
Hibernate Validator

JSR 303 Reference

Implementation

Reference Guide
4.0.1.GA

iii

Preface ... v

1. Getting started ... 1

1.1. Setting up a new Maven project .. 1

1.2. Applying constraints .. 2

1.3. Validating constraints .. 3

1.4. Where to go next? .. 5

2. Validation step by step .. 7

2.1. Defining constraints .. 7

2.1.1. Field-level constraints ... 7

2.1.2. Property-level constraints .. 8

2.1.3. Class-level constraints .. 9

2.1.4. Constraint inheritance ... 10

2.1.5. Object graphs .. 11

2.2. Validating constraints .. 14

2.2.1. Obtaining a Validator instance .. 14

2.2.2. Validator methods .. 14

2.2.3. ConstraintViolation methods .. 16

2.2.4. Message interpolation ... 17

2.3. Validating groups .. 17

2.3.1. Group sequences ... 21

2.3.2. Redefining the default group sequence of a class 23

2.4. Built-in constraints ... 24

3. Creating custom constraints ... 29

3.1. Creating a simple constraint .. 29

3.1.1. The constraint annotation ... 29

3.1.2. The constraint validator .. 31

3.1.3. The error message ... 33

3.1.4. Using the constraint ... 33

3.2. Constraint composition .. 35

4. XML configuration ... 39

4.1. validation.xml .. 39

4.2. Mapping constraints .. 40

5. Bootstrapping .. 45

5.1. Configuration and ValidatorFactory .. 45

5.2. ValidationProviderResolver .. 46

5.3. MessageInterpolator .. 47

5.4. TraversableResolver ... 48

5.5. ConstraintValidatorFactory ... 50

6. Integration with other frameworks ... 53

6.1. Database schema-level validation .. 53

6.2. ORM integration .. 53

6.2.1. Hibernate event-based validation ... 53

6.2.2. JPA ... 54

6.3. Presentation layer validation .. 55

Hibernate Validator

iv

7. Further reading .. 57

v

Preface

Validating data is a common task that occurs throughout any application, from the presentation

layer to the persistence layer. Often the same validation logic is implemented in each layer,

proving time consuming and error-prone. To avoid duplication of these validations in each layer,

developers often bundle validation logic directly into the domain model, cluttering domain classes

with validation code which is really metadata about the class itself.

JSR 303 - Bean Validation - defines a metadata model and API for entity validation. The default

metadata source is annotations, with the ability to override and extend the meta-data through the

use of XML. The API is not tied to a specific application tier or programming model. It is specifically

not tied to either the web tier or the persistence tier, and is available for both server-side application

programming, as well as rich client Swing application developers.

Hibernate Validator is the reference implementation of this JSR.

vi

Chapter 1.

1

Getting started
This chapter will show you how to get started with Hibernate Validator, the reference

implementation (RI) of Bean Validation. For the following quickstart you need:

• A JDK >= 5

• Apache Maven [http://maven.apache.org/]

• An Internet connection (Maven has to download all required libraries)

• A properly configured remote repository. Add the following to your settings.xml:

Example 1.1. Configuring the JBoss Maven repository in settings.xml

<repositories>

 <repository>

 <id>jboss</id>

 <url>http://repository.jboss.com/maven2</url>

 <releases>

 <enabled>true</enabled>

 </releases>

 <snapshots>

 <enabled>false</enabled>

 </snapshots>

 </repository>

</repositories>

More information about settings.xml can be found in the Maven Local Settings Model [http://

maven.apache.org/ref/2.0.8/maven-settings/settings.html].

1.1. Setting up a new Maven project

Start by creating new Maven project using the Maven archetype plugin as follows:

Example 1.2. Using Maven's archetype plugin to create a sample project

using Hibernate Validator

mvn archetype:generate \

 -DarchetypeCatalog=http://repository.jboss.com/maven2/archetype-catalog.xml \

 -DgroupId=com.mycompany \

 -DartifactId=beanvalidation-gettingstarted \

 -Dversion=1.0-SNAPSHOT \

http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/ref/2.0.8/maven-settings/settings.html
http://maven.apache.org/ref/2.0.8/maven-settings/settings.html
http://maven.apache.org/ref/2.0.8/maven-settings/settings.html

Chapter 1. Getting started

2

 -Dpackage=com.mycompany

When presented with the list of available archetypes in the JBoss Maven Repository select

the hibernate-validator-quickstart-archetype. After Maven has downloaded all dependencies

confirm the settings by just pressing enter. Maven will create your project in the directory

beanvalidation-gettingstarted. Change into this directory and run:

mvn test

Maven will compile the example code and run the implemented unit tests. Let's have a look at

the actual code.

1.2. Applying constraints

Open the project in the IDE of your choice and have a look at the class Car:

Example 1.3. Class Car annotated with constraints

package com.mycompany;

import javax.validation.constraints.Min;

import javax.validation.constraints.NotNull;

import javax.validation.constraints.Size;

public class Car {

 @NotNull

 private String manufacturer;

 @NotNull

 @Size(min = 2, max = 14)

 private String licensePlate;

 @Min(2)

 private int seatCount;

 public Car(String manufacturer, String licencePlate, int seatCount) {

 this.manufacturer = manufacturer;

 this.licensePlate = licencePlate;

 this.seatCount = seatCount;

 }

Validating constraints

3

 //getters and setters ...

}

@NotNull, @Size and @Min are so-called constraint annotations, that we use to declare

constraints, which shall be applied to the fields of a Car instance:

• manufacturer shall never be null

• licensePlate shall never be null and must be between 2 and 14 characters long

• seatCount shall be at least 2.

1.3. Validating constraints

To perform a validation of these constraints, we use a Validator instance. Let's have a look at

the CarTest class:

Example 1.4. Class CarTest showing validation examples

package com.mycompany;

import static org.junit.Assert.*;

import java.util.Set;

import javax.validation.ConstraintViolation;

import javax.validation.Validation;

import javax.validation.Validator;

import javax.validation.ValidatorFactory;

import org.junit.BeforeClass;

import org.junit.Test;

public class CarTest {

 private static Validator validator;

 @BeforeClass

 public static void setUp() {

 ValidatorFactory factory = Validation.buildDefaultValidatorFactory();

 validator = factory.getValidator();

 }

 @Test

 public void manufacturerIsNull() {

Chapter 1. Getting started

4

 Car car = new Car(null, "DD-AB-123", 4);

 Set<ConstraintViolation<Car>> constraintViolations =

 validator.validate(car);

 assertEquals(1, constraintViolations.size());

 assertEquals("may not be null", constraintViolations.iterator().next().getMessage());

 }

 @Test

 public void licensePlateTooShort() {

 Car car = new Car("Morris", "D", 4);

 Set<ConstraintViolation<Car>> constraintViolations =

 validator.validate(car);

 assertEquals(1, constraintViolations.size());

 assertEquals("size must be between 2 and 14",

 constraintViolations.iterator().next().getMessage());

 }

 @Test

 public void seatCountTooLow() {

 Car car = new Car("Morris", "DD-AB-123", 1);

 Set<ConstraintViolation<Car>> constraintViolations =

 validator.validate(car);

 assertEquals(1, constraintViolations.size());

 assertEquals("must be greater than or equal to 2",

 constraintViolations.iterator().next().getMessage());

 }

 @Test

 public void carIsValid() {

 Car car = new Car("Morris", "DD-AB-123", 2);

 Set<ConstraintViolation<Car>> constraintViolations =

 validator.validate(car);

 assertEquals(0, constraintViolations.size());

 }

}

Where to go next?

5

In the setUp() method we get a Validator instance from the ValidatorFactory. A Validator

instance is thread-safe and may be reused multiple times. For this reason we store it as field of

our test class. We can use the Validator now to validate the different car instances in the test

methods.

The validate() method returns a set of ConstraintViolation instances, which we can iterate

in order to see which validation errors occurred. The first three test methods show some expected

constraint violations:

• The @NotNull constraint on manufacturer is violated in manufacturerIsNull()

• The @Size constraint on licensePlate is violated in licensePlateTooShort()

• The @Min constraint on seatCount is violated in seatCountTooLow()

If the object validates successfully, validate() returns an empty set.

Note that we only use classes from the package javax.validation from the Bean Validation API.

As we don't reference any classes of the RI directly, it would be no problem to switch to another

implementation of the API, should that need arise.

1.4. Where to go next?

That concludes our 5 minute tour through the world of Hibernate Validator. Continue exploring

the code or look at further examples referenced in Chapter 7, Further reading. To get a deeper

understanding of the Bean Validation just continue reading.Chapter 2, Validation step by step.

In case your application has specific validation requirements have a look at Chapter 3, Creating

custom constraints.

6

Chapter 2.

7

Validation step by step
In this chapter we will see in more detail how to use Hibernate Validator to validate constraints for

a given entity model. We will also learn which default constraints the Bean Validation specification

provides and which additional constraints are only provided by Hibernate Validator. Let's start with

how to add constraints to an entity.

2.1. Defining constraints

Constraints in Bean Validation are expressed via Java annotations. In this section we show how to

annotate an object model with these annotations. We have to differentiate between three different

type of constraint annotations - field-, property-, and class-level annotations.

Note

Not all constraints can be placed on all of these levels. In fact, none of the

default constraints defined by Bean Validation can be placed at class level.

The java.lang.annotation.Target annotation in the constraint annotation itself

determines on which elements a constraint can be placed. See Chapter 3, Creating

custom constraints for more information.

2.1.1. Field-level constraints

Constraints can be expressed by annotating a field of a class. Example 2.1, “Field level constraint”

shows a field level configuration example:

Example 2.1. Field level constraint

package com.mycompany;

import javax.validation.constraints.NotNull;

public class Car {

 @NotNull

 private String manufacturer;

 @AssertTrue

 private boolean isRegistered;

 public Car(String manufacturer, boolean isRegistered) {

 super();

Chapter 2. Validation step by...

8

 this.manufacturer = manufacturer;

 this.isRegistered = isRegistered;

 }

}

When using field level constraints field access strategy is used to access the value to be validated.

This means the instance variable directly independed of the access type.

Note

The access type (private, protected or public) does not matter.

Note

Static fields and properties cannot be validated.

2.1.2. Property-level constraints

If your model class adheres to the JavaBeans [http://java.sun.com/javase/technologies/desktop/

javabeans/index.jsp] standard, it is also possible to annotate the properties of a bean class instead

of its fields. Example 2.2, “Property level constraint” uses the same entity as in Example 2.1, “Field

level constraint”, however, property level constraints are used.

Note

The property's getter method has to be annotated, not its setter.

Example 2.2. Property level constraint

package com.mycompany;

import javax.validation.constraints.AssertTrue;

import javax.validation.constraints.NotNull;

public class Car {

 private String manufacturer;

 private boolean isRegistered;

http://java.sun.com/javase/technologies/desktop/javabeans/index.jsp
http://java.sun.com/javase/technologies/desktop/javabeans/index.jsp
http://java.sun.com/javase/technologies/desktop/javabeans/index.jsp

Class-level constraints

9

 public Car(String manufacturer, boolean isRegistered) {

 super();

 this.manufacturer = manufacturer;

 this.isRegistered = isRegistered;

 }

 @NotNull

 public String getManufacturer() {

 return manufacturer;

 }

 public void setManufacturer(String manufacturer) {

 this.manufacturer = manufacturer;

 }

 @AssertTrue

 public boolean isRegistered() {

 return isRegistered;

 }

 public void setRegistered(boolean isRegistered) {

 this.isRegistered = isRegistered;

 }

}

When using property level constraints property access strategy is used to access the value to be

validated. This means the bean validation provider accesses the state via the property accessor

method.

Tip

It is recommended to stick either to field or property annotation within one class. It

is not recommended to annotate a field and the accompanying getter method as

this would cause the field to be validated twice.

2.1.3. Class-level constraints

Last but not least, a constraint can also be placed on class level. When a constraint annotation

is placed on this level the class instance itself passed to the ConstraintValidator. Class level

constraints are useful if it is necessary to inspect more than a single property of the class to validate

it or if a correlation between different state variables has to be evaluated. In Example 2.3, “Class

level constraint” we add the property passengers to the class Car. We also add the constraint

PassengerCount on the class level. We will later see how we can actually create this custom

Chapter 2. Validation step by...

10

constraint (see Chapter 3, Creating custom constraints). For now we it is enough to know that

PassengerCount will ensure that there cannot be more passengers in a car than there are seats.

Example 2.3. Class level constraint

package com.mycompany;

import javax.validation.constraints.Min;

import javax.validation.constraints.NotNull;

import javax.validation.constraints.Size;

@PassengerCount

public class Car {

 @NotNull

 private String manufacturer;

 @NotNull

 @Size(min = 2, max = 14)

 private String licensePlate;

 @Min(2)

 private int seatCount;

 private List<Person> passengers;

 public Car(String manufacturer, String licencePlate, int seatCount) {

 this.manufacturer = manufacturer;

 this.licensePlate = licencePlate;

 this.seatCount = seatCount;

 }

 //getters and setters ...

}

2.1.4. Constraint inheritance

When validating an object that implements an interface or extends another class, all constraint

annotations on the implemented interface and parent class apply in the same manner as the

constraints specified on the validated object itself. To make things clearer let's have a look at the

following example:

Object graphs

11

Example 2.4. Constraint inheritance using RentalCar

package com.mycompany;

import javax.validation.constraints.NotNull;

public class RentalCar extends Car {

 private String rentalStation;

 public RentalCar(String manufacturer, String rentalStation) {

 super(manufacturer);

 this.rentalStation = rentalStation;

 }

 @NotNull

 public String getRentalStation() {

 return rentalStation;

 }

 public void setRentalStation(String rentalStation) {

 this.rentalStation = rentalStation;

 }

}

Our well-known class Car from ??? is now extended by RentalCar with the additional property

rentalStation. If an instance of RentalCar is validated, not only the @NotNull constraint on

rentalStation is validated, but also the constraint on manufacturer from the parent class.

The same would hold true, if Car were an interface implemented by RentalCar.

Constraint annotations are aggregated if methods are overridden. If RentalCar would override

the getManufacturer() method from Car any constraints annotated at the overriding method

would be evaluated in addition to the @NotNull constraint from the super-class.

2.1.5. Object graphs

The Bean Validation API does not only allow to validate single class instances but also complete

object graphs. To do so, just annotate a field or property representing a reference to another object

with @Valid. If the parent object is validated, all referenced objects annotated with @Valid will be

validated as well (as will be their children etc.). See Example 2.6, “Adding a driver to the car”.

Chapter 2. Validation step by...

12

Example 2.5. Class Person

package com.mycompany;

import javax.validation.constraints.NotNull;

public class Person {

 @NotNull

 private String name;

 public Person(String name) {

 super();

 this.name = name;

 }

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

}

Example 2.6. Adding a driver to the car

package com.mycompany;

import javax.validation.Valid;

import javax.validation.constraints.NotNull;

public class Car {

 @NotNull

 @Valid

 private Person driver;

 public Car(Person driver) {

 this.driver = driver;

 }

Object graphs

13

 //getters and setters ...

}

If an instance of Car is validated, the referenced Person object will be validated as well, as the

driver field is annotated with @Valid. Therefore the validation of a Car will fail if the name field of

the referenced Person instance is null.

Object graph validation also works for collection-typed fields. That means any attributes that are

• arrays

• implement java.lang.Iterable (especially Collection, List and Set)

• implement java.util.Map

can be annotated with @Valid, which will cause each contained element to be validated, when

the parent object is validated.

Example 2.7. Car with a list of passengers

package com.mycompany;

import java.util.ArrayList;

import java.util.List;

import javax.validation.Valid;

import javax.validation.constraints.NotNull;

public class Car {

 @NotNull

 @Valid

 private List<Person> passengers = new ArrayList<Person>();

 public Car(List<Person> passengers) {

 this.passengers = passengers;

 }

 //getters and setters ...

}

If a Car instance is validated, a ConstraintValidation will be created, if any of the Person

objects contained in the passengers list has a null name.

Chapter 2. Validation step by...

14

Note

null values are getting ignored when validating object graphs.

2.2. Validating constraints

The Validator interface is the main entry point to Bean Validation. In Section 5.1, “Configuration

and ValidatorFactory” we will first show how to obtain an Validator instance. Afterwards we will

learn how to use the different methods of the Validator interface.

2.2.1. Obtaining a Validator instance

The first step towards validating an entity instance is to get hold of a Validator instance. The

road to this instance leads via the Validation class and a ValidatorFactory. The easiest way

is to use the static Validation.buildDefaultValidatorFactory() method:

Example 2.8. Validation.buildDefaultValidatorFactory()

ValidatorFactory factory = Validation.buildDefaultValidatorFactory();

Validator validator = factory.getValidator();

For other ways of obtaining a Validator instance see Chapter 5, Bootstrapping. For now we just

want to see how we can use the Validator instance to validate entity instances.

2.2.2. Validator methods

The Validator interface contains three methods that can be used to either validate entire entities

or just a single properties of the entity.

All three methods return a Set<ConstraintViolation>. The set is empty, if the validation

succeeds. Otherwise a ConstraintViolation instance is added for each violated constraint.

All the validation methods have a var-args parameter which can be used to specify, which

validation groups shall be considered when performing the validation. If the parameter is not

specified the default validation group (javax.validation.Default) will be used. We will go into

more detail on the topic of validation groups in Section 2.3, “Validating groups”

2.2.2.1. validate

Use the validate() method to perform validation of all constraints of a given entity instance (see

Example 2.9, “Usage of Validator.validate()”).

Validator methods

15

Example 2.9. Usage of Validator.validate()

ValidatorFactory factory = Validation.buildDefaultValidatorFactory();

Validator validator = factory.getValidator();

Car car = new Car(null);

Set<ConstraintViolation<Car>> constraintViolations = validator.validate(car);

assertEquals(1, constraintViolations.size());

assertEquals("may not be null", constraintViolations.iterator().next().getMessage());

2.2.2.2. validateProperty

With help of the validateProperty() a single named property of a given object can be validated.

The property name is the JavaBeans property name.

Example 2.10. Usage of Validator.validateProperty()

Validator validator = Validation.buildDefaultValidatorFactory().getValidator();

Car car = new Car(null);

Set<ConstraintViolation<Car>> constraintViolations = validator.validateProperty(car,

 "manufacturer");

assertEquals(1, constraintViolations.size());

assertEquals("may not be null", constraintViolations.iterator().next().getMessage());

Validator.validateProperty is for example used in the integration of Bean Validation into JSF

2 (see Section 6.3, “Presentation layer validation”).

2.2.2.3. validateValue

Using the validateValue() method you can check, whether a single property of a given class

can be validated successfully, if the property had the specified value:

Example 2.11. Usage of Validator.validateValue()

Validator validator = Validation.buildDefaultValidatorFactory().getValidator();

Chapter 2. Validation step by...

16

Set<ConstraintViolation<Car>> constraintViolations = validator.validateValue(Car.class,

 "manufacturer", null);

assertEquals(1, constraintViolations.size());

assertEquals("may not be null", constraintViolations.iterator().next().getMessage());

Note

@Valid is not honored by validateProperty() or validateValue().

2.2.3. ConstraintViolation methods

Now it is time to have a closer look at what a ConstraintViolation. Using the different methods

of ConstraintViolation a lot of useful information about the cause of the validation failure can

be determined. Table 2.1, “The various ConstraintViolation methods” gives an overview of these

methods:

Table 2.1. The various ConstraintViolation methods

Method Usage Example (refering to

Example 2.9, “Usage of

Validator.validate()”)

getMessage() The interpolated error

message.

may not be null

getMessageTemplate() The non-interpolated error

message.

{javax.validation.constraints.NotNull.message}

getRootBean() The root bean being validated. car

getRootBeanClass() The class of the root bean

being validated.

Car.class

getLeafBean() If a bean constraint, the

bean instance the constraint

is applied on. If a property

constraint, the bean instance

hosting the property the

constraint is applied on.

car

getPropertyPath() The property path to the value

from root bean.

getInvalidValue() The value failing to pass the

constraint.

passengers

getConstraintDescriptor() Constraint metadata reported

to fail.

Message interpolation

17

2.2.4. Message interpolation

As we will see in Chapter 3, Creating custom constraints each constraint definition must

define a default message descriptor. This message can be overridden at declaration time

using the message attribute of the constraint. You can see this in Example 2.13, “Driver”. This

message descriptors get interpolated when a constraint validation fails using the configured

MessageInterpolator. The interpolator will try to resolve any message parameters, meaning

string literals enclosed in braces. In order to resolve these parameters Hibernate Validator's default

MessageInterpolator first recursively resolves parameters against a custom ResourceBundle

called ValidationMessages.properties at the root of the classpath (It is up to you to

create this file). If no further replacements are possible against the custom bundle the default

ResourceBundle under /org/hibernate/validator/ValidationMessages.properties gets

evaluated. If a replacement occurs against the default bundle the algorithm looks again at the

custom bundle (and so on). Once no further replacements against these two resource bundles

are possible remaining parameters are getting resolved against the attributes of the constraint to

be validated.

Since the braces { and } have special meaning in the messages they need to be escaped if they

are used literally. The following The following rules apply:

• \{ is considered as the literal {

• \} is considered as the literal }

• \\ is considered as the literal \

If the default message interpolator does not fit your requirements it is possible to plug a custom

MessageInterpolator when the ValidatorFactory gets created. This can be seen in Chapter 5,

Bootstrapping.

2.3. Validating groups

Groups allow you to restrict the set of constraints applied during validation. This makes

for example wizard like validation possible where in each step only a specified subset of

constraints get validated. The groups targeted are passed as var-args parameters to validate,

validateProperty and validateValue. Let's have a look at an extended Car with Driver

example. First we have the class Person (Example 2.12, “Person”) which has a @NotNull

constraint on name. Since no group is specified for this annotation its default group is

javax.validation.Default.

Note

When more than one group is requested, the order in which the groups

are evaluated is not deterministic. If no group is specified the default group

javax.validation.Default is assumed.

Chapter 2. Validation step by...

18

Example 2.12. Person

public class Person {

 @NotNull

 private String name;

 public Person(String name) {

 this.name = name;

 }

 // getters and setters ...

}

Next we have the class Driver (Example 2.13, “Driver”) extending Person. Here we are adding

the properties age and hasDrivingLicense. In order to drive you must be at least 18 (@Min(18))

and you must have a driving license (@AssertTrue). Both constraints defined on these properties

belong to the group DriverChecks. As you can see in Example 2.14, “Group interfaces” the group

DriverChecks is just a simple tagging interface. Using interfaces makes the usage of groups type

safe and allows for easy refactoring. It also means that groups can inherit from each other via

class inheritance.

Note

The Bean Validation specification does not enforce that groups have to be

interfaces. Non interface classes could be used as well, but we recommend to stick

to interfaces.

Example 2.13. Driver

public class Driver extends Person {

 @Min(value = 18, message = "You have to be 18 to drive a car", groups =

 DriverChecks.class)

 public int age;

 @AssertTrue(message = "You first have to pass the driving test", groups =

 DriverChecks.class)

 public boolean hasDrivingLicense;

 public Driver(String name) {

 super(name);

 }

Validating groups

19

 public void passedDrivingTest(boolean b) {

 hasDrivingLicense = b;

 }

 public int getAge() {

 return age;

 }

 public void setAge(int age) {

 this.age = age;

 }

}

Example 2.14. Group interfaces

public interface DriverChecks {

}

public interface CarChecks {

}

Last but not least we add the property passedVehicleInspection to the Car class (Example 2.15,

“Car”) indicating whether a car passed the road worthy tests.

Example 2.15. Car

public class Car {

 @NotNull

 private String manufacturer;

 @NotNull

 @Size(min = 2, max = 14)

 private String licensePlate;

 @Min(2)

 private int seatCount;

 @AssertTrue(message = "The car has to pass the vehicle inspection first", groups =

 CarChecks.class)

 private boolean passedVehicleInspection;

 @Valid

Chapter 2. Validation step by...

20

 private Driver driver;

 public Car(String manufacturer, String licencePlate, int seatCount) {

 this.manufacturer = manufacturer;

 this.licensePlate = licencePlate;

 this.seatCount = seatCount;

 }

}

Overall three different groups are used in our example. Person.name, Car.manufacturer,

Car.licensePlate and Car.seatCount all belong to the Default group. Driver.age

and Driver.hasDrivingLicense belong to DriverChecks and last but not least

Car.passedVehicleInspection belongs to the group CarChecks. Example 2.16, “Drive away” shows

how passing different group combinations to the Validator.validate method result in different

validation results.

Example 2.16. Drive away

public class GroupTest {

 private static Validator validator;

 @BeforeClass

 public static void setUp() {

 ValidatorFactory factory = Validation.buildDefaultValidatorFactory();

 validator = factory.getValidator();

 }

 @Test

 public void driveAway() {

 // create a car and check that everything is ok with it.

 Car car = new Car("Morris", "DD-AB-123", 2);

 Set<ConstraintViolation<Car>> constraintViolations = validator.validate(car);

 assertEquals(0, constraintViolations.size());

 // but has it passed the vehicle inspection?

 constraintViolations = validator.validate(car, CarChecks.class);

 assertEquals(1, constraintViolations.size());

 assertEquals("The car has to pass the vehicle inspection first",

 constraintViolations.iterator().next().getMessage());

 // let's go to the vehicle inspection

 car.setPassedVehicleInspection(true);

Group sequences

21

 assertEquals(0, validator.validate(car).size());

 // now let's add a driver. He is 18, but has not passed the driving test yet

 Driver john = new Driver("John Doe");

 john.setAge(18);

 car.setDriver(john);

 constraintViolations = validator.validate(car, DriverChecks.class);

 assertEquals(1, constraintViolations.size());

 assertEquals("You first have to pass the driving test",

 constraintViolations.iterator().next().getMessage());

 // ok, John passes the test

 john.passedDrivingTest(true);

 assertEquals(0, validator.validate(car, DriverChecks.class).size());

 // just checking that everything is in order now

 assertEquals(0, validator.validate(car, Default.class, CarChecks.class,

 DriverChecks.class).size());

 }

}

First we create a car and validate it using no explicit group. There are no validation errors,

even though the property passedVehicleInspection is per default false. However, the constraint

defined on this property does not belong to the default group.

Next we just validate the CarChecks group which will fail until we make sure that the car passes

the vehicle inspection.

When we then add a driver to the car and validate against DriverChecks we get again a constraint

violation due to the fact that the driver has not yet passed the driving test. Only after setting

passedDrivingTest to true the validation against DriverChecks will pass.

Last but not least, we show that all constraints are passing by validating against all defined groups.

2.3.1. Group sequences

By default, constraints are evaluated in no particular order and this regardless of which groups

they belong to. In some situations, however, it is useful to control the order of the constraints

evaluation. In our example from Section 2.3, “Validating groups” we could for example require

that first all default car constraints are passing before we check the road worthiness of the car.

Finally before we drive away we check the actual driver constraints. In order to implement such an

order one would define a new interface and annotate it with @GroupSequence defining the order

in which the groups have to be validated.

Chapter 2. Validation step by...

22

Note

If at least one constraints fails in a sequenced group none of the constraints of the

follwoing groups in the sequence get validated.

Example 2.17. Interface with @GroupSequence

@GroupSequence({Default.class, CarChecks.class, DriverChecks.class})

public interface OrderedChecks {

}

Warning

Groups defining a sequence and groups composing a sequence must not be

involved in a cyclic dependency either directly or indirectly, either through cascaded

sequence definition or group inheritance. If a group containing such a circularity is

evaluated, a GroupDefinitionException is raised.

The usage of the new sequence could then look like in Example 2.18, “Usage of a group

sequence”.

Example 2.18. Usage of a group sequence

@Test

public void testOrderedChecks() {

 Car car = new Car("Morris", "DD-AB-123", 2);

 car.setPassedVehicleInspection(true);

 Driver john = new Driver("John Doe");

 john.setAge(18);

 john.passedDrivingTest(true);

 car.setDriver(john);

 assertEquals(0, validator.validate(car, OrderedChecks.class).size());

}

Redefining the default group sequence of a class

23

2.3.2. Redefining the default group sequence of a class

The @GroupSequence annotation also fulfills a second purpose. It allows you to redefine what the

Default group means for a given class. To redefine Default for a class, place a @GroupSequence

annotation on the class. The defined groups in the annotation express the sequence of groups that

substitute Default for this class. Example 2.19, “RentalCar” introduces a new class RentalCar

with a redfined default group. With this definition the check for all three groups can be rewritten

as seen in Example 2.20, “testOrderedChecksWithRedefinedDefault”.

Example 2.19. RentalCar

@GroupSequence({ RentalCar.class, CarChecks.class })

public class RentalCar extends Car {

 public RentalCar(String manufacturer, String licencePlate, int seatCount) {

 super(manufacturer, licencePlate, seatCount);

 }

}

Example 2.20. testOrderedChecksWithRedefinedDefault

@Test

public void testOrderedChecksWithRedefinedDefault() {

 RentalCar rentalCar = new RentalCar("Morris", "DD-AB-123", 2);

 rentalCar.setPassedVehicleInspection(true);

 Driver john = new Driver("John Doe");

 john.setAge(18);

 john.passedDrivingTest(true);

 rentalCar.setDriver(john);

 assertEquals(0, validator.validate(rentalCar, Default.class, DriverChecks.class).size());

}

Note

Due to the fact that there cannot be a cyclic dependency in the group and group

sequence definitions one cannot just add Default to the sequence redefining

Default for a class. Instead the class itself should be added!

Chapter 2. Validation step by...

24

2.4. Built-in constraints

Hibernate Validator implements all of the default constraints specified in Bean Validation as well

as some custom ones. Table 2.2, “Built-in constraints” list all constraints available in Hibernate

Validator.

Table 2.2. Built-in constraints

Annotation Part of Bean

Validation

Specification

Apply on Use Hibernate

Metadata

impact

@AssertFalse yes field/property check that the

annotated

element is false.

none

@AssertTrue yes field/property check that the

annotated

element is true.

none

@DecimalMax yes field/property.

Supported types

are BigDecimal,

BigInteger,

String, byte,

short, int,

long and the

respective

wrappers of the

primitive types.

The annotated

element must be

a number whose

value must be

lower or equal

to the specified

maximum. The

parameter value

is the string

representation of

the max value

according to

the BigDecimal

string

representation.

none

@DecimalMin yes field/property.

Supported types

are BigDecimal,

BigInteger,

String, byte,

short, int,

long and the

respective

wrappers of the

primitive types.

The annotated

element must be

a number whose

value must be

higher or equal

to the specified

minimum. The

parameter value

is the string

representation of

the min value

according to

none

Built-in constraints

25

Annotation Part of Bean

Validation

Specification

Apply on Use Hibernate

Metadata

impact

the BigDecimal

string

representation.

@Digits(integer=,

fraction=)

yes field/property.

Supported types

are BigDecimal,

BigInteger,

String, byte,

short, int,

long and the

respective

wrappers of the

primitive types.

Check whether

the property

is a number

having up to

integer digits

and fraction

fractional digits.

Define column

precision and

scale.

@Email no field/property.

Needs to be a

string.

Check whether

the specified

string is a valid

email address.

none

@Future yes field/property.

Supported types

are

java.util.Date

and

java.util.Calendar.

Checks whether

the annotated

date is in the

future.

none

@Length(min=,

max=)

no field/property.

Needs to be a

string.

Validate that the

annotated string

is between min

and max included.

none

@Max yes field/property.

Supported types

are BigDecimal,

BigInteger,

String, byte,

short, int,

long and the

respective

wrappers of the

primitive types.

Checks whether

the annotated

value is less

than or equal

to the specified

maximum.

Add a check

constraint on the

column.

Chapter 2. Validation step by...

26

Annotation Part of Bean

Validation

Specification

Apply on Use Hibernate

Metadata

impact

@Min yes field/property.

Supported types

are BigDecimal,

BigInteger,

String, byte,

short, int,

long and the

respective

wrappers of the

primitive types.

Check whether

the annotated

value is higher

than or equal

to the specified

minimum.

Add a check

constraint on the

column.

@NotNull yes field/property Check that the

annotated value

is not null.

Column(s) are

not null.

@NotEmpty no field/property.

Needs to be a

string.

Check if the

string is not null

nor empty.

none

@Null yes field/property Check that the

annotated value

is null.

none

@Past yes field/property.

Supported types

are

java.util.Date

and

java.util.Calendar.

Checks whether

the annotated

date is in the

past.

none

@Pattern(regex=,

flag=)

yes field/property.

Needs to be a

string.

Check if the

annotated string

match the regular

expression

regex.

none

@Range(min=,

max=)

no field/property.

Supported types

are BigDecimal,

BigInteger,

String, byte,

short, int,

long and the

respective

Check whether

the annotated

value lies

between

(inclusive) the

specified

minimum and

maximum.

none

Built-in constraints

27

Annotation Part of Bean

Validation

Specification

Apply on Use Hibernate

Metadata

impact

wrappers of the

primitive types.

@Size(min=,

max=)

yes field/property.

Supported types

are String,

Collection, Map

and arrays.

Check if the

annotated

element size is

between min and

max (inclusive).

Column length

will be set to max.

@Valid yes field/property Perform

validation

recursively on

the associated

object.

none

Note

On top of the parameters indicated in Table 2.2, “Built-in constraints” each

constraint supports the parameters message, groups and payload. This is a

requirement of the Bean Validation specification.

In some cases these built-in constraints will not fulfill your requirements. In this case you can

literally in a minute write your own constraints. We will discuss this in Chapter 3, Creating custom

constraints

28

Chapter 3.

29

Creating custom constraints
Though the Bean Validation API defines a whole set of standard constraint annotations one can

easily think of situations in which these standard annotations won't suffice. For these cases you

are able to create custom constraints tailored to your specific validation requirements in a simple

manner.

3.1. Creating a simple constraint

To create a custom constraint, the following three steps are required:

• Create a constraint annotation

• Implement a validator

• Define a default error message

3.1.1. The constraint annotation

Let's write a constraint annotation, that can be used to express that a given string shall either be

upper case or lower case. We'll apply it later on to the licensePlate field of the Car class from

Chapter 1, Getting started to ensure, that the field is always an upper-case string.

First we need a way to express the two case modes. We might use String constants, but a better

way to go is to use a Java 5 enum for that purpose:

Example 3.1. Enum CaseMode to express upper vs. lower case

package com.mycompany;

public enum CaseMode {

 UPPER,

 LOWER;

}

Now we can define the actual constraint annotation. If you've never designed an annotation before,

this may look a bit scary, but actually it's not that hard:

Example 3.2. Defining CheckCase constraint annotation

package com.mycompany;

import static java.lang.annotation.ElementType.*;

import static java.lang.annotation.RetentionPolicy.*;

Chapter 3. Creating custom co...

30

import java.lang.annotation.Documented;

import java.lang.annotation.Retention;

import java.lang.annotation.Target;

import javax.validation.Constraint;

import javax.validation.ConstraintPayload;

@Target({ METHOD, FIELD, ANNOTATION_TYPE })

@Retention(RUNTIME)

@Constraint(validatedBy = CheckCaseValidator.class)

@Documented

public @interface CheckCase {

 String message() default "{com.mycompany.constraints.checkcase}";

 Class<?>[] groups() default {};

 Class<? extends Payload>[] payload() default {};

 CaseMode value();

}

An annotation type is defined using the @interface keyword. All attributes of an annotation type

are declared in a method-like manner. The specification of the Bean Validation API demands, that

any constraint annotation defines

• an attribute message that returns the default key for creating error messages in case the

constraint is violated

• an attribute groups that allows the specification of validation groups, to which this constraint

belongs (see Section 2.3, “Validating groups”). This must default to an empty array of type

Class<?>.

• an attribute payload that can be used by clients of the Bean Validation API to asign custom

payload objects to a constraint. This attribute is not used by the API itself.

Tip

An examle for a custom payload could be the definition of a severity.

public class Severity {

The constraint validator

31

 public static class Info extends ConstraintPayload {};

 public static class Error extends ConstraintPayload {};

}

public class ContactDetails {

 @NotNull(message="Name is mandatory", payload=Severity.Error.class)

 private String name;

 @NotNull(message="Phone number not specified, but not mandatory",

 payload=Severity.Info.class)

 private String phoneNumber;

 // ...

}

Now a client can after the validation of a ContactDetails

instance access the severity of a constraint using

ConstraintViolation.getConstraintDescriptor().getPayload() and

adjust its behaviour depending on the severity.

Besides those three mandatory attributes (messge, groups and payload) we add another one

allowing for the required case mode to be specified. The name value is a special one, which

can be omitted upon using the annotation, if it is the only attribute specified, as e.g. in

@CheckCase(CaseMode.UPPER).

In addition we annotate the annotation type with a couple of so-called meta annotations:

• @Target({ METHOD, FIELD, ANNOTATION_TYPE }): Says, that methods, fields and annotation

declarations may be annotated with @CheckCase (but not type declarations e.g.)

• @Retention(RUNTIME): Specifies, that annotations of this type will be available at runtime by

the means of reflection

• @Constraint(validatedBy = CheckCaseValidator.class): Specifies the validator to be

used to validate elements annotated with @CheckCase

• @Documented: Says, that the use of @CheckCase will be contained in the JavaDoc of elements

annotated with it

3.1.2. The constraint validator

Next, we need to implement a constraint validator, that's able to validate elements with a

@CheckCase annotation. To do so, we implement the interface ConstraintValidator as shown

below:

Chapter 3. Creating custom co...

32

Example 3.3. Implementing a constraint validator for the constraint CheckCase

package com.mycompany;

import javax.validation.ConstraintValidator;

import javax.validation.ConstraintValidatorContext;

public class CheckCaseValidator implements ConstraintValidator<CheckCase, String> {

 private CaseMode caseMode;

 public void initialize(CheckCase constraintAnnotation) {

 this.caseMode = constraintAnnotation.value();

 }

 public boolean isValid(String object, ConstraintValidatorContext constraintContext) {

 if (object == null)

 return true;

 if (caseMode == CaseMode.UPPER)

 return object.equals(object.toUpperCase());

 else

 return object.equals(object.toLowerCase());

 }

}

The ConstraintValidator interface defines two type parameters, which we set in our

implementation. The first one specifies the annotation type to be validated (in our example

CheckCase), the second one the type of elements, which the validator can handle (here String).

In case a constraint annotation is allowed at elements of different types, a ConstraintValidator

for each allowed type has to be implemented and registered at the constraint annotation as shown

above.

The implementation of the validator is straightforward. The initialize() method gives us access

to the attribute values of the annotation to be validated. In the example we store the CaseMode in

a field of the validator for further usage.

In the isValid() method we implement the logic, that determines, whether a String is valid

according to a given @CheckCase annotation or not. This decision depends on the case mode

retrieved in initialize(). As the Bean Validation specification recommends, we consider null

The error message

33

values as being valid. If null is not a valid value for an element, it should be annotated with

@NotNull explicitely.

The passed-in ConstraintValidatorContext could be used to raise any custom validation

errors, but as we are fine with the default behavior, we can ignore that parameter for now.

3.1.3. The error message

Finally we need to specify the error message, that shall be used, in case a @CheckCase constraint

is violated. To do so, we add the following to our custom ValidationMessages.properties (see

also Section 2.2.4, “Message interpolation”)

Example 3.4. Defining a custom error message for the CheckCase constraint

com.mycompany.constraints.CheckCase.message=Case mode must be {value}.

If a validation error occurs, the validation runtime will use the default value, that we specified for

the message attribute of the @CheckCase annotation to look up the error message in this file.

3.1.4. Using the constraint

Now that our first custom constraint is completed, we can use it in the Car class from the Chapter 1,

Getting started chapter to specify that the licensePlate field shall only contain upper-case strings:

Example 3.5. Applying the CheckCase constraint

package com.mycompany;

import javax.validation.constraints.Min;

import javax.validation.constraints.NotNull;

import javax.validation.constraints.Size;

public class Car {

 @NotNull

 private String manufacturer;

 @NotNull

 @Size(min = 2, max = 14)

 @CheckCase(CaseMode.UPPER)

 private String licensePlate;

 @Min(2)

 private int seatCount;

Chapter 3. Creating custom co...

34

 public Car(String manufacturer, String licencePlate, int seatCount) {

 this.manufacturer = manufacturer;

 this.licensePlate = licencePlate;

 this.seatCount = seatCount;

 }

 //getters and setters ...

}

Finally let's demonstrate in a little test that the @CheckCase constraint is properly validated:

Example 3.6. Testcase demonstrating the CheckCase validation

package com.mycompany;

import static org.junit.Assert.*;

import java.util.Set;

import javax.validation.ConstraintViolation;

import javax.validation.Validation;

import javax.validation.Validator;

import javax.validation.ValidatorFactory;

import org.junit.BeforeClass;

import org.junit.Test;

public class CarTest {

 private static Validator validator;

 @BeforeClass

 public static void setUp() {

 ValidatorFactory factory = Validation.buildDefaultValidatorFactory();

 validator = factory.getValidator();

 }

 @Test

 public void testLicensePlateNotUpperCase() {

Constraint composition

35

 Car car = new Car("Morris", "dd-ab-123", 4);

 Set<ConstraintViolation<Car>> constraintViolations =

 validator.validate(car);

 assertEquals(1, constraintViolations.size());

 assertEquals(

 "Case mode must be UPPER.",

 constraintViolations.iterator().next().getMessage());

 }

 @Test

 public void carIsValid() {

 Car car = new Car("Morris", "DD-AB-123", 4);

 Set<ConstraintViolation<Car>> constraintViolations =

 validator.validate(car);

 assertEquals(0, constraintViolations.size());

 }

}

3.2. Constraint composition

Looking at the licensePlate field of the Car class in Example 3.5, “Applying the CheckCase

constraint”, we see three constraint annotations already. In complexer scenarios, where even

more constraints could be applied to one element, this might become a bit confusing easily.

Furthermore, if we had a licensePlate field in another class, we would have to copy all constraint

declarations to the other class as well, violating the DRY principle.

This problem can be tackled using compound constraints. In the following we create a new

constraint annotation @ValidLicensePlate, that comprises the constraints @NotNull, @Size and

@CheckCase:

Example 3.7. Creating a composing constraint ValidLicensePlate

package com.mycompany;

import static java.lang.annotation.ElementType.*;

import static java.lang.annotation.RetentionPolicy.*;

import java.lang.annotation.Documented;

import java.lang.annotation.Retention;

Chapter 3. Creating custom co...

36

import java.lang.annotation.Target;

import javax.validation.Constraint;

import javax.validation.ConstraintPayload;

import javax.validation.constraints.NotNull;

import javax.validation.constraints.Size;

@NotNull

@Size(min = 2, max = 14)

@CheckCase(CaseMode.UPPER)

@Target({ METHOD, FIELD, ANNOTATION_TYPE })

@Retention(RUNTIME)

@Constraint(validatedBy = {})

@Documented

public @interface ValidLicensePlate {

 String message() default "{com.mycompany.constraints.validlicenseplate}";

 Class<?>[] groups() default {};

 Class<? extends Payload>[] payload() default {};

}

To do so, we just have to annotate the constraint declaration with its comprising constraints (btw.

that's exactly why we allowed annotation types as target for the @CheckCase annotation). As no

additional validation is required for the @ValidLicensePlate annotation itself, we don't declare a

validator within the @Constraint meta annotation.

Using the new compound constraint at the licensePlate field now is fully equivalent to the previous

version, where we declared the three constraints directly at the field itself:

Example 3.8. Application of composing constraint ValidLicensePlate

package com.mycompany;

public class Car {

 @ValidLicensePlate

 private String licensePlate;

 //...

Constraint composition

37

}

The set of ConstraintViolations retrieved when validating a Car instance will contain an

entry for each violated composing constraint of the @ValidLicensePlate constraint. If you rather

prefer a single ConstraintViolation in case any of the composing constraints is violated, the

@ReportAsSingleViolation meta constraint can be used as follows:

Example 3.9. Usage of @ReportAsSingleViolation

//...

@ReportAsSingleViolation

public @interface ValidLicensePlate {

 String message() default "{com.mycompany.constraints.validlicenseplate}";

 Class<?>[] groups() default {};

 Class<? extends Payload>[] payload() default {};

}

38

Chapter 4.

39

XML configuration

4.1. validation.xml

The key to enable XML configuration for Hibernate Validator is the file validation.xml. If this file

exists in the classpath its configuration will be applied when the ValidationFactory gets created.

Example 4.1, “validation-configuration-1.0.xsd” shows a model view of the xsd valiation.xml

has to adhere to.

Example 4.1. validation-configuration-1.0.xsd

Example 4.2, “validation.xml” shows the several configuration options of validation.xml.

Example 4.2. validation.xml

<validation-config xmlns="http://jboss.org/xml/ns/javax/validation/configuration"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://jboss.org/xml/ns/javax/validation/configuration">

 <default-provider>org.hibernate.validator.HibernateValidator</default-provider>

 <message-interpolator>org.hibernate.validator.engine.ResourceBundleMessageInterpolator</

message-interpolator>

 <traversable-resolver>org.hibernate.validator.engine.resolver.DefaultTraversableResolver</

traversable-resolver>

 <constraint-validator-factory>org.hibernate.validator.engine.ConstraintValidatorFactoryImpl</

constraint-validator-factory>

Chapter 4. XML configuration

40

 <constraint-mapping>/constraints-car.xml</constraint-mapping>

 <property name="prop1">value1</property>

 <property name="prop2">value2</property>

</validation-config>

Warning

There can only be one validation.xml in the classpath. If more than one is found

an exception is thrown.

All settings shown in the validation.xml are optional and in the case of

Example 4.2, “validation.xml” show the defaults used within Hibernate Validator.

The node default-provider allows to choose the Bean Validation provider. This

is useful if there is more than one provider in the classpath. message-

interpolator, traversable-resolver and constraint-validator-factory allow to customize the

javax.validation.MessageInterpolator, javax.validation.TraversableResolver resp.

javax.validation.ConstraintValidatorFactory. The same configuration options are also

available programmatically through the javax.validation.Configuration. In fact XML

configuration will be overriden by values explicitly specified via the API. It is even possible to ignore

the XML configuration completely via Configuration.ignoreXmlConfiguration(). See also

Chapter 5, Bootstrapping.

Via the constraint-mapping you can list an arbitrary number of additional XML files containing the

actual constraint configuration. See Section 4.2, “Mapping constraints”.

Last but not least, you can specify provider specific properties via the property nodes. Hibernate

Validator does currently not make use of any custom properties.

4.2. Mapping constraints

Expressing constraints in XML is possible via files adhering to the xsd seen in Example 4.3,

“validation-mapping-1.0.xsd”. Note that these mapping files are only processed if listed via

constraint-mapping in your validation.xml.

Mapping constraints

41

Example 4.3. validation-mapping-1.0.xsd

Chapter 4. XML configuration

42

Example 4.4, “constraints-car.xml” shows how our classes Car and RentalCar from Example 2.15,

“Car” resp. Example 2.19, “RentalCar” could be mapped in XML.

Example 4.4. constraints-car.xml

<constraint-mappings xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://jboss.org/xml/ns/javax/validation/mapping validation-

mapping-1.0.xsd"

 xmlns="http://jboss.org/xml/ns/javax/validation/mapping">

 <default-package>org.hibernate.validator.quickstart</default-package>

 <bean class="Car" ignore-annotations="true">

 <field name="manufacturer">

 <constraint annotation="javax.validation.constraints.NotNull"/>

 </field>

 <field name="licensePlate">

 <constraint annotation="javax.validation.constraints.NotNull"/>

 </field>

 <field name="seatCount">

 <constraint annotation="javax.validation.constraints.Min">

 <element name="value">2</element>

 </constraint>

 </field>

 <field name="driver">

 <valid/>

 </field>

 <getter name="passedVehicleInspection" ignore-annotations="true">

 <constraint annotation="javax.validation.constraints.AssertTrue">

 <message>The car has to pass the vehicle inspection first</message>

 <groups>

 <value>CarChecks</value>

 </groups>

 <element name="max">10</element>

 </constraint>

 </getter>

 </bean>

 <bean class="RentalCar" ignore-annotations="true">

 <class ignore-annotations="true">

 <group-sequence>

 <value>RentalCar</value>

 <value>CarChecks</value>

 </group-sequence>

 </class>

 </bean>

Mapping constraints

43

 <constraint-definition annotation="org.mycompany.CheckCase" include-existing-

validator="false">

 <validated-by include-existing-validators="false">

 <value>org.mycompany.CheckCaseValidator</value>

 </validated-by>

 </constraint-definition>

</constraint-mappings>

The XML configuration is closely mirroring the programmatic API. For this reason it should suffice

to just add some comments. default-package is used for all fields where a classname is expected.

If the specified class is not fully qualified the configured default package will be used. Every

mapping file can then have several bean nodes, each describing the constraints on the entity with

the specified class name.

Warning

A given entity can only be configured once across all configuration files. If the same

class is configured more than once an exception is thrown.

Settings ignore-annotations to true means that constraint annotations placed on the configured

bean are ignored. The default for this value is true. ignore-annotations is also available for the

nodes class, fields and getter. If not explicitly specified on these levels the configured bean value

applies. Otherwise do the nodes class, fields and getter determine on which level the constraints

are placed (see Section 2.1, “Defining constraints”). The constraint node is then used to add

a constraint on the corresponding level. Each constraint definition must define the class via

the annotation attribute. The constraint attributes required by the Bean Validation specification

(message, groups and payload) have dedicated nodes. All other constraint specific attributes are

configured using the the element node.

The class node also allows to reconfigure the default group sequence (see Section 2.3.2,

“Redefining the default group sequence of a class”) via the group-sequence node.

Last but not least, the list of ConstraintValidators associated to a given constraint

can be altered via the constraint-definition node. The annotation attribute represents the

constraint annotation being altered. The validated-by elements represent the (ordered) list of

ConstraintValidator implementations associated to the constraint. If include-existing-validator

is set to false, validators defined on the constraint annotation are ignored. If set to true, the list

of ConstraintValidators described in XML are concatenated to the list of validators described on

the annotation.

44

Chapter 5.

45

Bootstrapping
We already seen in Section 5.1, “Configuration and ValidatorFactory” the easiest way to create

a Validator instance - Validation.buildDefaultValidatorFactory. In this chapter we have

a look at the other methods in javax.validation.Validation and how they allow to configure

several aspects of Bean Validation at bootstrapping time.

The different bootstrapping options allwow, amongst other things, to bootstrap any

Bean Validation implementation on the classpath. Generally, an available provider

is discovered by the Java Service Provider [http://java.sun.com/j2se/1.3/docs/guide/jar/

jar.html#Service%20Provider] mechanism. A Bean Validation implementation includes the file

javax.validation.spi.ValidationProvider in META-INF/services. This file contains the

fully qualified classname of the ValidationProvider of the implementation. In the case of

Hibernate Validator this is org.hibernate.validator.HibernateValidator.

Note

If there are more than one Bean Validation implementation providers in the

classpath and Validation.buildDefaultValidatorFactory() is used, there

is no guarantee which provider will be chosen. To enforce the provider

Validation.byProvider() should be used.

5.1. Configuration and ValidatorFactory

There are three different methods in the Validation class to create a Validator instance. The easiest

in shown in Example 5.1, “Validation.buildDefaultValidatorFactory()”.

Example 5.1. Validation.buildDefaultValidatorFactory()

ValidatorFactory factory = Validation.buildDefaultValidatorFactory();

Validator validator = factory.getValidator();

You can also use the method Validation.byDefaultProvider() which will allow you to

configure several aspects of the created Validator instance:

Example 5.2. Validation.byDefaultProvider()

Configuration<?> config = Validation.byDefaultProvider().configure();

config.messageInterpolator(new MyMessageInterpolator())

 .traversableResolver(new MyTraversableResolver())

 .constraintValidatorFactory(new MyConstraintValidatorFactory());

http://java.sun.com/j2se/1.3/docs/guide/jar/jar.html#Service%20Provider
http://java.sun.com/j2se/1.3/docs/guide/jar/jar.html#Service%20Provider
http://java.sun.com/j2se/1.3/docs/guide/jar/jar.html#Service%20Provider

Chapter 5. Bootstrapping

46

ValidatorFactory factory = config.buildValidatorFactory();

Validator validator = factory.getValidator();

We will learn more about MessageInterpolator, TraversableResolver and

ConstraintValidatorFactory in the following sections.

Last but not least you can ask for a Configuration object of a specific Bean Validation provider. This

is useful if you have more than one Bean Validation provider in your classpath. In this situation you

can make an explicit choice about which implementation to use. In the case of Hibernate Validator

the Validator creation looks like:

Example 5.3. Validation.byProvider(HibernateValidator.class)

ValidatorConfiguration config = Validation.byProvider(HibernateValidator.class).configure();

config.messageInterpolator(new MyMessageInterpolator())

 .traversableResolver(new MyTraversableResolver())

 .constraintValidatorFactory(new MyConstraintValidatorFactory());

ValidatorFactory factory = config.buildValidatorFactory();

Validator validator = factory.getValidator();

Tip

The generated Validator instance is thread safe and can be cached.

5.2. ValidationProviderResolver

In the case that the Java Service Provider mechanism does not work in your

environment or you have a special classloader setup, you are able to provide a custom

ValidationProviderResolver. An example in an OSGi environment you could plug your custom

provider resolver like seen in Example 5.4, “Providing a custom ValidationProviderResolver”.

Example 5.4. Providing a custom ValidationProviderResolver

Configuration<?> config = Validation.byDefaultProvider()

 .providerResolver(new OSGiServiceDiscoverer())

 .configure();

ValidatorFactory factory = config.buildValidatorFactory();

MessageInterpolator

47

Validator validator = factory.getValidator();

Your OSGiServiceDiscoverer must in this case implement the interface

ValidationProviderResolver:

Example 5.5. ValidationProviderResolver interface

public interface ValidationProviderResolver {

 /**

 * Returns a list of ValidationProviders available in the runtime environment.

 *

 * @return list of validation providers.

 */

 List<ValidationProvider<?>> getValidationProviders();

}

5.3. MessageInterpolator

Section 2.2.4, “Message interpolation” already discussed the default message interpolation

algorithm. If you have special requirements for your message interpolation you can provide a

custom interpolator using Configuration.messageInterpolator(). This message interpolator

will be shared by all validators generated by the ValidatorFactory created from this

Configuration(see Example 5.6, “Providing a custom MessageInterpolator”).

Example 5.6. Providing a custom MessageInterpolator

Configuration<?> configuration = Validation.byDefaultProvider().configure();

ValidatorFactory factory = configuration

 .messageInterpolator(new

 ContextualMessageInterpolator(configuration.getDefaultMessageInterpolator()))

 .buildValidatorFactory();

Validator validator = factory.getValidator();

Tip

It is recommended that MessageInterpolator implementations

delegate final interpolation to the Bean Validation default

MessageInterpolator to ensure standard Bean Validation interpolation

Chapter 5. Bootstrapping

48

rules are followed. The default implementation is accessible through

Configuration.getDefaultMessageInterpolator().

5.4. TraversableResolver

The usage of the TraversableResolver has so far not been discussed. The idea is that in

some cases, the state of a property should not be accessed. The most obvious example for

that is a lazy loaded property or association of a Java Persistence provider. Validating this lazy

property or association would mean that its state would have to be accessed triggering a load

from the database. Bean Validation controls which property can and cannot be accessed via the

TraversableResolver interface (see Example 5.7, “TraversableResolver interface”).

Example 5.7. TraversableResolver interface

/**

 * Contract determining if a property can be accessed by the Bean Validation provider

 * This contract is called for each property that is being either validated or cascaded.

 *

 * A traversable resolver implementation must be thread-safe.

 *

 */

public interface TraversableResolver {

 /**

 * Determine if the Bean Validation provider is allowed to reach the property state

 *

 * @param traversableObject object hosting <code>traversableProperty</code> or null

 * if validateValue is called

 * @param traversableProperty the traversable property.

 * @param rootBeanType type of the root object passed to the Validator.

 * @param pathToTraversableObject path from the root object to

 * <code>traversableObject</code>

 * (using the path specification defined by Bean Validator).

 * @param elementType either <code>FIELD</code> or <code>METHOD</code>.

 *

 * @return <code>true</code> if the Bean Validation provider is allowed to

 * reach the property state, <code>false</code> otherwise.

 */

 boolean isReachable(Object traversableObject,

 Path.Node traversableProperty,

 Class<?> rootBeanType,

 Path pathToTraversableObject,

 ElementType elementType);

TraversableResolver

49

 /**

 * Determine if the Bean Validation provider is allowed to cascade validation on

 * the bean instance returned by the property value

 * marked as <code>@Valid</code>.

 * Note that this method is called only if isReachable returns true for the same set of

 * arguments and if the property is marked as <code>@Valid</code>

 *

 * @param traversableObject object hosting <code>traversableProperty</code> or null

 * if validateValue is called

 * @param traversableProperty the traversable property.

 * @param rootBeanType type of the root object passed to the Validator.

 * @param pathToTraversableObject path from the root object to

 * <code>traversableObject</code>

 * (using the path specification defined by Bean Validator).

 * @param elementType either <code>FIELD</code> or <code>METHOD</code>.

 *

 * @return <code>true</code> if the Bean Validation provider is allowed to

 * cascade validation, <code>false</code> otherwise.

 */

 boolean isCascadable(Object traversableObject,

 Path.Node traversableProperty,

 Class<?> rootBeanType,

 Path pathToTraversableObject,

 ElementType elementType);

}

Hibernate Validator provides two TraversableResolvers out of the box which will be enabled

automatically depending on your environment. The first is the DefaultTraversableResolver

which will always return true for isReachable() and isTraversable(). The second is

the JPATraversableResolver which gets enabled when Hibernate Validator gets used in

combination with JPA 2. In case you have to provide your own resolver you can do so again using

the Configuration object as seen in Example 5.8, “Providing a custom TraversableResolver”.

Example 5.8. Providing a custom TraversableResolver

Configuration<?> configuration = Validation.byDefaultProvider().configure();

ValidatorFactory factory = configuration

 .traversableResolver(new MyTraversableResolver())

 .buildValidatorFactory();

Validator validator = factory.getValidator();

Chapter 5. Bootstrapping

50

5.5. ConstraintValidatorFactory

Last but not least, there is one more configuration option to discuss, the

ConstraintValidatorFactory. The default ConstraintValidatorFactory provided by

Hibernate Validator requires a public no-arg constructor to instantiate ConstraintValidator

instances (see Section 3.1.2, “The constraint validator”). Using a custom

ConstraintValidatorFactory offers for example the possibility to use dependency injection

in constraint implementations. The configuration of the custom factory is once more via the

Configuration (Example 5.9, “Providing a custom ConstraintValidatorFactory”).

Example 5.9. Providing a custom ConstraintValidatorFactory

Configuration<?> configuration = Validation.byDefaultProvider().configure();

ValidatorFactory factory = configuration

 .constraintValidatorFactory(new IOCConstraintValidatorFactory())

 .buildValidatorFactory();

Validator validator = factory.getValidator();

The interface you have to implement is:

Example 5.10. ConstraintValidatorFactory interface

public interface ConstraintValidatorFactory {

 /**

 * @param key The class of the constraint validator to instantiate.

 *

 * @return A constraint validator instance of the specified class.

 */

 <T extends ConstraintValidator<?,?>> T getInstance(Class<T> key);

}

Warning

Any constraint implementation relying on ConstraintValidatorFactory

behaviors specific to an implementation (dependency injection, no no-arg

constructor and so on) are not considered portable.

ConstraintValidatorFactory

51

Note

ConstraintValidatorFactory should not cache instances as the state of each

instance can be altered in the initialize method.

52

Chapter 6.

53

Integration with other frameworks
Hibernate Validator is intended to be used to implement multi-layered data validation, where

constraints are expressed in a single place (the annotated domain model) and checked in various

different layers of the application.

6.1. Database schema-level validation

Out of the box, Hibernate Annotations (as of Hibernate 3.5.x) will translate the constraints you

have defined for your entities into mapping metadata. For example, if a property of your entity is

annotated @NotNull, its columns will be declared as not null in the DDL schema generated

by Hibernate.

If, for some reason, the feature needs to be disabled, set hibernate.validator.apply_to_ddl

to false. See also Table 2.2, “Built-in constraints”.

You can also limit the DDL constraint generation to a subset of the defined constraints by setting

the property org.hibernate.validator.group.ddl. The property specifies the comma seperated, fully

specified classnames of the groups a constraint has to be part of in order to be considered for

DDL schema generation.

6.2. ORM integration

Hibernate Validator integrates with both Hibernate and all pure Java Persistence providers.

6.2.1. Hibernate event-based validation

Hibernate Validator has a built-in Hibernate event listener -

org.hibernate.cfg.beanvalidation.BeanValidationEventListener [http://

fisheye.jboss.org/browse/Hibernate/core/trunk/annotations/src/main/java/org/hibernate/cfg/

beanvalidation/BeanValidationEventListener.java] - which is part of Hibernate Annotations

(as of Hibernate 3.5.x). Whenever a PreInsertEvent, PreUpdateEvent or PreDeleteEvent

occurs, the listener will verify all constraints of the entity instance and throw an exception

if any constraint is violated. Per default objects will be checked before any inserts

or updates are made by Hibernate. Pre deletion events will per default not trigger

a validation. You can configure the groups to be validated per event type using the

properties javax.persistence.validation.group.pre-persist, javax.persistence.validation.group.pre-

update and javax.persistence.validation.group.pre-remove. The values of these properties are the

comma seperated, fully specified class names of the groups to validate. Example 6.1, “Manual

configuration of BeanValidationEvenListener” shows the default values for these properties. In

this case they could also be omitted.

On constraint violation, the event will raise a runtime ConstraintViolationException which

contains a set of ConstraintViolations describing each failure.

http://fisheye.jboss.org/browse/Hibernate/core/trunk/annotations/src/main/java/org/hibernate/cfg/beanvalidation/BeanValidationEventListener.java
http://fisheye.jboss.org/browse/Hibernate/core/trunk/annotations/src/main/java/org/hibernate/cfg/beanvalidation/BeanValidationEventListener.java
http://fisheye.jboss.org/browse/Hibernate/core/trunk/annotations/src/main/java/org/hibernate/cfg/beanvalidation/BeanValidationEventListener.java
http://fisheye.jboss.org/browse/Hibernate/core/trunk/annotations/src/main/java/org/hibernate/cfg/beanvalidation/BeanValidationEventListener.java

Chapter 6. Integration with o...

54

If Hibernate Validator is present in the classpath, Hibernate Annotations (or Hibernate

EntityManager) will use it transparently. To avoid validation even though Hibernate Validator is in

the classpath set javax.persistence.validation.mode to none.

Note

If the beans are not annotated with validation annotations, there is no runtime

performance cost.

In case you need to manually set the event listeners for Hibernate Core, use the following

configuration in hibernate.cfg.xml:

Example 6.1. Manual configuration of BeanValidationEvenListener

<hibernate-configuration>

 <session-factory>

 ...

 <property name="javax.persistence.validation.group.pre-persist">javax.validation.Default</

property>

 <property name="javax.persistence.validation.group.pre-update">javax.validation.Default</

property>

 <property name="javax.persistence.validation.group.pre-remove"></property>

 </session-factory>

 <event type="pre-update">

 <listener class="org.hibernate.cfg.beanvalidation.BeanValidationEventListener"/>

 </event>

 <event type="pre-insert">

 <listener class="org.hibernate.cfg.beanvalidation.BeanValidationEventListener"/>

 </event>

 <event type="pre-delete">

 <listener class="org.hibernate.cfg.beanvalidation.BeanValidationEventListener"/>

 </event>

</hibernate-configuration>

6.2.2. JPA

If you are using JPA 2 and Hibernate Validator is in the classpath

the JPA2 specification requires that Bean Validation gets enabled. The

properties javax.persistence.validation.group.pre-persist, javax.persistence.validation.group.pre-

update and javax.persistence.validation.group.pre-remove as described in Section 6.2.1,

“Hibernate event-based validation” can in this case be configured in persistence.xml.

persistence.xml also defines a node validation-mode while can be set to AUTO, CALLBACK, NONE.

The default is AUTO.

Presentation layer validation

55

In a JPA 1 you will have to create and register Hibernate Validator yourself. In

case you are using Hibernate EntityManager you can add a customized version of the

BeanValidationEventListener described in Section 6.2.1, “Hibernate event-based validation”

to your project and register it manually.

6.3. Presentation layer validation

When working with JSF2 or JBoss Seam and Hibernate Validator (Bean Validation) is present

in the runtime environment validation is triggered for every field in the application. ??? shows

an example of the f:validateBean tag in a JSF page. For more information refer to the Seam

documentation or the JSF 2 specification.

Example 6.2. Usage of Bean Validation within JSF2

<h:form>

 <f:validateBean>

 <h:inputText value=”#{model.property}” />

 <h:selectOneRadio value=”#{model.radioProperty}” > ... </h:selectOneRadio>

 <!-- other input components here -->

 </f:validateBean>

</h:form>

56

Chapter 7.

57

Further reading
Last but not least, a few pointers to further information. A great source for examples is the

Bean Validation TCK which can is available for anonymous access in the Hibernate SVN

repository [http://anonsvn.jboss.org/repos/hibernate/validator/trunk]. Alternatively you can view

the tests using Hibernate's fisheye [http://fisheye.jboss.org/browse/Hibernate/beanvalidation/

trunk/validation-tck/src/main/java/org/hibernate/jsr303/tck/tests] installation. The JSR 303 [http://

jcp.org/en/jsr/detail?id=303] specification itself is also a great way to deepen your understanding

of Bean Validation resp. Hibernate Validator.

If you have any furhter questions to Hibernate Validator or want to share some of your use cases

have a look at the Hibernate Validator Wiki [http://www.hibernate.org/469.html] and the Hibernate

Validator Forum [https://forum.hibernate.org/viewforum.php?f=9].

In case you would like to report a bug use Hibernate's Jira [http://opensource.atlassian.com/

projects/hibernate/browse/HV] instance. Feedback is always welcome!

http://anonsvn.jboss.org/repos/hibernate/validator/trunk
http://anonsvn.jboss.org/repos/hibernate/validator/trunk
http://anonsvn.jboss.org/repos/hibernate/validator/trunk
http://fisheye.jboss.org/browse/Hibernate/beanvalidation/trunk/validation-tck/src/main/java/org/hibernate/jsr303/tck/tests
http://fisheye.jboss.org/browse/Hibernate/beanvalidation/trunk/validation-tck/src/main/java/org/hibernate/jsr303/tck/tests
http://fisheye.jboss.org/browse/Hibernate/beanvalidation/trunk/validation-tck/src/main/java/org/hibernate/jsr303/tck/tests
http://jcp.org/en/jsr/detail?id=303
http://jcp.org/en/jsr/detail?id=303
http://jcp.org/en/jsr/detail?id=303
http://www.hibernate.org/469.html
http://www.hibernate.org/469.html
https://forum.hibernate.org/viewforum.php?f=9
https://forum.hibernate.org/viewforum.php?f=9
https://forum.hibernate.org/viewforum.php?f=9
http://opensource.atlassian.com/projects/hibernate/browse/HV
http://opensource.atlassian.com/projects/hibernate/browse/HV
http://opensource.atlassian.com/projects/hibernate/browse/HV

58

	Hibernate Validator
	Table of Contents
	Preface
	Chapter 1. Getting started
	1.1. Setting up a new Maven project
	1.2. Applying constraints
	1.3. Validating constraints
	1.4. Where to go next?

	Chapter 2. Validation step by step
	2.1. Defining constraints
	2.1.1. Field-level constraints
	2.1.2. Property-level constraints
	2.1.3. Class-level constraints
	2.1.4. Constraint inheritance
	2.1.5. Object graphs

	2.2. Validating constraints
	2.2.1. Obtaining a Validator instance
	2.2.2. Validator methods
	2.2.2.1. validate
	2.2.2.2. validateProperty
	2.2.2.3. validateValue

	2.2.3. ConstraintViolation methods
	2.2.4. Message interpolation

	2.3. Validating groups
	2.3.1. Group sequences
	2.3.2. Redefining the default group sequence of a class

	2.4. Built-in constraints

	Chapter 3. Creating custom constraints
	3.1. Creating a simple constraint
	3.1.1. The constraint annotation
	3.1.2. The constraint validator
	3.1.3. The error message
	3.1.4. Using the constraint

	3.2. Constraint composition

	Chapter 4. XML configuration
	4.1. validation.xml
	4.2. Mapping constraints

	Chapter 5. Bootstrapping
	5.1. Configuration and ValidatorFactory
	5.2. ValidationProviderResolver
	5.3. MessageInterpolator
	5.4. TraversableResolver
	5.5. ConstraintValidatorFactory

	Chapter 6. Integration with other frameworks
	6.1. Database schema-level validation
	6.2. ORM integration
	6.2.1. Hibernate event-based validation
	6.2.2. JPA

	6.3. Presentation layer validation

	Chapter 7. Further reading

