>

</ proj ect>

If you wish to use Hibernate Search [http://search.hibernate.org] (full-text search for Hibernate
aplications), download it from the Hibernate website and add hi ber nat e- search. jar and its
dependencies in your classpath. Alternatively add the following dependency in your pom xmi .

<proj ect >

<dependenci es>
<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifactld>hi bernate-search</artifactld>
<ver si on>%{ hi ber nat e- sear ch- ver si on} </ ver si on>
</ dependency>

</ dependenci es>

</ proj ect >

2.2. Configuration and bootstrapping

2.2.1. Packaging

The configuration for entity managers both inside an application server and in a standalone
application reside in a persistence archive. A persistence archive is a JAR file which must define a
persi stence. xn file that resides in the META- | NF folder. All properly annotated classes included
in the archive (ie. having an @ntity annotation), all annotated packages and all Hibernate
hbm.xml files included in the archive will be added to the persistence unit configuration, so by
default, your persistence.xml will be quite minimalist:

<persi stence xm ns="http://java.sun.con xnl /ns/ persi stence"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schen®a- i nst ance"

http://search.hibernate.org
http://search.hibernate.org

Packaging

xsi : schemaLocation="http://java. sun. com xm / ns/ persi stence http://java.sun.com
xm / ns/ per si st ence/ persi stence_2_0. xsd"
version="2.0">
<persi stence-unit name="sanpl e">
<j ta- dat a- sour ce>j ava: / Def aul t DS</ t a- dat a- sour ce>
<properties>
<property nanme="hi bernate. dial ect" val ue="org. hi bernate.dial ect. HSQLDi al ect"/ >
<property nane="hi bernate. hbn2ddl . aut 0" val ue="create-drop"/>
</ properties>
</ persi stence-uni t>
</ per si st ence>

Here's a more complete example of a per si st ence. xml file

<persi stence xm ns="http://java. sun.conm xnl / ns/ persi stence"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schen®a- i nst ance"
xsi : schemalLocation="http://java. sun. com xm / ns/ persi stence http://java.sun.com
xm / ns/ per si st ence/ per si stence_2_0. xsd"
version="2.0">
<persi stence-unit name="manager 1" transaction-type="JTA">
<provi der>org. hi ber nat e. ej b. Hi ber nat ePer si st ence</ provi der >
<j t a- dat a- sour ce>j ava: / Def aul t DS</ j t a- dat a- sour ce>
<mappi ng-fil e>or map. xm </ mappi ng-fil e>
<jar-file>MyApp.jar</jar-file>
<cl ass>or g. acre. Enpl oyee</ cl ass>
<cl ass>org. acne. Person</ cl ass>
<cl ass>org. acnme. Addr ess</ cl ass>
<shar ed- cache- node>ENABLE_SELECTOVE</ shar ed- cache- node>
<val i dati on- nrode>CALLBACK</ val i dat i on- node>
<properties>
<property nanme="hi bernate. di al ect" val ue="org. hi bernate.dial ect. HSQLDi al ect"/ >
<property nane="hi bernate. hbn2ddl . aut 0" val ue="create-drop"/>
</ properties>
</ persi stence-unit>
</ per si st ence>

nane
(attribute) Every entity manager must have a name.

transaction-type
(attribute) Transaction type used. Either JTA or RESOURCE_LOCAL (default to JTA in a
JavaEE environment and to RESOURCE_LOCAL in a JavaSE environment). When a jta-
datasource is used, the default is JTA, if non-jta-datasource is used, RESOURCE_LOCAL
is used.

provi der
The provider is a fully-qualified class hame of the EJB Persistence provider. You do not have
to define it if you don't work with several EJB3 implementations. This is needed when you are
using multiple vendor implementations of EJB Persistence.

Chapter 2. Setup and configur...

jta-dat a-source, non-jta-data-source
This is the JNDI name of where the javax.sgl.DataSource is located. When running without
a JNDI available Datasource, you must specify JDBC connections with Hibernate specific
properties (see below).

mappi ng-file
The class element specifies a EJB3 compliant XML mapping file that you will map. The file has
to be in the classpath. As per the EJB3 specification, Hibernate EntityManager will try to load
the mapping file located in the jar file at META | NF/ or m xn1 . Of course any explicit mapping
file will be loaded too. As a matter of fact, you can provides any XML file in the mapping file
element ie. either hbm files or EJB3 deployment descriptor.

jar-file
The jar-file elements specifies a jar to analyse. All properly annotated classes, annotated
packages and all hbm.xml files part of this jar file will be added to the persistence unit
configuration. This element is mainly used in Java EE environment. Use of this one in Java
SE should be considered as non portable, in this case a absolute url is needed. You can
alternatively point to a directory (This is especially useful when in your test environment, the
persistence.xml file is not under the same root directory or jar than your domain model).

<jar-file>file:/hone/turin/work/local/lab8/build/classes</jar-file>

excl ude-unl i st ed-cl asses
Do not check the main jar file for annotated classes. Only explicit classes will be part of the
persistence unit.

cl ass

The class element specifies a fully qualified class name that you will map. By default all
properly annotated classes and all hbm.xml files found inside the archive are added to the
persistence unit configuration. You can add some external entity through the class element
though. As an extension to the specification, you can add a package name in the <cl ass>
element (eg <cl ass>or g. hi ber nat e. eg</ cl ass>). Caution, the package will include the
metadata defined at the package level (ie in package-i nf o. j ava), it will not include all the
classes of a given package.

shared-cache-mode
By default, entities are elected for second-level cache if annotated with @acheabl e. You can
however:

e ALL: force caching for all entities
* NONE: disable caching for all entities (useful to take second-level cache out of the equation)
e ENABLE_SELECTI VE (default): enable caching when explicitly marked

» DI SABLE_SELECTI VE: enable caching unless explicitly marked as @acheabl e(f al se) (not
recommended)

Packaging

See Hibernate Annotation's documentation for more details.

validation-mode
By default, Bean Validation (and Hibernate Validator) is activated. When an entity is created,
updated (and optionally deleted), it is validated before being sent to the database. The
database schema generated by Hibernate also reflects the constraints declared on the entity.

You can fine-tune that if needed:
e AUTO if Bean Validation is present in the classpath, CALLBACK and DDL are activated.

e CALLBACK: entities are validated on creation, update and deletion. If no Bean Validation
provider is present, an exception is raised at initialization time.

» DDL: (not standard, see below) database schemas are entities are validated on creation,
update and deletion. If no Bean Validation provider is present, an exception is raised at
initialization time.

* NONE: Bean Validation is not used at all

Unfortunately, DDL is not standard mode (though extremely useful) and you will not be able to
put itin <val i dati on- node>. To use it, add a regular property

<property nane="j avax. persi st ence. val i dati on. node" >
ddl
</ property>

With this approach, you can mix ddl and callback modes:

<property nanme="j avax. persi st ence. val i dati on. node" >
ddl, call back
</ property>

properties
The properties element is used to specify vendor specific properties. This is where you will
define your Hibernate specific configurations. This is also where you will have to specify JDBC
connection information as well.

Here is a list of JPA 2 standard properties. Be sure to also Hibernate Core's documentation
to see Hibernate specific properties.

e javax. persi stence. | ock.timeout pessimistic lock timeout in milliseconds (I nt eger or
St ri ng), this is a hint used by Hibernate but requires support by your underlying database.

e javax. persi stence. query. timeout query timeout in milliseconds (I nt eger or Stri ng),
this is a hint used by Hibernate but requires support by your underlying database (TODO
is that 100% true or do we use some other tricks).

Chapter 2. Setup and configur...

e javax. persi stence. val i dati on. node corresponds to the val i dati on- node element.
Use it if you wish to use the non standard DDL value.

e javax. persi stence. val i dation. group. pre-persist defines the group or list of
groups to validate before persisting an entity. This is a comma separated fully
qualified class name string (eg com acmne. gr oups. Conmon or com acne. gr oups. Conmon,
j avax. val i dati on. groups. Def aul t). Defaults to the Bean Validation default group.

e javax. persi stence. val i dation. group. pre-update defines the group or list of
groups to validate before updating an entity. This is a comma separated fully
qualified class name string (eg com acmne. gr oups. Conmon or com acne. gr oups. Conmon,
j avax. val i dati on. groups. Def aul t). Defaults to the Bean Validation default group.

e javax. persi stence. val i dation. group. pre-renove defines the group or list of
groups to validate before persisting an entity. This is a comma separated fully
qualified class name string (eg com acme. gr oups. Conmon Or com acne. gr oups. Conmon,
j avax. val i dati on. groups. Def aul t). Defaults to no group.

@ Note

To know more about Bean Validation and Hibernate Validator, check
out Hibernate Validator's reference documentation as well as Hibernate
Annotations's documentation on Bean Validation.

The following properties can only be used in a SE environment where no datasource/JNDI
is available:

e javax. persi stence.jdbc. driver: the fully qualified class nhame of the driver class

e javax. persistence. jdbc. url: the driver specific URL

e javax. persi stence.j dbc. user the user name used for the database connection

e javax. persi stence. j dbc. passwor d the password used for the database connection

Be sure to define the grammar definition in the per si st ence element since the JPA specification
requires schema validation. If the system d ends with persistence 2 0.xsd, Hibernate
entityManager will use the version embedded in the hibernate-entitymanager.jar. It won't fetch the
resource from the internet.

<persi stence xm ns="http://java. sun. conm xnl / ns/ persi st ence"
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemalLocation="http://java. sun. com xm / ns/ persi stence http://java.sun.conl
xm / ns/ per si st ence/ per si stence_2_0. xsd"
version="2.0">

10

Bootstrapping

2.2.2. Bootstrapping

The JPA specification defines a bootstrap procedure to access the Enti t yManager Fact ory and
the Enti t yManager . The bootstrap class is j avax. per si st ence. Per si st ence, e.g.

EntityManager Factory enf = Persistence. createEntityManager Factory(" manager1");
/'l or

Map<String, Object> configOverrides = new HashMap<String, Object>();
configOverrides. put ("hi bernate. hbn2ddl . aut 0", "create-drop");
Enti t yManager Fact ory programmati cénf =

Per si st ence. cr eat eEnti t yManager Fact ory(" manager 1", confi gOverri des);

The first version is equivalent to the second with an empty map. The map version is a set
of overrides that will take precedence over any properties defined in your persi st ence. xni
files. All the properties defined in Section 2.2.1, “Packaging” can be passed to the
cr eat eEnti t yManager Fact ory method and there are a few additional ones:

» javax. persi st ence. provi der to define the provider class used

e javax. persi stence. transacti onType to define the transaction type used (either JTA or
RESOURCE_LOCAL)

e javax. persi stence. jtaDat aSour ce to define the JTA datasource name in JNDI
e javax. persi st ence. nonJt aDat aSour ce to define the non JTA datasource name in JNDI

e javax. persistence. | ock.tinmeout pessimistic lock timeout in milliseconds (I nteger or
String)

e javax. persi stence. query.tineout query timeout in milliseconds (I nt eger or Stri ng)

e javax. persi st ence. sharedCache. node corresponds to the share-cache-node element
defined in Section 2.2.1, “Packaging”.

e javax. persi stence. val i dati on. rode corresponds to the validation-node element
defined in Section 2.2.1, “Packaging”.

When Per si st ence. cr eat eEnt i t yManager Fact or y() is called, the persistence implementation
will search your classpath for any META-INF/ persistence. xni files using
the O assLoader. get Resource(" META- | NF/ persi stence. xm ") method. Actually the
Per si st ence class will look at all the Persistence Providers available in the classpath and ask
each of them if they are responsible for the creation of the entity manager factory manager 1. Each
provider, from this list of resources, it will try to find an entity manager that matches the name you
specify in the command line with what is specified in the persistence.xml file (of course the provider
el ement must match the current persistent provider). If no persistence.xml with the correct name
are found or if the expected persistence provider is not found, a Per si st enceExcept i on is raised.

11

Chapter 2. Setup and configur...

Apart from Hibernate system-level settings, all the properties available in Hibernate can be set

in properties element of the

persistence.xml file or as an override in the map you pass to

creat eEnti t yManager Fact ory() . Please refer to the Hibernate reference documentation for a
complete listing. There are however a couple of properties available in the EIJB3 provider only.

Table 2.1. Hibernate Entity Manager specific properties

Property name

hibernate.ejb.classcache.<clas

Description

sols®> cache strategy [comma cache region]
of the class Default to no cache, and
default region cache to fully.qualified.classname
(eg. hibernate.ejb.classcache.com.acme.Cat read-write
or hibernate.ejb.classcache.com.acme.Cat read-write,
MyRegion).

hibernate.ejb.collectioncache.<

cotibetivomole>xache strategy [comma cache region]
of the class Default to no cache, and
default region cache to fully.qualified.classname.role
(eg. hibernate.ejb.classcache.com.acme.Cat read-write
or hibernate.ejb.classcache.com.acme.Cat read-write,
MyRegion).

hibernate.ejb.cfgfile

XML configuration file to use to configure Hibernate (eg. /
hi bernate. cfg. xn).

hibernate.archive.autodetection Determine which element is auto discovered by Hibernate

Entity Manager while parsing the .par archive. (default to
cl ass, hbm.

hibernate.ejb.interceptor

An optional Hibernate interceptor. The interceptor instance
is shared by all Session instances. This interceptor has
to implement or g. hi bernate. I nterceptor and have a no-
arg constructor. This property can not be combined with
hi bernate. ej b.interceptor. sessi on_scoped.

hibernate.ejb.interceptor.sessia

rAiscopgonal Hibernate interceptor. The interceptor instance
is specific to a given Session instance (and hence
can be non thread-safe). This interceptor has to
implement org. hi bernate. I nterceptor and have a no-
arg constructor. This property can not be combined with
hi bernate. ejb.interceptor.

hibernate.ejb.naming_strategy

An optional naming strategy. The default naming strategy used
is EJB3Nani ngSt r at egy. You also might want to consider the
Def aul t Conponent Saf eNani ngSt r at egy.

hibernate.ejb.event.<eventtype

>Event listener list for a given eventtype. The list of event
listeners is a comma separated fully qualified class name list
(eg. hibernate.ejb.event.pre-load com.acme.SecurityListener,

com.acme.AuditListener)

12

Bootstrapping

Property name

Description

hibernate.ejb.use_class_enhan

hibernate.ejb.discard_pc_on_c

cathether or not use Application server class enhancement at
deployment time (default to false)

déérue, the persistence context will be discarded (think clear()
when the method is called. Otherwise the persistence context
will stay alive till the transaction completion: all objects will
remain managed, and any change will be synchronized with the
database (default to false, ie wait the transaction completion)

hibernate.ejb.resource_scanne

rBy default, Hibernate EntityManager scans itself the list of
resources for annotated classes and persistence deployment
descriptors (like orm.xml and hbm.xml files).

You can customize this scanning strategy by implementing
or g. hi ber nat e. ej b. packagi ng. Scanner. This property is
used by container implementors to improve integration with
Hibernate.

Accepts an instance of Scanner or the file name of a no-arg
constructor class implementing Scanner .

Note that you can mix XML <cl a
configuration. Be aware of the

ss> declaration and hi ber nat e. ej b. cf gf i | e usage in the same
potential clashed. The properties set in persi stence. xm will

override the one in the defined hi ber nat e. cf g. xnl .

@ Note

It is important that you do not override hi ber nat e. t ransacti on. factory_cl ass,
Hibernate EntityManager automatically set the appropriate transaction factory
depending on the EntityManager type (ie JTA versus RESOURSE LOCAL). If
you are working in a Java EE environment, you might want to set the

hi bernate.tran

sacti on. manager _| ookup_cl ass though.

Here is a typical configuration in a Java SE environment

<persi st ence>

<persi stence-unit nane="manager 1" transaction-type="RESOURCE_LOCAL" >
<cl ass>org. hi bernate. ejb.test. Cat</cl ass>
<cl ass>org. hi bernate.ejb.test. D stributor</class>
<cl ass>org. hi bernate.ejb.test.|tenmx/class>

<properties>

<property nanme="javax. persi stence.jdbc.driver" val ue="org. hsqgl db.jdbcDriver"/>

<property nanme="javax. persi stence.j dbc. user" val ue="sa"/>

<property nanme="j avax.
<property nanme="j avax.

persi stence. j dbc. password" val ue=""/>
persi stence. jdbc.url" value="jdbc: hsql db:."/>

<property nane="hi bernate. di al ect" val ue="org. hi bernate.dial ect. HSQLDi al ect"/

<property nane="hi bernate. max_fetch_depth" val ue="3"/>

13

Chapter 2. Setup and configur.

<!-- cache configuration -->

<property name="hi bernate.ejb.classcache.org. hibernate.ejb.test.lten' val ue="read-

wite"/>

<pr oper tnane="hi bernat e. ej b. col | ectii
wite, Regi onNane"/>

oncache. org. hibernate. ejb.test.|temdistributors/al ue="r ead-

<l-- alternatively to <class> and <property> declarations, you can use a regul ar

hi bernate.cfg.xm file -->
<l-- property
hi bernate.cfg. xm"/ -->
</ properties>
</ persi stence-unit>
</ per si st ence>

name="hi bernate. ej b.cfgfile" value="/org/hibernate/ejb/test/

To ease the programmatic configuration, Hibernate Entity Manager provide a proprietary API. This
APl is very similar to the Conf i gur at i on APl and share the same concepts: Ej b3Conf i gur at i on.
Refer to the JavaDoc and the Hibernate reference guide for more detailed informations on how

to use it.

TODO: me more descriptive on some APIs like setDatasource()

Ej b3Configuration cfg = new E b3Configuration();

EntityManager Factory enf =

cfg.addProperties(properties) //add sone properties
.setlnterceptor(mylnterceptorlnpl) // set an interceptor
. addAnnot at edCl ass(MyAnnot at edCl ass.class) //add a class to be nmapped
.addd ass(NonAnnot at edd ass.class) //add an hbmxnl file using the Hi bernate convention
.addRer ousce("nypath/ MyQt her CLass. hbm xnl) //add an hbm xm file
. addRer ousce("nypath/ormxm) //add an EJB3 depl oynent descri ptor
.configure("/nypath/hibernate.cfg.xm") //add a regul ar hi bernate. cfg.xnl
. bui I dEnti t yManager Factory(); //Create the entity nmanager factory

2.3. Event listeners

Hibernate Entity Manager needs to enhance Hibernate core to implements all the JPA semantics.
It does that through the event listener system of Hibernate. Be careful when you use the event
system yourself, you might override some of the JPA semantics. A safe way is to add your event

listeners to the list given below.

Table 2.2. Hibernate Entity Manager default event listeners

Event Listeners

flush org.hibernate.ejb.event.EJB3FlushEventListener
auto-flush org.hibernate.ejb.event. EJB3AutoFlushEventListener
delete org.hibernate.ejb.event. EJB3DeleteEventListener
flush-entity org.hibernate.ejb.event. EJB3FlushEntityEventListener

14

Obtaining an EntityManager in a Java SE environment

Event Listeners

merge org.hibernate.ejb.event.EJB3MergeEventListener

create org.hibernate.ejb.event.EJB3PersistEventListener
create-onflush org.hibernate.ejb.event. EJB3PersistOnFlushEventListener
save org.hibernate.ejb.event. EJB3SaveEventListener
save-update org.hibernate.ejb.event. EJB3SaveOrUpdateEventListener
pre-insert org.hibernate.secure.JACCPrelnsertEventListener
pre-insert org.hibernate.secure.JACCPreUpdateEventListener
pre-delete org.hibernate.secure.JACCPreDeleteEventListener
pre-load org.hibernate.secure.JACCPreLoadEventListener
post-delete org.hibernate.ejb.event. EJB3PostDeleteEventListener
post-insert org.hibernate.ejb.event. EJB3PostInsertEventListener
post-load org.hibernate.ejb.event. EJB3PostLoadEventListener
post-update org.hibernate.ejb.event. EJB3PostUpdateEventListener

Note that the JACC* Event Li st ener s are removed if the security is not enabled.

You can configure the event listeners either through the properties (see Configuration and
bootstrapping) or through the ej b3confi gur ati on. get Event Li st eners() API.

2.4. Obtaining an EntityManager in a Java SE
environment

An entity manager factory should be considered as an immutable configuration holder, it is defined
to point to a single datasource and to map a defined set of entities. This is the entry point to
create and manage EntityManagers. The Persi st ence class is bootstrap class to create an
entity manager factory.

/] Use persistence.xm configuration

EntityManager Factory enf = Persistence. createEntityManagerFactory("mnager1")

EntityManager em = enf.createEntityManager(); // Retrieve an application nanaged entity nanager
Il Work with the EM

em cl ose();

enf.close(); //close at application end

An entity manager factory is typically create at application initialization time and closed at
application end. It's creation is an expensive process. For those who are familiar with Hibernate,
an entity manager factory is very much like a session factory. Actually, an entity manager factory
is a wrapper on top of a session factory. Calls to the entityManagerFactory are thread safe.

15

Chapter 2. Setup and configur...

Thanks to the EntityManager Factory, you can retrieve an extended entity manager. The
extended entity manager keep the same persistence context for the lifetime of the entity
manager: in other words, the entities are still managed between two transactions (unless you call
entityManager. cl ear () in between). You can see an entity manager as a small wrapper on top
of an Hibernate session.

TODO explains emf.createEntityManager(Map)

2.5. Various

Hibernate Entity Manager comes with Hibernate Validator configured out of the box. You don't
have to override any event yourself. If you do not use Hibernate Validator annotations in your
domain model, there will be no performance cost. For more information on Hibernate Validator,
please refer to the Hibernate Annotations reference guide.

16

Chapter 3.

Working with objects

3.1. Entity states

Like in Hibernate (comparable terms in parentheses), an entity instance is in one of the following
states:

« New (transient): an entity is new if it has just been instantiated using the new operator, and it is
not associated with a persistence context. It has no persistent representation in the database
and no identifier value has been assigned.

* Managed (persistent): a managed entity instance is an instance with a persistent identity that
is currently associated with a persistence context.

» Detached: the entity instance is an instance with a persistent identity that is no longer associated
with a persistence context, usually because the persistence context was closed or the instance
was evicted from the context.

« Removed: a removed entity instance is an instance with a persistent identity, associated with a
persistence context, but scheduled for removal from the database.

The Enti t yManager API allows you to change the state of an entity, or in other words, to load
and store objects. You will find persistence with JPA easier to understand if you think about object
state management, not managing of SQL statements.

3.2. Making objects persistent

Once you've created a new entity instance (using the common new operator) it is in newstate. You
can make it persistent by associating it to an entity manager:

DonesticCat fritz = new DonesticCat();
fritz.setCol or(Col or. G NGER) ;
fritz.setSex('M);

fritz. setName("Fritz");
empersist(fritz);

If the Donest i cCat entity type has a generated identifier, the value is associated to the instance
when per si st () is called. If the identifier is not automatically generated, the application-assigned
(usually natural) key value has to be set on the instance before persi st () is called.

3.3. Loading an object

Load an entity instance by its identifier value with the entity manager's fi nd() method:

cat = emfind(Cat.class, catld);

17

Chapter 3. Working with objects

/1 You may need to wrap the primtive identifiers
long catld = 1234;
em find(Cat.class, new Long(catld));

In some cases, you don't really want to load the object state, but just having a reference to it (ie
a proxy). You can get this reference using the get Ref er ence() method. This is especially useful
to link a child to its parent without having to load the parent.

child = new Child();

chil d. Set Name(" Henry");

Parent parent = em get Reference(Parent.class, parentld); //no query to the DB
chil d. set Parent (parent);

em persist(child);

You can reload an entity instance and it's collections at any time using the em refresh()
operation. This is useful when database triggers are used to initialize some of the properties of
the entity. Note that only the entity instance and its collections are refreshed unless you specify
REFRESH as a cascade style of any associations:

em persi st (cat);
emflush(); // force the SQL insert and triggers to run
emrefresh(cat); //re-read the state (after the trigger executes)

3.4. Querying objects

If you don't know the identifier values of the objects you are looking for, you need a query. The
Hibernate EntityManager implementation supports an easy-to-use but powerful object-oriented
query language (JP-QL) which has been inspired by HQL (and vice-versa). HQL is strictly speaking
a superset of JP-QL. Both query languages are portable across databases, the use entity and
property names as identifiers (instead of table and column names). You may also express your
query in the native SQL of your database, with optional support from JPA for result set conversion
into Java business objects.

3.4.1. Executing queries

JP-QL and SQL queries are represented by an instance of j avax. persi stence. Query. This
interface offers methods for parameter binding, result set handling, and for execution of the query.
Queries are always created using the current entity manager:

Li st<?> cats = em createQuery(
"select cat fromCat as cat where cat.birthdate < ?1")
.setParaneter (1, date, Tenporal Type. DATE)
.getResul tList();

Li st <?> nothers = em creat eQuery(

18

Executing queries

"sel ect nother from Cat as cat join cat.nother as nother where cat.nane = ?1")
.setParaneter (1, nane)
.getResul tList();

Li st<?> kittens = em creat eQuery(
"from Cat as cat where cat.nother = ?1")
.setEntity(1, pk)
.getResul tList();

Cat nother = (Cat) em createQuery(
"sel ect cat.nmother from Cat as cat where cat = ?1")
.setParaneter (1, izi)
.get Singl eResul t ();

A query is usually executed by invoking get Resul t Li st (). This method loads the resulting
instances of the query completely into memory. Entity instances retrieved by a query are in
persistent state. The get Si ngl eResul t () method offers a shortcut if you know your query will
only return a single object.

JPA 2 provides more type-safe approaches to queries. The truly type-safe approach is the Criteria
API explained in Chapter 9, Criteria Queries.

CriteriaQuery<Cat> criteria = buil der.createQuery(Cat.class);

Root <Cat > cat = criteria.fronm Cat.class);

criteria.select(cat);

criteria.where(builder.lt(cat.get(Cat_.birthdate), catDate));

Li st<Cat> cats = emcreateQuery(criteria).getResultList(); //notice no downcasting i s necessary

But you can benefit form some type-safe convenience even when using JP-QL (note that it's not
as type-safe as the compiler has to trust you with the return type.

/I No downcasting since we pass the return type

Li st<Cat> cats = em creat eQuery(
"select cat from Cat as cat where cat.birthdate < ?1", Cat.cl ass)
.set Paraneter (1, date, Tenporal Type. DATE)
.getResul tList();

@ Note

We highly recommend the Criteria APl approach. While more verbose, it provides
compiler-enforced safety (including down to property names) which will pay off
when the application will move to maintenance mode.

19

Chapter 3. Working with objects

3.4.1.1. Projection

JPA queries can return tuples of objects if projection is used. Each result tuple is returned as an
object array:

Iterator kittensAndMbt hers = sess. createQuery(
"select kitten, nother fromCat kitten join Kkitten.nother nother")
. get Resul t Li st ()
.iterator();

whil e (kittensAndMdt hers. hasNext ()) {
Object[] tuple = (Object[]) kittensAndMot hers. next();
Cat kitten = (Cat) tuple[O0];
Cat nother = (Cat) tuple[1];

@ Note

The criteria API provides a type-safe approach to projection results. Check out

3.4.1.2. Scalar results

Queries may specify a particular property of an entity in the select clause, instead of an entity alias.
You may call SQL aggregate functions as well. Returned non-transactional objects or aggregation
results are considered "scalar" results and are not entities in persistent state (in other words, they
are considered "read only"):

Iterator results = em createQuery(
"sel ect cat.color, mn(cat.birthdate), count(cat) from Cat cat " +
"group by cat.color")
. get Resul t Li st ()
.iterator();

while (results.hasNext()) {
Object[] row = resul ts. next();
Col or type = (Color) row0];
Date ol dest = (Date) row 1];
Integer count = (Integer) row 2];

3.4.1.3. Bind parameters

Both named and positional query parameters are supported, the Quer y API offers several methods
to bind arguments. The JPA specification numbers positional parameters from one. Named

20

Executing queries

parameters are identifiers of the form : par amane in the query string. Named parameters should
be preferred, they are more robust and easier to read and understand:

/1 Named paraneter (preferred)

Query q = emcreateQuery("select cat from DonesticCat cat where cat.nane
g. set Paraneter ("nane", "Fritz");

List cats = g.getResul tList();

nane");

/] Positional paraneter

Query q = emcreateQuery("sel ect cat from DonesticCat cat where cat.nane = ?1");
g.setParameter (1, "l1zi");

List cats = g.getResultList();

/| Naned paraneter |ist

Li st names = new ArrayList();

names. add("1zi");

names. add("Fritz");

Query q = emcreateQuery("sel ect cat from DonesticCat cat where cat.nane in (:nanesList)");
g. set Paranet er (" nanesLi st", nanes);

List cats = qg.list();

3.4.1.4. Pagination

If you need to specify bounds upon your result set (the maximum number of rows you want to
retrieve and/or the first row you want to retrieve), use the following methods:

Query q = emcreateQuery("sel ect cat from DonesticCat cat");

g. set Fi rst Resul t (20);

g. set MaxResul t s(10) ;

List cats = g.getResultList(); //return cats fromthe 20th position to 29th

Hibernate knows how to translate this limit query into the native SQL of your DBMS.
3.4.1.5. Externalizing named queries

You may also define named queries through annotations:

@ avax. per si st ence. NanedQuer y(nane="eg. Donest i cCat . by. nane. and. mi ni mum wei ght ",
query="sel ect cat from eg. DonesticCat as cat where cat.nane = ?1 and cat.wei ght > ?2")

Parameters are bound programmatically to the named query, before it is executed:

Query q = em creat eNanedQuery("eg. Donesti cCat . by. nane. and. mi ni nrum wei ght");
g.setString(1, nane);

g.setlnt(2, mnWight);

Li st<?> cats = g.getResul tList();

21

Chapter 3. Working with objects

You can also use the slightly more type-safe approach:

Query q = em creat eNanedQuer y("eg. Donesti cCat. by. name. and. mi ni mrum wei ght", Cat.cl ass);
g.setString(1, nane);

g.setInt(2, mnWight);

Li st<Cat> cats = g.getResultList();

Note that the actual program code is independent of the query language that is used, you may
also define native SQL queries in metadata, or use Hibernate's native facilities by placing them
in XML mapping files.

3.4.1.6. Native queries

You may express a query in SQL, using createNativeQuery() and let Hibernate take care
mapping from JDBC result sets to business objects. Use the @ql Resul t Set Mappi ng (please see
the Hibernate Annotations reference documentation on how to map a SQL resultset mapping) or
the entity mapping (if the column names of the query result are the same as the names declared
in the entity mapping; remember that all entity columns have to be returned for this mechanism
to work):

@ql Resul t Set Mappi ng(nane="getlten', entities =
@ntityResult(entityC ass=org. hibernate.ejb.test.ltemclass, fields={
@i el dResul t (name="nane", col um="itemane"),
@i el dResul t (name="descr", colum="itendescription")

})
)

Query q = emcreateNativeQuery("select nane as itemane, descr as itendescription from
Itent, "getltent);
item= (Item) q.getSingleResult(); //froma resultset

Query q = emcreateNativeQuery("select * fromltent, Itemclass);
item= (Item) q.getSingleResult(); //froma class columms names match the mapping

Note

For more information about scalar support in named queries, please refers to the
Hibernate Annotations documentation

3.4.1.7. Query lock and flush mode

You can adjust the flush mode used when executing the query as well as define the lock mode
used to load the entities.

Adjusting the flush mode is interesting when one must guaranty that a query execution will not
trigger a flush operation. Most of the time you don't need to care about this.

22

Executing queries

Adjusting the lock mode is useful if you need to lock the objects returns by the query to a certain

level.

query. set Fl ushMbde(Fl ushMbdeType. COW T)

. set LockMbde(LockModeType. PESSI M STI C_READ) ;

@ Note

If you want to use Fl ushiMbde. MANUAL (ie the Hibernate specific flush mode), you
will need to use a query hint. See below.

3.4.1.8. Query hints

Query hints (for performance optimization, usually) are implementation specific. Hints are

declared using the query.setH nt(String

nane, bject value) method, or through

the @anmed(Nati ve) Query(hi nts) annotation Note that these are not SQL query hints! The
Hibernate EJB3 implementation offers the following query hints:

Table 3.1. Hibernate query hints

Hint

Description

org.hibernate.timeout

org.hibernate.fetchSize

org.hibernate.comment

org.hibernate.cacheable

Query timeout in seconds (eg. new
Integer(10))

Number of rows fetched by the JDBC driver per
roundtrip (eg. new Integer(50))

Add a comment to the SQL query, useful for
the DBA (e.g. new String("fetch all orders in 1
statement"))

Whether or not a query is cacheable (eg. new
Boolean(true)), defaults to false

org.hibernate.cacheMode

Override the cache mode for this query (eg.
CacheMode.REFRESH)

org.hibernate.cacheRegion

org.hibernate.readOnly

org.hibernate.flushMode

Cache region of this query (eg. new
String("regionName"))

Entities retrieved by this query will be loaded in
a read-only mode where Hibernate will never
dirty-check them or make changes persistent
(eg. new Boolean(true)), default to false

Flush mode used for this query (useful to pass
Hibernate specific flush modes, in particular
MANUAL).

23

Chapter 3. Working with objects

Hint Description

org.hibernate.cacheMode Cache mode used for this query

The value object accept both the native type or its string equivalent (eg. CaheMode. REFRESH or
“REFRESH"). Please refer to the Hibernate reference documentation for more information.

3.5. Modifying persistent objects

Transactional managed instances (ie. objects loaded, saved, created or queried by the entity
manager) may be manipulated by the application and any changes to persistent state will be
persisted when the Entity manager is flushed (discussed later in this chapter). There is no need to
call a particular method to make your modifications persistent. A straightforward wayt to update
the state of an entity instance is to fi nd() it, and then manipulate it directly, while the persistence
context is open:

Cat cat = emfind(Cat.class, new Long(69));
cat.set Nane("PK");
emflush(); // changes to cat are automatically detected and persisted

Sometimes this programming model is inefficient since it would require both an SQL SELECT (to
load an object) and an SQL UPDATE (to persist its updated state) in the same session. Therefore
Hibernate offers an alternate approach, using detached instances.

3.6. Detaching a object

An object when loaded in the persistence context is managed by Hibernate. You can force an
object to be detached (ie. no longer managed by Hibernate) by closing the EntityManager or in a
more fine-grained approach by calling the det ach() method.

Cat cat = emfind(Cat.class, new Long(69));

em det ach(cat);
cat.set Nane("New nane"); //not propatated to the database

3.7. Modifying detached objects

Many applications need to retrieve an object in one transaction, send it to the presentation layer for
manipulation, and later save the changes in a new transaction. There can be significant user think
and waiting time between both transactions. Applications that use this kind of approach in a high-
concurrency environment usually use versioned data to ensure isolation for the "long" unit of work.

The JPA specifications supports this development model by providing for persistence of
modifications made to detached instances using the Enti t yManager . mer ge() method:

24

Automatic state detection

/1 in the first entity manager

Cat cat = firstEntityManager.find(Cat.class, catld);
Cat potential Mate = new Cat();

firstEntityManager. persist(potential Mate);

/1 in a higher layer of the application
cat.set Mate(potential vate);

/1 later, in a new entity manager
secondEntityManager.nerge(cat); // update cat
secondEnti tyManager. nerge(mate); // update mate

The mer ge() method merges modifications made to the detached instance into the corresponding
managed instance, if any, without consideration of the state of the persistence context. In other
words, the merged objects state overrides the persistent entity state in the persistence context, if
one is already present. The application should individually mer ge() detached instances reachable
from the given detached instance if and only if it wants their state also to be persistent. This can
be cascaded to associated entities and collections, using transitive persistence, see Transitive
persistence.

3.8. Automatic state detection

The merge operation is clever enough to automatically detect whether the merging of the detached
instance has to result in an insert or update. In other words, you don't have to worry about passing
a new instance (and not a detached instance) to ner ge() , the entity manager will figure this out
for you:

/1 In the first entity manager
Cat cat = firstEntityManager.find(Cat.class, catlD);

/1 1n a higher layer of the application, detached
Cat mate = new Cat();

cat.setate(mate);

/] Later, in a new entity nmanager

secondEnt i t yManager. nerge(cat); /| update existing state
secondEntityManager.nerge(mate); // save the new instance

The usage and semantics of ner ge() seems to be confusing for new users. Firstly, as long as
you are not trying to use object state loaded in one entity manager in another new entity manager,
you should not need to use ner ge() at all. Some whole applications will never use this method.

Usually mer ge() is used in the following scenario:

« the application loads an object in the first entity manager

« the object is passed up to the presentation layer

25

Chapter 3. Working with objects

« some modifications are made to the object
« the object is passed back down to the business logic layer
« the application persists these modifications by calling ner ge() in a second entity manager

Here is the exact semantic of mer ge() :

« ifthere is a managed instance with the same identifier currently associated with the persistence
context, copy the state of the given object onto the managed instance

« if there is no managed instance currently associated with the persistence context, try to load it
from the database, or create a new managed instance

» the managed instance is returned

« the given instance does not become associated with the persistence context, it remains
detached and is usually discarded

@ Merging vs. saveOrUpdate/saveOrUpdateCopy

Merging in JPA is similar to the saveOr Updat eCopy() method in native Hibernate.
However, it is not the same as the saveOr Updat e() method, the given instance is
not reattached with the persistence context, but a managed instance is returned
by the mer ge() method.

3.9. Deleting managed objects

Entit yManager. remove() will remove an objects state from the database. Of course, your
application might still hold a reference to a deleted object. You can think of r enove() as making
a persistent instance new (aka transient) again. It is not detached, and a merge would result in
an insertion.

3.10. Flush the persistence context

From time to time the entity manager will execute the SQL DML statements needed to synchronize
the data store with the state of objects held in memory. This process is called flushing.

3.10.1. In atransaction

Flush occurs by default (this is Hibernate specific and not defined by the specification) at the
following points:

» before query execution*

26

In a transaction

« fromj avax. persi stence. EntityTransaction.comit()*
e when Enti tyManager . fl ush() is called*
(*) if a transaction is active

The SQL statements are issued in the following order

« all entity insertions, in the same order the corresponding objects were saved using
Ent it yManager. persi st ()

« all entity updates

« all collection deletions

« all collection element deletions, updates and insertions
« all collection insertions

e all entity deletions, in the same order the corresponding objects were deleted using

Entit yManager.renmove()

(Exception: entity instances using application-assigned identifiers are inserted when they are
saved.)

Except when you explicitly f1 ush(), there are no guarantees about when the entity manager
executes the JDBC calls, only the order in which they are executed. However, Hibernate does
guarantee that the Query. get Resul t Li st () /Query. get Si ngl eResul t () will never return stale
data; nor will they return wrong data if executed in an active transaction.

It is possible to change the default behavior so that flush occurs less frequently. The
Fl ushModeType for an entity manager defines two different modes: only flush at commit time or
flush automatically using the explained routine unless f 1 ush() is called explicitly.

em = enf.createEntityManager();
Transaction tx = em get Transaction(). begin();
em set Fl ushMode(Fl ushMbdeType. COW T); // allow queries to return stale state

Cat izi = emfind(Cat.class, id);
izi.setName(iznizi);

/1 mght return stale data
em createQuery("from Cat as cat left outer join cat.kittens kitten").getResultList();

/1 change to izi is not flushed!

em get Transaction().conmt(); // flush occurs

During flush, an exception might happen (e.g. if a DML operation violates a constraint). TODO:
Add link to exception handling.

27

Chapter 3. Working with objects

Hibernate provides more flush modes than the one described in the JPA specification. In particular
Fl ushMbde. MANUAL for long running conversation. Please refer to the Hibernate core reference
documentation for more informations.

3.10.2. Outside a transaction

In an EXTENDED persistence context, all read only operations of the entity manager can be
executed outside a transaction (fi nd(), get Reference(), refresh(), and read queries). Some
modifications operations can be executed outside a transaction, but they are queued until the
persistence context join a transaction. This is the case of persi st (), merge(), renove(). Some
operations cannot be called outside a transaction: f I ush(), | ock(), and update/delete queries.

3.11. Transitive persistence

It is quite cumbersome to save, delete, or reattach individual objects, especially if you deal with a
graph of associated objects. A common case is a parent/child relationship. Consider the following
example:

If the children in a parent/child relationship would be value typed (e.g. a collection of addresses
or strings), their lifecycle would depend on the parent and no further action would be required
for convenient "cascading" of state changes. When the parent is persisted, the value-typed child
objects are persisted as well, when the parent is removed, the children will be removed, etc.
This even works for operations such as the removal of a child from the collection; Hibernate will
detect this and, since value-typed objects can't have shared references, remove the child from
the database.

Now consider the same scenario with parent and child objects being entities, not value-types (e.g.
categories and items, or parent and child cats). Entities have their own lifecycle, support shared
references (so removing an entity from the collection does not mean it can be deleted), and there
is by default no cascading of state from one entity to any other associated entities. The EJB3
specification does not require persistence by reachability. It supports a more flexible model of
transitive persistence, as first seen in Hibernate.

For each basic operation of the entity manager - including persist (), merge(), renmove(),
refresh() -thereis a corresponding cascade style. Respectively, the cascade styles are named
PERSI ST, MERGE, REMOVE, REFRESH, DETACH. If you want an operation to be cascaded to associated
entity (or collection of entities), you must indicate that in the association annotation:

@neTone(cascade=CascadeType. PERSI ST)
Cascading options can be combined:

@neToOne(cascade= { CascadeType. PERSI ST, CascadeType. REMOVE, CascadeType. REFRESH })

28

Locking

You may even use CascadeType. ALL to specify that all operations should be cascaded for a
particular association. Remember that by default, no operation is cascaded.

There is an additional cascading mode used to describe orphan deletion (ie an object
no longer linked to an owning object should be removed automatically by Hibernate.
Use orphanRenoval =true on @neToOne or @neToMany. Check Hibernate Annotations's
documentation for more information.

Hibernate offers more native cascading options, please refer to the Hibernate Annotations manual
and the Hibernate reference guide for more informations.

Recommendations:
« Itdoesn't usually make sense to enable cascade on a @/anyToOne or @/any ToMany association.
Cascade is often useful for @neToOne and @neToMany associations.

« If the child object's lifespan is bounded by the lifespan of the parent object,
make the parent a full lifecycle object by specifying CascadeType. ALL and
or g. hi ber nat e. annot at i ons. CascadeType. DELETE_ORPHAN (please refer to the Hibernate
reference guide for the semantics of orphan delete)

» Otherwise, you might not need cascade at all. But if you think that you will often be working with
the parent and children together in the same transaction, and you want to save yourself some
typing, consider using cascade={ PERSI ST, MERGE}. These options can even make sense for
a many-to-many association.

3.12. Locking

You can define various levels of locking strategies. A lock can be applied in several ways:

* via the explicit ent i t yManager . | ock() method

* via lookup methods on Enti t yManager : find(), refresh()

e on queries: query. set LockMode()

You can use various lock approaches:

e OPTI M STI C (previously READ): use an optimistic locking scheme where the version number

is compared: the version number is compared and has to match before the transaction is
committed.

e OPTI M STI C_FORCE_| NCREMENT (previously WRI TE): use an optimistic locking scheme but force
a version number increase as well: the version number is compared and has to match before
the transaction is committed.

* PESSI M STI C_READ: apply a database-level read lock when the lock operation is requested:
roughly concurrent readers are allowed but no writer is allowed.

29

Chapter 3. Working with objects

e PESSI M STI C WRI TE: apply a database-level write lock when the lock operation is requested:
roughly no reader nor writer is allowed.

All these locks prevent dirty reads and non-repeatable reads on a given entity. Optimistic locks
enforce the lock as late as possible hoping nobody changes the data underneath while pessimistic
locks enforce the lock right away and keep it till the transaction is committed.

3.13. Caching

When the second-level cache is activated (see Section 2.2.1, “Packaging” and the Hibernate
Annotations reference documentation), Hibernate ensures it is used and properly updated. You
can however adjust these settings by passing two properties:

e javax. persi stence. cache. retri eveMdde which accepts CacheRet ri eveMode values

e javax. persi st ence. cache. st or eMbde which accepts CacheSt or eMode values

CacheRet ri eveMbde controls how Hibernate accesses information from the second-level cache:
USE which is the default or BYPASS which means ignore the cache. CacheSt or eMbde controls how
Hibernate pushes information to the second-level cache: USE which is the default and push data
in the cache when reading from and writing to the database, BYPASS which does not insert new
data in the cache (but can invalidate obsolete data) and REFRESH which does like default but also
force data to be pushed to the cache on database read even if the data is already cached.

You can set these properties:

e on a particular Ent i t yManager via the set Property method
* on a query via a query hint (set H nt method)
» when calling fi nd() and refresh() and passing the properties in the appropriate Map

JPA also introduces an API to interrogate the second-level cache and evict data manually.

Cache cache = entityMinager Factory. get Cache();

if (cache.contains(User.class, userld)) {
//load it as we don't hit the DB

}

cache. evict (User.class, userld); //manually evict user formthe second-|evel cache
cache.evict(User.class); //evict all users fromthe second-|evel cache
cache.evictAl I (); //purge the second-1evel cache entirely

3.14. Checking the state of an object

You can check whether an object is managed by the persistence context

30

Native Hibernate API

entityManager. get(Cat.class, catld);

bool ean isln = entityManager.contains(cat);
assert isln;

You can also check whether an object, an association or a property is lazy or not. You can do that
independently of the underlying persistence provider:

PersistenceUtil jpaltil = Persistence.getPersistenceUtil();
if (jpaUtil.isLoaded(custoner.getAddress()) {
//di splay address if | oaded

}
if (jpaUtil.isLoaded(customer.getOrders)) {
//display orders if |oaded

}
if (jpaUtil.isLoaded(custoner, "detailedBio")) {

/1 di splay property detailedBio if |oaded

However, if you have access to the entityManagerFactory, we recommend you to use:

PersistenceUnitUtil jpaUtil = entityManager.getEntityManager Factory().getPersistenceUnitUtil();
Cust oner custonmer = entityManager.get(Custoner.class, custonerld);

if (jpaUtil.isLoaded(custoner.getAddress()) {
//di splay address if | oaded

}
if (jpaltil.isLoaded(custoner.getOrders)) {
//display orders if |oaded

}
if (jpaUtil.isLoaded(custoner, "detailedBio")) {

//display property detailedBio if |oaded

| og. debug("Custoner id {}", jpaUtil.getldentifier(custoner));

The performances are likely to be slightly better and you can get the identifier value from an object
(using get I dentifier()).

@ Note

These are roughly the counterpart methods of Hi bernate.islnitialize.

3.15. Native Hibernate API

You can always fall back to the underlying Sessi on API from a given Enti t yManager :

31

Chapter 3. Working with objects

Session session = entityManager. unw ap(Sessi on. cl ass);

32

Chapter 4.

Metamodel

Note

The Metamodel itself is described in Chapter 5 Metamodel API of the [
]. Chapter 6 Criteria API of the [] describes and
shows uses of the metamodel in criteria queries, as does

The metamodel is a set of objects that describe your domain model.
j avax. per si st ence. net anodel . Met anodel acts as a repository of these metamodel
objects and provides access to them, and can be obtained from either the
j avax. persi st ence. Enti t yManager Fact ory or the j avax. persi st ence. Entit yManager via
their get Met anodel method.

This metamodel is important in 2 ways. First, it allows providers and frameworks a generic way
to deal with an application's domain model. Persistence providers will already have some form of
metamodel that they use to describe the domain model being mapped. This API however defines
a single, independent access to that existing information. A validation framework, for example,
could use this information to understand associations; a marshaling framework might use this
information to decide how much of an entity graph to marshal. This usage is beyond the scope
of this documentation.

Important

As of today the JPA 2 metamodel does not provide any facility for accessing
relational information pertaining to the physical model. It is expected this will be
addressed in a future release of the specification.

Second, from an application writer's perspective, it allows very fluent expression of completely
type-safe criteria queries, especially the Static Metamodel approach. The [JPA 2 Specification]
defines a number of ways the metamodel can be accessed and used, including the Static
Metamodel approach, which we will look at later. The Static Metamodel approach is wonderful
when the code has a priori knowledge [http://en.wikipedia.org/wiki/A_priori_and_a_posteriori] of
the domain model. Chapter 9, Criteria Queries uses this approach exclusively in its examples.

4.1. Static metamodel

A static metamodel is a series of classes that "mirror” the entities and embeddables in the domain
model and provide static access to the metadata about the mirrored class's attributes. We will
exclusively discuss what the [JPA 2 Specification] terms a Canonical Metamodel:

33

http://en.wikipedia.org/wiki/A_priori_and_a_posteriori
http://en.wikipedia.org/wiki/A_priori_and_a_posteriori

Chapter 4. Metamodel

» For each managed class X in package p, a metamodel class X_ in package p
is created.

e The name of the metamodel class is derived from the name of the managed
class by appending "_" to the name of the managed class.

« The metamodel «class X must be annotated with the
j avax. persi st ence. St at i cMet anodel annotation !

« If class X extends another class S, where S is the most derived managed class
(i.e., entity or mapped superclass) extended by X, then class X_ must extend
class S , where S_ is the metamodel class created for S.

» For every persistent non-collection-valued attribute y declared by class X,
where the type of y is Y, the metamodel class must contain a declaration as
follows:

public static volatile SingularAttribute<X, Y>y;

» For every persistent collection-valued attribute z declared by class X, where
the element type of z is z, the metamodel class must contain a declaration as
follows:

if the collection type of zisj ava. util. Col | ecti on, then

public static volatile CollectionAttribute<X, Z> z;

« if the collection type of z is j ava. uti | . Set, then

public static volatile SetAttribute<X, 2Z> z;

+ if the collection type of zis j ava. uti |l . Li st, then

public static volatile ListAttribute<X Z> z;

« if the collection type of z is j ava. uti | . Map, then

public static volatile MapAttribute<X K, Z> z;

L (from the original) If the class was generated, the j avax. annot at i on. Gener at ed annotation should
be used to annotate the class. The use of any other annotations on static metamodel classes is undefined.

34

Static metamodel

where K is the type of the key of the map in class X

Import

statements must
javax.persistence.metamodel
j avax. persi st ence. met anodel

j avax. per si st ence. et anodel

j avax. persi st ence. met anodel

j avax. per si st ence. et anodel

j avax. persi st ence. met anodel
— [JPA 2 Specification, section 6.2.1.1, pp 198-199]

be included for the needed
types as appropriate (e.g.,

.SingularAttribute,

.Col l ectionAttribute,

.Set Attri bute,

.ListAttribute,

. MapAt tri but e) and all classes X, Y, Z, and K.

Example 4.1. Static metamodel example

For the Per son entity

package org. hi ber nate.j pa2. net anodel . exanpl e;

inmport java.util. Set;

inmport javax. persistence. Entity;

@ntity

public class Person {
@d private Long id;
private String nane;

private int age;
private Address address;

@neToMany private Set<Order> orders;

The corresponding canonical metamodel class, Per son_ would look like

package org. hi bernate. j pa2. net anodel . exanpl e;

import javax. persi stence. netanodel . Si ngul arAttri bute;
inmport javax. persistence. netanodel . Set Attri bute;
inmport javax. persistence. net anodel . St ati cMet anodel ;

@t ati cMet anodel (- Per son. cl

public class Person_ {

public static
public static
public static
public static
public static

vol atile
vol atile
vol atile
vol atile
vol atile

ass)

Si ngul ar Attri but e<Person, Long> id;

Si ngul ar Attri but e<Person, String> nane;

Si ngul ar Attri but e<Person, |nteger> age;

Si ngul arAttri but e<Person, Address> address;
Set At tri but e<Person, Order> orders;

35

Chapter 4. Metamodel

annotation processor

When the Hibernate Ent i t yManager Fact ory is being built, it will look for a canonical metamodel
class for each of the managed typed is knows about and if it finds any it will inject the appropriate
metamodel information into them, as outlined in [JPA 2 Specification, section 6.2.2, pg 200]

36

http://java.sun.com/javase/6/docs/technotes/tools/solaris/javac.html#processing
http://java.sun.com/javase/6/docs/technotes/tools/solaris/javac.html#processing
http://java.sun.com/javase/6/docs/technotes/tools/solaris/javac.html#processing

Chapter 5.

Transactions and Concurrency

The most important point about Hibernate Entity Manager and concurrency control is that it is very
easy to understand. Hibernate Entity Manager directly uses JDBC connections and JTA resources
without adding any additional locking behavior. We highly recommend you spend some time with
the JDBC, ANSI, and transaction isolation specification of your database management system.
Hibernate Entity Manager only adds automatic versioning but does not lock objects in memory or
change the isolation level of your database transactions. Basically, use Hibernate Entity Manager
like you would use direct JDBC (or JTA/CMT) with your database resources.

We start the discussion of concurrency control in Hibernate with the granularity of
Enti t yManager Fact ory, and Enti t yManager, as well as database transactions and long units
of work..

In this chapter, and unless explicitly expressed, we will mix and match the concept of entity
manager and persistence context. One is an APl and programming object, the other a definition of
scope. However, keep in mind the essential difference. A persistence context is usually bound to
a JTA transaction in Java EE, and a persistence context starts and ends at transaction boundaries
(transaction-scoped) unless you use an extended entity manager. Please refer to Section 1.2.3,
“Persistence context scope” for more information.

5.1. Entity manager and transaction scopes

A Enti t yManager Fact ory is an expensive-to-create, threadsafe object intended to be shared by
all application threads. It is created once, usually on application startup.

AnEnt i t yManager is an inexpensive, non-threadsafe object that should be used once, for a single
business process, a single unit of work, and then discarded. An Enti t yManager will not obtain
a JDBC Connect i on (or a Dat asour ce) unless it is needed, so you may safely open and close
an Enti t yManager even if you are not sure that data access will be needed to serve a particular
request. (This becomes important as soon as you are implementing some of the following patterns
using request interception.)

To complete this picture you also have to think about database transactions. A database
transaction has to be as short as possible, to reduce lock contention in the database. Long
database transactions will prevent your application from scaling to highly concurrent load.

What is the scope of a unit of work? Can a single Hibernate Ent i t yManager span several database
transactions or is this a one-to-one relationship of scopes? When should you open and close a
Sessi on and how do you demarcate the database transaction boundaries?

5.1.1. Unit of work

First, don't use the entitymanager-per-operation antipattern, that is, don't open and close an
Enti t yManager for every simple database call in a single thread! Of course, the same is true for
database transactions. Database calls in an application are made using a planned sequence, they
are grouped into atomic units of work. (Note that this also means that auto-commit after every

37

Chapter 5. Transactions and C...

single SQL statement is useless in an application, this mode is intended for ad-hoc SQL console
work.)

The most common pattern in a multi-user client/server application is entitymanager-per-request.
In this model, a request from the client is send to the server (where the JPA persistence layer
runs), a new Entit yManager is opened, and all database operations are executed in this unit of
work. Once the work has been completed (and the response for the client has been prepared),
the persistence context is flushed and closed, as well as the entity manager object. You would
also use a single database transaction to serve the clients request. The relationship between the
two is one-to-one and this model is a perfect fit for many applications.

This is the default JPA persistence model in a Java EE environment (JTA bounded, transaction-
scoped persistence context); injected (or looked up) entity managers share the same persistence
context for a particular JTA transaction. The beauty of JPA is that you don't have to care about
that anymore and just see data access through entity manager and demarcation of transaction
scope on session beans as completely orthogonal.

The challenge is the implementation of this (and other) behavior outside an EJB3 container: not
only has the Entit yManager and resource-local transaction to be started and ended correctly,
but they also have to be accessible for data access operations. The demarcation of a unit of
work is ideally implemented using an interceptor that runs when a request hits the non-EJB3
container server and before the response will be send (i.e. a Servl et Fi |l ter if you are using
a standalone servlet container). We recommend to bind the Enti t yManager to the thread that
serves the request, using a ThreadLocal variable. This allows easy access (like accessing
a static variable) in all code that runs in this thread. Depending on the database transaction
demarcation mechanism you chose, you might also keep the transaction contextin a Thr eadLocal
variable. The implementation patterns for this are known as ThreadLocal Session and Open
Session in View in the Hibernate community. You can easily extend the Hi bernateUti | shown
in the Hibernate reference documentation to implement this pattern, you don't need any external
software (it's in fact very trivial). Of course, you'd have to find a way to implement an interceptor
and set it up in your environment. See the Hibernate website for tips and examples. Once again,
remember that your first choice is naturally an EJB3 container - preferably a light and modular
one such as JBoss application server.

5.1.2. Long units of work

The entitymanager-per-request pattern is not the only useful concept you can use to design units
of work. Many business processes require a whole series of interactions with the user interleaved
with database accesses. In web and enterprise applications it is not acceptable for a database
transaction to span a user interaction with possibly long waiting time between requests. Consider
the following example:

« The first screen of a dialog opens, the data seen by the user has been loaded in a particular
Enti t yManager and resource-local transaction. The user is free to modify the detached objects.

38

Long units of work

« The user clicks "Save" after 5 minutes and expects his modifications to be made persistent;
he also expects that he was the only person editing this information and that no conflicting
modification can occur.

We call this unit of work, from the point of view of the user, a long running application transaction.
There are many ways how you can implement this in your application.

A first naive implementation might keep the EntityManager and database transaction open
during user think time, with locks held in the database to prevent concurrent modification, and to
guarantee isolation and atomicity. This is of course an anti-pattern, a pessimistic approach, since
lock contention would not allow the application to scale with the number of concurrent users.

Clearly, we have to use several database transactions to implement the application transaction.
In this case, maintaining isolation of business processes becomes the partial responsibility of the
application tier. A single application transaction usually spans several database transactions. It
will be atomic if only one of these database transactions (the last one) stores the updated data, all
others simply read data (e.g. in a wizard-style dialog spanning several request/response cycles).
This is easier to implement than it might sound, especially if you use JPA entity manager and
persistence context features:

« Automatic Versioning - An entity manager can do automatic optimistic concurrency control for
you, it can automatically detect if a concurrent modification occurred during user think time
(usually by comparing version numbers or timestamps when updating the data in the final
resource-local transaction).

« Detached Entities - If you decide to use the already discussed entity-per-request pattern,
all loaded instances will be in detached state during user think time. The entity manager
allows you to merge the detached (modified) state and persist the modifications, the pattern
is called entitymanager-per-request-with-detached-entities. Automatic versioning is used to
isolate concurrent modifications.

« Extended Entity Manager - The Hibernate Entity Manager may be disconnected from the
underlying JDBC connection between two client calls and reconnected when a new client
request occurs. This pattern is known as entitymanager-per-application-transaction and makes
even merging unnecessary. An extend persistence context is responsible to collect and retain
any modification (persist, merge, remove) made outside a transaction. The next client call made
inside an active transaction (typically the last operation of a user conversation) will execute all
gueued modifications. Automatic versioning is used to isolate concurrent modifications.

Both entitymanager-per-request-with-detached-objects and entitymanager-per-application-
transaction have advantages and disadvantages, we discuss them later in this chapter in the
context of optimistic concurrency control.

TODO: This note should probably come later.

39

Chapter 5. Transactions and C...

5.1.3. Considering object identity

An application may concurrently access the same persistent state in two different persistence
contexts. However, an instance of a managed class is never shared between two persistence
contexts. Hence there are two different notions of identity:

Database Identity
foo.getld().equal s(bar.getld())

JVM Identity
f oo==bar

Then for objects attached to a particular persistence context (i.e. in the scope of an
EntityManager) the two notions are equivalent, and JVM identity for database identity is
guaranteed by the Hibernate Entity Manager. However, while the application might concurrently
access the "same" (persistent identity) business object in two different persistence contexts, the
two instances will actually be "different" (JVM identity). Conflicts are resolved using (automatic
versioning) at flush/commit time, using an optimistic approach.

This approach leaves Hibernate and the database to worry about concurrency; it also provides
the best scalability, since guaranteeing identity in single-threaded units of work only doesn't need
expensive locking or other means of synchronization. The application never needs to synchronize
on any business object, as long as it sticks to a single thread per Entit yManager. Within a
persistence context, the application may safely use == to compare entities.

However, an application that uses == outside of a persistence context might see unexpected
results. This might occur even in some unexpected places, for example, if you put two detached
instances into the same Set. Both might have the same database identity (i.e. they represent
the same row), but JVM identity is by definition not guaranteed for instances in detached state.
The developer has to override the equal s() and hashCode() methods in persistent classes and
implement his own notion of object equality. There is one caveat: Never use the database identifier
to implement equality, use a business key, a combination of unique, usually immutable, attributes.
The database identifier will change if a transient entity is made persistent (see the contract of the
per si st () operation). If the transient instance (usually together with detached instances) is held
in a Set , changing the hashcode breaks the contract of the Set . Attributes for good business keys
don't have to be as stable as database primary keys, you only have to guarantee stability as long
as the objects are in the same Set. See the Hibernate website for a more thorough discussion
of this issue. Also note that this is not a Hibernate issue, but simply how Java object identity and
equality has to be implemented.

5.1.4. Common concurrency control issues

Never use the anti-patterns entitymanager-per-user-session or entitymanager-per-application
(of course, there are rare exceptions to this rule, e.g. entitymanager-per-application might be
acceptable in a desktop application, with manual flushing of the persistence context). Note that

40

Database transaction demarcation

some of the following issues might also appear with the recommended patterns, make sure you
understand the implications before making a design decision:

* An entity manager is not thread-safe. Things which are supposed to work concurrently,
like HTTP requests, session beans, or Swing workers, will cause race conditions if an
Enti t yManager instance would be shared. If you keep your Hibernate Ent i t yManager in your
Ht t pSessi on (discussed later), you should consider synchronizing access to your Http session.
Otherwise, a user that clicks reload fast enough may use the same Entit yManager in two
concurrently running threads. You will very likely have provisions for this case already in place,
for other non-threadsafe but session-scoped objects.

* An exception thrown by the Entity Manager means you have to rollback your database
transaction and close the Ent i t yManager immediately (discussed later in more detail). If your
Enti t yManager is bound to the application, you have to stop the application. Rolling back the
database transaction doesn't put your business objects back into the state they were at the start
of the transaction. This means the database state and the business objects do get out of sync.
Usually this is not a problem, because exceptions are not recoverable and you have to start
over your unit of work after rollback anyway.

e The persistence context caches every object that is in managed state (watched and
checked for dirty state by Hibernate). This means it grows endlessly until you get an
Qut OF Menor yExcept i on, if you keep it open for a long time or simply load too much data.
One solution for this is some kind batch processing with regular flushing of the persistence
context, but you should consider using a database stored procedure if you need mass data
operations. Some solutions for this problem are shown in Chapter 7, Batch processing. Keeping
a persistence context open for the duration of a user session also means a high probability of
stale data, which you have to know about and control appropriately.

5.2. Database transaction demarcation

Database (or system) transaction boundaries are always necessary. No communication with the
database can occur outside of a database transaction (this seems to confuse many developers
who are used to the auto-commit mode). Always use clear transaction boundaries, even for read-
only operations. Depending on your isolation level and database capabilities this might not be
required but there is no downside if you always demarcate transactions explicitly. You'll have to do
operations outside a transaction, though, when you'll need to retain modifications in an EXTENDED
persistence context.

A JPA application can run in non-managed (i.e. standalone, simple Web- or Swing
applications) and managed Java EE environments. In a non-managed environment, an
Entit yManager Fact ory is usually responsible for its own database connection pool. The
application developer has to manually set transaction boundaries, in other words, begin, commit,
or rollback database transactions itself. A managed environment usually provides container-
managed transactions, with the transaction assembly defined declaratively through annotations
of EJB session beans, for example. Programmatic transaction demarcation is then no longer
necessary, even flushing the Ent i t yManager is done automatically.

41

Chapter 5. Transactions and C...

Usually, ending a unit of work involves four distinct phases:

« commit the (resource-local or JTA) transaction (this automatically flushes the entity manager
and persistence context)

« close the entity manager (if using an application-managed entity manager)

» handle exceptions

We'll now have a closer look at transaction demarcation and exception handling in both managed-
and non-managed environments.

5.2.1. Non-managed environment

If an JPA persistence layer runs in a non-managed environment, database connections are usually
handled by Hibernate's pooling mechanism behind the scenes. The common entity manager and
transaction handling idiom looks like this:

/1 Non- managed environnment idiom
EntityManager em = enf.createEntityManager();
EntityTransaction tx = null;

try {
tx = emget Transaction();
tx. begin();

/1 do sone work

tx.commt();

}

catch (Runti meException e) {
if (tx !'=null && tx.isActive()) tx.rollback();
throw e; // or display error nessage

}
finally {

emcl ose();

}

You don't have to flush() the EntityManager explicitly - the call to commi t () automatically
triggers the synchronization.

A call to cl ose() marks the end of an Enti t yManager. The main implication of cl ose() is the
release of resources - make sure you always close and never outside of guaranteed finally block.

You will very likely never see this idiom in business code in a normal application; fatal (system)
exceptions should always be caught at the "top". In other words, the code that executes entity
manager calls (in the persistence layer) and the code that handles Runti meExcepti on (and
usually can only clean up and exit) are in different layers. This can be a challenge to design
yourself and you should use J2EE/EJB container services whenever they are available. Exception
handling is discussed later in this chapter.

42

Using JTA

5.2.1.1. EntityTransaction

In a JTA environment, you don't need any extra API to interact with the transaction in your
environment. Simply use transaction declaration or the JTA APIs.

If you are using a RESOURCE_LOCAL entity manager, you need to demarcate your transaction
boundaries through the EntityTransaction API. You can get an EntityTransaction
through ent i t yManager . get Transacti on(). ThisEnti tyTransacti on APl provides the regular
begi n(), commit (), rol |l back() and i sActive() methods. It also provide a way to mark a
transaction as rollback only, ie force the transaction to rollback. This is very similar to the JTA
operation set Rol | backOnl y() . Whenacomi t () operation fail and/or if the transaction is marked
as set Rol | backOnl y(), the conmi t () method will try to rollback the transaction and raise a
j avax.transaction. Rol | backExcepti on.

In a JTA entity manager, ent i t yManager . get Transacti on() calls are not permitted.

5.2.2. Using JTA

If your persistence layer runs in an application server (e.g. behind EJB3 session beans), every
datasource connection obtained internally by the entity manager will automatically be part of the
global JTA transaction. Hibernate offers two strategies for this integration.

If you use bean-managed transactions (BMT), the code will look like this:

/1 BM idiom
@Resour ce public UserTransaction utx;
@Resour ce public EntityManagerFactory factory;

public void doBusiness() {
Enti tyManager em = factory. createEntityManager();
try {

/1 do sone work

utx.commt();

}

catch (Runti meException e) {
if (utx !'= null) utx.rollback();
throw e; // or display error nessage

}
finally {

emcl ose();

}

With Container Managed Transactions (CMT) in an EJB3 container, transaction demarcation
is done in session bean annotations or deployment descriptors, not programatically. The
Enti t yManager will automatically be flushed on transaction completion (and if you have injected
or lookup the Enti t yManager, it will be also closed automatically). If an exception occurs during
the Enti t yManager use, transaction rollback occurs automatically if you don't catch the exception.

43

Chapter 5. Transactions and C...

Since Enti t yManager exceptions are Runti meExcept i ons they will rollback the transaction as
per the EJB specification (system exception vs. application exception).

It is important to let Hibernate EntityManager define the
hi bernat e. transacti on. factory_cl ass (ie not overriding this value). Remember to also set
org. hi bernate.transacti on. manager _| ookup_cl ass.

If you work in a CMT environment, you might also want to use the same entity manager
in different parts of your code. Typically, in a non-managed environment you would use a
Thr eadLocal variable to hold the entity manager, but a single EJB request might execute in
different threads (e.g. session bean calling another session bean). The EJB3 container takes care
of the persistence context propagation for you. Either using injection or lookup, the EJB3 container
will return an entity manager with the same persistence context bound to the JTA context if any,
or create a new one and bind it (see Section 1.2.4, “Persistence context propagation” .)

Our entity manager/transaction management idiom for CMT and EJB3 container-use is reduced
to this:

/1 CMT idiomthrough injection
@Per si st enceCont ext (nane="sanpl e") EntityManager em

Or this if you use Java Context and Dependency Injection (CDI).
@nj ect EntityManager em

In other words, all you have to do in a managed environment is to inject the Enti t yManager,
do your data access work, and leave the rest to the container. Transaction boundaries are set
declaratively in the annotations or deployment descriptors of your session beans. The lifecycle of
the entity manager and persistence context is completely managed by the container.

Due to a silly limitation of the JTA spec, it is not possible for Hibernate to automatically clean up
any unclosed Scrol | abl eResul ts or | terat or instances returned by scrol | () oriterate().
You must release the underlying database cursor by calling Scrol | abl eResul ts. cl ose() or
Hi ber nat e. cl ose(lterator) explicitly from afinal | y block. (Of course, most applications can
easily avoid using scrol | () oriterate() atall fromthe CMT code.)

5.2.3. Exception handling

If the Ent i t yManager throws an exception (including any SQLExcept i on), you should immediately
rollback the database transaction, call Ent i t yManager . cl ose() (if creat eEnti t yManager () has
been called) and discard the Enti t yManager instance. Certain methods of Enti t yManager will
not leave the persistence context in a consistent state. No exception thrown by an entity manager
can be treated as recoverable. Ensure that the Ent i t yManager will be closed by calling cl ose()
in afinally block. Note that a container managed entity manager will do that for you. You just
have to let the RuntimeException propagate up to the container.

44

Exception handling

The Hibernate entity manager generally raises exceptions which encapsulate the Hibernate core
exception. Common exceptions raised by the Ent i t yManager API are

e Il 1 egal Argunent Except i on: something wrong happen

e EntityNot FoundExcepti on: an entity was expected but none match the requirement

* NonUni queResul t Except i on: more than one entity is found when calling get Si ngl eResul t ()
» NoResultException: when get Si ngl eResul t () does not find any matching entity

e EntityExi st sExcepti on: an existing entity is passed to per si st ()

e Transacti onRequi r edExcept i on: this operation has to be in a transaction

* Il1egal Stat eExcepti on: the entity manager is used in a wrong way

* Rol | backExcept i on: a failure happens during conmi t ()

e QueryTi meout Exception: the query takes longer than the specified timeout (see
j avax. per si st ence. query. ti neout - this property is a hint and might not be followed)

* Pessimi sticLockException: when a lock cannot be acquired
e OptimisticlLockException: an optimistic lock is failing

e LockTi neout Excepti on: when a lock takes longer than the expected time to be acquired
(j avax. persi st ence. | ock. ti meout in milliseconds)

e Transacti onRequi r edExcept i on: an operation requiring a transaction is executed outside of
a transaction

The Hi bernat eExcepti on, which wraps most of the errors that can occur in a Hibernate
persistence layer, is an unchecked exception. Note that Hibernate might also throw other
unchecked exceptions which are not a Hi ber nat eExcept i on. These are, again, not recoverable
and appropriate action should be taken.

Hibernate wraps SQ.Exceptions thrown while interacting with the database in a
JDBCException. In fact, Hibernate will attempt to convert the exception into a more
meaningful subclass of JDBCExcepti on. The underlying SQLExcepti on is always available
via JDBCExcepti on. get Cause(). Hibernate converts the SQLExcepti on into an appropriate
JDBCExcept i on subclass using the SQLExcepti onConverter attached to the Sessi onFact ory.
By default, the SQ.ExceptionConverter is defined by the configured dialect; however,
it is also possible to plug in a custom implementation (see the javadocs for the
SQLExcept i onConvert er Fact or y class for details). The standard JDBCExcept i on subtypes are:

« JDBCConnect i onExcept i on - indicates an error with the underlying JDBC communication.
e SQLG anmar Except i on - indicates a grammar or syntax problem with the issued SQL.
e ConstraintViol ati onExcepti on - indicates some form of integrity constraint violation.

45

Chapter 5. Transactions and C...

e LockAcqui sitionException - indicates an error acquiring a lock level necessary to perform
the requested operation.
e Generi cJDBCExcept i on - a generic exception which did not fall into any of the other categories.

5.3. EXTENDED Persistence Context

All application managed entity manager and container managed persistence contexts defined as
such are EXTENDED. This means that the persistence context type goes beyond the transaction
life cycle. We should then understand what happens to operations made outside the scope of a
transaction.

In an EXTENDED persistence context, all read only operations of the entity manager can be executed
outside a transaction (fi nd(), get Ref erence(), refresh(), det ach() and read queries). Some
modifications operations can be executed outside a transaction, but they are queued until the
persistence context join a transaction: this is the case of persi st (), nerge(), renove(). Some
operations cannot be called outside a transaction: f1 ush(), | ock(), and update/delete queries.

5.3.1. Container Managed Entity Manager

When using an EXTENDED persistence context with a container managed entity manager, the
lifecycle of the persistence context is binded to the lifecycle of the Stateful Session Bean. Plus
if the entity manager is created outside a transaction, modifications operations (persist, merge,
remove) are queued in the persistence context and not executed to the database.

When a method of the stateful session bean involved or starting a transaction is later called, the
entity manager join the transaction. All queued operation will then be executed to synchronize the
persistence context.

This is perfect to implement the ent i t ymanager - per - conver sat i on pattern. A stateful session
bean represents the conversation implementation. All intermediate conversation work will be
processed in methods not involving transaction. The end of the conversation will be processed
inside a JTA transaction. Hence all queued operations will be executed to the database and
committed. If you are interested in the notion of conversation inside your application, have a look at
JBoss Seam. JBoss Seam emphasizes the concept of conversation and entity manager lifecycle
and bind EJB3 and JSF together.

5.3.2. Application Managed Entity Manager

Application-managed entity manager are always EXTENDED. When you create an entity manager
inside a transaction, the entity manager automatically join the current transaction. If the entity
manager is created outside a transaction, the entity manager will queue the modification
operations. When

e entityMnager.joi nTransacti on() is called when a JTA transaction is active for a JTA entity
manager

e entityMnager. get Transaction(). begi n() is called for a RESOURCE_LOCAL entity manager

46

Optimistic concurrency control

the entity manager join the transaction and all the queued operations will then be executed to
synchronize the persistence context.

Itis not legal to call enti t yManager . j oi nTransacti on() if no JTA transaction is involved.

5.4. Optimistic concurrency control

The only approach that is consistent with high concurrency and high scalability is optimistic
concurrency control with versioning. Version checking uses version numbers, or timestamps, to
detect conflicting updates (and to prevent lost updates). Hibernate provides for three possible
approaches to writing application code that uses optimistic concurrency. The use cases we show
are in the context of long application transactions but version checking also has the benefit of
preventing lost updates in single database transactions.

5.4.1. Application version checking

In an implementation without much help from the persistence mechanism, each interaction with
the database occurs in a new EntityManager and the developer is responsible for reloading
all persistent instances from the database before manipulating them. This approach forces the
application to carry out its own version checking to ensure application transaction isolation. This
approach is the least efficient in terms of database access. It is the approach most similar to EJB2
entities:

/[l foo is an instance | oaded by a previous entity nmanager

em = factory. createEntityManager();

EntityTransaction t = em get Transaction();

t. begin();

int oldVersion = foo.getVersion();

Foo dbFoo = em find(foo.getCl ass(), foo.getKey()); // load the current state
if (dbFoo. getVersion()!=foo.getVersion) throw new Stal eObj ect St at eExcepti on();
dbFoo. set Property("bar");

t.commit();

em cl ose();

The versi on property is mapped using @/er si on, and the entity manager will automatically
increment it during flush if the entity is dirty.

Of course, if you are operating in a low-data-concurrency environment and don't require version
checking, you may use this approach and just skip the version check. In that case, last commit
wins will be the default strategy for your long application transactions. Keep in mind that this
might confuse the users of the application, as they might experience lost updates without error
messages or a chance to merge conflicting changes.

Clearly, manual version checking is only feasible in very trivial circumstances and not practical for
most applications. Often not only single instances, but complete graphs of modified objects have
to be checked. Hibernate offers automatic version checking with either detached instances or an
extended entity manager and persistence context as the design paradigm.

47

Chapter 5. Transactions and C...

5.4.2. Extended entity manager and automatic versioning

A single persistence context is used for the whole application transaction. The entity manager
checks instance versions at flush time, throwing an exception if concurrent modification is
detected. It's up to the developer to catch and handle this exception (common options are the
opportunity for the user to merge his changes or to restart the business process with non-stale
data).

In an EXTENDED persistence context, all operations made outside an active transaction are queued.
The EXTENDED persistence context is flushed when executed in an active transaction (at worse
at commit time).

The Entity Manager is disconnected from any underlying JDBC connection when waiting for
user interaction. In an application-managed extended entity manager, this occurs automatically
at transaction completion. In a stateful session bean holding a container-managed extended
entity manager (i.e. a SFSB annotated with @er si st enceCont ext (EXTENDED)), this occurs
transparently as well. This approach is the most efficient in terms of database access. The
application need not concern itself with version checking or with merging detached instances, nor
does it have to reload instances in every database transaction. For those who might be concerned
by the number of connections opened and closed, remember that the connection provider should
be a connection pool, so there is no performance impact. The following examples show the idiom
in a non-managed environment:

/1 foo is an instance |oaded earlier by the extended entity nanager

em get Transaction. begin(); // new connection to data store is obtained and tx started
foo. set Property("bar");

em get Transaction().conmmt(); // End tx, flush and check version, disconnect

The foo object still knows which persistence context it was loaded in. With
get Transacti on. begi n(); the entity manager obtains a new connection and resumes the
persistence context. The method get Transacti on(). conmit () will not only flush and check
versions, but also disconnects the entity manager from the JDBC connection and return the
connection to the pool.

This pattern is problematic if the persistence context is too big to be stored during user think
time, and if you don't know where to store it. E.g. the Htt pSessi on should be kept as small as
possible. As the persistence context is also the (mandatory) first-level cache and contains all
loaded objects, we can probably use this strategy only for a few request/response cycles. This is
indeed recommended, as the persistence context will soon also have stale data.

It is up to you where you store the extended entity manager during requests, inside an EJB3
container you simply use a stateful session bean as described above. Don't transfer it to the web
layer (or even serialize it to a separate tier) to store it in the Ht t pSessi on. In a non-managed, two-
tiered environment the Ht t pSessi on might indeed be the right place to store it.

48

Detached objects and automatic versioning

5.4.3. Detached objects and automatic versioning

With this paradigm, each interaction with the data store occurs in a new persistence context.
However, the same persistent instances are reused for each interaction with the database. The
application manipulates the state of detached instances originally loaded in another persistence
context and then merges the changes using Ent i t yManager . mer ge() :

// foo is an instance | oaded by a non-extended entity nmanager

f oo. set Property("bar");

entityManager = factory.createEntityManager();

entityManager. get Transaction(). begi n();

managedFoo = session.nerge(foo); // discard foo and from now on use nanagedFoo
entityManager. get Transaction().conmit();

entityManager. cl ose();

Again, the entity manager will check instance versions during flush, throwing an exception if
conflicting updates occurred.

49

50

Chapter 6.

Entity listeners and Callback
methods

6.1. Definition

It is often useful for the application to react to certain events that occur inside the persistence
mechanism. This allows the implementation of certain kinds of generic functionality, and extension
of built-in functionality. The JPA specification provides two related mechanisms for this purpose.

A method of the entity may be designated as a callback method to receive notification of a
particular entity life cycle event. Callbacks methods are annotated by a callback annotation. You
can also define an entity listener class to be used instead of the callback methods defined directly
inside the entity class. An entity listener is a stateless class with a no-arg constructor. An entity
listener is defined by annotating the entity class with the @nt i t yLi st ener s annotation:

@ntity
@ntityListeners(class=Audit.class)
public class Cat {
@d private Integer id;
private String nang;
private Cal endar dateOf Birth;
@ransient private int age;
private Date |astUpdate;
//getters and setters

/**
* Set ny transient property at |load tinme based on a cal cul ation,
* note that a native Hibernate formula mapping is better for this purpose.
*/
@ost Load
public void cal cul at eAge() {
Cal endar birth = new GregorianCal endar () ;
birth.setTime(dated Birth);
Cal endar now = new GregorianCal endar () ;
now. set Ti ne(new Date());
int adjust = 0;
if (now get(Cal endar. DAY_OF_YEAR) - birth.get(Cal endar. DAY_OF_YEAR) < 0) {
adj ust = -1;
}
age = now. get (Cal endar. YEAR) - birth. get(Cal endar. YEAR) + adj ust;

public class LastUpdatelLi stener {
/**
* automatic property set before any database persistence
*/
@r eUpdat e
@r ePer si st
public void setlLastUpdate(Cat o) {
0. set Last Update(new Date());

51

Chapter 6. Entity listeners a...

The same callback method or entity listener method can be annotated with more than one callback
annotation. For a given entity, you cannot have two methods being annotated by the same callback
annotation whether it is a callback method or an entity listener method. A callback method is a no-
arg method with no return type and any arbitrary name. An entity listener has the signature voi d
<METHOD>(Obj ect) where Obiject is of the actual entity type (note that Hibernate Entity Manager
relaxed this constraint and allows (bj ect ofj ava. | ang. Qbj ect type (allowing sharing of listeners
across several entities.)

A callback method can raise a Runt i neExcept i on. The current transaction, if any, must be rolled
back. The following callbacks are defined:

Table 6.1. Callbacks

Type Description

@PrePersist Executed before the entity manager persist
operation is actually executed or cascaded.
This call is synchronous with the persist
operation.

@PreRemove Executed before the entity manager remove
operation is actually executed or cascaded.
This call is synchronous with the remove
operation.

@PostPersist Executed after the entity manager persist
operation is actually executed or cascaded.
This call is invoked after the database INSERT
is executed.

@PostRemove Executed after the entity manager remove
operation is actually executed or cascaded.
This call is synchronous with the remove

operation.

@PreUpdate Executed before the database UPDATE
operation.

@PostUpdate Executed after the database UPDATE
operation.

@PostLoad Executed after an entity has been loaded into

the current persistence context or an entity has
been refreshed.

A callback method must not invoke Ent i t yManager or Query methods!

52

Callbacks and listeners inheritance

6.2. Callbacks and listeners inheritance

You can define several entity listeners per entity at different level of the hierarchy. You can also
define several callbacks at different level of the hierarchy. But you cannot define two listeners for
the same event in the same entity or the same entity listener.

When an event is raised, the listeners are executed in this order:

e @ntitylListeners for a given entity or superclass in the array order

« Entity listeners for the superclasses (highest first)

Entity Listeners for the entity

Callbacks of the superclasses (highest first)

Callbacks of the entity

You can stop the entity listeners inheritance by using the @xcl udeSuper cl assLi st eners, all
superclasses @ntityLi st eners will then be ignored.

6.3. XML definition

The JPA specification allows annotation overriding through JPA deployment descriptors. There is
also an additional feature that can be useful: default event listeners.

<?xm version="1.0" encodi ng="UTF-8"?>

<entity-mappi ngs xm ns="http://java. sun. com xm / ns/ persi st ence/ or nf
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schen®- i nst ance"
xsi : schemaLocation="http://java. sun. com xm / ns/ persi stence/ orm orm 2_0. xsd"
version="2.0"
>
<per si st ence-uni t - net adat a>
<per si stence-unit-defaul ts>
<entity-listeners>
<entity-listener class="org. hibernate.ejb.test.pack.defaultpar.!|ncrenentlListener">
<pre-persi st nethod-name="i ncrenent"/>
</entity-listener>
</entity-listeners>
</ persi stence-unit-defaul ts>
</ persi st ence-unit-nmet adat a>
<package>or g. hi ber nat e. ej b. t est . pack. def aul t par </ package>
<entity class="ApplicationServer">
<entity-listeners>
<entity-listener class="QherlncrenentlListener">
<pre-persi st nethod-name="i ncrenent"/>
</entity-listener>
</entity-listeners>

<pre-persi st nethod-nanme="cal cul ate"/>

53

Chapter 6. Entity listeners a...

</entity>
</entity-mappi ngs>

You can override entity listeners on a given entity. An entity listener correspond to a given class
and one or several event fire a given method call. You can also define event on the entity itself
to describe the callbacks.

Last but not least, you can define some default entity listeners that will apply first on the entity
listener stack of all the mapped entities of a given persistence unit. If you don't want an entity
to inherit the default listeners, you can use @xcl udeDef aul t Li st eners (or <exclude-default-
listeners/>).

54

Chapter 7.

Batch processing

Batch processing has traditionally been difficult in full object/relational mapping. ORM is all about
object state management, which implies that object state is available in memory. However,
Hibernate has some features to optimize batch processing which are discussed in the Hibernate
reference guide, however, EJB3 persistence differs slightly.

7.1. Bulk update/delete

As already discussed, automatic and transparent object/relational mapping is concerned with the
management of object state. This implies that the object state is available in memory, hence
updating or deleting (using SQL UPDATE and DELETE) data directly in the database will not affect
in-memory state. However, Hibernate provides methods for bulk SQL-style UPDATE and DELETE
statement execution which are performed through JP-QL (Chapter 8, JP-QL: The Object Query
Language).

The pseudo-syntax for UPDATE and DELETE statements is: (UPDATE | DELETE) FROW?
d assName (WHERE WHERE_CONDI TI ONS) ?. Note that:

* In the from-clause, the FROM keyword is optional.

« There can only be a single class named in the from-clause, and it cannot have an alias (this is
a current Hibernate limitation and will be removed soon).

* No joins (either implicit or explicit) can be specified in a bulk JP-QL query. Sub-queries may
be used in the where-clause.

» The where-clause is also optional.

As an example, to execute an JP-QL UPDATE, use the Query. execut eUpdat e() method:

EntityManager entityManager = entityManagerFactory. createEntityManager();
entityManager. get Transaction(). begin();

String jpgl Update = "update Custoner set nane = :newNane where nane = : ol dNane"
int updatedEntities = entityManager.createQuery(jpgl Update)
.set Paraneter("newNane", newNane)
.set Paraneter("ol dNane", ol dNanme)
. execut eUpdat e() ;
entityManager. get Transaction().conmmit();
entityManager. cl ose();

To execute an JP-QL DELETE, use the same Query. execut eUpdat e() method (the method is
named for those familiar with JDBC's Pr epar edSt at ement . execut eUpdat e()):

EntityManager entityManager = entityManager Factory. createEntityManager();
entityManager. get Transaction(). begin();

55

Chapter 7. Batch processing

String hqgl Del ete = "del ete Custoner where nane = :ol dNane";

int deletedEntities = entityManager.createQuery(hqgl Delete)
.set Paraneter("ol dNane", ol dNanme)
. execut eUpdat e() ;

entityManager. get Transaction().commt();

entityManager. cl ose();

The i nt value returned by the Query. execut eUpdat e() method indicate the number of entities
effected by the operation. This may or may not correlate with the number of rows effected in
the database. A JP-QL bulk operation might result in multiple actual SQL statements being
executed, for joined-subclass, for example. The returned number indicates the number of actual
entities affected by the statement. Going back to the example of joined-subclass, a delete against
one of the subclasses may actually result in deletes against not just the table to which that
subclass is mapped, but also the "root" table and potentially joined-subclass tables further down
the inheritance hierarchy.

56

Chapter 8.

JP-QL: The Object Query Language

The Java Persistence Query Language (JP-QL) has been heavily inspired by HQL, the native
Hibernate Query Language. Both are therefore very close to SQL, but portable and independent
of the database schema. People familiar with HQL shouldn't have any problem using JP-QL. In
fact HQL is a strict superset of JP-QL and you use the same query API for both types of queries.
Portable JPA applications however should stick to JP-QL.

@ Note

For a type-safe approach to query, we highly recommend you to use the Criteria
query, see

8.1. Case Sensitivity
Queries are case-insensitive, except for names of Java classes and properties. So SeLeCT

is the same as sELEct is the same as SELECT but org. hi bernate. eg. FOO is not
or g. hi bernat e. eg. Foo and f oo. bar Set is not f oo. BARSET.

This manual uses lowercase JP-QL keywords. Some users find queries with uppercase keywords
more readable, but we find this convention ugly when embedded in Java code.

8.2. The from clause

The simplest possible JP-QL query is of the form:

select ¢ fromeg.Cat c

which simply returns all instances of the class eg. Cat . Unlike HQL, the select clause is not optional
in JP-QL. We don't usually need to qualify the class name, since the entity name defaults to the
unqualified class name (@nt it y). So we almost always just write:

select ¢ fromCat c

As you may have noticed you can assign aliases to classes, the as keywork is optional. An alias
allows you to refer to Cat in other parts of the query.

select cat from Cat as cat

Multiple classes may appear, resulting in a cartesian product or "cross" join.

57

Chapter 8. JP-QL: The Object ...

select from paramfrom Fornmula as form Paraneter as param

It is considered good practice to name query aliases using an initial lowercase, consistent with
Java naming standards for local variables (eg. donest i cCat).

8.3. Associations and joins

You may also assign aliases to associated entities, or even to elements of a collection of values,
using a j oi n.

sel ect cat, mate, kitten from Cat as cat
inner join cat.mate as nate
left outer join cat.kittens as kitten

select cat fromCat as cat left join cat.mte.kittens as kittens

The supported join types are borrowed from ANSI SQL

* inner join

e |eft outer join

Theinner join,left outer join constructs may be abbreviated.

select cat, mate, kitten from Cat as cat
join cat.mte as nmate
left join cat.kittens as kitten

In addition, a "fetch" join allows associations or collections of values to be initialized along with
their parent objects, using a single select. This is particularly useful in the case of a collection.
It effectively overrides the fetching options in the associations and collection mapping metadata.
See the Performance chapter of the Hibernate reference guide for more information.

sel ect cat from Cat as cat
inner join fetch cat.nmate
left join fetch cat.kittens

A fetch join does not usually need to assign an alias, because the associated objects should not
be used in the wher e clause (or any other clause). Also, the associated objects are not returned
directly in the query results. Instead, they may be accessed via the parent object. The only reason
we might need an alias is if we are recursively join fetching a further collection:

58

The select clause

sel ect cat from Cat as cat
inner join fetch cat.mte
left join fetch cat.kittens child
left join fetch child.kittens

Note that the f et ch construct may not be used in queries called using scrol I () oriterate().
Nor should f et ch be used together with set MaxResul t s() orset Fi rst Resul t (). Itis possible to
create a cartesian product by join fetching more than one collection in a query (as in the example
above), be careful the result of this product isn't bigger than you expect. Join fetching multiple
collection roles gives unexpected results for bag mappings as it is impossible for Hibernate to
differentiate legit duplicates of a given bag from artificial duplicates created by the multi-table
cartesian product.

If you are using property-level lazy fetching (with bytecode instrumentation), it is possible to
force Hibernate to fetch the lazy properties immediately (in the first query) using fetch all
properti es. This is Hibernate specific option:

sel ect doc from Docunent doc fetch all properties order by doc. nane

sel ect doc from Docunent doc fetch all properties where | ower(doc. nane) |like '%ats%

8.4. The select clause

The sel ect clause picks which objects and properties to return in the query result set. Consider:

sel ect mate
fromCat as cat
inner join cat.mate as mate

The query will select nat es of other Cat s. Actually, you may express this query more compactly as:

select cat.mate from Cat cat

Queries may return properties of any value type including properties of component type:

sel ect cat.nane from DonesticCat cat
where cat.nane like "fri%

59

Chapter 8. JP-QL: The Object ...

sel ect cust.nane.firstName from Custoner as cust

Queries may return multiple objects and/or properties as an array of type bj ect[],

sel ect mother, offspr, mate.nane
from Donmesti cCat as not her
inner join nother.mate as mate
left outer join nother.kittens as of fspr

or as a Li st (HQL specific feature)

sel ect new list(nother, offspr, mate.nane)
from Donesti cCat as not her

inner join nother.mate as mate

left outer join nother.kittens as of fspr

or as an actual type-safe Java object (often called a view object),

sel ect new Family(nother, mate, offspr)
from DonesticCat as not her

join nother.mate as mate

left join mother.kittens as of fspr

assuming that the class Fani | y has an appropriate constructor.

You may assign aliases to selected expressions using as:

sel ect max(bodyWei ght) as max, m n(bodyWight) as min, count(*) as n
from Cat cat

This is most useful when used together with sel ect new map (HQL specific feature):

sel ect new map(nmax(bodyWei ght) as max, m n(bodyWight) as mn, count(*) as n)
from Cat cat

This query returns a Map from aliases to selected values.

8.5. Aggregate functions

HQL queries may even return the results of aggregate functions on properties:

60

Polymorphic queries

sel ect avg(cat.weight), sum(cat.weight), max(cat.weight), count(cat)
from Cat cat

The supported aggregate functions are

e avg(...), avg(distinct ...), sun(...), sum(distinct ...), mn(...), max(...)
e count (*)

e count(...), count(distinct ...), count(all...)

You may use arithmetic operators, concatenation, and recognized SQL functions in the select
clause (dpending on configured dialect, HQL specific feature):

sel ect cat.wei ght + sun(kitten.weight)
from Cat cat

join cat.kittens kitten
group by cat.id, cat.weight

select firstName||' '||initial]|" '||upper(lastNane) from Person

The di stinct and al | keywords may be used and have the same semantics as in SQL.

sel ect distinct cat.nanme from Cat cat

sel ect count(distinct cat.nanme), count(cat) from Cat cat

8.6. Polymorphic queries

A query like:
select cat from Cat as cat

returns instances not only of Cat , but also of subclasses like Donmest i cCat . Hibernate queries may
name any Java class or interface in the f r omclause (portable JP-QL queries should only name
mapped entities). The query will return instances of all persistent classes that extend that class
or implement the interface. The following query would return all persistent objects:

fromjava.lang. Object o // HQ only

The interface Named might be implemented by various persistent classes:

61

Chapter 8. JP-QL: The Object ...

from Naned n, Named m where n.nane = mnane // HQL only

Note that these last two queries will require more than one SQL SELECT. This means that the
order by clause does not correctly order the whole result set. (It also means you can't call these
queries using Query. scrol | ().)

8.7. The where clause

The wher e clause allows you to narrow the list of instances returned. If no alias exists, you may
refer to properties by name:

select cat from Cat cat where cat.name='Fritz'

returns instances of Cat named 'Fritz'.

sel ect foo
from Foo foo, Bar bar
where foo.startDate = bar.date

will return all instances of Foo for which there exists an instance of bar with a dat e property
equal to the st ar t Dat e property of the Foo. Compound path expressions make the wher e clause
extremely powerful. Consider:

select cat from Cat cat where cat.mate.nane is not null

This query translates to an SQL query with a table (inner) join. If you were to write something like

sel ect foo from Foo foo
wher e foo. bar.baz. custoner. address.city is not null

you would end up with a query that would require four table joins in SQL.

The = operator may be used to compare not only properties, but also instances:

select cat, rival fromCat cat, Cat rival where cat.nmate = rival.mte

sel ect cat, mate
fromCat cat, Cat mate

62

The where clause

where cat.nmate = mate

The special property (lowercase) i d may be used to reference the unique identifier of an object.
(You may also use its mapped identifer property name.). Note that this keyword is specific to HQL.

select cat fromCat as cat where cat.id = 123

select cat fromCat as cat where cat.nmate.id = 69

The second query is efficient. No table join is required!

Properties of composite identifiers may also be used. Suppose Per son has a composite identifier
consisting of count ry and nedi car eNunber .

sel ect person from bank. Person person
where person.id.country = "AU
and person.id. medi careNunber = 123456

sel ect account from bank. Account account
where account.owner.id.country = 'AU
and account. owner.id. medi careNunber = 123456

Once again, the second query requires no table join.

Likewise, the special property cl ass accesses the discriminator value of an instance in the case
of polymorphic persistence. A Java class name embedded in the where clause will be translated
to its discriminator value. Once again, this is specific to HQL.

select cat from Cat cat where cat.class = Donesti cCat

You may also specify properties of components or composite user types (and of components
of components, etc). Never try to use a path-expression that ends in a property of component
type (as opposed to a property of a component). For example, if st or e. owner is an entity with
a component addr ess

store. owner. address.city /'l okay
st or e. owner. addr ess /Il error!

An "any" type has the special propertiesi d and cl ass, allowing us to express a join in the following
way (where Audi t Log. i t emis a property mapped with <any>). Any is specific to Hibernate

63

Chapter 8. JP-QL: The Object ...

from Audi tLog | og, Paynent paynent
where log.itemclass = 'Paynent' and log.itemid = paynent.id

Notice that! og. i t em cl ass and paynent . cl ass would refer to the values of completely different
database columns in the above query.

8.8. Expressions

Expressions allowed in the wher e clause include most of the kind of things you could write in SQL:

« mathematical operators +, -, *, /

* binary comparison operators =, >=, <=, <>, =, like

« logical operations and, or, not

» Parentheses (), indicating grouping

e in,not in, between,is null,is not null,is enpty,is not enpty, menber of and
not menber of

e exists,all, any, sone (taking subqueries)

e "Simple" case, case ... when ... then ... else ... end, and "searched" case, case
when ... then ... else ... end

 string concatenation .. .||... orconcat(...,...) (use concat() for portable JP-Q
queri es)

e current_date(),current _tinme(),current_tinmestanp()

e second(...),mnute(...),hour(...),day(...),month(...),year(...), (specificto HQL)

» Any function or operator: substring(), trin(), lower(), upper(), length(), locate(),
abs(), sqrt(), bit_length()

e coal esce() and nul i f ()

« TYPE ... in ..., where the first argument is an identifier variable and the second argument
is the subclass to restrict polymorphism to (or a list of subclasses surrounded by parenthesis)

e cast(... as ...), where the second argument is the name of a Hibernate type, and
extract(... from ...) if ANSI cast() and extract() is supported by the underlying
database

» Any database-supported SQL scalar function like si gn(), trunc(),rtrin(), sin()

« JDBC IN parameters ?

e named parameters : nane, : start_date, : x1

e SQL literals* foo', 69, ' 1970-01- 01 10: 00: 01. 0

« JDBC escape syntax for dates (dependent on your JDBC driver support) (eg. where date =
{d '2008-12-31'})

e Javapublic static final constants eg. Col or. TABBY

i n and bet ween may be used as follows:

sel ect cat from DonesticCat cat where cat.nanme between 'A and 'B'

64

Expressions

sel ect cat from DonesticCat cat where cat.nane in ('Foo', 'Bar', 'Baz')

and the negated forms may be written

sel ect cat from DonesticCat cat where cat.nanme not between 'A and 'B

sel ect cat from DonesticCat cat where cat.name not in ('Foo', 'Bar', 'Baz')

Likewise,is null andis not null may be used to test for null values.

Booleans may be easily used in expressions by declaring HQL query substitutions in Hibernate
configuration:

hi ber nat e. query. substitutions true 1, false 0

This will replace the keywords true and f al se with the literals 1 and 0 in the translated SQL
from this HQL.:

select cat from Cat cat where cat.alive = true

You may test the size of a collection with the special property si ze, or the special si ze() function
(HQL specific feature).

select cat from Cat cat where cat.kittens.size > 0

select cat from Cat cat where size(cat.kittens) > 0

For indexed collections, you may refer to the minimum and maximum indices using ni ni ndex
and maxi ndex functions. Similarly, you may refer to the minimum and maximum elements of a
collection of basic type using the nmi nel enent and naxel ement functions. These are HQL specific
features.

sel ect cal from Cal endar cal where nmaxel enent (cal . holidays) > current date

65

Chapter 8. JP-QL: The Object ...

sel ect order from Order order where nmaxi ndex(order.itens) > 100

sel ect order from Order order where minel enment(order.itens) > 10000

The SQL functions any, some, all, exists, in aresupported when passed the element or
index set of a collection (el ement s and i ndi ces functions) or the result of a subquery (see below).
While subqueries are supported by JP-QL, el enent s and i ndi ces are specific HQL features.

sel ect nother from Cat as nother, Cat as kit
where kit in el enments(foo.kittens)

sel ect p from NaneList list, Person p
where p.nane = sonme el enents(list.nanes)

sel ect cat from Cat cat where exists el ements(cat.kittens)

select cat fromPlayer p where 3 > all el ements(p. scores)

sel ect cat from Show show where 'fizard' in indices(show acts)

Note that these constructs - si ze, el ements, indices, m ni ndex, maxi ndex, ni nel ement,
maxel ement - may only be used in the where clause in Hibernate.

JP-QL lets you access the key or the value of a map by using the KEY() and VALUE() operations
(even access the Entry object using ENTRY())

SELECT i.name, VALUE(p) FROM Itemi JO N i.photos p WHERE KEY(p) LIKE *‘ %gret’

In HQL, elements of indexed collections (arrays, lists, maps) may be referred to by index (in a
where clause only):

sel ect order from Order order where order.itens[0].id = 1234

sel ect person from Person person, Cal endar cal endar

66

Expressions

wher e cal endar. hol i days[' nati onal day'] = person. birthDay
and person.nationality.cal endar = cal endar

select itemfromlitemitem Order order
where order.itenms[order.deliveredltem ndices[0]] = itemand order.id = 11

select itemfromltemitem O der order
where order.itens[maxindex(order.itens)] = itemand order.id = 11

The expression inside [] may even be an arithmetic expression.

select itemfromltemitem O der order
where order.itens[size(order.itens) - 1] =item

HQL also provides the built-in i ndex() function, for elements of a one-to-many association or
collection of values.

select item index(item) from Order order
join order.items item
where index(item) < 5

Scalar SQL functions supported by the underlying database may be used

sel ect cat from DonesticCat cat where upper(cat.nane) like 'FR %

If you are not yet convinced by all this, think how much longer and less readable the following
query would be in SQL:

sel ect cust
from Product prod,
Store store
inner join store.customers cust
where prod. nane = 'w dget’
and store.location.name in ('Melbourne', 'Sydney')
and prod = all elenents(cust.currentOder.lineltens)

Hint: something like

SELECT cust.nane, cust.address, cust.phone, cust.id, cust.current_order
FROM cust oners cust,

67

Chapter 8. JP-QL: The Object ...

stores store,
| ocations |oc,
store_custoners sc,
product prod
WHERE prod. name = 'widget'
AND store.loc_id =loc.id
AND | oc. name IN (' Mel bourne', 'Sydney')
AND sc.store_id = store.id
AND sc.cust_id = cust.id
AND prod.id = ALL(
SELECT item prod_id
FROM line_itens item orders o
WHERE itemorder _id = o.id
AND cust.current_order = o.id

8.9. The order by clause

The list returned by a query may be ordered by any property of a returned class or components:

sel ect cat from DonesticCat cat
order by cat.nane asc, cat.weight desc, cat.birthdate

The optional asc or desc indicate ascending or descending order respectively.

8.10. The group by clause

A query that returns aggregate values may be grouped by any property of a returned class or
components:

sel ect cat.color, sun(cat.weight), count(cat)
from Cat cat
group by cat.col or

select foo.id, avg(nanme), max(nane)
from Foo foo join foo.names nane
group by foo.id

A havi ng clause is also allowed.

sel ect cat.color, sun(cat.weight), count(cat)

from Cat cat

group by cat.col or

having cat.color in (eg.Color. TABBY, eg.Col or.BLACK)

68

Subqueries

SQL functions and aggregate functions are allowed in the havi ng and order by clauses, if
supported by the underlying database (eg. not in MySQL).

sel ect cat
from Cat cat
join cat.kittens kitten
group by cat
havi ng avg(kitten.weight) > 100
order by count(kitten) asc, sun(kitten.weight) desc

Note that neither the group by clause nor the order by clause may contain arithmetic
expressions.

8.11. Subqueries

For databases that support subselects, JP-QL supports subqueries within queries. A subquery
must be surrounded by parentheses (often by an SQL aggregate function call). Even correlated
subqueries (subqueries that refer to an alias in the outer query) are allowed.

sel ect fatcat from Cat as fatcat
where fatcat.weight > (
sel ect avg(cat.weight) from DonmesticCat cat

sel ect cat from DonesticCat as cat
where cat.nane = sone (
sel ect nane. ni ckNane from Nane as nane

select cat from Cat as cat
where not exists (
fromCat as mate where mate. mate = cat

sel ect cat from DonesticCat as cat
where cat.name not in (
sel ect nane. ni ckNane from Nane as nane

For subqueries with more than one expression in the select list, you can use a tuple constructor:

select cat from Cat as cat
where not (cat.nane, cat.color) in (

69

Chapter 8. JP-QL: The Object ...

sel ect cat.nane, cat.color from DonesticCat cat

Note that on some databases (but not Oracle or HSQLDB), you can use tuple constructors in other
contexts, for example when querying components or composite user types:

sel ect cat from Person where nane = ('Gavin', "A, 'King')

Which is equivalent to the more verbose:

sel ect cat from Person where nane.first = 'Gvin' and nane.initial ='A and nane.last = 'King')

There are two good reasons you might not want to do this kind of thing: first, it is not completely
portable between database platforms; second, the query is now dependent upon the ordering of
properties in the mapping document.

8.12. JP-QL examples

Hibernate queries can be quite powerful and complex. In fact, the power of the query language
is one of Hibernate's main selling points (and now JP-QL). Here are some example queries very
similar to queries that | used on a recent project. Note that most queries you will write are much
simpler than these!

The following query returns the order id, number of items and total value of the order for all unpaid
orders for a particular customer and given minimum total value, ordering the results by total value.
In determining the prices, it uses the current catalog. The resulting SQL query, against the ORDER,
ORDER_LI NE, PRCDUCT, CATALOG and PRI CE tables has four inner joins and an (uncorrelated)
subselect.

sel ect order.id, sum(price.anmount), count(itemn)
from Order as order
join order.lineltenms as item
join itemproduct as product,
Cat al og as catal og
join catal og.prices as price
where order.paid = fal se
and order.custonmer = :custoner
and price. product = product
and catal og. effectiveDate < sysdate
and catal og. effectiveDate >= all (
sel ect cat.effectiveDate
from Catal og as cat
where cat.effectiveDate < sysdate
)
group by order
havi ng sum(price. anount) > :m nAnount

70

JP-QL examples

order by sum(price.anpunt) desc

What a monster! Actually, in real life, I'm not very keen on subqueries, so my query was really
more like this:

select order.id, sunm(price.anount), count(itemn)
from Order as order

join order.lineltems as item

join item product as product,

Cat al og as catal og

join catal og. prices as price
where order.paid = fal se

and order.custonmer = :customner
and price. product = product
and catal og = :currentCatal og

group by order
havi ng sum(price. anount) > :m nAnount
order by sum(price.anmount) desc

The next query counts the number of payments in each status, excluding all payments in the
AWAI TI NG_APPROVAL status where the most recent status change was made by the current user.
It translates to an SQL query with two inner joins and a correlated subselect against the PAYMENT,
PAYMENT _STATUS and PAYMENT _STATUS CHANGE tables.

sel ect count(paynent), status.nane
from Paynent as paynent
join paynent.current Status as status
join paynent. statusChanges as stat usChange
wher e paynent. status. nane <> Paynent St at us. AWAI TI NG_APPROVAL
or (
statusChange. ti neStanmp = (
sel ect max(change. ti neSt anp)
from Paynent St at usChange change
wher e change. paynent = paynent
)
and st atusChange.user <> :currentUser
)
group by status.nane, status.sortOrder
order by status.sortOrder

If I would have mapped the st at usChanges collection as a list, instead of a set, the query would
have been much simpler to write.

sel ect count (paynent), status.nane
from Paynent as paynent
join payment.currentStatus as status
wher e paynent. st atus. name <> Paynent St at us. AWAI TI NG_APPROVAL
or paynent. st atusChanges[maxl ndex(paynent. statusChanges)].user <> :currentUser
group by status.nane, status.sortOrder

71

Chapter 8. JP-QL: The Object ...

order by status.sortOrder

However the query would have been HQL specific.

The next query uses the MS SQL Serveri sNul | () function to return all the accounts and unpaid
payments for the organization to which the current user belongs. It translates to an SQL query with
three inner joins, an outer join and a subselect against the ACCOUNT, PAYMENT, PAYMENT _STATUS,
ACCOUNT_TYPE, ORGANI ZATI ON and ORG_USER tables.

sel ect account, paynent
from Account as account
join account. hol der. users as user
left outer join account.paynments as paynent
where :currentUser = user
and Paynent St at us. UNPAI D = i sNul | (paynent. current St atus. nane, Paynent St at us. UNPAI D)
order by account.type.sortOder, account.accountNunber, paynent.dueDate

8.13. Bulk UPDATE & DELETE Statements

Hibernate now supports UPDATE and DELETE statements in HQL/JP-QL. See Section 7.1, “Bulk
update/delete” for detalils.

8.14. Tips & Tricks

To order a result by the size of a collection, use the following query:

sel ect usr.id, usr.nane
from User as usr
left join usr.nmessages as nsg
group by usr.id, usr.nanme
order by count (nsg)

If your database supports subselects, you can place a condition upon selection size in the where
clause of your query:

from User usr where size(usr.nessages) >= 1

If your database doesn't support subselects, use the following query:

sel ect usr.id, usr.nane
from User usr.name

join usr.nessages nsg
group by usr.id, usr.nanme
havi ng count (nmsg) >= 1

72

Tips & Tricks

As this solution can't return a User with zero messages because of the inner join, the following

form is also useful:

sel ect usr.id, usr.nane
from User as usr
left join usr.nmessages as nsg
group by usr.id, usr.nanme
havi ng count(nsg) = 0

73

74

Chapter 9.

Criteria Queries

Criteria queries are a programmatic, type-safe way to express a query. They are type-safe in terms
of using interfaces and classes to represent various structural parts of a query such as the query
itself, or the select clause, or an order-by, etc. They can also be type-safe in terms of referencing
attributes as we will see in a bit. Users of the older Hibernate or g. hi bernate. Criteri aquery API
will recognize the general approach, though we believe the JPA API to be superior as it represents
a clean look at the lessons learned from that API.

Criteria queries are essentially an object graph, where each part of the graph represents an
increasing (as we navigate down this graph) more atomic part of query. The first step in performing
a criteria query is building this graph. The j avax. persi stence.criteria. CriteriaBuil der
interface is the first thing with which you need to become acquainted to begin using criteria
queries. lts role is that of a factory for all the individual pieces of the criteria. You obtain a
javax. persistence.criteria.CriteriaBuil der instance by calling the get Cri t eri aBui | der
method of the j avax. persi st ence. Enti t yManager Factory

CriteriaBuilder builder = entityManagerFactory.getCriteriaBuilder();

The next step is to obtain a j avax. persi stence.criteria. CriteriaQuery. You do this by one
of the 3 methods on j avax. persi stence.criteria. CriteriaBuil der for this purpose.

CriteriaQuery<T> createQuery(d ass<T>)
CriteriaQuery<Tupl e> createTupl eQuery()

CriteriaQuery<Qnject> createQuery()

Each serves a different purpose depending on the expected type of the query results.

@ Note

Chapter 6 Criteria API of the [] already contains a decent
amount of reference material pertaining to the various parts of a criteria query. So
rather than duplicate all that content here, lets instead look at some of the more
widely anticipated usages of the API.

75

Chapter 9. Criteria Queries

9.1. Typed criteria queries
CriteriaQuery<T> createQuery(d ass<T>)

The type of the criteria query (aka the <T>) indicates the expected types in the query result. This
might be an entity, an Integer, or any other object.

9.1.1. Selecting an entity

This the most used form of query in Hibernate Query Language (HQL) and Hibernate Criteria
Queries. You have an entity and you want to select one or more of that entity based on some
condition.

Example 9.1. Selecting the root entity

CriteriaQuery<Person> criteria = builder.createQery(Person.class);
Root <Per son> personRoot = criteria.fron(Person.class);

criteria.select(personRoot); 9

criteria.where(builder.equal (personRoot.get(Person_.eyeColor), "brown")); e
Li st <Per son> people = emcreateQuery(criteria).getResultList();
for (Person person : people) { ... }

€ We use the form createQuery(Person.class) here because the expected returns are in fact
Person entities as we see when we begin processing the results.

@ personCriteria.select(personRoot) here is completely unneeded in this specific case
because of the fact that personRoot will be the implied selection since we have only a single
root. It was done here only for completeness of an example

€ Person_.eyeColor is an example of the static form of metamodel reference. We will use that
form exclusively in this chapter. See Section 4.1, “Static metamodel” for details.

9.1.2. Selecting a value

The simplest form of selecting a value is selecting a particular attribute from an entity. But this
might also be an aggregation, a mathematical operation, etc.

Example 9.2. Selecting an attribute

CriteriaQuery<integer> criteria = builder.createQuery(Integer.class);
Root <Per son> personRoot = criteria.fron(Person.class);

criteria.select(personRoot.get(Person_.age)); 2]
criteria.where(builder.equal (personRoot.get(Person_.eyeColor), "brown"));

Li st<lI nteger> ages = emcreateQuery(criteria).getResultList(); 1]

76

Selecting multiple values

for (Integer age : ages) { ... }

© Notice again the typing of the query based on the anticipated result type(s). Here
we are specifying java.lang.Integer as the type of the Person#age attribute is
java.l ang. | nt eger.

We need to bind the fact that we are interested in the age associated with the personRoot.
We might have multiple references to the Person entity in the query so we need to identify
(aka qualify) which Person#age we mean.

Example 9.3. Selecting an expression

CriteriaQuery<integer> criteria = builder.createQuery(Integer.class);
Root <Per son> personRoot = criteria.fron(Person.class);

criteria.select(builder.nmax(personRoot.get(Person_.age))); o‘
criteria.where(buil der.equal (personRoot.get(Person_.eyeColor), "brown"));
I nteger maxAge = em createQuery(criteria).getSingleResult();

€@ Here we see javax. persistence.criteria.CriteriaBuil der used to
obtain a MAX expression. These expression building methods return
j avax. persi stence. criteria. Expression instances typed according to various rules.
The rule for a MAX expression is that the expression type is the same as that of the underlying
attribute.

9.1.3. Selecting multiple values

There are actually a few different ways to select multiple values using criteria queries. We will
explore 2 options here, but an alternative recommended approach is to use tuples as described
in Section 9.2, “Tuple criteria queries”

Example 9.4. Selecting an array

CriteriaQuery<Qoject[]> criteria = builder.createQuery(Object[].class); 0
Root <Per son> personRoot = criteria.fron(Person.class);

Pat h<Long> i dPath = personRoot.get(Person_.id);

Pat h<I nt eger > agePat h = personRoot. get(Person_. age);

criteria.select(builder.array(idPath, agePath)); 2]
criteria.where(builder.equal (personRoot.get(Person_.eyeColor), "brown"));

Li st<oj ect[]> valueArray = emcreateQuery(criteria).getResultList();
for (Object[] values : valueArray) {

final Long id = (Long) val ues[O0];

final Integer age = (Integer) values[1];

77

Chapter 9. Criteria Queries

€ Technically this is classified as a typed query, but as you can see in handling the results that
is sort of misleading. Anyway, the expected result type here is an array.

€ Here we see the use of the array method of the
javax. persistence.criteria.CriteriaBuilder which explicity combines individual
selections into a j avax. per si stence. criteria. ConpoundSel ecti on.

Example 9.5. Selecting an array (2)

CriteriaQuery<oject[]> criteria = builder.createQuery(Object[].class); 1]
Root <Per son> personRoot = criteria.fron(Person.class);

Pat h<Long> i dPath = personRoot.get(Person_.id);

Pat h<I nt eger > agePat h = personRoot.get(Person_.age);

criteria.multiselect(idPath, agePath); 9
criteria.where(builder.equal (personRoot.get(Person_.eyeColor), "brown"));

Li st<oj ect[]> valueArray = emcreateQuery(criteria).getResultList(); 1]
for (Object[] values : valueArray) {

final Long id = (Long) val ues[O0];

final Integer age = (Integer) values[1];

© Justaswe sawin Example 9.4, “Selecting an array” we have a "typed" criteria query returning
an Object array.

@ This actually functions exactly the same as what we saw in Example 9.4, “Selecting an array”.
The nul ti sel ect method behaves slightly differently based on the type given when the
criteria query was first built, but in this case it says to select and return an Object[].

9.1.4. Selecting a wrapper

Another alternative to Section 9.1.3, “Selecting multiple values” is to instead select an object that
will "wrap" the multiple values. Going back to the example query there, rather than returning an
array of [Person#id, Person#age] instead declare a class that holds these values and instead
return that.

Example 9.6. Selecting an wrapper

public class PersonWapper { 1]
private final Long id;
private final Integer age;

publ i c PersonWapper(Long id, Integer age) { 1]
this.id = id;
this.age = age;

CriteriaQuery<PersonWapper> criteria = builder.createQuery(PersonW apper. cl ases);

78

Tuple criteria queries

Root <Per son> personRoot = criteria.fron(Person.class);
criteria.select(e

bui | der. construct (3]
Per sonW apper . cl ass,
per sonRoot . get (Person_.id),
per sonRoot . get (Person_. age)

DE
criteria.where(builder.equal (personRoot.get(Person_.eyeColor), "brown"));

Li st <Per sonW apper > people = emcreateQuery(criteria).getResultList(); 9
for (PersonWapper person : people) { ... }

€ First we see the simple definition of the wrapper object we will be using to wrap our result
values. Specifically notice the constructor and its argument types.

@ Since we will be returning PersonWrapper objects, we use PersonWrapper as the type of
our criteria query.

© Here we see another new javax. persistence.criteria.CriteriaBuil der method,
const ruct , which is used to builder a wrapper expression. Basically for every row in the result
we are saying we would like a PersonWrapper instantiated by the matching constructor. This
wrapper expression is then passed as the select.

9.2. Tuple criteria queries

A better approach to Section 9.1.3, “Selecting multiple values” is to either use a wrapper (which we
just saw in Section 9.1.4, “Selecting a wrapper”) or using the j avax. per si st ence. Tupl e contract.

Example 9.7. Selecting a tuple

CriteriaQuery<Tuple> criteria = builder.createTupl eQuery(); o’
Root <Per son> personRoot = criteria.fron(Person.class);

Pat h<Long> i dPath = personRoot.get(Person_.id);

Pat h<I nt eger > agePat h = personRoot. get(Person_. age);

criteria.multiselect(idPath, agePath);
criteria.where(builder.equal (personRoot.get(Person_.eyeColor), "brown"));

Li st <Tupl e> tuples = emcreateQuery(criteria).getResultList();
for (Tuple tuple : valueArray) {

assert tuple.get(0) == tuple.get(idPath);

0o © ©o

assert tuple.get(1) == tuple.get(agePath);

€ Here we see the use of a new javax.persistence.criteria.CriteriaBuilder
javax. persistence.criteria.CriteriaQuery building method, cr eat eTupl eQuery. This
is exactly equivalent to calling builder.createQuery(Tuple.class). It signifies that we want to
access the results through the j avax. per si st ence. Tupl e contract.

79

Chapter 9. Criteria Queries

2]

13

Again we see the wuse of the nultiselect method, just Ilike in
Example 9.5, “Selecting an array (2)". The difference here is that the
type of the javax.persistence.criteria.CriteriaQuery was defined as
j avax. per si st ence. Tupl e so the compound selections in this case are interpreted to be
the tuple elements.

Here we see j avax. per si st ence. Tupl e allowing different types of access to the results,
which we will expand on next.

9.2.1. Accessing tuple elements

The j avax. persi st ence. Tupl e contract provides 3 basic forms of access to the underlying
elements:

typed

<X> X get (Tupl eEl enent <X> t upl eEl ement)

This allows typed access to the underlying tuple elements. We see this in Example 9.7,
“Selecting a tuple” in the tuple.get(idPath) and tuple.get(agePath) calls. Just about
everything is a j avax. per si st ence. Tupl eEl enent .

positional

Obj ect get(int i)

<X> X get(int i, dass<X> type)

Very similar to what we saw in Example 9.4, “Selecting an array” and Example 9.5, “Selecting
an array (2)” in terms of positional access. Only the second form here provides typing, because
the user explicitly provides the typing on access. We see this in Example 9.7, “Selecting a
tuple” in the tuple.get(0) and tuple.get(1) calls.

aliased

Obj ect get(String alias)

<X> X get(String alias, Cass<X> type)

Again, only the second form here provides typing, because the user explicitly provides the
typing on access. We have not seen an example of using this, but its trivial. We would

80

FROM clause

simply, for example, have applies an alias to either of the paths like idPath.alias("id") and/
or agePath.alias("age") and we could have accessed the individual tuple elements by those
specified aliases.

9.3. FROM clause

A CriteriaQuery object defines a query over one or more entity, embeddable, or
basic abstract schematypes. The root objects of the query are entities, from which
the other types are reached by navigation.

—[JPA 2 Specification, section 6.5.2 Query Roots, pg 262]

Note

All the individual parts of the FROM clause (roots, joins, paths) implement the
j avax. persi st ence. criteri a. Fr ominterface.

9.3.1. Roots

Roots define the basis from which all joins, paths and attributes are available in the query. In
a criteria query, a root is always an entity. Roots are defined and added to the criteria by the
overloaded f r ommethods on j avax. persi stence.criteria. CriteriaQuery:

<X> Root <X> fron(d ass<X>)

<X> Root <X> fron(EntityType<X>)

Example 9.8. Adding a root

CriteriaQuery<Person> personCriteria = builder.createQuery(Person.class);
/'l create and add the root
person. from Person.class);

Criteria queries may define multiple roots, the effect of which is to create a cartesian product [http://
en.wikipedia.org/wiki/Cartesian_product] between the newly added root and the others. Here is
an example matching all single men and all single women:

CriteriaQuery query = builder.createQuery();
Root <Per son> nen = query. fron(Person.class);
Root <Per son> wonmen = query.fron{ Person.class);
Predi cate nenRestriction = buil der.and(

81

http://en.wikipedia.org/wiki/Cartesian_product
http://en.wikipedia.org/wiki/Cartesian_product
http://en.wikipedia.org/wiki/Cartesian_product

Chapter 9. Criteria Queries

bui | der. equal (men. get(Person_.gender), Gender.MALE),

bui | der. equal (men.get(Person_.relationshipStatus), RelationshipStatus. Sl NGLE)
DE
Predi cate wonenRestriction = buil der.and(

bui | der. equal (wonen. get (Person_. gender), Gender.FEMALE),

bui | der. equal (wonen. get(Person_.rel ationshipStatus), Rel ationshi pStatus.SINGLE)
)i

query. where(builder.and(nmenRestriction, wonenRestriction));

9.3.2. Joins

Joins allow navigation from other j avax. persi stence. criteria. Fromto either association
or embedded attributes. Joins are created by the numerous overloaded j oi n methods of the
j avax. persi st ence. criteri a. Frominterface:

Example 9.9. Example with Embedded and ManyToOne

CriteriaQuery<Person> personCriteria = builder.createQuery(Person.class);
Root <Per son> per sonRoot = person.fron{ Person.class);

/1 Person.address is an enbedded attribute

Joi n<Per son, Addr ess> per sonAddress = personRoot.j oi n(Person_. address);

/] Address.country is a ManyToOne

Joi n<Addr ess, Country> addressCountry = personAddress.join(Address_.country);

Example 9.10. Example with Collections

CriteriaQuery<Person> personCriteria = builder.createQuery(Person.class);
Root <Per son> per sonRoot = person.fron{ Person.class);

Joi n<Per son, Order> orders = personRoot.join(Person_.orders);

Joi n<Order, Lineltenr orderLines = orders.join(Oder_.lineltens);

9.3.3. Fetches

Just like in HQL and EJB-QL, we can specify that associated data be fetched along
with the owner. Fetches are created by the numerous overloaded fetch methods of the
j avax. persi st ence. criteria. Fr ominterface:

Example 9.11. Example with Embedded and ManyToOne

CriteriaQuery<Person> personCriteria = builder.createQuery(Person.class);
Root <Per son> per sonRoot = person.fron{ Person.class);

/'l Person.address is an enbedded attribute

Joi n<Per son, Addr ess> per sonAddress = personRoot . fetch(Person_.address);

/1 Address.country is a ManyToOne

Joi n<Addr ess, Count ry> addressCountry = personAddress. fetch(Address_.country);

82

Path expressions

(3

Example 9.12. Example with Collections

CriteriaQuery<Person> personCriteria = builder.createQuery(Person.class);
Root <Per son> per sonRoot = person.fron(Person.class);

Joi n<Person, Order> orders = personRoot.fetch(Person_.orders);

Joi n<Order, Lineltenk orderLines = orders.fetch(Oder_.lineltenms);

9.4. Path expressions

(3

9.5. Using parameters

Example 9.13. Using parameters

CriteriaQuery<Person> criteria = build.createQuery(Person.class);
Root <Per son> personRoot = criteria.fron{ Person.class);
criteria.select(personRoot);

Par amet er Expr essi on<St ri ng> eyeCol or Param = bui | der. paraneter(String.class); 0

criteria.where(builder.equal (personRoot.get(Person_.eyeColor), eyeCol orPar aom))
TypedQuer y<Per son> query = em createQuery(criteria);

query. set Paranet er (eyeCol or Param "brown"); 9
Li st <Person> peopl e = query. getResul tList();

Use the par amet er method of j avax. persi stence.criteria.CriteriaBuil der to obtain
a parameter reference.
Use the parameter reference in the criteria query.

Use the parameter reference to bind the parameter value to the
j avax. persi st ence. TypedQuery

83

84

Chapter 10.

Native query

You may also express queries in the native SQL dialect of your database. This is useful if you want
to utilize database specific features such as query hints or the CONNECT BY option in Oracle. It
also provides a clean migration path from a direct SQL/JDBC based application to Hibernate. Note
that Hibernate allows you to specify handwritten SQL (including stored procedures) for all create,
update, delete, and load operations (please refer to the reference guide for more information.)

10.1. Expressing the resultset

To use a SQL query, you need to describe the SQL resultset, this description will help
the EntityManager to map your columns onto entity properties. This is done using the
@50l Resul t Set Mappi ng annotation. Each @gl Resul t Set Mappi ng has a name which is used
when creating a SQL query on Ent i t yManager .

@9l Resul t Set Mappi ng(nane="GCet Nl ght AndArea", entities={

@ntityResul t (name="org. hi bernate.test.annotations. query. N ght", fields = {
@i el dResul t (name="id", colum="nid"),
@i el dResul t (name="dur ati on", col um="ni ght_duration"),
@i el dResul t (name="date", col um="ni ght _date"),
@i el dResul t (name="area", colum="area_id")

.

@ntityResul t (name="org. hi bernate.test.annotations. query.Area", fields = {
@i el dResul t (name="id", colum="aid"),
@i el dResul t (nane="nane", col um="nane")

9]
}

/'l or
@9l Resul t Set Mappi ng(nane="def aul t SpaceShi p", entities=@ntityResult(nane="org. hi bernate.test.annotations.query. S

You can also define scalar results and even mix entity results and scalar results

@59l Resul t Set Mappi ng(nanme="Scal ar AndEntities",
entities={

@ntityResul t (name="org. hi bernate.test.annotations.query.Nght", fields = {
@i el dResul t (name="id", colum="nid"),
@i el dResul t (name="dur ation", colum="ni ght_duration"),
@i el dResul t (nanme="date", col um="ni ght _date"),
@i el dResul t (nane="area", colum="area_id")

b,

@ntityResul t (name="org. hi bernate. test.annotations. query. Area", fields = {
@i el dResul t (name="id", colum="aid"),
@i el dResul t (name="nane", col um="nane")

})
H
col ums={

@ol umResul t (name="dur ati onl nSec")
}

85

Chapter 10. Native query

The SQL query will then have to return a column alias dur at i onl nSec.

Please refer to the Hibernate Annotations reference guide for more information about
@5ql Resul t Set Mappi ng.

10.2. Using native SQL Queries

TODO: This sounds like a dupe...

Now that the result set is described, we are capable of executing the native SQL query.
Enti t yManager provides all the needed APIs. The first method is to use a SQL resultset name to
do the binding, the second one uses the entity default mapping (the column returned has to have
the same names as the one used in the mapping). A third one (not yet supported by Hibernate
entity manager), returns pure scalar results.

String sql Query = "select night.id nid, night.night_duration, night.night_date, area.id aid, "
+ "night.area_id, area.nane from Ni ght night, Area area where night.area_id = area.id "
+ "and ni ght.night_duration >= ?";

Query q = entityManager.createNativeQuery(sql Query, "GCetN ghtAndArea");

g. set Paraneter(1, expectedDuration);

g. get Resul tList();

This native query returns nights and area based on the Get Ni ght AndAr ea result set.

String sql Query = "select * fromtbl_spaceship where owner = ?";
Query q = entityManager. createNativeQuery(sql Query, SpaceShip.class);
g. set Paraneter(1, "Han");

g.get Resul tList();

The second version is useful when your SQL query returns one entity reusing the same columns
as the ones mapped in metadata.

10.3. Named queries

Native named queries share the same calling API than JP-QL named queries. Your code doesn't
need to know the difference between the two. This is very useful for migration from SQL to JP-QL.:

Query q = entityManager. creat eNanedQuery("get SeasonByNati veQuery");
g.setParaneter(1, nane);
Season season = (Season) g.getSingleResult();

86

References

[JPA 2 Specification] JSR 317: Java™ Persistence API, Version 2.0. Java Persistence 2.0 Expert
Group. . Copyright © 2009 SUN MICROSYSTEMS, INC.. <j sr-317- f eedback@un. conr
JSR 317 JCP Page [http://jcp.org/en/jsr/detail?id=317].

87

http://jcp.org/en/jsr/detail?id=317
http://jcp.org/en/jsr/detail?id=317

88

	Hibernate EntityManager
	Table of Contents
	Introducing JPA Persistence
	Chapter 1. Architecture
	1.1. Definitions
	1.2. In container environment (eg. EJB 3)
	1.2.1. Container-managed entity manager
	1.2.2. Application-managed entity manager
	1.2.3. Persistence context scope
	1.2.4. Persistence context propagation

	1.3. Java SE environments

	Chapter 2. Setup and configuration
	2.1. Setup
	2.2. Configuration and bootstrapping
	2.2.1. Packaging
	2.2.2. Bootstrapping

	2.3. Event listeners
	2.4. Obtaining an EntityManager in a Java SE environment
	2.5. Various

	Chapter 3. Working with objects
	3.1. Entity states
	3.2. Making objects persistent
	3.3. Loading an object
	3.4. Querying objects
	3.4.1. Executing queries
	3.4.1.1. Projection
	3.4.1.2. Scalar results
	3.4.1.3. Bind parameters
	3.4.1.4. Pagination
	3.4.1.5. Externalizing named queries
	3.4.1.6. Native queries
	3.4.1.7. Query lock and flush mode
	3.4.1.8. Query hints

	3.5. Modifying persistent objects
	3.6. Detaching a object
	3.7. Modifying detached objects
	3.8. Automatic state detection
	3.9. Deleting managed objects
	3.10. Flush the persistence context
	3.10.1. In a transaction
	3.10.2. Outside a transaction

	3.11. Transitive persistence
	3.12. Locking
	3.13. Caching
	3.14. Checking the state of an object
	3.15. Native Hibernate API

	Chapter 4. Metamodel
	4.1. Static metamodel

	Chapter 5. Transactions and Concurrency
	5.1. Entity manager and transaction scopes
	5.1.1. Unit of work
	5.1.2. Long units of work
	5.1.3. Considering object identity
	5.1.4. Common concurrency control issues

	5.2. Database transaction demarcation
	5.2.1. Non-managed environment
	5.2.1.1. EntityTransaction

	5.2.2. Using JTA
	5.2.3. Exception handling

	5.3. EXTENDED Persistence Context
	5.3.1. Container Managed Entity Manager
	5.3.2. Application Managed Entity Manager

	5.4. Optimistic concurrency control
	5.4.1. Application version checking
	5.4.2. Extended entity manager and automatic versioning
	5.4.3. Detached objects and automatic versioning

	Chapter 6. Entity listeners and Callback methods
	6.1. Definition
	6.2. Callbacks and listeners inheritance
	6.3. XML definition

	Chapter 7. Batch processing
	7.1. Bulk update/delete

	Chapter 8. JP-QL: The Object Query Language
	8.1. Case Sensitivity
	8.2. The from clause
	8.3. Associations and joins
	8.4. The select clause
	8.5. Aggregate functions
	8.6. Polymorphic queries
	8.7. The where clause
	8.8. Expressions
	8.9. The order by clause
	8.10. The group by clause
	8.11. Subqueries
	8.12. JP-QL examples
	8.13. Bulk UPDATE & DELETE Statements
	8.14. Tips & Tricks

	Chapter 9. Criteria Queries
	9.1. Typed criteria queries
	9.1.1. Selecting an entity
	9.1.2. Selecting a value
	9.1.3. Selecting multiple values
	9.1.4. Selecting a wrapper

	9.2. Tuple criteria queries
	9.2.1. Accessing tuple elements

	9.3. FROM clause
	9.3.1. Roots
	9.3.2. Joins
	9.3.3. Fetches

	9.4. Path expressions
	9.5. Using parameters

	Chapter 10. Native query
	10.1. Expressing the resultset
	10.2. Using native SQL Queries
	10.3. Named queries

	References

