
Hibernate OGM 5.4.2.Final
Reference Guide

Emmanuel Bernard, Sanne Grinovero, Gunnar Morling, Davide D'Alto, Guillaume
Scheibel, Mark Paluch, Guillaume Smet, Fabio Massimo Ercoli

2024-09-24

Table of Contents
Preface . 1

Goals. 1
What we have today . 3
Experimental features . 3
Use cases . 4

1. How to get help and contribute on Hibernate OGM . 5
1.1. How to get help . 5
1.2. How to contribute . 5

1.2.1. How to build Hibernate OGM . 5
1.2.2. How to contribute code effectively . 6

1.3. How to build support for a data store. 7
1.3.1. DataStore providers . 7
1.3.2. Dialects. 7
1.3.3. Entities . 9
1.3.4. Associations . 9
1.3.5. Configuration . 9
1.3.6. Types. 10
1.3.7. Tests . 11

2. Getting started with Hibernate OGM . 12
3. Migrating from 5.4.1.Final . 17

3.1. MongoDB . 17
3.1.1. MongoDB Java Driver . 17

3.2. MongoDB Server . 17
3.3. Older versions . 17

4. Architecture . 18
4.1. General architecture . 18
4.2. How is data persisted . 20
4.3. Id generation using sequences. 25
4.4. How is data queried . 25

5. Configure and start Hibernate OGM . 28
5.1. Bootstrapping Hibernate OGM . 28

5.1.1. Using JPA . 28
5.1.2. Using Hibernate ORM native APIs . 29

5.2. Environments. 30
5.2.1. In a Java EE container . 30
5.2.2. In a standalone JTA environment . 31
5.2.3. Without JTA . 33

5.3. Configuration options . 33
5.4. Configuring Hibernate Search . 34

5.5. How to package Hibernate OGM applications for WildFly 14.0 . 34
5.5.1. Packaging Hibernate OGM applications for WildFly 14.0. 35
5.5.2. List of the Hibernate OGM WildFly/JBoss feature packs . 37
5.5.3. Configure your persistence.xml to use your choice of persistence provider 39
5.5.4. Enable support for EE 8 . 39
5.5.5. Using the Hibernate OGM modules with Infinispan . 39

5.6. Integration with WildFly NoSQL. 39
5.6.1. How to use WildFly NoSQL with Hibernate OGM . 40

6. Map your entities . 42
6.1. Supported entity mapping . 42
6.2. Supported Types. 43
6.3. Supported association mapping . 44

6.3.1. Elements order in associations . 44
7. Hibernate OGM APIs . 46

7.1. Bootstrap Hibernate OGM. 46
7.2. JPA and native Hibernate ORM APIs . 46

7.2.1. Accessing the OgmSession API . 47
7.3. On flush and transactions. 47

7.3.1. Acting upon errors during application of changes . 48
7.4. SPIs . 51

8. Query your entities . 52
8.1. Using JPQL . 52
8.2. Using the native query language of your NoSQL . 56
8.3. Using Hibernate Search . 58
8.4. Using the Criteria API . 59
8.5. Using stored procedures . 59

9. NoSQL datastores. 61
9.1. Using a specific NoSQL datastore . 61

10. Infinispan . 63
10.1. Why use Hibernate OGM with Infinispan? . 63
10.2. Infinispan: Choosing between Embedded Mode and Hot Rod. 63
10.3. Hibernate OGM & Infinispan Embedded . 65

10.3.1. Configure Hibernate OGM for Infinispan Embedded . 65
10.3.2. Adding Infinispan dependencies . 66
10.3.3. Infinispan specific configuration properties . 66
10.3.4. Cache names used by Hibernate OGM . 67
10.3.5. Manage data size . 68
10.3.6. Clustering: store data on multiple Infinispan nodes . 69
10.3.7. Transactions . 72
10.3.8. Infinispan Embedded Stored Procedures. 72
10.3.9. Storing a Lucene index in Infinispan . 73

10.4. Hibernate OGM & Infinispan Server over Hot Rod . 74

10.4.1. Adding Infinispan Remote dependencies . 75
10.4.2. Configuration properties for Infinispan Remote . 75
10.4.3. Data encoding: Protobuf Schema . 79
10.4.4. Storage Principles of the Infinispan Remote dataprovider . 80
10.4.5. Caches creation and configuration . 82
10.4.6. Remote Query Capabilities. 85
10.4.7. Infinispan Remote Transaction . 85
10.4.8. Infinispan Remote Stored Procedures . 86
10.4.9. Known Limitations & Future improvements . 86

10.5. Storage principles. 87
10.5.1. Properties and built-in types. 87
10.5.2. Identifiers. 88
10.5.3. Entities . 95
10.5.4. Associations . 101

11. MongoDB. 114
11.1. Why should I use Hibernate OGM with MongoDB. 114
11.2. Configuring MongoDB . 114

11.2.1. Adding MongoDB dependencies . 115
11.2.2. MongoDB specific configuration properties . 115
11.2.3. Annotation based configuration . 118
11.2.4. Programmatic configuration . 119

11.3. Storage principles . 121
11.3.1. Properties and built-in types. 121
11.3.2. GridFS Support . 123
11.3.3. Entities . 125
11.3.4. Associations . 141

11.4. Indexes and unique constraints . 173
11.4.1. Standard indexes and unique constraints . 173
11.4.2. Using MongoDB specific index options . 174
11.4.3. Full text indexes . 174

11.5. Transactions. 175
11.6. Optimistic Locking . 175
11.7. Queries . 177

11.7.1. JPQL queries . 177
11.7.2. Native MongoDB queries. 178
11.7.3. Server-side JavaScript and stored procedures . 182
11.7.4. Hibernate Search. 183

11.8. Geospatial support. 183
11.8.1. Geospatial fields . 183
11.8.2. Geospatial indexes and queries . 184

12. Neo4j . 186
12.1. How to add Neo4j integration . 186

12.2. Configuring Neo4j . 187
12.3. Storage principles . 188

12.3.1. Properties and built-in types. 188
12.3.2. Entities . 189
12.3.3. Associations. 195
12.3.4. Auto-generated Values. 205
12.3.5. Labels summary. 207

12.4. Transactions . 208
12.5. Queries . 208

12.5.1. JPQL queries. 209
12.5.2. Cypher queries . 209

Preface
Hibernate OGM is a persistence engine providing Java Persistence (JPA) support for NoSQL
datastores. It reuses Hibernate ORM’s object life cycle management and (de)hydration engine but
persists entities into a NoSQL store (key/value, document, column-oriented, etc) instead of a
relational database.

It allows using the Java Persistence Query Language (JPQL) as an interface to querying stored data, in
addition to using native queries of the specific NoSQL database.

The project is now fairly mature when it comes to the storage strategies, and the feature set is
sufficient to be used in your projects. We do have however much bigger ambitions than a simple object
mapper. Many things are on the roadmap (more NoSQL, query, denormalization engine, etc). If you feel
a feature is missing, report it to us. If you want to contribute, even better!

Hibernate OGM is released under the LGPL open source license.

The future of this project is being shaped by the requests from our users. Please
give us feedback on

• what you like

• what you don’t like

• what is confusing

• what you are missing as a feature

Check How to contribute on how to contact us.

We worked hard on this documentation but we know it is far from perfect. If you
find something confusing or feel that an explanation is missing, please let us know.
Getting in touch is easy: see contacting the developer community.

Goals
Hibernate OGM:

• offers a familiar programming paradigm (JPA) to deal with NoSQL stores

• moves model denormalization from a manual imperative work to a declarative approach handled
by the engine

• encourages new data usage patterns and NoSQL exploration in more "traditional" enterprises

• helps scale existing applications with a NoSQL front end to a traditional database

1

http://hibernate.org/community/

NoSQL can be very disconcerting as it is composed of many disparate solutions with different benefits
and drawbacks. NoSQL databases can be loosely classified in four families:

• graph oriented databases

• key/value stores: essentially Maps but with different behaviors and ideas behind various products
(data grids, persistent with strong or eventual consistency, etc)

• document based datastores: maps which contain semi-structured documents (think JSON)

• column based datastores

Figure 1. Various NoSQL families

Each have different benefits and drawbacks and one solution might fit a use case better than an other.
However access patterns and APIs are different from one product to the other.

Hibernate OGM is not expected to be the Rosetta stone used to interact with all NoSQL solution in all
use cases. But for people modeling their data as a domain model, it provides distinctive advantages
over raw APIs and has the benefit of providing an API and semantic known to Java developers.
Reusing the same programmatic model and trying different (No)SQL engines will hopefully help
people to explore alternative datastores.

Hibernate OGM also aims at helping people scale traditional relational databases by providing a
NoSQL front-end and keeping the same JPA APIs and domain model. It could for example help to

2

migrate a selection of your model from an RDBMS to a particular NoSQL solution which better fits the
typical use case.

What we have today
Today, Hibernate OGM does not support all of these goals. Here is a list of what we have:

• store data in key/value stores (Infinispan and Ehcache)

• store data in document stores (MongoDB and CouchDB - the latter in preview)

• store data in graph databases (Neo4J)

• Create, Read, Update and Delete operations (CRUD) for entities

• polymorphic entities (support for superclasses, subclasses etc).

• embeddable objects (aka components)

• support for basic types (numbers, String, URL, Date, enums, etc)

• support for associations

• support for collections (Set, List, Map, etc)

• support for JPQL queries (not arbitrary joins though)

• support for mapping native queries results to managed entities

• support for Hibernate Search’s full-text queries

• and generally, support for JPA and native Hibernate ORM API support

In short, a perfectly capable Object Mapper for multiple popular NoSQL datastores.

Experimental features
As Hibernate OGM is a rather young project, some parts of it may be marked as experimental. This
may affect specific APIs or SPIs (e.g. the case for the SchemaInitializer SPI contract at the
moment), entire dialects (this is the case for the CouchDB dialect at the moment) or deliverables.

Experimental APIs/SPIs are marked via the @Experimental annotation. Experimental dialects make
that fact apparent through their datastore name (e.g. "COUCHDB_EXPERIMENTAL") and experimental
deliverables use the "experimental" artifact classifier.

If a certain part is marked as experimental it may undergo backwards-incompatible changes in future
releases. E.g. API/SPI methods may be altered, so that code using them needs to be adapted as well.
For experimental dialects the persistent format of data may be changed, so that a future version of
such dialect may not be able to read back data written by previous versions. A manual update of the
affected data may be thus required. Experimental deliverables should be used with special care, as
they are work in progress. You should use them for testing but not production use cases.

3

But most of our dialects are mature, so don’t worry ;)

Use cases
Here are a few areas where Hibernate OGM can be beneficial:

• need to scale your datastore up and down rapidly (via the underlying NoSQL datastore capability)

• keep your domain model independent of the underlying datastore technology (RDBMS, Infinispan,
NoSQL)

• explore the best tool for the use case

• use a familiar JPA front end to your datastore

• use Hibernate Search full-text search / text analysis capabilities and store the data set in an
scalable datastore

These are a few ideas and the list will grow as we add more capabilities to Hibernate OGM.

4

Chapter 1. How to get help and contribute on
Hibernate OGM
Hibernate OGM is a young project. Join and help us shape it!

1.1. How to get help
First of all, make sure to read this reference documentation. This is the most comprehensive formal
source of information. Of course, it is not perfect: feel free to come and ask for help, comment or
propose improvements in our Hibernate OGM forum.

You can also:

• open bug reports in JIRA

• propose improvements on the development mailing list

• join us on IRC to discuss developments and improvements (#hibernate-dev on freenode.net;
you need to be registered on freenode: the room does not accept "anonymous" users).

1.2. How to contribute
Welcome!

There are many ways to contribute:

• report bugs in JIRA

• give feedback in the forum, IRC or the development mailing list

• improve the documentation

• fix bugs or contribute new features

• propose and code a datastore dialect for your favorite NoSQL engine

Hibernate OGM’s code is available on GitHub at https://github.com/hibernate/hibernate-ogm.

1.2.1. How to build Hibernate OGM

Hibernate OGM uses Git and Maven 3, make sure to have both installed on your system.

Clone the git repository from GitHub:

5

https://discourse.hibernate.org/c/hibernate-ogm
https://hibernate.atlassian.net/browse/OGM
http://www.hibernate.org/community/mailinglists
https://hibernate.atlassian.net/browse/OGM
https://github.com/hibernate/hibernate-ogm
https://github.com/hibernate/hibernate-ogm
https://github.com/hibernate/hibernate-ogm
https://github.com/hibernate/hibernate-ogm
https://github.com/hibernate/hibernate-ogm

#get the sources
git clone https://github.com/hibernate/hibernate-ogm
cd hibernate-ogm

Run maven

#build project
mvn clean install

To skip building the documentation, set the skipDocs property to true:

mvn clean install -DskipDocs=true

If you just want to build the documentation only, run it from the hibernate-ogm-
documentation/manual subdirectory.

1.2.2. How to contribute code effectively

The best way to share code is to fork the Hibernate OGM repository on GitHub, create a branch and
open a pull request when you are ready. Make sure to rebase your pull request on the latest version of
the main branch before offering it.

Here are a couple of approaches the team follows:

• We do small independent commits for each code change. In particular, we do not mix stylistic code
changes (import, typos, etc) and new features in the same commit.

• Commit messages follow this convention: the JIRA issue number, a short commit summary, an
empty line, a longer description if needed. Make sure to limit line length to 80 characters, even at
this day and age it makes for more readable commit comments.

OGM-123 Summary of commit operation

Optional details on the commit
and a longer description can be
added here.

• A pull request can contain several commits but should be self contained: include the
implementation, its unit tests, its documentation and javadoc changes if needed.

• All commits are proposed via pull requests and reviewed by another member of the team before
being pushed to the reference repository. That’s right, we never commit directly upstream without
code review.

6

1.3. How to build support for a data store

Advanced section

This is an advanced subject, feel free to skip this section if you are not building a
data store.

Hibernate OGM supports various data stores by abstracting them with DatastoreProvider and
GridDialect. The supported features vary between data stores, and dialects do not have to
implement all features. Hibernate OGM implements a TCK (Technology Compatibility Kit) to verify
interoperability and features of the dialect. Hibernate OGM supports a variety of document- and key-
value-stores and ships with some abstraction and utility classes for document- and key-value-stores
(like KeyValueStoreProperties and DocumentStoreProperties).

1.3.1. DataStore providers

Supporting a data store usually begins with a DatastoreProvider. Providers can implement a
lifecycle (start, stop) to initialize, configure and shutdown resources. Taking a look at existing data
store support such as MongoDB (see
org.hibernate.ogm.datastore.mongodb.impl.MongoDBDatastoreProvider) is a good idea
to get an impression of how to boot the data store support. Providers are seen as services, they can
implement various service interfaces to activate certain features (see the
org.hibernate.service.spi package for details).

A common issue to face then implementing new data stores is transactionality. Some data stores
provide transactional support that can be used in the context of Hibernate OGM wrapped by JTA. If
your data store does not support transactions, you can enable transaction emulation within the
DatastoreProvider.

Features of a DatastoreProvider:

• Resource lifecycle

• Managing connection resources

• Configuration

• Access to query parsers

• Define/Validate a schema

1.3.2. Dialects

A data store can have one or more dialects. Dialects describe the style how data is mapped to a
particular data store. NoSQL data stores imply a certain nature, how to map data. Document-oriented
data stores encourage an entity-as-document pattern where embedded data structures could be
stored within the document itself. Key-value data stores allow different approaches, e.g. storing an

7

entity as JSON document or event storing individual key-value pairs that map the entity within a hash
table data structure. Hibernate OGM allows multiple dialects per data store and users may choose the
most appropriate one.

The most basic support is provided by implementing the GridDialect interface. Implementing that
interface is mandatory to support a specific data store.

A GridDialect usually supports:

• Create/Read/Update/Delete for entities

• Create/Read/Update/Delete for associations

• Id/Sequence generator

• Provides locking strategies

A dialect may optionally implement one or more additional facet interfaces to provide a broader
support for certain features:

• QueryableGridDialect

• BatchableGridDialect

• IdentityColumnAwareGridDialect

• OptimisticLockingAwareGridDialect

• MultigetGridDialect

Features of a QueryableGridDialect

• Query execution

• Support for native queries

Features of a BatchableGridDialect

• Operation queueing

• Execution of queued Create/Update/Delete as a batch

Features of a IdentityColumnAwareGridDialect

• Supports the generation of identity values upon data insertion

Features of an OptimisticLockingAwareGridDialect

• Finding and altering versioned records in an atomic fashion

Features of a MultigetGridDialect

8

• Retrieve multiple tuples within one operation

Before starting make a clear plan of how you think entities, relations and nested
structures are best represented in the NoSQL store you plan to implement. It helps
to have a clear picture about that, and this will require some experience with the
NoSQL database you plan to support.

Start with a small feature set to get a feeling for Hibernate OGM, for example aim
at implementing CRUD operations only and ignore relations and queries. You can
always extend the features as you proceed.

Starting from or studying existing dialects is also an interesting strategy. It can be
intimidating with complex dialects though.

Hibernate OGM is not opinionated by which means data is stored/loaded for a particular data store,
but the particular dialect is. Hibernate OGM strives for the most natural mapping style. The idea is to
facilitate integration with other applications of that database by sticking to established patterns and
idioms of that store.

1.3.3. Entities

Entities are seen by a dialect as Tuple. A Tuple contains:

• a snapshot (that’s the view of the data as loaded from your database),

• a set of key-value pairs that carry the actual data,

• and a list of operations to apply onto the original snapshot. Tuple keys use dot-path property
identifiers to indicate nesting. That comes handy when working with document stores because
you can build a document structure based on that details.

1.3.4. Associations

Most NoSQL data stores have no built-in support for associations between entities (unless you’re
using a graph database).

Hibernate OGM simulates associations for datastore with no support by storing the navigational
information to go from a given entity to its (list of) associated entity. This of it as query materialisation.
This navigational information data can be stored within the entity itself or externally (as own
documents or relation items).

1.3.5. Configuration

Hibernate OGM can read its configuration properties from various sources. Most common
configuration sources are:

9

• hibernate.properties file

• persistence.xml file

• environment variables override or integrate properties set in the above configuration files

• annotation configuration (entity classes)

• programmatic configuration

The org.hibernate.ogm.options package provides the configuration infrastructure.

You might want to look at MongoDBConfiguration or InfinispanConfiguration to get an idea
how configuration works. Configuration is usually read when starting a data store provider or while
operating. A good example of accessing configuration during runtime is the association storage
option, where users can define, how to store a particular association (within the entity or as a separate
collection/key/document/node).

The configuration and options context infrastructure allows to support data store-specific options
such as ReadPreference for MongoDB or TTL for Redis.

Programmatic configuration

Data store support can implement programmatic configuration. The configuration splits into three
parts:

• Global configuration

• Entity configuration

• Property configuration

Programmatic configuration consists of two parts: configuration interfaces (see
org.hibernate.ogm.options.navigation) and partial (abstract) implementation classes. These
parts are merged at runtime using ASM class generation.

1.3.6. Types

Every data store supports a unique set of data types. Some stores support floating point types and
date types, others just strings. Hibernate OGM allows users to utility a variety of data types (see JPA
spec) for their data models. On the other hand, that data needs to be stored within the data store and
mapped back.

A dialect can provide a GridType to describe the handling of a particular data type, meaning you can
specify how dates, floating point types or even byte arrays are handled. Whether they are mapped to
other data types (e. g. use double for float or use base64-encoded strings for byte arrays) or
wrapped within strings.

Data store-specific types can be handled the same way, check out StringAsObjectIdType for the

10

String-mapping of MongoDB’s ObjectId type.

Type-mapping can be an exhausting task. The whole type handling is in flux and is
subject to change as Hibernate OGM progresses. Ask, if you’re not sure about it.

1.3.7. Tests

Hibernate OGM brings a well suited infrastructure for tests. The test infrastructure consists of generic
base classes (OgmTestCase for OGM and JpaTestCase for JPA) for tests and a test helper (see
GridDialectTestHelper). That classes are used to get a different view on data than the frontend-
view by the Session and the EntityManager.

It is always helpful to create a set of own test cases for different scenarios to
validate the data is mapped in the way it’s intended or to verify data store-specific
options such as TTL.

Another bunch of tests is called the backend TCK. That test classes test nearly all aspects of Hibernate
OGM viewed from a users' perspective. Tests contain cases for simple/complex entities, associations,
list- and map data types, queries using Hibernate Search, and tests for data type support.

The backend TCK is included using classpath filters, just check one of the current implementations
(like RedisBackendTckHelper). When you’re developing a core module, that is included in the
distribution, you will have to add your dialect to the @SkipByGridDialect annotation of some tests.

Running even 20% of the tests successfully is a great achievement. Proceed step-
by-step. Large numbers of tests can fail just because of one thing that is handled
differently. Don’t hesitate to ask for help.

11

Chapter 2. Getting started with Hibernate OGM
If you are familiar with JPA, you are almost good to go. We will nevertheless walk you through the first
few steps of persisting and retrieving an entity using Hibernate OGM.

Before we can start, make sure you have the following tools configured:

• Java JDK 8

• Maven 3.2.3 or above

Hibernate OGM is published in the Maven central repository.

Add org.hibernate.ogm:hibernate-ogm-bom:5.4.2.Final to your dependency management
block and org.hibernate.ogm:hibernate-ogm-infinispan-embedded:5.4.2.Final to your
project dependencies:

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.hibernate.ogm</groupId>
 <artifactId>hibernate-ogm-bom</artifactId>
 <version>5.4.2.Final</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
<dependencyManagement>

<dependencies>
 <dependency>
 <groupId>org.hibernate.ogm</groupId>
 <artifactId>hibernate-ogm-infinispan-embedded</artifactId>
 </dependency>
</dependencies>

The former is a so-called "bill of materials" POM which specifies a matching set of versions for
Hibernate OGM and its dependencies. That way you never need to specify a version explicitly within
your dependencies block, you will rather get the versions from the BOM automatically.

If you’re deploying your application onto WildFly 14.0, you don’t need to add the
Hibernate OGM modules to your deployment unit but you can rather add them as
modules to the application server. Refer to How to package Hibernate OGM
applications for WildFly 14.0 to learn more.

We will use the JPA APIs in this tutorial. While Hibernate OGM depends on JPA 2.1, it is marked as
provided in the Maven POM file. If you run outside a Java EE container, make sure to explicitly add the
dependency:

12

<dependency>
 <groupId>org.hibernate.javax.persistence</groupId>
 <artifactId>hibernate-jpa-2.1-api</artifactId>
</dependency>

Let’s now map our first Hibernate OGM entity.

@Entity
public class Dog {
 @Id @GeneratedValue(strategy = GenerationType.TABLE, generator = "dog")
 @TableGenerator(
 name = "dog",
 table = "sequences",
 pkColumnName = "key",
 pkColumnValue = "dog",
 valueColumnName = "seed"
)
 public Long getId() { return id; }
 public void setId(Long id) { this.id = id; }
 private Long id;

 public String getName() { return name; }
 public void setName(String name) { this.name = name; }
 private String name;

 @ManyToOne
 public Breed getBreed() { return breed; }
 public void setBreed(Breed breed) { this.breed = breed; }
 private Breed breed;
}

@Entity
public class Breed {

 @Id @GeneratedValue(generator = "uuid")
 @GenericGenerator(name="uuid", strategy="uuid2")
 public String getId() { return id; }
 public void setId(String id) { this.id = id; }
 private String id;

 public String getName() { return name; }
 public void setName(String name) { this.name = name; }
 private String name;
}

I lied to you, we have already mapped two entities!

If you are familiar with JPA, you can see that there is nothing specific to Hibernate OGM in our
mapping.

In this tutorial, we will use JBoss Transactions for our JTA transaction manager. So let’s add the JTA
API and JBoss Transactions to our POM as well.

We will also add Hibernate Search because the Infinispan dialect needs it to run JPQL queries, but we
will leave the details for another time (Using Hibernate Search).

The final list of dependencies should look like this:

13

<dependencies>
 <!-- Hibernate OGM Infinispan module; pulls in the OGM core module -->
 <dependency>
 <groupId>org.hibernate.ogm</groupId>
 <artifactId>hibernate-ogm-infinispan-embedded</artifactId>
 </dependency>

 <1-- Optional, needed to run JPQL queries on some datastores -->
 <dependency>
 <groupId>org.hibernate.search</groupId>
 <artifactId>hibernate-search-orm</artifactId>
 </dependency>

 <!-- Standard APIs dependencies - provided in a Java EE container -->
 <dependency>
 <groupId>org.hibernate.javax.persistence</groupId>
 <artifactId>hibernate-jpa-2.1-api</artifactId>
 </dependency>
 <dependency>
 <groupId>org.jboss.spec.javax.transaction</groupId>
 <artifactId>jboss-transaction-api_1.2_spec</artifactId>
 </dependency>

 <!-- Add the Narayana Transactions Manager
 an implementation would be provided in a Java EE container,
 but this works nicely in Java SE as well -->
 <dependency>
 <groupId>org.jboss.narayana.jta</groupId>
 <artifactId>narayana-jta</artifactId>
 </dependency>
 <dependency>
 <groupId>org.jboss</groupId>
 <artifactId>jboss-transaction-spi</artifactId>
 </dependency>
</dependencies>

Next we need to define the persistence unit. Create a META-INF/persistence.xml file.

<?xml version="1.0"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd"
 version="2.0">

 <persistence-unit name="ogm-jpa-tutorial" transaction-type="JTA">
 <!-- Use the Hibernate OGM provider: configuration will be transparent -->
 <provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider>
 <properties>
 <!-- Here you will pick which NoSQL technology to use, and configure it;
 in this example we start a local in-memory Infinispan node. -->
 <property name="hibernate.ogm.datastore.provider" value="infinispan_embedded"/>
 </properties>
 </persistence-unit>
</persistence>

Let’s now persist a set of entities and retrieve them.

14

//accessing JBoss's Transaction can be done differently but this one works nicely
TransactionManager tm = com.arjuna.ats.jta.TransactionManager.transactionManager();

//build the EntityManagerFactory as you would build in in Hibernate ORM
EntityManagerFactory emf = Persistence.createEntityManagerFactory(
 "ogm-jpa-tutorial");

final Logger logger = LoggerFactory.getLogger(DogBreedRunner.class);

[..]

//Persist entities the way you are used to in plain JPA
tm.begin();
logger.infof("About to store dog and breed");
EntityManager em = emf.createEntityManager();
Breed collie = new Breed();
collie.setName("Collie");
em.persist(collie);
Dog dina = new Dog();
dina.setName("Dina");
dina.setBreed(collie);
em.persist(dina);
Long dinaId = dina.getId();
em.flush();
em.close();
tm.commit();

[..]

//Retrieve your entities the way you are used to in plain JPA
tm.begin();
logger.infof("About to retrieve dog and breed");
em = emf.createEntityManager();
dina = em.find(Dog.class, dinaId);
logger.infof("Found dog %s of breed %s", dina.getName(), dina.getBreed().getName());
em.flush();
em.close();
tm.commit();

[..]

emf.close();

A working example can be found in Hibernate OGM’s distribution under hibernate-ogm-
documentation/examples/gettingstarted.

What have we seen?

• Hibernate OGM is a JPA implementation and is used as such both for mapping and in API usage

• It is configured as a specific JPA provider:
org.hibernate.ogm.jpa.HibernateOgmPersistence

Let’s explore more in the next chapters.

15

Hibernate OGM might also require Hibernate Search on the classpath. This
depends on the dialect or features you want to use with you project and you will
find more details about it in the next chapters.

If you want to use Hibernate OGM with WildFly 14.0 you will need some additional
configuration and you can find all the details in the How to package Hibernate OGM
applications for WildFly 14.0 paragraph.

16

http://hibernate.org/search/
http://wildfly.org/

Chapter 3. Migrating from 5.4.1.Final

3.1. MongoDB

3.1.1. MongoDB Java Driver

This patch release updates the underlying MongoDB Java driver from 3.11 to 4.11. It also fixes some
incompatibilities with more recent versions of MongoDB that prevent 5.4.1.Final from executing native
queries.

As a consequence of the driver update, the oldest MongoDB server release that Hibernate OGM will
connect to is now 3.6 (which reached end of life in April 2021).

3.2. MongoDB Server
Recent versions of the MongoDB server have removed support for some features on which Hibernate
OGM depend. In particular:

• MongoDB 4.2 removed support for the $eval command, on which Hibernate OGM support for
stored procedures depends.

• MongoDB 4.0 removed support for the $snapshot and $maxscan query modifiers, and these
modifiers are now ignored for native queries.

All other Hibernate OGM tests of MongoDB support are passing with MongoDB 3.6, up through the
latest release of MongoDB (currently MongoDB 8.0).

3.3. Older versions
The migration guide for the previous versions of Hibernate OGM is available on the JBoss Community
Archive website.

17

https://developer.jboss.org/docs/DOC-52281
https://developer.jboss.org/docs/DOC-52281

Chapter 4. Architecture

Hibernate OGM defines an abstraction layer represented by DatastoreProvider
and GridDialect to separate the OGM engine from the datastores interaction. It
has successfully abstracted various key/value stores, document stores and graph
databases. We are working on testing it on other NoSQL families.

In this chapter we will explore:

• the general architecture

• how the data is persisted in the NoSQL datastore

• how we support JPQL queries

Let’s start with the general architecture.

4.1. General architecture
Hibernate OGM is made possible by the reuse of a few key components:

• Hibernate ORM for JPA support

• the NoSQL drivers to interact with the underlying datastore

• optionally Hibernate Search for indexing and query purposes

• optionally Infinispan’s Lucene Directory to store indexes in Infinispan itself, or in many other
NoSQL using Infinispan’s write-through cachestores

• Hibernate OGM itself

18

Figure 2. General architecture

Hibernate OGM reuses as much as possible from the Hibernate ORM infrastructure. There is no need
to rewrite a new JPA engine. The Persisters and the Loaders (two interfaces used by Hibernate
ORM) have been rewritten to persist data in the NoSQL store. These implementations are the core of
Hibernate OGM. We will see in How is data persisted how the data is structured.

The particularities between NoSQL stores are abstracted by the notion of a DatastoreProvider and
a GridDialect.

19

• DatastoreProvider abstracts how to start and maintain a connection between Hibernate OGM
and the datastore.

• GridDialect abstracts how data itself including associations are persisted.

Think of them as the JDBC layer for our NoSQL stores.

Other than these, all the Create/Read/Update/Delete (CRUD) operations are implemented by the
Hibernate ORM engine (object hydration and dehydration, cascading, lifecycle etc).

As of today, we have implemented the following datastore providers:

• a HashMap based datastore provider (for testing)

• an Infinispan Embedded datastore provider to persist your entities in an Infinispan instance
running within the same JVM

• an Infinispan Remote datastore provider to persist your entities in Infinispan over a remote Hot
Rod client

• an Ehcache based datastore provider to persist your entities in Ehcache

• a MongoDB based datastore provider to persist data in a MongoDB database

• a Neo4j based datastore provider to persist data in the Neo4j graph database

• a CouchDB based datastore provider to persist data in the CouchDB document store
(experimental)

• a Cassandra based datastore provider to persist data in Apache Cassandra (experimental)

• a Redis based datastore provider to persist data in the Redis key/value store (experimental)

• an Ignite based datastore provider to persist data in Apache Ignite (experimental)

To implement JPQL queries, Hibernate OGM parses the JPQL string and calls the appropriate
translator functions to build a native query. Since not all NoSQL technologies support querying, when
lacking we can use Hibernate Search as an external query engine.

We will discuss the subject of querying in more details in How is data queried.

Hibernate OGM best works in a JTA environment. The easiest solution is to deploy it on a Java EE
container. Alternatively, you can use a standalone JTA TransactionManager. We explain how to in In
a standalone JTA environment.

Let’s now see how and in which structure data is persisted in the NoSQL data store.

4.2. How is data persisted
Hibernate OGM tries to reuse as much as possible the relational model concepts, at least when they
are practical and make sense in OGM’s case. For very good reasons, the relational model brought

20

peace in the database landscape over 30 years ago. In particular, Hibernate OGM inherits the following
traits:

• abstraction between the application object model and the persistent data model

• persist data as basic types

• keep the notion of primary key to address an entity

• keep the notion of foreign key to link two entities (not enforced)

If the application data model is too tightly coupled with your persistent data model, a few issues arise:

• any change in the application object hierarchy / composition must be reflected in the persistent
data

• any change in the application object model will require a migration at the data level

• any access to the data by another application ties both applications losing flexibility

• any access to the data from another platform become somewhat more challenging

• serializing entities leads to many additional problems (see note below)

Why aren’t entities serialized in the key/value entry

There are a couple of reasons why serializing the entity directly in the datastore -
key/value in particular - can lead to problems:

• When entities are pointing to other entities are you storing the whole graph?
Hint: this can be quite big!

• If doing so, how do you guarantee object identity or even consistency amongst
duplicated objects? It might make sense to store the same object graph from
different root objects.

• What happens in case of class schema change? If you add or remove a
property or include a superclass, you must migrate all entities in your
datastore to avoid deserialization issues.

Entities are stored as tuples of values by Hibernate OGM. More specifically, each entity is conceptually
represented by a Map<String,Object> where the key represents the column name (often the
property name but not always) and the value represents the column value as a basic type. We favor
basic types over complex ones to increase portability (across platforms and across type / class
schema evolution over time). For example a URL object is stored as its String representation.

The key identifying a given entity instance is composed of:

• the table name

• the primary key column name(s)

21

• the primary key column value(s)

Figure 3. Storing entities

The GridDialect specific to the NoSQL datastore you target is then responsible to convert this map
into the most natural model:

• for a key/value store or a data grid, we use the logical key as the key in the grid and we store the
map as the value. Note that it’s an approximation and some key/value providers will use more
tailored approaches.

• for a document oriented store, the map is represented by a document and each entry in the map
corresponds to a property in a document.

Associations are also stored as tuples. Hibernate OGM stores the information necessary to navigate
from an entity to its associations. This is a departure from the pure relational model but it ensures that
association data is reachable via key lookups based on the information contained in the entity tuple we
want to navigate from. Note that this leads to some level of duplication as information has to be stored
for both sides of the association.

22

The key in which association data are stored is composed of:

• the table name

• the column name(s) representing the foreign key to the entity we come from

• the column value(s) representing the foreign key to the entity we come from

Using this approach, we favor fast read and (slightly) slower writes.

Figure 4. Storing associations

Note that this approach has benefits and drawbacks:

• it ensures that all CRUD operations are doable via key lookups

• it favors reads over writes (for associations)

• but it duplicates data

23

Again, there are specificities in how data is inherently stored in the specific NoSQL store. For example,
in document oriented stores, the association information including the identifier to the associated
entities can be stored in the entity owning the association. This is a more natural model for
documents.

Figure 5. Storing associations in a document store

Some identifiers require to store a seed in the datastore (like sequences for examples). The seed is
stored in the value whose key is composed of:

• the table name

• the column name representing the segment

• the column value representing the segment

This description is how conceptually Hibernate OGM asks the datastore provider to
store data. Depending on the family and even the specific datastore, the storage is
optimized to be as natural as possible. In other words as you would have stored the
specific structure naturally. Make sure to check the chapter dedicated to the
NoSQL store you target to find the specificities.

Many NoSQL stores have no notion of schema. Likewise, the tuple stored by Hibernate OGM is not tied
to a particular schema: the tuple is represented by a Map, not a typed Map specific to a given entity
type. Nevertheless, JPA does describe a schema thanks to:

• the class schema

• the JPA physical annotations like @Table and @Column.

While tied to the application, it offers some robustness and explicit understanding when the schema is
changed as the schema is right in front of the developers' eyes. This is an intermediary model between

24

the strictly typed relational model and the totally schema-less approach pushed by some NoSQL
families.

4.3. Id generation using sequences
You can use sequences with the following annotations:

• @SequenceGenerator: it will use native sequences if available

• @TableGenerator: it will emulate sequences storing the value in the most appropriate data
structure; for example a document in MongoDB or a node in Neo4j.

Here’s some things to keep in mind when dealing with sequence generation:

• @TableGenerator is the fallback approach used when the underlying datastore does not support
native sequences generation.

• If the datastore does not support atomic operations and does not support native sequences,
Hibernate OGM will throw an exception at bootstrap and suggest alternatives.

• The mapping of the sequence might change based on the annotation used, you should check the
mapping paragraph in the documentation related to the dialect you are using.

• The value saved in the the datastore might not be the next value in the sequence.

4.4. How is data queried
Since Hibernate OGM wants to offer all of JPA, it needs to support JPQL queries. Hibernate OGM
parses the JPQL query string and extracts its meaning. From there, several options are available
depending of the capabilities of the NoSQL store you target:

• it directly delegates the native query generation to the datastore specific query translator
implementation

• it uses Hibernate Search as a query engine to execute the query

If the NoSQL datastore has some query capabilities and if the JPQL query is simple enough to be
executed by the datastore, then the JPQL parser directly pushes the query generation to the NoSQL
specific query translator. The query returns the list of matching entity columns or projections and
Hibernate OGM returns managed entities.

Some NoSQL stores have poor query support, or none at all. In this case Hibernate OGM can use
Hibernate Search as its indexing and query engine. Hibernate Search is able to index and query
objects - entities - and run full-text queries. It uses the well known Apache Lucene to do this but adds
a few interesting characteristics like clustering support and an object oriented abstraction including
an object oriented query DSL. Let’s have a look at the architecture of Hibernate OGM when using
Hibernate Search:

25

Figure 6. Using Hibernate Search as query engine - greyed areas are blocks already present in Hibernate OGM’s
architecture

In this situation, Hibernate ORM Core pushes change events to Hibernate Search which will index
entities accordingly and keep the index and the datastore in sync. The JPQL query parser delegates
the query translation to the Hibernate Search query translator and executes the query on top of the
Lucene indexes. Indexes can be stored in various fashions:

• on a file system (the default in Lucene)

26

• in Infinispan via the Infinispan Lucene directory implementation: the index is then distributed
across several servers transparently

• in NoSQL stores that can natively store Lucene indexes

• in NoSQL stores that can be used as overflow to Infinispan: in this case Infinispan is used as an
intermediary layer to serve the index efficiently but persists the index in another NoSQL store.

You can use Hibernate Search even if you do plan to use the NoSQL datastore
query capabilities. Hibernate Search offers a few interesting options:

• clusterability

• full-text queries - ie Google for your entities

• geospatial queries

• query faceting (ie dynamic categorization of the query results by price, brand
etc)

27

Chapter 5. Configure and start Hibernate OGM
Hibernate OGM favors ease of use and convention over configuration. This makes its configuration
quite simple by default.

5.1. Bootstrapping Hibernate OGM
Hibernate OGM can be used via the Hibernate native APIs (Session) or via the JPA APIs
(EntityManager). Depending on your choice, the bootstrapping strategy is slightly different.

5.1.1. Using JPA

If you use JPA as your primary API, the configuration is extremely simple. Hibernate OGM is seen as a
persistence provider which you need to configure in your persistence.xml. That’s it! The provider
name is org.hibernate.ogm.jpa.HibernateOgmPersistence.

Example 1. persistence.xml file

<?xml version="1.0"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd"
 version="2.0">

 <persistence-unit name="org.hibernate.ogm.tutorial.jpa" transaction-type="JTA">
 <!-- Use Hibernate OGM provider: configuration will be transparent -->
 <provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider>
 <properties>
 <property name="hibernate.transaction.jta.platform"
 value="JBossTS" />
 <property name="hibernate.ogm.datastore.provider"
 value="infinispan_embedded" />
 </properties>
 </persistence-unit>
</persistence>

There are a couple of things to notice:

• there is no JDBC dialect setting

• there is no JDBC setting except sometimes a jta-data-source (check In a Java EE container
for more info)

• most NoSQL databases do not require a schema, in which case schema generation options
(hbm2ddl) do not apply

• if you use JTA (which we recommend), you will need to set the JTA platform

You also need to configure which NoSQL datastore you want to use and how to connect to it. We will

28

detail how to do that later in NoSQL datastores.

In this case, we have used the default settings for Infinispan: this will start a local, in-memory
Infinispan instance which is useful for testing but the stored data will be lost on shutdown. You might
think of this configuration as similar to storing your data in an hashmap, but you could of course
change the Infinispan configuration to enable clustering (for both scalability and failover) and to
enable permanent persistence strategies.

From there, simply bootstrap JPA the way you are used to with Hibernate ORM:

• via Persistence.createEntityManagerFactory

• by injecting the EntityManager / EntityManagerFactory in a Java EE container

• by using your favorite injection framework (CDI - Weld, Spring, Guice)

Note that what you’re starting is not an exotic new JPA implementation but is in all
effects an instance of Hibernate ORM, although using some alternative internal
components to deal with the NoSQL stores. This means that any framework and
tool integrating with Hibernate ORM can integrate with Hibernate OGM - of course
as long as it’s not making assumptions such as that a JDBC datasource will be
used.

5.1.2. Using Hibernate ORM native APIs

If you want to bootstrap Hibernate OGM using the native Hibernate APIs, use the new bootstrap API
from Hibernate ORM 5. By setting OgmProperties.ENABLED to true, the Hibernate OGM
components will be activated. Note that unwrapping into OgmSessionFactoryBuilder is not strictly
needed, but it will allow you to set Hibernate OGM specific options in the future and also gives you a
reference to OgmSessionFactory instead of SessionFactory.

29

Example 2. Bootstrap Hibernate OGM with Hibernate ORM native APIs

StandardServiceRegistry registry = new StandardServiceRegistryBuilder()
 .applySetting(OgmProperties.ENABLED, true)
 //assuming you are using JTA in a non container environment
 .applySetting(AvailableSettings.TRANSACTION_COORDINATOR_STRATEGY, "jta")
 //assuming JBoss TransactionManager in standalone mode
 .applySetting(AvailableSettings.JTA_PLATFORM, "JBossTS")
 //assuming Infinispan as the backend, using the default settings
 .applySetting(OgmProperties.DATASTORE_PROVIDER, InfinispanEmbedded
.DATASTORE_PROVIDER_NAME);
 .build();

//build the SessionFactory
OgmSessionFactory sessionFactory = new MetadataSources(registry)
 .addAnnotatedClass(Order.class)
 .addAnnotatedClass(Item.class)
 .buildMetadata()
 .getSessionFactoryBuilder()
 .unwrap(OgmSessionFactoryBuilder.class)
 .build();

There are a couple of things to notice:

• there is no DDL schema generation options (hbm2ddl) as Infinispan does not require schemas
when running in embedded mode

• you need to set the right transaction strategy and the right transaction manager lookup strategy
if you use a JTA based transaction strategy (see Environments)

You also need to configure which NoSQL datastore you want to use and how to connect to it. We will
detail how to do that later in NoSQL datastores. In this case, we have used the defaults settings for
Infinispan.

5.2. Environments
Hibernate OGM runs in various environments: it should work pretty much in all environments in which
Hibernate ORM runs. There are however some selected environments in which it was tested more
thoroughly than others. The current version is being tested regularly in Java SE (without a container)
and within the WildFly 14.0 application server; at time of writing this there’s no known reason for it to
not work in different containers as long as you remember that it requires a specific version of
Hibernate ORM: some containers might package a conflicting version.

5.2.1. In a Java EE container

You don’t have to do much in this case. You need three specific settings:

• the transaction coordinator type

• the JTA platform

30

• a JTA datasource

If you use JPA, simply set the transaction-type to JTA and the transaction factory will be set for
you.

If you use Hibernate ORM native APIs only, then set
hibernate.transaction.coordinator_class to "jta".

Set the JTA platform to the right Java EE container. The property is
hibernate.transaction.jta.platform and must contain the fully qualified class name of the
lookup implementation. The list of available values are listed in Hibernate ORM’s configuration section.
For example in WildFly 14.0 you would pick JBossAS, although in WildFly these settings are
automatically injected so you could skip this.

In your persistence.xml you usually need to define an existing datasource. This is not needed by
Hibernate OGM: it will ignore the datasource, but JPA specification mandates the setting.

Example 3. persistence.xml file

<?xml version="1.0"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd"
 version="2.0">

 <persistence-unit name="org.hibernate.ogm.tutorial.jpa" transaction-type="JTA">
 <!-- Use Hibernate OGM provider: configuration will be transparent -->
 <provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider>
 <jta-data-source>java:/DefaultDS</jta-data-source>
 <properties>
 <property name="hibernate.transaction.jta.platform" value="JBossAS" />
 <property name="hibernate.ogm.datastore.provider" value="infinispan_embedded"
/>
 </properties>
 </persistence-unit>
</persistence>

java:DefaultDS will work for out of the box WildFly deployments.

5.2.2. In a standalone JTA environment

There is a set of common misconceptions in the Java community about JTA:

• JTA is hard to use

• JTA is only needed when you need transactions spanning several databases

• JTA works in Java EE only

• JTA is slower than "simple" transactions

31

https://docs.jboss.org/hibernate/orm/5.3/userguide/html_single/Hibernate_User_Guide.html#transactions-physical-jtaplatform

None of these are true: let me show you how to use the Narayana Transactions Manager in a
standalone environment with Hibernate OGM.

In Hibernate OGM, make sure to set the following properties:

• transaction-type to JTA in your persistence.xml if you use JPA

• or hibernate.transaction.coordinator_class to "jta" if you use
StandardServiceRegistryBuilder/OgmConfiguration to bootstrap Hibernate OGM.

• hibernate.transaction.jta.platform to JBossTS in both cases.

Add the Narayana Transactions Manager to your classpath. If you use maven, it should look like this:

Example 4. Narayana Transactions Manager dependency declaration

<dependency>
 <groupId>org.jboss.narayana.jta</groupId>
 <artifactId>narayana-jta</artifactId>
 <version>5.5.30.Final</version>
</dependency>

The next step is you get access to the transaction manager. The easiest solution is to do as the
following example:

TransactionManager transactionManager =
 com.arjuna.ats.jta.TransactionManager.transactionmanager();

Then use the standard JTA APIs to demarcate your transaction and you are done!

32

Example 5. Demarcate your transaction with standalone JTA

//note that you must start the transaction before creating the EntityManager
//or else call entityManager.joinTransaction()
transactionManager.begin();

final EntityManager em = emf.createEntityManager();

Poem poem = new Poem();
poem.setName("L'albatros");
em.persist(poem);

transactionManager.commit();

em.clear();

transactionManager.begin();

poem = em.find(Poem.class, poem.getId());
assertThat(poem).isNotNull();
assertThat(poem.getName()).isEqualTo("L'albatros");
em.remove(poem);

transactionManager.commit();

em.close();

That was not too hard, was it? Note that application frameworks like the Spring Framework should be
able to initialize the transaction manager and call it to demarcate transactions for you. Check their
respective documentation.

5.2.3. Without JTA

While this approach works today, it does not ensure that operations are done transactionally and
hence won’t be able to rollback your work. This will change in the future but in the mean time, such an
environment is not recommended.

 For NoSQL datastores not supporting transactions, this is less of a concern.

5.3. Configuration options
The most important options when configuring Hibernate OGM are related to the datastore. They are
explained in NoSQL datastores.

Otherwise, most options from Hibernate ORM and Hibernate Search are applicable when using
Hibernate OGM. You can pass them as you are used to do either in your persistence.xml file, your
hibernate.cfg.xml file or programmatically.

More interesting is a list of options that do not apply to Hibernate OGM and that should not be set:

• hibernate.dialect

33

• hibernate.connection.* and in particular hibernate.connection.provider_class

• hibernate.show_sql and hibernate.format_sql

• hibernate.default_schema and hibernate.default_catalog

• hibernate.use_sql_comments

• hibernate.jdbc.*

• hibernate.hbm2ddl.auto and hibernate.hbm2ddl.import_file

5.4. Configuring Hibernate Search
Hibernate Search integrates with Hibernate OGM just like it does with Hibernate ORM. The Hibernate
Search version tested is 5.10.4.Final. Add the dependency to your project - the group id is
org.hibernate and artifact id hibernate-search-orm.

Then configure where you want to store your indexes, map your entities with the relevant index
annotations and you are good to go. For more information, simply check the Hibernate Search
reference documentation.

In Storing a Lucene index in Infinispan we’ll discuss how to store your Lucene indexes in Infinispan.
This is useful even if you don’t plan to use Infinispan as your primary data store.

Hibernate OGM requires Hibernate Search on the classpath only when you need to
run JPQL or HQL queries with some datastores. This is because some datastores
don’t have a query language or we don’t support it yet. In this situation you need to
index the entities that you want to query and Hibernate OGM will convert the
queries in Lucene queries. Check the paragraph related to the datastore of your
choice to see if it requires Hibernate Search or not.

5.5. How to package Hibernate OGM applications for
WildFly 14.0
Provided you’re deploying on WildFly, there is an additional way to add the OGM dependencies to your
application.

In WildFly, class loading is based on modules; this system defines explicit, non-transitive dependencies
on other modules.

Modules allow to share the same artifacts across multiple applications, making deployments smaller
and quicker, and also making it possible to deploy multiple different versions of any library.

More details about modules are described in Class Loading in WildFly.

34

https://docs.jboss.org/hibernate/search/5.10/reference/en-US/html_single/
https://docs.jboss.org/hibernate/search/5.10/reference/en-US/html_single/
https://docs.jboss.org/author/display/WFLY10/Class+Loading+in+WildFly

When deploying a JPA application on WildFly, you should be aware that there are some additional
useful configuration properties defined by the WildFly JPA subsystem. These are documented in
WildFly JPA Reference Guide.

If you apply the following instructions you can create small and efficient deployments which do not
include any dependency, as you can include your favourite version of Hibernate OGM directly to the
collection of container provided libraries.

5.5.1. Packaging Hibernate OGM applications for WildFly 14.0

When using WildFly several of the technologies it includes are automatically enabled. For example
Hibernate ORM is made available to your applications if your persistence.xml defines a persistence
unit using Hibernate as persistence provider (or is not specifying any provider, as Hibernate is the
default one).

Similarly, Hibernate Search is automatically activated and made available on the user’s application
classpath if and when the application server detects the need for it. This is the default behaviour, but
you are in control and can override this all; see the WildFly JPA Reference Guide for a full list of
properties you can explicitly set.

WildFly 14.0 however does not include Hibernate OGM and it will require some configuration to make
everything works.

Hibernate OGM 5.4.2.Final requires Hibernate ORM 5.3.6.Final and Hibernate Search 5.10.4.Final.

Unlike other versions, WildFly 14.0 includes the compatible versions of Hibernate
ORM and Hibernate Search. So that, it will no longer necessary to install extra
Hibrnate Search modules.

Server provisioning via Maven

Maven users can use the wildfly-server-provisioning-maven-plugin to create a custom
WildFly server including the Hibernate OGM modules:

35

https://docs.jboss.org/author/display/WFLY10/JPA+Reference+Guide
https://docs.jboss.org/author/display/WFLY10/JPA+Reference+Guide

<plugins>
 <plugin>
 <groupId>org.wildfly.build</groupId>
 <artifactId>wildfly-server-provisioning-maven-plugin</artifactId>
 <version>1.2.10.Final</version>
 <executions>
 <execution>
 <id>server-provisioning</id>
 <goals>
 <goal>build</goal>
 </goals>
 <phase>compile</phase>
 <configuration>
 <config-file>server-provisioning.xml</config-file>
 <server-name>wildfly-with-hibernate-ogm</server-name>
 </configuration>
 </execution>
 </executions>
 </plugin>
</plugins>

You will also need a server-provisioning.xml in the root of your project:

<server-provisioning xmlns="urn:wildfly:server-provisioning:1.1">
 <feature-packs>

 <feature-pack
 groupId="org.hibernate.ogm"
 artifactId="hibernate-ogm-featurepack-infinispan-remote"
 version="5.4.2.Final" /> ①

 <feature-pack
 groupId="org.hibernate.ogm"
 artifactId="hibernate-ogm-featurepack-infinispan-embedded"
 version="5.4.2.Final" /> ①

 <feature-pack
 groupId="org.hibernate.ogm"
 artifactId="hibernate-ogm-featurepack-mongodb"
 version="5.4.2.Final" /> ①

 <feature-pack
 groupId="org.hibernate.ogm"
 artifactId="hibernate-ogm-featurepack-neo4j"
 version="5.4.2.Final" /> ①

 </feature-packs>
</server-provisioning>

① Add one or more Hibernate OGM feature packs, it depends on which dialects your application
needs.

1. See list of available Hibernate OGM feature packs.

Once you have the archives, you need to unpack them into the modules folder of your WildFly 14.0
installation. The modules included are:

36

• org.hibernate.ogm, the core Hibernate OGM library.

• org.hibernate.ogm.<%DATASTORE%>, one module for each datastore, with <%DATASTORE%>
being one of infinispan, mongodb etc.

• org.hibernate.orm, the Hibernate ORM libraries.

• Several shared dependencies such as org.hibernate.hql:<%VERSION%> (containing the query
parser) and others

The module slot to use for Hibernate OGM 5.4.2.Final is 5.4 as the format of the slot name does not
include the "micro" part of the project version.

Now that WildFly is ready, you can include the dependencies in your application in two ways:

Include dependencies using the manifest

Add this entry to the MANIFEST.MF in your archive (replace <%DATASTORE%> with the right
value for your chosen datastore):

Dependencies: org.hibernate.ogm:5.4 services, org.hibernate.ogm.<%DATASTORE%>:5.4 services

Include dependencies using jboss-deployment-structure.xml

This is a JBoss-specific descriptor. Add a WEB-INF/jboss-deployment-structure.xml in your
archive with the following content (replace <%DATASTORE%> with the right value for your chosen
datastore):

<jboss-deployment-structure>
 <deployment>
 <dependencies>
 <module name="org.hibernate.ogm" slot="5.4" services="export" />
 <module name="org.hibernate.ogm.<%DATASTORE%>" slot="5.4" services="export" />
 </dependencies>
 </deployment>
</jboss-deployment-structure>

More information about the descriptor can be found in the WildFly documentation.

More information about Maven Wildfly provisioning plugin can be found in the WildFly provisioning
build tools.

If you are not using Maven in your project, there is also a Gradle plugin org.wildfly.build.provision
available on the official portal.

5.5.2. List of the Hibernate OGM WildFly/JBoss feature packs

Core feature pack

It contains the core of Hibernate OGM and all the dialects feature packs extend it.

37

https://docs.jboss.org/author/display/WFLY10/Class+Loading+in+WildFly
https://github.com/wildfly/wildfly-build-tools
https://github.com/wildfly/wildfly-build-tools
https://plugins.gradle.org/plugin/org.wildfly.build.provision

It extends the base WildFly feature pack distribution. It includes Hibernate ORM 5.3.6.Final modules,
required by Hibernate OGM 5.4.2.Final.

The feature pack is published on Maven Central as org.hibernate.ogm:hibernate-ogm-featurepack-
core:5.4.2.Final:zip.

Infinispan Remote feature pack

This is the Infinispan Remote dialect feature pack. It includes the main module:

• org.hibernate.ogm.infinispan-remote, containing Hibernate OGM Infinispan Remote module

It includes Hibernate OGM core feature pack and Infinispan client Wildfly modules. The feature pack is
published on Maven Central as org.hibernate.ogm:hibernate-ogm-featurepack-infinispan-
remote:5.4.2.Final:zip.

Infinispan Embedded feature pack

This is the Infinispan Embedded dialect feature pack. It includes the main module:

• org.hibernate.ogm.infinispan-embedded, containing Hibernate OGM Infinispan Embedded module

It includes Hibernate OGM core feature pack and Infinispan client Wildfly modules. The feature pack is
published on Maven Central as org.hibernate.ogm:hibernate-ogm-featurepack-infinispan-
embedded:5.4.2.Final:zip.

MongoDB feature pack

This is the MongoDB dialect feature pack. It includes the main module:

• org.hibernate.ogm.mongodb, containing Hibernate OGM MongoDB module

It includes Hibernate OGM core feature pack and MongoDB Java client. The feature pack is published
on Maven Central as org.hibernate.ogm:hibernate-ogm-featurepack-mongodb:5.4.2.Final:zip.

Neo4j feature pack

This is the Neo4j dialect feature pack. It includes the main module:

• org.hibernate.ogm.neo4j, containing Hibernate OGM Neo4j module

It includes Hibernate OGM core feature pack and Neo4j client libraries. The feature pack is published
on Maven Central as org.hibernate.ogm:hibernate-ogm-featurepack-neo4j:5.4.2.Final:zip.

38

https://central.sonatype.com/artifact/org.hibernate.ogm/hibernate-ogm-featurepack-core/{hibernate-ogm-version}
https://central.sonatype.com/artifact/org.hibernate.ogm/hibernate-ogm-featurepack-core/{hibernate-ogm-version}
https://central.sonatype.com/artifact/org.hibernate.ogm/hibernate-ogm-featurepack-infinispan-remote/{hibernate-ogm-version}
https://central.sonatype.com/artifact/org.hibernate.ogm/hibernate-ogm-featurepack-infinispan-remote/{hibernate-ogm-version}
https://central.sonatype.com/artifact/org.hibernate.ogm/hibernate-ogm-featurepack-infinispan-embedded/{hibernate-ogm-version}
https://central.sonatype.com/artifact/org.hibernate.ogm/hibernate-ogm-featurepack-infinispan-embedded/{hibernate-ogm-version}
https://central.sonatype.com/artifact/org.hibernate.ogm/hibernate-ogm-featurepack-mongodb/{hibernate-ogm-version}
https://central.sonatype.com/artifact/org.hibernate.ogm/hibernate-ogm-featurepack-neo4j/{hibernate-ogm-version}

5.5.3. Configure your persistence.xml to use your choice of persistence provider

WildFly will by default attempt to guess which Persistence Provider you need by having a look at the
provider section of the persistence.xml.

5.5.4. Enable support for EE 8

Hibernate OGM 5.4.2.Final requires CDI 2.0 and JPA 2.2, that belong to EE 8 specification. WildFly 13
has support for JavaEE 8.

But in order to enable required CDI and JPA versions we need to start the server with
ee8.preview.mode Java system property set to true :

-Dee8.preview.mode=true

5.5.5. Using the Hibernate OGM modules with Infinispan

The Infinispan project also provides custom modules for WildFly 14.0. Hibernate OGM modules require
these modules if you’re planning to use the Hibernate OGM / Infinispan combination on WildFly.

This release of Hibernate OGM was tested exclusively with Infinispan version 9.4.0.Final; the Infinispan
project generally attempts to maintain the same API and integration points within the same
major.minor version, so a micro version update should be safe but is untested.

In case you want to experiment with a more significant version upgrade, you will need to edit the
modules of Hibernate OGM: the module identifiers are hardcoded in the XML files representing the
module.

Download the Infinispan modules pack for WildFly 14.0 from here:

• Infinispan WildFly modules version 9.4.0.Final from the Maven repository

Then similarly to what you did with the Hibernate OGM modules zip, unpack this one too in your
modules directory within the application server.

If you are using the Hibernate OGM Infinispan feature packs, you don’t have to
worry about this. Infinispan client is already included in them.

5.6. Integration with WildFly NoSQL
WildFly NoSQL project allows to configure a NoSQL datastore client within a WildFly subsystem. See
WildFly NoSQL Documentation. In a nutshell it provides the analogous concept of a SQL DataSource
for a NoSQL datastore.

39

https://repo1.maven.org/maven2/org/infinispan/infinispan-as-embedded-modules/9.4.0.Final/infinispan-as-embedded-modules-9.4.0.Final.zip
https://github.com/wildfly/wildfly-nosql/tree/1.0.2.Final/doc

It is possible to configure Hibernate OGM to use the connections provided by WildFly NoSQL, using a
special Hibernate property: hibernate.connection.resource.

At the time of writing the feature and its property are supported only for MongoDB
and Neo4j Bolt clients.

5.6.1. How to use WildFly NoSQL with Hibernate OGM

A typical Hibernate OGM persistence configuration, without the support of WildFly NoSQL, looks like
this:

<persistence version="2.1"
 xmlns="http://xmlns.jcp.org/xml/ns/persistence" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence
http://xmlns.jcp.org/xml/ns/persistence/persistence_2_1.xsd">
 <persistence-unit name="primary" transaction-type="JTA">
 <provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider>
 <properties>
 <property name="hibernate.ogm.datastore.provider" value="mongodb" />
 <property name="hibernate.ogm.datastore.create_database" value="true"/>
 <property name="hibernate.ogm.datastore.host" value="localhost:27018"/>
 <property name="hibernate.ogm.datastore.database" value="mongodb"/>
 <property name="hibernate.ogm.mongodb.write_concern" value="JOURNALED"/>
 <property name="hibernate.ogm.mongodb.read_preference" value="NEAREST"/>
 </properties>
 </persistence-unit>
</persistence>

Some configurations, like the hostname, port, name of the database and other datastore specific
properties can be refactored/moved to a WildFly NoSQL subsystem, like this:

<subsystem xmlns="urn:jboss:domain:mongodb:1.0">
 <mongo name="default" id="mongodb" jndi-name="java:jboss/mongodb/client" database="
mongodb" module="org.hibernate.ogm.mongodb">
 <host name="default" outbound-socket-binding-ref="mongodb"/>
 <properties name="default">
 <property name="writeConcern" value="JOURNALED"/>
 <property name="readConcern" value="LOCAL"/>
 </properties>
 </mongo>
</subsystem>

Notice that here the jndi-name attribute defines the String for the external lookup, it will be used later
in this chapter. While module attribute indicates the static module from which to load client driver.

If you have provisioned your WildFly with Hibernate OGM featurepack(s), which is
also the recommanded practice if you use WildFly, module attribute will be
org.hibernate.ogm.mongodb for MongoDB driver or org.hibernate.ogm.neo4j for
Neo4j driver.

40

Moreover you should have a WildFly socket binding like this one:

<socket-binding-group ...
 <outbound-socket-binding name="mongodb">
 <remote-destination host="localhost" port="27018"/>
 </outbound-socket-binding>
</socket-binding-group>

At this point you can use the Hibernate property hibernate.connection.resource in your
persistence.xml, to integrate WildFly NoSQL with your Hibernate OGM.

In our case we will have:

<persistence version="2.1"
 xmlns="http://xmlns.jcp.org/xml/ns/persistence" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence
http://xmlns.jcp.org/xml/ns/persistence/persistence_2_1.xsd">
 <persistence-unit name="primary" transaction-type="JTA">
 <provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider>
 <properties>
 <property name="hibernate.ogm.datastore.provider" value="mongodb" />
 <property name="hibernate.connection.resource" value="java:jboss/mongodb/client"/>
 <property name="hibernate.ogm.datastore.create_database" value="true"/>
 </properties>
 </persistence-unit>
</persistence>

41

Chapter 6. Map your entities
This section mainly describes the specificities of Hibernate OGM mappings. It’s not meant to be a
comprehensive guide to entity mappings, the complete guide is Hibernate ORM’s documentation: after
all Hibernate OGM is Hibernate ORM.

6.1. Supported entity mapping
Pretty much all entity related constructs should work out of the box in Hibernate OGM. @Entity,
@Table, @Column, @Enumerated, @Temporal, @Cacheable and the like will work as expected. If you
want an example, check out Getting started with Hibernate OGM or the documentation of Hibernate
ORM. Let’s concentrate of the features that differ or are simply not supported by Hibernate OGM.

Hibernate OGM supports the following inheritance strategies: *
InheritanceType.TABLE_PER_CLASS * InheritanceType.SINGLE_TABLE

If you feel the need to support other strategies, let us know (see How to contribute).

JPA annotations refer to tables but the kind of abstraction the database will use depends on the
nature of the NoSQL datastore you are dealing with. For example, in MongoDB a table is mapped as a
document.

You can find more details about the way entities are stored in the corresponding mapping section of
the datastore you are using.

Secondary tables are not supported by Hibernate OGM at the moment. If you have needs for this
feature, let us know (see How to contribute).

Queries are partially supported, you will find more information in the query chapter.

All standard JPA id generators are supported: IDENTITY, SEQUENCE, TABLE and AUTO. If you need
support for additional generators, let us know (see How to contribute).

42

https://docs.jboss.org/hibernate/orm/5.3/userguide/html_single/Hibernate_User_Guide.html#domain-model

Some NoSQL databases can not provide an efficient implementation for IDENTITY
or SEQUENCE, for these cases we recommend you use a UUID based generator.
For example on Infinispan (in embedded mode) using IDENTITY is possible but it
will require using cluster wide coordination to maintain the counters, which is not
going to perform very well.

@Entity
public class Breed {

 @Id @GeneratedValue(generator = "uuid")
 @GenericGenerator(name="uuid", strategy="uuid2")
 public String getId() { return id; }
 public void setId(String id) { this.id = id; }
 private String id;

 public String getName() { return name; }
 public void setName(String name) { this.name = name; }
 private String name;
}

6.2. Supported Types
Most Java built-in types are supported at this stage. However, custom types (@Type) are not
supported.

Here is a list of supported Java types:

• Boolean

• Byte

• Byte Array

• Calendar

• Class

• Date

• Double

• Integer

• Long

• Short

• Float

• Character

• String

• BigDecimal (mapped as scientific notation)

43

• BigInteger

• Url (as described by RFC 1738 and returned by toString of the Java URL type)

• UUID stored as described by RFC 4122

• Enums

Let us know if you need more type support How to contribute

6.3. Supported association mapping
All association types are supported (@OneToOne, @OneToMany, @ManyToOne, @ManyToMany).
Likewise, all collection types are supported (Set, Map, List). The way Hibernate OGM stores
association information is however quite different than the traditional RDBMS representation. Each
chapter dedicated to a datastore describes how associations are persisted, make sure to check them
out.

Not all types of associations can be mapped efficiently on all datastores: this will depend on the
specific capabilities of the NoSQL technology being used. For example the key/value stores will have
all of the association navigation for a given entity stored in a single key. If your collection is made of 1
million elements, Hibernate OGM will have to store 1 million tuples in the association key. For example
the Infinispan Embedded dialect suffers from this limitation as it’s treated as a pure key/value store,
while the Infinispan Remote dialect does not as it is more similar to a document store.

6.3.1. Elements order in associations

Hibernate OGM, by default, does not guarantee that elements in an association will be retrieved in the
same order each time you load the association from the datastore.

If the order is important, you can enforce it using the following annotations:

• @javax.persistence.OrderColumn: the collection uses a dedicated order column in the
collection link table

• @javax.persistence.OrderBy: the collection is ordered upon retrieval using a child entity
property

You can find more details and examples in the Hibernate ORM documentation.

44

http://docs.jboss.org/hibernate/orm/5.3/userguide/html_single/Hibernate_User_Guide.html#collections-list

At the moment, Hibernate OGM doesn’t support duplicates in an association. Which
means that even if an entity or on embeddable appear in an association twice,
Hibernate OGM will only save or read the element once. This only happens for
elements with the same id.

A work-around for this issue is to use the annotation
@javax.persistence.OrderColumn.

For more details you can check the issues OGM-1237 or OGM-1537.

45

https://hibernate.atlassian.net/browse/OGM-1237
https://hibernate.atlassian.net/browse/OGM-1537

Chapter 7. Hibernate OGM APIs
Hibernate OGM has very few specific APIs. For the most part, you will interact with it via either:

• the JPA APIs

• the native Hibernate ORM APIs

This chapter will only discuss the Hibernate OGM specific behaviors regarding these APIs. If you need
to learn JPA or the native Hibernate APIs, check out the Hibernate ORM documentation.

7.1. Bootstrap Hibernate OGM
We already discussed this subject earlier, have a look at Configure and start Hibernate OGM for all the
details.

As a reminder, it basically boils down to either:

• set the right persistence provider in your persistence.xml file and create an
EntityManagerFactory the usual way

• start via the Hibernate ORM native APIs using StandardServiceRegistryBuilder and
MetadataSources to boot a SessionFactory

7.2. JPA and native Hibernate ORM APIs
You know of the Java Persistence and Hibernate ORM native APIs? You are pretty much good to go. If
you need a refresher, make sure you read the Hibernate ORM documentation.

A few things are a bit different though, let’s discuss them.

Most of the EntityManager and Session contracts are supported. Here are the few exceptions:

• Session.createCriteria: criteria queries are not yet supported in Hibernate OGM

• Session.createFilter: queries on collections are not supported yet

• Session 's enableFilter, disableFilter etc: query filters are not supported at the moment

• doWork and doReturningWork are not implemented as they rely on JDBC connections - see
OGM-694

• Session 's stored procedure APIs are not supported

• Session 's natural id APIs are not yet supported

• Session.lock is not fully supported at this time

46

http://hibernate.org/orm/documentation/
http://hibernate.org/orm/documentation/
https://hibernate.atlassian.net/browse/OGM-694

• EntityManager 's criteria query APIs are not supported

• EntityManager 's stored procedure APIs are not supported - see OGM-695

• EntityManager.lock is not fully supported at this time

• see Query your entities to know what is supported for JPQL and native queries

7.2.1. Accessing the OgmSession API

To execute NoSQL native queries, one approach is to use OgmSession#createNativeQuery. You
can read more about it in Using the native query language of your NoSQL. But let’s see how to access
an OgmSession instance.

From JPA, use the unwrap method of EntityManager

Example 6. Get to an OgmSession from an EntityManager

EntityManager entityManager = ...
OgmSession ogmSession = entityManager.unwrap(OgmSession.class);
NativeQuery query = ogmSession.createNativeQuery(...);

In the Hibernate native API case, you should already have access to an OgmSession. The
OgmConfiguration you used returns an OgmSessionFactory. This factory in turns produces
OgmSession.

Example 7. Get to an OgmSession with Hibernate ORM native APIs

StandardServiceRegistry registry = new StandardServiceRegistryBuilder()
 .applySetting(OgmProperties.ENABLED, true)
 .build();

OgmSessionFactory ogmSessionFactory = new MetadataSources(registry)
 .buildMetadata()
 .getSessionFactoryBuilder()
 .unwrap(OgmSessionFactoryBuilder.class)
 .build();
OgmSession ogmSession = ogmSessionFactory.openSession();
NativeQuery query = ogmSession.createNativeQuery(...);

7.3. On flush and transactions
Even though some underlying NoSQL datastores do not support transaction, it is important to
demarcate transaction via the Hibernate OGM APIs. Let’s see why.

Hibernate does pile up changes for as long as it can before pushing them down to the datastore. This
opens up the doors to huge optimizations (avoiding duplication, batching operations etc). You can
force changes to be sent to the datastore by calling Session.flush or EntityManager.flush. In

47

https://hibernate.atlassian.net/browse/OGM-695

some situations - for example before some queries are executed -, Hibernate will flush automatically.
It will also flush when the transaction demarcation happens (whether there is a real transaction or
not).

The best approach is to always demarcate the transaction as shown below. This avoids the needs to
manually call flush and will offer future opportunities for Hibernate OGM.

Example 8. Explicitly demarcating transactions

Here is how you do outside of a JTA environment.

Session session = ...

Transaction transaction = session.beginTransaction();
try {
 // do your work
 transaction.commit(); // will flush changes to the datastore
catch (Exception e) {
 transaction.rollback();
}

// or in JPA
EntityManager entityManager = ...
EntityTransaction transaction = entityManager.getTransaction();
try {
 // do your work
 transaction.commit(); // will flush changes to the datastore
}
catch (Exception e) {
 transaction.rollback();
}

Inside a JTA environment, either the container demarcates the transaction for you and Hibernate
OGM will transparently join that transaction and flush at commit time. Or you need to manually
demarcate the transaction. In the latter case, it is best to start / stop the transaction before
retrieving the Session or EntityManager as shown below. The alternative is to call the
EntityManager.joinTransaction() once the transaction has started.

transactionManager.begin();
Session session = sessionFactory.openSession();
// do your work
transactionManager.commit(); // will flush changes to the datastore

// or in JPA
transactionManager.begin();
EntityManager entityManager = entityManagerFactory.createEntityManager();
// do your work
transactionManager.commit(); // will flush changes to the datastore

7.3.1. Acting upon errors during application of changes

48

The error compensation API described in the following section is an experimental
feature. It will be enriched with additional features over time. This might require
changes to existing method signatures and thus may break code using a previous
version of the API.

Please let us know about your usage of the API and your wishes regarding futher
capabilities!

If an error occurs during flushing a set of changes, some data changes may already have been applied
in the datastore. If the store is non-transactional, there is no way to rollback (undo) these changes if
they were already flushed. In this case it is desirable to know which changes have been applied and
which ones failed in order to take appropriate action.

Hibernate OGM provides an error compensation API for this purpose. By implementing the
org.hibernate.ogm.failure.ErrorHandler interface, you will be notified if

• an interaction between the Hibernate OGM engine and the grid dialect failed

• a rollback of the current transaction was triggered

Use cases for the error compensation API include:

• Logging all applied operations

• Retrying a failed operation e.g. after timeouts

• Making an attempt to compensate (apply an inverse operation) applied changes

In its current form the API lays the ground for manually performing these and similar tasks, but we
envision a more automated approach in future versions, e.g. for automatic retries of failed operations
or the automatic application of compensating operations.

Let’s take a look at an example:

49

Example 9. Custom ErrorHandler implementation

public class ExampleErrorHandler extends BaseErrorHandler {

 @Override
 public void onRollback(RollbackContext context) {
 // write all applied operations to a log file
 for (GridDialectOperation appliedOperation : context
.getAppliedGridDialectOperations()) {
 switch (appliedOperation.getType()) {
 case INSERT_TUPLE:
 EntityKeyMetadata entityKeyMetadata = appliedOperation.as(InsertTuple
.class).getEntityKeyMetadata();
 Tuple tuple = appliedOperation.as(InsertTuple.class).getTuple();

 // write EKM and tuple to log file...
 break;
 case REMOVE_TUPLE:
 // ...
 break;
 case ...
 // ...
 break;
 }
 }
 }

 @Override
 public ErrorHandlingStrategy onFailedGridDialectOperation
(FailedGridDialectOperationContext context) {
 // Ignore this exception and continue
 if (context.getException() instanceof TupleAlreadyExistsException) {
 GridDialectOperation failedOperation = context.getFailedOperation();
 // write to log ...

 return ErrorHandlingStrategy.CONTINUE;
 }
 // But abort on all others
 else {
 return ErrorHandlingStrategy.ABORT;
 }
 }
}

The onRollback() method - which is called when the transaction is rolled back (either by the user or
by the container) - shows how to iterate over all methods applied prior to the rollback, examine their
specific type and e.g. write them to a log file.

The onFailedGridDialectOperation() method is called for each specific datastore operation
failing. It lets you decide whether to continue ignoring the failure, retry or abort the operation. If
ABORT is returned, the causing exception will be re-thrown, eventually causing the current transaction
to be rolled back. If CONTINUE is returned, that exception will be ignored, causing the current
transaction to continue.

The decision whether to abort or continue can be based on the specific exception type or on the grid
dialect operation which caused the failure. In the example all exceptions of type
TupleAlreadyExistsException are ignored, whereas all other exceptions cause the current flush

50

cycle to be aborted. You also could react to datastore-specific exceptions such as MongoDB’s
MongoTimeoutException, if needed.

Note that by extending the provided base class BaseErrorHandler rather than implementing the
interface directly, you only need to implement those callback methods you are actually interested in.
The implementation will also not break if further callback methods are added to the ErrorHandler
interface in future releases.

Having implemented the error handler, it needs to be registered with Hibernate OGM. To do so, specify
it using the property hibernate.ogm.error_handler, e.g. as a persistence unit property in META-
INF/persistence.xml:

<property name="hibernate.ogm.error_handler" value="com.example.ExampleErrorHandler"/>

7.4. SPIs
Some of the Hibernate OGM public contracts are geared towards either integrators or implementors of
datastore providers. They should not be used by a regular application. These contracts are named SPIs
and are in a .spi package.

To keep improving Hibernate OGM, we might break these SPIs between versions. If you plan on writing
a datastore, come and talk to us.

Non public contracts are stored within a .impl package. If you see yourself using
one of these classes, beware that we can break these without notice.

51

Chapter 8. Query your entities
Once your data is in the datastore, it’s time for some query fun! With Hibernate OGM, you have a few
alternatives that should get you covered:

• Use JPQL - only for simple queries for now

• Use the NoSQL native query mapping the result as managed entities

• Use Hibernate Search queries - primarily full-text queries

• Use stored procedures mapping the result as managed entities

8.1. Using JPQL
For Hibernate OGM, we developed a brand new JPQL parser which is already able to convert simple
queries into the native underlying datastore query language (e.g. MongoQL for MongoDB, CypherQL
for Neo4J, etc). This parser can also generate Hibernate Search queries for datastores that do not
support a query language.

52

For datastores like Infinispan that require Hibernate Search to execute JPQL
queries, the following preconditions must be met:

• no join, aggregation, or other relational operations are implied

• the entity involved in the query must be indexed

• the properties involved in the predicates must be indexed

Here is an example:

@Entity @Indexed
public class Hypothesis {

 @Id
 public String getId() { return id; }
 public void setId(String id) { this.id = id; }
 private String id;

 @Field(analyze=Analyze.NO)
 public String getDescription() { return description; }
 public void setDescription(String description) { this.description =
description; }
 private String description;
}

Query query = session
 .createQuery("from Hypothesis h where h.description = :desc")
 .setParameter("desc", "tomorrow it's going to rain");

Note that the description field is marked as not analysed. This is necessary to
support field equality and comparison as defined by JPQL.

You can make use of the following JPQL constructs:

• simple comparisons using "<", "<=", "=", ">=" and ">"

• IS NULL and IS NOT NULL

• the boolean operators AND, OR, NOT

• LIKE, IN and BETWEEN

• ORDER BY

In particular and of notice, what is not supported is:

• cross entity joins

• JPQL functions in particular aggregation functions like count

• JPQL update and delete queries

That may sound rather limiting for your use cases so bear with us. This is a hot area we want to
improve, please tell us what feature you miss by opening a JIRA or via email. Also read the next

53

section, you will see other alternatives to implement your queries.

Let’s look at some of the queries you can express in JPQL:

Example 10. Some JPQL queries

// query returning an entity based on a simple predicate
select h from Hypothesis h where id = 16

// projection of the entity property
select id, description from Hypothesis h where id = 16

// projection of the embedded properties
select h.author.address.street from Hypothesis h where h.id = 16

// predicate comparing a property value and a literal
from Hypothesis h where h.position = '2'

// negation
from Hypothesis h where not h.id = '13'
from Hypothesis h where h.position <> 4

// conjunction
from Hypothesis h where h.position = 2 and not h.id = '13'

// named parameters
from Hypothesis h where h.description = :myParam

// range query
from Hypothesis h where h.description BETWEEN :start and :end

// comparisons
from Hypothesis h where h.position < 3

// in
from Hypothesis h where h.position IN (2, 3, 4)

// like
from Hypothesis h where h.description LIKE '%dimensions%'

// comparison with null
from Hypothesis h where h.description IS null

// order by
from Hypothesis h where h.description IS NOT null ORDER BY id
from Helicopter h order by h.make desc, h.name

There are also features that are partially supported:

• Inner JOIN on an embedded association: works as expected with Neo4j and MongoDB; doesn’t
work if your datastore provider implements JPQL queries using Hibernate Search.

• Projections or filters on properties of an embedded identifier: works as expected with Neo4j and
MongoDB; doesn’t work if your datastore provider implements JPQL queries using Hibernate
Search.

These are better illustrated by the following example:

Example 11. Entity with embedded collection and supported JPQL queries

54

@Indexed
@Entity
public class StoryGame {

 @DocumentId
 @EmbeddedId
 @FieldBridge(impl = NewsIdFieldBridge.class)
 private StoryID storyId;

 @ElementCollection
 @IndexedEmbedded
 private List<OptionalStoryBranch> optionalEndings;

 ...

}

@Embeddable
public class StoryID implements Serializable {

 private String title;
 private String author;

 ...
}

@Embeddable
public class OptionalStoryBranch {

 // Analyze.NO for filtering in query
 // Store.YES for projection in query
 @Field(store = Store.YES, analyze = Analyze.NO)
 private String text;

 ...

}

Filter the results using the supported operators will work for all the datastores:

String query =
 "SELECT sg" +
 "FROM StoryGame sg JOIN sg.optionalEndings ending WHERE ending.text = 'Happy ending'"
List<StoryGame> stories = session.createQuery(query).list();

Projection of properties of an embedded association works with Neo4j and MongoDB, but the other
datastores will only return one element from the association. This is due to the fact that Hibernate
Search is currently not supporting projection of associations. Here’s an example of a query affected
by this:

String query =
 "SELECT ending.text " +
 "FROM StoryGame sg JOIN sg.optionalEndings ending WHERE ending.text LIKE 'Happy%'";
List<String> endings = session.createQuery(query).list();

Projecting and filtering on embedded id properties works with Neo4j and MongoDB but throws an
exception with the other datastores:

55

String query =
 "SELECT sg.storyId.title FROM StoryGame sg WHERE sg.storyId.title = 'Best Story Ever'
";
List<String> title = session.createQuery(query).list();

It will cause the following exception if the datastore uses Hibernate Search to execute JPQL
queries:

org.hibernate.hql.ParsingException: HQL100002: The type [storyId] has no indexed property
named title.

In order to reflect changes performed in the current session, all entities affected by
a given query are flushed to the datastore prior to query execution (that’s the case
for Hibernate ORM as well as Hibernate OGM).

For not fully transactional stores, this can cause changes to be written as a side-
effect of running queries which cannot be reverted by a possible later rollback.

Depending on your specific use cases and requirements you may prefer to disable
auto-flushing, e.g. by invoking query.setFlushMode(FlushMode.MANUAL).
Bear in mind though that query results will then not reflect changes applied within
the current session.

8.2. Using the native query language of your NoSQL
Often you want the raw power of the underlying NoSQL query engine. Even if that costs you
portability.

Hibernate OGM addresses that problem by letting you express native queries (e.g. in MongoQL or
CypherQL) and map the result of these queries as mapped entities.

In JPA, use EntityManager.createNativeQuery. The first form accepts a result class if your result
set maps the mapping definition of the entity. The second form accepts the name of a
resultSetMapping and lets you customize how properties are mapped to columns by the query. You
can also used a predefined named query which defines its result set mapping.

Let’s take a look at how it is done for Neo4J:

56

Example 12. Various ways to create a native query in JPA

@Entity
@NamedNativeQuery(
 name = "AthanasiaPoem",
 query = "{ $and: [{ name : 'Athanasia' }, { author : 'Oscar Wilde' }] }",
 resultClass = Poem.class)
public class Poem {

 @Id
 private Long id;

 private String name;

 private String author;

 // getters, setters ...

}

...

javax.persistence.EntityManager em = ...

// a single result query
String query1 = "MATCH (n:Poem { name:'Portia', author:'Oscar Wilde' }) RETURN n";
Poem poem = (Poem) em.createNativeQuery(query1, Poem.class).getSingleResult();

// query with order by
String query2 = "MATCH (n:Poem { name:'Portia', author:'Oscar Wilde' }) " +
 "RETURN n ORDER BY n.name";
List<Poem> poems = em.createNativeQuery(query2, Poem.class).getResultList();

// query with projections
String query3 = MATCH (n:Poem) RETURN n.name, n.author ORDER BY n.name";
List<Object[]> poemNames = (List<Object[]>)em.createNativeQuery(query3)
 .getResultList();

// named query
Poem poem = (Poem) em.createNamedQuery("AthanasiaPoem").getSingleResult();

In the native Hibernate API, use OgmSession.createNativeQuery or Session.getNamedQuery.
The former form lets you define the result set mapping programmatically. The latter is receiving the
name of a predefined query already describing its result set mapping.

Example 13. Hibernate API defining a result set mapping

OgmSession session = ...
String query1 = "{ $and: [{ name : 'Portia' }, { author : 'Oscar Wilde' }] }";
Poem poem = session.createNativeQuery(query1)
 .addEntity("Poem", Poem.class)
 .uniqueResult();

Check out each individual datastore chapter for more info on the specifics of the native query
language mapping. In particular Neo4J and MongoDB.

57

8.3. Using Hibernate Search
Hibernate Search offers a way to index Java objects into Lucene indexes and to execute full-text
queries on them. The indexes do live outside your datastore. This offers a few interesting properties in
terms of feature set and scalability.

Apache Lucene is a full-text indexing and query engine with excellent query performance. Feature
wise, full-text means you can do much more than a simple equality match.

Hibernate Search natively integrates with Hibernate ORM. And Hibernate OGM of course!

Example 14. Adding Hibernate Search artifact to your project via Maven

<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-search-orm</artifactId>
</dependency>

Example 15. Using Hibernate Search for full-text matching

@Entity @Indexed
public class Hypothesis {

 @Id
 public String getId() { return id; }
 public void setId(String id) { this.id = id; }
 private String id;

 @Field(analyze=Analyze.YES)
 public String getDescription() { return description; }
 public void setDescription(String description) { this.description = description; }
 private String description;
}

EntityManager entityManager = ...
//Add full-text superpowers to any EntityManager:
FullTextEntityManager ftem = Search.getFullTextEntityManager(entityManager);

//Optionally use the QueryBuilder to simplify Query definition:
QueryBuilder b = ftem.getSearchFactory()
 .buildQueryBuilder()
 .forEntity(Hypothesis.class)
 .get();

//Create a Lucene Query:
Query lq = b.keyword().onField("description").matching("tomorrow").createQuery();

//Transform the Lucene Query in a JPA Query:
FullTextQuery ftQuery = ftem.createFullTextQuery(lq, Hypothesis.class);

//List all matching Hypothesis:
List<Hypothesis> resultList = ftQuery.getResultList();

58

Assuming our database contains an Hypothesis instance having description "Sometimes tomorrow
we release", that instance will be returned by our full-text query.

Text similarity can be very powerful as it can be configured for specific languages or domain specific
terminology; it can deal with typos and synonyms, and above all it can return results by relevance.

Worth noting the Lucene index is a vectorial space of term occurrence statistics: so extracting tags
from text, frequencies of strings and correlate this data makes it very easy to build efficient data
analysis applications.

While the potential of Lucene queries is very high, it’s not suited for all use cases Let’s see some of the
limitations of Lucene Queries as our main query engine:

• Lucene doesn’t support Joins. Any to-One relations can be mapped fine, and the Lucene
community is making progress on other forms, but restrictions on OneToMany or ManyToMany
can’t be implemented today.

• Since we apply changes to the index at commit time, your updates won’t affect queries until you
commit (we might improve on this).

• While queries are extremely fast, write operations are not as fast (but we can make it scale).

For a complete understanding of what Hibernate Search can do for you and how to use it, go check the
Hibernate Search reference documentation.

8.4. Using the Criteria API
At this time, we have not implemented support for the Criteria APIs (neither Hibernate native nor
JPA).

8.5. Using stored procedures
Often you want the raw power of the underlying NoSQL query engine. Even if that costs you
portability.

Hibernate OGM addresses that requirement by letting you express stored procedures (e.g. in server-
side JavaScript for MongoDB) and map the result of these queries as mapped entities or return
primitive results.

In JPA, use EntityManager.createStoredProcedureQuery or
EntityManager.createNamedStoredProcedureQuery. The first form accepts a result class if
your result set maps the mapping definition of the entity. The second form accepts the name of a
resultSetMapping and lets you customize how properties are mapped to columns by the query. You
can also use a predefined named query which defines its result set mapping.

Let’s take a look at how it is done:

59

https://docs.jboss.org/hibernate/search/5.10/reference/en-US/html_single/

Example 16. Various ways to create a stored procedure query in JPA

@Entity
@NamedStoredProcedureQueries({
 @NamedStoredProcedureQuery(name = "find_cars_by_brand", procedureName =
"resultSetResultProc", parameters = {
 @StoredProcedureParameter(mode = ParameterMode.REF_CURSOR, type = Void
.class),
 @StoredProcedureParameter(mode = ParameterMode.IN, type = String.class)
 }, resultSetMappings = "carMapping")
})

@SqlResultSetMapping(name = "carMapping", entities = { @EntityResult(entityClass = Car
.class) })
public class Car {

 @Id
 private Long id;

 private String brand;

 // getters, setters ...

}

...

javax.persistence.EntityManager em = ...

StoredProcedureQuery storedProcedureQuery = em.createStoredProcedureQuery(
"mostExpensiveCarsPerYear", Car.class);
storedProcedureQuery.registerStoredProcedureParameter(0, Void.class, ParameterMode
.REF_CURSOR);
storedProcedureQuery.registerStoredProcedureParameter(1, Integer.class, ParameterMode.IN
);
storedProcedureQuery.setParameter(1, 1995);
List<Car> cars = storedProcedureQuery.getResultList();

// named stored procedure query
StoredProcedureQuery storedProcedureQuery = em.createNamedStoredProcedureQuery(
"find_cars_by_brand");
storedProcedureQuery.setParameter(1, "Bentley");
List<Car> cars = storedProcedureQuery.getResultList();

You can also use named parameters and StoredProcedureQuery#getSingleResult().

Check out each individual datastore chapter for more info on the specifics of the native query
language mapping.

'OUT' and 'IN_OUT' parameters of stored procedures are not supported yet. Main
reason of it is supported data storages support 'IN' parameters only.

60

Chapter 9. NoSQL datastores
Currently Hibernate OGM supports the following NoSQL datastores:

• Map: stores data in an in-memory Java map to store data. Use it only for unit tests.

• Infinispan Embedded: stores data into Infinispan (data grid) participating directly in the cluster

• Infinispan Remote: (also called Hot Rod, the name of the Infinispan client) stores data into
Infinispan by connecting as an Hot Rod client

◦ at this stage, this datastore is experimental

• Ehcache: stores data into Ehcache (cache)

• MongoDB: stores data into MongoDB (document store)

• Neo4j: stores data into Neo4j (graph database)

• CouchDB: stores data into CouchDB (document store)

◦ at this stage, this datastore is experimental

• Redis: stores data into Redis (key-value store)

◦ at this stage, this datastore is experimental

More are planned, if you are interested, come talk to us (see How to get help and contribute on
Hibernate OGM).

For each datastore, Hibernate OGM has specific integration code called a datastore provider. All are in
a dedicated maven module, you simply need to depend on the one you use.

Hibernate OGM interacts with NoSQL datastores via two contracts:

• a DatastoreProvider which is responsible for starting and stopping the connection(s) with the
datastore and prop up the datastore if needed

• a GridDialect which is responsible for converting an Hibernate OGM operation into a datastore
specific operation

9.1. Using a specific NoSQL datastore
Only a few steps are necessary:

• add the datastore provider module to your classpath

• ask Hibernate OGM to use that datastore provider

• configure the URL or configuration to reach the datastore

Adding the relevant Hibernate OGM module in your classpath looks like this in Maven:

61

http://infinispan.org/
http://infinispan.org/
http://ehcache.org/
http://www.mongodb.org/
http://www.neo4j.org/
https://couchdb.apache.org/
http://redis.io/

<dependency>
 <groupId>org.hibernate.ogm</groupId>
 <artifactId>hibernate-ogm-infinispan-embedded</artifactId>
 <version>5.4.2.Final</version>
</dependency>

The module names are hibernate-ogm-infinispan, hibernate-ogm-infinispan-remote,
hibernate-ogm-ehcache, hibernate-ogm-mongodb, hibernate-ogm-neo4j, hibernate-ogm-
couchdb, hibernate-ogm-redis and hibernate-ogm-cassandra. The map datastore is included
in the Hibernate OGM engine module.

Next, configure which datastore provider you want to use. This is done via the
hibernate.ogm.datastore.provider option. Possible values are:

• specific shortcuts (preferable): map (only to be used for unit tests), infinispan_embedded,
infinispan_remote, ehcache, mongodb, neo4j_embedded, neo4j_http, neo4j_bolt.

• the fully qualified class name of a DatastoreProvider implementation

When bootstrapping a session factory or entity manager factory programmatically,
you should use the constants declared on
org.hibernate.ogm.cfg.OgmProperties to specify configuration properties
such as hibernate.ogm.datastore.provider.

In this case you also can specify the provider in form of a class object of a
datastore provider type or pass an instance of a datastore provider type:

Map<String, Object> properties = new HashMap<String, Object>();

// pass the type
properties.put(OgmProperties.DATASTORE_PROVIDER, MongoDBDatastoreProvider
.class);

EntityManagerFactory emf = Persistence.createEntityManagerFactory("my-pu",
properties);

By default, a datastore provider chooses the grid dialect transparently but you can override this
setting with the hibernate.ogm.datastore.grid_dialect option. Use the fully qualified class
name of the GridDialect implementation. Most users should ignore this setting entirely.

Let’s now look at the specifics of each datastore provider. How to configure it further, what mapping
structure is used and more.

62

Chapter 10. Infinispan
Infinispan is an open source in-memory data grid focusing on high performance. As a data grid, you
can deploy it on multiple servers - referred to as nodes - and connect to it as if it were a single storage
engine: it will cleverly distribute both the computation effort and the data storage.

It is trivial to setup on a single node and Hibernate OGM knows how to boot one, so you can easily try it
out. But Infinispan really shines in multiple node deployments: you will need to configure some
networking details but nothing changes in terms of application behaviour, while performance and data
size can scale linearly.

From all its features we will only describe those relevant to Hibernate OGM; for a complete description
of all its capabilities and configuration options, refer to the Infinispan project documentation at
infinispan.org.

10.1. Why use Hibernate OGM with Infinispan?
Infinispan provides great scalability and elasticity features but it can have a steep learning curve.

If you are already familiar with the JPA API you will be able to store your data in Infinispan quickly and
you will also benefit from the optimizations that a framework like Hibernate OGM can apply under the
hood.

In particular:

• you can get started without having to learn Protobuf first

• no need to learn the Infinispan API

• Hibernate OGM will setup and manage the Hot Rod client for you

• same API as Hibernate ORM, meaning that you can use the same tools

You will still need to learn about Infinispan, all its capabilities and how to configure them to reach your
application top performance, but you can get a proof of concept done quickly with the example
configuration.

10.2. Infinispan: Choosing between Embedded Mode and
Hot Rod
Java applications can use Infinispan in two fundamentally different ways:

• Run Infinispan in Embedded Mode.

• Connect to an Infinispan Server using an Hot Rod client.

63

http://infinispan.org/documentation/

Hibernate OGM supports connecting in either mode, but since the APIs and capabilities are different in
the two modes, it provides two different modules each having its own set of configuration options and
features.

Running Infinispan in Embedded Mode implies that the Infinispan node is running in the same JVM as
the code using it. The benefit is that some data (or all data) will be stored on the same JVM, making
reads of this data extremely fast and efficient as there won’t be RPCs to other systems. Write
operations will still need to issue some coordination RPCs but they also benefit from a reduction of
necessary operations.

However the very fact that some data is stored in the same JVM is also the drawback of this choice:
this typically implies having to configure your JVM for larger heap sizes, which are harder to tune for
optimal performance. Other system parameters might also need to be configured as this JVM node is
now to be treated as a "data holding node" rather than a stateless app node. Some architects and
system administrators will not like that.

When connecting to an Infinispan Server over the Hot Rod client, the architecture is similar to having
Hibernate connect to traditional database: the data is stored on the Infinispan Server nodes, and
Hibernate OGM uses a client with a pool of TCP connections to talk to the server. But the Hot Rod
client is not transactional, see the limitation described here: (Storage Principles of the Infinispan
Remote dataprovider).

Another important difference, is that when connecting to Infinispan Server via Hot Rod the data is
encoded using Google Protobuf, which requires a schema. This schema is auto-generated by Hibernate
OGM.

Having a Protobuf Schema makes it possible to evolve the schema in non-destructive ways, and makes
it possible for other clients to access the data - even clients written in other programming languages.

Most introductory tutorials of Hibernate OGM focus on Infinispan in Embedded
Mode because in this mode OGM can start its own embedded Infinispan node, using
a simple, local only Infinispan configuration.

When using Infinispan Server instead, you’ll need to download the server
distribution, unpack and start it, then set the Hibernate OGM configuration
properties so that the integrated Hot Rod client knows how to connect to it.

64

http://infinispan.org/download/
http://infinispan.org/download/

Advanced performance options & interaction with Hibernate 2nd
level caching

When using Infinispan in Embedded Mode, and it’s caches are configured in
REPLICATION Mode, all nodes will contain a full replica of the database: write
performance won’t scale but your reads will be very fast and scale up linearly with
the size of the cluster, making usage of Hibernate’s 2nd level cache redundant.

When configuring Infinispan in DISTRIBUTED cache mode, each of your nodes will
have a local copy of a slice of your data; remember you can tune how large the
section should be with various Infinispan configuration options (such as
numOwners), and you could combine this with Hibernate’s 2nd level caching and/or
enable Infinispan’s 1st level caching.

You can even combine Infinispan with having it passivate to other storage systems
such as a RDBMs or another NoSQL engine; such storage can be configured to be
asynchronous. This option is available to both Infinispan Embedded and Infinispan
Server; it’s even possible to use a light layer of Infinispan Embedded - containing a
small data set - and have it backed by an Infinispan Server cluster to expand its
storage capabilities without having to enlarge heap size too much on the
embedded, application nodes.

Finally, remember that options such as replication vs distribution (CacheMode) and
passivation to additional storage (CacheStores) can be configured differently for
each of Infinispan caches.

10.3. Hibernate OGM & Infinispan Embedded
Let’s see how to configure and use Hibernate OGM with Infinispan in Embedded Mode.

For usage of Infinispan Server over Hot Rod, skip to Hibernate OGM & Infinispan Server over Hot Rod.

10.3.1. Configure Hibernate OGM for Infinispan Embedded

You configure Hibernate OGM and Infinispan in two steps basically:

• Add the dependencies to your classpath

• And then choose one of:

◦ Use the default Infinispan configuration (no action needed)

◦ Point to your own configuration resource file

◦ Point to a JNDI name of an existing instance of an Infinispan CacheManager

65

• If you need to run JPQL or HQL queries, add Hibernate Search on the classpath (Using Hibernate
Search)

Note that, except when using JNDI, Hibernate OGM will bootstrap Infinispan Embedded in the same
JVM and terminate it on shutdown of the Hibernate OGM session factory.

Hibernate OGM will start Infinispan Embedded in automatic discovery. If you are
using a clustered configuration, it might automatically join an existing Infinispan
cluster on the network.

10.3.2. Adding Infinispan dependencies

You can add the Infinispan Embedded dialect to your project using the following Maven GAV:

<dependency>
 <groupId>org.hibernate.ogm</groupId>
 <artifactId>hibernate-ogm-infinispan-embedded</artifactId>
 <version>5.4.2.Final</version>
</dependency>

If you’re not using a dependency management tool, copy all the dependencies from the distribution in
the directories:

• /lib/required

• /lib/infinispan

• Optionally - depending on your container - you might need some of the jars from /lib/provided

10.3.3. Infinispan specific configuration properties

The advanced configuration details of an Infinispan Cache are defined in an Infinispan specific XML
configuration file; the Hibernate OGM properties are simple and usually just point to this external
resource.

To use the default configuration provided by Hibernate OGM - which is a good starting point for new
users - you don’t have to set any property.

Hibernate OGM properties for Infinispan dialect

hibernate.ogm.datastore.provider

Set it to infinispan_embedded to use Infinispan as the datastore provider in embedded mode.

hibernate.ogm.infinispan.cachemanager_jndi_name

If you have an Infinispan EmbeddedCacheManager registered in JNDI, provide the JNDI name and
Hibernate OGM will use this instance instead of starting a new CacheManager. This will ignore any
further configuration properties as Infinispan is assumed being already configured. Infinispan can

66

typically be pushed to JNDI via WildFly, Spring or Seam.

hibernate.ogm.infinispan_remote.configuration_resource_name

Should point to the resource name of an Infinispan configuration file. This is ignored in case JNDI
lookup is set. Defaults to org/hibernate/ogm/datastore/infinispan/default-
config.xml.

hibernate.ogm.datastore.keyvalue.cache_storage

The strategy for persisting data in Infinispan. The following two strategies exist (values of the
org.hibernate.ogm.datastore.keyvalue.options.CacheMappingType enum):

• CACHE_PER_TABLE: A dedicated cache will be used for each entity type, association type and
id source table.

• CACHE_PER_KIND: Three caches will be used: one cache for all entities, one cache for all
associations and one cache for all id sources.

Defaults to CACHE_PER_TABLE. It is the recommended strategy as it makes it easier to target a
specific cache for a given entity.

When bootstrapping a session factory or entity manager factory programmatically,
you should use the constants accessible via
org.hibernate.ogm.datastore.infinispan.InfinispanProperties
when specifying the configuration properties listed above.

Common properties shared between stores are declared on OgmProperties (a
super interface of InfinispanProperties).

For maximum portability between stores, use the most generic interface possible.

10.3.4. Cache names used by Hibernate OGM

Depending on the cache mapping approach, Hibernate OGM will either:

• store each entity type, association type and id source table in a dedicated cache very much like
what Hibernate ORM would do. This is the CACHE_PER_TABLE approach.

• store data in three different caches when using the CACHE_PER_KIND approach:

◦ ENTITIES: is going to be used to store the main attributes of all your entities.

◦ ASSOCIATIONS: stores the association information representing the links between entities.

◦ IDENTIFIER_STORE: contains internal metadata that Hibernate OGM needs to provide
sequences and auto-incremental numbers for primary key generation.

The preferred strategy is CACHE_PER_TABLE as it offers both more fine grained configuration options
and the ability to work on specific entities in a more simple fashion.

67

In the following paragraphs, we will explain which aspects of Infinispan you’re likely to want to
reconfigure from their defaults. All attributes and elements from Infinispan which we don’t mention
are safe to ignore. Refer to the Infinispan User Guide for the guru level performance tuning and
customizations.

An Infinispan configuration file is an XML file complying with the Infinispan schema; the basic structure
is shown in the following example:

Example 17. Simple example of an Infinispan configuration file

<?xml version="1.0" encoding="UTF-8"?>
<infinispan
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:infinispan:config:9.1
http://www.infinispan.org/schemas/infinispan-config-9.1.xsd"
 xmlns="urn:infinispan:config:9.1">

 <cache-container name="HibernateOGM" default-cache="DEFAULT">

 <!-- Default cache settings -->
 <local-cache name="DEFAULT">
 <transaction mode="NON_DURABLE_XA" />
 </local-cache>

 <local-cache name="User"/>

 <local-cache name="Order"/>

 <local-cache name="associations_User_Order"/>

 </cache-container>
</infinispan>

There are global settings that can be set before the cache_container section. These settings will
affect the whole instance; mainly of interest for Hibernate OGM users is the jgroups element in which
we will set JGroups configuration overrides.

Inside the cache-container section are defined explicit named caches and their configurations as
well as the default cache (named DEFAULT here) if we want to affect all named caches. This is where
we will likely want to configure clustering modes, eviction policies and CacheStores.

10.3.5. Manage data size

In its default configuration Infinispan stores all data in the heap of the JVM; in this barebone mode it is
conceptually not very different than using a HashMap: the size of the data should fit in the heap of
your VM, and stopping/killing/crashing your application will get all data lost with no way to recover it.

To store data permanently (out of the JVM memory) a CacheStore should be enabled. The Infinispan
project provides many CacheStore implementations; a simple one is the "Single File Store" which is
able to store data in simple binary files, on any read/write mounted filesystem; You can find many
more implementations to store your data in anything from JDBC connected relational databases,

68

http://infinispan.org/documentation/
http://infinispan.org/docs/stable/user_guide/user_guide.html#single_file_store

other NoSQL engines such as MongoDB and Cassandra, or even delegate to other Infinispan clusters.
Finally, implementing a custom CacheStore is quite easy.

To limit the memory consumption of the precious heap space, you can activate a passivation or an
eviction policy; again there are several strategies to play with, for now let’s just consider you’ll likely
need one to avoid running out of memory when storing too many entries in the bounded JVM memory
space; of course you don’t need to choose one while experimenting with limited data sizes: enabling
such a strategy doesn’t have any other impact in the functionality of your Hibernate OGM application
(other than performance: entries stored in the Infinispan in-memory space is accessed much quicker
than from any CacheStore).

A CacheStore can be configured as write-through, committing all changes to the CacheStore before
returning (and in the same transaction) or as write-behind. A write-behind configuration is normally
not encouraged in storage engines, as a failure of the node implies some data might be lost without
receiving any notification about it, but this problem is mitigated in Infinispan because of its capability
to combine CacheStore write-behind with a synchronous replication to other Infinispan nodes.

Example 18. Enabling a FileCacheStore and eviction

<local-cache name="User">
 <transaction mode="NON_DURABLE_XA" />
 <eviction strategy="LIRS" max-entries="2000"/>
 <persistence passivation="true">
 <file-store
 shared="false"
 path="/var/infinispan/myapp/users">
 <write-behind flush-lock-timeout="15000" thread-pool-size="5" />
 </file-store>
 </persistence>
</local-cache>

In this example we enabled both eviction and a CacheStore (the persistence element). LIRS is
one of the choices we have for eviction strategies. Here it is configured to keep (approximately) 2000
entries in live memory and evict the remaining as a memory usage control strategy.

The CacheStore is enabling passivation, which means that the entries which are evicted are stored
on the filesystem.

You could configure an eviction strategy while not configuring a passivating
CacheStore! That is a valid configuration for Infinispan but will have the evictor
permanently remove entries. Hibernate OGM will break in such a configuration.

10.3.6. Clustering: store data on multiple Infinispan nodes

The best thing about Infinispan is that all nodes are treated equally and it requires almost no
beforehand capacity planning: to add more nodes to the cluster you just have to start new JVMs, on
the same or different physical servers, having your same Infinispan configuration and your same

69

application.

Infinispan supports several clustering cache modes; each mode provides the same API and
functionality but with different performance, scalability and availability options:

Infinispan cache modes

local

Useful for a single VM: networking stack is disabled

replication

All data is replicated to each node; each node contains a full copy of all entries. Consequentially
reads are faster but writes don’t scale as well. Not suited for very large datasets.

distribution

Each entry is distributed on multiple nodes for redundancy and failure recovery, but not to all the
nodes. Provides linear scalability for both write and read operations. distribution is the default
mode.

To use the replication or distribution cache modes Infinispan will use JGroups to discover and
connect to the other nodes.

In the default configuration, JGroups will attempt to autodetect peer nodes using a multicast socket;
this works out of the box in the most network environments but will require some extra configuration
in cloud environments (which often block multicast packets) or in case of strict firewalls. See the
JGroups reference documentation, specifically look for Discovery Protocols to customize the detection
of peer nodes.

Nowadays, the JVM defaults to use IPv6 network stack; this will work fine with JGroups, but only if you
configured IPv6 correctly. It is often useful to force the JVM to use IPv4.

It is also important to let JGroups know which networking interface you want to use; it will bind to one
interface by default, but if you have multiple network interfaces that might not be the one you expect.

Example 19. JVM properties to set for clustering

#192.168.122.1 is an example IPv4 address
-Djava.net.preferIPv4Stack=true -Djgroups.bind_addr=192.168.122.1

You don’t need to use IPv4: JGroups is compatible with IPv6 provided you have
routing properly configured and valid addresses assigned.

The jgroups.bind_addr needs to match a placeholder name in your JGroups
configuration in case you don’t use the default one.

70

http://www.jgroups.org/manual/html_single/

The default configuration uses distribution as cache mode and uses the jgroups-tcp.xml
configuration for JGroups, which is contained in the Infinispan jar as the default configuration for
Infinispan users. Let’s see how to reconfigure this:

Example 20. Reconfiguring cache mode and override JGroups configuration

<?xml version="1.0" encoding="UTF-8"?>
<infinispan
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:infinispan:config:9.1
http://www.infinispan.org/schemas/infinispan-config-9.1.xsd"
 xmlns="urn:infinispan:config:9.1">

 <jgroups>
 <stack-file name="custom-stack" path="my-jgroups-conf.xml" />
 </jgroups>

 <cache-container name="HibernateOGM" default-cache="DEFAULT">
 <transport stack="custom-stack" />

 <!-- *************************************** -->
 <!-- Default cache used as template -->
 <!-- *************************************** -->
 <distributed-cache name="DEFAULT" mode="SYNC">
 <locking striping="false" acquire-timeout="10000"
 concurrency-level="500" write-skew="false" />
 <transaction mode="NON_DURABLE_XA" />
 <state-transfer enabled="true" timeout="480000"
 await-initial-transfer="true" />
 </distributed-cache>

 <!-- Override the cache mode: -->
 <replicated-cache name="User" mode="SYNC">
 <locking striping="false" acquire-timeout="10000"
 concurrency-level="500" write-skew="false" />
 <transaction mode="NON_DURABLE_XA" />
 <state-transfer enabled="true" timeout="480000"
 await-initial-transfer="true" />
 </replicated-cache>

 <distributed-cache name="Order" mode="SYNC">
 <locking striping="false" acquire-timeout="10000"
 concurrency-level="500" write-skew="false" />
 <transaction mode="NON_DURABLE_XA" />
 <state-transfer enabled="true" timeout="480000"
 await-initial-transfer="true" />
 </distributed-cache>

 <distributed-cache name="associations_User_Order" mode="SYNC">
 <locking striping="false" acquire-timeout="10000"
 concurrency-level="500" write-skew="false" />
 <transaction mode="NON_DURABLE_XA" />
 <state-transfer enabled="true" timeout="480000"
 await-initial-transfer="true" />
 </distributed-cache>

 </cache-container>

</infinispan>

In the example above we specify a custom JGroups configuration file and set the cache mode for the
default cache to distribution; this is going to be inherited by the Order and the

71

associations_User_Order caches. But for User we have chosen (for the sake of this example) to
use replication.

Now that you have clustering configured, start the service on multiple nodes. Each node will need the
same configuration and jars.

We have just shown how to override the clustering mode and the networking stack
for the sake of completeness, but you don’t have to!

Start with the default configuration and see if that fits you. You can fine tune these
setting when you are closer to going in production.

10.3.7. Transactions

Infinispan supports transactions and integrates with any standard JTA TransactionManager; this is
a great advantage for JPA users as it allows to experience a similar behaviour to the one we are used
to when we work with RDBMS databases.

This capability is now available for both Infinispan Embedded and Hot Rod client users.

If you’re having Hibernate OGM start and manage Infinispan, you can skip this as it will inject the same
TransactionManager instance which you already have set up in the Hibernate / JPA configuration.

If you are providing an already started Infinispan CacheManager instance by using the JNDI lookup
approach, then you have to make sure the CacheManager is using the same TransactionManager as
Hibernate:

Example 21. Configuring a JBoss Standalone TransactionManager lookup in Infinispan configuration

<default>
 <transaction
 transactionMode="TRANSACTIONAL"
 transactionManagerLookupClass=
 "org.infinispan.transaction.lookup.JBossStandaloneJTAManagerLookup" />
</default>

Infinispan Embedded supports different transaction modes like PESSIMISTIC and OPTIMISTIC,
supports XA recovery and provides many more configuration options; see the Infinispan User Guide for
more advanced configuration options.

10.3.8. Infinispan Embedded Stored Procedures

A stored procedure for Infinispan embedded dialect is just a Java Runnable or Callable class. The
class must be defined on application classpath, then the JPA stored procedure API can be used to
execute it.

72

http://infinispan.org/documentation/

To invoke it there are two ways: * Using directly the name of class as a procedure name * Map an
arbitrary name to a special cache named ___stored_procedures. Each mapping needs an entry
with the procedure name as key and full class name as a value.

Parameters are filled automatically by Hibernate OGM. At the moment only named parameters are
supported.

10.3.9. Storing a Lucene index in Infinispan

Hibernate Search, which can be used for advanced query capabilities (see Query your entities), needs
some place to store the indexes for its embedded Apache Lucene engine.

A common place to store these indexes is the filesystem which is the default for Hibernate Search;
however if your goal is to scale your NoSQL engine on multiple nodes you need to share this index.
Network sharing file systems are a possibility but we don’t recommended that. Often the best option is
to store the index in whatever NoSQL database you are using (or a different dedicated one).

You might find this section useful even if you don’t intend to store your data in
Infinispan.

The Infinispan project provides an adaptor to plug into Apache Lucene, so that it writes the indexes in
Infinispan and searches data in it. Since Infinispan can be used as an application cache to other NoSQL
storage engines by using a CacheStore (see Manage data size) you can use this adaptor to store the
Lucene indexes in any NoSQL store supported by Infinispan:

• JDBC databases

• Cassandra

• Filesystem (but locked correctly at the Infinispan level)

• MongoDB

• HBase

• LevelDB

• A secondary (independent) Infinispan grid

How to configure it? Here is a simple cheat sheet to get you started with this type of setup:

• Add org.infinispan:infinispan-directory-provider:9.4.0.Final to your
dependencies

• set these configuration properties:

◦ hibernate.search.default.directory_provider = infinispan

◦ hibernate.search.default.exclusive_index_use = false

73

◦ hibernate.search.infinispan.configuration_resourcename = [infinispan
configuration filename]

This configuration is simple and will work fine in most scenarios, but keep in mind that using
'exclusive_index_use' will be neither fast nor scalable. For high performance, high concurrency or
production use please refer to the Infinispan documentation for more advanced configuration options
and tuning.

The referenced Infinispan configuration should define a CacheStore to load/store the index in the
NoSQL engine of choice. It should also define three cache names:

Table 1. Infinispan caches used to store indexes

Cache name Description Suggested cluster
mode

LuceneIndexesLocking Transfers locking information. Does not need a
cache store.

replication

LuceneIndexesData Contains the bulk of Lucene data. Needs a cache
store.

distribution + L1

LuceneIndexesMetadat
a

Stores metadata on the index segments. Needs a
cache store.

replication

This configuration is not going to scale well on write operations: to do that you should read about the
controller/worker and sharding options in Hibernate Search. The complete explanation and
configuration options can be found in the Hibernate Search Reference Guide

Some NoSQL support storage of Lucene indexes directly, in which case you might skip the Infinispan
Lucene integration by implementing a custom DirectoryProvider for Hibernate Search. You’re
very welcome to share the code and have it merged in Hibernate Search for others to use, inspect,
improve and maintain.

10.4. Hibernate OGM & Infinispan Server over Hot Rod
In this section we’ll see how to configure Hibernate OGM to connect to "Infinispan Server using the
Hot Rod protocol", which we will call "Infinispan Remote" for brevity and to differentiate it from
"Infinispan Embedded".

In this mode Hibernate OGM can not boostrap or otherwise control the lifecycle of Infinispan, so we
will assume that you already have a cluster of Infinispan Server nodes running. For instructions on
setting one up, see the Infinispan Server Guide.

The good news is that - since it’s a separate service - there won’t be much to configure in Hibernate
OGM.

74

http://infinispan.org/documentation/
https://docs.jboss.org/hibernate/search/5.10/reference/en-US/html_single/#infinispan-directories
http://infinispan.org/docs/stable/server_guide/server_guide.html

The Hibernate OGM support for Infinispan Remote is considered experimental. In
particular, the storage format is not set in stone.

10.4.1. Adding Infinispan Remote dependencies

To use Hibernate OGM to connect to an Infinispan Server using the Hot Rod protocol, you will need the
following extension and its transitive dependencies (which include, among others, the Hot Rod client):

<dependency>
 <groupId>org.hibernate.ogm</groupId>
 <artifactId>hibernate-ogm-infinispan-remote</artifactId>
 <version>5.4.2.Final</version>
</dependency>

10.4.2. Configuration properties for Infinispan Remote

First, let Hibernate know that you want to use the OGM Infinispan Remote datastore by setting the
hibernate.ogm.datastore.provider property to infinispan_remote.

The next step is to configure the Hot Rod client. You have two alternatives:

• provide a resource file containing all Hot Rod client configuration properties

• include all the Hot Rod client configuration properties with a custom prefix, as explained below.

To use an external configuration resource, set the
hibernate.ogm.infinispan_remote.configuration_resource_name configuration property
to the resource name.

75

Example 22. Using a separate resource to configure the Hot Rod client

<?xml version="1.0"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd"
 version="2.0">

 <persistence-unit name="ogm-with-hotrod">
 <provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider> ①
 <properties>
 <property name="hibernate.ogm.datastore.provider"
 value="infinispan_remote" /> ②
 <property name="hibernate.ogm.infinispan_remote.configuration_resource_name"
 value="hotrodclient.properties" /> ③
 </properties>
 </persistence-unit>
</persistence>

① Choose Hibernate OGM as JPA Provider

② pick infinispan_remote as datastore

③ point to the Hot Rod configuration file

infinispan.client.hotrod.server_list = 127.0.0.1:11222
infinispan.client.hotrod.tcp_no_delay = true
infinispan.client.hotrod.tcp_keep_alive = false

below is connection pooling config
maxActive=-1
maxTotal = -1
maxIdle = -1
whenExhaustedAction = 1
timeBetweenEvictionRunsMillis = 120000
minEvictableIdleTimeMillis = 300000
testWhileIdle = true
minIdle = 1

The hotrodclient.properties is optional, in this case Hibernate OGM will use the following:

HotRod client property Hibernate OGM mandatory value

infinispan.client.hotrod.marshaller org.hibernate.ogm.datastore.infinispanremote.im
pl.protostream.OgmProtoStreamMarshaller

infinispan.client.hotrod.force_return_values true

Every other property will use the default values defined by Infinispan - Java Hot Rod client.

These values for infinispan.client.hotrod.marshaller and
infinispan.client.hotrod.force_return_values are mandatory in order
to keep the expected behaviour of the dialect. If you change them, an exception
will be thrown.

76

http://infinispan.org/docs/stable/user_guide/user_guide.html#hotrod:java-client

Alternatively you can embed the Hot Rod properties in your Hibernate (or JPA) configuration file, but
you’ll have to replace the infinispan.client.hotrod. prefix with the custom prefix
hibernate.ogm.infinispan_remote.client..

Some of the Hot Rod client configuration properties don’t normally use a prefix - specifically all
properties relating to connection pooling as in the previous example - these will also need to use the
hibernate.ogm.infinispan_remote.client. prefix.

Properties set with the hibernate.ogm.infinispan_remote.client. prefix will override the
same properties configured using an external resource file.

Example 23. Embedding the Hot Rod client configuration properties in the Hibernate configuration

<?xml version="1.0"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd"
 version="2.0">

 <persistence-unit name="ogm-with-hotrod">
 <provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider> ①
 <properties>
 <property name="hibernate.ogm.datastore.provider"
 value="infinispan_remote" /> ②
 <property name="hibernate.ogm.infinispan_remote.client.server_list"
 value="127.0.0.1:11222" /> ③
 <property name="hibernate.ogm.infinispan_remote.client.tcp_no_delay"
 value="true" />
 <property name="hibernate.ogm.infinispan_remote.client.tcp_keep_alive"
 value="false" />
 <property name="hibernate.ogm.infinispan_remote.client.maxActive"
 value="-1" />
 <property name="hibernate.ogm.infinispan_remote.client.maxTotal"
 value="-1" />
 <property name="hibernate.ogm.infinispan_remote.client.maxIdle"
 value="-1" />
 <property name="hibernate.ogm.infinispan_remote.client.whenExhaustedAction"
 value="1" />
 <property name=
"hibernate.ogm.infinispan_remote.client.timeBetweenEvictionRunsMillis"
 value="120000" />
 <property name=
"hibernate.ogm.infinispan_remote.client.minEvictableIdleTimeMillis"
 value="300000" />
 <property name="hibernate.ogm.infinispan_remote.client.testWhileIdle"
 value="true" />
 <property name="hibernate.ogm.infinispan_remote.client.minIdle"
 value="1" />
 </properties>
 </persistence-unit>
</persistence>

① Choose Hibernate OGM as JPA Provider

② pick infinispan_remote as datastore

③ include Hot Rod configuration properties, just replacing/adding the OGM prefix.

77

In the next section we’ll see a couple more advanced properties which might be of interest.

hibernate.ogm.datastore.create_database

If set to true Hibernate OGM will create any missing Cache definitions on the Infinispan Server.
This requires the Infinispan Server configuration to have a default configuration defined, as this
will be copied to the newly defined caches. If set to false an exception is thrown when a Cache is
expected but not explicitly configured on the server. Defaults to false.

hibernate.ogm.infinispan_remote.cache_configuration

The name of the default cache configuration that Hibernate OGM will use for the creation of new
caches on the Infinispan Server This is only used if
hibernate.ogm.datastore.create_database is set to true. For more details about cache
configuration, check the section Caches creation and configuration

hibernate.ogm.infinispan_remote.schema_capture_service

If you set this to an implementation of
org.hibernate.ogm.datastore.infinispanremote.schema.spi.SchemaCapture you
can collect any generated Protobuf Schema. Could be useful for integrations with other tools. You
can either provide a fully qualified classname or a SchemaCapture, or pass an instance of a
SchemaCapture in the configuration properties, if you’re booting Hibernate programmatically.

hibernate.ogm.infinispan_remote.schema_package_name

Defines the package name of the generated Protobuf schema. Defaults to
HibernateOGMGenerated. Useful to isolate different applications using the same Infinispan
Server instance.

hibernate.ogm.infinispan_remote.schema_file_name

Defines the file name of the generated Protobuf schema. Defaults to
'Hibernate_OGM_Generated_schema.proto'. The file name must have a valid *.proto extension.

hibernate.ogm.infinispan_remote.schema_override_resource

It is possible to override the generated Protobuf schema, providing a user defined Protobuf
schema resource. Property value is of string type and it can either represent a class path element,
an URL or a file system path. Hibernate OGM will use the specified Protobuf Schema instead of the
generated one. This doesn’t affect how entities are encoded so the specified schema is expected to
be compatible with the generated one. This can be used to defined server side indexes on caches
used by JPQL and native Ickle queries.

hibernate.ogm.cache.transaction.mode

Property is used to configure the transaction mode of Infinispan caches. Possible values are: XA,
NON_DURABLE_XA (the default), NON_XA and NONE (the one to disable transaction). For more
information see the chapter Infinispan Remote Transaction.

78

10.4.3. Data encoding: Protobuf Schema

Using the Infinispan Remote backend your data will be encoded using Protocol Buffers, also known as
Protobuf.

Protocol Buffers are a language-neutral, platform-neutral extensible
mechanism for serializing structured data

— https://developers.google.com/protocol-buffers/

This encoding strategy will be used both during transmission to and from the datagrid, and as a storage
format on the Infinispan Server.

Typical usage of Google’s developer tools for Java would require you to download the protoc
compiler to generate Java stubs; you won’t need that when using Hibernate OGM as the backend will
generate the encoding and decoding functions on the fly from your entities.

The benefit of having Hibernate OGM generate the schema for you will make it easier to get started,
but there’s a drawback: you are not directly in control of the protobuf schema It will deploy this
schema - or expect a compatible schema to be deployed - as it will use its generated codecs to read
and write data to the Infinispan Server.

The protobuf technology is designed to allow evolution of your schema: you can deploy a different
schema on the Infinispan Server than the one OGM expects, but this is an advanced topic and you’ll
have to make sure the deployed schema is compatible with the one OGM is generating and using.

Another reason to make sure the deployed protobuf schema is a compatible evolution of a previous
schema, is to make sure you can still read data which is already stored in the datagrid.

Remember that the Protobuf schema is used both during transmission and storage.
The fact that it’s used also during transmission of your data is a key difference to
the schema of a SQL database.

For example even if a property "A" is not nullable in terms of storage, you will still
want it to be flagged as optional in a protobuf schema to allow, for example,
retrieving a subset of data properties without having to always retrieve the
property "A".

You don’t need to do anything regarding the schema: Hibernate OGM will automatically deploy it to
the Infinispan datagrid at boostrap of Hibernate. You might want to keep this in mind though, both to
be able to evolve your schema without data loss, and to be able to generate decoders for other
Infinispan clients not using Hibernate OGM.

The deployed schemas can be fetched from the Infinispan Server; Hibernate OGM also logs the
generated schemas at INFO level in the logging category

79

org.hibernate.ogm.datastore.infinispanremote.impl.protobuf.schema.

10.4.4. Storage Principles of the Infinispan Remote dataprovider

This is actually very simple.

Imagine you were mapping your entities to a traditional, table based RDBMS; now instead of tables, you
have caches. Each cache has a name, and a consistent schema, and for each cache we define a key
with some properties (the id, aka the primary key).

Relations are mapped by encoding a "foreign key"; these are used either as keys perform a key lookup
on another table, or can be used in queries on other tables to identify relations which have a higher
than one cardinality.

So let’s highlight the differences with the relational world:

Referential integrity

While we can use relations based on foreign keys, Infinispan has no notion of referential integrity.
Hibernate is able to maintain the integrity as it won’t "forget" stale references, but it is possible to
interrupt Hibernate OGM during such maintenance and then introduce breaks of integrity.

When integrity could be broken

Using transactions, that are enabled by default, we can reduce the risk. In contrast, without
transactions, when the unit of work involves several operations we might risk to have a partial
writes (updates, deletes, inserts); some operation would be flushed to data store, other not. For
instance let’s imagine you create a new entity, remove an old one and update an association from
the old to the new one in a single interaction, this would correspond to three different remote
invocations: an Entity insert, an Entity delete and an Association update. If there were network
problems during the third invocation, we could have a partial write in which only the first and the
second operations would be actually stored on the remote storage and this could lead to a
breaking referential integrity of the association. Because, like we said, Infinispan has no
acquaintance of referential integrity constraints.

How to detect broken integrity

Unfortunately, at the moment the only way to detect a referential integrity error is to inspect the
logs for error messages or periodically monitor the associations cache and join column values. Our
advice is to keep the default transactional configuration and rely on it.

A key. And a Value.

In a key/value store the two elements key and value are different, separate objects. The schema -
and consequentially all operations - generated by Hibernate OGM will treat and encode these two
objects separately. You will notice that the attributes of the key are encoded in the value as well,
as it is not possible to run e.g. range queries on attributes of keys.

80

Sequences and auto-incrementing values

Infinispan now support sequences, they are created by the dialect where a @SequenceGenerator
annotation is present. On the other hand @TableGenerator still use the old Hibernate OGM
"compare and set" implementation; Hibernate OGM makes use of such CAS operations to emulate
the need of sequences or auto-incrementing primary keys if your entity mapping uses them,
however this solution might not work under high load: make sure to use a different strategy, such
as assigning IDs explicitly, or using the org.hibernate.id.UUIDGenerator generator.
Hibernate OGM will log a warning if it detects excessive spinning on such CAS operations.

Not mapped to JDBC types, but to Protobuf types

Rather than mapping your Java properties to corresponding JDBC (SQL) types, your Java
properties are mapped to Protobuf types. See the protobuf documentation for an overview of
protocol buffer "primitive" types.

Example 24. Example auto-generated Protobuf Schema for a simple entity

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;

@Entity
public class Hypothesis {

 @Id String id;

 String description;

 @Column(name = "pos")
 int position;

}

package HibernateOGMGenerated; ①

message Hypothesis_id { ②
 required string id = 1;
}

message Hypothesis {
 required string id = 1;
 optional string description = 2;
 optional int32 pos = 3; ③
}

① The default Protobuf package name.

② A dedicated message type for the Key of the Key/Value pair

③ The pos attribute name respects the option of the @Column annotation

The above example shows how a Protobuf schema looks like, as automatically generated from a
mapped entity. Any property type supported by Hibernate ORM will be converted to a matching
Protobuf type.

81

https://developers.google.com/protocol-buffers/docs/proto#scalar

Each Table requires a Cache with the same name

In a relational database world, when Hibernate defines the schema this implicitly creates the tables;
this is not the case on Infinispan.

With Infinispan, the Protobuf Schema just unlocks the capability to transmit messages with such
payloads (read/write), and allows the remote servers to process the fields, for example to execute
queries and extract projections out of the stored entries. So this establishes a transmission and
storage encoding contract, but doesn’t actually start or allocate any storing Cache.

Hibernate OGM by convention will write to several named Caches, mapping each "table name" to a
"cache name". In the above example, when having an Hypothesis entity this will write to a Cache
named Hypothesis.

The benefit is that you can tune, or query, each cache (each "table") independently; for example you
could configure the caches for the most important data to have a synchronous CacheStore which
replicates data to a relational database, and have less important entries use an asynchronous
CacheStore, or none at all, to favour performance over redundancy.

10.4.5. Caches creation and configuration

Hibernate OGM can create a cache on the remote Infinispan cluster if it doesn’t exist. You can enable
this behavior by setting the property hibernate.ogm.datastore.create_database=true.

By default, the creation of a new cache is done using the following default configuration:

Example 25. Hibernate OGM default configuration for new Infinispan caches

<infinispan>
 <cache-container>
 <distributed-cache-configuration name="configuration">
 <locking striping="false" acquire-timeout="10000" concurrency-level="50" isolation=
"REPEATABLE_READ"/>
 <transaction locking="PESSIMISTIC" mode="%s" /> ①
 <expiration max-idle="-1" />
 <indexing index="NONE" />
 <state-transfer timeout="480000" await-initial-transfer="true" />
 </distributed-cache-configuration>
 </cache-container>
</infinispan>

① Transaction mode attribute will be filled with the value of the property
hibernate.ogm.cache.transaction.mode

If a different default configuration is defined on the Infinispan server, it’s possible to use the property
hibernate.ogm.datastore.cache_configuration to refer to it. This means that Hibernate OGM
will create new caches using the selected configuration.

If some of your entities need a different configuration, you can use the annotation

82

@CacheConfiguration. This annotation will override the behavior of the global property using
instead the configuration defined for the annotated entity.

Note that Hibernate OGM will create the caches only if they don’t exist already and it doesn’t update
the configuration of existing caches.

The cache configurations referred to by the annotation and the property must
exist on the Infinispan cluster. An exception will be thrown otherwise.

Let’s suppose we have two entities: Sheep and BlackSheep:

83

Example 26. Example of entities having different cache configurations

import javax.persistence.Entity;
import javax.persistence.Id;

@Entity
public class Sheep {

 @Id
 String name;

 // ...

}

import javax.persistence.Entity;
import javax.persistence.Id;
import org.hibernate.ogm.datastore.infinispanremote.options.cache.CacheConfiguration;

@Entity
@CacheConfiguration("black_sheep")
public class BlackSheep {

 @Id
 String name;

 // ...

}

Bundled with a persistence.xml such that:

<?xml version="1.0"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd"
 version="2.0">

 <persistence-unit name="ogm-with-hotrod">
 <provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider>
 <properties>
 <property name="hibernate.ogm.datastore.provider"
 value="infinispan_remote" />

 <property name="hibernate.ogm.infinispan_remote.configuration_resource_name"
 value="hotrodclient.properties" />

 <property name="hibernate.ogm.datastore.create_database"
 value="true" /> ①

 <property name="hibernate.ogm.infinispan_remote.cache_configuration"
 value="sheep" /> ②

 </properties>
 </persistence-unit>
</persistence>

① Enable cache creation

② Select sheep as default cache configuration

84

In this scenario, Hibernate OGM will create the Sheep cache using the configuration sheep and the
BlackSheep cache using the black_sheep cache configuration.

Hibernate OGM default configuration is transactional.

We generally recommend using transactional caches unless you are confident that
data consistency is not important for your use case.

10.4.6. Remote Query Capabilities

Hibernate OGM backend can translate JPQL queries to the corresponding Infinispan remote native
queries, or it can execute native queries directly. There are some limitations, though:

• queries on polymorphic entities using TABLE_PER_CLASS inheritance strategy are not supported

• projection from associations is not yet implemented (example: select h.author.name from
Hypothesis h where author is a one-to-one association)

10.4.7. Infinispan Remote Transaction

Since version 5.4.0.CR1, transactions over HotRot client are finally available. In order to fallback to the
previous behavior will be necessary just to set property 'hibernate.ogm.cache.transaction.mode'
property to NONE value. With mode set to NONE transactions are disabled, then the client will be able
to handle both transactional and no transactional caches. In contrast, if transactions are enabled, by
default they are, all cache should be defined transactional. In other word, at the moment, a transactional
client cannot handle non transactional caches. For this reason, the default configuration for client side
defined caches uses the same transaction mode of the client.

Transaction are implemented by Infinispan HotRod client mimicking the embedded Repeatable
Read and the Optimistic Locking semantics. Even if it is mandatory, with current Infinispan
version, define them with:

1. Pessimistic locking

2. REPEATABLE_READ as isolation level

In fact, these ones are now also the current values of the default configuration for client side defined
caches.

Is important to stress the fact that even if the caches must be defined with a pessimistic lock, the
behavior seen by the client it is the same that we would have with an optimistic lock.

For more information about HotRod transaction see the Infinispan user guide.

85

http://infinispan.org/docs/dev/user_guide/user_guide.html#hot_rod_transaction

10.4.8. Infinispan Remote Stored Procedures

Stored procedures are now supported by the remote dialect. There are two ways to execute code in
the remote grid: server task and remote script.

Hibernate OGM is capable to execute both, using the standard JPA storing procedure syntax. In order
to be executed, the scripts or tasks must first be defined server side by the user. Such as a stored
procedure, of a SQL data store, that should first be defined on database before it could be executed.

To run a remote script, the script entry must first be in the Infinispan remote cache. The name of the
procedure is the key of the corresponding entry script. The parameter names are instead defined in
the first line of the script itself. For more information see Infinispan Guide - Remote Script

Whereas to run a server task you need first to deploy the java task as jar on Infinispan server. In this
case the name of the procedure is defined by getName method of the task service class. The input
parameters are extracted instead from the TaskContext in the same task service class. For more
information see Infinispan Guide - Server Task

In both cases only named parameters are supported, while positional parameters are not supported
yet.

10.4.9. Known Limitations & Future improvements

The Infinispan Remote dataprovider has some known limitations, some of which are unsolvable
without further development of Infinispan itself.

Indexing

Infinispan supports Hibernate Search annotations directly embedded within its protobuf schema
definitions; this would enable the queries on them to use indexes. Hibernate OGM doesn’t generate
these annotations in the schemas it generates yet.

Native support for write skew checks

The Hot Rod client has native support for versioning of datagrid entries, yet this is not supported
on all of the client APIs. For Hibernate OGM to be able to consistently use versioning requires
enhancements to the Hot Rod client API.

Enums

Protobuf has native support for Enum types, yet the JPA annotations force to choose between
ordinal or string encoding. We might have to introduce a "native" encoding, probably via a novel
mapping annotation. Hibernate OGM supports the native protobuf Encoding but the JPA metadata
will always force the ordinal or string representations.

Nesting and embedding

The Protobuf schema could allow us to embed objects, including series of objects, as nested

86

http://infinispan.org/docs/dev/user_guide/user_guide.html#scripting
http://infinispan.org/docs/dev/user_guide/user_guide.html#server_tasks

elements. This could allow mappings similar to the document based NoSQL stores, such as our
MongoDB dialect, but is not supported yet.

Automatic creating of Caches

When deploying the Protobuf Schema, we should also automatically define and start the needed
Caches if they are not defined. This is currently not allowed over the Hot Rod protocol.

10.5. Storage principles
To describe things simply, each entity is stored under a single key. The value itself is a map containing
the columns / values pair.

Each association from one entity instance to (a set of) another is stored under a single key. The value
contains the navigational information to the (set of) entity.

10.5.1. Properties and built-in types

Each entity is represented by a map. Each property or more precisely column is represented by an
entry in this map, the key being the column name.

Hibernate OGM support by default the following property types:

• java.lang.String

• java.lang.Character (or char primitive)

• java.lang.Boolean (or boolean primitive); Optionally the annotations @Type(type =
"true_false"), @Type(type = "yes_no") and @Type(type = "numeric_boolean") can
be used to map boolean properties to the characters 'T'/'F', 'Y'/'N' or the int values 0/1,
respectively.

• java.lang.Byte (or byte primitive)

• java.lang.Short (or short primitive)

• java.lang.Integer (or integer primitive)

• java.lang.Long (or long primitive)

• java.lang.Integer (or integer primitive)

• java.lang.Float (or float primitive)

• java.lang.Double (or double primitive)

• java.math.BigDecimal

• java.math.BigInteger

• java.util.Calendar

87

• java.util.Date

• java.util.UUID

• java.util.URL

Hibernate OGM doesn’t store null values in Infinispan, setting a value to null is the
same as removing the corresponding entry from Infinispan.

This can have consequences when it comes to queries on null value.

10.5.2. Identifiers

Entity identifiers are used to build the key in which the entity is stored in the cache.

The key is comprised of the following information:

• the identifier column names

• the identifier column values

• the entity table (for the CACHE_PER_KIND strategy)

In CACHE_PER_TABLE, the table name is inferred from the cache name. In CACHE_PER_KIND, the table
name is necessary to identify the entity in the generic cache.

88

Example 27. Define an identifier as a primitive type

@Entity
public class Bookmark {

 @Id
 private Long id;

 private String title;

 // getters, setters ...
}

Table 2. Content of the Bookmark cache in CACHE_PER_TABLE

KEY MAP ENTRIES

["id"], [42]

id 42

title "Hibernate OGM
documentation"

Table 3. Content of the ENTITIES cache in CACHE_PER_KIND

KEY MAP ENTRIES

"Bookmark", ["id"], [42]

id 42

title "Hibernate OGM
documentation"

89

Example 28. Define an identifier using @EmbeddedId

@Embeddable
public class NewsID implements Serializable {

 private String title;
 private String author;

 // getters, setters ...
}

@Entity
public class News {

 @EmbeddedId
 private NewsID newsId;
 private String content;

 // getters, setters ...
}

Table 4. Content of the News cache in CACHE_PER_TABLE

KEY MAP ENTRIES

[newsId.author, newsId.title],
["Guillaume", "How to use

Hibernate OGM ?"]

newsId.author "Guillaume"

newsId.title "How to use Hibernate OGM ?"

content "Simple, just like ORM but with
a NoSQL database"

Table 5. Content of the ENTITIES cache in CACHE_PER_KIND

KEY MAP ENTRIES

"News", [newsId.author,
newsId.title], ["Guillaume",

"How to use Hibernate OGM ?"]

newsId.author "Guillaume"

newsId.title "How to use Hibernate OGM ?"

content "Simple, just like ORM but with
a NoSQL database"

Identifier generation strategies for Infinispan Embedded

The Infinispan Embedded dialect will use Infinispan clustered counters for the generation of ids and
sequences.

If the clusterd counter is not already defined, Hibernate OGM will create it using a default
configuration. The following is probably the simplest case for which a counter is created:

90

http://infinispan.org/docs/stable/user_guide/user_guide.html#clustered_counters

Example 29. Example of the default counter

@Entity
public class GuitarPlayer {

 @Id
 @GeneratedValue
 private long id;

 // getters, setters ...
}

In this case Hibernate OGM will create a strong persitent counter with name hibernate_sequence
and initial value of 0.

The default configuration will create PERSISTENT Infinispan counters. You need to
define in the infinispan configuration a location where to store these counters
using the following property:

<infinispan>
 ...
 <cache-container>

 <global-state>
 <persistent-location path="/counters"/>
 </global-state>

 ...
 </cache-container>
</infinispan>

An exception is thrown if the property is missing.

You can ovveride some of this properties with @SequenceGenerator or @TableGenerator.

Example 30. Counter defined using @SequenceGenerator

@Entity
public class GuitarPlayer {

 @Id
 @GeneratedValue(strategy = GenerationType.SEQUENCE, generator = "gen1")
 @SequenceGenerator(name = "gen1",
 sequenceName = "GuitarPlayerCounter",
 initialValue = 5)
 private long id;

 // getters, setters ...
}

This will create a counter with name GuitarPlayerCounter and initial value of 5.

91

There is no real difference if you use @TableGenerator, except that the counter name is defined
using the attribute pkColumnValue.

Note that if you need more control over a counter you can still redefine it in the Infinispan
configuration file. The following is an example of how you can define a VOLATILE counter:

Example 31. Create a VOLATILE counter

<infinispan>
...
 <cache-container>

 ...

 <!-- Clustered Counters are defined at runtime by InfinispanDialect -->
 <counters xmlns="urn:infinispan:config:counters:9.1"
 num-owners="4" reliability="CONSISTENT">

 <strong-counter name="GuitarPlayerCounter"
 initial-value="0" storage="VOLATILE">

 <lower-bound value="0" />
 </strong-counter>
 </counters>
 </cache-container>
</infinispan

In this last case Hibernate OGM won’t create a counter but it will use the one defined in the Infinispan
configuration.

I will leave the details about counters configuration to the Infinispan documentation.

Identifier generation strategies for Infinispan Remote via Hot Rod

Since Infinispan has not native sequence nor identity column support, these are simulated using the
table strategy, however their default values vary. We highly recommend you explicitly use a TABLE
strategy if you want to generate a monotonic identifier.

But if you can, use a pure in-memory and scalable strategy like a UUID generator.

92

http://infinispan.org/docs/stable/user_guide/user_guide.html#clustered_counters

Example 32. Id generation strategy TABLE using default values

@Entity
public class GuitarPlayer {

 @Id
 @GeneratedValue(strategy = GenerationType.TABLE)
 private long id;

 private String name;

 // getters, setters ...
}

Table 6. Content of the hibernate_sequences cache in CACHE_PER_TABLE

KEY NEXT VALUE

["sequence_name"], ["default"] 2

Table 7. Content of the IDENTIFIERS cache in CACHE_PER_KIND

KEY NEXT VALUE

"hibernate_sequences", ["sequence_name"],
["default"] 2

As you can see, in CACHE_PER_TABLE, the key does not contain the id source table name. It is inferred
by the cache name hosting that key.

93

Example 33. Id generation strategy TABLE using a custom table

@Entity
public class GuitarPlayer {

 @Id
 @GeneratedValue(strategy = GenerationType.TABLE, generator = "guitarGen")
 @TableGenerator(
 name = "guitarGen",
 table = "GuitarPlayerSequence",
 pkColumnName = "seq"
 pkColumnValue = "guitarPlayer",
)
 private long id;

 // getters, setters ...
}

Table 8. Content of the GuitarPlayerSequence cache in CACHE_PER_TABLE

KEY NEXT VALUE

["seq"], ["guitarPlayer"] 2

Table 9. Content of the IDENTIFIERS cache in CACHE_PER_KIND

KEY NEXT VALUE

"GuitarPlayerSequence", ["seq"],
["guitarPlayer"] 2

94

Example 34. SEQUENCE id generation strategy

@Entity
public class Song {

 @Id
 @GeneratedValue(strategy = GenerationType.SEQUENCE, generator = "songSequenceGenerator")
 @SequenceGenerator(
 name = "songSequenceGenerator",
 sequenceName = "song_sequence",
 initialValue = 2,
 allocationSize = 20
)
 private Long id;

 private String title;

 // getters, setters ...
}

Table 10. Content of the hibernate_sequences cache in CACHE_PER_TABLE

KEY NEXT VALUE

["sequence_name"], ["song_sequence"] 11

Table 11. Content of the IDENTIFIERS cache in CACHE_PER_KIND

KEY NEXT VALUE

"hibernate_sequences", "["sequence_name"],
["song_sequence"] 11

10.5.3. Entities

Entities are stored in the cache named after the entity name when using the CACHE_PER_TABLE
strategy. In the CACHE_PER_KIND strategy, entities are stored in a single cache named ENTITIES.

The key is comprised of the following information:

• the identifier column names

• the identifier column values

• the entity table (for the CACHE_PER_KIND strategy)

In CACHE_PER_TABLE, the table name is inferred from the cache name. In CACHE_PER_KIND, the table
name is necessary to identify the entity in the generic cache.

The entry value is an instance of org.infinispan.atomic.FineGrainedMap which contains all the
entity properties - or to be specific columns. Each column name and value is stored as a key / value
pair in the map. We use this specialized map as Infinispan is able to transport changes in a much more
efficient way.

95

Example 35. Default JPA mapping for an entity

@Entity
public class News {

 @Id
 private String id;
 private String title;

 // getters, setters ...
}

Table 12. Content of the News cache in CACHE_PER_TYPE

KEY MAP ENTRIES

["id"], ["1234-5678"]
id "1234-5678"

title "On the merits of NoSQL"

Table 13. Content of the ENTITIES cache in CACHE_PER_KIND

KEY MAP ENTRIES

"News", ["id"], ["1234-5678"]
id "1234-5678"

title "On the merits of NoSQL"

As you can see, the table name is not part of the key for CACHE_PER_TYPE. In the rest of this section
we will no longer show the CACHE_PER_KIND strategy.

Example 36. Rename field and collection using @Table and @Column

@Entity
@Table(name = "Article")
public class News {

 @Id
 private String id;

 @Column(name = "headline")
 private String title;

 // getters, setters ...
}

Table 14. Content of the Article cache

KEY MAP ENTRIES

["id"], ["1234-5678"]
id "1234-5678"

headline "On the merits of NoSQL"

96

Embedded objects and collections

Example 37. Embedded object

@Entity
public class News {

 @Id
 private String id;
 private String title;

 @Embedded
 private NewsPaper paper;

 // getters, setters ...
}

@Embeddable
public class NewsPaper {

 private String name;
 private String owner;

 // getters, setters ...
}

Table 15. Content of the News cache

KEY MAP ENTRIES

["id"], ["1234-5678"]

id "1234-5678"

title "On the merits of NoSQL"

paper.name "NoSQL journal of prophecies"

paper.owner "Delphy"

97

Example 38. @ElementCollection with one attribute

@Entity
public class GrandMother {

 @Id
 private String id;

 @ElementCollection
 private List<GrandChild> grandChildren = new ArrayList<GrandChild>();

 // getters, setters ...
}

@Embeddable
public class GrandChild {

 private String name;

 // getters, setters ...
}

Table 16. Content of the GrandMother cache

KEY MAP ENTRIES

["id"], ["granny"] id "granny"

Table 17. Content of the associations_GrandMother_grandChildren cache in CACHE_PER_TYPE

KEY ROW KEY ROW MAP ENTRIES

["GrandMother_id"],
["granny"]

["GrandMother_id",
"name"], ["granny",

"Leia"]

GrandMother_id "granny"

name "Leia"

["GrandMother_id",
"name"], ["granny",

"Luke"]

GrandMother_id "granny"

name "Luke"

Table 18. Content of the ASSOCIATIONS cache in CACHE_PER_KIND

KEY ROW KEY ROW MAP ENTRIES

"GrandMother_grandC
hildren",

["GrandMother_id"],
["granny"]

["GrandMother_id",
"name"], ["granny",

"Leia"]

GrandMother_id "granny"

name "Leia"

["GrandMother_id",
"name"], ["granny",

"Luke"]

GrandMother_id "granny"

name "Luke"

Here, we see that the collection of elements is stored in a separate cache and entry. The association
key is made of:

• the foreign key column names pointing to the owner of this association

• the foreign key column values pointing to the owner of this association

98

• the association table name in the CACHE_PER_KIND approach where all associations share the
same cache

The association entry is a map containing the representation of each entry in the collection. The keys
of that map are made of:

• the names of the columns uniquely identifying that specific collection entry (e.g. for a Set this is
all of the columns)

• the values of the columns uniquely identifying that specific collection entry

The value attack to that collection entry key is a Map containing the key value pairs column name /
column value.

Example 39. @ElementCollection with @OrderColumn

@Entity
public class GrandMother {

 @Id
 private String id;

 @ElementCollection
 @OrderColumn(name = "birth_order")
 private List<GrandChild> grandChildren = new ArrayList<GrandChild>();

 // getters, setters ...
}

@Embeddable
public class GrandChild {

 private String name;

 // getters, setters ...
}

Table 19. Content of the GrandMother cache

KEY MAP ENTRIES

["id"], ["granny"] id "granny"

Table 20. Content of the GrandMother_grandChildren cache

KEY ROW KEY ROW MAP ENTRIES

["GrandMother_id"],
["granny"]

["GrandMother_id",
"birth_order"],
["granny", 0]

GrandMother_id "granny"

birth_order 0

name "Leia"

["GrandMother_id",
"birth_order"],

["granny", 1]

GrandMother_id "granny"

birth_order 1

name "Luke"

99

Here we used an indexed collection and to identify the entry in the collection, only the owning entity id
and the index value is enough.

Example 40. @ElementCollection with Map of @Embeddable

@Entity
public class ForumUser {

 @Id
 private String name;

 @ElementCollection
 private Map<String, JiraIssue> issues = new HashMap<>();

 // getters, setters ...
}

@Embeddable
public class JiraIssue {

 private Integer number;
 private String project;

 // getters, setters ...
}

Table 21. Content of the ForumUser cache

KEY MAP ENTRIES

["id"], ["Jane Doe"] id "Jane Doe"

Table 22. Content of the ForumUser_issues cache

KEY ROW KEY ROW MAP ENTRIES

["ForumUser_id"],
["Jane Doe"]

["ForumUser_id",
"issues_KEY"], ["Jane
Doe", "issueWithNull"]

ForumUser_id Jane Doe

issue_KEY "issueWithNull"

issues.value.project <null>

issues.value.number <null>

["ForumUser_id",
"issues_KEY"], ["Jane

Doe", "issue1"]

ForumUser_id "Jane Doe"

issue_KEY "issue1"

issues.value.project "OGM"

issues.value.number 1253

["ForumUser_id",
"issues_KEY"], ["Jane

Doe", "issue2"]

ForumUser_id "Jane Doe"

issue_KEY "issue2"

issues.value.project "HSEARCH"

issues.value.number 2000

100

10.5.4. Associations

Associations between entities are mapped like (collection of) embeddables except that the target
entity is represented by its identifier(s).

Example 41. Unidirectional one-to-one

@Entity
public class Vehicle {

 @Id
 private String id;
 private String brand;

 // getters, setters ...
}

@Entity
public class Wheel {

 @Id
 private String id;
 private double diameter;

 @OneToOne
 private Vehicle vehicle;

 // getters, setters ...
}

Table 23. Content of the Vehicle cache

KEY MAP ENTRIES

["id"], ["V_01"]
id "V_01"

brand "Mercedes"

Table 24. Content of the Wheel cache

KEY MAP ENTRIES

["id"], ["W001"]

id "W001"

diameter 0.0

vehicle_id "V_01"

101

Example 42. Unidirectional one-to-one with @JoinColumn

@Entity
public class Vehicle {

 @Id
 private String id;
 private String brand;

 // getters, setters ...
}

@Entity
public class Wheel {

 @Id
 private String id;
 private double diameter;

 @OneToOne
 @JoinColumn(name = "part_of")
 private Vehicle vehicle;

 // getters, setters ...
}

Table 25. Content of the Vehicle cache

KEY MAP ENTRIES

["id"], ["V_01"]
id "V_01"

brand "Mercedes"

Table 26. Content of the Wheel cache

KEY MAP ENTRIES

"Wheel", ["id"], ["W001"]

id "W001"

diameter 0.0

part_of "V_01"

102

Example 43. Unidirectional one-to-one with @MapsId and @PrimaryKeyJoinColumn

@Entity
public class Vehicle {

 @Id
 private String id;
 private String brand;

 // getters, setters ...
}

@Entity
public class Wheel {

 @Id
 private String id;
 private double diameter;

 @OneToOne
 @PrimaryKeyJoinColumn
 @MapsId
 private Vehicle vehicle;

 // getters, setters ...
}

Table 27. Content of the Vehicle cache

KEY MAP ENTRIES

["id"], ["V_01"]
id "V_01"

brand "Mercedes"

Table 28. Content of the Wheel cache

KEY MAP ENTRIES

["vehicle_id"], ["V_01"]
vehicle_id "V_01"

diameter 0.0

103

Example 44. Bidirectional one-to-one

@Entity
public class Husband {

 @Id
 private String id;
 private String name;

 @OneToOne
 private Wife wife;

 // getters, setters ...
}

@Entity
public class Wife {

 @Id
 private String id;
 private String name;

 @OneToOne(mappedBy="wife")
 private Husband husband;

 // getters, setters ...
}

Table 29. Content of the Husband cache

KEY MAP ENTRIES

["id"], ["alex"]

id "alex"

name "Alex"

wife "bea"

Table 30. Content of the Wife cache

KEY MAP ENTRIES

["id"], ["bea"]
id "bea"

name "Bea"

Table 31. Content of the associations_Husband cache

KEY ROW KEY MAP ENTRIES

["wife"], ["bea"] ["id", "wife"], ["alex",
"bea"]

id "alex"

wife "bea"

104

Example 45. Unidirectional one-to-many

@Entity
public class Basket {

 @Id
 private String id;

 private String owner;

 @OneToMany
 private List<Product> products = new ArrayList<Product>();

 // getters, setters ...
}

@Entity
public class Product {

 @Id
 private String name;

 private String description;

 // getters, setters ...
}

Table 32. Content of the Basket cache

KEY MAP ENTRIES

["id"], ["davide_basket"]
id "davide_basket"

owner "Davide"

Table 33. Content of the Product cache

KEY MAP ENTRIES

["name"], ["Beer"]
name "Beer"

description "Tactical Nuclear Penguin"

["name"], ["Pretzel"]
name "Pretzel"

description "Glutino Pretzel Sticks"

Table 34. Content of the associations_Basket_Product cache

KEY ROW KEY MAP ENTRIES

["Basket_id"],
["davide_basket"]

["Basket_id",
"products_name"],
["davide_basket",

"Beer"]

Basket_id "davide_basket"

products_name "Beer"

["Basket_id",
"products_name"],
["davide_basket",

"Pretzel"]

Basket_id "davide_basket"

products_name "Pretzel"

105

Example 46. Unidirectional one-to-many with @JoinTable

@Entity
public class Basket {

 @Id
 private String id;

 private String owner;

 @OneToMany
 @JoinTable(name = "BasketContent")
 private List<Product> products = new ArrayList<Product>();

 // getters, setters ...
}

@Entity
public class Product {

 @Id
 private String name;

 private String description;

 // getters, setters ...
}

Table 35. Content of the Basket cache

KEY MAP ENTRIES

["id"], ["davide_basket"]
id "davide_basket"

owner "Davide"

Table 36. Content of the Basket cache

KEY MAP ENTRIES

["name"], ["Beer"]
name "Beer"

description "Tactical Nuclear Penguin"

["name"], ["Pretzel"]
name "Pretzel"

description "Glutino Pretzel Sticks"

Table 37. Content of the associations_BasketContent cache

KEY ROW KEY MAP ENTRIES

["Basket_id"],
["davide_basket"]

["Basket_id",
"products_name"],
["davide_basket",

"Beer"]

Basket_id "davide_basket"

products_name "Beer"

["Basket_id",
"products_name"],
["davide_basket",

"Pretzel"]

Basket_id "davide_basket"

products_name "Pretzel"

106

Example 47. Unidirectional one-to-many using maps with defaults

@Entity
public class User {

 @Id
 private String id;

 @OneToMany
 private Map<String, Address> addresses = new HashMap<String, Address>();

 // getters, setters ...
}

@Entity
public class Address {

 @Id
 private String id;
 private String city;

 // getters, setters ...
}

Table 38. Content of the User cache

KEY MAP ENTRIES

["id"], ["user_001"] id "user_001"

Table 39. Content of the Address cache

KEY MAP ENTRIES

["id"], ["address_001"]
id "address_001"

city "Rome"

["id"], ["address_002"]
id "address_002"

city "Paris"

Table 40. Content of the associations_User_address cache

KEY ROW KEY MAP ENTRIES

["User_id"],
"user_001"]

["User_id",
"addresses_KEY"],

["user_001", "home"]

User_id "user_001"

addresses_KEY "home"

addresses_id "address_001"

["User_id",
"addresses_KEY"],

["user_001", "work"]

User_id "user_002"

addresses_KEY "work"

addresses_id "address_002"

107

Example 48. Unidirectional one-to-many using maps with @MapKeyColumn

@Entity
public class User {

 @Id
 private String id;

 @OneToMany
 @MapKeyColumn(name = "addressType")
 private Map<String, Address> addresses = new HashMap<String, Address>();

 // getters, setters ...
}

@Entity
public class Address {

 @Id
 private String id;
 private String city;

 // getters, setters ...
}

Table 41. Content of the User cache

KEY MAP ENTRIES

["id"], ["user_001"] id "user_001"

Table 42. Content of the Address cache

KEY MAP ENTRIES

["id"], ["address_001"]
id "address_001"

city "Rome"

["id"], ["address_002"]
id "address_002"

city "Paris"

Table 43. Content of the associations_User_address cache

KEY ROW KEY MAP ENTRIES

["User_id"],
"user_001"]

["User_id",
"addressType"],

["user_001", "home"]

User_id "user_001"

addressesType "home"

addresses_id "address_001"

["User_id",
"addressType"],

["user_001", "work"]

User_id "user_002"

addressesType "work"

addresses_id "address_002"

108

Example 49. Unidirectional many-to-one

@Entity
public class JavaUserGroup {

 @Id
 private String jugId;
 private String name;

 // getters, setters ...
}

@Entity
public class Member {

 @Id
 private String id;
 private String name;

 @ManyToOne
 private JavaUserGroup memberOf;

 // getters, setters ...
}

Table 44. Content of the JavaUserGroup cache

KEY MAP ENTRIES

["jugId"], ["summer_camp"]
jugId "summer_camp"

name "JUG Summer Camp"

Table 45. Content of the Member cache

KEY MAP ENTRIES

["member_id"], ["emmanuel"]

member_id "emmanuel"

name "Emmanuel Bernard"

memberOf_jug_id "summer_camp"

["member_id"], ["jerome"]

member_id "jerome"

name "Jerome"

memberOf_jug_id "summer_camp"

109

Example 50. Bidirectional many-to-one

@Entity
public class SalesForce {

 @Id
 private String id;
 private String corporation;

 @OneToMany(mappedBy = "salesForce")
 private Set<SalesGuy> salesGuys = new HashSet<SalesGuy>();

 // getters, setters ...
}

@Entity
public class SalesGuy {
 private String id;
 private String name;

 @ManyToOne
 private SalesForce salesForce;

 // getters, setters ...
}

Table 46. Content of the SalesForce cache

KEY MAP ENTRIES

["id"], ["red_hat"]
id "red_hat"

corporation "Red Hat"

Table 47. Content of the SalesGuy cache

KEY MAP ENTRIES

["id"], ["eric"]

id "eric"

name "Eric"

salesForce_id "red_hat"

["id"], ["simon"]

id "simon"

name "Simon"

salesForce_id "red_hat"

Table 48. Content of the associations_SalesGuy cache

KEY ROW KEY MAP ENTRIES

["salesForce_id"],
["red_hat"]

["salesForce_id", "id"],
["red_hat", "eric"]

salesForce_id "red_hat"

id "eric"

["salesForce_id", "id"],
["red_hat", "simon"]

salesForce_id "red_hat"

id "simon"

Example 51. Unidirectional many-to-many

110

@Entity
public class Student {

 @Id
 private String id;
 private String name;

 // getters, setters ...
}

@Entity
public class ClassRoom {

 @Id
 private long id;
 private String lesson;

 @ManyToMany
 private List<Student> students = new ArrayList<Student>();

 // getters, setters ...
}

The "Math" class has 2 students: John Doe and Mario Rossi

The "English" class has 2 students: Kate Doe and Mario Rossi

Table 49. Content of the ClassRoom cache

KEY MAP ENTRIES

["id"], [1]
id 1

name "Math"

["id"], [2]
id 2

name "English"

Table 50. Content of the Student cache

KEY MAP ENTRIES

["id"], ["john"]
id "john"

name "John Doe"

["id"], ["mario"]
id "mario"

name "Mario Rossi"

["id"], ["kate"]
id "kate"

name "Kate Doe"

Table 51. Content of the associations_ClassRoom_Student cache

111

KEY ROW KEY MAP ENTRIES

["ClassRoom_id"], [1]

["ClassRoom_id",
"students_id"], [1,

"mario"]

ClassRoom_id 1

students_id "mario"

["ClassRoom_id",
"students_id"], [1,

"john"]

ClassRoom_id 1

students_id "john"

["ClassRoom_id"], [2]

["ClassRoom_id",
"students_id"], [2,

"kate"]

ClassRoom_id 2

students_id "kate"

["ClassRoom_id",
"students_id"], [2,

"mario"]

ClassRoom_id 2

students_id "mario"

Example 52. Bidirectional many-to-many

@Entity
public class AccountOwner {

 @Id
 private String id;

 private String SSN;

 @ManyToMany
 private Set<BankAccount> bankAccounts;

 // getters, setters ...
}

@Entity
public class BankAccount {

 @Id
 private String id;

 private String accountNumber;

 @ManyToMany(mappedBy = "bankAccounts")
 private Set<AccountOwner> owners = new HashSet<AccountOwner>();

 // getters, setters ...
}

David owns 2 accounts: "012345" and "ZZZ-009"

Table 52. Content of the AccountOwner cache

KEY MAP ENTRIES

["id"], ["David"]
id "David"

SSN "0123456"

Table 53. Content of the BankAccount cache

112

KEY MAP ENTRIES

["id"], ["account_1"]
id "account_1"

accountNumber "X2345000"

["id"], ["account_2"]
id "account_2"

accountNumber "ZZZ-009"

Table 54. Content of the AccountOwner_BankAccount cache

KEY ROW KEY MAP ENTRIES

["bankAccounts_id"],
["account_1"]

["bankAccounts_id",
"owners_id"],

["account_1", "David"]

bankAccounts_id "account_1"

owners_id "David"

["bankAccounts_id"],
["account_2"]

["bankAccounts_id",
"owners_id"],

["account_2", "David"]

bankAccounts_id "account_2"

owners_id "David"

["owners_id"],
["David"]

["owners_id",
"banksAccounts_id"],
["David", "account_1"]

bankAccounts_id "account_1"

owners_id "David"

["owners_id",
"banksAccounts_id"],

["David", "account_2"]

bankAccounts_id "account_2"

owners_id "David"

113

Chapter 11. MongoDB
MongoDB is a document oriented datastore written in C++ with strong emphasis on ease of use. The
nested nature of documents make it a particularly natural fit for most object representations.

This implementation is based upon the MongoDB Java driver. The currently supported version is 3.6.

11.1. Why should I use Hibernate OGM with MongoDB
It is possible that in your project you have some entities that might benefit from MongoDB dynamic
schema, but having a schema makes it possible to obtain better performance because the datastore
can use the information of the schema to apply some optimizations that wouldn’t be otherwise
possible.

JPA already has ways to define constraints and indexes and via Hibernate OGM you can use the same
annotations for both your relational and not relational needs.

Hibernate OGM cannot make MongoDB transactional but by using the JPA transaction demarcation
mechanism it can group the operations and flush them to the datastore to minimize the number of
requests.

Another benefit of using Hibernate OGM with MongoDB is that it will also make it possible to use
Hibernate Search out of the box. Hibernate Search brings the power of Lucene to your project, giving
you the ability to run fast google-like searches.

This means that you can query the datastore using:

• JPQL queries (see Using JPQL)

• MongoDB native queries (see Native MongoDB queries)

• Full-text queries (see Using Hibernate Search)

One of Hibernate OGM main goal is to map entities in a "natural" way, this means that your datastore
will still be accessible in case you need to use other tools or want to run native queries occasionally.

11.2. Configuring MongoDB
Configuring Hibernate OGM to use MongoDb is easy:

• Add the MongoDB module and driver to the classpath

• provide the MongoDB URL to Hibernate OGM

114

http://www.mongodb.org

11.2.1. Adding MongoDB dependencies

To add the dependencies via Maven, add the following module:

<dependency>
 <groupId>org.hibernate.ogm</groupId>
 <artifactId>hibernate-ogm-mongodb</artifactId>
 <version>5.4.2.Final</version>
</dependency>

This will pull the MongoDB driver transparently.

If you’re not using a dependency management tool, copy all the dependencies from the distribution in
the directories:

• /lib/required

• /lib/mongodb

• Optionally - depending on your container - you might need some of the jars from /lib/provided

MongoDB does not require Hibernate Search for the execution of JPQL or HQL queries.

11.2.2. MongoDB specific configuration properties

To get started quickly, pay attention to the following options:

• hibernate.ogm.datastore.provider

• hibernate.ogm.datastore.host

• hibernate.ogm.datastore.database

And we should have you running. The following properties are available to configure MongoDB
support:

MongoDB datastore configuration properties

hibernate.ogm.datastore.provider

To use MongoDB as a datastore provider, this property must be set to mongodb

hibernate.ogm.option.configurator

The fully-qualified class name or an instance of a programmatic option configurator (see
Programmatic configuration)

hibernate.ogm.datastore.host

The hostname and port of the MongoDB instance. The optional port is concatenated to the host
and separated by a colon. When using replica sets, you can define the various servers in a comma
separated list of hosts and ports. Let’s see a few valid examples:

115

• mongodb.example.com

• mongodb.example.com:27018

• 2001:db8::ff00:42:8329 (IPv6)

• [2001:db8::ff00:42:8329]:27018 (IPv6 with port requires the IPv6 to be surrounded by
square brackets)

• www.example.com, www2.example.com:123, 192.0.2.1, 192.0.2.2:123,
2001:db8::ff00:42:8329, [2001:db8::ff00:42:8329]:123 (replica set)

The default value is 127.0.0.1:27017. If left undefined, the default port is 27017.

hibernate.ogm.datastore.port

Deprecated: use hibernate.ogm.datastore.host. The port used by the MongoDB instance.
Ignored when multiple hosts are defined. The default value is 27017.

hibernate.ogm.datastore.database

The database to connect to. This property has no default value.

hibernate.connection.resource

Alternatively you can lookup datastore client. See Integration with WildFly NoSQL.

hibernate.ogm.datastore.create_database

If set to true, the database will be created if it doesn’t exist. This property default value is false.

hibernate.ogm.datastore.username

The username used when connecting to the MongoDB server. This property has no default value.

hibernate.ogm.datastore.password

The password used to connect to the MongoDB server. This property has no default value. This
property is ignored if the username isn’t specified.

hibernate.ogm.error_handler

The fully-qualified class name, class object or an instance of ErrorHandler to get notified upon
errors during flushes (see Acting upon errors during application of changes)

hibernate.ogm.mongodb.driver.*

Defines a prefix for all options which should be passed through to the MongoDB driver. For
available options refer to the JavaDocs of MongoClientOptions.Builder. All String, int and
boolean properties can be set, eg
hibernate.ogm.mongodb.driver.serverSelectionTimeout.

hibernate.ogm.mongodb.authentication_database

Defines the name of the authentication database, default value is admin.

116

http://api.mongodb.org/java/3.0/com/mongodb/MongoClientOptions.Builder.html

hibernate.ogm.mongodb.authentication_mechanism

Defines the authentication mechanism to use. Possible values are:

• BEST: Handshakes with the server to find the best authentication mechanism.

• SCRAM_SHA_1: The SCRAM SHA 1 Challenge Response mechanism as described in this RFC.

• MONGODB_CR: The MongoDB Challenge Response mechanism (deprecated since MongoDB 3)

• GSSAPI: The GSSAPI mechanism. See the RFC

• MONGODB_X509: The MongoDB X.509

• PLAIN: The PLAIN mechanism. See the RFC

hibernate.ogm.datastore.document.association_storage

Defines the way OGM stores association information in MongoDB. The following two strategies
exist (values of the
org.hibernate.ogm.datastore.document.options.AssociationStorageType enum):

• IN_ENTITY: store association information within the entity

• ASSOCIATION_DOCUMENT: store association information in a dedicated document per
association

IN_ENTITY is the default and recommended option unless the association navigation data is much
bigger than the core of the document and leads to performance degradation.

hibernate.ogm.mongodb.association_document_storage

Defines how to store assocation documents (applies only if the ASSOCIATION_DOCUMENT
association storage strategy is used). Possible strategies are (values of the
org.hibernate.ogm.datastore.mongodb.options.AssociationDocumentStorageType
enum):

• GLOBAL_COLLECTION (default): stores the association information in a unique MongoDB
collection for all associations

• COLLECTION_PER_ASSOCIATION stores the association in a dedicated MongoDB collection
per association

hibernate.ogm.datastore.document.map_storage

Defines the way OGM stores the contents of map-typed associations in MongoDB. The following
two strategies exist (values of the
org.hibernate.ogm.datastore.document.options.MapStorageType enum):

• BY_KEY: map-typed associations with a single key column which is of type String will be
stored as a sub-document, organized by the given key; Not applicable for other types of key
columns, in which case always AS_LIST will be used

117

http://tools.ietf.org/html/rfc5802
http://tools.ietf.org/html/rfc4752
http://www.ietf.org/rfc/rfc4616.txt

• AS_LIST: map-typed associations will be stored as an array containing a sub-document for
each map entry. All key and value columns will be contained within the array elements

hibernate.ogm.mongodb.write_concern

Defines the write concern setting to be applied when issuing writes against the MongoDB
datastore. Possible settings are (values of the WriteConcernType enum): ACKNOWLEDGED,
UNACKNOWLEDGED, FSYNCED, JOURNALED, REPLICA_ACKNOWLEDGED, MAJORITY and CUSTOM.
When set to CUSTOM, a custom WriteConcern implementation type has to be specified.

This option is case insensitive and the default value is ACKNOWLEDGED.

hibernate.ogm.mongodb.write_concern_type

Specifies a custom WriteConcern implementation type (fully-qualified name, class object or
instance). This is useful in cases where the pre-defined configurations are not sufficient, e.g. if you
want to ensure that writes are propagated to a specific number of replicas or given "tag set". Only
takes effect if hibernate.ogm.mongodb.write_concern is set to CUSTOM.

hibernate.ogm.mongodb.read_preference

Specifies the ReadPreference to be applied when issuing reads against the MongoDB datastore.
Possible settings are (values of the ReadPreferenceType enum): PRIMARY,
PRIMARY_PREFERRED, SECONDARY, SECONDARY_PREFERRED and NEAREST. It’s currently not
possible to plug in custom read preference types. If you’re interested in such a feature, please let
us know.

For more information, please refer to the official documentation.

When bootstrapping a session factory or entity manager factory programmatically,
you should use the constants accessible via
org.hibernate.ogm.datastore.mongodb.MongoDBProperties when
specifying the configuration properties listed above.

Common properties shared between stores are declared on OgmProperties (a
super interface of MongoDBProperties).

For maximum portability between stores, use the most generic interface possible.

11.2.3. Annotation based configuration

Hibernate OGM allows to configure store-specific options via Java annotations. You can override
global configurations for a specific entity or even a specify property by virtue of the location where
you place that annotation.

When working with the MongoDB backend, you can specify the following settings:

118

http://api.mongodb.org/java/current/com/mongodb/WriteConcern.html

• the write concern for entities and associations using the @WriteConcern annotation

• the read preference for entities and associations using the @ReadPreference annotation

• a strategy for storing associations using the @AssociationStorage and
@AssociationDocumentStorage annotations

• a strategy for storing the contents of map-typed associations using the @MapStorage annotation

Refer to <<mongodb-associations> to learn more about the options related to storing associations.

The following shows an example:

Example 53. Configuring the association storage strategy using annotations

@Entity
@WriteConcern(WriteConcernType.JOURNALED)
@ReadPreference(ReadPreferenceType.PRIMARY_PREFERRED)
@AssociationStorage(AssociationStorageType.ASSOCIATION_DOCUMENT)
@AssociationDocumentStorage(AssociationDocumentStorageType.COLLECTION_PER_ASSOCIATION)
@MapStorage(MapStorageType.AS_LIST)
public class Zoo {

 @OneToMany
 private Set<Animal> animals;

 @OneToMany
 private Set<Person> employees;

 @OneToMany
 @AssociationStorage(AssociationStorageType.IN_ENTITY)
 private Set<Person> visitors;

 // getters, setters ...
}

The @WriteConcern annotation on the entity level expresses that all writes should be done using the
JOURNALED setting. Similarly, the @ReadPreference annotation advices the engine to preferably
read that entity from the primary node if possible. The other two annotations on the type-level specify
that all associations of the Zoo class should be stored in separate assocation documents, using a
dedicated collection per association. This setting applies to the animals and employees
associations. Only the elements of the visitors association will be stored in the document of the
corresponding Zoo entity as per the configuration of that specific property which takes precedence
over the entity-level configuration.

11.2.4. Programmatic configuration

In addition to the annotation mechanism, Hibernate OGM also provides a programmatic API for
applying store-specific configuration options. This can be useful if you can’t modify certain entity
types or don’t want to add store-specific configuration annotations to them. The API allows set
options in a type-safe fashion on the global, entity and property levels.

119

When working with MongoDB, you can currently configure the following options using the API:

• write concern

• read preference

• association storage strategy

• association document storage strategy

• strategy for storing the contents of map-typed associations

To set these options via the API, you need to create an OptionConfigurator implementation as
shown in the following example:

Example 54. Example of an option configurator

public class MyOptionConfigurator extends OptionConfigurator {

 @Override
 public void configure(Configurable configurable) {
 configurable.configureOptionsFor(MongoDB.class)
 .writeConcern(WriteConcernType.REPLICA_ACKNOWLEDGED)
 .readPreference(ReadPreferenceType.NEAREST)
 .entity(Zoo.class)
 .associationStorage(AssociationStorageType.ASSOCIATION_DOCUMENT)
 .associationDocumentStorage(AssociationDocumentStorageType
.COLLECTION_PER_ASSOCIATION)
 .mapStorage(MapStorageType.ASLIST)
 .property("animals", ElementType.FIELD)
 .associationStorage(AssociationStorageType.IN_ENTITY)
 .entity(Animal.class)
 .writeConcern(new RequiringReplicaCountOf(3))
 .associationStorage(AssociationStorageType.ASSOCIATION_DOCUMENT);
 }
}

The call to configureOptionsFor(), passing the store-specific identifier type MongoDB, provides
the entry point into the API. Following the fluent API pattern, you then can configure global options
(writeConcern(), readPreference()) and navigate to single entities or properties to apply
options specific to these (associationStorage() etc.). The call to writeConcern() for the
Animal entity shows how a specific write concern type can be used. Here
RequiringReplicaCountOf is a custom implementation of WriteConcern which ensures that
writes are propagated to a given number of replicas before a write is acknowledged.

Options given on the property level precede entity-level options. So e.g. the animals association of
the Zoo class would be stored using the in entity strategy, while all other associations of the Zoo
entity would be stored using separate association documents.

Similarly, entity-level options take precedence over options given on the global level. Global-level
options specified via the API complement the settings given via configuration properties. In case a
setting is given via a configuration property and the API at the same time, the latter takes precedence.

120

Note that for a given level (property, entity, global), an option set via annotations is overridden by the
same option set programmatically. This allows you to change settings in a more flexible way if
required.

To register an option configurator, specify its class name using the
hibernate.ogm.option.configurator property. When bootstrapping a session factory or entity
manager factory programmatically, you also can pass in an OptionConfigurator instance or the
class object representing the configurator type.

11.3. Storage principles
Hibernate OGM tries to make the mapping to the underlying datastore as natural as possible so that
third party applications not using Hibernate OGM can still read and update the same datastore. We
worked particularly hard on the MongoDB model to offer various classic mappings between your
object model and the MongoDB documents.

To describe things simply, each entity is stored as a MongoDB document. This document is stored in a
MongoDB collection named after the entity type. The navigational information for each association
from one entity to (a set of) entity is stored in the document representing the entity we are departing
from.

11.3.1. Properties and built-in types

Each entity is represented by a document. Each property or more precisely column is represented by a
field in this document, the field name being the column name.

Hibernate OGM supports by default the following property types:

• java.lang.String

 { "text" : "Hello world!" }

• java.lang.Character (or char primitive)

 { "delimiter" : "/" }

• java.lang.Boolean (or boolean primitive)

 { "favorite" : true } # default mapping
 { "favorite" : "T" } # if @Type(type = "true_false") is given
 { "favorite" : "Y" } # if @Type(type = "yes_no") is given
 { "favorite" : 1 } # if @Type(type = "numeric_boolean") is given

• java.lang.Byte (or byte primitive)

121

 { "display_mask" : "70" }

• java.lang.Byte[] (or byte[])

 { "pdfAsBytes" : BinData(0,"MTIzNDU=") }

• java.lang.Short (or short primitive)

 { "urlPort" : 80 }

• java.lang.Integer (or integer primitive)

 { "stockCount" : 12309 }

• java.lang.Long (or long primitive)

 { "userId" : NumberLong("-6718902786625749549") }

• java.lang.Float (or float primitive)

 { "visitRatio" : 10.39 }

• java.lang.Double (or double primitive)

 { "tax_percentage" : 12.34 }

• java.math.BigDecimal

 { "site_weight" : "21.77" }

• java.math.BigInteger

 { "site_weight" : "444" }

• java.util.Calendar

 { "creation" : "2014/11/03 16:19:49:283 +0000" }

• java.util.Date

122

 { "last_update" : ISODate("2014-11-03T16:19:49.283Z") }

• java.util.UUID

 { "serialNumber" : "71f5713d-69c4-4b62-ad15-aed8ce8d10e0" }

• java.util.URL

 { "url" : "http://www.hibernate.org/" }

• org.bson.types.ObjectId

 { "object_id" : ObjectId("547d9b40e62048750f25ef77") }

Hibernate OGM doesn’t store null values in MongoDB, setting a value to null is the
same as removing the field in the corresponding object in the db.

This can have consequences when it comes to queries on null value.

11.3.2. GridFS Support

This feature is experimental.

GridFS is a specification for storing and retrieving files that exceed the BSON-document size limit of
16 MB.

You can find more details about it in the official MongoDB documentation.

It’s possible to store a value as GridFS using the type
org.hibernate.ogm.datastore.mongodb.type.GridFS.

123

https://docs.mongodb.com/manual/core/gridfs/

Example 55. Field mapped using GridFS

import org.hibernate.ogm.datastore.mongodb.type.GridFS;

@Entity
public class Photo {

 @Id
 String name;

 GridFS image;

 // ...
}

> db.Photo.find()
{ "_id" : "photo.jpg", "image" : ObjectId("5bce7202826ce81d7fe7ebe5") }

> db.Photo_bucket.files.find().pretty()
{
 "_id" : ObjectId("5bce7202826ce81d7fe7ebe5"),
 "filename" : "image_photo.jpg",
 "length" : NumberLong(30000000),
 "chunkSize" : 261120,
 "uploadDate" : ISODate("2018-10-22T20:57:37.047Z"),
 "md5" : "a08988fc1e3da0e80d2ba7b55599d1f7"
}

The default bucket name is the name of the class with the suffix _bucket while the name of the
filename is the combination of the field name with the id of the document.

It’s possible to select a different bucket name using the annotation @GridFSBucket.

124

Example 56. Field mapped using GridFS with custom bucket name

import org.hibernate.ogm.datastore.mongodb.type.GridFS;
import org.hibernate.ogm.datastore.mongodb.options.GridFSBucket;

@Entity
public class Photo {

 @Id
 String name;

 @GridFSBucket("PhotoGallery")
 GridFS image;

 // ...
}

> db.Photo.find()
{ "_id" : "photo.jpg", "image" : ObjectId("5bce7202826ce81d7fe7ebe5") }

> db.PhotoGallery.files.find().pretty()
{
 "_id" : ObjectId("5bce7202826ce81d7fe7ebe5"),
 "filename" : "image_photo.jpg",
 "length" : NumberLong(30000000),
 "chunkSize" : 261120,
 "uploadDate" : ISODate("2018-10-22T20:57:37.047Z"),
 "md5" : "a08988fc1e3da0e80d2ba7b55599d1f7"
}

11.3.3. Entities

Entities are stored as MongoDB documents and not as BLOBs: each entity property will be translated
into a document field. You can use @Table and @Column annotations to rename respectively the
collection the document is stored in and the document’s field a property is persisted in.

Example 57. Default JPA mapping for an entity

@Entity
public class News {

 @Id
 private String id;
 private String title;

 // getters, setters ...
}

// Stored in the Collection "News"
{
 "_id" : "1234-5678-0123-4567",
 "title": "On the merits of NoSQL",
}

125

Example 58. Rename field and collection using @Table and @Column

@Entity
// Overrides the collection name
@Table(name = "News_Collection")
public class News {

 @Id
 private String id;

 // Overrides the field name
 @Column(name = "headline")
 private String title;

 // getters, setters ...
}

// Stored in the Collection "News"
{
 "_id" : "1234-5678-0123-4567",
 "headline": "On the merits of NoSQL",
}

Identifiers

Hibernate OGM always store identifiers using the _id field of a MongoDB
document ignoring the name of the property in the entity.

That’s a good thing as MongoDB has special treatment and expectation of the
property _id.

An identifier type may be one of the built-in types or a more complex type represented by an
embedded class. When you use a built-in type, the identifier is mapped like a regular property. When
you use an embedded class, then the _id is representing a nested document containing the embedded
class properties.

126

Example 59. Define an identifier as a primitive type

@Entity
public class Bookmark {

 @Id
 private String id;

 private String title;

 // getters, setters ...
}

{
 "_id" : "bookmark_1"
 "title" : "Hibernate OGM documentation"
}

Example 60. Define an identifier using @EmbeddedId

@Embeddable
public class NewsID implements Serializable {

 private String title;
 private String author;

 // getters, setters ...
}

@Entity
public class News {

 @EmbeddedId
 private NewsID newsId;
 private String content;

 // getters, setters ...
}

News collection as JSON in MongoDB

{
 "_id" : {
 "author" : "Guillaume",
 "title" : "How to use Hibernate OGM ?"
 },
 "content" : "Simple, just like ORM but with a NoSQL database"
}

Generally, it is recommended though to work with MongoDB’s object id data type. This will facilitate
the integration with other applications expecting that common MongoDB id type. To do so, you have
two options:

127

• Define your id property as org.bson.types.ObjectId

• Define your id property as String and annotate it with @Type(type="objectid")

In both cases the id will be stored as native ObjectId in the datastore.

Example 61. Define an id as ObjectId

@Entity
public class News {

 @Id
 private ObjectId id;

 private String title;

 // getters, setters ...
}

Example 62. Define an id of type String as ObjectId

@Entity
public class News {

 @Id
 @Type(type = "objectid")
 private String id;

 private String title;

 // getters, setters ...
}

Identifier generation strategies

You can assign id values yourself or let Hibernate OGM generate the value using the
@GeneratedValue annotation.

There are 4 different strategies:

1. IDENTITY (suggested)

2. TABLE

3. SEQUENCE

4. AUTO

1) IDENTITY generation strategy

The preferable strategy, Hibernate OGM will create the identifier upon insertion. To apply this strategy
the id must be one of the following:

128

• annotated with @Type(type="objectid")

• org.bson.types.ObjectId

like in the following examples:

Example 63. Define an id of type String as ObjectId

@Entity
public class News {

 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 @Type(type = "objectid")
 private String id;

 private String title;

 // getters, setters ...
}

{
 "_id" : ObjectId("5425448830048b67064d40b1"),
 "title" : "Exciting News"
}

Example 64. Define an id as ObjectId

@Entity
public class News {

 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private ObjectId id;

 private String title;

 // getters, setters ...
}

{
 "_id" : ObjectId("5425448830048b67064d40b1"),
 "title" : "Exciting News"
}

2) TABLE generation strategy

129

Example 65. Id generation strategy TABLE using default values

@Entity
public class GuitarPlayer {

 @Id
 @GeneratedValue(strategy = GenerationType.TABLE)
 private Long id;

 private String name;

 // getters, setters ...
}

GuitarPlayer collection

{
 "_id" : NumberLong(1),
 "name" : "Buck Cherry"
}

hibernate_sequences collection

{
 "_id" : "GuitarPlayer",
 "next_val" : 101
}

130

Example 66. Id generation strategy TABLE using a custom table

@Entity
public class GuitarPlayer {

 @Id
 @GeneratedValue(strategy = GenerationType.TABLE, generator = "guitarGen")
 @TableGenerator(
 name = "guitarGen",
 table = "GuitarPlayerSequence",
 pkColumnValue = "guitarPlayer",
 valueColumnName = "nextGuitarPlayerId"
)
 private long id;

 // getters, setters ...
}

GuitarPlayer collection

{
 "_id" : NumberLong(1),
 "name" : "Buck Cherry"
}

GuitarPlayerSequence collection

{
 "_id" : "guitarPlayer",
 "nextGuitarPlayerId" : 2
}

3) SEQUENCE generation strategy

131

Example 67. SEQUENCE id generation strategy using default values

@Entity
public class Song {

 @Id
 @GeneratedValue(strategy = GenerationType.SEQUENCE)
 private Long id;

 private String title;

 // getters, setters ...
}

Song collection

{
 "_id" : NumberLong(2),
 "title" : "Flower Duet"
}

hibernate_sequences collection

{ "_id" : "song_sequence_name", "next_val" : 21 }

132

Example 68. SEQUENCE id generation strategy using custom values

@Entity
public class Song {

 @Id
 @GeneratedValue(strategy = GenerationType.SEQUENCE, generator = "songSequenceGenerator")
 @SequenceGenerator(
 name = "songSequenceGenerator",
 sequenceName = "song_seq",
 initialValue = 2,
 allocationSize = 20
)
 private Long id;

 private String title;

 // getters, setters ...
}

Song collection

{
 "_id" : NumberLong(2),
 "title" : "Flower Duet"
}

hibernate_sequences collection

{ "_id" : "song_seq", "next_val" : 42 }

4) AUTO generation strategy

Care must be taken when using the GenerationType.AUTO strategy. When the
property hibernate.id.new_generator_mappings is set to false (default), it
will map to the IDENTITY strategy. As described before, this requires your ids to
be of type ObjectId or @Type(type = "objectid") String. If
hibernate.id.new_generator_mappings is set to true, AUTO will be mapped
to the TABLE strategy. This requires your id to be of a numeric type.

We recommend to not use AUTO but one of the explicit strategies (IDENTITY or
TABLE) to avoid potential misconfigurations.

For more details you can check the issue OGM-663.

If the property hibernate.id.new_generator_mappings is set to false, AUTO will behave as the
IDENTITY strategy.

If the property hibernate.id.new_generator_mappings is set to true, AUTO will behave as the

133

https://hibernate.atlassian.net/browse/OGM-663

SEQUENCE strategy.

Example 69. AUTO id generation strategy using default values

@Entity
public class DistributedRevisionControl {

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private Long id;

 private String name;

 // getters, setters ...
}

DistributedRevisionControl collection

{ "_id" : NumberLong(1), "name" : "Git" }

hibernate_sequences collection

{ "_id" : "hibernate_sequence", "next_val" : 2 }

Example 70. AUTO id generation strategy wih hibernate.id.new_generator_mappings set to false and
ObjectId

@Entity
public class Comedian {

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private ObjectId id;

 private String name;

 // getters, setters ...
}

Comedian collection

{ "_id" : ObjectId("5458b11693f4add0f90519c5"), "name" : "Louis C.K." }

134

Example 71. Entity with @EmbeddedId

@Entity
public class News {

 @EmbeddedId
 private NewsID newsId;

 // getters, setters ...
}

@Embeddable
public class NewsID implements Serializable {

 private String title;
 private String author;

 // getters, setters ...
}

Rendered as JSON in MongoDB

{
 "_id" :{
 "title": "How does Hibernate OGM MongoDB work?",
 "author": "Guillaume"
 }
}

Embedded objects and collections

Hibernate OGM stores elements annotated with @Embedded or @ElementCollection as nested
documents of the owning entity.

135

Example 72. Embedded object

@Entity
public class News {

 @Id
 private String id;
 private String title;

 @Embedded
 private NewsPaper paper;

 // getters, setters ...
}

@Embeddable
public class NewsPaper {

 private String name;
 private String owner;

 // getters, setters ...
}

{
 "_id" : "1234-5678-0123-4567",
 "title": "On the merits of NoSQL",
 "paper": {
 "name": "NoSQL journal of prophecies",
 "owner": "Delphy"
 }
}

Example 73. @ElementCollection with primitive types

@Entity
public class AccountWithPhone {

 @Id
 private String id;

 @ElementCollection
 private List<String> mobileNumbers;

 // getters, setters ...
}

AccountWithPhone collection

{
 "_id" : "john_account",
 "mobileNumbers" : ["+1-222-555-0222", "+1-202-555-0333"]
}

136

Example 74. @ElementCollection with one attribute

@Entity
public class GrandMother {

 @Id
 private String id;

 @ElementCollection
 private List<GrandChild> grandChildren = new ArrayList<GrandChild>();

 // getters, setters ...
}

@Embeddable
public class GrandChild {

 private String name;

 // getters, setters ...
}

{
 "_id" : "df153180-c6b3-4a4c-a7da-d5de47cf6f00",
 "grandChildren" : ["Luke", "Leia"]
}

The class GrandChild has only one attribute name, this means that Hibernate OGM doesn’t need to
store the name of the attribute.

If the nested document has two or more fields, like in the following example, Hibernate OGM will store
the name of the fields as well.

137

Example 75. @ElementCollection with @OrderColumn

@Entity
public class GrandMother {

 @Id
 private String id;

 @ElementCollection
 @OrderColumn(name = "birth_order")
 private List<GrandChild> grandChildren = new ArrayList<GrandChild>();

 // getters, setters ...
}

@Embeddable
public class GrandChild {

 private String name;

 // getters, setters ...
}

{
 "_id" : "e3e1ed4e-c685-4c3f-9a67-a5aeec6ff3ba",
 "grandChildren" :
 [
 {
 "name" : "Luke",
 "birth_order" : 0
 },
 {
 "name" : "Leia",
 "birthorder" : 1
 }
]
}

138

Example 76. @ElementCollection with Map of @Embeddable

@Entity
public class ForumUser {

 @Id
 private String name;

 @ElementCollection
 private Map<String, JiraIssue> issues = new HashMap<>();

 // getters, setters ...
}

@Embeddable
public class JiraIssue {

 private Integer number;
 private String project;

 // getters, setters ...
}

{
 "_id" : "Jane Doe",
 "issues" : {
 "issueWithNull" : {
 },
 "issue2" : {
 "number" : 2000,
 "project" : "OGM"
 },
 "issue1" : {
 "number" : 1253,
 "project" : "HSEARCH"
 }
 }
}

You can override the column name used for a property of an embedded object. But
you need to know that the default column name is the concatenation of the
embedding property, a . (dot) and the embedded property (recursively for several
levels of embedded objects).

The MongoDB datastore treats dots specifically as it transforms them into nested
documents. If you want to override one column name and still keep the nested
structure, don’t forget the dots.

That’s a bit abstract, so let’s use an example.

139

@Entity
class Order {
 @Id String number;
 User user;
 Address shipping;
 @AttributeOverrides({
 @AttributeOverride(name="name", column=@Column(name=
"delivery.provider"),
 @AttributeOverride(name="expectedDelaysInDays", column=@Column(
name="delivery.delays")
 })
 DeliveryProvider deliveryProvider;
 CreditCardType cardType;
}

// default columns
@Embedded
class User {
 String firstname;
 String lastname;
}

// override one column
@Embeddable
public Address {
 String street;
 @Column(name="shipping.dest_city")
 String city;
}

// both columns overridden from the embedding side
@Embeddable
public DeliveryProvider {
 String name;
 Integer expectedDelaysInDays;
}

// do not use dots in the overriding
// and mix levels (bad form)
@Embedded
class CreditCardType {
 String merchant;
 @Column(name="network")
 String network;
}

140

{
 "_id": "123RF33",
 "user": {
 "firstname": "Emmanuel",
 "lastname": "Bernard"
 },
 "shipping": {
 "street": "1 av des Champs Elysées",
 "dest_city": "Paris"
 },
 "delivery": {
 "provider": "Santa Claus Inc.",
 "delays": "1"
 }
 "network": "VISA",
 "cardType: {
 "merchant": "Amazon"
 }
}

If you share the same embeddable in different places, you can use JPA’s
@AttributeOverride to override columns from the embedding side. This is the
case of DeliveryProvider in our example.

If you omit the dot in one of the columns, this column will not be part of the nested
document. This is demonstrated by the CreditCardType. We advise you against
it. Like crossing streams, it is bad form. This approach might not be supported in
the future.

11.3.4. Associations

Hibernate OGM MongoDB proposes three strategies to store navigation information for associations.
The three possible strategies are:

• IN_ENTITY (default)

• ASSOCIATION_DOCUMENT, using a global collection for all associations

• COLLECTION_PER_ASSOCIATION, using a dedicated collection for each association

To switch between these strategies, use of the three approaches to options:

• annotate your entity with @AssocationStorage and @AssociationDocumentStorage
annotations (see Annotation based configuration),

• use the API for programmatic configuration (see Programmatic configuration)

• or specify a default strategy via the
hibernate.ogm.datastore.document.association_storage and
hibernate.ogm.mongodb.association_document_storage configuration properties.

141

In Entity strategy

• *-to-one associations

• *-to-many associations

In this strategy, Hibernate OGM stores the id(s) of the associated entity(ies) into the entity document
itself. This field stores the id value for to-one associations and an array of id values for to-many
associations. An embedded id will be represented by a nested document. For indexed collections (i.e.
List or Map), the index will be stored along the id.

When using this strategy the annotations @JoinTable will be ignored because no
collection is created for associations.

You can use @JoinColumn to change the name of the field that stores the foreign
key (as an example, see Unidirectional one-to-one with @JoinColumn).

To-one associations

142

Example 77. Unidirectional one-to-one

@Entity
public class Vehicle {

 @Id
 private String id;
 private String brand;

 // getters, setters ...
}

@Entity
public class Wheel {

 @Id
 private String id;
 private double diameter;

 @OneToOne
 private Vehicle vehicle;

 // getters, setters ...
}

{
 "_id" : "V_01",
 "brand" : "Mercedes"
}

Wheel collection as JSON in MongoDB

{
 "_id" : "W001",
 "diameter" : 0,
 "vehicle_id" : "V_01"
}

143

Example 78. Unidirectional one-to-one with @JoinColumn

@Entity
public class Vehicle {

 @Id
 private String id;
 private String brand;

 // getters, setters ...
}

@Entity
public class Wheel {

 @Id
 private String id;
 private double diameter;

 @OneToOne
 @JoinColumn(name = "part_of")
 private Vehicle vehicle;

 // getters, setters ...
}

{
 "_id" : "V_01",
 "brand" : "Mercedes"
}

Wheel collection as JSON in MongoDB

{
 "_id" : "W001",
 "diameter" : 0,
 "part_of" : "V_01"
}

In a true one-to-one association, it is possible to share the same id between the two entities and
therefore a foreign key is not required. You can see how to map this type of association in the
following example:

144

Example 79. Unidirectional one-to-one with @MapsId and @PrimaryKeyJoinColumn

@Entity
public class Vehicle {

 @Id
 private String id;
 private String brand;

 // getters, setters ...
}

@Entity
public class Wheel {

 @Id
 private String id;
 private double diameter;

 @OneToOne
 @PrimaryKeyJoinColumn
 @MapsId
 private Vehicle vehicle;

 // getters, setters ...
}

Vehicle collection as JSON in MongoDB

{
 "_id" : "V_01",
 "brand" : "Mercedes"
}

Wheel collection as JSON in MongoDB

{
 "_id" : "V_01",
 "diameter" : 0,
}

145

Example 80. Bidirectional one-to-one

@Entity
public class Husband {

 @Id
 private String id;
 private String name;

 @OneToOne
 private Wife wife;

 // getters, setters ...
}

@Entity
public class Wife {

 @Id
 private String id;
 private String name;

 @OneToOne
 private Husband husband;

 // getters, setters ...
}

Husband collection as JSON in MongoDB

{
 "_id" : "alex",
 "name" : "Alex",
 "wife" : "bea"
}

Wife collection as JSON in MongoDB

{
 "_id" : "bea",
 "name" : "Bea",
 "husband" : "alex"
}

146

Example 81. Bidirectional one-to-one, one-to-many (Mapping to the same Entity)

@Entity
public class Person {

 @Id
 private String name;
 @OneToOne
 private Person spouse;
 @OneToMany
 private List<Person> children;

 // getters, setters ...
}

Person collection as JSON in MongoDB

{ "_id" : "Nick", "spouse_name" : "Kate", "children" : ["Louis", "Tom", "Alex"] }
{ "_id" : "Tom", "spouse_name" : "Mary" }
{ "_id" : "Louis" }
{ "_id" : "Kate", "spouse_name" : "Nick", "children" : ["Louis", "Tom", "Alex"] }
{ "_id" : "Mary", "spouse_name" : "Tom" }
{ "_id" : "Alex" }

147

Example 82. Unidirectional many-to-one

@Entity
public class JavaUserGroup {

 @Id
 private String jugId;
 private String name;

 // getters, setters ...
}

@Entity
public class Member {

 @Id
 private String id;
 private String name;

 @ManyToOne
 private JavaUserGroup memberOf;

 // getters, setters ...
}

JavaUserGroup collection as JSON in MongoDB

{
 "_id" : "summer_camp",
 "name" : "JUG Summer Camp"
}

Member collection as JSON in MongoDB

{
 "_id" : "jerome",
 "name" : "Jerome"
 "memberOf_jugId" : "summer_camp"
}
{
 "_id" : "emmanuel",
 "name" : "Emmanuel Bernard"
 "memberOf_jugId" : "summer_camp"
}

148

Example 83. Bidirectional many-to-one

@Entity
public class SalesForce {

 @Id
 private String id;
 private String corporation;

 @OneToMany(mappedBy = "salesForce")
 private Set<SalesGuy> salesGuys = new HashSet<SalesGuy>();

 // getters, setters ...
}

@Entity
public class SalesGuy {
 private String id;
 private String name;

 @ManyToOne
 private SalesForce salesForce;

 // getters, setters ...
}

SalesForce collection

{
 "_id" : "red_hat",
 "corporation" : "Red Hat",
 "salesGuys" : ["eric", "simon"]
}

SalesGuy collection

{
 "_id" : "eric",
 "name" : "Eric"
 "salesForce_id" : "red_hat",
}
{
 "_id" : "simon",
 "name" : "Simon",
 "salesForce_id" : "red_hat"
}

Example 84. Bidirectional many-to-one between entities with embedded ids

149

@Entity
public class Game {

 @EmbeddedId
 private GameId id;

 private String name;

 @ManyToOne
 private Court playedOn;

 // getters, setters ...
}

public class GameId implements Serializable {

 private String category;

 @Column(name = "id.gameSequenceNo")
 private int sequenceNo;

 // getters, setters ...
 // equals / hashCode
}

@Entity
public class Court {

 @EmbeddedId
 private CourtId id;

 private String name;

 @OneToMany(mappedBy = "playedOn")
 private Set<Game> games = new HashSet<Game>();

 // getters, setters ...
}

public class CourtId implements Serializable {

 private String countryCode;
 private int sequenceNo;

 // getters, setters ...
 // equals / hashCode
}

Court collection

{
 "_id" : {
 "countryCode" : "DE",
 "sequenceNo" : 123
 },
 "name" : "Hamburg Court",
 "games" : [
 { "gameSequenceNo" : 457, "category" : "primary" },
 { "gameSequenceNo" : 456, "category" : "primary" }
]
}

150

Game collection

{
 "_id" : {
 "category" : "primary",
 "gameSequenceNo" : 456
 },
 "name" : "The game",
 "playedOn_id" : {
 "countryCode" : "DE",
 "sequenceNo" : 123
 }
}
{
 "_id" : {
 "category" : "primary",
 "gameSequenceNo" : 457
 },
 "name" : "The other game",
 "playedOn_id" : {
 "countryCode" : "DE",
 "sequenceNo" : 123
 }
}

Here we see that the embedded id is represented as a nested document and directly referenced by the
associations.

To-many associations

151

Example 85. Unidirectional one-to-many

@Entity
public class Basket {

 @Id
 private String id;

 private String owner;

 @OneToMany
 private List<Product> products = new ArrayList<Product>();

 // getters, setters ...
}

@Entity
public class Product {

 @Id
 private String name;

 private String description;

 // getters, setters ...
}

Basket collection

{
 "_id" : "davide_basket",
 "owner" : "Davide",
 "products" : ["Beer", "Pretzel"]
}

Product collection

{
 "_id" : "Pretzel",
 "description" : "Glutino Pretzel Sticks"
}
{
 "_id" : "Beer",
 "description" : "Tactical nuclear penguin"
}

152

Example 86. Unidirectional one-to-many with @OrderColumn

@Entity
public class Basket {

 @Id
 private String id;

 private String owner;

 @OneToMany
 private List<Product> products = new ArrayList<Product>();

 // getters, setters ...
}

@Entity
public class Product {

 @Id
 private String name;

 private String description;

 // getters, setters ...
}

Basket collection

{
 "_id" : "davide_basket",
 "owner" : "Davide",
 "products" : [
 {
 "products_name" : "Pretzel",
 "products_ORDER" : 1
 },
 {
 "products_name" : "Beer",
 "products_ORDER" : 0
 }
]
}

Product collection

{
 "_id" : "Pretzel",
 "description" : "Glutino Pretzel Sticks"
}
{
 "_id" : "Beer",
 "description" : "Tactical nuclear penguin"
}

A map can be used to represent an association, in this case Hibernate OGM will store the key of the
map and the associated id.

153

Example 87. Unidirectional one-to-many using maps with defaults

@Entity
public class User {

 @Id
 private String id;

 @OneToMany
 private Map<String, Address> addresses = new HashMap<String, Address>();

 // getters, setters ...
}

@Entity
public class Address {

 @Id
 private String id;
 private String city;

 // getters, setters ...
}

User collection as JSON in MongoDB

{
 "_id" : "user_001",
 "addresses" : [
 {
 "work" : "address_001",
 "home" : "address_002"
 }
]
}

Address collection as JSON in MongoDB

{ "_id" : "address_001", "city" : "Rome" }
{ "_id" : "address_002", "city" : "Paris" }

If the map value cannot be represented by a single field (e.g. when referencing a type with a composite
id or using an embeddable type as map value type), a sub-document containing all the required fields
will be stored as value.

If the map key either is not of type String or it is made up of several columns (composite map key),
the optimized structure shown in the example above cannot be used as MongoDB only allows for
Strings as field names. In that case the association will be represented by a list of sub-documents, also
containing the map key column(s). You can use @MapKeyColumn to rename the field containing the
key of the map, otherwise it will default to "<%COLLECTION_ROLE%>_KEY", e.g. "addresses_KEY".

154

Example 88. Unidirectional one-to-many using maps with @MapKeyColumn

@Entity
public class User {

 @Id
 private String id;

 @OneToMany
 @MapKeyColumn(name = "addressType")
 private Map<Long, Address> addresses = new HashMap<Long, Address>();

 // getters, setters ...
}

@Entity
public class Address {

 @Id
 private String id;
 private String city;

 // getters, setters ...
}

User collection as JSON in MongoDB

{
 "_id" : "user_001",
 "addresses" : [
 {
 "addressType" : 1,
 "addresses_id" : "address_001"
 },
 {
 "addressType" : 2,
 "addresses_id" : "address_002"
 }
]
}

Address collection as JSON in MongoDB

{ "_id" : "address_001", "city" : "Rome" }
{ "_id" : "address_002", "city" : "Paris" }

In case you want to enforce the list-style represention also for maps with a single key column of type
String (e.g. when reading back data persisted by earlier versions of Hibernate OGM), you can do so
by setting the option hibernate.ogm.datastore.document.map_storage to the value AS_LIST.

155

Example 89. Unidirectional many-to-many using in entity strategy

@Entity
public class Student {

 @Id
 private String id;
 private String name;

 // getters, setters ...
}

@Entity
public class ClassRoom {

 @Id
 private long id;
 private String lesson;

 @ManyToMany
 private List<Student> students = new ArrayList<Student>();

 // getters, setters ...
}

Student collection

{
 "_id" : "john",
 "name" :"John Doe" }
{
 "_id" : "mario",
 "name" : "Mario Rossi"
}
{
 "_id" : "kate",
 "name" : "Kate Doe"
}

ClassRoom collection

{
 "_id" : NumberLong(1),
 "lesson" : "Math"
 "students" : [
 "mario",
 "john"
]
}
{
 "_id" : NumberLong(2),
 "lesson" : "English"
 "students" : [
 "mario",
 "kate"
]
}

156

Example 90. Bidirectional many-to-many

@Entity
public class AccountOwner {

 @Id
 private String id;

 private String SSN;

 @ManyToMany
 private Set<BankAccount> bankAccounts;

 // getters, setters ...
}

@Entity
public class BankAccount {

 @Id
 private String id;

 private String accountNumber;

 @ManyToMany(mappedBy = "bankAccounts")
 private Set<AccountOwner> owners = new HashSet<AccountOwner>();

 // getters, setters ...
}

AccountOwner collection

{
 "_id" : "owner_1",
 "SSN" : "0123456"
 "bankAccounts" : ["account_1"]
}

BankAccount collection

{
 "_id" : "account_1",
 "accountNumber" : "X2345000"
 "owners" : ["owner_1", "owner2222"]
}

Example 91. Ordered list with embedded id

157

@Entity
public class Race {
 @EmbeddedId
 private RaceId raceId;

 @OrderColumn(name = "ranking")
 @OneToMany @JoinTable(name = "Race_Runners")
 private List<Runner> runnersByArrival = new ArrayList<Runner>();

 // getters, setters ...
}

public class RaceId implements Serializable {
 private int federationSequence;
 private int federationDepartment;

 // getters, setters, equals, hashCode
}

@Entity
public class Runner {
 @EmbeddedId
 private RunnerId runnerId;
 private int age;

 // getters, setters ...
}

public class RunnerId implements Serializable {
 private String firstname;
 private String lastname;

 // getters, setters, equals, hashCode
}

Race collection

{
 "_id": {
 "federationDepartment": 75,
 "federationSequence": 23
 },
 "runnersByArrival": [{
 "firstname": "Pere",
 "lastname": "Noel",
 "ranking": 1
 }, {
 "firstname": "Emmanuel",
 "lastname": "Bernard",
 "ranking": 0
 }]
}

158

Runner collection

{
 "_id": {
 "firstname": "Pere",
 "lastname": "Noel"
 },
 "age": 105
} {
 "_id": {
 "firstname": "Emmanuel",
 "lastname": "Bernard"
 },
 "age": 37
}

One collection per association strategy

In this strategy, Hibernate OGM creates a MongoDB collection per association in which it will store all
navigation information for that particular association.

This is the strategy closest to the relational model. If an entity A is related to B and C, 2 collections will
be created. The name of this collection is made of the association table concatenated with
associations_.

For example, if the BankAccount and Owner are related, the collection used to store will be named
associations_Owner_BankAccount. You can rename The prefix is useful to quickly identify the
association collections from the entity collections. You can also decide to rename the collection
representing the association using @JoinTable (see an example)

Each document of an association collection has the following structure:

• _id contains the id of the owner of relationship

• rows contains all the id of the related entities

The preferred approach is to use the in-entity strategy but this approach can
alleviate the problem of having documents that are too big.

Example 92. Unidirectional relationship

{
 "_id" : { "owners_id" : "owner0001" },
 "rows" : [
 "accountABC",
 "accountXYZ"
]
}

159

Example 93. Bidirectional relationship

{
 "_id" : { "owners_id" : "owner0001" },
 "rows" : ["accountABC", "accountXYZ"]
}
{
 "_id" : { "bankAccounts_id" : "accountXYZ" },
 "rows" : ["owner0001"]
}

 This strategy won’t affect *-to-one associations or embedded collections.

160

Example 94. Unidirectional one-to-many using one collection per strategy

@Entity
public class Basket {

 @Id
 private String id;

 private String owner;

 @OneToMany
 private List<Product> products = new ArrayList<Product>();

 // getters, setters ...
}

@Entity
public class Product {

 @Id
 private String name;

 private String description;

 // getters, setters ...
}

Basket collection

{
 "_id" : "davide_basket",
 "owner" : "Davide"
}

Product collection

{
 "_id" : "Pretzel",
 "description" : "Glutino Pretzel Sticks"
}
{
 "_id" : "Beer",
 "description" : "Tactical nuclear penguin"
}

associations_Basket_Product collection

{
 "_id" : { "Basket_id" : "davide_basket" },
 "rows" : ["Beer", "Pretzel"]
}

The order of the element in the list might be preserved using @OrderColumn. Hibernate OGM will
store the order adding an additional fieldd to the document containing the association.

161

Example 95. Unidirectional one-to-many using one collection per strategy with @OrderColumn

@Entity
public class Basket {

 @Id
 private String id;

 private String owner;

 @OneToMany
 @OrderColumn
 private List<Product> products = new ArrayList<Product>();

 // getters, setters ...
}

@Entity
public class Product {

 @Id
 private String name;

 private String description;

 // getters, setters ...
}

Basket collection

{
 "_id" : "davide_basket",
 "owner" : "Davide"
}

Product collection

{
 "_id" : "Pretzel",
 "description" : "Glutino Pretzel Sticks"
}
{
 "_id" : "Beer",
 "description" : "Tactical nuclear penguin"
}

associations_Basket_Product collection

162

{
 "_id" : { "Basket_id" : "davide_basket" },
 "rows" : [
 {
 "products_name" : "Pretzel",
 "products_ORDER" : 1
 },
 {
 "products_name" : "Beer",
 "products_ORDER" : 0
 }
]
}

Example 96. Unidirectional many-to-many using one collection per association strategy

@Entity
public class Student {

 @Id
 private String id;
 private String name;

 // getters, setters ...
}

@Entity
public class ClassRoom {

 @Id
 private long id;
 private String lesson;

 @ManyToMany
 private List<Student> students = new ArrayList<Student>();

 // getters, setters ...
}

Student collection

{
 "_id" : "john",
 "name" : "John Doe"
}
{
 "_id" : "mario",
 "name" : "Mario Rossi"
}
{
 "_id" : "kate",
 "name" : "Kate Doe"
}

ClassRoom collection

163

{
 "_id" : NumberLong(1),
 "lesson" : "Math"
}
{
 "_id" : NumberLong(2),
 "lesson" : "English"
}

associations_ClassRoom_Student

{
 "_id" : {
 "ClassRoom_id" : NumberLong(1),
 },
 "rows" : ["john", "mario"]
}
{
 "_id" : {
 "ClassRoom_id" : NumberLong(2),
 },
 "rows" : ["mario", "kate"]
}

164

Example 97. Bidirectional many-to-many using one collection per association strategy

@Entity
public class AccountOwner {

 @Id
 private String id;

 private String SSN;

 @ManyToMany
 private Set<BankAccount> bankAccounts;

 // getters, setters ...
}

@Entity
public class BankAccount {

 @Id
 private String id;

 private String accountNumber;

 @ManyToMany(mappedBy = "bankAccounts")
 private Set<AccountOwner> owners = new HashSet<AccountOwner>();

 // getters, setters ...
}

AccountOwner collection

{
 "_id" : "owner_1",
 "SSN" : "0123456"
}

BankAccount collection

{
 "_id" : "account_1",
 "accountNumber" : "X2345000"
}

associations_AccountOwner_BankAccount collection

{
 "_id" : {
 "bankAccounts_id" : "account_1"
 },
 "rows" : ["owner_1"]
}
{
 "_id" : {
 "owners_id" : "owner_1"
 },
 "rows" : ["account_1"]
}

165

You can change the name of the collection containing the association using the @JoinTable
annotation. In the following example, the name of the collection containing the association is
OwnerBankAccounts (instead of the default associations_AccountOwner_BankAccount)

Example 98. Bidirectional many-to-many using one collection per association strategy and @JoinTable

@Entity
public class AccountOwner {

 @Id
 private String id;

 private String SSN;

 @ManyToMany
 @JoinTable(name = "OwnerBankAccounts")
 private Set<BankAccount> bankAccounts;

 // getters, setters ...
}

@Entity
public class BankAccount {

 @Id
 private String id;

 private String accountNumber;

 @ManyToMany(mappedBy = "bankAccounts")
 private Set<AccountOwner> owners = new HashSet<AccountOwner>();

 // getters, setters ...
}

AccountOwner collection

{
 "_id" : "owner_1",
 "SSN" : "0123456"
}

BankAccount collection

{
 "_id" : "account_1",
 "accountNumber" : "X2345000"
}

OwnerBankAccount

166

{
 "_id" : {
 "bankAccounts_id" : "account_1"
 },
 "rows" : ["owner_1"]
}
{
 "_id" : {
 "owners_id" : "owner_1"
 },
 "rows" : ["account_1"]
}

Global collection strategy

With this strategy, Hibernate OGM creates a single collection named Associations in which it will
store all navigation information for all associations. Each document of this collection is structured in 2
parts. The first is the _id field which contains the identifier information of the association owner and
the name of the association table. The second part is the rows field which stores (into an embedded
collection) all ids that the current instance is related to.

This strategy won’t affect *-to-one associations or embedded collections.

Generally, you should not make use of this strategy unless embedding the
association information proves to be too big for your document and you wish to
separate them.

Example 99. Associations collection containing unidirectional association

{
 "_id": {
 "owners_id": "owner0001",
 "table": "AccountOwner_BankAccount"
 },
 "rows": ["accountABC", "accountXYZ"]
}

For a bidirectional relationship, another document is created where ids are reversed. Don’t worry,
Hibernate OGM takes care of keeping them in sync:

167

Example 100. Associations collection containing a bidirectional association

{
 "_id": {
 "owners_id": "owner0001",
 "table": "AccountOwner_BankAccount"
 },
 "rows": ["accountABC", "accountXYZ"]
}
{
 "_id": {
 "bankAccounts_id": "accountXYZ",
 "table": "AccountOwner_BankAccount"
 },
 "rows": ["owner0001"]
}

Example 101. Unidirectional one-to-many using global collection strategy

@Entity
public class Basket {

 @Id
 private String id;

 private String owner;

 @OneToMany
 private List<Product> products = new ArrayList<Product>();

 // getters, setters ...
}

@Entity
public class Product {

 @Id
 private String name;

 private String description;

 // getters, setters ...
}

Basket collection

{
 "_id" : "davide_basket",
 "owner" : "Davide"
}

Product collection

168

{
 "_id" : "Pretzel",
 "description" : "Glutino Pretzel Sticks"
}
{
 "_id" : "Beer",
 "description" : "Tactical nuclear penguin"
}

Associations collection

{
 "_id" : {
 "Basket_id" : "davide_basket",
 "table" : "Basket_Product"
 },
 "rows" : [
 {
 "products_name" : "Pretzel",
 "products_ORDER" : 1
 },
 {
 "products_name" : "Beer",
 "products_ORDER" : 0
 }
]
}

169

Example 102. Unidirectional one-to-many using global collection strategy with @JoinTable

@Entity
public class Basket {

 @Id
 private String id;

 private String owner;

 @OneToMany
 // It will change the value stored in the field table in the Associations collection
 @JoinTable(name = "BasketContent")
 private List<Product> products = new ArrayList<Product>();

 // getters, setters ...
}

@Entity
public class Product {

 @Id
 private String name;

 private String description;

 // getters, setters ...
}

Basket collection

{
 "_id" : "davide_basket",
 "owner" : "Davide"
}

Product collection

{
 "_id" : "Pretzel",
 "description" : "Glutino Pretzel Sticks"
}
{
 "_id" : "Beer",
 "description" : "Tactical nuclear penguin"
}

Associations collection

{
 "_id" : {
 "Basket_id" : "davide_basket",
 "table" : "BasketContent"
 },
 "rows" : ["Beer", "Pretzel"]
}

170

Example 103. Unidirectional many-to-many using global collection strategy

@Entity
public class Student {

 @Id
 private String id;
 private String name;

 // getters, setters ...
}

@Entity
public class ClassRoom {

 @Id
 private long id;
 private String lesson;

 @ManyToMany
 private List<Student> students = new ArrayList<Student>();

 // getters, setters ...
}

Student collection

{
 "_id" : "john",
 "name" : "John Doe"
}
{
 "_id" : "mario",
 "name" : "Mario Rossi"
}
{
 "_id" : "kate",
 "name" : "Kate Doe"
}

ClassRoom collection

{
 "_id" : NumberLong(1),
 "lesson" : "Math"
}
{
 "_id" : NumberLong(2),
 "lesson" : "English"
}

Associations collection

171

{
 "_id" : {
 "ClassRoom_id" : NumberLong(1),
 "table" : "ClassRoom_Student"
 },
 "rows" : ["john", "mario"]
}
{
 "_id" : {
 "ClassRoom_id" : NumberLong(2),
 "table" : "ClassRoom_Student"
 },
 "rows" : ["mario", "kate"]
}

Example 104. Bidirectional many-to-many using global collection strategy

@Entity
public class AccountOwner {

 @Id
 private String id;

 private String SSN;

 @ManyToMany
 private Set<BankAccount> bankAccounts;

 // getters, setters ...
}

@Entity
public class BankAccount {

 @Id
 private String id;

 private String accountNumber;

 @ManyToMany(mappedBy = "bankAccounts")
 private Set<AccountOwner> owners = new HashSet<AccountOwner>();

 // getters, setters ...
}

AccountOwner collection

{
 "_id" : "owner0001",
 "SSN" : "0123456"
}

BankAccount collection

{
 "_id" : "account_1",
 "accountNumber" : "X2345000"
}

172

Associations collection

{
 "_id" : {
 "bankAccounts_id" : "account_1",
 "table" : "AccountOwner_BankAccount"
 },

 "rows" : ["owner0001"]
}
{
 "_id" : {
 "owners_id" : "owner0001",
 "table" : "AccountOwner_BankAccount"
 },

 "rows" : ["account_1"]
}

11.4. Indexes and unique constraints

11.4.1. Standard indexes and unique constraints

You can create your index and unique constraints in MongoDB using the standard JPA annotations.

Example 105. Creating indexes and unique constraints using JPA annotations

@Entity
@Table(indexes = {
 @Index(columnList = "author, name", name = "author_name_idx", unique = true),
 @Index(columnList = "name DESC", name = "name_desc_idx")
})
public class Poem {

 @Id
 private String id;
 private String name;
 private String author;

 @Column(unique = true)
 private String url;

 // getters, setters ...
}

MongoDB supports unique constraints via unique indexes. It considers null as a
value to be unique: you can only have one null value per unique index. This is not
what is commonly accepted as the definition of a unique constraint in the JPA
world. Thus, by default, we create the unique indexes as sparse: it only indexes
defined values so that the unique constraints accept multiple null values.

173

11.4.2. Using MongoDB specific index options

MongoDB supports a number of options for index creation.

It is possible to define them using the @IndexOption annotation.

Example 106. Creating indexes with MongoDB specific options

@Entity
@Table(indexes = {
 @Index(columnList = "author", name = "author_idx")
})
@IndexOptions(
 @IndexOption(forIndex = "author_idx", options = "{ background : true, sparse : true,
partialFilterExpression : { author: 'Verlaine' } }")
)
public class Poem {

 @Id
 private String id;
 private String name;
 private String author;

 // getters, setters ...
}

@IndexOption simply passes the options to MongoDB at index creation: you can use every option
available in MongoDB.

11.4.3. Full text indexes

MongoDB supports the ability to create one (and only one) full text index per collection.

As JPA does not support the ability to define text as an order in the @Index annotation (only ASC
and DESC are supported), this ability has been included inside the @IndexOption mechanism. You
simply need to add text: true to the options passed to MongoDB, Hibernate OGM interprets it and
translates the index to a full text index.

174

https://docs.mongodb.com/manual/reference/method/db.collection.createIndex/

Example 107. Creating a full text index

@Entity
@Table(indexes = {
 @Index(columnList = "author, name", name = "author_name_text_idx")
})
@IndexOptions(
 @IndexOption(forIndex = "author_name_text_idx", options = "{ text: true,
default_language : 'fr', weights : { author: 2, name: 5 } }")
)
public class Poem {

 @Id
 private String id;
 private String name;
 private String author;

 // getters, setters ...
}

11.5. Transactions
MongoDB does not support transactions. Only changes applied to the same document are done
atomically. A change applied to more than one document will not be applied atomically. This problem
is slightly mitigated by the fact that Hibernate OGM queues all changes before applying them during
flush time. So the window of time used to write to MongoDB is smaller than what you would have done
manually.

We recommend that you still use transaction demarcations with Hibernate OGM to trigger the flush
operation transparently (on commit). But do not consider rollback as a possibility, this won’t work.

11.6. Optimistic Locking
MongoDB does not provide a built-in mechanism for detecting concurrent updates to the same
document but it provides a way to execute atomic find and update operations. By exploiting this
commands Hibernate OGM can detect concurrent modifications to the same document.

You can enable optimistic locking detection using the annotation @Version:

175

Example 108. Optimistic locking detection via @Version

@Entity
public class Planet implements Nameable {

 @Id
 private String id;
 private String name;

 @Version
 private int version;

 // getters, setters ...
}

{
 "_id" : "planet-1",
 "name" : "Pluto",
 "version" : 0
}

The @Version annotation define which attribute will keep track of the version of the document,
Hibernate OGM will update the field when required and if two changes from two different sessions (for
example) are applied to the same document a org.hibernate.StaleObjectStateException is
thrown.

You can use @Column to change the name of the field created on MongoDB:

Example 109. Optimistic locking detection via @Version using @Column

@Entity
public class Planet implements Nameable {

 @Id
 private String id;
 private String name;

 @Version
 @Column(name="OPTLOCK")
 private int version;

 // getters, setters ...
}

{
 "_id" : "planet-1",
 "name" : "Pluto",
 "OPTLOCK" : 0
}

176

11.7. Queries
You can express queries in a few different ways:

• using JPQL

• using a native MongoQL query

• using a Hibernate Search query (brings advanced full-text and geospatial queries)

While you can use JPQL for simple queries, you might hit limitations. The current recommended
approach is to use native MongoQL if your query involves nested (list of) elements.

MongoDB doesn’t require Hibernate Search to run queries.

In order to reflect changes performed in the current session, all entities affected by
a given query are flushed to the datastore prior to query execution (that’s the case
for Hibernate ORM as well as Hibernate OGM).

For not fully transactional stores such as MongoDB this can cause changes to be
written as a side-effect of running queries which cannot be reverted by a possible
later rollback.

Depending on your specific use cases and requirements you may prefer to disable
auto-flushing, e.g. by invoking query.setFlushMode(FlushMode.MANUAL).
Bear in mind though that query results will then not reflect changes applied within
the current session.

11.7.1. JPQL queries

Hibernate OGM is a work in progress, so only a sub-set of JPQL constructs is available when using the
JPQL query support. This includes:

• simple comparisons using "<", "<=", "=", ">=" and ">"

• IS NULL and IS NOT NULL

• the boolean operators AND, OR, NOT

• LIKE, IN and BETWEEN

• ORDER BY

• inner JOIN on embedded collections

• projections of regular and embedded properties

Queries using these constructs will be transformed into equivalent native MongoDB queries.

177

Let us know by opening an issue or sending an email what query you wish to
execute. Expanding our support in this area is high on our priority list.

11.7.2. Native MongoDB queries

Hibernate OGM also supports certain forms of native queries for MongoDB. Currently two forms of
native queries are available via the MongoDB backend:

• find queries specifying the search criteria only

• queries specified using the MongoDB CLI syntax (CLI Syntax)

The former always maps results to entity types. The latter either maps results to entity types or to
certain supported forms of projection. Note that parameterized queries are not supported by
MongoDB, so don’t expect Query#setParameter() to work.

You can execute native queries as shown in the following example:

178

Example 110. Using the JPA API

@Entity
public class Poem {

 @Id
 private Long id;

 private String name;

 private String author;

 // getters, setters ...
}

...

javax.persistence.EntityManager em = ...

// criteria-only find syntax
String query1 = "{ $and: [{ name : 'Portia' }, { author : 'Oscar Wilde' }] }";
Poem poem = (Poem) em.createNativeQuery(query1, Poem.class).getSingleResult();

// criteria-only find syntax with order-by
String query2 = "{ $query : { author : 'Oscar Wilde' }, $orderby : { name : 1 } }";
List<Poem> poems = em.createNativeQuery(query2, Poem.class).getResultList();

// projection via CLI-syntax
String query3 = "db.WILDE_POEM.find(" +
 "{ '$query' : { 'name' : 'Athanasia' }, '$orderby' : { 'name' : 1 } }" +
 "{ 'name' : 1 }" +
 ")";

// will contain name and id as MongoDB always returns the id for projections
List<Object[]> poemNames = (List<Object[]>)em.createNativeQuery(query3).getResultList();

// projection via CLI-syntax
String query4 = "db.WILDE_POEM.count({ 'name' : 'Athanasia' })";

Object[] count = (Object[])em.createNativeQuery(query4).getSingleResult();

The result of a query is a managed entity (or a list thereof) or a projection of attributes in form of an
object array, just like you would get from a JPQL query.

Example 111. Using the Hibernate native API

OgmSession session = ...

String query1 = "{ $and: [{ name : 'Portia' }, { author : 'Oscar Wilde' }] }";
Poem poem = session.createNativeQuery(query1)
 .addEntity("Poem", Poem.class)
 .uniqueResult();

String query2 = "{ $query : { author : 'Oscar Wilde' }, $orderby : { name : 1 } }";
List<Poem> poems = session.createNativeQuery(query2)
 .addEntity("Poem", Poem.class)
 .list();

Native queries can also be created using the @NamedNativeQuery annotation:

179

Example 112. Using @NamedNativeQuery

@Entity
@NamedNativeQuery(
 name = "AthanasiaPoem",
 query = "{ $and: [{ name : 'Athanasia' }, { author : 'Oscar Wilde' }] }",
 resultClass = Poem.class)
public class Poem { ... }

...

// Using the EntityManager
Poem poem1 = (Poem) em.createNamedQuery("AthanasiaPoem")
 .getSingleResult();

// Using the Session
Poem poem2 = (Poem) session.getNamedQuery("AthanasiaPoem")
 .uniqueResult();

Hibernate OGM stores data in a natural way so you can still execute queries using the MongoDB driver,
the main drawback is that the results are going to be raw MongoDB documents and not managed
entities.

CLI Syntax

Hibernate OGM can execute native queries expressed using the MongoDB CLI syntax with some
limitations. Currently find(), findOne(), findAndModify(), and count() queries are supported.
Furthermore, three types of write queries are supported via the CLI syntax: insert(), remove(), and
update(). Other query types may be supported in future versions.

As one would expect, find(), findOne(), findAndModify(), aggregate, distinct(), and
count() can be executed using javax.persistence.Query.getSingleResult() or
javax.persistence.Query.getResultList(), while insert(), remove(), and update()
require using javax.persistence.Query.executeUpdate(). Also note that,
javax.persistence.Query.executeUpdate() may return -1 in case execution of a query was
not acknowledged relative to the write concern used. Via
javax.persistence.Query.executeUpdate() it is also possible to run db.Collection.drop()
queries.

db.Collection.drop() will always return 1. This is because the underlying
driver we are using doesn’t return any value after the execution of the operation.

The following functions can be used in the provided JSON: BinData, Date, HexData, ISODate,
NumberLong, ObjectId, Timestamp, RegExp, DBPointer, UUID, GUID, CSUUID, CSGUID, JUUID,
JGUID, PYUUID, PYGUID.

NumberInt is not supported as it is currently not supported by the MongoDB Java
driver.

180

No cursor operations such as sort() are supported. Instead use the corresponding MongoDB query
modifiers such as $orderby within the criteria parameter.

You can limit the results of a query using the setMaxResults(…) method.

JSON parameters passed via the CLI syntax must be specified using the strict mode. Specifically, keys
need to be given within quotes; the only relaxation of this is that single quotes may be used when
specifying attribute names/values to facilitate embedding queries within Java strings.

Note that results of projections are returned as retrieved from the MongoDB driver at the moment and
are not (yet) converted using suitable Hibernate OGM type implementations. This requirement is
tracked under OGM-1031.

Example 113. CLI syntax examples

// Valid syntax
String valid = "db.Poem.find({ \"name\" : \"Athanasia\" })";

String alsoValid = "db.Poem.find({ '$or' : [{'name': 'Athanasia' }, {'name': 'Portia' }]})
";

String validAggregation = "db.Poem.aggregate([{ '$match': {'author': { '$regex': 'oscar.*',
'$options': 'i' } } }, { '$sort': {'name': -1 } }])";

// NOT Valid syntax, it will throw an exception: com.mongodb.util.JSONParseException
String notValid = "db.Poem.find({ name : \"Athanasia\" })";

String alsoNotValid = "db.Poem.find({ $or : [{name: 'Athanasia' }, {name: 'Portia' }]})";

Example 114. CLI syntax sort and limit results alternatives

String nativeQuery = "db.Poem.find({ '$query': { 'author': 'Oscar Wilde' }, '$orderby' : {
'name' : 1 } })";

// Using hibernate session
List<Poem> result = session.createNativeQuery(nativeQuery)
 .addEntity(Poem.class)
 .setMaxResults(2)
 .list();

// Using JPA entity manager
List<Poem> results = em.createNativeQuery(nativeQuery, Poem.class)
 .setMaxResults(2)
 .getResultList();

181

http://docs.mongodb.org/manual/reference/operator/query-modifier/
http://docs.mongodb.org/manual/reference/operator/query-modifier/
http://docs.mongodb.org/manual/reference/mongodb-extended-json/
https://hibernate.atlassian.net/browse/OGM-1031

Example 115. CLI syntax update examples

String updateQuery = "db.Poem.findAndModify({ 'query': {'_id': 1}, 'update': { '$set': {
'author': 'Oscar Wilde' } }, 'new': true })";
List<Poem> updated = session.createNativeQuery(updateQuery).addEntity(Poem.class).list
();

String insertQuery = "db.Poem.insert({ '_id': { '$numberLong': '11' }, 'author': 'Oscar
Wilder', 'name': 'The one and wildest', 'rating': '1' })";
int inserted = session.createNativeQuery(insertQuery).executeUpdate();

String removeQuery = "db.Poem.remove({ '_id': { '$numberLong': '11' } })";
int removed = session.createNativeQuery(removeQuery).executeUpdate();

Support for the $regexp operator is limited to the string syntax. We do not
support the /pattern/ syntax as it is not currently supported by the MongoDB
Java driver.

// Valid syntax
String nativeQuery = "{ $query : { author : { $regex : '^Oscar' } },
$orderby : { name : 1 } }";
List<Poem> result = session.createNativeQuery(nativeQuery).addEntity(
Poem.class).list();

11.7.3. Server-side JavaScript and stored procedures

 This is an experimental feature.

In MongoDB, it is possible to call server-side JavaScript as if it is a stored procedure. You can use the
existing methods in JPA:

Example 116. Calling server-side JavaScript with positional parameters

 @Entity
 public class Car {
 @Id
 private Integer id;

 private String brand;

 ...
 }

 EntityManager em = ...
 StoredProcedureQuery storedProcedureQuery = em.createStoredProcedureQuery(
"findMostExpensiveCars", Car.class);
 storedProcedureQuery.registerStoredProcedureParameter("year", Integer.class,
ParameterMode.IN);
 storedProcedureQuery.setParameter("year", 1995);
 List<Car> cars = storedProcedureQuery.getResultList();

182

This example will work assuming that there is a findMostExpensiveCars JavaScript function in
MongoDB and that the result of the function is a list of cars that can be mapped to the Car entity.

Example 117. Calling server-side JavaScript with Hibernate OGM with positional parameters

{
 "result" : [
 { "id":1, "brand":"Bentley" },
 { "id":2, "brand":"Maserati" },
]
}

More details about server-side functions can be found in the MongoDB reference documentation.

11.7.4. Hibernate Search

You can index your entities using Hibernate Search. That way, a set of secondary indexes independent
of MongoDB is maintained by Hibernate Search and you can run Lucene queries on top of them. The
benefit of this approach is a nice integration at the JPA / Hibernate API level (managed entities are
returned by the queries). The drawback is that you need to store the Lucene indexes somewhere (file
system, infinispan grid, etc). Have a look at the Infinispan section (Storing a Lucene index in Infinispan)
for more info on how to use Hibernate Search.

11.8. Geospatial support

11.8.1. Geospatial fields

Our MongoDB integration supports the ability to declare geospatial fields by using specific Java types
that will be automatically converted to GeoJSON objects stored in MongoDB.

We currently support the following types:

• GeoPoint, stored as a GeoJSON Point

• GeoMultiPoint, stored as a GeoJSON MultiPoint

• GeoLineString, stored as a GeoJSON LineString

• GeoMultiLineString, stored as a GeoJSON MultiLineString

• GeoPolygon, stored as a GeoJSON Polygon

• GeoMultiPolygon, stored as a GeoJSON MultiPolygon

You can find more information about these types and their constraints in the MongoDB
documentation.

183

https://docs.mongodb.com/manual/core/server-side-JavaScript
https://docs.mongodb.com/manual/reference/geojson/
https://docs.mongodb.com/manual/reference/geojson/

Example 118. Declaring a geospatial field

@Entity
public class Restaurant {

 // [...]

 private GeoPoint location;
}

These Java types come with handy constructors and helpers to help manipulate them.

Example 119. Instantiating a polygon

GeoPolygon polygon = new GeoPolygon(
 new GeoPoint(4.814922, 45.7753612),
 new GeoPoint(4.8160825, 45.7327172),
 new GeoPoint(4.9281299, 45.7211302),
 new GeoPoint(4.8706127, 45.786724),
 new GeoPoint(4.814922, 45.7753612)
);

11.8.2. Geospatial indexes and queries

To be able to run optimized queries on geospatial fields, you need to declare spatial indexes.

You can leverage your usual annotations to declare the indexes directly on your entities.

Example 120. Declaring a geospatial index

@Entity
@Table(indexes = {
 @Index(columnList = "location", name = "location_spatial_idx")
})
@IndexOptions(
 @IndexOption(forIndex = "location_spatial_idx", options = "{ _type: '2dsphere' }")
)
public class Restaurant {

 // [...]

 private GeoPoint location;
}

Note that you need to precise the type of the index using an @IndexOption annotation.

The next step is to execute a geospatial query using a native query.

184

Example 121. Finding entities around a point

GeoPoint geoPoint = new GeoPoint(4.8520035, 45.7498209);

Query query = session
 .createNativeQuery("{ location: { $near: { $geometry: " + geoPoint.toBsonDocument
() + ", $maxDistance: 500 } } }")
 .addEntity(Restaurant.class);
List<Restaurant> result = query.list();

Example 122. Finding entities within a polygon

GeoPolygon geoPolygon = new GeoPolygon(
 new GeoPoint(4.814922, 45.7753612),
 new GeoPoint(4.8160825, 45.7327172),
 new GeoPoint(4.9281299, 45.7211302),
 new GeoPoint(4.8706127, 45.786724),
 new GeoPoint(4.814922, 45.7753612)
);

Query query = session
 .createNativeQuery("{ location: { $geoWithin: { $geometry: " + geoPolygon
.toBsonDocument() + " } } }")
 .addEntity(Restaurant.class);
List<Restaurant> result = query.list();

To learn more about MongoDB spatial indexes and queries, please refer to the MongoDB
documentation.

185

https://docs.mongodb.com/manual/geospatial-queries/
https://docs.mongodb.com/manual/geospatial-queries/

Chapter 12. Neo4j
Neo4j is a robust (fully ACID) transactional property graph database. This kind of databases are suited
for those type of problems that can be represented with a graph like social relationships or road maps
for example.

Hibernate OGM can connect to an embedded Neo4j or a remote server. The connection to the remote
server can occur via the Bolt protocol or the HTTP API.

12.1. How to add Neo4j integration
1. Add the dependencies to your project

If your project uses Maven you can add this to the pom.xml:

<dependency>
 <groupId>org.hibernate.ogm</groupId>
 <artifactId>hibernate-ogm-neo4j</artifactId>
 <version>5.4.2.Final</version>
</dependency>

Alternatively you can find the required libraries in the distribution package on SourceForge

2. Use the following properties

If you want to use Neo4j in embedded mode:

hibernate.ogm.datastore.provider = neo4j_embedded
hibernate.ogm.neo4j.database_path = C:\example\mydb

If you want to connect to a remote server without authentication on localhost, you can use:

hibernate.ogm.datastore.provider = neo4j_bolt

or

hibernate.ogm.datastore.provider = neo4j_http

The difference between neo4j_bolt and neo4j_http is that in the first case Hibernate OGM will
connect to the server using the Bolt protocol, in the second case it will use the HTTP interface.

You can select a different host, port and enable authentication with the following additional

186

http://www.neo4j.org
https://downloads.sourceforge.net/project/hibernate/hibernate-ogm/5.4.2.Final/hibernate-ogm-5.4.2.Final-dist.zip

properties:

hibernate.ogm.datastore.provider = neo4j_bolt # or neo4j_http
hibernate.ogm.datastore.host = example.com:8989
hibernate.ogm.datastore.username = example_username
hibernate.ogm.datastore.password = example_password

The Neo4j dialects don’t require Hibernate Search to run JPQL or HQL queries.

12.2. Configuring Neo4j
The following properties are available to configure Neo4j support:

Neo4j datastore configuration properties

hibernate.ogm.neo4j.database_path

The absolute path representing the location of the Neo4j database. Example: C:\neo4jdb\mydb

hibernate.ogm.neo4j.configuration_resource_name (optional)

Location of the Neo4j embedded properties file. It can be an URL, name of a classpath resource or
file system path.

hibernate.schema_update.unique_constraint_strategy (optional)

If set to SKIP, Hibernate OGM won’t create any unique constraints on the nodes representing the
entities. This property won’t affect the unique constraints generated for sequences. Other possible
values (defined on the
org.hibernate.tool.hbm2ddl.UniqueConstraintSchemaUpdateStrategy enum) are
DROP_RECREATE_QUIETLY and RECREATE_QUIETLY but the effect will be the same (since Neo4j
constraints don’t have a name): keep the existing constraints and create the missing one. Default
value is DROP_RECREATE_QUIETLY.

hibernate.ogm.datastore.host (optional)

The host name and the port to use when connecting to a remote server. Default value for HTTP is
localhost:7474. Default value for Bolt is localhost:7687.

hibernate.ogm.datastore.username (optional)

The authentication username for the remote server. Hibernate OGM will try to authenticate only if
this property is set.

hibernate.ogm.datastore.password (optional)

The password to use when connecting remotely.

hibernate.ogm.neo4j.client.connection_pool_size (optional)

The size of the client connection pool when using the http protocol. Default value is 10.

187

hibernate.connection.resource

If you use Bolt interface you can lookup datastore client. See Integration with WildFly NoSQL.

When bootstrapping a session factory or entity manager factory programmatically,
you should use the constants defined on
org.hibernate.ogm.datastore.neo4j.Neo4jProperties when specifying
the configuration properties listed above.

Common properties shared between stores are declared on OgmProperties (a
super interface of Neo4jProperties).

For maximum portability between stores, use the most generic interface possible.

12.3. Storage principles
Hibernate OGM tries to make the mapping to the underlying datastore as natural as possible so that
third party applications not using Hibernate OGM can still read and update the same datastore.

To make things simple, each entity is represented by a node, each embedded object is also
represented by a node. Links between entities (whether to-one to to-many associations) are
represented by relationships between nodes. Entity and embedded nodes are labelled ENTITY and
EMBEDDED respectively.

12.3.1. Properties and built-in types

Each entity is represented by a node. Each property or more precisely column is represented by an
attribute of this node.

The following types (and corresponding primitives) get passed to Neo4j without any conversion:

• java.lang.Boolean; Optionally the annotations @Type(type = "true_false"),
@Type(type = "yes_no") and @Type(type = "numeric_boolean") can be used to map
boolean properties to the characters 'T'/'F', 'Y'/'N' or the int values 0/1, respectively.

• java.lang.Character

• java.lang.Byte

• java.lang.Short

• java.lang.Integer

• java.lang.Long

• java.lang.Float

• java.lang.Double

188

• java.lang.String

The following types get converted into java.lang.String:

• java.math.BigDecimal

• java.math.BigInteger

• java.util.Calendar

stored as `String` with the format "yyyy/MM/dd HH:mm:ss:SSS Z"

• java.util.Date

stored as `String` with the format "yyyy/MM/dd HH:mm:ss:SSS Z"

• java.util.UUID

• java.util.URL

Hibernate OGM doesn’t store null values in Neo4J, setting a value to null is the
same as removing the corresponding entry from Neo4J.

This can have consequences when it comes to queries on null value.

12.3.2. Entities

Entities are stored as Neo4j nodes, which means each entity property will be translated into a property
of the node. The name of the table mapping the entity is used as label.

You can use the name property of the @Table and @Column annotations to rename the label and the
node’s properties.

An additional label ENTITY is added to the node.

189

Example 123. Default JPA mapping for an entity

@Entity
public class News {

 @Id
 private String id;
 private String title;

 // getters, setters ...
}

Example 124. Rename node label and properties using @Table and @Column

@Entity
@Table(name="ARTICLE")
public class News {

 @Id
 private String id;

 @Column(name = "headline")
 private String title;

 // getters, setters ...
}

Identifiers and unique constraints

190

Neo4j does not support constraints on more than one property. For this reason,
Hibernate OGM will create a unique constraint ONLY when it spans a single
property and it will ignore the ones spanning multiple properties.

The lack of unique constraints on node properties might result in the creation of
multiple nodes with the same identifier.

Hibernate OGM will create unique constraints for the identifier of entities and for the properties
annotated with:

• @Id

• @EmbeddedId

• @NaturalId

• @Column(unique = true)

• @Table(uniqueConstraints = @UniqueConstraint(columnNames = {
"column_name" }))

Embedded identifiers are currently stored as dot separated properties.

Example 125. Entity with @EmbeddedId

@Entity
public class News {

 @EmbeddedId
 private NewsID newsId;

 private String content

 // getters, setters ...
}

@Embeddable
public class NewsID implements Serializable {

 private String title;
 private String author;

 // getters, setters ...
}

191

Embedded objects and collections

Embedded elements are stored as separate nodes labeled with EMBEDDED.

The type of the relationship that connects the entity node to the embedded node is the attribute name
representing the embedded in the java class.

Example 126. Embedded object

@Entity
public class News {

 @EmbeddedId
 private NewsID newsId;

 @Embedded
 private NewsPaper paper;

 // getters, setters ...
}

@Embeddable
public class NewsID implements Serializable {

 private String title;
 private String author;

 // getters, setters ...
}

@Embeddable
public class NewsPaper {

 private String name;
 private String owner;

 // getters, setters ...
}

192

Example 127. @ElementCollection

@Entity
public class GrandMother {

 @Id
 private String id;

 @ElementCollection
 private List<GrandChild> grandChildren = new ArrayList<GrandChild>();

 // getters, setters ...
}

@Embeddable
public class GrandChild {

 private String name;

 // getters, setters ...
}

Note that in the previous examples no property is added to the relationships; in the following one, one
property is added to keep track of the order of the elements in the list.

193

Example 128. @ElementCollection with @OrderColumn

@Entity
public class GrandMother {

 @Id
 private String id;

 @ElementCollection
 @OrderColumn(name = "birth_order")
 private List<GrandChild> grandChildren = new ArrayList<GrandChild>();

 // getters, setters ...
}

@Embeddable
public class GrandChild {

 private String name;

 // getters, setters ...
}

It’s also possible to use embeddeds in a Map like in the following example:

194

Example 129. @ElementCollection with Map of Embedded

@Entity
public class ForumUser {

 @Id
 private String name;

 @ElementCollection
 private Map<String, JiraIssue> issues = new HashMap<>();

 // getters, setters ...
}

@Embeddable
public class JiraIssue {

 private String project;

 private Integer number;

 // getters, setters ...
}

This mapping has some problems, though. It will create an additional node for each element in the map
and the embedded values will be stored in a node with only the EMBEDDED label. We don’t think this is a
natural mapping and expect it to change in the upcoming releases.

12.3.3. Associations

An association, bidirectional or unidirectional, is always mapped using one relationship, beginning at
the owning side of the association. This is possible because in Neo4j relationships can be navigated in
both directions.

The type of the relationships depends on the type of the association, but in general it is the role of the
association on the main side. The only property stored on the relationship is going to be the index of
the association when required, for example when the association is annotated with @OrderColumn or
when a java.util.Map is used.

195

In Neo4j nodes are connected via relationship, this means that we don’t need to create properties
which store foreign column keys. This means that annotation like @JoinColumn won’t have any effect.

Example 130. Unidirectional one-to-one

@Entity
public class Vehicle {

 @Id
 private String id;
 private String brand;

 // getters, setters ...
}

@Entity
public class Wheel {

 @Id
 private String id;
 private String company;
 private double diameter;

 @OneToOne
 private Vehicle vehicle;

 // getters, setters ...
}

196

Example 131. Bidirectional one-to-one

@Entity
public class Husband {

 @Id
 private String id;
 private String name;

 @OneToOne
 private Wife wife;

 // getters, setters ...
}

@Entity
public class Wife {

 @Id
 private String id;
 private String name;

 @OneToOne(mappedBy = "wife")
 private Husband husband;

 // getters, setters ...
}

197

Example 132. Unidirectional one-to-many

@Entity
public class Basket {

 @Id
 private String id;

 private String owner;

 @OneToMany
 private List<Product> products = new ArrayList<Product>();

 // getters, setters ...
}

@Entity
public class Product {

 @Id
 private String name;

 private String description;

 // getters, setters ...
}

198

Example 133. Unidirectional one-to-many using maps with defaults

@Entity
public class User {

 @Id
 private String id;

 @OneToMany
 private Map<String, Address> addresses = new HashMap<String, Address>();

 // getters, setters ...
}

@Entity
public class Address {

 @Id
 private String id;
 private String city;

 // getters, setters ...
}

199

Example 134. Unidirectional one-to-many using maps with @MapKeyColumn

@Entity
public class User {

 @Id
 private String id;

 @OneToMany
 @MapKeyColumn(name = "addressType")
 private Map<String, Address> addresses = new HashMap<String, Address>();

 // getters, setters ...
}

@Entity
public class Address {

 @Id
 private String id;
 private String city;

 // getters, setters ...
}

200

Example 135. Unidirectional many-to-one

@Entity
public class JavaUserGroup {

 @Id
 private String jug_id;
 private String name;

 // getters, setters ...
}

@Entity
public class Member {

 @Id
 private String id;
 private String name;

 @ManyToOne
 private JavaUserGroup memberOf;

 // getters, setters ...
}

201

Example 136. Bidirectional many-to-one

@Entity
public class SalesForce {

 @Id
 private String id;
 private String corporation;

 @OneToMany(mappedBy = "salesForce")
 private Set<SalesGuy> salesGuys = new HashSet<SalesGuy>();

 // getters, setters ...
}

@Entity
public class SalesGuy {
 private String id;
 private String name;

 @ManyToOne
 private SalesForce salesForce;

 // getters, setters ...
}

202

Example 137. Unidirectional many-to-many

@Entity
public class Student {

 @Id
 private String id;
 private String name;

 // getters, setters ...
}

@Entity
public class ClassRoom {

 @Id
 private long id;
 private String lesson;

 @ManyToMany
 private List<Student> students = new ArrayList<Student>();

 // getters, setters ...
}

203

Example 138. Bidirectional many-to-many

@Entity
public class AccountOwner {

 @Id
 private String id;

 private String SSN;

 @ManyToMany
 private Set<BankAccount> bankAccounts;

 // getters, setters ...
}

@Entity
public class BankAccount {

 @Id
 private String id;

 private String accountNumber;

 @ManyToMany(mappedBy = "bankAccounts")
 private Set<AccountOwner> owners = new HashSet<AccountOwner>();

 // getters, setters ...
}

204

Example 139. Bidirectional one-to-one, one-to-many (Mapping to the same Entity)

@Entity
public class Person {

 @Id
 private String name;
 @OneToOne
 private Person spouse;
 @OneToMany
 private List<Person> children;

 // getters, setters ...
}

12.3.4. Auto-generated Values

Hibernate OGM supports the table generation strategy as well as the sequence generation strategy
with Neo4j. It is generally recommended to work with the latter, as it allows a slightly more efficient
querying for the next sequence value.

Sequence-based generators are represented by nodes in the following form:

205

Example 140. GenerationType.SEQUENCE

@Entity
public class Song {

 ...

 @Id
 @GeneratedValue(strategy = GenerationType.SEQUENCE, generator = "
songSequenceGenerator")
 @SequenceGenerator(
 name = "songSequenceGenerator",
 sequenceName = "song_sequence",
 initialValue = INITIAL_VALUE,
 allocationSize = 10)
 public Long getId() {
 return id;
 }

 ...

Each sequence generator node is labelled with SEQUENCE. The sequence name can be specified via
@SequenceGenerator#sequenceName(). A unique constraint is applied to the property
sequence_name in order to ensure uniqueness of sequences.

If required, you can set the initial value of a sequence and the increment size via
@SequenceGenerator#initialValue() and @SequenceGenerator#allocationSize(),
respectively. The options @SequenceGenerator#catalog() and
@SequenceGenerator#schema() are not supported.

Table-based generators are represented by nodes in the following form:

206

Example 141. GenerationType.TABLE

@Entity
public class Video {

 ...

 @Id
 @GeneratedValue(strategy = GenerationType.TABLE, generator = "video")
 @TableGenerator(
 name = "video",
 table = "Sequences",
 pkColumnName = "key",
 pkColumnValue = "video",
 valueColumnName = "seed"
)
 public Integer getId() {
 return id;
 }

 ...

Each table generator node is labelled with TABLE_BASED_SEQUENCE and the table name as specified
via @TableGenerator#table(). The sequence name is to be given via
@TableGenerator#pkColumnValue(). The node properties holding the sequence name and value
can be configured via @TableGenerator#pkColumnName() and
@TableGenerator#valueColumnName(), respectively. A unique constraint is applied to the
property sequence_name to avoid the same sequence name is used twice within the same "table".

If required, you can set the initial value of a sequence and the increment size via
@TableGenerator#initialValue() and @TableGenerator#allocationSize(), respectively.
The options @TableGenerator#catalog(), @TableGenerator#schema(),
@TableGenerator#uniqueConstraints() and @TableGenerator#indexes() are not
supported.

12.3.5. Labels summary

The maximum number of labels the database can contain is roughly 2 billion.

The following summary will help you to keep track of the labels assigned to a new node:

207

Table 55. Summary of the labels assigned to a new node

NODE TYPE LABELS

Entity ENTITY, <Entity class name>

Embeddable EMBEDDED, <Embeddable class name>

GenerationType.SEQUENCE SEQUENCE

GenerationType.TABLE TABLE_BASED_SEQUENCE, <Table name>

12.4. Transactions
In Neo4j, operations must be executed inside a transaction. Make sure your interactions with
Hibernate OGM are within a transaction when you target Neo4J.

Example 142. Example of starting and committing transactions

Session session = factory.openSession();
Transaction tx = session.beginTransaction();

Account account = new Account();
account.setLogin("myAccount");
session.persist(account);

tx.commit();

...

tx = session.beginTransaction();
Account savedAccount = (Account) session.get(Account.class, account.getId());
tx.commit();

In the case of JTA, Hibernate OGM attaches the Neo4J internal transaction to the JTA transaction
lifecycle. That way when the JTA transaction is committed or rollbacked (for example by an EJB CMT
or explicitly), the Neo4J transaction is also committed or rollbacked. This makes for a nice integration
in a Java EE container.

This is NOT a true JTA/XA integration but more a lifecycle alignment: changes on
more than one datasource won’t be executed as a single atomic transaction.

In particular, if the JTA transaction involves multiple resources, Neo4j might
commit before a failure of another resource. In this case, Neo4j won’t be able to
rollback even if the JTA transaction will.

12.5. Queries
You can express queries in a few different ways:

• using JPQL

208

• using the Cypher query language

While you can use JPQL for simple queries, you might hit limitations. The current recommended
approach is to use native Cypher queries if your query involves nested (list of) elements.

You don’t need Hibernate Search on the classpath to run queries.

12.5.1. JPQL queries

Hibernate OGM is a work in progress, so only a sub-set of JPQL constructs is available when using the
JPQL query support. This includes:

• simple comparisons using "<", "<=", "=", ">=" and ">"

• IS NULL and IS NOT NULL

• the boolean operators AND, OR, NOT

• LIKE, IN and BETWEEN

• ORDER BY

• inner JOIN on embedded collections

• projections of regular and embedded properties

Queries using these constructs will be transformed into equivalent Cypher queries.

Let us know by opening an issue or sending an email what query you wish to
execute. Expanding our support in this area is high on our priority list.

12.5.2. Cypher queries

Hibernate OGM also supports Cypher queries for Neo4j. You can execute Cypher queries as shown in
the following example:

209

http://docs.neo4j.org/chunked/stable/cypher-query-lang.html
http://docs.neo4j.org/chunked/stable/cypher-query-lang.html

Example 143. Using the JPA API

@Entity
public class Poem {

 @Id
 private Long id;

 private String name;

 private String author;

 // getters, setters ...

}

...

javax.persistence.EntityManager em = ...

// a single result query
String query1 = "MATCH (n:Poem { name:'Portia', author:'Oscar Wilde' }) RETURN n";
Poem poem = (Poem) em.createNativeQuery(query1, Poem.class).getSingleResult();

// query with order by
String query2 = "MATCH (n:Poem { name:'Portia', author:'Oscar Wilde' }) " +
 "RETURN n ORDER BY n.name";
List<Poem> poems = em.createNativeQuery(query2, Poem.class).getResultList();

// query with projections
String query3 = MATCH (n:Poem) RETURN n.name, n.author ORDER BY n.name";
List<Object[]> poemNames = (List<Object[]>) em.createNativeQuery(query3)
 .getResultList();

The result of a query is a managed entity (or a list thereof) or a projection of attributes in form of an
object array, just like you would get from a JPQL query.

Example 144. Using the Hibernate native API

OgmSession session = ...

String query1 = "MATCH (n:Poem { name:'Portia', author:'Oscar Wilde' }) " +
 "RETURN n";
Poem poem = session.createNativeQuery(query1)
 .addEntity("Poem", Poem.class)
 .uniqueResult();

String query2 = "MATCH (n:Poem { name:'Portia', author:'Oscar Wilde' }) " +
 "RETURN n ORDER BY n.name";
List<Poem> poems = session.createNativeQuery(query2)
 .addEntity("Poem", Poem.class)
 .list();

Native queries can also be created using the @NamedNativeQuery annotation:

210

Example 145. Using @NamedNativeQuery

@Entity
@NamedNativeQuery(
 name = "AthanasiaPoem",
 query = "MATCH (n:Poem { name:'Athanasia', author:'Oscar Wilde' }) RETURN n",
 resultClass = Poem.class)
public class Poem { ... }

...

// Using the EntityManager
Poem poem1 = (Poem) em.createNamedQuery("AthanasiaPoem")
 .getSingleResult();

// Using the Session
Poem poem2 = (Poem) session.getNamedQuery("AthanasiaPoem")
 .uniqueResult();

Hibernate OGM stores data in a natural way so you can still execute queries using your favorite tool,
the main drawback is that the results are going to be raw Neo4j elements and not managed entities.

211

	Hibernate OGM 5.4.2.Final: Reference Guide
	Table of Contents
	Preface
	Goals
	What we have today
	Experimental features
	Use cases

	Chapter 1. How to get help and contribute on Hibernate OGM
	1.1. How to get help
	1.2. How to contribute
	1.2.1. How to build Hibernate OGM
	1.2.2. How to contribute code effectively

	1.3. How to build support for a data store
	1.3.1. DataStore providers
	1.3.2. Dialects
	1.3.3. Entities
	1.3.4. Associations
	1.3.5. Configuration
	1.3.6. Types
	1.3.7. Tests

	Chapter 2. Getting started with Hibernate OGM
	Chapter 3. Migrating from 5.4.1.Final
	3.1. MongoDB
	3.1.1. MongoDB Java Driver

	3.2. MongoDB Server
	3.3. Older versions

	Chapter 4. Architecture
	4.1. General architecture
	4.2. How is data persisted
	4.3. Id generation using sequences
	4.4. How is data queried

	Chapter 5. Configure and start Hibernate OGM
	5.1. Bootstrapping Hibernate OGM
	5.1.1. Using JPA
	5.1.2. Using Hibernate ORM native APIs

	5.2. Environments
	5.2.1. In a Java EE container
	5.2.2. In a standalone JTA environment
	5.2.3. Without JTA

	5.3. Configuration options
	5.4. Configuring Hibernate Search
	5.5. How to package Hibernate OGM applications for WildFly 14.0
	5.5.1. Packaging Hibernate OGM applications for WildFly 14.0
	5.5.2. List of the Hibernate OGM WildFly/JBoss feature packs
	5.5.3. Configure your persistence.xml to use your choice of persistence provider
	5.5.4. Enable support for EE 8
	5.5.5. Using the Hibernate OGM modules with Infinispan

	5.6. Integration with WildFly NoSQL
	5.6.1. How to use WildFly NoSQL with Hibernate OGM

	Chapter 6. Map your entities
	6.1. Supported entity mapping
	6.2. Supported Types
	6.3. Supported association mapping
	6.3.1. Elements order in associations

	Chapter 7. Hibernate OGM APIs
	7.1. Bootstrap Hibernate OGM
	7.2. JPA and native Hibernate ORM APIs
	7.2.1. Accessing the OgmSession API

	7.3. On flush and transactions
	7.3.1. Acting upon errors during application of changes

	7.4. SPIs

	Chapter 8. Query your entities
	8.1. Using JPQL
	8.2. Using the native query language of your NoSQL
	8.3. Using Hibernate Search
	8.4. Using the Criteria API
	8.5. Using stored procedures

	Chapter 9. NoSQL datastores
	9.1. Using a specific NoSQL datastore

	Chapter 10. Infinispan
	10.1. Why use Hibernate OGM with Infinispan?
	10.2. Infinispan: Choosing between Embedded Mode and Hot Rod
	10.3. Hibernate OGM & Infinispan Embedded
	10.3.1. Configure Hibernate OGM for Infinispan Embedded
	10.3.2. Adding Infinispan dependencies
	10.3.3. Infinispan specific configuration properties
	10.3.4. Cache names used by Hibernate OGM
	10.3.5. Manage data size
	10.3.6. Clustering: store data on multiple Infinispan nodes
	10.3.7. Transactions
	10.3.8. Infinispan Embedded Stored Procedures
	10.3.9. Storing a Lucene index in Infinispan

	10.4. Hibernate OGM & Infinispan Server over Hot Rod
	10.4.1. Adding Infinispan Remote dependencies
	10.4.2. Configuration properties for Infinispan Remote
	10.4.3. Data encoding: Protobuf Schema
	10.4.4. Storage Principles of the Infinispan Remote dataprovider
	10.4.5. Caches creation and configuration
	10.4.6. Remote Query Capabilities
	10.4.7. Infinispan Remote Transaction
	10.4.8. Infinispan Remote Stored Procedures
	10.4.9. Known Limitations & Future improvements

	10.5. Storage principles
	10.5.1. Properties and built-in types
	10.5.2. Identifiers
	10.5.3. Entities
	10.5.4. Associations

	Chapter 11. MongoDB
	11.1. Why should I use Hibernate OGM with MongoDB
	11.2. Configuring MongoDB
	11.2.1. Adding MongoDB dependencies
	11.2.2. MongoDB specific configuration properties
	11.2.3. Annotation based configuration
	11.2.4. Programmatic configuration

	11.3. Storage principles
	11.3.1. Properties and built-in types
	11.3.2. GridFS Support
	11.3.3. Entities
	11.3.4. Associations

	11.4. Indexes and unique constraints
	11.4.1. Standard indexes and unique constraints
	11.4.2. Using MongoDB specific index options
	11.4.3. Full text indexes

	11.5. Transactions
	11.6. Optimistic Locking
	11.7. Queries
	11.7.1. JPQL queries
	11.7.2. Native MongoDB queries
	11.7.3. Server-side JavaScript and stored procedures
	11.7.4. Hibernate Search

	11.8. Geospatial support
	11.8.1. Geospatial fields
	11.8.2. Geospatial indexes and queries

	Chapter 12. Neo4j
	12.1. How to add Neo4j integration
	12.2. Configuring Neo4j
	12.3. Storage principles
	12.3.1. Properties and built-in types
	12.3.2. Entities
	12.3.3. Associations
	12.3.4. Auto-generated Values
	12.3.5. Labels summary

	12.4. Transactions
	12.5. Queries
	12.5.1. JPQL queries
	12.5.2. Cypher queries

