HornetQ User Manual
Putting the buzz
In messaging

by Clebert Suconic (Red Hat, Inc.), Andy Taylor (Red Hat, Inc.), Tim Fox, Jeff
Mesnil, Howard Gao (Red Hat, Inc.), and Francisco Borges (Red Hat, Inc.)

I = To T T AN) o TN 1

A o 1= - Vo = P 3
3. Project INfOrMation ...ooviii e e 5
3.1. Software DOWNIOAAc.uiiiiiiiiii e e e e eens 5

3.2, Project INfOrmMationccouuiiiiii i e e 5

4. MESSAGING CONCEPLS oetiiiiiiii ettt ettt e e et e et e e et e e e et 7
o I \V =T3S To [T @0 (o7 =T o = PN 7

4.2, MESSAGING SEYIES ...t 7
4.2.1. The Message QUEUE Patterncoiiiiiii i 8

4.2.2. The Publish-Subscribe Pattern ..o 8

4.3, DEIIVENY QUATANIEESouiiiiiieiiii e ettt e e e e e e e e e e e e e e e aaas 9

N I = 1 157 Tox 1o o 9

T 0 1= 11 PP 9

4.6. Messaging APIS and ProtOCOISccouuuiiiiiiii i 9
4.6.1. Java Message ServiCe (JMS)oiiiiiii i 10

4.6.2. System SPECIfIC APISiiiiii i 10

4.6.3. RESTIUI AP .o 10

A.6.4. STOMP ...t e e e e e e e e e e e e e e aaan 10

A.68.5. AMOP ooeiii e 11

4.7, High AVAITADITITY ... 11

.8, CIUSTEIS .ottiiieeii ettt ettt et e et e e e et e e e e et e e e e et e e e e et e e e eata e aae 11

4.9. Bridges and FOULING ...c..uueiiiiiet ettt e e 11

LT o 11 (=T o] AU = PP 13
LT I O (I AN (o o1 (= Tox (1 - PP 13

5.2. HornetQ embedded in your own applicationcccoeeviiiiiiiiiiiin e, 15

5.3. HornetQ integrated with a JEE application SErvercccoooiieiiiiiniciiiineecene 15

5.4, HornetQ Stand-along SEIVETcouuiiiiii e e e e e aaa e 16

6. USING ThE SEIVEI .. e ettt et e e et e eeees 19
6.1. Starting and Stopping the standalone SErvercccoocviiieiii i 19

6.2. SEIVEr JVM SEUHINGSeiiitiieiiii et e et e et e e e aees 19

6.3. SerVer ClassSpPathoiiiiiei i 20

6.4, LIDrary Path ..o e 20

6.5. SYSIEM PrOPEILIES ...ovtiiiii e e e e e e e e 20

6.6. ConfIguration fil€Si i 20

6.7. JBoss Microcontainer Beans Filecociiiiiiiiiiiiiiiii e 22

6.8. JBOSS AS4 MBEAN SEIVICE. ..uiiiiiiiiiiieii e e e 24

6.9. The main configuration file.ocoiiiiii i 26

7. USING IS ettt 27
7.1. A simple ordering SYSIEIMciiuiiiiii e e 27

7.2. IMS Server ConfigUurationiieiiiuiiioiiii e 27

7.3. CONNECLION FACIOIY TYPES ©uiivnieiiiieii ettt e e et e e e e e e e e e e e e e e eens 28

7.4, INDI CONFIQUIALION .eevtniiiiii et 29

A T I 2 ST o Lo 1= TSP 30

7.6. Directly instantiating JMS Resources without using JNDIcccoeviiiiiiiinnnenn... 32

HornetQ User Manual

7.7. Setting The CHENt IDu.iiiii e e e e e e e e e ees 34
7.8. Setting The Batch Size for DUPS_OKuiiiiiiiiiiiiiiieie e 34
7.9. Setting The Transaction BatCh Sizecciiiiiiiiii i 34
8. USING COM® ottt eaaan 35
8.1. Core MesSaging CONCEPLS ..cvvueiinieiiii et e e e e e e e e e et e et e e e aaens 35
8.1 L. MEBSSAUE ..eueirieiit ettt 35
8.1.2. AUAIESS ...ttt a e 36

8L 3. QUBUE ot 36
8.1.4. SEIVEILOCAIONoieiiii et 36
8.1.5. ClieNtSESSIONFACIONYccceuuiieiiiii e 37
8.1.6. ClENISESSION ..iiitiiieiiiii ettt e e e e et e e e eaa e e eeanns 37
8.1.7. ClIENtCONSUMIETiiiii ettt e e e e e e e et e e et e e e e e eennas 37
8.1.8. ClIENIPIOTUCETvviiiieiii e e e e e e e e e e eaes 37

8.2. A simple example of USING COrecoouiiiiiii e 38
9. Mapping JMS Concepts to the Core APl ... 39
10. The Client ClasSPaticiiii e e 41
10.1. HOrnetQ Core ClIENTuieii e e e e e e e e e 41
OB Y S 1 1= o | PSP 41
10.3. IMS Client With INDI ..o e 41
L EXAMPIES e e 43
0 O 1 T o= 1y]][43
L0 L, APPIET e e 43
11.1.2. Application-Layer FailOVErcociiiiiiiii e 43
11.1.3. Core Bridge EXample ... 43
N T = 0 T = PP TPP 44
11.1.5. Client KIiCKOFf ... e 44
11.1.6. Client-Side Load-BalanCingccocvuieiiiiiiiiiieii e e 44
11.1.7. Clustered Durable SUDSCHPLONiiiiiiiiiiiiii e 44
11.1.8. Clustered GrOUPINGccuueeiieeiieeei eeaans 44
11.1.9. Clustered QUEBUEieeiieii e e e e e e e e e eeanas 44
11.1.10. Clustering With JGIOUPSuuiiiiiiiiiicei e e e 44
11.1.11. Clustered Standalonec.oviiiiiiiiiiee e 44
11.1.12. Clustered StatiC DISCOVEIYcouuiiiiiieiii et e e e e e eaa e 45
11.1.13. Clustered Static Cluster ONe Wacooeeveviiiiiiiiiieeeiiiieeeeeie e 45

5 I S @ [) (= €= I oo [P 45
11.1.15. Message Consumer Rate Limitingovvvieriinieiiiiiieiiieecei e 45
O O G T B =T Vo I = 1 T PPN 45
11.1.17. Delayed RedeliVEIYcoouuiiiiiiiii e 45
O O R 1Y PP 46
11.1.19. Durable SUDSCHPLONc.uuuiiiiiiiie e 46
500 2 O R =1 o 1] o =Y [0 [= o P 46
11.1.21. Embedded SIMPIE ... 46
11.1.22. Message EXPIrationc.oeeeuiiiiieiiii e e e e e e 46
11.1.23. Failover Manual StOPccouuiiiiiiiiiieiiii e 46

11.1.24.
11.1.25.
11.1.26.
11.1.27.
11.1.28.
11.1.29.
11.1.30.
11.1.31.
11.1.32.
11.1.33.
11.1.34.
11.1.35.
11.1.36.
11.1.37.
11.1.38.
11.1.39.
11.1.40.
11.1.41.
11.1.42.
11.1.43.
11.1.44.
11.1.45.
11.1.46.
11.1.47.
11.1.48.
11.1.49.
11.1.50.
11.1.51.
11.1.52.
11.1.583.
11.1.54.
11.1.55.
11.1.56.
11.1.57.
11.1.58.
11.1.59.
11.1.60.
11.1.61.
11.1.62.
11.1.63.
11.1.64.
11.1.65.
11.1.66.
11.1.67.

L T I = 1157 o Lo] SOOI 46

Instantiate JMS ODbjects DIireCtlyccoeuuiiiiiiiiiiiiii e, 47
[T (=T (o]=T o] (o] S PPN 47
JA A S o 47
JMS BriAGE coeiciiiiei e 47
JMX MaNAGEMENT ...t 47
Large IMEBSSATE .uvuieniiiie et 47
Last-Value QUEUEiiieieiii et e e eenas 47
MaNAGEMENT L.t 48
Management NOLfICAtIoNooiiiiiiiiiiiii e 48
MESSAGE COUNTEE .ttt anas 48
MESSAGE GIOUP .vueerniitieieiee ettt ettt e et et e e e e eaaneees 48
MESSAGE GGIOUPD ovuitiiiiiiiiiei et e e e e e et e e e e e e e e aees 48
MESSAGE PIIOIILY ..oeeviiiiiii e 48
MUILIPIE FaIOVET ..oveieici e e 49
Multiple Failover Failbackcooiiiiiiiii 49
No Consumer BUfEringcccouuiiiiiiiiii e 49
Non-Transaction Failover With Server Data Replication 49
PaAGING et 49
Pre-AckNOWIEAQEcooiiiii e 49
Message Producer Rate Limitingcccccvviiiiiiiiiiiiiiiccin e 50
QUL . e e e 50
Message Redistributioncoiiiiii i, 50
QUEUE REQUESTON ...eeiiiiiiiii ettt et et 50
Queue with Message SelecCtorcovvvviieiiiiiiii e, 50
Reattach Node example ... 50
Request-Reply eXamplecooouiiiiiiiii e 50
Scheduled MESSAGEoiiiiiiiiiiiii e 50
Y=o U]] PP 50
Send ACKNOWIEAGEMENTSiiiiiiiiieiiei e 51
SPring INTEGrationo.viiiii e 51
SSL TrANSPOIT .ot 51
Static MeSSage SEIECIONcvvueiiii i 51
Static Message Selector Using JMScooiiiiiiiiiiiiiiii e 51
0] (0] 1 1] I PP PP 51
SEOMIP L. L e 51
Stomp Over WED SOCKELSccvuiiiiiciii e 51
SYMMELNC CIUSTET ..t 51
Temporary QUEBUEcuiieiit ittt e e e n e e 52
LI] o[U P PP PPPPTP 52
TopIC HIErarChycoovii e 52
TOPIC SEIECION 1 ..oeiiiii e 52
B Io] o1 [T =Tt o] P 52
Transaction FailOVErcoouiiiiiii e 52

HornetQ User Manual

11.1.68. Transactional SESSIONccccuuiieiiiiiiieeiiiii et e e 52

11.1.69. XA HEUISHIC eeeieiieee e e e 52

121.0.70. XA RECEIVE ...oeitiiieiiii et ettt e et e e e et e e e eatn e eeenes 53

0 A T ¢ N = 3 o 53

11.1.72. XA with Transaction Managercc.veiuiieiiiieeii e e e e 53

11.2. Core APL EXBMPIES ..ottt ettt 53

52 I 1 01 0= [1= o PP 53

11.3. Java EE EXamMPIES ...ouni e 53

11.3.1. EIB/IMS TranSACHONcceveviieeiiiiieeeeeis e e e et e e e et e e et eeeeetin e e e eeanaaeeees 53

11.3.2. HAINDI (High Availability)ccoovviiiiiiiie e 53

11.3.3. Resource Adapter Configurationcovevuiiiiiiieiiiieii e 53

11.3.4. Resource Adapter Remote Server Configurationccceevevevineeeennnnn. 53

11.3.5. IMS BIOOE ..uieiiiiieieiii e e e e et e e e e eee 54

11.3.6. MDB (Message Driven BEaN)oveiiiiiiieiiiiiiieeiiiie et 54

0 A =T V1 i I = 1 1Y 0T P 54

11.3.8. Servlet SSL TranSPOITcccuuuuiiiiiiie e 54

11.3.9. XA RECOVEIY ettt ettt e e anns 54

12. Routing Messages With Wild Cardscoooiiiiiiiiiiiii e 55

13. Understanding the HornetQ Wildcard Syntaxccccoeveiiiiiiiiiiiiii e, 57

L4, Filter EXPrEeSSIONS .ottt et ettt et et e e e b e eenan s 59

ST =T RS Y E] £= o Yo = PPN 61

15.1. Configuring the bindings JoUrnalcoooiiiiiiii e 63

15.2. Configuring the JMS JOUINAloiiiiiii e 63

15.3. Configuring the message JOUINAloooeuuiiiiiiii e 63

15.4. An important note on disabling disk write cache.cccocciiiiiiiiiii e, 65

15.5. INSLAllING AL . eei e 66

15.6. Configuring HornetQ for Zero PErSIStENCEccuveiiieviiieiiiieceiie e, 66

15.7. Import/Export the Journal Datacoouuiiiiiiiiiiei e 67

16. Configuring the TranSPOITiiie e e e e e e e e aanaaes 69

16.1. UNderstanding ACCEPLOIScceiuuu it iee et e ettt e et e et e e e e e aa s 69

16.2. Understanding CONNECLOISccvuuieiiiieiiiie e e e e e e e e e e e e et e e e e aaenaees 70

16.3. Configuring the transport directly from the client side.ccoooeiiiiiiiiin .. 71

16.4. Configuring the Netty tranSPOItcocoviiiiiiii e 72

16.4.1. Configuring Netty TCPiiiiiiii e 72

16.4.2. Configuring NEttY SSLcccuiiiiiiiii e e 74

16.4.3. Configuring Netty HTTP ... 75

16.4.4. Configuring Netty Servletcoooiiiiiiiii e 75

17. Detecting Dead CONNECLIONSiiiiiiii ittt e e et e eeae e eees 79

17.1. Cleaning up Dead Connection Resources on the Servercccooceceveviiiieinnen, 79
17.1.1. Closing core sessions or JMS connections that you have failed to close... 81

17.2. Detecting failure from the client Side.ccoiiiiiiiiiiii e 82

17.3. Configuring Asynchronous Connection EXeCUtionccccooveiiiiiniiiiiinieeciinen. 82

18. Resource Manager Configurationcooiiiiiiiiiiii e e 83

S o 1YV oY |4 o] PPN 85

vi

19.1. ConSUMETr FIOW CONIOIuiiiiiii e e e e e e e e e 85

19.1.1. Window-Based FIOW CONtrolc.ooouiiiiiiiiiii e, 85

19.1.2. Rate limited flOW CONLIOLcoeeveiiiiii e 87

19.2. Producer floW CONTIOIuuiii e e e e 88
19.2.1. Window based flow CONLrOluviiiiiiiiieiii e 88

19.2.2. Rate limited flOW CONIOlcoouiiii e 90

20. Guarantees of sends and COMMILSiiiiiiiiiiiii e 93
20.1. Guarantees of Transaction ComPpIEtioNooveiiiiiiiiiiiiii e 93
20.2. Guarantees of Non Transactional Message Sendsc.cccovvvviiveiiiieiiieeeiineeennn, 93
20.3. Guarantees of Non Transactional Acknowledgementsccooveveviiieiiiiinieennnn. 94
20.4. Asynchronous Send ACKNOWIEAgEMENTSccoviiiiiiiiiieii e 94
20.4.1. Asynchronous Send Acknowledgementsccoovvvviiieiiiiinieiiiiinee e 95

21. Message Redelivery and Undelivered MeSSagescccvvvveviiieeiiiiiiiiieeiieee e e 97
21.1. Delayed REAEIVEIYccoouuiiiiii e 97
21.1.1. Configuring Delayed RedeliVErycccovuiiiiiiiiiiicci e, 97

21.0.2. EXAMPIE oo 98

21.2. Dead Letter AQAIESSESuiiiiiiieiiiiie ettt e et e et e e e et e e e eeaiaeeeees 98
21.2.1. Configuring Dead Letter AAAreSSesc.uovvviiiiiiiiiiiiiiieii e 98

21.2.2. Dead Letter PrOPEITIESccvuiiiiii i e e 99

21.2.3. EXAMPIE .o 99

21.3. Delivery Count PEISISIENCEiiiiiiiiiieeie e 99

22, MBS S A EX DI ettt 101
22.1. MESSAGE EXPINY nieeniiiii ittt 101
22.2. Configuring EXPiry AQUrESSESciiiriiiiiiiiie et 101
22.3. Configuring The Expiry Reaper Threadcccoooiiiiiiiiii e 102
22,4, EXAMPIE ..o e e 102

23, LaArge MBS S aAG S ittt et 103
23.1. ConfiguIiNg the SEIVETiiiii i et ees 103
23.2. Configuring Parametersoiiiiieiiiiciie e e 104
23.2.1. USING COre AP oo 104

23.2.2. USING JMS ooiiiiiiii e 104

23.2.3. Compressed Large MESSAJEScccuuuiiieiiieiiiiiiieeeii e 105

23.3. Streaming large MESSAGES . ..uuueiirneeiiieiiii e et e e e e e e e aaaas 105
23.3.1. Streaming OVer COre APooouuiiiiiiiii e 105

23.3.2. Streaming OVEI JMSoouiiiii e 106

23.4. Streaming AILEINALIVEuuiiiiiii i e e 107
23.5. Large message eXampPlecooiiiiiiiiiiii e 108

24, PAGING ettt 109
24.1. PAQE FIlES ...iiiiiii e 109
P O] o110 [] = 11T] o PP UPPTI 109
b T - Vo 11 o 1, (o T [P 110
24.3.1. CONTIQUIALION ...oiiitiiieiie e 110

b B T (o] o] o1 lo [4 =T TST= To = 111
24.5. BIOCKING PrOGUCEISciiitiieeiiti ettt ettt ettt e e et e e e et e e e et e e e enannaeees 111

Vii

HornetQ User Manual

24.6. Caution with Addresses with Multiple QUEUEScovviiiiiiiiiiiiii e, 111
24. 7. EXAMPIE ..o e 112

25. QUEUE ALTIDULES .oeiiieii e 113
25.1. Predefined QUEUESuiiiiieiiie et e e e e e e e aes 113
25.2. USING the APl oo 114
25.3. Configuring Queues Via ADdress Settingscoeuuiieiiiiiiieiiiiiiceeee e 114

26. SChedUIE MESSAGES ..uciviiiii ettt e e e e e e e e e e e e e e eeanas 117
26.1. Scheduled DeliVery PrOPEITYcoouuuii ittt 117
26.2. EXAIMPIE oo 117

27. LaSt-ValuU@ QUEUES ...ceuiiiiieiii ettt e et e et e et e e et e e et e e e aa e e eaeeeenes 119
27.1. Configuring Last-Value QUEUESccuuieiiinieiiieeiiiieeiieee e e e e et e e e aae e 119
27.2. UsiNg Last-Value PrOPEItYcoouuiiiiiiiiiieeeii e 119
2.3, EXAIMPIE e 120

28. MESSAGE GrOUPING eetueieitieeeteti ettt e e et e et e et e e et e et e e e e et e e e e et es 121
28.1. USING €O AP .oeiiiiiii e e 121
28.2. USING JMS ..ot 121
28.3. EXAIMPIE oot 122
28.4. EXAMPIE ...t e 122

P4 T T O 01 (=T (= To €] (o 10T o] 1 o P 122
28.5.1. Clustered Grouping Best PractiCesccoeuuiiieiiiiiiieiiiiieeeeiiieeeeiie 124

28.5.2. Clustered Grouping EXamplecoooviiiiiiiiiii e 124

29. Pre-Acknowledge MOEuiiiiiiieei e e 125
29.1. Using PRE_ACKNOWLEDGEc.uiiiiiiiiiiieiii et 125
20.2. EXAMPIE <. e 126

{0 Y = TaE=To T=T 0 1= o | S PP PRSPPI 127
30.1. The ManagemeEnt AP ... et 127
30.1.1. Core Management APl ... 128

30.1.2. IMS Management AP ... 132

30.2. Using Management Via JMXocoiiiiiiiiiiii e e e e e e e e 135
30.2.1. ConfiguriNg JMX ... 136

30.2.2. EXAMPIE ..eeieiiii e 137

30.3. Using Management Via Core APl ... 137
30.3.1. Configuring Core Managementccceuuieriiieiiieei e e e 138

30.4. Using Management Via JMS ... 139
30.4.1. Configuring JMS Managementccueeiuieiiiieeiieeeeine e e e e e e eaen 140

30.4.2. EXAMPIE ... 140

30.5. Management NOHfICAtIONScc.uiiiiiiiiii e 140
30.5.1. IMX NOHFICAtIONS ...eeenietiieeie e 140

30.5.2. Core Messages NOtIfiCatioNScccevveiiiiiiiiiieiiicce e 140

30.5.3. JIMS Messages NOLfiCAtIONSoveiiiiiiiiiiiie e 141

30.5.4. EXAMPIE ..oneiiiiiiiice e 142

30.6. MESSAGE COUNLEIS ...ouiiiiiiitiiei ettt et e r e e e e e e e ees 142
30.6.1. Configuring Message COUNLEISceeuueiiiieiiiee i ieeie e e e e e e e e 143

30.6.2. EXAMPIE ... 144

viii

30.7. Administering HornetQ Resources Using The JBoss AS Admin Console 144

30.7.1. IMS QUEUES ...ttt e e et e e e e et e et e eaeen s 144
L0 N Y S T o] o !~ S PP 146
30.7.3. JMS CoNnNection FACIOMNESoiieuiiiieeiie e 146

G0 IS =T o U1 | Y 147
31.1. Role based security for addreSSEScoevuuiiiiiiiiiieiii e 147
31.2. Secure Sockets Layer (SSL) TranSPOItoevuuieiiiiieiiieeeii e e e e e 149
31.3. BasiC USer CredentialSoveiiniiiiiie e 149
31.4. Changing the SeCUrity MaNAQETccuuiiiiiiiiii e e e 150
31.5. JAAS SECUNMLY MANAGET ...uunieiiitieeeiit ettt 151
31.5.1. EXAMPIE .oeeiiiii e 151
31.6. JBOSS AS SECUNLY MANAJET ...c.uuuiiiiiiieeiie ettt 152
31.6.1. Configuring Clent LOGINiiiiiiiiii i e e 152
31.6.2. Changing the Security DOMAINcooiiiiiiiiiiiieiei e 152
31.7. Changing the username/password for clusteringccccccceeveviieiiiiie e, 152
32. Application Server Integration and Java EEccccooiiiiiiiiiiii 153
32.1. Configuring Message-Driven BEaANSc..oovviiiiiiiiiiiiieeii e e 153
32.1.1. Using Container-Managed TranSactionscoveveuiiiieieiiinneneiiineeennnn 154
32.1.2. Using Bean-Managed TranSactionsccccueveviieiiinieiineeiiiieeieeeaneenns 156
32.1.3. Using Message Selectors with Message-Driven Beanscccc........ 157
32.2. Sending Messages from within JEE componentscccccccovevviieiiiiciiiecvieee, 157
32.3. MDB and CONSUMET POOI SIZEiiiiiiiieiiiii et 159
32.4. Configuring the JCA AdapPLOrccuuiiiii i e 160
32.4.1. Global Propertiescooouuuiiiiiiiieeiii et 162
32.4.2. Adapter Outbound Configurationcccoeiviiiieiii i 165
32.4.3. Adapter Inbound Configurationcccuuoiiiiiiiiniieii e 167
32.4.4. Configuring the adapter to use a standalone HornetQ Server 168
32.5. Configuring the JBoss Application Server to connect to Remote HornetQ Server.. 171
32.5.1. Configuring JDOSS 5 ...uiiiiiiii e 171
32.5.2. Configuring JDOSS 5ciiiiiiieiii e 175
32.6. High Availability INDI (HA-JNDI)iiiiiiiieieiii e 175
2.7, XA RECOVEIY .ottt ettt e e et e e e e ees 176
32.7.1. XA Recovery Configurationcccoveiiiieiiiieiiiieeie e 176
32.7.2. EXAMPIE .o 178

GG T I o L= 1Y T 1 g o o = 179
33.1. IMS Bridge Parameterscco.uuiiiiiiiiieiiiie e 182
33.2. Source and Target Connection Factoriesc.oeviviiiiiiiiiiiieee e, 185
33.3. Source and Target Destination FACIOMNeScc.oviviiiiiiiiiii e, 185
33.4. QUAIILY OF SEIVICE ...iiiiiiiii et e e e e 185
33.4.1. AT _MOST _ONCE .. oottt e e e e e aai e e 185
33.4.2. DUPLICATES _OK ..ttt ittt e et eeeeni e aees 186
33.4.3. ONCE_AND_ONLY_ONCEuiiiiiiiieeiiii et 186
33.4.4. Time outs and the JMS Bridgecccoueieiiiieiiiiee e 186
33L4.5. EXAMPIES ...t 187

HornetQ User Manual

34. Client Reconnection and Session Reattachmentccccooooviiiiiiiiiinii e, 189
34.1. 100% Transparent session re-attachmentcooiiiiiiii e, 189
34.2. SESSION FECONNECHIONiiiiiiieeeii ettt e e e e et e e e e eeaaans 190
34.3. Configuring reconnection/reattachment attributescccooeviiiiiiiiiiii e, 190
34.4. ExceptionListeners and SessionFailureListenerscccccovevviiveiiiieviiecieeeeenn, 191

35. Diverting and Splitting Message FIOWSoooiiiiiiiiiiiii e 193
35.1. EXCIUSIVE DIVEIT .ouiieeiiiiiieiiiie ettt e e e et e e e et e e e e eaaaeeeees 193
35.2. NON-EXCIUSIVE DIVEIT ...t e e e e e e e 194

ST 0] =T = o [0 = 197
36.1. ConfiguriNg BIIAGEScccuuuuiiiiii et 197

37. Duplicate Message DEetECLIONiiiiiiiiii et 201
37.1. Using Duplicate Detection for Message Sendingccccceeveieiiinneiiiiineenennnnnn. 201
37.2. Configuring the Duplicate ID CacCheccocvuiiiiiiiiiii e, 202
37.3. Duplicate Detection and Bridgesooeieuuiiieiiiiiei e 203
37.4. Duplicate Detection and Cluster CONNECLIONScc.vevivieiiiiieiiieecieece e, 203

38. HornetQ and Application Server Cluster Configurationccc.ocoiviiiiiiiieiinenenn. 205
38.1. Configuring FailOVETcouniiiiii e 205

38.1.1. Colocated Live and Backup in Symmetrical clustercceeiieiennnn. 205
38.1.2. Dedicated Live and Backup in Symmetrical clusterccoeeeennnennn. 212

39. High Availability and FailOVercoooiiiiiii e 215

39.1. Live - BACKUP GIOUPS . ..ouiiiiieii ettt e e e e e e e e e eees 215
1 I I I o N 1 0o To =P 215
39.1.2. Data RePlICAtIONcvviiiciiiee e 215
39.1.3. ShAr@d StOrecouiiiiiiiii et 217

39.2. FAlOVEr MOUEScieiiiiiieeei e e e 219
39.2.1. Automatic Client FalOVErooouiiiiiei e 219
39.2.2. Getting Notified of Connection Failurec.cccoiiiiiiiiiiiiiiiieieeeeee 222
39.2.3. Application-Level FailoVerc.ocooiiiiiiiiii e 223

40. Libaio Native LIDIariesS ... 225
40.1. Compiling the native lIBrariesoovoiiii e 225

40.1.1. InStall reQUIFEMENTSiviiiiii e e e e e e e e aes 225
40.1.2. Invoking the compilationiviiiiiiiiii e 226

N I I o =T= o B =Yg = To T =T o V=T o | P 229

41.1. Server-Side Thread ManagemMeNTcoouuuiiiiiiiiieieii e 229
41.1.1. Server Scheduled Thread POOIccovviiiiiiiiiii e, 229
41.1.2. General Purpose Server Thread POOlocooviiiiiiiiiiiiiiicii s 229
41.1.3. Expiry Reaper Threadccccoiiiiiiiiiii e 230
41.1.4. ASYNCNIONOUS 1O ...iiiiiiiiiiii e e 230

41.2. Client-Side Thread Managementccceuuieiiiieeiii e e e e e e 230

R W o o Lo 11 o R TP P TR PPPPTR 233
42.1. Logging With The JBoss Application SErverccoovveieiiiiiiiie e 233

43. Embedding HOINEtQuuiiiiiiiiie e et e 235
43.1. Simple Config File EMbeddingccoouiiiiiii e 235

43.1.1. C0re API ONIY oo 235

A3.1.2. IMS APL oo 236

43.2. POJO instantiation - Embedding Programmaticallycccooiiiiiiiinieiininnnnn. 237
43.3. Dependency FrameEWOIKSccuuiiiiiieiiiiee e e e e e e e e e e e e e e e e eanees 239
PP 239

Y o] g g Yo T N (=T = Lo PN 241
45. Intercepting OPEIratiONSu. it et e e e e eeaan s 243
45.1. Implementing The INtErCEPLOrScvuiiii e e 243
45.2. Configuring The INLErCEPLOIScoouuuiiiiii et 243
45.3. Interceptors on the Clent Sidecccuiiiiiiiii e 244
A5 4, EXAMPIE oot 244

46, INTErOPEraADIlITY ..vueiei i 245
T S (o] 1] PP PTPPTPPN 245
46.1.1. Native StOMP SUPPOIT ...evuieiiieeii et e e e e e e e e e e et e e et e e e eaneees 245

46.1.2. Mapping Stomp destinations to HornetQ addresses and queues 246

46.1.3. STOMP and connection-ttlcooeiiiiiiiiiiii e 246

46.1.4. Stomp and JMS interoperabiltycoooiiiiiii 247

46.1.5. Stomp Over Web SOCKELScocvuiiiiiieiiicc e 248

46.1.6. StOMPCONNECE ..oiitiiiiiii et 249

I =1 PP 249
e T Y 1Y [= PSP 249

A7. PerformanCe TUNING ..o et e e e e e e e e e e et e e et e e et e e et e e et e eeanaees 251
A7.1. TUNING PEISISIENCE ...ttt ettt e e e e e e aa s 251
A7.2. TUNING JMS oot e e e e et e e e et e e e e b 251
A7.3. OthEI TUNINGS ...eieiti ettt ettt e et e et e ettt eeeaaa s 252
47.4. Tuning TranSpPOort SEHINGSviiniiiii e e e e eaes 253
A7.5. TUNING the VM ooii et e 254
47.6. Avoiding ANti-Patternsiiiiiiiiii e 254

48. Configuration REFEIENCE i e 257
48.1. Server Configurationcooeiiiiiiiie e e e 257
48.1.1. hornetq-configuration. XMliiiiiiiiiei e 257

48.1.2. hornetg-jMS.XIMI .. oo e e e e e 268

48.1.3. Using Masked Passwords in Configuration Filescccooeveeiinnnnnnn. 272

Xi

Xii

Chapter 1.

Legal Notice

Copyright © 2010 Red Hat, Inc. and others.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution—Share Alike 3.0 Unported license ("CC-BY-SA").

An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/. In
accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide
the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

http://creativecommons.org/licenses/by-sa/3.0/

Chapter 2.

Preface

What is HornetQ?

» HornetQ is an open source project to build a multi-protocol, embeddable, very high performance,
clustered, asynchronous messaging system.

* HornetQ is an example of Message Oriented Middleware (MoM) For a description of MoMs and
other messaging concepts please see the Chapter 4, Messaging Concepts.

« For answers to more questions about what HornetQ is and what it isn't please visit the FAQs
wiki page [http://www.jboss.org/community/wiki/HornetQGeneralFAQs].

Why use HornetQ? Here are just a few of the reasons:

» 100% open source software. HornetQ is licenced using the Apache Software License v 2.0 to
minimise barriers to adoption.

» HornetQ is designed with usability in mind.

« Written in Java. Runs on any platform with a Java 6+ runtime, that's everything from Windows
desktops to IBM mainframes.

e Amazing performance. Our ground-breaking high performance journal provides persistent
messaging performance at rates normally seen for non-persistent messaging, our non-
persistent messaging performance rocks the boat too.

 Full feature set. All the features you'd expect in any serious messaging system, and others you
won't find anywhere else.

» Elegant, clean-cut design with minimal third party dependencies. Run HornetQ stand-alone,
run it in integrated in your favourite JEE application server, or run it embedded inside your own
product. It's up to you.

« Seamless high availability. We provide a HA solution with automatic client failover so you can
guarantee zero message loss or duplication in event of server failure.

» Hugely flexible clustering. Create clusters of servers that know how to load balance messages.
Link geographically distributed clusters over unreliable connections to form a global network.
Configure routing of messages in a highly flexible way.

« For a full list of features, please see the features wiki page [http://www.jboss.org/community/
wiki/HornetQFeatures] .

http://www.jboss.org/community/wiki/HornetQGeneralFAQs
http://www.jboss.org/community/wiki/HornetQGeneralFAQs
http://www.jboss.org/community/wiki/HornetQGeneralFAQs
http://www.jboss.org/community/wiki/HornetQFeatures
http://www.jboss.org/community/wiki/HornetQFeatures
http://www.jboss.org/community/wiki/HornetQFeatures

Chapter 3.

Project Information

The official HornetQ project page is http://hornetq.org/.

3.1. Software Download

The software can be download from the Download page:http://hornetqg.org/downloads.html

3.2. Project Information

» Please take a look at our project wiki [http://www.jboss.org/community/wiki/HornetQ]

« If you have any user questions please use our user forum [http://www.jboss.org/index.html|?
module=bb&op=viewforumé&f=312]

e If you have development related questions, please use our developer forum [http:/
www.jboss.org/index.html?module=bb&op=viewforumé&f=313]

* Pop in and chat to us in our IRC channel [irc://irc.freenode.net:6667/hornetq]
« Our project blog [http://hornetg.blogspot.com/]

« Follow us on twitter [http://twitter.com/hornetq]

« HornetQ Git repository is https://github.com/hornetg/hornetq

» All release tags are availble from https://github.com/hornetg/hornetg/tags

Red Hat kindly employs developers to work full time on HornetQ, they are:

Clebert Suconic (project lead)

Andy Taylor
* Howard Gao
» Francisco Borges

And many thanks to all our contributors, both old and new who helped create HornetQ, for a full
list of the people who made it happen, take a look at our team page [http://jboss.org/hornetq/
community/team.html].

http://hornetq.org/
http://hornetq.org/downloads.html
http://www.jboss.org/community/wiki/HornetQ
http://www.jboss.org/community/wiki/HornetQ
http://www.jboss.org/index.html?module=bb&op=viewforum&f=312
http://www.jboss.org/index.html?module=bb&op=viewforum&f=312
http://www.jboss.org/index.html?module=bb&op=viewforum&f=312
http://www.jboss.org/index.html?module=bb&op=viewforum&f=313
http://www.jboss.org/index.html?module=bb&op=viewforum&f=313
http://www.jboss.org/index.html?module=bb&op=viewforum&f=313
irc://irc.freenode.net:6667/hornetq
irc://irc.freenode.net:6667/hornetq
http://hornetq.blogspot.com/
http://hornetq.blogspot.com/
http://twitter.com/hornetq
http://twitter.com/hornetq
https://github.com/hornetq/hornetq
https://github.com/hornetq/hornetq/tags
http://jboss.org/hornetq/community/team.html
http://jboss.org/hornetq/community/team.html
http://jboss.org/hornetq/community/team.html

Chapter 4.

Messaging Concepts

HornetQ is an asynchronous messaging system, an example of Message Oriented Middleware
[http://en.wikipedia.org/wiki/Message_oriented_middleware] , we'll just call them messaging
systems in the remainder of this book.

We'll first present a brief overview of what kind of things messaging systems do, where they're
useful and the kind of concepts you'll hear about in the messaging world.

If you're already familiar with what a messaging system is and what it's capable of, then you can
skip this chapter.

4.1. Messaging Concepts

Messaging systems allow you to loosely couple heteregenous systems together, whilst typically
providing reliability, transactions and many other features.

Unlike systems based on a Remote Procedure Call [http://en.wikipedia.org/wiki/
Remote procedure_call] (RPC) pattern, messaging systems primarily use an asynchronous
message passing pattern with no tight relationship between requests and responses. Most
messaging systems also support a request-response mode but this is not a primary feature of
messaging systems.

Designing systems to be asynchronous from end-to-end allows you to really take advantage of
your hardware resources, minimizing the amount of threads blocking on 10 operations, and to use
your network bandwidth to its full capacity. With an RPC approach you have to wait for a response
for each request you make so are limited by the network round trip time, or latency of your network.
With an asynchronous system you can pipeline flows of messages in different directions, so are
limited by the network bandwidth not the latency. This typically allows you to create much higher
performance applications.

Messaging systems decouple the senders of messages from the consumers of messages. The
senders and consumers of messages are completely independent and know nothing of each other.
This allows you to create flexible, loosely coupled systems.

Often, large enterprises use a messaging system to implement a message bus which loosely
couples heterogeneous systems together. Message buses often form the core of an Enterprise
Service Bus [http://en.wikipedia.org/wiki/Enterprise_service_bus]. (ESB). Using a message bus
to de-couple disparate systems can allow the system to grow and adapt more easily. It also allows
more flexibility to add new systems or retire old ones since they don't have brittle dependencies
on each other.

4.2. Messaging styles

Messaging systems normally support two main styles of asynchronous messaging: message
queue [http://en.wikipedia.org/wiki/Message queue] messaging (also known as point-to-point

http://en.wikipedia.org/wiki/Message_oriented_middleware
http://en.wikipedia.org/wiki/Message_oriented_middleware
http://en.wikipedia.org/wiki/Remote_procedure_call
http://en.wikipedia.org/wiki/Remote_procedure_call
http://en.wikipedia.org/wiki/Remote_procedure_call
http://en.wikipedia.org/wiki/Enterprise_service_bus
http://en.wikipedia.org/wiki/Enterprise_service_bus
http://en.wikipedia.org/wiki/Enterprise_service_bus
http://en.wikipedia.org/wiki/Message_queue
http://en.wikipedia.org/wiki/Message_queue
http://en.wikipedia.org/wiki/Message_queue

Chapter 4. Messaging Concepts

messaging) and publish subscribe [http://en.wikipedia.org/wiki/Publish_subscribe] messaging.
We'll summarise them briefly here:

4.2.1. The Message Queue Pattern

With this type of messaging you send a message to a queue. The message is then typically
persisted to provide a guarantee of delivery, then some time later the messaging system delivers
the message to a consumer. The consumer then processes the message and when it is done, it
acknowledges the message. Once the message is acknowledged it disappears from the queue
and is not available to be delivered again. If the system crashes before the messaging server
receives an acknowledgement from the consumer, then on recovery, the message will be available
to be delivered to a consumer again.

With point-to-point messaging, there can be many consumers on the queue but a particular
message will only ever be consumed by a maximum of one of them. Senders (also known as
producers) to the queue are completely decoupled from receivers (also known as consumers) of
the queue - they do not know of each others existence.

A classic example of point to point messaging would be an order queue in a company's book
ordering system. Each order is represented as a message which is sent to the order queue. Let's
imagine there are many front end ordering systems which send orders to the order queue. When
a message arrives on the queue it is persisted - this ensures that if the server crashes the order
is not lost. Let's also imagine there are many consumers on the order queue - each representing
an instance of an order processing component - these can be on different physical machines but
consuming from the same queue. The messaging system delivers each message to one and only
one of the ordering processing components. Different messages can be processed by different
order processors, but a single order is only processed by one order processor - this ensures orders
aren't processed twice.

As an order processor receives a message, it fulfills the order, sends order information to
the warehouse system and then updates the order database with the order details. Once it's
done that it acknowledges the message to tell the server that the order has been processed
and can be forgotten about. Often the send to the warehouse system, update in database
and acknowledgement will be completed in a single transaction to ensure ACID [http://
en.wikipedia.org/wiki/ACID] properties.

4.2.2. The Publish-Subscribe Pattern

With publish-subscribe messaging many senders can send messages to an entity on the server,
often called a topic (e.g. in the IMS world).

There can be many subscriptions on a topic, a subscription is just another word for a consumer
of a topic. Each subscription receives a copy of each message sent to the topic. This differs from
the message queue pattern where each message is only consumed by a single consumer.

Subscriptions can optionally be durable which means they retain a copy of each message sent to
the topic until the subscriber consumes them - even if the server crashes or is restarted in between.
Non-durable subscriptions only last a maximum of the lifetime of the connection that created them.

http://en.wikipedia.org/wiki/Publish_subscribe
http://en.wikipedia.org/wiki/Publish_subscribe
http://en.wikipedia.org/wiki/ACID
http://en.wikipedia.org/wiki/ACID
http://en.wikipedia.org/wiki/ACID

Delivery guarantees

An example of publish-subscribe messaging would be a news feed. As news articles are created
by different editors around the world they are sent to a news feed topic. There are many
subscribers around the world who are interested in receiving news items - each one creates a
subscription and the messaging system ensures that a copy of each news message is delivered
to each subscription.

4.3. Delivery guarantees

A key feature of most messaging systems is reliable messaging. With reliable messaging the
server gives a guarantee that the message will be delivered once and only once to each consumer
of a queue or each durable subscription of a topic, even in the event of system failure. This is
crucial for many businesses; e.g. you don't want your orders fulfilled more than once or any of
your orders to be lost.

In other cases you may not care about a once and only once delivery guarantee and are happy to
cope with duplicate deliveries or lost messages - an example of this might be transient stock price
updates - which are quickly superseded by the next update on the same stock. The messaging
system allows you to configure which delivery guarantees you require.

4.4. Transactions

Messaging systems typically support the sending and acknowledgement of multiple messages in
a single local transaction. HornetQ also supports the sending and acknowledgement of message
as part of a large global transaction - using the Java mapping of XA; JTA.

4.5. Durability

Messages are either durable or non durable. Durable messages will be persisted in permanent
storage and will survive server failure or restart. Non durable messages will not survive server
failure or restart. Examples of durable messages might be orders or trades, where they cannot
be lost. An example of a non durable message might be a stock price update which is transitory
and doesn't need to survive a restart.

4.6. Messaging APIs and protocols

How do client applications interact with messaging systems in order to send and consume
messages?

Several messaging systems provide their own proprietary APIs with which the client
communicates with the messaging system.

There are also some standard ways of operating with messaging systems and some emerging
standards in this space.

Let's take a brief look at these:

Chapter 4. Messaging Concepts

4.6.1. Java Message Service (JMS)

JMS [http://en.wikipedia.org/wiki/Java_Message_Service] is part of Sun's JEE specification. It's
a Java API that encapsulates both message queue and publish-subscribe messaging patterns.
JMS is a lowest common denominator specification - i.e. it was created to encapsulate common
functionality of the already existing messaging systems that were available at the time of its
creation.

JMS is a very popular APl and is implemented by most, messaging systems. JMS is only available
to clients running Java.

JMS does not define a standard wire format - it only defines a programmatic API so JMS clients
and servers from different vendors cannot directly interoperate since each will use the vendor's
own internal wire protocol.

HornetQ provides a fully compliant IMS 1.1 API.

4.6.2. System specific APIs

Many systems provide their own programmatic API for which to interact with the messaging
system. The advantage of this it allows the full set of system functionality to be exposed to the
client application. API's like JMS are not normally rich enough to expose all the extra features that
most messaging systems provide.

HornetQ provides its own core client API for clients to use if they wish to have access to
functionality over and above that accessible via the JMS API.

4.6.3. RESTful API

REST [http://en.wikipedia.org/wiki/Representational_State Transfer] approaches to messaging
are showing a lot interest recently.

It seems plausible that API standards for cloud computing may converge on a REST style set of
interfaces and consequently a REST messaging approach is a very strong contender for becoming
the defacto method for messaging interoperability.

With a REST approach messaging resources are manipulated as resources defined by a URI and
typically using a simple set of operations on those resources, e.g. PUT, POST, GET etc. REST
approaches to messaging often use HTTP as their underlying protocol.

The advantage of a REST approach with HTTP is in its simplicity and the fact the internet is already
tuned to deal with HTTP optimally.

HornetQ has a RESTful interface. You can find documentation for it outside of this manual. See
the HornetQ distribution or website for more information.

4.6.4. STOMP

Stomp [http://stomp.codehaus.org/] is a very simple text protocol for interoperating with messaging
systems. It defines a wire format, so theoretically any Stomp client can work with any messaging

10

http://en.wikipedia.org/wiki/Java_Message_Service
http://en.wikipedia.org/wiki/Java_Message_Service
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://stomp.codehaus.org/
http://stomp.codehaus.org/

AMQP

system that supports Stomp. Stomp clients are available in many different programming
languages.

Please see Section 46.1, “Stomp” for using STOMP with HornetQ.

4.6.5. AMQP

AMQP [http://en.wikipedia.org/wiki/AMQP] is a specification for interoperable messaging. It also
defines a wire format, so any AMQP client can work with any messaging system that supports
AMQP. AMQP clients are available in many different programming languages.

HornetQ will shortly be implementing AMQP.

4.7. High Availability

High Availability (HA) means that the system should remain operational after failure of one or more
of the servers. The degree of support for HA varies between various messaging systems.

HornetQ provides automatic failover where your sessions are automatically reconnected to the
backup server on event of live server failure.

For more information on HA, please see Chapter 39, High Availability and Failover.

4.8. Clusters

Many messaging systems allow you to create groups of messaging servers called clusters.
Clusters allow the load of sending and consuming messages to be spread over many servers.
This allows your system to scale horizontally by adding new servers to the cluster.

Degrees of support for clusters varies between messaging systems, with some systems having
fairly basic clusters with the cluster members being hardly aware of each other.

HornetQ provides very configurable state-of-the-art clustering model where messages can be
intelligently load balanced between the servers in the cluster, according to the number of
consumers on each node, and whether they are ready for messages.

HornetQ also has the ability to automatically redistribute messages between nodes of a cluster
to prevent starvation on any particular node.

For full details on clustering, please see Chapter 38, HornetQ and Application Server Cluster
Configuration.

4.9. Bridges and routing

Some messaging systems allow isolated clusters or single nodes to be bridged together, typically
over unreliable connections like a wide area network (WAN), or the internet.

A bridge normally consumes from a queue on one server and forwards messages to another
gueue on a different server. Bridges cope with unreliable connections, automatically reconnecting
when the connections becomes available again.

11

http://en.wikipedia.org/wiki/AMQP
http://en.wikipedia.org/wiki/AMQP

Chapter 4. Messaging Concepts

HornetQ bridges can be configured with filter expressions to only forward certain messages, and
transformation can also be hooked in.

HornetQ also allows routing between queues to be configured in server side configuration.
This allows complex routing networks to be set up forwarding or copying messages from one
destination to another, forming a global network of interconnected brokers.

For more information please see Chapter 36, Core Bridges and Chapter 35, Diverting and Splitting
Message Flows.

12

Chapter 5.

Architecture

In this section we will give an overview of the HornetQ high level architecture.

5.1. Core Architecture

HornetQ core is designed simply as set of Plain Old Java Objects (POJOs) - we hope you like
it's clean-cut design.

We've also designed it to have as few dependencies on external jars as possible. In fact, HornetQ
core has only one jar dependency, netty.jar, other than the standard JDK classes! This is because
we use some of the netty buffer classes internally.

This allows HornetQ to be easily embedded in your own project, or instantiated in any dependency
injection framework such as JBoss Microcontainer, Spring or Google Guice.

Each HornetQ server has its own ultra high performance persistent journal, which it uses for
message and other persistence.

Using a high performance journal allows outrageous persistence message performance,
something not achievable when using a relational database for persistence.

HornetQ clients, potentially on different physical machines interact with the HornetQ server.
HornetQ currently provides two APIs for messaging at the client side:

1. Core client API. This is a simple intuitive Java API that allows the full set of messaging
functionality without some of the complexities of JIMS.

2. JMS client API. The standard JMS API is available at the client side.
JMS semantics are implemented by a thin JIMS facade layer on the client side.

The HornetQ server does not speak JMS and in fact does not know anything about JMS, it's a
protocol agnostic messaging server designed to be used with multiple different protocols.

When a user uses the JMS API on the client side, all JMS interactions are translated into
operations on the HornetQ core client API before being transferred over the wire using the HornetQ
wire format.

The server always just deals with core API interactions.

A schematic illustrating this relationship is shown in figure 3.1 below:

13

Chapter 5. Architecture

Persistent Journal

HornetQ Server

l
¢

Core client Core client
JMS Facade
User User
Application 1 Application 2

Figure 3.1 shows two user applications interacting with a HornetQ server. User Application 1 is
using the JMS API, while User Application 2 is using the core client API directly.

14

HornetQ embedded in your own application

You can see from the diagram that the JMS API is implemented by a thin facade layer on the
client side.

5.2. HornetQ embedded in your own application

HornetQ core is designed as a set of simple POJOs so if you have an application that requires
messaging functionality internally but you don't want to expose that as a HornetQ server you can
directly instantiate and embed HornetQ servers in your own application.

For more information on embedding HornetQ, see Chapter 43, Embedding HornetQ.

5.3. HornetQ integrated with a JEE application server

HornetQ provides its own fully functional Java Connector Architecture (JCA) adaptor which
enables it to be integrated easily into any JEE compliant application server or servlet engine.

JEE application servers provide Message Driven Beans (MDBs), which are a special type of
Enterprise Java Beans (EJBs) that can process messages from sources such as JMS systems
or mail systems.

Probably the most common use of an MDB is to consume messages from a JMS messaging
system.

According to the JEE specification, a JEE application server uses a JCA adapter to integrate with
a JMS messaging system so it can consume messages for MDBs.

However, the JCA adapter is not only used by the JEE application server for consuming messages
via MDBs, it is also used when sending message to the JMS messaging system e.g. from inside
an EJB or servlet.

When integrating with a JIMS messaging system from inside a JEE application server it is always
recommended that this is done via a JCA adaptor. In fact, communicating with a JIMS messaging
system directly, without using JCA would be illegal according to the JEE specification.

The application server's JCA service provides extra functionality such as connection pooling and
automatic transaction enlistment, which are desirable when using messaging, say, from inside
an EJB. It is possible to talk to a JMS messaging system directly from an EJB, MDB or servlet
without going through a JCA adapter, but this is not recommended since you will not be able to
take advantage of the JCA features, such as caching of JMS sessions, which can result in poor
performance.

Figure 3.2 below shows a JEE application server integrating with a HornetQ server via the HornetQ
JCA adaptor. Note that all communication between EJB sessions or entity beans and Message
Driven beans go through the adaptor and not directly to HornetQ.

The large arrow with the prohibited sign shows an EJB session bean talking directly to the HornetQ
server. This is not recommended as you'll most likely end up creating a new connection and
session every time you want to interact from the EJB, which is an anti-pattern.

15

Chapter 5. Architecture

JEE Application Server

Servlet — ™1 MDB

EJB —» MDB

EJB | MDE

JCA
adaptor

HornetQ Server

For more information on using the JCA adaptor, please see Chapter 32, Application Server
Integration and Java EE.

5.4. HornetQ stand-alone server

HornetQ can also be deployed as a stand-alone server. This means a fully independent messaging
server not dependent on a JEE application server.

The standard stand-alone messaging server configuration comprises a core messaging server,
a JMS service and a JNDI service.

16

HornetQ stand-alone server

The role of the JIMS Service is to deploy any JMS Queue, Topic and ConnectionFactory instances
from any server side hor net g-j ns. xnl configuration files. It also provides a simple management
API for creating and destroying Queues, Topics and ConnectionFactory instances which can
be accessed via JMX or the connection. It is a separate service to the HornetQ core server,
since the core server is JMS agnostic. If you don't want to deploy any JMS Queue, Topic
or ConnectionFactory instances via server side XML configuration and don't require a JMS
management API on the server side then you can disable this service.

We also include a JNDI server since JNDI is a common requirement when using JMS to lookup
Queues, Topics and ConnectionFactory instances. If you do not require JNDI then this service can
also be disabled. HornetQ allows you to programmatically create JMS and core objects directly
on the client side as opposed to looking them up from JNDI, so a JNDI server is not always a
requirement.

The stand-alone server configuration uses JBoss Microcontainer to instantiate and enforce
dependencies between the components. JBoss Microcontainer is a very lightweight POJO
bootstrapper.

The stand-alone server architecture is shown in figure 3.3 below:

JBoss Microcontainer

JND| Seryer

HornetQ core

server

JMS Service

For more information on server configuration files see Section 48.1, “Server Configuration”. $

17

18

Chapter 6.

Using the Server

This chapter will familiarise you with how to use the HornetQ server.

We'll show where it is, how to start and stop it, and we'll describe the directory layout and what
all the files are and what they do.

For the remainder of this chapter when we talk about the HornetQ server we mean the HornetQ
standalone server, in its default configuration with a IMS Service and JNDI service enabled.

When running embedded in JBoss Application Server the layout may be slightly different but by-
and-large will be the same.

6.1. Starting and Stopping the standalone server

In the distribution you will find a directory called bi n.

cd into that directory and you'll find a unix/linux script called run. sh and a windows batch file
called r un. bat

To run on Unix/Linux type ./ run. sh
To run on Windows type r un. bat

These scripts are very simple and basically just set-up the classpath and some JVM parameters
and start the JBoss Microcontainer. The Microcontainer is a light weight container used to deploy
the HornetQ POJO's

To stop the server you'll also find a unix/linux script st op. sh and a windows batch file st op. bat
To run on Unix/Linux type . / st op. sh

To run on Windows type st op. bat

Please note that HornetQ requires a Java 6 or later runtime to run.

Both the run and the stop scripts use the config under confi g/ st and- al one/ non- cl ust er ed
by default. The configuration can be changed by running . /run. sh ../ confi g/ st and- al one/
cl ust er ed or another config of your choosing. This is the same for the stop script and the windows
bat files.

6.2. Server JVM settings

The run scripts run. sh and run. bat set some JVM settings for tuning running on Java 6
and choosing the garbage collection policy. We recommend using a parallel garbage collection
algorithm to smooth out latency and minimise large GC pauses.

By default HornetQ runs in a maximum of 1GiB of RAM. To increase the memory settings change
the - Xnms and - Xmx memory settings as you would for any Java program.

19

Chapter 6. Using the Server

If you wish to add any more JVM arguments or tune the existing ones, the run scripts are the
place to do it.

6.3. Server classpath

HornetQ looks for its configuration files on the Java classpath.
The scripts run. sh and r un. bat specify the classpath when calling Java to run the server.

In the distribution, the run scripts will add the non clustered configuration directory to the classpath.
This is a directory which contains a set of configuration files for running the HornetQ server in a
basic non-clustered configuration. In the distribution this directory is conf i g/ st and- al one/ non-
cl ust ered/ from the root of the distribution.

The distribution contains several standard configuration sets for running:

* Non clustered stand-alone.

Clustered stand-alone

Non clustered in JBoss Application Server

Clustered in JBoss Application Server

You can of course create your own configuration and specify any configuration directory when
running the run script.

Just make sure the directory is on the classpath and HornetQ will search there when starting up.

6.4. Library Path

If you're using the Asynchronous IO Journal on Linux, you need to specify j ava. | i brary. path
as a property on your Java options. This is done automatically in the r un. sh script.

If you don't specify java.library.path at your Java options then the JVM will use the
environment variable LD _LI BRARY_PATH.

6.5. System properties

HornetQ can take a system property on the command line for configuring logging.

For more information on configuring logging, please see Chapter 42, Logging.

6.6. Configuration files

The configuration directory is specified on the classpath in the run scripts run. sh and run. bat
This directory can contain the following files.

e hornet g- beans. xml (or hor net g-j boss- beans. xn if you're running inside JBoss Application
Server). This is the JBoss Microcontainer beans file which defines what beans the
Microcontainer should create and what dependencies to enforce between them. Remember

20

Configuration files

that HornetQ is just a set of POJOs. In the stand-alone server, it's the JBoss Microcontainer
which instantiates these POJOs and enforces dependencies between them and other beans.

e hornetg-configuration.xnl. This is the main HornetQ configuration file. All the parameters
in this file are described in Chapter 48, Configuration Reference. Please see Section 6.9, “The
main configuration file.” for more information on this file.

* hornet g- queues. xm . This file contains predefined queues, queue settings and security
settings. The file is optional - all this configuration can also live in hor net g- conf i gur ati on. xm .
In fact, the default configuration sets do not have a hor net g- queues. xnl file. The purpose
of allowing queues to be configured in these files is to allow you to manage your queue
configuration over many files instead of being forced to maintain it in a single file. There can be
many hor net g- queues. xm files on the classpath. All will be loaded if found.

e hornetg-users.xml HornetQ ships with a basic security manager implementation which
obtains user credentials from the hor net g- users. xni file. This file contains user, password
and role information. For more information on security, please see Chapter 31, Security.

e hornetg-j ns. xm The distro configuration by default includes a server side JMS service which
mainly deploys JMS Queues, Topics and ConnectionFactorys from this file into JNDI. If you're
not using JMS, or you don't need to deploy JMS objects on the server side, then you don't need
this file. For more information on using JMS, please see Chapter 7, Using JMS.

* | oggi ng. properties This is used to configure the logging handlers used by the Java logger.
For more information on configuring logging, please see Chapter 42, Logging.

* 1 og4j.xnl This is the Log4j configuration if the Log4j handler is configured.

@ Note
The property fil e-depl oynent - enabl ed in the hornet g- confi gurati on. xni
configuration when set to false means that the other configuration files are not
loaded. This is true by default.

It is also possible to use system property substitution in all the configuration files. by replacing
a value with the name of a system property. Here is an example of this with a connector
configuration:

<connector nane="netty">

<factory-
cl ass>org. hornetq. core.renoting.inpl.netty. NettyConnect or Fact ory
</factory-cl ass>
<param key="host" val ue="${hornetq.renoting.netty. host:|ocal host}"
type="String"/>
<param key="port" val ue="${hornetg.renoting. netty. port: 5445}"

type="Integer"/>

21

Chapter 6. Using the Server

</ connect or >

Here you <can see we have replaced 2 values with system properties
hornet g. renoti ng. netty. host and hornetq. renoting. netty. port. These values will be
replaced by the value found in the system property if there is one, if not they default
back to localhost or 5445 respectively. It is also possible to not supply a default. i.e.
${hornet g.remoting. netty. host}, however the system property must be supplied in that case.

6.7. JBoss Microcontainer Beans File

The stand-alone server is basically a set of POJOs which are instantiated by the light weight JBoss
Microcontainer [http://www.jboss.org/jbossmc/]engine.

@ Note
A beans file is also needed when the server is deployed in the JBoss Application
Server but this will deploy a slightly different set of objects since the Application
Server will already have things like security etc deployed.

Let's take a look at an example beans file from the stand-alone server:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<depl oynent xm ns="urn:j boss: bean-depl oyer: 2. 0" >
<bean name="Nam ng" cl ass="org.jnp.server. Nanm ngBeanl npl "/ >

<!-- JNDI server. Disable this if you don't want JNDI -->
<bean nanme="JNDI Server" class="org.jnp.server. Min">

<property name="nam ngl nfo">

<i nj ect bean="Nam ng"/>

</ property>

<property nane="port">1099</ property>

<property name="bi ndAddr ess" >l ocal host </ property>

<property nane="rni Port">1098</ property>

<property nane="rm Bi ndAddr ess" >l ocal host </ property>
</ bean>

<l-- MBean server -->
<bean nane="MBeanServer" cl ass="j avax. managenent. MBeanServer" >
<constructor factoryd ass="j ava. | ang. managenent . Managenent Fact or y"
fact or yMet hod="get Pl at f or mvBeanSer ver "/ >
</ bean>

<l-- The core configuration -->

22

http://www.jboss.org/jbossmc/
http://www.jboss.org/jbossmc/
http://www.jboss.org/jbossmc/

JBoss Microcontainer Beans File

<bean nane="Conf i guration”
cl ass="org. hornetq. core.config.inpl.FileConfiguration">

</ bean>

<!-- The security nanager -->

<bean name="Hor net QSecurityManager"
cl ass="org. hornet g. spi . core. security. Hornet @ecurityManager!| npl ">
<start ignored="true"/>
<stop ignored="true"/>
</ bean>

<!-- The core server -->
<bean name="Hor net Ser ver"
cl ass="org. hornet g. core. server.inpl. Hornet QServer| nmpl ">
<start ignored="true"/>
<stop ignored="true"/>
<constructor >
<par anet er >
<i nj ect bean="Configuration"/>
</ par anet er >
<par anet er >
<i nj ect bean="MBeanServer"/>
</ par anet er >
<par anet er >
<i nj ect bean="Hor net QSecurityManager"/>
</ par anet er >
</ constructor>
</ bean>

<l-- The JMS server -->
<bean nane="JMsSServer Manager"
cl ass="org. hornetq.jns.server.inpl.JMSServer Manager | npl ">
<construct or>
<par anet er >
<i nj ect bean="Hor net QServer"/>
</ par anet er >
</ constructor>
</ bean>

</ depl oynent >

We can see that, as well as the core HornetQ server, the stand-alone server instantiates various
different POJOs, lets look at them in turn:

* JIJNDIServer

Many clients like to look up JMS Objects from JNDI so we provide a JNDI server for them to do
that. If you don't need JNDI this can be commented out or removed.

23

Chapter 6. Using the Server

e MBeanServer

In order to provide a JMX management interface a JMS MBean server is necessary in which
to register the management objects. Normally this is just the default platform MBean server
available in the JVM instance. If you don't want to provide a JMX management interface this
can be commented out or removed.

« Configuration

The HornetQ server is configured with a Configuration object. In the default stand-alone set-
up it uses a FileConfiguration object which knows to read configuration information from the file
system. In different configurations such as embedded you might want to provide configuration
information from somewhere else.

» Security Manager. The security manager used by the messaging server is pluggable. The
default one used just reads user-role information from the hor net g- users. xm file on disk.
However it can be replaced by a JAAS security manager, or when running inside JBoss
Application Server it can be configured to use the JBoss AS security manager for tight
integration with JBoss AS security. If you've disabled security altogether you can remove this
too.

e HornetQServer
This is the core server. It's where 99% of the magic happens
* JMSServerManager

This deploys any JMS Objects such as JIMS Queues, Topics and ConnectionFactory instances
from hornetg-jms. xnl files on the disk. It also provides a simple management API for
manipulating JMS Objects. On the whole it just translates and delegates its work to the core
server. If you don't need to deploy JMS Queues, Topics and ConnectionFactorys from server
side configuration and don't require the JMS management interface this can be disabled.

6.8. JBoss AS4 MBean Service.

@ Note
The section is only to configure HornetQ on JBoss AS4. The service funtionality
is similar to Microcontainer Beans

<?xm version="1.0" encodi ng="UTF- 8" ?>
<server >

<nmbean code="org. hornet q. servi ce. Hor net Qi | eConfi gurati onServi ce"
name="or g. hor net q: servi ce=Hor net Qi | eConfi gurati onServi ce">
</ nbean>

24

JBoss AS4 MBean Service.

<nmbean code="or g. hornet q. servi ce. JBossASSecurit yManager Ser vi ce"
nanme="or g. hor net q: servi ce=JBossASSecuri t yManager Servi ce" >
</ nbean>

<nmbean code="or g. hornet g. servi ce. Hornet @St art er Ser vi ce"
name="or g. hor net q: servi ce=Hor net QSt art er Servi ce" >
<!--lets let the JM5 Server start us-->
<attribute nane="Start">fal se</attribute>

<depends optional -attri but e-nane="SecurityManager Servi ce"
pr oxy-
type="attribute">org. hornetq: servi ce=JBossASSecuri t yManager Ser vi ce</ depends>
<depends optional -attribut e-nanme="Confi gurationService"
proxy-
type="attribute">org. hornetq: servi ce=Hor net QFi | eConfi gurati onServi ce</ depends>
</ nbean>

<nmbean code="org. hornet q. servi ce. Hor net QJMsSt art er Ser vi ce"
nane="or g. hor net q: servi ce=Hor net QJMSSt art er Ser vi ce" >
<depends optional -attri bute-nane="Hor net QSer ver"
proxy-type="attribute">org. hornetq: servi ce=Hor net QSt art er Ser vi ce</
depends>
</ nbean>

</ server>

This jboss-service.xml configuration file is included inside the hornetg-service.sar on AS4 with
embebbed HornetQ. As you can see, on this configuration file we are starting various services:

» HornetQFileConfigurationService

This is an MBean Service that takes care of the life cycle of the Fi | eConfi gurati on PQIO
» JBossASSecurityManagerService

This is an MBean Service that takes care of the lifecycle of the JBossASSecur i t yManager POJO
« HornetQStarterService

This is an MBean Service that controls the main Hor net QSer ver POJO. this has a dependency
on JBossASSecurityManagerService and HornetQFileConfigurationService MBeans

* HornetQJMSStarterService

This is an MBean Service that controls the JMSSer ver Manager | npl POJO. If you aren't using
jms this can be removed.

* JMSServerManager

25

Chapter 6. Using the Server

Has the responsibility to start the JMSServerManager and the same behaviour that
JMSServerManager Bean

6.9. The main configuration file.

The configuration for the HornetQ core server is contained in hor net g- conf i gurati on. xm . This
is what the FileConfiguration bean uses to configure the messaging server.

There are many attributes which you can configure HornetQ. In most cases the defaults will do
fine, in fact every attribute can be defaulted which means a file with a single empty conf i gur ati on
element is a valid configuration file. The different configuration will be explained throughout the
manual or you can refer to the configuration reference here.

26

Chapter 7.

Using JMS

Although HornetQ provides a JMS agnostic messaging API, many users will be more comfortable
using JMS.

JMS is a very popular API standard for messaging, and most messaging systems provide a
JMS API. If you are completely new to JMS we suggest you follow the Sun JMS tutorial [http://
java.sun.com/products/jms/tutorial/l_3_ 1-fcs/doc/jms_tutorialTOC.html] - a full IMS tutorial is out
of scope for this guide.

HornetQ also ships with a wide range of examples, many of which demonstrate JMS API usage.
A good place to start would be to play around with the simple JMS Queue and Topic example, but
we also provide examples for many other parts of the IMS API. A full description of the examples
is available in Chapter 11, Examples.

In this section we'll go through the main steps in configuring the server for JMS and creating a
simple JMS program. We'll also show how to configure and use JNDI, and also how to use JMS
with HornetQ without using any JNDI.

7.1. A simple ordering system

For this chapter we're going to use a very simple ordering system as our example. It's a somewhat
contrived example because of its extreme simplicity, but it serves to demonstrate the very basics
of setting up and using JMS.

We will have a single JMS Queue called Or der Queue, and we will have a single MessagePr oducer
sending an order message to the queue and a single MessageConsumer consuming the order
message from the queue.

The queue will be a dur abl e queue, i.e. it will survive a server restart or crash. We also want
to predeploy the queue, i.e. specify the queue in the server JMS configuration so it's created
automatically without us having to explicitly create it from the client.

7.2. JMS Server Configuration

The file hornetg-jms.xm on the server classpath contains any JMS Queue, Topic and
ConnectionFactory instances that we wish to create and make available to lookup via the JNDI.

A JMS ConnectionFactory object is used by the client to make connections to the server. It knows
the location of the server it is connecting to, as well as many other configuration parameters. In
most cases the defaults will be acceptable.

We'll deploy a single JMS Queue and a single JMS Connection Factory instance on the server
for this example but there are no limits to the number of Queues, Topics and Connection Factory
instances you can deploy from the file. Here's our configuration:

27

http://java.sun.com/products/jms/tutorial/1_3_1-fcs/doc/jms_tutorialTOC.html
http://java.sun.com/products/jms/tutorial/1_3_1-fcs/doc/jms_tutorialTOC.html
http://java.sun.com/products/jms/tutorial/1_3_1-fcs/doc/jms_tutorialTOC.html

Chapter 7. Using JMS

<configuration xm ns="urn: hornetq"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="urn: hornetq ../schemas/ hornetqg-j ns. xsd ">

<connection-factory nanme="Connecti onFactory">
<connect or s>
<connector-ref connector-nane="netty"/>
</ connect or s>
<entries>
<entry nane="ConnectionFactory"/>
</entries>
</ connection-factory>

<queue nane="Or der Queue" >
<entry nane="queues/ Or der Queue"/ >
</ queue>

</ confi guration>

We deploy one ConnectionFactory called Connecti onFact ory and bind it in just one place in
JNDI as given by the ent ry element. ConnectionFactory instances can be bound in many places
in JNDI if you require.

@ Note
The JMS connection factory references a connect or called netty. This is a
reference to a connector object deployed in the main core configuration file
hor net g- confi gur ati on. xml which defines the transport and parameters used
to actually connect to the server.

7.3. Connection Factory Types

The JMS API doc provides several connection factories for applications. HornetQ JMS users
can choose to configure the types for their connection factories. Each connection factory has a
si gnat ur e attribute and a xa parameter, the combination of which determines the type of the
factory. Attribute si gnat ur e has three possible string values, i.e. generic, queue and topic; xa
is a boolean type parameter. The following table gives their configuration values for different
connection factory interfaces.

Table 7.1. Configuration for Connection Factory Types

signature xa Connection Factory Type
generic (default) ‘ false (default) javax.jms.ConnectionFactory
generic ‘ true javax.jms.XAConnectionFactory

28

JNDI configuration

sighature xa Connection Factory Type

gqueue false javax.jms.QueueConnectionFactory
gqueue true javax.jms.XAQueueConnectionFactory
topic false javax.jms.TopicConnectionFactory
topic true javax.jms.XATopicConnectionFactory

As an example, the following configures an XAQueueConnectionFactory:

<configuration xm ns="urn: hornetq"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="urn: hornetq ../schemas/ hornetqg-j nms. xsd ">

<connection-factory name="Connecti onFactory" signature="queue">
<xa>true</ xa>
<connect or s>
<connector-ref connector-nane="netty"/>
</ connect or s>
<entries>
<entry nanme="ConnectionFactory"/>
</entries>
</ connecti on-factory>
</ confi guration>

7.4. INDI configuration

When using JNDI from the client side you need to specify a set of INDI properties which tell the
JNDI client where to locate the JNDI server, amongst other things. These are often specified in a
file calledj ndi . properti es onthe client classpath, or you can specify them directly when creating
the JNDI initial context. A full JNDI tutorial is outside the scope of this document, please see
the Sun JNDI tutorial [http://java.sun.com/products/jndi/tutorial/TOC.html] for more information on
how to use JNDI.

For talking to the JBoss JNDI Server, the jndi properties will look something like this:

java. nam ng.factory.initial =org.jnp.interfaces. Nam ngCont ext Fact ory
j ava. nam ng. provi der. url =j np:// nyhost: 1099
java. nam ng. factory. url . pkgs=org.jboss. nam ng: org. j np.interfaces

29

http://java.sun.com/products/jndi/tutorial/TOC.html
http://java.sun.com/products/jndi/tutorial/TOC.html

Chapter 7. Using JMS

Where nyhost is the hostname or IP address of the JNDI server. 1099 is the port used by the
JNDI server and may vary depending on how you have configured your JNDI server.

In the default standalone configuration, JNDI server ports are configured in the file hor net g-
beans. xm by setting properties on the JNDI Ser ver bean:

<bean nanme="JNDI Server" class="org.jnp.server.Min">

<property nanme="nam ngl nfo">

<i nj ect bean="Nam ng"/>

</ property>

<property nane="port">1099</ property>

<property nanme="bi ndAddr ess" >l ocal host </ property>

<property nane="rm Port">1098</ property>

<property nane="rm Bi ndAddr ess" >l ocal host </ property>
</ bean>

7.5. The code

Here's the code for the example:

First we'll create a JNDI initial context from which to lookup our JMS objects:

Initial Contect ic = new Initial Context();

Now we'll look up the connection factory:

Connecti onFactory cf = (ConnectionFactory)ic.|ookup("/ConnectionFactory");

The code

And look up the Queue:

Queue order Queue = (Queue)ic. | ookup("/queues/ O der Queue");

Next we create a JMS connection using the connection factory:

Connecti on connection = cf.createConnection();

And we create a non transacted JMS Session, with AUTO_ACKNOWLEDGE acknowledge mode:

Sessi on session = connection. createSessi on(fal se, Sessi on. AUTO_ ACKNOWNLEDGE) ;

We create a MessageProducer that will send orders to the queue:

MessagePr oducer producer = session. createProducer (order Queue);

And we create a MessageConsumer which will consume orders from the queue:

MessageConsuner consuner = session. creat eConsuner (or der Queue) ;

We make sure we start the connection, or delivery won't occur on it:

connection.start();

We create a simple TextMessage and send it:

Text Message nessage = session. creat eText Message("This is an order");
producer. send(nessage) ;

And we consume the message:

Text Message recei vedMessage = (Text Message) consuner.receive();
Systemout.println("Got order: " + recei vedMessage. get Text ());

31

Chapter 7. Using JMS

It's as simple as that. For a wide range of working JMS examples please see the examples
directory in the distribution.

Warning

Please note that JMS connections, sessions, producers and consumers are
designed to be re-used.

It's an anti-pattern to create new connections, sessions, producers and consumers
for each message you produce or consume. If you do this, your application will
perform very poorly. This is discussed further in the section on performance tuning
Chapter 47, Performance Tuning.

7.6. Directly instantiating JMS Resources without using
JNDI

Although it's a very common JMS usage pattern to lookup JMS Administered Objects (that's IMS
Queue, Topic and ConnectionFactory instances) from JNDI, in some cases a JNDI server is not
available and you still want to use JMS, or you just think "Why do | need JNDI? Why can't | just
instantiate these objects directly?"

With HornetQ you can do exactly that. HornetQ supports the direct instantiation of JMS Queue,
Topic and ConnectionFactory instances, so you don't have to use JNDI at all.

For a full working example of direct instantiation please see the JMS examples in Chapter 11,
Examples.

Here's our simple example, rewritten to not use JNDI at all:

We create the JMS ConnectionFactory object via the HornetQJMSClient Utility class, note we
need to provide connection parameters and specify which transport we are using, for more
information on connectors please see Chapter 16, Configuring the Transport.

Transport Configuration transportConfiguration =
new
Transport Confi guration(NettyConnector Factory. cl ass. get Nanme());
Connecti onFact ory cf =
Hor net QIMSO i ent . cr eat eConnect i onFact or yW t hout HA(JMSFact or yType. CF, t ransport Confi gurati on);

We also create the JMS Queue object via the HornetQJMSClient Utility class:

32

Directly instantiating JMS Resources without using JNDI

Queue order Queue = Hornet QIMSC i ent . creat eQueue(" O der Queue") ;

Next we create a JMS connection using the connection factory:

Connection connection = cf.createConnection();

And we create a non transacted JMS Session, with AUTO_ACKNOWLEDGE acknowledge mode:

Sessi on session = connection. createSessi on(fal se, Sessi on. AUTO_ACKNONL_EDGE)

We create a MessageProducer that will send orders to the queue:

MessagePr oducer producer = session.createProducer (order Qeue);

And we create a MessageConsumer which will consume orders from the queue:

MessageConsuner consuner = session. creat eConsuner (or der Queue) ;

We make sure we start the connection, or delivery won't occur on it:

connection.start();

We create a simple TextMessage and send it:

Text Message nessage = session. creat eText Message("This is an order");
pr oducer. send(nessage) ;

And we consume the message:

Text Message recei vedMessage = (Text Message) consuner.receive();
Systemout.println("Got order: " + receivedMessage. get Text());

33

Chapter 7. Using JMS

7.7. Setting The Client ID

This represents the client id for a JMS client and is needed for creating durable subscriptions. It
is possible to configure this on the connection factory and can be set viathe cl i ent - i d element.
Any connection created by this connection factory will have this set as its client id.

7.8. Setting The Batch Size for DUPS_OK

When the JMS acknowledge mode is set to DUPS_(XK it is possible to configure the consumer so
that it sends acknowledgements in batches rather that one at a time, saving valuable bandwidth.
This can be configured via the connection factory via the dups- ok- bat ch- si ze element and is
set in bytes. The default is 1024 * 1024 bytes = 1 MiB.

7.9. Setting The Transaction Batch Size

When receiving messages in a transaction it is possible to configure the consumer to send
acknowledgements in batches rather than individually saving valuable bandwidth. This can be
configured on the connection factory via the transacti on- bat ch-si ze element and is set in
bytes. The default is 1024 * 1024.

34

Chapter 8.

Using Core

HornetQ core is a completely JMS-agnostic messaging system with its own non-JMS APIl. We
call this the core API.

If you don't want to use JMS you can use the core API directly. The core API provides all the
functionality of JMS but without much of the complexity. It also provides features that are not
available using JMS.

8.1. Core Messaging Concepts

Some of the core messaging concepts are similar to JMS concepts, but core messaging concepts
differ in some ways. In general the core messaging API is simpler than the JMS API, since we
remove distinctions between queues, topics and subscriptions. We'll discuss each of the major
core messaging concepts in turn, but to see the API in detail, please consult the Javadoc.

8.1.1. Message

* A message is the unit of data which is sent between clients and servers.

« A message has a body which is a buffer containing convenient methods for reading and writing
data into it.

« A message has a set of properties which are key-value pairs. Each property key is a string and
property values can be of type integer, long, short, byte, byte[], String, double, float or boolean.

* A message has an address it is being sent to. When the message arrives on the server it is
routed to any queues that are bound to the address - if the queues are bound with any filter,
the message will only be routed to that queue if the filter matches. An address may have many
gueues bound to it or even none. There may also be entities other than queues, like diverts
bound to addresses.

* Messages can be either durable or non durable. Durable messages in a durable queue will
survive a server crash or restart. Non durable messages will never survive a server crash or
restart.

» Messages can be specified with a priority value between 0 and 9. 0 represents the lowest priority
and 9 represents the highest. HornetQ will attempt to deliver higher priority messages before
lower priority ones.

» Messages can be specified with an optional expiry time. HornetQ will not deliver messages after
its expiry time has been exceeded.

* Messages also have an optional timestamp which represents the time the message was sent.

» HornetQ also supports the sending/consuming of very large messages - much larger than can
fitin available RAM at any one time.

35

Chapter 8. Using Core

8.1.2. Address

A server maintains a mapping between an address and a set of queues. Zero or more queues can
be bound to a single address. Each queue can be bound with an optional message filter. When
a message is routed, it is routed to the set of queues bound to the message's address. If any of
the queues are bound with a filter expression, then the message will only be routed to the subset
of bound queues which match that filter expression.

Other entities, such as diverts can also be bound to an address and messages will also be routed
there.

@ Note

In core, there is no concept of a Topic, Topic is a JMS only term. Instead, in core,
we just deal with addresses and queues.

For example, a JMS topic would be implemented by a single address to which
many queues are bound. Each queue represents a subscription of the topic. A IMS
Queue would be implemented as a single address to which one queue is bound -
that queue represents the JMS queue.

8.1.3. Queue

Queues can be durable, meaning the messages they contain survive a server crash or restart, as
long as the messages in them are durable. Non durable queues do not survive a server restart or
crash even if the messages they contain are durable.

Queues can also be temporary, meaning they are automatically deleted when the client connection
is closed, if they are not explicitly deleted before that.

Queues can be bound with an optional filter expression. If a filter expression is supplied then
the server will only route messages that match that filter expression to any queues bound to the
address.

Many queues can be bound to a single address. A particular queue is only bound to a maximum
of one address.

8.1.4. ServerLocator

Clients use Serverlocator instances to create dientSessionFactory instances.
Ser ver Locat or instances are used to locate servers and create connections to them.

In JMS terms think of a Ser ver Locat or in the same way you would a JMS Connection Factory

Ser ver Locat or instances are created using the Hor net Cl i ent factory class.

36

ClientSessionFactory

8.1.5. ClientSessionFactory

Clients use dientSessionFactory instances to create dientSession instances.
C i ent Sessi onFact or y instances are basically the connection to a server

In JIMS terms think of them as JMS Connections

Cl i ent Sessi onFact or y instances are created using the Ser ver Locat or class.

8.1.6. ClientSession

A client uses a ClientSession for consuming and producing messages and for grouping them
in transactions. ClientSession instances can support both transactional and non transactional
semantics and also provide an XAResour ce interface so messaging operations can be performed
as part of a JTA [http://java.sun.com/javaee/technologies/jta/index.jsp] transaction.

ClientSession instances group ClientConsumers and ClientProducers.

ClientSession instances can be registered with an optional SendAcknow edgenent Handl er . This
allows your client code to be notified asynchronously when sent messages have successfully
reached the server. This unique HornetQ feature, allows you to have full guarantees that sent
messages have reached the server without having to block on each message sent until a response
is received. Blocking on each messages sent s costly since it requires a network round trip for each
message sent. By not blocking and receiving send acknowledgements asynchronously you can
create true end to end asynchronous systems which is not possible using the standard JMS API.
For more information on this advanced feature please see the section Chapter 20, Guarantees
of sends and commits.

8.1.7. ClientConsumer

Clients use dientConsurmer instances to consume messages from a queue. Core
Messaging supports both synchronous and asynchronous message consumption semantics.
d i ent Consuner instances can be configured with an optional filter expression and will only
consume messages which match that expression.

8.1.8. ClientProducer

Clients create dient Producer instances on C i ent Sessi on instances so they can send
messages. ClientProducer instances can specify an address to which all sent messages are
routed, or they can have no specified address, and the address is specified at send time for the
message.

Warning

Please note that ClientSession, ClientProducer and ClientConsumer instances are
designed to be re-used.

37

http://java.sun.com/javaee/technologies/jta/index.jsp
http://java.sun.com/javaee/technologies/jta/index.jsp

Chapter 8. Using Core

Its an anti-pattern to create new ClientSession, ClientProducer and
ClientConsumer instances for each message you produce or consume. If you
do this, your application will perform very poorly. This is discussed further in the

section on performance tuning Chapter 47, Performance Tuning.

8.2. A simple example of using Core

Here's a very simple program using the core messaging API to send and receive a message:

Server Locat or | ocat or = Hornet QCl i ent. cr eat eServer Locat or W t hout HA(new
Tr ansport Confi gurati on(
I nVMConnect or Fact ory. cl ass. get Nane()));
Client Sessi onFactory factory = |ocator.createC ientSessionFactory();
Cli ent Sessi on session = factory. createSession();
sessi on. cr eat eQueue("exanpl e", "exanple", true);
Cli ent Producer producer = session.createProducer("exanmple");
Cli ent Message nessage = sessi on. creat eMessage(true);
nmessage. get BodyBuf fer().witeString("Hello");
pr oducer. send(nessage) ;
session.start();
Cl i ent Consunmer consuner = session. creat eConsuner ("exanple");
Cli ent Message msgRecei ved = consuner.receive();

Systemout. println("nessage = " + nsgRecei ved. get BodyBuffer().readString());

session. cl ose();

38

Chapter 9.

Mapping JMS Concepts to the Core
API

This chapter describes how JMS destinations are mapped to HornetQ addresses.

HornetQ core is JMS-agnostic. It does not have any concept of a JMS topic. A JMS topic is
implemented in core as an address (the topic name) with zero or more queues bound to it.
Each queue bound to that address represents a topic subscription. Likewise, a JMS queue is
implemented as an address (the JMS queue name) with one single queue bound to it which
represents the JMS queue.

By convention, all IMS queues map to core queues where the core queue name has the string
j ms. queue. prepended to it. E.g. the IMS queue with the name "orders.europe" would map to
the core queue with the name "jms.queue.orders.europe”. The address at which the core queue
is bound is also given by the core queue name.

For JMS topics the address at which the queues that represent the subscriptions are bound is
given by prepending the string "jms.topic." to the name of the JMS topic. E.g. the JMS topic with
name "news.europe" would map to the core address "jms.topic.news.europe"”

In other words if you send a JMS message to a JMS queue with name "orders.europe" it will get
routed on the server to any core queues bound to the address "jms.queue.orders.europe”. If you
send a JMS message to a JMS topic with name "news.europe” it will get routed on the server to
any core queues bound to the address "jms.topic.news.europe”.

If you want to configure settings for a JMS Queue with the name "orders.europe”, you need to
configure the corresponding core queue "jms.queue.orders.europe";

<I-- expired nessages in JM5 Queue "orders. europe"
will be sent to the JM5 Queue "expiry. europe" -->
<addr ess-setting match="j ns. queue. or ders. eur ope" >
<expi ry- addr ess>j ns. queue. expi ry. eur ope</ expi ry- addr ess>

</ address-setting>

39

40

Chapter 10.

The Client Classpath

HornetQ requires several jars on the Client Classpath depending on whether the client uses
HornetQ Core API, JMS, and JNDI.

Warning

All the jars mentioned here can be found in the 1i b directory of the HornetQ
distribution. Be sure you only use the jars from the correct version of the release,
you must not mix and match versions of jars from different HornetQ versions.
Mixing and matching different jar versions may cause subtle errors and failures
to occur.

10.1. HornetQ Core Client

If you are using just a pure HornetQ Core client (i.e. no JMS) then you need hor net g- cor e-
client.jar andnetty.jar on your client classpath.

If the client runs inside a Java 5 virtual machine, use instead hor net g- core-cli ent-java5s.jar.

10.2. JMS Client

If you are using JMS on the client side, then you will also need to include hornetq-j ns-

client.jar andjboss-jns-api.jar.

If the client runs inside a Java 5 virtual machine, include instead hornetq-j ns-client-
javab.jar.

E] Note
j boss-j nms-api . j ar just contains Java EE API interface classes needed for the
javax.j ms. * classes. If you already have a jar with these interface classes on
your classpath, you will not need it.

10.3. JMS Client with JNDI

If you are looking up JMS resources from the JNDI server co-located with the HornetQ standalone
server, you wil also need the jar j np-cl i ent . j ar jar on your client classpath as well as any other
jars mentioned previously.

41

42

Chapter 11.

Examples

The HornetQ distribution comes with over 70 run out-of-the-box examples demonstrating many
of the features.

The examples are available in the distribution, in the exanpl es directory. Examples are split into
JMS and core examples. JMS examples show how a particular feature can be used by a normal
JMS client. Core examples show how the equivalent feature can be used by a core messaging
client.

A set of Java EE examples are also provided which need the JBoss Application Server installed
to be able to run.

11.1. JMS Examples

To run a JMS example, simply cd into the appropriate example directory and type ./ bui | d. sh
(or bui | d. bat if you are on Windows).

Here's a listing of the examples with a brief description.

11.1.1. Applet

This example shows you how to send and receive JMS messages from an Applet.

11.1.2. Application-Layer Failover

HornetQ also supports Application-Layer failover, useful in the case that replication is not enabled
on the server side.

With Application-Layer failover, it's up to the application to register a JMS Except i onLi st ener
with HornetQ which will be called by HornetQ in the event that connection failure is detected.

The code in the Except i onLi st ener then recreates the JMS connection, session, etc on another
node and the application can continue.

Application-layer failover is an alternative approach to High Availability (HA). Application-layer
failover differs from automatic failover in that some client side coding is required in order to
implement this. Also, with Application-layer failover, since the old session object dies and a new
one is created, any uncommitted work in the old session will be lost, and any unacknowledged
messages might be redelivered.

11.1.3. Core Bridge Example

The bri dge example demonstrates a core bridge deployed on one server, which consumes
messages from a local queue and forwards them to an address on a second server.

Core bridges are used to create message flows between any two HornetQ servers which are
remotely separated. Core bridges are resilient and will cope with temporary connection failure
allowing them to be an ideal choice for forwarding over unreliable connections, e.g. a WAN.

43

Chapter 11. Examples

11.1.4. Browser

The br owser example shows you how to use a JMS QueueBr owser with HornetQ.
Queues are a standard part of IMS, please consult the JMS 1.1 specification for full details.

A QueueBrowser is used to look at messages on the queue without removing them. It can scan
the entire content of a queue or only messages matching a message selector.

11.1.5. Client Kickoff

The cli ent - ki ckof f example shows how to terminate client connections given an IP address
using the IMX management API.

11.1.6. Client-Side Load-Balancing

The cl i ent - si de- | oad- bal anci ng example demonstrates how sessions created from a single
JMS Connect i on can be created to different nodes of the cluster. In other words it demonstrates
how HornetQ does client-side load-balancing of sessions across the cluster.

11.1.7. Clustered Durable Subscription

This example demonstrates a clustered JMS durable subscription

11.1.8. Clustered Grouping

This is similar to the message grouping example except that it demonstrates it working over a
cluster. Messages sent to different nodes with the same group id will be sent to the same node
and the same consumer.

11.1.9. Clustered Queue

The cl ust er ed- queue example demonstrates a JMS queue deployed on two different nodes.
The two nodes are configured to form a cluster. We then create a consumer for the queue on each
node, and we create a producer on only one of the nodes. We then send some messages via the
producer, and we verify that both consumers receive the sent messages in a round-robin fashion.

11.1.10. Clustering with JGroups

The cl ust er ed-j gr oups example demonstrates how to form a two node cluster using JGroups
as its underlying topology discovery technique, rather than the default UDP broadcasting. We
then create a consumer for the queue on each node, and we create a producer on only one of
the nodes. We then send some messages via the producer, and we verify that both consumers
receive the sent messages in a round-robin fashion.

11.1.11. Clustered Standalone

The cl ust er ed- st andal one example demonstrates how to configure and starts 3 cluster nodes
on the same machine to form a cluster. A subscriber for a JMS topic is created on each node, and

44

Clustered Static Discovery

we create a producer on only one of the nodes. We then send some messages via the producer,
and we verify that the 3 subscribers receive all the sent messages.

11.1.12. Clustered Static Discovery

This example demonstrates how to configure a cluster using a list of connectors rather than UDP
for discovery

11.1.13. Clustered Static Cluster One Way

This example demonstrates how to set up a cluster where cluster connections are one way, i.e.
server A -> Server B -> Server C

11.1.14. Clustered Topic

The cl ust er ed- t opi c example demonstrates a JMS topic deployed on two different nodes. The
two nodes are configured to form a cluster. We then create a subscriber on the topic on each
node, and we create a producer on only one of the nodes. We then send some messages via the
producer, and we verify that both subscribers receive all the sent messages.

11.1.15. Message Consumer Rate Limiting

With HornetQ you can specify a maximum consume rate at which a JIMS MessageConsumer will
consume messages. This can be specified when creating or deploying the connection factory.

If this value is specified then HornetQ will ensure that messages are never consumed at a rate
higher than the specified rate. This is a form of consumer throttling.

11.1.16. Dead Letter

The dead-letter example shows you how to define and deal with dead letter messages.
Messages can be delivered unsuccessfully (e.g. if the transacted session used to consume them
is rolled back).

Such a message goes back to the JMS destination ready to be redelivered. However, this means
it is possible for a message to be delivered again and again without any success and remain in
the destination, clogging the system.

To prevent this, messaging systems define dead letter messages: after a specified unsuccessful
delivery attempts, the message is removed from the destination and put instead in a dead letter
destination where they can be consumed for further investigation.

11.1.17. Delayed Redelivery

The del ayed- redel i very example demonstrates how HornetQ can be configured to provide a
delayed redelivery in the case a message needs to be redelivered.

Delaying redelivery can often be useful in the case that clients regularly fail or roll-back. Without a
delayed redelivery, the system can get into a "thrashing" state, with delivery being attempted, the

45

Chapter 11. Examples

client rolling back, and delivery being re-attempted in quick succession, using up valuable CPU
and network resources.

11.1.18. Divert

HornetQ diverts allow messages to be transparently "diverted" or copied from one address to
another with just some simple configuration defined on the server side.

11.1.19. Durable Subscription

The dur abl e- subscri pti on example shows you how to use a durable subscription with HornetQ.
Durable subscriptions are a standard part of JMS, please consult the JMS 1.1 specification for
full details.

Unlike non-durable subscriptions, the key function of durable subscriptions is that the messages
contained in them persist longer than the lifetime of the subscriber - i.e. they will accumulate
messages sent to the topic even if there is no active subscriber on them. They will also survive
server restarts or crashes. Note that for the messages to be persisted, the messages sent to them
must be marked as durable messages.

11.1.20. Embedded

The enbedded example shows how to embed JMS within your own code using POJO instantiation
and no config files.

11.1.21. Embedded Simple

The enmbedded example shows how to embed JMS within your own code using regular HornetQ
XML files.

11.1.22. Message Expiration

The expi ry example shows you how to define and deal with message expiration. Messages can
be retained in the messaging system for a limited period of time before being removed. JMS
specification states that clients should not receive messages that have been expired (but it does
not guarantee this will not happen).

HornetQ can assign an expiry address to a given queue so that when messages are expired, they
are removed from the queue and sent to the expiry address. These "expired" messages can later
be consumed from the expiry address for further inspection.

11.1.23. Failover Manual Stop
This examples shows how to stop the server manually and cause failover

11.1.24. HTTP Transport

The http-transport example shows you how to configure HornetQ to use the HTTP protocol
as its transport layer.

46

Instantiate JMS Objects Directly

11.1.25. Instantiate JMS Objects Directly

Usually, JMS Objects such as Connecti onFact ory, Queue and Topi ¢ instances are looked up
from JNDI before being used by the client code. This objects are called "administered objects"
in JMS terminology.

However, in some cases a JNDI server may not be available or desired. To come to the rescue
HornetQ also supports the direct instantiation of these administered objects on the client side so
you don't have to use JNDI for JMS.

11.1.26. Interceptor

HornetQ allows an application to use an interceptor to hook into the messaging system.
Interceptors allow you to handle various message events in HornetQ.

11.1.27. JAAS

The j aas example shows you how to configure HornetQ to use JAAS for security. HornetQ can
leverage JAAS to delegate user authentication and authorization to existing security infrastructure.

11.1.28. JMS Bridge

The j ns- bri ge example shows how to setup a bridge between two standalone HornetQ servers.

11.1.29. JIMX Management

The j nx example shows how to manage HornetQ using JMX.

11.1.30. Large Message

The | ar ge- message example shows you how to send and receive very large messages with
HornetQ. HornetQ supports the sending and receiving of huge messages, much larger than can
fit in available RAM on the client or server. Effectively the only limit to message size is the amount
of disk space you have on the server.

Large messages are persisted on the server so they can survive a server restart. In other words
HornetQ doesn't just do a simple socket stream from the sender to the consumer.

11.1.31. Last-Value Queue

The | ast - val ue- queue example shows you how to define and deal with last-value queues. Last-
value queues are special queues which discard any messages when a newer message with the
same value for a well-defined last-value property is put in the queue. In other words, a last-value
gueue only retains the last value.

A typical example for last-value queue is for stock prices, where you are only interested by the
latest price for a particular stock.

47

Chapter 11. Examples

11.1.32. Management

The managenent example shows how to manage HornetQ using JMS Messages to invoke
management operations on the server.

11.1.33. Management Notification

The managenent - noti fi cati on example shows how to receive management notifications from
HornetQ using JMS messages. HornetQ servers emit management notifications when events
of interest occur (consumers are created or closed, addresses are created or deleted, security
authentication fails, etc.).

11.1.34. Message Counter

The nessage- count er s example shows you how to use message counters to obtain message
information for a JMS queue.

11.1.35. Message Group

The message- gr oup example shows you how to configure and use message groups with HornetQ.
Message groups allow you to pin messages so they are only consumed by a single consumer.
Message groups are sets of messages that has the following characteristics:

* Messages in a message group share the same group id, i.e. they have same JMSXGroupID
string property values

« The consumer that receives the first message of a group will receive all the messages that
belongs to the group

11.1.36. Message Group

The nmessage- group2 example shows you how to configure and use message groups with
HornetQ via a connection factory.

11.1.37. Message Priority

Message Priority can be used to influence the delivery order for messages.

It can be retrieved by the message's standard header field 'JIMSPriority' as defined in JMS
specification version 1.1.

The value is of type integer, ranging from 0 (the lowest) to 9 (the highest). When messages are
being delivered, their priorities will effect their order of delivery. Messages of higher priorities will
likely be delivered before those of lower priorities.

Messages of equal priorities are delivered in the natural order of their arrival at their destinations.
Please consult the JMS 1.1 specification for full details.

48

Multiple Failover

11.1.38. Multiple Failover

This example demonstrates how to set up a live server with multiple backups

11.1.39. Multiple Failover Failback

This example demonstrates how to set up a live server with multiple backups but forcing failover
back to the original live server

11.1.40. No Consumer Buffering

By default, HornetQ consumers buffer messages from the server in a client side buffer before you
actually receive them on the client side. This improves performance since otherwise every time
you called receive() or had processed the last message in a MessagelLi st ener onMessage()
method, the HornetQ client would have to go the server to request the next message, which would
then get sent to the client side, if one was available.

This would involve a network round trip for every message and reduce performance. Therefore,
by default, HornetQ pre-fetches messages into a buffer on each consumer.

In some case buffering is not desirable, and HornetQ allows it to be switched off. This example
demonstrates that.

11.1.41. Non-Transaction Failover With Server Data Replication

The non-transaction-fail over example demonstrates two servers coupled as a live-backup
pair for high availability (HA), and a client using a non-transacted JMS session failing over from
live to backup when the live server is crashed.

HornetQ implements failover of client connections between live and backup servers. This is
implemented by the replication of state between live and backup nodes. When replication is
configured and a live node crashes, the client connections can carry and continue to send and
consume messages. When non-transacted sessions are used, once and only once message
delivery is not guaranteed and it is possible that some messages will be lost or delivered twice.

11.1.42. Paging

The pagi ng example shows how HornetQ can support huge queues even when the server is
running in limited RAM. It does this by transparently paging messages to disk, and depaging them
when they are required.

11.1.43. Pre-Acknowledge

Standard JMS supports three acknowledgement modes: AUTO_ACKNOWLEDGE,
CLI ENT_ACKNOW_EDGE, and DUPS_OK_ACKNOW.EDGE. For a full description on these modes please
consult the JMS specification, or any JMS tutorial.

49

Chapter 11. Examples

All of these standard modes involve sending acknowledgements from the client to the server.
However in some cases, you really don't mind losing messages in event of failure, so it would
make sense to acknowledge the message on the server before delivering it to the client. This
example demonstrates how HornetQ allows this with an extra acknowledgement mode.

11.1.44. Message Producer Rate Limiting

The producer-rte-1init example demonstrates how, with HornetQ, you can specify a maximum
send rate at which a JMS message producer will send messages.

11.1.45. Queue

A simple example demonstrating a JMS queue.

11.1.46. Message Redistribution

The queue- message-redi stri buti on example demonstrates message redistribution between
gueues with the same name deployed in different nodes of a cluster.

11.1.47. Queue Requestor

A simple example demonstrating a JMS queue requestor.

11.1.48. Queue with Message Selector

The queue- sel ect or example shows you how to selectively consume messages using message
selectors with queue consumers.

11.1.49. Reattach Node example

The Reat t ach Node example shows how a client can try to reconnect to the same server instead of
failing the connection immediately and notifying any user ExceptionListener objects. HornetQ can
be configured to automatically retry the connection, and reattach to the server when it becomes
available again across the network.

11.1.50. Request-Reply example

A simple example showing the JMS request-response pattern.

11.1.51. Scheduled Message

The schedul ed- message example shows you how to send a scheduled message to a JMS Queue
with HornetQ. Scheduled messages won't get delivered until a specified time in the future.

11.1.52. Security

The security example shows you how configure and use role based queue security with
HornetQ.

50

Send Acknowledgements

11.1.53. Send Acknowledgements

The send- acknowl edgenent s example shows you how to use HornetQ's advanced asynchronous
send acknowledgements feature to obtain acknowledgement from the server that sends have
been received and processed in a separate stream to the sent messages.

11.1.54. Spring Integration

This example shows how to use embedded JMS using HornetQ's Spring integration.

11.1.55. SSL Transport

The ssl - enabl ed shows you how to configure SSL with HornetQ to send and receive message.

11.1.56. Static Message Selector

The static-sel ector example shows you how to configure a HornetQ core queue with static
message selectors (filters).

11.1.57. Static Message Selector Using JMS

The st atic-sel ector-jns example shows you how to configure a HornetQ queue with static
message selectors (filters) using JMS.

11.1.58. Stomp

The st onp example shows you how to configure a HornetQ server to send and receive Stomp
messages.

11.1.59. Stomp1l.1

The st onp example shows you how to configure a HornetQ server to send and receive Stomp
messages via a Stomp 1.1 connection.

11.1.60. Stomp Over Web Sockets

The st onp- websocket s example shows you how to configure a HornetQ server to send and
receive Stomp messages directly from Web browsers (provided they support Web Sockets).

11.1.61. Symmetric Cluster

The symet ri c- cl ust er example demonstrates a symmetric cluster set-up with HornetQ.

HornetQ has extremely flexible clustering which allows you to set-up servers in many different
topologies. The most common topology that you'll perhaps be familiar with if you are used to
application server clustering is a symmetric cluster.

51

Chapter 11. Examples

With a symmetric cluster, the cluster is homogeneous, i.e. each node is configured the same as
every other node, and every node is connected to every other node in the cluster.

11.1.62. Temporary Queue

A simple example demonstrating how to use a JMS temporary queue.

11.1.63. Topic

A simple example demonstrating a JMS topic.

11.1.64. Topic Hierarchy

HornetQ supports topic hierarchies. With a topic hierarchy you can register a subscriber with a
wild-card and that subscriber will receive any messages sent to an address that matches the wild
card.

11.1.65. Topic Selector 1

The t opi c- sel ect or - exanpl el example shows you how to send message to a JMS Topic, and
subscribe them using selectors with HornetQ.

11.1.66. Topic Selector 2

Thet opi c- sel ect or - exanpl e2 example shows you how to selectively consume messages using
message selectors with topic consumers.

11.1.67. Transaction Failover

The transacti on-fai | over example demonstrates two servers coupled as a live-backup pair
for high availability (HA), and a client using a transacted JMS session failing over from live to
backup when the live server is crashed.

HornetQ implements failover of client connections between live and backup servers. This is
implemented by the sharing of a journal between the servers. When a live node crashes, the client
connections can carry and continue to send and consume messages. When transacted sessions
are used, once and only once message delivery is guaranteed.

11.1.68. Transactional Session
The transacti onal example shows you how to use a transactional Session with HornetQ.

11.1.69. XA Heuristic

The xa- heuri sti ¢ example shows you how to make an XA heuristic decision through HornetQ
Management Interface. A heuristic decision is a unilateral decision to commit or rollback an XA
transaction branch after it has been prepared.

52

XA Receive

11.1.70. XA Receive

The xa-recei ve example shows you how message receiving behaves in an XA transaction in
HornetQ.

11.1.71. XA Send

The xa- send example shows you how message sending behaves in an XA transaction in HornetQ.

11.1.72. XA with Transaction Manager

The xa-wi th-jta example shows you how to use JTA interfaces to control transactions with
HornetQ.

11.2. Core APl Examples

To run a core example, simply cd into the appropriate example directory and type ant

11.2.1. Embedded

The enmbedded example shows how to embed the HornetQ server within your own code.

11.3. Java EE Examples

Most of the Java EE examples can be run the following way. simply cd into the appropriate example
directory and type ant depl oy. This will create a new JBoss AS profile and start the server. When
the server is started from a different window type ant run to run the example. Some examples
require further steps, please refer to the examples documentation for further instructions.

11.3.1. EJB/IMS Transaction

An example that shows using an EJB and JMS together within a transaction.

11.3.2. HAINDI (High Availability)
A simple example demonstrating using JNDI within a cluster.
11.3.3. Resource Adapter Configuration

This example demonstrates how to configure several properties on the HornetQ JCA resource
adaptor.

11.3.4. Resource Adapter Remote Server Configuration

This example demonstrates how to configure the HornetQ resource adapter to talk to a remote
HornetQ server

53

Chapter 11. Examples

11.3.5. JMS Bridge

An example demonstrating the use of the HornetQ JMS bridge.

11.3.6. MDB (Message Driven Bean)

A simple set of examples of message driven beans, including failover examples.

11.3.7. Servlet Transport

An example of how to use the HornetQ servlet transport.

11.3.8. Servlet SSL Transport

An example of how to use the HornetQ servlet transport over SSL.

11.3.9. XA Recovery

An example of how XA recovery works within the JBoss Application server using HornetQ.

54

Chapter 12.

Routing Messages With Wild Cards

HornetQ allows the routing of messages via wildcard addresses.

If a queue is created with an address of say queue. news. # then it will receive any messages
sent to addresses that match this, for instance queue. news. eur ope Or queue. news. usa Or
queue. news. usa. sport. If you create a consumer on this queue, this allows a consumer to
consume messages which are sent to a hierarchy of addresses.

To enable this functionality set the property wi | d-card-routi ng-enabl ed in the hornet g-
configuration.xm filetotrue. Thisistrue by default.

For more information on the wild card syntax take alook at Chapter 13, Understanding the HornetQ
Wildcard Syntax chapter, also see Section 11.1.64, “Topic Hierarchy”.

55

56

Chapter 13.

Understanding the HornetQ Wildcard
Syntax

HornetQ uses a specific syntax for representing wildcards in security settings, address settings
and when creating consumers.

The syntax is similar to that used by AMQP [http://www.amgp.org].

A HornetQ wildcard expression contains words delimited by the character . ' (full stop).

The special characters '#' and **' also have special meaning and can take the place of a word.
The character '#' means 'match any sequence of zero or more words'.

The character *' means 'match a single word'.

So the wildcard ‘news.europe.# would match ‘'news.europe’, 'news.europe.sport’,
'news.europe.politics', and 'news.europe.politics.regional' but would not match 'news.usa’,
'news.usa.sport' nor ‘entertainment’.

The wildcard 'news.* would match 'news.europe’, but not ‘news.europe.sport'.

The wildcard 'news.*.sport' would match 'news.europe.sport' and also 'news.usa.sport', but not
'news.europe.politics'.

57

http://www.amqp.org
http://www.amqp.org

58

Chapter 14.

Filter Expressions

HornetQ provides a powerful filter language based on a subset of the SQL 92 expression syntax.

It is the same as the syntax used for JIMS selectors, but the predefined identifiers are different.
For documentation on JMS selector syntax please the JMS javadoc for javax.jms.Message [http://
java.sun.com/javaee/5/docs/api/javax/jms/Message.html].

Filter expressions are used in several places in HornetQ
» Predefined Queues. When pre-defining a queue, either in hor net g- confi gurati on. xm or

hornet g-j ns. xm a filter expression can be defined for a queue. Only messages that match
the filter expression will enter the queue.

« Core bridges can be defined with an optional filter expression, only matching messages will be
bridged (see Chapter 36, Core Bridges).

« Diverts can be defined with an optional filter expression, only matching messages will be
diverted (see Chapter 35, Diverting and Splitting Message Flows).

« Filter are also used programmatically when creating consumers, queues and in several places
as described in Chapter 30, Management.

There are some differences between JMS selector expressions and HornetQ core filter
expressions. Whereas JMS selector expressions operate on a JMS message, HornetQ core filter
expressions operate on a core message.

The following identifiers can be used in a core filter expressions to refer to attributes of the core

message in an expression:

e HQPriority. To refer to the priority of a message. Message priorities are integers with valid
values from 0 - 9. 0 is the lowest priority and 9 is the highest. E.g. HQPriority = 3 AND
ani mal = 'aardvark'

* HQExpi rati on. To refer to the expiration time of a message. The value is a long integer.

e HQDur abl e. To refer to whether a message is durable or not. The value is a string with valid
values: DURABLE or NON_DURABLE.

» HQTi mest anp. The timestamp of when the message was created. The value is a long integer.
» HQSi ze. The size of a message in bytes. The value is an integer.

Any other identifiers used in core filter expressions will be assumed to be properties of the
message.

59

http://java.sun.com/javaee/5/docs/api/javax/jms/Message.html
http://java.sun.com/javaee/5/docs/api/javax/jms/Message.html
http://java.sun.com/javaee/5/docs/api/javax/jms/Message.html

60

Chapter 15.

Persistence

In this chapter we will describe how persistence works with HornetQ and how to configure it.

HornetQ ships with a high performance journal. Since HornetQ handles its own persistence, rather
than relying on a database or other 3rd party persistence engine it is very highly optimised for the
specific messaging use cases.

A HornetQ journal is an append only journal. It consists of a set of files on disk. Each file is pre-
created to a fixed size and initially filled with padding. As operations are performed on the server,
e.g. add message, update message, delete message, records are appended to the journal. When
one journal file is full we move to the next one.

Because records are only appended, i.e. added to the end of the journal we minimise disk head
movement, i.e. we minimise random access operations which is typically the slowest operation
on a disk.

Making the file size configurable means that an optimal size can be chosen, i.e. making each file
fit on a disk cylinder. Modern disk topologies are complex and we are not in control over which
cylinder(s) the file is mapped onto so this is not an exact science. But by minimising the number
of disk cylinders the file is using, we can minimise the amount of disk head movement, since an
entire disk cylinder is accessible simply by the disk rotating - the head does not have to move.

As delete records are added to the journal, HornetQ has a sophisticated file garbage collection
algorithm which can determine if a particular journal file is needed any more - i.e. has all its data
been deleted in the same or other files. If so, the file can be reclaimed and re-used.

HornetQ also has a compaction algorithm which removes dead space from the journal and
compresses up the data so it takes up less files on disk.

The journal also fully supports transactional operation if required, supporting both local and XA
transactions.

The majority of the journal is written in Java, however we abstract out the interaction with the actual
file system to allow different pluggable implementations. HornetQ ships with two implementations:
« Java NIO [http://en.wikipedia.org/wiki/New_I/O].

The first implementation uses standard Java NIO to interface with the file system. This provides
extremely good performance and runs on any platform where there's a Java 6+ runtime.

 Linux Asynchronous IO

The second implementation uses a thin native code wrapper to talk to the Linux asynchronous
IO library (AlO). With AIO, HornetQ will be called back when the data has made it to disk,
allowing us to avoid explicit syncs altogether and simply send back confirmation of completion
when AlO informs us that the data has been persisted.

61

http://en.wikipedia.org/wiki/New_I/O
http://en.wikipedia.org/wiki/New_I/O

Chapter 15. Persistence

Using AlO will typically provide even better performance than using Java NIO.

The AIO journal is only available when running Linux kernel 2.6 or later and after having
installed libaio (if it's not already installed). For instructions on how to install libaio please see
Section 15.5, “Installing AlO”.

Also, please note that AIO will only work with the following file systems: ext2, ext3, ext4, jfs,
xfs. With other file systems, e.g. NFS it may appear to work, but it will fall back to a slower
sychronous behaviour. Don't put the journal on a NFS share!

For more information on libaio please see Chapter 40, Libaio Native Libraries.
libaio is part of the kernel project.

The standard HornetQ core server uses two instances of the journal:

 Bindings journal.

This journal is used to store bindings related data. That includes the set of queues that are
deployed on the server and their attributes. It also stores data such as id sequence counters.

The bindings journal is always a NIO journal as it is typically low throughput compared to the
message journal.

The files on this journal are prefixed as hor net g- bi ndi ngs. Each file has a bi ndi ngs extension.
File size is 1048576, and it is located at the bindings folder.

e JMS journal.

This journal instance stores all JIMS related data, This is basically any JMS Queues, Topics and
Connection Factories and any JNDI bindings for these resources.

Any JMS Resources created via the management APl will be persisted to this journal. Any
resources configured via configuration files will not. The JIMS Journal will only be created if IMS
is being used.

The files on this journal are prefixed as hor net g-j ms. Each file has a j ns extension. File size
is 1048576, and it is located at the bindings folder.

* Message journal.

This journal instance stores all message related data, including the message themselves and
also duplicate-id caches.

By default HornetQ will try and use an AlO journal. If AlO is not available, e.g. the platform is
not Linux with the correct kernel version or AlO has not been installed then it will automatically
fall back to using Java NIO which is available on any Java platform.

The files on this journal are prefixed as hor net g- dat a. Each file has a hq extension. File size
is by the default 10485760 (configurable), and it is located at the journal folder.

62

Configuring the bindings journal

For large messages, HornetQ persists them outside the message journal. This is discussed in
Chapter 23, Large Messages.

HornetQ can also be configured to page messages to disk in low memory situations. This is
discussed in Chapter 24, Paging.

If no persistence is required at all, HornetQ can also be configured not to persist any data at all to
storage as discussed in Section 15.6, “Configuring HornetQ for Zero Persistence”.

15.1. Configuring the bindings journal
The bindings journal is configured using the following attributes in hor net g- confi gur ati on. xni
* bindings-directory

This is the directory in which the bindings journal lives. The default value is dat a/ bi ndi ngs.
e create-bindings-dir

If this is set to t rue then the bindings directory will be automatically created at the location
specified in bi ndi ngs- di r ect ory if it does not already exist. The default value is t r ue

15.2. Configuring the jms journal

The jms config shares its configuration with the bindings journal.

15.3. Configuring the message journal
The message journal is configured using the following attributes in hor net g- conf i gur ati on. xni

e journal -directory
This is the directory in which the message journal lives. The default value is dat a/ j our nal .

For the best performance, we recommend the journal is located on its own physical volume in
order to minimise disk head movement. If the journal is on a volume which is shared with other
processes which might be writing other files (e.g. bindings journal, database, or transaction
coordinator) then the disk head may well be moving rapidly between these files as it writes
them, thus drastically reducing performance.

When the message journal is stored on a SAN we recommend each journal instance that is
stored on the SAN is given its own LUN (logical unit).

e create-journal -dir

If this is set to t rue then the journal directory will be automatically created at the location
specified in j our nal - di rect ory if it does not already exist. The default value is t r ue

e journal -type

Valid values are NI Oor ASYNCI O.

63

Chapter 15. Persistence

Choosing NI O chooses the Java NIO journal. Choosing Al O chooses the Linux asynchronous
IO journal. If you choose Al Obut are not running Linux or you do not have libaio installed then
HornetQ will detect this and automatically fall back to using NI Q.

journal -sync-transacti onal

If this is set to true then HornetQ will make sure all transaction data is flushed to disk on
transaction boundaries (commit, prepare and rollback). The default value is t r ue.

journal -sync-non-transacti onal

If this is set to true then HornetQ will make sure non transactional message data (sends and
acknowledgements) are flushed to disk each time. The default value for this is t r ue.

journal -file-size
The size of each journal file in bytes. The default value for this is 10485760 bytes (10MiB).
journal -mn-files

The minimum number of files the journal will maintain. When HornetQ starts and there is no
initial message data, HornetQ will pre-create j our nal - ni n-fi | es number of files.

Creating journal files and filling them with padding is a fairly expensive operation and we want to
minimise doing this at run-time as files get filled. By precreating files, as one is filled the journal
can immediately resume with the next one without pausing to create it.

Depending on how much data you expect your queues to contain at steady state you should
tune this number of files to match that total amount of data.

journal -max-io

Write requests are queued up before being submitted to the system for execution. This
parameter controls the maximum number of write requests that can be in the 10 queue at any
one time. If the queue becomes full then writes will block until space is freed up.

When using NIO, this value should always be equal to 1
When using AlO, the default should be 500.

The system maintains different defaults for this parameter depening on whether it's NIO or AIO
(default for NIO is 1, default for AlIO is 500)

There is a limit and the total max AlO can't be higher than what is configured at the OS level
(/proc/sys/fs/aio-max-nr) usually at 65536.

journal -buffer-tineout

Instead of flushing on every write that requires a flush, we maintain an internal buffer, and flush
the entire buffer either when it is full, or when a timeout expires, whichever is sooner. This is

64

An important note on disabling disk write cache.

used for both NIO and AIO and allows the system to scale better with many concurrent writes
that require flushing.

This parameter controls the timeout at which the buffer will be flushed if it hasn't filled already.
AIO can typically cope with a higher flush rate than NIO, so the system maintains different
defaults for both NIO and AlO (default for NIO is 3333333 nanoseconds - 300 times per second,
default for AIO is 500000 nanoseconds - ie. 2000 times per second).

@ Note
By increasing the timeout, you may be able to increase system throughput at
the expense of latency, the default parameters are chosen to give a reasonable
balance between throughput and latency.

e journal -buffer-size
The size of the timed buffer on AlO. The default value is 490Ki B.
e journal -conpact-mn-files

The minimal number of files before we can consider compacting the journal. The compacting
algorithm won't start until you have at least j our nal - conpact-nin-files

The default for this parameter is 10
e journal - conpact - per cent age

The threshold to start compacting. When less than this percentage is considered live data,
we start compacting. Note also that compacting won't kick in until you have at least j our nal -
conpact - mi n-fi |l es data files on the journal

The default for this parameter is 30

15.4. An important note on disabling disk write cache.

Warning

Most disks contain hardware write caches. A write cache can increase the apparent
performance of the disk because writes just go into the cache and are then lazily
written to the disk later.

This happens irrespective of whether you have executed a fsync() from the
operating system or correctly synced data from inside a Java program!

By default many systems ship with disk write cache enabled. This means that even
after syncing from the operating system there is no guarantee the data has actually
made it to disk, so if a failure occurs, critical data can be lost.

65

Chapter 15. Persistence

Some more expensive disks have non volatile or battery backed write caches which
won't necessarily lose data on event of failure, but you need to test them!

If your disk does not have an expensive non volatile or battery backed cache and
it's not part of some kind of redundant array (e.g. RAID), and you value your data
integrity you need to make sure disk write cache is disabled.

Be aware that disabling disk write cache can give you a nasty shock performance
wise. If you've been used to using disks with write cache enabled in their default
setting, unaware that your data integrity could be compromised, then disabling it
will give you an idea of how fast your disk can perform when acting really reliably.

On Linux you can inspect and/or change your disk's write cache settings using the
tools hdpar m(for IDE disks) or sdpar mor sgi nf o (for SDSI/SATA disks)

On Windows you can check / change the setting by right clicking on the disk and
clicking properties.

15.5. Installing AIO

The Java NIO journal gives great performance, but If you are running HornetQ using Linux
Kernel 2.6 or later, we highly recommend you use the Al O journal for the very best persistence
performance.

It's not possible to use the AlO journal under other operating systems or earlier versions of the
Linux kernel.

If you are running Linux kernel 2.6 or later and don't already have I i bai o installed, you can easily
install it using the following steps:

Using yum, (e.g. on Fedora or Red Hat Enterprise Linux):
yuminstall [|ibaio

Using aptitude, (e.g. on Ubuntu or Debian system):

apt-get install l|ibaio

15.6. Configuring HornetQ for Zero Persistence

In some situations, zero persistence is sometimes required for a messaging system. Configuring
HornetQ to perform zero persistence is straightforward. Simply set the parameter per si st ence-
enabl ed in hor net g- confi gurati on. xm to fal se.

66

Import/Export the Journal Data

Please note that if you set this parameter to false, then zero persistence will occur. That means
no bindings data, message data, large message data, duplicate id caches or paging data will be
persisted.

15.7. Import/Export the Journal Data

You may want to inspect the existent records on each one of the journals used by HornetQ, and
you can use the export/import tool for that purpose. The export/import are classes located at the
hornetg-core.jar, you can export the journal as a text file by using this command:

j ava -cp hornetg-core.jar org. hornetq. core.journal.inpl.ExportJournal
<Jour nal Directory> <Journal Prefi x> <Fi | eExt ensi on> <Fi | eSi ze> <Fi | eCut put >

To import the file as binary data on the journal (Notice you also require netty.jar):

java -cp hornetg-core.jar:netty.jar org. hornetq.core.journal.inpl.InportJournal
<Jour nal Di rect ory> <Journal Prefi x> <Fi | eExt ensi on> <Fi | eSi ze> <Fi | el nput >

JournalDirectory: Use the configured folder for your selected folder. Example: ./hornetg/data/
journal

JournalPrefix: Use the prefix for your selected journal, as discussed here

 FileExtension: Use the extension for your selected journal, as discussed here

FileSize: Use the size for your selected journal, as discussed here

FileOutput: text file that will contain the exported data

67

68

Chapter 16.

Configuring the Transport

HornetQ has a fully pluggable and highly flexible transport layer and defines its own Service
Provider Interface (SPI) to make plugging in a new transport provider relatively straightforward.

In this chapter we'll describe the concepts required for understanding HornetQ transports and
where and how they're configured.

16.1. Understanding Acceptors

One of the mostimportant concepts in HornetQ transports is the acceptor. Let's dive straightin and
take a look at an acceptor defined in xml in the configuration file hor net g- confi gur ati on. xni .

<accept or s>
<acceptor nane="netty">
<factory-cl ass>
org. hornetq.core.renoting.inpl.netty. NettyAcceptorFactory
</factory-cl ass>
<param key="port" val ue="5446"/>
</ accept or >
</ accept or s>

Acceptors are always defined inside an accept or s element. There can be one or more acceptors
defined in the accept or s element. There's no upper limit to the number of acceptors per server.

Each acceptor defines a way in which connections can be made to the HornetQ server.

In the above example we're defining an acceptor that uses Netty [http://jboss.org/netty] to listen
for connections at port 5446.

The accept or element contains a sub-element f act or y- cl ass, this element defines the factory
used to create acceptor instances. In this case we're using Netty to listen for connections so we
use the Netty implementation of an Accept or Fact ory to do this. Basically, the f act ory-cl ass
element determines which pluggable transport we're going to use to do the actual listening.

The acceptor element can also be configured with zero or more par am sub-elements. Each
par amelement defines a key-value pair. These key-value pairs are used to configure the specific
transport, the set of valid key-value pairs depends on the specific transport be used and are passed
straight through to the underlying transport.

Examples of key-value pairs for a particular transport would be, say, to configure the IP address
to bind to, or the port to listen at.

69

http://jboss.org/netty
http://jboss.org/netty

Chapter 16. Configuring the T...

16.2. Understanding Connectors

Whereas acceptors are used on the server to define how we accept connections, connectors are
used by a client to define how it connects to a server.

Let's look at a connector defined in our hor net g- confi gur ati on. xn file:

<connect or s>
<connector nanme="netty">
<factory-cl ass>
org. hornetq. core.renoting.inpl.netty. NettyConnectorFactory
</factory-cl ass>
<param key="port" val ue="5446"/>
</ connect or >
</ connect or s>

Connectors can be defined inside a connect or s element. There can be one or more connectors
defined in the connect or s element. There's no upper limit to the number of connectors per server.

You make ask yourself, if connectors are used by the client to make connections then why are
they defined on the server? There are a couple of reasons for this:

» Sometimes the server acts as a client itself when it connects to another server, for example
when one server is bridged to another, or when a server takes part in a cluster. In this cases
the server needs to know how to connect to other servers. That's defined by connectors.

« If you're using JMS and the server side JMS service to instantiate JMS ConnectionFactory
instances and bind them in JNDI, then when creating the Hor net QConnect i onFact ory it needs
to know what server that connection factory will create connections to.

That's defined by the connect or - ref element in the hor net g-j nms. xnd file on the server side.
Let's take a look at a snipped from a hor net g- j ns. xni file that shows a JMS connection factory
that references our netty connector defined in our hor net g- confi gurati on. xn file:

<connection-factory name="Connecti onFactory">
<connect or s>
<connector-ref connector-nane="netty"/>

</ connect or s>
<entries>

<entry nane="Connecti onFactory"/>

<entry nane="XAConnecti onFactory"/>
</entries>

70

Configuring the transport directly from the client side.

</ connecti on-factory>

16.3. Configuring the transport directly from the client
side.

How do we configure a core d i ent Sessi onFact or y with the information that it needs to connect
with a server?

Connectors are also used indirectly when directly configuring a core d i ent Sessi onFact ory
to directly talk to a server. Although in this case there's no need to define such a
connector in the server side configuration, instead we just create the parameters and tell the
d i ent Sessi onFact or y which connector factory to use.

Here's an example of creating a d i ent Sessi onFact ory which will connect directly to the
acceptor we defined earlier in this chapter, it uses the standard Netty TCP transport and will try
and connect on port 5446 to localhost (default):

Map<String, Object> connectionParanms = new HashMap<String, Cbject>();

connect i onPar ans. put (org. hornetq. core.renoting.inpl.netty. Transport Const ant s. PORT_PROP_NAME,
5446) ;

Transport Configuration transportConfiguration =
new Transport Confi gurati on(
"org. hornetq.core.renoting.inpl.netty. NettyConnectorFactory",

connect i onPar ans) ;

Server Locat or | ocat or =
Hornet QCl i ent . creat eServer Locat or Wt hout HA(t ransport Confi gurati on);

Cli ent Sessi onFactory sessionFactory = | ocator.createC ientSessionFactory();
Cl i ent Sessi on session = sessionFactory. createSession(...);

etc

Similarly, if you're using JMS, you can configure the JMS connection factory directly on the client
side without having to define a connector on the server side or define a connection factory in
hornetqg-j ms. xnl :

71

Chapter 16. Configuring the T...

Map<String, Object> connectionParanms = new HashMap<String, Object>();

connect i onPar ans. put (org. hornetq. core.renoting.inpl.netty. Transport Const ant s. PORT_PROP_NAME,
5446) ;

Transport Configuration transport Configuration =
new Transport Confi gurati on(
"org. hornetq.core.renoting.inpl.netty. NettyConnectorFactory",
connect i onPar ans) ;
Connecti onFact ory connecti onFactory =
transport Confi guration);

Connection jnsConnection = connectionFactory. createConnection();

etc

16.4. Configuring the Netty transport

Out of the box, HornetQ currently uses Netty [http://www.jboss.org/netty/], a high performance
low level network library.

Our Netty transport can be configured in several different ways; to use old (blocking) Java IO,
or NIO (non-blocking), also to use straightforward TCP sockets, SSL, or to tunnel over HTTP or
HTTPS, on top of that we also provide a servlet transport.

We believe this caters for the vast majority of transport requirements.

16.4.1. Configuring Netty TCP

Netty TCP is a simple unencrypted TCP sockets based transport. Netty TCP can be configured
to use old blocking Java IO or non blocking Java NIO. We recommend you use the Java NIO on
the server side for better scalability with many concurrent connections. However using Java old
IO can sometimes give you better latency than NIO when you're not so worried about supporting
many thousands of concurrent connections.

If you're running connections across an untrusted network please bear in mind this transport is
unencrypted. You may want to look at the SSL or HTTPS configurations.

With the Netty TCP transport all connections are initiated from the client side. I.e. the server does
not initiate any connections to the client. This works well with firewall policies that typically only
allow connections to be initiated in one direction.

All the valid Netty transport keys are defined in the class
org. hornetq. core.renoting.inpl.netty. Transport Constants. Most parameters can be

72

http://www.jboss.org/netty/
http://www.jboss.org/netty/

Configuring Netty TCP

used either with acceptors or connectors, some only work with acceptors. The following
parameters can be used to configure Netty for simple TCP:

e use-ni o. Ifthisist r ue then Java non blocking NIO will be used. If setto f al se then old blocking
Java 10 will be used.

If you require the server to handle many concurrent connections, we highly recommend that
you use non blocking Java NIO. Java NIO does not maintain a thread per connection so can
scale to many more concurrent connections than with old blocking IO. If you don't require the
server to handle many concurrent connections, you might get slightly better performance by
using old (blocking) 10. The default value for this property is f al se on the server side and f al se
on the client side.

* host . This specifies the host name or IP address to connect to (when configuring a connector)
or to listen on (when configuring an acceptor). The default value for this property is | ocal host .
When configuring acceptors, multiple hosts or IP addresses can be specified by separating
them with commas. It is also possible to specify 0. 0. 0. 0 to accept connection from all the host's
network interfaces. It's not valid to specify multiple addresses when specifying the host for a
connector; a connector makes a connection to one specific address.

@ Note
Don't forget to specify a host name or ip address! If you want your server able to
accept connections from other nodes you must specify a hostname or ip address
at which the acceptor will bind and listen for incoming connections. The default
is localhost which of course is not accessible from remote nodes!

e port. This specified the port to connect to (when configuring a connector) or to listen on (when
configuring an acceptor). The default value for this property is 5445.

e tcp-no-delay. If this is true then Nagle's algorithm [http://en.wikipedia.org/wiki/
Nagle's_algorithm] will be enabled. The default value for this property is t r ue.

* tcp-send- buf fer-si ze. This parameter determines the size of the TCP send buffer in bytes.
The default value for this property is 32768 bytes (32KiB).

TCP buffer sizes should be tuned according to the bandwidth and latency of your network.
Here's a good link that explains the theory behind this [http://www-didc.lbl.gov/TCP-tuning/].

In summary TCP send/receive buffer sizes should be calculated as:

buffer _size = bandwidth * RTT.

73

http://en.wikipedia.org/wiki/Nagle's_algorithm
http://en.wikipedia.org/wiki/Nagle's_algorithm
http://en.wikipedia.org/wiki/Nagle's_algorithm
http://www-didc.lbl.gov/TCP-tuning/
http://www-didc.lbl.gov/TCP-tuning/

Chapter 16. Configuring the T...

Where bandwidth is in bytes per second and network round trip time (RTT) is in seconds. RTT
can be easily measured using the pi ng utility.

For fast networks you may want to increase the buffer sizes from the defaults.

e tcp-receive-buffer-size. This parameter determines the size of the TCP receive buffer in
bytes. The default value for this property is 32768 bytes (32KiB).

 bat ch- del ay. Before writing packets to the transport, HornetQ can be configured to batch up
writes for a maximum of bat ch- del ay milliseconds. This can increase overall throughput for
very small messages. It does so at the expense of an increase in average latency for message
transfer. The default value for this property is 0 ms.

« direct-deliver.Whenamessage arrives on the server and is delivered to waiting consumers,
by default, the delivery is done on the same thread as that on which the message arrived.
This gives good latency in environments with relatively small messages and a small number
of consumers, but at the cost of overall throughput and scalability - especially on multi-core
machines. If you want the lowest latency and a possible reduction in throughput then you can
use the default value for di r ect - del i ver (i.e. true). If you are willing to take some small extra
hit on latency but want the highest throughput set di r ect - del i ver to f al se .

* nio-renoting-threads. When configured to use NIO, HornetQ will, by default, use a
number of threads equal to three times the number of cores (or hyper-threads) as reported
by Runtinme. get Runtine().avail abl eProcessors() for processing incoming packets. If
you want to override this value, you can set the number of threads by specifying this
parameter. The default value for this parameter is -1 which means use the value from
Runt i me. get Runt i me() . avai | abl eProcessors() * 3.

16.4.2. Configuring Netty SSL

Netty SSL is similar to the Netty TCP transport but it provides additional security by encrypting
TCP connections using the Secure Sockets Layer SSL

Please see the examples for a full working example of using Netty SSL.

Netty SSL uses all the same properties as Netty TCP but adds the following additional properties:

* ssl-enabl ed. Must be t r ue to enable SSL.

* key-store-path. This is the path to the SSL key store on the client which holds the client
certificates.

* key-store-passwor d. This is the password for the client certificate key store on the client.
e trust-store-path. This is the path to the trusted client certificate store on the server.

e trust-store-password. Thisisthe password to the trusted client certificate store on the server.

74

Configuring Netty HTTP

16.4.3. Configuring Netty HTTP

Netty HTTP tunnels packets over the HTTP protocol. It can be useful in scenarios where firewalls
only allow HTTP traffice to pass.

Please see the examples for a full working example of using Netty HTTP.

Netty HTTP uses the same properties as Netty TCP but adds the following additional properties:

e http-enabl ed. Must be t r ue to enable HTTP.

e http-client-idle-tinme.How long a client can be idle before sending an empty http request
to keep the connection alive

e http-client-idle-scan-period. How often, in milliseconds, to scan for idle clients

e http-response-time. How long the server can wait before sending an empty http response
to keep the connection alive

* http-server-scan- peri od. How often, in milliseconds, to scan for clients needing responses

e http-requires-session-id. If true the client will wait after the first call to receive a session
id. Used the http connector is connecting to servlet acceptor (not recommended)

16.4.4. Configuring Netty Servlet

We also provide a Netty servlet transport for use with HornetQ. The servlet transport allows
HornetQ traffic to be tunneled over HTTP to a servlet running in a servlet engine which then
redirects it to an in-VM HornetQ server.

The servlet transport differs from the Netty HTTP transport in that, with the HTTP transport
HornetQ effectively acts a web server listening for HTTP traffic on, e.g. port 80 or 8080, whereas
with the servlet transport HornetQ traffic is proxied through a servlet engine which may already
be serving web site or other applications. This allows HornetQ to be used where corporate
policies may only allow a single web server listening on an HTTP port, and this needs to serve
all applications including messaging.

Please see the examples for a full working example of the servlet transport being used.
To configure a servlet engine to work the Netty Servlet transport we need to do the following things:

« Deploy the servlet. Here's an example web.xml describing a web application that uses the
servlet:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<web- app xm ns="http://java. sun.com xm / ns/j 2ee" xm ns: xsi="http://
www. W3. or g/ 2001/ XM_Schena- i nst ance"

75

Chapter 16. Configuring the T...

xsi : schemaLocati on="http://java. sun. comi xm /ns/j2ee http://
java. sun. conf xm / ns/j 2ee/ web- app_2_4. xsd"
version="2.4">
<servl et >
<ser vl et - nane>Hor net Ser vl et </ ser vl et - nane>
<servl et -
cl ass>org.j boss. netty. channel . socket. http. Ht pTunnel i ngSer vl et </ servl et -
cl ass>
<init-paranpr
<par am name>endpoi nt </ par am nanme>
<par am val ue>| ocal : or g. hor net gq</ par am val ue>
</init-paranm>
<l oad- on-startup>1</| oad- on- st art up>
</servl et>

<servl et - mappi ng>
<ser vl et - nane>Hor net Ser vl et </ ser vl et - nane>
<url - pattern>/ Hornet QServl et </url -pattern>
</ servl et - mappi ng>
</ web- app>

« We also need to add a special Netty invm acceptor on the server side configuration.

Here's a snippet from the hornet g-configuration.xm file showing that acceptor being
defined:

<accept ors>

<acceptor nane="netty-invni>
<factory-cl ass>
org. hornetq. core.renoting.inpl.netty. NettyAcceptor Factory
</factory-cl ass>
<par am key="use-i nvni' val ue="true"/>
<par am key="host" val ue="org. hornetq"/>
</ accept or >

</ accept or s>

» Lastly we need a connector for the client, this again will be configured in the hor net g-
confi guration.xn file as such:

<connect or s>

76

Configuring Netty Servlet

<connector nane="netty-servlet">

<factory-cl ass>

org. hornetq. core.renoting.inpl.netty.NettyConnectorFactory

</factory-cl ass>

<par am key="host" val ue="1ocal host"/ >

<param key="port" val ue="8080"/>

<par am key="use-servlet" value="true"/>

<par am key="servl et - pat h" val ue="/ nessagi ng/ Hor net QServl et"/ >
</ connect or >

</ connect or s>

Heres a list of the init params and what they are used for

« endpoint - This is the name of the netty acceptor that the servlet will forward its packets to. You
can see it matches the name of the host param.

The servlet pattern configured in the web. xmi is the path of the URL that is used. The connector
param ser vl et - pat h on the connector config must match this using the application context of
the web app if there is one.

Its also possible to use the servlet transport over SSL. simply add the following configuration to
the connector:

<connector nane="netty-servlet">
<factory-

cl ass>org. hornetq. core.renoting.inpl.netty. NettyConnect or Fact ory</factory-
cl ass>

<par am key="host" val ue="1| ocal host"/>

<param key="port" val ue="8443"/>

<par am key="use-servlet" value="true"/>

<par am key="servl et - pat h" val ue="/ nessagi ng/ Hor net @Servl et"/ >

<par am key="ssl - enabl ed" val ue="true"/>

<par am key="key-store-path" value="path to a keystoree"/>

<par am key="key- st or e- password" val ue="keystore password"/>

</ connect or >

You will also have to configure the Application server to use a KeyStore. Edit the server. xni
file that can be found under server/ def aul t/ depl oy/ j bossweb. sar of the Application Server
installation and edit the SSL/TLS connector configuration to look like the following:

<Connect or protocol ="HTTP/ 1. 1" SSLEnabl ed="true"
port="8443" address="${j boss. bi nd. addr ess}"
scheme="https" secure="true" clientAuth="false"
keystoreFil e="path to a keystore"

77

Chapter 16. Configuring the T...

keyst or ePass="keyst ore password" sslProtocol = "TLS" />

In both cases you will need to provide a keystore and password. Take a look at the servlet ssl
example shipped with HornetQ for more detail.

78

Chapter 17.

Detecting Dead Connections

In this section we will discuss connection time-to-live (TTL) and explain how HornetQ deals with
crashed clients and clients which have exited without cleanly closing their resources.

17.1. Cleaning up Dead Connection Resources on the
Server

Before a HornetQ client application exits it is considered good practice that it should close its
resources in a controlled manner, using a fi nal | y block.

Here's an example of a well behaved core client application closing its session and session factory
in a finally block:

ServerLocator locator = null;
Cli ent Sessi onFactory sf = null;
Cli ent Sessi on session = null;

try

{
| ocator = Hornet Qi ent. createServerLocatorWthout HA(. .);
sf = locator.createdientSessionFactory();;

session = sf.createSession(...);

do sone stuff with the session...

}
finally
{
if (session != null)
{
session. cl ose();
}
if (sf !'=null)
{
sf.cl ose();
}
if(locator !'= null)
{
| ocator. cl ose();
}
}

79

Chapter 17. Detecting Dead Co...

And here's an example of a well behaved JMS client application:

Connecti on jnmsConnection = null;

try
{

Connect i onFact ory j msConnecti onFact ory =
Hor net QIMSCl i ent . cr eat eConnect i onFact or yW t hout HA(. . .) ;

j msConnection = jnsConnecti onFactory. createConnection();

do sone stuff with the connection...

}

finally

{
if (connection != null)
{

connecti on. cl ose();

}

}

Unfortunately users don't always write well behaved applications, and sometimes clients just crash
so they don't have a chance to clean up their resources!

If this occurs then it can leave server side resources, like sessions, hanging on the server. If these
were not removed they would cause a resource leak on the server and over time this result in the
server running out of memory or other resources.

We have to balance the requirement for cleaning up dead client resources with the fact that
sometimes the network between the client and the server can fail and then come back, allowing
the client to reconnect. HornetQ supports client reconnection, so we don't want to clean up "dead"
server side resources too soon or this will prevent any client from reconnecting, as it won't be able
to find its old sessions on the server.

HornetQ makes all of this configurable. For each C i ent Sessi onFact or y we define a connection
TTL. Basically, the TTL determines how long the server will keep a connection alive in the absence
of any data arriving from the client. The client will automatically send "ping" packets periodically to
prevent the server from closing it down. If the server doesn't receive any packets on a connection
for the connection TTL time, then it will automatically close all the sessions on the server that
relate to that connection.

80

Closing core sessions or JMS connections that you have failed to close

If you're using JMS, the connection TTL is defined by the ConnectionTTL attribute on a
Hor net QConnect i onFact ory instance, or if you're deploying JMS connection factory instances
direct into JNDI on the server side, you can specify it in the xml config, using the parameter
connection-ttl.

The default value for connection ttl is 60000ms, i.e. 1 minute. A value of - 1 for Connecti onTTL
means the server will never time out the connection on the server side.

If you do not wish clients to be able to specify their own connection TTL, you can override all values
used by a global value set on the server side. This can be done by specifying the connect i on-
ttl-override attribute in the server side configuration. The default value for connecti on-ttl -
override is - 1 which means "do not override” (i.e. let clients use their own values).

17.1.1. Closing core sessions or JMS connections that you
have failed to close

As previously discussed, it's important that all core client sessions and JMS connections are
always closed explicitly in a fi nal | y block when you are finished using them.

If you fail to do so, HornetQ will detect this at garbage collection time, and log a warning similar
to the following in the logs (If you are using JMS the warning will involve a JMS connection not
a client session):

[Finalizer] 20: 14: 43, 244 WARNI NG
[org. hornetqg.core.client.inpl.Del egatingSession] |'mclosin

g a CientSession you |left open. Please make sure you close all dientSessions
explicitly before |let

ting them go out of scope!

[Finalizer] 20: 14: 43, 244 WARNI NG
[org. hornetqg.core.client.inpl.Del egati ngSession] The sessi

on you didn't close was created here:

j ava. | ang. Excepti on

at
org. hornetq. core.client.inpl.Del egati ngSessi on. <i ni t>(Del egati ngSessi on. j ava: 83)

at org.acne. yourproject. YourC ass (YourC ass. | ava: 666)

HornetQ will then close the connection / client session for you.

Note that the log will also tell you the exact line of your user code where you created the JMS
connection / client session that you later did not close. This will enable you to pinpoint the error
in your code and correct it appropriately.

81

Chapter 17. Detecting Dead Co...

17.2. Detecting failure from the client side.

In the previous section we discussed how the client sends pings to the server and how "dead"
connection resources are cleaned up by the server. There's also another reason for pinging, and
that's for the client to be able to detect that the server or network has failed.

As long as the client is receiving data from the server it will consider the connection to be still alive.

If the client does not receive any packets for cl i ent - fai | ure-check- peri od milliseconds then
it will consider the connection failed and will either initiate failover, or call any Fai | ur eLi st ener
instances (or Except i onLi st ener instances if you are using JMS) depending on how it has been
configured.

If you're using JMS it's defined by the dientFailureCheckPeriod attribute on a
Hor net QConnect i onFact ory instance, or if you're deploying JMS connection factory instances
direct into JNDI on the server side, you can specify it in the hor net g-j ns. xm configuration file,
using the parameter cl i ent - f ai | ur e- check- peri od.

The default value for client failure check period is 30000ms, i.e. 30 seconds. A value of - 1 means
the client will never fail the connection on the client side if no data is received from the server.
Typically this is much lower than connection TTL to allow clients to reconnect in case of transitory
failure.

17.3. Configuring Asynchronous Connection Execution

By default, packets received on the server side are executed on the remoting thread.

It is possible instead to use a thread from a thread pool to handle some packets so that the
remoting thread is not tied up for too long. However, please note that processing operations
asynchronously on another thread adds a little more latency. Please note that most short running
operations are always handled on the remoting thread for performance reasons. To enable
asynchronous connection execution, set the parameter async- connect i on- execut i on- enabl ed
in hor net g- confi gurati on. xn totrue (default value is t r ue).

82

Chapter 18.

Resource Manager Configuration

HornetQ has its own Resource Manager for handling the lifespan of JTA transactions. When a
transaction is started the resource manager is notified and keeps a record of the transaction and
its current state. It is possible in some cases for a transaction to be started but then forgotten
about. Maybe the client died and never came back. If this happens then the transaction will just
sit there indefinitely.

To cope with this HornetQ can, if configured, scan for old transactions and rollback any it finds.
The default for this is 3000000 milliseconds (5 minutes), i.e. any transactions older than 5
minutes are removed. This timeout can be changed by editing the t r ansact i on-ti meout property
in hor net g- confi guration. xm (value must be in milliseconds). The property transacti on-
ti meout - scan- peri od configures how often, in milliseconds, to scan for old transactions.

Please note that HornetQ will not unilaterally rollback any XA transactions in a prepared state -
this must be heuristically rolled back via the management API if you are sure they will never be
resolved by the transaction manager.

83

84

Chapter 19.

Flow Control

Flow control is used to limit the flow of data between a client and server, or a server and another
server in order to prevent the client or server being overwhelmed with data.

19.1. Consumer Flow Control

This controls the flow of data between the server and the client as the client consumes messages.
For performance reasons clients normally buffer messages before delivering to the consumer via
ther ecei ve() method or asynchronously via a message listener. If the consumer cannot process
messages as fast as they are being delivered and stored in the internal buffer, then you could end
up with a situation where messages would keep building up possibly causing out of memory on
the client if they cannot be processed in time.

19.1.1. Window-Based Flow Control

By default, HornetQ consumers buffer messages from the server in a client side buffer before the
client consumes them. This improves performance: otherwise every time the client consumes a
message, HornetQ would have to go the server to request the next message. In turn, this message
would then get sent to the client side, if one was available.

A network round trip would be involved for every message and considerably reduce performance.

To prevent this, HornetQ pre-fetches messages into a buffer on each consumer. The total
maximum size of messages (in bytes) that will be buffered on each consumer is determined by
the consumer - wi ndow si ze parameter.

By default, the consuner - wi ndow- si ze is set to 1 MiB (1024 * 1024 bytes).

The value can be:

« -1 for an unbounded buffer

* 0 to not buffer any messages. See Section 11.1.40, “No Consumer Buffering” for working
example of a consumer with no buffering.

« >0 for a buffer with the given maximum size in bytes.

Setting the consumer window size can considerably improve performance depending on the
messaging use case. As an example, let's consider the two extremes:

Fast consumers

Fast consumers can process messages as fast as they consume them (or even faster)

To allow fast consumers, set the consumner - wi ndow-si ze to -1. This will allow unbounded
message buffering on the client side.

85

Chapter 19. Flow Control

Use this setting with caution: it can overflow the client memory if the consumer is not able to
process messages as fast as it receives them.

Slow consumers
Slow consumers takes significant time to process each message and it is desirable to prevent
buffering messages on the client side so that they can be delivered to another consumer
instead.

Consider a situation where a queue has 2 consumers; 1 of which is very slow. Messages are
delivered in a round robin fashion to both consumers, the fast consumer processes all of its
messages very quickly until its buffer is empty. At this point there are still messages awaiting
to be processed in the buffer of the slow consumer thus preventing them being processed
by the fast consumer. The fast consumer is therefore sitting idle when it could be processing
the other messages.

To allow slow consumers, set the consuner - wi ndow si ze to 0 (for no buffer at all). This will
prevent the slow consumer from buffering any messages on the client side. Messages will
remain on the server side ready to be consumed by other consumers.

Setting this to 0 can give deterministic distribution between multiple consumers on a queue.

Most of the consumers cannot be clearly identified as fast or slow consumers but are in-between.
In that case, setting the value of consumer - wi ndow- si ze to optimize performance depends on
the messaging use case and requires benchmarks to find the optimal value, but a value of 1MiB
is fine in most cases.

19.1.1.1. Using Core API

If HornetQ Core APl is used, the consumer window size is specified
by dientSessionFactory. set Consunmer WndowSi ze() method and some of the
d i ent Sessi on. cr eat eConsuner () methods.

19.1.1.2. Using JMS

if INDI is used to look up the connection factory, the consumer window size is configured in
hornetqg-j ms. xni :

<connection-factory name="Connecti onFactory">
<connect or s>
<connect or-ref connector-nane="netty-connector"/>
</ connect or s>
<entries>
<entry nane="Connecti onFactory"/>
</entries>

<l-- Set the consuner wi ndowsizeto O to have *no* buffer onthe client side -->
<consuner - w ndow- si ze>0</ consuner - Wi ndow- si ze>

86

Rate limited flow control

</ connection-factory>

If the connection factory is directly instantiated, the consumer window size is specified by
Hor net QConnect i onFact ory. set Consumer W ndowSi ze() method.

Please see Section 11.1.40, “No Consumer Buffering” for an example which shows how to
configure HornetQ to prevent consumer buffering when dealing with slow consumers.

19.1.2. Rate limited flow control

It is also possible to control the rate at which a consumer can consume messages. This is a form
of throttling and can be used to make sure that a consumer never consumes messages at a rate
faster than the rate specified.

The rate must be a positive integer to enable this functionality and is the maximum desired
message consumption rate specified in units of messages per second. Setting this to - 1 disables
rate limited flow control. The default value is - 1.

Please see Section 11.1.15, “Message Consumer Rate Limiting” for a working example of limiting
consumer rate.

19.1.2.1. Using Core API

If the HornetQ core APl is being used the rate can be set via the
C i ent Sessi onFact ory. set Consumer MaxRat e(i nt consumer MaxRat e) method or alternatively
via some of the C i ent Sessi on. cr eat eConsuner () methods.

19.1.2.2. Using JMS

If INDI is used to look up the connection factory, the max rate can be configured in hor net g-
jms.xm :

<connection-factory name="Connecti onFactory">
<connect or s>
<connector-ref connector-nanme="netty-connector"/>
</ connect or s>
<entries>
<entry nanme="ConnectionFactory"/>
</entries>
<I-- W& limt consuners created on this connection factory to consume
nessages
at a maximumrate
of 10 messages per sec -->
<consuner - max- r at e>10</ consuner - max- r at e>
</ connecti on-factory>

87

Chapter 19. Flow Control

If the connection factory is directly instantiated, the max rate size can be set via the
Hor net QConnect i onFact ory. set Consunmer MaxRat e(i nt consunmer MaxRat e) method.

: Note
(
Rate limited flow control can be used in conjunction with window based flow control.
Rate limited flow control only effects how many messages a client can consume
in a second and not how many messages are in its buffer. So if you had a slow
rate limit and a high window based limit the clients internal buffer would soon fill
up with messages.

Please see Section 11.1.15, “Message Consumer Rate Limiting” for an example which shows
how to configure HornetQ to prevent consumer buffering when dealing with slow consumers.

19.2. Producer flow control

HornetQ also can limit the amount of data sent from a client to a server to prevent the server
being overwhelmed.

19.2.1. Window based flow control

In a similar way to consumer window based flow control, HornetQ producers, by default, can only
send messages to an address as long as they have sufficient credits to do so. The amount of
credits required to send a message is given by the size of the message.

As producers run low on credits they request more from the server, when the server sends them
more credits they can send more messages.

The amount of credits a producer requests in one go is known as the window size.

The window size therefore determines the amount of bytes that can be in-flight at any one time
before more need to be requested - this prevents the remoting connection from getting overloaded.

19.2.1.1. Using Core API

If the HornetQ core APl is being used, window size can be set via the
Cl i ent Sessi onFact ory. set Producer W ndowSi ze(i nt producer WndowSi ze) method.

19.2.1.2. Using JMS

If INDI is used to look up the connection factory, the producer window size can be configured
in hornet g-j ms. xni :

<connection-factory nane="Connecti onFactory">
<connect or s>

88

Window based flow control

<connect or-ref connector-nane="netty-connector"/>
</ connect or s>
<entries>
<entry nane="Connecti onFactory"/>
</entries>
<producer - wi ndow si ze>10</ pr oducer - wi ndow- si ze>
</ connecti on-factory>

If the connection factory is directly instantiated, the producer window size can be set via the
Hor net QConnect i onFact ory. set Producer W ndowSi ze(i nt producer W ndowSi ze) method.

19.2.1.3. Blocking producer window based flow control

Normally the server will always give the same number of credits as have been requested.
However, it is also possible to set a maximum size on any address, and the server will never send
more credits than could cause the address's upper memory limit to be exceeded.

For example, if | have a JMS queue called "myqueue", | could set the maximum memory size
to 10MiB, and the the server will control the number of credits sent to any producers which are
sending any messages to myqueue such that the total messages in the queue never exceeds
10MiB.

When the address gets full, producers will block on the client side until more space frees up on
the address, i.e. until messages are consumed from the queue thus freeing up space for more
messages to be sent.

We call this blocking producer flow control, and it's an efficient way to prevent the server running
out of memory due to producers sending more messages than can be handled at any time.

It is an alternative approach to paging, which does not block producers but instead pages
messages to storage.

To configure an address with a maximum size and tell the server that you want to block
producers for this address if it becomes full, you need to define an AddressSettings (Section 25.3,
“Configuring Queues Via Address Settings”) block for the address and specify nmax- si ze- byt es
and address-ful | -policy

The address block applies to all queues registered to that address. Il.e. the total memory for all
gueues bound to that address will not exceed max- si ze- byt es. In the case of JMS topics this
means the total memory of all subscriptions in the topic won't exceed max-size-bytes.

Here's an example:

<addr ess-settings>
<addr ess-setting match="j ns. queue. exanpl eQueue" >
<max- si ze- byt es>100000</ max- si ze- byt es>

89

Chapter 19. Flow Control

<address-ful | - policy>BLOCK</ addr ess-full -policy>
</ address-setting>
</ addr ess-settings>

The above example would set the max size of the JMS queue "exampleQueue" to be 100000 bytes
and would block any producers sending to that address to prevent that max size being exceeded.

Note the policy must be set to BLOCK to enable blocking producer flow control.

@ Note
Note that in the default configuration all addresses are set to block producers after
10 MiB of message data is in the address. This means you cannot send more
than 10MiB of message data to an address without it being consumed before the
producers will be blocked. If you do not want this behaviour increase the max-
si ze- byt es parameter or change the address full message policy.

19.2.2. Rate limited flow control

HornetQ also allows the rate a producer can emit message to be limited, in units of messages per
second. By specifying such a rate, HornetQ will ensure that producer never produces messages
at a rate higher than that specified.

The rate must be a positive integer to enable this functionality and is the maximum desired
message consumption rate specified in units of messages per second. Setting this to - 1 disables
rate limited flow control. The default value is - 1.

Please see the Section 11.1.44, “Message Producer Rate Limiting” for a working example of
limiting producer rate.

19.2.2.1. Using Core API

If the HornetQ core APl is being used the rate can be set via the
C i ent Sessi onFact ory. set Producer MaxRat e(i nt consuner MaxRat e) method or alternatively
via some of the C i ent Sessi on. cr eat ePr oducer () methods.

19.2.2.2. Using JMS

If INDI is used to look up the connection factory, the max rate can be configured in hor net g-
jms. xm

<connection-factory name="Connecti onFactory">
<connect or s>
<connector-ref connector-nane="netty-connector"/>
</ connect or s>

90

Rate limited flow control

<entries>
<entry nane="Connecti onFactory"/>
</entries>

<l-- W& limt producers created on this connection factory to produce

messages
at a maxi numrate
of 10 nessages per sec -->
<producer - max- r at e>10</ pr oducer - max- r at e>
</ connecti on-factory>

If the connection factory is directly instantiated, the max rate size can be set via the
Hor net QConnect i onFact ory. set Producer MaxRat e(i nt consumer MaxRat e) method.

91

92

Chapter 20.

Guarantees of sends and commits

20.1. Guarantees of Transaction Completion

When committing or rolling back a transaction with HornetQ, the request to commit or rollback is
sent to the server, and the call will block on the client side until a response has been received
from the server that the commit or rollback was executed.

When the commit or rollback is received on the server, it will be committed to the journal, and
depending on the value of the parameter j our nal - sync-t ransacti onal the server will ensure
that the commit or rollback is durably persisted to storage before sending the response back to
the client. If this parameter has the value f al se then commit or rollback may not actually get
persisted to storage until some time after the response has been sent to the client. In event of
server failure this may mean the commit or rollback never gets persisted to storage. The default
value of this parameter is t r ue so the client can be sure all transaction commits or rollbacks have
been persisted to storage by the time the call to commit or rollback returns.

Setting this parameter to fal se can improve performance at the expense of some loss of
transaction durability.

This parameter is set in hor net g- confi gurati on. xni

20.2. Guarantees of Non Transactional Message Sends

If you are sending messages to a server using a non transacted session, HornetQ can be
configured to block the call to send until the message has definitely reached the server, and a
response has been sent back to the client. This can be configured individually for durable and
non-durable messages, and is determined by the following two parameters:

* Bl ockOnDur abl eSend. If this is set to t r ue then all calls to send for durable messages on non
transacted sessions will block until the message has reached the server, and a response has
been sent back. The default value is t r ue.

* Bl ockOnNonDur abl eSend. If this is set to t r ue then all calls to send for non-durable messages
on non transacted sessions will block until the message has reached the server, and a response
has been sent back. The default value is f al se.

Setting block on sends to t r ue can reduce performance since each send requires a network round
trip before the next send can be performed. This means the performance of sending messages will
be limited by the network round trip time (RTT) of your network, rather than the bandwidth of your
network. For better performance we recommend either batching many messages sends together
in a transaction since with a transactional session, only the commit / rollback blocks not every
send, or, using HornetQ's advanced asynchronous send acknowledgements feature described in
Section 20.4, “Asynchronous Send Acknowledgements”.

93

Chapter 20. Guarantees of sen...

If you are using JMS and you're using the JMS service on the server to load your JMS connection
factory instances into JNDI then these parameters can be configured in hor net g- j ms. xm using
the elements bl ock- on- dur abl e- send and bl ock- on- non- dur abl e- send. If you're using JMS
but not using JNDI then you can set these values directly on the Hor net QConnect i onFact ory
instance using the appropriate setter methods.

If you're using core you can set these values directly on the Cl i ent Sessi onFact ory instance
using the appropriate setter methods.

When the server receives a message sent from a non transactional session, and that message
is durable and the message is routed to at least one durable queue, then the server will persist
the message in permanent storage. If the journal parameter j our nal - sync- non-transact i onal
is set to t r ue the server will not send a response back to the client until the message has been
persisted and the server has a guarantee that the data has been persisted to disk. The default
value for this parameter is t r ue.

20.3. Guarantees of Non Transactional
Acknowledgements

If you are acknowledging the delivery of a message at the client side using a non transacted
session, HornetQ can be configured to block the call to acknowledge until the acknowledge has
definitely reached the server, and a response has been sent back to the client. This is configured
with the parameter Bl ockOnAcknowl edge. If this is set to t r ue then all calls to acknowledge on
non transacted sessions will block until the acknowledge has reached the server, and a response
has been sent back. You might want to set this to t r ue if you want to implement a strict at most
once delivery policy. The default value is f al se

20.4. Asynchronous Send Acknowledgements

If you are using a non transacted session but want a guarantee that every message sent to the
server has reached it, then, as discussed in Section 20.2, “Guarantees of Non Transactional
Message Sends”, you can configure HornetQ to block the call to send until the server has received
the message, persisted it and sent back a response. This works well but has a severe performance
penalty - each call to send needs to block for at least the time of a network round trip (RTT) - the
performance of sending is thus limited by the latency of the network, not limited by the network
bandwidth.

Let's do a little bit of maths to see how severe that is. We'll consider a standard 1Gib ethernet
network with a network round trip between the server and the client of 0.25 ms.

With a RTT of 0.25 ms, the client can send at most 1000/ 0.25 = 4000 messages per second if
it blocks on each message send.

If each message is < 1500 bytes and a standard 1500 bytes MTU size is used on the network, then
a 1GiB network has a theoretical upper limit of (1024 * 1024 * 1024 / 8) / 1500 = 89478 messages

94

Asynchronous Send Acknowledgements

per second if messages are sent without blocking! These figures aren't an exact science but you
can clearly see that being limited by network RTT can have serious effect on performance.

To remedy this, HornetQ provides an advanced new feature called asynchronous send
acknowledgements. With this feature, HornetQ can be configured to send messages without
blocking in one direction and asynchronously getting acknowledgement from the server that
the messages were received in a separate stream. By de-coupling the send from the
acknowledgement of the send, the system is not limited by the network RTT, but is limited by
the network bandwidth. Consequently better throughput can be achieved than is possible using
a blocking approach, while at the same time having absolute guarantees that messages have
successfully reached the server.

The window size for send acknowledgements is determined by the confirmation-window-size
parameter on the connection factory or client session factory. Please see Chapter 34, Client
Reconnection and Session Reattachment for more info on this.

20.4.1. Asynchronous Send Acknowledgements

To use the feature using the core API, you implement the interface
org. hornetq. api . core. client.SendAcknow edgenent Handl er and set a handler instance on
your Cl i ent Sessi on.

Then, you just send messages as normal using your dient Session, and as messages
reach the server, the server will send back an acknowledgement of the send asynchronously,
and some time later you are informed at the client side by HornetQ calling your handler's
sendAcknow edged(d i ent Message nmessage) method, passing in a reference to the message
that was sent.

To enable asynchronous send acknowledgements you must make sure confi r mat i on-w ndow
si ze is set to a positive integer value, e.g. 10MiB

Please see Section 11.1.53, “Send Acknowledgements” for a full working example.

95

96

Chapter 21.

Message Redelivery and Undelivered
Messages

Messages can be delivered unsuccessfully (e.g. if the transacted session used to consume them
is rolled back). Such a message goes back to its queue ready to be redelivered. However, this
means it is possible for a message to be delivered again and again without any success and
remain in the queue, clogging the system.

There are 2 ways to deal with these undelivered messages:

» Delayed redelivery.

It is possible to delay messages redelivery to let the client some time to recover from transient
failures and not overload its network or CPU resources

* Dead Letter Address.

It is also possible to configure a dead letter address so that after a specified number of
unsuccessful deliveries, messages are removed from the queue and will not be delivered again

Both options can be combined for maximum flexibility.

21.1. Delayed Redelivery

Delaying redelivery can often be useful in the case that clients regularly fail or rollback. Without a
delayed redelivery, the system can get into a "thrashing" state, with delivery being attempted, the
client rolling back, and delivery being re-attempted ad infinitum in quick succession, consuming
valuable CPU and network resources.

21.1.1. Configuring Delayed Redelivery

Delayed redelivery is defined in the address-setting configuration:

<l-- delay redelivery of messages for 5s -->

<addr ess-setting match="j ns. queue. exanpl eQueue" >
<redel i very-del ay>5000</r edel i very- del ay>

</ address-setting>

Ifaredel i very-del ay is specified, HornetQ will wait this delay before redelivering the messages

By default, there is no redelivery delay (r edel i ver y- del ayis set to 0).

97

Chapter 21. Message Redeliver...

Address wildcards can be used to configure redelivery delay for a set of addresses (see
Chapter 13, Understanding the HornetQ Wildcard Syntax), so you don't have to specify redelivery
delay individually for each address.

21.1.2. Example

See Section 11.1.17, “Delayed Redelivery” for an example which shows how delayed redelivery
is configured and used with JMS.

21.2. Dead Letter Addresses

To prevent a client infinitely receiving the same undelivered message (regardless of what is
causing the unsuccessful deliveries), messaging systems define dead letter addresses: after a
specified unsuccessful delivery attempts, the message is removed from the queue and send
instead to a dead letter address.

Any such messages can then be diverted to queue(s) where they can later be perused by the
system administrator for action to be taken.

HornetQ's addresses can be assigned a dead letter address. Once the messages have be
unsuccessfully delivered for a given number of attempts, they are removed from the queue and
sent to the dead letter address. These dead letter messages can later be consumed for further
inspection.

21.2.1. Configuring Dead Letter Addresses

Dead letter address is defined in the address-setting configuration:

<!'-- wundelivered nessages in exanpleQueue will be sent to the dead letter
addr ess
deadlLett er Queue after 3 unsuccessful delivery attenpts
oo

<addr ess-setting match="j ns. queue. exanpl eQueue" >
<dead- | etter-address>j ns. queue. deadLet t er Queue</ dead- | ett er - address>
<max- del i very- at t enpt s>3</ max- del i very- at t enpt s>

</ address-setting>

If a dead-letter-address is not specified, messages will removed after nax-delivery-
at t enpt s unsuccessful attempts.

By default, messages are redelivered 10 times at the maximum. Set max- del i very-attenpt s to
-1 for infinite redeliveries.

98

Dead Letter Properties

For example, a dead letter can be set globally for a set of matching addresses and you can set
max- del i very-attenpts to -1 for a specific address setting to allow infinite redeliveries only for
this address.

Address wildcards can be used to configure dead letter settings for a set of addresses (see
Chapter 13, Understanding the HornetQ Wildcard Syntax).

21.2.2. Dead Letter Properties

Dead letter messages which are consumed from a dead letter address have the following property:

« _HQ ORI G_ADDRESS

a String property containing the original address of the dead letter message

21.2.3. Example

See Section 11.1.16, “Dead Letter” for an example which shows how dead letter is configured
and used with JMS.

21.3. Delivery Count Persistence

In normal use, HornetQ does not update delivery count persistently until a message is rolled back
(i.e. the delivery count is not updated before the message is delivered to the consumer). In most
messaging use cases, the messages are consumed, acknowledged and forgotten as soon as
they are consumed. In these cases, updating the delivery count persistently before delivering the
message would add an extra persistent step for each message delivered, implying a significant
performance penalty.

However, if the delivery count is not updated persistently before the message delivery happens,
in the event of a server crash, messages might have been delivered but that will not have been
reflected in the delivery count. During the recovery phase, the server will not have knowledge of
that and will deliver the message with r edel i ver ed set to f al se while it should be t r ue.

As this behavior breaks strict JMS semantics, HornetQ allows to persist delivery count before
message delivery but disabled it by default for performance implications.

To enable it, set persist-delivery-count-before-delivery to true in hornetqg-

configuration.xm:

<persi st-delivery-count - before-delivery>true</persist-delivery-count-before-
del i very>

99

100

Chapter 22.

Message Expiry

Messages can be set with an optional time to live when sending them.

HornetQ will not deliver a message to a consumer after it's time to live has been exceeded. If the
message hasn't been delivered by the time that time to live is reached the server can discard it.

HornetQ's addresses can be assigned a expiry address so that, when messages are expired, they
are removed from the queue and sent to the expiry address. Many different queues can be bound
to an expiry address. These expired messages can later be consumed for further inspection.

22.1. Message Expiry

Using HornetQ Core API, you can set an expiration time directly on the message:

/1 message will expire in 5000ns from now
nmessage. set Expirati on(SystemcurrentTineM | lis() + 5000)

JMS MessageProducer allows to set a TimeToLive for the messages it sent:

/1l messages sent by this producer will be retained for 5s (5000ns) before
expiration
producer. set Ti neToLi ve(5000) ;

Expired messages which are consumed from an expiry address have the following properties:

e HQ ORI G_ADDRESS
a String property containing the original address of the expired message
* _HQ ACTUAL_EXPI RY

a Long property containing the actual expiration time of the expired message

22.2. Configuring Expiry Addresses

Expiry address are defined in the address-setting configuration:

101

Chapter 22. Message Expiry

<I-- expired nessages in exanpleQueue wll be sent to the expiry address
expi ryQueue -->
<address-setting match="j nms. queue. exanpl eQueue" >
<expi ry- addr ess>j ns. queue. expi r yQueue</ expi ry- addr ess>
</ address-setting>

If messages are expired and no expiry address is specified, messages are simply removed from
the queue and dropped. Address wildcards can be used to configure expiry address for a set of
addresses (see Chapter 13, Understanding the HornetQ Wildcard Syntax).

22.3. Configuring The Expiry Reaper Thread

A reaper thread will periodically inspect the queues to check if messages have expired.

The reaper thread can be configured with the following properties in hornetqg-
configuration.xm

* nessage- expiry-scan-period

How often the queues will be scanned to detect expired messages (in milliseconds, default is
30000ms, set to - 1 to disable the reaper thread)

* nessage-expiry-thread-priority

The reaper thread priority (it must be between 0 and 9, 9 being the highest priority, default is 3)

22.4. Example

See Section 11.1.22, “Message Expiration” for an example which shows how message expiry is
configured and used with JMS.

102

Chapter 23.

Large Messages

HornetQ supports sending and receiving of huge messages, even when the client and server
are running with limited memory. The only realistic limit to the size of a message that can be
sent or consumed is the amount of disk space you have available. We have tested sending and
consuming messages up to 8 GiB in size with a client and server running in just 50MiB of RAM!

To send a large message, the user can set an I nput St r eamon a message body, and when that
message is sent, HornetQ will read the I nput Stream A Fi | el nput St ream could be used for
example to send a huge message from a huge file on disk.

As the I nput St r eamis read the data is sent to the server as a stream of fragments. The server
persists these fragments to disk as it receives them and when the time comes to deliver them to
a consumer they are read back of the disk, also in fragments and sent down the wire. When the
consumer receives a large message it initially receives just the message with an empty body, it
can then set an Qut put St r eamon the message to stream the huge message body to a file on
disk or elsewhere. At no time is the entire message body stored fully in memory, either on the
client or the server.

23.1. Configuring the server

Large messages are stored on a disk directory on the server side, as configured on the main
configuration file.

The configuration property | ar ge- messages- di r ect ory specifies where large messages are

stored.

<configuration xm ns="urn: hornetq"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"
xsi : schemaLocati on="urn: hornet q / schena/ hor net g- confi gurati on. xsd" >

<l ar ge- messages- di rect ory>/ dat a/ | ar ge- mnessages</ | ar ge- nessages-di rectory>

</ configuration

By default the large message directory is dat a/ | ar genessages

For the best performance we recommend large messages directory is stored on a different
physical volume to the message journal or paging directory.

103

Chapter 23. Large Messages

23.2. Configuring Parameters

Any message larger than a certain size is considered a large message. Large messages will be
split up and sent in fragments. This is determined by the parameter ni n- 1 ar ge- message- si ze

The default value is 100KiB.

23.2.1. Using Core API

If the HornetQ Core API is used, the minimal large message size is specified by
Cl i ent Sessi onFactory. set M nLar geMessageSi ze.

Server Locat or | ocat or = Hornet QCl i ent. cr eat eServer Locat or Wt hout HA(new
Transport Confi gurati on(NettyConnectorFactory. cl ass. get Nane()))

| ocat or. set M nLar geMessageSi ze(25 * 1024);

Cli ent Sessi onFactory factory = Hornet QCient.createC ientSessionFactory();

Section 16.3, “Configuring the transport directly from the client side.” will provide more information
on how to instantiate the session factory.

23.2.2. Using JMS

If INDI is used to look up the connection factory, the minimum large message size is specified
in hor net g-j ms. xmi

<connection-factory name="Connecti onFactory">
<connect or s>

<connector-ref connector-nane="netty"/>
</ connect or s>
<entries>

<entry nanme="ConnectionFactory"/>

<ent ry nane="XAConnecti onFactory"/>
</entries>

<m n- | ar ge- message- si ze>250000</ i n- | ar ge- message- si ze>
</ connection-factory>

If the connection factory is being instantiated directly, the minimum large message size is specified
by Hor net QConnecti onFact ory. set M nLar geMessageSi ze.

104

Compressed Large Messages

23.2.3. Compressed Large Messages

If you specify the boolean property conpress-|arge-message on the server |ocator or
Connect i onFact or y The system will use the ZIP algorithm to compress the message body as the
message is transfered to the server's side. Notice that there's no special treatment at the server's
side, all the compressing and uncompressing is done at the client.

23.3. Streaming large messages

HornetQ supports setting the body of messages using input and output streams (j ava. | ang. i 0)

These streams are then used directly for sending (input streams) and receiving (output streams)
messages.

When receiving messages there are 2 ways to deal with the output stream; you may choose to
block while the output stream is recovered using the method d i ent Message. saveQut put St r eam
or alternatively using the method C i ent Message. set Qut put st r eamwhich will asynchronously
write the message to the stream. If you choose the latter the consumer must be kept alive until
the message has been fully received.

You can use any kind of stream you like. The most common use case is to send files stored in your
disk, but you could also send things like JDBC Blobs, Socket | nput St r eam things you recovered
from HTTPRequest s etc. Anything as long as it implements j ava. i o. | nput St r eamfor sending
messages or j ava. i 0. Qut put St r eamfor receiving them.

23.3.1. Streaming over Core API

The following table shows a list of methods available at O i ent Message which are also available
through JMS by the use of object properties.

Table 23.1. org.hornetq.api.core.client.ClientMessage API

INETg Description JMS Equivalent Property

setBodylnputStream(InputStrear8t the InputStream used to JMS_HQ_InputStream
read a message body when
sending it.

setOutputStream(OutputStreamBet the OutputStream that JMS_HQ_ OutputStream
will receive the body of a

message. This method does

not block.

saveOutputStream(OutputStreai®ave the body of the message JMS_HQ_SaveStream
to the QutputStream It

will block until the entire

content is transferred to the

Qut put St ream

To set the output stream when receiving a core message:

105

Chapter 23. Large Messages

Cli ent Message nsg = consuner.receive(...);

/1 This will block here until the streamwas transferred
nsg. saveCQut put St r eam(someQut put St r ean) ;

Cli ent Message nmsg2 = consuner.receive(...);

/1 This will not wait the transfer to finish
nsg. set Qut put St r ean(someQ her Qut put St r ean ;

Set the input stream when sending a core message:

Cli ent Message nmsg = session. creat eMessage() ;
nsg. set | nput Strean{ dat al nput Strean ;

Notice also that for messages with more than 2GiB the getBodySize() will return invalid values
since this is an integer (which is also exposed to the JMS API). On those cases you can use the
message property HQ_LARGE_SIZE.

23.3.2. Streaming over JMS

When using JMS, HornetQ maps the streaming methods on the core API (see Table 23.1,
“org.hornetg.api.core.client.ClientMessage API”) by setting object properties . You can use the
method Message. set Qbj ect Pr oper t y to set the input and output streams.

The I nput St reamcan be defined through the JMS Object Property JMS_HQ_InputStream on
messages being sent:

Byt esMessage nessage = session. creat eByt esMessage() ;
Fil el nput Stream fil el nput Stream = new Fi |l el nput Strean{fil el nput);

Buf f er edl nput St r eam buf f er edl nput = new Bufferedl nput Strean(fil el nput Strean);

106

Streaming Alternative

nmessage. set Obj ect Property("JM5_HQ | nput Streant, bufferedl nput);
soneProducer. send(message) ;

The CQut put Stream can be set through the JMS Object Property JMS_HQ_SaveStream on
messages being received in a blocking way.

Byt esMessage nessageRecei ved = (BytesMessage) nessageConsuner. recei ve(120000);
File outputFile = new Fil e("huge_nessage_received. dat");
Fi | eQut put Stream fil eQut put Stream = new Fi | eQut put St r eam(out put Fi |l e) ;

Buf f er edQut put St r eam buf f er edQut put = new
Buf f er edQut put St rean(fi |l eQut put Strean);

/1 This will block until the entire content is saved on disk
messageRecei ved. set bj ect Property("JMS_HQ SaveStreant, bufferedQutput);

Setting the Qut put Stream could also be done in a non blocking way using the property
JMS_HQ_OutputStream.

/'l This won't wait the streamto finish. You need to keep the consumer active.
messageRecei ved. set Obj ect Property("JMS_HQ Qut put Streant', bufferedQut put);

@ Note
When using JMS, Streaming large messages are only supported on
St r eamvessage and Byt esMessage.

23.4. Streaming Alternative

If you choose not to use the | nput St r eamor CQut put St r eamcapability of HornetQ You could still
access the data directly in an alternative fashion.

On the Core API just get the bytes of the body as you normally would.

Cli ent Message nsg = consuner.receive();

107

Chapter 23. Large Messages

byte[] bytes = new byte[1024];
for (int i =0 ; i < neg.getBodySize(); i += bytes.|ength)
{

nmsg. get Body() . readByt es(byt es);

/1 \Whatever you want to do with the bytes

If using JIMS API, Byt esMessage and St r eamVessage also supports it transparently.

Byt esMessage rm = (Byt esMessage) cons. recei ve(10000);
byte data[] = new byte[1024];
for (int i = 0; i < rmgetBodyLength(); i += 1024)

{
int nunberOBytes = rmreadBytes(data);

/1 Do whatever you want with the data

23.5. Large message example

Please see Section 11.1.30, “Large Message” for an example which shows how large message
is configured and used with JMS.

108

Chapter 24.

HornetQ transparently supports huge queues containing millions of messages while the server is

running with limited memory.

In such a situation it's not possible to store all of the queues in memory at any one time, so HornetQ
transparently pages messages into and out of memory as they are needed, thus allowing massive
queues with a low memory footprint.

HornetQ will start paging messages to disk, when the size of all messages in memory for an
address exceeds a configured maximum size.

By default, HornetQ does not page messages - this must be explicitly configured to activate it.

24.1. Page Files

Messages are stored per address on the file system. Each address has an individual folder where
messages are stored in multiple files (page files). Each file will contain messages up to a max
configured size (page- si ze- byt es). The system will navigate on the files as needed, and it will
remove the page file as soon as all the messages are acknowledged up to that point.

Browsers will read through the page-cursor system.

Consumers with selectors will also navigate through the page-files and it will ignore messages
that don't match the criteria.

24.2. Configuration

You can configure the location of the paging folder
Global paging parameters are specified on the main configuration file (hornetq-

confi guration.xm).

<configuration xm ns="urn: hornetq"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="urn: hornet q / schena/ hor net g- confi gurati on. xsd">

<pagi ng- di r ect or y>/ somewher e/ pagi ng- di r ect or y</ pagi ng-di rect ory>

109

Chapter 24. Paging

Table 24.1. Paging Configuration Parameters

Property Name Description Default

pagi ng-directory Where page files are stored. data/paging
HornetQ will create one folder
for each address being paged
under this configured location.

24.3. Paging Mode

As soon as messages delivered to an address exceed the configured size, that address alone
goes into page mode.

@ Note
Paging is done individually per address. If you configure a max-size-bytes for an
address, that means each matching address will have a maximum size that you
specified. It DOES NOT mean that the total overall size of all matching addresses
is limited to max-size-bytes.

24.3.1. Configuration

Configuration is done at the address settings, done at the main configuration file (hor net g-
configuration. xm).

<addr ess-settings>
<address-setting match="j nms. soneaddr ess" >
<max- si ze- byt es>104857600</ max- si ze- byt es>
<page- si ze- byt es>10485760</ page- si ze- byt es>
<addr ess-ful |l - pol i cy>PACE</ address-full-policy>
</ addr ess-setting>
</ addr ess-settings>

This is the list of available parameters on the address settings.

Table 24.2. Paging Address Settings

Property Name Description Default

max- si ze- byt es What's the max memory the -1 (disabled)
address could have before
entering on page mode.

110

Dropping messages

Property Name Description Default

page- si ze- byt es The size of each page file used 10MiB (10 * 1024 * 1024 bytes)
on the paging system

address-ful | -policy This must be set to PAGE PAGE
for paging to enable. If the
value is PAGE then further
messages will be paged to
disk. If the value is DROP
then further messages will
be silently dropped. If the
value is BLOCK then client
message producers will block
when they try and send further
messages.

page- max- cache- si ze The system will keep up to 5
<page- max- cache- si ze page
files in memory to optimize 10
during paging navigation.

24.4. Dropping messages

Instead of paging messages when the max size is reached, an address can also be configured
to just drop messages when the address is full.

To do this just set the addr ess-f ul | - pol i cy to DROP in the address settings

24.5. Blocking producers

Instead of paging messages when the max size is reached, an address can also be configured
to block producers from sending further messages when the address is full, thus preventing the
memory being exhausted on the server.

When memory is freed up on the server, producers will automatically unblock and be able to
continue sending.

To do this just set the addr ess-f ul | - pol i cy to BLOCK in the address settings

In the default configuration, all addresses are configured to block producers after 10 MiB of data
are in the address.

24.6. Caution with Addresses with Multiple Queues

When a message is routed to an address that has multiple queues bound to it, e.g. a JMS
subscription in a Topic, there is only 1 copy of the message in memory. Each queue only deals
with a reference to this. Because of this the memory is only freed up once all queues referencing
the message have delivered it.

111

Chapter 24. Paging

If you have a single lazy subscription, the entire address will suffer 1O performance hit as all the
gueues will have messages being sent through an extra storage on the paging system.

For example:

« An address has 10 queues

One of the queues does not deliver its messages (maybe because of a slow consumer).

» Messages continually arrive at the address and paging is started.

The other 9 queues are empty even though messages have been sent.

In this example all the other 9 queues will be consuming messages from the page system. This
may cause performance issues if this is an undesirable state.

24.7. Example

See Section 11.1.42, “Paging” for an example which shows how to use paging with HornetQ.

112

Chapter 25.

Queue Attributes

Queue attributes can be set in one of two ways. Either by configuring them using the configuration
file or by using the core API. This chapter will explain how to configure each attribute and what
effect the attribute has.

25.1. Predefined Queues

Queues can be predefined via configuration at a core level or at a JMS level. Firstly lets look at
a JMS level.

The following shows a queue predefined in the hor net g-j ns. xm configuration file.

<queue name="sel ect or Queue" >
<entry nane="/queue/ sel ect or Queue"/ >
<sel ector string="color="red "/>
<dur abl e>t rue</ dur abl e>

</ queue>

This name attribute of queue defines the name of the queue. When we do this at a
jms level we follow a naming convention so the actual name of the core queue will be
j ms. queue. sel ect or Queue.

The entry element configures the name that will be used to bind the queue to JNDI. This is a
mandatory element and the queue can contain multiple of these to bind the same queue to different
names.

The selector element defines what JIMS message selector the predefined queue will have. Only
messages that match the selector will be added to the queue. This is an optional element with
a default of null when omitted.

The durable element specifies whether the queue will be persisted. This again is optional and
defaults to true if omitted.

Secondly a queue can be predefined at a core level in the hor net g- confi gurati on. xni file. The
following is an example.

<queues>
<queue nane="j ms. queue. sel ect or Queue" >
<addr ess>j ms. queue. sel ect or Queue</ addr ess>
<filter string="color="red "/>
<dur abl e>t rue</ dur abl e>
</ queue>
</ queues>

113

Chapter 25. Queue Attributes

This is very similar to the JMS configuration, with 3 real differences which are.

1. The name attribute of queue is the actual name used for the queue with no naming convention
as in JMS.

2. The address element defines what address is used for routing messages.
3. There is no entry element.

4. The filter uses the Core filter syntax (described in Chapter 14, Filter Expressions), not the JMS
selector syntax.

25.2. Using the API

Queues can also be created using the core API or the management API.

For the core API, gueues can be created via the
org. hornetq. api . core.client.dientSession interface. There are multiple creat eQueue
methods that support setting all of the previously mentioned attributes. There is one extra attribute
that can be set via this APl which is t enpor ar y. setting this to true means that the queue will be
deleted once the session is disconnected.

Take a look at Chapter 30, Management for a description of the management API for creating
queues.

25.3. Configuring Queues Via Address Settings

There are some attributes that are defined against an address wildcard rather than a specific
queue. Here an example of an address-setting entry that would be found in the hor net g-

configuration.xm file

<addr ess-settings>
<address-setting match="j nms. queue. exanpl eQueue" >
<dead- | etter-address>j ns. queue. deadLet t er Queue</ dead- | ett er - address>
<max- del i very-attenpt s>3</ max-del i very-attenpts>
<redel i very-del ay>5000</r edel i very- del ay>
<expi ry-address>j ms. queue. expi ryQueue</ expi ry- addr ess>
<| ast - val ue- queue>t rue</ | ast - val ue- queue>
<max- si ze- byt es>100000</ max- si ze- byt es>
<page- si ze- byt es>20000</ page- si ze- byt es>
<redi stribution-del ay>0</redi stribution-del ay>
<send-t o- dl a- on- no-r out e>t r ue</ send-t o- dl a- on- no- r out e>
<address-ful | - pol i cy>PAGE</ addr ess-ful | - policy>
</ address-setting>
</ addr ess-settings>

114

Configuring Queues Via Address Settings

The idea with address settings, is you can provide a block of settings which will be applied against
any adresses that match the string in the mat ch attribute. In the above example the settings would
only be applied to any addresses which exactly match the address j ns. queue. exanpl eQueue, but
you can also use wildcards to apply sets of configuration against many addresses. The wildcard
syntax used is described here.

For example, if you used the mat ch string j ns. queue. # the settings would be applied to all
addresses which start with j ms. queue. which would be all IMS queues.

The meaning of the specific settings are explained fully throughout the user manual, however here
is a brief description with a link to the appropriate chapter if available.

max- del i very- at t enpt s defines how many time a cancelled message can be redelivered before
sending to the dead- | ett er - addr ess. A full explanation can be found here.

redel i very- del ay defines how long to wait before attempting redelivery of a cancelled message.
see here.

expi ry- addr ess defines where to send a message that has expired. see here.
| ast - val ue- queue defines whether a queue only uses last values or not. see here.

max- si ze- byt es and page- si ze- byt es are used to set paging on an address. This is explained
here.

redi stribution-del ay defines how long to wait when the last consumer is closed on a queue
before redistributing any messages. see here.

send-t o- dl a- on- no-rout e. If @ message is sent to an address, but the server does not route
it to any queues, for example, there might be no queues bound to that address, or none of the
gueues have filters that match, then normally that message would be discarded. However if this
parameter is set to true for that address, if the message is not routed to any queues it will instead
be sent to the dead letter address (DLA) for that address, if it exists.

address-ful | -policy. This attribute can have one of the following values: PAGE, DROP or
BLOCK and determines what happens when an address where nax- si ze- byt es is specified
becomes full. The default value is PAGE. If the value is PAGE then further messages will be
paged to disk. If the value is DROP then further messages will be silently dropped. If the value is
BLOCK then client message producers will block when they try and send further messages. See
the following chapters for more info Chapter 19, Flow Control, Chapter 24, Paging.

115

116

Chapter 26.

Scheduled Messages

Scheduled messages differ from normal messages in that they won't be delivered until a specified
time in the future, at the earliest.

To do this, a special property is set on the message before sending it.

26.1. Scheduled Delivery Property

The property name used to identify a scheduled message is "_HQ SCHED DELI VERY" (or the
constant Message. HDR_SCHEDULED DELI VERY_TI ME).

The specified value must be a positive | ong corresponding to the time the message must be
delivered (in milliseconds). An example of sending a scheduled message using the JMS API is
as follows.

Text Message nessage =
sessi on. creat eText Message("This is a schedul ed nmessage nessage which wll
be delivered
inb5 sec.");
nmessage. set LongProperty("_HQ SCHED DELI VERY", SystemcurrentTimeMIlis() +
5000) ;
pr oducer. send(nessage) ;

/1l nmessage will not be received i mediately but 5 seconds | ater
Text Message nessageRecei ved = (Text Message) consuner.receive();

Scheduled messages can also be sent using the core API, by setting the same property on the
core message before sending.

26.2. Example

See Section 11.1.51, “Scheduled Message” for an example which shows how scheduled
messages can be used with JMS.

117

118

Chapter 27.

Last-Value Queues

Last-Value queues are special queues which discard any messages when a newer message with
the same value for a well-defined Last-Value property is put in the queue. In other words, a Last-
Value queue only retains the last value.

A typical example for Last-Value queue is for stock prices, where you are only interested by the
latest value for a particular stock.

27.1. Configuring Last-Value Queues

Last-value queues are defined in the address-setting configuration:

<addr ess-setting match="j nms. queue. | ast Val ueQueue" >
<| ast - val ue- queue>t rue</ | ast - val ue- queue>
</ addr ess-setting>

By default, | ast - val ue- queue is false. Address wildcards can be used to configure Last-Value
gueues for a set of addresses (see Chapter 13, Understanding the HornetQ Wildcard Syntax).

27.2. Using Last-Value Property

The property name used to identify the last value is "_HQ LVQ NAME" (or the constant
Message. HDR_LAST_VALUE NAME from the Core API).

For example, if two messages with the same value for the Last-Value property are sent to a Last-
Value queue, only the latest message will be kept in the queue:

/'l send 1st nmessage with Last-Val ue property set to STOCK _NAME
Text Message nessage =
sessi on. cr eat eText Message(" 1st nessage w th Last-Val ue property set");
nmessage. set Stri ngProperty("_HQ LVQ NAME", "STOCK NAME");
producer. send(nessage) ;

/'l send 2nd message with Last-Val ue property set to STOCK_NAME
nessage =
sessi on. cr eat eText Message("2nd nessage with Last-Val ue property set");
nmessage. set Stri ngProperty("_HQ LVQ NAME", "STOCK NAME");
producer. send(nessage) ;

119

Chapter 27. Last-Value Queues

/1 only the 2nd nmessage will be received: it is the latest with

/1 the Last-Value property set

Text Message nessageRecei ved = (Text Message) nessageConsuner. recei ve(5000);
System out . for mat (" Recei ved nessage: %\n", nessageReceived. getText());

27.3. Example

See Section 11.1.31, “Last-Value Queue” for an example which shows how last value queues are
configured and used with JMS.

120

Chapter 28.

Message Grouping

Message groups are sets of messages that have the following characteristics:

* Messages in a message group share the same group id, i.e. they have same group identifier
property (JVMSXG oupl Dfor IMS, _HQ GROUP_I D for HornetQ Core API).

« Messages in a message group are always consumed by the same consumer, even if there
are many consumers on a queue. They pin all messages with the same group id to the same
consumer. If that consumer closes another consumer is chosen and will receive all messages
with the same group id.

Message groups are useful when you want all messages for a certain value of the property to be
processed serially by the same consumer.

An example might be orders for a certain stock. You may want orders for any particular stock
to be processed serially by the same consumer. To do this you can create a pool of consumers
(perhaps one for each stock, but less will work too), then set the stock hame as the value of the
_HQ_GROUP_ID property.

This will ensure that all messages for a particular stock will always be processed by the same
consumer.

28.1. Using Core API

The property name used to identify the message group is "_HQ GROUP_ID' (or the
constant Messagel npl . HDR_GROUP_I D). Alternatively, you can set aut ogroup to true on the
Sessi onFact or y which will pick a random unique id.

28.2. Using JMS

The property name used to identify the message group is JIMSXG oupl D.

/1 send 2 messages in the same group to ensure the sane
/1 consurmer will receive both

Message nessage = ...

message. set Stri ngProperty("JMSXG oupl D', "G oup-0");
producer. send(message) ;

nessage = ...
message. set Stri ngProperty("JMSXG oupl D', "G oup-0");
producer. send(message) ;

121

Chapter 28. Message Grouping

Alternatively, you can set aut ogr oup to true on the Hor net QConnect onFact or y which will pick a
random unique id. This can also be set in the hor net g-j ns. xn file like this:

<connection-factory name="Connecti onFactory">
<connect or s>
<connect or-ref connector-nane="netty-connector"/>
</ connect or s>
<entries>
<entry nane="Connecti onFactory"/>
</entries>
<aut ogr oup>t r ue</ aut ogr oup>
</ connecti on-factory>

Alternatively you can set the group id via the connection factory. All messages sent with producers
created via this connection factory will set the JMSXG oupl Dto the specified value on all messages
sent. To configure the group id set it on the connection factory in the hor net g-j ns. xnl config
file as follows

<connection-factory name="Connecti onFactory" >
<connect or s>
<connector-ref connector-nane="netty-connector"/>
</ connect or s>
<entries>
<entry name="Connecti onFactory"/>
</entries>
<gr oup- i d>G oup- 0</ gr oup-i d>
</ connecti on-factory>

28.3. Example

See Section 11.1.35, “Message Group” for an example which shows how message groups are
configured and used with JMS.

28.4. Example

See Section 11.1.36, “Message Group” for an example which shows how message groups are
configured via a connection factory.

28.5. Clustered Grouping

Using message groups in a cluster is a bit more complex. This is because messages with a
particular group id can arrive on any node so each node needs to know about which group id's

122

Clustered Grouping

are bound to which consumer on which node. The consumer handling messages for a particular
group id may be on a different node of the cluster, so each node needs to know this information
so it can route the message correctly to the node which has that consumer.

To solve this there is the notion of a grouping handler. Each node will have its own grouping
handler and when a messages is sent with a group id assigned, the handlers will decide between
them which route the message should take.

There are 2 types of handlers; Local and Remote. Each cluster should choose 1 node to have a
local grouping handler and all the other nodes should have remote handlers- it's the local handler
that actually makes the decsion as to what route should be used, all the other remote handlers
converse with this. Here is a sample config for both types of handler, this should be configured
in the hornetg-configuration.xml file.

<gr oupi ng- handl er nane="ny- gr oupi ng- handl er" >
<t ype>LOCAL</t ype>
<addr ess>j ne</ addr ess>
<t i meout >5000</ti meout >

</ gr oupi ng- handl er >

<gr oupi ng- handl er nane="ny- gr oupi ng- handl er" >
<t ype>REMOTE</ t ype>
<addr ess>j nms</ addr ess>
<t i meout >5000</t i meout >

</ gr oupi ng- handl er >

The address attribute refers to a cluster connection and the address it uses, refer to the clustering
section on how to configure clusters. The timeout attribute referes to how long to wait for a decision
to be made, an exception will be thrown during the send if this timeout is reached, this ensures
that strict ordering is kept.

The decision as to where a message should be routed to is initially proposed by the node that
receives the message. The node will pick a suitable route as per the normal clustered routing
conditions, i.e. round robin available queues, use a local queue first and choose a queue that has
a consumer. If the proposal is accepted by the grouping handlers the node will route messages to
this queue from that point on, if rejected an alternative route will be offered and the node will again
route to that queue indefinitely. All other nodes will also route to the queue chosen at proposal
time. Once the message arrives at the queue then normal single server message group semantics
take over and the message is pinned to a consumer on that queue.

You may have noticed that there is a single point of failure with the single local handler. If this node
crashes then no decisions will be able to be made. Any messages sent will be not be delivered
and an exception thrown. To avoid this happening Local Handlers can be replicated on another
backup node. Simple create your back up node and configure it with the same Local handler.

123

Chapter 28. Message Grouping

28.5.1. Clustered Grouping Best Practices

Some best practices should be followed when using clustered grouping:

1. Make sure your consumers are distributed evenly across the different nodes if possible. This is
only an issue if you are creating and closing consumers regularly. Since messages are always
routed to the same queue once pinned, removing a consumer from this queue may leave it
with no consumers meaning the queue will just keep receiving the messages. Avoid closing
consumers or make sure that you always have plenty of consumers, i.e., if you have 3 nodes
have 3 consumers.

2. Use durable queues if possible. If queues are removed once a group is bound to it, then it is
possible that other nodes may still try to route messages to it. This can be avoided by making
sure that the queue is deleted by the session that is sending the messages. This means that
when the next message is sent it is sent to the node where the queue was deleted meaning
a new proposal can succesfully take place. Alternatively you could just start using a different
group id.

3. Always make sure that the node that has the Local Grouping Handler is replicated. These
means that on failover grouping will still occur.

28.5.2. Clustered Grouping Example

See Section 11.1.8, “Clustered Grouping” for an example of how to configure message groups
with a HornetQ cluster

124

Chapter 29.

Pre-Acknowledge Mode

JMS specifies 3 acknowledgement modes:

« AUTO_ACKNOW.EDGE
* CLI ENT_ACKNOW.EDGE
+ DUPS_OK_ACKNOW.EDGE

However there is another case which is not supported by JMS: In some cases you can afford to
lose messages in event of failure, so it would make sense to acknowledge the message on the
server before delivering it to the client.

This extra mode is supported by HornetQ and will call it pre-acknowledge mode.

The disadvantage of acknowledging on the server before delivery is that the message will be lost
if the system crashes after acknowledging the message on the server but before it is delivered to
the client. In that case, the message is lost and will not be recovered when the system restart.

Depending on your messaging case, pr e- acknow edgenment mode can avoid extra network traffic
and CPU at the cost of coping with message loss.

An example of a use case for pre-acknowledgement is for stock price update messages. With
these messages it might be reasonable to lose a message in event of crash, since the next price
update message will arrive soon, overriding the previous price.

@ Note
Please note, that if you use pre-acknowledge mode, then you will lose
transactional semantics for messages being consumed, since clearly they are
being acknowledged first on the server, not when you commit the transaction.
This may be stating the obvious but we like to be clear on these things to avoid
confusion!

29.1. Using PRE_ACKNOWLEDGE

This can be configured in the hor net g-j ms. xm file on the connecti on fact ory like this:

<connection-factory name="Connecti onFactory">
<connect or s>
<connect or-ref connector-nane="netty-connector"/>
</ connect or s>
<entries>

125

Chapter 29. Pre-Acknowledge Mode

<entry nane="Connecti onFactory"/>
</entries>
<pr e- acknow edge>t r ue</ pr e- acknow edge>
</ connection-factory>

Alternatively, to use pre-acknowledgement mode using the JMS API, create a JMS Session with
the Hor net QSessi on. PRE_ACKNOW.EDGE constant.

/1l messages will be acknow edge on the server *before* being delivered to the
client
Sessi on sessi on = connecti on. creat eSessi on(f al se,

Hor net QSessi on. PRE_ACKNOALEDGE) ;

Or you can set pre-acknowledge directly on the Hor net QConnect i onFact ory instance using the
setter method.

To use pre-acknowledgement mode using the core APl you can set it directly on the
d i ent Sessi onFact or y instance using the setter method.

29.2. Example

See Section 11.1.43, “Pre-Acknowledge” for an example which shows how to use pre-
acknowledgement mode with JMS.

126

Chapter 30.

Management

HornetQ has an extensive management API that allows a user to modify a server configuration,
create new resources (e.g. JMS queues and topics), inspect these resources (e.g. how many
messages are currently held in a queue) and interact with it (e.g. to remove messages from a
queue). All the operations allows a client to manage HornetQ. It also allows clients to subscribe
to management notifications.

There are 3 ways to manage HornetQ:

e Using JMX -- JMX is the standard way to manage Java applications
» Using the core API -- management operations are sent to HornetQ server using core messages
» Using the JMS API -- management operations are sent to HornetQ server using JMS messages

Although there are 3 different ways to manage HornetQ each API supports the same functionality.
If it is possible to manage a resource using JMX it is also possible to achieve the same result
using Core messages or JMS messages.

This choice depends on your requirements, your application settings and your environment to
decide which way suits you best.

30.1. The Management API

Regardless of the way you invoke management operations, the management API is the same.

For each managed resource, there exists a Java interface describing what can be invoked for
this type of resource.

HornetQ exposes its managed resources in 2 packages:

» Core resources are located in the or g. hor net g. api . cor e. managenent package
» JMS resources are located in the or g. hor net g. api . j ms. managenent package

The way to invoke a management operations depends whether JMX, core messages, or JMS
messages are used.

@ Note
A few management operations requires a filter parameter to chose which
messages are involved by the operation. Passing nul | or an empty string means
that the management operation will be performed on all messages.

127

Chapter 30. Management

30.1.1. Core Management API

HornetQ defines a core management API to manage core resources. For full details of the API
please consult the javadoc. In summary:

30.1.1.1. Core Server Management

« Listing, creating, deploying and destroying queues
A list of deployed core queues can be retrieved using the get QueueNanmes() method.

Core queues can be created or destroyed using the management operations cr eat eQueue()
or depl oyQueue() or destroyQueue())on the Hor net QSer ver Cont r ol (with the ObjectName
or g. hor net g: nodul e=Cor e, t ype=Ser ver or the resource hame cor e. ser ver)

cr eat eQueue will fail if the queue already exists while depl oyQueue will do nothing.
» Pausing and resuming Queues

The QueueControl can pause and resume the underlying queue. When a queue is paused,
it will receive messages but will not deliver them. When it's resumed, it'll begin delivering the
gueued messages, if any.

« Listing and closing remote connections

Client's remote addresses can be retrieved using |i st Renot eAddresses(). It is also
possible to close the connections associated with a remote address using the
cl oseConnect i onsFor Addr ess() method.

Alternatively, connection IDs can be listed using | i st Connecti onl Ds() and all the sessions
for a given connection ID can be listed using | i st Sessi ons() .

» Transaction heuristic operations

In case of a server crash, when the server restarts, it it possible that some
transaction requires manual intervention. The |i st PreparedTransacti ons() method lists
the transactions which are in the prepared states (the transactions are represented
as opaque Base64 Strings.) To commit or rollback a given prepared transaction, the
conmi t Prepar edTransacti on() or rol | backPreparedTransacti on() method can be used
to resolve heuristic transactions. Heuristically completed transactions can be listed using the
l'i stHeuristicCommittedTransactions() and |istHeuristicRolledBackTransactions
methods.

« Enabling and resetting Message counters

Message counters can be enabled or disabled using the enabl eMessageCounters() or
di sabl eMessageCount ers() method. To reset message counters, it is possible to invoke
reset Al | MessageCount ers() and reset Al | MessageCount er Hi st ori es() methods.

128

Core Management API

« Retrieving the server configuration and attributes

The Hor net QSer ver Cont rol exposes HornetQ server configuration through all its attributes
(e.g. get Ver si on() method to retrieve the server's version, etc.)

« Listing, creating and destroying Core bridges and diverts

A list of deployed core bridges (resp. diverts) can be retrieved using the get Bri dgeNanmes()
(resp. get Di vert Nanes()) method.

Core bridges (resp. diverts) can be created or destroyed using the management operations
createBridge() and destroyBridge() (resp. createDivert() and destroyDivert()) on
the Hor net QSer ver Cont r ol (with the ObjectName or g. hor net g: nodul e=Cor e, t ype=Ser ver
or the resource name cor e. server).

* Itis possible to stop the server and force failover to occur with any currently attached clients.

to do this use the forceFail over () on the Hor net QSer ver Cont rol (with the ObjectName
or g. hor net g: nodul e=Cor e, t ype=Ser ver or the resource name cor e. server)

Note
Since this method actually stops the server you will probably receive some sort
of error depending on which management service you use to call it.

30.1.1.2. Core Address Management

Core addresses can be managed using the AddressControl class (with the ObjectName
or g. hor net g: nodul e=Cor e, t ype=Addr ess, nane="<the address name>" or the resource
name cor e. addr ess. <t he address nane>).

* Modifying roles and permissions for an address

You can add or remove roles associated to a queue using the addRol e() or renmoveRol e()
methods. You can list all the roles associated to the queue with the get Rol es() method

30.1.1.3. Core Queue Management

The bulk of the core management API deals with core queues. The QueueContr ol
class defines the Core queue management operations (with the ObjectName
org. hor net g: nodul e=Cor e, t ype=Queue, address="<the bound addr ess>", name="<t he
queue nanme>" or the resource name cor e. queue. <t he queue nane>).

Most of the management operations on queues take either a single message ID (e.g. to remove
a single message) or a filter (e.g. to expire all messages with a given property.)

» Expiring, sending to a dead letter address and moving messages

129

Chapter 30. Management

Messages can be expired from a queue by using the expi reMessages() method. If an expiry
address is defined, messages will be sent to it, otherwise they are discarded. The queue's expiry
address can be set with the set Expi r yAddr ess() method.

Messages can also be sent to a dead letter address with the
sendMessagesToDeadLet t er Address() method. It returns the number of messages which
are sent to the dead letter address. If a dead letter address is not defined, message are
removed from the queue and discarded. The queue's dead letter address can be set with the
set DeadLet t er Addr ess() method.

Messages can also be moved from a queue to another queue by using the noveMessages()
method.

« Listing and removing messages

Messages can be listed from a queue by using the |i st Messages() method which returns an
array of Map, one Map for each message.

Messages can also be removed from the queue by using the r enoveMessages() method which
returns a bool ean for the single message ID variant or the number of removed messages for the
filter variant. The r emoveMessages() method takes afi | t er argument to remove only filtered
messages. Setting the filter to an empty string will in effect remove all messages.

« Counting messages

The number of messages in a queue is returned by the get MessageCount () method.
Alternatively, the count Messages() will return the number of messages in the queue which
match a given filter

» Changing message priority

The message priority can be changed by using the changeMessagesPri ori ty() method which
returns a bool ean for the single message ID variant or the number of updated messages for
the filter variant.

¢ Message counters

Message counters can be listed for a queue with the I|istMessageCounter() and
|'i st MessageCount er Hi st ory() methods (see Section 30.6, “Message Counters”). The
message counters can also be reset for a single queue using the r eset MessageCount er ()
method.

* Retrieving the queue attributes

The QueueCont rol exposes Core queue settings through its attributes (e.g. getFilter () to
retrieve the queue's filter if it was created with one, i sDur abl e() to know whether the queue
is durable or not, etc.)

« Pausing and resuming Queues

130

Core Management API

The QueueControl can pause and resume the underlying queue. When a queue is paused,
it will receive messages but will not deliver them. When it's resume, it'll begin delivering the
gueued messages, if any.

30.1.1.4. Other Core Resources Management

HornetQ allows to start and stop its remote resources (acceptors, diverts, bridges, etc.) so that
a server can be taken off line for a given period of time without stopping it completely (e.g. if
other management operations must be performed such as resolving heuristic transactions). These
resources are:

* Acceptors

They can be started or stopped using the st art () or. st op() method on the Accept or Cont r ol
class (with the ObjectName org. hornet g: nodul e=Cor e, t ype=Accept or, name=" <t he
accept or name>" orthe resource name cor e. accept or. <t he addr ess nane>). The acceptors
parameters can be retrieved using the AcceptorControl attributes (see Section 16.1,
“Understanding Acceptors”)

* Diverts

They can be started or stopped using the start () or st op() method on the Di vert Contr ol
class (with the ObjectName org. hor net g: modul e=Cor e, t ype=Di vert, nane=<t he divert
name> or the resource name core. di vert. <t he divert name>). Diverts parameters can be
retrieved using the Di ver t Cont r ol attributes (see Chapter 35, Diverting and Splitting Message
Flows)

» Bridges

They can be started or stopped using the start () (resp.
stop()) method on the Bri dgeCont r ol class (with the ObjectName
or g. hor net g: nodul e=Cor e, t ype=Bri dge, nane="<the bridge nanme>" or the resource
name core. bri dge. <the bridge nane>). Bridges parameters can be retrieved using the
Bri dgeControl attributes (see Chapter 36, Core Bridges)

» Broadcast groups

They can be started or stopped using the start() or stop()
method on the Br oadcast G oupCont r ol class (with the ObjectName
or g. hor net g: nodul e=Cor e, t ype=Br oadcast G oup, nane="<t he br oadcast group name>"
or the resource name cor e. br oadcast group. <the broadcast group name>). Broadcast
groups parameters can be retrieved using the Broadcast GroupControl attributes (see
Chapter 38, HornetQ and Application Server Cluster Configuration)

» Discovery groups

They can be started or stopped using the start() or stop()
method on the Di scover yG oupCont r ol class (with the ObjectName

131

Chapter 30. Management

or g. hor net g: nodul e=Cor e, t ype=Di scover yG oup, nane="<t he di scovery group name>"
or the resource name core. di scovery. <the discovery group nane>). Discovery groups
parameters can be retrieved using the Di scover yG oupCont rol attributes (see Chapter 38,
HornetQ and Application Server Cluster Configuration)

» Cluster connections

They can be started or stopped using the start() or stop()
method on the d usterConnectionControl class (with the ObjectName
or g. hor net g: nodul e=Cor e, t ype=Cl ust er Connecti on, nane="<the cluster connection
nanme>" or the resource name cor e. cl ust er connecti on. <t he cl uster connecti on nane>).
Cluster connections parameters can be retrieved using the d uster Connecti onContr ol
attributes (see Chapter 38, HornetQ and Application Server Cluster Configuration)

30.1.2. IMS Management API

HornetQ defines a IMS Management API to manage JMS administrated objects (i.e. JIMS queues,
topics and connection factories).

30.1.2.1. JMS Server Management

JMS Resources (connection factories and destinations) can be created using the
JMSSer ver Cont r ol class (with the ObjectName or g. hor net q: nodul e=JMS, t ype=Ser ver or the
resource name j ms. server).

* Listing, creating, destroying connection factories

Names of the deployed connection factories can be retrieved by the
get Connect i onFact or yNanes() method.

JMS connection factories can be created or destroyed using the cr eat eConnect i onFact or y()
methods or dest r oyConnecti onFact ory() methods. These connection factories are bound
to JNDI so that JMS clients can look them up. If a graphical console is used to create the
connection factories, the transport parameters are specified in the text field input as a comma-
separated list of key=value (e.g. key1=10, key2="val ue", key3=fal se). If there are multiple
transports defined, you need to enclose the key/value pairs between curly braces. For example
{key=10}, {key=20}. In that case, the first key will be associated to the first transport
configuration and the second key will be associated to the second transport configuration (see
Chapter 16, Configuring the Transport for a list of the transport parameters)

« Listing, creating, destroying queues
Names of the deployed JMS queues can be retrieved by the get QueueNanes() method.

JMS queues can be created or destroyed using the createQueue() methods or
dest r oyQueue() methods. These queues are bound to JNDI so that JIMS clients can look them

up

132

JMS Management API

« Listing, creating/destroying topics
Names of the deployed topics can be retrieved by the get Topi cNanmes() method.

JMS topics can be created or destroyed using the createTopic() or destroyTopic()
methods. These topics are bound to JNDI so that JIMS clients can look them up

« Listing and closing remote connections

JMS Clients remote addresses can be retrieved using |i st Renot eAddresses(). It is
also possible to close the connections associated with a remote address using the
cl oseConnect i onsFor Addr ess() method.

Alternatively, connection IDs can be listed using | i st Connecti onl Ds() and all the sessions
for a given connection ID can be listed using | i st Sessi ons().

30.1.2.2. IMS ConnectionFactory Management

JMS Connection Factories can be managed using the ConnectionFactoryContr ol
class (with the ObjectName or g. hor net q: nodul e=JNS, t ype=Connect i onFact ory, name=" <t he
connecti on factory name>" or the resource name jns.connectionfactory.<the

connection factory nane>).

» Retrieving connection factory attributes

The Connecti onFact oryCont rol exposes JMS ConnectionFactory configuration through its
attributes (e.g. get Consumer W ndowSi ze() to retrieve the consumer window size for flow
control, i sBl ockOnNonDur abl eSend() to know whether the producers created from the
connection factory will block or not when sending non-durable messages, etc.)

30.1.2.3. IMS Queue Management

JMS queues can be managed using the JMSQueueControl class (with the ObjectName
or g. hor net g: nodul e=JMS, t ype=Queue, nanme="<t he queue name>" or the resource name
j ms. queue. <t he queue nane>).

The management operations on a JMS queue are very similar to the operations on a core queue.

« Expiring, sending to a dead letter address and moving messages

Messages can be expired from a queue by using the expi reMessages() method. If an expiry
address is defined, messages will be sent to it, otherwise they are discarded. The queue's expiry
address can be set with the set Expi r yAddr ess() method.

Messages can also be sent to a dead letter address with the
sendMessagesToDeadLet t er Addr ess() method. It returns the number of messages which
are sent to the dead letter address. If a dead letter address is not defined, message are

133

Chapter 30. Management

removed from the queue and discarded. The queue's dead letter address can be set with the
set DeadLet t er Addr ess() method.

Messages can also be moved from a queue to another queue by using the noveMessages()
method.

« Listing and removing messages

Messages can be listed from a queue by using the | i st Messages() method which returns an
array of Map, one Map for each message.

Messages can also be removed from the queue by using the r emoveMessages() method which
returns a bool ean for the single message ID variant or the number of removed messages for the
filter variant. The r emoveMessages() method takes afi | t er argument to remove only filtered
messages. Setting the filter to an empty string will in effect remove all messages.

+ Counting messages

The number of messages in a queue is returned by the get MessageCount () method.
Alternatively, the count Messages() will return the number of messages in the queue which
match a given filter

» Changing message priority

The message priority can be changed by using the changeMessagesPri ori t y() method which
returns a bool ean for the single message ID variant or the number of updated messages for
the filter variant.

* Message counters

Message counters can be listed for a queue with the IistMessageCounter() and
| i st MessageCount er Hi st ory() methods (see Section 30.6, “Message Counters”)

« Retrieving the queue attributes

The JMSQueueCont r ol exposes JMS queue settings through its attributes (e.g. i sTenpor ary()
to know whether the queue is temporary or not, i sDur abl e() to know whether the queue is
durable or not, etc.)

» Pausing and resuming queues

The JMsQueueCont r ol can pause and resume the underlying queue. When the queue is paused
it will continue to receive messages but will not deliver them. When resumed again it will deliver
the enqueued messages, if any.

30.1.2.4. IMS Topic Management

JMS Topics can be managed using the TopicControl class (with the ObjectName
or g. hor net g: nodul e=JMS, t ype=Topi c, nanme="<the topic name>" or the resource name
jms.topic.<the topic nane>).

134

Using Management Via JMX

« Listing subscriptions and messages

JMS topics subscriptions can be listed using the |istAllSubscriptions(),
|'i st Dur abl eSubscri ptions(),listNonDurabl eSubscri ptions() methods. These methods
return arrays of Obj ect representing the subscriptions information (subscription name, client
ID, durability, message count, etc.). It is also possible to list the JMS messages for a given
subscription with the | i st MessagesFor Subscri pti on() method.

» Dropping subscriptions

Durable subscriptions can be dropped from the topic using the dr opDur abl eSubscri pti on()
method.

« Counting subscriptions messages

The count MessagesFor Subscription() method can be used to know the number of
messages held for a given subscription (with an optional message selector to know the number
of messages matching the selector)

30.2. Using Management Via JMX

HornetQ can be managed using JMX [http://java.sun.com/javase/technologies/core/mntr-mgmt/
javamanagement/].

The management API is exposed by HornetQ using MBeans interfaces. HornetQ registers its
resources with the domain or g. hor net g.

For example, the Obj ect Nane to manage a JMS Queue exanpl eQueue is:

or g. hor net g: nodul e=JV5, t ype=Queue, nanme="exanpl eQueue"

and the MBean is:

org. hornetg. api . j ns. managenent . JMSQueueCont r ol

The MBean's Qbj ect Nane are built using the helper class
or g. hor net g. api . cor e. managenent . Cbj ect NameBui | der . You can also use j consol e to find
the Qbj ect Nane of the MBeans you want to manage.

Managing HornetQ using JMX is identical to management of any Java Applications using JMX. It
can be done by reflection or by creating proxies of the MBeans.

135

http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/

Chapter 30. Management

30.2.1. Configuring JMX

By default, JIMX is enabled to manage HornetQ. It can be disabled by setting j nx- managenent -
enabl ed to f al se in hornet g-confi guration. xni :

<I-- false to disable JMX managenent for HornetQ -->
<j nx- managenent - enabl ed>f al se</j nx- managenent - enabl ed>

If IMX is enabled, HornetQ can be managed locally using j consol e.

@ Note

Remote connections to JMX are not enabled by default for security reasons. Please
refer to [http://java.sun.com/j2se/1.5.0/docs/guide/
management/agent.html#remote] to configure the server for remote management
(system properties must be set in run. sh or r un. bat scripts).

By default, HornetQ server uses the JMX domain "org.hornetq". To manage several HornetQ
servers from the same MBeanServer, the JMX domain can be configured for each individual
HornetQ server by setting j nx- donai n in hor net g- confi gurati on. xm :

<I-- use a specific JMX domai n for HornetQ MBeans -->
<j nx- domai n>ny. or g. hor net </ j mx- donai n>

30.2.1.1. MBeanServer configuration

When HornetQ is run in standalone, it uses the Java Virtual Machine's Pl at f or m MBeanSer ver
to register its MBeans. This is configured in JBoss Microcontainer Beans file (see Section 6.7,
“JBoss Microcontainer Beans File”):

<!-- MBeanServer -->
<bean name="MBeanServer" cl ass="javax.nanagenment. VBeanServer">
<constructor factoryd ass="j ava. | ang. managenent . Managenent Fact or y"
fact oryMet hod="get Pl at f or nlVBeanServer" />
</ bean>

136

http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html#remote
http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html#remote
http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html#remote

Example

When it is integrated in JBoss AS 5+, it uses the Application Server's own MBean Server so that
it can be managed using AS 5's jmx-console:

<!-- MBeanServer -->
<bean nanme="MBeanServer" cl ass="javax.nmanagenent. VBeanServer">
<constructor factoryd ass="org.jboss. nx.util.MeanServerLocator"
factoryMet hod="I ocat eJBoss" />
</ bean>

30.2.2. Example

See Section 11.1.29, “JMX Management” for an example which shows how to use a remote
connection to JMX and MBean proxies to manage HornetQ.

30.3. Using Management Via Core API

The core management APl in HornetQ is called by sending Core messages to a special address,
the management address.

Management messages are regular Core messages with well-known properties that the server
needs to understand to interact with the management API:

« The name of the managed resource
« The name of the management operation
» The parameters of the management operation

When such a management message is sent to the management address, HornetQ server
will handle it, extract the information, invoke the operation on the managed resources and
send a management reply to the management message's reply-to address (specified by
d i ent Messagel npl . REPLYTO HEADER NAME).

A dientConsumer can be used to consume the management reply and retrieve the
result of the operation (if any) stored in the reply's body. For portability, results
are returned as a JSON [http://fjson.org] String rather than Java Serialization (the
org. hornet g. api . cor e. managenent . Managenent Hel per can be used to convert the JSON
string to Java objects).

These steps can be simplified to make it easier to invoke management operations using Core
messages:

1. Create ad i ent Request or to send messages to the management address and receive replies

137

http://json.org
http://json.org

Chapter 30. Management

2. Create a Cl i ent Message

3. Use the helper class org. hornet q. api . core. managenent . Managenent Hel per to fill the
message with the management properties

4. Send the message using the d i ent Request or

5. Use the helper class or g. hor net g. api . cor e. managenent . Managenent Hel per to retrieve the
operation result from the management reply

For example, to find out the number of messages in the core queue exanpl eQueue:

Client Session session = ...
i ent Request or r equest or = new Cl i ent Request or (sessi on,
"j ms. queue. hor net g. managenent ") ;
Client Message nmessage = session. creat eMessage(fal se);
Managenent Hel per. put Att ri but e(message, "core. queue. exanpl eQueue",
"messageCount ") ;
Client Message reply = requestor.request(m;
int count = (Integer) Managenent Hel per. get Result(reply);
Systemout.println("There are " + count + nmessages i n exanpl eQueue");

Management operation name and parameters must conform to the Java interfaces defined in the
managenent packages.

Names of the resources are built using the helper
class org. hornetq. api . core. managenent . ResourceNanes and are straightforward
(core. queue. exanpl eQueue for the Core Queue exanpl eQueue, j ms. t opi c. exanpl eTopi ¢ for
the JMS Topic exanpl eTopi c, etc.).

30.3.1. Configuring Core Management

The management address to send management messages is configured in hornet g-
configuration.xm:

<managenent - addr ess>j ns. queue. hor net g. managenent </ nranagenent - addr ess>

By default, the address is j ns. queue. hor net q. managenent (it is prepended by "jms.queue" so
that JMS clients can also send management messages).

The management address requires a special user permission manage to be able to receive and
handle management messages. This is also configured in hornetg-configuration.xml:

138

Using Management Via JMS

<l-- users with the admin role will be allowed to nanage -->
<!'-- Hornet Q usi ng managenment nessages -->
<security-setting match="j ms. queue. hor net q. managenent " >

<perm ssi on type="manage" rol es="adm n" />
</security-setting>

30.4. Using Management Via JMS

Using JMS messages to manage HornetQ is very similar to using core API.

An important difference is that JMS requires a JMS queue to send the messages to (instead of
an address for the core API).

The management queue is a special queue and needs to be instantiated directly by the client:

Queue nanagerent Queue = Hornet QIMSA i ent . cr eat eQueue(" hor net g. managenent ") ;

All the other steps are the same than for the Core API but they use JMS API instead:

1. create a QueueRequest or to send messages to the management address and receive replies
2. create a Message

3. use the helper class or g. hor net g. api . j ms. managenent . JMSManagenent Hel per to fill the
message with the management properties

4. send the message using the QueueRequest or

5. use the helper class or g. hor net g. api . j ns. managenent . JMSManagenent Hel per to retrieve
the operation result from the management reply

For example, to know the number of messages in the JMS queue exanpl eQueue:

Queue nanagenent Queue = Hor net QIMSCl i ent . cr eat eQueue(" hor net g. nanagenent ") ;

QueueSessi on session = ...

QueueRequest or requestor = new QueueRequestor(sessi on, managenent Queue);
connection.start();

Message nessage = session. creat eMessage();

139

Chapter 30. Management

JvsManagenent Hel per. put Attri but e(nessage, "j ms. queue. exanpl eQueue”,
"messageCount ") ;
Message reply = requestor.request (nmessage);
int count = (Integer)JNMSManagenent Hel per. get Resul t (reply);
Systemout.println("There are " + count + " messages in exanpl eQueue");

30.4.1. Configuring JMS Management

Whether JMS or the core APl is used for management, the configuration steps are the same (see
Section 30.3.1, “Configuring Core Management”).

30.4.2. Example

See Section 11.1.32, “Management” for an example which shows how to use JMS messages to
manage HornetQ server.

30.5. Management Notifications

HornetQ emits notifications to inform listeners of potentially interesting events (creation of new
resources, security violation, etc.).

These notifications can be received by 3 different ways:

« JMX notifications
« Core messages

¢ JMS messages

30.5.1. JMX Notifications

If IMX is enabled (see Section 30.2.1, “Configuring JMX"), JMX notifications can be received by
subscribing to 2 MBeans:
e org. hornet g: modul e=Cor e, t ype=Ser ver for notifications on Core resources

e org. hornet g: nodul e=JMs, t ype=Ser ver for notifications on JMS resources

30.5.2. Core Messages Notifications

HornetQ defines a special management notification address. Core queues can be bound to this
address so that clients will receive management notifications as Core messages

A Core client which wants to receive management notifications must create a core queue bound
to the management notification address. It can then receive the notifications from its queue.

140

JMS Messages Notifications

Notifications messages are regular core messages with additional properties corresponding to the
notification (its type, when it occurred, the resources which were concerned, etc.).

Since notifications are regular core messages, it is possible to use message selectors to filter out
notifications and receives only a subset of all the notifications emitted by the server.

30.5.2.1. Configuring The Core Management Notification Address

The management notification address to receive management notifications is configured in

hor net g- confi gurati on. xm :

<managenent - noti fi cati on-addr ess>hor net gq. noti fi cati ons</ nanagenent -
notification-address>

By default, the address is hor net g. noti fi cati ons.

30.5.3. IMS Messages Notifications

HornetQ's notifications can also be received using JMS messages.

Itis similar to receiving notifications using Core API but an important difference is that JIMS requires
a JMS Destination to receive the messages (preferably a Topic).

To use a JMS Destination to receive management notifications, you must change the server's
management notification address to start with j ns. queue if it is a JMS Queue or j ns. t opi ¢ if
it is a JMS Topic:

<l-- notifications will be consuned from "notificationsTopic"
JMB Topic -->
<managenent - noti fi cati on-address>j ns.topic.notificationsTopi c</
managenent - noti fi cati on- address>

Once the notification topic is created, you can receive messages from it or set a Messageli st ener:

Topi ¢ notificationsTopic =
Hor net QIMSCl i ent . creat eTopi c("noti ficationsTopic");

Sessi on session = ...
MessageConsuner noti fi cati onConsuner =
sessi on. creat eConsuner (noti fi cati onsTopi c);

141

Chapter 30. Management

notificati onConsuner. set MessagelLi st ener (new Messageli st ener ()

{
public void onMessage(Message notif)
{
Systemout.printIn("------------------------ ");
System out. println("Received notification:");
try
{

Enunerati on propertyNames = notif. get PropertyNames();
whil e (propertyNames. hashor eEl emrent s())

{
String propertyName = (String)propertyNanes. next El ement () ;
System out . f or mat (" %: 9%s\n", propertyNane,
notif.get Obj ect Property(propertyNane));

}
}
catch (JMSException e)
{
}
Systemout.println("------------------------ "),

1),

30.5.4. Example

See Section 11.1.33, “Management Notification” for an example which shows how to use a JMS
Messageli st ener to receive management notifications from HornetQ server.

30.6. Message Counters

Message counters can be used to obtain information on queues over time as HornetQ keeps a
history on queue metrics.

They can be used to show trends on queues. For example, using the management API, it would be
possible to query the number of messages in a queue at regular interval. However, this would not
be enough to know if the queue is used: the number of messages can remain constant because
nobody is sending or receiving messages from the queue or because there are as many messages
sent to the queue than messages consumed from it. The number of messages in the queue
remains the same in both cases but its use is widely different.

Message counters gives additional information about the queues:

e count

The total number of messages added to the queue since the server was started

e countDelta

142

Configuring Message Counters

the number of messages added to the queue since the last message counter update
e depth

The current number of messages in the queue
e depthbDelta

The overall number of messages added/removed from the queue since the last message
counter update. For example, if dept hDel t a is equal to - 10 this means that overall 10 messages
have been removed from the queue (e.g. 2 messages were added and 12 were removed)

e | ast AddTi nest anp
The timestamp of the last time a message was added to the queue
e udpat eTi nest anp

The timestamp of the last message counter update

30.6.1. Configuring Message Counters

By default, message counters are disabled as it might have a small negative effect on memory.

To enable message counters, you can setittot rue in hor net g- confi gurati on. xm :

<message- count er - enabl ed>t r ue</ nessage- count er - enabl ed>

Message counters keeps a history of the queue metrics (10 days by default) and samples all the
queues at regular interval (10 seconds by default). If message counters are enabled, these values
should be configured to suit your messaging use case in hor net g- confi gurati on. xni :

<I-- keep history for a week -->
<message- count er - max- day- hi st or y>7</ message- count er - max- day- hi st ory>
<I-- sanple the queues every mnute (60000ns) -->

<nmessage- count er - sanpl e- peri 0d>60000</ nessage- count er - sanpl e- peri od>

Message counters can be retrieved using the Management API. For example, to retrieve message
counters on a JMS Queue using JMX:

143

Chapter 30. Management

/Il retrieve a connection to HornetQ s MBeanServer
MBeanSer ver Connection nmbsc = ...

JMSQueueCont r ol MBean queueCont r ol =
(JMsQueueCont rol) MBeanSer ver | nvocat i onHandl er. newPr oxyl nst ance(nbsc,
on,
JMSQueueControl . cl ass,
fal se);

/'l nmessage counters are retrieved as a JSON String

String counters = queueControl.listMssageCounter();

/1 use the MessageCounterlnfo hel per class to nani pul ate nessage counters nore
easily

MessageCount er I nf o messageCounter = MessageCounter| nfo.fromISON(counters);

System out.format ("% nessage(s) in the queue (since |ast sanple: %)\n",
count er. get Dept h(),
counter. get DepthDel ta());

30.6.2. Example

See Section 11.1.34, “Message Counter” for an example which shows how to use message
counters to retrieve information on a IMS Queue.

30.7. Administering HornetQ Resources Using The
JBoss AS Admin Console

Its possible to create and configure HornetQ resources via the admin console within the JBoss
Application Server.

The Admin Console will allow you to create destinations (JMS Topics and Queues) and JMS
Connection Factories.

Once logged in to the admin console you will see a JMS Manager item in the left hand tree.
All HornetQ resources will be configured via this. This will have a child items for IMS Queues,
Topics and Connection Factories, clicking on each node will reveal which resources are currently
available. The following sections explain how to create and configure each resource in turn.

30.7.1. IMS Queues

To create a new JMS Queue click on the JMS Queues item to reveal the available queues. On
the right hand panel you will see an add a new resource button, click on this and then choose
the default(JMS Queue) template and click continue. The important things to fill in here are the
name of the queue and the JNDI name of the queue. The JNDI name is what you will use to
look up the queue in JNDI from your client. For most queues this will be the only info you will
need to provide as sensible defaults are provided for the others. You will also see a security roles

144

JMS Queues

section near the bottom. If you do not provide any roles for this queue then the servers default
security configuration will be used, after you have created the queue these will be shown in the
configuration. All configuration values, except the name and JNDI name, can be changed via the
configuration tab after clicking on the queue in the admin console. The following section explains
these in more detail

After highlighting the configuration you will see the following screen

* denctes a required field

name unset | value Description

Hame * bLQ The rame of the queue

INDI Name ¢ comima-separated list of JHDI bindings (use ‘goomma; if U need 10 Use commas inyeur jri rame)

Jqueue/DLQ
Dead Leter Address ms .queue DLQ The addrass 1 raute messages i once the meszags has been delivared more than the configured rumbar of times. This is specified by tax Delivry At Rt

Expiry Address

The Address o raute messages 1 once they have expired.

ims.queue ExpiryQueue

Max Size of Address * 10485760 delivered to thiz queue. -1 means o limit, if limit i sat then*Add re == Full Message Policy’ specifies what should happen
Page iz " 10485760

Max Delivery Attempts * 10 The m: mer, once hit the message is routed 1o which ever address is specifid by ‘Dead Letier Address!

Redelivery Delay * 0 The delay (in milli seconds) before re routing @ message o this Address after an unsuece ssful delivery atiempt has occurred. default 0 means o delay

Last value Queue * 1= this queue & last value queue. A last valus queue can enly ever caniain a simle message for each value for the message property HQ_LVG. HAME.

Yes @ no
Redistribution Delay * 1 Hon lorg it (in milli seconde) before redistributing messages tarother made when clustered when a queue has i consumers. Cefauli -L means da i re distritute
Send To DLA on na rout * s ® no webether or i message s rauled o this addre<s gets sent o DLA when m consumers are available
Address Full Mess age Policy * “The policy o jga when this sddrece is full. PAG E means that the mes<age will be paged, DROP mean: that mesages are juct droppaed arsd BLOCK means that the client wil block on sersl Uil the queus clears some mecsages
PAGE L
DROP
® BLock

quest true EnET
[E=]
| save | cancel |

The name and JNDI name cant be changed, if you want to change these recreate the queue with
the appropriate settings. The rest of the configuration options, apart from security roles, relate
to address settings for a particular address. The default address settings are picked up from the
servers configuration, if you change any of these settings or create a queue via the console a new
Address Settings enrty will be added. For a full explanation on Address Settings see Section 25.3,
“Configuring Queues Via Address Settings”

To delete a queue simply click on the delete button beside the queue name in the main JMS
Queues screen. This will also delete any address settings or security settings previously created
for the queues address

The last part of the configuration options are security roles. If non are provided on creation then the
servers default security settings will be shown. If these are changed or updated then new securty
settings are created for the address of this queue. For more information on securuty setting see
Chapter 31, Security

Itis also possible via the metrics tab to view statistics for this queue. This will show statistics such
as message count, consumer count etc.

Operations can be performed on a queue via the control tab. This will allow you to start and stop
the queue, list,move,expire and delete messages from the queue and other useful operations. To
invoke an operation click on the button for the operation you want, this will take you to a screen

145

Chapter 30. Management

where you can parameters for the opertion can be set. Once set clicking the ok button will invoke
the operation, results appear at the bottom of the screen.

30.7.2. IMS Topics

Creating and configuring JMS Topics is almost identical to creating queues. The only difference
is that the configuration will be applied to the queue representing a subscription.

30.7.3. IMS Connection Factories

The format for creating connection factories is the same as for JMS Queues and topics apart
from the configuration being different. For as list of all the connection factory settings see the
configuration index

146

Chapter 31.

Security

This chapter describes how security works with HornetQ and how you can configure it. To
disable security completely simply set the securi t y- enabl ed property to false in the hor net g-
confi guration.xm file.

For performance reasons security is cached and invalidated every so long. To change this period
set the property security-invalidation-interval, which is in milliseconds. The default is
10000 ms.

31.1. Role based security for addresses

HornetQ contains a flexible role-based security model for applying security to queues, based on
their addresses.

As explained in Chapter 8, Using Core, HornetQ core consists mainly of sets of queues bound to
addresses. A message is sent to an address and the server looks up the set of queues that are
bound to that address, the server then routes the message to those set of queues.

HornetQ allows sets of permissions to be defined against the queues based on their address. An
exact match on the address can be used or a wildcard match can be used using the wildcard
characters #' and ™.

Seven different permissions can be given to the set of queues which match the address. Those
permissions are:

e creat eDur abl eQueue. This permission allows the user to create a durable queue under
matching addresses.

« del et eDur abl eQueue. This permission allows the user to delete a durable queue under
matching addresses.

 creat eNonDur abl eQueue. This permission allows the user to create a non-durable queue under
matching addresses.

* del et eNonDur abl eQueue. This permission allows the user to delete a non-durable queue under
matching addresses.

» send. This permission allows the user to send a message to matching addresses.

e consune. This permission allows the user to consume a message from a queue bound to
matching addresses.

* manage. This permission allows the user to invoke management operations by sending
management messages to the management address.

For each permission, a list of roles who are granted that permission is specified. If the user has
any of those roles, he/she will be granted that permission for that set of addresses.

147

Chapter 31. Security

Let's take a simple example, here's a security block from hornet g- confi guration.xm or
hor net g- queues. xni file

<security-setting match="gl obal queues. europe. #" >
<perm ssi on type="creat eDurabl eQueue" rol es="adm n"/>
<perm ssi on type="del et eDur abl eQueue" rol es="admnmi n"/>
<per m ssi on type="creat eNonDur abl eQueue" rol es="adnmi n, guest, europe-users"/>
<per m ssi on type="del et eNonDur abl eQueue" rol es="adm n, guest, europe-users"/>
<perm ssi on type="send" rol es="adm n, europe-users"/>
<perm ssi on type="consune" rol es="adni n, europe-users"/>
</security-setting>

The '#' character signifies "any sequence of words". Words are delimited by the ". ' character.
For a full description of the wildcard syntax please see Chapter 13, Understanding the HornetQ
Wildcard Syntax. The above security block applies to any address that starts with the string
"globalqueues.europe.":

Only users who have the adni n role can create or delete durable queues bound to an address
that starts with the string "globalqueues.europe."

Any users with the roles adni n, guest , or eur ope- user s can create or delete temporary queues
bound to an address that starts with the string "globalqueues.europe.”

Any users with the roles admi n or europe-users can send messages to these addresses
or consume messages from queues bound to an address that starts with the string
"globalqueues.europe.”

The mapping between a user and what roles they have is handled by the security manager.
HornetQ ships with a user manager that reads user credentials from a file on disk, and can also
plug into JAAS or JBoss Application Server security.

For more information on configuring the security manager, please see Section 31.4, “Changing
the security manager”.

There can be zero or more security-setting elements in each xml file. Where more than one
match applies to a set of addresses the more specific match takes precedence.

Let's look at an example of that, here's another securi ty-setti ng block:

<security-setting match="gl obal queues. europe. orders. #" >
<perm ssion type="send" rol es="europe-users"/>
<perm ssi on type="consune" rol es="europe-users"/>
</security-setting>

148

Secure Sockets Layer (SSL) Transport

In this security-setting block the match 'globalqueues.europe.orders.#' is more specific
than the previous match ‘'globalqueues.europe.#. So any addresses which match
'globalqueues.europe.orders.#' will take their security settings only from the latter security-setting
block.

Note that settings are not inherited from the former block. All the settings will be taken from
the more specific matching block, so for the address 'globalqueues.europe.orders.plastics'
the only permissions that exist are send and consune for the role europe-users.
The permissions createDurabl eQueue, del et eDur abl eQueue, createNonDur abl eQueue,
del et eNonDur abl eQueue are not inherited from the other security-setting block.

By not inheriting permissions, it allows you to effectively deny permissions in more specific
security-setting blocks by simply not specifying them. Otherwise it would not be possible to deny
permissions in sub-groups of addresses.

31.2. Secure Sockets Layer (SSL) Transport

When messaging clients are connected to servers, or servers are connected to other servers (e.g.
via bridges) over an untrusted network then HornetQ allows that traffic to be encrypted using the
Secure Sockets Layer (SSL) transport.

For more information on configuring the SSL transport, please see Chapter 16, Configuring the
Transport.

31.3. Basic user credentials

HornetQ ships with a security manager implementation that reads user credentials, i.e. user
names, passwords and role information from an xml file on the classpath called hor net g-
users. xnl . This is the default security manager.

If you wish to use this security manager, then users, passwords and roles can easily be added
into this file.

Let's take a look at an example file:

<configuration xm ns="urn: hornetq"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"
xsi : schemalLocati on="urn: hornetq ../schemas/ hornet g-users. xsd ">

<def aul t user name="guest" password="guest">
<rol e name="guest"/>
</ def aul tuser >

149

Chapter 31. Security

<user name="tint' password="marmte">
<rol e name="adm n"/>
</ user>

<user nanme="andy" password="doner_kebab">
<rol e name="adm n"/>
<rol e name="guest"/>

</ user>

<user nanme="jeff" password="canenbert">
<rol e nane="europe-users"/>
<rol e nanme="guest"/>

</ user>

</ confi guration>

The first thing to note is the element def aul t user . This defines what user will be assumed when
the client does not specify a username/password when creating a session. In this case they will
be the user guest and have the role also called guest . Multiple roles can be specified for a default
user.

We then have three more users, the user ti mhas the role adni n. The user andy has the roles
admi n and guest, and the user j ef f has the roles eur ope- user s and guest .

31.4. Changing the security manager

If you do not want to use the default security manager then you can specify a different one
by editing the file hor net g- beans. xnl (or hor net g-j boss- beans. xn if you're running JBoss
Application Server) and changing the class for the Hor net QSecuri t yManager bean.

Let's take a look at a snippet from the default beans file:

<bean name="Hor net QSecurityManager"
cl ass="org. hornet g. spi . core. security. Hornet @ecurityManager!| npl ">
<start ignored="true"/>
<stop ignored="true"/>
</ bean>

The class org. hornet g. spi.core. security. Hornet QSecurityManager| npl is the default
security manager that is used by the standalone server.

HornetQ ships with two other security manager implementations you can use off-the-
shelf; one a JAAS security manager and another for integrating with JBoss Application

150

JAAS Security Manager

Sever security, alternatively you could write your own implementation by implementing the
org. hornetg. core. security. SecurityManager interface, and specifying the classname of
your implementation in the file hornet g- beans. xm (or hor net g-j boss- beans. xnl if you're
running JBoss Application Server).

These two implementations are discussed in the next two sections.

31.5. JAAS Security Manager

JAAS stands for 'Java Authentication and Authorization Service' and is a standard part of the Java
platform. It provides a common API for security authentication and authorization, allowing you to
plugin your pre-built implementations.

To configure the JAAS security manager to work with your pre-built JAAS infrastructure you need
to specify the security manager as a JAASSecur i t yManager in the beans file. Here's an example:

&l t; bean name="Hor net @SecurityManager"
cl ass="org. hornetq.integration.jboss.security.JAASSecurityManager" > ;
& t;start ignored="true"/>
&l t;stop ignored="true"/>

& 't; property
propertyé>
&l t; property name="Configuration">
& t;inject bean="Exanpl eConfi guration"/>
&l t;/propertyé>
& t; property nanme="Cal | backHandl er " > ;
& t;inject bean="Exanpl eCal | backHandl er"/ > ;

&l t;/propertyé>
&l t;/ beané>

Note that you need to feed the JAAS security manager with three properties:

« ConfigurationName: the name of the Logi nMbdul e implementation that JAAS must use
» Configuration: the Confi gur at i on implementation used by JAAS

« CallbackHandler: the Cal | backHandl er implementation to use if user interaction are required

31.5.1. Example

See Section 11.1.27, “JAAS” for an example which shows how HornetQ can be configured to
use JAAS.

151

Chapter 31. Security

31.6. JBoss AS Security Manager

The JBoss AS security manager is used when running HornetQ inside the JBoss Application
server. This allows tight integration with the JBoss Application Server's security model.

The class name of this security manager is
org. hornetq.integration.jboss.security.JBossASSecurityManager

Take a look at one of the default hor net g- j boss- beans. xnl files for JBoss Application Server
that are bundled in the distribution for an example of how this is configured.

31.6.1. Configuring Client Login

JBoss can be configured to allow client login, basically this is when a JEE component such
as a Servlet or EJB sets security credentials on the current security context and these are
used throughout the call. If you would like these credentials to be used by HornetQ when
sending or consuming messages then set al | ond i ent Logi n to true. This will bypass HornetQ
authentication and propgate the provided Security Context. If you would like HornetQ to
authenticate using the propogated security then set the aut hori seOnCl i ent Logi n to true also.

There is more info on using the JBoss client login module here [http://community.jboss.org/wiki/
ClientLoginModule]

@ Note
If messages are sent non blocking then there is a chance that these could arrive on
the server after the calling thread has completed meaning that the security context
has been cleared. If this is the case then messages will need to be sent blocking

31.6.2. Changing the Security Domain

The name of the security domain used by the JBoss AS security manager defaultstoj ava: / j aas/
hor net g . This can be changed by specifying securi t yDomai nName (e.g. java:/jaas/myDomain).

31.7. Changing the username/password for clustering

In order for cluster connections to work correctly, each node in the cluster must make connections
to the other nodes. The username/password they use for this should always be changed from the
installation default to prevent a security risk.

Please see Chapter 30, Management for instructions on how to do this.

152

http://community.jboss.org/wiki/ClientLoginModule
http://community.jboss.org/wiki/ClientLoginModule
http://community.jboss.org/wiki/ClientLoginModule

Chapter 32.

Application Server Integration and
Java EE

HornetQ can be easily installed in JBoss Application Server 4 or later. For details on installing
HornetQ in the JBoss Application Server please refer to quick-start guide.

Since HornetQ also provides a JCA adapter, it is also possible to integrate HornetQ as a JMS
provider in other JEE compliant app servers. For instructions on how to integrate a remote JCA
adaptor into another application sever, please consult the other application server's instructions.

A JCA Adapter basically controls the inflow of messages to Message-Driven Beans (MDBs) and
the outflow of messages sent from other JEE components, e.g. EJBs and Servlets.

This section explains the basics behind configuring the different JEE components in the AS.

32.1. Configuring Message-Driven Beans

The delivery of messages to an MDB using HornetQ is configured on the JCA Adapter via a
configuration file ra. xm which can be found under the j ns-ra. rar directory. By default this is
configured to consume messages using an InVM connector from the instance of HornetQ running
within the application server. The configuration properties are listed later in this chapter.

All MDBs however need to have the destination type and the destination configured. The following
example shows how this can be done using annotations:

@kssageDri ven(nane = " MDBExanpl e",
activationConfig =

{
@Act i vati onConfi gProperty(propertyNanme = "destinationType",
propertyVal ue = "javax.j ns. Queue"),
@\ct i vati onConfi gProperty(propertyNane = "destination”,
propertyVal ue = "queue/test Queue")
b

@Resour ceAdapter("hornetg-ra.rar")
public class MDBExanpl e i npl ements MessagelLi stener

{

public void onMessage(Message nessage). ..

In this example you can see that the MDB will consume messages from a queue that is mapped
into JNDI with the binding queue/ t est Queue. This queue must be preconfigured in the usual way
using the HornetQ configuration files.

The ResourceAdapt er annotation is used to specify which adaptor should be used. To
use this you will need to import org. j boss. ej b3. annot ati on. Resour ceAdapt er for JBoss

153

Chapter 32. Application Serve...

AS 5.X and later version which can be found in the jboss-ejb3-ext-api.jar which
can be found in the JBoss repository. For JBoss AS 4.X, the annotation to use is
org. j boss. annot ati on. ej b. Resour ceAdapt or .

Alternatively you can add use a deployment descriptor and add something like the following to
j boss. xm

<nessage-driven>

<ej b- name>Exanpl eMDB</ €j b- name>

<r esour ce- adapt er - nane>hor net g- r a. r ar </ r esour ce- adapt er - nane>
</ message-dri ven>

You can also rename the hornetg-ra.rar directory to jms-ra.rar and neither the annotation or the
extra descriptor information will be needed. If you do this you will need to edit the j ns- ds. xni
datasource file and change r ar - nane element.

@ Note
HornetQ is the default IMS provider for JBoss AS 6. Starting with this AS version,
HornetQ resource adapter is named jns-ra.rar and you no longer need to
annotate the MDB for the resource adapter name.

All the examples shipped with the HornetQ distribution use the annotation.

32.1.1. Using Container-Managed Transactions

When an MDB is using Container-Managed Transactions (CMT), the delivery of the message is
done within the scope of a JTA transaction. The commit or rollback of this transaction is controlled
by the container itself. If the transaction is rolled back then the message delivery semantics will
kick in (by default, it will try to redeliver the message up to 10 times before sending to a DLQ).
Using annotations this would be configured as follows:

@kessageDri ven(nane = "MDB_CMP_TxRequi r edExanpl e",
activationConfig =
{
@Activati onConfi gProperty(propertyNane = "desti nati onType",
"javax.j ns. Queue"),
@\ct i vati onConfi gProperty(propertyNane = "destination",
propertyVal ue = "queue/test Queue")
})
@r ansact i onManagenent (val ue= Transacti onManagenent Type. CONTAI NER)
@ransacti onAttri bute(val ue= Transacti onAttri but eType. REQUI RED)
@Resour ceAdapt er ("hornetg-ra.rar")
public class MDB_CMP_TxRequiredExanpl e i npl enents Messageli st ener

pr opertyVal ue

154

Using Container-Managed Transactions

public void onMessage(Message message). ..

The Transacti onManagenent annotation tells the container to manage the transaction. The
Transact i onAttri but e annotation tells the container that a JTA transaction is required for this
MDB. Note that the only other valid value for this is Tr ansact i onAt t ri but eType. NOT_SUPPORTED
which tells the container that this MDB does not support JTA transactions and one should not
be created.

It is also possible to inform the container that it must rollback the transaction by calling

set Rol | backOnl y on the MessageDr i venCont ext . The code for this would look something like:

@Resour ce
MessageDri venCont ext Cont ext ct x;

public void onMessage(Message nessage)

{
try
{
// sonet hing here fails
}
catch (Exception e)
{
ctx. set Rol | backOnl y();
}
}

If you do not want the overhead of an XA transaction being created every time but you would still
like the message delivered within a transaction (i.e. you are only using a JMS resource) then you
can configure the MDB to use a local transaction. This would be configured as such:

@kssageDri ven(nane = "MDB_CMP_TxLocal Exanpl e",
activationConfig =

{
@\ct i vati onConfi gProperty(propertyNane = "desti nati onType",
propertyVal ue = "javax.j ns. Queue"),
@\ct i vati onConfi gProperty(propertyNanme = "desti nation",
propertyVal ue = "queue/test Queue"),

@\ct i vat i onConfi gProperty(propertyNanme = "uselocal Tx",
propertyValue = "true")
})
@ransact i onManagenent (val ue = Transacti onManagenent Type. CONTAI NER)
@ransacti onAttri bute(val ue = Transacti onAttri but eType. NOT_SUPPORTED)
@Resour ceAdapt er ("hornetg-ra.rar")

155

Chapter 32. Application Serve...

public class MDB_CMP_TxLocal Exanpl e i npl ements Messageli st ener
{

public void onMessage(Message nmessage). ..

32.1.2. Using Bean-Managed Transactions

Message-driven beans can also be configured to use Bean-Managed Transactions (BMT). In this
case a User Transaction is created. This would be configured as follows:

@kssageDri ven(nane = "MDB_BMPExanpl e",
activationConfig =

{
@\ct i vati onConfi gProperty(propertyNane = "destinati onType",
propertyVal ue = "javax.j ns. Queue"),
@A\cti vati onConfi gProperty(propertyNane = "destination",
propertyVal ue = "queue/test Queue"),

@\ct i vati onConfi gProperty(propertyNane = "acknow edgeMode",
" Dups- ok- acknow edge")
})
@ransact i onManagenent (val ue= Transacti onManagemnment Type. BEAN)
@Resour ceAdapter("hornetg-ra.rar")
public class MDB_BMPExanpl e inpl ements Messageli st ener
{

propertyVal ue

public void onMessage(Message nessage)

When using Bean-Managed Transactions the message delivery to the MDB will occur outside
the scope of the user transaction and use the acknowledge mode specified by the user with the
acknow edgeMbde property. There are only 2 acceptable values for this Aut o- acknow edge and
Dups- ok- acknow edge. Please note that because the message delivery is outside the scope of
the transaction a failure within the MDB will not cause the message to be redelivered.

A user would control the lifecycle of the transaction something like the following:

@Resour ce
MessageDri venCont ext ctx;

public void onMessage(Message nessage)
{

User Tr ansacti on tXx;

try

{

Text Message text Message = (Text Message) nessage;

156

Using Message Selectors with Message-Driven Beans

String text = textMessage. get Text();

User Transaction tx = ctx.getUser Transaction();

tx. begin();

//do sone stuff within the transaction

tx.commit();

}
catch (Exception e)
{
tx. rol | back();
}

32.1.3. Using Message Selectors with Message-Driven Beans
It is also possible to use MDBs with message selectors. To do this simple define your message

selector as follows:

@kssageDri ven(nane = "MDBMessageSel ect or Exanpl e",
activationConfig =

{
@\ct i vati onConfi gProperty(propertyNanme = "destinationType",
propertyVal ue = "javax.j ns. Queue"),
@Acti vati onConfi gProperty(propertyNane = "destination",
propertyVal ue = "queue/test Queue"),

@\ct i vati onConfi gProperty(propertyNanme = "nessageSel ector",
propertyValue = "color = 'RED ")

})
@ransact i onManagenent (val ue= Transacti onManagenent Type. CONTAI NER)

@ransactionAttri bute(val ue= Transacti onAttri but eType. REQUI RED)
@Resour ceAdapt er ("hornetg-ra.rar")
public class MDBMessageSel ect or Exanpl e i npl enents Messageli st ener

{

public void onMessage(Message nessage). ...

32.2. Sending Messages from within JEE components

The JCA adapter can also be used for sending messages. The Connection Factory to use is
configured by defaultinthe j ns-ds. xn file and is mapped toj ava: / InsXA. Using this from within
a JEE component will mean that the sending of the message will be done as part of the JTA
transaction being used by the component.

157

Chapter 32. Application Serve...

This means that if the sending of the message fails the overall transaction would rollback and the
message be re-sent. Heres an example of this from within an MDB:

@kssageDri ven(nane = "MDBMessageSendTxExanpl e",
activationConfig =

{
@Act i vati onConfi gProperty(propertyNanme = "destinati onType",
propertyVal ue = "javax.j ns. Queue"),
@Acti vati onConfi gProperty(propertyNane = "destination",
propertyVal ue = "queue/test Queue")
b

@ransact i onManagenent (val ue= Transact i onManagenment Type. CONTAI NER)
@ransacti onAttri bute(val ue= Transacti onAttri but eType. REQUI RED)
@Resour ceAdapter ("hornetqg-ra.rar")

public class MDBMessageSendTxExanpl e i npl enents Messageli st ener

{
@Resour ce(mappedNane = "java:/ JnsXA")

Connect i onFact ory connecti onFactory;

@resour ce(mappedNane = "queue/ r epl yQueue")
Queue repl yQueue;

public void onMessage(Message nessage)

{

Connection conn = null;
try
{

//Step 9. W know the client is sending a text nessage so we cast
Text Message text Message = (Text Message) nessage;

/1 Step 10. get the text fromthe nessage.
String text = textMessage. get Text();

System out. printl n("nessage " + text);

conn = connecti onFactory. creat eConnection();

Sessi on sess = conn. creat eSessi on(fal se, Sessi on. AUTO ACKNOALEDGE) ;

MessagePr oducer producer = sess.createProducer(repl yQueue);

producer. send(sess. creat eText Message("this is a reply"));

}
catch (Exception e)
{
e.printStackTrace();
}

158

MDB and Consumer pool size

finally
{

if(conn !'= null)
{

try

{

conn. cl ose();

}
catch (JMSException e)

{
}

In JBoss Application Server you can use the JMS JCA adapter for sending messages from
EJBs (including Session, Entity and Message-Driven Beans), Servlets (including jsps) and custom
MBeans.

32.3. MDB and Consumer pool size

Most application servers, including JBoss, allow you to configure how many MDB's there are
in a pool. In Jboss this is configured via the MaxPool Si ze parameter in the ejb3-interceptors-
aop.xml file. Configuring this has no actual effect on how many sessions/consumers there actually
are created. This is because the Resource Adaptor implementation knows nothing about the
application servers MDB implementation. So even if you set the MDB pool size to 1, 15 sessions/
consumers will be created (this is the default). If you want to limit how many sessions/consumers
are created then you need to set the maxSessi on parameter either on the resource adapter itself
or via an an Activation Config Property on the MDB itself

@kssageDri ven(nane = "NMDBMessageSendTxExanpl e",
activationConfig =

{
@\ct i vati onConfi gProperty(propertyNanme = "destinati onType",
propertyVal ue = "javax.j ns. Queue"),
@Act i vati onConfi gProperty(propertyNane = "destination",
propertyVal ue = "queue/test Queue"),
@\cti vati onConfi gProperty(propertyNane = "maxSession",
propertyValue = "1")
b

@r ansact i onManagenent (val ue= Transacti onManagenent Type. CONTAI NER)
@ransacti onAttri bute(val ue= Transacti onAttri but eType. REQUI RED)
@Resour ceAdapt er ("hornetg-ra.rar")

public class MyMDB i npl enents Messageli st ener

{....3

159

Chapter 32. Application Serve...

32.4. Configuring the JCA Adaptor

The Java Connector Architecture (JCA) Adapter is what allows HornetQ to be integrated with JEE
components such as MDBs and EJBs. It configures how components such as MDBs consume
messages from the HornetQ server and also how components such as EJBs or Servlets can send
messages.

The HornetQ JCA adapter is deployed via the j nms-ra. rar archive. The configuration of the
adapter is found in this archive under META- | NF/ ra. xni .

The configuration will look something like the following:

<r esour ceadapt er >
<r esour ceadapt er - cl ass>or g. hor net g. r a. Hor net QResour ceAdapt er </
resour ceadapt er - cl ass>
<confi g- property>
<descri pti on>The transport type. Miltiple connectors can be configured
by using a comm separated list,

descri pti on>
<confi g- property- nane>Connect or Cl assNane</ confi g- property-nanme>
<confi g- property-type>java. | ang. Stri ng</ confi g- property-type>
<confi g- property-
val ue>or g. hornet q. core. renoting. i npl.i nvm | nVMConnect or Fact or y</ confi g-
property-val ue>
</ confi g- property>
<confi g- property>
<descri pti on>The transport configuration. These values nust be in the
form of key=val ; key=val ;,
if multiple connectors are used then each set nust be separated by
a comm i.e. host=host1; port=5445, host =host 2; port =5446.
Each set of parans maps to the connector classnane specified. </
descri pti on>
<confi g- property- name>Connect i onPar anet er s</ confi g- property- nane>
<confi g-property-type>j ava. | ang. Stri ng</confi g-property-type>
<confi g- property-val ue>server-i d=0</ confi g- property-val ue>
</ confi g- property>

<out bound-r esour ceadapt er >
<connection-definition>
<managedconnecti onf act ory-
cl ass>or g. hor net q. r a. Hor net QRAManagedConnect i on
Fact or y</ managedconnecti onf actory-cl ass>

160

Configuring the JCA Adaptor

<confi g- property>
<descri pti on>The default session type</description>
<confi g- property- name>Sessi onDef aul t Type</ confi g- pr operty- nane>
<confi g-property-type>j ava. |l ang. Stri ng</confi g-property-type>
<confi g- property-val ue>j avax. j ms. Queue</ confi g- property-val ue>
</ confi g- property>
<confi g- property>
<description>Try to obtain a lock within specified nunber
of seconds; |ess
than or equal to O disable this functionality</description>
<confi g- property- nanme>UseTryLock</ confi g- property- name>
<confi g-property-type>j ava. |l ang. | nteger</confi g-property-type>
<confi g- property-val ue>0</ confi g- property-val ue>
</ confi g- property>

<connectionfactory-interface>org. hornetq. ra. Hor net QRAConnect i onFact ory
</ connectionfactory-interface>

<connecti onf act or or g. hor net q. r a. Hor net QConnect i onFact or yl npl onFact or y! npl
</ connectionfactory-inpl -cl ass>
<connection-interface>j avax.) ms. Sessi on</ connecti on-i nterface>
<connection-i npl - cl ass>or g. hor net g. r a. Hor net QRASessi on
</ connection-inpl -cl ass>
</ connecti on-definition>
<transacti on- support >XATr ansact i on</transacti on- support >
<aut henti cati on- mechani sne»
<aut henti cati on- mechani smt ype>Basi cPassword
</ aut henti cati on- mechani smtype>
<credenti al -i nterface>j avax. resource. spi . security. PasswordCredenti al
</credential -interface>
</ aut henti cati on- mechani s
<r eaut henti cati on- support >f al se</ reaut henti cati on-support >
</ out bound- r esour ceadapt er >

<i nbound- r esour ceadapt er >
<nmessageadapt er >
<messagel i st ener >
<nessagel i st ener-type>j avax. j ms. Messageli st ener </ messagel i st ener -
type>
<activati onspec>
<activati onspec-cl ass>org. hornetq.ra.infl ow Hornet QActi vati onSpec
</ activationspec-cl ass>
<requi red- confi g- property>
<confi g- property-nanme>desti nati on</ confi g- property-name>
</required-config-property>
</ activationspec>
</ nessagel i st ener >
</ messageadapt er >
</ i nbound-r esour ceadapt er >

161

Chapter 32. Application Serve...

</ r esour ceadapt er >

There are three main parts to this configuration.

1. A set of global properties for the adapter

2. The configuration for the outbound part of the adapter. This is used for creating JMS resources
within EE components.

3. The configuration of the inbound part of the adapter. This is used for controlling the consumption
of messages via MDBs.

32.4.1. Global Properties

The first element you see is r esour ceadapt er - cl ass which should be left unchanged. This is
the HornetQ resource adapter class.

After that there is a list of configuration properties. This will be where most of the configuration is
done. The first two properties configure the transport used by the adapter and the rest configure
the connection factory itself.

E] Note
All connection factory properties will use the defaults if they are not provided,
except for the r econnect At t enpt s which will default to -1. This signifies that the
connection should attempt to reconnect on connection failure indefinitely. This is
only used when the adapter is configured to connect to a remote server as an InVM
connector can never fail.

The following table explains what each property is for.

Table 32.1. Global Configuration Properties

Property Name Property Type Property Description

ConnectorClassName String The Connector class name
(see Chapter 16, Configuring
the Transport for more
information). If multiple
connectors are needed this
should be provided as a
comma separated list.

ConnectionParameters String The transport configuration.
These parameters must
be in the form of
keyl=val 1; key2=val 2; and

162

Global Properties

Property Name

Property Type

Property Description

will be specific to the
connector used. If multiple
connectors are configured
then params should be
supplied for each connector
separated by a comma.

hA boolean True if high availability is
needed.
uselLocalTx boolean True will enable local
transaction optimisation.
UserName String The user name to use when
making a connection
Password String The password to use when
making a connection
DiscoveryAddress String The discovery group address
to use to autodetect a server
DiscoveryPort Integer The port to use for discovery
DiscoveryRefreshTimeout Long The timeout, in milliseconds, to
refresh.
DiscoverylnitialWaitTimeout Long The initial time to wait for

discovery.

ConnectionLoadBalancingPolig

VEtiisgName

The load balancing policy
class to use.

ConnectionTTL Long The time to live
(in milliseconds) for the
connection.

CallTimeout Long the call timeout (in
milliseconds) for each packet
sent.

DupsOKBatchSize Integer the batch size (in bytes)
between acknowledgements
when using
DUPS_OK_ACKNOWLEDGE
mode

TransactionBatchSize Integer the batch size (in bytes)

between acknowledgements
when using a transactional
session

163

Chapter 32. Application Serve...

Property Name

ConsumerWindowSize

ConsumerMaxRate

Property Type

Integer

Integer

Property Description

the window size (in bytes) for
consumer flow control

the fastest rate a consumer
may consume messages per
second

ConfirmationWindowSize

ProducerMaxRate

MinLargeMessageSize

BlockOnAcknowledge

Integer

Integer

Integer

Boolean

the window size (in bytes) for
reattachment confirmations

the maximum rate of
messages per second that can
be sent

the size (in bytes) before a
message is treated as large

whether or not messages are
acknowledged synchronously

BlockOnNonDurableSend

BlockOnDurableSend

AutoGroup

Boolean

Boolean

Boolean

whether or not non-
durable messages are sent
synchronously

whether or not durable
messages are sent
synchronously

whether or not message
grouping is automatically used

PreAcknowledge

ReconnectAttempts

Boolean

Integer

whether messages are pre
acknowledged by the server
before sending

maximum number of retry
attempts, default for the
resource adpater is -1 (infinite
attempts)

Retrylnterval

Long

the time (in milliseconds) to
retry a connection after failing

RetrylntervalMultiplier

FailoverOnServerShutdown

Double

Boolean

multiplier to apply to
successive retry intervals

If true client will reconnect to
another server if available

ClientID

String

the pre-configured client ID for
the connection factory

ClientFailureCheckPeriod

Long

the period (in ms) after which
the client will consider the

164

Adapter Outbound Configuration

Property Name Property Type Property Description
connection failed after not
receiving packets from the
server

UseGlobalPools Boolean whether or not to use a global
thread pool for threads

ScheduledThreadPoolMaxSize Integer the size of the scheduled
thread pool

ThreadPoolMaxSize Integer the size of the thread pool

SetupAttempts Integer Number of attempts to setup a

JMS connection (default is 10,
-1 means to attempt infinitely).
It is possible that the MDB
is deployed before the JMS
resources are available. In that
case, the resource adapter will
try to setup several times until
the resources are available.
This applies only for inbound
connections

Setupinterval Long Interval in milliseconds
between consecutive attemps
to setup a JMS connection
(default is 2000m). This
applies only for inbound
connections

32.4.2. Adapter Outbound Configuration

The outbound configuration should remain unchanged as they define connection factories that are
used by Java EE components. These Connection Factories can be defined inside a configuration
file that matches the name *-ds. xm . You'll find a default j ms- ds. xnml configuration under the
hor net g directory in the JBoss AS deployment. The connection factories defined in this file inherit
their properties from the main ra. xml configuration but can also be overridden. The following
example shows how to override them.

@ Note

Please note that this configuration only applies when HornetQ resource adapter
is installed in JBoss Application Server. If you are using another JEE application
server please refer to your application servers documentation for how to do this.

165

Chapter 32. Application Serve...

<t x- connection-factory>
<j ndi - name>Renot eJns XA</ j ndi - nane>
<xa-transaction/>
<rar-name>j ns-ra.rar</rar-nane>
<connecti on-defini ti on>org. hornetq. ra. Hor net QRAConnect i onFact ory
</ connection-definition>
<confi g- property nane="Sessi onDef aul t Type" type="String">javax.|ns. Topic
</ confi g- property>
<confi g-property nanme="Connect or Cl assName" type="String">
org. hornetq. core.renoting.inpl.netty. NettyConnectorFactory
</ confi g-property>
<confi g- property nane="Connecti onParaneters" type="String">
port =5445</ confi g- property>
<max- pool - si ze>20</ nax- pool - si ze>
</t x-connection-factory>

! overriding connectors

If the connector class name is overridden the all params must also be supplied.

In this example the connection factory will be bound to JNDI with the name Renot eJns XA and can
be looked up in the usual way using JNDI or defined within the EJB or MDB as such:

@Resour ce(mappedNane="j ava: / Renot eJnms XA")
private ConnectionFactory connecti onFactory;

The confi g- property elements are what overrides those in the ra. xnml configuration file. Any of
the elements pertaining to the connection factory can be overridden here.

The outbound configuration also defines additional properties in addition to the global
configuration properties.

Table 32.2. Outbound Configuration Properties

Property Name Property Type Property Description
SessionDefaultType String the default session type
UseTryLock Integer try to obtain a lock within

specified number of seconds.
less than or equal to O disable
this functionality

166

Adapter Inbound Configuration

32.4.3. Adapter Inbound Configuration

The inbound configuration should again remain unchanged. This controls what forwards
messages onto MDBs. It is possible to override properties on the MDB by adding an activation
configuration to the MDB itself. This could be used to configure the MDB to consume from a
different server.

The inbound configuration also defines additional properties in addition to the global configuration
properties.

Table 32.3. Inbound Configuration Properties

Property Name Property Type Property Description
Destination String JNDI name of the destination
DestinationType String type of the destination,

either javax.jnms. Queue or
j avax.j ns. Topi ¢ (default is
javax.jms.Queue)

AcknowledgeMode String The Acknowledgment mode,
either Aut o- acknowl edge
or Dups- ok- acknow edge
(default is Auto-acknowledge).
AUTO_ACKNOW.EDGE and
DUPS_OK_ACKNOW.EDGE are
acceptable values.

MaxSession Integer Maximum number of session
created by this inbound
configuration (default is 15)

MessageSelector String the message selector of the
consumer
SubscriptionDurability String Type of the subscription, either
Dur abl e or NonDur abl e
SubscriptionName String Name of the subscription
TransactionTimeout Long The transaction timeout in

milliseconds (default is 0, the
transaction does not timeout)

UseJNDI Boolean Whether or not use JNDI to
look up the destination (default
is true)

167

Chapter 32. Application Serve...

32.4.4. Configuring the adapter to use a standalone HornetQ
Server

Sometime you may want your messaging server on a different machine or separate from the
application server. If this is the case you will only need the hornetq client libs installed. This section
explains what config to create and what jar dependencies are needed.

There are two configuration files needed to do this, one for the incoming adapter used for MDB's
and one for outgoing connections managed by the JCA managed connection pool used by
outgoing JEE components wanting outgoing connections.

32.4.4.1.1. Configuring the Incoming Adaptor

Firstly you will need to create directory under the depl oy directory ending in . rar. For this
example we will name the directory hor net g-ra. rar. This detail is important as the name of
directory is referred to by the MDB's and the outgoing configuration.

@ Note
The jboss default for this is j ns-ra. rar, If you don't want to have to configure
your MDB's you can use this but you may need to remove the generic adaptor that
uses this.

Under the hor net g- r a. r ar directory you will need to create a META- | NF directory into which you
should create anr a. xn configuration file. You can find a template for the r a. xnl under the config
directory of the HornetQ distribution.

To configure MDB's to consume messages from a remote HornetQ server you need to edit the
ra. xm file underdepl oy/ hor net - ra. rar/ META- | NF and change the transport type to use a netty
connector (instead of the invm connector that is defined) and configure its transport params. Heres
an example of what this would look like:

<r esour ceadapt er - cl ass>or g. hor net g. r a. Hor net QResour ceAdapt er </ r esour ceadapt er -
cl ass>
<confi g- property>
<descri pti on>The transport type</description>
<confi g- property-nane>Connect or Cl assNane</ confi g- pr operty- nanme>
<confi g-property-type>java.lang. String</config-property-type>
<confi g- property-
val ue>or g. hornetq. core.renoting.inpl.netty. NettyConnector Factory</confi g-
property-val ue>
</ confi g- property>
<confi g- property>
<descri pti on>The transport configuration. These val ues nust be in the form
of key=val ; key=val ; </ descri pti on>

168

Configuring the adapter to use a standalone HornetQ Server

<confi g- property- nane>Connect i onPar anet er s</ conf i g- pr operty- name>
<confi g- property-type>java. |l ang. Stri ng</confi g-property-type>
<confi g- property-val ue>host =127. 0. 0. 1; port =5446</ confi g- property-val ue>
</ confi g- property>

If you want to provide a list of servers that the adapter can connect to you can provide a list of
connectors, each separated by a comma.

<r esour ceadapt er - cl ass>or g. hor net g. r a. Hor net QResour ceAdapt er </ r esour ceadapt er -
cl ass>
<confi g- property>
<descri pti on>The transport type</description>
<confi g- property-nane>Connect or Cl assNane</ confi g- pr operty- nanme>
<confi g- property-type>java. |l ang. Stri ng</confi g- property-type>
<confi g- property-
val ue>or g. hornetq. core.renoting.inpl.netty. NettyConnectorFactory, org. hornetq. core.renoting.inp
confi g- property-val ue>
</ confi g- property>
<confi g- property>
<descri pti on>The transport configuration. These val ues nust be in the form
of key=val ; key=val ; </ descri pti on>
<confi g- property- nane>Connect i onPar anet er s</ conf i g- pr opert y- nane>
<confi g-property-type>java. |l ang. Stri ng</confi g-property-type>
<confi g- property-val ue>host =127. 0. 0. 1; port =5446, host =127. 0. 0. 2; port =5447</
confi g- property-val ue>
</ confi g- property>

! provide all params

Make sure you provide parameters for each connector configured. The position of
the params in the list maps to each connector provided.

This configures the resource adapter to connect to a server running on localhost listening on port
5446

32.4.4.1.2. Configuring the outgoing adaptor

You will also need to configure the outbound connection by creating a hor net g-ds. xm and
placing it under any directory that will be deployed under the depl oy directory. In a standard
HornetQ jboss configuration this would be under hor neq or hor net q. sar but you can place it
where ever you like. Actually as long as it ends in - ds. xm you can call it anything you like. You

169

Chapter 32. Application Serve...

can again find a template for this file under the config directory of the HornetQ distribution but
called j ms- ds. xnl which is the jboss default.

The following example shows a sample configuration

<t x- connection-factory>
<j ndi - name>Renot eJms XA</ j ndi - nanme>
<xa-transaction/ >
<r ar - nane>hor net g-ra. rar</rar-nane>
<connecti on-definiti on>org. hornetq.ra. Hor net QRAConnect i onFact or y</
connecti on-definition>

<confi g-property nanme="Sessi onDef aul t Type"
type="j ava. |l ang. String">j avax. j ns. Topi c</ confi g- property>
<confi g-property nanme="Connect or Cl assNane"
confi g- property>
<confi g-property nane="Connect i onPar anet er s"

type="java.l ang. Stri ng">host=127. 0. 0. 1; por t =5446</ confi g- property>
<max- pool - si ze>20</ max- pool - si ze>
</tx-connection-factory>

Again you will see that this uses the netty connector type and will connect to the HornetQ server
running on localhost and listening on port 5446. JEE components can access this by using JNDI
and looking up the connection factory using JNDI using j ava: / Renot eJns XA, you can see that
this is defined under thej ndi - name attribute. You will also note that the outgoing connection will
be created by the resource adaptor configured under the directory hor net g-ra. rar as explained
in the last section.

Also if you want to configure multiple connectors do this as a comma separated list as in the ra
configuration.

32.4.4.1.3. Jar dependencies

This is a list of the HornetQ and third party jars needed

Table 32.4. Jar Dependencies

Jar Name Description Location
hornetg-ra.jar The HornetQ resource adaptor deploy/hornetq-ra.rar or
classes equivelant
hornetg-core-client.jar The HornetQ core client either in the config lib, i.e.
classes default/lib or the common
lib dir, i.e. $IJBOSS_HOME/
common lib

170

Configuring the JBoss Application Server to connect to Remote HornetQ Server

Jar Name Description Location
hornetg-jms-client.jar The HornetQ JMS classes as above
netty.jar The Netty transport classes as above

32.5. Configuring the JBoss Application Server to
connect to Remote HornetQ Server

This is a step by step guide on how to configure a JBoss application server that doesn't have
HornetQ installed to use a remote instance of HornetQ

32.5.1. Configuring Jboss 5

Firstly download and install JBoss AS 5 as per the JBoss installation guide and HornetQ as per
the HornetQ installation guide. After thatt he following steps are required

» Copy the following jars from the HornetQ distribution to the | i b directory of which ever JBossAs
configuration you have chosen, i.e. def aul t.

» hornetg-core-client.jar

» hornetg-jms-client.jar

* hornetg-ra.jar (this can be found inside the hor net g-r a. rar archive)
e netty.jar

» create the directories hornetg-ra.rar and hornetg-ra.rar/META- | NF under the depl oy
directory in your JBoss config directory

e under the hornetqg-ra.rar/ META-I NF create a ra.xm file or copy it from the HornetQ
distribution (again it can be found in the hor net g-r a. r ar archive) and configure it as follows

<?xm version="1.0" encodi ng="UTF- 8" ?>

<connector xm ns="http://java.sun.conl xm /ns/j2ee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocation="http://java. sun. com xm / ns/j 2ee
http://java. sun. coni xm / ns/j 2ee/ connector _1_5. xsd"
version="1.5">

<description>HornetQ 2.0 Resource Adapter Alternate Configuration</
descripti on>
<di spl ay- name>Hor net Q 2. 0 Resour ce Adapter Al ternate Configuration</display-
nanme>

<vendor - nanme>Red Hat M ddl eware LLC</vendor-nane>

171

Chapter 32. Application Serve...

<eis-type>JMS 1.1 Server</eis-type>
<r esour ceadapt er - ver si on>1. 0</ r esour ceadapt er - ver si on>

<license>
<descri pti on>
Copyright 2009 Red Hat, Inc.
Red Hat licenses this file to you under the Apache License, version
2.0 (the "License"); you may not use this file except in conpliance
with the License. You may obtain a copy of the License at
http://wwm. apache. org/licenses/ LI CENSE-2. 0
Unl ess required by applicable law or agreed to in witing, software
distributed under the License is distributed on an "AS | S" BASI S,
W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KIND, either express or
inmplied. See the License for the specific | anguage governing
pernmissions and limtations under the License.
</ descri ption>
<l i cense-required>true</license-required>
</license>

<r esour ceadapt er >
<r esour ceadapt er - cl ass>or g. hor net g. r a. Hor net QResour ceAdapt er </
resour ceadapt er - cl ass>
<confi g- property>
<descri ption>The transport type</description>
<confi g- property-nane>Connect or Cl assNane</ confi g- property-nanme>
<confi g-property-type>j ava. |l ang. Stri ng</confi g-property-type>
<confi g- property-
val ue>org. hornetqg. core.renoting.inpl.netty. NettyConnector Factory</config-
property-val ue>
</ confi g- property>
<confi g- property>
<descri pti on>The transport configuration. These values nust be in
the form of key=val; key=val ; </ descri ption>
<confi g- property- nane>Connect i onPar amet er s</ conf i g- pr operty- nane>
<confi g-property-type>java.l ang. Stri ng</confi g-property-type>
<confi g- property-val ue>host =127. 0. 0. 1; port =5445</ confi g- pr operty-
val ue>
</ confi g- property>

<out bound- r esour ceadapt er >
<connecti on-definition>
<managedconnect i onf act ory-
cl ass>or g. hor net g. r a. Hor net QRAManagedConnect i onFact ory</
managedconnecti onf act ory-cl ass>

<confi g- property>
<descri pti on>The default session type</description>
<confi g- property-nane>Sessi onDef aul t Type</ confi g- property- nane>
<confi g-property-type>j ava. |l ang. Stri ng</confi g- property-type>

172

Configuring Jboss 5

<confi g- property-val ue>j avax. j ms. Queue</ confi g- property-val ue>
</ confi g- property>
<confi g- property>
<description>Try to obtain a lock within specified nunber of
seconds; less than or equal to O disable this functionality</description>
<confi g- property-nane>UseTryLock</ confi g- property-nanme>
<confi g- property-type>java. | ang. | nt eger </ confi g- property-type>
<confi g- property-val ue>0</ confi g- property-val ue>
</ confi g- property>

<connectionfactory-interface>org. hornetq. ra. Hor net QRAConnect i onFact ory</
connecti onfactory-interface>
<connectionfactory-inpl -
cl ass>or g. hor net g. ra. Hor net QRAConnect i onFact oryl npl </ connect i onf actory-i npl -
cl ass>
<connection-i nterface>j avax. j ms. Sessi on</ connection-i nterface>
<connection-i npl - cl ass>or g. hor net g. r a. Hor net QRASessi on</ connecti on-
i mpl - cl ass>
</ connection-definition>
<transacti on- support >XATr ansact i on</ transacti on- support >
<aut henti cati on- nechani sn»
<aut henti cati on- nechani smt ype>Basi cPasswor d</ aut henti cati on-
nmechani smtype>

<credential -i nterface>j avax. resource. spi . security. PasswordCredenti al </
credential -interface>
</ aut henti cati on- mechani s>
<r eaut henti cati on- support >f al se</reaut henti cati on-support>
</ out bound- r esour ceadapt er >

<i nbound- r esour ceadapt er >
<nessageadapt er >
<messagel i st ener >
<nessagel i st ener-type>j avax. j ms. Messageli st ener </ messagel i st ener -
type>
<activati onspec>
<activati onspec-
cl ass>org. hornetq. ra.infl ow Hornet QActi vati onSpec</ acti vati onspec-cl ass>
<requi red- confi g- property>
<confi g- property-nane>desti nati on</ confi g- property-nanme>
</required-config-property>
</ activationspec>
</ messagel i st ener >
</ messageadapt er >
</ i nbound- r esour ceadapt er >

</ resour ceadapt er >
</ connect or >

173

Chapter 32. Application Serve...

The important part of this configuration is the part in bold, i.e. <config-property-
value>host=127.0.0.1;port=5445</config-property-value>. This should be configured to the
host and port of the remote HornetQ server.

At this point you should be able to now deploy MDB's that consume from the remote
server. You will however, have to make sure that your MDB's have the annotation
@Resour ceAdapter ("hornetqg-ra.rar") added, this is illustrated in the Section 32.1,
“Configuring Message-Driven Beans” section. If you don't want to add this annotation then you
can delete the generic resource adapter j ms-r a. rar and rename the hor net g-ra. rar to this.

If you also want to use the remote HornetQ server for outgoing connections, i.e. sending
messages, then do the following:

» Create a file called hor net g- ds. xni in the depl oy directory (in fact you can call this anything
you want as long as it ends in - ds. xm). Then add the following:

<connection-factori es>
<l--
JMS XA Resource adapter, use this for outbound JMS connecti ons.
| nbound connections are defined at the @/DB activation or at the resource-
adapter properties.
-->
<t x- connecti on-factory>
<j ndi - name>Renot eJns XA</ j ndi - nane>
<xa-transaction/>
<rar - name>hornet g-ra. rar</rar - nane>
<connecti on-defi ni ti on>org. hor net gq. r a. Hor net QRAConnect i onFact or y</
connecti on-definition>

<confi g- property nane=" Sessi onDef aul t Type"
type="java. |l ang. Stri ng">j avax. j ns. Topi c</ confi g- property>
<confi g-property nane="Connect or Cl assNane"
confi g- property>
<confi g-property nane="Connect i onPar anet er s"

type="j ava.l ang. Stri ng">host =127. 0. 0. 1; por t =5445</ conf i g- pr operty>
<max- pool - si ze>20</ max- pool - si ze>
</t x-connection-factory>

</ connection-factori es>

174

Configuring Jboss 5

Again you will see that the host and port are configured here to match the remote HornetQ
servers configuration. The other important attributes are:

* jndi-name - This is the name used to look up the JMS connection factory from within your
JEE client

» rar-name - This should match the directory that you created to hold the Resource Adapter
configuration

Now you should be able to send messages using the JCA JMS connection pooling within an XA
transaction.

32.5.2. Configuring Jboss 5

The steps to do this are exactly the same as for JBoss 4, you will have to create a jboss.xml
definition file for your MDB with the following entry

<message-driven>
<ej b- name>MyMDB</ ej b- nane>
<r esour ce- adapt er- nane>j ns-ra. r ar </ r esour ce- adapt er - name>
</ nessage-dri ven>

Also you will need to edit the st andar dj boss. xnl and uncomment the section with the following
‘Uncomment to use JMS message inflow from jmsra.rar’ and then comment out the invoker-proxy-
binding called 'message-driven-bean'

32.6. High Availability JNDI (HA-JNDI)

If you are using JNDI to look-up JMS queues, topics and connection factories from a cluster of
servers, it is likely you will want to use HA-JNDI so that your JNDI look-ups will continue to work
if one or more of the servers in the cluster fail.

HA-JNDI is a JBoss Application Server service which allows you to use JNDI from clients without
them having to know the exact JNDI connection details of every server in the cluster. This service
is only available if using a cluster of JBoss Application Server instances.

To use it use the following properties when connecting to JNDI.

Hasht abl e<String, String> jndi Parameters = new Hashtabl e<String, String>();
j ndi Paranet ers. put ("j ava. nam ng.factory.initial",

"org.jnp.interfaces. Nam ngCont ext Factory");
j ndi Par anet ers. put ("j ava. nam ng. factory. url . pkgs=",

"org.jboss.nanmi ng:org.jnp.interfaces");

175

Chapter 32. Application Serve...

initial Context = new Initial Context(jndiParaneters);

For more information on wusing HA-JNDI see the JBoss Application Server
clustering documentation [http://www.jboss.org/file-access/default/members/jbossas/freezone/
docs/Clustering_Guide/5/html/clustering-jndi.html]

32.7. XA Recovery

XA recovery deals with system or application failures to ensure that of a transaction are
applied consistently to all resources affected by the transaction, even if any of the application
processes or the machine hosting them crash or lose network connectivity. For more information
on XA Recovery,please refer to JBoss Transactions [http://www.jboss.org/community/wiki/
JBossTransactions].

When HornetQ is integrated with JBoss AS, it can take advantage of JBoss Transactions to
provide recovery of messaging resources. If messages are involved in a XA transaction, in the
event of a server crash, the recovery manager will ensure that the transactions are recovered
and the messages will either be committed or rolled back (depending on the transaction outcome)
when the server is restarted.

32.7.1. XA Recovery Configuration

To enable HornetQ's XA Recovery, the Recovery Manager must be configured to connect to
HornetQ to recover its resources. The following property must be added to the jt a section of
conf/j bossts-properties.xm of JBoss AS profiles:

<properties depends="arjuna" nanme="jta">

<property nane="com arjuna.ats.jta.recovery. XAResour ceRecovery. Hor net QL"
val ue="org. hornetq. j ns. server.recovery. Hor net QAResour ceRecovery;
[connection configuration]"/>

</ properties>

The [connecti on configuration] contains all the information required to connect to HornetQ
node under the form [connector factory class nane],[user name], [password],
[connect or paraneters].

e [connector factory cl ass name] corresponds to the
name of the Connect or Factory used to connect to HornetQ.

176

http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Clustering_Guide/5/html/clustering-jndi.html
http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Clustering_Guide/5/html/clustering-jndi.html
http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Clustering_Guide/5/html/clustering-jndi.html
http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Clustering_Guide/5/html/clustering-jndi.html
http://www.jboss.org/community/wiki/JBossTransactions
http://www.jboss.org/community/wiki/JBossTransactions
http://www.jboss.org/community/wiki/JBossTransactions

XA Recovery Configuration

Values can be org.hornetq.core.renoting.inpl.invmIlnVMonnectorFactory or
org. hornetq. core.renoting.inpl.netty. NettyConnectorFactory

e [user nane] is the user name to create a client session. It is optional

* [password] is the password to create a client session. It is mandatory only if the user name
is specified

e [connector paraneters] is a list of comma-separated key=value pair which are passed to
the connector factory (see Chapter 16, Configuring the Transport for a list of the transport
parameters).

Also note the com arj una. ats. j t a. xaRecover yNode parameter. If you want recovery enabled
then this must be configured to what ever the tx node id is set to, this is configured in the same
file by the com arj una. at s. arj una. xa. nodel denti fi er property.

@ Note
HornetQ must have a valid acceptor which corresponds to the connector specified

in conf/j bossts-properties.xnl.

32.7.1.1. Configuration Settings

If HornetQ is configured with a default in-vm acceptor:

<acceptor nane="in-vni>

<factory-cl ass>org. hornetq. core.renoting.inpl.invmI|nVMAccept or Fact ory</
factory-cl ass>
</ accept or >

the corresponding configuration in conf / j bosst s- properti es. xn is:

<property name="com arjuna. ats.jta.recovery. XAResour ceRecovery. HORNETQL"

If it is now configured with a netty acceptor on a non-default port:

177

Chapter 32. Application Serve...

<acceptor name="netty">

<factory-cl ass>org. hornetq. core.renoting.inpl.netty. NettyAcceptorFactory</
factory-cl ass>

<param key="port" val ue="8888"/>
</ accept or >

the corresponding configuration in conf / j bosst s- properti es. xnl is:

<property nane="com arjuna. ats.jta.recovery. XAResour ceRecovery. HORNETQL"

'g. hornetq.jns. server. recovery. Hor net QXAResour ceRecovery; org. hornetq.core.renoting.inpl.netty. NettyConnect or Fac
port =8888"/ >

@ Note
Note the additional commas to skip the user and password before connector
parameters

If the recovery must use adni n, adni npass, the configuration would have been:

<property nane="com arjuna. ats.jta.recovery. XAResour ceRecovery. HORNETQL"

admi n, adm npass, port=8888"/>

Configuring HornetQ with an invm acceptor and configuring the Recovery Manager with an invm
connector is the recommended way to enable XA Recovery.

32.7.2. Example

See Section 11.3.9, “XA Recovery” which shows how to configure XA Recovery and recover
messages after a server crash.

178

Chapter 33.

The JMS Bridge

HornetQ includes a fully functional JIMS message bridge.

The function of the bridge is to consume messages from a source queue or topic, and send them
to a target queue or topic, typically on a different server.

The source and target servers do not have to be in the same cluster which makes bridging suitable
for reliably sending messages from one cluster to another, for instance across a WAN, and where
the connection may be unreliable.

A bridge can be deployed as a standalone application, with HornetQ standalone server or inside
a JBoss AS instance. The source and the target can be located in the same virtual machine or
another one.

The bridge can also be used to bridge messages from other non HornetQ JMS servers, as long
as they are JMS 1.1 compliant.

@ Note

Do not confuse a JMS bridge with a core bridge. A JMS bridge can be used to
bridge any two JMS 1.1 compliant JMS providers and uses the JMS API. A core
bridge (described in) is used to bridge any two HornetQ
instances and uses the core API. Always use a core bridge if you can in preference
to a JMS bridge. The core bridge will typically provide better performance than
a JMS bridge. Also the core bridge can provide once and only once delivery
guarantees without using XA.

The bridge has built-in resilience to failure so if the source or target server connection is lost, e.qg.
due to network failure, the bridge will retry connecting to the source and/or target until they come
back online. When it comes back online it will resume operation as normal.

The bridge can be configured with an optional JMS selector, so it will only consume messages
matching that JMS selector

It can be configured to consume from a queue or a topic. When it consumes from a topic it can
be configured to consume using a non durable or durable subscription

Typically, the bridge is deployed by the JBoss Micro Container via a beans configuration file. This
would typically be deployed inside the JBoss Application Server and the following example shows
an example of a beans file that bridges 2 destinations which are actually on the same server.

<?xm version="1.0" encodi ng="UTF- 8" ?>

<depl oynent xm ns="urn:j boss: bean-depl oyer: 2. 0" >

179

Chapter 33. The JMS Bridge

<bean nane="JNSBri dge"
cl ass="org. hornetq. api . jnms. bridge.inpl.JVMSBridgel npl ">
<!-- HornetQ nust be started before the bridge -->
<depends>Hor net Ser ver </ depends>
<constructor >
<!-- Source ConnectionFactory Factory -->
<par anet er >
<i nj ect bean="Sour ceCFF"/>
</ par anet er >
<!-- Target ConnectionFactory Factory -->
<par anet er >
<i nj ect bean="Target CFF"/>
</ par anet er >
<!-- Source DestinationFactory -->
<par anet er >
<i nj ect bean="SourceDesti nationFactory"/>
</ par anet er >
<!-- Target DestinationFactory -->
<par anet er >
<i nj ect bean="Target Desti nati onFactory"/>
</ par anet er >
<!-- Source User Name (no usernanme here) -->
<par anet er ><nul | /></par anet er >
<!-- Source Password (no password here)-->
<par anet er ><nul | /></par anet er >
<I-- Target User Name (no username here)-->
<par anet er ><nul | /></par anet er >
<l-- Target Password (no password here)-->
<par anet er ><nul | /></par anet er >
<l-- Selector -->
<par anet er ><nul | /></par anet er >
<!-- Failure Retry Interval (in ng) -->
<par anet er >5000</ par anet er >
<l-- Max Retries -->
<par anet er >10</ par anet er >
<l-- Quality O Service -->
<par anmet er >ONCE_AND_ONLY_ONCE</ par anet er >
<!-- Max Batch Size -->
<par anet er >1</ par anmet er >

<l-- Max Batch Tine (-1 neans infinite) -->

<par anet er >- 1</ par anet er >

<!-- Subscription nane (no subscription nane here)-->
<par anet er ><nul | /></par anet er >

<I-- Cdient ID (no client ID here)-->

<par anet er ><nul | /></par anet er >

<!-- Add Messagel D I n Header -->

<par anet er >t r ue</ par anet er >

<l-- register the JM5 Bridge in the AS MBeanServer -->
<par anet er >

180

<i nj ect bean="MBeanServer"/>
</ par anet er >
<par anet er >or g. hor net q: servi ce=JMSBri dge</ par anet er >
</ construct or >
<property name="transacti onManager">
<i nj ect bean="Real Transacti onManager"/>
</ property>
</ bean>

<!'-- SourceCFF describes the ConnectionFactory used to connect to the
source destination -->
<bean nane=" Sour ceCFF"
cl ass="org. hornetq. api . j ns. bridge.inpl.JND Connecti onFact or yFact ory" >
<constructor>
<par anet er >
<i nject bean="JNDI" />
</ par anet er >
<par anet er >/ Connect i onFact or y</ par anet er >
</ construct or >
</ bean>

<!-- Target CFF describes the Connecti onFactory used to connect to the
target destination -->
<bean nane="Tar get CFF"
cl ass="org. hornetq. api . jns. bridge.inpl.JND Connecti onFact or yFact ory" >
<constructor>
<par anet er >
<i nject bean="JNDI" />
</ par anet er >
<par anet er >/ Connect i onFact or y</ par anet er >
</ construct or >
</ bean>

<I'-- SourceDestinationFactory describes the Destination used as the
source -->
<bean nane="Sour ceDesti nati onFactory"
cl ass="org. hornetq. api . j ns. bridge.inpl.JND Desti nati onFactory">
<constructor>
<par anet er >
<i nject bean="JNDI" />
</ par anet er >
<par anet er >/ queue/ sour ce</ par amet er >
</ construct or >
</ bean>

<I-- TargetDestinationFactory describes the Destination used as the
target -->
<bean nane="Tar get Desti nati onFact ory"
cl ass="org. hornetq. api . j ns. bridge.inpl.JND Desti nati onFactory">

181

Chapter 33. The JMS Bridge

<constructor >
<par amnet er >
<inject bean="JNDI" />
</ par anet er >
<par anet er >/ queue/ t ar get </ par anet er >
</ constructor>
</ bean>

<l-- JNDI is a Hashtable containing the JND properties required -->
<!-- to connect to the sources and targets JMS resrouces -->
<bean name="JNDI" cl ass="java.util.Hashtabl e">
<constructor class="java.util.Mp">
<map class="java.util.Hashtable" keyC ass="String"
val ueC ass="String">
<entry>
<key>j ava. nami ng. factory.initial </ key>
<val ue>org. j np.interfaces. Nam ngCont ext Fact or y</ val ue>
</entry>
<entry>
<key>j ava. nanmi ng. provi der. url </ key>
<val ue>j np:/ /Il ocal host: 1099</ val ue>
</entry>
<entry>
<key>j ava. nam ng. factory. url . pkgs</ key>
<val ue>org. j boss. nam ng: org. j np.interfaces"</val ue>
</entry>
<entry>
<key>j np. ti meout </ key>
<val ue>5000</ val ue>
</entry>
<entry>
<key>j np. soti neout </ key>
<val ue>5000</ val ue>
</entry>
</ map>
</ construct or >
</ bean>

<bean nane="MBeanServer" class="j avax. managenment. MBeanServer" >
<constructor factoryd ass="org.jboss. nmx.util.MeanServerLocator"
fact oryMet hod="1I ocat eJBoss"/ >
</ bean>
</ depl oynent >

33.1. JMS Bridge Parameters

The main bean deployed is the JMSBri dge bean. The bean is configurable by the parameters
passed to its constructor.

182

JMS Bridge Parameters

@ Note
To let a parameter be unspecified (for example, if the authentication is anonymous
or no message selector is provided), use <nul | /> for the unspecified parameter

value.

Source Connection Factory Factory

This injects the Sour ceCFF bean (also defined in the beans file). This bean is used to create
the source Connect i onFact ory

Target Connection Factory Factory

This injects the Tar get CFF bean (also defined in the beans file). This bean is used to create
the target Connecti onFact ory

Source Destination Factory Factory

This injects the Sour ceDest i nati onFact ory bean (also defined in the beans file). This bean
is used to create the source Desti nati on

Target Destination Factory Factory

This injects the Tar get Dest i nati onFact ory bean (also defined in the beans file). This bean
is used to create the target Dest i nati on

Source User Name

this parameter is the username for creating the source connection
Source Password

this parameter is the parameter for creating the source connection
Target User Name

this parameter is the username for creating the target connection
Target Password

this parameter is the password for creating the target connection
Selector

This represents a JMS selector expression used for consuming messages from the source
destination. Only messages that match the selector expression will be bridged from the source
to the target destination

The selector expression must follow the JMS selector syntax [http://java.sun.com/j2ee/1.4/docs/
api/javax/jms/Message.html]

183

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html

Chapter 33. The JMS Bridge

 Failure Retry Interval

This represents the amount of time in ms to wait between trying to recreate connections to the
source or target servers when the bridge has detected they have failed

+ Max Retries

This represents the number of times to attempt to recreate connections to the source or target
servers when the bridge has detected they have failed. The bridge will give up after trying this
number of times. - 1 represents 'try forever'

* Quality Of Service

This parameter represents the desired quality of service mode

Possible values are:

o AT _MOST_ONCE

* DUPLI CATES OK

» ONCE_AND_ONLY_ONCE

See Section 33.4, “Quality Of Service” for a explanation of these modes.
* Max Batch Size

This represents the maximum number of messages to consume from the source destination
before sending them in a batch to the target destination. Its value must >= 1

+ Max Batch Time

This represents the maximum number of milliseconds to wait before sending a batch to target,
even if the number of messages consumed has not reached MaxBat chSi ze. Its value must be
- 1 to represent 'wait forever', or >= 1 to specify an actual time

» Subscription Name

If the source destination represents a topic, and you want to consume from the topic using a
durable subscription then this parameter represents the durable subscription name

e Client ID

If the source destination represents a topic, and you want to consume from the topic using a
durable subscription then this attribute represents the the JMS client ID to use when creating/
looking up the durable subscription

* Add MessagelD In Header

If t r ue, then the original message's message ID will be appended in the message sent to the
destination in the header HORNETQ BRI DGE_MSG | D LI ST. If the message is bridged more than

184

Source and Target Connection Factories

once, each message ID will be appended. This enables a distributed request-response pattern
to be used

@ Note
when you receive the message you can send back a response using the
correlation id of the first message id, so when the original sender gets it back it
will be able to correlate it.

« MBean Server

To manage the JMS Bridge using JMX, set the MBeanServer where the JMS Bridge MBean
must be registered (e.g. the JVM Platform MBeanServer or JBoss AS MBeanServer)

e ObjectName

If you set the MBeanServer, you also need to set the ObjectName used to register the JIMS
Bridge MBean (must be unique)

33.2. Source and Target Connection Factories

The source and target connection factory factories are used to create the connection factory used
to create the connection for the source or target server.

The configuration example above uses the default implementation provided by HornetQ that looks
up the connection factory using JNDI. For other Application Servers or JMS providers a new
implementation may have to be provided. This can easily be done by implementing the interface
org. hornetq.jns. bri dge. Connecti onFact oryFactory.

33.3. Source and Target Destination Factories

Again, similarly, these are used to create or lookup up the destinations.

In the configuration example above, we have used the default provided by HornetQ that looks up
the destination using JNDI.

A new implementation can be provided by implementing
org. hornetq.j ms. bri dge. Dest i nati onFact ory interface.

33.4. Quality Of Service

The quality of service modes used by the bridge are described here in more detail.

33.4.1. AT_MOST_ONCE

With this QoS mode messages will reach the destination from the source at most once. The
messages are consumed from the source and acknowledged before sending to the destination.

185

Chapter 33. The JMS Bridge

Therefore there is a possibility that if failure occurs between removing them from the source and
them arriving at the destination they could be lost. Hence delivery will occur at most once.

This mode is available for both durable and non-durable messages.

33.4.2. DUPLICATES_OK

With this QoS mode, the messages are consumed from the source and then acknowledged after
they have been successfully sent to the destination. Therefore there is a possibility that if failure
occurs after sending to the destination but before acknowledging them, they could be sent again
when the system recovers. |.e. the destination might receive duplicates after a failure.

This mode is available for both durable and non-durable messages.

33.4.3. ONCE_AND_ONLY_ONCE

This QoS mode ensures messages will reach the destination from the source once and only once.
(Sometimes this mode is known as "exactly once"). If both the source and the destination are on
the same HornetQ server instance then this can be achieved by sending and acknowledging the
messages in the same local transaction. If the source and destination are on different servers
this is achieved by enlisting the sending and consuming sessions in a JTA transaction. The JTA
transaction is controlled by JBoss Transactions JTA * implementation which is a fully recovering
transaction manager, thus providing a very high degree of durability. If JTA is required then both
supplied connection factories need to be XAConnectionFactory implementations. This is likely to
be the slowest mode since it requires extra persistence for the transaction logging.

This mode is only available for durable messages.

@ Note

For a specific application it may possible to provide once and only once semantics
without using the ONCE_AND_ONLY_ONCE QoS level. This can be done by using
the DUPLICATES_OK mode and then checking for duplicates at the destination
and discarding them. Some JMS servers provide automatic duplicate message
detection functionality, or this may be possible to implement on the application level
by maintaining a cache of received message ids on disk and comparing received
messages to them. The cache would only be valid for a certain period of time so
this approach is not as watertight as using ONCE_AND_ONLY_ONCE but may be
a good choice depending on your specific application.

33.4.4. Time outs and the JMS bridge

There is a possibility that the target or source server will not be available at some point in time.
If this occurs then the bridge will try Max Retri es to reconnect every Fai l ure Retry Interval
milliseconds as specified in the JMS Bridge definition.

186

Examples

However since a third party JNDI is used, in this case the JBoss haming server, it is possible for the
JNDI lookup to hang if the network were to disappear during the JINDI lookup. To stop this occuring
the JNDI definition can be configured to time out if this occurs. To do this set the j np. ti neout
and the j np. sot i meout on the Initial Context definition. The first sets the connection timeout for
the initial connection and the second the read timeout for the socket.

If you implement your own factories for looking up JMS resources then you will have to bear in
mind timeout issues.

33.4.5. Examples

Please see Section 11.3.5, “JMS Bridge” which shows how to configure and use a JMS Bridge
with JBoss AS to send messages to the source destination and consume them from the target
destination.

Please see Section 11.1.28, “JMS Bridge” which shows how to configure and use a JMS Bridge
between two standalone HornetQ servers.

187

http://java.sun.com/j2se/1.5.0/docs/guide/rmi/sunrmiproperties.html
http://java.sun.com/j2se/1.5.0/docs/guide/rmi/sunrmiproperties.html

188

Chapter 34.

Client Reconnection and Session
Reattachment

HornetQ clients can be configured to automatically reconnect or re-attach to the server in the
event that a failure is detected in the connection between the client and the server.

34.1. 100% Transparent session re-attachment

If the failure was due to some transient failure such as a temporary network failure, and the target
server was not restarted, then the sessions will still be existent on the server, asssuming the client
hasn't been disconnected for more than connection-ttl Chapter 17, Detecting Dead Connections.

In this scenario, HornetQ will automatically re-attach the client sessions to the server sessions
when the connection reconnects. This is done 100% transparently and the client can continue
exactly as if nothing had happened.

The way this works is as follows:

As HornetQ clients send commands to their servers they store each sent command in an in-
memory buffer. In the case that connection failure occurs and the client subsequently reattaches
to the same server, as part of the reattachment protocol the server informs the client during
reattachment with the id of the last command it successfully received from that client.

If the client has sent more commands than were received before failover it can replay any sent
commands from its buffer so that the client and server can reconcile their states.

The size of this buffer is configured by the Conf i r mat i onW ndowSi ze parameter, when the server
has received Conf i r mat i onW ndowSi ze bytes of commands and processed them it will send back
a command confirmation to the client, and the client can then free up space in the buffer.

If you are using JMS and you're using the JMS service on the server to load your JMS connection
factory instances into JNDI then this parameter can be configured in hor net g-j ms. xm using the
element confi rmati on-w ndow- si ze a. If you're using JMS but not using JNDI then you can set
these values directly on the Hor net QConnect i onFact ory instance using the appropriate setter
method.

If you're using core you can set these values directly on the C i ent Sessi onFact ory instance
using the appropriate setter method.

The window is specified in bytes.

Setting this parameter to - 1 disables any buffering and prevents any re-attachment from occurring,
forcing reconnect instead. The default value for this parameter is - 1. (Which means by default no
auto re-attachment will occur)

189

Chapter 34. Client Reconnecti...

34.2. Session reconnection

Alternatively, the server might have actually been restarted after crashing or being stopped. In
this case any sessions will no longer be existent on the server and it won't be possible to 100%
transparently re-attach to them.

In this case, HornetQ will automatically reconnect the connection and recreate any sessions and
consumers on the server corresponding to the sessions and consumers on the client. This process
is exactly the same as what happens during failover onto a backup server.

Client reconnection is also used internally by components such as core bridges to allow them to
reconnect to their target servers.

Please see the section on failover Section 39.2.1, “Automatic Client Failover” to get a full
understanding of how transacted and non-transacted sessions are reconnected during failover/
reconnect and what you need to do to maintain once and only once delivery guarantees.

34.3. Configuring reconnection/reattachment attributes

Client reconnection is configured using the following parameters:

e retry-interval. This optional parameter determines the period in milliseconds between
subsequent reconnection attempts, if the connection to the target server has failed. The default
value is 2000 milliseconds.

e retry-interval -nul tiplier. This optional parameter determines determines a multiplier to
apply to the time since the last retry to compute the time to the next retry.

This allows you to implement an exponential backoff between retry attempts.
Let's take an example:

If we setretry-interval to 1000 ms and we setretry-interval -mul tiplier to2.0,then,
if the first reconnect attempt fails, we will wait 1000 ms then 2000 ms then 4000 ms between
subsequent reconnection attempts.

The default value is 1. 0 meaning each reconnect attempt is spaced at equal intervals.

e max-retry-interval. This optional parameter determines the maximum retry interval that
will be used. When setting retry-interval -nul tiplier it would otherwise be possible that
subsequent retries exponentially increase to ridiculously large values. By setting this parameter
you can set an upper limit on that value. The default value is 2000 milliseconds.

e reconnect - attenpts. This optional parameter determines the total number of reconnect
attempts to make before giving up and shutting down. A value of -1 signifies an unlimited
number of attempts. The default value is 0.

190

ExceptionListeners and SessionFailureListeners

If you're using JMS, and you're using the JMS Service on the server to load your JMS connection
factory instances directly into JNDI, then you can specify these parameters in the xml configuration
in hor net g-j ms. xm , for example:

<connection-factory name="Connecti onFactory">
<connect or s>

<connector-ref connector-nane="netty"/>
</ connect or s>
<entries>

<entry nanme="ConnectionFactory"/>

<entry nane="XAConnecti onFactory"/>
</entries>
<retry-interval >1000</retry-interval >
<retry-interval-rmultiplier>1.5</retry-interval-multiplier>
<max-retry-interval >60000</ nax-retry-interval >
<reconnect - at t enpt s>1000</ r econnect - at t enpt s>
</ connecti on-factory>

If you're using JMS, but instantiating your JMS connection factory directly, you can specify
the parameters using the appropriate setter methods on the Hor net QConnecti onFact ory
immediately after creating it.

If you're using the core APl and instantiating the d i ent Sessi onFact or y instance directly you can
also specify the parameters using the appropriate setter methods on the d i ent Sessi onFact ory
immediately after creating it.

If your client does manage to reconnect but the session is no longer available on the server, for
instance if the server has been restarted or it has timed out, then the client won't be able to re-
attach, and any Except i onLi st ener or Fai | ur eLi st ener instances registered on the connection
or session will be called.

34.4. ExceptionListeners and SessionFailureListeners

Please note, that when a client reconnects or re-attaches, any registered JMS
Except i onLi st ener or core APl Sessi onFai | ur eLi st ener will be called.

191

192

Chapter 35.

Diverting and Splitting Message
Flows

HornetQ allows you to configure objects called diverts with some simple server configuration.

Diverts allow you to transparently divert messages routed to one address to some other address,
without making any changes to any client application logic.

Diverts can be exclusive, meaning that the message is diverted to the new address, and does not
go to the old address at all, or they can be non-exclusive which means the message continues
to go the old address, and a copy of it is also sent to the new address. Non-exclusive diverts can
therefore be used for splitting message flows, e.g. there may be a requirement to monitor every
order sent to an order queue.

Diverts can also be configured to have an optional message filter. If specified then only messages
that match the filter will be diverted.

Diverts can also be configured to apply a Tr ansf or mer . If specified, all diverted messages will
have the opportunity of being transformed by the Tr ansf or ner .

A divert will only divert a message to an address on the same server, however, if you want to
divert to an address on a different server, a common pattern would be to divert to a local store-
and-forward queue, then set up a bridge which consumes from that queue and forwards to an
address on a different server.

Diverts are therefore a very sophisticated concept, which when combined with bridges can be
used to create interesting and complex routings. The set of diverts on a server can be thought
of as a type of routing table for messages. Combining diverts with bridges allows you to create
a distributed network of reliable routing connections between multiple geographically distributed
servers, creating your global messaging mesh.

Diverts are defined as xml in the hor net g- confi gurati on. xm file. There can be zero or more
diverts in the file.

Please see Section 11.1.18, “Divert” for a full working example showing you how to configure and
use diverts.

Let's take a look at some divert examples:

35.1. Exclusive Divert

Let's take a look at an exclusive divert. An exclusive divert diverts all matching messages that
are routed to the old address to the new address. Matching messages do not get routed to the
old address.

Here's some example xml configuration for an exclusive divert, it's taken from the divert example:

193

Chapter 35. Diverting and Spl...

<di vert name="prices-divert">
<addr ess>j nms. t opi c. pri ceUpdat es</ addr ess>
<f or war di ng- addr ess>j nms. queue. pri ceForwar di ng</f or war di ng- addr ess>
<filter string="office="New York'"/>
<t ransf or mer - cl ass- nanme>
org. hornetg.j ns. exanpl e. AddFor war di ngTi meTr ansf or ner
</transformer-cl ass- name>
<excl usi ve>true</ excl usi ve>
</divert>

We define a divert called 'pri ces-divert' that will divert any messages sent to the address
i ms. topi c. pri ceUpdat es' (this corresponds to any messages sent to a JMS Topic called
'ori ceUpdat es') to another local address 'j ms. queue. pri ceFor war di ng' (this corresponds to a
local JIMS queue called 'pri ceFor war di ng'

We also specify a message filter string so only messages with the message property of fi ce with
value New York will get diverted, all other messages will continue to be routed to the normal
address. The filter string is optional, if not specified then all messages will be considered matched.

In this example a transformer class is specified. Again this is optional, and if specified the
transformer will be executed for each matching message. This allows you to change the messages
body or properties before it is diverted. In this example the transformer simply adds a header that
records the time the divert happened.

This example is actually diverting messages to a local store and forward queue, which is
configured with a bridge which forwards the message to an address on another HornetQ server.
Please see the example for more details.

35.2. Non-exclusive Divert

Now we'll take a look at a non-exclusive divert. Non exclusive diverts are the same as exclusive
diverts, but they only forward a copy of the message to the new address. The original message
continues to the old address

You can therefore think of non-exclusive diverts as splitting a message flow.

Non exclusive diverts can be configured in the same way as exclusive diverts with an optional
filter and transformer, here's an example non-exclusive divert, again from the divert example:

<di vert name="order-divert">
<addr ess>j ns. queue. or der s</ addr ess>
<f orwar di ng- addr ess>j ns. t opi c. spyTopi c</f or war di ng- addr ess>
<excl usi ve>f al se</ excl usi ve>

194

Non-exclusive Divert

</divert>

The above divert example takes a copy of every message sent to the address
'i ms. queue. or der s' (Which corresponds to a JMS Queue called 'or der s') and sends it to a local
address called 'j ns. t opi c. SpyTopi ¢' (which corresponds to a JMS Topic called 'SpyTopi c').

195

196

Chapter 36.

Core Bridges

The function of a bridge is to consume messages from a source queue, and forward them to a
target address, typically on a different HornetQ server.

The source and target servers do not have to be in the same cluster which makes bridging suitable
for reliably sending messages from one cluster to another, for instance across a WAN, or internet
and where the connection may be unreliable.

The bridge has built in resilience to failure so if the target server connection is lost, e.g. due to
network failure, the bridge will retry connecting to the target until it comes back online. When it
comes back online it will resume operation as normal.

In summary, bridges are a way to reliably connect two separate HornetQ servers together. With
a core bridge both source and target servers must be HornetQ servers.

Bridges can be configured to provide once and only once delivery guarantees even in the event of
the failure of the source or the target server. They do this by using duplicate detection (described
in Chapter 37, Duplicate Message Detection).

36.1. Configuring Bridges

Bridges are configured in hor net g- confi gur ati on. xm . Let's kick off with an example (this is
actually from the bridge example):

<bri dge name="ny-bridge">
<queue- nane>j ms. queue. sausage- f act or y</ queue- nane>
<f orwar di ng- addr ess>j ms. queue. m nci ng- machi ne</ f or war di ng- addr ess>
<filter-string="nanme='"aardvark'"/>
<t r ansf or mer - cl ass- nane>
or g. hor net g. j ns. exanpl e. Hat Col our ChangeTr ansf or mer

197

Chapter 36. Core Bridges

</transformer-cl ass- nanme>
<retry-interval >1000</retry-interval >
<ha>t r ue</ ha>
<retry-interval-nmultiplier>1l.0</retry-interval-multiplier>
<reconnect - att enpt s>- 1</ reconnect - at t enpt s>
<fail over-on-server-shut down>f al se</fail over-on-server-shut down>
<use-dupl i cat e- det ecti on>true</ use-dupli cat e-detecti on>
<confirmati on-w ndow si ze>10000000</ confi rmati on-w ndow- si ze>
<connect or-ref connect or-nane="r enot e- connect or"
backup- connect or - name="backup- r enot e- connect or "/ >

<user >f oouser </ user >
<passwor d>f oopasswor d</ passwor d>

</ bridge>

In the above example we have shown all the parameters its possible to configure for a bridge. In
practice you might use many of the defaults so it won't be necessary to specify them all explicitly.

Let's take a look at all the parameters in turn:

* nane attribute. All bridges must have a unique name in the server.

* queue- nare. This is the uniqgue name of the local queue that the bridge consumes from, it's a
mandatory parameter.

The queue must already exist by the time the bridge is instantiated at start-up.

@ Note
If you're using JMS then normally the JMS configuration hor net g-j ns. xnl is
loaded after the core configuration file hor net g- conf i gurati on. xm is loaded.
If your bridge is consuming from a JMS queue then you'll need to make sure the
JMS queue is also deployed as a core queue in the core configuration. Take a
look at the bridge example for an example of how this is done.

e forwarding-address. This is the address on the target server that the message will be
forwarded to. If a forwarding address is not specified, then the original address of the message
will be retained.

e filter-string.An optional filter string can be supplied. If specified then only messages which
match the filter expression specified in the filter string will be forwarded. The filter string follows
the HornetQ filter expression syntax described in Chapter 14, Filter Expressions.

e transforner-class-name. An optional transformer-class-name can be specified.
This is the name of a user-defined class which implements the

org. hornetg. core. server. cl uster. Transf or mer interface.

198

Configuring Bridges

If this is specified then the transformer's t r ansf or m() method will be invoked with the message
before it is forwarded. This gives you the opportunity to transform the message's header or
body before forwarding it.

ha. This optional parameter determines whether or not this bridge should support high
availability. True means it will connect to any available server in a cluster and support failover.
The default value is f al se.

retry-interval. This optional parameter determines the period in milliseconds between
subsequent reconnection attempts, if the connection to the target server has failed. The default
value is 2000milliseconds.

retry-interval -nul tiplier. This optional parameter determines determines a multiplier to
apply to the time since the last retry to compute the time to the next retry.

This allows you to implement an exponential backoff between retry attempts.
Let's take an example:

If we setretry-interval to 1000 ms and we setretry-interval -nul tiplier to 2.0, then,
if the first reconnect attempt fails, we will wait 1000 ms then 2000 ms then 4000 ms between
subsequent reconnection attempts.

The default value is 1. 0 meaning each reconnect attempt is spaced at equal intervals.

reconnect - att enpts. This optional parameter determines the total number of reconnect
attempts the bridge will make before giving up and shutting down. A value of - 1 signifies an
unlimited number of attempts. The default value is - 1.

fail over-on-server-shut down. This optional parameter determines whether the bridge will
attempt to failover onto a backup server (if specified) when the target server is cleanly shutdown
rather than crashed.

The bridge connector can specify both a live and a backup server, if it specifies a backup
server and this parameter is set to t r ue then if the target server is cleanly shutdown the bridge
connection will attempt to failover onto its backup. If the bridge connector has no backup server
configured then this parameter has no effect.

Sometimes you want a bridge configured with a live and a backup target server, but you don't
want to failover to the backup if the live server is simply taken down temporarily for maintenance,
this is when this parameter comes in handy.

The default value for this parameter is f al se.

use-dupl i cate-detection. This optional parameter determines whether the bridge will
automatically insert a duplicate id property into each message that it forwards.

Doing so, allows the target server to perform duplicate detection on messages it receives from
the source server. If the connection fails or server crashes, then, when the bridge resumes it

199

Chapter 36. Core Bridges

will resend unacknowledged messages. This might result in duplicate messages being sent to
the target server. By enabling duplicate detection allows these duplicates to be screened out
and ignored.

This allows the bridge to provide a once and only once delivery guarantee without using
heavyweight methods such as XA (see Chapter 37, Duplicate Message Detection for more
information).

The default value for this parameter is t r ue.

e confirmation-w ndow si ze. This optional parameter determines the conf i r mat i on- wi ndow
si ze to use for the connection used to forward messages to the target node. This attribute is
described in section Chapter 34, Client Reconnection and Session Reattachment

Warning

When using the bridge to forward messages from a queue which has a max-

size-bytes set it's important that confirmation-window-size is less than or equal
to max- si ze- byt es to prevent the flow of messages from ceasing.

e connect or - r ef . This mandatory parameter determines which connector pair the bridge will use
to actually make the connection to the target server.

A connector encapsulates knowledge of what transport to use (TCP, SSL, HTTP etc) as well as
the server connection parameters (host, port etc). For more information about what connectors
are and how to configure them, please see Chapter 16, Configuring the Transport.

The connect or - ref element can be configured with two attributes:

» connect or - nane. This references the name of a connector defined in the core configuration
file hor net g- confi gurati on. xnl . The bridge will use this connector to make its connection
to the target server. This attribute is mandatory.

* backup- connect or - narme. This optional parameter also references the name of a connector
defined in the core configuration file hornetqg-configuration.xm . It represents the
connector that the bridge will fail-over onto if it detects the live server connection has failed.
If this is specified and f ai | over - on- ser ver - shut down is set to t r ue then it will also attempt
failover onto this connector if the live target server is cleanly shut-down.

« user. This optional parameter determines the user name to use when creating the bridge
connection to the remote server. If it is not specified the default cluster user specified by
cl ust er-user in hornet g- confi gurati on. xn will be used.

» passwor d. This optional parameter determines the password to use when creating the bridge
connection to the remote server. If it is not specified the default cluster password specified by
cl ust er-password in hornet g- confi gurati on. xm will be used.

200

Chapter 37.

Duplicate Message Detection

HornetQ includes powerful automatic duplicate message detection, filtering out duplicate
messages without you having to code your own fiddly duplicate detection logic at the application
level. This chapter will explain what duplicate detection is, how HornetQ uses it and how and
where to configure it.

When sending messages from a client to a server, or indeed from a server to another server, if
the target server or connection fails sometime after sending the message, but before the sender
receives a response that the send (or commit) was processed successfully then the sender cannot
know for sure if the message was sent successfully to the address.

If the target server or connection failed after the send was received and processed but before
the response was sent back then the message will have been sent to the address successfully,
but if the target server or connection failed before the send was received and finished processing
then it will not have been sent to the address successfully. From the senders point of view it's not
possible to distinguish these two cases.

When the server recovers this leaves the client in a difficult situation. It knows the target server
failed, but it does not know if the last message reached its destination ok. If it decides to resend
the last message, then that could result in a duplicate message being sent to the address. If each
message was an order or a trade then this could result in the order being fulfilled twice or the trade
being double booked. This is clearly not a desirable situation.

Sending the message(s) in a transaction does not help out either. If the server or connection fails
while the transaction commit is being processed it is also indeterminate whether the transaction
was successfully committed or not!

To solve these issues HornetQ provides automatic duplicate messages detection for messages
sent to addresses.

37.1. Using Duplicate Detection for Message Sending

Enabling duplicate message detection for sent messages is simple: you just need to set a special
property on the message to a unique value. You can create the value however you like, as long as
it is unique. When the target server receives the message it will check if that property is set, if it is,
then it will check in its in memory cache if it has already received a message with that value of the
header. If it has received a message with the same value before then it will ignore the message.

@ Note
Using duplicate detection to move messages between nodes can give you the
same once and only once delivery guarantees as if you were using an XA
transaction to consume messages from source and send them to the target, but
with less overhead and much easier configuration than using XA.

201

Chapter 37. Duplicate Message...

If you're sending messages in a transaction then you don't have to set the property for every
message you send in that transaction, you only need to set it once in the transaction. If the server
detects a duplicate message for any message in the transaction, then it will ignore the entire
transaction.

The name of the property that you set is given by the value of
or g. hor net g. api . cor e. HDR_DUPLI CATE_DETECTI ON_I D, which is _HQ DUPL_I D

The value of the property can be of type byt e[] or Si npl eStri ng if you're using the core API. If
you're using JMS it must be a St ri ng, and its value should be unique. An easy way of generating
a unique id is by generating a UUID.

Here's an example of setting the property using the core API:

Cli ent Message nessage = sessi on. creat eMessage(true);
Si npl eString myUniquelD = "This is nmy unique id"; /1 Could use a UUID for this

message. set Stri ngProperty(HDR_DUPLI CATE_DETECTI ON_I D, myUni quel D) ;

And here's an example using the JMS API:

Message j msMessage = session. creat eMessage();
String myUniquelD = "This is my unique id"; /1 Could use a UWUID for this

nmessage. set Stri ngProperty(HDR _DUPLI CATE_DETECTI ON_I D.toString(), muUniquelD);

37.2. Configuring the Duplicate ID Cache

The server maintains caches of received values of the
or g. hornet g. cor e. message. i npl . HDR_DUPLI| CATE_DETECTI ON_I D property sent to each
address. Each address has its own distinct cache.

202

Duplicate Detection and Bridges

The cache is a circular fixed size cache. If the cache has a maximum size of n elements, then the
n + 1th id stored will overwrite the 0th element in the cache.

The maximum size of the cache is configured by the parameter i d- cache-si ze in hor net g-
confi guration. xm , the default value is 2000 elements.

The caches can also be configured to persist to disk or not. This is configured by the parameter
per si st-i d-cache, also in hor net g-confi guration. xm . If this is set to t r ue then each id will
be persisted to permanent storage as they are received. The default value for this parameter is

true.

@ Note
When choosing a size of the duplicate id cache be sure to set it to a larger enough
size so if you resend messages all the previously sent ones are in the cache not
having been overwritten.

37.3. Duplicate Detection and Bridges

Core bridges can be configured to automatically add a unique duplicate id value (if there isn't
already one in the message) before forwarding the message to it's target. This ensures that if the
target server crashes or the connection is interrupted and the bridge resends the message, then
if it has already been received by the target server, it will be ignored.

To configure a core bridge to add the duplicate id header, simply set the use-dupli cate-
det ecti on to t r ue when configuring a bridge in hor net g- confi gurati on. xm .

The default value for this parameter is true.

For more information on core bridges and how to configure them, please see Chapter 36, Core
Bridges.

37.4. Duplicate Detection and Cluster Connections

Cluster connections internally use core bridges to move messages reliable between nodes of
the cluster. Consequently they can also be configured to insert the duplicate id header for each
message they move using their internal bridges.

To configure a cluster connection to add the duplicate id header, simply set the use- dupl i cat e-
det ecti on to t r ue when configuring a cluster connection in hor net g- conf i gurati on. xm .

The default value for this parameter is t r ue.

For more information on cluster connections and how to configure them, please see Chapter 38,
HornetQ and Application Server Cluster Configuration.

203

204

Chapter 38.

HornetQ and Application Server
Cluster Configuration

38.1. Configuring Failover

This chapter explains how to configure HornetQ within EAP with live backup-groups. Currently
in this version HornetQ only supports shared store for backup nodes so we assume that in the
rest of this chapter.

There are 2 main ways to configure HornetQ servers to have a backup server:

» Colocated. This is when an EAP instance has both a live and backup(s) running.

» Dedicated. This is when an EAP instance has either a live or backup running but never both.

38.1.1. Colocated Live and Backup in Symmetrical cluster

The colocated symmetrical topology will be the most widely used topology, this is where an EAP
instance has a live node running plus 1 or more backup node. Each backup node will belong to a
live node on another EAP instance. In a simple cluster of 2 EAP instances this would mean that
each EAP instance would have a live server and 1 backup server as in diagram1.

Here the continuous lines show before failover and the dotted lines show the state of the cluster
after failover has occurred. To start with the 2 live servers are connected forming a cluster with
each live server connected to its local applications (via JCA). Also remote clients are connected to
the live servers. After failover the backup connects to the still available live server (which happens
to be in the same vm) and takes over as the live server in the cluster. Any remote clients also
failover.

One thing to mention is that in that depending on what consumers/producers and MDB's etc are
available messages will be distributed between the nodes to make sure that all clients are satisfied
from a JMS perspective. That is if a producer is sending messages to a queue on a backup server
that has no consumers, the messages will be distributed to a live node elsewhere.

The following diagram is slightly more complex but shows the same configuration with 3 servers.
Note that the cluster connections ave been removed to make the configuration clearer but in reality
all live servers will form a cluster.

With more than 2 servers itis up to the user as to how many backups per live server are configured,
you can have as many backups as required but usually 1 would suffice. In 3 node topology you
may have each EAP instance configured with 2 backups in a 4 node 3 backups and so on. The
following diagram demonstrates this.

205

Chapter 38. HornetQ and Appli...

38.1.1.1. Configuration

38.1.1.1.1. Live Server Configuration

First lets start with the configuration of the live server, we will use the EAP ‘all' configuration as
our starting point. Since this version only supports shared store for failover we need to configure
this in the hor net g- confi gurati on. xni file like so:

<shar ed- st or e>t r ue</ shar ed- st or e>

Obviously this means that the location of the journal files etc will have to be configured to be some
where where this lives backup can access. You may change the lives configuration in hor net g-
confi guration. xm to something like:

<l ar ge- messages- di r ect ory>/ nedi a/ shar ed/ dat a/ | ar ge- messages</ | ar ge- nessages-
directory>

<bi ndi ngs-di rect or y>/ nedi a/ shar ed/ dat a/ bi ndi ngs</ bi ndi ngs-di rectory>

<j our nal - di rect ory>/ nedi a/ shar ed/ dat a/ j our nal </ j our nal - di rect ory>

<pagi ng- di r ect ory>/ medi a/ shar ed/ dat a/ pagi ng</ pagi ng- di r ect ory>

How these paths are configured will of course depend on your network settings or file system.

Now we need to configure how remote JMS clients will behave if the server is shutdown in a
normal fashion. By default Clients will not failover if the live server is shutdown. Depending on
there connection factory settings they will either fail or try to reconnect to the live server.

If you want clients to failover on a normal server shutdown the you must configure the f ai | over -
on- shut down flag to true in the hor net g- confi gurati on. xn file like so:

<f ai | over - on- shut down>f al se</f ai | over - on- shut down>

Don't worry if you have this set to false (which is the default) but still want failover to occur, simply
kill the server process directly or call f or ceFai | over via jmx or the admin console on the core
server object.

206

Colocated Live and Backup in Symmetrical cluster

We also need to configure the connection factories used by the client to be HA. This is done by
adding certain attributes to the connection factories inhor net g- j ms. xm . Lets look at an example:

<connection-factory nane="NettyConnectionFactory">
<xa>t rue</ xa>
<connect or s>
<connector-ref connector-nane="netty"/>
</ connect or s>
<entries>
<entry nane="/Connecti onFactory"/>
<entry nanme="/XAConnecti onFactory"/>
</entries>

<ha>t rue</ ha>
<I-- Pause 1 second between connect attenpts -->
<retry-interval >1000</retry-interval >

<I-- Miltiply subsequent reconnect pauses by this multiplier. This can
be used to
i npl enent an exponential back-off. For our purposes we just set to 1.0
so each reconnect
pause is the same length -->
<retry-interval-rmultiplier>1.0</retry-interval-multiplier>

<I-- Try reconnecting an unlimted nunber of tinmes (-1 nmeans "unlinmted") -->

<reconnect - att enpt s>- 1</ reconnect - at t enpt s>
</ connecti on-factory>

We have added the following attributes to the connection factory used by the client:

* ha - This tells the client it support HA and must always be true for failover to occur

e retry-interval -thisis how long the client will wait after each unsuccessful reconnect to the
server

e retry-interval -nultiplier -is used to configure an exponential back off for reconnect
attempts

e reconnect - at t enpt s - how many reconnect attempts should a client make before failing, -1
means unlimited.

207

Chapter 38. HornetQ and Appli...

38.1.1.1.2. Backup Server Configuration

Now lets look at how to create and configure a backup server on the same eap instance. This is
running on the same eap instance as the live server from the previous chapter but is configured
as the backup for a live server running on a different eap instance.

The first thing to mention is that the backup only needs a hor net g-j boss- beans. xm and
a hornetg-configuration.xm configuration file. This is because any JMS components are
created from the Journal when the backup server becomes live.

Firstly we need to define a new HornetQ Server that EAP will deploy. We do this by creating a
new hor net g- j boss- beans. xn configuration. We will place this under a new directory hor net g-
backupl which will need creating in the depl oy directory but in reality it doesn't matter where this
is put. This will look like:

<?xm version="1.0" encodi ng="UTF- 8" ?>

<depl oyment xm ns="urn:j boss: bean- depl oyer: 2. 0" >

<l-- The core configuration -->
<bean nane="BackupConfi guration"
cl ass="org. hornetq. core.config.inpl.FileConfiguration">
<property

nane="confi gurationUr | ">${jboss. server. hone. url }/depl oy/ hor net g-
backupl/ hornet g- confi gurati on. xm </ property>
</ bean>

<!-- The core server -->
<bean nane="BackupHor net Ser ver"
cl ass="org. hornet q. core. server.inpl. Hor net @Server | npl ">
<constructor>
<par anet er >
<i nj ect bean="BackupConfiguration"/>
</ par anet er >
<par anet er >
<i nj ect bean="MBeanServer"/>
</ par anet er >
<par anet er >
<i nj ect bean="Hornet @SecurityManager"/>
</ par anet er >
</ construct or>
<start ignored="true"/>
<stop ignored="true"/>
</ bean>

<l-- The JMS server -->

208

Colocated Live and Backup in Symmetrical cluster

<bean nanme="BackupJMsSer ver Manager "
cl ass="org. hornetq.j ns.server.inpl.JMServer Manager | npl ">

<constructor>

<par anet er >

<i nj ect bean="BackupHor net QServer"/>

</ par anet er >

</ construct or >
</ bean>

</ depl oyment >

The first thing to notice is the BackupConfiguration bean. This is configured to pick up the
configuration for the server which we will place in the same directory.

After that we just configure a new HornetQ Server and JMS server.

@ Note
Notice that the names of the beans have been changed from that of the live servers
configuration. This is so there is no clash. Obviously if you add more backup
servers you will need to rename those as well, backupl, backup?2 etc.

Now lets add the server configuration in hor net g- confi gurati on. xm and add it to the same
directory depl oy/ hor net g- backupl1 and configure it like so:

<configuration xm ns="urn: hornetq"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocat i on="urn: hornet q / schema/ hor net g- confi gurati on. xsd" >
<j nx- donai n>or g. hor net gq. backupl</j nx- domai n>
<cl ust ered>t rue</ cl ust er ed>
<backup>t r ue</ backup>
<shar ed- st or e>t r ue</ shar ed- st or e>

<al | owfai | back>true</al | ow-fai | back>

<bi ndi ngs- di r ect or y>/ medi a/ shar ed/ dat a/ hor net g- backup/ bi ndi ngs</ bi ndi ngs-
directory>

<j our nal - di rect ory>/ nmedi a/ shar ed/ dat a/ hor net g- backup/ j our nal </ j our nal -
directory>

209

Chapter 38. HornetQ and Appli...

<journal -m n-files>10</journal -mn-fil es>

<| ar ge- messages- di r ect or y>/ nedi a/ shar ed/ dat a/ hor net g- backup/
| ar gemessages</ | ar ge- nessages-di rect ory>

<pagi ng- di r ect ory>/ nedi a/ shar ed/ dat a/ hor net g- backup/ pagi ng</ pagi ng-
directory>

<connect or s>
<connect or nane="netty-connector">

<factory-cl ass>org. hornetq. core.renoting.inpl.netty. NettyConnectorFactory</
factory-cl ass>
<param key="host" val ue="${j boss. bi nd. address: | ocal host}"/ >
<paramkey="port" val ue="${hornetq. renoting. backup. netty. port:5446}"/>
</ connect or >

<connect or nane="in-vni>
<factory-
cl ass>org. hornetq. core.renoting.inpl.invm Il nVMonnect or Fact ory</factory-cl ass>
<param key="server-id" val ue="${hornetq. server-id:0}"/>
</ connect or >

</ connect or s>

<accept or s>
<accept or name="netty">

<factory-cl ass>org. hornetq. core.renoting.inpl.netty. NettyAcceptorFactory</
factory-cl ass>
<param key="host" val ue="${j boss. bi nd. address: | ocal host}"/>
<paramkey="port" val ue="${hornet g. renoti ng. backup. netty. port:5446}"/>
</ accept or >
</ accept or s>

<br oadcast - gr oups>
<br oadcast - gr oup nanme="bg- gr oupl" >
<gr oup- addr ess>231. 7. 7. 7</ gr oup- addr ess>
<gr oup- port >9876</ gr oup- port >
<br oadcast - per i 0d>1000</ br oadcast - peri od>
<connect or - r ef >net t y- connect or </ connect or - r ef >
</ br oadcast - gr oup>
</ br oadcast - gr oups>

<di scovery-groups>
<di scovery-group nanme="dg- groupl">
<group- addr ess>231. 7. 7. 7</ gr oup- addr ess>
<gr oup- por t >9876</ gr oup- port >

210

Colocated Live and Backup in Symmetrical cluster

<refresh-ti meout >60000</r ef resh-ti neout >
</ di scovery-group>
</ di scovery- groups>

<cl ust er-connecti ons>
<cl ust er-connecti on name="ny-cl uster">
<addr ess>j ns</ addr ess>
<connect or - ref >net ty- connect or </ connect or - ref >
<di scovery-group-ref discovery-group-name="dg-groupl"/>
<I--max hops defines how nessages are redistributed, the default
is 1 neaning only distribute to directly
connected nodes, to disable set to 0-->
<! - - <max- hops>0</ max- hops>- - >
</ cl ust er - connect i on>
</ cl uster-connecti ons>

<security-settings>
<security-setting match="#">
<per ni ssi on type="creat eNonDur abl eQueue" rol es="guest"/>
<per m ssi on type="del et eNonDur abl eQueue" rol es="guest"/>
<permi ssi on type="consune" rol es="guest"/>
<perm ssion type="send" rol es="guest"/>
</security-setting>
</security-settings>

<addr ess-settings>
<!--default for catch all-->
<addr ess-setting match="#">
<dead- | etter-address>j ns. queue. DLQ</ dead- | ett er - addr ess>
<expi ry- addr ess>j ms. queue. Expi r yQueue</ expi ry- addr ess>
<redel i very-del ay>0</redel i very-del ay>
<max- si ze- byt es>10485760</ max- si ze- byt es>
<nmessage- count er-hi story-day-1imnmt>10</ message- counter-history-
day-limt>
<address-ful | - poli cy>BLOCK</ addr ess-ful |l -policy>
</ addr ess-setting>
</ addr ess-settings>

</ confi guration>

The second thing you can see is we have added a j nx- domai n attribute, this is used when adding
objects, such as the HornetQ server and JMS server to jmx, we change this from the default
or g. hor net g to avoid naming clashes with the live server

The first important part of the configuration is to make sure that this server starts as a backup
server not a live server, via the backup attribute.

211

Chapter 38. HornetQ and Appli...

After that we have the same cluster configuration as live, that is cl ust er ed is true and shar ed-
store is true. However you can see we have added a new configuration element al | ow
fai | back. When this is set to true then this backup server will automatically stop and fall back
into backup node if failover occurs and the live server has become available. If false then the user
will have to stop the server manually.

Next we can see the configuration for the journal location, as in the live configuration this must
point to the same directory as this backup's live server.

Now we see the connectors configuration, we have 3 defined which are needed for the following

e netty-connector. This is the connector used to connect to this backup server once live.
After that you will see the acceptors defined, This is the acceptor where clients will reconnect.

The Broadcast groups, Discovery group and cluster configurations are as per normal, details of
these can be found in the HornetQ user manual.

@ Note
notice the commented out max- hops in the cluster connection, set this to O if you
want to disable server side load balancing.

When the backup becomes it will be not be servicing any JEE components on this eap instance.
Instead any existing messages will be redistributed around the cluster and new messages
forwarded to and from the backup to service any remote clients it has (if it has any).

38.1.1.1.3. Configuring multiple backups

In this instance we have assumed that there are only 2 nodes where each node has a backup
for the other node. However you may want to configure a server too have multiple backup nodes.
For example you may want 3 nodes where each node has 2 backups, one for each of the other
2 live servers. For this you would simply copy the backup configuration and make sure you do
the following:

« Make sure that you give all the beans in the hor net g- j boss- beans. xnl configuration file a
unigue name, i.e.

38.1.1.1.4. Running the shipped example

EAP ships with an example configuration for this topology. Look under extras/ hornetq/
resour ces/ exanpl es/ symmet ri c- cl ust er-wi t h- backups- col ocat ed and follow the read me

38.1.2. Dedicated Live and Backup in Symmetrical cluster

In reality the configuration for this is exactly the same as the backup server in the previous section,
the only difference is that a backup will reside on an eap instance of its own rather than colocated

212

Dedicated Live and Backup in Symmetrical cluster

with another live server. Of course this means that the eap instance is passive and not used until
the backup comes live and is only really useful for pure JMS applications.

The following diagram shows a possible configuration for this:

Here you can see how this works with remote JMS clients. Once failover occurs the HornetQ
backup Server takes running within another eap instance takes over as live.

This is fine with applications that are pure JMS and have no JMS components such as MDB's. If
you are using JMS components then there are 2 ways that this can be done. The first is shown
in the following diagram:

Because there is no live hornetq server running by default in the eap instance running the backup
server it makes no sense to host any applications in it. However you can host applications on the
server running the live hornetq server. If failure occurs to an live hornetq server then remote jms
clients will failover as previously explained however what happens to any messages meant for or
sent from JEE components. Well when the backup comes live, messages will be distributed to
and from the backup server over HornetQ cluster connections and handled appropriately.

The second way to do this is to have both live and backup server remote form the eap instance
as shown in the following diagram.

Here you can see that all the Application (via JCA) will be serviced by a HornetQ server in its
own eap instance.

38.1.2.1. Configuration of dedicated Live and backup

The live server configuration is exactly the same as in the previous example. The only difference
of course is that there is no backup in the eap instance.

For the backup server the hor net g- conf i gur ati on. xm is unchanged, however since there is no
live server we need to make sure that the hor net g-j boss- beans. xnl instantiates all the beans
needed. For this simply use the same configuration as in the live server changing only the location
of the hor net g- confi gurati on. xml parameter for the Confi gur ati on bean.

As before there will be no hornet g-j ns. xm orj nms-ds. xm configuration.

If you want both hornetq servers to be in there own dedicated server where they are remote to
applications, as in the last diagram. Then simply edit the j ns-ds. xm and change the following
lines to

213

Chapter 38. HornetQ and Appli...

<confi g-property nanme="Connect or Cl assNane"

confi g- property>
<confi g-property nane="Connect i onPar anet er s"
type="java.l ang. Stri ng">host =127. 0. 0. 1; por t =5446</ confi g- property>

This will change the outbound JCA connector, to configure the inbound connector for MDB's edit
the ra. xnl config file and change the following parameters.

<confi g- property>
<descri pti on>The transport type</description>
<confi g- property-nane>Connect or Cl assNane</ confi g- pr operty- name>
<confi g- property-type>java. | ang. Stri ng</confi g- property-type>
<confi g- property-
val ue>org. hornetq. core.renoting.inpl.netty. NettyConnector Fact ory</confi g-
property-val ue>
</ confi g- property>
<confi g- property>
<descri pti on>The transport configuration. These val ues nust be in the form
of key=val ; key=val ; </ descri pti on>
<confi g- property-nanme>Connecti onPar anet er s</ confi g- property- name>
<confi g-property-type>j ava. |l ang. Stri ng</confi g-property-type>
<confi g- property-val ue>host =127. 0. 0. 1; port =5446</ confi g- property-val ue>
</ confi g- property>

In both cases the host and port should match your live server. If you are using Discovery then set
the appropriate parameters for Di scover yAddr ess and Di scover yPort to match your configured
broadcast groups.

38.1.2.2. Running the shipped example

EAP ships with an example configuration for this topology. Look under extras/ hor net g/
resour ces/ exanpl es/ cl ust er - wi t h- dedi cat ed- backup and follow the read me

214

Chapter 39.

High Availability and Failover

We define high availability as the ability for the system to continue functioning after failure of one
or more of the servers.

A part of high availability is failover which we define as the ability for client connections to migrate
from one server to another in event of server failure so client applications can continue to operate.

39.1. Live - Backup Groups

HornetQ allows servers to be linked together as live - backup groups where each live server can
have 1 or more backup servers. A backup server is owned by only one live server. Backup servers
are not operational until failover occurs, however 1 chosen backup, which will be in passive mode,
announces its status and waits to take over the live servers work

Before failover, only the live server is serving the HornetQ clients while the backup servers remain
passive or awaiting to become a backup server. When a live server crashes or is brought down
in the correct mode, the backup server currently in passive mode will become live and another
backup server will become passive. If a live server restarts after a failover then it will have priority
and be the next server to become live when the current live server goes down, if the current live
server is configured to allow automatic failback then it will detect the live server coming back up
and automatically stop.

39.1.1. HA modes

HornetQ supports two different strategies for backing up a server shared store and replication.

@ Note
Only persistent message data will survive failover. Any non persistent message
data will not be available after failover.

39.1.2. Data Replication

Replication is supported since version 2.3.

When using replication, the live and the backup servers do not share the same data directories,
and all data synchronization is done through network traffic. Therefore all (persistent) data traffic
received by the live server will be duplicated to the backup.

Notice that upon start-up the backup server will first need to synchronize all existing data from
the live server, before becoming capable of replacing the live server should it fail. So unlike the
shared store case, a replicating backup will not be a fully operational backup right after start, but
only after it finishes synchronizing the data. The time it will take for this to happen will depend on
the amount of data to be synchronized and the connection speed.

215

Chapter 39. High Availability...

<param>The replicating live and backup pair will also need to belong to a cluster. This requires
specific configuration not strictly necessary in the shared store case. Both servers need to be
configured to use the same cluster, and have the same cluster user and password. The later will
be used in the authentication between them.</param>

<param>Much like in the shared-store case, when the live server stops or crashes, its replicating
backup will become active and take over its duties. Specifically, the backup will become active
when it loses connection to its live server. This can be problematic because this can also happen
because of a temporary network problem. In order to address this issue, the backup will try to
determine whether it still can connect to the other servers in the cluster. If it can connect to more
than half the servers, it will become active, if more than half the servers also disappeared with the
live, the backup will wait and try reconnecting with the live. </param>

39.1.2.1. Configuration

To configure the live and backup servers to be a replicating pair, configure all hornetg-
confi guration.xnm to have:

<shar ed- st or e>f al se<shar ed- st or e>

Both servers must be configured to be part of a cluster:

<cl ust ered>t rue</ cl ust er ed>

<cl uster-connecti ons>
<cl ust er-connecti on name="ny-cl uster">

</ cl ust er-connecti on>
</ cl ust er - connecti ons>

The backup server must be flagged explicitly as a backup, must configure which is the connector
to be used to reach the live server and have such connector configured

<cl ust er ed>t rue</ cl ust er ed>
<backup>t r ue</ backup>
<l i ve- connect or - r ef >namef Conf i gur edLi veSer ver Connect or </ | i ve- connect or -r ef >
<connect or s>
<connect or nane="nane Confi gur edLi veSer ver Connect or " >

216

Shared Store

<factory-cl ass>
org. hornetq. core.renoting.inpl.netty. NettyConnectorFactory
</factory-cl ass>
<param key="port" val ue="5445"/>
</ connect or >
<I-- a real configuration could have nore connectors here -->
<connect or s>

39.1.3. Shared Store

When using a shared store, both live and backup servers share the same entire data directory
using a shared file system. This means the paging directory, journal directory, large messages
and binding journal.

When failover occurs and a backup server takes over, it will load the persistent storage from the
shared file system and clients can connect to it.

This style of high availability differs from data replication in that it requires a shared file system
which is accessible by both the live and backup nodes. Typically this will be some kind of high
performance Storage Area Network (SAN). We do not recommend you use Network Attached
Storage (NAS), e.g. NFS mounts to store any shared journal (NFS is slow).

The advantage of shared-store high availability is that no replication occurs between the live and
backup nodes, this means it does not suffer any performance penalties due to the overhead of
replication during normal operation.

The disadvantage of shared store replication is that it requires a shared file system, and when the
backup server activates it needs to load the journal from the shared store which can take some
time depending on the amount of data in the store.

If you require the highest performance during normal operation, have access to a fast SAN, and
can live with a slightly slower failover (depending on amount of data), we recommend shared store
high availability

li ver k rver

- — — joumalll —_ = —

shared file system

217

Chapter 39. High Availability...

39.1.3.1. Configuration

To configure the live and backup servers to share their store, configure all hornetg-

configuration.xm:

<shar ed- st or e>t r ue<shar ed- st or e>

Additionally, each backup server must be flagged explicitly as a backup:
<backup>t r ue</ backup>

In order for live - backup groups to operate properly with a shared store, both servers must have
configured the location of journal directory to point to the same shared location (as explained in
Section 15.3, “Configuring the message journal”)

@ Note
todo write something about GFS

Also each node, live and backups, will need to have a cluster connection defined even if not part
of a cluster. The Cluster Connection info defines how backup servers announce there presence
to it's live server or any other nodes in the cluster. refer to Chapter 38, HornetQ and Application
Server Cluster Configuration for details on how this is done.

39.1.3.2. Failing Back to live Server

After a live server has failed and a backup taken has taken over its duties, you may want to restart
the live server and have clients fail back. To do this simply restart the original live server and kill
the new live server. You can do this by killing the process itself or just waiting for the server to
crash naturally

It is also possible to cause failover to occur on normal server shutdown, to enable this set the
following property to true in the hor net g- conf i gurati on. xnl configuration file like so:

<f ai | over - on- shut down>t r ue</ f ai | over - on- shut down>

218

Failover Modes

By default this is set to false, if by some chance you have set this to false but still want to stop
the server normally and cause failover then you can do this by using the management API as
explained at Section 30.1.1.1, “Core Server Management”

You can also force the new live server to shutdown when the old live server comes back up
allowing the original live server to take over automatically by setting the following property in the
hor net g- confi gurati on. xnml configuration file as follows:

<al | owf ai | back>t rue</ al | ow f ai | back>

39.2. Failover Modes

HornetQ defines two types of client failover:

* Automatic client failover
» Application-level client failover

HornetQ also provides 100% transparent automatic reattachment of connections to the same
server (e.g. in case of transient network problems). This is similar to failover, except it's
reconnecting to the same server and is discussed in Chapter 34, Client Reconnection and Session
Reattachment

During failover, if the client has consumers on any non persistent or temporary queues, those
queues will be automatically recreated during failover on the backup node, since the backup node
will not have any knowledge of non persistent queues.

39.2.1. Automatic Client Failover

HornetQ clients can be configured to receive knowledge of all live and backup servers, so that
in event of connection failure at the client - live server connection, the client will detect this and
reconnect to the backup server. The backup server will then automatically recreate any sessions
and consumers that existed on each connection before failover, thus saving the user from having
to hand-code manual reconnection logic.

HornetQ clients detect connection failure when it has not received packets from the server within
the time given by cl i ent - f ai | ur e- check- peri od as explained in section Chapter 17, Detecting
Dead Connections. If the client does not receive data in good time, it will assume the connection
has failed and attempt failover. Also if the socket is closed by the OS, usually if the server process
is killed rather than the machine itself crashing, then the client will failover straight away.

HornetQ clients can be configured to discover the list of live-backup server groups in a number
of different ways. They can be configured explicitly or probably the most common way of doing
this is to use server discovery for the client to automatically discover the list. For full details
on how to configure server discovery, please see Chapter 38, HornetQ and Application Server

219

Chapter 39. High Availability...

Cluster Configuration. Alternatively, the clients can explicitly connect to a specific server and
download the current servers and backups see Chapter 38, HornetQ and Application Server
Cluster Configuration.

To enable automatic client failover, the client must be configured to allow non-zero reconnection
attempts (as explained in Chapter 34, Client Reconnection and Session Reattachment).

By default failover will only occur after at least one connection has been made to the live server. In
other words, by default, failover will not occur if the client fails to make an initial connection to the
live server - in this case it will simply retry connecting to the live server according to the reconnect-
attempts property and fail after this number of attempts.

39.2.1.1. Failing over on the Initial Connection

Since the client doesn't learn about the full topology until after the first connection is made there
is a window where it doesn't know about the backup. If a failure happens at this point the client
can only try reconnecting to the original live server. To configure how many attempts the client will
make you can set the property i ni ti al Connect Att enpts on the C i ent Sessi onFact or yl npl
or Hor net QConnect i onFact ory orinitial - connect - at t enpt s in xml. The default for this is 0,
that is try only once. Once the number of attempts has been made an exception will be thrown.

For examples of automatic failover with transacted and non-transacted JMS sessions, please
see Section 11.1.67, “Transaction Failover” and Section 11.1.41, “Non-Transaction Failover With
Server Data Replication”.

39.2.1.2. A Note on Server Replication

HornetQ does not replicate full server state between live and backup servers. When the new
session is automatically recreated on the backup it won't have any knowledge of messages
already sent or acknowledged in that session. Any in-flight sends or acknowledgements at the
time of failover might also be lost.

By replicating full server state, theoretically we could provide a 100% transparent seamless
failover, which would avoid any lost messages or acknowledgements, however this comes at
a great cost: replicating the full server state (including the queues, session, etc.). This would
require replication of the entire server state machine; every operation on the live server would
have to replicated on the replica server(s) in the exact same global order to ensure a consistent
replica state. This is extremely hard to do in a performant and scalable way, especially when one
considers that multiple threads are changing the live server state concurrently.

It is possible to provide full state machine replication using techniques such as virtual synchrony,
but this does not scale well and effectively serializes all operations to a single thread, dramatically
reducing concurrency.

Other techniques for multi-threaded active replication exist such as replicating lock states or
replicating thread scheduling but this is very hard to achieve at a Java level.

Consequently it has decided it was not worth massively reducing performance and concurrency
for the sake of 100% transparent failover. Even without 100% transparent failover, it is simple

220

Automatic Client Failover

to guarantee once and only once delivery, even in the case of failure, by using a combination
of duplicate detection and retrying of transactions. However this is not 100% transparent to the
client code.

39.2.1.3. Handling Blocking Calls During Failover

If the client code is in a blocking call to the server, waiting for a response to continue its execution,
when failover occurs, the new session will not have any knowledge of the call that was in progress.
This call might otherwise hang for ever, waiting for a response that will never come.

To prevent this, HornetQ will unblock any blocking calls that were in progress at the time of failover
by making them throw a j avax. j ms. JMSExcept i on (if using JMS), or a Hor net QExcept i on with
error code Hor net QExcept i on. UNBLOCKED. It is up to the client code to catch this exception and
retry any operations if desired.

If the method being unblocked is a «call to commit(), or prepare(), then
the transaction will be automatically rolled back and HornetQ will throw a
javax.j ms. Transact i onRol | edBackException (if using JMS), or a Hor net QExcepti on with
error code Hor net QExcept i on. TRANSACTI ON_ROLLED BACK if using the core API.

39.2.1.4. Handling Failover With Transactions

If the session is transactional and messages have already been sent or acknowledged in the
current transaction, then the server cannot be sure that messages sent or acknowledgements
have not been lost during the failover.

Consequently the transaction will be marked as rollback-only, and any subsequent attempt
to commit it will throw a j avax. j ms. Transacti onRol | edBackExcepti on (if using JMS), or a
Hor net QExcept i on with error code Hor net QExcept i on. TRANSACTI ON_ROLLED BACK if using the
core API.

2 phase commit

The caveat to this rule is when XA is used either via JMS or through the core API.
If 2 phase commit is used and prepare has already ben called then rolling back
could cause a Heuri sti cM xedExcept i on. Because of this the commit will throw
a XAExcept i on. XA_RETRY exception. This informs the Transaction Manager that
it should retry the commit at some later point in time, a side effect of this is that any
non persistent messages will be lost. To avoid this use persistent messages when
using XA. With acknowledgements this is not an issue since they are flushed to
the server before prepare gets called.

It is up to the user to catch the exception, and perform any client side local rollback code as
necessary. There is no need to manually rollback the session - it is already rolled back. The user
can then just retry the transactional operations again on the same session.

221

Chapter 39. High Availability...

HornetQ ships with a fully functioning example demonstrating how to do this, please see
Section 11.1.67, “Transaction Failover”

If failover occurs when a commit call is being executed, the server, as previously described, will
unblock the call to prevent a hang, since no response will come back. In this case it is not easy for
the client to determine whether the transaction commit was actually processed on the live server
before failure occurred.

To remedy this, the client can simply enable duplicate detection (Chapter 37, Duplicate Message
Detection) in the transaction, and retry the transaction operations again after the call is unblocked.
If the transaction had indeed been committed on the live server successfully before failover, then
when the transaction is retried, duplicate detection will ensure that any durable messages resent
in the transaction will be ignored on the server to prevent them getting sent more than once.

39.2.1.5. Handling Failover With Non Transactional Sessions

If the session is non transactional, messages or acknowledgements can be lost in the event of
failover.

If you wish to provide once and only once delivery guarantees for non transacted sessions too,
enabled duplicate detection, and catch unblock exceptions as described in Section 39.2.1.3,
“Handling Blocking Calls During Failover”

39.2.2. Getting Notified of Connection Failure

JMS provides a standard mechanism for getting notified asynchronously of connection failure:
java. j nms. Excepti onLi st ener. Please consult the JMS javadoc or any good JMS tutorial for
more information on how to use this.

Application-Level Failover

The HornetQ core API also provides a similar feature in the form of the class
org. hornet.core. client. SessionFai | ureLi st ener

Any ExceptionListener or SessionFailureListener instance will always be called by HornetQ on
event of connection failure, irrespective of whether the connection was successfully failed over,
reconnected or reattached, however you can find out if reconnect or reattach has happened by
either the f ai | edOver flag passed in on the connecti onFai | ed on Sessi onf ai | ur eLi st ener or
by inspecting the error code on the j avax. j ns. JMSExcept i on which will be one of the following:

Table 39.1. JMSException error codes

error code Description

FAILOVER Failover has occurred and we have
successfully reattached or reconnected.

DISCONNECT No failover has occurred and we are
disconnected.

39.2.3. Application-Level Failover

In some cases you may not want automatic client failover, and prefer to handle any connection
failure yourself, and code your own manually reconnection logic in your own failure handler. We
define this as application-level failover, since the failover is handled at the user application level.

To implement application-level failover, if you're using JMS then you need to set an
ExceptionLi st ener class on the JMS connection. The Excepti onLi st ener will be called by
HornetQ in the event that connection failure is detected. In your Except i onLi st ener, you would
close your old JMS connections, potentially look up new connection factory instances from JNDI
and creating new connections. In this case you may well be using HA-JNDI [http://www.jboss.org/
community/wiki/JBossHAJNDIImpl] to ensure that the new connection factory is looked up from
a different server.

For a working example of application-level failover, please see Section 11.1.2, “Application-Layer
Failover”.

If you are using the core API, then the procedure is very similar: you would seta Fai | ur eLi st ener
on the core C i ent Sessi on instances.

223

http://www.jboss.org/community/wiki/JBossHAJNDIImpl
http://www.jboss.org/community/wiki/JBossHAJNDIImpl
http://www.jboss.org/community/wiki/JBossHAJNDIImpl

224

Chapter 40.

Libaio Native Libraries

HornetQ distributes a native library, used as a bridge between HornetQ and linux libaio.

l'i bai o is a library, developed as part of the linux kernel project. With | i bai o we submit writes
to the operating system where they are processed asynchronously. Some time later the OS will
call our code back when they have been processed.

We use this in our high performance journal if configured to do so, please see Chapter 15,
Persistence.

These are the native libraries distributed by HornetQ:

* libHornetQAIO32.s0 - x86 32 bits
* libHornetQAIO64.s0 - x86 64 bits

When using libaio, HornetQ will always try loading these files as long as they are on the library
path.

40.1. Compiling the native libraries

In the case that you are using Linux on a platform other than x86_32 or x86_64 (for example
Itanium 64 bits or IBM Power) you may need to compile the native library, since we do not distribute
binaries for those platforms with the release.

40.1.1. Install requirements

@ Note
At the moment the native layer is only available on Linux. If you are in a platform
other than Linux the native compilation will not work

The native library uses autoconf [http://en.wikipedia.org/wiki/Autoconf] what makes the
compilation process easy, however you need to install extra packages as a requirement for
compilation:

e gcc - C Compiler

e gcc-c++ or g++ - Extension to gcc with support for C++

 autoconf - Tool for automating native build process

* make - Plain old make

225

http://en.wikipedia.org/wiki/Autoconf
http://en.wikipedia.org/wiki/Autoconf

Chapter 40. Libaio Native Lib...

« automake - Tool for automating make generation

libtool - Tool for link editing native libraries

libaio - library to disk asynchronous IO kernel functions

libaio-dev - Compilation support for libaio

A full IDK installed with the environment variable JAVA_HOME set to its location

To perform this installation on RHEL or Fedora, you can simply type this at a command line:
sudo yuminstall automake |ibtool autoconf gcc-g++ gcc libaio |ibaio-dev make
Or on debian systems:

sudo apt-get install automake |ibtool autoconf gcc-g++ gcc |ibaio |ibaio-dev make

@ Note
You could find a slight variation of the package names depending on the version
and linux distribution. (for example gcc-c++ on Fedora versus g++ on Debian
systems)

40.1.2. Invoking the compilation

In the distribution, in the nat i ve- sr ¢ directory, execute the shell script boot st r ap. This script will
invoke aut omake and nake what will create all the make files and the native library.

soneUser @oneBox: / nessagi ng-di stri bution/native-src$./bootstrap
checking for a BSD-conpatible install... /usr/bin/install -c
checki ng whether build environnent is sane... yes

checking for a thread-safe nkdir -p... /bin/nkdir -p

configure: creating ./config.status
config.status: creating Makefile
config.status: creating ./src/Makefile
config.status: creating config.h
config.status: config.h is unchanged
config.status: executing depfiles comands
config.status: executing |ibtool conmands

226

Invoking the compilation

The produced library will be at. / nati ve-src/src/.1ibs/|ibHornet QAl O so. Simply move that
file over bi n on the distribution or the place you have chosen on the library path.

If you want to perform changes on the HornetQ libaio code, you could just call make directly at
the nati ve- src directory.

227

228

Chapter 41.

Thread management

This chapter describes how HornetQ uses and pools threads and how you can manage them.

First we'll discuss how threads are managed and used on the server side, then we'll look at the
client side.

41.1. Server-Side Thread Management

Each HornetQ Server maintains a single thread pool for general use, and a scheduled thread pool
for scheduled use. A Java scheduled thread pool cannot be configured to use a standard thread
pool, otherwise we could use a single thread pool for both scheduled and non scheduled activity.

When using old (blocking) 10, a separate thread pool is also used to service connections. Since
old 10 requires a thread per connection it does not make sense to get them from the standard pool
as the pool will easily get exhausted if too many connections are made, resulting in the server
"hanging" since it has no remaining threads to do anything else. If you require the server to handle
many concurrent connections you should make sure you use NIO, not old 10.

When wusing new IO (NIO), HornetQ will, by default, use a number of threads
equal to three times the number of cores (or hyper-threads) as reported by
Runtime.getRuntime().availableProcessors() for processing incoming packets. If you want to
override this value, you can set the number of threads by specifying the parameter ni o- r enot i ng-
t hr eads in the transport configuration. See the Chapter 16, Configuring the Transport for more
information on this.

There are also a small number of other places where threads are used directly, we'll discuss each
in turn.

41.1.1. Server Scheduled Thread Pool

The server scheduled thread pool is used for most activiies on the server
side that require running periodically or with delays. It maps internally to a
java. util.concurrent. Schedul edThr eadPool Execut or instance.

The maximum number of thread used by this pool is configure in hor net g- confi gur ati on. xni
with the schedul ed-t hr ead- pool - max- si ze parameter. The default value is 5 threads. A small
number of threads is usually sufficient for this pool.

41.1.2. General Purpose Server Thread Pool

This general purpose thread pool is used for most asynchronous actions on the server side. It
maps internally to a j ava. uti | . concurrent. Thr eadPool Execut or instance.

The maximum number of thread used by this pool is configure in hor net g- confi gur ati on. xni
with the t hr ead- pool - max- si ze parameter.

229

Chapter 41. Thread management

If a value of - 1 is used this signifies that the thread pool has no upper bound and new threads
will be created on demand if there are not enough threads available to satisfy a request. If activity
later subsides then threads are timed-out and closed.

If a value of n where nis a positive integer greater than zero is used this signifies that the thread
pool is bounded. If more requests come in and there are no free threads in the pool and the pool
is full then requests will block until a thread becomes available. It is recommended that a bounded
thread pool is used with caution since it can lead to dead-lock situations if the upper bound is
chosen to be too low.

The default value for t hr ead- pool - max- si ze is 30.

See the J2SE javadoc [http://java.sun.com/j2se/1.5.0/docs/api/javalutil/concurrent/
ThreadPoolExecutor.html] for more information on unbounded (cached), and bounded (fixed)
thread pools.

41.1.3. Expiry Reaper Thread

A single thread is also used on the server side to scan for expired messages in queues. We cannot
use either of the thread pools for this since this thread needs to run at its own configurable priority.

For more information on configuring the reaper, please see Chapter 22, Message Expiry.

41.1.4. Asynchronous IO

Asynchronous 1O has a thread pool for receiving and dispatching events out of the native layer.
You will find it on a thread dump with the prefix HornetQ-AlO-poller-pool. HornetQ uses one thread
per opened file on the journal (there is usually one).

There is also a single thread used to invoke writes on libaio. We do that to avoid context switching
on libaio that would cause performance issues. You will find this thread on a thread dump with
the prefix HornetQ-AlO-writer-pool.

41.2. Client-Side Thread Management

On the client side, HornetQ maintains a single static scheduled thread pool and a single static
general thread pool for use by all clients using the same classloader in that JVM instance.

The static scheduled thread pool has a maximum size of 5 threads, and the general purpose
thread pool has an unbounded maximum size.

If required HornetQ can also be configured so that each d i ent Sessi onFact ory instance does
not use these static pools but instead maintains its own scheduled and general purpose pool. Any
sessions created from that d i ent Sessi onFact or y will use those pools instead.

To configure a d i ent Sessi onFact or y instance to use its own pools, simply use the appropriate
setter methods immediately after creation, for example:

230

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ThreadPoolExecutor.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ThreadPoolExecutor.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ThreadPoolExecutor.html

Client-Side Thread Management

ServerLocator |ocator = Hornet QClient.createServerLocatorWthout HA(...)
Cl i ent Sessi onFactory myFactory = | ocator.created ientSessi onFactory();
nmyFact ory. set Used obal Pool s(fal se);

nyFact ory. set Schedul edThr eadPool MaxSi ze(10) ;

nyFact ory. set Thr eadPool MaxSi ze(-1);

If you're using the JMS API, you can set the same parameters on the ClientSessionFactory and
use it to create the Connect i onFact or y instance, for example:

Connect i onFact ory nmyConnect i onFact ory =
Hor net QIMSC i ent . cr eat eConnect i onFact ory(myFact ory);

If you're using JNDI to instantiate Hor net QConnect i onFact or y instances, you can also set these
parameters in the hor net g- j ns. xm file where you describe your connection factory, for example:

<connection-factory name="Connecti onFactory">
<connect or s>
<connector-ref connector-nane="netty"/>
</ connect or s>
<entries>
<entry nane="Connecti onFactory"/>
<entry name="XAConnecti onFactory"/>
</entries>
<use- gl obal - pool s>f al se</ use- gl obal - pool s>
<schedul ed-t hr ead- pool - max- si ze>10</ schedul ed-t hr ead- pool - max- si ze>
<t hr ead- pool - nax- si ze>- 1</ t hr ead- pool - nax- si ze>
</ connection-factory>

231

232

Chapter 42.

Logging

HornetQ has its own logging delegate that has no dependencies on any particular logging
framework. The default delegate delegates all its logs to the standard JDK logging [http://
java.sun.com/j2se/1.4.2/docs/guide/util/logging/], (a.k.a Java-Util-Logging: JUL). By default the
server picks up its JUL configuration from a | oggi ng. properties file found in the config
directories. This is configured to use our own HornetQ logging formatter and will log to the console
as well as a log file. For more information on configuring JUL visit Suns website.

You can configure a different Logging Delegate programatically or via a System Property.

To do this programatically simply do the following

org. hornet g. core. | oggi ng. Logger . set Del egat eFact or y(new
Log4j LogDel egat eFactory())

Where Log4j LogDel egat eFact ory is the implementation of
org. hornetq. spi . core. | oggi ng. LogDel egat eFact ory that you would like to use.

To do this via a System Property simply set the property or g. hor net g. | ogger - del egat e-
fact ory- cl ass- nane to the delegate factory being used, i.e.

- Dor g. hor net q. | ogger - del egat e-f act ory-cl ass-
name=or g. hor net g. i nt egrati on. | oggi ng. Log4j LogDel egat eFact ory

As you can see in the above example HornetQ provides some Delegate Factories for your
convenience. these are

1. org.hornetg.core.logging.impl.JULLogDelegateFactory - the default that uses JUL.

2. org.hornetg.integration.logging.Log4jLogDelegateFactory - which uses Log4J

If you configure your client's logging to use the JUL delegate, make sure you provide a
| oggi ng. properties file and set the java.util.logging.config.file property on client
startup

42.1. Logging With The JBoss Application Server

When HornetQ is deployed within the JBoss Application Server version 5.x or above then it will
still use JUL however the logging is redirected to the default JBoss logger. For more information
on this refer to the JBoss documentation. In versions before this you must specify what logger
delegate you want to use.

233

http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/
http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/
http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/

234

Chapter 43.

Embedding HornetQ

HornetQ is designed as set of simple Plain Old Java Objects (POJOs). This means HornetQ can
be instantiated and run in any dependency injection framework such as JBoss Microcontainer,
Spring or Google Guice. It also means that if you have an application that could use messaging
functionality internally, then it can directly instantiate HornetQ clients and servers in its own
application code to perform that functionality. We call this embedding HornetQ.

Examples of applications that might want to do this include any application that needs very high
performance, transactional, persistent messaging but doesn't want the hassle of writing it all from
scratch.

Embedding HornetQ can be done in very few easy steps. Instantiate the configuration object,
instantiate the server, start it, and you have a HornetQ running in your virtual machine. It's as
simple and easy as that.

43.1. Simple Config File Embedding

The simplest way to embed HornetQ is to use the embedded wrapper classes and configure
HornetQ through its configuration files. There are two different helper classes for this depending
on whether your using the HornetQ Core API or JMS.

43.1.1. Core API Only

For instantiating a core HornetQ Server only, the steps are pretty simple. The example requires
that you have defined a configuration file hor net g- conf i gur ati on. xn in your classpath:

i nport org. hornetq.core. server. enbedded. EnbeddedHor net Q

EnbeddedHor net Q enbedded = new EnbeddedHor net Q() ;
enbedded. start ();

Cli ent Sessi onFactory nettyFactory = HornetQdient.createC ientSessionFactory(
new Transport Confi gurati on(
I nVMConnect or Fact ory. cl ass. get Nane()));
Cl i ent Sessi on session = factory. createSession();
sessi on. cr eat eQueue(" exanpl e", "exanple", true);

Cl i ent Producer producer = session.createProducer("exanple");

Cli ent Message nmessage = session. creat eMessage(true);

235

Chapter 43. Embedding HornetQ

nmessage. get Body().witeString("Hello");

pr oducer . send(nessage) ;

session.start();

Cl i ent Consuner consuner = session. cr eat eConsuner ("exanpl e");

Cli ent Message nmsgRecei ved = consuner.receive();

Systemout. println("nessage = " + nsgReceived. get Body().readString());

session. cl ose();

The EnbeddedHornetQ class has a few additional setter nethods that allow you

to specify a different config file nane as well as other properties. See the
javadocs for this class for nore details.

43.1.2. IMS API

JMS embedding is simple as well. This example requires that you have defined the config
files hor net g- confi gurati on. xn , hornetqg-j ns. xnl , and a hor net g- users. xnl if you have
security enabled. Let's also assume that a queue and connection factory has been defined in the
hornet g-j ms. xm config file.

i mport org.hornetq.jns.server. enbedded. EnbeddedJMS;

EnmbeddedJMS j ns = new EnbeddedJMS() ;
jms.start();

/1 This assunes we have configured hornetqg-jns.xm with the appropriate config
i nformati on

Connect i onFactory connecti onFactory = jmns. | ookup("Connecti onFactory");

Destinati on destination = jms.| ookup("/exanpl e/ queue");

regul ar JMS code ...

By default, the EnbeddedJMS cl ass wi || store conmponent entries defined wthin your
hornetqg-jms.xm file in an internal concurrent hash map. The EnbeddedJMS. | ookup()
nmet hod returns conponents stored in this map. If you want to use JNDI, call
the EnbeddedJMs. set Context() nethod with the root JNDI context you want your

236

POJO instantiation - Embedding Programmatically

conmponents bound into. See the javadocs for this class for nore details on other
config options.

43.2. POJO instantiation - Embedding Programmatically

You can follow this step-by-step guide to programmatically embed the core, non-JMS HornetQ
Server instance:

Create the configuration object - this contains configuration information for a HornetQ instance.
The setter methods of this class allow you to programmitcally set configuration options as describe
in the Section 48.1, “Server Configuration” section.

The acceptors are configured through Conf i gur ati onl npl . Just add the Net t yAccept or Fact ory
on the transports the same way you would through the main configuration file.

i mport org. hornetq.core. config. Configuration;
i mport org. hornetq.core.config.inpl.Configurationlnpl;

Configuration config = new Configurationlnpl();
HashSet <Tr ansport Confi gurati on> transports = new
HashSet <Tr ansport Confi gurati on>();

transports. add(new

Transport Confi gurati on(NettyAcceptorFactory. cl ass. get Nane()));
transports. add(new

Transport Confi guration(l nVMAccept or Fact ory. cl ass. get Narme()));

config.set Acceptor Configurations(transports);
You need to instantiate an instance of

org. hornet g. api . cor e. server. enbedded. EnbeddedHor net Qand add the configuration object
to it.

i mport org. hornetq.api.core.server. HornetQ
i mport org. hornetq. core. server. enbedded. EnbeddedHor net Q

EnbeddedHor net Q server = new EnbeddedHor net Q) ;
server. set Configuration(config);

server.start();

237

Chapter 43. Embedding HornetQ

You also have the option of instantiating Hor net QSer ver | npl directly:

Hor net QServer server =
new Hor net QSer ver | npl (confi g);
server.start();

For JMS POJO instantiation, you work with the EmbeddedJMS class instead as described earlier.
First you define the configuration programmatically for your ConnectionFactory and Destination
objects, then set the JmsConfiguration property of the EmbeddedJMS class. Here is an example
of this:

// Step 1. Create HornetQ core configuration, and set the properties accordingly
Configuration configuration = new Configurationlnpl();
configuration. set Persi stenceEnabl ed(fal se);
configuration. setSecurityEnabl ed(fal se);
configuration. get Accept or Confi gurati ons()
.add(new Transport Confi gurati on(NettyAcceptorFactory.class. getNane()));

/Il Step 2. Create the JMS configuration
JMsConfiguration jnmsConfig = new JMSConfi gurationl npl ();

/1 Step 3. Configure the JM5 ConnectionFactory

Transport Confi guration connect or Confi g = new
Transport Confi gurati on(NettyConnect or Factory. cl ass. get Nane());
Connect i onFact or yConfi gurati on cfConfig = new

Connect i onFact oryConfi gurationlnpl ("cf", connectorConfig, "/cf");
j meConfi g. get Connecti onFact oryConfi gurati ons().add(cf Config);

/1 Step 4. Configure the JM5 Queue

JMsQueueConfigurati on queueConfig = new JMSQueueConfigurationlnpl ("queuel”,
null, false, "/queue/queuel");

j msConfi g. get QueueConfi gurati ons().add(queueConfi g);

I/l Step 5. Start the JM5 Server using the HornetQ core server and the JMS
configuration

EnbeddedJMS j nsServer = new EnbeddedIMS();

jmsServer. set Configuration(configuration);

j msServer. set JnsConfi guration(j msConfig);

jmeServer.start();

Please see Section 11.1.20, “Embedded” for an example which shows how to setup and run
HornetQ embedded with JMS.

238

Dependency Frameworks

43.3. Dependency Frameworks

You may also choose to use a dependency injection framework such as JBoss Micro Container™
or Spring Framework™. See Chapter 44, Spring Integration for more details on Spring and
HornetQ, but here's how you would do things with the JBoss Micro Contaier.

HornetQ standalone wuses JBoss Micro Container as the injection framework.
Hor net QBoot st r apSer ver and hor net g- beans. xml which are part of the HornetQ distribution
provide a very complete implementation of what's needed to bootstrap the server using JBoss
Micro Container.

When using JBoss Micro Container, you need to provide an XML file declaring the Hor net QSer ver
and Confi gurati on object, you can also inject a security manager and a MBean server if you
want, but those are optional.

A very basic XML Bean declaration for the JBoss Micro Container would be:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<depl oynment xm ns="urn:j boss: bean- depl oyer: 2. 0" >

<l-- The core configuration -->
<bean nane="Confi guration"

cl ass="org. hornetq. core.config.inpl.FileConfiguration">
</ bean>

<!-- The core server -->
<bean nane="Hor net Server"
cl ass="org. hornet g. core. server.inpl. Hor net QServer | nmpl ">
<constructor>
<par anet er >
<i nj ect bean="Configuration"/>
</ par anet er >
</ constructor>
</ bean>
</ depl oyment >

Hor net QBoot st r apSer ver provides an easy encapsulation of JBoss Micro Container.

Hor net QBoot strapServer bootStrap =
new Hor net QBoot strapServer (new String[] {"hornetqg-beans.xm "});
boot St rap. run(

239

240

Chapter 44.

Spring Integration

HornetQ provides a simple bootstrap class,
org. hornetq.integration. spring. Spri ngJnsBoot st rap, for integration with Spring. To use
it, you configure HornetQ as you always would, through its various configuration files like
hor net g- confi guration. xnl , hornet g-j ns. xm , and hor net g- user s. xn . The Spring helper
class starts the HornetQ server and adds any factories or destinations configured within hor net g-
jms. xm directly into the namespace of the Spring context. Let's take this hor net g-j ns. xni file
for instance:

<configuration xm ns="urn: hornetq"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="urn: hornet q / schena/ hor net g-j ns. xsd" >
<l--the connection factory used by the exanple-->
<connection-factory name="Connecti onFactory">
<connect or s>
<connector-ref connector-nane="in-vni'/>
</ connect or s>
<entries>
<entry nane="Connecti onFactory"/>
</entries>
</ connection-factory>

<!--the queue used by the exanple-->
<queue nane="exanpl eQueue" >

<entry nane="/queue/ exanpl eQueue"/ >
</ queue>

</ confi guration>

Here we've specified aj avax. j ns. Connect i onFact or y we want bound to a Connect i onFact ory
entry as well as a queue destination bound to a /queue/ exanpl eQueue entry. Using the
Spri ngJnsBoot St r ap bean will automatically populate the Spring context with references to those
beans so that you can use them. Below is an example Spring JMS bean file taking advantage
of this feature:

<beans xm ns="http://ww. spri ngfranework. org/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schema/ beans
http: //ww. spri ngfranewor k. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd" >

<bean i d="EnbeddedJns"
cl ass="org. hornetq.integration.spring. SpringJnsBootstrap" init-method="start"/
>

241

Chapter 44. Spring Integration

<bean id="1istener"
cl ass="org. hornetq.tests.integration.spring. Exanpl eLi stener"/>

<bean i d="1i st ener Cont ai ner"
cl ass="org. springframework. jms.|istener. Defaul t MessagelLi st ener Cont ai ner" >
<property nanme="connectionFactory" ref="ConnectionFactory"/>
<property nanme="destination" ref="/queuel/ exanpl eQueue"/ >
<property name="nessagelLi stener" ref="|istener"/>
</ bean>

</ beans>

As you can see, the |istenerContainer bean references the components defined in the
hornet g-j ms. xm file. The Spri ngJnmsBoot st r ap class extends the EmbeddedJMS class talked
about in Section 43.1.2, “JMS API” and the same defaults and configuration options apply. Also
notice that an i ni t - met hod must be declared with a start value so that the bean's lifecycle is
executed. See the javadocs for more details on other properties of the bean class.

242

Chapter 45.

Intercepting Operations

HornetQ supports interceptors to intercept packets entering the server. Any supplied interceptors
would be called for any packet entering the server, this allows custom code to be executed, e.g.
for auditing packets, filtering or other reasons. Interceptors can change the packets they intercept.

45.1. Implementing The Interceptors

A interceptor must implement the I nt erceptor interface:

package org. hornetq. api.core.interceptor;

public interface Interceptor

{

bool ean i ntercept (Packet packet, RenotingConnection connection)
t hrows Hor net QExcepti on;

The returned boolean value is important:

« iftrue is returned, the process continues normally

« if f al se is returned, the process is aborted, no other interceptors will be called and the packet
will not be handled by the server at all.

45.2. Configuring The Interceptors

The interceptors are configured in hor net g- conf i gur ati on. xm :

<renoting-interceptors>
<cl ass- nane>or g. hor net g. j ns. exanpl e. Logi nl nt er cept or </ ¢l ass- nane>
<cl ass- nane>or g. hor net g. j ns. exanpl e. Addi ti onal Propertyl nt erceptor</cl ass-
name>
</renoting-interceptors>

The interceptors classes (and their dependencies) must be added to the server classpath to be
properly instantiated and called.

243

Chapter 45. Intercepting Oper...

45.3. Interceptors on the Client Side

The interceptors can also be run on the client side to intercept packets sent by the server by
adding the interceptor to the C i ent Sessi onFact ory with the addl nt er cept or () method.

The interceptors classes (and their dependencies) must be added to the client classpath to be
properly instantiated and called from the client side.

45.4. Example

See Section 11.1.26, “Interceptor” for an example which shows how to use interceptors to add
properties to a message on the server.

244

Chapter 46.

Interoperability

46.1. Stomp

Stomp [http://stomp.codehaus.org/] is a text-orientated wire protocol that allows Stomp clients to
communicate with Stomp Brokers. HornetQ now supports both Stomp 1.0 and Stomp 1.1.

Stomp clients [http://stomp.codehaus.org/Clients] are available for several languages and
platforms making it a good choice for interoperability.

46.1.1. Native Stomp support

HornetQ provides native support for Stomp. To be able to send and receive Stomp messages,
you must configure a Net t yAccept or with a pr ot ocol parameter set to st onp:

<accept or nanme="st onp-acceptor">
<factory-class>org. hornetq. core.renoting.inpl.netty. NettyAcceptorFactory</
factory-cl ass>
<param key="protocol " val ue="stonp"/>
<param key="port" val ue="61613"/>
</ accept or >

With this configuration, HornetQ will accept Stomp connections on the port 61613 (which is the
default port of the Stomp brokers).

See the st onmp example which shows how to configure a HornetQ server with Stomp.

46.1.1.1. Limitations

Message acknowledgements are not transactional. The ACK frame can not be part of a transaction
(it will be ignored if its t r ansact i on header is set).

46.1.1.2. Stomp 1.1 Notes

46.1.1.2.1. Virtual Hosting

HornetQ currently doesn't support virtual hosting, which means the 'host' header in CONNECT
fram will be ignored.

46.1.1.2.2. Heart-beating

HornetQ specifies a minimum value for both client and server heart-beat intervals. The minimum
interval for both client and server heartbeats is 500 milliseconds. That means if a client sends a
CONNECT frame with heartbeat values lower than 500, the server will defaults the value to 500
milliseconds regardless the values of the 'heart-beat' header in the frame.

245

http://stomp.codehaus.org/
http://stomp.codehaus.org/
http://stomp.codehaus.org/Clients
http://stomp.codehaus.org/Clients

Chapter 46. Interoperability

46.1.2. Mapping Stomp destinations to HornetQ addresses and
queues

Stomp clients deals with destinations when sending messages and subscribing. Destination
names are simply strings which are mapped to some form of destination on the server - how the
server translates these is left to the server implementation.

In HornetQ, these destinations are mapped to addresses and queues. When a Stomp client sends
a message (using a SEND frame), the specified destination is mapped to an address. When a
Stomp client subscribes (or unsubscribes) for a destination (using a SUBSCRI BE or UNSUBSCRI BE
frame), the destination is mapped to a HornetQ queue.

46.1.3. STOMP and connection-ttl

Well behaved STOMP clients will always send a DISCONNECT frame before closing their
connections. In this case the server will clear up any server side resources such as sessions and
consumers synchronously. However if STOMP clients exit without sending a DISCONNECT frame
or if they crash the server will have no way of knowing immediately whether the client is still alive
or not. STOMP connections therefore default to a connection-ttl value of 1 minute (see chapter on
connection-ttl for more information. This value can be overridden using connection-ttl-override.

If you need a specific connection-ttl for your stomp connections without affecting the connection-
ttl-override setting, you can configure your stomp acceptor with the "connection-ttl" property, which
is used to set the ttl for connections that are created from that acceptor. For example:

<accept or nanme="st onp-acceptor">
<factory-cl ass>org. hornetq. core.renoting.inpl.netty. NettyAcceptorFactory</
factory-cl ass>

<par am key="protocol " val ue="stonp"/>
<param key="port" val ue="61613"/>
<par am key="connection-ttl" val ue="20000"/>

</ accept or >

The above configuration will make sure that any stomp connection that is created from that
acceptor will have its connection-ttl set to 20 seconds.

@ Note
Please note that the STOMP protocol version 1.0 does not contain any heartbeat
frame. It is therefore the user's responsibility to make sure data is sent within
connection-ttl or the server will assume the client is dead and clean up server side
resources. With Stonp 1.1 users can use heart-beats to maintain the life cycle
of stomp connections.

246

Stomp and JMS interoperabilty

46.1.4. Stomp and JMS interoperabilty

46.1.4.1. Using JMS destinations

As explained in Chapter 9, Mapping JMS Concepts to the Core API, JMS destinations are also
mapped to HornetQ addresses and queues. If you want to use Stomp to send messages to JIMS
destinations, the Stomp destinations must follow the same convention:

» send or subscribe to a JMS Queue by prepending the queue name by j ms. queue. .

For example, to send a message to the or der s JMS Queue, the Stomp client must send the
frame:

SEND
destination:j ns. queue. orders

hel | o queue orders
@

» send or subscribe to a JMS Topic by prepending the topic name by j ms. t opi c. .

For example to subscribe to the st ocks JMS Topic, the Stomp client must send the frame:

SUBSCRI BE
destination:jmns.topic.stocks

"@

46.1.4.2. Sending and consuming Stomp message from JMS or
HornetQ Core API

Stomp is mainly a text-orientated protocol. To make it simpler to interoperate with JMS and
HornetQ Core API, our Stomp implementation checks for presence of the cont ent - | engt h header
to decide how to map a Stomp message to a JMS Message or a Core message.

If the Stomp message does not have a cont ent -1 engt h header, it will be mapped to a JMS
TextMessage or a Core message with a single nullable SimpleString in the body buffer.

Alternatively, if the Stomp message has a cont ent - | engt h header, it will be mapped to a IMS
BytesMessage or a Core message with a byte[] in the body buffer.

247

Chapter 46. Interoperability

The same logic applies when mapping a JMS message or a Core message to Stomp. A Stomp
client can check the presence of the content-1ength header to determine the type of the
message body (String or bytes).

46.1.4.3. Message IDs for Stomp messages

When receiving Stomp messages via a JMS consumer or a QueueBrowser, the messages have no
properties like IMSMessagelD by default. However this may bring some inconvenience to clients
who wants an ID for their purpose. HornetQ Stomp provides a parameter to enable message ID
on each incoming Stomp message. If you want each Stomp message to have a unique ID, just
set the st onp- enabl e- message- i d to true. For example:

<accept or nanme="st onp-acceptor">
<factory-cl ass>org. hornetq. core.renoting.inpl.netty. NettyAcceptorFactory</
factory-cl ass>
<par am key="protocol " val ue="stonp"/>
<param key="port" val ue="61613"/>
<par am key="st onp- enabl e- message-i d* value="true"/>
</ accept or >

When the server starts with the above setting, each stomp message sent through this acceptor
will have an extra property added. The property key is hg- message- i d and the value is a String
representation of a long type internal message id prefixed with "STOWP", like:

hg- nessage-id : STOW12345

If st onp- enabl e- nessage- i d is not specified in the configuration, default is f al se.

46.1.5. Stomp Over Web Sockets

HornetQ also support Stomp over Web Sockets [http://dev.w3.org/htmI5/websockets/]. Modern
web browser which support Web Sockets can send and receive Stomp messages from HornetQ.

To enable Stomp over Web Sockets, you must configure a Nett yAccept or with a pr ot ocol
parameter set to st onp_ws:

<accept or nanme="st onp-ws- accept or">
<factory-cl ass>org. hornetq. core.renoting.inpl.netty. NettyAcceptorFact ory</
factory-cl ass>
<par am key="protocol " val ue="stonmp_ws"/>
<param key="port" val ue="61614"/ >

248

http://dev.w3.org/html5/websockets/
http://dev.w3.org/html5/websockets/

StompConnect

</ accept or >

With this configuration, HornetQ will accept Stomp connections over Web Sockets on the port
61614 with the URL path /st onp. Web browser can then connect to ws: // <server >: 61614/
st onp using a Web Socket to send and receive Stomp messages.

A companion JavaScript library to ease client-side development is available from GitHub [http://
github.com/jmesnil/stomp-websocket] (please see its documentation [http://jmesnil.net/stomp-
websocket/doc/] for a complete description).

The st onp- websocket s example shows how to configure HornetQ server to have web browsers
and Java applications exchanges messages on a JMS topic.

46.1.6. StompConnect

StompConnect [http://stomp.codehaus.org/StompConnect] is a server that can act as a
Stomp broker and proxy the Stomp protocol to the standard JMS API. Consequently, using
StompConnect it is possible to turn HornetQ into a Stomp Broker and use any of the available
stomp clients. These include clients written in C, C++, c# and .net etc.

To run StompConnect first start the HornetQ server and make sure that it is using JNDI.

Stomp requires the file j ndi . properties to be available on the classpath. This should look
something like:

java. nam ng.factory.initial=org.jnp.interfaces. Nam ngCont ext Factory
j ava. nam ng. provi der. url =jnp:/ /| ocal host: 1099
java. nam ng. factory. url . pkgs=org.jboss. nam ng: org. j np.interfaces

Make sure this file is in the classpath along with the StompConnect jar and the HornetQ jars and
simply run j ava org. codehaus. st onp. j ns. Mai n.

46.2. REST

REST support coming soon!

46.3. AMQP

AMQP support coming soon!

249

http://github.com/jmesnil/stomp-websocket
http://github.com/jmesnil/stomp-websocket
http://github.com/jmesnil/stomp-websocket
http://jmesnil.net/stomp-websocket/doc/
http://jmesnil.net/stomp-websocket/doc/
http://jmesnil.net/stomp-websocket/doc/
http://stomp.codehaus.org/StompConnect
http://stomp.codehaus.org/StompConnect

250

Chapter 47.

Performance Tuning

In this chapter we'll discuss how to tune HornetQ for optimum performance.

47.1. Tuning persistence

« Put the message journal on its own physical volume. If the disk is shared with other processes
e.g. transaction co-ordinator, database or other journals which are also reading and writing from
it, then this may greatly reduce performance since the disk head may be skipping all over the
place between the different files. One of the advantages of an append only journal is that disk
head movement is minimised - this advantage is destroyed if the disk is shared. If you're using
paging or large messages make sure they're ideally put on separate volumes too.

e Minimum number of journal files. Set j ournal - i n-fil es to a number of files that would fit
your average sustainable rate. If you see new files being created on the journal data directory
too often, i.e. lots of data is being persisted, you need to increase the minimal number of files,
this way the journal would reuse more files instead of creating new data files.

» Journal file size. The journal file size should be aligned to the capacity of a cylinder on the disk.
The default value 10MiB should be enough on most systems.

« Use AIO journal. If using Linux, try to keep your journal type as AlO. AIO will scale better than
Java NIO.

e Tunejournal - buf fer-ti meout . The timeout can be increased to increase throughput at the
expense of latency.

« If you're running AlO you might be able to get some better performance by increasing j our nal -
max-i 0. DO NOT change this parameter if you are running NIO.

47.2. Tuning JMS

There are a few areas where some tweaks can be done if you are using the JMS API

» Disable message id. Use the set Di sabl eMessagel D() method on the MessagePr oducer class
to disable message ids if you don't need them. This decreases the size of the message and
also avoids the overhead of creating a unique ID.

« Disable message timestamp. Use the set Di sabl eMessageTi neStanp() method on the
MessagePr oducer class to disable message timestamps if you don't need them.

* Avoid Obj ect Message. Obj ect Message IS convenient but it comes at a cost. The body of a
Obj ect Message uses Java serialization to serialize it to bytes. The Java serialized form of even
small objects is very verbose so takes up a lot of space on the wire, also Java serialization is
slow compared to custom marshalling techniques. Only use Coj ect Message if you really can't

251

Chapter 47. Performance Tuning

use one of the other message types, i.e. if you really don't know the type of the payload until
run-time.

« Avoid AUTO ACKNOWLEDGE. AUTO_ACKNOW.EDGE mode requires an acknowledgement to be sent
from the server for each message received on the client, this means more traffic on the network.
If you can, use DUPS_OK_ACKNOWLEDGE or use CLI ENT_ACKNOW.EDGE or a transacted session
and batch up many acknowledgements with one acknowledge/commit.

« Avoid durable messages. By default IMS messages are durable. If you don't really need durable
messages then set them to be non-durable. Durable messages incur a lot more overhead in
persisting them to storage.

» Batch many sends or acknowledgements in a single transaction. HornetQ will only require a
network round trip on the commit, not on every send or acknowledgement.

47.3. Other Tunings

There are various other places in HornetQ where we can perform some tuning:

e Use Asynchronous Send Acknowledgements. If you need to send durable messages non
transactionally and you need a guarantee that they have reached the server by the time the call
to send() returns, don't set durable messages to be sent blocking, instead use asynchronous
send acknowledgements to get your acknowledgements of send back in a separate stream,
see Chapter 20, Guarantees of sends and commits for more information on this.

* Use pre-acknowledge mode. With pre-acknowledge mode, messages are acknowledged
bef or e they are sent to the client. This reduces the amount of acknowledgement traffic on the
wire. For more information on this, see Chapter 29, Pre-Acknowledge Mode.

» Disable security. You may get a small performance boost by disabling security by setting the
security-enabl ed parameter to f al se in hor net g- confi gurati on. xmi .

« Disable persistence. If you don't need message persistence, turn it off altogether by setting
per si st ence- enabl ed to false in hor net g- confi gurati on. xm .

e Sync transactions lazily. Setting journal -sync-transactional to false in hornetg-
confi guration. xnl can give you better transactional persistent performance at the expense
of some possibility of loss of transactions on failure. See Chapter 20, Guarantees of sends and
commits for more information.

e Sync non transactional lazily. Setting journal -sync-non-transactional to false in
hornet g-confi gurati on. xml can give you better non-transactional persistent performance
at the expense of some possibility of loss of durable messages on failure. See Chapter 20,
Guarantees of sends and commits for more information.

» Send messages non blocking. Setting bl ock- on- dur abl e- send and bl ock- on- non- dur abl e-
send to false in hornetqg-jms.xn (if you're using JMS and JNDI) or directly on the

252

Tuning Transport Settings

ClientSessionFactory. This means you don't have to wait a whole network round trip for every
message sent. See Chapter 20, Guarantees of sends and commits for more information.

« If you have very fast consumers, you can increase consumer-window-size. This effectively
disables consumer flow control.

» Socket NIO vs Socket Old I10. By default HornetQ uses old (blocking) on the server and the client
side (see the chapter on configuring transports for more information Chapter 16, Configuring
the Transport). NIO is much more scalable but can give you some latency hit compared to old
blocking 10. If you need to be able to service many thousands of connections on the server, then
you should make sure you're using NIO on the server. However, if don't expect many thousands
of connections on the server you can keep the server acceptors using old 10, and might get a
small performance advantage.

* Use the core API not JMS. Using the JMS API you will have slightly lower performance than
using the core API, since all JIMS operations need to be translated into core operations before
the server can handle them. If using the core API try to use methods that take Si npl eStri ng
as much as possible. Si npl eSt ri ng, unlike java.lang.String does not require copying before
it is written to the wire, so if you re-use Si npl eSt ri ng instances between calls then you can
avoid some unnecessary copying.

47.4. Tuning Transport Settings

« TCP buffer sizes. If you have a fast network and fast machines you may get a performance
boost by increasing the TCP send and receive buffer sizes. See the Chapter 16, Configuring
the Transport for more information on this.

E] Note
Note that some operating systems like later versions of Linux include TCP auto-
tuning and setting TCP buffer sizes manually can prevent auto-tune from working
and actually give you worse performance!

 Increase limit on file handles on the server. If you expect a lot of concurrent connections on
your servers, or if clients are rapidly opening and closing connections, you should make sure
the user running the server has permission to create sufficient file handles.

This varies from operating system to operating system. On Linux systems you can increase
the number of allowable open file handles in the file / et c/security/linits.conf e.g. add
the lines

serveruser sof t nofile 20000
serveruser har d nofile 20000

253

Chapter 47. Performance Tuning

This would allow up to 20000 file handles to be open by the user ser ver user.

e Use batch-delay and set direct-deliver to false for the best throughput for
very small messages. HornetQ comes with a preconfigured connector/acceptor pair
(netty-throughput) in hornetg-configuration.xmi and JMS connection factory
(Thr oughput Connect i onFact ory) in hor net g- j ns. xnm which can be used to give the very best
throughput, especially for small messages. See the Chapter 16, Configuring the Transport for
more information on this.

47.5. Tuning the VM

We highly recommend you use the latest Java JVM for the best performance. We test internally
using the Sun JVM, so some of these tunings won't apply to JDKs from other providers (e.g. IBM
or JRockit)

« Garbage collection. For smooth server operation we recommend using a parallel garbage
collection algorithm, e.g. using the JVM argument - XX: +UsePar al | el GC on Sun JDKSs.

* Memory settings. Give as much memory as you can to the server. HornetQ can run in low
memory by using paging (described in Chapter 24, Paging) but if it can run with all queues
in RAM this will improve performance. The amount of memory you require will depend on the
size and number of your queues and the size and number of your messages. Use the JVM
arguments - Xns and - Xnx to set server available RAM. We recommend setting them to the
same high value.

« Aggressive options. Different JVMs provide different sets of JVM tuning parameters, for
the Sun Hotspot JVM the full list of options is available here [http://java.sun.com/javase/
technologies/hotspot/vmoptions.jsp]. We recommend at least using - XX: +Aggr essi veOpt s and
- XX: +UseFast Accessor Met hods. You may get some mileage with the other tuning parameters
depending on your OS platform and application usage patterns.

47.6. Avoiding Anti-Patterns

* Re-use connections / sessions / consumers / producers. Probably the most common messaging
anti-pattern we see is users who create a new connection/session/producer for every message
they send or every message they consume. This is a poor use of resources. These objects take
time to create and may involve several network round trips. Always re-use them.

E] Note
Some popular libraries such as the Spring JMS Template are known to use
these anti-patterns. If you're using Spring JMS Template and you're getting poor

254

http://java.sun.com/javase/technologies/hotspot/vmoptions.jsp
http://java.sun.com/javase/technologies/hotspot/vmoptions.jsp
http://java.sun.com/javase/technologies/hotspot/vmoptions.jsp

Avoiding Anti-Patterns

performance you know why. Don't blame HornetQ! The Spring JMS Template
can only safely be used in an app server which caches JMS sessions (e.g.
using JCA), and only then for sending messages. It cannot be safely be used for
synchronously consuming messages, even in an app server.

« Avoid fat messages. Verbose formats such as XML take up a lot of space on the wire and
performance will suffer as result. Avoid XML in message bodies if you can.

« Don't create temporary queues for each request. This common anti-pattern involves the
temporary queue request-response pattern. With the temporary queue request-response
pattern a message is sent to a target and a reply-to header is set with the address of a local
temporary queue. When the recipient receives the message they process it then send back a
response to the address specified in the reply-to. A common mistake made with this pattern is to
create a new temporary queue on each message sent. This will drastically reduce performance.
Instead the temporary queue should be re-used for many requests.

« Don't use Message-Driven Beans for the sake of it. As soon as you start using MDBs you
are greatly increasing the codepath for each message received compared to a straightforward
message consumer, since a lot of extra application server code is executed. Ask yourself do you
really need MDBs? Can you accomplish the same task using just a normal message consumer?

255

256

Chapter 48.

Configuration Reference

This section is a quick index for looking up configuration. Click on the element name to go to the

specific chapter.

48.1. Server Configuration

48.1.1. hornetg-configuration.xml

This is the main core server configuration file.

Table 48.1. Server Configuration

Element Name

allow-failback

Element Type

Boolean

Description

Will this server
automatically
shutdown if the
original live server
comes back up

Default

false

backup

Boolean

Is this server a backup
server

false

bindings-directory

String

the directory to store
the persisted bindings
to

data/bindings

clustered

connection-ttl-
override

Boolean

Long

true means that the
server is clustered

if set, this will override
how long (in ms)
to keep a connection
alive without receiving

a ping.

false

create-bindings-dir

create-journal-dir

Boolean

Boolean

true means that the
server will create the
bindings directory on
start up

true means that the
journal directory will
be created

true

true

Continued..

257

Chapter 48. Configuration Ref...

file-deployment-
enabled

failover-on-shutdown

id-cache-size

Boolean

Boolean

Integer

true means that
the server will load
configuration from the
configuration files

Will this backup server
come live on a normal
server shutdown

the size of the
cache for pre creating
message id's

true

false

2000

journal-buffer-size

journal-buffer-timeout

Long

Long

The size of the internal
buffer on the journal.

The timeout (in
nanoseconds) used to
flush internal buffers
on the journal.

128 KiB

20000

journal-compact-min-
files

journal-compact-
percentage

Integer

Integer

The minimal number
of data files before we
can start compacting

The percentage of live
data on which we
consider compacting
the journal

10

30

journal-directory

String

the directory to store
the journal files in

data/journal

journal-file-size

journal-max-io

Long

Integer

the size (in bytes) of
each journal file

the maximum number
of write requests that
can be in the AIO
gueue at any one time

10 * 1024 * 1024 (10
MiB)
500

journal-min-files

Integer

how many journal files
to pre-create

journal-sync-
transactional

journal-sync-non-
transactional

Boolean

Boolean

if true wait for
transaction data to
be synchronized to
the journal before
returning response to
client

if true wait for
non transaction data

true

true

258

hornetg-configuration.xml

journal-type

ASYNCIO|NIO

to be synced to
the journal before
returning response to
client.

the type of journal to
use

ASYNCIO

jmx-management-
enabled

Boolean

true means that the
management API is
available via IMX

true

jmx-domain

String

the JMX domain
used to registered
HornetQ MBeans in
the MBeanServer

org.hornetq

log-delegate-factory-
class-name

large-messages-
directory

management-address

String

String

String

todo

the directory to store
large messages

the name of the
management address
to send management
messages to

todo

data/largemessages

jms.queue.hornetg.management

cluster-user

String

the wuser used by
cluster connections
to communicate
between the clustered
nodes

HORNETQ.CLUSTER.ADMIN.USER

cluster-password

management-
notification-address

message-counter-
enabled

String

String

Boolean

the password used
by cluster connections
to communicate
between the clustered
nodes

the name of
the address that
consumers bind to
receive management
notifications

true means that
message counters are
enabled

CHANGE ME!

hornetq.notifications

false

259

Chapter 48. Configuration Ref...

message-counter- Integer how many days 10
max-day-history to keep message
counter history
message-counter- Long the sample period 10000
sample-period (in ms) to use for
message counters
message-expiry- Long how often (in ms) 30000
scan-period to scan for expired
messages
message-expiry- Integer the priority of 3
thread-priority the thread expiring
messages
paging-directory String the directory to store data/paging
paged messages in
persist-delivery- Boolean true means that false
count-before-delivery the delivery count
is persisted before
delivery. False means
that this only happens
after a message has
been cancelled.
persistence-enabled Boolean true means that the true
server will use the
file based journal for
persistence.
persist-id-cache Boolean true means that id's true
are persisted to the
journal
remoting-interceptors todo todo todo
shared-store Boolean is this server using false
a shared store for
failover
scheduled-thread- Integer the number of 5
pool-max-size threads that the main
scheduled thread pool
has.
security-enabled Boolean true means that true
security is enabled
security-invalidation- Long how long (in 10000
interval ms) to wait

260

hornetg-configuration.xml

thread-pool-max-size

Integer

before invalidating the
security cache

the number of threads
that the main thread
pool has. -1 means no
limit

async-connection-
execution-enabled

transaction-timeout

Boolean

Long

Should incoming
packets on the server
be handed off to a
thread from the thread
pool for processing
or should they be
handled on the
remoting thread?

how long (in ms)
before a transaction
can be removed from
the resource manager
after create time

true

60000

transaction-timeout-

scan-period

Long

how often (in ms)
to scan for timeout
transactions

1000

wild-card-routing-
enabled

memory-measure-
interval

Boolean

Long

true means that the
server supports wild
card routing

frequency to sample
JVM memory in ms (or
-1 to disable memory
sampling)

true

memory-warning-
threshold

Integer

Percentage of
available memory
which threshold a
warning log

25

connectors

connector.name
(attribute)

connector.factory-
class

Connector

String

String

a list of remoting
connectors
configurations to
create

Name of the
connector -
mandatory

Name of the
ConnectorFactory

261

Chapter 48. Configuration Ref...

implementation -

mandatory
connector.param A connector A key-value pair
configuration used to configure
parameter the connector. A
connector can have
many param
connector.param.key String Key of a configuration
(attribute) parameter -
mandatory
connector.param.value String Value of a
(attribute) configuration
parameter -
mandatory
acceptors Acceptor a list of remoting
acceptors to create
acceptor.name String Name of the acceptor
(attribute) - optional
acceptor.factory-class String Name of the
AcceptorFactory
implementation -
mandatory
acceptor.param An acceptor A key-value pair
configuration used to configure the
parameter acceptor. An acceptor
can have many param
acceptor.param.key String Key of a configuration
(attribute) parameter -
mandatory
acceptor.param.value String Value of a
(attribute) configuration
parameter -
mandatory
broadcast-groups BroadcastGroup a list of broadcast
groups to create
broadcast- String a unigue name for
group.name (attribute) the broadcast group -
mandatory
broadcast- String local bind address that wildcard IP address
group.local-bind- the datagram socketis chosen by the kernel
address bound to

262

hornetg-configuration.xml

broadcast- Integer local port to which -1 (anonymous port)
group.local-bind-port the datagram socket is
bound to
broadcast- String multicast address to
group.group-address which the data
will be broadcast -
mandatory
broadcast- Integer UDP port number
group.group-port used for broadcasting
- mandatory
broadcast- Long period in milliseconds 2000 (in milliseconds)
group.broadcast- between consecutive
period broadcasts
broadcast- String Name of JGroups
group.jgroups-file configuration file.
If specified, the
server uses JGroups
for broadcasting. -
Optional
broadcast- String Name of JGroups

group.jgroups-

Channel. If specified,

channel the server uses
the named channel
for broadcasting. -
Optional

broadcast- A pair of connector A pair connector

group.connector-ref

and optional backup
connector that will
be broadcasted.
A broadcast-group
can have multiple
connector-ref

broadcast- String Name of the
group.connector- live connector -
ref.connector-name mandatory

(attribute)

broadcast- String Name of the backup

group.connector-

ref.backup-connector-

name (attribute)

discovery-groups

DiscoveryGroup

connector - optional

a list of discovery
groups to create

263

Chapter 48. Configuration Ref...

discovery- String a unique name for
group.name (attribute) the discovery group -
mandatory
discovery-group.local- String the discovery group
bind-address will be bound only to
this local address
discovery- String Multicast IP address
group.group-address of the group to listen
on - mandatory
discovery- Integer UDP port of the
group.group-port multicast group -
mandatory
discovery- Integer Period the discovery 5000 (in milliseconds)
group.refresh-timeout group waits after
receiving the last
broadcast from a
particular server
before removing that
servers connector pair
entry from its list.
discovery- String Name of JGroups
group.jgroups-file configuration file. If
specified, the server
uses JGroups for
discovery. - Optional
discovery- String Name of JGroups
group.jgroups- Channel. If specified,
channel the server uses the
named channel for
discovery. - Optional
diverts Divert a list of diverts to use
divert.name (attribute) String a unique name for the
divert - mandatory
divert.routing-name String the routing name for
the divert - mandatory
divert.address String the address this divert
will divert from -
mandatory
divert.forwarding- String the forwarding
address address for the divert -
mandatory

264

hornetg-configuration.xml

divert.exclusive Boolean is this divert false
exclusive?
divert.filter String an optional core filter null
expression
divert.transformer- String an optional class
class-name name of a transformer
gueues Queue a list of pre configured
gueues to create
gueues.name String uniqgue name of this
(attribute) queue
gueues.address String address for this queue
- mandatory
queues.filter String optional core filter null
expression for this
queue
gueues.durable Boolean is this queue durable? true
bridges Bridge a list of bridges to
create
bridges.name String unigue name for this
(attribute) bridge
bridges.queue-name String name of queue that
this bridge consumes
from - mandatory
bridges.forwarding- String address to forward null
address to. If omitted original
address is used
bridges.filter String optional core filter null
expression
bridges.transformer- String optional name of null
class-name transformer class
bridges.retry-interval Long period (in ms) 2000 ms
between successive
retries
bridges.retry-interval- Double multiplier to apply 1.0
multiplier to successive retry
intervals
bridges.reconnect- Integer maximum number of -1

attempts

retry attempts, -1
signifies infinite

265

Chapter 48. Configuration Ref...

bridges.failover-on- Boolean should failover be false

server-shutdown prompted if target
server is cleanly
shutdown?

bridges.use- Boolean should duplicate true

duplicate-detection detection headers be
inserted in forwarded
messages?

bridges.discovery- String name of discovery null

group-ref group used by this
bridge

bridges.connector- String name of connector to

ref.connector-name use for live connection

(attribute)

bridges.connector- String optional name of null

ref.backup-connector- connector to use for

name (attribute) backup connection

cluster-connections ClusterConnection a list of cluster
connections

cluster- String unique name for this

connections.name cluster connection

(attribute)

cluster- String name of address

connections.address this cluster connection
applies to

cluster- Boolean should messages be false

connections.forward- load balanced if there

when-no-consumers are no matching
consumers on target?

cluster- Integer maximum number of 1

connections.max- hops cluster topology

hops is propagated

cluster- Long period (in ms) 2000

connections.retry- between successive

interval retries

cluster- Boolean should duplicate true

connections.use-
duplicate-detection

detection headers be
inserted in forwarded
messages?

266

hornetg-configuration.xml

cluster- String
connections.discovery-
group-ref

cluster- String

connections.connector-
ref.connector-name
(attribute)

name of discovery null
group used by this
bridge

name of connector to

use for live connection

cluster- String
connections.connector-
ref.backup-connector-

name (attribute)

optional name of null
connector to use for
backup connection

security-settings SecuritySetting a list of security
settings

security- String the string to use

settings.match for matching security

(attribute) against an address

security- Security Permission a permision to add to

settings.permission the address

security- Permission Type the type of permission

settings.permission.type

(attribute)

security- Roles a comma-separated

settings.permission.roles list of roles to apply the

(attribute) permission to

address-settings AddressSetting a list of address
settings

address- String the address to send

settings.dead-letter- dead messages to

address

address- Integer how many times to 10

settings.max-delivery- attempt to deliver

attempts a message before
sending to dead letter
address

address- String the address to send

settings.expiry- expired messages to

address

address- Long the time (in ms) to wait 0

settings.redelivery- before redelivering a

delay cancelled message.

267

Chapter 48. Configuration Ref...

address-settings.last- boolean whether to treat the false

value-queue gueue as a last value
queue

address- Long the page size (in 10* 1024 * 1024

settings.page-size- bytes) to use for an

bytes address

address- Long the maximum size (in -1

settings.max-size- bytes) to use in paging

bytes for an address

address- Long how long (in ms) -1

settings.redistribution- to wait after the

delay last consumer s

closed on a queue
before redistributing
messages.

48.1.2. hornetg-jms.xml

This is the configuration file used by the server side JMS service to load JMS Queues, Topics
and Connection Factories.

Table 48.2. JMS Server Configuration

Element Name Element Type Description Default

connection-factory ConnectionFactory a list of connection
factories to create and
add to JNDI

Continued..

connection- String Type of connection generic

factory.signature factory

(attribute)

connection-factory.xa Boolean If it is a XA connection false
factory

connection- Boolean whether or not false

factory.auto-group message grouping is
automatically used

connection- String A list of connectors

factory.connectors used by the

connection factory

268

hornetg-jms.xml

connection- String
factory.connectors.connector-
ref.connector-name

(attribute)

Name of the
connector to connect
to the live server

connection- String
factory.connectors.connector-
ref.backup-connector-

name (attribute)

connection- String
factory.discovery-
group-ref.discovery-

Name of the
connector to connect
to the backup server

Name of discovery
group used by this
connection factory

group-name
(attribute)
connection- Long the initial time to wait 10000
factory.discovery- (in ms) for discovery
initial-wait-timeout groups to wait for
broadcasts
connection- Boolean whether or not false
factory.block-on- messages are
acknowledge acknowledged
synchronously
connection- Boolean whether or not non- false
factory.block-on-non- durable messages are
durable-send sent synchronously
connection- Boolean whether or not durable true
factory.block-on- messages are sent
durable-send synchronously
connection- Long the timeout (in ms) for 30000
factory.call-timeout remote calls
connection- Long the period (in ms) 5000
factory.client-failure- after which the client
check-period will consider the
connection failed after
not receiving packets
from the server
connection- String the pre-configured null

factory.client-id

connection- String
factory.connection-

client ID for the
connection factory

the name of the load
balancing class

org.hornetq.api.core.client.loadbalance.Ra

269

Chapter 48. Configuration Ref...

load-balancing-policy-

class-name
connection- Long the time to live (in ms) 1 * 60000
factory.connection-ttl for connections
connection- Integer the fastest rate -1
factory.consumer- a consumer may
max-rate consume messages
per second
connection- Integer the window size (in 1024 * 1024
factory.consumer- bytes) for consumer
window-size flow control
connection- Integer the batch size 1024 * 1024
factory.dups-ok- (in bytes) between
batch-size acknowledgements
when using
DUPS_OK_ACKNOWLEDGE
mode
connection- Boolean whether or not to false
factory.failover-on- failover to backup
initial-connection on event that initial
connection to live
server fails
connection- Boolean whether or not to false
factory.failover-on- failover on server
server-shutdown shutdown
connection- Integer the size (in bytes) 100 * 1024
factory.min-large- before a message is
message-size treated as large
connection- Boolean If true clients using false
factory.cache-large- this connection factory
message-client will hold the large
message body on
temporary files.
connection- Boolean whether messages false
factory.pre- are pre acknowledged
acknowledge by the server before
sending
connection- Integer the maximum rate of -1

factory.producer-max-
rate

messages per second
that can be sent

270

hornetg-jms.xml

connection- Integer the window size in 1024 * 1024
factory.producer- bytes for producers
window-size sending messages
connection- Integer the window size 1024 * 1024
factory.confirmation- (in bytes) for
window-size reattachment
confirmations
connection- Integer maximum number of 0
factory.reconnect- retry attempts, -1
attempts signifies infinite
connection- Long the time (in ms) to 2000
factory.retry-interval retry a connection
after failing
connection- Double multiplier to apply 1.0
factory.retry-interval- to successive retry
multiplier intervals
connection- Integer The maximum retry 2000
factory.max-retry- interval in the
interval case a retry-interval-
multiplier has been
specified
connection- Integer the size of the 5
factory.scheduled- scheduled thread pool
thread-pool-max-size
connection- Integer the size of the thread -1
factory.thread-pool- pool
max-size
connection- Integer the batch size 1024 * 1024
factory.transaction- (in bytes) between
batch-size acknowledgements
when using a
transactional session
connection- Boolean whether ornottousea true
factory.use-global- global thread pool for
pools threads
queue Queue a queue to create and
add to JNDI
gueue.name String unigue name of the
(attribute) queue
gueue.entry String context where the

queue will be bound

271

Chapter 48. Configuration Ref...

in JNDI (there can be

many)

gqueue.durable Boolean is the queue durable? true

queue.filter String optional filter
expression for the
queue

topic Topic a topic to create and
add to JNDI

topic.name (attribute) String unigue name of the
topic

topic.entry String context where the

topic will be bound in
JNDI (there can be
many)

48.1.3. Using Masked Passwords in Configuration Files

By default all passwords in HornetQ server's configuration files are in plaintext form. This usually
poses no security issues as those files should be well protected from unauthorized accessing.
However, in some circumstances a user doesn't want to expose its passwords to more eyes than
necessary.

HornetQ can be configured to use 'masked' passwords in its configuration files. A masked
password is an obscure string representation of a real password. To mask a password a user will
use an 'encoder'. The encoder takes in the real password and outputs the masked version. A user
can then replace the real password in the configuration files with the new masked password. When
HornetQ loads a masked password, it uses a suitable 'decoder’ to decode it into real password.

Hornetq provides a default password encoder and decoder. Optionally users can use or implement
their own encoder and decoder for masking the passwords.

48.1.3.1. Password Masking in Server Configuration File

48.1.3.1.1. The password masking property

The server configuration file has a property that defines the default masking behaviors over the
entire file scope.

mask- passwor d: this boolean type property indicates if a password should be masked or not. Set
it to "true" if you want your passwords masked. The default value is "false".

48.1.3.1.2. Specific masking behaviors

48.1.3.1.2.1. cluster-password

The nature of the value of cluster-password is subject to the value of property 'mask-password'.
If it is true the cluster-password is masked.

272

Using Masked Passwords in Configuration Files

48.1.3.1.2.2. Passwords in connectors and acceptors

In the server configuration, Connectors and Acceptors sometimes needs to specify passwords.
For example if a users wants to use an SSL-enabled NettyAcceptor, it can specify a key-
store-password and a trust-store-password. Because Acceptors and Connectors are pluggable
implementations, each transport will have different password masking needs.

When a Connector or Acceptor configuration is initialised, HornetQ will add the "mask-
password" and "password-codec" values to the Connector or Acceptors params using the keys
hor net g. usemaskedpasswor d and hor net q. passwor dcodec respectively. The Netty and InVM
implementations will use these as needed and any other implementations will have access to
these to use if they so wish.

48.1.3.1.2.3. Passwords in Core Bridge cofigurations

Core Bridges are configured in the server configuration file and so the masking of its 'password'
properties follows the same rules as that of 'cluster-password'.

48.1.3.1.3. Examples

The following table summarizes the relations among the above-mentioned properties

Table 48.3.
mask-password cluster-password acceptor/connector bridge password
passwords
absent plain text plain text plain text
false plain text plain text plain text
true masked masked masked
Examples

Note: In the following examples if related attributed or properties are absent, it means they are
not specified in the configure file.

example 1

<cl ust er - passwor d>bbc</ cl ust er - passwor d>

This indicates the cluster password is a plaintext value ("bbc").

example 2

273

Chapter 48. Configuration Ref...

<mask- passwor d>t r ue</ mask- passwor d>
<cl ust er - passwor d>80cf 731af 62c290</ cl ust er - passwor d>

This indicates the cluster password is a masked value and HorentQ will use its built-in decoder to
decode it. All other passwords in the configuration file, Connectors, Acceptors and Bridges, will
also use masked passwords.

48.1.3.2. IMS Bridge password masking

The JMS Bridges are configured and deployed as separate beans so they need separate
configuration to control the password masking. A JMS Bridge has two password parameters in its
constructor, SourcePassword and TargetPassword. It uses the following two optional properties
to control their masking:

useMaskedPasswor d -- If set to "true" the passwords are masked. Default is false.

passwor dCodec -- Class name and its parameters for the Decoder used to decode the masked
password. Ignored if useMaskedPasswor d is false. The format of this property is a full qualified
class name optionally followed by key/value pairs, separated by semi-colons. For example:
<property nane="useMaskedPasswor d">true</property>

<property nane="passwor dCodec">com f 00. FooDecoder ; key=val ue</ property>

HornetQ will load this property and initialize the class with a parameter map containing the "key"-
>"value" pair. If passwor dCodec is not specified, the built-in decoder is used.

48.1.3.3. Masking passwords in HorentQ ResourceAdapters and
MDB activation configurations

Both ra.xml and MDB activation configuration have a 'password' property that can be masked.
They are controlled by the following two optional Resource Adapter properties in ra.xml:

UseMaskedPasswor d -- If setting to "true” the passwords are masked. Default is false.

Passwor dCodec -- Class name and its parameters for the Decoder used to decode the masked
password. Ignored if UseMaskedPassword is false. The format of this property is a full qualified
class name optionally followed by key/value pairs. It is the same format as that for IMS Bridges.
Example:

<confi g- property>
<confi g- property-name>UseMaskedPasswor d</ confi g- property-nane>
<confi g- property-type>bool ean</ confi g- property-type>
<confi g- property-val ue>true</ config-property-val ue>
</ confi g- property>
<confi g- property>
<confi g- property- nane>Passwor dCodec</ conf i g- pr operty- nane>

274

Using Masked Passwords in Configuration Files

<confi g-property-type>java. | ang. Stri ng</confi g-property-type>
<confi g- property-val ue>com f oo. ADecoder ; key=hel | owor | d</ confi g- property-
val ue>
</ confi g- property>

With this configuration, both passwords in ra.xml and all of its MDBs will have to be in masked form.
48.1.3.4. Masking passwords in hornetq-users.xml

HornetQ's built-in security manager uses plain configuration files where the user passwords are
specified in plaintext forms by default. To mask those parameters the following two properties
are needed:

mask- passwor d -- If set to "true” all the passwords are masked. Default is false.

passwor d- codec -- Class name and its parameters for the Decoder used to decode the masked
password. Ignored if mask- passwor d is false. The format of this property is a full qualified class
name optionally followed by key/value pairs. It is the same format as that for JMS Bridges.
Example:

<mask- passwor d>t r ue</ mask- passwor d>

<passwor d- codec>or g. hornetq. utils. Def aul t Sensi ti veStri ngCodec; key=hel | o wor | d</
passwor d- codec>

When so configured, the HornetQ security manager will initialize a DefaultSensitiveStringCodec
with the parameters "key"->"hello world", then use it to decode all the masked passwords in this
configuration file.

48.1.3.5. Choosing a decoder for password masking

As described in the previous sections, all password masking requires a decoder. A decoder uses
an algorithm to convert a masked password into its original cleartext form in order to be used
in various security operations. The algorithm used for decoding must match that for encoding.
Otherwise the decoding may not be successful.

For user's convenience HornetQ provides a default built-in Decoder. However a user can if they
so wish implement their own.

48.1.3.5.1. The built-in Decoder

Whenever no decoder is specified in the configuration file, the built-in decoder is used. The
class name for the built-in decoder is org.hornetq.utils.DefaultSensitiveStringCodec. It has both
encoding and decoding capabilities. It uses java.crypto.Cipher utilities to encrypt (encode) a

275

Chapter 48. Configuration Ref...

plaintext password and decrypt a mask string using same algorithm. Using this decoder/encoder
is pretty straightforward. To get a mask for a password, just run the following in command line:

java org. hornetqg.utils.DefaultSensitiveStringCodec "your plaintext password"

Make sure the classpath is correct. You'll get something like

Encoded password: 80cf73laf 62c290

Just copy "80cf731af62c290" and replace your plaintext password with it.
48.1.3.5.2. Using a different decoder

It is possible to use a different decoder rather than the built-in one. Simply make sure the decoder
is in HornetQ's classpath and configure the server to use it as follows:

<passwor d- codec>com f 0o. SoneDecoder ; keyl=val uel; key2=val ue2</ passwor d- codec>

If your decoder needs params passed to it you can do this via key/value pairs when configuring.
For instance if your decoder needs say a "key-location" parameter, you can define like so:

<passwor d- codec>com f 0o. NewDecoder ; key- | ocati on=/ sone/ url/tol/ keyfil e</
passwor d- codec>

Then configure your cluster-password like this:

<mask- passwor d>t r ue</ mask- passwor d>

<cl ust er - passwor d>nmasked_passwor d</ cl ust er - passwor d>

When HornetQ reads the cluster-password it will initialize the NewDecoder and use it to decode
"mask_password". It also process all passwords using the new defined decoder.

276

Using Masked Passwords in Configuration Files

48.1.3.5.3. Implementing your own ocdecs

To wuse a different decoder than the built-in one, you either pick one from
existing libraries or you implement it yourself. All decoders must implement the
org. hornetq. utils. SensitiveDat aCodec<T> interface:

public interface SensitiveDataCodec<T>

{
T decode(Obj ect nmask) throws Exception;

void init(Map<String, String> parans);

This is a generic type interface but normally for a password you just need String type. So a new
decoder would be defined like

public class MyNewDecoder inplenents SensitiveDataCodec<String>

{
public String decode(Obj ect mask) throws Exception

{

/1 decode the mask into cleartext passord
return "the password”;

public void init(Map<String, String> parans)
{

//initialization done here. It is called right after the decoder has
been creat ed.

}

Last but not least, once you get your own decoder, please add it to the classpath. Otherwise
HornetQ will fail to load it!

277

278

	HornetQ User Manual
	Table of Contents
	Chapter 1. Legal Notice
	Chapter 2. Preface
	Chapter 3. Project Information
	3.1. Software Download
	3.2. Project Information

	Chapter 4. Messaging Concepts
	4.1. Messaging Concepts
	4.2. Messaging styles
	4.2.1. The Message Queue Pattern
	4.2.2. The Publish-Subscribe Pattern

	4.3. Delivery guarantees
	4.4. Transactions
	4.5. Durability
	4.6. Messaging APIs and protocols
	4.6.1. Java Message Service (JMS)
	4.6.2. System specific APIs
	4.6.3. RESTful API
	4.6.4. STOMP
	4.6.5. AMQP

	4.7. High Availability
	4.8. Clusters
	4.9. Bridges and routing

	Chapter 5. Architecture
	5.1. Core Architecture
	5.2. HornetQ embedded in your own application
	5.3. HornetQ integrated with a JEE application server
	5.4. HornetQ stand-alone server

	Chapter 6. Using the Server
	6.1. Starting and Stopping the standalone server
	6.2. Server JVM settings
	6.3. Server classpath
	6.4. Library Path
	6.5. System properties
	6.6. Configuration files
	6.7. JBoss Microcontainer Beans File
	6.8. JBoss AS4 MBean Service.
	6.9. The main configuration file.

	Chapter 7. Using JMS
	7.1. A simple ordering system
	7.2. JMS Server Configuration
	7.3. Connection Factory Types
	7.4. JNDI configuration
	7.5. The code
	7.6. Directly instantiating JMS Resources without using JNDI
	7.7. Setting The Client ID
	7.8. Setting The Batch Size for DUPS_OK
	7.9. Setting The Transaction Batch Size

	Chapter 8. Using Core
	8.1. Core Messaging Concepts
	8.1.1. Message
	8.1.2. Address
	8.1.3. Queue
	8.1.4. ServerLocator
	8.1.5. ClientSessionFactory
	8.1.6. ClientSession
	8.1.7. ClientConsumer
	8.1.8. ClientProducer

	8.2. A simple example of using Core

	Chapter 9. Mapping JMS Concepts to the Core API
	Chapter 10. The Client Classpath
	10.1. HornetQ Core Client
	10.2. JMS Client
	10.3. JMS Client with JNDI

	Chapter 11. Examples
	11.1. JMS Examples
	11.1.1. Applet
	11.1.2. Application-Layer Failover
	11.1.3. Core Bridge Example
	11.1.4. Browser
	11.1.5. Client Kickoff
	11.1.6. Client-Side Load-Balancing
	11.1.7. Clustered Durable Subscription
	11.1.8. Clustered Grouping
	11.1.9. Clustered Queue
	11.1.10. Clustering with JGroups
	11.1.11. Clustered Standalone
	11.1.12. Clustered Static Discovery
	11.1.13. Clustered Static Cluster One Way
	11.1.14. Clustered Topic
	11.1.15. Message Consumer Rate Limiting
	11.1.16. Dead Letter
	11.1.17. Delayed Redelivery
	11.1.18. Divert
	11.1.19. Durable Subscription
	11.1.20. Embedded
	11.1.21. Embedded Simple
	11.1.22. Message Expiration
	11.1.23. Failover Manual Stop
	11.1.24. HTTP Transport
	11.1.25. Instantiate JMS Objects Directly
	11.1.26. Interceptor
	11.1.27. JAAS
	11.1.28. JMS Bridge
	11.1.29. JMX Management
	11.1.30. Large Message
	11.1.31. Last-Value Queue
	11.1.32. Management
	11.1.33. Management Notification
	11.1.34. Message Counter
	11.1.35. Message Group
	11.1.36. Message Group
	11.1.37. Message Priority
	11.1.38. Multiple Failover
	11.1.39. Multiple Failover Failback
	11.1.40. No Consumer Buffering
	11.1.41. Non-Transaction Failover With Server Data Replication
	11.1.42. Paging
	11.1.43. Pre-Acknowledge
	11.1.44. Message Producer Rate Limiting
	11.1.45. Queue
	11.1.46. Message Redistribution
	11.1.47. Queue Requestor
	11.1.48. Queue with Message Selector
	11.1.49. Reattach Node example
	11.1.50. Request-Reply example
	11.1.51. Scheduled Message
	11.1.52. Security
	11.1.53. Send Acknowledgements
	11.1.54. Spring Integration
	11.1.55. SSL Transport
	11.1.56. Static Message Selector
	11.1.57. Static Message Selector Using JMS
	11.1.58. Stomp
	11.1.59. Stomp1.1
	11.1.60. Stomp Over Web Sockets
	11.1.61. Symmetric Cluster
	11.1.62. Temporary Queue
	11.1.63. Topic
	11.1.64. Topic Hierarchy
	11.1.65. Topic Selector 1
	11.1.66. Topic Selector 2
	11.1.67. Transaction Failover
	11.1.68. Transactional Session
	11.1.69. XA Heuristic
	11.1.70. XA Receive
	11.1.71. XA Send
	11.1.72. XA with Transaction Manager

	11.2. Core API Examples
	11.2.1. Embedded

	11.3. Java EE Examples
	11.3.1. EJB/JMS Transaction
	11.3.2. HAJNDI (High Availability)
	11.3.3. Resource Adapter Configuration
	11.3.4. Resource Adapter Remote Server Configuration
	11.3.5. JMS Bridge
	11.3.6. MDB (Message Driven Bean)
	11.3.7. Servlet Transport
	11.3.8. Servlet SSL Transport
	11.3.9. XA Recovery

	Chapter 12. Routing Messages With Wild Cards
	Chapter 13. Understanding the HornetQ Wildcard Syntax
	Chapter 14. Filter Expressions
	Chapter 15. Persistence
	15.1. Configuring the bindings journal
	15.2. Configuring the jms journal
	15.3. Configuring the message journal
	15.4. An important note on disabling disk write cache.
	15.5. Installing AIO
	15.6. Configuring HornetQ for Zero Persistence
	15.7. Import/Export the Journal Data

	Chapter 16. Configuring the Transport
	16.1. Understanding Acceptors
	16.2. Understanding Connectors
	16.3. Configuring the transport directly from the client side.
	16.4. Configuring the Netty transport
	16.4.1. Configuring Netty TCP
	16.4.2. Configuring Netty SSL
	16.4.3. Configuring Netty HTTP
	16.4.4. Configuring Netty Servlet

	Chapter 17. Detecting Dead Connections
	17.1. Cleaning up Dead Connection Resources on the Server
	17.1.1. Closing core sessions or JMS connections that you have failed to close

	17.2. Detecting failure from the client side.
	17.3. Configuring Asynchronous Connection Execution

	Chapter 18. Resource Manager Configuration
	Chapter 19. Flow Control
	19.1. Consumer Flow Control
	19.1.1. Window-Based Flow Control
	19.1.1.1. Using Core API
	19.1.1.2. Using JMS

	19.1.2. Rate limited flow control
	19.1.2.1. Using Core API
	19.1.2.2. Using JMS

	19.2. Producer flow control
	19.2.1. Window based flow control
	19.2.1.1. Using Core API
	19.2.1.2. Using JMS
	19.2.1.3. Blocking producer window based flow control

	19.2.2. Rate limited flow control
	19.2.2.1. Using Core API
	19.2.2.2. Using JMS

	Chapter 20. Guarantees of sends and commits
	20.1. Guarantees of Transaction Completion
	20.2. Guarantees of Non Transactional Message Sends
	20.3. Guarantees of Non Transactional Acknowledgements
	20.4. Asynchronous Send Acknowledgements
	20.4.1. Asynchronous Send Acknowledgements

	Chapter 21. Message Redelivery and Undelivered Messages
	21.1. Delayed Redelivery
	21.1.1. Configuring Delayed Redelivery
	21.1.2. Example

	21.2. Dead Letter Addresses
	21.2.1. Configuring Dead Letter Addresses
	21.2.2. Dead Letter Properties
	21.2.3. Example

	21.3. Delivery Count Persistence

	Chapter 22. Message Expiry
	22.1. Message Expiry
	22.2. Configuring Expiry Addresses
	22.3. Configuring The Expiry Reaper Thread
	22.4. Example

	Chapter 23. Large Messages
	23.1. Configuring the server
	23.2. Configuring Parameters
	23.2.1. Using Core API
	23.2.2. Using JMS
	23.2.3. Compressed Large Messages

	23.3. Streaming large messages
	23.3.1. Streaming over Core API
	23.3.2. Streaming over JMS

	23.4. Streaming Alternative
	23.5. Large message example

	Chapter 24. Paging
	24.1. Page Files
	24.2. Configuration
	24.3. Paging Mode
	24.3.1. Configuration

	24.4. Dropping messages
	24.5. Blocking producers
	24.6. Caution with Addresses with Multiple Queues
	24.7. Example

	Chapter 25. Queue Attributes
	25.1. Predefined Queues
	25.2. Using the API
	25.3. Configuring Queues Via Address Settings

	Chapter 26. Scheduled Messages
	26.1. Scheduled Delivery Property
	26.2. Example

	Chapter 27. Last-Value Queues
	27.1. Configuring Last-Value Queues
	27.2. Using Last-Value Property
	27.3. Example

	Chapter 28. Message Grouping
	28.1. Using Core API
	28.2. Using JMS
	28.3. Example
	28.4. Example
	28.5. Clustered Grouping
	28.5.1. Clustered Grouping Best Practices
	28.5.2. Clustered Grouping Example

	Chapter 29. Pre-Acknowledge Mode
	29.1. Using PRE_ACKNOWLEDGE
	29.2. Example

	Chapter 30. Management
	30.1. The Management API
	30.1.1. Core Management API
	30.1.1.1. Core Server Management
	30.1.1.2. Core Address Management
	30.1.1.3. Core Queue Management
	30.1.1.4. Other Core Resources Management

	30.1.2. JMS Management API
	30.1.2.1. JMS Server Management
	30.1.2.2. JMS ConnectionFactory Management
	30.1.2.3. JMS Queue Management
	30.1.2.4. JMS Topic Management

	30.2. Using Management Via JMX
	30.2.1. Configuring JMX
	30.2.1.1. MBeanServer configuration

	30.2.2. Example

	30.3. Using Management Via Core API
	30.3.1. Configuring Core Management

	30.4. Using Management Via JMS
	30.4.1. Configuring JMS Management
	30.4.2. Example

	30.5. Management Notifications
	30.5.1. JMX Notifications
	30.5.2. Core Messages Notifications
	30.5.2.1. Configuring The Core Management Notification Address

	30.5.3. JMS Messages Notifications
	30.5.4. Example

	30.6. Message Counters
	30.6.1. Configuring Message Counters
	30.6.2. Example

	30.7. Administering HornetQ Resources Using The JBoss AS Admin Console
	30.7.1. JMS Queues
	30.7.2. JMS Topics
	30.7.3. JMS Connection Factories

	Chapter 31. Security
	31.1. Role based security for addresses
	31.2. Secure Sockets Layer (SSL) Transport
	31.3. Basic user credentials
	31.4. Changing the security manager
	31.5. JAAS Security Manager
	31.5.1. Example

	31.6. JBoss AS Security Manager
	31.6.1. Configuring Client Login
	31.6.2. Changing the Security Domain

	31.7. Changing the username/password for clustering

	Chapter 32. Application Server Integration and Java EE
	32.1. Configuring Message-Driven Beans
	32.1.1. Using Container-Managed Transactions
	32.1.2. Using Bean-Managed Transactions
	32.1.3. Using Message Selectors with Message-Driven Beans

	32.2. Sending Messages from within JEE components
	32.3. MDB and Consumer pool size
	32.4. Configuring the JCA Adaptor
	32.4.1. Global Properties
	32.4.2. Adapter Outbound Configuration
	32.4.3. Adapter Inbound Configuration
	32.4.4. Configuring the adapter to use a standalone HornetQ Server
	32.4.4.1.
	32.4.4.1.1. Configuring the Incoming Adaptor
	32.4.4.1.2. Configuring the outgoing adaptor
	32.4.4.1.3. Jar dependencies

	32.5. Configuring the JBoss Application Server to connect to Remote HornetQ Server
	32.5.1. Configuring Jboss 5
	32.5.2. Configuring Jboss 5

	32.6. High Availability JNDI (HA-JNDI)
	32.7. XA Recovery
	32.7.1. XA Recovery Configuration
	32.7.1.1. Configuration Settings

	32.7.2. Example

	Chapter 33. The JMS Bridge
	33.1. JMS Bridge Parameters
	33.2. Source and Target Connection Factories
	33.3. Source and Target Destination Factories
	33.4. Quality Of Service
	33.4.1. AT_MOST_ONCE
	33.4.2. DUPLICATES_OK
	33.4.3. ONCE_AND_ONLY_ONCE
	33.4.4. Time outs and the JMS bridge
	33.4.5. Examples

	Chapter 34. Client Reconnection and Session Reattachment
	34.1. 100% Transparent session re-attachment
	34.2. Session reconnection
	34.3. Configuring reconnection/reattachment attributes
	34.4. ExceptionListeners and SessionFailureListeners

	Chapter 35. Diverting and Splitting Message Flows
	35.1. Exclusive Divert
	35.2. Non-exclusive Divert

	Chapter 36. Core Bridges
	36.1. Configuring Bridges

	Chapter 37. Duplicate Message Detection
	37.1. Using Duplicate Detection for Message Sending
	37.2. Configuring the Duplicate ID Cache
	37.3. Duplicate Detection and Bridges
	37.4. Duplicate Detection and Cluster Connections

	Chapter 38. HornetQ and Application Server Cluster Configuration
	38.1. Configuring Failover
	38.1.1. Colocated Live and Backup in Symmetrical cluster
	38.1.1.1. Configuration
	38.1.1.1.1. Live Server Configuration
	38.1.1.1.2. Backup Server Configuration
	38.1.1.1.3. Configuring multiple backups
	38.1.1.1.4. Running the shipped example

	38.1.2. Dedicated Live and Backup in Symmetrical cluster
	38.1.2.1. Configuration of dedicated Live and backup
	38.1.2.2. Running the shipped example

	Chapter 39. High Availability and Failover
	39.1. Live - Backup Groups
	39.1.1. HA modes
	39.1.2. Data Replication
	39.1.2.1. Configuration

	39.1.3. Shared Store
	39.1.3.1. Configuration
	39.1.3.2. Failing Back to live Server

	39.2. Failover Modes
	39.2.1. Automatic Client Failover
	39.2.1.1. Failing over on the Initial Connection
	39.2.1.2. A Note on Server Replication
	39.2.1.3. Handling Blocking Calls During Failover
	39.2.1.4. Handling Failover With Transactions
	39.2.1.5. Handling Failover With Non Transactional Sessions

	39.2.2. Getting Notified of Connection Failure
	39.2.3. Application-Level Failover

	Chapter 40. Libaio Native Libraries
	40.1. Compiling the native libraries
	40.1.1. Install requirements
	40.1.2. Invoking the compilation

	Chapter 41. Thread management
	41.1. Server-Side Thread Management
	41.1.1. Server Scheduled Thread Pool
	41.1.2. General Purpose Server Thread Pool
	41.1.3. Expiry Reaper Thread
	41.1.4. Asynchronous IO

	41.2. Client-Side Thread Management

	Chapter 42. Logging
	42.1. Logging With The JBoss Application Server

	Chapter 43. Embedding HornetQ
	43.1. Simple Config File Embedding
	43.1.1. Core API Only
	43.1.2. JMS API

	43.2. POJO instantiation - Embedding Programmatically
	43.3. Dependency Frameworks
	43.4.

	Chapter 44. Spring Integration
	Chapter 45. Intercepting Operations
	45.1. Implementing The Interceptors
	45.2. Configuring The Interceptors
	45.3. Interceptors on the Client Side
	45.4. Example

	Chapter 46. Interoperability
	46.1. Stomp
	46.1.1. Native Stomp support
	46.1.1.1. Limitations
	46.1.1.2. Stomp 1.1 Notes
	46.1.1.2.1. Virtual Hosting
	46.1.1.2.2. Heart-beating

	46.1.2. Mapping Stomp destinations to HornetQ addresses and queues
	46.1.3. STOMP and connection-ttl
	46.1.4. Stomp and JMS interoperabilty
	46.1.4.1. Using JMS destinations
	46.1.4.2. Sending and consuming Stomp message from JMS or HornetQ Core API
	46.1.4.3. Message IDs for Stomp messages

	46.1.5. Stomp Over Web Sockets
	46.1.6. StompConnect

	46.2. REST
	46.3. AMQP

	Chapter 47. Performance Tuning
	47.1. Tuning persistence
	47.2. Tuning JMS
	47.3. Other Tunings
	47.4. Tuning Transport Settings
	47.5. Tuning the VM
	47.6. Avoiding Anti-Patterns

	Chapter 48. Configuration Reference
	48.1. Server Configuration
	48.1.1. hornetq-configuration.xml
	48.1.2. hornetq-jms.xml
	48.1.3. Using Masked Passwords in Configuration Files
	48.1.3.1. Password Masking in Server Configuration File
	48.1.3.1.1. The password masking property
	48.1.3.1.2. Specific masking behaviors
	48.1.3.1.2.1. cluster-password
	48.1.3.1.2.2. Passwords in connectors and acceptors
	48.1.3.1.2.3. Passwords in Core Bridge cofigurations

	48.1.3.1.3. Examples

	48.1.3.2. JMS Bridge password masking
	48.1.3.3. Masking passwords in HorentQ ResourceAdapters and MDB activation configurations
	48.1.3.4. Masking passwords in hornetq-users.xml
	48.1.3.5. Choosing a decoder for password masking
	48.1.3.5.1. The built-in Decoder
	48.1.3.5.2. Using a different decoder
	48.1.3.5.3. Implementing your own ocdecs

