
HornetQ User Manual

Putting the buzz in messaging

by Clebert Suconic (Red Hat, Inc.), Andy Taylor (Red Hat, Inc.), Tim

Fox (Red Hat, Inc.), Jeff Mesnil (Red Hat, Inc.), Howard Gao (Red

Hat, Inc.), Francisco Borges, and Justin Bertram (Red Hat, Inc.)

iii

1. Legal Notice .. 1

2. Preface ... 3

3. Project Information .. 5

3.1. Software Download ... 5

3.2. Project Information .. 5

4. Messaging Concepts ... 7

4.1. Messaging Concepts ... 7

4.2. Messaging styles .. 7

4.2.1. The Message Queue Pattern .. 8

4.2.2. The Publish-Subscribe Pattern .. 8

4.3. Delivery guarantees .. 9

4.4. Transactions ... 9

4.5. Durability .. 9

4.6. Messaging APIs and protocols .. 9

4.6.1. Java Message Service (JMS) .. 10

4.6.2. System specific APIs .. 10

4.6.3. RESTful API .. 10

4.6.4. STOMP ... 10

4.6.5. AMQP ... 11

4.7. High Availability .. 11

4.8. Clusters .. 11

4.9. Bridges and routing ... 11

5. Architecture ... 13

5.1. Core Architecture .. 13

5.2. HornetQ embedded in your own application ... 15

5.3. HornetQ integrated with a JEE application server .. 15

5.4. HornetQ stand-alone server ... 16

6. Using the Server .. 19

6.1. Starting and Stopping the standalone server ... 19

6.2. Server JVM settings .. 19

6.3. Server classpath ... 20

6.4. Library Path .. 20

6.5. System properties ... 20

6.6. Configuration files ... 20

6.7. JBoss Microcontainer Beans File ... 22

6.8. JBoss AS4 MBean Service. ... 24

6.9. The main configuration file. ... 26

7. Using JMS ... 27

7.1. A simple ordering system .. 27

7.2. JMS Server Configuration .. 27

7.3. Connection Factory Types ... 28

7.4. JNDI configuration .. 29

7.5. The code .. 30

7.6. Directly instantiating JMS Resources without using JNDI 32

HornetQ User Manual

iv

7.7. Setting The Client ID .. 33

7.8. Setting The Batch Size for DUPS_OK .. 34

7.9. Setting The Transaction Batch Size ... 34

8. Using Core ... 35

8.1. Core Messaging Concepts .. 35

8.1.1. Message .. 35

8.1.2. Address ... 36

8.1.3. Queue ... 36

8.1.4. ServerLocator .. 36

8.1.5. ClientSessionFactory .. 37

8.1.6. ClientSession ... 37

8.1.7. ClientConsumer .. 37

8.1.8. ClientProducer ... 37

8.2. A simple example of using Core .. 38

9. Mapping JMS Concepts to the Core API ... 39

10. The Client Classpath ... 41

10.1. HornetQ Core Client .. 41

10.2. JMS Client .. 41

10.3. JMS Client with JNDI .. 41

11. Examples ... 43

11.1. JMS Examples .. 43

11.1.1. JMS AeroGear ... 43

11.1.2. Applet .. 43

11.1.3. Application-Layer Failover ... 43

11.1.4. Core Bridge Example ... 44

11.1.5. Browser ... 44

11.1.6. Client Kickoff .. 44

11.1.7. Client side failover listener .. 44

11.1.8. Client-Side Load-Balancing ... 44

11.1.9. Clustered Durable Subscription ... 44

11.1.10. Clustered Grouping ... 44

11.1.11. Clustered Queue .. 44

11.1.12. Clustering with JGroups .. 45

11.1.13. Clustered Standalone .. 45

11.1.14. Clustered Static Discovery .. 45

11.1.15. Clustered Static Cluster One Way ... 45

11.1.16. Clustered Topic .. 45

11.1.17. Message Consumer Rate Limiting ... 45

11.1.18. Dead Letter .. 45

11.1.19. Delayed Redelivery ... 46

11.1.20. Divert ... 46

11.1.21. Durable Subscription ... 46

11.1.22. Embedded .. 46

11.1.23. Embedded Simple .. 46

v

11.1.24. Message Expiration .. 46

11.1.25. HornetQ Resource Adapter example .. 47

11.1.26. HTTP Transport .. 47

11.1.27. Instantiate JMS Objects Directly .. 47

11.1.28. Interceptor .. 47

11.1.29. JAAS ... 47

11.1.30. JMS Auto Closable ... 47

11.1.31. JMS Completion Listener .. 47

11.1.32. JMS Bridge .. 48

11.1.33. JMS Context .. 48

11.1.34. JMS Shared Consumer ... 48

11.1.35. JMX Management .. 48

11.1.36. Large Message .. 48

11.1.37. Last-Value Queue ... 48

11.1.38. Management .. 48

11.1.39. Management Notification ... 49

11.1.40. Message Counter ... 49

11.1.41. Message Group .. 49

11.1.42. Message Group .. 49

11.1.43. Message Priority ... 49

11.1.44. Multiple Failover ... 49

11.1.45. Multiple Failover Failback .. 50

11.1.46. No Consumer Buffering ... 50

11.1.47. Non-Transaction Failover With Server Data Replication 50

11.1.48. Paging ... 50

11.1.49. Pre-Acknowledge .. 50

11.1.50. Message Producer Rate Limiting ... 51

11.1.51. Proton Qpid .. 51

11.1.52. Proton Ruby ... 51

11.1.53. Queue .. 51

11.1.54. Message Redistribution ... 51

11.1.55. Queue Requestor ... 51

11.1.56. Queue with Message Selector ... 51

11.1.57. Reattach Node example .. 51

11.1.58. Replicated Failback example ... 51

11.1.59. Replicated Failback static example .. 52

11.1.60. Replicated multiple failover example .. 52

11.1.61. Replicated Failover transaction example .. 52

11.1.62. Request-Reply example .. 52

11.1.63. Rest example ... 52

11.1.64. Scheduled Message ... 52

11.1.65. Security .. 52

11.1.66. Send Acknowledgements .. 52

11.1.67. Spring Integration ... 52

HornetQ User Manual

vi

11.1.68. SSL Transport .. 52

11.1.69. Static Message Selector ... 52

11.1.70. Static Message Selector Using JMS .. 53

11.1.71. Stomp .. 53

11.1.72. Stomp1.1 ... 53

11.1.73. Stomp1.2 ... 53

11.1.74. Stomp Over Web Sockets ... 53

11.1.75. Symmetric Cluster .. 53

11.1.76. Temporary Queue .. 53

11.1.77. Topic ... 53

11.1.78. Topic Hierarchy .. 53

11.1.79. Topic Selector 1 ... 54

11.1.80. Topic Selector 2 ... 54

11.1.81. Transaction Failover ... 54

11.1.82. Failover Without Transactions ... 54

11.1.83. Transactional Session ... 54

11.1.84. XA Heuristic ... 54

11.1.85. XA Receive .. 54

11.1.86. XA Send .. 54

11.1.87. XA with Transaction Manager .. 54

11.2. Core API Examples ... 55

11.2.1. Embedded ... 55

11.3. Java EE Examples .. 55

11.3.1. EJB/JMS Transaction ... 55

11.3.2. Resource Adapter Configuration .. 55

11.3.3. Resource Adapter Remote Server Configuration 55

11.3.4. JMS Bridge .. 55

11.3.5. MDB (Message Driven Bean) .. 55

11.3.6. Servlet Transport .. 55

11.3.7. Servlet SSL Transport .. 55

11.3.8. XA Recovery .. 55

12. Routing Messages With Wild Cards .. 57

13. Understanding the HornetQ Wildcard Syntax .. 59

14. Filter Expressions .. 61

15. Persistence .. 63

15.1. Configuring the bindings journal ... 65

15.2. Configuring the jms journal .. 65

15.3. Configuring the message journal .. 65

15.4. An important note on disabling disk write cache. ... 67

15.5. Installing AIO .. 68

15.6. Configuring HornetQ for Zero Persistence .. 68

15.7. Import/Export the Journal Data .. 69

16. Configuring the Transport ... 71

16.1. Understanding Acceptors ... 71

vii

16.2. Understanding Connectors ... 72

16.3. Configuring the transport directly from the client side. .. 73

16.4. Configuring the Netty transport .. 74

16.4.1. Single Port Support .. 74

16.4.2. Configuring Netty TCP .. 75

16.4.3. Configuring Netty SSL .. 77

16.4.4. Configuring Netty HTTP .. 78

16.4.5. Configuring Netty Servlet .. 79

17. Detecting Dead Connections ... 81

17.1. Cleaning up Dead Connection Resources on the Server 81

17.1.1. Closing core sessions or JMS connections that you have failed to close 83

17.2. Detecting failure from the client side. .. 83

17.3. Configuring Asynchronous Connection Execution .. 84

18. Resource Manager Configuration .. 85

19. Flow Control .. 87

19.1. Consumer Flow Control ... 87

19.1.1. Window-Based Flow Control ... 87

19.1.2. Rate limited flow control .. 89

19.2. Producer flow control .. 90

19.2.1. Window based flow control ... 90

19.2.2. Rate limited flow control .. 92

20. Guarantees of sends and commits .. 95

20.1. Guarantees of Transaction Completion ... 95

20.2. Guarantees of Non Transactional Message Sends .. 95

20.3. Guarantees of Non Transactional Acknowledgements 96

20.4. Asynchronous Send Acknowledgements ... 96

20.4.1. Asynchronous Send Acknowledgements .. 97

21. Message Redelivery and Undelivered Messages ... 99

21.1. Delayed Redelivery ... 99

21.1.1. Configuring Delayed Redelivery ... 99

21.1.2. Example ... 100

21.2. Dead Letter Addresses .. 100

21.2.1. Configuring Dead Letter Addresses ... 100

21.2.2. Dead Letter Properties .. 101

21.2.3. Example ... 101

21.3. Delivery Count Persistence .. 101

22. Message Expiry .. 103

22.1. Message Expiry .. 103

22.2. Configuring Expiry Addresses .. 103

22.3. Configuring The Expiry Reaper Thread ... 104

22.4. Example ... 104

23. Large Messages ... 105

23.1. Configuring the server ... 105

23.2. Configuring Parameters ... 105

HornetQ User Manual

viii

23.2.1. Using Core API .. 106

23.2.2. Using JMS ... 106

23.2.3. Compressed Large Messages ... 106

23.3. Streaming large messages .. 107

23.3.1. Streaming over Core API .. 107

23.3.2. Streaming over JMS ... 109

23.4. Streaming Alternative .. 110

23.5. Large message example .. 110

24. Paging .. 111

24.1. Page Files .. 111

24.2. Configuration ... 111

24.3. Paging Mode .. 112

24.3.1. Configuration .. 112

24.4. Dropping messages ... 113

24.5. Dropping messages and throwing an exception to producers 113

24.6. Blocking producers .. 113

24.7. Caution with Addresses with Multiple Queues ... 114

24.8. Example ... 114

25. Queue Attributes .. 115

25.1. Predefined Queues ... 115

25.2. Using the API ... 116

25.3. Configuring Queues Via Address Settings ... 116

26. Scheduled Messages ... 119

26.1. Scheduled Delivery Property .. 119

26.2. Example ... 119

27. Last-Value Queues ... 121

27.1. Configuring Last-Value Queues .. 121

27.2. Using Last-Value Property ... 121

27.3. Example ... 122

28. Message Grouping ... 123

28.1. Using Core API ... 123

28.2. Using JMS .. 123

28.3. Example ... 124

28.4. Example ... 124

28.5. Clustered Grouping ... 124

28.5.1. Clustered Grouping Best Practices .. 126

28.5.2. Clustered Grouping Example ... 126

29. Extra Acknowledge Modes ... 127

29.1. Using PRE_ACKNOWLEDGE .. 127

29.2. Individual Acknowledge ... 128

29.3. Example ... 128

30. Management ... 129

30.1. The Management API .. 129

30.1.1. Core Management API ... 130

ix

30.1.2. JMS Management API .. 134

30.2. Using Management Via JMX .. 137

30.2.1. Configuring JMX ... 138

30.2.2. Example ... 139

30.3. Using Management Via Core API ... 139

30.3.1. Configuring Core Management .. 140

30.4. Using Management Via JMS .. 141

30.4.1. Configuring JMS Management ... 142

30.4.2. Example ... 142

30.5. Management Notifications .. 142

30.5.1. JMX Notifications .. 142

30.5.2. Core Messages Notifications ... 142

30.5.3. JMS Messages Notifications .. 143

30.5.4. Example ... 144

30.5.5. Notification Types and Headers ... 144

30.6. Message Counters .. 146

30.6.1. Configuring Message Counters .. 147

30.6.2. Example ... 148

30.7. Administering HornetQ Resources Using The JBoss AS Admin Console 148

30.7.1. JMS Queues .. 148

30.7.2. JMS Topics .. 149

30.7.3. JMS Connection Factories .. 150

31. Security .. 151

31.1. Role based security for addresses ... 151

31.2. Secure Sockets Layer (SSL) Transport ... 153

31.3. Basic user credentials ... 153

31.4. Changing the security manager .. 154

31.5. JAAS Security Manager ... 155

31.5.1. Example ... 155

31.6. JBoss AS Security Manager .. 155

31.6.1. Configuring Client Login .. 156

31.6.2. Changing the Security Domain .. 156

31.7. Changing the username/password for clustering .. 156

32. Application Server Integration and Java EE ... 157

32.1. Configuring Message-Driven Beans .. 157

32.1.1. Using Container-Managed Transactions ... 158

32.1.2. Using Bean-Managed Transactions ... 160

32.1.3. Using Message Selectors with Message-Driven Beans 161

32.2. Sending Messages from within JEE components ... 161

32.3. MDB and Consumer pool size ... 163

32.4. Configuring the JCA Adaptor ... 164

32.4.1. Global Properties .. 166

32.4.2. Adapter Outbound Configuration .. 169

32.4.3. Adapter Inbound Configuration .. 171

HornetQ User Manual

x

32.4.4. Configuring the adapter to use a standalone HornetQ Server 172

32.5. Configuring the JBoss Application Server to connect to Remote HornetQ Server .. 175

32.5.1. Configuring JBoss 5 ... 175

32.5.2. Configuring JBoss 5 ... 179

32.6. High Availability JNDI (HA-JNDI) .. 179

32.7. XA Recovery ... 180

32.7.1. XA Recovery Configuration ... 180

32.7.2. Example ... 182

33. The JMS Bridge ... 183

33.1. JMS Bridge Parameters ... 186

33.2. Source and Target Connection Factories .. 189

33.3. Source and Target Destination Factories .. 189

33.4. Quality Of Service ... 190

33.4.1. AT_MOST_ONCE ... 190

33.4.2. DUPLICATES_OK .. 190

33.4.3. ONCE_AND_ONLY_ONCE ... 190

33.4.4. Time outs and the JMS bridge .. 191

33.4.5. Examples ... 191

34. Client Reconnection and Session Reattachment ... 193

34.1. 100% Transparent session re-attachment ... 193

34.2. Session reconnection .. 194

34.3. Configuring reconnection/reattachment attributes ... 194

34.4. ExceptionListeners and SessionFailureListeners .. 195

35. Diverting and Splitting Message Flows .. 197

35.1. Exclusive Divert .. 197

35.2. Non-exclusive Divert .. 198

36. Core Bridges .. 201

36.1. Configuring Bridges ... 201

37. Duplicate Message Detection ... 205

37.1. Using Duplicate Detection for Message Sending ... 205

37.2. Configuring the Duplicate ID Cache .. 206

37.3. Duplicate Detection and Bridges .. 207

37.4. Duplicate Detection and Cluster Connections .. 207

38. Clusters .. 209

38.1. Clusters Overview ... 209

38.2. Server discovery ... 210

38.2.1. Dynamic Discovery ... 210

38.2.2. Discovery using static Connectors ... 217

38.3. Server-Side Message Load Balancing .. 219

38.3.1. Configuring Cluster Connections .. 220

38.3.2. Cluster User Credentials ... 223

38.4. Client-Side Load balancing .. 224

38.5. Specifying Members of a Cluster Explicitly .. 225

38.6. Message Redistribution ... 226

xi

38.7. Cluster topologies ... 227

38.7.1. Symmetric cluster ... 227

38.7.2. Chain cluster .. 228

39. High Availability and Failover .. 229

39.1. Live - Backup Groups .. 229

39.1.1. HA modes .. 229

39.1.2. Data Replication ... 229

39.1.3. Shared Store .. 232

39.1.4. Failing Back to live Server .. 234

39.2. Failover Modes ... 235

39.2.1. Automatic Client Failover .. 235

39.2.2. Getting Notified of Connection Failure .. 238

39.2.3. Application-Level Failover ... 239

40. Libaio Native Libraries ... 241

40.1. Compiling the native libraries ... 241

40.1.1. Install requirements .. 241

40.1.2. Invoking the compilation .. 242

41. Thread management .. 245

41.1. Server-Side Thread Management ... 245

41.1.1. Server Scheduled Thread Pool .. 245

41.1.2. General Purpose Server Thread Pool .. 246

41.1.3. Expiry Reaper Thread ... 246

41.1.4. Asynchronous IO .. 246

41.2. Client-Side Thread Management .. 246

42. Logging .. 249

42.1. Logging in a client or with an Embedded server .. 249

42.2. Logging With The JBoss Application Server .. 251

43. REST Interface ... 253

43.1. Goals of REST Interface .. 253

43.2. Installation and Configuration ... 254

43.2.1. Installing Within Pre-configured Environment .. 254

43.2.2. Bootstrapping HornetQ Along with REST ... 256

43.2.3. REST Configuration .. 259

43.3. HornetQ REST Interface Basics ... 260

43.3.1. Queue and Topic Resources ... 260

43.3.2. Queue Resource Response Headers ... 261

43.3.3. Topic Resource Response Headers ... 261

43.4. Posting Messages ... 262

43.4.1. Duplicate Detection ... 264

43.4.2. Persistent Messages ... 267

43.4.3. TTL, Expiration and Priority ... 267

43.5. Consuming Messages via Pull ... 267

43.5.1. Auto-Acknowledge .. 268

43.5.2. Manual Acknowledgement ... 273

HornetQ User Manual

xii

43.5.3. Blocking Pulls with Accept-Wait ... 277

43.5.4. Clean Up Your Consumers! .. 277

43.6. Pushing Messages .. 278

43.6.1. The Queue Push Subscription XML ... 278

43.6.2. The Topic Push Subscription XML ... 280

43.6.3. Creating a Push Subscription at Runtime ... 280

43.6.4. Creating a Push Subscription by Hand ... 282

43.6.5. Pushing to Authenticated Servers .. 282

43.7. Creating Destinations .. 283

43.8. Securing the HornetQ REST Interface .. 284

43.8.1. Within JBoss Application server ... 284

43.8.2. Security in other environments .. 284

43.9. Mixing JMS and REST .. 285

43.9.1. JMS Producers - REST Consumers ... 285

43.9.2. REST Producers - JMS Consumers ... 285

44. Embedding HornetQ ... 287

44.1. Simple Config File Embedding ... 287

44.1.1. Core API Only .. 287

44.1.2. JMS API .. 288

44.2. POJO instantiation - Embedding Programmatically .. 289

44.3. Dependency Frameworks .. 291

45. Spring Integration .. 293

46. AeroGear Integration .. 295

46.1. Configuring an AeroGear Connector Service ... 295

46.2. How to send a message for AeroGear .. 296

47. Intercepting Operations ... 299

47.1. Implementing The Interceptors ... 299

47.2. Configuring The Interceptors .. 299

47.3. Interceptors on the Client Side ... 300

47.4. Example ... 300

48. Interoperability ... 301

48.1. Stomp ... 301

48.1.1. Native Stomp support ... 301

48.1.2. Mapping Stomp destinations to HornetQ addresses and queues 302

48.1.3. STOMP and connection-ttl .. 302

48.1.4. Stomp and JMS interoperability ... 303

48.1.5. Stomp Over Web Sockets ... 305

48.1.6. StompConnect .. 305

48.2. REST ... 306

48.3. AMQP .. 306

48.3.1. AMQP and security .. 306

48.3.2. AMQP Links ... 307

48.3.3. AMQP and destinations .. 307

48.3.4. AMQP and Coordinations - Handling Transactions 307

xiii

49. Performance Tuning ... 309

49.1. Tuning persistence .. 309

49.2. Tuning JMS .. 309

49.3. Other Tunings ... 310

49.4. Tuning Transport Settings .. 311

49.5. Tuning the VM .. 312

49.6. Avoiding Anti-Patterns ... 312

50. Configuration Reference .. 315

50.1. Server Configuration .. 315

50.1.1. hornetq-configuration.xml .. 315

50.1.2. hornetq-jms.xml .. 335

50.1.3. Using Masked Passwords in Configuration Files 339

xiv

Chapter 1.

1

Legal Notice
Copyright © 2010 Red Hat, Inc. and others.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons

Attribution–Share Alike 3.0 Unported license ("CC-BY-SA").

An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/. In

accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide

the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,

Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

http://creativecommons.org/licenses/by-sa/3.0/

2

Chapter 2.

3

Preface
What is HornetQ?

• HornetQ is an open source project to build a multi-protocol, embeddable, very high performance,

clustered, asynchronous messaging system.

• HornetQ is an example of Message Oriented Middleware (MoM). For a description of MoMs

and other messaging concepts please see the Chapter 4, Messaging Concepts.

• For answers to more questions about what HornetQ is and what it isn't please visit the FAQs

wiki page [http://www.jboss.org/community/wiki/HornetQGeneralFAQs].

Why use HornetQ? Here are just a few of the reasons:

• 100% open source software. HornetQ is licensed using the Apache Software License v 2.0 to

minimise barriers to adoption.

• HornetQ is designed with usability in mind.

• Written in Java. Runs on any platform with a Java 6+ runtime, that's everything from Windows

desktops to IBM mainframes.

• Amazing performance. Our ground-breaking high performance journal provides persistent

messaging performance at rates normally seen for non-persistent messaging, our non-

persistent messaging performance rocks the boat too.

• Full feature set. All the features you'd expect in any serious messaging system, and others you

won't find anywhere else.

• Elegant, clean-cut design with minimal third party dependencies. Run HornetQ stand-alone,

run it in integrated in your favourite JEE application server, or run it embedded inside your own

product. It's up to you.

• Seamless high availability. We provide a HA solution with automatic client failover so you can

guarantee zero message loss or duplication in event of server failure.

• Hugely flexible clustering. Create clusters of servers that know how to load balance messages.

Link geographically distributed clusters over unreliable connections to form a global network.

Configure routing of messages in a highly flexible way.

• For a full list of features, please see the features wiki page [http://www.jboss.org/community/

wiki/HornetQFeatures] .

http://www.jboss.org/community/wiki/HornetQGeneralFAQs
http://www.jboss.org/community/wiki/HornetQGeneralFAQs
http://www.jboss.org/community/wiki/HornetQGeneralFAQs
http://www.jboss.org/community/wiki/HornetQFeatures
http://www.jboss.org/community/wiki/HornetQFeatures
http://www.jboss.org/community/wiki/HornetQFeatures

4

Chapter 3.

5

Project Information
The official HornetQ project page is http://hornetq.org/.

3.1. Software Download

The software can be download from the Download page:http://hornetq.org/downloads.html

3.2. Project Information

• Please take a look at our project wiki [http://www.jboss.org/community/wiki/HornetQ]

• If you have any user questions please use our user forum [https://community.jboss.org/en/

hornetq]

• If you have development related questions, please use our developer forum [https://

community.jboss.org/en/hornetq/dev]

• Pop in and chat to us in our IRC channel [irc://irc.freenode.net:6667/hornetq]

• Our project blog [http://hornetq.blogspot.com/]

• Follow us on twitter [http://twitter.com/hornetq]

• HornetQ Git repository is https://github.com/hornetq/hornetq

• All release tags are available from https://github.com/hornetq/hornetq/tags

Red Hat kindly employs developers to work full time on HornetQ, they are:

• Clebert Suconic (project lead)

• Andy Taylor

• Howard Gao

• Justin Bertram

And many thanks to all our contributors, both old and new who helped create HornetQ, for a full

list of the people who made it happen, take a look at our team page [http://jboss.org/hornetq/

community/team.html].

http://hornetq.org/
http://hornetq.org/downloads.html
http://www.jboss.org/community/wiki/HornetQ
http://www.jboss.org/community/wiki/HornetQ
https://community.jboss.org/en/hornetq
https://community.jboss.org/en/hornetq
https://community.jboss.org/en/hornetq
https://community.jboss.org/en/hornetq/dev
https://community.jboss.org/en/hornetq/dev
https://community.jboss.org/en/hornetq/dev
irc://irc.freenode.net:6667/hornetq
irc://irc.freenode.net:6667/hornetq
http://hornetq.blogspot.com/
http://hornetq.blogspot.com/
http://twitter.com/hornetq
http://twitter.com/hornetq
https://github.com/hornetq/hornetq
https://github.com/hornetq/hornetq/tags
http://jboss.org/hornetq/community/team.html
http://jboss.org/hornetq/community/team.html
http://jboss.org/hornetq/community/team.html

6

Chapter 4.

7

Messaging Concepts
HornetQ is an asynchronous messaging system, an example of Message Oriented Middleware

[http://en.wikipedia.org/wiki/Message_oriented_middleware] , we'll just call them messaging

systems in the remainder of this book.

We'll first present a brief overview of what kind of things messaging systems do, where they're

useful and the kind of concepts you'll hear about in the messaging world.

If you're already familiar with what a messaging system is and what it's capable of, then you can

skip this chapter.

4.1. Messaging Concepts

Messaging systems allow you to loosely couple heterogeneous systems together, whilst typically

providing reliability, transactions and many other features.

Unlike systems based on a Remote Procedure Call [http://en.wikipedia.org/wiki/

Remote_procedure_call] (RPC) pattern, messaging systems primarily use an asynchronous

message passing pattern with no tight relationship between requests and responses. Most

messaging systems also support a request-response mode but this is not a primary feature of

messaging systems.

Designing systems to be asynchronous from end-to-end allows you to really take advantage of

your hardware resources, minimizing the amount of threads blocking on IO operations, and to use

your network bandwidth to its full capacity. With an RPC approach you have to wait for a response

for each request you make so are limited by the network round trip time, or latency of your network.

With an asynchronous system you can pipeline flows of messages in different directions, so are

limited by the network bandwidth not the latency. This typically allows you to create much higher

performance applications.

Messaging systems decouple the senders of messages from the consumers of messages. The

senders and consumers of messages are completely independent and know nothing of each other.

This allows you to create flexible, loosely coupled systems.

Often, large enterprises use a messaging system to implement a message bus which loosely

couples heterogeneous systems together. Message buses often form the core of an Enterprise

Service Bus [http://en.wikipedia.org/wiki/Enterprise_service_bus]. (ESB). Using a message bus

to de-couple disparate systems can allow the system to grow and adapt more easily. It also allows

more flexibility to add new systems or retire old ones since they don't have brittle dependencies

on each other.

4.2. Messaging styles

Messaging systems normally support two main styles of asynchronous messaging: message

queue [http://en.wikipedia.org/wiki/Message_queue] messaging (also known as point-to-point

http://en.wikipedia.org/wiki/Message_oriented_middleware
http://en.wikipedia.org/wiki/Message_oriented_middleware
http://en.wikipedia.org/wiki/Remote_procedure_call
http://en.wikipedia.org/wiki/Remote_procedure_call
http://en.wikipedia.org/wiki/Remote_procedure_call
http://en.wikipedia.org/wiki/Enterprise_service_bus
http://en.wikipedia.org/wiki/Enterprise_service_bus
http://en.wikipedia.org/wiki/Enterprise_service_bus
http://en.wikipedia.org/wiki/Message_queue
http://en.wikipedia.org/wiki/Message_queue
http://en.wikipedia.org/wiki/Message_queue

Chapter 4. Messaging Concepts

8

messaging) and publish subscribe [http://en.wikipedia.org/wiki/Publish_subscribe] messaging.

We'll summarise them briefly here:

4.2.1. The Message Queue Pattern

With this type of messaging you send a message to a queue. The message is then typically

persisted to provide a guarantee of delivery, then some time later the messaging system delivers

the message to a consumer. The consumer then processes the message and when it is done, it

acknowledges the message. Once the message is acknowledged it disappears from the queue

and is not available to be delivered again. If the system crashes before the messaging server

receives an acknowledgement from the consumer, then on recovery, the message will be available

to be delivered to a consumer again.

With point-to-point messaging, there can be many consumers on the queue but a particular

message will only ever be consumed by a maximum of one of them. Senders (also known as

producers) to the queue are completely decoupled from receivers (also known as consumers) of

the queue - they do not know of each other's existence.

A classic example of point to point messaging would be an order queue in a company's book

ordering system. Each order is represented as a message which is sent to the order queue. Let's

imagine there are many front end ordering systems which send orders to the order queue. When

a message arrives on the queue it is persisted - this ensures that if the server crashes the order

is not lost. Let's also imagine there are many consumers on the order queue - each representing

an instance of an order processing component - these can be on different physical machines but

consuming from the same queue. The messaging system delivers each message to one and only

one of the ordering processing components. Different messages can be processed by different

order processors, but a single order is only processed by one order processor - this ensures orders

aren't processed twice.

As an order processor receives a message, it fulfills the order, sends order information to

the warehouse system and then updates the order database with the order details. Once it's

done that it acknowledges the message to tell the server that the order has been processed

and can be forgotten about. Often the send to the warehouse system, update in database

and acknowledgement will be completed in a single transaction to ensure ACID [http://

en.wikipedia.org/wiki/ACID] properties.

4.2.2. The Publish-Subscribe Pattern

With publish-subscribe messaging many senders can send messages to an entity on the server,

often called a topic (e.g. in the JMS world).

There can be many subscriptions on a topic, a subscription is just another word for a consumer

of a topic. Each subscription receives a copy of each message sent to the topic. This differs from

the message queue pattern where each message is only consumed by a single consumer.

Subscriptions can optionally be durable which means they retain a copy of each message sent to

the topic until the subscriber consumes them - even if the server crashes or is restarted in between.

Non-durable subscriptions only last a maximum of the lifetime of the connection that created them.

http://en.wikipedia.org/wiki/Publish_subscribe
http://en.wikipedia.org/wiki/Publish_subscribe
http://en.wikipedia.org/wiki/ACID
http://en.wikipedia.org/wiki/ACID
http://en.wikipedia.org/wiki/ACID

Delivery guarantees

9

An example of publish-subscribe messaging would be a news feed. As news articles are created

by different editors around the world they are sent to a news feed topic. There are many

subscribers around the world who are interested in receiving news items - each one creates a

subscription and the messaging system ensures that a copy of each news message is delivered

to each subscription.

4.3. Delivery guarantees

A key feature of most messaging systems is reliable messaging. With reliable messaging the

server gives a guarantee that the message will be delivered once and only once to each consumer

of a queue or each durable subscription of a topic, even in the event of system failure. This is

crucial for many businesses; e.g. you don't want your orders fulfilled more than once or any of

your orders to be lost.

In other cases you may not care about a once and only once delivery guarantee and are happy to

cope with duplicate deliveries or lost messages - an example of this might be transient stock price

updates - which are quickly superseded by the next update on the same stock. The messaging

system allows you to configure which delivery guarantees you require.

4.4. Transactions

Messaging systems typically support the sending and acknowledgement of multiple messages in

a single local transaction. HornetQ also supports the sending and acknowledgement of message

as part of a large global transaction - using the Java mapping of XA: JTA.

4.5. Durability

Messages are either durable or non durable. Durable messages will be persisted in permanent

storage and will survive server failure or restart. Non durable messages will not survive server

failure or restart. Examples of durable messages might be orders or trades, where they cannot

be lost. An example of a non durable message might be a stock price update which is transitory

and doesn't need to survive a restart.

4.6. Messaging APIs and protocols

How do client applications interact with messaging systems in order to send and consume

messages?

Several messaging systems provide their own proprietary APIs with which the client

communicates with the messaging system.

There are also some standard ways of operating with messaging systems and some emerging

standards in this space.

Let's take a brief look at these:

Chapter 4. Messaging Concepts

10

4.6.1. Java Message Service (JMS)

JMS [http://en.wikipedia.org/wiki/Java_Message_Service] is part of Sun's JEE specification. It's

a Java API that encapsulates both message queue and publish-subscribe messaging patterns.

JMS is a lowest common denominator specification - i.e. it was created to encapsulate common

functionality of the already existing messaging systems that were available at the time of its

creation.

JMS is a very popular API and is implemented by most messaging systems. JMS is only available

to clients running Java.

JMS does not define a standard wire format - it only defines a programmatic API so JMS clients

and servers from different vendors cannot directly interoperate since each will use the vendor's

own internal wire protocol.

HornetQ provides a fully compliant JMS 1.1 and JMS 2.0 API.

4.6.2. System specific APIs

Many systems provide their own programmatic API for which to interact with the messaging

system. The advantage of this it allows the full set of system functionality to be exposed to the

client application. API's like JMS are not normally rich enough to expose all the extra features that

most messaging systems provide.

HornetQ provides its own core client API for clients to use if they wish to have access to

functionality over and above that accessible via the JMS API.

4.6.3. RESTful API

REST [http://en.wikipedia.org/wiki/Representational_State_Transfer] approaches to messaging

are showing a lot interest recently.

It seems plausible that API standards for cloud computing may converge on a REST style set of

interfaces and consequently a REST messaging approach is a very strong contender for becoming

the de-facto method for messaging interoperability.

With a REST approach messaging resources are manipulated as resources defined by a URI and

typically using a simple set of operations on those resources, e.g. PUT, POST, GET etc. REST

approaches to messaging often use HTTP as their underlying protocol.

The advantage of a REST approach with HTTP is in its simplicity and the fact the internet is already

tuned to deal with HTTP optimally.

Please see Chapter 43, REST Interface for using HornetQ's RESTful interface.

4.6.4. STOMP

Stomp [http://stomp.github.io/] is a very simple text protocol for interoperating with messaging

systems. It defines a wire format, so theoretically any Stomp client can work with any messaging

http://en.wikipedia.org/wiki/Java_Message_Service
http://en.wikipedia.org/wiki/Java_Message_Service
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://stomp.github.io/
http://stomp.github.io/

AMQP

11

system that supports Stomp. Stomp clients are available in many different programming

languages.

Please see Section 48.1, “Stomp” for using STOMP with HornetQ.

4.6.5. AMQP

AMQP [http://en.wikipedia.org/wiki/AMQP] is a specification for interoperable messaging. It also

defines a wire format, so any AMQP client can work with any messaging system that supports

AMQP. AMQP clients are available in many different programming languages.

HornetQ implements the AMQP 1.0 [https://www.oasis-open.org/committees/tc_home.php?

wg_abbrev=amqp] specification. Any client that supports the 1.0 specification will be able to

interact with HornetQ.

4.7. High Availability

High Availability (HA) means that the system should remain operational after failure of one or more

of the servers. The degree of support for HA varies between various messaging systems.

HornetQ provides automatic failover where your sessions are automatically reconnected to the

backup server on event of live server failure.

For more information on HA, please see Chapter 39, High Availability and Failover.

4.8. Clusters

Many messaging systems allow you to create groups of messaging servers called clusters.

Clusters allow the load of sending and consuming messages to be spread over many servers.

This allows your system to scale horizontally by adding new servers to the cluster.

Degrees of support for clusters varies between messaging systems, with some systems having

fairly basic clusters with the cluster members being hardly aware of each other.

HornetQ provides very configurable state-of-the-art clustering model where messages can be

intelligently load balanced between the servers in the cluster, according to the number of

consumers on each node, and whether they are ready for messages.

HornetQ also has the ability to automatically redistribute messages between nodes of a cluster

to prevent starvation on any particular node.

For full details on clustering, please see Chapter 38, Clusters.

4.9. Bridges and routing

Some messaging systems allow isolated clusters or single nodes to be bridged together, typically

over unreliable connections like a wide area network (WAN), or the internet.

http://en.wikipedia.org/wiki/AMQP
http://en.wikipedia.org/wiki/AMQP
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=amqp
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=amqp
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=amqp

Chapter 4. Messaging Concepts

12

A bridge normally consumes from a queue on one server and forwards messages to another

queue on a different server. Bridges cope with unreliable connections, automatically reconnecting

when the connections becomes available again.

HornetQ bridges can be configured with filter expressions to only forward certain messages, and

transformation can also be hooked in.

HornetQ also allows routing between queues to be configured in server side configuration.

This allows complex routing networks to be set up forwarding or copying messages from one

destination to another, forming a global network of interconnected brokers.

For more information please see Chapter 36, Core Bridges and Chapter 35, Diverting and Splitting

Message Flows.

Chapter 5.

13

Architecture
In this section we will give an overview of the HornetQ high level architecture.

5.1. Core Architecture

HornetQ core is designed simply as set of Plain Old Java Objects (POJOs) - we hope you like

its clean-cut design.

We've also designed it to have as few dependencies on external jars as possible. In fact, HornetQ

core has only one jar dependency, netty.jar, other than the standard JDK classes! This is because

we use some of the netty buffer classes internally.

This allows HornetQ to be easily embedded in your own project, or instantiated in any dependency

injection framework such as JBoss Microcontainer, Spring or Google Guice.

Each HornetQ server has its own ultra high performance persistent journal, which it uses for

message and other persistence.

Using a high performance journal allows outrageous persistence message performance,

something not achievable when using a relational database for persistence.

HornetQ clients, potentially on different physical machines interact with the HornetQ server.

HornetQ currently provides two APIs for messaging at the client side:

1. Core client API. This is a simple intuitive Java API that allows the full set of messaging

functionality without some of the complexities of JMS.

2. JMS client API. The standard JMS API is available at the client side.

JMS semantics are implemented by a thin JMS facade layer on the client side.

The HornetQ server does not speak JMS and in fact does not know anything about JMS, it is a

protocol agnostic messaging server designed to be used with multiple different protocols.

When a user uses the JMS API on the client side, all JMS interactions are translated into

operations on the HornetQ core client API before being transferred over the wire using the HornetQ

wire format.

The server always just deals with core API interactions.

A schematic illustrating this relationship is shown in figure 3.1 below:

Chapter 5. Architecture

14

Figure 3.1 shows two user applications interacting with a HornetQ server. User Application 1 is

using the JMS API, while User Application 2 is using the core client API directly.

HornetQ embedded in your own application

15

You can see from the diagram that the JMS API is implemented by a thin facade layer on the

client side.

5.2. HornetQ embedded in your own application

HornetQ core is designed as a set of simple POJOs so if you have an application that requires

messaging functionality internally but you don't want to expose that as a HornetQ server you can

directly instantiate and embed HornetQ servers in your own application.

For more information on embedding HornetQ, see Chapter 44, Embedding HornetQ.

5.3. HornetQ integrated with a JEE application server

HornetQ provides its own fully functional Java Connector Architecture (JCA) adaptor which

enables it to be integrated easily into any JEE compliant application server or servlet engine.

JEE application servers provide Message Driven Beans (MDBs), which are a special type of

Enterprise Java Beans (EJBs) that can process messages from sources such as JMS systems

or mail systems.

Probably the most common use of an MDB is to consume messages from a JMS messaging

system.

According to the JEE specification, a JEE application server uses a JCA adapter to integrate with

a JMS messaging system so it can consume messages for MDBs.

However, the JCA adapter is not only used by the JEE application server for consuming messages

via MDBs, it is also used when sending message to the JMS messaging system e.g. from inside

an EJB or servlet.

When integrating with a JMS messaging system from inside a JEE application server it is always

recommended that this is done via a JCA adaptor. In fact, communicating with a JMS messaging

system directly, without using JCA would be illegal according to the JEE specification.

The application server's JCA service provides extra functionality such as connection pooling and

automatic transaction enlistment, which are desirable when using messaging, say, from inside

an EJB. It is possible to talk to a JMS messaging system directly from an EJB, MDB or servlet

without going through a JCA adapter, but this is not recommended since you will not be able to

take advantage of the JCA features, such as caching of JMS sessions, which can result in poor

performance.

Figure 3.2 below shows a JEE application server integrating with a HornetQ server via the HornetQ

JCA adaptor. Note that all communication between EJB sessions or entity beans and Message

Driven beans go through the adaptor and not directly to HornetQ.

The large arrow with the prohibited sign shows an EJB session bean talking directly to the HornetQ

server. This is not recommended as you'll most likely end up creating a new connection and

session every time you want to interact from the EJB, which is an anti-pattern.

Chapter 5. Architecture

16

For more information on using the JCA adaptor, please see Chapter 32, Application Server

Integration and Java EE.

5.4. HornetQ stand-alone server

HornetQ can also be deployed as a stand-alone server. This means a fully independent messaging

server not dependent on a JEE application server.

The standard stand-alone messaging server configuration comprises a core messaging server,

a JMS service and a JNDI service.

HornetQ stand-alone server

17

The role of the JMS Service is to deploy any JMS Queue, Topic and ConnectionFactory instances

from any server side hornetq-jms.xml configuration files. It also provides a simple management

API for creating and destroying Queues, Topics and ConnectionFactory instances which can

be accessed via JMX or the connection. It is a separate service to the HornetQ core server,

since the core server is JMS agnostic. If you don't want to deploy any JMS Queue, Topic

or ConnectionFactory instances via server side XML configuration and don't require a JMS

management API on the server side then you can disable this service.

We also include a JNDI server since JNDI is a common requirement when using JMS to lookup

Queues, Topics and ConnectionFactory instances. If you do not require JNDI then this service can

also be disabled. HornetQ allows you to programmatically create JMS and core objects directly

on the client side as opposed to looking them up from JNDI, so a JNDI server is not always a

requirement.

The stand-alone server configuration uses JBoss Microcontainer to instantiate and enforce

dependencies between the components. JBoss Microcontainer is a very lightweight POJO

bootstrapper.

The stand-alone server architecture is shown in figure 3.3 below:

For more information on server configuration files see Section 50.1, “Server Configuration”. $

18

Chapter 6.

19

Using the Server
This chapter will familiarise you with how to use the HornetQ server.

We'll show where it is, how to start and stop it, and we'll describe the directory layout and what

all the files are and what they do.

For the remainder of this chapter when we talk about the HornetQ server we mean the HornetQ

standalone server, in its default configuration with a JMS Service and JNDI service enabled.

When running embedded in JBoss Application Server the layout may be slightly different but by-

and-large will be the same.

6.1. Starting and Stopping the standalone server

In the distribution you will find a directory called bin.

cd into that directory and you will find a Unix/Linux script called run.sh and a windows batch file

called run.bat

To run on Unix/Linux type ./run.sh

To run on Windows type run.bat

These scripts are very simple and basically just set-up the classpath and some JVM parameters

and start the JBoss Microcontainer. The Microcontainer is a light weight container used to deploy

the HornetQ POJO's

To stop the server you will also find a Unix/Linux script stop.sh and a windows batch file stop.bat

To run on Unix/Linux type ./stop.sh

To run on Windows type stop.bat

Please note that HornetQ requires a Java 6 or later runtime to run.

Both the run and the stop scripts use the config under config/stand-alone/non-clustered

by default. The configuration can be changed by running ./run.sh ../config/stand-alone/

clustered or another config of your choosing. This is the same for the stop script and the windows

bat files.

6.2. Server JVM settings

The run scripts run.sh and run.bat set some JVM settings for tuning running on Java 6

and choosing the garbage collection policy. We recommend using a parallel garbage collection

algorithm to smooth out latency and minimise large GC pauses.

By default HornetQ runs in a maximum of 1GiB of RAM. To increase the memory settings change

the -Xms and -Xmx memory settings as you would for any Java program.

Chapter 6. Using the Server

20

If you wish to add any more JVM arguments or tune the existing ones, the run scripts are the

place to do it.

6.3. Server classpath

HornetQ looks for its configuration files on the Java classpath.

The scripts run.sh and run.bat specify the classpath when calling Java to run the server.

In the distribution, the run scripts will add the non clustered configuration directory to the classpath.

This is a directory which contains a set of configuration files for running the HornetQ server in a

basic non-clustered configuration. In the distribution this directory is config/stand-alone/non-

clustered/ from the root of the distribution.

The distribution contains several standard configuration sets for running:

• Non clustered stand-alone.

• Clustered stand-alone

• Non clustered in JBoss Application Server

• Clustered in JBoss Application Server

You can of course create your own configuration and specify any configuration directory when

running the run script.

Just make sure the directory is on the classpath and HornetQ will search there when starting up.

6.4. Library Path

If you're using the Asynchronous IO Journal on Linux, you need to specify java.library.path

as a property on your Java options. This is done automatically in the run.sh script.

If you don't specify java.library.path at your Java options then the JVM will use the

environment variable LD_LIBRARY_PATH.

6.5. System properties

HornetQ can take a system property on the command line for configuring logging.

For more information on configuring logging, please see Chapter 42, Logging.

6.6. Configuration files

The configuration directory is specified on the classpath in the run scripts run.sh and run.bat

This directory can contain the following files.

Configuration files

21

• hornetq-beans.xml (or hornetq-jboss-beans.xml if you're running inside JBoss Application

Server). This is the JBoss Microcontainer beans file which defines what beans the

Microcontainer should create and what dependencies to enforce between them. Remember

that HornetQ is just a set of POJOs. In the stand-alone server, it's the JBoss Microcontainer

which instantiates these POJOs and enforces dependencies between them and other beans.

• hornetq-configuration.xml. This is the main HornetQ configuration file. All the parameters

in this file are described in Chapter 50, Configuration Reference. Please see Section 6.9, “The

main configuration file.” for more information on this file.

• hornetq-queues.xml. This file contains predefined queues, queue settings and security

settings. The file is optional - all this configuration can also live in hornetq-configuration.xml.

In fact, the default configuration sets do not have a hornetq-queues.xml file. The purpose

of allowing queues to be configured in these files is to allow you to manage your queue

configuration over many files instead of being forced to maintain it in a single file. There can be

many hornetq-queues.xml files on the classpath. All will be loaded if found.

• hornetq-users.xml HornetQ ships with a basic security manager implementation which

obtains user credentials from the hornetq-users.xml file. This file contains user, password

and role information. For more information on security, please see Chapter 31, Security.

• hornetq-jms.xml The distro configuration by default includes a server side JMS service which

mainly deploys JMS Queues, Topics and ConnectionFactorys from this file into JNDI. If you're

not using JMS, or you don't need to deploy JMS objects on the server side, then you don't need

this file. For more information on using JMS, please see Chapter 7, Using JMS.

• logging.properties This is used to configure the logging handlers used by the Java logger.

For more information on configuring logging, please see Chapter 42, Logging.

Note

The property file-deployment-enabled in the hornetq-configuration.xml

configuration when set to false means that the other configuration files are not

loaded. This is true by default.

It is also possible to use system property substitution in all the configuration files. by replacing

a value with the name of a system property. Here is an example of this with a connector

configuration:

<connector name="netty">

 <factory-class>org.hornetq.core.remoting.impl.netty.NettyConnectorFactory</

factory-class>

 <param key="host" value="${hornetq.remoting.netty.host:localhost}"/>

 <param key="port" value="${hornetq.remoting.netty.port:5445}"/>

Chapter 6. Using the Server

22

</connector>

Here you can see we have replaced 2 values with system properties

hornetq.remoting.netty.host and hornetq.remoting.netty.port. These values will be

replaced by the value found in the system property if there is one, if not they default

back to localhost or 5445 respectively. It is also possible to not supply a default. i.e.

${hornetq.remoting.netty.host}, however the system property must be supplied in that case.

6.7. JBoss Microcontainer Beans File

The stand-alone server is basically a set of POJOs which are instantiated by the light weight JBoss

Microcontainer [http://www.jboss.org/jbossmc/]engine.

Note

A beans file is also needed when the server is deployed in the JBoss Application

Server but this will deploy a slightly different set of objects since the Application

Server will already have things like security etc deployed.

Let's take a look at an example beans file from the stand-alone server:

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmlns="urn:jboss:bean-deployer:2.0">

 <!-- MBean server -->

 <bean name="MBeanServer" class="javax.management.MBeanServer">

 <constructor factoryClass="java.lang.management.ManagementFactory"

 factoryMethod="getPlatformMBeanServer"/>

 </bean>

 <!-- The core configuration -->

 <bean name="Configuration"

 class="org.hornetq.core.config.impl.FileConfiguration">

 </bean>

 <!-- The security manager -->

 <bean name="HornetQSecurityManager"

 class="org.hornetq.spi.core.security.HornetQSecurityManagerImpl">

 <start ignored="true"/>

 <stop ignored="true"/>

 </bean>

 <!-- The core server -->

http://www.jboss.org/jbossmc/
http://www.jboss.org/jbossmc/
http://www.jboss.org/jbossmc/

JBoss Microcontainer Beans File

23

 <bean name="HornetQServer"

 class="org.hornetq.core.server.impl.HornetQServerImpl">

 <constructor>

 <parameter>

 <inject bean="Configuration"/>

 </parameter>

 <parameter>

 <inject bean="MBeanServer"/>

 </parameter>

 <parameter>

 <inject bean="HornetQSecurityManager"/>

 </parameter>

 </constructor>

 <start ignored="true"/>

 <stop ignored="true"/>

 </bean>

 <!-- The Stand alone server that controls the jndi server-->

 <bean name="StandaloneServer"

 class="org.hornetq.jms.server.impl.StandaloneNamingServer">

 <constructor>

 <parameter>

 <inject bean="HornetQServer"/>

 </parameter>

 </constructor>

 <property name="port">${jnp.port:1099}</property>

 <property name="bindAddress">${jnp.host:localhost}</property>

 <property name="rmiPort">${jnp.rmiPort:1098}</property>

 <property name="rmiBindAddress">${jnp.host:localhost}</property>

 </bean>

 <!-- The JMS server -->

 <bean name="JMSServerManager"

 class="org.hornetq.jms.server.impl.JMSServerManagerImpl">

 <constructor>

 <parameter>

 <inject bean="HornetQServer"/>

 </parameter>

 </constructor>

 </bean>

</deployment>

We can see that, as well as the core HornetQ server, the stand-alone server instantiates various

different POJOs, let's look at them in turn:

• MBeanServer

Chapter 6. Using the Server

24

In order to provide a JMX management interface a JMS MBean server is necessary in which

to register the management objects. Normally this is just the default platform MBean server

available in the JVM instance. If you don't want to provide a JMX management interface this

can be commented out or removed.

• Configuration

The HornetQ server is configured with a Configuration object. In the default stand-alone set-

up it uses a FileConfiguration object which knows to read configuration information from the file

system. In different configurations such as embedded you might want to provide configuration

information from somewhere else.

• Security Manager. The security manager used by the messaging server is pluggable. The

default one used just reads user-role information from the hornetq-users.xml file on disk.

However it can be replaced by a JAAS security manager, or when running inside JBoss

Application Server it can be configured to use the JBoss AS security manager for tight

integration with JBoss AS security. If you've disabled security altogether you can remove this

too.

• HornetQServer

This is the core server. It's where 99% of the magic happens

• StandaloneServer

Many clients like to look up JMS Objects from JNDI so we provide a JNDI server for them to

do that. This class is a wrapper around the JBoss naming server. If you don't need JNDI this

can be commented out or removed.

• JMSServerManager

This deploys any JMS Objects such as JMS Queues, Topics and ConnectionFactory instances

from hornetq-jms.xml files on the disk. It also provides a simple management API for

manipulating JMS Objects. On the whole it just translates and delegates its work to the core

server. If you don't need to deploy JMS Queues, Topics and ConnectionFactorys from server

side configuration and don't require the JMS management interface this can be disabled.

6.8. JBoss AS4 MBean Service.

Note

The section is only to configure HornetQ on JBoss AS4. The service functionality

is similar to Microcontainer Beans

JBoss AS4 MBean Service.

25

<?xml version="1.0" encoding="UTF-8"?>

<server>

 <mbean code="org.hornetq.service.HornetQFileConfigurationService"

 name="org.hornetq:service=HornetQFileConfigurationService">

 </mbean>

 <mbean code="org.hornetq.service.JBossASSecurityManagerService"

 name="org.hornetq:service=JBossASSecurityManagerService">

 </mbean>

 <mbean code="org.hornetq.service.HornetQStarterService"

 name="org.hornetq:service=HornetQStarterService">

 <!--let's let the JMS Server start us-->

 <attribute name="Start">false</attribute>

 <depends optional-attribute-name="SecurityManagerService"

 proxy-

type="attribute">org.hornetq:service=JBossASSecurityManagerService</depends>

 <depends optional-attribute-name="ConfigurationService"

 proxy-

type="attribute">org.hornetq:service=HornetQFileConfigurationService</depends>

 </mbean>

 <mbean code="org.hornetq.service.HornetQJMSStarterService"

 name="org.hornetq:service=HornetQJMSStarterService">

 <depends optional-attribute-name="HornetQServer"

 proxy-type="attribute">org.hornetq:service=HornetQStarterService</

depends>

 </mbean>

</server>

This jboss-service.xml configuration file is included inside the hornetq-service.sar on AS4 with

embedded HornetQ. As you can see, on this configuration file we are starting various services:

• HornetQFileConfigurationService

This is an MBean Service that takes care of the life cycle of the FileConfiguration POJO

• JBossASSecurityManagerService

This is an MBean Service that takes care of the lifecycle of the JBossASSecurityManager POJO

• HornetQStarterService

This is an MBean Service that controls the main HornetQServer POJO. this has a dependency

on JBossASSecurityManagerService and HornetQFileConfigurationService MBeans

• HornetQJMSStarterService

Chapter 6. Using the Server

26

This is an MBean Service that controls the JMSServerManagerImpl POJO. If you aren't using

jms this can be removed.

• JMSServerManager

Has the responsibility to start the JMSServerManager and the same behaviour that

JMSServerManager Bean

6.9. The main configuration file.

The configuration for the HornetQ core server is contained in hornetq-configuration.xml. This

is what the FileConfiguration bean uses to configure the messaging server.

There are many attributes which you can configure HornetQ. In most cases the defaults will do

fine, in fact every attribute can be defaulted which means a file with a single empty configuration

element is a valid configuration file. The different configuration will be explained throughout the

manual or you can refer to the configuration reference here.

Chapter 7.

27

Using JMS
Although HornetQ provides a JMS agnostic messaging API, many users will be more comfortable

using JMS.

JMS is a very popular API standard for messaging, and most messaging systems provide a

JMS API. If you are completely new to JMS we suggest you follow the Sun JMS tutorial [http://

docs.oracle.com/javaee/1.3/jms/tutorial] - a full JMS tutorial is out of scope for this guide.

HornetQ also ships with a wide range of examples, many of which demonstrate JMS API usage.

A good place to start would be to play around with the simple JMS Queue and Topic example, but

we also provide examples for many other parts of the JMS API. A full description of the examples

is available in Chapter 11, Examples.

In this section we'll go through the main steps in configuring the server for JMS and creating a

simple JMS program. We'll also show how to configure and use JNDI, and also how to use JMS

with HornetQ without using any JNDI.

7.1. A simple ordering system

For this chapter we're going to use a very simple ordering system as our example. It is a somewhat

contrived example because of its extreme simplicity, but it serves to demonstrate the very basics

of setting up and using JMS.

We will have a single JMS Queue called OrderQueue, and we will have a single MessageProducer

sending an order message to the queue and a single MessageConsumer consuming the order

message from the queue.

The queue will be a durable queue, i.e. it will survive a server restart or crash. We also want

to pre-deploy the queue, i.e. specify the queue in the server JMS configuration so it is created

automatically without us having to explicitly create it from the client.

7.2. JMS Server Configuration

The file hornetq-jms.xml on the server classpath contains any JMS Queue, Topic and

ConnectionFactory instances that we wish to create and make available to lookup via the JNDI.

A JMS ConnectionFactory object is used by the client to make connections to the server. It knows

the location of the server it is connecting to, as well as many other configuration parameters. In

most cases the defaults will be acceptable.

We'll deploy a single JMS Queue and a single JMS Connection Factory instance on the server

for this example but there are no limits to the number of Queues, Topics and Connection Factory

instances you can deploy from the file. Here's our configuration:

<configuration xmlns="urn:hornetq"

http://docs.oracle.com/javaee/1.3/jms/tutorial
http://docs.oracle.com/javaee/1.3/jms/tutorial
http://docs.oracle.com/javaee/1.3/jms/tutorial

Chapter 7. Using JMS

28

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:hornetq ../schemas/hornetq-jms.xsd ">

 <connection-factory name="ConnectionFactory">

 <connectors>

 <connector-ref connector-name="netty"/>

 </connectors>

 <entries>

 <entry name="ConnectionFactory"/>

 </entries>

 </connection-factory>

 <queue name="OrderQueue">

 <entry name="queues/OrderQueue"/>

 </queue>

</configuration>

We deploy one ConnectionFactory called ConnectionFactory and bind it in just one place in

JNDI as given by the entry element. ConnectionFactory instances can be bound in many places

in JNDI if you require.

Note

The JMS connection factory references a connector called netty. This is a

reference to a connector object deployed in the main core configuration file

hornetq-configuration.xml which defines the transport and parameters used

to actually connect to the server.

7.3. Connection Factory Types

The JMS API doc provides several connection factories for applications. HornetQ JMS users

can choose to configure the types for their connection factories. Each connection factory has a

signature attribute and a xa parameter, the combination of which determines the type of the

factory. Attribute signature has three possible string values, i.e. generic, queue and topic; xa

is a boolean type parameter. The following table gives their configuration values for different

connection factory interfaces.

Table 7.1. Configuration for Connection Factory Types

signature xa Connection Factory Type

generic (default) false (default) javax.jms.ConnectionFactory

generic true javax.jms.XAConnectionFactory

queue false javax.jms.QueueConnectionFactory

queue true javax.jms.XAQueueConnectionFactory

JNDI configuration

29

signature xa Connection Factory Type

topic false javax.jms.TopicConnectionFactory

topic true javax.jms.XATopicConnectionFactory

As an example, the following configures an XAQueueConnectionFactory:

<configuration xmlns="urn:hornetq"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:hornetq ../schemas/hornetq-jms.xsd ">

 <connection-factory name="ConnectionFactory" signature="queue">

 <xa>true</xa>

 <connectors>

 <connector-ref connector-name="netty"/>

 </connectors>

 <entries>

 <entry name="ConnectionFactory"/>

 </entries>

 </connection-factory>

</configuration>

7.4. JNDI configuration

When using JNDI from the client side you need to specify a set of JNDI properties which tell

the JNDI client where to locate the JNDI server, amongst other things. These are often specified

in a file called jndi.properties on the client classpath, or you can specify them directly when

creating the JNDI initial context. A full JNDI tutorial is outside the scope of this document, please

see the Sun JNDI tutorial [http://docs.oracle.com/javase/jndi/tutorial] for more information on how

to use JNDI.

For talking to the JBoss JNDI Server, the jndi properties will look something like this:

java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory

java.naming.provider.url=jnp://myhost:1099

java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces

Where myhost is the hostname or IP address of the JNDI server. 1099 is the port used by the

JNDI server and may vary depending on how you have configured your JNDI server.

In the default standalone configuration, JNDI server ports are configured in the file hornetq-

beans.xml by setting properties on the JNDIServer bean:

http://docs.oracle.com/javase/jndi/tutorial
http://docs.oracle.com/javase/jndi/tutorial

Chapter 7. Using JMS

30

<bean name="StandaloneServer"

 class="org.hornetq.jms.server.impl.StandaloneNamingServer">

 <constructor>

 <parameter>

 <inject bean="HornetQServer"/>

 </parameter>

 </constructor>

 <property name="port">${jnp.port:1099}</property>

 <property name="bindAddress">${jnp.host:localhost}</property>

 <property name="rmiPort">${jnp.rmiPort:1098}</property>

 <property name="rmiBindAddress">${jnp.host:localhost}</property>

</bean>

Note

If you want your JNDI server to be available to non local clients make sure you

change its bind address to something other than localhost!

Note

The JNDIServer bean must be defined only when HornetQ is running in stand-

alone mode. When HornetQ is integrated to JBoss Application Server, JBoss AS

will provide a ready-to-use JNDI server without any additional configuration.

7.5. The code

Here's the code for the example:

First we'll create a JNDI initial context from which to lookup our JMS objects:

InitialContext ic = new InitialContext();

Now we'll look up the connection factory:

ConnectionFactory cf = (ConnectionFactory)ic.lookup("/ConnectionFactory");

And look up the Queue:

The code

31

Queue orderQueue = (Queue)ic.lookup("/queues/OrderQueue");

Next we create a JMS connection using the connection factory:

Connection connection = cf.createConnection();

And we create a non transacted JMS Session, with AUTO_ACKNOWLEDGE acknowledge mode:

Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

We create a MessageProducer that will send orders to the queue:

MessageProducer producer = session.createProducer(orderQueue);

And we create a MessageConsumer which will consume orders from the queue:

MessageConsumer consumer = session.createConsumer(orderQueue);

We make sure we start the connection, or delivery won't occur on it:

connection.start();

We create a simple TextMessage and send it:

TextMessage message = session.createTextMessage("This is an order");

producer.send(message);

And we consume the message:

TextMessage receivedMessage = (TextMessage)consumer.receive();

System.out.println("Got order: " + receivedMessage.getText());

It is as simple as that. For a wide range of working JMS examples please see the examples

directory in the distribution.

Chapter 7. Using JMS

32

Warning

Please note that JMS connections, sessions, producers and consumers are

designed to be re-used.

It is an anti-pattern to create new connections, sessions, producers and consumers

for each message you produce or consume. If you do this, your application will

perform very poorly. This is discussed further in the section on performance tuning

Chapter 49, Performance Tuning.

7.6. Directly instantiating JMS Resources without using

JNDI

Although it is a very common JMS usage pattern to lookup JMS Administered Objects (that's JMS

Queue, Topic and ConnectionFactory instances) from JNDI, in some cases a JNDI server is not

available and you still want to use JMS, or you just think "Why do I need JNDI? Why can't I just

instantiate these objects directly?"

With HornetQ you can do exactly that. HornetQ supports the direct instantiation of JMS Queue,

Topic and ConnectionFactory instances, so you don't have to use JNDI at all.

For a full working example of direct instantiation please see the JMS examples in Chapter 11,

Examples.

Here's our simple example, rewritten to not use JNDI at all:

We create the JMS ConnectionFactory object via the HornetQJMSClient Utility class, note we

need to provide connection parameters and specify which transport we are using, for more

information on connectors please see Chapter 16, Configuring the Transport.

TransportConfiguration transportConfiguration = new

 TransportConfiguration(NettyConnectorFactory.class.getName());

ConnectionFactory cf =

 HornetQJMSClient.createConnectionFactoryWithoutHA(JMSFactoryType.CF,transportConfiguration);

We also create the JMS Queue object via the HornetQJMSClient Utility class:

Queue orderQueue = HornetQJMSClient.createQueue("OrderQueue");

Next we create a JMS connection using the connection factory:

Setting The Client ID

33

Connection connection = cf.createConnection();

And we create a non transacted JMS Session, with AUTO_ACKNOWLEDGE acknowledge mode:

Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

We create a MessageProducer that will send orders to the queue:

MessageProducer producer = session.createProducer(orderQueue);

And we create a MessageConsumer which will consume orders from the queue:

MessageConsumer consumer = session.createConsumer(orderQueue);

We make sure we start the connection, or delivery won't occur on it:

connection.start();

We create a simple TextMessage and send it:

TextMessage message = session.createTextMessage("This is an order");

producer.send(message);

And we consume the message:

TextMessage receivedMessage = (TextMessage)consumer.receive();

System.out.println("Got order: " + receivedMessage.getText());

7.7. Setting The Client ID

This represents the client id for a JMS client and is needed for creating durable subscriptions. It

is possible to configure this on the connection factory and can be set via the client-id element.

Any connection created by this connection factory will have this set as its client id.

Chapter 7. Using JMS

34

7.8. Setting The Batch Size for DUPS_OK

When the JMS acknowledge mode is set to DUPS_OK it is possible to configure the consumer so

that it sends acknowledgements in batches rather that one at a time, saving valuable bandwidth.

This can be configured via the connection factory via the dups-ok-batch-size element and is

set in bytes. The default is 1024 * 1024 bytes = 1 MiB.

7.9. Setting The Transaction Batch Size

When receiving messages in a transaction it is possible to configure the consumer to send

acknowledgements in batches rather than individually saving valuable bandwidth. This can be

configured on the connection factory via the transaction-batch-size element and is set in

bytes. The default is 1024 * 1024.

Chapter 8.

35

Using Core
HornetQ core is a completely JMS-agnostic messaging system with its own non-JMS API. We

call this the core API.

If you don't want to use JMS you can use the core API directly. The core API provides all the

functionality of JMS but without much of the complexity. It also provides features that are not

available using JMS.

8.1. Core Messaging Concepts

Some of the core messaging concepts are similar to JMS concepts, but core messaging concepts

differ in some ways. In general the core messaging API is simpler than the JMS API, since we

remove distinctions between queues, topics and subscriptions. We'll discuss each of the major

core messaging concepts in turn, but to see the API in detail, please consult the Javadoc.

8.1.1. Message

• A message is the unit of data which is sent between clients and servers.

• A message has a body which is a buffer containing convenient methods for reading and writing

data into it.

• A message has a set of properties which are key-value pairs. Each property key is a string and

property values can be of type integer, long, short, byte, byte[], String, double, float or boolean.

• A message has an address it is being sent to. When the message arrives on the server it is

routed to any queues that are bound to the address - if the queues are bound with any filter,

the message will only be routed to that queue if the filter matches. An address may have many

queues bound to it or even none. There may also be entities other than queues, like diverts

bound to addresses.

• Messages can be either durable or non durable. Durable messages in a durable queue will

survive a server crash or restart. Non durable messages will never survive a server crash or

restart.

• Messages can be specified with a priority value between 0 and 9. 0 represents the lowest priority

and 9 represents the highest. HornetQ will attempt to deliver higher priority messages before

lower priority ones.

• Messages can be specified with an optional expiry time. HornetQ will not deliver messages after

its expiry time has been exceeded.

• Messages also have an optional timestamp which represents the time the message was sent.

• HornetQ also supports the sending/consuming of very large messages - much larger than can

fit in available RAM at any one time.

Chapter 8. Using Core

36

8.1.2. Address

A server maintains a mapping between an address and a set of queues. Zero or more queues can

be bound to a single address. Each queue can be bound with an optional message filter. When

a message is routed, it is routed to the set of queues bound to the message's address. If any of

the queues are bound with a filter expression, then the message will only be routed to the subset

of bound queues which match that filter expression.

Other entities, such as diverts can also be bound to an address and messages will also be routed

there.

Note

In core, there is no concept of a Topic, Topic is a JMS only term. Instead, in core,

we just deal with addresses and queues.

For example, a JMS topic would be implemented by a single address to which

many queues are bound. Each queue represents a subscription of the topic. A JMS

Queue would be implemented as a single address to which one queue is bound -

that queue represents the JMS queue.

8.1.3. Queue

Queues can be durable, meaning the messages they contain survive a server crash or restart, as

long as the messages in them are durable. Non durable queues do not survive a server restart or

crash even if the messages they contain are durable.

Queues can also be temporary, meaning they are automatically deleted when the client connection

is closed, if they are not explicitly deleted before that.

Queues can be bound with an optional filter expression. If a filter expression is supplied then

the server will only route messages that match that filter expression to any queues bound to the

address.

Many queues can be bound to a single address. A particular queue is only bound to a maximum

of one address.

8.1.4. ServerLocator

Clients use ServerLocator instances to create ClientSessionFactory instances.

ServerLocator instances are used to locate servers and create connections to them.

In JMS terms think of a ServerLocator in the same way you would a JMS Connection Factory.

ServerLocator instances are created using the HornetQClient factory class.

ClientSessionFactory

37

8.1.5. ClientSessionFactory

Clients use ClientSessionFactory instances to create ClientSession instances.

ClientSessionFactory instances are basically the connection to a server

In JMS terms think of them as JMS Connections.

ClientSessionFactory instances are created using the ServerLocator class.

8.1.6. ClientSession

A client uses a ClientSession for consuming and producing messages and for grouping them

in transactions. ClientSession instances can support both transactional and non transactional

semantics and also provide an XAResource interface so messaging operations can be

performed as part of a JTA [http://www.oracle.com/technetwork/java/javaee/tech/jta-138684.html]

transaction.

ClientSession instances group ClientConsumers and ClientProducers.

ClientSession instances can be registered with an optional SendAcknowledgementHandler. This

allows your client code to be notified asynchronously when sent messages have successfully

reached the server. This unique HornetQ feature, allows you to have full guarantees that sent

messages have reached the server without having to block on each message sent until a response

is received. Blocking on each messages sent is costly since it requires a network round trip for each

message sent. By not blocking and receiving send acknowledgements asynchronously you can

create true end to end asynchronous systems which is not possible using the standard JMS API.

For more information on this advanced feature please see the section Chapter 20, Guarantees

of sends and commits.

8.1.7. ClientConsumer

Clients use ClientConsumer instances to consume messages from a queue. Core

Messaging supports both synchronous and asynchronous message consumption semantics.

ClientConsumer instances can be configured with an optional filter expression and will only

consume messages which match that expression.

8.1.8. ClientProducer

Clients create ClientProducer instances on ClientSession instances so they can send

messages. ClientProducer instances can specify an address to which all sent messages are

routed, or they can have no specified address, and the address is specified at send time for the

message.

Warning

Please note that ClientSession, ClientProducer and ClientConsumer instances are

designed to be re-used.

http://www.oracle.com/technetwork/java/javaee/tech/jta-138684.html
http://www.oracle.com/technetwork/java/javaee/tech/jta-138684.html

Chapter 8. Using Core

38

It's an anti-pattern to create new ClientSession, ClientProducer and

ClientConsumer instances for each message you produce or consume. If you

do this, your application will perform very poorly. This is discussed further in the

section on performance tuning Chapter 49, Performance Tuning.

8.2. A simple example of using Core

Here's a very simple program using the core messaging API to send and receive a message:

ServerLocator locator = HornetQClient.createServerLocatorWithoutHA(new

 TransportConfiguration(

 InVMConnectorFactory.class.getName()));

ClientSessionFactory factory = locator.createClientSessionFactory();

ClientSession session = factory.createSession();

session.createQueue("example", "example", true);

ClientProducer producer = session.createProducer("example");

ClientMessage message = session.createMessage(true);

message.getBodyBuffer().writeString("Hello");

producer.send(message);

session.start();

ClientConsumer consumer = session.createConsumer("example");

ClientMessage msgReceived = consumer.receive();

System.out.println("message = " + msgReceived.getBodyBuffer().readString());

session.close();

Chapter 9.

39

Mapping JMS Concepts to the Core

API
This chapter describes how JMS destinations are mapped to HornetQ addresses.

HornetQ core is JMS-agnostic. It does not have any concept of a JMS topic. A JMS topic is

implemented in core as an address (the topic name) with zero or more queues bound to it.

Each queue bound to that address represents a topic subscription. Likewise, a JMS queue is

implemented as an address (the JMS queue name) with one single queue bound to it which

represents the JMS queue.

By convention, all JMS queues map to core queues where the core queue name has the string

jms.queue. prepended to it. E.g. the JMS queue with the name "orders.europe" would map to

the core queue with the name "jms.queue.orders.europe". The address at which the core queue

is bound is also given by the core queue name.

For JMS topics the address at which the queues that represent the subscriptions are bound is

given by prepending the string "jms.topic." to the name of the JMS topic. E.g. the JMS topic with

name "news.europe" would map to the core address "jms.topic.news.europe"

In other words if you send a JMS message to a JMS queue with name "orders.europe" it will get

routed on the server to any core queues bound to the address "jms.queue.orders.europe". If you

send a JMS message to a JMS topic with name "news.europe" it will get routed on the server to

any core queues bound to the address "jms.topic.news.europe".

If you want to configure settings for a JMS Queue with the name "orders.europe", you need to

configure the corresponding core queue "jms.queue.orders.europe":

<!-- expired messages in JMS Queue "orders.europe" will be sent to the JMS Queue

 "expiry.europe" -->

<address-setting match="jms.queue.orders.europe">

 <expiry-address>jms.queue.expiry.europe</expiry-address>

 ...

</address-setting>

40

Chapter 10.

41

The Client Classpath
HornetQ requires several jars on the Client Classpath depending on whether the client uses

HornetQ Core API, JMS, and JNDI.

Warning

All the jars mentioned here can be found in the lib directory of the HornetQ

distribution. Be sure you only use the jars from the correct version of the release,

you must not mix and match versions of jars from different HornetQ versions.

Mixing and matching different jar versions may cause subtle errors and failures

to occur.

10.1. HornetQ Core Client

If you are using just a pure HornetQ Core client (i.e. no JMS) then you need hornetq-core-

client.jar, hornetq-commons.jar, and netty.jar on your client classpath.

10.2. JMS Client

If you are using JMS on the client side, then you will also need to include hornetq-jms-

client.jar and jboss-jms-api.jar.

Note

jboss-jms-api.jar just contains Java EE API interface classes needed for the

javax.jms.* classes. If you already have a jar with these interface classes on

your classpath, you will not need it.

10.3. JMS Client with JNDI

If you are looking up JMS resources from the JNDI server co-located with the HornetQ standalone

server, you will also need the jar jnp-client.jar jar on your client classpath as well as any other

jars mentioned previously.

42

Chapter 11.

43

Examples
The HornetQ distribution comes with over 70 run out-of-the-box examples demonstrating many

of the features.

The examples are available in the distribution, in the examples directory. Examples are split into

JMS and core examples. JMS examples show how a particular feature can be used by a normal

JMS client. Core examples show how the equivalent feature can be used by a core messaging

client.

A set of Java EE examples are also provided which need the JBoss Application Server installed

to be able to run.

11.1. JMS Examples

To run a JMS example, simply cd into the appropriate example directory and type mvn verify

(For details please read the readme.html in each example directory).

Here's a listing of the examples with a brief description.

11.1.1. JMS AeroGear

This example shows how you can send a message to a mobile device by leveraging AeroGears

push technology which provides support for different push notification technologies like Google

Cloud Messaging, Apple's APNs or Mozilla's SimplePush.

11.1.2. Applet

This example shows you how to send and receive JMS messages from an Applet.

11.1.3. Application-Layer Failover

HornetQ also supports Application-Layer failover, useful in the case that replication is not enabled

on the server side.

With Application-Layer failover, it's up to the application to register a JMS ExceptionListener

with HornetQ which will be called by HornetQ in the event that connection failure is detected.

The code in the ExceptionListener then recreates the JMS connection, session, etc on another

node and the application can continue.

Application-layer failover is an alternative approach to High Availability (HA). Application-layer

failover differs from automatic failover in that some client side coding is required in order to

implement this. Also, with Application-layer failover, since the old session object dies and a new

one is created, any uncommitted work in the old session will be lost, and any unacknowledged

messages might be redelivered.

Chapter 11. Examples

44

11.1.4. Core Bridge Example

The bridge example demonstrates a core bridge deployed on one server, which consumes

messages from a local queue and forwards them to an address on a second server.

Core bridges are used to create message flows between any two HornetQ servers which are

remotely separated. Core bridges are resilient and will cope with temporary connection failure

allowing them to be an ideal choice for forwarding over unreliable connections, e.g. a WAN.

11.1.5. Browser

The browser example shows you how to use a JMS QueueBrowser with HornetQ.

Queues are a standard part of JMS, please consult the JMS 1.1 specification for full details.

A QueueBrowser is used to look at messages on the queue without removing them. It can scan

the entire content of a queue or only messages matching a message selector.

11.1.6. Client Kickoff

The client-kickoff example shows how to terminate client connections given an IP address

using the JMX management API.

11.1.7. Client side failover listener

The client-side-failoverlistener example shows how to register a listener to monitor

failover events

11.1.8. Client-Side Load-Balancing

The client-side-load-balancing example demonstrates how sessions created from a single

JMS Connection can be created to different nodes of the cluster. In other words it demonstrates

how HornetQ does client-side load-balancing of sessions across the cluster.

11.1.9. Clustered Durable Subscription

This example demonstrates a clustered JMS durable subscription

11.1.10. Clustered Grouping

This is similar to the message grouping example except that it demonstrates it working over a

cluster. Messages sent to different nodes with the same group id will be sent to the same node

and the same consumer.

11.1.11. Clustered Queue

The clustered-queue example demonstrates a JMS queue deployed on two different nodes.

The two nodes are configured to form a cluster. We then create a consumer for the queue on each

Clustering with JGroups

45

node, and we create a producer on only one of the nodes. We then send some messages via the

producer, and we verify that both consumers receive the sent messages in a round-robin fashion.

11.1.12. Clustering with JGroups

The clustered-jgroups example demonstrates how to form a two node cluster using JGroups

as its underlying topology discovery technique, rather than the default UDP broadcasting. We

then create a consumer for the queue on each node, and we create a producer on only one of

the nodes. We then send some messages via the producer, and we verify that both consumers

receive the sent messages in a round-robin fashion.

11.1.13. Clustered Standalone

The clustered-standalone example demonstrates how to configure and starts 3 cluster nodes

on the same machine to form a cluster. A subscriber for a JMS topic is created on each node, and

we create a producer on only one of the nodes. We then send some messages via the producer,

and we verify that the 3 subscribers receive all the sent messages.

11.1.14. Clustered Static Discovery

This example demonstrates how to configure a cluster using a list of connectors rather than UDP

for discovery

11.1.15. Clustered Static Cluster One Way

This example demonstrates how to set up a cluster where cluster connections are one way, i.e.

server A -> Server B -> Server C

11.1.16. Clustered Topic

The clustered-topic example demonstrates a JMS topic deployed on two different nodes. The

two nodes are configured to form a cluster. We then create a subscriber on the topic on each

node, and we create a producer on only one of the nodes. We then send some messages via the

producer, and we verify that both subscribers receive all the sent messages.

11.1.17. Message Consumer Rate Limiting

With HornetQ you can specify a maximum consume rate at which a JMS MessageConsumer will

consume messages. This can be specified when creating or deploying the connection factory.

If this value is specified then HornetQ will ensure that messages are never consumed at a rate

higher than the specified rate. This is a form of consumer throttling.

11.1.18. Dead Letter

The dead-letter example shows you how to define and deal with dead letter messages.

Messages can be delivered unsuccessfully (e.g. if the transacted session used to consume them

is rolled back).

Chapter 11. Examples

46

Such a message goes back to the JMS destination ready to be redelivered. However, this means

it is possible for a message to be delivered again and again without any success and remain in

the destination, clogging the system.

To prevent this, messaging systems define dead letter messages: after a specified unsuccessful

delivery attempts, the message is removed from the destination and put instead in a dead letter

destination where they can be consumed for further investigation.

11.1.19. Delayed Redelivery

The delayed-redelivery example demonstrates how HornetQ can be configured to provide a

delayed redelivery in the case a message needs to be redelivered.

Delaying redelivery can often be useful in the case that clients regularly fail or roll-back. Without a

delayed redelivery, the system can get into a "thrashing" state, with delivery being attempted, the

client rolling back, and delivery being re-attempted in quick succession, using up valuable CPU

and network resources.

11.1.20. Divert

HornetQ diverts allow messages to be transparently "diverted" or copied from one address to

another with just some simple configuration defined on the server side.

11.1.21. Durable Subscription

The durable-subscription example shows you how to use a durable subscription with HornetQ.

Durable subscriptions are a standard part of JMS, please consult the JMS 1.1 specification for

full details.

Unlike non-durable subscriptions, the key function of durable subscriptions is that the messages

contained in them persist longer than the lifetime of the subscriber - i.e. they will accumulate

messages sent to the topic even if there is no active subscriber on them. They will also survive

server restarts or crashes. Note that for the messages to be persisted, the messages sent to them

must be marked as durable messages.

11.1.22. Embedded

The embedded example shows how to embed JMS within your own code using POJO instantiation

and no config files.

11.1.23. Embedded Simple

The embedded example shows how to embed JMS within your own code using regular HornetQ

XML files.

11.1.24. Message Expiration

The expiry example shows you how to define and deal with message expiration. Messages can

be retained in the messaging system for a limited period of time before being removed. JMS

HornetQ Resource Adapter example

47

specification states that clients should not receive messages that have been expired (but it does

not guarantee this will not happen).

HornetQ can assign an expiry address to a given queue so that when messages are expired, they

are removed from the queue and sent to the expiry address. These "expired" messages can later

be consumed from the expiry address for further inspection.

11.1.25. HornetQ Resource Adapter example

This examples shows how to build the hornetq resource adapters a rar for deployment in other

Application Server's

11.1.26. HTTP Transport

The http-transport example shows you how to configure HornetQ to use the HTTP protocol

as its transport layer.

11.1.27. Instantiate JMS Objects Directly

Usually, JMS Objects such as ConnectionFactory, Queue and Topic instances are looked up

from JNDI before being used by the client code. This objects are called "administered objects"

in JMS terminology.

However, in some cases a JNDI server may not be available or desired. To come to the rescue

HornetQ also supports the direct instantiation of these administered objects on the client side so

you don't have to use JNDI for JMS.

11.1.28. Interceptor

HornetQ allows an application to use an interceptor to hook into the messaging system.

Interceptors allow you to handle various message events in HornetQ.

11.1.29. JAAS

The jaas example shows you how to configure HornetQ to use JAAS for security. HornetQ can

leverage JAAS to delegate user authentication and authorization to existing security infrastructure.

11.1.30. JMS Auto Closable

The jms-auto-closeable example shows how JMS resources, such as connections, sessions

and consumers, in JMS 2 can be automatically closed on error.

11.1.31. JMS Completion Listener

The jms-completion-listener example shows how to send a message asynchronously to

HornetQ and use a CompletionListener to be notified of the Broker receiving it.

Chapter 11. Examples

48

11.1.32. JMS Bridge

The jms-brige example shows how to setup a bridge between two standalone HornetQ servers.

11.1.33. JMS Context

The jms-context example shows how to send and receive a message to a JMS Queue using

HornetQ by using a JMS Context.

A JMSContext is part of JMS 2.0 and combines the JMS Connection and Session Objects into

a simple Interface.

11.1.34. JMS Shared Consumer

The jms-shared-consumer example shows you how can use shared consumers to share a

subscription on a topic. In JMS 1.1 this was not allowed and so caused a scalability issue. In JMS 2

this restriction has been lifted so you can share the load across different threads and connections.

11.1.35. JMX Management

The jmx example shows how to manage HornetQ using JMX.

11.1.36. Large Message

The large-message example shows you how to send and receive very large messages with

HornetQ. HornetQ supports the sending and receiving of huge messages, much larger than can

fit in available RAM on the client or server. Effectively the only limit to message size is the amount

of disk space you have on the server.

Large messages are persisted on the server so they can survive a server restart. In other words

HornetQ doesn't just do a simple socket stream from the sender to the consumer.

11.1.37. Last-Value Queue

The last-value-queue example shows you how to define and deal with last-value queues. Last-

value queues are special queues which discard any messages when a newer message with the

same value for a well-defined last-value property is put in the queue. In other words, a last-value

queue only retains the last value.

A typical example for last-value queue is for stock prices, where you are only interested by the

latest price for a particular stock.

11.1.38. Management

The management example shows how to manage HornetQ using JMS Messages to invoke

management operations on the server.

Management Notification

49

11.1.39. Management Notification

The management-notification example shows how to receive management notifications from

HornetQ using JMS messages. HornetQ servers emit management notifications when events

of interest occur (consumers are created or closed, addresses are created or deleted, security

authentication fails, etc.).

11.1.40. Message Counter

The message-counters example shows you how to use message counters to obtain message

information for a JMS queue.

11.1.41. Message Group

The message-group example shows you how to configure and use message groups with HornetQ.

Message groups allow you to pin messages so they are only consumed by a single consumer.

Message groups are sets of messages that has the following characteristics:

• Messages in a message group share the same group id, i.e. they have same JMSXGroupID

string property values

• The consumer that receives the first message of a group will receive all the messages that

belongs to the group

11.1.42. Message Group

The message-group2 example shows you how to configure and use message groups with

HornetQ via a connection factory.

11.1.43. Message Priority

Message Priority can be used to influence the delivery order for messages.

It can be retrieved by the message's standard header field 'JMSPriority' as defined in JMS

specification version 1.1.

The value is of type integer, ranging from 0 (the lowest) to 9 (the highest). When messages are

being delivered, their priorities will effect their order of delivery. Messages of higher priorities will

likely be delivered before those of lower priorities.

Messages of equal priorities are delivered in the natural order of their arrival at their destinations.

Please consult the JMS 1.1 specification for full details.

11.1.44. Multiple Failover

This example demonstrates how to set up a live server with multiple backups

Chapter 11. Examples

50

11.1.45. Multiple Failover Failback

This example demonstrates how to set up a live server with multiple backups but forcing failover

back to the original live server

11.1.46. No Consumer Buffering

By default, HornetQ consumers buffer messages from the server in a client side buffer before you

actually receive them on the client side. This improves performance since otherwise every time

you called receive() or had processed the last message in a MessageListener onMessage()

method, the HornetQ client would have to go the server to request the next message, which would

then get sent to the client side, if one was available.

This would involve a network round trip for every message and reduce performance. Therefore,

by default, HornetQ pre-fetches messages into a buffer on each consumer.

In some case buffering is not desirable, and HornetQ allows it to be switched off. This example

demonstrates that.

11.1.47. Non-Transaction Failover With Server Data Replication

The non-transaction-failover example demonstrates two servers coupled as a live-backup

pair for high availability (HA), and a client using a non-transacted JMS session failing over from

live to backup when the live server is crashed.

HornetQ implements failover of client connections between live and backup servers. This is

implemented by the replication of state between live and backup nodes. When replication is

configured and a live node crashes, the client connections can carry and continue to send and

consume messages. When non-transacted sessions are used, once and only once message

delivery is not guaranteed and it is possible that some messages will be lost or delivered twice.

11.1.48. Paging

The paging example shows how HornetQ can support huge queues even when the server is

running in limited RAM. It does this by transparently paging messages to disk, and depaging them

when they are required.

11.1.49. Pre-Acknowledge

Standard JMS supports three acknowledgement modes: AUTO_ACKNOWLEDGE,

CLIENT_ACKNOWLEDGE, and DUPS_OK_ACKNOWLEDGE. For a full description on these modes please

consult the JMS specification, or any JMS tutorial.

All of these standard modes involve sending acknowledgements from the client to the server.

However in some cases, you really don't mind losing messages in event of failure, so it would

make sense to acknowledge the message on the server before delivering it to the client. This

example demonstrates how HornetQ allows this with an extra acknowledgement mode.

Message Producer Rate Limiting

51

11.1.50. Message Producer Rate Limiting

The producer-rte-limit example demonstrates how, with HornetQ, you can specify a maximum

send rate at which a JMS message producer will send messages.

11.1.51. Proton Qpid

HornetQ can be configured to accept requests from any AMQP client that supports the 1.0 version

of the protocol. This proton-j example shows a simply qpid java 1.0 client example.

11.1.52. Proton Ruby

HornetQ can be configured to accept requests from any AMQP client that supports the 1.0 version

of the protocol. This example shows a simply proton ruby client that sends and receives messages

11.1.53. Queue

A simple example demonstrating a JMS queue.

11.1.54. Message Redistribution

The queue-message-redistribution example demonstrates message redistribution between

queues with the same name deployed in different nodes of a cluster.

11.1.55. Queue Requestor

A simple example demonstrating a JMS queue requestor.

11.1.56. Queue with Message Selector

The queue-selector example shows you how to selectively consume messages using message

selectors with queue consumers.

11.1.57. Reattach Node example

The Reattach Node example shows how a client can try to reconnect to the same server instead of

failing the connection immediately and notifying any user ExceptionListener objects. HornetQ can

be configured to automatically retry the connection, and reattach to the server when it becomes

available again across the network.

11.1.58. Replicated Failback example

An example showing how failback works when using replication, In this example a live server will

replicate all its Journal to a backup server as it updates it. When the live server crashes the backup

takes over from the live server and the client reconnects and carries on from where it left off.

Chapter 11. Examples

52

11.1.59. Replicated Failback static example

An example showing how failback works when using replication, but this time with static

connectors

11.1.60. Replicated multiple failover example

An example showing how to configure multiple backups when using replication

11.1.61. Replicated Failover transaction example

An example showing how failover works with a transaction when using replication

11.1.62. Request-Reply example

A simple example showing the JMS request-response pattern.

11.1.63. Rest example

An example showing how to use the HornetQ Rest API

11.1.64. Scheduled Message

The scheduled-message example shows you how to send a scheduled message to a JMS Queue

with HornetQ. Scheduled messages won't get delivered until a specified time in the future.

11.1.65. Security

The security example shows you how configure and use role based queue security with

HornetQ.

11.1.66. Send Acknowledgements

The send-acknowledgements example shows you how to use HornetQ's advanced asynchronous

send acknowledgements feature to obtain acknowledgement from the server that sends have

been received and processed in a separate stream to the sent messages.

11.1.67. Spring Integration

This example shows how to use embedded JMS using HornetQ's Spring integration.

11.1.68. SSL Transport

The ssl-enabled shows you how to configure SSL with HornetQ to send and receive message.

11.1.69. Static Message Selector

The static-selector example shows you how to configure a HornetQ core queue with static

message selectors (filters).

Static Message Selector Using JMS

53

11.1.70. Static Message Selector Using JMS

The static-selector-jms example shows you how to configure a HornetQ queue with static

message selectors (filters) using JMS.

11.1.71. Stomp

The stomp example shows you how to configure a HornetQ server to send and receive Stomp

messages.

11.1.72. Stomp1.1

The stomp example shows you how to configure a HornetQ server to send and receive Stomp

messages via a Stomp 1.1 connection.

11.1.73. Stomp1.2

The stomp example shows you how to configure a HornetQ server to send and receive Stomp

messages via a Stomp 1.2 connection.

11.1.74. Stomp Over Web Sockets

The stomp-websockets example shows you how to configure a HornetQ server to send and

receive Stomp messages directly from Web browsers (provided they support Web Sockets).

11.1.75. Symmetric Cluster

The symmetric-cluster example demonstrates a symmetric cluster set-up with HornetQ.

HornetQ has extremely flexible clustering which allows you to set-up servers in many different

topologies. The most common topology that you'll perhaps be familiar with if you are used to

application server clustering is a symmetric cluster.

With a symmetric cluster, the cluster is homogeneous, i.e. each node is configured the same as

every other node, and every node is connected to every other node in the cluster.

11.1.76. Temporary Queue

A simple example demonstrating how to use a JMS temporary queue.

11.1.77. Topic

A simple example demonstrating a JMS topic.

11.1.78. Topic Hierarchy

HornetQ supports topic hierarchies. With a topic hierarchy you can register a subscriber with a

wild-card and that subscriber will receive any messages sent to an address that matches the wild

card.

Chapter 11. Examples

54

11.1.79. Topic Selector 1

The topic-selector-example1 example shows you how to send message to a JMS Topic, and

subscribe them using selectors with HornetQ.

11.1.80. Topic Selector 2

The topic-selector-example2 example shows you how to selectively consume messages using

message selectors with topic consumers.

11.1.81. Transaction Failover

The transaction-failover example demonstrates two servers coupled as a live-backup pair

for high availability (HA), and a client using a transacted JMS session failing over from live to

backup when the live server is crashed.

HornetQ implements failover of client connections between live and backup servers. This is

implemented by the sharing of a journal between the servers. When a live node crashes, the client

connections can carry and continue to send and consume messages. When transacted sessions

are used, once and only once message delivery is guaranteed.

11.1.82. Failover Without Transactions

The stop-server-failover example demonstrates failover of the JMS connection from one

node to another when the live server crashes using a JMS non-transacted session.

11.1.83. Transactional Session

The transactional example shows you how to use a transactional Session with HornetQ.

11.1.84. XA Heuristic

The xa-heuristic example shows you how to make an XA heuristic decision through HornetQ

Management Interface. A heuristic decision is a unilateral decision to commit or rollback an XA

transaction branch after it has been prepared.

11.1.85. XA Receive

The xa-receive example shows you how message receiving behaves in an XA transaction in

HornetQ.

11.1.86. XA Send

The xa-send example shows you how message sending behaves in an XA transaction in HornetQ.

11.1.87. XA with Transaction Manager

The xa-with-jta example shows you how to use JTA interfaces to control transactions with

HornetQ.

Core API Examples

55

11.2. Core API Examples

To run a core example, simply cd into the appropriate example directory and type ant

11.2.1. Embedded

The embedded example shows how to embed the HornetQ server within your own code.

11.3. Java EE Examples

Most of the Java EE examples can be run the following way. simply cd into the appropriate example

directory and type mvn test. This will use Arquillian to run the Application Server and deploy the

application. Note that you must have jboss AS 7 installed and the JBOSS_HOME environment

variable set. Please refer to the examples documentation for further instructions.

11.3.1. EJB/JMS Transaction

An example that shows using an EJB and JMS together within a transaction.

11.3.2. Resource Adapter Configuration

This example demonstrates how to configure several properties on the HornetQ JCA resource

adaptor.

11.3.3. Resource Adapter Remote Server Configuration

This example demonstrates how to configure the HornetQ resource adapter to talk to a remote

HornetQ server

11.3.4. JMS Bridge

An example demonstrating the use of the HornetQ JMS bridge.

11.3.5. MDB (Message Driven Bean)

A simple set of examples of message driven beans, including failover examples.

11.3.6. Servlet Transport

An example of how to use the HornetQ servlet transport.

11.3.7. Servlet SSL Transport

An example of how to use the HornetQ servlet transport over SSL.

11.3.8. XA Recovery

An example of how XA recovery works within the JBoss Application server using HornetQ.

56

Chapter 12.

57

Routing Messages With Wild Cards
HornetQ allows the routing of messages via wildcard addresses.

If a queue is created with an address of say queue.news.# then it will receive any messages

sent to addresses that match this, for instance queue.news.europe or queue.news.usa or

queue.news.usa.sport. If you create a consumer on this queue, this allows a consumer to

consume messages which are sent to a hierarchy of addresses.

Note

In JMS terminology this allows "topic hierarchies" to be created.

To enable this functionality set the property wild-card-routing-enabled in the hornetq-

configuration.xml file to true. This is true by default.

For more information on the wild card syntax take a look at Chapter 13, Understanding the HornetQ

Wildcard Syntax chapter, also see Section 11.1.78, “Topic Hierarchy”.

58

Chapter 13.

59

Understanding the HornetQ Wildcard

Syntax
HornetQ uses a specific syntax for representing wildcards in security settings, address settings

and when creating consumers.

The syntax is similar to that used by AMQP [http://www.amqp.org].

A HornetQ wildcard expression contains words delimited by the character '.' (full stop).

The special characters '#' and '*' also have special meaning and can take the place of a word.

The character '#' means 'match any sequence of zero or more words'.

The character '*' means 'match a single word'.

So the wildcard 'news.europe.#' would match 'news.europe', 'news.europe.sport',

'news.europe.politics', and 'news.europe.politics.regional' but would not match 'news.usa',

'news.usa.sport' nor 'entertainment'.

The wildcard 'news.*' would match 'news.europe', but not 'news.europe.sport'.

The wildcard 'news.*.sport' would match 'news.europe.sport' and also 'news.usa.sport', but not

'news.europe.politics'.

http://www.amqp.org
http://www.amqp.org

60

Chapter 14.

61

Filter Expressions
HornetQ provides a powerful filter language based on a subset of the SQL 92 expression syntax.

It is the same as the syntax used for JMS selectors, but the predefined identifiers are different.

For documentation on JMS selector syntax please the JMS javadoc for javax.jms.Message [http://

docs.oracle.com/javaee/6/api/javax/jms/Message.html].

Filter expressions are used in several places in HornetQ

• Predefined Queues. When pre-defining a queue, either in hornetq-configuration.xml or

hornetq-jms.xml a filter expression can be defined for a queue. Only messages that match

the filter expression will enter the queue.

• Core bridges can be defined with an optional filter expression, only matching messages will be

bridged (see Chapter 36, Core Bridges).

• Diverts can be defined with an optional filter expression, only matching messages will be

diverted (see Chapter 35, Diverting and Splitting Message Flows).

• Filter are also used programmatically when creating consumers, queues and in several places

as described in Chapter 30, Management.

There are some differences between JMS selector expressions and HornetQ core filter

expressions. Whereas JMS selector expressions operate on a JMS message, HornetQ core filter

expressions operate on a core message.

The following identifiers can be used in a core filter expressions to refer to attributes of the core

message in an expression:

• HQPriority. To refer to the priority of a message. Message priorities are integers with valid

values from 0 - 9. 0 is the lowest priority and 9 is the highest. E.g. HQPriority = 3 AND

animal = 'aardvark'

• HQExpiration. To refer to the expiration time of a message. The value is a long integer.

• HQDurable. To refer to whether a message is durable or not. The value is a string with valid

values: DURABLE or NON_DURABLE.

• HQTimestamp. The timestamp of when the message was created. The value is a long integer.

• HQSize. The size of a message in bytes. The value is an integer.

Any other identifiers used in core filter expressions will be assumed to be properties of the

message.

http://docs.oracle.com/javaee/6/api/javax/jms/Message.html
http://docs.oracle.com/javaee/6/api/javax/jms/Message.html
http://docs.oracle.com/javaee/6/api/javax/jms/Message.html

62

Chapter 15.

63

Persistence
In this chapter we will describe how persistence works with HornetQ and how to configure it.

HornetQ ships with a high performance journal. Since HornetQ handles its own persistence, rather

than relying on a database or other 3rd party persistence engine it is very highly optimised for the

specific messaging use cases.

A HornetQ journal is an append only journal. It consists of a set of files on disk. Each file is pre-

created to a fixed size and initially filled with padding. As operations are performed on the server,

e.g. add message, update message, delete message, records are appended to the journal. When

one journal file is full we move to the next one.

Because records are only appended, i.e. added to the end of the journal we minimise disk head

movement, i.e. we minimise random access operations which is typically the slowest operation

on a disk.

Making the file size configurable means that an optimal size can be chosen, i.e. making each file

fit on a disk cylinder. Modern disk topologies are complex and we are not in control over which

cylinder(s) the file is mapped onto so this is not an exact science. But by minimising the number

of disk cylinders the file is using, we can minimise the amount of disk head movement, since an

entire disk cylinder is accessible simply by the disk rotating - the head does not have to move.

As delete records are added to the journal, HornetQ has a sophisticated file garbage collection

algorithm which can determine if a particular journal file is needed any more - i.e. has all its data

been deleted in the same or other files. If so, the file can be reclaimed and re-used.

HornetQ also has a compaction algorithm which removes dead space from the journal and

compresses up the data so it takes up less files on disk.

The journal also fully supports transactional operation if required, supporting both local and XA

transactions.

The majority of the journal is written in Java, however we abstract out the interaction with the actual

file system to allow different pluggable implementations. HornetQ ships with two implementations:

• Java NIO [http://en.wikipedia.org/wiki/New_I/O].

The first implementation uses standard Java NIO to interface with the file system. This provides

extremely good performance and runs on any platform where there's a Java 6+ runtime.

• Linux Asynchronous IO

The second implementation uses a thin native code wrapper to talk to the Linux asynchronous

IO library (AIO). With AIO, HornetQ will be called back when the data has made it to disk,

allowing us to avoid explicit syncs altogether and simply send back confirmation of completion

when AIO informs us that the data has been persisted.

http://en.wikipedia.org/wiki/New_I/O
http://en.wikipedia.org/wiki/New_I/O

Chapter 15. Persistence

64

Using AIO will typically provide even better performance than using Java NIO.

The AIO journal is only available when running Linux kernel 2.6 or later and after having

installed libaio (if it's not already installed). For instructions on how to install libaio please see

Section 15.5, “Installing AIO”.

Also, please note that AIO will only work with the following file systems: ext2, ext3, ext4, jfs,

xfs. With other file systems, e.g. NFS it may appear to work, but it will fall back to a slower

synchronous behaviour. Don't put the journal on a NFS share!

For more information on libaio please see Chapter 40, Libaio Native Libraries.

libaio is part of the kernel project.

The standard HornetQ core server uses two instances of the journal:

• Bindings journal.

This journal is used to store bindings related data. That includes the set of queues that are

deployed on the server and their attributes. It also stores data such as id sequence counters.

The bindings journal is always a NIO journal as it is typically low throughput compared to the

message journal.

The files on this journal are prefixed as hornetq-bindings. Each file has a bindings extension.

File size is 1048576, and it is located at the bindings folder.

• JMS journal.

This journal instance stores all JMS related data, This is basically any JMS Queues, Topics and

Connection Factories and any JNDI bindings for these resources.

Any JMS Resources created via the management API will be persisted to this journal. Any

resources configured via configuration files will not. The JMS Journal will only be created if JMS

is being used.

The files on this journal are prefixed as hornetq-jms. Each file has a jms extension. File size

is 1048576, and it is located at the bindings folder.

• Message journal.

This journal instance stores all message related data, including the message themselves and

also duplicate-id caches.

By default HornetQ will try and use an AIO journal. If AIO is not available, e.g. the platform is

not Linux with the correct kernel version or AIO has not been installed then it will automatically

fall back to using Java NIO which is available on any Java platform.

The files on this journal are prefixed as hornetq-data. Each file has a hq extension. File size

is by the default 10485760 (configurable), and it is located at the journal folder.

Configuring the bindings journal

65

For large messages, HornetQ persists them outside the message journal. This is discussed in

Chapter 23, Large Messages.

HornetQ can also be configured to page messages to disk in low memory situations. This is

discussed in Chapter 24, Paging.

If no persistence is required at all, HornetQ can also be configured not to persist any data at all to

storage as discussed in Section 15.6, “Configuring HornetQ for Zero Persistence”.

15.1. Configuring the bindings journal

The bindings journal is configured using the following attributes in hornetq-configuration.xml

• bindings-directory

This is the directory in which the bindings journal lives. The default value is data/bindings.

• create-bindings-dir

If this is set to true then the bindings directory will be automatically created at the location

specified in bindings-directory if it does not already exist. The default value is true

15.2. Configuring the jms journal

The jms config shares its configuration with the bindings journal.

15.3. Configuring the message journal

The message journal is configured using the following attributes in hornetq-configuration.xml

• journal-directory

This is the directory in which the message journal lives. The default value is data/journal.

For the best performance, we recommend the journal is located on its own physical volume in

order to minimise disk head movement. If the journal is on a volume which is shared with other

processes which might be writing other files (e.g. bindings journal, database, or transaction

coordinator) then the disk head may well be moving rapidly between these files as it writes

them, thus drastically reducing performance.

When the message journal is stored on a SAN we recommend each journal instance that is

stored on the SAN is given its own LUN (logical unit).

• create-journal-dir

If this is set to true then the journal directory will be automatically created at the location

specified in journal-directory if it does not already exist. The default value is true

• journal-type

Valid values are NIO or ASYNCIO.

Chapter 15. Persistence

66

Choosing NIO chooses the Java NIO journal. Choosing AIO chooses the Linux asynchronous

IO journal. If you choose AIO but are not running Linux or you do not have libaio installed then

HornetQ will detect this and automatically fall back to using NIO.

• journal-sync-transactional

If this is set to true then HornetQ will make sure all transaction data is flushed to disk on

transaction boundaries (commit, prepare and rollback). The default value is true.

• journal-sync-non-transactional

If this is set to true then HornetQ will make sure non transactional message data (sends and

acknowledgements) are flushed to disk each time. The default value for this is true.

• journal-file-size

The size of each journal file in bytes. The default value for this is 10485760 bytes (10MiB).

• journal-min-files

The minimum number of files the journal will maintain. When HornetQ starts and there is no

initial message data, HornetQ will pre-create journal-min-files number of files.

Creating journal files and filling them with padding is a fairly expensive operation and we want

to minimise doing this at run-time as files get filled. By pre-creating files, as one is filled the

journal can immediately resume with the next one without pausing to create it.

Depending on how much data you expect your queues to contain at steady state you should

tune this number of files to match that total amount of data.

• journal-max-io

Write requests are queued up before being submitted to the system for execution. This

parameter controls the maximum number of write requests that can be in the IO queue at any

one time. If the queue becomes full then writes will block until space is freed up.

When using NIO, this value should always be equal to 1

When using AIO, the default should be 500.

The system maintains different defaults for this parameter depending on whether it's NIO or

AIO (default for NIO is 1, default for AIO is 500)

There is a limit and the total max AIO can't be higher than what is configured at the OS level

(/proc/sys/fs/aio-max-nr) usually at 65536.

• journal-buffer-timeout

Instead of flushing on every write that requires a flush, we maintain an internal buffer, and flush

the entire buffer either when it is full, or when a timeout expires, whichever is sooner. This is

An important note on disabling disk write cache.

67

used for both NIO and AIO and allows the system to scale better with many concurrent writes

that require flushing.

This parameter controls the timeout at which the buffer will be flushed if it hasn't filled already.

AIO can typically cope with a higher flush rate than NIO, so the system maintains different

defaults for both NIO and AIO (default for NIO is 3333333 nanoseconds - 300 times per second,

default for AIO is 500000 nanoseconds - ie. 2000 times per second).

Note

By increasing the timeout, you may be able to increase system throughput at

the expense of latency, the default parameters are chosen to give a reasonable

balance between throughput and latency.

• journal-buffer-size

The size of the timed buffer on AIO. The default value is 490KiB.

• journal-compact-min-files

The minimal number of files before we can consider compacting the journal. The compacting

algorithm won't start until you have at least journal-compact-min-files

The default for this parameter is 10

• journal-compact-percentage

The threshold to start compacting. When less than this percentage is considered live data,

we start compacting. Note also that compacting won't kick in until you have at least journal-

compact-min-files data files on the journal

The default for this parameter is 30

15.4. An important note on disabling disk write cache.

Warning

Most disks contain hardware write caches. A write cache can increase the apparent

performance of the disk because writes just go into the cache and are then lazily

written to the disk later.

This happens irrespective of whether you have executed a fsync() from the

operating system or correctly synced data from inside a Java program!

By default many systems ship with disk write cache enabled. This means that even

after syncing from the operating system there is no guarantee the data has actually

made it to disk, so if a failure occurs, critical data can be lost.

Chapter 15. Persistence

68

Some more expensive disks have non volatile or battery backed write caches which

won't necessarily lose data on event of failure, but you need to test them!

If your disk does not have an expensive non volatile or battery backed cache and

it's not part of some kind of redundant array (e.g. RAID), and you value your data

integrity you need to make sure disk write cache is disabled.

Be aware that disabling disk write cache can give you a nasty shock performance

wise. If you've been used to using disks with write cache enabled in their default

setting, unaware that your data integrity could be compromised, then disabling it

will give you an idea of how fast your disk can perform when acting really reliably.

On Linux you can inspect and/or change your disk's write cache settings using the

tools hdparm (for IDE disks) or sdparm or sginfo (for SDSI/SATA disks)

On Windows you can check / change the setting by right clicking on the disk and

clicking properties.

15.5. Installing AIO

The Java NIO journal gives great performance, but If you are running HornetQ using Linux

Kernel 2.6 or later, we highly recommend you use the AIO journal for the very best persistence

performance.

It's not possible to use the AIO journal under other operating systems or earlier versions of the

Linux kernel.

If you are running Linux kernel 2.6 or later and don't already have libaio installed, you can easily

install it using the following steps:

Using yum, (e.g. on Fedora or Red Hat Enterprise Linux):

yum install libaio

Using aptitude, (e.g. on Ubuntu or Debian system):

apt-get install libaio

15.6. Configuring HornetQ for Zero Persistence

In some situations, zero persistence is sometimes required for a messaging system. Configuring

HornetQ to perform zero persistence is straightforward. Simply set the parameter persistence-

enabled in hornetq-configuration.xml to false.

Import/Export the Journal Data

69

Please note that if you set this parameter to false, then zero persistence will occur. That means

no bindings data, message data, large message data, duplicate id caches or paging data will be

persisted.

15.7. Import/Export the Journal Data

You may want to inspect the existent records on each one of the journals used by HornetQ, and

you can use the export/import tool for that purpose. The export/import are classes located at the

hornetq-core.jar, you can export the journal as a text file by using this command:

java -cp hornetq-core.jar org.hornetq.core.journal.impl.ExportJournal

<JournalDirectory> <JournalPrefix> <FileExtension> <FileSize> <FileOutput>

To import the file as binary data on the journal (Notice you also require netty.jar):

java -cp hornetq-core.jar:netty.jar org.hornetq.core.journal.impl.ImportJournal

<JournalDirectory> <JournalPrefix> <FileExtension> <FileSize> <FileInput>

• JournalDirectory: Use the configured folder for your selected folder. Example: ./hornetq/data/

journal

• JournalPrefix: Use the prefix for your selected journal, as discussed here

• FileExtension: Use the extension for your selected journal, as discussed here

• FileSize: Use the size for your selected journal, as discussed here

• FileOutput: text file that will contain the exported data

70

Chapter 16.

71

Configuring the Transport
HornetQ has a fully pluggable and highly flexible transport layer and defines its own Service

Provider Interface (SPI) to make plugging in a new transport provider relatively straightforward.

In this chapter we'll describe the concepts required for understanding HornetQ transports and

where and how they're configured.

16.1. Understanding Acceptors

One of the most important concepts in HornetQ transports is the acceptor. Let's dive straight in and

take a look at an acceptor defined in xml in the configuration file hornetq-configuration.xml.

<acceptors>

 <acceptor name="netty">

 <factory-class>

 org.hornetq.core.remoting.impl.netty.NettyAcceptorFactory

 </factory-class>

 <param key="port" value="5446"/>

 </acceptor>

</acceptors>

Acceptors are always defined inside an acceptors element. There can be one or more acceptors

defined in the acceptors element. There's no upper limit to the number of acceptors per server.

Each acceptor defines a way in which connections can be made to the HornetQ server.

In the above example we're defining an acceptor that uses Netty [http://jboss.org/netty] to listen

for connections at port 5446.

The acceptor element contains a sub-element factory-class, this element defines the factory

used to create acceptor instances. In this case we're using Netty to listen for connections so we

use the Netty implementation of an AcceptorFactory to do this. Basically, the factory-class

element determines which pluggable transport we're going to use to do the actual listening.

The acceptor element can also be configured with zero or more param sub-elements. Each

param element defines a key-value pair. These key-value pairs are used to configure the specific

transport, the set of valid key-value pairs depends on the specific transport be used and are passed

straight through to the underlying transport.

Examples of key-value pairs for a particular transport would be, say, to configure the IP address

to bind to, or the port to listen at.

Note that unlike versions before 2.4 an Acceptor can now support multiple protocols. By default

this will be all available protocols but can be limited by either the now deprecated protocol param

or by setting a comma seperated list to the newly added protocols parameter.

http://jboss.org/netty
http://jboss.org/netty

Chapter 16. Configuring the T...

72

16.2. Understanding Connectors

Whereas acceptors are used on the server to define how we accept connections, connectors are

used by a client to define how it connects to a server.

Let's look at a connector defined in our hornetq-configuration.xml file:

<connectors>

 <connector name="netty">

 <factory-class>

 org.hornetq.core.remoting.impl.netty.NettyConnectorFactory

 </factory-class>

 <param key="port" value="5446"/>

 </connector>

</connectors>

Connectors can be defined inside a connectors element. There can be one or more connectors

defined in the connectors element. There's no upper limit to the number of connectors per server.

You make ask yourself, if connectors are used by the client to make connections then why are

they defined on the server? There are a couple of reasons for this:

• Sometimes the server acts as a client itself when it connects to another server, for example

when one server is bridged to another, or when a server takes part in a cluster. In this cases

the server needs to know how to connect to other servers. That's defined by connectors.

• If you're using JMS and the server side JMS service to instantiate JMS ConnectionFactory

instances and bind them in JNDI, then when creating the HornetQConnectionFactory it needs

to know what server that connection factory will create connections to.

That's defined by the connector-ref element in the hornetq-jms.xml file on the server side.

Let's take a look at a snipped from a hornetq-jms.xml file that shows a JMS connection factory

that references our netty connector defined in our hornetq-configuration.xml file:

<connection-factory name="ConnectionFactory">

 <connectors>

 <connector-ref connector-name="netty"/>

 </connectors>

 <entries>

 <entry name="ConnectionFactory"/>

 <entry name="XAConnectionFactory"/>

 </entries>

</connection-factory>

Configuring the transport directly from the client side.

73

16.3. Configuring the transport directly from the client

side.

How do we configure a core ClientSessionFactory with the information that it needs to connect

with a server?

Connectors are also used indirectly when directly configuring a core ClientSessionFactory

to directly talk to a server. Although in this case there's no need to define such a

connector in the server side configuration, instead we just create the parameters and tell the

ClientSessionFactory which connector factory to use.

Here's an example of creating a ClientSessionFactory which will connect directly to the

acceptor we defined earlier in this chapter, it uses the standard Netty TCP transport and will try

and connect on port 5446 to localhost (default):

Map<String, Object> connectionParams = new HashMap<String, Object>();

connectionParams.put(org.hornetq.core.remoting.impl.netty.TransportConstants.PORT_PROP_NAME,

 5446);

TransportConfiguration transportConfiguration =

 new TransportConfiguration(

 "org.hornetq.core.remoting.impl.netty.NettyConnectorFactory",

 connectionParams);

ServerLocator locator =

 HornetQClient.createServerLocatorWithoutHA(transportConfiguration);

ClientSessionFactory sessionFactory = locator.createClientSessionFactory();

ClientSession session = sessionFactory.createSession(...);

etc

Similarly, if you're using JMS, you can configure the JMS connection factory directly on the client

side without having to define a connector on the server side or define a connection factory in

hornetq-jms.xml:

Map<String, Object> connectionParams = new HashMap<String, Object>();

connectionParams.put(org.hornetq.core.remoting.impl.netty.TransportConstants.PORT_PROP_NAME,

 5446);

Chapter 16. Configuring the T...

74

TransportConfiguration transportConfiguration =

 new TransportConfiguration(

 "org.hornetq.core.remoting.impl.netty.NettyConnectorFactory",

 connectionParams);

ConnectionFactory connectionFactory =

 HornetQJMSClient.createConnectionFactoryWithoutHA(JMSFactoryType.CF,

 transportConfiguration);

Connection jmsConnection = connectionFactory.createConnection();

etc

16.4. Configuring the Netty transport

Out of the box, HornetQ currently uses Netty [http://www.jboss.org/netty/], a high performance

low level network library.

Our Netty transport can be configured in several different ways; to use old (blocking) Java IO,

or NIO (non-blocking), also to use straightforward TCP sockets, SSL, or to tunnel over HTTP or

HTTPS..

We believe this caters for the vast majority of transport requirements.

16.4.1. Single Port Support

As of version 2.4 HornetQ now supports using a single port for all protocols, HornetQ will

automatically detect which protocol is being used CORE, AMQP or STOMP and use the

appropriate HornetQ handler. It will also detect whether protocols such as HTTP or Web Sockets

are being used and also use the appropriate decoders

It is possible to limit which protocols are supported by using the protocols parameter on the

Acceptor like so:

 <param key="protocols" value="CORE,AMQP"/>

Note

The protocol parameter is now deprecated

http://www.jboss.org/netty/
http://www.jboss.org/netty/

Configuring Netty TCP

75

16.4.2. Configuring Netty TCP

Netty TCP is a simple unencrypted TCP sockets based transport. Netty TCP can be configured

to use old blocking Java IO or non blocking Java NIO. We recommend you use the Java NIO on

the server side for better scalability with many concurrent connections. However using Java old

IO can sometimes give you better latency than NIO when you're not so worried about supporting

many thousands of concurrent connections.

If you're running connections across an untrusted network please bear in mind this transport is

unencrypted. You may want to look at the SSL or HTTPS configurations.

With the Netty TCP transport all connections are initiated from the client side. I.e. the server does

not initiate any connections to the client. This works well with firewall policies that typically only

allow connections to be initiated in one direction.

All the valid Netty transport keys are defined in the class

org.hornetq.core.remoting.impl.netty.TransportConstants. Most parameters can be

used either with acceptors or connectors, some only work with acceptors. The following

parameters can be used to configure Netty for simple TCP:

• use-nio. If this is true then Java non blocking NIO will be used. If set to false then old blocking

Java IO will be used.

If you require the server to handle many concurrent connections, we highly recommend that

you use non blocking Java NIO. Java NIO does not maintain a thread per connection so can

scale to many more concurrent connections than with old blocking IO. If you don't require the

server to handle many concurrent connections, you might get slightly better performance by

using old (blocking) IO. The default value for this property is false on the server side and false

on the client side.

• host. This specifies the host name or IP address to connect to (when configuring a connector)

or to listen on (when configuring an acceptor). The default value for this property is localhost.

When configuring acceptors, multiple hosts or IP addresses can be specified by separating

them with commas. It is also possible to specify 0.0.0.0 to accept connection from all the host's

network interfaces. It's not valid to specify multiple addresses when specifying the host for a

connector; a connector makes a connection to one specific address.

Note

Don't forget to specify a host name or IP address! If you want your server able to

accept connections from other nodes you must specify a hostname or IP address

at which the acceptor will bind and listen for incoming connections. The default

is localhost which of course is not accessible from remote nodes!

• port. This specified the port to connect to (when configuring a connector) or to listen on (when

configuring an acceptor). The default value for this property is 5445.

Chapter 16. Configuring the T...

76

• tcp-no-delay. If this is true then Nagle's algorithm [http://en.wikipedia.org/wiki/Nagle

%27s_algorithm] will be disabled. This is a Java (client) socket option [http://docs.oracle.com/

javase/7/docs/technotes/guides/net/socketOpt.html]. The default value for this property is true.

• tcp-send-buffer-size. This parameter determines the size of the TCP send buffer in bytes.

The default value for this property is 32768 bytes (32KiB).

TCP buffer sizes should be tuned according to the bandwidth and latency of your network.

Here's a good link that explains the theory behind this [http://www-didc.lbl.gov/TCP-tuning/].

In summary TCP send/receive buffer sizes should be calculated as:

buffer_size = bandwidth * RTT.

Where bandwidth is in bytes per second and network round trip time (RTT) is in seconds. RTT

can be easily measured using the ping utility.

For fast networks you may want to increase the buffer sizes from the defaults.

• tcp-receive-buffer-size. This parameter determines the size of the TCP receive buffer in

bytes. The default value for this property is 32768 bytes (32KiB).

• batch-delay. Before writing packets to the transport, HornetQ can be configured to batch up

writes for a maximum of batch-delay milliseconds. This can increase overall throughput for

very small messages. It does so at the expense of an increase in average latency for message

transfer. The default value for this property is 0 ms.

• direct-deliver. When a message arrives on the server and is delivered to waiting consumers,

by default, the delivery is done on the same thread as that on which the message arrived.

This gives good latency in environments with relatively small messages and a small number

of consumers, but at the cost of overall throughput and scalability - especially on multi-core

machines. If you want the lowest latency and a possible reduction in throughput then you can

use the default value for direct-deliver (i.e. true). If you are willing to take some small extra

hit on latency but want the highest throughput set direct-deliver to false .

• nio-remoting-threads. When configured to use NIO, HornetQ will, by default, use a

number of threads equal to three times the number of cores (or hyper-threads) as reported

by Runtime.getRuntime().availableProcessors() for processing incoming packets. If

you want to override this value, you can set the number of threads by specifying this

parameter. The default value for this parameter is -1 which means use the value from

Runtime.getRuntime().availableProcessors() * 3.

• local-address. When configured a Netty Connector it is possible to specify which local address

the client will use when connecting to the remote address. This is typically used in the Application

Server or when running Embedded to control which address is used for outbound connections.

If the local-address is not set then the connector will use any local address available

http://en.wikipedia.org/wiki/Nagle%27s_algorithm
http://en.wikipedia.org/wiki/Nagle%27s_algorithm
http://en.wikipedia.org/wiki/Nagle%27s_algorithm
http://docs.oracle.com/javase/7/docs/technotes/guides/net/socketOpt.html
http://docs.oracle.com/javase/7/docs/technotes/guides/net/socketOpt.html
http://docs.oracle.com/javase/7/docs/technotes/guides/net/socketOpt.html
http://www-didc.lbl.gov/TCP-tuning/
http://www-didc.lbl.gov/TCP-tuning/

Configuring Netty SSL

77

• local-port. When configured a Netty Connector it is possible to specify which local port the

client will use when connecting to the remote address. This is typically used in the Application

Server or when running Embedded to control which port is used for outbound connections. If the

local-port default is used, which is 0, then the connector will let the system pick up an ephemeral

port. valid ports are 0 to 65535

16.4.3. Configuring Netty SSL

Netty SSL is similar to the Netty TCP transport but it provides additional security by encrypting

TCP connections using the Secure Sockets Layer SSL

Please see the examples for a full working example of using Netty SSL.

Netty SSL uses all the same properties as Netty TCP but adds the following additional properties:

• ssl-enabled

Must be true to enable SSL. Default is false.

• key-store-path

When used on an acceptor this is the path to the SSL key store on the server which holds the

server's certificates (whether self-signed or signed by an authority).

When used on a connector this is the path to the client-side SSL key store which holds the

client certificates. This is only relevant for a connector if you are using 2-way SSL (i.e. mutual

authentication). Although this value is configured on the server, it is downloaded and used by the

client. If the client needs to use a different path from that set on the server then it can override the

server-side setting by either using the customary "javax.net.ssl.keyStore" system property or

the HornetQ-specific "org.hornetq.ssl.keyStore" system property. The HornetQ-specific system

property is useful if another component on client is already making use of the standard, Java

system property.

• key-store-password

When used on an acceptor this is the password for the server-side keystore.

When used on a connector this is the password for the client-side keystore. This is only relevant

for a connector if you are using 2-way SSL (i.e. mutual authentication). Although this value

can be configured on the server, it is downloaded and used by the client. If the client needs

to use a different password from that set on the server then it can override the server-side

setting by either using the customary "javax.net.ssl.keyStorePassword" system property or the

HornetQ-specific "org.hornetq.ssl.keyStorePassword" system property. The HornetQ-specific

system property is useful if another component on client is already making use of the standard,

Java system property.

• trust-store-path

Chapter 16. Configuring the T...

78

When used on an acceptor this is the path to the server-side SSL key store that holds the keys

of all the clients that the server trusts. This is only relevant for an acceptor if you are using 2-

way SSL (i.e. mutual authentication).

When used on a connector this is the path to the client-side SSL key store which holds the

public keys of all the servers that the client trusts. Although this value can be configured on the

server, it is downloaded and used by the client. If the client needs to use a different path from

that set on the server then it can override the server-side setting by either using the customary

"javax.net.ssl.trustStore" system property or the HornetQ-specific "org.hornetq.ssl.trustStore"

system property. The HornetQ-specific system property is useful if another component on client

is already making use of the standard, Java system property.

• trust-store-password

When used on an acceptor this is the password for the server-side trust store. This is only

relevant for an acceptor if you are using 2-way SSL (i.e. mutual authentication).

When used on a connector this is the password for the client-side truststore. Although this

value can be configured on the server, it is downloaded and used by the client. If the client

needs to use a different password from that set on the server then it can override the server-

side setting by either using the customary "javax.net.ssl.trustStorePassword" system property

or the HornetQ-specific "org.hornetq.ssl.trustStorePassword" system property. The HornetQ-

specific system property is useful if another component on client is already making use of the

standard, Java system property.

• enabled-cipher-suites

Whether used on an acceptor or connector this is a comma separated list of cipher suites used

for SSL communication. The default value is null which means the JVM's default will be used.

• enabled-protocols

Whether used on an acceptor or connector this is a comma separated list of protocols used

for SSL communication. The default value is null which means the JVM's default will be used.

• need-client-auth

This property is only for an acceptor. It tells a client connecting to this acceptor that 2-way SSL

is required. Valid values are true or false. Default is false.

16.4.4. Configuring Netty HTTP

Netty HTTP tunnels packets over the HTTP protocol. It can be useful in scenarios where firewalls

only allow HTTP traffic to pass.

Please see the examples for a full working example of using Netty HTTP.

Netty HTTP uses the same properties as Netty TCP but adds the following additional properties:

Configuring Netty Servlet

79

• http-enabled. This is now no longer needed as of version 2.4. With single port support HornetQ

will now automatically detect if http is being used and configure itself.

• http-client-idle-time. How long a client can be idle before sending an empty http request

to keep the connection alive

• http-client-idle-scan-period. How often, in milliseconds, to scan for idle clients

• http-response-time. How long the server can wait before sending an empty http response

to keep the connection alive

• http-server-scan-period. How often, in milliseconds, to scan for clients needing responses

• http-requires-session-id. If true the client will wait after the first call to receive a session

id. Used the http connector is connecting to servlet acceptor (not recommended)

16.4.5. Configuring Netty Servlet

As of 2.4 HornetQ Servlet support will be provided via Undertow in Wildfly

80

Chapter 17.

81

Detecting Dead Connections
In this section we will discuss connection time-to-live (TTL) and explain how HornetQ deals with

crashed clients and clients which have exited without cleanly closing their resources.

17.1. Cleaning up Dead Connection Resources on the

Server

Before a HornetQ client application exits it is considered good practice that it should close its

resources in a controlled manner, using a finally block.

Here's an example of a well behaved core client application closing its session and session factory

in a finally block:

ServerLocator locator = null;

ClientSessionFactory sf = null;

ClientSession session = null;

try

{

 locator = HornetQClient.createServerLocatorWithoutHA(..);

 sf = locator.createClientSessionFactory();;

 session = sf.createSession(...);

 ... do some stuff with the session...

}

finally

{

 if (session != null)

 {

 session.close();

 }

 if (sf != null)

 {

 sf.close();

 }

 if(locator != null)

 {

 locator.close();

 }

Chapter 17. Detecting Dead Co...

82

}

And here's an example of a well behaved JMS client application:

Connection jmsConnection = null;

try

{

 ConnectionFactory jmsConnectionFactory =

 HornetQJMSClient.createConnectionFactoryWithoutHA(...);

 jmsConnection = jmsConnectionFactory.createConnection();

 ... do some stuff with the connection...

}

finally

{

 if (connection != null)

 {

 connection.close();

 }

}

Unfortunately users don't always write well behaved applications, and sometimes clients just crash

so they don't have a chance to clean up their resources!

If this occurs then it can leave server side resources, like sessions, hanging on the server. If these

were not removed they would cause a resource leak on the server and over time this result in the

server running out of memory or other resources.

We have to balance the requirement for cleaning up dead client resources with the fact that

sometimes the network between the client and the server can fail and then come back, allowing

the client to reconnect. HornetQ supports client reconnection, so we don't want to clean up "dead"

server side resources too soon or this will prevent any client from reconnecting, as it won't be able

to find its old sessions on the server.

HornetQ makes all of this configurable. For each ClientSessionFactory we define a connection

TTL. Basically, the TTL determines how long the server will keep a connection alive in the absence

of any data arriving from the client. The client will automatically send "ping" packets periodically to

prevent the server from closing it down. If the server doesn't receive any packets on a connection

for the connection TTL time, then it will automatically close all the sessions on the server that

relate to that connection.

If you're using JMS, the connection TTL is defined by the ConnectionTTL attribute on a

HornetQConnectionFactory instance, or if you're deploying JMS connection factory instances

Closing core sessions or JMS connections that you have failed to close

83

direct into JNDI on the server side, you can specify it in the xml config, using the parameter

connection-ttl.

The default value for connection ttl is 60000ms, i.e. 1 minute. A value of -1 for ConnectionTTL

means the server will never time out the connection on the server side.

If you do not wish clients to be able to specify their own connection TTL, you can override all values

used by a global value set on the server side. This can be done by specifying the connection-

ttl-override attribute in the server side configuration. The default value for connection-ttl-

override is -1 which means "do not override" (i.e. let clients use their own values).

17.1.1. Closing core sessions or JMS connections that you

have failed to close

As previously discussed, it's important that all core client sessions and JMS connections are

always closed explicitly in a finally block when you are finished using them.

If you fail to do so, HornetQ will detect this at garbage collection time, and log a warning similar

to the following in the logs (If you are using JMS the warning will involve a JMS connection not

a client session):

[Finalizer] 20:14:43,244 WARNING

 [org.hornetq.core.client.impl.DelegatingSession] I'm closing a ClientSession

 you left open. Please make sure you close all ClientSessions explicitly before

 let

ting them go out of scope!

[Finalizer] 20:14:43,244 WARNING

 [org.hornetq.core.client.impl.DelegatingSession] The session you didn't close

 was created here:

java.lang.Exception

 at

 org.hornetq.core.client.impl.DelegatingSession.<init>(DelegatingSession.java:83)

 at org.acme.yourproject.YourClass (YourClass.java:666)

HornetQ will then close the connection / client session for you.

Note that the log will also tell you the exact line of your user code where you created the JMS

connection / client session that you later did not close. This will enable you to pinpoint the error

in your code and correct it appropriately.

17.2. Detecting failure from the client side.

In the previous section we discussed how the client sends pings to the server and how "dead"

connection resources are cleaned up by the server. There's also another reason for pinging, and

that's for the client to be able to detect that the server or network has failed.

Chapter 17. Detecting Dead Co...

84

As long as the client is receiving data from the server it will consider the connection to be still alive.

If the client does not receive any packets for client-failure-check-period milliseconds then

it will consider the connection failed and will either initiate failover, or call any FailureListener

instances (or ExceptionListener instances if you are using JMS) depending on how it has been

configured.

If you're using JMS it's defined by the ClientFailureCheckPeriod attribute on a

HornetQConnectionFactory instance, or if you're deploying JMS connection factory instances

direct into JNDI on the server side, you can specify it in the hornetq-jms.xml configuration file,

using the parameter client-failure-check-period.

The default value for client failure check period is 30000ms, i.e. 30 seconds. A value of -1 means

the client will never fail the connection on the client side if no data is received from the server.

Typically this is much lower than connection TTL to allow clients to reconnect in case of transitory

failure.

17.3. Configuring Asynchronous Connection Execution

By default, packets received on the server side are executed on the remoting thread.

It is possible instead to use a thread from a thread pool to handle some packets so that the

remoting thread is not tied up for too long. However, please note that processing operations

asynchronously on another thread adds a little more latency. Please note that most short running

operations are always handled on the remoting thread for performance reasons. To enable

asynchronous connection execution, set the parameter async-connection-execution-enabled

in hornetq-configuration.xml to true (default value is true).

Chapter 18.

85

Resource Manager Configuration
HornetQ has its own Resource Manager for handling the lifespan of JTA transactions. When a

transaction is started the resource manager is notified and keeps a record of the transaction and

its current state. It is possible in some cases for a transaction to be started but then forgotten

about. Maybe the client died and never came back. If this happens then the transaction will just

sit there indefinitely.

To cope with this HornetQ can, if configured, scan for old transactions and rollback any it finds.

The default for this is 3000000 milliseconds (5 minutes), i.e. any transactions older than 5

minutes are removed. This timeout can be changed by editing the transaction-timeout property

in hornetq-configuration.xml (value must be in milliseconds). The property transaction-

timeout-scan-period configures how often, in milliseconds, to scan for old transactions.

Please note that HornetQ will not unilaterally rollback any XA transactions in a prepared state -

this must be heuristically rolled back via the management API if you are sure they will never be

resolved by the transaction manager.

86

Chapter 19.

87

Flow Control
Flow control is used to limit the flow of data between a client and server, or a server and another

server in order to prevent the client or server being overwhelmed with data.

19.1. Consumer Flow Control

This controls the flow of data between the server and the client as the client consumes messages.

For performance reasons clients normally buffer messages before delivering to the consumer via

the receive() method or asynchronously via a message listener. If the consumer cannot process

messages as fast as they are being delivered and stored in the internal buffer, then you could end

up with a situation where messages would keep building up possibly causing out of memory on

the client if they cannot be processed in time.

19.1.1. Window-Based Flow Control

By default, HornetQ consumers buffer messages from the server in a client side buffer before the

client consumes them. This improves performance: otherwise every time the client consumes a

message, HornetQ would have to go the server to request the next message. In turn, this message

would then get sent to the client side, if one was available.

A network round trip would be involved for every message and considerably reduce performance.

To prevent this, HornetQ pre-fetches messages into a buffer on each consumer. The total

maximum size of messages (in bytes) that will be buffered on each consumer is determined by

the consumer-window-size parameter.

By default, the consumer-window-size is set to 1 MiB (1024 * 1024 bytes).

The value can be:

• -1 for an unbounded buffer

• 0 to not buffer any messages. See Section 11.1.46, “No Consumer Buffering” for working

example of a consumer with no buffering.

• >0 for a buffer with the given maximum size in bytes.

Setting the consumer window size can considerably improve performance depending on the

messaging use case. As an example, let's consider the two extremes:

Fast consumers

Fast consumers can process messages as fast as they consume them (or even faster)

To allow fast consumers, set the consumer-window-size to -1. This will allow unbounded

message buffering on the client side.

Chapter 19. Flow Control

88

Use this setting with caution: it can overflow the client memory if the consumer is not able to

process messages as fast as it receives them.

Slow consumers

Slow consumers takes significant time to process each message and it is desirable to prevent

buffering messages on the client side so that they can be delivered to another consumer

instead.

Consider a situation where a queue has 2 consumers; 1 of which is very slow. Messages are

delivered in a round robin fashion to both consumers, the fast consumer processes all of its

messages very quickly until its buffer is empty. At this point there are still messages awaiting

to be processed in the buffer of the slow consumer thus preventing them being processed

by the fast consumer. The fast consumer is therefore sitting idle when it could be processing

the other messages.

To allow slow consumers, set the consumer-window-size to 0 (for no buffer at all). This will

prevent the slow consumer from buffering any messages on the client side. Messages will

remain on the server side ready to be consumed by other consumers.

Setting this to 0 can give deterministic distribution between multiple consumers on a queue.

Most of the consumers cannot be clearly identified as fast or slow consumers but are in-between.

In that case, setting the value of consumer-window-size to optimize performance depends on

the messaging use case and requires benchmarks to find the optimal value, but a value of 1MiB

is fine in most cases.

19.1.1.1. Using Core API

If HornetQ Core API is used, the consumer window size is

specified by ServerLocator.setConsumerWindowSize() method and some of the

ClientSession.createConsumer() methods.

19.1.1.2. Using JMS

if JNDI is used to look up the connection factory, the consumer window size is configured in

hornetq-jms.xml:

<connection-factory name="ConnectionFactory">

 <connectors>

 <connector-ref connector-name="netty-connector"/>

 </connectors>

 <entries>

 <entry name="ConnectionFactory"/>

 </entries>

 <!-- Set the consumer window size to 0 to have *no* buffer on the client side -->

Rate limited flow control

89

 <consumer-window-size>0</consumer-window-size>

</connection-factory>

If the connection factory is directly instantiated, the consumer window size is specified by

HornetQConnectionFactory.setConsumerWindowSize() method.

Please see Section 11.1.46, “No Consumer Buffering” for an example which shows how to

configure HornetQ to prevent consumer buffering when dealing with slow consumers.

19.1.2. Rate limited flow control

It is also possible to control the rate at which a consumer can consume messages. This is a form

of throttling and can be used to make sure that a consumer never consumes messages at a rate

faster than the rate specified.

The rate must be a positive integer to enable this functionality and is the maximum desired

message consumption rate specified in units of messages per second. Setting this to -1 disables

rate limited flow control. The default value is -1.

Please see Section 11.1.17, “Message Consumer Rate Limiting” for a working example of limiting

consumer rate.

19.1.2.1. Using Core API

If the HornetQ core API is being used the rate can be set via the

ServerLocator.setConsumerMaxRate(int consumerMaxRate) method or alternatively via

some of the ClientSession.createConsumer() methods.

19.1.2.2. Using JMS

If JNDI is used to look up the connection factory, the max rate can be configured in hornetq-

jms.xml:

<connection-factory name="ConnectionFactory">

 <connectors>

 <connector-ref connector-name="netty-connector"/>

 </connectors>

 <entries>

 <entry name="ConnectionFactory"/>

 </entries>

 <!-- We limit consumers created on this connection factory to consume messages

 at a maximum rate

 of 10 messages per sec -->

 <consumer-max-rate>10</consumer-max-rate>

</connection-factory>

Chapter 19. Flow Control

90

If the connection factory is directly instantiated, the max rate size can be set via the

HornetQConnectionFactory.setConsumerMaxRate(int consumerMaxRate) method.

Note

Rate limited flow control can be used in conjunction with window based flow control.

Rate limited flow control only effects how many messages a client can consume

in a second and not how many messages are in its buffer. So if you had a slow

rate limit and a high window based limit the clients internal buffer would soon fill

up with messages.

Please see Section 11.1.17, “Message Consumer Rate Limiting” for an example which shows

how to configure HornetQ to prevent consumer buffering when dealing with slow consumers.

19.2. Producer flow control

HornetQ also can limit the amount of data sent from a client to a server to prevent the server

being overwhelmed.

19.2.1. Window based flow control

In a similar way to consumer window based flow control, HornetQ producers, by default, can only

send messages to an address as long as they have sufficient credits to do so. The amount of

credits required to send a message is given by the size of the message.

As producers run low on credits they request more from the server, when the server sends them

more credits they can send more messages.

The amount of credits a producer requests in one go is known as the window size.

The window size therefore determines the amount of bytes that can be in-flight at any one time

before more need to be requested - this prevents the remoting connection from getting overloaded.

19.2.1.1. Using Core API

If the HornetQ core API is being used, window size can be set via the

ServerLocator.setProducerWindowSize(int producerWindowSize) method.

19.2.1.2. Using JMS

If JNDI is used to look up the connection factory, the producer window size can be configured

in hornetq-jms.xml:

<connection-factory name="ConnectionFactory">

 <connectors>

Window based flow control

91

 <connector-ref connector-name="netty-connector"/>

 </connectors>

 <entries>

 <entry name="ConnectionFactory"/>

 </entries>

 <producer-window-size>10</producer-window-size>

</connection-factory>

If the connection factory is directly instantiated, the producer window size can be set via the

HornetQConnectionFactory.setProducerWindowSize(int producerWindowSize) method.

19.2.1.3. Blocking producer window based flow control

Normally the server will always give the same number of credits as have been requested.

However, it is also possible to set a maximum size on any address, and the server will never send

more credits than could cause the address's upper memory limit to be exceeded.

For example, if I have a JMS queue called "myqueue", I could set the maximum memory size

to 10MiB, and the the server will control the number of credits sent to any producers which are

sending any messages to myqueue such that the total messages in the queue never exceeds

10MiB.

When the address gets full, producers will block on the client side until more space frees up on

the address, i.e. until messages are consumed from the queue thus freeing up space for more

messages to be sent.

We call this blocking producer flow control, and it's an efficient way to prevent the server running

out of memory due to producers sending more messages than can be handled at any time.

It is an alternative approach to paging, which does not block producers but instead pages

messages to storage.

To configure an address with a maximum size and tell the server that you want to block

producers for this address if it becomes full, you need to define an AddressSettings (Section 25.3,

“Configuring Queues Via Address Settings”) block for the address and specify max-size-bytes

and address-full-policy

The address block applies to all queues registered to that address. I.e. the total memory for all

queues bound to that address will not exceed max-size-bytes. In the case of JMS topics this

means the total memory of all subscriptions in the topic won't exceed max-size-bytes.

Here's an example:

<address-settings>

 <address-setting match="jms.queue.exampleQueue">

 <max-size-bytes>100000</max-size-bytes>

Chapter 19. Flow Control

92

 <address-full-policy>BLOCK</address-full-policy>

 </address-setting>

</address-settings>

The above example would set the max size of the JMS queue "exampleQueue" to be 100000 bytes

and would block any producers sending to that address to prevent that max size being exceeded.

Note the policy must be set to BLOCK to enable blocking producer flow control.

Note

Note that in the default configuration all addresses are set to block producers after

10 MiB of message data is in the address. This means you cannot send more

than 10MiB of message data to an address without it being consumed before the

producers will be blocked. If you do not want this behaviour increase the max-

size-bytes parameter or change the address full message policy.

19.2.2. Rate limited flow control

HornetQ also allows the rate a producer can emit message to be limited, in units of messages per

second. By specifying such a rate, HornetQ will ensure that producer never produces messages

at a rate higher than that specified.

The rate must be a positive integer to enable this functionality and is the maximum desired

message consumption rate specified in units of messages per second. Setting this to -1 disables

rate limited flow control. The default value is -1.

Please see the Section 11.1.50, “Message Producer Rate Limiting” for a working example of

limiting producer rate.

19.2.2.1. Using Core API

If the HornetQ core API is being used the rate can be set via the

ServerLocator.setProducerMaxRate(int consumerMaxRate) method or alternatively via

some of the ClientSession.createProducer() methods.

19.2.2.2. Using JMS

If JNDI is used to look up the connection factory, the max rate can be configured in hornetq-

jms.xml:

<connection-factory name="ConnectionFactory">

 <connectors>

 <connector-ref connector-name="netty-connector"/>

Rate limited flow control

93

 </connectors>

 <entries>

 <entry name="ConnectionFactory"/>

 </entries>

 <!-- We limit producers created on this connection factory to produce messages

 at a maximum rate

 of 10 messages per sec -->

 <producer-max-rate>10</producer-max-rate>

</connection-factory>

If the connection factory is directly instantiated, the max rate size can be set via the

HornetQConnectionFactory.setProducerMaxRate(int consumerMaxRate) method.

94

Chapter 20.

95

Guarantees of sends and commits

20.1. Guarantees of Transaction Completion

When committing or rolling back a transaction with HornetQ, the request to commit or rollback is

sent to the server, and the call will block on the client side until a response has been received

from the server that the commit or rollback was executed.

When the commit or rollback is received on the server, it will be committed to the journal, and

depending on the value of the parameter journal-sync-transactional the server will ensure

that the commit or rollback is durably persisted to storage before sending the response back to

the client. If this parameter has the value false then commit or rollback may not actually get

persisted to storage until some time after the response has been sent to the client. In event of

server failure this may mean the commit or rollback never gets persisted to storage. The default

value of this parameter is true so the client can be sure all transaction commits or rollbacks have

been persisted to storage by the time the call to commit or rollback returns.

Setting this parameter to false can improve performance at the expense of some loss of

transaction durability.

This parameter is set in hornetq-configuration.xml

20.2. Guarantees of Non Transactional Message Sends

If you are sending messages to a server using a non transacted session, HornetQ can be

configured to block the call to send until the message has definitely reached the server, and a

response has been sent back to the client. This can be configured individually for durable and

non-durable messages, and is determined by the following two parameters:

• BlockOnDurableSend. If this is set to true then all calls to send for durable messages on non

transacted sessions will block until the message has reached the server, and a response has

been sent back. The default value is true.

• BlockOnNonDurableSend. If this is set to true then all calls to send for non-durable messages

on non transacted sessions will block until the message has reached the server, and a response

has been sent back. The default value is false.

Setting block on sends to true can reduce performance since each send requires a network round

trip before the next send can be performed. This means the performance of sending messages will

be limited by the network round trip time (RTT) of your network, rather than the bandwidth of your

network. For better performance we recommend either batching many messages sends together

in a transaction since with a transactional session, only the commit / rollback blocks not every

send, or, using HornetQ's advanced asynchronous send acknowledgements feature described in

Section 20.4, “Asynchronous Send Acknowledgements”.

Chapter 20. Guarantees of sen...

96

If you are using JMS and you're using the JMS service on the server to load your JMS connection

factory instances into JNDI then these parameters can be configured in hornetq-jms.xml using

the elements block-on-durable-send and block-on-non-durable-send. If you're using JMS

but not using JNDI then you can set these values directly on the HornetQConnectionFactory

instance using the appropriate setter methods.

If you're using core you can set these values directly on the ClientSessionFactory instance

using the appropriate setter methods.

When the server receives a message sent from a non transactional session, and that message

is durable and the message is routed to at least one durable queue, then the server will persist

the message in permanent storage. If the journal parameter journal-sync-non-transactional

is set to true the server will not send a response back to the client until the message has been

persisted and the server has a guarantee that the data has been persisted to disk. The default

value for this parameter is true.

20.3. Guarantees of Non Transactional

Acknowledgements

If you are acknowledging the delivery of a message at the client side using a non transacted

session, HornetQ can be configured to block the call to acknowledge until the acknowledge has

definitely reached the server, and a response has been sent back to the client. This is configured

with the parameter BlockOnAcknowledge. If this is set to true then all calls to acknowledge on

non transacted sessions will block until the acknowledge has reached the server, and a response

has been sent back. You might want to set this to true if you want to implement a strict at most

once delivery policy. The default value is false

20.4. Asynchronous Send Acknowledgements

If you are using a non transacted session but want a guarantee that every message sent to the

server has reached it, then, as discussed in Section 20.2, “Guarantees of Non Transactional

Message Sends”, you can configure HornetQ to block the call to send until the server has received

the message, persisted it and sent back a response. This works well but has a severe performance

penalty - each call to send needs to block for at least the time of a network round trip (RTT) - the

performance of sending is thus limited by the latency of the network, not limited by the network

bandwidth.

Let's do a little bit of maths to see how severe that is. We'll consider a standard 1Gib ethernet

network with a network round trip between the server and the client of 0.25 ms.

With a RTT of 0.25 ms, the client can send at most 1000/ 0.25 = 4000 messages per second if

it blocks on each message send.

If each message is < 1500 bytes and a standard 1500 bytes MTU size is used on the network, then

a 1GiB network has a theoretical upper limit of (1024 * 1024 * 1024 / 8) / 1500 = 89478 messages

Asynchronous Send Acknowledgements

97

per second if messages are sent without blocking! These figures aren't an exact science but you

can clearly see that being limited by network RTT can have serious effect on performance.

To remedy this, HornetQ provides an advanced new feature called asynchronous send

acknowledgements. With this feature, HornetQ can be configured to send messages without

blocking in one direction and asynchronously getting acknowledgement from the server that

the messages were received in a separate stream. By de-coupling the send from the

acknowledgement of the send, the system is not limited by the network RTT, but is limited by

the network bandwidth. Consequently better throughput can be achieved than is possible using

a blocking approach, while at the same time having absolute guarantees that messages have

successfully reached the server.

The window size for send acknowledgements is determined by the confirmation-window-size

parameter on the connection factory or client session factory. Please see Chapter 34, Client

Reconnection and Session Reattachment for more info on this.

20.4.1. Asynchronous Send Acknowledgements

To use the feature using the core API, you implement the interface

org.hornetq.api.core.client.SendAcknowledgementHandler and set a handler instance on

your ClientSession.

Then, you just send messages as normal using your ClientSession, and as messages

reach the server, the server will send back an acknowledgement of the send asynchronously,

and some time later you are informed at the client side by HornetQ calling your handler's

sendAcknowledged(ClientMessage message) method, passing in a reference to the message

that was sent.

To enable asynchronous send acknowledgements you must make sure confirmation-window-

size is set to a positive integer value, e.g. 10MiB

Please see Section 11.1.66, “Send Acknowledgements” for a full working example.

98

Chapter 21.

99

Message Redelivery and Undelivered

Messages
Messages can be delivered unsuccessfully (e.g. if the transacted session used to consume them

is rolled back). Such a message goes back to its queue ready to be redelivered. However, this

means it is possible for a message to be delivered again and again without any success and

remain in the queue, clogging the system.

There are 2 ways to deal with these undelivered messages:

• Delayed redelivery.

It is possible to delay messages redelivery to let the client some time to recover from transient

failures and not overload its network or CPU resources

• Dead Letter Address.

It is also possible to configure a dead letter address so that after a specified number of

unsuccessful deliveries, messages are removed from the queue and will not be delivered again

Both options can be combined for maximum flexibility.

21.1. Delayed Redelivery

Delaying redelivery can often be useful in the case that clients regularly fail or rollback. Without a

delayed redelivery, the system can get into a "thrashing" state, with delivery being attempted, the

client rolling back, and delivery being re-attempted ad infinitum in quick succession, consuming

valuable CPU and network resources.

21.1.1. Configuring Delayed Redelivery

Delayed redelivery is defined in the address-setting configuration:

<!-- delay redelivery of messages for 5s -->

<address-setting match="jms.queue.exampleQueue">

 <!-- default is 1.0 -->

 <redelivery-delay-multiplier>1.5</redelivery-delay-multiplier>

 <!-- default is 0 (no delay) -->

 <redelivery-delay>5000</redelivery-delay>

 <!-- default is redelivery-delay * 10 -->

 <max-redelivery-delay>50000</max-redelivery-delay>

</address-setting>

Chapter 21. Message Redeliver...

100

If a redelivery-delay is specified, HornetQ will wait this delay before redelivering the messages.

By default, there is no redelivery delay (redelivery-delayis set to 0).

Other subsequent messages will be delivery regularly, only the cancelled message will be sent

asynchronously back to the queue after the delay.

You can specify a multiplier that will take effect on top of the redelivery-delay with a max-redelivery-

delay to be taken into account.

The max-redelivery-delay is defaulted to redelivery-delay * 10

Address wildcards can be used to configure redelivery delay for a set of addresses (see

Chapter 13, Understanding the HornetQ Wildcard Syntax), so you don't have to specify redelivery

delay individually for each address.

21.1.2. Example

See Section 11.1.19, “Delayed Redelivery” for an example which shows how delayed redelivery

is configured and used with JMS.

21.2. Dead Letter Addresses

To prevent a client infinitely receiving the same undelivered message (regardless of what is

causing the unsuccessful deliveries), messaging systems define dead letter addresses: after a

specified unsuccessful delivery attempts, the message is removed from the queue and send

instead to a dead letter address.

Any such messages can then be diverted to queue(s) where they can later be perused by the

system administrator for action to be taken.

HornetQ's addresses can be assigned a dead letter address. Once the messages have been

unsuccessfully delivered for a given number of attempts, they are removed from the queue and

sent to the dead letter address. These dead letter messages can later be consumed for further

inspection.

21.2.1. Configuring Dead Letter Addresses

Dead letter address is defined in the address-setting configuration:

<!-- undelivered messages in exampleQueue will be sent to the dead letter address

 deadLetterQueue after 3 unsuccessful delivery attempts -->

<address-setting match="jms.queue.exampleQueue">

 <dead-letter-address>jms.queue.deadLetterQueue</dead-letter-address>

 <max-delivery-attempts>3</max-delivery-attempts>

</address-setting>

Dead Letter Properties

101

If a dead-letter-address is not specified, messages will removed after max-delivery-

attempts unsuccessful attempts.

By default, messages are redelivered 10 times at the maximum. Set max-delivery-attempts to

-1 for infinite redeliveries.

For example, a dead letter can be set globally for a set of matching addresses and you can set

max-delivery-attempts to -1 for a specific address setting to allow infinite redeliveries only for

this address.

Address wildcards can be used to configure dead letter settings for a set of addresses (see

Chapter 13, Understanding the HornetQ Wildcard Syntax).

21.2.2. Dead Letter Properties

Dead letter messages which are consumed from a dead letter address have the following property:

• _HQ_ORIG_ADDRESS

a String property containing the original address of the dead letter message

21.2.3. Example

See Section 11.1.18, “Dead Letter” for an example which shows how dead letter is configured

and used with JMS.

21.3. Delivery Count Persistence

In normal use, HornetQ does not update delivery count persistently until a message is rolled back

(i.e. the delivery count is not updated before the message is delivered to the consumer). In most

messaging use cases, the messages are consumed, acknowledged and forgotten as soon as

they are consumed. In these cases, updating the delivery count persistently before delivering the

message would add an extra persistent step for each message delivered, implying a significant

performance penalty.

However, if the delivery count is not updated persistently before the message delivery happens,

in the event of a server crash, messages might have been delivered but that will not have been

reflected in the delivery count. During the recovery phase, the server will not have knowledge of

that and will deliver the message with redelivered set to false while it should be true.

As this behavior breaks strict JMS semantics, HornetQ allows to persist delivery count before

message delivery but disabled it by default for performance implications.

To enable it, set persist-delivery-count-before-delivery to true in hornetq-

configuration.xml:

Chapter 21. Message Redeliver...

102

<persist-delivery-count-before-delivery>true</persist-delivery-count-before-

delivery>

Chapter 22.

103

Message Expiry
Messages can be set with an optional time to live when sending them.

HornetQ will not deliver a message to a consumer after it's time to live has been exceeded. If the

message hasn't been delivered by the time that time to live is reached the server can discard it.

HornetQ's addresses can be assigned a expiry address so that, when messages are expired, they

are removed from the queue and sent to the expiry address. Many different queues can be bound

to an expiry address. These expired messages can later be consumed for further inspection.

22.1. Message Expiry

Using HornetQ Core API, you can set an expiration time directly on the message:

// message will expire in 5000ms from now

message.setExpiration(System.currentTimeMillis() + 5000);

JMS MessageProducer allows to set a TimeToLive for the messages it sent:

// messages sent by this producer will be retained for 5s (5000ms) before

 expiration

producer.setTimeToLive(5000);

Expired messages which are consumed from an expiry address have the following properties:

• _HQ_ORIG_ADDRESS

a String property containing the original address of the expired message

• _HQ_ACTUAL_EXPIRY

a Long property containing the actual expiration time of the expired message

22.2. Configuring Expiry Addresses

Expiry address are defined in the address-setting configuration:

<!-- expired messages in exampleQueue will be sent to the expiry address

 expiryQueue -->

Chapter 22. Message Expiry

104

<address-setting match="jms.queue.exampleQueue">

 <expiry-address>jms.queue.expiryQueue</expiry-address>

</address-setting>

If messages are expired and no expiry address is specified, messages are simply removed from

the queue and dropped. Address wildcards can be used to configure expiry address for a set of

addresses (see Chapter 13, Understanding the HornetQ Wildcard Syntax).

22.3. Configuring The Expiry Reaper Thread

A reaper thread will periodically inspect the queues to check if messages have expired.

The reaper thread can be configured with the following properties in hornetq-

configuration.xml

• message-expiry-scan-period

How often the queues will be scanned to detect expired messages (in milliseconds, default is

30000ms, set to -1 to disable the reaper thread)

• message-expiry-thread-priority

The reaper thread priority (it must be between 0 and 9, 9 being the highest priority, default is 3)

22.4. Example

See Section 11.1.24, “Message Expiration” for an example which shows how message expiry is

configured and used with JMS.

Chapter 23.

105

Large Messages
HornetQ supports sending and receiving of huge messages, even when the client and server

are running with limited memory. The only realistic limit to the size of a message that can be

sent or consumed is the amount of disk space you have available. We have tested sending and

consuming messages up to 8 GiB in size with a client and server running in just 50MiB of RAM!

To send a large message, the user can set an InputStream on a message body, and when that

message is sent, HornetQ will read the InputStream. A FileInputStream could be used for

example to send a huge message from a huge file on disk.

As the InputStream is read the data is sent to the server as a stream of fragments. The server

persists these fragments to disk as it receives them and when the time comes to deliver them to

a consumer they are read back of the disk, also in fragments and sent down the wire. When the

consumer receives a large message it initially receives just the message with an empty body, it

can then set an OutputStream on the message to stream the huge message body to a file on

disk or elsewhere. At no time is the entire message body stored fully in memory, either on the

client or the server.

23.1. Configuring the server

Large messages are stored on a disk directory on the server side, as configured on the main

configuration file.

The configuration property large-messages-directory specifies where large messages are

stored.

<configuration xmlns="urn:hornetq"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:hornetq /schema/hornetq-configuration.xsd">

...

<large-messages-directory>/data/large-messages</large-messages-directory>

...

</configuration

By default the large message directory is data/largemessages

For the best performance we recommend large messages directory is stored on a different

physical volume to the message journal or paging directory.

23.2. Configuring Parameters

Any message larger than a certain size is considered a large message. Large messages will be

split up and sent in fragments. This is determined by the parameter min-large-message-size

Chapter 23. Large Messages

106

The default value is 100KiB.

23.2.1. Using Core API

If the HornetQ Core API is used, the minimal large message size is specified by

ServerLocator.setMinLargeMessageSize.

ServerLocator locator = HornetQClient.createServerLocatorWithoutHA(new

 TransportConfiguration(NettyConnectorFactory.class.getName()))

locator.setMinLargeMessageSize(25 * 1024);

ClientSessionFactory factory = HornetQClient.createClientSessionFactory();

Section 16.3, “Configuring the transport directly from the client side.” will provide more information

on how to instantiate the session factory.

23.2.2. Using JMS

If JNDI is used to look up the connection factory, the minimum large message size is specified

in hornetq-jms.xml

...

<connection-factory name="ConnectionFactory">

 <connectors>

 <connector-ref connector-name="netty"/>

 </connectors>

 <entries>

 <entry name="ConnectionFactory"/>

 <entry name="XAConnectionFactory"/>

 </entries>

 <min-large-message-size>250000</min-large-message-size>

</connection-factory>

...

If the connection factory is being instantiated directly, the minimum large message size is specified

by HornetQConnectionFactory.setMinLargeMessageSize.

23.2.3. Compressed Large Messages

You can choose to send large messages in compressed form using compress-large-messages

attributes.

Streaming large messages

107

23.2.3.1. compress-large-messages

If you specify the boolean property compress-large-messages on the server locator or

ConnectionFactory as true, The system will use the ZIP algorithm to compress the message

body as the message is transferred to the server's side. Notice that there's no special treatment

at the server's side, all the compressing and uncompressing is done at the client.

If the compressed size of a large message is below min-large-message-size, it is sent to

server as regular messages. This means that the message won't be written into the server's large-

message data directory, thus reducing the disk I/O.

If you use JMS, you can achieve large messages compression by configuring your connection

factories. For example,

...

<connection-factory name="ConnectionFactory">

 <connectors>

 <connector-ref connector-name="netty"/>

 </connectors>

...

 <compress-large-messages>true</compress-large-messages>

</connection-factory>

...

23.3. Streaming large messages

HornetQ supports setting the body of messages using input and output streams (java.lang.io)

These streams are then used directly for sending (input streams) and receiving (output streams)

messages.

When receiving messages there are 2 ways to deal with the output stream; you may choose to

block while the output stream is recovered using the method ClientMessage.saveOutputStream

or alternatively using the method ClientMessage.setOutputstream which will asynchronously

write the message to the stream. If you choose the latter the consumer must be kept alive until

the message has been fully received.

You can use any kind of stream you like. The most common use case is to send files stored in your

disk, but you could also send things like JDBC Blobs, SocketInputStream, things you recovered

from HTTPRequests etc. Anything as long as it implements java.io.InputStream for sending

messages or java.io.OutputStream for receiving them.

23.3.1. Streaming over Core API

The following table shows a list of methods available at ClientMessage which are also available

through JMS by the use of object properties.

Chapter 23. Large Messages

108

Table 23.1. org.hornetq.api.core.client.ClientMessage API

Name Description JMS Equivalent Property

setBodyInputStream(InputStream)Set the InputStream used to

read a message body when

sending it.

JMS_HQ_InputStream

setOutputStream(OutputStream)Set the OutputStream that

will receive the body of a

message. This method does

not block.

JMS_HQ_OutputStream

saveOutputStream(OutputStream)Save the body of the message

to the OutputStream. It

will block until the entire

content is transferred to the

OutputStream.

JMS_HQ_SaveStream

To set the output stream when receiving a core message:

...

ClientMessage msg = consumer.receive(...);

// This will block here until the stream was transferred

msg.saveOutputStream(someOutputStream);

ClientMessage msg2 = consumer.receive(...);

// This will not wait the transfer to finish

msg.setOutputStream(someOtherOutputStream);

...

Set the input stream when sending a core message:

...

ClientMessage msg = session.createMessage();

msg.setInputStream(dataInputStream);

...

Notice also that for messages with more than 2GiB the getBodySize() will return invalid values

since this is an integer (which is also exposed to the JMS API). On those cases you can use the

message property _HQ_LARGE_SIZE.

Streaming over JMS

109

23.3.2. Streaming over JMS

When using JMS, HornetQ maps the streaming methods on the core API (see Table 23.1,

“org.hornetq.api.core.client.ClientMessage API”) by setting object properties . You can use the

method Message.setObjectProperty to set the input and output streams.

The InputStream can be defined through the JMS Object Property JMS_HQ_InputStream on

messages being sent:

BytesMessage message = session.createBytesMessage();

FileInputStream fileInputStream = new FileInputStream(fileInput);

BufferedInputStream bufferedInput = new BufferedInputStream(fileInputStream);

message.setObjectProperty("JMS_HQ_InputStream", bufferedInput);

someProducer.send(message);

The OutputStream can be set through the JMS Object Property JMS_HQ_SaveStream on

messages being received in a blocking way.

BytesMessage messageReceived = (BytesMessage)messageConsumer.receive(120000);

File outputFile = new File("huge_message_received.dat");

FileOutputStream fileOutputStream = new FileOutputStream(outputFile);

BufferedOutputStream bufferedOutput = new

 BufferedOutputStream(fileOutputStream);

// This will block until the entire content is saved on disk

messageReceived.setObjectProperty("JMS_HQ_SaveStream", bufferedOutput);

Setting the OutputStream could also be done in a non blocking way using the property

JMS_HQ_OutputStream.

// This won't wait the stream to finish. You need to keep the consumer active.

messageReceived.setObjectProperty("JMS_HQ_OutputStream", bufferedOutput);

Chapter 23. Large Messages

110

Note

When using JMS, Streaming large messages are only supported on

StreamMessage and BytesMessage.

23.4. Streaming Alternative

If you choose not to use the InputStream or OutputStream capability of HornetQ You could still

access the data directly in an alternative fashion.

On the Core API just get the bytes of the body as you normally would.

ClientMessage msg = consumer.receive();

byte[] bytes = new byte[1024];

for (int i = 0 ; i < msg.getBodySize(); i += bytes.length)

{

 msg.getBody().readBytes(bytes);

 // Whatever you want to do with the bytes

}

If using JMS API, BytesMessage and StreamMessage also supports it transparently.

BytesMessage rm = (BytesMessage)cons.receive(10000);

byte data[] = new byte[1024];

for (int i = 0; i < rm.getBodyLength(); i += 1024)

{

 int numberOfBytes = rm.readBytes(data);

 // Do whatever you want with the data

}

23.5. Large message example

Please see Section 11.1.36, “Large Message” for an example which shows how large message

is configured and used with JMS.

Chapter 24.

111

Paging
HornetQ transparently supports huge queues containing millions of messages while the server is

running with limited memory.

In such a situation it's not possible to store all of the queues in memory at any one time, so HornetQ

transparently pages messages into and out of memory as they are needed, thus allowing massive

queues with a low memory footprint.

HornetQ will start paging messages to disk, when the size of all messages in memory for an

address exceeds a configured maximum size.

By default, HornetQ does not page messages - this must be explicitly configured to activate it.

24.1. Page Files

Messages are stored per address on the file system. Each address has an individual folder where

messages are stored in multiple files (page files). Each file will contain messages up to a max

configured size (page-size-bytes). The system will navigate on the files as needed, and it will

remove the page file as soon as all the messages are acknowledged up to that point.

Browsers will read through the page-cursor system.

Consumers with selectors will also navigate through the page-files and it will ignore messages

that don't match the criteria.

24.2. Configuration

You can configure the location of the paging folder

Global paging parameters are specified on the main configuration file (hornetq-

configuration.xml).

<configuration xmlns="urn:hornetq"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:hornetq /schema/hornetq-configuration.xsd">

...

<paging-directory>/somewhere/paging-directory</paging-directory>

...

Table 24.1. Paging Configuration Parameters

Property Name Description Default

paging-directory Where page files are stored.

HornetQ will create one folder

data/paging

Chapter 24. Paging

112

Property Name Description Default

for each address being paged

under this configured location.

24.3. Paging Mode

As soon as messages delivered to an address exceed the configured size, that address alone

goes into page mode.

Note

Paging is done individually per address. If you configure a max-size-bytes for an

address, that means each matching address will have a maximum size that you

specified. It DOES NOT mean that the total overall size of all matching addresses

is limited to max-size-bytes.

24.3.1. Configuration

Configuration is done at the address settings, done at the main configuration file (hornetq-

configuration.xml).

<address-settings>

 <address-setting match="jms.someaddress">

 <max-size-bytes>104857600</max-size-bytes>

 <page-size-bytes>10485760</page-size-bytes>

 <address-full-policy>PAGE</address-full-policy>

 </address-setting>

</address-settings>

This is the list of available parameters on the address settings.

Table 24.2. Paging Address Settings

Property Name Description Default

max-size-bytes What's the max memory the

address could have before

entering on page mode.

-1 (disabled)

page-size-bytes The size of each page file used

on the paging system

10MiB (10 * 1024 * 1024 bytes)

address-full-policy This must be set to PAGE

for paging to enable. If the

value is PAGE then further

PAGE

Dropping messages

113

Property Name Description Default

messages will be paged to

disk. If the value is DROP

then further messages will be

silently dropped. If the value

is FAIL then the messages

will be dropped and the

client message producers will

receive an exception. If the

value is BLOCK then client

message producers will block

when they try and send further

messages.

page-max-cache-size The system will keep up to

<page-max-cache-size page

files in memory to optimize IO

during paging navigation.

5

24.4. Dropping messages

Instead of paging messages when the max size is reached, an address can also be configured

to just drop messages when the address is full.

To do this just set the address-full-policy to DROP in the address settings

24.5. Dropping messages and throwing an exception to

producers

Instead of paging messages when the max size is reached, an address can also be configured to

drop messages and also throw an exception on the client-side when the address is full.

To do this just set the address-full-policy to FAIL in the address settings

24.6. Blocking producers

Instead of paging messages when the max size is reached, an address can also be configured

to block producers from sending further messages when the address is full, thus preventing the

memory being exhausted on the server.

When memory is freed up on the server, producers will automatically unblock and be able to

continue sending.

To do this just set the address-full-policy to BLOCK in the address settings

In the default configuration, all addresses are configured to block producers after 10 MiB of data

are in the address.

Chapter 24. Paging

114

24.7. Caution with Addresses with Multiple Queues

When a message is routed to an address that has multiple queues bound to it, e.g. a JMS

subscription in a Topic, there is only 1 copy of the message in memory. Each queue only deals

with a reference to this. Because of this the memory is only freed up once all queues referencing

the message have delivered it.

If you have a single lazy subscription, the entire address will suffer IO performance hit as all the

queues will have messages being sent through an extra storage on the paging system.

For example:

• An address has 10 queues

• One of the queues does not deliver its messages (maybe because of a slow consumer).

• Messages continually arrive at the address and paging is started.

• The other 9 queues are empty even though messages have been sent.

In this example all the other 9 queues will be consuming messages from the page system. This

may cause performance issues if this is an undesirable state.

24.8. Example

See Section 11.1.48, “Paging” for an example which shows how to use paging with HornetQ.

Chapter 25.

115

Queue Attributes
Queue attributes can be set in one of two ways. Either by configuring them using the configuration

file or by using the core API. This chapter will explain how to configure each attribute and what

effect the attribute has.

25.1. Predefined Queues

Queues can be predefined via configuration at a core level or at a JMS level. Firstly let's look at

a JMS level.

The following shows a queue predefined in the hornetq-jms.xml configuration file.

<queue name="selectorQueue">

 <entry name="/queue/selectorQueue"/>

 <selector string="color='red'"/>

 <durable>true</durable>

</queue>

This name attribute of queue defines the name of the queue. When we do this at a

jms level we follow a naming convention so the actual name of the core queue will be

jms.queue.selectorQueue.

The entry element configures the name that will be used to bind the queue to JNDI. This is a

mandatory element and the queue can contain multiple of these to bind the same queue to different

names.

The selector element defines what JMS message selector the predefined queue will have. Only

messages that match the selector will be added to the queue. This is an optional element with

a default of null when omitted.

The durable element specifies whether the queue will be persisted. This again is optional and

defaults to true if omitted.

Secondly a queue can be predefined at a core level in the hornetq-configuration.xml file. The

following is an example.

<queues>

 <queue name="jms.queue.selectorQueue">

 <address>jms.queue.selectorQueue</address>

 <filter string="color='red'"/>

 <durable>true</durable>

 </queue>

Chapter 25. Queue Attributes

116

</queues>

This is very similar to the JMS configuration, with 3 real differences which are.

1. The name attribute of queue is the actual name used for the queue with no naming convention

as in JMS.

2. The address element defines what address is used for routing messages.

3. There is no entry element.

4. The filter uses the Core filter syntax (described in Chapter 14, Filter Expressions), not the JMS

selector syntax.

25.2. Using the API

Queues can also be created using the core API or the management API.

For the core API, queues can be created via the

org.hornetq.api.core.client.ClientSession interface. There are multiple createQueue

methods that support setting all of the previously mentioned attributes. There is one extra attribute

that can be set via this API which is temporary. setting this to true means that the queue will be

deleted once the session is disconnected.

Take a look at Chapter 30, Management for a description of the management API for creating

queues.

25.3. Configuring Queues Via Address Settings

There are some attributes that are defined against an address wildcard rather than a specific

queue. Here an example of an address-setting entry that would be found in the hornetq-

configuration.xml file.

<address-settings>

 <address-setting match="jms.queue.exampleQueue">

 <dead-letter-address>jms.queue.deadLetterQueue</dead-letter-address>

 <max-delivery-attempts>3</max-delivery-attempts>

 <redelivery-delay>5000</redelivery-delay>

 <expiry-address>jms.queue.expiryQueue</expiry-address>

 <last-value-queue>true</last-value-queue>

 <max-size-bytes>100000</max-size-bytes>

 <page-size-bytes>20000</page-size-bytes>

 <redistribution-delay>0</redistribution-delay>

 <send-to-dla-on-no-route>true</send-to-dla-on-no-route>

 <address-full-policy>PAGE</address-full-policy>

Configuring Queues Via Address Settings

117

 </address-setting>

</address-settings>

The idea with address settings, is you can provide a block of settings which will be applied against

any addresses that match the string in the match attribute. In the above example the settings would

only be applied to any addresses which exactly match the address jms.queue.exampleQueue, but

you can also use wildcards to apply sets of configuration against many addresses. The wildcard

syntax used is described here.

For example, if you used the match string jms.queue.# the settings would be applied to all

addresses which start with jms.queue. which would be all JMS queues.

The meaning of the specific settings are explained fully throughout the user manual, however here

is a brief description with a link to the appropriate chapter if available.

max-delivery-attempts defines how many time a cancelled message can be redelivered before

sending to the dead-letter-address. A full explanation can be found here.

redelivery-delay defines how long to wait before attempting redelivery of a cancelled message.

see here.

expiry-address defines where to send a message that has expired. see here.

expiry-delay defines the expiration time that will be used for messages which are using the

default expiration time (i.e. 0). For example, if expiry-delay is set to "10" and a message which

is using the default expiration time (i.e. 0) arrives then its expiration time of "0" will be changed to

"10." However, if a message which is using an expiration time of "20" arrives then its expiration time

will remain unchanged. Setting expiry-delay to "-1" will disable this feature. The default is "-1".

last-value-queue defines whether a queue only uses last values or not. see here.

max-size-bytes and page-size-bytes are used to set paging on an address. This is explained

here.

redistribution-delay defines how long to wait when the last consumer is closed on a queue

before redistributing any messages. see here.

send-to-dla-on-no-route. If a message is sent to an address, but the server does not route

it to any queues, for example, there might be no queues bound to that address, or none of the

queues have filters that match, then normally that message would be discarded. However if this

parameter is set to true for that address, if the message is not routed to any queues it will instead

be sent to the dead letter address (DLA) for that address, if it exists.

address-full-policy. This attribute can have one of the following values: PAGE, DROP, FAIL

or BLOCK and determines what happens when an address where max-size-bytes is specified

becomes full. The default value is PAGE. If the value is PAGE then further messages will be

paged to disk. If the value is DROP then further messages will be silently dropped. If the value is

FAIL then further messages will be dropped and an exception will be thrown on the client-side.

Chapter 25. Queue Attributes

118

If the value is BLOCK then client message producers will block when they try and send further

messages. See the following chapters for more info Chapter 19, Flow Control, Chapter 24, Paging.

Chapter 26.

119

Scheduled Messages
Scheduled messages differ from normal messages in that they won't be delivered until a specified

time in the future, at the earliest.

To do this, a special property is set on the message before sending it.

26.1. Scheduled Delivery Property

The property name used to identify a scheduled message is "_HQ_SCHED_DELIVERY" (or the

constant Message.HDR_SCHEDULED_DELIVERY_TIME).

The specified value must be a positive long corresponding to the time the message must be

delivered (in milliseconds). An example of sending a scheduled message using the JMS API is

as follows.

TextMessage message = session.createTextMessage("This is a scheduled message

 message which will be delivered in 5 sec.");

message.setLongProperty("_HQ_SCHED_DELIVERY", System.currentTimeMillis() +

 5000);

producer.send(message);

...

// message will not be received immediately but 5 seconds later

TextMessage messageReceived = (TextMessage) consumer.receive();

Scheduled messages can also be sent using the core API, by setting the same property on the

core message before sending.

26.2. Example

See Section 11.1.64, “Scheduled Message” for an example which shows how scheduled

messages can be used with JMS.

120

Chapter 27.

121

Last-Value Queues
Last-Value queues are special queues which discard any messages when a newer message with

the same value for a well-defined Last-Value property is put in the queue. In other words, a Last-

Value queue only retains the last value.

A typical example for Last-Value queue is for stock prices, where you are only interested by the

latest value for a particular stock.

27.1. Configuring Last-Value Queues

Last-value queues are defined in the address-setting configuration:

<address-setting match="jms.queue.lastValueQueue">

 <last-value-queue>true</last-value-queue>

</address-setting>

By default, last-value-queue is false. Address wildcards can be used to configure Last-Value

queues for a set of addresses (see Chapter 13, Understanding the HornetQ Wildcard Syntax).

27.2. Using Last-Value Property

The property name used to identify the last value is "_HQ_LVQ_NAME" (or the constant

Message.HDR_LAST_VALUE_NAME from the Core API).

For example, if two messages with the same value for the Last-Value property are sent to a Last-

Value queue, only the latest message will be kept in the queue:

// send 1st message with Last-Value property set to STOCK_NAME

TextMessage message = session.createTextMessage("1st message with Last-Value

 property set");

message.setStringProperty("_HQ_LVQ_NAME", "STOCK_NAME");

producer.send(message);

// send 2nd message with Last-Value property set to STOCK_NAME

message = session.createTextMessage("2nd message with Last-Value property set");

message.setStringProperty("_HQ_LVQ_NAME", "STOCK_NAME");

producer.send(message);

...

// only the 2nd message will be received: it is the latest with

// the Last-Value property set

Chapter 27. Last-Value Queues

122

TextMessage messageReceived = (TextMessage)messageConsumer.receive(5000);

System.out.format("Received message: %s\n", messageReceived.getText());

27.3. Example

See Section 11.1.37, “Last-Value Queue” for an example which shows how last value queues are

configured and used with JMS.

Chapter 28.

123

Message Grouping
Message groups are sets of messages that have the following characteristics:

• Messages in a message group share the same group id, i.e. they have same group identifier

property (JMSXGroupID for JMS, _HQ_GROUP_ID for HornetQ Core API).

• Messages in a message group are always consumed by the same consumer, even if there

are many consumers on a queue. They pin all messages with the same group id to the same

consumer. If that consumer closes another consumer is chosen and will receive all messages

with the same group id.

Message groups are useful when you want all messages for a certain value of the property to be

processed serially by the same consumer.

An example might be orders for a certain stock. You may want orders for any particular stock

to be processed serially by the same consumer. To do this you can create a pool of consumers

(perhaps one for each stock, but less will work too), then set the stock name as the value of the

_HQ_GROUP_ID property.

This will ensure that all messages for a particular stock will always be processed by the same

consumer.

28.1. Using Core API

The property name used to identify the message group is "_HQ_GROUP_ID" (or the

constant MessageImpl.HDR_GROUP_ID). Alternatively, you can set autogroup to true on the

SessionFactory which will pick a random unique id.

28.2. Using JMS

The property name used to identify the message group is JMSXGroupID.

 // send 2 messages in the same group to ensure the same

 // consumer will receive both

 Message message = ...

 message.setStringProperty("JMSXGroupID", "Group-0");

 producer.send(message);

 message = ...

 message.setStringProperty("JMSXGroupID", "Group-0");

 producer.send(message);

Chapter 28. Message Grouping

124

Alternatively, you can set autogroup to true on the HornetQConnectonFactory which will pick a

random unique id. This can also be set in the hornetq-jms.xml file like this:

<connection-factory name="ConnectionFactory">

 <connectors>

 <connector-ref connector-name="netty-connector"/>

 </connectors>

 <entries>

 <entry name="ConnectionFactory"/>

 </entries>

 <autogroup>true</autogroup>

</connection-factory>

Alternatively you can set the group id via the connection factory. All messages sent with producers

created via this connection factory will set the JMSXGroupID to the specified value on all messages

sent. To configure the group id set it on the connection factory in the hornetq-jms.xml config

file as follows

<connection-factory name="ConnectionFactory">

 <connectors>

 <connector-ref connector-name="netty-connector"/>

 </connectors>

 <entries>

 <entry name="ConnectionFactory"/>

 </entries>

 <group-id>Group-0</group-id>

</connection-factory>

28.3. Example

See Section 11.1.41, “Message Group” for an example which shows how message groups are

configured and used with JMS.

28.4. Example

See Section 11.1.42, “Message Group” for an example which shows how message groups are

configured via a connection factory.

28.5. Clustered Grouping

Using message groups in a cluster is a bit more complex. This is because messages with a

particular group id can arrive on any node so each node needs to know about which group id's

 Clustered Grouping

125

are bound to which consumer on which node. The consumer handling messages for a particular

group id may be on a different node of the cluster, so each node needs to know this information

so it can route the message correctly to the node which has that consumer.

To solve this there is the notion of a grouping handler. Each node will have its own grouping

handler and when a messages is sent with a group id assigned, the handlers will decide between

them which route the message should take.

There are 2 types of handlers; Local and Remote. Each cluster should choose 1 node to have a

local grouping handler and all the other nodes should have remote handlers- it's the local handler

that actually makes the decision as to what route should be used, all the other remote handlers

converse with this. Here is a sample config for both types of handler, this should be configured

in the hornetq-configuration.xml file.

<grouping-handler name="my-grouping-handler">

 <type>LOCAL</type>

 <address>jms</address>

 <timeout>5000</timeout>

</grouping-handler>

<grouping-handler name="my-grouping-handler">

 <type>REMOTE</type>

 <address>jms</address>

 <timeout>5000</timeout>

</grouping-handler>

The address attribute refers to a cluster connection and the address it uses, refer to the clustering

section on how to configure clusters. The timeout attribute referees to how long to wait for a

decision to be made, an exception will be thrown during the send if this timeout is reached, this

ensures that strict ordering is kept.

The decision as to where a message should be routed to is initially proposed by the node that

receives the message. The node will pick a suitable route as per the normal clustered routing

conditions, i.e. round robin available queues, use a local queue first and choose a queue that has

a consumer. If the proposal is accepted by the grouping handlers the node will route messages to

this queue from that point on, if rejected an alternative route will be offered and the node will again

route to that queue indefinitely. All other nodes will also route to the queue chosen at proposal

time. Once the message arrives at the queue then normal single server message group semantics

take over and the message is pinned to a consumer on that queue.

You may have noticed that there is a single point of failure with the single local handler. If this node

crashes then no decisions will be able to be made. Any messages sent will be not be delivered

and an exception thrown. To avoid this happening Local Handlers can be replicated on another

backup node. Simple create your back up node and configure it with the same Local handler.

Chapter 28. Message Grouping

126

28.5.1. Clustered Grouping Best Practices

Some best practices should be followed when using clustered grouping:

1. Make sure your consumers are distributed evenly across the different nodes if possible. This is

only an issue if you are creating and closing consumers regularly. Since messages are always

routed to the same queue once pinned, removing a consumer from this queue may leave it

with no consumers meaning the queue will just keep receiving the messages. Avoid closing

consumers or make sure that you always have plenty of consumers, i.e., if you have 3 nodes

have 3 consumers.

2. Use durable queues if possible. If queues are removed once a group is bound to it, then it is

possible that other nodes may still try to route messages to it. This can be avoided by making

sure that the queue is deleted by the session that is sending the messages. This means that

when the next message is sent it is sent to the node where the queue was deleted meaning

a new proposal can successfully take place. Alternatively you could just start using a different

group id.

3. Always make sure that the node that has the Local Grouping Handler is replicated. These

means that on failover grouping will still occur.

28.5.2. Clustered Grouping Example

See Section 11.1.10, “Clustered Grouping” for an example of how to configure message groups

with a HornetQ cluster

Chapter 29.

127

Extra Acknowledge Modes
JMS specifies 3 acknowledgement modes:

• AUTO_ACKNOWLEDGE

• CLIENT_ACKNOWLEDGE

• DUPS_OK_ACKNOWLEDGE

HornetQ supports two additional modes: PRE_ACKNOWLEDGE and INDIVIDUAL_ACKNOWLEDGE

In some cases you can afford to lose messages in event of failure, so it would make sense to

acknowledge the message on the server before delivering it to the client.

This extra mode is supported by HornetQ and will call it pre-acknowledge mode.

The disadvantage of acknowledging on the server before delivery is that the message will be lost

if the system crashes after acknowledging the message on the server but before it is delivered to

the client. In that case, the message is lost and will not be recovered when the system restart.

Depending on your messaging case, pre-acknowledgement mode can avoid extra network traffic

and CPU at the cost of coping with message loss.

An example of a use case for pre-acknowledgement is for stock price update messages. With

these messages it might be reasonable to lose a message in event of crash, since the next price

update message will arrive soon, overriding the previous price.

Note

Please note, that if you use pre-acknowledge mode, then you will lose

transactional semantics for messages being consumed, since clearly they are

being acknowledged first on the server, not when you commit the transaction.

This may be stating the obvious but we like to be clear on these things to avoid

confusion!

29.1. Using PRE_ACKNOWLEDGE

This can be configured in the hornetq-jms.xml file on the connection factory like this:

<connection-factory name="ConnectionFactory">

 <connectors>

 <connector-ref connector-name="netty-connector"/>

 </connectors>

Chapter 29. Extra Acknowledge...

128

 <entries>

 <entry name="ConnectionFactory"/>

 </entries>

 <pre-acknowledge>true</pre-acknowledge>

</connection-factory>

Alternatively, to use pre-acknowledgement mode using the JMS API, create a JMS Session with

the HornetQSession.PRE_ACKNOWLEDGE constant.

// messages will be acknowledge on the server *before* being delivered to the

 client

Session session = connection.createSession(false,

 HornetQJMSConstants.PRE_ACKNOWLEDGE);

Or you can set pre-acknowledge directly on the HornetQConnectionFactory instance using the

setter method.

To use pre-acknowledgement mode using the core API you can set it directly on the

ClientSessionFactory instance using the setter method.

29.2. Individual Acknowledge

A valid use-case for individual acknowledgement would be when you need to have your own

scheduling and you don't know when your message processing will be finished. You should prefer

having one consumer per thread worker but this is not possible in some circumstances depending

on how complex is your processing. For that you can use the individual Acknowledgement.

You basically setup Individual ACK by creating a session with the acknowledge mode with

HornetQJMSConstants.INDIVIDUAL_ACKNOWLEDGE. Individual ACK inherits all the semantics

from Client Acknowledge, with the exception the message is individually acked.

Note

Please note, that to avoid confusion on MDB processing, Individual

ACKNOWLEDGE is not supported through MDBs (or the inbound resource

adapter). this is because you have to finish the process of your message inside

the MDB.

29.3. Example

See Section 11.1.49, “Pre-Acknowledge” for an example which shows how to use pre-

acknowledgement mode with JMS.

Chapter 30.

129

Management
HornetQ has an extensive management API that allows a user to modify a server configuration,

create new resources (e.g. JMS queues and topics), inspect these resources (e.g. how many

messages are currently held in a queue) and interact with it (e.g. to remove messages from a

queue). All the operations allows a client to manage HornetQ. It also allows clients to subscribe

to management notifications.

There are 3 ways to manage HornetQ:

• Using JMX -- JMX is the standard way to manage Java applications

• Using the core API -- management operations are sent to HornetQ server using core messages

• Using the JMS API -- management operations are sent to HornetQ server using JMS messages

Although there are 3 different ways to manage HornetQ each API supports the same functionality.

If it is possible to manage a resource using JMX it is also possible to achieve the same result

using Core messages or JMS messages.

This choice depends on your requirements, your application settings and your environment to

decide which way suits you best.

30.1. The Management API

Regardless of the way you invoke management operations, the management API is the same.

For each managed resource, there exists a Java interface describing what can be invoked for

this type of resource.

HornetQ exposes its managed resources in 2 packages:

• Core resources are located in the org.hornetq.api.core.management package

• JMS resources are located in the org.hornetq.api.jms.management package

The way to invoke a management operations depends whether JMX, core messages, or JMS

messages are used.

Note

A few management operations requires a filter parameter to chose which

messages are involved by the operation. Passing null or an empty string means

that the management operation will be performed on all messages.

Chapter 30. Management

130

30.1.1. Core Management API

HornetQ defines a core management API to manage core resources. For full details of the API

please consult the javadoc. In summary:

30.1.1.1. Core Server Management

• Listing, creating, deploying and destroying queues

A list of deployed core queues can be retrieved using the getQueueNames() method.

Core queues can be created or destroyed using the management operations createQueue()

or deployQueue() or destroyQueue())on the HornetQServerControl (with the ObjectName

org.hornetq:module=Core,type=Server or the resource name core.server)

createQueue will fail if the queue already exists while deployQueue will do nothing.

• Pausing and resuming Queues

The QueueControl can pause and resume the underlying queue. When a queue is paused,

it will receive messages but will not deliver them. When it's resumed, it'll begin delivering the

queued messages, if any.

• Listing and closing remote connections

Client's remote addresses can be retrieved using listRemoteAddresses(). It is also

possible to close the connections associated with a remote address using the

closeConnectionsForAddress() method.

Alternatively, connection IDs can be listed using listConnectionIDs() and all the sessions

for a given connection ID can be listed using listSessions().

• Transaction heuristic operations

In case of a server crash, when the server restarts, it it possible that some

transaction requires manual intervention. The listPreparedTransactions() method lists

the transactions which are in the prepared states (the transactions are represented

as opaque Base64 Strings.) To commit or rollback a given prepared transaction, the

commitPreparedTransaction() or rollbackPreparedTransaction() method can be used

to resolve heuristic transactions. Heuristically completed transactions can be listed using the

listHeuristicCommittedTransactions() and listHeuristicRolledBackTransactions

methods.

• Enabling and resetting Message counters

Message counters can be enabled or disabled using the enableMessageCounters() or

disableMessageCounters() method. To reset message counters, it is possible to invoke

resetAllMessageCounters() and resetAllMessageCounterHistories() methods.

Core Management API

131

• Retrieving the server configuration and attributes

The HornetQServerControl exposes HornetQ server configuration through all its attributes

(e.g. getVersion() method to retrieve the server's version, etc.)

• Listing, creating and destroying Core bridges and diverts

A list of deployed core bridges (resp. diverts) can be retrieved using the getBridgeNames()

(resp. getDivertNames()) method.

Core bridges (resp. diverts) can be created or destroyed using the management operations

createBridge() and destroyBridge() (resp. createDivert() and destroyDivert()) on

the HornetQServerControl (with the ObjectName org.hornetq:module=Core,type=Server

or the resource name core.server).

• It is possible to stop the server and force failover to occur with any currently attached clients.

to do this use the forceFailover() on the HornetQServerControl (with the ObjectName

org.hornetq:module=Core,type=Server or the resource name core.server)

Note
Since this method actually stops the server you will probably receive some sort

of error depending on which management service you use to call it.

30.1.1.2. Core Address Management

Core addresses can be managed using the AddressControl class (with the ObjectName

org.hornetq:module=Core,type=Address,name="<the address name>" or the resource

name core.address.<the address name>).

• Modifying roles and permissions for an address

You can add or remove roles associated to a queue using the addRole() or removeRole()

methods. You can list all the roles associated to the queue with the getRoles() method

30.1.1.3. Core Queue Management

The bulk of the core management API deals with core queues. The QueueControl

class defines the Core queue management operations (with the ObjectName

org.hornetq:module=Core,type=Queue,address="<the bound address>",name="<the

queue name>" or the resource name core.queue.<the queue name>).

Most of the management operations on queues take either a single message ID (e.g. to remove

a single message) or a filter (e.g. to expire all messages with a given property.)

• Expiring, sending to a dead letter address and moving messages

Chapter 30. Management

132

Messages can be expired from a queue by using the expireMessages() method. If an expiry

address is defined, messages will be sent to it, otherwise they are discarded. The queue's expiry

address can be set with the setExpiryAddress() method.

Messages can also be sent to a dead letter address with the

sendMessagesToDeadLetterAddress() method. It returns the number of messages which

are sent to the dead letter address. If a dead letter address is not defined, message are

removed from the queue and discarded. The queue's dead letter address can be set with the

setDeadLetterAddress() method.

Messages can also be moved from a queue to another queue by using the moveMessages()

method.

• Listing and removing messages

Messages can be listed from a queue by using the listMessages() method which returns an

array of Map, one Map for each message.

Messages can also be removed from the queue by using the removeMessages() method which

returns a boolean for the single message ID variant or the number of removed messages for the

filter variant. The removeMessages() method takes a filter argument to remove only filtered

messages. Setting the filter to an empty string will in effect remove all messages.

• Counting messages

The number of messages in a queue is returned by the getMessageCount() method.

Alternatively, the countMessages() will return the number of messages in the queue which

match a given filter

• Changing message priority

The message priority can be changed by using the changeMessagesPriority() method which

returns a boolean for the single message ID variant or the number of updated messages for

the filter variant.

• Message counters

Message counters can be listed for a queue with the listMessageCounter() and

listMessageCounterHistory() methods (see Section 30.6, “Message Counters”). The

message counters can also be reset for a single queue using the resetMessageCounter()

method.

• Retrieving the queue attributes

The QueueControl exposes Core queue settings through its attributes (e.g. getFilter() to

retrieve the queue's filter if it was created with one, isDurable() to know whether the queue

is durable or not, etc.)

• Pausing and resuming Queues

Core Management API

133

The QueueControl can pause and resume the underlying queue. When a queue is paused,

it will receive messages but will not deliver them. When it's resume, it'll begin delivering the

queued messages, if any.

30.1.1.4. Other Core Resources Management

HornetQ allows to start and stop its remote resources (acceptors, diverts, bridges, etc.) so that

a server can be taken off line for a given period of time without stopping it completely (e.g. if

other management operations must be performed such as resolving heuristic transactions). These

resources are:

• Acceptors

They can be started or stopped using the start() or. stop() method on the AcceptorControl

class (with the ObjectName org.hornetq:module=Core,type=Acceptor,name="<the

acceptor name>" or the resource name core.acceptor.<the address name>). The acceptors

parameters can be retrieved using the AcceptorControl attributes (see Section 16.1,

“Understanding Acceptors”)

• Diverts

They can be started or stopped using the start() or stop() method on the DivertControl

class (with the ObjectName org.hornetq:module=Core,type=Divert,name=<the divert

name> or the resource name core.divert.<the divert name>). Diverts parameters can be

retrieved using the DivertControl attributes (see Chapter 35, Diverting and Splitting Message

Flows)

• Bridges

They can be started or stopped using the start() (resp.

stop()) method on the BridgeControl class (with the ObjectName

org.hornetq:module=Core,type=Bridge,name="<the bridge name>" or the resource

name core.bridge.<the bridge name>). Bridges parameters can be retrieved using the

BridgeControl attributes (see Chapter 36, Core Bridges)

• Broadcast groups

They can be started or stopped using the start() or stop()

method on the BroadcastGroupControl class (with the ObjectName

org.hornetq:module=Core,type=BroadcastGroup,name="<the broadcast group name>"

or the resource name core.broadcastgroup.<the broadcast group name>). Broadcast

groups parameters can be retrieved using the BroadcastGroupControl attributes (see

Chapter 38, Clusters)

• Discovery groups

They can be started or stopped using the start() or stop()

method on the DiscoveryGroupControl class (with the ObjectName

Chapter 30. Management

134

org.hornetq:module=Core,type=DiscoveryGroup,name="<the discovery group name>"

or the resource name core.discovery.<the discovery group name>). Discovery groups

parameters can be retrieved using the DiscoveryGroupControl attributes (see Chapter 38,

Clusters)

• Cluster connections

They can be started or stopped using the start() or stop()

method on the ClusterConnectionControl class (with the ObjectName

org.hornetq:module=Core,type=ClusterConnection,name="<the cluster connection

name>" or the resource name core.clusterconnection.<the cluster connection name>).

Cluster connections parameters can be retrieved using the ClusterConnectionControl

attributes (see Chapter 38, Clusters)

30.1.2. JMS Management API

HornetQ defines a JMS Management API to manage JMS administrated objects (i.e. JMS queues,

topics and connection factories).

30.1.2.1. JMS Server Management

JMS Resources (connection factories and destinations) can be created using the

JMSServerControl class (with the ObjectName org.hornetq:module=JMS,type=Server or the

resource name jms.server).

• Listing, creating, destroying connection factories

Names of the deployed connection factories can be retrieved by the

getConnectionFactoryNames() method.

JMS connection factories can be created or destroyed using the createConnectionFactory()

methods or destroyConnectionFactory() methods. These connection factories are bound

to JNDI so that JMS clients can look them up. If a graphical console is used to create the

connection factories, the transport parameters are specified in the text field input as a comma-

separated list of key=value (e.g. key1=10, key2="value", key3=false). If there are multiple

transports defined, you need to enclose the key/value pairs between curly braces. For example

{key=10}, {key=20}. In that case, the first key will be associated to the first transport

configuration and the second key will be associated to the second transport configuration (see

Chapter 16, Configuring the Transport for a list of the transport parameters)

• Listing, creating, destroying queues

Names of the deployed JMS queues can be retrieved by the getQueueNames() method.

JMS queues can be created or destroyed using the createQueue() methods or

destroyQueue() methods. These queues are bound to JNDI so that JMS clients can look them

up

JMS Management API

135

• Listing, creating/destroying topics

Names of the deployed topics can be retrieved by the getTopicNames() method.

JMS topics can be created or destroyed using the createTopic() or destroyTopic()

methods. These topics are bound to JNDI so that JMS clients can look them up

• Listing and closing remote connections

JMS Clients remote addresses can be retrieved using listRemoteAddresses(). It is

also possible to close the connections associated with a remote address using the

closeConnectionsForAddress() method.

Alternatively, connection IDs can be listed using listConnectionIDs() and all the sessions

for a given connection ID can be listed using listSessions().

30.1.2.2. JMS ConnectionFactory Management

JMS Connection Factories can be managed using the ConnectionFactoryControl

class (with the ObjectName org.hornetq:module=JMS,type=ConnectionFactory,name="<the

connection factory name>" or the resource name jms.connectionfactory.<the

connection factory name>).

• Retrieving connection factory attributes

The ConnectionFactoryControl exposes JMS ConnectionFactory configuration through its

attributes (e.g. getConsumerWindowSize() to retrieve the consumer window size for flow

control, isBlockOnNonDurableSend() to know whether the producers created from the

connection factory will block or not when sending non-durable messages, etc.)

30.1.2.3. JMS Queue Management

JMS queues can be managed using the JMSQueueControl class (with the ObjectName

org.hornetq:module=JMS,type=Queue,name="<the queue name>" or the resource name

jms.queue.<the queue name>).

The management operations on a JMS queue are very similar to the operations on a core queue.

• Expiring, sending to a dead letter address and moving messages

Messages can be expired from a queue by using the expireMessages() method. If an expiry

address is defined, messages will be sent to it, otherwise they are discarded. The queue's expiry

address can be set with the setExpiryAddress() method.

Messages can also be sent to a dead letter address with the

sendMessagesToDeadLetterAddress() method. It returns the number of messages which

are sent to the dead letter address. If a dead letter address is not defined, message are

Chapter 30. Management

136

removed from the queue and discarded. The queue's dead letter address can be set with the

setDeadLetterAddress() method.

Messages can also be moved from a queue to another queue by using the moveMessages()

method.

• Listing and removing messages

Messages can be listed from a queue by using the listMessages() method which returns an

array of Map, one Map for each message.

Messages can also be removed from the queue by using the removeMessages() method which

returns a boolean for the single message ID variant or the number of removed messages for the

filter variant. The removeMessages() method takes a filter argument to remove only filtered

messages. Setting the filter to an empty string will in effect remove all messages.

• Counting messages

The number of messages in a queue is returned by the getMessageCount() method.

Alternatively, the countMessages() will return the number of messages in the queue which

match a given filter

• Changing message priority

The message priority can be changed by using the changeMessagesPriority() method which

returns a boolean for the single message ID variant or the number of updated messages for

the filter variant.

• Message counters

Message counters can be listed for a queue with the listMessageCounter() and

listMessageCounterHistory() methods (see Section 30.6, “Message Counters”)

• Retrieving the queue attributes

The JMSQueueControl exposes JMS queue settings through its attributes (e.g. isTemporary()

to know whether the queue is temporary or not, isDurable() to know whether the queue is

durable or not, etc.)

• Pausing and resuming queues

The JMSQueueControl can pause and resume the underlying queue. When the queue is paused

it will continue to receive messages but will not deliver them. When resumed again it will deliver

the enqueued messages, if any.

30.1.2.4. JMS Topic Management

JMS Topics can be managed using the TopicControl class (with the ObjectName

org.hornetq:module=JMS,type=Topic,name="<the topic name>" or the resource name

jms.topic.<the topic name>).

Using Management Via JMX

137

• Listing subscriptions and messages

JMS topics subscriptions can be listed using the listAllSubscriptions(),

listDurableSubscriptions(), listNonDurableSubscriptions() methods. These methods

return arrays of Object representing the subscriptions information (subscription name, client

ID, durability, message count, etc.). It is also possible to list the JMS messages for a given

subscription with the listMessagesForSubscription() method.

• Dropping subscriptions

Durable subscriptions can be dropped from the topic using the dropDurableSubscription()

method.

• Counting subscriptions messages

The countMessagesForSubscription() method can be used to know the number of

messages held for a given subscription (with an optional message selector to know the number

of messages matching the selector)

30.2. Using Management Via JMX

HornetQ can be managed using JMX [http://www.oracle.com/technetwork/java/javase/tech/

javamanagement-140525.html].

The management API is exposed by HornetQ using MBeans interfaces. HornetQ registers its

resources with the domain org.hornetq.

For example, the ObjectName to manage a JMS Queue exampleQueue is:

org.hornetq:module=JMS,type=Queue,name="exampleQueue"

and the MBean is:

org.hornetq.api.jms.management.JMSQueueControl

The MBean's ObjectName are built using the helper class

org.hornetq.api.core.management.ObjectNameBuilder. You can also use jconsole to find

the ObjectName of the MBeans you want to manage.

Managing HornetQ using JMX is identical to management of any Java Applications using JMX. It

can be done by reflection or by creating proxies of the MBeans.

http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html

Chapter 30. Management

138

30.2.1. Configuring JMX

By default, JMX is enabled to manage HornetQ. It can be disabled by setting jmx-management-

enabled to false in hornetq-configuration.xml:

<!-- false to disable JMX management for HornetQ -->

<jmx-management-enabled>false</jmx-management-enabled>

If JMX is enabled, HornetQ can be managed locally using jconsole.

Note

Remote connections to JMX are not enabled by default for security reasons. Please

refer to Java Management guide [http://docs.oracle.com/javase/6/docs/technotes/

guides/management/agent.html] to configure the server for remote management

(system properties must be set in run.sh or run.bat scripts).

By default, HornetQ server uses the JMX domain "org.hornetq". To manage several HornetQ

servers from the same MBeanServer, the JMX domain can be configured for each individual

HornetQ server by setting jmx-domain in hornetq-configuration.xml:

<!-- use a specific JMX domain for HornetQ MBeans -->

<jmx-domain>my.org.hornetq</jmx-domain>

30.2.1.1. MBeanServer configuration

When HornetQ is run in standalone, it uses the Java Virtual Machine's Platform MBeanServer

to register its MBeans. This is configured in JBoss Microcontainer Beans file (see Section 6.7,

“JBoss Microcontainer Beans File”):

<!-- MBeanServer -->

<bean name="MBeanServer" class="javax.management.MBeanServer">

 <constructor factoryClass="java.lang.management.ManagementFactory"

 factoryMethod="getPlatformMBeanServer" />

</bean>

When it is integrated in JBoss AS 5+, it uses the Application Server's own MBean Server so that

it can be managed using AS 5's jmx-console:

http://docs.oracle.com/javase/6/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/6/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/6/docs/technotes/guides/management/agent.html

Example

139

<!-- MBeanServer -->

<bean name="MBeanServer" class="javax.management.MBeanServer">

 <constructor factoryClass="org.jboss.mx.util.MBeanServerLocator"

 factoryMethod="locateJBoss" />

</bean>

30.2.2. Example

See Section 11.1.35, “JMX Management” for an example which shows how to use a remote

connection to JMX and MBean proxies to manage HornetQ.

30.3. Using Management Via Core API

The core management API in HornetQ is called by sending Core messages to a special address,

the management address.

Management messages are regular Core messages with well-known properties that the server

needs to understand to interact with the management API:

• The name of the managed resource

• The name of the management operation

• The parameters of the management operation

When such a management message is sent to the management address, HornetQ server

will handle it, extract the information, invoke the operation on the managed resources and

send a management reply to the management message's reply-to address (specified by

ClientMessageImpl.REPLYTO_HEADER_NAME).

A ClientConsumer can be used to consume the management reply and retrieve the

result of the operation (if any) stored in the reply's body. For portability, results

are returned as a JSON [http://json.org] String rather than Java Serialization (the

org.hornetq.api.core.management.ManagementHelper can be used to convert the JSON

string to Java objects).

These steps can be simplified to make it easier to invoke management operations using Core

messages:

1. Create a ClientRequestor to send messages to the management address and receive replies

2. Create a ClientMessage

3. Use the helper class org.hornetq.api.core.management.ManagementHelper to fill the

message with the management properties

http://json.org
http://json.org

Chapter 30. Management

140

4. Send the message using the ClientRequestor

5. Use the helper class org.hornetq.api.core.management.ManagementHelper to retrieve the

operation result from the management reply

For example, to find out the number of messages in the core queue exampleQueue:

ClientSession session = ...

ClientRequestor requestor = new ClientRequestor(session,

 "jms.queue.hornetq.management");

ClientMessage message = session.createMessage(false);

ManagementHelper.putAttribute(message, "core.queue.exampleQueue",

 "messageCount");

session.start();

ClientMessage reply = requestor.request(m);

int count = (Integer) ManagementHelper.getResult(reply);

System.out.println("There are " + count + " messages in exampleQueue");

Management operation name and parameters must conform to the Java interfaces defined in the

management packages.

Names of the resources are built using the helper

class org.hornetq.api.core.management.ResourceNames and are straightforward

(core.queue.exampleQueue for the Core Queue exampleQueue, jms.topic.exampleTopic for

the JMS Topic exampleTopic, etc.).

30.3.1. Configuring Core Management

The management address to send management messages is configured in hornetq-

configuration.xml:

<management-address>jms.queue.hornetq.management</management-address>

By default, the address is jms.queue.hornetq.management (it is prepended by "jms.queue" so

that JMS clients can also send management messages).

The management address requires a special user permission manage to be able to receive and

handle management messages. This is also configured in hornetq-configuration.xml:

<!-- users with the admin role will be allowed to manage -->

<!-- HornetQ using management messages -->

Using Management Via JMS

141

<security-setting match="jms.queue.hornetq.management">

 <permission type="manage" roles="admin" />

</security-setting>

30.4. Using Management Via JMS

Using JMS messages to manage HornetQ is very similar to using core API.

An important difference is that JMS requires a JMS queue to send the messages to (instead of

an address for the core API).

The management queue is a special queue and needs to be instantiated directly by the client:

Queue managementQueue = HornetQJMSClient.createQueue("hornetq.management");

All the other steps are the same than for the Core API but they use JMS API instead:

1. create a QueueRequestor to send messages to the management address and receive replies

2. create a Message

3. use the helper class org.hornetq.api.jms.management.JMSManagementHelper to fill the

message with the management properties

4. send the message using the QueueRequestor

5. use the helper class org.hornetq.api.jms.management.JMSManagementHelper to retrieve

the operation result from the management reply

For example, to know the number of messages in the JMS queue exampleQueue:

Queue managementQueue = HornetQJMSClient.createQueue("hornetq.management");

QueueSession session = ...

QueueRequestor requestor = new QueueRequestor(session, managementQueue);

connection.start();

Message message = session.createMessage();

JMSManagementHelper.putAttribute(message, "jms.queue.exampleQueue",

 "messageCount");

Message reply = requestor.request(message);

int count = (Integer)JMSManagementHelper.getResult(reply);

System.out.println("There are " + count + " messages in exampleQueue");

Chapter 30. Management

142

30.4.1. Configuring JMS Management

Whether JMS or the core API is used for management, the configuration steps are the same (see

Section 30.3.1, “Configuring Core Management”).

30.4.2. Example

See Section 11.1.38, “Management” for an example which shows how to use JMS messages to

manage HornetQ server.

30.5. Management Notifications

HornetQ emits notifications to inform listeners of potentially interesting events (creation of new

resources, security violation, etc.).

These notifications can be received by 3 different ways:

• JMX notifications

• Core messages

• JMS messages

30.5.1. JMX Notifications

If JMX is enabled (see Section 30.2.1, “Configuring JMX”), JMX notifications can be received by

subscribing to 2 MBeans:

• org.hornetq:module=Core,type=Server for notifications on Core resources

• org.hornetq:module=JMS,type=Server for notifications on JMS resources

30.5.2. Core Messages Notifications

HornetQ defines a special management notification address. Core queues can be bound to this

address so that clients will receive management notifications as Core messages

A Core client which wants to receive management notifications must create a core queue bound

to the management notification address. It can then receive the notifications from its queue.

Notifications messages are regular core messages with additional properties corresponding to the

notification (its type, when it occurred, the resources which were concerned, etc.).

Since notifications are regular core messages, it is possible to use message selectors to filter out

notifications and receives only a subset of all the notifications emitted by the server.

JMS Messages Notifications

143

30.5.2.1. Configuring The Core Management Notification Address

The management notification address to receive management notifications is configured in

hornetq-configuration.xml:

<management-notification-address>hornetq.notifications</management-

notification-address>

By default, the address is hornetq.notifications.

30.5.3. JMS Messages Notifications

HornetQ's notifications can also be received using JMS messages.

It is similar to receiving notifications using Core API but an important difference is that JMS requires

a JMS Destination to receive the messages (preferably a Topic).

To use a JMS Destination to receive management notifications, you must change the server's

management notification address to start with jms.queue if it is a JMS Queue or jms.topic if

it is a JMS Topic:

<!-- notifications will be consumed from "notificationsTopic" JMS Topic -->

<management-notification-address>jms.topic.notificationsTopic</management-

notification-address>

Once the notification topic is created, you can receive messages from it or set a MessageListener:

Topic notificationsTopic = HornetQJMSClient.createTopic("notificationsTopic");

Session session = ...

MessageConsumer notificationConsumer =

 session.createConsumer(notificationsTopic);

notificationConsumer.setMessageListener(new MessageListener()

{

 public void onMessage(Message notif)

 {

 System.out.println("------------------------");

 System.out.println("Received notification:");

 try

 {

 Enumeration propertyNames = notif.getPropertyNames();

 while (propertyNames.hasMoreElements())

Chapter 30. Management

144

 {

 String propertyName = (String)propertyNames.nextElement();

 System.out.format(" %s: %s\n", propertyName,

 notif.getObjectProperty(propertyName));

 }

 }

 catch (JMSException e)

 {

 }

 System.out.println("------------------------");

 }

});

30.5.4. Example

See Section 11.1.39, “Management Notification” for an example which shows how to use a JMS

MessageListener to receive management notifications from HornetQ server.

30.5.5. Notification Types and Headers

Below is a list of all the different kinds of notifications as well as which headers are

on the messages. Every notification has a _HQ_NotifType (value noted in parentheses)

and _HQ_NotifTimestamp header. The timestamp is the un-formatted result of a call to

java.lang.System.currentTimeMillis().

• BINDING_ADDED (0)

_HQ_Binding_Type, _HQ_Address, _HQ_ClusterName, _HQ_RoutingName, _HQ_Binding_ID,

_HQ_Distance, _HQ_FilterString

• BINDING_REMOVED (1)

_HQ_Address, _HQ_ClusterName, _HQ_RoutingName, _HQ_Binding_ID, _HQ_Distance,

_HQ_FilterString

• CONSUMER_CREATED (2)

_HQ_Address, _HQ_ClusterName, _HQ_RoutingName, _HQ_Distance, _HQ_ConsumerCount,

_HQ_User, _HQ_RemoteAddress, _HQ_SessionName, _HQ_FilterString

• CONSUMER_CLOSED (3)

_HQ_Address, _HQ_ClusterName, _HQ_RoutingName, _HQ_Distance, _HQ_ConsumerCount,

_HQ_User, _HQ_RemoteAddress, _HQ_SessionName, _HQ_FilterString

Notification Types and Headers

145

• SECURITY_AUTHENTICATION_VIOLATION (6)

_HQ_User

• SECURITY_PERMISSION_VIOLATION (7)

_HQ_Address, _HQ_CheckType, _HQ_User

• DISCOVERY_GROUP_STARTED (8)

name

• DISCOVERY_GROUP_STOPPED (9)

name

• BROADCAST_GROUP_STARTED (10)

name

• BROADCAST_GROUP_STOPPED (11)

name

• BRIDGE_STARTED (12)

name

• BRIDGE_STOPPED (13)

name

• CLUSTER_CONNECTION_STARTED (14)

name

• CLUSTER_CONNECTION_STOPPED (15)

name

• ACCEPTOR_STARTED (16)

Chapter 30. Management

146

factory, id

• ACCEPTOR_STOPPED (17)

factory, id

• PROPOSAL (18)

_JBM_ProposalGroupId, _JBM_ProposalValue, _HQ_Binding_Type, _HQ_Address,

_HQ_Distance

• PROPOSAL_RESPONSE (19)

_JBM_ProposalGroupId, _JBM_ProposalValue, _JBM_ProposalAltValue,

_HQ_Binding_Type, _HQ_Address, _HQ_Distance

30.6. Message Counters

Message counters can be used to obtain information on queues over time as HornetQ keeps a

history on queue metrics.

They can be used to show trends on queues. For example, using the management API, it would be

possible to query the number of messages in a queue at regular interval. However, this would not

be enough to know if the queue is used: the number of messages can remain constant because

nobody is sending or receiving messages from the queue or because there are as many messages

sent to the queue than messages consumed from it. The number of messages in the queue

remains the same in both cases but its use is widely different.

Message counters gives additional information about the queues:

• count

The total number of messages added to the queue since the server was started

• countDelta

the number of messages added to the queue since the last message counter update

• messageCount

The current number of messages in the queue

• messageCountDelta

The overall number of messages added/removed from the queue since the last message

counter update. For example, if messageCountDelta is equal to -10 this means that overall

Configuring Message Counters

147

10 messages have been removed from the queue (e.g. 2 messages were added and 12 were

removed)

• lastAddTimestamp

The timestamp of the last time a message was added to the queue

• udpateTimestamp

The timestamp of the last message counter update

These attributes can be used to determine other meaningful data as well. For example, to know

specifically how many messages were consumed from the queue since the last update simply

subtract the messageCountDelta from countDelta.

30.6.1. Configuring Message Counters

By default, message counters are disabled as it might have a small negative effect on memory.

To enable message counters, you can set it to true in hornetq-configuration.xml:

<message-counter-enabled>true</message-counter-enabled>

Message counters keeps a history of the queue metrics (10 days by default) and samples all the

queues at regular interval (10 seconds by default). If message counters are enabled, these values

should be configured to suit your messaging use case in hornetq-configuration.xml:

<!-- keep history for a week -->

<message-counter-max-day-history>7</message-counter-max-day-history>

<!-- sample the queues every minute (60000ms) -->

<message-counter-sample-period>60000</message-counter-sample-period>

Message counters can be retrieved using the Management API. For example, to retrieve message

counters on a JMS Queue using JMX:

// retrieve a connection to HornetQ's MBeanServer

MBeanServerConnection mbsc = ...

JMSQueueControlMBean queueControl =

 (JMSQueueControl)MBeanServerInvocationHandler.newProxyInstance(mbsc,

 on,

 JMSQueueControl.class,

 false);

Chapter 30. Management

148

// message counters are retrieved as a JSON String

String counters = queueControl.listMessageCounter();

// use the MessageCounterInfo helper class to manipulate message counters more

 easily

MessageCounterInfo messageCounter = MessageCounterInfo.fromJSON(counters);

System.out.format("%s message(s) in the queue (since last sample: %s)\n",

messageCounter.getMessageCount(),

messageCounter.getMessageCountDelta());

30.6.2. Example

See Section 11.1.40, “Message Counter” for an example which shows how to use message

counters to retrieve information on a JMS Queue.

30.7. Administering HornetQ Resources Using The

JBoss AS Admin Console

Its possible to create and configure HornetQ resources via the admin console within the JBoss

Application Server.

The Admin Console will allow you to create destinations (JMS Topics and Queues) and JMS

Connection Factories.

Once logged in to the admin console you will see a JMS Manager item in the left hand tree.

All HornetQ resources will be configured via this. This will have a child items for JMS Queues,

Topics and Connection Factories, clicking on each node will reveal which resources are currently

available. The following sections explain how to create and configure each resource in turn.

30.7.1. JMS Queues

To create a new JMS Queue click on the JMS Queues item to reveal the available queues. On

the right hand panel you will see an add a new resource button, click on this and then choose

the default(JMS Queue) template and click continue. The important things to fill in here are the

name of the queue and the JNDI name of the queue. The JNDI name is what you will use to

look up the queue in JNDI from your client. For most queues this will be the only info you will

need to provide as sensible defaults are provided for the others. You will also see a security roles

section near the bottom. If you do not provide any roles for this queue then the servers default

security configuration will be used, after you have created the queue these will be shown in the

configuration. All configuration values, except the name and JNDI name, can be changed via the

configuration tab after clicking on the queue in the admin console. The following section explains

these in more detail

After highlighting the configuration you will see the following screen

JMS Topics

149

The name and JNDI name can't be changed, if you want to change these recreate the queue with

the appropriate settings. The rest of the configuration options, apart from security roles, relate

to address settings for a particular address. The default address settings are picked up from the

servers configuration, if you change any of these settings or create a queue via the console a new

Address Settings entry will be added. For a full explanation on Address Settings see Section 25.3,

“Configuring Queues Via Address Settings”

To delete a queue simply click on the delete button beside the queue name in the main JMS

Queues screen. This will also delete any address settings or security settings previously created

for the queues address

The last part of the configuration options are security roles. If non are provided on creation then the

servers default security settings will be shown. If these are changed or updated then new security

settings are created for the address of this queue. For more information on security setting see

Chapter 31, Security

It is also possible via the metrics tab to view statistics for this queue. This will show statistics such

as message count, consumer count etc.

Operations can be performed on a queue via the control tab. This will allow you to start and stop

the queue, list,move,expire and delete messages from the queue and other useful operations. To

invoke an operation click on the button for the operation you want, this will take you to a screen

where you can parameters for the operation can be set. Once set clicking the ok button will invoke

the operation, results appear at the bottom of the screen.

30.7.2. JMS Topics

Creating and configuring JMS Topics is almost identical to creating queues. The only difference

is that the configuration will be applied to the queue representing a subscription.

Chapter 30. Management

150

30.7.3. JMS Connection Factories

The format for creating connection factories is the same as for JMS Queues and topics apart

from the configuration being different. For as list of all the connection factory settings see the

configuration index

Chapter 31.

151

Security
This chapter describes how security works with HornetQ and how you can configure it. To

disable security completely simply set the security-enabled property to false in the hornetq-

configuration.xml file.

For performance reasons security is cached and invalidated every so long. To change this period

set the property security-invalidation-interval, which is in milliseconds. The default is

10000 ms.

31.1. Role based security for addresses

HornetQ contains a flexible role-based security model for applying security to queues, based on

their addresses.

As explained in Chapter 8, Using Core, HornetQ core consists mainly of sets of queues bound to

addresses. A message is sent to an address and the server looks up the set of queues that are

bound to that address, the server then routes the message to those set of queues.

HornetQ allows sets of permissions to be defined against the queues based on their address. An

exact match on the address can be used or a wildcard match can be used using the wildcard

characters '#' and '*'.

Seven different permissions can be given to the set of queues which match the address. Those

permissions are:

• createDurableQueue. This permission allows the user to create a durable queue under

matching addresses.

• deleteDurableQueue. This permission allows the user to delete a durable queue under

matching addresses.

• createNonDurableQueue. This permission allows the user to create a non-durable queue under

matching addresses.

• deleteNonDurableQueue. This permission allows the user to delete a non-durable queue under

matching addresses.

• send. This permission allows the user to send a message to matching addresses.

• consume. This permission allows the user to consume a message from a queue bound to

matching addresses.

• manage. This permission allows the user to invoke management operations by sending

management messages to the management address.

For each permission, a list of roles who are granted that permission is specified. If the user has

any of those roles, he/she will be granted that permission for that set of addresses.

Chapter 31. Security

152

Let's take a simple example, here's a security block from hornetq-configuration.xml or

hornetq-queues.xml file:

<security-setting match="globalqueues.europe.#">

 <permission type="createDurableQueue" roles="admin"/>

 <permission type="deleteDurableQueue" roles="admin"/>

 <permission type="createNonDurableQueue" roles="admin, guest, europe-users"/>

 <permission type="deleteNonDurableQueue" roles="admin, guest, europe-users"/>

 <permission type="send" roles="admin, europe-users"/>

 <permission type="consume" roles="admin, europe-users"/>

</security-setting>

The '#' character signifies "any sequence of words". Words are delimited by the '.' character.

For a full description of the wildcard syntax please see Chapter 13, Understanding the HornetQ

Wildcard Syntax. The above security block applies to any address that starts with the string

"globalqueues.europe.":

Only users who have the admin role can create or delete durable queues bound to an address

that starts with the string "globalqueues.europe."

Any users with the roles admin, guest, or europe-users can create or delete temporary queues

bound to an address that starts with the string "globalqueues.europe."

Any users with the roles admin or europe-users can send messages to these addresses

or consume messages from queues bound to an address that starts with the string

"globalqueues.europe."

The mapping between a user and what roles they have is handled by the security manager.

HornetQ ships with a user manager that reads user credentials from a file on disk, and can also

plug into JAAS or JBoss Application Server security.

For more information on configuring the security manager, please see Section 31.4, “Changing

the security manager”.

There can be zero or more security-setting elements in each xml file. Where more than one

match applies to a set of addresses the more specific match takes precedence.

Let's look at an example of that, here's another security-setting block:

<security-setting match="globalqueues.europe.orders.#">

 <permission type="send" roles="europe-users"/>

 <permission type="consume" roles="europe-users"/>

</security-setting>

Secure Sockets Layer (SSL) Transport

153

In this security-setting block the match 'globalqueues.europe.orders.#' is more specific

than the previous match 'globalqueues.europe.#'. So any addresses which match

'globalqueues.europe.orders.#' will take their security settings only from the latter security-setting

block.

Note that settings are not inherited from the former block. All the settings will be taken from

the more specific matching block, so for the address 'globalqueues.europe.orders.plastics'

the only permissions that exist are send and consume for the role europe-users.

The permissions createDurableQueue, deleteDurableQueue, createNonDurableQueue,

deleteNonDurableQueue are not inherited from the other security-setting block.

By not inheriting permissions, it allows you to effectively deny permissions in more specific

security-setting blocks by simply not specifying them. Otherwise it would not be possible to deny

permissions in sub-groups of addresses.

31.2. Secure Sockets Layer (SSL) Transport

When messaging clients are connected to servers, or servers are connected to other servers (e.g.

via bridges) over an untrusted network then HornetQ allows that traffic to be encrypted using the

Secure Sockets Layer (SSL) transport.

For more information on configuring the SSL transport, please see Chapter 16, Configuring the

Transport.

31.3. Basic user credentials

HornetQ ships with a security manager implementation that reads user credentials, i.e. user

names, passwords and role information from an xml file on the classpath called hornetq-

users.xml. This is the default security manager.

If you wish to use this security manager, then users, passwords and roles can easily be added

into this file.

Let's take a look at an example file:

<configuration xmlns="urn:hornetq"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:hornetq ../schemas/hornetq-users.xsd ">

 <defaultuser name="guest" password="guest">

 <role name="guest"/>

 </defaultuser>

 <user name="tim" password="marmite">

 <role name="admin"/>

 </user>

Chapter 31. Security

154

 <user name="andy" password="doner_kebab">

 <role name="admin"/>

 <role name="guest"/>

 </user>

 <user name="jeff" password="camembert">

 <role name="europe-users"/>

 <role name="guest"/>

 </user>

</configuration>

The first thing to note is the element defaultuser. This defines what user will be assumed when

the client does not specify a username/password when creating a session. In this case they will

be the user guest and have the role also called guest. Multiple roles can be specified for a default

user.

We then have three more users, the user tim has the role admin. The user andy has the roles

admin and guest, and the user jeff has the roles europe-users and guest.

31.4. Changing the security manager

If you do not want to use the default security manager then you can specify a different one

by editing the file hornetq-beans.xml (or hornetq-jboss-beans.xml if you're running JBoss

Application Server) and changing the class for the HornetQSecurityManager bean.

Let's take a look at a snippet from the default beans file:

<bean name="HornetQSecurityManager"

 class="org.hornetq.spi.core.security.HornetQSecurityManagerImpl">

 <start ignored="true"/>

 <stop ignored="true"/>

</bean>

The class org.hornetq.spi.core.security.HornetQSecurityManagerImpl is the default

security manager that is used by the standalone server.

HornetQ ships with two other security manager implementations you can use off-the-

shelf; one a JAAS security manager and another for integrating with JBoss Application

Sever security, alternatively you could write your own implementation by implementing the

org.hornetq.spi.core.security.HornetQSecurityManager interface, and specifying the

classname of your implementation in the file hornetq-beans.xml (or hornetq-jboss-beans.xml

if you're running JBoss Application Server).

These two implementations are discussed in the next two sections.

JAAS Security Manager

155

31.5. JAAS Security Manager

JAAS stands for 'Java Authentication and Authorization Service' and is a standard part of the Java

platform. It provides a common API for security authentication and authorization, allowing you to

plugin your pre-built implementations.

To configure the JAAS security manager to work with your pre-built JAAS infrastructure you need

to specify the security manager as a JAASSecurityManager in the beans file. Here's an example:

<bean name="HornetQSecurityManager"

 class="org.hornetq.integration.jboss.security.JAASSecurityManager">

 <start ignored="true"/>

 <stop ignored="true"/>

 <property

 name="ConfigurationName">org.hornetq.jms.example.ExampleLoginModule</

property>

 <property name="Configuration">

 <inject bean="ExampleConfiguration"/>

 </property>

 <property name="CallbackHandler">

 <inject bean="ExampleCallbackHandler"/>

 </property>

</bean>

Note that you need to feed the JAAS security manager with three properties:

• ConfigurationName: the name of the LoginModule implementation that JAAS must use

• Configuration: the Configuration implementation used by JAAS

• CallbackHandler: the CallbackHandler implementation to use if user interaction are required

31.5.1. Example

See Section 11.1.29, “JAAS” for an example which shows how HornetQ can be configured to

use JAAS.

31.6. JBoss AS Security Manager

The JBoss AS security manager is used when running HornetQ inside the JBoss Application

server. This allows tight integration with the JBoss Application Server's security model.

The class name of this security manager is

org.hornetq.integration.jboss.security.JBossASSecurityManager

Chapter 31. Security

156

Take a look at one of the default hornetq-jboss-beans.xml files for JBoss Application Server

that are bundled in the distribution for an example of how this is configured.

31.6.1. Configuring Client Login

JBoss can be configured to allow client login, basically this is when a JEE component such

as a Servlet or EJB sets security credentials on the current security context and these are

used throughout the call. If you would like these credentials to be used by HornetQ when

sending or consuming messages then set allowClientLogin to true. This will bypass HornetQ

authentication and propagate the provided Security Context. If you would like HornetQ to

authenticate using the propagated security then set the authoriseOnClientLogin to true also.

There is more info on using the JBoss client login module here [http://community.jboss.org/wiki/

ClientLoginModule]

Note

If messages are sent non blocking then there is a chance that these could arrive on

the server after the calling thread has completed meaning that the security context

has been cleared. If this is the case then messages will need to be sent blocking

31.6.2. Changing the Security Domain

The name of the security domain used by the JBoss AS security manager defaults to java:/jaas/

hornetq . This can be changed by specifying securityDomainName (e.g. java:/jaas/myDomain).

31.7. Changing the username/password for clustering

In order for cluster connections to work correctly, each node in the cluster must make connections

to the other nodes. The username/password they use for this should always be changed from the

installation default to prevent a security risk.

Please see Chapter 30, Management for instructions on how to do this.

http://community.jboss.org/wiki/ClientLoginModule
http://community.jboss.org/wiki/ClientLoginModule
http://community.jboss.org/wiki/ClientLoginModule

Chapter 32.

157

Application Server Integration and

Java EE
HornetQ can be easily installed in JBoss Application Server 4 or later. For details on installing

HornetQ in the JBoss Application Server please refer to quick-start guide.

Since HornetQ also provides a JCA adapter, it is also possible to integrate HornetQ as a JMS

provider in other JEE compliant app servers. For instructions on how to integrate a remote JCA

adaptor into another application sever, please consult the other application server's instructions.

A JCA Adapter basically controls the inflow of messages to Message-Driven Beans (MDBs) and

the outflow of messages sent from other JEE components, e.g. EJBs and Servlets.

This section explains the basics behind configuring the different JEE components in the AS.

32.1. Configuring Message-Driven Beans

The delivery of messages to an MDB using HornetQ is configured on the JCA Adapter via a

configuration file ra.xml which can be found under the jms-ra.rar directory. By default this is

configured to consume messages using an InVM connector from the instance of HornetQ running

within the application server. The configuration properties are listed later in this chapter.

All MDBs however need to have the destination type and the destination configured. The following

example shows how this can be done using annotations:

@MessageDriven(name = "MDBExample", activationConfig =

{

 @ActivationConfigProperty(propertyName = "destinationType", propertyValue =

 "javax.jms.Queue"),

 @ActivationConfigProperty(propertyName = "destination", propertyValue =

 "queue/testQueue")

})

@ResourceAdapter("hornetq-ra.rar")

public class MDBExample implements MessageListener

{

 public void onMessage(Message message)...

}

In this example you can see that the MDB will consume messages from a queue that is mapped

into JNDI with the binding queue/testQueue. This queue must be preconfigured in the usual way

using the HornetQ configuration files.

The ResourceAdapter annotation is used to specify which adaptor should be used. To

use this you will need to import org.jboss.ejb3.annotation.ResourceAdapter for JBoss

Chapter 32. Application Serve...

158

AS 5.X and later version which can be found in the jboss-ejb3-ext-api.jar which

can be found in the JBoss repository. For JBoss AS 4.X, the annotation to use is

org.jboss.annotation.ejb.ResourceAdaptor.

Alternatively you can add use a deployment descriptor and add something like the following to

jboss.xml

<message-driven>

 <ejb-name>ExampleMDB</ejb-name>

 <resource-adapter-name>hornetq-ra.rar</resource-adapter-name>

</message-driven>

You can also rename the hornetq-ra.rar directory to jms-ra.rar and neither the annotation or the

extra descriptor information will be needed. If you do this you will need to edit the jms-ds.xml

datasource file and change rar-name element.

Note

HornetQ is the default JMS provider for JBoss AS 6. Starting with this AS version,

HornetQ resource adapter is named jms-ra.rar and you no longer need to

annotate the MDB for the resource adapter name.

All the examples shipped with the HornetQ distribution use the annotation.

32.1.1. Using Container-Managed Transactions

When an MDB is using Container-Managed Transactions (CMT), the delivery of the message is

done within the scope of a JTA transaction. The commit or rollback of this transaction is controlled

by the container itself. If the transaction is rolled back then the message delivery semantics will

kick in (by default, it will try to redeliver the message up to 10 times before sending to a DLQ).

Using annotations this would be configured as follows:

@MessageDriven(name = "MDB_CMP_TxRequiredExample", activationConfig =

{

 @ActivationConfigProperty(propertyName = "destinationType", propertyValue =

 "javax.jms.Queue"),

 @ActivationConfigProperty(propertyName = "destination", propertyValue =

 "queue/testQueue")

})

@TransactionManagement(value= TransactionManagementType.CONTAINER)

@TransactionAttribute(value= TransactionAttributeType.REQUIRED)

@ResourceAdapter("hornetq-ra.rar")

public class MDB_CMP_TxRequiredExample implements MessageListener

Using Container-Managed Transactions

159

{

 public void onMessage(Message message)...

}

The TransactionManagement annotation tells the container to manage the transaction. The

TransactionAttribute annotation tells the container that a JTA transaction is required for this

MDB. Note that the only other valid value for this is TransactionAttributeType.NOT_SUPPORTED

which tells the container that this MDB does not support JTA transactions and one should not

be created.

It is also possible to inform the container that it must rollback the transaction by calling

setRollbackOnly on the MessageDrivenContext. The code for this would look something like:

@Resource

MessageDrivenContextContext ctx;

public void onMessage(Message message)

{

 try

 {

 //something here fails

 }

 catch (Exception e)

 {

 ctx.setRollbackOnly();

 }

}

If you do not want the overhead of an XA transaction being created every time but you would still

like the message delivered within a transaction (i.e. you are only using a JMS resource) then you

can configure the MDB to use a local transaction. This would be configured as such:

@MessageDriven(name = "MDB_CMP_TxLocalExample", activationConfig =

{

 @ActivationConfigProperty(propertyName = "destinationType", propertyValue

 = "javax.jms.Queue"),

 @ActivationConfigProperty(propertyName = "destination", propertyValue =

 "queue/testQueue"),

 @ActivationConfigProperty(propertyName = "useLocalTx", propertyValue =

 "true")

})

@TransactionManagement(value = TransactionManagementType.CONTAINER)

@TransactionAttribute(value = TransactionAttributeType.NOT_SUPPORTED)

Chapter 32. Application Serve...

160

@ResourceAdapter("hornetq-ra.rar")

public class MDB_CMP_TxLocalExample implements MessageListener

{

 public void onMessage(Message message)...

}

32.1.2. Using Bean-Managed Transactions

Message-driven beans can also be configured to use Bean-Managed Transactions (BMT). In this

case a User Transaction is created. This would be configured as follows:

@MessageDriven(name = "MDB_BMPExample", activationConfig =

{

 @ActivationConfigProperty(propertyName = "destinationType", propertyValue =

 "javax.jms.Queue"),

 @ActivationConfigProperty(propertyName = "destination", propertyValue =

 "queue/testQueue"),

 @ActivationConfigProperty(propertyName = "acknowledgeMode", propertyValue =

 "Dups-ok-acknowledge")

})

@TransactionManagement(value= TransactionManagementType.BEAN)

@ResourceAdapter("hornetq-ra.rar")

public class MDB_BMPExample implements MessageListener

{

 public void onMessage(Message message)

}

When using Bean-Managed Transactions the message delivery to the MDB will occur outside

the scope of the user transaction and use the acknowledge mode specified by the user with the

acknowledgeMode property. There are only 2 acceptable values for this Auto-acknowledge and

Dups-ok-acknowledge. Please note that because the message delivery is outside the scope of

the transaction a failure within the MDB will not cause the message to be redelivered.

A user would control the life-cycle of the transaction something like the following:

@Resource

MessageDrivenContext ctx;

public void onMessage(Message message)

{

 UserTransaction tx;

 try

 {

Using Message Selectors with Message-Driven Beans

161

 TextMessage textMessage = (TextMessage)message;

 String text = textMessage.getText();

 UserTransaction tx = ctx.getUserTransaction();

 tx.begin();

 //do some stuff within the transaction

 tx.commit();

 }

 catch (Exception e)

 {

 tx.rollback();

 }

}

32.1.3. Using Message Selectors with Message-Driven Beans

It is also possible to use MDBs with message selectors. To do this simple define your message

selector as follows:

@MessageDriven(name = "MDBMessageSelectorExample", activationConfig =

{

 @ActivationConfigProperty(propertyName = "destinationType", propertyValue =

 "javax.jms.Queue"),

 @ActivationConfigProperty(propertyName = "destination", propertyValue =

 "queue/testQueue"),

 @ActivationConfigProperty(propertyName = "messageSelector", propertyValue =

 "color = 'RED'")

})

@TransactionManagement(value= TransactionManagementType.CONTAINER)

@TransactionAttribute(value= TransactionAttributeType.REQUIRED)

@ResourceAdapter("hornetq-ra.rar")

public class MDBMessageSelectorExample implements MessageListener

{

 public void onMessage(Message message)....

}

32.2. Sending Messages from within JEE components

The JCA adapter can also be used for sending messages. The Connection Factory to use is

configured by default in the jms-ds.xml file and is mapped to java:/JmsXA. Using this from within

Chapter 32. Application Serve...

162

a JEE component will mean that the sending of the message will be done as part of the JTA

transaction being used by the component.

This means that if the sending of the message fails the overall transaction would rollback and the

message be re-sent. Heres an example of this from within an MDB:

@MessageDriven(name = "MDBMessageSendTxExample", activationConfig =

{

 @ActivationConfigProperty(propertyName = "destinationType", propertyValue =

 "javax.jms.Queue"),

 @ActivationConfigProperty(propertyName = "destination", propertyValue =

 "queue/testQueue")

})

@TransactionManagement(value= TransactionManagementType.CONTAINER)

@TransactionAttribute(value= TransactionAttributeType.REQUIRED)

@ResourceAdapter("hornetq-ra.rar")

public class MDBMessageSendTxExample implements MessageListener

{

 @Resource(mappedName = "java:/JmsXA")

 ConnectionFactory connectionFactory;

 @Resource(mappedName = "queue/replyQueue")

 Queue replyQueue;

 public void onMessage(Message message)

 {

 Connection conn = null;

 try

 {

 //Step 9. We know the client is sending a text message so we cast

 TextMessage textMessage = (TextMessage)message;

 //Step 10. get the text from the message.

 String text = textMessage.getText();

 System.out.println("message " + text);

 conn = connectionFactory.createConnection();

 Session sess = conn.createSession(false, Session.AUTO_ACKNOWLEDGE);

 MessageProducer producer = sess.createProducer(replyQueue);

 producer.send(sess.createTextMessage("this is a reply"));

 }

 catch (Exception e)

MDB and Consumer pool size

163

 {

 e.printStackTrace();

 }

 finally

 {

 if(conn != null)

 {

 try

 {

 conn.close();

 }

 catch (JMSException e)

 {

 }

 }

 }

 }

 }

In JBoss Application Server you can use the JMS JCA adapter for sending messages from

EJBs (including Session, Entity and Message-Driven Beans), Servlets (including jsps) and custom

MBeans.

32.3. MDB and Consumer pool size

Most application servers, including JBoss, allow you to configure how many MDB's there are

in a pool. In JBoss this is configured via the MaxPoolSize parameter in the ejb3-interceptors-

aop.xml file. Configuring this has no actual effect on how many sessions/consumers there actually

are created. This is because the Resource Adaptor implementation knows nothing about the

application servers MDB implementation. So even if you set the MDB pool size to 1, 15 sessions/

consumers will be created (this is the default). If you want to limit how many sessions/consumers

are created then you need to set the maxSession parameter either on the resource adapter itself

or via an an Activation Config Property on the MDB itself

@MessageDriven(name = "MDBMessageSendTxExample", activationConfig =

{

 @ActivationConfigProperty(propertyName = "destinationType", propertyValue =

 "javax.jms.Queue"),

 @ActivationConfigProperty(propertyName = "destination", propertyValue =

 "queue/testQueue"),

 @ActivationConfigProperty(propertyName = "maxSession", propertyValue = "1")

})

@TransactionManagement(value= TransactionManagementType.CONTAINER)

@TransactionAttribute(value= TransactionAttributeType.REQUIRED)

@ResourceAdapter("hornetq-ra.rar")

Chapter 32. Application Serve...

164

public class MyMDB implements MessageListener

{}

32.4. Configuring the JCA Adaptor

The Java Connector Architecture (JCA) Adapter is what allows HornetQ to be integrated with JEE

components such as MDBs and EJBs. It configures how components such as MDBs consume

messages from the HornetQ server and also how components such as EJBs or Servlets can send

messages.

The HornetQ JCA adapter is deployed via the jms-ra.rar archive. The configuration of the

adapter is found in this archive under META-INF/ra.xml.

The configuration will look something like the following:

<resourceadapter>

 <resourceadapter-class>org.hornetq.ra.HornetQResourceAdapter</

resourceadapter-class>

 <config-property>

 <description>The transport type. Multiple connectors can be configured

 by using a comma separated list,

 i.e.

 org.hornetq.core.remoting.impl.invm.InVMConnectorFactory,org.hornetq.core.remoting.impl.invm.InVMConnectorFactory.</

description>

 <config-property-name>ConnectorClassName</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-

value>org.hornetq.core.remoting.impl.invm.InVMConnectorFactory</config-

property-value>

 </config-property>

 <config-property>

 <description>The transport configuration. These values must be in the

 form of key=val;key=val;,

 if multiple connectors are used then each set must be separated by a

 comma i.e. host=host1;port=5445,host=host2;port=5446.

 Each set of parameters maps to the connector classname specified.</

description>

 <config-property-name>ConnectionParameters</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value>server-id=0</config-property-value>

 </config-property>

 <outbound-resourceadapter>

 <connection-definition>

Configuring the JCA Adaptor

165

 <managedconnectionfactory-

class>org.hornetq.ra.HornetQRAManagedConnection

 Factory</managedconnectionfactory-class>

 <config-property>

 <description>The default session type</description>

 <config-property-name>SessionDefaultType</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value>javax.jms.Queue</config-property-value>

 </config-property>

 <config-property>

 <description>Try to obtain a lock within specified number of

 seconds; less

 than or equal to 0 disable this functionality</description>

 <config-property-name>UseTryLock</config-property-name>

 <config-property-type>java.lang.Integer</config-property-type>

 <config-property-value>0</config-property-value>

 </config-property>

 <connectionfactory-interface>org.hornetq.ra.HornetQRAConnectionFactory

 </connectionfactory-interface>

 <connectionfactororg.hornetq.ra.HornetQConnectionFactoryImplonFactoryImpl

 </connectionfactory-impl-class>

 <connection-interface>javax.jms.Session</connection-interface>

 <connection-impl-class>org.hornetq.ra.HornetQRASession

 </connection-impl-class>

 </connection-definition>

 <transaction-support>XATransaction</transaction-support>

 <authentication-mechanism>

 <authentication-mechanism-type>BasicPassword

 </authentication-mechanism-type>

 <credential-interface>javax.resource.spi.security.PasswordCredential

 </credential-interface>

 </authentication-mechanism>

 <reauthentication-support>false</reauthentication-support>

 </outbound-resourceadapter>

 <inbound-resourceadapter>

 <messageadapter>

 <messagelistener>

 <messagelistener-type>javax.jms.MessageListener</messagelistener-type>

 <activationspec>

 <activationspec-class>org.hornetq.ra.inflow.HornetQActivationSpec

 </activationspec-class>

 <required-config-property>

 <config-property-name>destination</config-property-name>

 </required-config-property>

 </activationspec>

Chapter 32. Application Serve...

166

 </messagelistener>

 </messageadapter>

 </inbound-resourceadapter>

</resourceadapter>

There are three main parts to this configuration.

1. A set of global properties for the adapter

2. The configuration for the outbound part of the adapter. This is used for creating JMS resources

within EE components.

3. The configuration of the inbound part of the adapter. This is used for controlling the consumption

of messages via MDBs.

32.4.1. Global Properties

The first element you see is resourceadapter-class which should be left unchanged. This is

the HornetQ resource adapter class.

After that there is a list of configuration properties. This will be where most of the configuration is

done. The first two properties configure the transport used by the adapter and the rest configure

the connection factory itself.

Note

All connection factory properties will use the defaults if they are not provided,

except for the reconnectAttempts which will default to -1. This signifies that the

connection should attempt to reconnect on connection failure indefinitely. This is

only used when the adapter is configured to connect to a remote server as an InVM

connector can never fail.

The following table explains what each property is for.

Table 32.1. Global Configuration Properties

Property Name Property Type Property Description

ConnectorClassName String The Connector class name

(see Chapter 16, Configuring

the Transport for more

information). If multiple

connectors are needed this

should be provided as a

comma separated list.

ConnectionParameters String The transport configuration.

These parameters must

Global Properties

167

Property Name Property Type Property Description

be in the form of

key1=val1;key2=val2; and

will be specific to the

connector used. If multiple

connectors are configured

then parameters should be

supplied for each connector

separated by a comma.

ha boolean True if high availability is

needed.

useLocalTx boolean True will enable local

transaction optimisation.

UserName String The user name to use when

making a connection

Password String The password to use when

making a connection

DiscoveryAddress String The discovery group address

to use to auto-detect a server

DiscoveryPort Integer The port to use for discovery

DiscoveryRefreshTimeout Long The timeout, in milliseconds, to

refresh.

DiscoveryInitialWaitTimeout Long The initial time to wait for

discovery.

ConnectionLoadBalancingPolicyClassNameString The load balancing policy

class to use.

ConnectionTTL Long The time to live

(in milliseconds) for the

connection.

CallTimeout Long the call timeout (in

milliseconds) for each packet

sent.

DupsOKBatchSize Integer the batch size (in bytes)

between acknowledgements

when using

DUPS_OK_ACKNOWLEDGE

mode

TransactionBatchSize Integer the batch size (in bytes)

between acknowledgements

Chapter 32. Application Serve...

168

Property Name Property Type Property Description

when using a transactional

session

ConsumerWindowSize Integer the window size (in bytes) for

consumer flow control

ConsumerMaxRate Integer the fastest rate a consumer

may consume messages per

second

ConfirmationWindowSize Integer the window size (in bytes) for

reattachment confirmations

ProducerMaxRate Integer the maximum rate of

messages per second that can

be sent

MinLargeMessageSize Integer the size (in bytes) before a

message is treated as large

BlockOnAcknowledge Boolean whether or not messages are

acknowledged synchronously

BlockOnNonDurableSend Boolean whether or not non-

durable messages are sent

synchronously

BlockOnDurableSend Boolean whether or not durable

messages are sent

synchronously

AutoGroup Boolean whether or not message

grouping is automatically used

PreAcknowledge Boolean whether messages are pre

acknowledged by the server

before sending

ReconnectAttempts Integer maximum number of retry

attempts, default for the

resource adapter is -1 (infinite

attempts)

RetryInterval Long the time (in milliseconds) to

retry a connection after failing

RetryIntervalMultiplier Double multiplier to apply to

successive retry intervals

FailoverOnServerShutdown Boolean If true client will reconnect to

another server if available

ClientID String the pre-configured client ID for

the connection factory

Adapter Outbound Configuration

169

Property Name Property Type Property Description

ClientFailureCheckPeriod Long the period (in ms) after which

the client will consider the

connection failed after not

receiving packets from the

server

UseGlobalPools Boolean whether or not to use a global

thread pool for threads

ScheduledThreadPoolMaxSize Integer the size of the scheduled

thread pool

ThreadPoolMaxSize Integer the size of the thread pool

SetupAttempts Integer Number of attempts to setup a

JMS connection (default is 10,

-1 means to attempt infinitely).

It is possible that the MDB

is deployed before the JMS

resources are available. In that

case, the resource adapter will

try to setup several times until

the resources are available.

This applies only for inbound

connections

SetupInterval Long Interval in milliseconds

between consecutive attempts

to setup a JMS connection

(default is 2000m). This

applies only for inbound

connections

32.4.2. Adapter Outbound Configuration

The outbound configuration should remain unchanged as they define connection factories that are

used by Java EE components. These Connection Factories can be defined inside a configuration

file that matches the name *-ds.xml. You'll find a default jms-ds.xml configuration under the

hornetq directory in the JBoss AS deployment. The connection factories defined in this file inherit

their properties from the main ra.xml configuration but can also be overridden. The following

example shows how to override them.

Chapter 32. Application Serve...

170

Note

Please note that this configuration only applies when HornetQ resource adapter

is installed in JBoss Application Server. If you are using another JEE application

server please refer to your application servers documentation for how to do this.

<tx-connection-factory>

 <jndi-name>RemoteJmsXA</jndi-name>

 <xa-transaction/>

 <rar-name>jms-ra.rar</rar-name>

 <connection-definition>org.hornetq.ra.HornetQRAConnectionFactory

</connection-definition>

<config-property name="SessionDefaultType" type="String">javax.jms.Topic</

config-property>

 <config-property name="ConnectorClassName" type="String">

 org.hornetq.core.remoting.impl.netty.NettyConnectorFactory

 </config-property>

 <config-property name="ConnectionParameters" type="String">

 port=5445</config-property>

 <max-pool-size>20</max-pool-size>

</tx-connection-factory>

overriding connectors

If the connector class name is overridden the all parameters must also be supplied.

In this example the connection factory will be bound to JNDI with the name RemoteJmsXA and can

be looked up in the usual way using JNDI or defined within the EJB or MDB as such:

@Resource(mappedName="java:/RemoteJmsXA")

private ConnectionFactory connectionFactory;

The config-property elements are what overrides those in the ra.xml configuration file. Any of

the elements pertaining to the connection factory can be overridden here.

The outbound configuration also defines additional properties in addition to the global

configuration properties.

Adapter Inbound Configuration

171

Table 32.2. Outbound Configuration Properties

Property Name Property Type Property Description

SessionDefaultType String the default session type

UseTryLock Integer try to obtain a lock within

specified number of seconds.

less than or equal to 0 disable

this functionality

32.4.3. Adapter Inbound Configuration

The inbound configuration should again remain unchanged. This controls what forwards

messages onto MDBs. It is possible to override properties on the MDB by adding an activation

configuration to the MDB itself. This could be used to configure the MDB to consume from a

different server.

The inbound configuration also defines additional properties in addition to the global configuration

properties.

Table 32.3. Inbound Configuration Properties

Property Name Property Type Property Description

Destination String JNDI name of the destination

DestinationType String type of the destination,

either javax.jms.Queue or

javax.jms.Topic (default is

javax.jms.Queue)

AcknowledgeMode String The Acknowledgment mode,

either Auto-acknowledge

or Dups-ok-acknowledge

(default is Auto-acknowledge).

AUTO_ACKNOWLEDGE and

DUPS_OK_ACKNOWLEDGE are

acceptable values.

MaxSession Integer Maximum number of session

created by this inbound

configuration (default is 15)

MessageSelector String the message selector of the

consumer

SubscriptionDurability String Type of the subscription, either

Durable or NonDurable

ShareSubscriptions Boolean When true, multiple MDBs

can share the same Durable

subscription

Chapter 32. Application Serve...

172

Property Name Property Type Property Description

SubscriptionName String Name of the subscription

TransactionTimeout Long The transaction timeout in

milliseconds (default is 0, the

transaction does not timeout)

UseJNDI Boolean Whether or not use JNDI to

look up the destination (default

is true)

32.4.4. Configuring the adapter to use a standalone HornetQ

Server

Sometime you may want your messaging server on a different machine or separate from the

application server. If this is the case you will only need the hornetq client libs installed. This section

explains what config to create and what jar dependencies are needed.

There are two configuration files needed to do this, one for the incoming adapter used for MDB's

and one for outgoing connections managed by the JCA managed connection pool used by

outgoing JEE components wanting outgoing connections.

32.4.4.1.1. Configuring the Incoming Adaptor

Firstly you will need to create directory under the deploy directory ending in .rar. For this

example we will name the directory hornetq-ra.rar. This detail is important as the name of

directory is referred to by the MDB's and the outgoing configuration.

Note

The jboss default for this is jms-ra.rar, If you don't want to have to configure

your MDB's you can use this but you may need to remove the generic adaptor that

uses this.

Under the hornetq-ra.rar directory you will need to create a META-INF directory into which you

should create an ra.xml configuration file. You can find a template for the ra.xml under the config

directory of the HornetQ distribution.

To configure MDB's to consume messages from a remote HornetQ server you need to edit the

ra.xml file under deploy/hornet-ra.rar/META-INF and change the transport type to use a netty

connector (instead of the invm connector that is defined) and configure its transport parameters.

Heres an example of what this would look like:

<resourceadapter-class>org.hornetq.ra.HornetQResourceAdapter</resourceadapter-

class>

Configuring the adapter to use a standalone HornetQ Server

173

 <config-property>

 <description>The transport type</description>

 <config-property-name>ConnectorClassName</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-

value>org.hornetq.core.remoting.impl.netty.NettyConnectorFactory</config-

property-value>

 </config-property>

 <config-property>

 <description>The transport configuration. These values must be in the form

 of key=val;key=val;</description>

 <config-property-name>ConnectionParameters</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value>host=127.0.0.1;port=5446</config-property-value>

</config-property>

If you want to provide a list of servers that the adapter can connect to you can provide a list of

connectors, each separated by a comma.

<resourceadapter-class>org.hornetq.ra.HornetQResourceAdapter</resourceadapter-

class>

 <config-property>

 <description>The transport type</description>

 <config-property-name>ConnectorClassName</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-

value>org.hornetq.core.remoting.impl.netty.NettyConnectorFactory,org.hornetq.core.remoting.impl.netty.NettyConnectorFactory</

config-property-value>

 </config-property>

 <config-property>

 <description>The transport configuration. These values must be in the form

 of key=val;key=val;</description>

 <config-property-name>ConnectionParameters</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value>host=127.0.0.1;port=5446,host=127.0.0.2;port=5447</

config-property-value>

</config-property>

provide all parameters

Make sure you provide parameters for each connector configured. The position of

the parameters in the list maps to each connector provided.

Chapter 32. Application Serve...

174

This configures the resource adapter to connect to a server running on localhost listening on port

5446

32.4.4.1.2. Configuring the outgoing adaptor

You will also need to configure the outbound connection by creating a hornetq-ds.xml and

placing it under any directory that will be deployed under the deploy directory. In a standard

HornetQ jboss configuration this would be under hornetq or hornetq.sar but you can place it

where ever you like. Actually as long as it ends in -ds.xml you can call it anything you like. You

can again find a template for this file under the config directory of the HornetQ distribution but

called jms-ds.xml which is the jboss default.

The following example shows a sample configuration

<tx-connection-factory>

 <jndi-name>RemoteJmsXA</jndi-name>

 <xa-transaction/>

 <rar-name>hornetq-ra.rar</rar-name>

 <connection-definition>org.hornetq.ra.HornetQRAConnectionFactory</

connection-definition>

 <config-property name="SessionDefaultType"

 type="java.lang.String">javax.jms.Topic</config-property>

 <config-property name="ConnectorClassName"

 type="java.lang.String">org.hornetq.core.remoting.impl.netty.NettyConnectorFactory</

config-property>

 <config-property name="ConnectionParameters"

 type="java.lang.String">host=127.0.0.1;port=5446</config-property>

 <max-pool-size>20</max-pool-size>

</tx-connection-factory>

Again you will see that this uses the netty connector type and will connect to the HornetQ server

running on localhost and listening on port 5446. JEE components can access this by using JNDI

and looking up the connection factory using JNDI using java:/RemoteJmsXA, you can see that

this is defined under thejndi-name attribute. You will also note that the outgoing connection will

be created by the resource adaptor configured under the directory hornetq-ra.rar as explained

in the last section.

Also if you want to configure multiple connectors do this as a comma separated list as in the ra

configuration.

32.4.4.1.3. Jar dependencies

This is a list of the HornetQ and third party jars needed

Configuring the JBoss Application Server to connect to Remote HornetQ Server

175

Table 32.4. Jar Dependencies

Jar Name Description Location

hornetq-ra.jar The HornetQ resource adaptor

classes

deploy/hornetq-ra.rar or

equivalent

hornetq-core-client.jar The HornetQ core client

classes

either in the config lib, i.e.

default/lib or the common

lib dir, i.e. $JBOSS_HOME/

common lib

hornetq-jms-client.jar The HornetQ JMS classes as above

netty.jar The Netty transport classes as above

32.5. Configuring the JBoss Application Server to

connect to Remote HornetQ Server

This is a step by step guide on how to configure a JBoss application server that doesn't have

HornetQ installed to use a remote instance of HornetQ

32.5.1. Configuring JBoss 5

Firstly download and install JBoss AS 5 as per the JBoss installation guide and HornetQ as per

the HornetQ installation guide. After that the following steps are required

• Copy the following jars from the HornetQ distribution to the lib directory of which ever JBossAs

configuration you have chosen, i.e. default.

• hornetq-core-client.jar

• hornetq-jms-client.jar

• hornetq-ra.jar (this can be found inside the hornetq-ra.rar archive)

• netty.jar

• create the directories hornetq-ra.rar and hornetq-ra.rar/META-INF under the deploy

directory in your JBoss config directory

• under the hornetq-ra.rar/META-INF create a ra.xml file or copy it from the HornetQ

distribution (again it can be found in the hornetq-ra.rar archive) and configure it as follows

<?xml version="1.0" encoding="UTF-8"?>

<connector xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

Chapter 32. Application Serve...

176

 http://java.sun.com/xml/ns/j2ee/connector_1_5.xsd"

 version="1.5">

 <description>HornetQ 2.0 Resource Adapter Alternate Configuration</

description>

 <display-name>HornetQ 2.0 Resource Adapter Alternate Configuration</display-

name>

 <vendor-name>Red Hat Middleware LLC</vendor-name>

 <eis-type>JMS 1.1 Server</eis-type>

 <resourceadapter-version>1.0</resourceadapter-version>

 <license>

 <description>

Copyright 2009 Red Hat, Inc.

 Red Hat licenses this file to you under the Apache License, version

 2.0 (the "License"); you may not use this file except in compliance

 with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software

 distributed under the License is distributed on an "AS IS" BASIS,

 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

 implied. See the License for the specific language governing

 permissions and limitations under the License.

 </description>

 <license-required>true</license-required>

 </license>

 <resourceadapter>

 <resourceadapter-class>org.hornetq.ra.HornetQResourceAdapter</

resourceadapter-class>

 <config-property>

 <description>The transport type</description>

 <config-property-name>ConnectorClassName</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-

value>org.hornetq.core.remoting.impl.netty.NettyConnectorFactory</config-

property-value>

 </config-property>

 <config-property>

 <description>The transport configuration. These values must be in

 the form of key=val;key=val;</description>

 <config-property-name>ConnectionParameters</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value>host=127.0.0.1;port=5445</config-property-

value>

 </config-property>

 <outbound-resourceadapter>

Configuring JBoss 5

177

 <connection-definition>

 <managedconnectionfactory-

class>org.hornetq.ra.HornetQRAManagedConnectionFactory</

managedconnectionfactory-class>

 <config-property>

 <description>The default session type</description>

 <config-property-name>SessionDefaultType</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value>javax.jms.Queue</config-property-value>

 </config-property>

 <config-property>

 <description>Try to obtain a lock within specified number of

 seconds; less than or equal to 0 disable this functionality</description>

 <config-property-name>UseTryLock</config-property-name>

 <config-property-type>java.lang.Integer</config-property-type>

 <config-property-value>0</config-property-value>

 </config-property>

 <connectionfactory-interface>org.hornetq.ra.HornetQRAConnectionFactory</

connectionfactory-interface>

 <connectionfactory-impl-

class>org.hornetq.ra.HornetQRAConnectionFactoryImpl</connectionfactory-impl-

class>

 <connection-interface>javax.jms.Session</connection-interface>

 <connection-impl-class>org.hornetq.ra.HornetQRASession</connection-

impl-class>

 </connection-definition>

 <transaction-support>XATransaction</transaction-support>

 <authentication-mechanism>

 <authentication-mechanism-type>BasicPassword</authentication-

mechanism-type>

 <credential-interface>javax.resource.spi.security.PasswordCredential</

credential-interface>

 </authentication-mechanism>

 <reauthentication-support>false</reauthentication-support>

 </outbound-resourceadapter>

 <inbound-resourceadapter>

 <messageadapter>

 <messagelistener>

 <messagelistener-type>javax.jms.MessageListener</messagelistener-

type>

 <activationspec>

 <activationspec-

class>org.hornetq.ra.inflow.HornetQActivationSpec</activationspec-class>

 <required-config-property>

Chapter 32. Application Serve...

178

 <config-property-name>destination</config-property-name>

 </required-config-property>

 </activationspec>

 </messagelistener>

 </messageadapter>

 </inbound-resourceadapter>

 </resourceadapter>

</connector>

The important part of this configuration is the part in bold, i.e. <config-property-

value>host=127.0.0.1;port=5445</config-property-value>. This should be configured to the

host and port of the remote HornetQ server.

At this point you should be able to now deploy MDB's that consume from the remote

server. You will however, have to make sure that your MDB's have the annotation

@ResourceAdapter("hornetq-ra.rar") added, this is illustrated in the Section 32.1,

“Configuring Message-Driven Beans” section. If you don't want to add this annotation then you

can delete the generic resource adapter jms-ra.rar and rename the hornetq-ra.rar to this.

If you also want to use the remote HornetQ server for outgoing connections, i.e. sending

messages, then do the following:

• Create a file called hornetq-ds.xml in the deploy directory (in fact you can call this anything

you want as long as it ends in -ds.xml). Then add the following:

<connection-factories>

 <!--

 JMS XA Resource adapter, use this for outbound JMS connections.

 Inbound connections are defined at the @MDB activation or at the resource-

adapter properties.

 -->

 <tx-connection-factory>

 <jndi-name>RemoteJmsXA</jndi-name>

 <xa-transaction/>

 <rar-name>hornetq-ra.rar</rar-name>

 <connection-definition>org.hornetq.ra.HornetQRAConnectionFactory</

connection-definition>

 <config-property name="SessionDefaultType"

 type="java.lang.String">javax.jms.Topic</config-property>

 <config-property name="ConnectorClassName"

 type="java.lang.String">org.hornetq.core.remoting.impl.netty.NettyConnectorFactory</

config-property>

 <config-property name="ConnectionParameters"

 type="java.lang.String">host=127.0.0.1;port=5445</config-property>

 <max-pool-size>20</max-pool-size>

Configuring JBoss 5

179

 </tx-connection-factory>

</connection-factories>

Again you will see that the host and port are configured here to match the remote HornetQ

servers configuration. The other important attributes are:

• jndi-name - This is the name used to look up the JMS connection factory from within your

JEE client

• rar-name - This should match the directory that you created to hold the Resource Adapter

configuration

Now you should be able to send messages using the JCA JMS connection pooling within an XA

transaction.

32.5.2. Configuring JBoss 5

The steps to do this are exactly the same as for JBoss 4, you will have to create a jboss.xml

definition file for your MDB with the following entry

<message-driven>

 <ejb-name>MyMDB</ejb-name>

 <resource-adapter-name>jms-ra.rar</resource-adapter-name>

 </message-driven>

Also you will need to edit the standardjboss.xml and uncomment the section with the following

'Uncomment to use JMS message inflow from jmsra.rar' and then comment out the invoker-proxy-

binding called 'message-driven-bean'

32.6. High Availability JNDI (HA-JNDI)

If you are using JNDI to look-up JMS queues, topics and connection factories from a cluster of

servers, it is likely you will want to use HA-JNDI so that your JNDI look-ups will continue to work

if one or more of the servers in the cluster fail.

HA-JNDI is a JBoss Application Server service which allows you to use JNDI from clients without

them having to know the exact JNDI connection details of every server in the cluster. This service

is only available if using a cluster of JBoss Application Server instances.

To use it use the following properties when connecting to JNDI.

Chapter 32. Application Serve...

180

Hashtable<String, String> jndiParameters = new Hashtable<String, String>();

jndiParameters.put("java.naming.factory.initial",

 "org.jnp.interfaces.NamingContextFactory");

jndiParameters.put("java.naming.factory.url.pkgs=",

 "org.jboss.naming:org.jnp.interfaces");

initialContext = new InitialContext(jndiParameters);

For more information on using HA-JNDI see the JBoss Application Server

clustering documentation [http://www.jboss.org/file-access/default/members/jbossas/freezone/

docs/Clustering_Guide/5/html/clustering-jndi.html]

32.7. XA Recovery

XA recovery deals with system or application failures to ensure that of a transaction are

applied consistently to all resources affected by the transaction, even if any of the application

processes or the machine hosting them crash or lose network connectivity. For more information

on XA Recovery,please refer to JBoss Transactions [http://www.jboss.org/community/wiki/

JBossTransactions].

When HornetQ is integrated with JBoss AS, it can take advantage of JBoss Transactions to

provide recovery of messaging resources. If messages are involved in a XA transaction, in the

event of a server crash, the recovery manager will ensure that the transactions are recovered

and the messages will either be committed or rolled back (depending on the transaction outcome)

when the server is restarted.

32.7.1. XA Recovery Configuration

To enable HornetQ's XA Recovery, the Recovery Manager must be configured to connect to

HornetQ to recover its resources. The following property must be added to the jta section of

conf/jbossts-properties.xml of JBoss AS profiles:

<properties depends="arjuna" name="jta">

 ...

 <property name="com.arjuna.ats.jta.recovery.XAResourceRecovery.HornetQ1"

 value="org.hornetq.jms.server.recovery.HornetQXAResourceRecovery;

[connection configuration]"/>

 <property name="com.arjuna.ats.jta.xaRecoveryNode" value="1"/>

</properties>

The [connection configuration] contains all the information required to connect to HornetQ

node under the form [connector factory class name],[user name], [password],

[connector parameters].

http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Clustering_Guide/5/html/clustering-jndi.html
http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Clustering_Guide/5/html/clustering-jndi.html
http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Clustering_Guide/5/html/clustering-jndi.html
http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Clustering_Guide/5/html/clustering-jndi.html
http://www.jboss.org/community/wiki/JBossTransactions
http://www.jboss.org/community/wiki/JBossTransactions
http://www.jboss.org/community/wiki/JBossTransactions

XA Recovery Configuration

181

• [connector factory class name] corresponds to the

name of the ConnectorFactory used to connect to HornetQ.

Values can be org.hornetq.core.remoting.impl.invm.InVMConnectorFactory or

org.hornetq.core.remoting.impl.netty.NettyConnectorFactory

• [user name] is the user name to create a client session. It is optional

• [password] is the password to create a client session. It is mandatory only if the user name

is specified

• [connector parameters] is a list of comma-separated key=value pair which are passed to

the connector factory (see Chapter 16, Configuring the Transport for a list of the transport

parameters).

Also note the com.arjuna.ats.jta.xaRecoveryNode parameter. If you want recovery enabled

then this must be configured to what ever the tx node id is set to, this is configured in the same

file by the com.arjuna.ats.arjuna.xa.nodeIdentifier property.

Note

HornetQ must have a valid acceptor which corresponds to the connector specified

in conf/jbossts-properties.xml.

32.7.1.1. Configuration Settings

If HornetQ is configured with a default in-vm acceptor:

<acceptor name="in-vm">

 <factory-class>org.hornetq.core.remoting.impl.invm.InVMAcceptorFactory</

factory-class>

</acceptor>

the corresponding configuration in conf/jbossts-properties.xml is:

<property name="com.arjuna.ats.jta.recovery.XAResourceRecovery.HORNETQ1"

 value="org.hornetq.jms.server.recovery.HornetQXAResourceRecovery;org.hornetq.core.remoting.impl.invm.InVMConnectorFactory"/

>

If it is now configured with a netty acceptor on a non-default port:

Chapter 32. Application Serve...

182

<acceptor name="netty">

 <factory-class>org.hornetq.core.remoting.impl.netty.NettyAcceptorFactory</

factory-class>

 <param key="port" value="8888"/>

</acceptor>

the corresponding configuration in conf/jbossts-properties.xml is:

<property name="com.arjuna.ats.jta.recovery.XAResourceRecovery.HORNETQ1"

 value="org.hornetq.jms.server.recovery.HornetQXAResourceRecovery;org.hornetq.core.remoting.impl.netty.NettyConnectorFactory, , ,

 port=8888"/>

Note

Note the additional commas to skip the user and password before connector

parameters

If the recovery must use admin, adminpass, the configuration would have been:

<property name="com.arjuna.ats.jta.recovery.XAResourceRecovery.HORNETQ1"

 value="org.hornetq.jms.server.recovery.HornetQXAResourceRecovery;org.hornetq.core.remoting.impl.netty.NettyConnectorFactory,

 admin, adminpass, port=8888"/>

Configuring HornetQ with an invm acceptor and configuring the Recovery Manager with an invm

connector is the recommended way to enable XA Recovery.

32.7.2. Example

See Section 11.3.8, “XA Recovery” which shows how to configure XA Recovery and recover

messages after a server crash.

Chapter 33.

183

The JMS Bridge
HornetQ includes a fully functional JMS message bridge.

The function of the bridge is to consume messages from a source queue or topic, and send them

to a target queue or topic, typically on a different server.

The source and target servers do not have to be in the same cluster which makes bridging suitable

for reliably sending messages from one cluster to another, for instance across a WAN, and where

the connection may be unreliable.

A bridge can be deployed as a standalone application, with HornetQ standalone server or inside

a JBoss AS instance. The source and the target can be located in the same virtual machine or

another one.

The bridge can also be used to bridge messages from other non HornetQ JMS servers, as long

as they are JMS 1.1 compliant.

Note

Do not confuse a JMS bridge with a core bridge. A JMS bridge can be used to

bridge any two JMS 1.1 compliant JMS providers and uses the JMS API. A core

bridge (described in Chapter 36, Core Bridges) is used to bridge any two HornetQ

instances and uses the core API. Always use a core bridge if you can in preference

to a JMS bridge. The core bridge will typically provide better performance than

a JMS bridge. Also the core bridge can provide once and only once delivery

guarantees without using XA.

The bridge has built-in resilience to failure so if the source or target server connection is lost, e.g.

due to network failure, the bridge will retry connecting to the source and/or target until they come

back online. When it comes back online it will resume operation as normal.

The bridge can be configured with an optional JMS selector, so it will only consume messages

matching that JMS selector

It can be configured to consume from a queue or a topic. When it consumes from a topic it can

be configured to consume using a non durable or durable subscription

Typically, the bridge is deployed by the JBoss Micro Container via a beans configuration file. This

would typically be deployed inside the JBoss Application Server and the following example shows

an example of a beans file that bridges 2 destinations which are actually on the same server.

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmlns="urn:jboss:bean-deployer:2.0">

 <bean name="JMSBridge" class="org.hornetq.api.jms.bridge.impl.JMSBridgeImpl">

Chapter 33. The JMS Bridge

184

 <!-- HornetQ must be started before the bridge -->

 <depends>HornetQServer</depends>

 <constructor>

 <!-- Source ConnectionFactory Factory -->

 <parameter>

 <inject bean="SourceCFF"/>

 </parameter>

 <!-- Target ConnectionFactory Factory -->

 <parameter>

 <inject bean="TargetCFF"/>

 </parameter>

 <!-- Source DestinationFactory -->

 <parameter>

 <inject bean="SourceDestinationFactory"/>

 </parameter>

 <!-- Target DestinationFactory -->

 <parameter>

 <inject bean="TargetDestinationFactory"/>

 </parameter>

 <!-- Source User Name (no username here) -->

 <parameter><null /></parameter>

 <!-- Source Password (no password here)-->

 <parameter><null /></parameter>

 <!-- Target User Name (no username here)-->

 <parameter><null /></parameter>

 <!-- Target Password (no password here)-->

 <parameter><null /></parameter>

 <!-- Selector -->

 <parameter><null /></parameter>

 <!-- Failure Retry Interval (in ms) -->

 <parameter>5000</parameter>

 <!-- Max Retries -->

 <parameter>10</parameter>

 <!-- Quality Of Service -->

 <parameter>ONCE_AND_ONLY_ONCE</parameter>

 <!-- Max Batch Size -->

 <parameter>1</parameter>

 <!-- Max Batch Time (-1 means infinite) -->

 <parameter>-1</parameter>

 <!-- Subscription name (no subscription name here)-->

 <parameter><null /></parameter>

 <!-- Client ID (no client ID here)-->

 <parameter><null /></parameter>

 <!-- Add MessageID In Header -->

 <parameter>true</parameter>

 <!-- register the JMS Bridge in the AS MBeanServer -->

 <parameter>

 <inject bean="MBeanServer"/>

 </parameter>

185

 <parameter>org.hornetq:service=JMSBridge</parameter>

 </constructor>

 <property name="transactionManager">

 <inject bean="RealTransactionManager"/>

 </property>

 </bean>

 <!-- SourceCFF describes the ConnectionFactory used to connect to the source

 destination -->

 <bean name="SourceCFF"

 class="org.hornetq.api.jms.bridge.impl.JNDIConnectionFactoryFactory">

 <constructor>

 <parameter>

 <inject bean="JNDI" />

 </parameter>

 <parameter>/ConnectionFactory</parameter>

 </constructor>

 </bean>

 <!-- TargetCFF describes the ConnectionFactory used to connect to the target

 destination -->

 <bean name="TargetCFF"

 class="org.hornetq.api.jms.bridge.impl.JNDIConnectionFactoryFactory">

 <constructor>

 <parameter>

 <inject bean="JNDI" />

 </parameter>

 <parameter>/ConnectionFactory</parameter>

 </constructor>

 </bean>

 <!-- SourceDestinationFactory describes the Destination used as the source -->

 <bean name="SourceDestinationFactory"

 class="org.hornetq.api.jms.bridge.impl.JNDIDestinationFactory">

 <constructor>

 <parameter>

 <inject bean="JNDI" />

 </parameter>

 <parameter>/queue/source</parameter>

 </constructor>

 </bean>

 <!-- TargetDestinationFactory describes the Destination used as the target -->

 <bean name="TargetDestinationFactory"

 class="org.hornetq.api.jms.bridge.impl.JNDIDestinationFactory">

 <constructor>

 <parameter>

 <inject bean="JNDI" />

 </parameter>

Chapter 33. The JMS Bridge

186

 <parameter>/queue/target</parameter>

 </constructor>

 </bean>

 <!-- JNDI is a Hashtable containing the JNDI properties required -->

 <!-- to connect to the sources and targets JMS resrouces -->

 <bean name="JNDI" class="java.util.Hashtable">

 <constructor class="java.util.Map">

 <map class="java.util.Hashtable" keyClass="String"

 valueClass="String">

 <entry>

 <key>java.naming.factory.initial</key>

 <value>org.jnp.interfaces.NamingContextFactory</value>

 </entry>

 <entry>

 <key>java.naming.provider.url</key>

 <value>jnp://localhost:1099</value>

 </entry>

 <entry>

 <key>java.naming.factory.url.pkgs</key>

 <value>org.jboss.naming:org.jnp.interfaces"</value>

 </entry>

 <entry>

 <key>jnp.timeout</key>

 <value>5000</value>

 </entry>

 <entry>

 <key>jnp.sotimeout</key>

 <value>5000</value>

 </entry>

 </map>

 </constructor>

 </bean>

 <bean name="MBeanServer" class="javax.management.MBeanServer">

 <constructor factoryClass="org.jboss.mx.util.MBeanServerLocator"

 factoryMethod="locateJBoss"/>

 </bean>

</deployment>

33.1. JMS Bridge Parameters

The main bean deployed is the JMSBridge bean. The bean is configurable by the parameters

passed to its constructor.

JMS Bridge Parameters

187

Note

To let a parameter be unspecified (for example, if the authentication is anonymous

or no message selector is provided), use <null /> for the unspecified parameter

value.

• Source Connection Factory Factory

This injects the SourceCFF bean (also defined in the beans file). This bean is used to create

the source ConnectionFactory

• Target Connection Factory Factory

This injects the TargetCFF bean (also defined in the beans file). This bean is used to create

the target ConnectionFactory

• Source Destination Factory Factory

This injects the SourceDestinationFactory bean (also defined in the beans file). This bean

is used to create the source Destination

• Target Destination Factory Factory

This injects the TargetDestinationFactory bean (also defined in the beans file). This bean

is used to create the target Destination

• Source User Name

this parameter is the username for creating the source connection

• Source Password

this parameter is the parameter for creating the source connection

• Target User Name

this parameter is the username for creating the target connection

• Target Password

this parameter is the password for creating the target connection

• Selector

This represents a JMS selector expression used for consuming messages from the source

destination. Only messages that match the selector expression will be bridged from the source

to the target destination

The selector expression must follow the JMS selector syntax [http://docs.oracle.com/javaee/6/

api/javax/jms/Message.html]

http://docs.oracle.com/javaee/6/api/javax/jms/Message.html
http://docs.oracle.com/javaee/6/api/javax/jms/Message.html
http://docs.oracle.com/javaee/6/api/javax/jms/Message.html

Chapter 33. The JMS Bridge

188

• Failure Retry Interval

This represents the amount of time in ms to wait between trying to recreate connections to the

source or target servers when the bridge has detected they have failed

• Max Retries

This represents the number of times to attempt to recreate connections to the source or target

servers when the bridge has detected they have failed. The bridge will give up after trying this

number of times. -1 represents 'try forever'

• Quality Of Service

This parameter represents the desired quality of service mode

Possible values are:

• AT_MOST_ONCE

• DUPLICATES_OK

• ONCE_AND_ONLY_ONCE

See Section 33.4, “Quality Of Service” for a explanation of these modes.

• Max Batch Size

This represents the maximum number of messages to consume from the source destination

before sending them in a batch to the target destination. Its value must >= 1

• Max Batch Time

This represents the maximum number of milliseconds to wait before sending a batch to target,

even if the number of messages consumed has not reached MaxBatchSize. Its value must be

-1 to represent 'wait forever', or >= 1 to specify an actual time

• Subscription Name

If the source destination represents a topic, and you want to consume from the topic using a

durable subscription then this parameter represents the durable subscription name

• Client ID

If the source destination represents a topic, and you want to consume from the topic using a

durable subscription then this attribute represents the the JMS client ID to use when creating/

looking up the durable subscription

• Add MessageID In Header

If true, then the original message's message ID will be appended in the message sent to the

destination in the header HORNETQ_BRIDGE_MSG_ID_LIST. If the message is bridged more than

Source and Target Connection Factories

189

once, each message ID will be appended. This enables a distributed request-response pattern

to be used

Note

when you receive the message you can send back a response using the

correlation id of the first message id, so when the original sender gets it back it

will be able to correlate it.

• MBean Server

To manage the JMS Bridge using JMX, set the MBeanServer where the JMS Bridge MBean

must be registered (e.g. the JVM Platform MBeanServer or JBoss AS MBeanServer)

• ObjectName

If you set the MBeanServer, you also need to set the ObjectName used to register the JMS

Bridge MBean (must be unique)

The "transactionManager" property points to a JTA transaction manager implementation. HornetQ

doesn't ship with such an implementation, but one is available in the JBoss Community. If you

are running HornetQ in standalone mode and wish to use a JMS bridge simply download the

latest version of JBossTS from http://www.jboss.org/jbosstm/downloads and add it to HornetQ's

classpath. If you are running HornetQ with JBoss AS then you won't need to do this as JBoss AS

ships with a JTA transaction manager already. The bean definition for the transaction manager

would look something like this:

<bean name="RealTransactionManager"

 class="com.arjuna.ats.internal.jta.transaction.arjunacore.TransactionManagerImple"/

>

33.2. Source and Target Connection Factories

The source and target connection factory factories are used to create the connection factory used

to create the connection for the source or target server.

The configuration example above uses the default implementation provided by HornetQ that looks

up the connection factory using JNDI. For other Application Servers or JMS providers a new

implementation may have to be provided. This can easily be done by implementing the interface

org.hornetq.jms.bridge.ConnectionFactoryFactory.

33.3. Source and Target Destination Factories

Again, similarly, these are used to create or lookup up the destinations.

Chapter 33. The JMS Bridge

190

In the configuration example above, we have used the default provided by HornetQ that looks up

the destination using JNDI.

A new implementation can be provided by implementing

org.hornetq.jms.bridge.DestinationFactory interface.

33.4. Quality Of Service

The quality of service modes used by the bridge are described here in more detail.

33.4.1. AT_MOST_ONCE

With this QoS mode messages will reach the destination from the source at most once. The

messages are consumed from the source and acknowledged before sending to the destination.

Therefore there is a possibility that if failure occurs between removing them from the source and

them arriving at the destination they could be lost. Hence delivery will occur at most once.

This mode is available for both durable and non-durable messages.

33.4.2. DUPLICATES_OK

With this QoS mode, the messages are consumed from the source and then acknowledged after

they have been successfully sent to the destination. Therefore there is a possibility that if failure

occurs after sending to the destination but before acknowledging them, they could be sent again

when the system recovers. I.e. the destination might receive duplicates after a failure.

This mode is available for both durable and non-durable messages.

33.4.3. ONCE_AND_ONLY_ONCE

This QoS mode ensures messages will reach the destination from the source once and only once.

(Sometimes this mode is known as "exactly once"). If both the source and the destination are on

the same HornetQ server instance then this can be achieved by sending and acknowledging the

messages in the same local transaction. If the source and destination are on different servers

this is achieved by enlisting the sending and consuming sessions in a JTA transaction. The JTA

transaction is controlled by JBoss Transactions JTA * implementation which is a fully recovering

transaction manager, thus providing a very high degree of durability. If JTA is required then both

supplied connection factories need to be XAConnectionFactory implementations. This is likely to

be the slowest mode since it requires extra persistence for the transaction logging.

This mode is only available for durable messages.

Note

For a specific application it may possible to provide once and only once semantics

without using the ONCE_AND_ONLY_ONCE QoS level. This can be done by using

the DUPLICATES_OK mode and then checking for duplicates at the destination

Time outs and the JMS bridge

191

and discarding them. Some JMS servers provide automatic duplicate message

detection functionality, or this may be possible to implement on the application level

by maintaining a cache of received message ids on disk and comparing received

messages to them. The cache would only be valid for a certain period of time so

this approach is not as watertight as using ONCE_AND_ONLY_ONCE but may be

a good choice depending on your specific application.

33.4.4. Time outs and the JMS bridge

There is a possibility that the target or source server will not be available at some point in time.

If this occurs then the bridge will try Max Retries to reconnect every Failure Retry Interval

milliseconds as specified in the JMS Bridge definition.

However since a third party JNDI is used, in this case the JBoss naming server, it is possible

for the JNDI lookup to hang if the network were to disappear during the JNDI lookup. To stop

this from occurring the JNDI definition can be configured to time out if this occurs. To do this

set the jnp.timeout and the jnp.sotimeout on the Initial Context definition. The first sets the

connection timeout for the initial connection and the second the read timeout for the socket.

Note

Once the initial JNDI connection has succeeded all calls are made using RMI.

If you want to control the timeouts for the RMI connections then this can

be done via system properties. JBoss uses Sun's RMI and the properties

can be found here [http://docs.oracle.com/javase/6/docs/technotes/guides/rmi/

sunrmiproperties.html]. The default connection timeout is 10 seconds and the

default read timeout is 18 seconds.

If you implement your own factories for looking up JMS resources then you will have to bear in

mind timeout issues.

33.4.5. Examples

Please see Section 11.3.4, “JMS Bridge” which shows how to configure and use a JMS Bridge

with JBoss AS to send messages to the source destination and consume them from the target

destination.

Please see Section 11.1.32, “JMS Bridge” which shows how to configure and use a JMS Bridge

between two standalone HornetQ servers.

http://docs.oracle.com/javase/6/docs/technotes/guides/rmi/sunrmiproperties.html
http://docs.oracle.com/javase/6/docs/technotes/guides/rmi/sunrmiproperties.html
http://docs.oracle.com/javase/6/docs/technotes/guides/rmi/sunrmiproperties.html

192

Chapter 34.

193

Client Reconnection and Session

Reattachment
HornetQ clients can be configured to automatically reconnect or re-attach to the server in the

event that a failure is detected in the connection between the client and the server.

34.1. 100% Transparent session re-attachment

If the failure was due to some transient failure such as a temporary network failure, and the target

server was not restarted, then the sessions will still be existent on the server, assuming the client

hasn't been disconnected for more than connection-ttl Chapter 17, Detecting Dead Connections.

In this scenario, HornetQ will automatically re-attach the client sessions to the server sessions

when the connection reconnects. This is done 100% transparently and the client can continue

exactly as if nothing had happened.

The way this works is as follows:

As HornetQ clients send commands to their servers they store each sent command in an in-

memory buffer. In the case that connection failure occurs and the client subsequently reattaches

to the same server, as part of the reattachment protocol the server informs the client during

reattachment with the id of the last command it successfully received from that client.

If the client has sent more commands than were received before failover it can replay any sent

commands from its buffer so that the client and server can reconcile their states.

The size of this buffer is configured by the ConfirmationWindowSize parameter, when the server

has received ConfirmationWindowSize bytes of commands and processed them it will send back

a command confirmation to the client, and the client can then free up space in the buffer.

If you are using JMS and you're using the JMS service on the server to load your JMS connection

factory instances into JNDI then this parameter can be configured in hornetq-jms.xml using the

element confirmation-window-size a. If you're using JMS but not using JNDI then you can set

these values directly on the HornetQConnectionFactory instance using the appropriate setter

method.

If you're using the core API you can set these values directly on the ServerLocator instance

using the appropriate setter method.

The window is specified in bytes.

Setting this parameter to -1 disables any buffering and prevents any re-attachment from occurring,

forcing reconnect instead. The default value for this parameter is -1. (Which means by default no

auto re-attachment will occur)

Chapter 34. Client Reconnecti...

194

34.2. Session reconnection

Alternatively, the server might have actually been restarted after crashing or being stopped. In

this case any sessions will no longer be existent on the server and it won't be possible to 100%

transparently re-attach to them.

In this case, HornetQ will automatically reconnect the connection and recreate any sessions and

consumers on the server corresponding to the sessions and consumers on the client. This process

is exactly the same as what happens during failover onto a backup server.

Client reconnection is also used internally by components such as core bridges to allow them to

reconnect to their target servers.

Please see the section on failover Section 39.2.1, “Automatic Client Failover” to get a full

understanding of how transacted and non-transacted sessions are reconnected during failover/

reconnect and what you need to do to maintain once and only once delivery guarantees.

34.3. Configuring reconnection/reattachment attributes

Client reconnection is configured using the following parameters:

• retry-interval. This optional parameter determines the period in milliseconds between

subsequent reconnection attempts, if the connection to the target server has failed. The default

value is 2000 milliseconds.

• retry-interval-multiplier. This optional parameter determines determines a multiplier to

apply to the time since the last retry to compute the time to the next retry.

This allows you to implement an exponential backoff between retry attempts.

Let's take an example:

If we set retry-interval to 1000 ms and we set retry-interval-multiplier to 2.0, then,

if the first reconnect attempt fails, we will wait 1000 ms then 2000 ms then 4000 ms between

subsequent reconnection attempts.

The default value is 1.0 meaning each reconnect attempt is spaced at equal intervals.

• max-retry-interval. This optional parameter determines the maximum retry interval that

will be used. When setting retry-interval-multiplier it would otherwise be possible that

subsequent retries exponentially increase to ridiculously large values. By setting this parameter

you can set an upper limit on that value. The default value is 2000 milliseconds.

• reconnect-attempts. This optional parameter determines the total number of reconnect

attempts to make before giving up and shutting down. A value of -1 signifies an unlimited

number of attempts. The default value is 0.

ExceptionListeners and SessionFailureListeners

195

If you're using JMS, and you're using the JMS Service on the server to load your JMS connection

factory instances directly into JNDI, then you can specify these parameters in the xml configuration

in hornetq-jms.xml, for example:

<connection-factory name="ConnectionFactory">

 <connectors>

 <connector-ref connector-name="netty"/>

 </connectors>

 <entries>

 <entry name="ConnectionFactory"/>

 <entry name="XAConnectionFactory"/>

 </entries>

 <retry-interval>1000</retry-interval>

 <retry-interval-multiplier>1.5</retry-interval-multiplier>

 <max-retry-interval>60000</max-retry-interval>

 <reconnect-attempts>1000</reconnect-attempts>

</connection-factory>

If you're using JMS, but instantiating your JMS connection factory directly, you can specify

the parameters using the appropriate setter methods on the HornetQConnectionFactory

immediately after creating it.

If you're using the core API and instantiating the ServerLocator instance directly you can also

specify the parameters using the appropriate setter methods on the ServerLocator immediately

after creating it.

If your client does manage to reconnect but the session is no longer available on the server, for

instance if the server has been restarted or it has timed out, then the client won't be able to re-

attach, and any ExceptionListener or FailureListener instances registered on the connection

or session will be called.

34.4. ExceptionListeners and SessionFailureListeners

Please note, that when a client reconnects or re-attaches, any registered JMS

ExceptionListener or core API SessionFailureListener will be called.

196

Chapter 35.

197

Diverting and Splitting Message

Flows
HornetQ allows you to configure objects called diverts with some simple server configuration.

Diverts allow you to transparently divert messages routed to one address to some other address,

without making any changes to any client application logic.

Diverts can be exclusive, meaning that the message is diverted to the new address, and does not

go to the old address at all, or they can be non-exclusive which means the message continues

to go the old address, and a copy of it is also sent to the new address. Non-exclusive diverts can

therefore be used for splitting message flows, e.g. there may be a requirement to monitor every

order sent to an order queue.

Diverts can also be configured to have an optional message filter. If specified then only messages

that match the filter will be diverted.

Diverts can also be configured to apply a Transformer. If specified, all diverted messages will

have the opportunity of being transformed by the Transformer.

A divert will only divert a message to an address on the same server, however, if you want to

divert to an address on a different server, a common pattern would be to divert to a local store-

and-forward queue, then set up a bridge which consumes from that queue and forwards to an

address on a different server.

Diverts are therefore a very sophisticated concept, which when combined with bridges can be

used to create interesting and complex routings. The set of diverts on a server can be thought

of as a type of routing table for messages. Combining diverts with bridges allows you to create

a distributed network of reliable routing connections between multiple geographically distributed

servers, creating your global messaging mesh.

Diverts are defined as xml in the hornetq-configuration.xml file. There can be zero or more

diverts in the file.

Please see Section 11.1.20, “Divert” for a full working example showing you how to configure and

use diverts.

Let's take a look at some divert examples:

35.1. Exclusive Divert

Let's take a look at an exclusive divert. An exclusive divert diverts all matching messages that

are routed to the old address to the new address. Matching messages do not get routed to the

old address.

Chapter 35. Diverting and Spl...

198

Here's some example xml configuration for an exclusive divert, it's taken from the divert example:

<divert name="prices-divert">

 <address>jms.topic.priceUpdates</address>

 <forwarding-address>jms.queue.priceForwarding</forwarding-address>

 <filter string="office='New York'"/>

 <transformer-class-name>

 org.hornetq.jms.example.AddForwardingTimeTransformer

 </transformer-class-name>

 <exclusive>true</exclusive>

</divert>

We define a divert called 'prices-divert' that will divert any messages sent to the address

'jms.topic.priceUpdates' (this corresponds to any messages sent to a JMS Topic called

'priceUpdates') to another local address 'jms.queue.priceForwarding' (this corresponds to a

local JMS queue called 'priceForwarding'

We also specify a message filter string so only messages with the message property office with

value New York will get diverted, all other messages will continue to be routed to the normal

address. The filter string is optional, if not specified then all messages will be considered matched.

In this example a transformer class is specified. Again this is optional, and if specified the

transformer will be executed for each matching message. This allows you to change the messages

body or properties before it is diverted. In this example the transformer simply adds a header that

records the time the divert happened.

This example is actually diverting messages to a local store and forward queue, which is

configured with a bridge which forwards the message to an address on another HornetQ server.

Please see the example for more details.

35.2. Non-exclusive Divert

Now we'll take a look at a non-exclusive divert. Non exclusive diverts are the same as exclusive

diverts, but they only forward a copy of the message to the new address. The original message

continues to the old address

You can therefore think of non-exclusive diverts as splitting a message flow.

Non exclusive diverts can be configured in the same way as exclusive diverts with an optional

filter and transformer, here's an example non-exclusive divert, again from the divert example:

<divert name="order-divert">

 <address>jms.queue.orders</address>

 <forwarding-address>jms.topic.spyTopic</forwarding-address>

Non-exclusive Divert

199

 <exclusive>false</exclusive>

</divert>

The above divert example takes a copy of every message sent to the address

'jms.queue.orders' (Which corresponds to a JMS Queue called 'orders') and sends it to a local

address called 'jms.topic.SpyTopic' (which corresponds to a JMS Topic called 'SpyTopic').

200

Chapter 36.

201

Core Bridges
The function of a bridge is to consume messages from a source queue, and forward them to a

target address, typically on a different HornetQ server.

The source and target servers do not have to be in the same cluster which makes bridging suitable

for reliably sending messages from one cluster to another, for instance across a WAN, or internet

and where the connection may be unreliable.

The bridge has built in resilience to failure so if the target server connection is lost, e.g. due to

network failure, the bridge will retry connecting to the target until it comes back online. When it

comes back online it will resume operation as normal.

In summary, bridges are a way to reliably connect two separate HornetQ servers together. With

a core bridge both source and target servers must be HornetQ servers.

Bridges can be configured to provide once and only once delivery guarantees even in the event of

the failure of the source or the target server. They do this by using duplicate detection (described

in Chapter 37, Duplicate Message Detection).

Note

Although they have similar function, don't confuse core bridges with JMS bridges!

Core bridges are for linking a HornetQ node with another HornetQ node and do not

use the JMS API. A JMS Bridge is used for linking any two JMS 1.1 compliant JMS

providers. So, a JMS Bridge could be used for bridging to or from different JMS

compliant messaging system. It's always preferable to use a core bridge if you can.

Core bridges use duplicate detection to provide once and only once guarantees.

To provide the same guarantee using a JMS bridge you would have to use XA

which has a higher overhead and is more complex to configure.

36.1. Configuring Bridges

Bridges are configured in hornetq-configuration.xml. Let's kick off with an example (this is

actually from the bridge example):

<bridge name="my-bridge">

 <queue-name>jms.queue.sausage-factory</queue-name>

 <forwarding-address>jms.queue.mincing-machine</forwarding-address>

 <filter-string="name='aardvark'"/>

 <transformer-class-name>

 org.hornetq.jms.example.HatColourChangeTransformer

Chapter 36. Core Bridges

202

 </transformer-class-name>

 <retry-interval>1000</retry-interval>

 <ha>true</ha>

 <retry-interval-multiplier>1.0</retry-interval-multiplier>

 <reconnect-attempts>-1</reconnect-attempts>

 <failover-on-server-shutdown>false</failover-on-server-shutdown>

 <use-duplicate-detection>true</use-duplicate-detection>

 <confirmation-window-size>10000000</confirmation-window-size>

 <user>foouser</user>

 <password>foopassword</password>

 <static-connectors>

 <connector-ref>remote-connector</connector-ref>

 </static-connectors>

 <!-- alternative to static-connectors

 <discovery-group-ref discovery-group-name="bridge-discovery-group"/>

 -->

</bridge>

In the above example we have shown all the parameters its possible to configure for a bridge. In

practice you might use many of the defaults so it won't be necessary to specify them all explicitly.

Let's take a look at all the parameters in turn:

• name attribute. All bridges must have a unique name in the server.

• queue-name. This is the unique name of the local queue that the bridge consumes from, it's a

mandatory parameter.

The queue must already exist by the time the bridge is instantiated at start-up.

Note

If you're using JMS then normally the JMS configuration hornetq-jms.xml is

loaded after the core configuration file hornetq-configuration.xml is loaded.

If your bridge is consuming from a JMS queue then you'll need to make sure the

JMS queue is also deployed as a core queue in the core configuration. Take a

look at the bridge example for an example of how this is done.

• forwarding-address. This is the address on the target server that the message will be

forwarded to. If a forwarding address is not specified, then the original address of the message

will be retained.

• filter-string. An optional filter string can be supplied. If specified then only messages which

match the filter expression specified in the filter string will be forwarded. The filter string follows

the HornetQ filter expression syntax described in Chapter 14, Filter Expressions.

Configuring Bridges

203

• transformer-class-name. An optional transformer-class-name can be specified.

This is the name of a user-defined class which implements the

org.hornetq.core.server.cluster.Transformer interface.

If this is specified then the transformer's transform() method will be invoked with the message

before it is forwarded. This gives you the opportunity to transform the message's header or

body before forwarding it.

• ha. This optional parameter determines whether or not this bridge should support high

availability. True means it will connect to any available server in a cluster and support failover.

The default value is false.

• retry-interval. This optional parameter determines the period in milliseconds between

subsequent reconnection attempts, if the connection to the target server has failed. The default

value is 2000milliseconds.

• retry-interval-multiplier. This optional parameter determines determines a multiplier to

apply to the time since the last retry to compute the time to the next retry.

This allows you to implement an exponential backoff between retry attempts.

Let's take an example:

If we set retry-intervalto 1000 ms and we set retry-interval-multiplier to 2.0, then,

if the first reconnect attempt fails, we will wait 1000 ms then 2000 ms then 4000 ms between

subsequent reconnection attempts.

The default value is 1.0 meaning each reconnect attempt is spaced at equal intervals.

• reconnect-attempts. This optional parameter determines the total number of reconnect

attempts the bridge will make before giving up and shutting down. A value of -1 signifies an

unlimited number of attempts. The default value is -1.

• failover-on-server-shutdown. This optional parameter determines whether the bridge will

attempt to failover onto a backup server (if specified) when the target server is cleanly shutdown

rather than crashed.

The bridge connector can specify both a live and a backup server, if it specifies a backup

server and this parameter is set to true then if the target server is cleanly shutdown the bridge

connection will attempt to failover onto its backup. If the bridge connector has no backup server

configured then this parameter has no effect.

Sometimes you want a bridge configured with a live and a backup target server, but you don't

want to failover to the backup if the live server is simply taken down temporarily for maintenance,

this is when this parameter comes in handy.

The default value for this parameter is false.

• use-duplicate-detection. This optional parameter determines whether the bridge will

automatically insert a duplicate id property into each message that it forwards.

Chapter 36. Core Bridges

204

Doing so, allows the target server to perform duplicate detection on messages it receives from

the source server. If the connection fails or server crashes, then, when the bridge resumes it

will resend unacknowledged messages. This might result in duplicate messages being sent to

the target server. By enabling duplicate detection allows these duplicates to be screened out

and ignored.

This allows the bridge to provide a once and only once delivery guarantee without using

heavyweight methods such as XA (see Chapter 37, Duplicate Message Detection for more

information).

The default value for this parameter is true.

• confirmation-window-size. This optional parameter determines the confirmation-window-

size to use for the connection used to forward messages to the target node. This attribute is

described in section Chapter 34, Client Reconnection and Session Reattachment

Warning

When using the bridge to forward messages from a queue which has a max-

size-bytes set it's important that confirmation-window-size is less than or equal

to max-size-bytes to prevent the flow of messages from ceasing.

• user. This optional parameter determines the user name to use when creating the bridge

connection to the remote server. If it is not specified the default cluster user specified by

cluster-user in hornetq-configuration.xml will be used.

• password. This optional parameter determines the password to use when creating the bridge

connection to the remote server. If it is not specified the default cluster password specified by

cluster-password in hornetq-configuration.xml will be used.

• static-connectors or discovery-group-ref. Pick either of these options to connect the

bridge to the target server.

The static-connectors is a list of connector-ref elements pointing to connector elements

defined elsewhere. A connector encapsulates knowledge of what transport to use (TCP, SSL,

HTTP etc) as well as the server connection parameters (host, port etc). For more information

about what connectors are and how to configure them, please see Chapter 16, Configuring the

Transport.

The discovery-group-ref element has one attribute - discovery-group-name. This attribute

points to a discovery-group defined elsewhere. For more information about what discovery-

groups are and how to configure them, please see Section 38.2.1.2, “Discovery Groups”.

Chapter 37.

205

Duplicate Message Detection
HornetQ includes powerful automatic duplicate message detection, filtering out duplicate

messages without you having to code your own fiddly duplicate detection logic at the application

level. This chapter will explain what duplicate detection is, how HornetQ uses it and how and

where to configure it.

When sending messages from a client to a server, or indeed from a server to another server, if

the target server or connection fails sometime after sending the message, but before the sender

receives a response that the send (or commit) was processed successfully then the sender cannot

know for sure if the message was sent successfully to the address.

If the target server or connection failed after the send was received and processed but before

the response was sent back then the message will have been sent to the address successfully,

but if the target server or connection failed before the send was received and finished processing

then it will not have been sent to the address successfully. From the senders point of view it's not

possible to distinguish these two cases.

When the server recovers this leaves the client in a difficult situation. It knows the target server

failed, but it does not know if the last message reached its destination ok. If it decides to resend

the last message, then that could result in a duplicate message being sent to the address. If each

message was an order or a trade then this could result in the order being fulfilled twice or the trade

being double booked. This is clearly not a desirable situation.

Sending the message(s) in a transaction does not help out either. If the server or connection fails

while the transaction commit is being processed it is also indeterminate whether the transaction

was successfully committed or not!

To solve these issues HornetQ provides automatic duplicate messages detection for messages

sent to addresses.

37.1. Using Duplicate Detection for Message Sending

Enabling duplicate message detection for sent messages is simple: you just need to set a special

property on the message to a unique value. You can create the value however you like, as long as

it is unique. When the target server receives the message it will check if that property is set, if it is,

then it will check in its in memory cache if it has already received a message with that value of the

header. If it has received a message with the same value before then it will ignore the message.

Note

Using duplicate detection to move messages between nodes can give you the

same once and only once delivery guarantees as if you were using an XA

transaction to consume messages from source and send them to the target, but

with less overhead and much easier configuration than using XA.

Chapter 37. Duplicate Message...

206

If you're sending messages in a transaction then you don't have to set the property for every

message you send in that transaction, you only need to set it once in the transaction. If the server

detects a duplicate message for any message in the transaction, then it will ignore the entire

transaction.

The name of the property that you set is given by the value of

org.hornetq.api.core.Message.HDR_DUPLICATE_DETECTION_ID, which is _HQ_DUPL_ID

The value of the property can be of type byte[] or SimpleString if you're using the core API. If

you're using JMS it must be a String, and its value should be unique. An easy way of generating

a unique id is by generating a UUID.

Here's an example of setting the property using the core API:

...

ClientMessage message = session.createMessage(true);

SimpleString myUniqueID = "This is my unique id"; // Could use a UUID for this

message.setStringProperty(HDR_DUPLICATE_DETECTION_ID, myUniqueID);

...

And here's an example using the JMS API:

...

Message jmsMessage = session.createMessage();

String myUniqueID = "This is my unique id"; // Could use a UUID for this

message.setStringProperty(HDR_DUPLICATE_DETECTION_ID.toString(), myUniqueID);

...

37.2. Configuring the Duplicate ID Cache

The server maintains caches of received values of the

org.hornetq.core.message.impl.HDR_DUPLICATE_DETECTION_ID property sent to each

address. Each address has its own distinct cache.

Duplicate Detection and Bridges

207

The cache is a circular fixed size cache. If the cache has a maximum size of n elements, then the

n + 1th id stored will overwrite the 0th element in the cache.

The maximum size of the cache is configured by the parameter id-cache-size in hornetq-

configuration.xml, the default value is 2000 elements.

The caches can also be configured to persist to disk or not. This is configured by the parameter

persist-id-cache, also in hornetq-configuration.xml. If this is set to true then each id will

be persisted to permanent storage as they are received. The default value for this parameter is

true.

Note

When choosing a size of the duplicate id cache be sure to set it to a larger enough

size so if you resend messages all the previously sent ones are in the cache not

having been overwritten.

37.3. Duplicate Detection and Bridges

Core bridges can be configured to automatically add a unique duplicate id value (if there isn't

already one in the message) before forwarding the message to it's target. This ensures that if the

target server crashes or the connection is interrupted and the bridge resends the message, then

if it has already been received by the target server, it will be ignored.

To configure a core bridge to add the duplicate id header, simply set the use-duplicate-

detection to true when configuring a bridge in hornetq-configuration.xml.

The default value for this parameter is true.

For more information on core bridges and how to configure them, please see Chapter 36, Core

Bridges.

37.4. Duplicate Detection and Cluster Connections

Cluster connections internally use core bridges to move messages reliable between nodes of

the cluster. Consequently they can also be configured to insert the duplicate id header for each

message they move using their internal bridges.

To configure a cluster connection to add the duplicate id header, simply set the use-duplicate-

detection to true when configuring a cluster connection in hornetq-configuration.xml.

The default value for this parameter is true.

For more information on cluster connections and how to configure them, please see Chapter 38,

Clusters.

208

Chapter 38.

209

Clusters

38.1. Clusters Overview

HornetQ clusters allow groups of HornetQ servers to be grouped together in order to share

message processing load. Each active node in the cluster is an active HornetQ server which

manages its own messages and handles its own connections.

Note

The clustered parameter is deprecated and no longer needed for setting up a

cluster. If your configuration contains this parameter it will be ignored and a

message with the ID HQ221038 will be logged.

The cluster is formed by each node declaring cluster connections to other nodes in the core

configuration file hornetq-configuration.xml. When a node forms a cluster connection to

another node, internally it creates a core bridge (as described in Chapter 36, Core Bridges)

connection between it and the other node, this is done transparently behind the scenes - you don't

have to declare an explicit bridge for each node. These cluster connections allow messages to

flow between the nodes of the cluster to balance load.

Nodes can be connected together to form a cluster in many different topologies, we will discuss

a couple of the more common topologies later in this chapter.

We'll also discuss client side load balancing, where we can balance client connections across the

nodes of the cluster, and we'll consider message redistribution where HornetQ will redistribute

messages between nodes to avoid starvation.

Another important part of clustering is server discovery where servers can broadcast their

connection details so clients or other servers can connect to them with the minimum of

configuration.

Warning

Once a cluster node has been configured it is common to simply copy that

configuration to other nodes to produce a symmetric cluster. However, care must

be taken when copying the HornetQ files. Do not copy the HornetQ data (i.e. the

bindings, journal, and large-messages directories) from one node to another.

When a node is started for the first time and initializes its journal files it also persists

a special identifier to the journal directory. This id must be unique among nodes

in the cluster or the cluster will not form properly.

Chapter 38. Clusters

210

38.2. Server discovery

Server discovery is a mechanism by which servers can propagate their connection details to:

• Messaging clients. A messaging client wants to be able to connect to the servers of the cluster

without having specific knowledge of which servers in the cluster are up at any one time.

• Other servers. Servers in a cluster want to be able to create cluster connections to each other

without having prior knowledge of all the other servers in the cluster.

This information, let's call it the Cluster Topology, is actually sent around normal HornetQ

connections to clients and to other servers over cluster connections. This being the case we

need a way of establishing the initial first connection. This can be done using dynamic discovery

techniques like UDP [http://en.wikipedia.org/wiki/User_Datagram_Protocol] and JGroups [http://

www.jgroups.org/], or by providing a list of initial connectors.

38.2.1. Dynamic Discovery

Server discovery uses UDP [http://en.wikipedia.org/wiki/User_Datagram_Protocol] multicast or

JGroups [http://www.jgroups.org/] to broadcast server connection settings.

38.2.1.1. Broadcast Groups

A broadcast group is the means by which a server broadcasts connectors over the network. A

connector defines a way in which a client (or other server) can make connections to the server.

For more information on what a connector is, please see Chapter 16, Configuring the Transport.

The broadcast group takes a set of connector pairs, each connector pair contains connection

settings for a live and backup server (if one exists) and broadcasts them on the network.

Depending on which broadcasting technique you configure the cluster, it uses either UDP or

JGroups to broadcast connector pairs information.

Broadcast groups are defined in the server configuration file hornetq-configuration.xml. There

can be many broadcast groups per HornetQ server. All broadcast groups must be defined in a

broadcast-groups element.

Let's take a look at an example broadcast group from hornetq-configuration.xml that defines

a UDP broadcast group:

<broadcast-groups>

 <broadcast-group name="my-broadcast-group">

 <local-bind-address>172.16.9.3</local-bind-address>

 <local-bind-port>5432</local-bind-port>

 <group-address>231.7.7.7</group-address>

http://en.wikipedia.org/wiki/User_Datagram_Protocol
http://en.wikipedia.org/wiki/User_Datagram_Protocol
http://www.jgroups.org/
http://www.jgroups.org/
http://www.jgroups.org/
http://en.wikipedia.org/wiki/User_Datagram_Protocol
http://en.wikipedia.org/wiki/User_Datagram_Protocol
http://www.jgroups.org/
http://www.jgroups.org/

Dynamic Discovery

211

 <group-port>9876</group-port>

 <broadcast-period>2000</broadcast-period>

 <connector-ref connector-name="netty-connector"/>

 </broadcast-group>

</broadcast-groups>

Some of the broadcast group parameters are optional and you'll normally use the defaults, but we

specify them all in the above example for clarity. Let's discuss each one in turn:

• name attribute. Each broadcast group in the server must have a unique name.

• local-bind-address. This is the local bind address that the datagram socket is bound to. If

you have multiple network interfaces on your server, you would specify which one you wish to

use for broadcasts by setting this property. If this property is not specified then the socket will

be bound to the wildcard address, an IP address chosen by the kernel. This is a UDP specific

attribute.

• local-bind-port. If you want to specify a local port to which the datagram socket is bound you

can specify it here. Normally you would just use the default value of -1 which signifies that an

anonymous port should be used. This parameter is always specified in conjunction with local-

bind-address. This is a UDP specific attribute.

• group-address. This is the multicast address to which the data will be broadcast. It is a class

D IP address in the range 224.0.0.0 to 239.255.255.255, inclusive. The address 224.0.0.0

is reserved and is not available for use. This parameter is mandatory. This is a UDP specific

attribute.

• group-port. This is the UDP port number used for broadcasting. This parameter is mandatory.

This is a UDP specific attribute.

• broadcast-period. This is the period in milliseconds between consecutive broadcasts. This

parameter is optional, the default value is 2000 milliseconds.

• connector-ref. This specifies the connector and optional backup connector that will be

broadcasted (see Chapter 16, Configuring the Transport for more information on connectors).

The connector to be broadcasted is specified by the connector-name attribute.

Here is another example broadcast group that defines a JGroups broadcast group:

<broadcast-groups>

 <broadcast-group name="my-broadcast-group">

 <jgroups-file>test-jgroups-file_ping.xml</jgroups-file>

 <jgroups-channel>hornetq_broadcast_channel</jgroups-channel>

 <broadcast-period>2000</broadcast-period>

 <connector-ref connector-name="netty-connector"/>

Chapter 38. Clusters

212

 </broadcast-group>

</broadcast-groups>

To be able to use JGroups to broadcast, one must specify two attributes, i.e. jgroups-file and

jgroups-channel, as discussed in details as following:

• jgroups-file attribute. This is the name of JGroups configuration file. It will be used to initialize

JGroups channels. Make sure the file is in the java resource path so that HornetQ can load it.

• jgroups-channel attribute. The name that JGroups channels connect to for broadcasting.

Note

The JGroups attributes (jgroups-file and jgroups-channel) and UDP specific

attributes described above are exclusive of each other. Only one set can be

specified in a broadcast group configuration. Don't mix them!

The following is an example of a JGroups file

<config xmlns="urn:org:jgroups"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:org:jgroups http://www.jgroups.org/schema/

JGroups-3.0.xsd">

 <TCP loopback="true"

 recv_buf_size="20000000"

 send_buf_size="640000"

 discard_incompatible_packets="true"

 max_bundle_size="64000"

 max_bundle_timeout="30"

 enable_bundling="true"

 use_send_queues="false"

 sock_conn_timeout="300"

 thread_pool.enabled="true"

 thread_pool.min_threads="1"

 thread_pool.max_threads="10"

 thread_pool.keep_alive_time="5000"

 thread_pool.queue_enabled="false"

 thread_pool.queue_max_size="100"

 thread_pool.rejection_policy="run"

 oob_thread_pool.enabled="true"

 oob_thread_pool.min_threads="1"

 oob_thread_pool.max_threads="8"

Dynamic Discovery

213

 oob_thread_pool.keep_alive_time="5000"

 oob_thread_pool.queue_enabled="false"

 oob_thread_pool.queue_max_size="100"

 oob_thread_pool.rejection_policy="run"/>

 <FILE_PING location="../file.ping.dir"/>

 <MERGE2 max_interval="30000"

 min_interval="10000"/>

 <FD_SOCK/>

 <FD timeout="10000" max_tries="5" />

 <VERIFY_SUSPECT timeout="1500" />

 <BARRIER />

 <pbcast.NAKACK

 use_mcast_xmit="false"

 retransmit_timeout="300,600,1200,2400,4800"

 discard_delivered_msgs="true"/>

 <UNICAST timeout="300,600,1200" />

 <pbcast.STABLE stability_delay="1000" desired_avg_gossip="50000"

 max_bytes="400000"/>

 <pbcast.GMS print_local_addr="true" join_timeout="3000"

 view_bundling="true"/>

 <FC max_credits="2000000"

 min_threshold="0.10"/>

 <FRAG2 frag_size="60000" />

 <pbcast.STATE_TRANSFER/>

 <pbcast.FLUSH timeout="0"/>

</config>

As it shows, the file content defines a jgroups protocol stacks. If you want hornetq to use this

stacks for channel creation, you have to make sure the value of jgroups-file in your broadcast-

group/discovery-group configuration to be the name of this jgroups configuration file. For example

if the above stacks configuration is stored in a file named "jgroups-stacks.xml" then your jgroups-

file should be like

<jgroups-file>jgroups-stacks.xml</jgroups-file>

38.2.1.2. Discovery Groups

While the broadcast group defines how connector information is broadcasted from a server, a

discovery group defines how connector information is received from a broadcast endpoint (a UDP

multicast address or JGroup channel).

A discovery group maintains a list of connector pairs - one for each broadcast by a different server.

As it receives broadcasts on the broadcast endpoint from a particular server it updates its entry

in the list for that server.

Chapter 38. Clusters

214

If it has not received a broadcast from a particular server for a length of time it will remove that

server's entry from its list.

Discovery groups are used in two places in HornetQ:

• By cluster connections so they know how to obtain an initial connection to download the topology

• By messaging clients so they know how to obtain an initial connection to download the topology

Although a discovery group will always accept broadcasts, its current list of available live and

backup servers is only ever used when an initial connection is made, from then server discovery

is done over the normal HornetQ connections.

Note

Each discovery group must be configured with broadcast endpoint (UDP or

JGroups) that matches its broadcast group counterpart. For example, if broadcast

is configured using UDP, the discovery group must also use UDP, and the same

multicast address.

38.2.1.3. Defining Discovery Groups on the Server

For cluster connections, discovery groups are defined in the server side configuration file

hornetq-configuration.xml. All discovery groups must be defined inside a discovery-groups

element. There can be many discovery groups defined by HornetQ server. Let's look at an

example:

<discovery-groups>

 <discovery-group name="my-discovery-group">

 <local-bind-address>172.16.9.7</local-bind-address>

 <group-address>231.7.7.7</group-address>

 <group-port>9876</group-port>

 <refresh-timeout>10000</refresh-timeout>

 </discovery-group>

</discovery-groups>

We'll consider each parameter of the discovery group:

• name attribute. Each discovery group must have a unique name per server.

• local-bind-address. If you are running with multiple network interfaces on the same machine,

you may want to specify that the discovery group listens only only a specific interface. To do

Dynamic Discovery

215

this you can specify the interface address with this parameter. This parameter is optional. This

is a UDP specific attribute.

• group-address. This is the multicast IP address of the group to listen on. It should match

the group-address in the broadcast group that you wish to listen from. This parameter is

mandatory. This is a UDP specific attribute.

• group-port. This is the UDP port of the multicast group. It should match the group-port in

the broadcast group that you wish to listen from. This parameter is mandatory. This is a UDP

specific attribute.

• refresh-timeout. This is the period the discovery group waits after receiving the last broadcast

from a particular server before removing that servers connector pair entry from its list. You would

normally set this to a value significantly higher than the broadcast-period on the broadcast

group otherwise servers might intermittently disappear from the list even though they are still

broadcasting due to slight differences in timing. This parameter is optional, the default value is

10000 milliseconds (10 seconds).

Here is another example that defines a JGroups discovery group:

<discovery-groups>

 <discovery-group name="my-broadcast-group">

 <jgroups-file>test-jgroups-file_ping.xml</jgroups-file>

 <jgroups-channel>hornetq_broadcast_channel</jgroups-channel>

 <refresh-timeout>10000</refresh-timeout>

 </discovery-group>

</discovery-groups>

To receive broadcast from JGroups channels, one must specify two attributes, jgroups-file and

jgroups-channel, as discussed in details as following:

• jgroups-file attribute. This is the name of JGroups configuration file. It will be used to initialize

JGroups channels. Make sure the file is in the java resource path so that HornetQ can load it.

• jgroups-channel attribute. The name that JGroups channels connect to for receiving

broadcasts.

Note

The JGroups attributes (jgroups-file and jgroups-channel) and UDP specific

attributes described above are exclusive of each other. Only one set can be

specified in a discovery group configuration. Don't mix them!

Chapter 38. Clusters

216

38.2.1.4. Discovery Groups on the Client Side

Let's discuss how to configure a HornetQ client to use discovery to discover a list of servers to

which it can connect. The way to do this differs depending on whether you're using JMS or the

core API.

38.2.1.4.1. Configuring client discovery using JMS

If you're using JMS and you're also using the JMS Service on the server to load your JMS

connection factory instances into JNDI, then you can specify which discovery group to use for

your JMS connection factory in the server side xml configuration hornetq-jms.xml. Let's take a

look at an example:

<connection-factory name="ConnectionFactory">

 <discovery-group-ref discovery-group-name="my-discovery-group"/>

 <entries>

 <entry name="ConnectionFactory"/>

 </entries>

</connection-factory>

The element discovery-group-ref specifies the name of a discovery group defined in hornetq-

configuration.xml.

When this connection factory is downloaded from JNDI by a client application and JMS

connections are created from it, those connections will be load-balanced across the list of servers

that the discovery group maintains by listening on the multicast address specified in the discovery

group configuration.

If you're using JMS, but you're not using JNDI to lookup a connection factory - you're instantiating

the JMS connection factory directly then you can specify the discovery group parameters directly

when creating the JMS connection factory. Here's an example:

final String groupAddress = "231.7.7.7";

final int groupPort = 9876;

ConnectionFactory jmsConnectionFactory =

HornetQJMSClient.createConnectionFactory(new

 DiscoveryGroupConfiguration(groupAddress, groupPort,

 new UDPBroadcastGroupConfiguration(groupAddress, groupPort,

 null, -1)), JMSFactoryType.CF);

Connection jmsConnection1 = jmsConnectionFactory.createConnection();

Discovery using static Connectors

217

Connection jmsConnection2 = jmsConnectionFactory.createConnection();

The refresh-timeout can be set directly on the DiscoveryGroupConfiguration by using the setter

method setDiscoveryRefreshTimeout() if you want to change the default value.

There is also a further parameter settable on the DiscoveryGroupConfiguration using the setter

method setDiscoveryInitialWaitTimeout(). If the connection factory is used immediately

after creation then it may not have had enough time to received broadcasts from all the nodes in

the cluster. On first usage, the connection factory will make sure it waits this long since creation

before creating the first connection. The default value for this parameter is 10000 milliseconds.

38.2.1.4.2. Configuring client discovery using Core

If you're using the core API to directly instantiate ClientSessionFactory instances, then you

can specify the discovery group parameters directly when creating the session factory. Here's an

example:

final String groupAddress = "231.7.7.7";

final int groupPort = 9876;

ServerLocator factory = HornetQClient.createServerLocatorWithHA(new

 DiscoveryGroupConfiguration(groupAddress, groupPort,

 new UDPBroadcastGroupConfiguration(groupAddress,

 groupPort, null, -1))));

ClientSessionFactory factory = locator.createSessionFactory();

ClientSession session1 = factory.createSession();

ClientSession session2 = factory.createSession();

The refresh-timeout can be set directly on the DiscoveryGroupConfiguration by using the setter

method setDiscoveryRefreshTimeout() if you want to change the default value.

There is also a further parameter settable on the DiscoveryGroupConfiguration using the setter

method setDiscoveryInitialWaitTimeout(). If the session factory is used immediately after

creation then it may not have had enough time to received broadcasts from all the nodes in the

cluster. On first usage, the session factory will make sure it waits this long since creation before

creating the first session. The default value for this parameter is 10000 milliseconds.

38.2.2. Discovery using static Connectors

Sometimes it may be impossible to use UDP on the network you are using. In this case its possible

to configure a connection with an initial list if possible servers. This could be just one server that

you know will always be available or a list of servers where at least one will be available.

This doesn't mean that you have to know where all your servers are going to be hosted, you can

configure these servers to use the reliable servers to connect to. Once they are connected there

connection details will be propagated via the server it connects to

Chapter 38. Clusters

218

38.2.2.1. Configuring a Cluster Connection

For cluster connections there is no extra configuration needed, you just need to make sure that any

connectors are defined in the usual manner, (see Chapter 16, Configuring the Transport for more

information on connectors). These are then referenced by the cluster connection configuration.

38.2.2.2. Configuring a Client Connection

A static list of possible servers can also be used by a normal client.

38.2.2.2.1. Configuring client discovery using JMS

If you're using JMS and you're also using the JMS Service on the server to load your JMS

connection factory instances into JNDI, then you can specify which connectors to use for your

JMS connection factory in the server side xml configuration hornetq-jms.xml. Let's take a look

at an example:

<connection-factory name="ConnectionFactory">

 <connectors>

 <connector-ref connector-name="netty-connector"/>

 <connector-ref connector-name="netty-connector2"/>

 <connector-ref connector-name="netty-connector3"/>

 </connectors>

 <entries>

 <entry name="ConnectionFactory"/>

 </entries>

</connection-factory>

The element connectors contains a list of pre defined connectors in the hornetq-

configuration.xml file. When this connection factory is downloaded from JNDI by a client

application and JMS connections are created from it, those connections will be load-balanced

across the list of servers defined by these connectors.

If you're using JMS, but you're not using JNDI to lookup a connection factory - you're instantiating

the JMS connection factory directly then you can specify the connector list directly when creating

the JMS connection factory. Here's an example:

HashMap<String, Object> map = new HashMap<String, Object>();

map.put("host", "myhost");

map.put("port", "5445");

TransportConfiguration server1 = new

 TransportConfiguration(NettyConnectorFactory.class.getName(), map);

HashMap<String, Object> map2 = new HashMap<String, Object>();

map2.put("host", "myhost2");

Server-Side Message Load Balancing

219

map2.put("port", "5446");

TransportConfiguration server2 = new

 TransportConfiguration(NettyConnectorFactory.class.getName(), map2);

HornetQConnectionFactory cf =

 HornetQJMSClient.createConnectionFactoryWithHA(JMSFactoryType.CF, server1,

 server2);

38.2.2.2.2. Configuring client discovery using Core

If you are using the core API then the same can be done as follows:

HashMap<String, Object> map = new HashMap<String, Object>();

map.put("host", "myhost");

map.put("port", "5445");

TransportConfiguration server1 = new

 TransportConfiguration(NettyConnectorFactory.class.getName(), map);

HashMap<String, Object> map2 = new HashMap<String, Object>();

map2.put("host", "myhost2");

map2.put("port", "5446");

TransportConfiguration server2 = new

 TransportConfiguration(NettyConnectorFactory.class.getName(), map2);

ServerLocator locator = HornetQClient.createServerLocatorWithHA(server1,

 server2);

ClientSessionFactory factory = locator.createSessionFactory();

ClientSession session = factory.createSession();

38.3. Server-Side Message Load Balancing

If cluster connections are defined between nodes of a cluster, then HornetQ will load balance

messages arriving at a particular node from a client.

Let's take a simple example of a cluster of four nodes A, B, C, and D arranged in a symmetric

cluster (described in Section 38.7.1, “Symmetric cluster”). We have a queue called OrderQueue

deployed on each node of the cluster.

We have client Ca connected to node A, sending orders to the server. We have also have order

processor clients Pa, Pb, Pc, and Pd connected to each of the nodes A, B, C, D. If no cluster

connection was defined on node A, then as order messages arrive on node A they will all end up

in the OrderQueue on node A, so will only get consumed by the order processor client attached

to node A, Pa.

If we define a cluster connection on node A, then as ordered messages arrive on node A instead of

all of them going into the local OrderQueue instance, they are distributed in a round-robin fashion

Chapter 38. Clusters

220

between all the nodes of the cluster. The messages are forwarded from the receiving node to other

nodes of the cluster. This is all done on the server side, the client maintains a single connection

to node A.

For example, messages arriving on node A might be distributed in the following order between

the nodes: B, D, C, A, B, D, C, A, B, D. The exact order depends on the order the nodes started

up, but the algorithm used is round robin.

HornetQ cluster connections can be configured to always blindly load balance messages in a

round robin fashion irrespective of whether there are any matching consumers on other nodes,

but they can be a bit cleverer than that and also be configured to only distribute to other nodes if

they have matching consumers. We'll look at both these cases in turn with some examples, but

first we'll discuss configuring cluster connections in general.

38.3.1. Configuring Cluster Connections

Cluster connections group servers into clusters so that messages can be load balanced between

the nodes of the cluster. Let's take a look at a typical cluster connection. Cluster connections are

always defined in hornetq-configuration.xml inside a cluster-connection element. There

can be zero or more cluster connections defined per HornetQ server.

<cluster-connections>

 <cluster-connection name="my-cluster">

 <address>jms</address>

 <connector-ref>netty-connector</connector-ref>

 <check-period>1000</check-period>

 <connection-ttl>5000</connection-ttl>

 <min-large-message-size>50000</min-large-message-size>

 <call-timeout>5000</call-timeout>

 <retry-interval>500</retry-interval>

 <retry-interval-multiplier>1.0</retry-interval-multiplier>

 <max-retry-interval>5000</max-retry-interval>

 <reconnect-attempts>-1</reconnect-attempts>

 <use-duplicate-detection>true</use-duplicate-detection>

 <forward-when-no-consumers>false</forward-when-no-consumers>

 <max-hops>1</max-hops>

 <confirmation-window-size>32000</confirmation-window-size>

 <call-failover-timeout>30000</call-failover-timeout>

 <notification-interval>1000</notification-interval>

 <notification-attempts>2</notification-attempts>

 <discovery-group-ref discovery-group-name="my-discovery-group"/>

 </cluster-connection>

</cluster-connections>

In the above cluster connection all parameters have been explicitly specified. The following shows

all the available configuration options

Configuring Cluster Connections

221

• address. Each cluster connection only applies to messages sent to an address that starts with

this value. Note: this does not use wild-card matching.

In this case, this cluster connection will load balance messages sent to address that start with

jms. This cluster connection, will, in effect apply to all JMS queues and topics since they map

to core queues that start with the substring "jms".

The address can be any value and you can have many cluster connections with different values

of address, simultaneously balancing messages for those addresses, potentially to different

clusters of servers. By having multiple cluster connections on different addresses a single

HornetQ Server can effectively take part in multiple clusters simultaneously.

Be careful not to have multiple cluster connections with overlapping values of address, e.g.

"europe" and "europe.news" since this could result in the same messages being distributed

between more than one cluster connection, possibly resulting in duplicate deliveries.

This parameter is mandatory.

• connector-ref. This is the connector which will be sent to other nodes in the cluster so they

have the correct cluster topology.

This parameter is mandatory.

• check-period. The period (in milliseconds) used to check if the cluster connection has failed

to receive pings from another server. Default is 30000.

• connection-ttl. This is how long a cluster connection should stay alive if it stops receiving

messages from a specific node in the cluster. Default is 60000.

• min-large-message-size. If the message size (in bytes) is larger than this value then it will

be split into multiple segments when sent over the network to other cluster members. Default

is 102400.

• call-timeout. When a packet is sent via a cluster connection and is a blocking call, i.e. for

acknowledgements, this is how long it will wait (in milliseconds) for the reply before throwing

an exception. Default is 30000.

• retry-interval. We mentioned before that, internally, cluster connections cause bridges to

be created between the nodes of the cluster. If the cluster connection is created and the target

node has not been started, or say, is being rebooted, then the cluster connections from other

nodes will retry connecting to the target until it comes back up, in the same way as a bridge does.

This parameter determines the interval in milliseconds between retry attempts. It has the same

meaning as the retry-interval on a bridge (as described in Chapter 36, Core Bridges).

This parameter is optional and its default value is 500 milliseconds.

• retry-interval-multiplier. This is a multiplier used to increase the retry-interval after

each reconnect attempt, default is 1.

Chapter 38. Clusters

222

• max-retry-interval. The maximum delay (in milliseconds) for retries. Default is 2000.

• reconnect-attempts.The number of times the system will try to connect a node on the cluster.

If the max-retry is achieved this node will be considered permanently down and the system will

stop routing messages to this node. Default is -1 (infinite retries).

• use-duplicate-detection. Internally cluster connections use bridges to link the nodes, and

bridges can be configured to add a duplicate id property in each message that is forwarded. If

the target node of the bridge crashes and then recovers, messages might be resent from the

source node. By enabling duplicate detection any duplicate messages will be filtered out and

ignored on receipt at the target node.

This parameter has the same meaning as use-duplicate-detection on a bridge. For more

information on duplicate detection, please see Chapter 37, Duplicate Message Detection.

Default is true.

• forward-when-no-consumers. This parameter determines whether messages will be

distributed round robin between other nodes of the cluster regardless of whether or not there

are matching or indeed any consumers on other nodes.

If this is set to true then each incoming message will be round robin'd even though the same

queues on the other nodes of the cluster may have no consumers at all, or they may have

consumers that have non matching message filters (selectors). Note that HornetQ will not

forward messages to other nodes if there are no queues of the same name on the other nodes,

even if this parameter is set to true.

If this is set to false then HornetQ will only forward messages to other nodes of the cluster

if the address to which they are being forwarded has queues which have consumers, and if

those consumers have message filters (selectors) at least one of those selectors must match

the message.

Default is false.

• max-hops. When a cluster connection decides the set of nodes to which it might load balance

a message, those nodes do not have to be directly connected to it via a cluster connection.

HornetQ can be configured to also load balance messages to nodes which might be connected

to it only indirectly with other HornetQ servers as intermediates in a chain.

This allows HornetQ to be configured in more complex topologies and still provide message

load balancing. We'll discuss this more later in this chapter.

The default value for this parameter is 1, which means messages are only load balanced to

other HornetQ serves which are directly connected to this server. This parameter is optional.

• confirmation-window-size. The size (in bytes) of the window used for sending confirmations

from the server connected to. So once the server has received confirmation-window-size

bytes it notifies its client, default is 1048576. A value of -1 means no window.

Cluster User Credentials

223

• call-failover-timeout. Similar to call-timeout but used when a call is made during a

failover attempt. Default is -1 (no timeout).

• notification-interval. How often (in milliseconds) the cluster connection should broadcast

itself when attaching to the cluster. Default is 1000.

• notification-attempts. How many times the cluster connection should broadcast itself when

connecting to the cluster. Default is 2.

• discovery-group-ref. This parameter determines which discovery group is used to obtain the

list of other servers in the cluster that this cluster connection will make connections to.

Alternatively if you would like your cluster connections to use a static list of servers for discovery

then you can do it like this.

<cluster-connection name="my-cluster">

 ...

 <static-connectors>

 <connector-ref>server0-connector</connector-ref>

 <connector-ref>server1-connector</connector-ref>

 </static-connectors>

</cluster-connection>

Here we have defined 2 servers that we know for sure will that at least one will be available. There

may be many more servers in the cluster but these will; be discovered via one of these connectors

once an initial connection has been made.

38.3.2. Cluster User Credentials

When creating connections between nodes of a cluster to form a cluster connection, HornetQ

uses a cluster user and cluster password which is defined in hornetq-configuration.xml:

<cluster-user>HORNETQ.CLUSTER.ADMIN.USER</cluster-user>

<cluster-password>CHANGE ME!!</cluster-password>

Warning

It is imperative that these values are changed from their default, or remote clients

will be able to make connections to the server using the default values. If they

are not changed from the default, HornetQ will detect this and pester you with a

warning on every start-up.

Chapter 38. Clusters

224

38.4. Client-Side Load balancing

With HornetQ client-side load balancing, subsequent sessions created using a single session

factory can be connected to different nodes of the cluster. This allows sessions to spread smoothly

across the nodes of a cluster and not be "clumped" on any particular node.

The load balancing policy to be used by the client factory is configurable. HornetQ provides four

out-of-the-box load balancing policies, and you can also implement your own and use that.

The out-of-the-box policies are

• Round Robin. With this policy the first node is chosen randomly then each subsequent node is

chosen sequentially in the same order.

For example nodes might be chosen in the order B, C, D, A, B, C, D, A, B or D, A, B, C, D, A,

B, C, D or C, D, A, B, C, D, A, B, C.

Use

org.hornetq.api.core.client.loadbalance.RoundRobinConnectionLoadBalancingPolicy

as the <connection-load-balancing-policy-class-name>.

• Random. With this policy each node is chosen randomly.

Use

org.hornetq.api.core.client.loadbalance.RandomConnectionLoadBalancingPolicy

as the <connection-load-balancing-policy-class-name>.

• Random Sticky. With this policy the first node is chosen randomly and then re-used for

subsequent connections.

Use

org.hornetq.api.core.client.loadbalance.RandomStickyConnectionLoadBalancingPolicy

as the <connection-load-balancing-policy-class-name>.

• First Element. With this policy the "first" (i.e. 0th) node is always returned.

Use

org.hornetq.api.core.client.loadbalance.FirstElementConnectionLoadBalancingPolicy

as the <connection-load-balancing-policy-class-name>.

You can also implement your own policy by implementing the interface

org.hornetq.api.core.client.loadbalance.ConnectionLoadBalancingPolicy

Specifying which load balancing policy to use differs whether you are using JMS or

the core API. If you don't specify a policy then the default will be used which is

org.hornetq.api.core.client.loadbalance.RoundRobinConnectionLoadBalancingPolicy.

If you're using JMS, and you're using JNDI on the server to put your JMS connection factories into

JNDI, then you can specify the load balancing policy directly in the hornetq-jms.xml configuration

file on the server as follows:

Specifying Members of a Cluster Explicitly

225

<connection-factory name="ConnectionFactory">

 <discovery-group-ref discovery-group-name="my-discovery-group"/>

 <entries>

 <entry name="ConnectionFactory"/>

 </entries>

 <connection-load-balancing-policy-class-name>

 org.hornetq.api.core.client.loadbalance.RandomConnectionLoadBalancingPolicy

 </connection-load-balancing-policy-class-name>

</connection-factory>

The above example would deploy a JMS connection factory that uses the random connection

load balancing policy.

If you're using JMS but you're instantiating your connection factory directly on the client side then

you can set the load balancing policy using the setter on the HornetQConnectionFactory before

using it:

ConnectionFactory jmsConnectionFactory =

 HornetQJMSClient.createConnectionFactory(...);

jmsConnectionFactory.setLoadBalancingPolicyClassName("com.acme.MyLoadBalancingPolicy");

If you're using the core API, you can set the load balancing policy directly on the ServerLocator

instance you are using:

ServerLocator locator = HornetQClient.createServerLocatorWithHA(server1,

 server2);

locator.setLoadBalancingPolicyClassName("com.acme.MyLoadBalancingPolicy");

The set of servers over which the factory load balances can be determined in one of two ways:

• Specifying servers explicitly

• Using discovery.

38.5. Specifying Members of a Cluster Explicitly

Sometimes you want to explicitly define a cluster more explicitly, that is control which server

connect to each other in the cluster. This is typically used to form non symmetrical clusters such

Chapter 38. Clusters

226

as chain cluster or ring clusters. This can only be done using a static list of connectors and is

configured as follows:

<cluster-connection name="my-cluster">

 <address>jms</address>

 <connector-ref>netty-connector</connector-ref>

 <retry-interval>500</retry-interval>

 <use-duplicate-detection>true</use-duplicate-detection>

 <forward-when-no-consumers>true</forward-when-no-consumers>

 <max-hops>1</max-hops>

 <static-connectors allow-direct-connections-only="true">

 <connector-ref>server1-connector</connector-ref>

 </static-connectors>

</cluster-connection>

In this example we have set the attribute allow-direct-connections-only which means that

the only server that this server can create a cluster connection to is server1-connector. This means

you can explicitly create any cluster topology you want.

38.6. Message Redistribution

Another important part of clustering is message redistribution. Earlier we learned how server

side message load balancing round robins messages across the cluster. If forward-when-no-

consumers is false, then messages won't be forwarded to nodes which don't have matching

consumers, this is great and ensures that messages don't arrive on a queue which has no

consumers to consume them, however there is a situation it doesn't solve: What happens if the

consumers on a queue close after the messages have been sent to the node? If there are no

consumers on the queue the message won't get consumed and we have a starvation situation.

This is where message redistribution comes in. With message redistribution HornetQ can be

configured to automatically redistribute messages from queues which have no consumers back

to other nodes in the cluster which do have matching consumers.

Message redistribution can be configured to kick in immediately after the last consumer on a queue

is closed, or to wait a configurable delay after the last consumer on a queue is closed before

redistributing. By default message redistribution is disabled.

Message redistribution can be configured on a per address basis, by specifying the redistribution

delay in the address settings, for more information on configuring address settings, please see

Chapter 25, Queue Attributes.

Here's an address settings snippet from hornetq-configuration.xml showing how message

redistribution is enabled for a set of queues:

Cluster topologies

227

<address-settings>

 <address-setting match="jms.#">

 <redistribution-delay>0</redistribution-delay>

 </address-setting>

</address-settings>

The above address-settings block would set a redistribution-delay of 0 for any queue

which is bound to an address that starts with "jms.". All JMS queues and topic subscriptions

are bound to addresses that start with "jms.", so the above would enable instant (no delay)

redistribution for all JMS queues and topic subscriptions.

The attribute match can be an exact match or it can be a string that conforms to the HornetQ

wildcard syntax (described in Chapter 13, Understanding the HornetQ Wildcard Syntax).

The element redistribution-delay defines the delay in milliseconds after the last consumer is

closed on a queue before redistributing messages from that queue to other nodes of the cluster

which do have matching consumers. A delay of zero means the messages will be immediately

redistributed. A value of -1 signifies that messages will never be redistributed. The default value

is -1.

It often makes sense to introduce a delay before redistributing as it's a common case that a

consumer closes but another one quickly is created on the same queue, in such a case you

probably don't want to redistribute immediately since the new consumer will arrive shortly.

38.7. Cluster topologies

HornetQ clusters can be connected together in many different topologies, let's consider the two

most common ones here

38.7.1. Symmetric cluster

A symmetric cluster is probably the most common cluster topology, and you'll be familiar with if

you've had experience of JBoss Application Server clustering.

With a symmetric cluster every node in the cluster is connected to every other node in the cluster.

In other words every node in the cluster is no more than one hop away from every other node.

To form a symmetric cluster every node in the cluster defines a cluster connection with the attribute

max-hops set to 1. Typically the cluster connection will use server discovery in order to know what

other servers in the cluster it should connect to, although it is possible to explicitly define each

target server too in the cluster connection if, for example, UDP is not available on your network.

With a symmetric cluster each node knows about all the queues that exist on all the other nodes

and what consumers they have. With this knowledge it can determine how to load balance and

redistribute messages around the nodes.

Don't forget this warning when creating a symmetric cluster.

Chapter 38. Clusters

228

38.7.2. Chain cluster

With a chain cluster, each node in the cluster is not connected to every node in the cluster directly,

instead the nodes form a chain with a node on each end of the chain and all other nodes just

connecting to the previous and next nodes in the chain.

An example of this would be a three node chain consisting of nodes A, B and C. Node A is hosted

in one network and has many producer clients connected to it sending order messages. Due to

corporate policy, the order consumer clients need to be hosted in a different network, and that

network is only accessible via a third network. In this setup node B acts as a mediator with no

producers or consumers on it. Any messages arriving on node A will be forwarded to node B,

which will in turn forward them to node C where they can get consumed. Node A does not need

to directly connect to C, but all the nodes can still act as a part of the cluster.

To set up a cluster in this way, node A would define a cluster connection that connects to node

B, and node B would define a cluster connection that connects to node C. In this case we only

want cluster connections in one direction since we're only moving messages from node A->B->C

and never from C->B->A.

For this topology we would set max-hops to 2. With a value of 2 the knowledge of what queues

and consumers that exist on node C would be propagated from node C to node B to node A. Node

A would then know to distribute messages to node B when they arrive, even though node B has

no consumers itself, it would know that a further hop away is node C which does have consumers.

Chapter 39.

229

High Availability and Failover
We define high availability as the ability for the system to continue functioning after failure of one

or more of the servers.

A part of high availability is failover which we define as the ability for client connections to migrate

from one server to another in event of server failure so client applications can continue to operate.

39.1. Live - Backup Groups

HornetQ allows servers to be linked together as live - backup groups where each live server can

have 1 or more backup servers. A backup server is owned by only one live server. Backup servers

are not operational until failover occurs, however 1 chosen backup, which will be in passive mode,

announces its status and waits to take over the live servers work

Before failover, only the live server is serving the HornetQ clients while the backup servers remain

passive or awaiting to become a backup server. When a live server crashes or is brought down

in the correct mode, the backup server currently in passive mode will become live and another

backup server will become passive. If a live server restarts after a failover then it will have priority

and be the next server to become live when the current live server goes down, if the current live

server is configured to allow automatic failback then it will detect the live server coming back up

and automatically stop.

39.1.1. HA modes

HornetQ supports two different strategies for backing up a server shared store and replication.

Note

Only persistent message data will survive failover. Any non persistent message

data will not be available after failover.

39.1.2. Data Replication

Replication is supported since version 2.3.

When using replication, the live and the backup servers do not share the same data directories, all

data synchronization is done through network traffic. Therefore all (persistent) data traffic received

by the live server will be duplicated to the backup.

Chapter 39. High Availability...

230

Notice that upon start-up the backup server will first need to synchronize all existing data from

the live server, before becoming capable of replacing the live server should it fail. So unlike the

shared store case, a replicating backup will not be a fully operational backup right after start, but

only after it finishes synchronizing the data. The time it will take for this to happen will depend on

the amount of data to be synchronized and the connection speed.

Note
Synchronization occurs in parallel with current network traffic so this won't cause

any blocking on current clients.

Replication will create a copy of the data at the backup. One issue to be aware of is: in case of

a successful fail-over, the backup's data will be newer than the one at the live's storage. If you

configure your live server to perform a Section 39.1.4, “Failing Back to live Server” when restarted,

it will synchronize its data with the backup's. If both servers are shutdown, the administrator will

have to determine which one has the lastest data.

The replicating live and backup pair must be part of a cluster. The Cluster Connection also defines

how backup servers will find the remote live servers to pair with. Refer to Chapter 38, Clusters for

details on how this is done, and how to configure a cluster connection. Notice that:

• Both live and backup servers must be part of the same cluster. Notice that even a simple live/

backup replicating pair will require a cluster configuration.

• their cluster user and password must match

Within a cluster, there are two ways that a backup server will locate a live server to replicate from,

these are:

• specifying a node group. You can specify a group of live servers that a backup server

can connect to. This is done by configuring backup-group-name in the main hornetq-

configuration.xml. A Backup server will only connect to a live server that shares the same

node group name

Data Replication

231

• connecting to any live. Simply put not configuring backup-group-name will allow a backup

server to connect to any live server

Note
A backup-group-name example: suppose you have 5 live servers and 6 backup

servers:

• live1, live2, live3: with backup-group-name=fish

• live4, live5: with backup-group-name=bird

• backup1, backup2, backup3, backup4: with backup-group-name=fish

• backup5, backup6: with backup-group-name=bird

After joining the cluster the backups with backup-group-name=fish will search for

live servers with backup-group-name=fish to pair with. Since there is one backup

too many, the fish will remain with one spare backup.

The 2 backups with backup-group-name=bird (backup5 and backup6) will pair

with live servers live4 and live5.

The backup will search for any live server that it is configured to connect to. It then tries to replicate

with each live server in turn until it finds a live server that has no current backup configured. If no

live server is available it will wait until the cluster topology changes and repeats the process.

Note
This is an important distinction from a shared-store backup, as in that case if the

backup starts and does not find its live server, the server will just activate and start

to serve client requests. In the replication case, the backup just keeps waiting for a

live server to pair with. Notice that in replication the backup server does not know

whether any data it might have is up to date, so it really cannot decide to activate

automatically. To activate a replicating backup server using the data it has, the

administrator must change its configuration to make a live server of it, that change

backup=true to backup=false.

Much like in the shared-store case, when the live server stops or crashes, its replicating backup

will become active and take over its duties. Specifically, the backup will become active when it

loses connection to its live server. This can be problematic because this can also happen because

of a temporary network problem. In order to address this issue, the backup will try to determine

whether it still can connect to the other servers in the cluster. If it can connect to more than half

the servers, it will become active, if more than half the servers also disappeared with the live, the

backup will wait and try reconnecting with the live. This avoids a split brain situation.

Chapter 39. High Availability...

232

39.1.2.1. Configuration

To configure the live and backup servers to be a replicating pair, configure both servers' hornetq-

configuration.xml to have:

<!-- FOR BOTH LIVE AND BACKUP SERVERS' -->

<shared-store>false</shared-store>

.

.

<cluster-connections>

 <cluster-connection name="my-cluster">

 ...

 </cluster-connection>

</cluster-connections>

The backup server must also be configured as a backup.

<backup>true</backup>

39.1.3. Shared Store

When using a shared store, both live and backup servers share the same entire data directory

using a shared file system. This means the paging directory, journal directory, large messages

and binding journal.

When failover occurs and a backup server takes over, it will load the persistent storage from the

shared file system and clients can connect to it.

This style of high availability differs from data replication in that it requires a shared file system

which is accessible by both the live and backup nodes. Typically this will be some kind of high

performance Storage Area Network (SAN). We do not recommend you use Network Attached

Storage (NAS), e.g. NFS mounts to store any shared journal (NFS is slow).

The advantage of shared-store high availability is that no replication occurs between the live and

backup nodes, this means it does not suffer any performance penalties due to the overhead of

replication during normal operation.

The disadvantage of shared store replication is that it requires a shared file system, and when the

backup server activates it needs to load the journal from the shared store which can take some

time depending on the amount of data in the store.

Shared Store

233

If you require the highest performance during normal operation, have access to a fast SAN, and

can live with a slightly slower failover (depending on amount of data), we recommend shared store

high availability

39.1.3.1. Configuration

To configure the live and backup servers to share their store, configure all hornetq-

configuration.xml:

<shared-store>true</shared-store>

Additionally, each backup server must be flagged explicitly as a backup:

<backup>true</backup>

In order for live - backup groups to operate properly with a shared store, both servers must have

configured the location of journal directory to point to the same shared location (as explained in

Section 15.3, “Configuring the message journal”)

Note

todo write something about GFS

Also each node, live and backups, will need to have a cluster connection defined even if not part

of a cluster. The Cluster Connection info defines how backup servers announce there presence

to its live server or any other nodes in the cluster. Refer to Chapter 38, Clusters for details on

how this is done.

Chapter 39. High Availability...

234

39.1.4. Failing Back to live Server

After a live server has failed and a backup taken has taken over its duties, you may want to restart

the live server and have clients fail back.

In case of "shared disk", simply restart the original live server and kill the new live server. You can

do this by killing the process itself or just waiting for the server to crash naturally.

In case of a replicating live server that has been replaced by a remote backup you will need to

also set check-for-live-server [234]. This option is necessary because a starting server cannot

know whether there is a (remote) server running in its place, so with this option set, the server

will check the cluster for another server using its node-ID and if it finds one it will try initiate a fail-

back. This option only applies to live servers that are restarting, it is ignored by backup servers.

It is also possible to cause failover to occur on normal server shutdown, to enable this set the

following property to true in the hornetq-configuration.xml configuration file like so:

<failover-on-shutdown>true</failover-on-shutdown>

By default this is set to false, if by some chance you have set this to false but still want to stop

the server normally and cause failover then you can do this by using the management API as

explained at Section 30.1.1.1, “Core Server Management”

You can also force the running live server to shutdown when the old live server comes back up

allowing the original live server to take over automatically by setting the following property in the

hornetq-configuration.xml configuration file as follows:

<allow-failback>true</allow-failback>

In replication HA mode you need to set an extra property check-for-live-server to true. If set

to true, during start-up a live server will first search the cluster for another server using its nodeID.

If it finds one, it will contact this server and try to "fail-back". Since this is a remote replication

scenario, the "starting live" will have to synchronize its data with the server running with its ID, once

they are in sync, it will request the other server (which it assumes it is a back that has assumed

its duties) to shutdown for it to take over. This is necessary because otherwise the live server has

no means to know whether there was a fail-over or not, and if there was if the server that took

its duties is still running or not. To configure this option at your hornetq-configuration.xml

configuration file as follows:

<check-for-live-server>true</check-for-live-server>

Failover Modes

235

39.2. Failover Modes

HornetQ defines two types of client failover:

• Automatic client failover

• Application-level client failover

HornetQ also provides 100% transparent automatic reattachment of connections to the same

server (e.g. in case of transient network problems). This is similar to failover, except it is

reconnecting to the same server and is discussed in Chapter 34, Client Reconnection and Session

Reattachment

During failover, if the client has consumers on any non persistent or temporary queues, those

queues will be automatically recreated during failover on the backup node, since the backup node

will not have any knowledge of non persistent queues.

39.2.1. Automatic Client Failover

HornetQ clients can be configured to receive knowledge of all live and backup servers, so that

in event of connection failure at the client - live server connection, the client will detect this and

reconnect to the backup server. The backup server will then automatically recreate any sessions

and consumers that existed on each connection before failover, thus saving the user from having

to hand-code manual reconnection logic.

HornetQ clients detect connection failure when it has not received packets from the server within

the time given by client-failure-check-period as explained in section Chapter 17, Detecting

Dead Connections. If the client does not receive data in good time, it will assume the connection

has failed and attempt failover. Also if the socket is closed by the OS, usually if the server process

is killed rather than the machine itself crashing, then the client will failover straight away.

HornetQ clients can be configured to discover the list of live-backup server groups in a number of

different ways. They can be configured explicitly or probably the most common way of doing this

is to use server discovery for the client to automatically discover the list. For full details on how to

configure server discovery, please see Chapter 38, Clusters. Alternatively, the clients can explicitly

connect to a specific server and download the current servers and backups see Chapter 38,

Clusters.

To enable automatic client failover, the client must be configured to allow non-zero reconnection

attempts (as explained in Chapter 34, Client Reconnection and Session Reattachment).

By default failover will only occur after at least one connection has been made to the live server. In

other words, by default, failover will not occur if the client fails to make an initial connection to the

live server - in this case it will simply retry connecting to the live server according to the reconnect-

attempts property and fail after this number of attempts.

Chapter 39. High Availability...

236

39.2.1.1. Failing over on the Initial Connection

Since the client does not learn about the full topology until after the first connection is made there

is a window where it does not know about the backup. If a failure happens at this point the client

can only try reconnecting to the original live server. To configure how many attempts the client will

make you can set the property initialConnectAttempts on the ClientSessionFactoryImpl

or HornetQConnectionFactory or initial-connect-attempts in xml. The default for this is 0,

that is try only once. Once the number of attempts has been made an exception will be thrown.

For examples of automatic failover with transacted and non-transacted JMS sessions, please

see Section 11.1.81, “Transaction Failover” and Section 11.1.47, “Non-Transaction Failover With

Server Data Replication”.

39.2.1.2. A Note on Server Replication

HornetQ does not replicate full server state between live and backup servers. When the new

session is automatically recreated on the backup it won't have any knowledge of messages

already sent or acknowledged in that session. Any in-flight sends or acknowledgements at the

time of failover might also be lost.

By replicating full server state, theoretically we could provide a 100% transparent seamless

failover, which would avoid any lost messages or acknowledgements, however this comes at

a great cost: replicating the full server state (including the queues, session, etc.). This would

require replication of the entire server state machine; every operation on the live server would

have to replicated on the replica server(s) in the exact same global order to ensure a consistent

replica state. This is extremely hard to do in a performant and scalable way, especially when one

considers that multiple threads are changing the live server state concurrently.

It is possible to provide full state machine replication using techniques such as virtual synchrony,

but this does not scale well and effectively serializes all operations to a single thread, dramatically

reducing concurrency.

Other techniques for multi-threaded active replication exist such as replicating lock states or

replicating thread scheduling but this is very hard to achieve at a Java level.

Consequently it has decided it was not worth massively reducing performance and concurrency

for the sake of 100% transparent failover. Even without 100% transparent failover, it is simple

to guarantee once and only once delivery, even in the case of failure, by using a combination

of duplicate detection and retrying of transactions. However this is not 100% transparent to the

client code.

39.2.1.3. Handling Blocking Calls During Failover

If the client code is in a blocking call to the server, waiting for a response to continue its execution,

when failover occurs, the new session will not have any knowledge of the call that was in progress.

This call might otherwise hang for ever, waiting for a response that will never come.

To prevent this, HornetQ will unblock any blocking calls that were in progress at the time of failover

by making them throw a javax.jms.JMSException (if using JMS), or a HornetQException with

Automatic Client Failover

237

error code HornetQException.UNBLOCKED. It is up to the client code to catch this exception and

retry any operations if desired.

If the method being unblocked is a call to commit(), or prepare(), then

the transaction will be automatically rolled back and HornetQ will throw a

javax.jms.TransactionRolledBackException (if using JMS), or a HornetQException with

error code HornetQException.TRANSACTION_ROLLED_BACK if using the core API.

39.2.1.4. Handling Failover With Transactions

If the session is transactional and messages have already been sent or acknowledged in the

current transaction, then the server cannot be sure that messages sent or acknowledgements

have not been lost during the failover.

Consequently the transaction will be marked as rollback-only, and any subsequent attempt

to commit it will throw a javax.jms.TransactionRolledBackException (if using JMS), or a

HornetQException with error code HornetQException.TRANSACTION_ROLLED_BACK if using the

core API.

2 phase commit

The caveat to this rule is when XA is used either via JMS or through the core API.

If 2 phase commit is used and prepare has already been called then rolling back

could cause a HeuristicMixedException. Because of this the commit will throw

a XAException.XA_RETRY exception. This informs the Transaction Manager that

it should retry the commit at some later point in time, a side effect of this is that any

non persistent messages will be lost. To avoid this use persistent messages when

using XA. With acknowledgements this is not an issue since they are flushed to

the server before prepare gets called.

It is up to the user to catch the exception, and perform any client side local rollback code as

necessary. There is no need to manually rollback the session - it is already rolled back. The user

can then just retry the transactional operations again on the same session.

HornetQ ships with a fully functioning example demonstrating how to do this, please see

Section 11.1.81, “Transaction Failover”

If failover occurs when a commit call is being executed, the server, as previously described, will

unblock the call to prevent a hang, since no response will come back. In this case it is not easy for

the client to determine whether the transaction commit was actually processed on the live server

before failure occurred.

Note

If XA is being used either via JMS or through the core API then an

XAException.XA_RETRY is thrown. This is to inform Transaction Managers that

Chapter 39. High Availability...

238

a retry should occur at some point. At some later point in time the Transaction

Manager will retry the commit. If the original commit has not occurred then it will

still exist and be committed, if it does not exist then it is assumed to have been

committed although the transaction manager may log a warning.

To remedy this, the client can simply enable duplicate detection (Chapter 37, Duplicate Message

Detection) in the transaction, and retry the transaction operations again after the call is unblocked.

If the transaction had indeed been committed on the live server successfully before failover, then

when the transaction is retried, duplicate detection will ensure that any durable messages resent

in the transaction will be ignored on the server to prevent them getting sent more than once.

Note

By catching the rollback exceptions and retrying, catching unblocked calls

and enabling duplicate detection, once and only once delivery guarantees for

messages can be provided in the case of failure, guaranteeing 100% no loss or

duplication of messages.

39.2.1.5. Handling Failover With Non Transactional Sessions

If the session is non transactional, messages or acknowledgements can be lost in the event of

failover.

If you wish to provide once and only once delivery guarantees for non transacted sessions too,

enabled duplicate detection, and catch unblock exceptions as described in Section 39.2.1.3,

“Handling Blocking Calls During Failover”

39.2.2. Getting Notified of Connection Failure

JMS provides a standard mechanism for getting notified asynchronously of connection failure:

java.jms.ExceptionListener. Please consult the JMS javadoc or any good JMS tutorial for

more information on how to use this.

The HornetQ core API also provides a similar feature in the form of the class

org.hornet.core.client.SessionFailureListener

Any ExceptionListener or SessionFailureListener instance will always be called by HornetQ on

event of connection failure, irrespective of whether the connection was successfully failed over,

reconnected or reattached, however you can find out if reconnect or reattach has happened by

either the failedOver flag passed in on the connectionFailed on SessionfailureListener or

by inspecting the error code on the javax.jms.JMSException which will be one of the following:

Application-Level Failover

239

Table 39.1. JMSException error codes

error code Description

FAILOVER Failover has occurred and we have

successfully reattached or reconnected.

DISCONNECT No failover has occurred and we are

disconnected.

39.2.3. Application-Level Failover

In some cases you may not want automatic client failover, and prefer to handle any connection

failure yourself, and code your own manually reconnection logic in your own failure handler. We

define this as application-level failover, since the failover is handled at the user application level.

To implement application-level failover, if you're using JMS then you need to set an

ExceptionListener class on the JMS connection. The ExceptionListener will be called by

HornetQ in the event that connection failure is detected. In your ExceptionListener, you would

close your old JMS connections, potentially look up new connection factory instances from JNDI

and creating new connections. In this case you may well be using HA-JNDI [http://www.jboss.org/

community/wiki/JBossHAJNDIImpl] to ensure that the new connection factory is looked up from

a different server.

For a working example of application-level failover, please see Section 11.1.3, “Application-Layer

Failover”.

If you are using the core API, then the procedure is very similar: you would set a FailureListener

on the core ClientSession instances.

http://www.jboss.org/community/wiki/JBossHAJNDIImpl
http://www.jboss.org/community/wiki/JBossHAJNDIImpl
http://www.jboss.org/community/wiki/JBossHAJNDIImpl

240

Chapter 40.

241

Libaio Native Libraries
HornetQ distributes a native library, used as a bridge between HornetQ and Linux libaio.

libaio is a library, developed as part of the Linux kernel project. With libaio we submit writes

to the operating system where they are processed asynchronously. Some time later the OS will

call our code back when they have been processed.

We use this in our high performance journal if configured to do so, please see Chapter 15,

Persistence.

These are the native libraries distributed by HornetQ:

• libHornetQAIO32.so - x86 32 bits

• libHornetQAIO64.so - x86 64 bits

When using libaio, HornetQ will always try loading these files as long as they are on the library

path.

40.1. Compiling the native libraries

In the case that you are using Linux on a platform other than x86_32 or x86_64 (for example

Itanium 64 bits or IBM Power) you may need to compile the native library, since we do not distribute

binaries for those platforms with the release.

40.1.1. Install requirements

Note

At the moment the native layer is only available on Linux. If you are in a platform

other than Linux the native compilation will not work

The native library uses autoconf [http://en.wikipedia.org/wiki/Autoconf] what makes the

compilation process easy, however you need to install extra packages as a requirement for

compilation:

• gcc - C Compiler

• gcc-c++ or g++ - Extension to gcc with support for C++

• autoconf - Tool for automating native build process

• make - Plain old make

http://en.wikipedia.org/wiki/Autoconf
http://en.wikipedia.org/wiki/Autoconf

Chapter 40. Libaio Native Lib...

242

• automake - Tool for automating make generation

• libtool - Tool for link editing native libraries

• libaio - library to disk asynchronous IO kernel functions

• libaio-dev - Compilation support for libaio

• A full JDK installed with the environment variable JAVA_HOME set to its location

To perform this installation on RHEL or Fedora, you can simply type this at a command line:

sudo yum install automake libtool autoconf gcc-c++ gcc libaio libaio-devel make

Or on Debian systems:

sudo apt-get install automake libtool autoconf gcc-g++ gcc libaio libaio-dev make

Note

You could find a slight variation of the package names depending on the version

and Linux distribution. (for example gcc-c++ on Fedora versus g++ on Debian

systems)

40.1.2. Invoking the compilation

In the distribution, in the native-src directory, execute the shell script bootstrap. This script will

invoke automake and make what will create all the make files and the native library.

someUser@someBox:/messaging-distribution/native-src$./bootstrap

checking for a BSD-compatible install... /usr/bin/install -c

checking whether build environment is sane... yes

checking for a thread-safe mkdir -p... /bin/mkdir -p

...

configure: creating ./config.status

config.status: creating Makefile

config.status: creating ./src/Makefile

config.status: creating config.h

config.status: config.h is unchanged

config.status: executing depfiles commands

config.status: executing libtool commands

Invoking the compilation

243

...

The produced library will be at ./native-src/src/.libs/libHornetQAIO.so. Simply move that

file over bin on the distribution or the place you have chosen on the library path.

If you want to perform changes on the HornetQ libaio code, you could just call make directly at

the native-src directory.

244

Chapter 41.

245

Thread management
This chapter describes how HornetQ uses and pools threads and how you can manage them.

First we'll discuss how threads are managed and used on the server side, then we'll look at the

client side.

41.1. Server-Side Thread Management

Each HornetQ Server maintains a single thread pool for general use, and a scheduled thread pool

for scheduled use. A Java scheduled thread pool cannot be configured to use a standard thread

pool, otherwise we could use a single thread pool for both scheduled and non scheduled activity.

A separate thread pool is also used to service connections. HornetQ can use "old" (blocking) IO

or "new" (non-blocking) IO also called NIO. Both of these options use a separate thread pool, but

each of them behaves uniquely.

Since old IO requires a thread per connection its thread pool is unbounded. The thread pool is

created via java.util.concurrent.Executors.newCachedThreadPool(ThreadFactory). As

the JavaDoc for this method states: “Creates a thread pool that creates new threads as needed,

but will reuse previously constructed threads when they are available, and uses the provided

ThreadFactory to create new threads when needed.” Threads from this pool which are idle for

more than 60 seconds will time out and be removed. If old IO connections were serviced from the

standard pool the pool would easily get exhausted if too many connections were made, resulting

in the server "hanging" since it has no remaining threads to do anything else. However, even an

unbounded thread pool can run into trouble if it becomes too large. If you require the server to

handle many concurrent connections you should use NIO, not old IO.

When using new IO (NIO), HornetQ will, by default, cap its thread pool at three times the number

of cores (or hyper-threads) as reported by Runtime.getRuntime().availableProcessors()

for processing incoming packets. To override this value, you can set the number of threads

by specifying the parameter nio-remoting-threads in the transport configuration. See the

Chapter 16, Configuring the Transport for more information on this.

There are also a small number of other places where threads are used directly, we'll discuss each

in turn.

41.1.1. Server Scheduled Thread Pool

The server scheduled thread pool is used for most activities on the server

side that require running periodically or with delays. It maps internally to a

java.util.concurrent.ScheduledThreadPoolExecutor instance.

The maximum number of thread used by this pool is configure in hornetq-configuration.xml

with the scheduled-thread-pool-max-size parameter. The default value is 5 threads. A small

number of threads is usually sufficient for this pool.

Chapter 41. Thread management

246

41.1.2. General Purpose Server Thread Pool

This general purpose thread pool is used for most asynchronous actions on the server side. It

maps internally to a java.util.concurrent.ThreadPoolExecutor instance.

The maximum number of thread used by this pool is configure in hornetq-configuration.xml

with the thread-pool-max-size parameter.

If a value of -1 is used this signifies that the thread pool has no upper bound and new threads

will be created on demand if there are not enough threads available to satisfy a request. If activity

later subsides then threads are timed-out and closed.

If a value of n where nis a positive integer greater than zero is used this signifies that the thread

pool is bounded. If more requests come in and there are no free threads in the pool and the pool

is full then requests will block until a thread becomes available. It is recommended that a bounded

thread pool is used with caution since it can lead to dead-lock situations if the upper bound is

chosen to be too low.

The default value for thread-pool-max-size is 30.

See the J2SE javadoc [http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/

ThreadPoolExecutor.htm] for more information on unbounded (cached), and bounded (fixed)

thread pools.

41.1.3. Expiry Reaper Thread

A single thread is also used on the server side to scan for expired messages in queues. We cannot

use either of the thread pools for this since this thread needs to run at its own configurable priority.

For more information on configuring the reaper, please see Chapter 22, Message Expiry.

41.1.4. Asynchronous IO

Asynchronous IO has a thread pool for receiving and dispatching events out of the native layer.

You will find it on a thread dump with the prefix HornetQ-AIO-poller-pool. HornetQ uses one thread

per opened file on the journal (there is usually one).

There is also a single thread used to invoke writes on libaio. We do that to avoid context switching

on libaio that would cause performance issues. You will find this thread on a thread dump with

the prefix HornetQ-AIO-writer-pool.

41.2. Client-Side Thread Management

On the client side, HornetQ maintains a single static scheduled thread pool and a single static

general thread pool for use by all clients using the same classloader in that JVM instance.

The static scheduled thread pool has a maximum size of 5 threads, and the general purpose

thread pool has an unbounded maximum size.

http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/ThreadPoolExecutor.htm
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/ThreadPoolExecutor.htm
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/ThreadPoolExecutor.htm

Client-Side Thread Management

247

If required HornetQ can also be configured so that each ClientSessionFactory instance does

not use these static pools but instead maintains its own scheduled and general purpose pool. Any

sessions created from that ClientSessionFactory will use those pools instead.

To configure a ClientSessionFactory instance to use its own pools, simply use the appropriate

setter methods immediately after creation, for example:

ServerLocator locator = HornetQClient.createServerLocatorWithoutHA(...)

ClientSessionFactory myFactory = locator.createClientSessionFactory();

myFactory.setUseGlobalPools(false);

myFactory.setScheduledThreadPoolMaxSize(10);

myFactory.setThreadPoolMaxSize(-1);

If you're using the JMS API, you can set the same parameters on the ClientSessionFactory and

use it to create the ConnectionFactory instance, for example:

ConnectionFactory myConnectionFactory =

 HornetQJMSClient.createConnectionFactory(myFactory);

If you're using JNDI to instantiate HornetQConnectionFactory instances, you can also set these

parameters in the hornetq-jms.xml file where you describe your connection factory, for example:

<connection-factory name="ConnectionFactory">

 <connectors>

 <connector-ref connector-name="netty"/>

 </connectors>

 <entries>

 <entry name="ConnectionFactory"/>

 <entry name="XAConnectionFactory"/>

 </entries>

 <use-global-pools>false</use-global-pools>

 <scheduled-thread-pool-max-size>10</scheduled-thread-pool-max-size>

 <thread-pool-max-size>-1</thread-pool-max-size>

</connection-factory>

248

Chapter 42.

249

Logging
HornetQ uses the JBoss Logging framework to do its logging and is configurable via the

logging.properties file found in the configuration directories. This is configured by Default to

log to both the console and to a file.

There are 6 loggers available which are as follows:

Table 42.1. Global Configuration Properties

Logger Logger Description

org.jboss.logging Logs any calls not handled by the HornetQ

loggers

org.hornetq.core.server Logs the core server

org.hornetq.utils Logs utility calls

org.hornetq.journal Logs Journal calls

org.hornetq.jms Logs JMS calls

org.hornetq.integration.bootstrap Logs bootstrap calls

42.1. Logging in a client or with an Embedded server

Firstly, if you want to enable logging on the client side you need to include the jboss logging jars

in your library. If you are using the distribution make sure the jnp-client.jar is included or if you are

using maven add the following dependencies.

<dependency>

<groupId>org.jboss.naming</groupId>

<artifactId>jnp-client</artifactId>

<version>5.0.5.Final</version>

 <exclusions>

 <exclusion>

 <groupId>org.jboss.logging</groupId>

 <artifactId>jboss-logging-spi</artifactId>

 </exclusion>

 </exclusions>

</dependency>

<dependency>

 <groupId>org.jboss.logmanager</groupId>

 <artifactId>jboss-logmanager</artifactId>

 <version>1.3.1.Final</version>

</dependency>

<dependency>

 <groupId>org.hornetq</groupId>

Chapter 42. Logging

250

 <artifactId>hornetq-core-client</artifactId>

 <version>2.3.0.Final</version>

</dependency>

The first dependency jnp-client is not actually needed for logging, however this is needed for

using JNDI and imports a previous version JBoss logging which needs to be excluded

There are 2 properties you need to set when starting your java program,

the first is to set the Log Manager to use the JBoss Log Manager,

this is done by setting the -Djava.util.logging.manager property i.e. -

Djava.util.logging.manager=org.jboss.logmanager.LogManager

The second is to set the location of the logging.properties file to use, this is done via

the -Dlogging.configuration for instance -Dlogging.configuration=file:///home/user/

projects/myProject/logging.properties.

Note
The value for this needs to be valid URL

The following is a typical logging.properties for a client

Root logger option

loggers=org.jboss.logging,org.hornetq.core.server,org.hornetq.utils,org.hornetq.journal,org.hornetq.jms,org.hornetq.ra

Root logger level

logger.level=INFO

HornetQ logger levels

logger.org.hornetq.core.server.level=INFO

logger.org.hornetq.utils.level=INFO

logger.org.hornetq.jms.level=DEBUG

Root logger handlers

logger.handlers=FILE,CONSOLE

Console handler configuration

handler.CONSOLE=org.jboss.logmanager.handlers.ConsoleHandler

handler.CONSOLE.properties=autoFlush

handler.CONSOLE.level=FINE

handler.CONSOLE.autoFlush=true

handler.CONSOLE.formatter=PATTERN

File handler configuration

handler.FILE=org.jboss.logmanager.handlers.FileHandler

handler.FILE.level=FINE

Logging With The JBoss Application Server

251

handler.FILE.properties=autoFlush,fileName

handler.FILE.autoFlush=true

handler.FILE.fileName=hornetq.log

handler.FILE.formatter=PATTERN

Formatter pattern configuration

formatter.PATTERN=org.jboss.logmanager.formatters.PatternFormatter

formatter.PATTERN.properties=pattern

formatter.PATTERN.pattern=%d{HH:mm:ss,SSS} %-5p [%c] %s%E%n

42.2. Logging With The JBoss Application Server

When HornetQ is deployed within the JBoss Application Server version 7.x or above then it will

still use JBoss Logging, refer to the AS7 documentation on how to configure AS7 logging.

252

Chapter 43.

253

REST Interface
The HornetQ REST interface allows you to leverage the reliability and scalability features of

HornetQ over a simple REST/HTTP interface. Messages are produced and consumed by sending

and receiving simple HTTP messages that contain the content you want to push around. For

instance, here's a simple example of posting an order to an order processing queue express as

an HTTP message:

POST /queue/orders/create HTTP/1.1

Host: example.com

Content-Type: application/xml

<order>

 <name>Bill</name>

 <item>iPhone 4</item>

 <cost>$199.99</cost>

</order>

As you can see, we're just posting some arbitrary XML document to a URL. When the XML is

received on the server is it processed within HornetQ as a JMS message and distributed through

core HornetQ. Simple and easy. Consuming messages from a queue or topic looks very similar.

We'll discuss the entire interface in detail later in this docbook.

43.1. Goals of REST Interface

Why would you want to use HornetQ's REST interface? What are the goals of the REST interface?

• Easily usable by machine-based (code) clients.

• Zero client footprint. We want HornetQ to be usable by any client/programming language that

has an adequate HTTP client library. You shouldn't have to download, install, and configure a

special library to interact with HornetQ.

• Lightweight interoperability. The HTTP protocol is strong enough to be our message

exchange protocol. Since interactions are RESTful the HTTP uniform interface provides all the

interoperability you need to communicate between different languages, platforms, and even

messaging implementations that choose to implement the same RESTful interface as HornetQ

(i.e. the REST-* [http://rest-star.org] effort.)

• No envelope (e.g. SOAP) or feed (e.g. Atom) format requirements. You shouldn't have to learn,

use, or parse a specific XML document format in order to send and receive messages through

HornetQ's REST interface.

• Leverage the reliability, scalability, and clustering features of HornetQ on the back end without

sacrificing the simplicity of a REST interface.

http://rest-star.org
http://rest-star.org

Chapter 43. REST Interface

254

43.2. Installation and Configuration

HornetQ's REST interface is installed as a Web archive (WAR). It depends on the RESTEasy

[http://jboss.org/resteasy] project and can currently only run within a servlet container. Installing

the HornetQ REST interface is a little bit different depending whether HornetQ is already installed

and configured for your environment (e.g. you're deploying within JBoss AS 7) or you want the

HornetQ REST WAR to startup and manage the HornetQ server (e.g. you're deploying within

something like Apache Tomcat).

43.2.1. Installing Within Pre-configured Environment

This section should be used when you want to use the HornetQ REST interface in an environment

that already has HornetQ installed and running, e.g. JBoss AS 7. You must create a Web archive

(.WAR) file with the following web.xml settings:

<web-app>

 <listener>

 <listener-class>

 org.jboss.resteasy.plugins.server.servlet.ResteasyBootstrap

 </listener-class>

 </listener>

 <listener>

 <listener-class>

 org.hornetq.rest.integration.RestMessagingBootstrapListener

 </listener-class>

 </listener>

 <filter>

 <filter-name>Rest-Messaging</filter-name>

 <filter-class>

 org.jboss.resteasy.plugins.server.servlet.FilterDispatcher

 </filter-class>

 </filter>

 <filter-mapping>

 <filter-name>Rest-Messaging</filter-name>

 <url-pattern>/*</url-pattern>

 </filter-mapping>

</web-app>

Within your WEB-INF/lib directory you must have the hornetq-rest.jar file. If RESTEasy is not

installed within your environment, you must add the RESTEasy jar files within the lib directory as

well. Here's a sample Maven pom.xml that can build your WAR for this case.

http://jboss.org/resteasy
http://jboss.org/resteasy

Installing Within Pre-configured Environment

255

<project xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://

maven.apache.org/maven-v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>org.somebody</groupId>

 <artifactId>myapp</artifactId>

 <packaging>war</packaging>

 <name>My App</name>

 <version>0.1-SNAPSHOT</version>

 <repositories>

 <repository>

 <id>jboss</id>

 <url>http://repository.jboss.org/nexus/content/groups/public/</url>

 </repository>

 </repositories>

 <build>

 <plugins>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-compiler-plugin</artifactId>

 <configuration>

 <source>1.6</source>

 <target>1.6</target>

 </configuration>

 </plugin>

 </plugins>

 </build>

 <dependencies>

 <dependency>

 <groupId>org.hornetq.rest</groupId>

 <artifactId>hornetq-rest</artifactId>

 <version>2.3.0-SNAPSHOT</version>

 </dependency>

 </dependencies>

</project>

Note

JBoss AS 7 loads classes differently than previous versions. To work properly in

AS 7 the WAR will need this in its MANIFEST.MF:

Chapter 43. REST Interface

256

Dependencies: org.hornetq, org.jboss.netty

You can add this to the<plugins> section of the pom.xml to create this entry

automatically:

<plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-war-plugin</artifactId>

 <configuration>

 <archive>

 <manifestEntries>

 <Dependencies>org.hornetq, org.jboss.netty</Dependencies>

 </manifestEntries>

 </archive>

 </configuration>

</plugin>

It is worth noting that when deploying a WAR in a Java EE application server like AS7 the URL

for the resulting application will include the name of the WAR by default. For example, if you've

constructed a WAR as described above named "hornetq-rest.war" then clients will access it at,

e.g. http://localhost:8080/hornetq-rest/[queues|topics]. We'll see more about this later.

Note

It is possible to put the WAR file at the "root context" of AS7, but that is beyond

the scope of this documentation.

43.2.2. Bootstrapping HornetQ Along with REST

You can bootstrap HornetQ within your WAR as well. To do this, you must have the HornetQ core

and JMS jars along with Netty, Resteasy, and the HornetQ REST jar within your WEB-INF/lib.

You must also have a hornetq-configuration.xml, hornetq-jms.xml, and hornetq-users.xml config

files within WEB-INF/classes. The examples that come with the HornetQ REST distribution show

how to do this. You must also add an additional listener to your web.xml file. Here's an example:

<web-app>

 <listener>

 <listener-class>

 org.jboss.resteasy.plugins.server.servlet.ResteasyBootstrap

Bootstrapping HornetQ Along with REST

257

 </listener-class>

 </listener>

 <listener>

 <listener-class>

 org.hornetq.rest.integration.HornetqBootstrapListener

 </listener-class>

 </listener>

 <listener>

 <listener-class>

 org.hornetq.rest.integration.RestMessagingBootstrapListener

 </listener-class>

 </listener>

 <filter>

 <filter-name>Rest-Messaging</filter-name>

 <filter-class>

 org.jboss.resteasy.plugins.server.servlet.FilterDispatcher

 </filter-class>

 </filter>

 <filter-mapping>

 <filter-name>Rest-Messaging</filter-name>

 <url-pattern>/*</url-pattern>

 </filter-mapping>

</web-app>

Here's a Maven pom.xml file for creating a WAR for this environment. Make sure your hornetq

configuration files are within the src/main/resources directory so that they are stuffed within the

WAR's WEB-INF/classes directory!

<project xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://

maven.apache.org/maven-v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>org.somebody</groupId>

 <artifactId>myapp</artifactId>

 <packaging>war</packaging>

 <name>My App</name>

 <version>0.1-SNAPSHOT</version>

 <repositories>

 <repository>

 <id>jboss</id>

Chapter 43. REST Interface

258

 <url>http://repository.jboss.org/nexus/content/groups/public/</url>

 </repository>

 </repositories>

 <build>

 <plugins>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-compiler-plugin</artifactId>

 <configuration>

 <source>1.6</source>

 <target>1.6</target>

 </configuration>

 </plugin>

 </plugins>

 </build>

 <dependencies>

 <dependency>

 <groupId>org.hornetq</groupId>

 <artifactId>hornetq-core</artifactId>

 <version>2.3.0-SNAPSHOT</version>

 </dependency>

 <dependency>

 <groupId>io.netty</groupId>

 <artifactId>netty</artifactId>

 <version>3.4.5.Final</version>

 </dependency>

 <dependency>

 <groupId>org.hornetq</groupId>

 <artifactId>hornetq-jms</artifactId>

 <version>2.3.0-SNAPSHOT</version>

 </dependency>

 <dependency>

 <groupId>org.jboss.spec.javax.jms</groupId>

 <artifactId>jboss-jms-api_2.0_spec</artifactId>

 <version>1.0.0.Final</version>

 </dependency>

 <dependency>

 <groupId>org.hornetq.rest</groupId>

 <artifactId>hornetq-rest</artifactId>

 <version>2.3.0-SNAPSHOT</version>

 </dependency>

 <dependency>

 <groupId>org.jboss.resteasy</groupId>

 <artifactId>resteasy-jaxrs</artifactId>

 <version>2.3.4.Final</version>

 </dependency>

 <dependency>

 <groupId>org.jboss.resteasy</groupId>

 <artifactId>resteasy-jaxb-provider</artifactId>

REST Configuration

259

 <version>2.3.4.Final</version>

 </dependency>

 </dependencies>

</project>

43.2.3. REST Configuration

The HornetQ REST implementation does have some configuration options. These are configured

via XML configuration file that must be in your WEB-INF/classes directory. You must set the

web.xml context-param rest.messaging.config.file to specify the name of the configuration

file. Below is the format of the XML configuration file and the default values for each.

<rest-messaging>

 <server-in-vm-id>0</server-in-vm-id>

 <use-link-headers>false</use-link-headers>

 <default-durable-send>false</default-durable-send>

 <dups-ok>true</dups-ok>

 <topic-push-store-dir>topic-push-store</topic-push-store-dir>

 <queue-push-store-dir>queue-push-store</queue-push-store-dir>

 <producer-time-to-live>0</producer-time-to-live>

 <producer-session-pool-size>10</producer-session-pool-size>

 <session-timeout-task-interval>1</session-timeout-task-interval>

 <consumer-session-timeout-seconds>300</consumer-session-timeout-seconds>

 <consumer-window-size>-1</consumer-window-size>

</rest-messaging>

Let's give an explanation of each config option.

• server-in-vm-id. The HornetQ REST impl uses the IN-VM transport to communicate with

HornetQ. It uses the default server id, which is "0".

• use-link-headers. By default, all links (URLs) are published using custom headers.

You can instead have the HornetQ REST implementation publish links using the Link

Header specification [http://tools.ietf.org/html/draft-nottingham-http-link-header-10] instead if

you desire.

• default-durable-send. Whether a posted message should be persisted by default if the user

does not specify a durable query parameter.

• dups-ok. If this is true, no duplicate detection protocol will be enforced for message posting.

• topic-push-store-dir. This must be a relative or absolute file system path. This is a directory

where push registrations for topics are stored. See Pushing Messages.

• queue-push-store-dir. This must be a relative or absolute file system path. This is a directory

where push registrations for queues are stored. See Pushing Messages.

http://tools.ietf.org/html/draft-nottingham-http-link-header-10
http://tools.ietf.org/html/draft-nottingham-http-link-header-10
http://tools.ietf.org/html/draft-nottingham-http-link-header-10

Chapter 43. REST Interface

260

• producer-session-pool-size. The REST implementation pools HornetQ sessions for

sending messages. This is the size of the pool. That number of sessions will be created at

startup time.

• producer-time-to-live. Default time to live for posted messages. Default is no ttl.

• session-timeout-task-interval. Pull consumers and pull subscriptions can time out. This

is the interval the thread that checks for timed-out sessions will run at. A value of 1 means it

will run every 1 second.

• consumer-session-timeout-seconds. Timeout in seconds for pull consumers/subscriptions

that remain idle for that amount of time.

• consumer-window-size. For consumers, this config option is the same as the HornetQ one of

the same name. It will be used by sessions created by the HornetQ REST implementation.

43.3. HornetQ REST Interface Basics

The HornetQ REST interface publishes a variety of REST resources to perform various tasks on a

queue or topic. Only the top-level queue and topic URI schemes are published to the outside world.

You must discover all over resources to interact with by looking for and traversing links. You'll find

published links within custom response headers and embedded in published XML representations.

Let's look at how this works.

43.3.1. Queue and Topic Resources

To interact with a queue or topic you do a HEAD or GET request on the following relative URI

pattern:

/queues/{name}

/topics/{name}

The base of the URI is the base URL of the WAR you deployed the HornetQ REST server within as

defined in the Installation and Configuration section of this document. Replace the {name} string

within the above URI pattern with the name of the queue or topic you are interested in interacting

with. For example if you have configured a JMS topic named "foo" within your hornetq-jms.xml

file, the URI name should be "jms.topic.foo". If you have configured a JMS queue name "bar"

within your hornetq-jms.xml file, the URI name should be "jms.queue.bar". Internally, HornetQ

prepends the "jms.topic" or "jms.queue" strings to the name of the deployed destination. Next,

perform your HEAD or GET request on this URI. Here's what a request/response would look like.

HEAD /queues/jms.queue.bar HTTP/1.1

Queue Resource Response Headers

261

Host: example.com

--- Response ---

HTTP/1.1 200 Ok

msg-create: http://example.com/queues/jms.queue.bar/create

msg-create-with-id: http://example.com/queues/jms.queue.bar/create/{id}

msg-pull-consumers: http://example.com/queues/jms.queue.bar/pull-consumers

msg-push-consumers: http://example.com/queues/jms.queue.bar/push-consumers

Note

You can use the "curl" utility to test this easily. Simply execute a command like this:

curl --head http://example.com/queues/jms.queue.bar

The HEAD or GET response contains a number of custom response headers that are URLs to

additional REST resources that allow you to interact with the queue or topic in different ways. It

is important not to rely on the scheme of the URLs returned within these headers as they are an

implementation detail. Treat them as opaque and query for them each and every time you initially

interact (at boot time) with the server. If you treat all URLs as opaque then you will be isolated

from implementation changes as the HornetQ REST interface evolves over time.

43.3.2. Queue Resource Response Headers

Below is a list of response headers you should expect when interacting with a Queue resource.

• msg-create. This is a URL you POST messages to. The semantics of this link are described

in Posting Messages.

• msg-create-with-id. This is a URL template you can use to POST messages. The semantics

of this link are described in Posting Messages.

• msg-pull-consumers. This is a URL for creating consumers that will pull from a queue. The

semantics of this link are described in Consuming Messages via Pull.

• msg-push-consumers. This is a URL for registering other URLs you want the HornetQ REST

server to push messages to. The semantics of this link are described in Pushing Messages.

43.3.3. Topic Resource Response Headers

Below is a list of response headers you should expect when interacting with a Topic resource.

Chapter 43. REST Interface

262

• msg-create. This is a URL you POST messages to. The semantics of this link are described

in Posting Messages.

• msg-create-with-id. This is a URL template you can use to POST messages. The semantics

of this link are described in Posting Messages.

• msg-pull-subscriptions. This is a URL for creating subscribers that will pull from a topic. The

semantics of this link are described in Consuming Messages via Pull.

• msg-push-subscriptions. This is a URL for registering other URLs you want the HornetQ

REST server to push messages to. The semantics of this link are described in Pushing

Messages.

43.4. Posting Messages

This chapter discusses the protocol for posting messages to a queue or a topic. In HornetQ REST

Interface Basics, you saw that a queue or topic resource publishes variable custom headers that

are links to other RESTful resources. The msg-create header is a URL you can post a message

to. Messages are published to a queue or topic by sending a simple HTTP message to the URL

published by the msg-create header. The HTTP message contains whatever content you want

to publish to the HornetQ destination. Here's an example scenario:

Note

You can also post messages to the URL template found in msg-create-with-

id, but this is a more advanced use-case involving duplicate detection that we will

discuss later in this section.

1. Obtain the starting msg-create header from the queue or topic resource.

HEAD /queues/jms.queue.bar HTTP/1.1

Host: example.com

--- Response ---

HTTP/1.1 200 Ok

msg-create: http://example.com/queues/jms.queue.bar/create

msg-create-with-id: http://example.com/queues/jms.queue.bar/create/{id}

2. Do a POST to the URL contained in the msg-create header.

POST /queues/jms.queue.bar/create

Host: example.com

Posting Messages

263

Content-Type: application/xml

<order>

 <name>Bill</name>

 <item>iPhone4</name>

 <cost>$199.99</cost>

</order>

--- Response ---

HTTP/1.1 201 Created

msg-create-next: http://example.com/queues/jms.queue.bar/create

Note

You can use the "curl" utility to test this easily. Simply execute a command like

this:

curl --verbose --data "123" http://example.com/queues/

jms.queue.bar/create

A successful response will return a 201 response code. Also notice that a msg-create-next

response header is sent as well. You must use this URL to POST your next message.

3. POST your next message to the queue using the URL returned in the msg-create-next

header.

POST /queues/jms.queue.bar/create

Host: example.com

Content-Type: application/xml

<order>

 <name>Monica</name>

 <item>iPad</item>

 <cost>$499.99</cost>

</order>

--- Response --

HTTP/1.1 201 Created

msg-create-next: http://example.com/queues/jms.queue.bar/create

Continue using the new msg-create-next header returned with each response.

Chapter 43. REST Interface

264

Warning

It is VERY IMPORTANT that you never re-use returned msg-create-next headers

to post new messages. If the dups-ok configuration property is set to false on the

server then this URL will be uniquely generated for each message and used for

duplicate detection. If you lose the URL within the msg-create-next header, then

just go back to the queue or topic resource to get the msg-create URL again.

43.4.1. Duplicate Detection

Sometimes you might have network problems when posting new messages to a queue or topic.

You may do a POST and never receive a response. Unfortunately, you don't know whether or

not the server received the message and so a re-post of the message might cause duplicates to

be posted to the queue or topic. By default, the HornetQ REST interface is configured to accept

and post duplicate messages. You can change this by turning on duplicate message detection

by setting the dups-ok config option to false as described in HornetQ REST Interface Basics.

When you do this, the initial POST to the msg-create URL will redirect you, using the standard

HTTP 307 redirection mechanism to a unique URL to POST to. All other interactions remain the

same as discussed earlier. Here's an example:

1. Obtain the starting msg-create header from the queue or topic resource.

HEAD /queues/jms.queue.bar HTTP/1.1

Host: example.com

--- Response ---

HTTP/1.1 200 Ok

msg-create: http://example.com/queues/jms.queue.bar/create

msg-create-with-id: http://example.com/queues/jms.queue.bar/create/{id}

2. Do a POST to the URL contained in the msg-create header.

POST /queues/jms.queue.bar/create

Host: example.com

Content-Type: application/xml

<order>

 <name>Bill</name>

 <item>iPhone4</name>

 <cost>$199.99</cost>

</order>

Duplicate Detection

265

--- Response ---

HTTP/1.1 307 Redirect

Location: http://example.com/queues/jms.queue.bar/create/13582001787372

A successful response will return a 307 response code. This is standard HTTP protocol. It is

telling you that you must re-POST to the URL contained within the Location header.

3. re-POST your message to the URL provided within the Location header.

POST /queues/jms.queue.bar/create/13582001787372

Host: example.com

Content-Type: application/xml

<order>

 <name>Bill</name>

 <item>iPhone4</name>

 <cost>$199.99</cost>

</order>

--- Response --

HTTP/1.1 201 Created

msg-create-next: http://example.com/queues/jms.queue.bar/

create/13582001787373

You should receive a 201 Created response. If there is a network failure, just re-POST to the

Location header. For new messages, use the returned msg-create-next header returned with

each response.

4. POST any new message to the returned msg-create-next header.

POST /queues/jms.queue.bar/create/13582001787373

Host: example.com

Content-Type: application/xml

<order>

 <name>Monica</name>

 <item>iPad</name>

 <cost>$499.99</cost>

</order>

--- Response --

HTTP/1.1 201 Created

Chapter 43. REST Interface

266

msg-create-next: http://example.com/queues/jms.queue.bar/

create/13582001787374

If there ever is a network problem, just repost to the URL provided in the msg-create-next

header.

How can this work? As you can see, with each successful response, the HornetQ REST server

returns a uniquely generated URL within the msg-create-next header. This URL is dedicated to the

next new message you want to post. Behind the scenes, the code extracts an identify from the URL

and uses HornetQ's duplicate detection mechanism by setting the DUPLICATE_DETECTION_ID

property of the JMS message that is actually posted to the system.

If you happen to use the same ID more than once you'll see a message like this on the server:

WARN [org.hornetq.core.server] (Thread-3 (HornetQ-remoting-threads-

HornetQServerImpl::serverUUID=8d6be6f8-5e8b-11e2-80db-51bbde66f473-26319292-267207))

 HQ112098: Duplicate message detected - message will not be routed. Message

 information:

ServerMessage[messageID=20,priority=4, bodySize=1500,expiration=0,

 durable=true, address=jms.queue.bar,properties=TypedProperties[{http_content

$type=application/x-www-form-urlencoded, http_content$length=3,

 postedAsHttpMessage=true, _HQ_DUPL_ID=42}]]@12835058

An alternative to this approach is to use the msg-create-with-id header. This is not an invokable

URL, but a URL template. The idea is that the client provides the DUPLICATE_DETECTION_ID and

creates its own create-next URL. The msg-create-with-id header looks like this (you've see

it in previous examples, but we haven't used it):

msg-create-with-id: http://example.com/queues/jms.queue.bar/create/{id}

You see that it is a regular URL appended with a {id}. This {id} is a pattern matching substring.

A client would generate its DUPLICATE_DETECTION_ID and replace {id} with that generated id,

then POST to the new URL. The URL the client creates works exactly like a create-next URL

described earlier. The response of this POST would also return a new msg-create-next header.

The client can continue to generate its own DUPLICATE_DETECTION_ID, or use the new URL

returned via the msg-create-next header.

The advantage of this approach is that the client does not have to repost the message. It also only

has to come up with a unique DUPLICATE_DETECTION_ID once.

Persistent Messages

267

43.4.2. Persistent Messages

By default, posted messages are not durable and will not be persisted in HornetQ's journal. You

can create durable messages by modifying the default configuration as expressed in Chapter 2

so that all messages are persisted when sent. Alternatively, you can set a URL query parameter

called durable to true when you post your messages to the URLs returned in the msg-create,

msg-create-with-id, or msg-create-next headers. here's an example of that.

POST /queues/jms.queue.bar/create?durable=true

Host: example.com

Content-Type: application/xml

<order>

 <name>Bill</name>

 <item>iPhone4</item>

 <cost>$199.99</cost>

</order>

43.4.3. TTL, Expiration and Priority

You can set the time to live, expiration, and/or the priority of the message in the queue or topic

by setting an additional query parameter. The expiration query parameter is an long specify the

time in milliseconds since epoch (a long date). The ttl query parameter is a time in milliseconds

you want the message active. The priority is another query parameter with an integer value

between 0 and 9 expressing the priority of the message. i.e.:

POST /queues/jms.queue.bar/create?expiration=30000&priority=3

Host: example.com

Content-Type: application/xml

<order>

 <name>Bill</name>

 <item>iPhone4</item>

 <cost>$199.99</cost>

</order>

43.5. Consuming Messages via Pull

There are two different ways to consume messages from a topic or queue. You can wait and

have the messaging server push them to you, or you can continuously poll the server yourself to

see if messages are available. This chapter discusses the latter. Consuming messages via a pull

works almost identically for queues and topics with some minor, but important caveats. To start

Chapter 43. REST Interface

268

consuming you must create a consumer resource on the server that is dedicated to your client.

Now, this pretty much breaks the stateless principle of REST, but after much prototyping, this is

the best way to work most effectively with HornetQ through a REST interface.

You create consumer resources by doing a simple POST to the URL published by the msg-pull-

consumers response header if you are interacting with a queue, the msg-pull-subscribers

response header if you're interacting with a topic. These headers are provided by the main queue

or topic resource discussed in HornetQ REST Interface Basics. Doing an empty POST to one of

these URLs will create a consumer resource that follows an auto-acknowledge protocol and, if

you are interacting with a topic, creates a temporarily subscription to the topic. If you want to use

the acknowledgement protocol and/or create a durable subscription (topics only), then you must

use the form parameters (application/x-www-form-urlencoded) described below.

• autoAck. A value of true or false can be given. This defaults to true if you do not pass this

parameter.

• durable. A value of true or false can be given. This defaults to false if you do not pass this

parameter. Only available on topics. This specifies whether you want a durable subscription or

not. A durable subscription persists through server restart.

• name. This is the name of the durable subscription. If you do not provide this parameter, the

name will be automatically generated by the server. Only usable on topics.

• selector. This is an optional JMS selector string. The HornetQ REST interface adds HTTP

headers to the JMS message for REST produced messages. HTTP headers are prefixed with

"http_" and every '-' character is converted to a '$'.

• idle-timeout. For a topic subscription, idle time in milliseconds in which the consumer

connections will be closed if idle.

• delete-when-idle. Boolean value, If true, a topic subscription will be deleted (even if it is

durable) when an the idle timeout is reached.

Note

If you have multiple pull-consumers active at the same time on the same

destination be aware that unless the consumer-window-size is 0 then one

consumer might buffer messages while the other consumer gets none.

43.5.1. Auto-Acknowledge

This section focuses on the auto-acknowledge protocol for consuming messages via a pull. Here's

a list of the response headers and URLs you'll be interested in.

• msg-pull-consumers. The URL of a factory resource for creating queue consumer resources.

You will pull from these created resources.

Auto-Acknowledge

269

• msg-pull-subscriptions. The URL of a factory resource for creating topic subscription

resources. You will pull from the created resources.

• msg-consume-next. The URL you will pull the next message from. This is returned with every

response.

• msg-consumer. This is a URL pointing back to the consumer or subscription resource created

for the client.

43.5.1.1. Creating an Auto-Ack Consumer or Subscription

Here is an example of creating an auto-acknowledged queue pull consumer.

1. Find the pull-consumers URL by doing a HEAD or GET request to the base queue resource.

HEAD /queues/jms.queue.bar HTTP/1.1

Host: example.com

--- Response ---

HTTP/1.1 200 Ok

msg-create: http://example.com/queues/jms.queue.bar/create

msg-pull-consumers: http://example.com/queues/jms.queue.bar/pull-consumers

msg-push-consumers: http://example.com/queues/jms.queue.bar/push-consumers

2. Next do an empty POST to the URL returned in the msg-pull-consumers header.

POST /queues/jms.queue.bar/pull-consumers HTTP/1.1

Host: example.com

--- response ---

HTTP/1.1 201 Created

Location: http://example.com/queues/jms.queue.bar/pull-consumers/auto-

ack/333

msg-consume-next: http://example.com/queues/jms.queue.bar/pull-consumers/

auto-ack/333/consume-next-1

The Location header points to the JMS consumer resource that was created on the server. It

is good to remember this URL, although, as you'll see later, it is transmitted with each response

just to remind you.

Creating an auto-acknowledged consumer for a topic is pretty much the same. Here's an example

of creating a durable auto-acknowledged topic pull subscription.

Chapter 43. REST Interface

270

1. Find the pull-subscriptions URL by doing a HEAD or GET request to the base topic

resource

HEAD /topics/jms.topic.bar HTTP/1.1

Host: example.com

--- Response ---

HTTP/1.1 200 Ok

msg-create: http://example.com/topics/jms.topic.foo/create

msg-pull-subscriptions: http://example.com/topics/jms.topic.foo/pull-

subscriptions

msg-push-subscriptions: http://example.com/topics/jms.topic.foo/push-

subscriptions

2. Next do a POST to the URL returned in the msg-pull-subscriptions header passing in a

true value for the durable form parameter.

POST /topics/jms.topic.foo/pull-subscriptions HTTP/1.1

Host: example.com

Content-Type: application/x-www-form-urlencoded

durable=true

--- Response ---

HTTP/1.1 201 Created

Location: http://example.com/topics/jms.topic.foo/pull-subscriptions/auto-

ack/222

msg-consume-next:

http://example.com/topics/jms.topic.foo/pull-subscriptions/auto-ack/222/

consume-next-1

The Location header points to the JMS subscription resource that was created on the server. It

is good to remember this URL, although, as you'll see later, it is transmitted with each response

just to remind you.

43.5.1.2. Consuming Messages

After you have created a consumer resource, you are ready to start pulling messages from the

server. Notice that when you created the consumer for either the queue or topic, the response

contained a msg-consume-next response header. POST to the URL contained within this header

to consume the next message in the queue or topic subscription. A successful POST causes the

server to extract a message from the queue or topic subscription, acknowledge it, and return it to

Auto-Acknowledge

271

the consuming client. If there are no messages in the queue or topic subscription, a 503 (Service

Unavailable) HTTP code is returned.

Warning

For both successful and unsuccessful posts to the msg-consume-next URL, the

response will contain a new msg-consume-next header. You must ALWAYS use

this new URL returned within the new msg-consume-next header to consume new

messages.

Here's an example of pulling multiple messages from the consumer resource.

1. Do a POST on the msg-consume-next URL that was returned with the consumer or subscription

resource discussed earlier.

POST /queues/jms.queue.bar/pull-consumers/consume-next-1

Host: example.com

--- Response ---

HTTP/1.1 200 Ok

Content-Type: application/xml

msg-consume-next: http://example.com/queues/jms.queue.bar/pull-

consumers/333/consume-next-2

msg-consumer: http://example.com/queues/jms.queue.bar/pull-consumers/333

<order>...</order>

The POST returns the message consumed from the queue. It also returns a new msg-consume-

next link. Use this new link to get the next message. Notice also a msg-consumer response

header is returned. This is a URL that points back to the consumer or subscription resource.

You will need that to clean up your connection after you are finished using the queue or topic.

2. The POST returns the message consumed from the queue. It also returns a new msg-consume-

next link. Use this new link to get the next message.

POST /queues/jms.queue.bar/pull-consumers/consume-next-2

Host: example.com

--- Response ---

Http/1.1 503 Service Unavailable

Retry-After: 5

Chapter 43. REST Interface

272

msg-consume-next: http://example.com/queues/jms.queue.bar/pull-

consumers/333/consume-next-2

In this case, there are no messages in the queue, so we get a 503 response back. As per the

HTTP 1.1 spec, a 503 response may return a Retry-After head specifying the time in seconds

that you should retry a post. Also notice, that another new msg-consume-next URL is present.

Although it probably is the same URL you used last post, get in the habit of using URLs returned

in response headers as future versions of HornetQ REST might be redirecting you or adding

additional data to the URL after timeouts like this.

3. POST to the URL within the last msg-consume-next to get the next message.

POST /queues/jms.queue.bar/pull-consumers/consume-next-2

Host: example.com

--- Response ---

HTTP/1.1 200 Ok

Content-Type: application/xml

msg-consume-next: http://example.com/queues/jms.queue.bar/pull-

consumers/333/consume-next-3

<order>...</order>

43.5.1.3. Recovering From Network Failures

If you experience a network failure and do not know if your post to a msg-consume-next URL was

successful or not, just re-do your POST. A POST to a msg-consume-next URL is idempotent,

meaning that it will return the same result if you execute on any one msg-consume-next URL more

than once. Behind the scenes, the consumer resource caches the last consumed message so

that if there is a message failure and you do a re-post, the cached last message will be returned

(along with a new msg-consume-next URL). This is the reason why the protocol always requires

you to use the next new msg-consume-next URL returned with each response. Information about

what state the client is in is embedded within the actual URL.

43.5.1.4. Recovering From Client or Server Crashes

If the server crashes and you do a POST to the msg-consume-next URL, the server will return a

412 (Preconditions Failed) response code. This is telling you that the URL you are using is out of

sync with the server. The response will contain a new msg-consume-next header to invoke on.

If the client crashes there are multiple ways you can recover. If you have remembered the last msg-

consume-next link, you can just re-POST to it. If you have remembered the consumer resource

URL, you can do a GET or HEAD request to obtain a new msg-consume-next URL. If you have

created a topic subscription using the name parameter discussed earlier, you can re-create the

Manual Acknowledgement

273

consumer. Re-creation will return a msg-consume-next URL you can use. If you cannot do any of

these things, you will have to create a new consumer.

The problem with the auto-acknowledge protocol is that if the client or server crashes, it is

possible for you to skip messages. The scenario would happen if the server crashes after auto-

acknowledging a message and before the client receives the message. If you want more reliable

messaging, then you must use the acknowledgement protocol.

43.5.2. Manual Acknowledgement

The manual acknowledgement protocol is similar to the auto-ack protocol except there is an

additional round trip to the server to tell it that you have received the message and that the server

can internally ack the message. Here is a list of the response headers you will be interested in.

• msg-pull-consumers. The URL of a factory resource for creating queue consumer resources.

You will pull from these created resources

• msg-pull-subscriptions. The URL of a factory resource for creating topic subscription

resources. You will pull from the created resources.

• msg-acknowledge-next. URL used to obtain the next message in the queue or topic

subscription. It does not acknowledge the message though.

• msg-acknowledgement. URL used to acknowledge a message.

• msg-consumer. This is a URL pointing back to the consumer or subscription resource created

for the client.

43.5.2.1. Creating manually-acknowledged consumers or

subscriptions

Here is an example of creating an auto-acknowledged queue pull consumer.

1. Find the pull-consumers URL by doing a HEAD or GET request to the base queue resource.

HEAD /queues/jms.queue.bar HTTP/1.1

Host: example.com

--- Response ---

HTTP/1.1 200 Ok

msg-create: http://example.com/queues/jms.queue.bar/create

msg-pull-consumers: http://example.com/queues/jms.queue.bar/pull-consumers

msg-push-consumers: http://example.com/queues/jms.queue.bar/push-consumers

Chapter 43. REST Interface

274

2. Next do a POST to the URL returned in the msg-pull-consumers header passing in a false

value to the autoAck form parameter .

POST /queues/jms.queue.bar/pull-consumers HTTP/1.1

Host: example.com

Content-Type: application/x-www-form-urlencoded

autoAck=false

--- response ---

HTTP/1.1 201 Created

Location: http://example.com/queues/jms.queue.bar/pull-consumers/

acknowledged/333

msg-acknowledge-next: http://example.com/queues/jms.queue.bar/pull-

consumers/acknowledged/333/acknowledge-next-1

The Location header points to the JMS consumer resource that was created on the server. It

is good to remember this URL, although, as you'll see later, it is transmitted with each response

just to remind you.

Creating an manually-acknowledged consumer for a topic is pretty much the same. Here's an

example of creating a durable manually-acknowledged topic pull subscription.

1. Find the pull-subscriptions URL by doing a HEAD or GET request to the base topic

resource

HEAD /topics/jms.topic.bar HTTP/1.1

Host: example.com

--- Response ---

HTTP/1.1 200 Ok

msg-create: http://example.com/topics/jms.topic.foo/create

msg-pull-subscriptions: http://example.com/topics/jms.topic.foo/pull-

subscriptions

msg-push-subscriptions: http://example.com/topics/jms.topic.foo/push-

subscriptions

2. Next do a POST to the URL returned in the msg-pull-subscriptions header passing in a

true value for the durable form parameter and a false value to the autoAck form parameter.

POST /topics/jms.topic.foo/pull-subscriptions HTTP/1.1

Manual Acknowledgement

275

Host: example.com

Content-Type: application/x-www-form-urlencoded

durable=true&autoAck=false

--- Response ---

HTTP/1.1 201 Created

Location: http://example.com/topics/jms.topic.foo/pull-subscriptions/

acknowledged/222

msg-acknowledge-next:

http://example.com/topics/jms.topic.foo/pull-subscriptions/acknowledged/222/

consume-next-1

The Location header points to the JMS subscription resource that was created on the server. It

is good to remember this URL, although, as you'll see later, it is transmitted with each response

just to remind you.

43.5.2.2. Consuming and Acknowledging a Message

After you have created a consumer resource, you are ready to start pulling messages from the

server. Notice that when you created the consumer for either the queue or topic, the response

contained a msg-acknowledge-next response header. POST to the URL contained within this

header to consume the next message in the queue or topic subscription. If there are no messages

in the queue or topic subscription, a 503 (Service Unavailable) HTTP code is returned. A

successful POST causes the server to extract a message from the queue or topic subscription

and return it to the consuming client. It does not acknowledge the message though. The response

will contain the acknowledgement header which you will use to acknowledge the message.

Here's an example of pulling multiple messages from the consumer resource.

1. Do a POST on the msg-acknowledge-next URL that was returned with the consumer or

subscription resource discussed earlier.

POST /queues/jms.queue.bar/pull-consumers/consume-next-1

Host: example.com

--- Response ---

HTTP/1.1 200 Ok

Content-Type: application/xml

msg-acknowledgement:

http://example.com/queues/jms.queue.bar/pull-consumers/333/acknowledgement/2

msg-consumer: http://example.com/queues/jms.queue.bar/pull-consumers/333

<order>...</order>

Chapter 43. REST Interface

276

The POST returns the message consumed from the queue. It also returns amsg-

acknowledgement link. You will use this new link to acknowledge the message. Notice also a

msg-consumer response header is returned. This is a URL that points back to the consumer

or subscription resource. You will need that to clean up your connection after you are finished

using the queue or topic.

2. Acknowledge or unacknowledge the message by doing a POST to the URL contained in the

msg-acknowledgement header. You must pass an acknowledge form parameter set to true

or false depending on whether you want to acknowledge or unacknowledge the message on

the server.

POST /queues/jms.queue.bar/pull-consumers/acknowledgement/2

Host: example.com

Content-Type: application/x-www-form-urlencoded

acknowledge=true

--- Response ---

Http/1.1 200 Ok

msg-acknowledge-next:

http://example.com/queues/jms.queue.bar/pull-consumers/333/acknowledge-

next-2

Whether you acknowledge or unacknowledge the message, the response will contain a new

msg-acknowledge-next header that you must use to obtain the next message.

43.5.2.3. Recovering From Network Failures

If you experience a network failure and do not know if your post to a msg-acknowledge-next

or msg-acknowledgement URL was successful or not, just re-do your POST. A POST to one of

these URLs is idempotent, meaning that it will return the same result if you re-post. Behind the

scenes, the consumer resource keeps track of its current state. If the last action was a call tomsg-

acknowledge-next, it will have the last message cached, so that if a re-post is done, it will return

the message again. Same goes with re-posting to msg-acknowledgement. The server remembers

its last state and will return the same results. If you look at the URLs you'll see that they contain

information about the expected current state of the server. This is how the server knows what

the client is expecting.

43.5.2.4. Recovering From Client or Server Crashes

If the server crashes and while you are doing a POST to the msg-acknowledge-next URL, just

re-post. Everything should reconnect all right. On the other hand, if the server crashes while you

are doing a POST tomsg-acknowledgement, the server will return a 412 (Preconditions Failed)

response code. This is telling you that the URL you are using is out of sync with the server and

Blocking Pulls with Accept-Wait

277

the message you are acknowledging was probably re-enqueued. The response will contain a new

msg-acknowledge-next header to invoke on.

As long as you have "bookmarked" the consumer resource URL (returned from Location header

on a create, or the msg-consumer header), you can recover from client crashes by doing a GET or

HEAD request on the consumer resource to obtain what state you are in. If the consumer resource

is expecting you to acknowledge a message, it will return a msg-acknowledgement header in

the response. If the consumer resource is expecting you to pull for the next message, the msg-

acknowledge-next header will be in the response. With manual acknowledgement you are pretty

much guaranteed to avoid skipped messages. For topic subscriptions that were created with a

name parameter, you do not have to "bookmark" the returned URL. Instead, you can re-create the

consumer resource with the same exact name. The response will contain the same information

as if you did a GET or HEAD request on the consumer resource.

43.5.3. Blocking Pulls with Accept-Wait

Unless your queue or topic has a high rate of message flowing though it, if you use the pull

protocol, you're going to be receiving a lot of 503 responses as you continuously pull the server for

new messages. To alleviate this problem, the HornetQ REST interface provides the Accept-Wait

header. This is a generic HTTP request header that is a hint to the server for how long the client is

willing to wait for a response from the server. The value of this header is the time in seconds the

client is willing to block for. You would send this request header with your pull requests. Here's

an example:

POST /queues/jms.queue.bar/pull-consumers/consume-next-2

Host: example.com

Accept-Wait: 30

--- Response ---

HTTP/1.1 200 Ok

Content-Type: application/xml

msg-consume-next: http://example.com/queues/jms.queue.bar/pull-consumers/333/

consume-next-3

<order>...</order>

In this example, we're posting to a msg-consume-next URL and telling the server that we would

be willing to block for 30 seconds.

43.5.4. Clean Up Your Consumers!

When the client is done with its consumer or topic subscription it should do an HTTP DELETE

call on the consumer URL passed back from the Location header or the msg-consumer response

header. The server will time out a consumer with the value of consumer-session-timeout-

Chapter 43. REST Interface

278

seconds configured from REST configuration, so you don't have to clean up if you don't want

to, but if you are a good kid, you will clean up your messes. A consumer timeout for durable

subscriptions will not delete the underlying durable JMS subscription though, only the server-side

consumer resource (and underlying JMS session).

43.6. Pushing Messages

You can configure the HornetQ REST server to push messages to a registered URL either

remotely through the REST interface, or by creating a pre-configured XML file for the HornetQ

REST server to load at boot time.

43.6.1. The Queue Push Subscription XML

Creating a push consumer for a queue first involves creating a very simple XML document. This

document tells the server if the push subscription should survive server reboots (is it durable). It

must provide a URL to ship the forwarded message to. Finally, you have to provide authentication

information if the final endpoint requires authentication. Here's a simple example:

<push-registration>

 <durable>false</durable>

 <selector><![CDATA[

 SomeAttribute > 1

]]>

 </selector>

 <link rel="push" href="http://somewhere.com" type="application/json"

 method="PUT"/>

 <maxRetries>5</maxRetries>

 <retryWaitMillis>1000</retryWaitMillis>

 <disableOnFailure>true</disableOnFailure>

</push-registration>

The durable element specifies whether the registration should be saved to disk so that if there

is a server restart, the push subscription will still work. This element is not required. If left out it

defaults tofalse. If durable is set to true, an XML file for the push subscription will be created

within the directory specified by the queue-push-store-dir config variable defined in Chapter 2

(topic-push-store-dir for topics).

The selector element is optional and defines a JMS message selector. You should enclose it

within CDATA blocks as some of the selector characters are illegal XML.

The maxRetries element specifies how many times a the server will try to push a message to a

URL if there is a connection failure.

The retryWaitMillis element specifies how long to wait before performing a retry.

The Queue Push Subscription XML

279

The disableOnFailure element, if set to true, will disable the registration if all retries have failed.

It will not disable the connection on non-connection-failure issues (like a bad request for instance).

In these cases, the dead letter queue logic of HornetQ will take over.

The link element specifies the basis of the interaction. The href attribute contains the URL you

want to interact with. It is the only required attribute. The type attribute specifies the content-type

of what the push URL is expecting. The method attribute defines what HTTP method the server

will use when it sends the message to the server. If it is not provided it defaults to POST. The

rel attribute is very important and the value of it triggers different behavior. Here's the values a

rel attribute can have:

• destination. The href URL is assumed to be a queue or topic resource of another HornetQ

REST server. The push registration will initially do a HEAD request to this URL to obtain a

msg-create-with-id header. It will use this header to push new messages to the HornetQ REST

endpoint reliably. Here's an example:

<push-registration>

 <link rel="destination" href="http://somewhere.com/queues/jms.queue.foo"/>

</push-registration>

• template. In this case, the server is expecting the link element's href attribute to be a URL

expression. The URL expression must have one and only one URL parameter within it. The

server will use a unique value to create the endpoint URL. Here's an example:

<push-registration>

 <link rel="template" href="http://somewhere.com/resources/{id}/messages"

 method="PUT"/>

</push-registration>

In this example, the {id} sub-string is the one and only one URL parameter.

• user defined. If the rel attributes is not destination or template (or is empty or missing), then

the server will send an HTTP message to the href URL using the HTTP method defined in the

method attribute. Here's an example:

<push-registration>

 <link href="http://somewhere.com" type="application/json" method="PUT"/>

</push-registration>

Chapter 43. REST Interface

280

43.6.2. The Topic Push Subscription XML

The push XML for a topic is the same except the root element is push-topic-registration. (Also

remember the selector element is optional). The rest of the document is the same. Here's an

example of a template registration:

<push-topic-registration>

 <durable>true</durable>

 <selector><![CDATA[

 SomeAttribute > 1

]]>

 </selector>

 <link rel="template" href="http://somewhere.com/resources/{id}/messages"

 method="POST"/>

</push-topic registration>

43.6.3. Creating a Push Subscription at Runtime

Creating a push subscription at runtime involves getting the factory resource URL from the msg-

push-consumers header, if the destination is a queue, or msg-push-subscriptions header, if the

destination is a topic. Here's an example of creating a push registration for a queue:

1. First do a HEAD request to the queue resource:

HEAD /queues/jms.queue.bar HTTP/1.1

Host: example.com

--- Response ---

HTTP/1.1 200 Ok

msg-create: http://example.com/queues/jms.queue.bar/create

msg-pull-consumers: http://example.com/queues/jms.queue.bar/pull-consumers

msg-push-consumers: http://example.com/queues/jms.queue.bar/push-consumers

2. Next POST your subscription XML to the URL returned from msg-push-consumers header

POST /queues/jms.queue.bar/push-consumers

Host: example.com

Content-Type: application/xml

<push-registration>

Creating a Push Subscription at Runtime

281

 <link rel="destination" href="http://somewhere.com/queues/jms.queue.foo"/>

</push-registration>

--- Response ---

HTTP/1.1 201 Created

Location: http://example.com/queues/jms.queue.bar/push-consumers/1-333-1212

The Location header contains the URL for the created resource. If you want to unregister this,

then do a HTTP DELETE on this URL.

Here's an example of creating a push registration for a topic:

1. First do a HEAD request to the topic resource:

HEAD /topics/jms.topic.bar HTTP/1.1

Host: example.com

--- Response ---

HTTP/1.1 200 Ok

msg-create: http://example.com/topics/jms.topic.bar/create

msg-pull-subscriptions: http://example.com/topics/jms.topic.bar/pull-

subscriptions

msg-push-subscriptions: http://example.com/topics/jms.topic.bar/push-

subscriptions

2. Next POST your subscription XML to the URL returned from msg-push-subscriptions header

POST /topics/jms.topic.bar/push-subscriptions

Host: example.com

Content-Type: application/xml

<push-registration>

 <link rel="template" href="http://somewhere.com/resources/{id}"/>

</push-registration>

--- Response ---

HTTP/1.1 201 Created

Location: http://example.com/topics/jms.topic.bar/push-

subscriptions/1-333-1212

The Location header contains the URL for the created resource. If you want to unregister this,

then do a HTTP DELETE on this URL.

Chapter 43. REST Interface

282

43.6.4. Creating a Push Subscription by Hand

You can create a push XML file yourself if you do not want to go through the REST interface

to create a push subscription. There is some additional information you need to provide though.

First, in the root element, you must define a unique id attribute. You must also define a destination

element to specify the queue you should register a consumer with. For a topic, the destination

element is the name of the subscription that will be created. For a topic, you must also specify

the topic name within the topic element.

Here's an example of a hand-created queue registration. This file must go in the directory specified

by the queue-push-store-dir config variable defined in Chapter 2:

<push-registration id="111">

 <destination>jms.queue.bar</destination>

 <durable>true</durable>

 <link rel="template" href="http://somewhere.com/resources/{id}/messages"

 method="PUT"/>

</push-registration>

Here's an example of a hand-created topic registration. This file must go in the directory specified

by the topic-push-store-dir config variable defined in Chapter 2:

<push-topic-registration id="112">

 <destination>my-subscription-1</destination

 <durable>true</durable>

 <link rel="template" href="http://somewhere.com/resources/{id}/messages"

 method="PUT"/>

 <topic>jms.topic.foo</topic>

</push-topic-registration>

43.6.5. Pushing to Authenticated Servers

Push subscriptions only support BASIC and DIGEST authentication out of the box. Here is an

example of adding BASIC authentication:

<push-topic-registration>

 <durable>true</durable>

 <link rel="template" href="http://somewhere.com/resources/{id}/messages"

 method="POST"/>

 <authentication>

 <basic-auth>

Creating Destinations

283

 <username>guest</username>

 <password>geheim</password>

 </basic-auth>

 </authentication>

</push-topic registration>

For DIGEST, just replace basic-auth with digest-auth.

For other authentication mechanisms, you can register headers you want transmitted with each

request. Use the header element with the name attribute representing the name of the header.

Here's what custom headers might look like:

<push-topic-registration>

 <durable>true</durable>

 <link rel="template" href="http://somewhere.com/resources/{id}/messages"

 method="POST"/>

 <header name="secret-header">jfdiwe3321</header>

</push-topic registration>

43.7. Creating Destinations

You can create a durable queue or topic through the REST interface. Currently you cannot create

a temporary queue or topic. To create a queue you do a POST to the relative URL /queues with

an XML representation of the queue. The XML syntax is the same queue syntax that you would

specify in hornetq-jms.xml if you were creating a queue there. For example:

POST /queues

Host: example.com

Content-Type: application/hornetq.jms.queue+xml

<queue name="testQueue">

 <durable>true</durable>

</queue>

--- Response ---

HTTP/1.1 201 Created

Location: http://example.com/queues/jms.queue.testQueue

Notice that the Content-Type is application/hornetq.jms.queue+xml.

Here's what creating a topic would look like:

Chapter 43. REST Interface

284

POST /topics

Host: example.com

Content-Type: application/hornetq.jms.topic+xml

<topic name="testTopic">

</topic>

--- Response ---

HTTP/1.1 201 Created

Location: http://example.com/topics/jms.topic.testTopic

43.8. Securing the HornetQ REST Interface

43.8.1. Within JBoss Application server

Securing the HornetQ REST interface is very simple with the JBoss Application Server. You turn

on authentication for all URLs within your WAR's web.xml, and let the user Principal to propagate

to HornetQ. This only works if you are using the JBossSecurityManager with HornetQ. See the

HornetQ documentation for more details.

43.8.2. Security in other environments

To secure the HornetQ REST interface in other environments you must role your own security

by specifying security constraints with your web.xml for every path of every queue and topic you

have deployed. Here is a list of URI patterns:

Table 43.1.

/queues secure the POST operation to secure queue

creation

/queues/{queue-name} secure the GET HEAD operation to getting

information about the queue.

/queues/{queue-name}/create/* secure this URL pattern for producing

messages.

/queues/{queue-name}/pull-consumers/* secure this URL pattern for pulling messages.

/queues/{queue-name}/push-consumers/* secure this URL pattern for pushing messages.

/topics secure the POST operation to secure topic

creation

/topics/{topic-name} secure the GET HEAD operation to getting

information about the topic.

/topics/{topic-name}/create/* secure this URL pattern for producing

messages.

Mixing JMS and REST

285

/topics/{topic-name}/pull-subscriptions/* secure this URL pattern for pulling messages.

/topics/{topic-name}/push-subscriptions/* secure this URL pattern for pushing messages.

43.9. Mixing JMS and REST

The HornetQ REST interface supports mixing JMS and REST producers and consumers. You

can send an ObjectMessage through a JMS Producer, and have a REST client consume it. You

can have a REST client POST a message to a topic and have a JMS Consumer receive it. Some

simple transformations are supported if you have the correct RESTEasy providers installed.

43.9.1. JMS Producers - REST Consumers

If you have a JMS producer, the HornetQ REST interface only supports ObjectMessage type. If

the JMS producer is aware that there may be REST consumers, it should set a JMS property to

specify what Content-Type the Java object should be translated into by REST clients. The HornetQ

REST server will use RESTEasy content handlers (MessageBodyReader/Writers) to transform

the Java object to the type desired. Here's an example of a JMS producer setting the content

type of the message.

ObjectMessage message = session.createObjectMessage();

message.setStringProperty(org.hornetq.rest.HttpHeaderProperty.CONTENT_TYPE,

 "application/xml");

If the JMS producer does not set the content-type, then this information must be obtained from

the REST consumer. If it is a pull consumer, then the REST client should send an Accept header

with the desired media types it wants to convert the Java object into. If the REST client is a push

registration, then the type attribute of the link element of the push registration should be set to

the desired type.

43.9.2. REST Producers - JMS Consumers

If you have a REST client producing messages and a JMS consumer, HornetQ REST has a simple

helper class for you to transform the HTTP body to a Java object. Here's some example code:

public void onMessage(Message message)

{

 MyType obj = org.hornetq.rest.Jms.getEntity(message, MyType.class);

}

The way the getEntity() method works is that if the message is an ObjectMessage, it will try to

extract the desired type from it like any other JMS message. If a REST producer sent the message,

Chapter 43. REST Interface

286

then the method uses RESTEasy to convert the HTTP body to the Java object you want. See the

Javadoc of this class for more helper methods.

Chapter 44.

287

Embedding HornetQ
HornetQ is designed as set of simple Plain Old Java Objects (POJOs). This means HornetQ can

be instantiated and run in any dependency injection framework such as JBoss Microcontainer,

Spring or Google Guice. It also means that if you have an application that could use messaging

functionality internally, then it can directly instantiate HornetQ clients and servers in its own

application code to perform that functionality. We call this embedding HornetQ.

Examples of applications that might want to do this include any application that needs very high

performance, transactional, persistent messaging but doesn't want the hassle of writing it all from

scratch.

Embedding HornetQ can be done in very few easy steps. Instantiate the configuration object,

instantiate the server, start it, and you have a HornetQ running in your virtual machine. It's as

simple and easy as that.

44.1. Simple Config File Embedding

The simplest way to embed HornetQ is to use the embedded wrapper classes and configure

HornetQ through its configuration files. There are two different helper classes for this depending

on whether your using the HornetQ Core API or JMS.

44.1.1. Core API Only

For instantiating a core HornetQ Server only, the steps are pretty simple. The example requires

that you have defined a configuration file hornetq-configuration.xml in your classpath:

import org.hornetq.core.server.embedded.EmbeddedHornetQ;

...

EmbeddedHornetQ embedded = new EmbeddedHornetQ();

embedded.start();

ClientSessionFactory nettyFactory = HornetQClient.createClientSessionFactory(

 new TransportConfiguration(

 InVMConnectorFactory.class.getName()));

ClientSession session = factory.createSession();

session.createQueue("example", "example", true);

ClientProducer producer = session.createProducer("example");

ClientMessage message = session.createMessage(true);

Chapter 44. Embedding HornetQ

288

message.getBody().writeString("Hello");

producer.send(message);

session.start();

ClientConsumer consumer = session.createConsumer("example");

ClientMessage msgReceived = consumer.receive();

System.out.println("message = " + msgReceived.getBody().readString());

session.close();

The EmbeddedHornetQ class has a few additional setter methods that allow you to specify a

different config file name as well as other properties. See the javadocs for this class for more

details.

44.1.2. JMS API

JMS embedding is simple as well. This example requires that you have defined the config

files hornetq-configuration.xml, hornetq-jms.xml, and a hornetq-users.xml if you have

security enabled. Let's also assume that a queue and connection factory has been defined in the

hornetq-jms.xml config file.

import org.hornetq.jms.server.embedded.EmbeddedJMS;

...

EmbeddedJMS jms = new EmbeddedJMS();

jms.start();

// This assumes we have configured hornetq-jms.xml with the appropriate config

 information

ConnectionFactory connectionFactory = jms.lookup("ConnectionFactory");

Destination destination = jms.lookup("/example/queue");

... regular JMS code ...

By default, the EmbeddedJMS class will store component entries defined within your hornetq-

jms.xml file in an internal concurrent hash map. The EmbeddedJMS.lookup() method returns

components stored in this map. If you want to use JNDI, call the EmbeddedJMS.setContext()

method with the root JNDI context you want your components bound into. See the javadocs for

this class for more details on other config options.

POJO instantiation - Embedding Programmatically

289

44.2. POJO instantiation - Embedding Programmatically

You can follow this step-by-step guide to programmatically embed the core, non-JMS HornetQ

Server instance:

Create the configuration object - this contains configuration information for a HornetQ instance.

The setter methods of this class allow you to programmatically set configuration options as

describe in the Section 50.1, “Server Configuration” section.

The acceptors are configured through ConfigurationImpl. Just add the NettyAcceptorFactory

on the transports the same way you would through the main configuration file.

import org.hornetq.core.config.Configuration;

import org.hornetq.core.config.impl.ConfigurationImpl;

...

Configuration config = new ConfigurationImpl();

HashSet<TransportConfiguration> transports = new

 HashSet<TransportConfiguration>();

transports.add(new

 TransportConfiguration(NettyAcceptorFactory.class.getName()));

transports.add(new

 TransportConfiguration(InVMAcceptorFactory.class.getName()));

config.setAcceptorConfigurations(transports);

You need to instantiate an instance of

org.hornetq.api.core.server.embedded.EmbeddedHornetQ and add the configuration object

to it.

import org.hornetq.api.core.server.HornetQ;

import org.hornetq.core.server.embedded.EmbeddedHornetQ;

...

EmbeddedHornetQ server = new EmbeddedHornetQ();

server.setConfiguration(config);

server.start();

You also have the option of instantiating HornetQServerImpl directly:

Chapter 44. Embedding HornetQ

290

HornetQServer server = new HornetQServerImpl(config);

server.start();

For JMS POJO instantiation, you work with the EmbeddedJMS class instead as described earlier.

First you define the configuration programmatically for your ConnectionFactory and Destination

objects, then set the JmsConfiguration property of the EmbeddedJMS class. Here is an example

of this:

// Step 1. Create HornetQ core configuration, and set the properties accordingly

Configuration configuration = new ConfigurationImpl();

configuration.setPersistenceEnabled(false);

configuration.setSecurityEnabled(false);

configuration.getAcceptorConfigurations().add(new

 TransportConfiguration(NettyAcceptorFactory.class.getName()));

// Step 2. Create the JMS configuration

JMSConfiguration jmsConfig = new JMSConfigurationImpl();

// Step 3. Configure the JMS ConnectionFactory

TransportConfiguration connectorConfig = new

 TransportConfiguration(NettyConnectorFactory.class.getName());

ConnectionFactoryConfiguration cfConfig = new

 ConnectionFactoryConfigurationImpl("cf", connectorConfig, "/cf");

jmsConfig.getConnectionFactoryConfigurations().add(cfConfig);

// Step 4. Configure the JMS Queue

JMSQueueConfiguration queueConfig = new JMSQueueConfigurationImpl("queue1",

 null, false, "/queue/queue1");

jmsConfig.getQueueConfigurations().add(queueConfig);

// Step 5. Start the JMS Server using the HornetQ core server and the JMS

 configuration

EmbeddedJMS jmsServer = new EmbeddedJMS();

jmsServer.setConfiguration(configuration);

jmsServer.setJmsConfiguration(jmsConfig);

jmsServer.start();

Please see Section 11.1.22, “Embedded” for an example which shows how to setup and run

HornetQ embedded with JMS.

Dependency Frameworks

291

44.3. Dependency Frameworks

You may also choose to use a dependency injection framework such as JBoss Micro Container™

or Spring Framework™. See Chapter 45, Spring Integration for more details on Spring and

HornetQ, but here's how you would do things with the JBoss Micro Container.

HornetQ standalone uses JBoss Micro Container as the injection framework.

HornetQBootstrapServer and hornetq-beans.xml which are part of the HornetQ distribution

provide a very complete implementation of what's needed to bootstrap the server using JBoss

Micro Container.

When using JBoss Micro Container, you need to provide an XML file declaring the HornetQServer

and Configuration object, you can also inject a security manager and a MBean server if you

want, but those are optional.

A very basic XML Bean declaration for the JBoss Micro Container would be:

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmlns="urn:jboss:bean-deployer:2.0">

 <!-- The core configuration -->

 <bean name="Configuration"

 class="org.hornetq.core.config.impl.FileConfiguration">

 </bean>

 <!-- The core server -->

 <bean name="HornetQServer"

 class="org.hornetq.core.server.impl.HornetQServerImpl">

 <constructor>

 <parameter>

 <inject bean="Configuration"/>

 </parameter>

 </constructor>

 </bean>

</deployment>

HornetQBootstrapServer provides an easy encapsulation of JBoss Micro Container.

HornetQBootstrapServer bootStrap = new HornetQBootstrapServer(new String[]

 {"hornetq-beans.xml"});

bootStrap.run();

292

Chapter 45.

293

Spring Integration
HornetQ provides a simple bootstrap class,

org.hornetq.integration.spring.SpringJmsBootstrap, for integration with Spring. To use

it, you configure HornetQ as you always would, through its various configuration files like

hornetq-configuration.xml, hornetq-jms.xml, and hornetq-users.xml. The Spring helper

class starts the HornetQ server and adds any factories or destinations configured within hornetq-

jms.xml directly into the namespace of the Spring context. Let's take this hornetq-jms.xml file

for instance:

<configuration xmlns="urn:hornetq"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:hornetq /schema/hornetq-jms.xsd">

 <!--the connection factory used by the example-->

 <connection-factory name="ConnectionFactory">

 <connectors>

 <connector-ref connector-name="in-vm"/>

 </connectors>

 <entries>

 <entry name="ConnectionFactory"/>

 </entries>

 </connection-factory>

 <!--the queue used by the example-->

 <queue name="exampleQueue">

 <entry name="/queue/exampleQueue"/>

 </queue>

</configuration>

Here we've specified a javax.jms.ConnectionFactory we want bound to a ConnectionFactory

entry as well as a queue destination bound to a /queue/exampleQueue entry. Using the

SpringJmsBootStrap bean will automatically populate the Spring context with references to those

beans so that you can use them. Below is an example Spring JMS bean file taking advantage

of this feature:

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

Chapter 45. Spring Integration

294

 <bean id="EmbeddedJms"

 class="org.hornetq.integration.spring.SpringJmsBootstrap" init-method="start"/

>

 <bean id="listener"

 class="org.hornetq.tests.integration.spring.ExampleListener"/>

 <bean id="listenerContainer"

 class="org.springframework.jms.listener.DefaultMessageListenerContainer">

 <property name="connectionFactory" ref="ConnectionFactory"/>

 <property name="destination" ref="/queue/exampleQueue"/>

 <property name="messageListener" ref="listener"/>

 </bean>

</beans>

As you can see, the listenerContainer bean references the components defined in the

hornetq-jms.xml file. The SpringJmsBootstrap class extends the EmbeddedJMS class talked

about in Section 44.1.2, “JMS API” and the same defaults and configuration options apply. Also

notice that an init-method must be declared with a start value so that the bean's lifecycle is

executed. See the javadocs for more details on other properties of the bean class.

Chapter 46.

295

AeroGear Integration
AeroGears push technology provides support for different push notification technologies like

Google Cloud Messaging, Apple's APNs or Mozilla's SimplePush. HornetQ allows you to configure

a Connector Service that will consume messages from a queue and forward them to an AeroGear

push server and subsequently sent as notifications to mobile devices.

46.1. Configuring an AeroGear Connector Service

AeroGear Connector services are configured in the connector-services configuration:

 <connector-service name="aerogear-connector">

 <factory-

class>org.hornetq.integration.aerogear.AeroGearConnectorServiceFactory</

factory-class>

 <param key="endpoint" value="endpoint"/>

 <param key="queue" value="jms.queue.aerogearQueue"/>

 <param key="application-id" value="an applicationid"/>

 <param key="master-secret" value="a mastersecret"/>

 </connector-service>

 <address-setting match="jms.queue.lastValueQueue">

 <last-value-queue>true</last-value-queue>

 </address-setting>

Shown are the required params for the connector service and are:

• endpoint. The endpoint or URL of you AeroGear application.

• queue. The name of the queue to consume from.

• application-id. The application id of your mobile application in AeroGear.

• master-secret. The secret of your mobile application in AeroGear.

As well as these required paramaters there are the following optional parameters

• ttl. The time to live for the message once AeroGear receives it.

• badge. The badge the mobile app should use for the notification.

• sound. The sound the mobile app should use for the notification.

• filter. A message filter(selector) to use on the connector.

Chapter 46. AeroGear Integration

296

• retry-interval. If an error occurs on send, how long before we try again to connect.

• retry-attempts. How many times we should try to reconnect after an error.

• variants. A comma separated list of variants that should get the message.

• aliases. A list of aliases that should get the message.

• device-types. A list of device types that should get the messag.

More in depth explanations of the AeroGear related parameters can be found in the AeroGear

Push docs [http://aerogear.org/push/]

46.2. How to send a message for AeroGear

To send a message intended for AeroGear simply send a JMS Message and set the appropriate

headers, like so

 Message message = session.createMessage();

 message.setStringProperty("AEROGEAR_ALERT", "Hello this is a notification

 from HornetQ");

 producer.send(message);

The 'AEROGEAR_ALERT' property will be the alert sent to the mobile device.

Note

If the message does not contain this property then it will be simply ignored and

left on the queue

Its also possible to override any of the other AeroGear parameters by simply setting them on the

message, for instance if you wanted to set ttl of a message you would:

 message.setIntProperty("AEROGEAR_TTL", 1234);

or if you wanted to set the list of variants you would use:

http://aerogear.org/push/
http://aerogear.org/push/
http://aerogear.org/push/

How to send a message for AeroGear

297

 message.setStringProperty("AEROGEAR_VARIANTS",

 "variant1,variant2,variant3");

Again refer to the AeroGear documentation for a more in depth view on how to use these settings

298

Chapter 47.

299

Intercepting Operations
HornetQ supports interceptors to intercept packets entering and exiting the server. Incoming and

outgoing interceptors are be called for any packet entering or exiting the server respectively.

This allows custom code to be executed, e.g. for auditing packets, filtering or other reasons.

Interceptors can change the packets they intercept. This makes interceptors powerful, but also

potentially dangerous.

47.1. Implementing The Interceptors

An interceptor must implement the Interceptor interface:

package org.hornetq.api.core.interceptor;

public interface Interceptor

{

 boolean intercept(Packet packet, RemotingConnection connection) throws

 HornetQException;

}

The returned boolean value is important:

• if true is returned, the process continues normally

• if false is returned, the process is aborted, no other interceptors will be called and the packet

will not be processed further by the server.

47.2. Configuring The Interceptors

Both incoming and outgoing interceptors are configured in hornetq-configuration.xml:

<remoting-incoming-interceptors>

 <class-name>org.hornetq.jms.example.LoginInterceptor</class-name>

 <class-name>org.hornetq.jms.example.AdditionalPropertyInterceptor</class-

name>

</remoting-incoming-interceptors>

<remoting-outgoing-interceptors>

 <class-name>org.hornetq.jms.example.LogoutInterceptor</class-name>

Chapter 47. Intercepting Oper...

300

 <class-name>org.hornetq.jms.example.AdditionalPropertyInterceptor</class-

name>

</remoting-outgoing-interceptors>

The interceptors classes (and their dependencies) must be added to the server classpath to be

properly instantiated and called.

47.3. Interceptors on the Client Side

The interceptors can also be run on the client side to intercept packets either sent

by the client to the server or by the server to the client. This is done by adding

the interceptor to the ServerLocator with the addIncomingInterceptor(Interceptor) or

addOutgoingInterceptor(Interceptor) methods.

As noted above, if an interceptor returns false then the sending of the packet is aborted which

means that no other interceptors are be called and the packet is not be processed further by the

client. Typically this process happens transparently to the client (i.e. it has no idea if a packet

was aborted or not). However, in the case of an outgoing packet that is sent in a blocking

fashion a HornetQException will be thrown to the caller. The exception is thrown because

blocking sends provide reliability and it is considered an error for them not to succeed. Blocking

sends occurs when, for example, an application invokes setBlockOnNonDurableSend(true)

or setBlockOnDurableSend(true) on its ServerLocator or if an application is using a JMS

connection factory retrieved from JNDI that has either block-on-durable-send or block-on-

non-durable-send set to true. Blocking is also used for packets dealing with transactions (e.g.

commit, roll-back, etc.). The HornetQException thrown will contain the name of the interceptor

that returned false.

As on the server, the client interceptor classes (and their dependencies) must be added to the

classpath to be properly instantiated and invoked.

47.4. Example

See Section 11.1.28, “Interceptor” for an example which shows how to use interceptors to add

properties to a message on the server.

Chapter 48.

301

Interoperability

48.1. Stomp

Stomp [http://stomp.github.com/] is a text-orientated wire protocol that allows Stomp clients to

communicate with Stomp Brokers. HornetQ now supports Stomp 1.0, 1.1 and 1.2.

Stomp clients are available for several languages and platforms making it a good choice for

interoperability.

48.1.1. Native Stomp support

HornetQ provides native support for Stomp. To be able to send and receive Stomp messages,

you must configure a NettyAcceptor with a protocols parameter set to have stomp:

<acceptor name="stomp-acceptor">

 <factory-class>org.hornetq.core.remoting.impl.netty.NettyAcceptorFactory</

factory-class>

 <param key="protocols" value="STOMP"/>

 <param key="port" value="61613"/>

</acceptor>

With this configuration, HornetQ will accept Stomp connections on the port 61613 (which is the

default port of the Stomp brokers).

See the stomp example which shows how to configure a HornetQ server with Stomp.

48.1.1.1. Limitations

Message acknowledgements are not transactional. The ACK frame can not be part of a transaction

(it will be ignored if its transaction header is set).

48.1.1.2. Stomp 1.1/1.2 Notes

48.1.1.2.1. Virtual Hosting

HornetQ currently doesn't support virtual hosting, which means the 'host' header in CONNECT

fram will be ignored.

48.1.1.2.2. Heart-beating

HornetQ specifies a minimum value for both client and server heart-beat intervals. The minimum

interval for both client and server heartbeats is 500 milliseconds. That means if a client sends a

http://stomp.github.com/
http://stomp.github.com/

Chapter 48. Interoperability

302

CONNECT frame with heartbeat values lower than 500, the server will defaults the value to 500

milliseconds regardless the values of the 'heart-beat' header in the frame.

48.1.2. Mapping Stomp destinations to HornetQ addresses and

queues

Stomp clients deals with destinations when sending messages and subscribing. Destination

names are simply strings which are mapped to some form of destination on the server - how the

server translates these is left to the server implementation.

In HornetQ, these destinations are mapped to addresses and queues. When a Stomp client sends

a message (using a SEND frame), the specified destination is mapped to an address. When a

Stomp client subscribes (or unsubscribes) for a destination (using a SUBSCRIBE or UNSUBSCRIBE

frame), the destination is mapped to a HornetQ queue.

48.1.3. STOMP and connection-ttl

Well behaved STOMP clients will always send a DISCONNECT frame before closing their

connections. In this case the server will clear up any server side resources such as sessions and

consumers synchronously. However if STOMP clients exit without sending a DISCONNECT frame

or if they crash the server will have no way of knowing immediately whether the client is still alive

or not. STOMP connections therefore default to a connection-ttl value of 1 minute (see chapter on

connection-ttl for more information. This value can be overridden using connection-ttl-override.

If you need a specific connection-ttl for your stomp connections without affecting the connection-

ttl-override setting, you can configure your stomp acceptor with the "connection-ttl" property, which

is used to set the ttl for connections that are created from that acceptor. For example:

<acceptor name="stomp-acceptor">

 <factory-class>org.hornetq.core.remoting.impl.netty.NettyAcceptorFactory</

factory-class>

 <param key="protocols" value="STOMP"/>

 <param key="port" value="61613"/>

 <param key="connection-ttl" value="20000"/>

</acceptor>

The above configuration will make sure that any stomp connection that is created from that

acceptor will have its connection-ttl set to 20 seconds.

Note

Please note that the STOMP protocol version 1.0 does not contain any heartbeat

frame. It is therefore the user's responsibility to make sure data is sent within

connection-ttl or the server will assume the client is dead and clean up server side

Stomp and JMS interoperability

303

resources. With Stomp 1.1 users can use heart-beats to maintain the life cycle

of stomp connections.

48.1.4. Stomp and JMS interoperability

48.1.4.1. Using JMS destinations

As explained in Chapter 9, Mapping JMS Concepts to the Core API, JMS destinations are also

mapped to HornetQ addresses and queues. If you want to use Stomp to send messages to JMS

destinations, the Stomp destinations must follow the same convention:

• send or subscribe to a JMS Queue by prepending the queue name by jms.queue..

For example, to send a message to the orders JMS Queue, the Stomp client must send the

frame:

SEND

destination:jms.queue.orders

hello queue orders

^@

• send or subscribe to a JMS Topic by prepending the topic name by jms.topic..

For example to subscribe to the stocks JMS Topic, the Stomp client must send the frame:

SUBSCRIBE

destination:jms.topic.stocks

^@

48.1.4.2. Sending and consuming Stomp message from JMS or

HornetQ Core API

Stomp is mainly a text-orientated protocol. To make it simpler to interoperate with JMS and

HornetQ Core API, our Stomp implementation checks for presence of the content-length header

to decide how to map a Stomp message to a JMS Message or a Core message.

If the Stomp message does not have a content-length header, it will be mapped to a JMS

TextMessage or a Core message with a single nullable SimpleString in the body buffer.

Alternatively, if the Stomp message has a content-length header, it will be mapped to a JMS

BytesMessage or a Core message with a byte[] in the body buffer.

Chapter 48. Interoperability

304

The same logic applies when mapping a JMS message or a Core message to Stomp. A Stomp

client can check the presence of the content-length header to determine the type of the

message body (String or bytes).

48.1.4.3. Message IDs for Stomp messages

When receiving Stomp messages via a JMS consumer or a QueueBrowser, the messages have no

properties like JMSMessageID by default. However this may bring some inconvenience to clients

who wants an ID for their purpose. HornetQ Stomp provides a parameter to enable message ID

on each incoming Stomp message. If you want each Stomp message to have a unique ID, just

set the stomp-enable-message-id to true. For example:

<acceptor name="stomp-acceptor">

 <factory-class>org.hornetq.core.remoting.impl.netty.NettyAcceptorFactory</

factory-class>

 <param key="protocols" value="STOMP"/>

 <param key="port" value="61613"/>

 <param key="stomp-enable-message-id" value="true"/>

</acceptor>

When the server starts with the above setting, each stomp message sent through this acceptor

will have an extra property added. The property key is hq-message-id and the value is a String

representation of a long type internal message id prefixed with "STOMP", like:

hq-message-id : STOMP12345

If stomp-enable-message-id is not specified in the configuration, default is false.

48.1.4.4. Handling of Large Messages with Stomp

Stomp clients may send very large bodys of frames which can exceed the size of HornetQ server's

internal buffer, causing unexpected errors. To prevent this situation from happening, HornetQ

provides a stomp configuration attribute stomp-min-large-message-size. This attribute can be

configured inside a stomp acceptor, as a parameter. For example:

 <acceptor name="stomp-acceptor">

 <factory-class>org.hornetq.core.remoting.impl.netty.NettyAcceptorFactory</

factory-class>

 <param key="protocols" value="STOMP"/>

 <param key="port" value="61613"/>

 <param key="stomp-min-large-message-size" value="10240"/>

Stomp Over Web Sockets

305

</acceptor>

The type of this attribute is integer. When this attributed is configured, HornetQ server will check

the size of the body of each Stomp frame arrived from connections established with this acceptor. If

the size of the body is equal or greater than the value of stomp-min-large-message, the message

will be persisted as a large message. When a large message is delievered to a stomp consumer,

the HorentQ server will automatically handle the conversion from a large message to a normal

message, before sending it to the client.

If a large message is compressed, the server will uncompressed it before sending it to stomp

clients. The default value of stomp-min-large-message-size is the same as the default value

of min-large-message-size.

48.1.5. Stomp Over Web Sockets

HornetQ also support Stomp over Web Sockets [http://dev.w3.org/html5/websockets/]. Modern

web browser which support Web Sockets can send and receive Stomp messages from HornetQ.

To enable Stomp over Web Sockets, you must configure a NettyAcceptor with a protocol

parameter set to stomp_ws:

<acceptor name="stomp-ws-acceptor">

 <factory-class>org.hornetq.core.remoting.impl.netty.NettyAcceptorFactory</

factory-class>

 <param key="protocols" value="STOMP_WS"/>

 <param key="port" value="61614"/>

</acceptor>

With this configuration, HornetQ will accept Stomp connections over Web Sockets on the port

61614 with the URL path /stomp. Web browser can then connect to ws://<server>:61614/

stomp using a Web Socket to send and receive Stomp messages.

A companion JavaScript library to ease client-side development is available from GitHub [http://

github.com/jmesnil/stomp-websocket] (please see its documentation [http://jmesnil.net/stomp-

websocket/doc/] for a complete description).

The stomp-websockets example shows how to configure HornetQ server to have web browsers

and Java applications exchanges messages on a JMS topic.

48.1.6. StompConnect

StompConnect [http://stomp.codehaus.org/StompConnect] is a server that can act as a

Stomp broker and proxy the Stomp protocol to the standard JMS API. Consequently, using

StompConnect it is possible to turn HornetQ into a Stomp Broker and use any of the available

stomp clients. These include clients written in C, C++, c# and .net etc.

http://dev.w3.org/html5/websockets/
http://dev.w3.org/html5/websockets/
http://github.com/jmesnil/stomp-websocket
http://github.com/jmesnil/stomp-websocket
http://github.com/jmesnil/stomp-websocket
http://jmesnil.net/stomp-websocket/doc/
http://jmesnil.net/stomp-websocket/doc/
http://jmesnil.net/stomp-websocket/doc/
http://stomp.codehaus.org/StompConnect
http://stomp.codehaus.org/StompConnect

Chapter 48. Interoperability

306

To run StompConnect first start the HornetQ server and make sure that it is using JNDI.

Stomp requires the file jndi.properties to be available on the classpath. This should look

something like:

java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory

java.naming.provider.url=jnp://localhost:1099

java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces

Make sure this file is in the classpath along with the StompConnect jar and the HornetQ jars and

simply run java org.codehaus.stomp.jms.Main.

48.2. REST

Please see Chapter 43, REST Interface

48.3. AMQP

HornetQ supports the AMQP 1.0 [https://www.oasis-open.org/committees/tc_home.php?

wg_abbrev=amqp] specification. To enable AMQP you must configure a Netty Acceptor to receive

AMQP clients, like so:

<acceptor name="stomp-acceptor">

<factory-class>org.hornetq.core.remoting.impl.netty.NettyAcceptorFactory</

factory-class>

<param key="protocols" value="AMQP"/>

<param key="port" value="5672"/>

</acceptor>

HornetQ will then accept AMQP 1.0 clients on port 5672 which is the default AMQP port.

There are 2 Stomp examples available see proton-j and proton-ruby which use the qpid Java and

Ruby clients respectively

48.3.1. AMQP and security

The HornetQ Server accepts AMQP SASL Authentication and will use this to map onto the

underlying session created for the connection so you can use the normal HornetQ security

configuration.

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=amqp
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=amqp
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=amqp

AMQP Links

307

48.3.2. AMQP Links

An AMQP Link is a uni directional transport for messages between a source and a target, i.e. a

client and the HornetQ Broker. A link will have an endpoint of which there are 2 kinds, a Sender

and A Receiver. At the Broker a Sender will have its messages converted into a HornetQ Message

and forwarded to its destination or target. A Receiver will map onto a HornetQ Server Consumer

and convert HornetQ messages back into AMQP messages before being delivered.

48.3.3. AMQP and destinations

If an AMQP Link is dynamic then a temporary queue will be created and either the remote source

or remote target address will be set to the name of the temporary queue. If the Link is not dynamic

then the the address of the remote target or source will used for the queue. If this does not exist

then an exception will be sent

Note

For the next version we will add a flag to aut create durable queue but for now you

will have to add them via the configuration

48.3.4. AMQP and Coordinations - Handling Transactions

An AMQP links target can also be a Coordinator, the Coordinator is used to handle transactions.

If a coordinator is used the the underlying HormetQ Server session will be transacted and will be

either rolled back or committed via the coordinator.

Note

AMQP allows the use of multiple transactions per session, amqp:multi-txns-

per-ssn, however in this version HornetQ will only support single transactions per

session

308

Chapter 49.

309

Performance Tuning
In this chapter we'll discuss how to tune HornetQ for optimum performance.

49.1. Tuning persistence

• Put the message journal on its own physical volume. If the disk is shared with other processes

e.g. transaction co-ordinator, database or other journals which are also reading and writing from

it, then this may greatly reduce performance since the disk head may be skipping all over the

place between the different files. One of the advantages of an append only journal is that disk

head movement is minimised - this advantage is destroyed if the disk is shared. If you're using

paging or large messages make sure they're ideally put on separate volumes too.

• Minimum number of journal files. Set journal-min-files to a number of files that would fit

your average sustainable rate. If you see new files being created on the journal data directory

too often, i.e. lots of data is being persisted, you need to increase the minimal number of files,

this way the journal would reuse more files instead of creating new data files.

• Journal file size. The journal file size should be aligned to the capacity of a cylinder on the disk.

The default value 10MiB should be enough on most systems.

• Use AIO journal. If using Linux, try to keep your journal type as AIO. AIO will scale better than

Java NIO.

• Tune journal-buffer-timeout. The timeout can be increased to increase throughput at the

expense of latency.

• If you're running AIO you might be able to get some better performance by increasing journal-

max-io. DO NOT change this parameter if you are running NIO.

49.2. Tuning JMS

There are a few areas where some tweaks can be done if you are using the JMS API

• Disable message id. Use the setDisableMessageID() method on the MessageProducer class

to disable message ids if you don't need them. This decreases the size of the message and

also avoids the overhead of creating a unique ID.

• Disable message timestamp. Use the setDisableMessageTimeStamp() method on the

MessageProducer class to disable message timestamps if you don't need them.

• Avoid ObjectMessage. ObjectMessage is convenient but it comes at a cost. The body of a

ObjectMessage uses Java serialization to serialize it to bytes. The Java serialized form of even

small objects is very verbose so takes up a lot of space on the wire, also Java serialization is

slow compared to custom marshalling techniques. Only use ObjectMessage if you really can't

Chapter 49. Performance Tuning

310

use one of the other message types, i.e. if you really don't know the type of the payload until

run-time.

• Avoid AUTO_ACKNOWLEDGE. AUTO_ACKNOWLEDGE mode requires an acknowledgement to be sent

from the server for each message received on the client, this means more traffic on the network.

If you can, use DUPS_OK_ACKNOWLEDGE or use CLIENT_ACKNOWLEDGE or a transacted session

and batch up many acknowledgements with one acknowledge/commit.

• Avoid durable messages. By default JMS messages are durable. If you don't really need durable

messages then set them to be non-durable. Durable messages incur a lot more overhead in

persisting them to storage.

• Batch many sends or acknowledgements in a single transaction. HornetQ will only require a

network round trip on the commit, not on every send or acknowledgement.

49.3. Other Tunings

There are various other places in HornetQ where we can perform some tuning:

• Use Asynchronous Send Acknowledgements. If you need to send durable messages non

transactionally and you need a guarantee that they have reached the server by the time the call

to send() returns, don't set durable messages to be sent blocking, instead use asynchronous

send acknowledgements to get your acknowledgements of send back in a separate stream,

see Chapter 20, Guarantees of sends and commits for more information on this.

• Use pre-acknowledge mode. With pre-acknowledge mode, messages are acknowledged

before they are sent to the client. This reduces the amount of acknowledgement traffic on the

wire. For more information on this, see Chapter 29, Extra Acknowledge Modes.

• Disable security. You may get a small performance boost by disabling security by setting the

security-enabled parameter to false in hornetq-configuration.xml.

• Disable persistence. If you don't need message persistence, turn it off altogether by setting

persistence-enabled to false in hornetq-configuration.xml.

• Sync transactions lazily. Setting journal-sync-transactional to false in hornetq-

configuration.xml can give you better transactional persistent performance at the expense

of some possibility of loss of transactions on failure. See Chapter 20, Guarantees of sends and

commits for more information.

• Sync non transactional lazily. Setting journal-sync-non-transactional to false in

hornetq-configuration.xml can give you better non-transactional persistent performance

at the expense of some possibility of loss of durable messages on failure. See Chapter 20,

Guarantees of sends and commits for more information.

• Send messages non blocking. Setting block-on-durable-send and block-on-non-durable-

send to false in hornetq-jms.xml (if you're using JMS and JNDI) or directly on the

Tuning Transport Settings

311

ServerLocator. This means you don't have to wait a whole network round trip for every message

sent. See Chapter 20, Guarantees of sends and commits for more information.

• If you have very fast consumers, you can increase consumer-window-size. This effectively

disables consumer flow control.

• Socket NIO vs Socket Old IO. By default HornetQ uses old (blocking) on the server and the client

side (see the chapter on configuring transports for more information Chapter 16, Configuring

the Transport). NIO is much more scalable but can give you some latency hit compared to old

blocking IO. If you need to be able to service many thousands of connections on the server, then

you should make sure you're using NIO on the server. However, if don't expect many thousands

of connections on the server you can keep the server acceptors using old IO, and might get a

small performance advantage.

• Use the core API not JMS. Using the JMS API you will have slightly lower performance than

using the core API, since all JMS operations need to be translated into core operations before

the server can handle them. If using the core API try to use methods that take SimpleString

as much as possible. SimpleString, unlike java.lang.String does not require copying before

it is written to the wire, so if you re-use SimpleString instances between calls then you can

avoid some unnecessary copying.

49.4. Tuning Transport Settings

• TCP buffer sizes. If you have a fast network and fast machines you may get a performance

boost by increasing the TCP send and receive buffer sizes. See the Chapter 16, Configuring

the Transport for more information on this.

Note

Note that some operating systems like later versions of Linux include TCP auto-

tuning and setting TCP buffer sizes manually can prevent auto-tune from working

and actually give you worse performance!

• Increase limit on file handles on the server. If you expect a lot of concurrent connections on

your servers, or if clients are rapidly opening and closing connections, you should make sure

the user running the server has permission to create sufficient file handles.

This varies from operating system to operating system. On Linux systems you can increase

the number of allowable open file handles in the file /etc/security/limits.conf e.g. add

the lines

serveruser soft nofile 20000

serveruser hard nofile 20000

Chapter 49. Performance Tuning

312

This would allow up to 20000 file handles to be open by the user serveruser.

• Use batch-delay and set direct-deliver to false for the best throughput for

very small messages. HornetQ comes with a preconfigured connector/acceptor pair

(netty-throughput) in hornetq-configuration.xml and JMS connection factory

(ThroughputConnectionFactory) in hornetq-jms.xmlwhich can be used to give the very best

throughput, especially for small messages. See the Chapter 16, Configuring the Transport for

more information on this.

49.5. Tuning the VM

We highly recommend you use the latest Java JVM for the best performance. We test internally

using the Sun JVM, so some of these tunings won't apply to JDKs from other providers (e.g. IBM

or JRockit)

• Garbage collection. For smooth server operation we recommend using a parallel garbage

collection algorithm, e.g. using the JVM argument -XX:+UseParallelOldGC on Sun JDKs.

• Memory settings. Give as much memory as you can to the server. HornetQ can run in low

memory by using paging (described in Chapter 24, Paging) but if it can run with all queues

in RAM this will improve performance. The amount of memory you require will depend on the

size and number of your queues and the size and number of your messages. Use the JVM

arguments -Xms and -Xmx to set server available RAM. We recommend setting them to the

same high value.

• Aggressive options. Different JVMs provide different sets of JVM tuning parameters, for the Sun

Hotspot JVM the full list of options is available here [http://www.oracle.com/technetwork/java/

javase/tech/vmoptions-jsp-140102.html]. We recommend at least using -XX:+AggressiveOpts

and -XX:+UseFastAccessorMethods. You may get some mileage with the other tuning

parameters depending on your OS platform and application usage patterns.

49.6. Avoiding Anti-Patterns

• Re-use connections / sessions / consumers / producers. Probably the most common messaging

anti-pattern we see is users who create a new connection/session/producer for every message

they send or every message they consume. This is a poor use of resources. These objects take

time to create and may involve several network round trips. Always re-use them.

Note

Some popular libraries such as the Spring JMS Template are known to use

these anti-patterns. If you're using Spring JMS Template and you're getting poor

performance you know why. Don't blame HornetQ! The Spring JMS Template

can only safely be used in an app server which caches JMS sessions (e.g.

http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html
http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html
http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html

Avoiding Anti-Patterns

313

using JCA), and only then for sending messages. It cannot be safely be used for

synchronously consuming messages, even in an app server.

• Avoid fat messages. Verbose formats such as XML take up a lot of space on the wire and

performance will suffer as result. Avoid XML in message bodies if you can.

• Don't create temporary queues for each request. This common anti-pattern involves the

temporary queue request-response pattern. With the temporary queue request-response

pattern a message is sent to a target and a reply-to header is set with the address of a local

temporary queue. When the recipient receives the message they process it then send back a

response to the address specified in the reply-to. A common mistake made with this pattern is to

create a new temporary queue on each message sent. This will drastically reduce performance.

Instead the temporary queue should be re-used for many requests.

• Don't use Message-Driven Beans for the sake of it. As soon as you start using MDBs you

are greatly increasing the codepath for each message received compared to a straightforward

message consumer, since a lot of extra application server code is executed. Ask yourself do you

really need MDBs? Can you accomplish the same task using just a normal message consumer?

314

Chapter 50.

315

Configuration Reference
This section is a quick index for looking up configuration. Click on the element name to go to the

specific chapter.

50.1. Server Configuration

50.1.1. hornetq-configuration.xml

This is the main core server configuration file.

Table 50.1. Server Configuration

Element Name Element Type Description Default

acceptors Sequence of

<acceptor/>

a list of remoting

acceptors to create

acceptors.acceptor Complex element

acceptors.acceptor.name

(attribute)

xsd:string Name of the acceptor

acceptors.acceptor.factory-

class

xsd:string Name of the

AcceptorFactory

implementation

acceptors.acceptor.paramComplex element A key-value pair

used to configure the

acceptor. An acceptor

can have many param

acceptors.acceptor.param.key

(required attribute)

xsd:string Key of a configuration

parameter

acceptors.acceptor.param.value

(required attribute)

xsd:string Value of a

configuration

parameter

address-settings Sequence of

<address-setting/>

a list of address

settings

address-

settings.address-

setting

Complex element

address-

settings.address-

setting.match

(required attribute)

xsd:string XXX

Chapter 50. Configuration Ref...

316

Element Name Element Type Description Default

address-

settings.address-

setting.dead-letter-

address

xsd:string the address to send

dead messages to

address-

settings.address-

setting.expiry-address

xsd:string the address to send

expired messages to

address-

settings.address-

setting.expiry-delay

xsd:long Overrides the

expiration time for

messages using the

default value for

expiration time. "-1"

disables this setting.

-1

address-

settings.address-

setting.redelivery-

delay

xsd:long the time (in ms) to wait

before redelivering a

cancelled message.

0

address-

settings.address-

setting.redelivery-

delay-multiplier

xsd:double multipler to apply to

the "redelivery-delay"

address-

settings.address-

setting.max-

redelivery-delay

xsd:long Maximum value for

the redelivery-delay

address-

settings.address-

setting.max-delivery-

attempts

xsd:int how many times to

attempt to deliver

a message before

sending to dead letter

address

10

address-

settings.address-

setting.max-size-

bytes

xsd:long the maximum size (in

bytes) to use in paging

for an address (-1

means no limits)

-1

address-

settings.address-

setting.page-size-

bytes

xsd:long the page size (in

bytes) to use for an

address

10485760 (10 * 1024 *

1024)

address-

settings.address-

xsd:int Number of paging files

to cache in memory to

5

hornetq-configuration.xml

317

Element Name Element Type Description Default

setting.page-max-

cache-size

avoid IO during paging

navigation

address-

settings.address-

setting.address-full-

policy

DROP|FAIL|PAGE|

BLOCK

what happens when

an address where

"max-size-bytes" is

specified becomes full

address-

settings.address-

setting.message-

counter-history-day-

limit

xsd:int how many days

to keep message

counter history for this

address

0 (days)

address-

settings.address-

setting.last-value-

queue

xsd:boolean whether to treat the

queue as a last value

queue

false

address-

settings.address-

setting.redistribution-

delay

xsd:long how long (in ms)

to wait after the

last consumer is

closed on a queue

before redistributing

messages.

-1

address-

settings.address-

setting.send-to-dla-

on-no-route

xsd:boolean if there are no

queues matching this

address, whether to

forward message to

DLA (if it exists for this

address)

allow-failback xsd:boolean Whether a server

will automatically stop

when a another places

a request to take over

its place. The use

case is when a regular

server stops and its

backup takes over its

duties, later the main

server restarts and

requests the server

(the former backup) to

stop operating.

true

Chapter 50. Configuration Ref...

318

Element Name Element Type Description Default

async-connection-

execution-enabled

xsd:boolean Should incoming

packets on the server

be handed off to a

thread from the thread

pool for processing

or should they be

handled on the

remoting thread?

true

backup xsd:boolean whether this server is

a backup server

false

backup-group-name xsd:string used for replication, if

set, (remote) backup

servers will only pair

with live servers

with matching backup-

group-name

bindings-directory xsd:string the directory to store

the persisted bindings

to

data/bindings

bridges Sequence of <bridge/

>

a list of bridges to

create

bridges.bridge Complex element

bridges.bridge.name

(required attribute)

xsd:ID unique name for this

bridge

bridges.bridge.queue-

name

xsd:IDREF name of queue that

this bridge consumes

from

bridges.bridge.forwarding-

address

xsd:string address to forward

to. If omitted original

address is used

bridges.bridge.ha xsd:boolean whether this bridge

supports fail-over

false

bridges.bridge.filter Complex element

bridges.bridge.filter.string

(required attribute)

xsd:string optional core filter

expression

bridges.bridge.transformer-

class-name

xsd:string optional name of

transformer class

bridges.bridge.min-

large-message-size

xsd:int Any message larger

than this size is

102400 (bytes)

hornetq-configuration.xml

319

Element Name Element Type Description Default

considered a large

message (to be sent in

chunks)

bridges.bridge.check-

period

xsd:long The period (in

milliseconds) a

bridge's client will

check if it failed to

receive a ping from the

server. -1 disables this

check.

30000 (ms)

bridges.bridge.connection-

ttl

xsd:long how long to keep

a connection alive in

the absence of any

data arriving from the

client. This should be

greater than the ping

period.

60000 (ms)

bridges.bridge.retry-

interval

xsd:long period (in ms)

between successive

retries

2000 (in milliseconds)

bridges.bridge.retry-

interval-multiplier

xsd:double multiplier to apply

to successive retry

intervals

1

bridges.bridge.max-

retry-interval

xsd:long Limit to the

retry-interval growth

(due to retry-interval-

multiplier)

2000

bridges.bridge.reconnect-

attempts

xsd:int maximum number of

retry attempts, -1

means 'no limits'

-1

bridges.bridge.failover-

on-server-shutdown

xsd:boolean should failover be

prompted if target

server is cleanly

shutdown?

false

bridges.bridge.use-

duplicate-detection

xsd:boolean should duplicate

detection headers be

inserted in forwarded

messages?

true

bridges.bridge.confirmation-

window-size

xsd:int Once the bridge has

received this many

(bytes, 1024 * 1024)

Chapter 50. Configuration Ref...

320

Element Name Element Type Description Default

bytes, it sends a

confirmation

bridges.bridge.user xsd:string username, if

unspecified the

cluster-user is used

bridges.bridge.passwordxsd:string password, if

unspecified the

cluster-password is

used

bridges.bridge.reconnect-

attempts-same-node

xsd:int Upon reconnection

this configures the

number of time the

same node on the

topology will be

retried before reseting

the server locator

and using the initial

connectors

10 (int, 10)

broadcast-groups Sequence of

<broadcast-group/>

a list of broadcast

groups to create

broadcast-

groups.broadcast-

group

Complex element

broadcast-

groups.broadcast-

group.name (required

attribute)

xsd:ID a unique name for the

broadcast group

broadcast-

groups.broadcast-

group.local-bind-

address

xsd:string local bind address that

the datagram socket is

bound to

wildcard IP address

chosen by the kernel

broadcast-

groups.broadcast-

group.local-bind-port

xsd:int local port to which

the datagram socket is

bound to

-1 (anonymous port)

broadcast-

groups.broadcast-

group.group-address

xsd:string multicast address to

which the data will be

broadcast

broadcast-

groups.broadcast-

group.group-port

xsd:int UDP port number

used for broadcasting

hornetq-configuration.xml

321

Element Name Element Type Description Default

broadcast-

groups.broadcast-

group.broadcast-

period

xsd:long period in milliseconds

between consecutive

broadcasts

2000 (in milliseconds)

broadcast-

groups.broadcast-

group.jgroups-

file [212]

xsd:string Name of JGroups

configuration file. If

specified, the server

uses JGroups for

broadcasting.

broadcast-

groups.broadcast-

group.jgroups-

channel [211]

xsd:string Name of JGroups

Channel. If specified,

the server uses the

named channel for

broadcasting.

broadcast-

groups.broadcast-

group.connector-ref

xsd:string

check-for-live-

server [234]

xsd:boolean Whether to check

the cluster for a

(live) server using

our own server

ID when starting

up. This option is

only necessary for

performing 'fail-back'

on replicating servers.

Strictly speaking this

setting only applies to

live servers and not to

backups.

false

cluster-connections Sequence of <cluster-

connection/>

a list of cluster

connections

cluster-

connections.cluster-

connection

Complex element

cluster-

connections.cluster-

connection.name

(required attribute)

xsd:ID unique name for this

cluster connection

Chapter 50. Configuration Ref...

322

Element Name Element Type Description Default

cluster-

connections.cluster-

connection.address

xsd:string name of the address

this cluster connection

applies to

cluster-

connections.cluster-

connection.connector-

ref

xsd:string Name of the

connector reference

to use.

cluster-

connections.cluster-

connection.check-

period

xsd:long The period (in

milliseconds) used to

check if the cluster

connection has failed

to receive pings from

another server

30000 (ms)

cluster-

connections.cluster-

connection.connection-

ttl

xsd:long how long to keep a

connection alive in the

absence of any data

arriving from the client

60000 (ms)

cluster-

connections.cluster-

connection.min-large-

message-size

xsd:int Messages larger than

this are considered

large-messages

(bytes)

cluster-

connections.cluster-

connection.call-

timeout

xsd:long How long to wait for a

reply

30000 (ms)

cluster-

connections.cluster-

connection.retry-

interval

xsd:long period (in ms)

between successive

retries

500

cluster-

connections.cluster-

connection.retry-

interval-multiplier

xsd:double multiplier to apply to

the retry-interval

1

cluster-

connections.cluster-

connection.max-retry-

interval

xsd:long Maximum value for

retry-interval

2000

cluster-

connections.cluster-

xsd:int How many attempts

should be made to

reconnect after failure

-1

hornetq-configuration.xml

323

Element Name Element Type Description Default

connection.reconnect-

attempts

cluster-

connections.cluster-

connection.use-

duplicate-detection

xsd:boolean should duplicate

detection headers be

inserted in forwarded

messages?

true

cluster-

connections.cluster-

connection.forward-

when-no-consumers

xsd:boolean should messages be

load balanced if there

are no matching

consumers on target?

false

cluster-

connections.cluster-

connection.max-hops

xsd:int maximum number of

hops cluster topology

is propagated

1

cluster-

connections.cluster-

connection.confirmation-

window-size

xsd:int The size (in bytes) of

the window used for

confirming data from

the server connected

to.

1048576

cluster-

connections.cluster-

connection.call-

failover-timeout

xsd:long How long to wait for a

reply if in the middle of

a fail-over. -1 means

wait forever.

-1 (ms)

cluster-

connections.cluster-

connection.notification-

interval

xsd:long how often the cluster

connection will notify

the cluster of its

existence right after

joining the cluster

1000 (ms)

cluster-

connections.cluster-

connection.notification-

attempts

xsd:int how many times this

cluster connection will

notify the cluster of

its existence right after

joining the cluster

2

clustered xsd:boolean DEPRECATED. This

option is deprecated

and its value will be

ignored (HQ221038).

A HornetQ server

will be "clustered"

when its configuration

contain a cluster-

configuration.

false

Chapter 50. Configuration Ref...

324

Element Name Element Type Description Default

cluster-password xsd:string Cluster password. It

applies to all cluster

configurations.

CHANGE ME!!

cluster-user xsd:string Cluster username. It

applies to all cluster

configurations.

HORNETQ.CLUSTER.ADMIN.USER

connection-ttl-

override [83]

xsd:long if set, this will override

how long (in ms)

to keep a connection

alive without receiving

a ping. -1 disables this

setting.

-1

connectors Sequence of

<connector/>

a list of remoting

connectors

configurations to

create

connectors.connector Complex element

connectors.connector.name

(required attribute)

xsd:ID Name of the

connector

connectors.connector.factory-

class

xsd:string Name of the

ConnectorFactory

implementation

connectors.connector.paramComplex element A key-value pair

used to configure

the connector. A

connector can have

many param's

connectors.connector.param.key

(required attribute)

xsd:string Key of a configuration

parameter

connectors.connector.param.value

(required attribute)

xsd:string Value of a

configuration

parameter

connector-services Sequence of

<connector-service/>

connector-

services.connector-

service

Complex element

connector-

services.connector-

xsd:string name of the connector

service

hornetq-configuration.xml

325

Element Name Element Type Description Default

service.name

(attribute)

connector-

services.connector-

service.factory-class

xsd:string Name of the

factory class of the

ConnectorService

connector-

services.connector-

service.param

Complex element

connector-

services.connector-

service.param.key

(required attribute)

xsd:string Key of a configuration

parameter

connector-

services.connector-

service.param.value

(required attribute)

xsd:string Value of a

configuration

parameter

create-bindings-dir xsd:boolean true means that the

server will create the

bindings directory on

start up

true

create-journal-dir xsd:boolean true means that the

journal directory will

be created

true

discovery-groups Sequence of

<discovery-group/>

a list of discovery

groups to create

discovery-

groups.discovery-

group

Complex element

discovery-

groups.discovery-

group.name (required

attribute)

xsd:ID a unique name for the

discovery group

discovery-

groups.discovery-

group.group-address

xsd:string Multicast IP address

of the group to listen

on

discovery-

groups.discovery-

group.group-port

xsd:int UDP port number of

the multi cast group

discovery-

groups.discovery-

xsd:string Name of a JGroups

configuration file. If

Chapter 50. Configuration Ref...

326

Element Name Element Type Description Default

group.jgroups-

file [212]

specified, the server

uses JGroups for

discovery.

discovery-

groups.discovery-

group.jgroups-

channel [211]

xsd:string Name of a JGroups

Channel. If specified,

the server uses the

named channel for

discovery.

discovery-

groups.discovery-

group.refresh-timeout

xsd:int Period the discovery

group waits after

receiving the last

broadcast from a

particular server

before removing that

servers connector pair

entry from its list.

10000 (in

milliseconds)

discovery-

groups.discovery-

group.local-bind-

address

xsd:string local bind address that

the datagram socket is

bound to

wildcard IP address

chosen by the kernel

discovery-

groups.discovery-

group.local-bind-port

xsd:int local port to which

the datagram socket is

bound to

-1 (anonymous port)

discovery-

groups.discovery-

group.initial-wait-

timeout

xsd:int time to wait for an

initial broadcast to

give us at least one

node in the cluster

10000 (milliseconds)

diverts Sequence of <divert/> a list of diverts to use

diverts.divert Complex element

diverts.divert.name

(required attribute)

xsd:ID a unique name for the

divert

diverts.divert.transformer-

class-name

xsd:string an optional class

name of a transformer

diverts.divert.exclusive xsd:boolean whether this is an

exclusive divert

false

diverts.divert.routing-

name

xsd:string the routing name for

the divert

diverts.divert.address xsd:string the address this divert

will divert from

hornetq-configuration.xml

327

Element Name Element Type Description Default

diverts.divert.forwarding-

address

xsd:string the forwarding

address for the divert

diverts.divert.filter Complex element

diverts.divert.filter.string

(required attribute)

xsd:string optional core filter

expression

failback-delay xsd:long delay to wait before

fail-back occurs on

(live's) restart

5000 (in milliseconds)

failover-on-shutdown xsd:boolean Will this backup server

come live on a normal

server shutdown

false

file-deployment-

enabled

xsd:boolean true means that

the server will load

configuration from the

configuration files

false

grouping-handler Complex element Message Group

configuration

grouping-

handler.name

(required attribute)

xsd:string A name identifying this

grouping-handler

grouping-

handler.type [125]

LOCAL|REMOTE Each cluster should

choose 1 node

to have a LOCAL

grouping handler and

all the other nodes

should have REMOTE

handlers

grouping-

handler.address [125]

xsd:string A reference to a

cluster connection

address

grouping-

handler.timeout

xsd:int How long to wait for a

decision

5000 (ms)

grouping-

handler.group-timeout

xsd:int How long a group

binding will be used,

-1 means for ever.

Bindings are removed

after this wait elapses.

Only valid for LOCAL

handlers

-1 (ms)

Chapter 50. Configuration Ref...

328

Element Name Element Type Description Default

grouping-

handler.reaper-period

xsd:long How often the reaper

will be run to check

for timed out group

bindings. Only valid

for LOCAL handlers

30000 (ms)

id-cache-size xsd:int the size of the

cache for pre-creating

message ID's

20000

jmx-domain xsd:string the JMX domain

used to registered

HornetQ MBeans in

the MBeanServer

org.hornetq

jmx-management-

enabled

xsd:boolean true means that the

management API is

available via JMX

true

journal-buffer-size xsd:long The size of the internal

buffer on the journal in

KiB.

501760 (490 KiB)

journal-buffer-timeout xsd:long The timeout (in

nanoseconds) used

to flush internal

buffers on the journal.

The exact default

value depend on

whether the journal is

ASYNCIO or NIO.

journal-compact-min-

files

xsd:int The minimal number

of data files before we

can start compacting

10

journal-compact-

percentage

xsd:int The percentage of live

data on which we

consider compacting

the journal

30

journal-directory xsd:string the directory to store

the journal files in

data/journal

journal-file-size xsd:int the size (in bytes) of

each journal file

10485760 (10 * 1024 *

1024 - 10 MiB)

journal-max-io xsd:int the maximum number

of write requests that

can be in the AIO

hornetq-configuration.xml

329

Element Name Element Type Description Default

queue at any one time.

Default is 500 for AIO

and 1 for NIO.

journal-min-files xsd:int how many journal files

to pre-create

2

journal-sync-non-

transactional

xsd:boolean if true wait for

non transaction data

to be synced to

the journal before

returning response to

client.

true

journal-sync-

transactional

xsd:boolean if true wait for

transaction data to

be synchronized to

the journal before

returning response to

client

true

journal-type ASYNCIO|NIO the type of journal to

use

ASYNCIO

large-messages-

directory

xsd:string the directory to store

large messages

data/largemessages

log-delegate-factory-

class-name

xsd:string XXX

log-journal-write-rate xsd:boolean Whether to log

messages about the

journal write rate

false

management-address xsd:string the name of the

management address

to send management

messages to. It

is prefixed with

"jms.queue" so that

JMS clients can send

messages to it.

jms.queue.hornetq.management

management-

notification-address

xsd:string the name of

the address that

consumers bind to

receive management

notifications

hornetq.notifications

Chapter 50. Configuration Ref...

330

Element Name Element Type Description Default

mask-password xsd:boolean This option controls

whether passwords in

server configuration

need be masked.

If set to "true"

the passwords are

masked.

false

max-saved-

replicated-journals-

size

xsd:int This specifies how

many times a

replicated backup

server can restart after

moving its files on

start. Once there are

this number of backup

journal files the server

will stop permanently

after if fails back.

2

memory-measure-

interval

xsd:long frequency to sample

JVM memory in ms (or

-1 to disable memory

sampling)

-1 (ms)

memory-warning-

threshold

xsd:int Percentage of

available memory

which will trigger a

warning log

25

message-counter-

enabled

xsd:boolean true means that

message counters are

enabled

false

message-counter-

max-day-history

xsd:int how many days

to keep message

counter history

10 (days)

message-counter-

sample-period

xsd:long the sample period

(in ms) to use for

message counters

10000

message-expiry-

scan-period

xsd:long how often (in ms)

to scan for expired

messages

30000

message-expiry-

thread-priority

xsd:int the priority of

the thread expiring

messages

3

hornetq-configuration.xml

331

Element Name Element Type Description Default

name xsd:string Node name. If set,

it will be used in

topology notifications.

page-max-

concurrent-io

xsd:int The max number

of concurrent reads

allowed on paging

5

paging-directory xsd:string the directory to store

paged messages in

data/paging

password-codec xsd:string Class name and its

parameters for the

Decoder used to

decode the masked

password. Ignored

if mask-password is

false. The format of

this property is a full

qualified class name

optionally followed by

key/value pairs.

org.hornetq.utils.DefaultSensitiveStringCodec

perf-blast-pages xsd:int XXX Only meant to

be used by project

developers

-1

persist-delivery-

count-before-delivery

xsd:boolean True means that

the delivery count

is persisted before

delivery. False means

that this only happens

after a message has

been cancelled.

false

persistence-enabled xsd:boolean true means that the

server will use the

file based journal for

persistence.

true

persist-id-cache xsd:boolean true means that ID's

are persisted to the

journal

true

queues Sequence of <queue/

>

a list of pre configured

queues to create

queues.queue Complex element

Chapter 50. Configuration Ref...

332

Element Name Element Type Description Default

queues.queue.name

(required attribute)

xsd:ID unique name of this

queue

queues.queue.address xsd:string address for the queue

queues.queue.filter Complex element

queues.queue.filter.string

(required attribute)

xsd:string optional core filter

expression

queues.queue.durable xsd:boolean whether the queue is

durable (persistent)

true

remoting-incoming-

interceptors

Complex element a list of <class-name/

> elements with the

names of classes to

use for interceptor

incoming remoting

packetsunlimited

sequence of <class-

name/>

remoting-incoming-

interceptors.class-

name

xsd:string the fully qualified

name of the

interceptor class

remoting-interceptors Complex element DEPRECATED. This

option is deprecated,

but it will still

be honored. Any

interceptor specified

here will be

considered an

"incoming"

interceptor. See

<remoting-incoming-

interceptors> and

<remoting-outgoing-

interceptors>.unlimited

sequence of <class-

name/>

remoting-

interceptors.class-

name

xsd:string the fully qualified

name of the

interceptor class

remoting-outgoing-

interceptors

Complex element a list of <class-name/

> elements with the

names of classes to

hornetq-configuration.xml

333

Element Name Element Type Description Default

use for interceptor

outcoming remoting

packetsunlimited

sequence of <class-

name/>

remoting-outgoing-

interceptors.class-

name

xsd:string the fully qualified

name of the

interceptor class

replication-

clustername

xsd:string Name of the cluster

configuration to use

for replication. This

setting is only

necessary in case

you configure multiple

cluster connections. It

is used by a replicating

backups and by live

servers that may

attempt fail-back.

resolveProtocols xsd:boolean If true then the

HornetQ Server will

make use of any

Protocol Managers

that are in available

on the classpath.

If false then only

the core protocol will

be available, unless

in Embedded mode

where users can inject

their own Protocol

Managers.

true

run-sync-speed-test xsd:boolean XXX Only meant to

be used by project

developers

false

scheduled-thread-

pool-max-size

xsd:int Maximum number of

threads to use for the

scheduled thread pool

5

security-enabled xsd:boolean true means that

security is enabled

true

Chapter 50. Configuration Ref...

334

Element Name Element Type Description Default

security-invalidation-

interval

xsd:long how long (in

ms) to wait

before invalidating the

security cache

10000

security-settings Sequence of

<security-setting/>

a list of security

settings

security-

settings.security-

setting

Sequence of

<permission/>

security-

settings.security-

setting.match

(required attribute)

xsd:string regular expression

for matching security

roles against

addresses

security-

settings.security-

setting.permission

Complex element

security-

settings.security-

setting.permission.type

(required attribute)

xsd:string the type of permission

security-

settings.security-

setting.permission.roles

(required attribute)

xsd:string a comma-separated

list of roles to apply the

permission to

server-dump-interval xsd:long Interval to log server

specific information

(e.g. memory usage

etc)

-1 (ms)

shared-store xsd:boolean 'shared-store' applies

to live and backup

pairs, and it indicates

if the live/backup pair

share storage or if

the data is replicated

among them.

true

thread-pool-max-size xsd:int Maximum number of

threads to use for the

thread pool. -1 means

'no limits'.

30

hornetq-jms.xml

335

Element Name Element Type Description Default

transaction-timeout xsd:long how long (in ms)

before a transaction

can be removed from

the resource manager

after create time

300000

transaction-timeout-

scan-period

xsd:long how often (in ms)

to scan for timeout

transactions

1000

wild-card-routing-

enabled

xsd:boolean true means that the

server supports wild

card routing

true

50.1.2. hornetq-jms.xml

This is the configuration file used by the server side JMS service to load JMS Queues, Topics

and Connection Factories.

Table 50.2. JMS Server Configuration

Element Name Element Type Description Default

connection-factory ConnectionFactory a list of connection

factories to create and

add to JNDI

Continued..

connection-

factory.signature

(attribute)

String Type of connection

factory

generic

connection-factory.xa Boolean If it is a XA connection

factory

false

connection-

factory.auto-group

Boolean whether or not

message grouping is

automatically used

false

connection-

factory.connectors

String A list of connectors

used by the

connection factory

connection-

factory.connectors.connector-

ref.connector-name

(attribute)

String Name of the

connector to connect

to the live server

Chapter 50. Configuration Ref...

336

connection-

factory.discovery-

group-ref.discovery-

group-name

(attribute)

String Name of discovery

group used by this

connection factory

connection-

factory.discovery-

initial-wait-timeout

Long the initial time to wait

(in ms) for discovery

groups to wait for

broadcasts

10000

connection-

factory.block-on-

acknowledge

Boolean whether or not

messages are

acknowledged

synchronously

false

connection-

factory.block-on-non-

durable-send

Boolean whether or not non-

durable messages are

sent synchronously

false

connection-

factory.block-on-

durable-send

Boolean whether or not durable

messages are sent

synchronously

true

connection-

factory.call-timeout

Long the timeout (in ms) for

remote calls

30000

connection-

factory.client-failure-

check-period

Long the period (in ms)

after which the client

will consider the

connection failed after

not receiving packets

from the server

30000

connection-

factory.client-id

String the pre-configured

client ID for the

connection factory

null

connection-

factory.connection-

load-balancing-policy-

class-name

String the name of the load

balancing class

org.hornetq.api.core.client.loadbalance.RoundRobinConnectionLoadBalancingPolicy

connection-

factory.connection-ttl

Long the time to live (in ms)

for connections

1 * 60000

connection-

factory.consumer-

max-rate

Integer the fastest rate

a consumer may

consume messages

per second

-1

hornetq-jms.xml

337

connection-

factory.consumer-

window-size

Integer the window size (in

bytes) for consumer

flow control

1024 * 1024

connection-

factory.dups-ok-

batch-size

Integer the batch size

(in bytes) between

acknowledgements

when using

DUPS_OK_ACKNOWLEDGE

mode

1024 * 1024

connection-

factory.failover-on-

initial-connection

Boolean whether or not to

failover to backup

on event that initial

connection to live

server fails

false

connection-

factory.failover-on-

server-shutdown

Boolean whether or not to

failover on server

shutdown

false

connection-

factory.min-large-

message-size

Integer the size (in bytes)

before a message is

treated as large

100 * 1024

connection-

factory.avoid-large-

messages

Boolean If compress large

messages and send

them as regular

messages if possible

false

connection-

factory.cache-large-

message-client

Boolean If true clients using

this connection factory

will hold the large

message body on

temporary files.

false

connection-

factory.pre-

acknowledge

Boolean whether messages

are pre acknowledged

by the server before

sending

false

connection-

factory.producer-max-

rate

Integer the maximum rate of

messages per second

that can be sent

-1

connection-

factory.producer-

window-size

Integer the window size in

bytes for producers

sending messages

1024 * 1024

Chapter 50. Configuration Ref...

338

connection-

factory.confirmation-

window-size

Integer the window size

(in bytes) for

reattachment

confirmations

1024 * 1024

connection-

factory.reconnect-

attempts

Integer maximum number of

retry attempts, -1

signifies infinite

0

connection-

factory.retry-interval

Long the time (in ms) to

retry a connection

after failing

2000

connection-

factory.retry-interval-

multiplier

Double multiplier to apply

to successive retry

intervals

1.0

connection-

factory.max-retry-

interval

Integer The maximum retry

interval in the

case a retry-interval-

multiplier has been

specified

2000

connection-

factory.scheduled-

thread-pool-max-size

Integer the size of the

scheduled thread pool

5

connection-

factory.thread-pool-

max-size

Integer the size of the thread

pool

-1

connection-

factory.transaction-

batch-size

Integer the batch size

(in bytes) between

acknowledgements

when using a

transactional session

1024 * 1024

connection-

factory.use-global-

pools

Boolean whether or not to use a

global thread pool for

threads

true

queue Queue a queue to create and

add to JNDI

queue.name

(attribute)

String unique name of the

queue

queue.entry String context where the

queue will be bound

in JNDI (there can be

many)

queue.durable Boolean is the queue durable? true

Using Masked Passwords in Configuration Files

339

queue.filter String optional filter

expression for the

queue

topic Topic a topic to create and

add to JNDI

topic.name (attribute) String unique name of the

topic

topic.entry String context where the

topic will be bound in

JNDI (there can be

many)

50.1.3. Using Masked Passwords in Configuration Files

By default all passwords in HornetQ server's configuration files are in plain text form. This usually

poses no security issues as those files should be well protected from unauthorized accessing.

However, in some circumstances a user doesn't want to expose its passwords to more eyes than

necessary.

HornetQ can be configured to use 'masked' passwords in its configuration files. A masked

password is an obscure string representation of a real password. To mask a password a user will

use an 'encoder'. The encoder takes in the real password and outputs the masked version. A user

can then replace the real password in the configuration files with the new masked password. When

HornetQ loads a masked password, it uses a suitable 'decoder' to decode it into real password.

HornetQ provides a default password encoder and decoder. Optionally users can use or

implement their own encoder and decoder for masking the passwords.

50.1.3.1. Password Masking in Server Configuration File

50.1.3.1.1. The password masking property

The server configuration file has a property that defines the default masking behaviors over the

entire file scope.

mask-password: this boolean type property indicates if a password should be masked or not. Set

it to "true" if you want your passwords masked. The default value is "false".

50.1.3.1.2. Specific masking behaviors

50.1.3.1.2.1. cluster-password

The nature of the value of cluster-password is subject to the value of property 'mask-password'.

If it is true the cluster-password is masked.

Chapter 50. Configuration Ref...

340

50.1.3.1.2.2. Passwords in connectors and acceptors

In the server configuration, Connectors and Acceptors sometimes needs to specify passwords.

For example if a users wants to use an SSL-enabled NettyAcceptor, it can specify a key-

store-password and a trust-store-password. Because Acceptors and Connectors are pluggable

implementations, each transport will have different password masking needs.

When a Connector or Acceptor configuration is initialised, HornetQ will add the "mask-

password" and "password-codec" values to the Connector or Acceptors params using the keys

hornetq.usemaskedpassword and hornetq.passwordcodec respectively. The Netty and InVM

implementations will use these as needed and any other implementations will have access to

these to use if they so wish.

50.1.3.1.2.3. Passwords in Core Bridge configurations

Core Bridges are configured in the server configuration file and so the masking of its 'password'

properties follows the same rules as that of 'cluster-password'.

50.1.3.1.3. Examples

The following table summarizes the relations among the above-mentioned properties

Table 50.3.

mask-password cluster-password acceptor/connector

passwords

bridge password

absent plain text plain text plain text

false plain text plain text plain text

true masked masked masked

Examples

Note: In the following examples if related attributed or properties are absent, it means they are

not specified in the configure file.

example 1

<cluster-password>bbc</cluster-password>

This indicates the cluster password is a plain text value ("bbc").

example 2

Using Masked Passwords in Configuration Files

341

<mask-password>true</mask-password>

<cluster-password>80cf731af62c290</cluster-password>

This indicates the cluster password is a masked value and HornetQ will use its built-in decoder to

decode it. All other passwords in the configuration file, Connectors, Acceptors and Bridges, will

also use masked passwords.

50.1.3.2. JMS Bridge password masking

The JMS Bridges are configured and deployed as separate beans so they need separate

configuration to control the password masking. A JMS Bridge has two password parameters in its

constructor, SourcePassword and TargetPassword. It uses the following two optional properties

to control their masking:

useMaskedPassword -- If set to "true" the passwords are masked. Default is false.

passwordCodec -- Class name and its parameters for the Decoder used to decode the masked

password. Ignored if useMaskedPassword is false. The format of this property is a full qualified

class name optionally followed by key/value pairs, separated by semi-colons. For example:

<property name="useMaskedPassword">true</property>

<property name="passwordCodec">com.foo.FooDecoder;key=value</property>

HornetQ will load this property and initialize the class with a parameter map containing the "key"-

>"value" pair. If passwordCodec is not specified, the built-in decoder is used.

50.1.3.3. Masking passwords in HornetQ ResourceAdapters and

MDB activation configurations

Both ra.xml and MDB activation configuration have a 'password' property that can be masked.

They are controlled by the following two optional Resource Adapter properties in ra.xml:

UseMaskedPassword -- If setting to "true" the passwords are masked. Default is false.

PasswordCodec -- Class name and its parameters for the Decoder used to decode the masked

password. Ignored if UseMaskedPassword is false. The format of this property is a full qualified

class name optionally followed by key/value pairs. It is the same format as that for JMS Bridges.

Example:

<config-property>

 <config-property-name>UseMaskedPassword</config-property-name>

 <config-property-type>boolean</config-property-type>

 <config-property-value>true</config-property-value>

</config-property>

<config-property>

 <config-property-name>PasswordCodec</config-property-name>

Chapter 50. Configuration Ref...

342

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value>com.foo.ADecoder;key=helloworld</config-property-

value>

</config-property>

With this configuration, both passwords in ra.xml and all of its MDBs will have to be in masked form.

50.1.3.4. Masking passwords in hornetq-users.xml

HornetQ's built-in security manager uses plain configuration files where the user passwords are

specified in plaintext forms by default. To mask those parameters the following two properties

are needed:

mask-password -- If set to "true" all the passwords are masked. Default is false.

password-codec -- Class name and its parameters for the Decoder used to decode the masked

password. Ignored if mask-password is false. The format of this property is a full qualified class

name optionally followed by key/value pairs. It is the same format as that for JMS Bridges.

Example:

<mask-password>true</mask-password>

<password-codec>org.hornetq.utils.DefaultSensitiveStringCodec;key=hello world</

password-codec>

When so configured, the HornetQ security manager will initialize a DefaultSensitiveStringCodec

with the parameters "key"->"hello world", then use it to decode all the masked passwords in this

configuration file.

50.1.3.5. Choosing a decoder for password masking

As described in the previous sections, all password masking requires a decoder. A decoder uses

an algorithm to convert a masked password into its original clear text form in order to be used

in various security operations. The algorithm used for decoding must match that for encoding.

Otherwise the decoding may not be successful.

For user's convenience HornetQ provides a default built-in Decoder. However a user can if they

so wish implement their own.

50.1.3.5.1. The built-in Decoder

Whenever no decoder is specified in the configuration file, the built-in decoder is used. The

class name for the built-in decoder is org.hornetq.utils.DefaultSensitiveStringCodec. It has both

encoding and decoding capabilities. It uses java.crypto.Cipher utilities to encrypt (encode) a

plaintext password and decrypt a mask string using same algorithm. Using this decoder/encoder

is pretty straightforward. To get a mask for a password, just run the following in command line:

Using Masked Passwords in Configuration Files

343

java org.hornetq.utils.DefaultSensitiveStringCodec "your plaintext password"

Make sure the classpath is correct. You'll get something like

Encoded password: 80cf731af62c290

Just copy "80cf731af62c290" and replace your plaintext password with it.

50.1.3.5.2. Using a different decoder

It is possible to use a different decoder rather than the built-in one. Simply make sure the decoder

is in HornetQ's classpath and configure the server to use it as follows:

<password-codec>com.foo.SomeDecoder;key1=value1;key2=value2</password-codec>

If your decoder needs params passed to it you can do this via key/value pairs when configuring.

For instance if your decoder needs say a "key-location" parameter, you can define like so:

<password-codec>com.foo.NewDecoder;key-location=/some/url/to/keyfile</

password-codec>

Then configure your cluster-password like this:

<mask-password>true</mask-password>

<cluster-password>masked_password</cluster-password>

When HornetQ reads the cluster-password it will initialize the NewDecoder and use it to decode

"mask_password". It also process all passwords using the new defined decoder.

50.1.3.5.3. Implementing your own codecs

To use a different decoder than the built-in one, you either pick one from

existing libraries or you implement it yourself. All decoders must implement the

org.hornetq.utils.SensitiveDataCodec<T> interface:

Chapter 50. Configuration Ref...

344

public interface SensitiveDataCodec<T>

{

 T decode(Object mask) throws Exception;

 void init(Map<String, String> params);

}

This is a generic type interface but normally for a password you just need String type. So a new

decoder would be defined like

public class MyNewDecoder implements SensitiveDataCodec<String>

{

 public String decode(Object mask) throws Exception

 {

 //decode the mask into clear text password

 return "the password";

 }

 public void init(Map<String, String> params)

 {

 //initialization done here. It is called right after the decoder has

 been created.

 }

}

Last but not least, once you get your own decoder, please add it to the classpath. Otherwise

HornetQ will fail to load it!

	HornetQ User Manual
	Table of Contents
	Chapter 1. Legal Notice
	Chapter 2. Preface
	Chapter 3. Project Information
	3.1. Software Download
	3.2. Project Information

	Chapter 4. Messaging Concepts
	4.1. Messaging Concepts
	4.2. Messaging styles
	4.2.1. The Message Queue Pattern
	4.2.2. The Publish-Subscribe Pattern

	4.3. Delivery guarantees
	4.4. Transactions
	4.5. Durability
	4.6. Messaging APIs and protocols
	4.6.1. Java Message Service (JMS)
	4.6.2. System specific APIs
	4.6.3. RESTful API
	4.6.4. STOMP
	4.6.5. AMQP

	4.7. High Availability
	4.8. Clusters
	4.9. Bridges and routing

	Chapter 5. Architecture
	5.1. Core Architecture
	5.2. HornetQ embedded in your own application
	5.3. HornetQ integrated with a JEE application server
	5.4. HornetQ stand-alone server

	Chapter 6. Using the Server
	6.1. Starting and Stopping the standalone server
	6.2. Server JVM settings
	6.3. Server classpath
	6.4. Library Path
	6.5. System properties
	6.6. Configuration files
	6.7. JBoss Microcontainer Beans File
	6.8. JBoss AS4 MBean Service.
	6.9. The main configuration file.

	Chapter 7. Using JMS
	7.1. A simple ordering system
	7.2. JMS Server Configuration
	7.3. Connection Factory Types
	7.4. JNDI configuration
	7.5. The code
	7.6. Directly instantiating JMS Resources without using JNDI
	7.7. Setting The Client ID
	7.8. Setting The Batch Size for DUPS_OK
	7.9. Setting The Transaction Batch Size

	Chapter 8. Using Core
	8.1. Core Messaging Concepts
	8.1.1. Message
	8.1.2. Address
	8.1.3. Queue
	8.1.4. ServerLocator
	8.1.5. ClientSessionFactory
	8.1.6. ClientSession
	8.1.7. ClientConsumer
	8.1.8. ClientProducer

	8.2. A simple example of using Core

	Chapter 9. Mapping JMS Concepts to the Core API
	Chapter 10. The Client Classpath
	10.1. HornetQ Core Client
	10.2. JMS Client
	10.3. JMS Client with JNDI

	Chapter 11. Examples
	11.1. JMS Examples
	11.1.1. JMS AeroGear
	11.1.2. Applet
	11.1.3. Application-Layer Failover
	11.1.4. Core Bridge Example
	11.1.5. Browser
	11.1.6. Client Kickoff
	11.1.7. Client side failover listener
	11.1.8. Client-Side Load-Balancing
	11.1.9. Clustered Durable Subscription
	11.1.10. Clustered Grouping
	11.1.11. Clustered Queue
	11.1.12. Clustering with JGroups
	11.1.13. Clustered Standalone
	11.1.14. Clustered Static Discovery
	11.1.15. Clustered Static Cluster One Way
	11.1.16. Clustered Topic
	11.1.17. Message Consumer Rate Limiting
	11.1.18. Dead Letter
	11.1.19. Delayed Redelivery
	11.1.20. Divert
	11.1.21. Durable Subscription
	11.1.22. Embedded
	11.1.23. Embedded Simple
	11.1.24. Message Expiration
	11.1.25. HornetQ Resource Adapter example
	11.1.26. HTTP Transport
	11.1.27. Instantiate JMS Objects Directly
	11.1.28. Interceptor
	11.1.29. JAAS
	11.1.30. JMS Auto Closable
	11.1.31. JMS Completion Listener
	11.1.32. JMS Bridge
	11.1.33. JMS Context
	11.1.34. JMS Shared Consumer
	11.1.35. JMX Management
	11.1.36. Large Message
	11.1.37. Last-Value Queue
	11.1.38. Management
	11.1.39. Management Notification
	11.1.40. Message Counter
	11.1.41. Message Group
	11.1.42. Message Group
	11.1.43. Message Priority
	11.1.44. Multiple Failover
	11.1.45. Multiple Failover Failback
	11.1.46. No Consumer Buffering
	11.1.47. Non-Transaction Failover With Server Data Replication
	11.1.48. Paging
	11.1.49. Pre-Acknowledge
	11.1.50. Message Producer Rate Limiting
	11.1.51. Proton Qpid
	11.1.52. Proton Ruby
	11.1.53. Queue
	11.1.54. Message Redistribution
	11.1.55. Queue Requestor
	11.1.56. Queue with Message Selector
	11.1.57. Reattach Node example
	11.1.58. Replicated Failback example
	11.1.59. Replicated Failback static example
	11.1.60. Replicated multiple failover example
	11.1.61. Replicated Failover transaction example
	11.1.62. Request-Reply example
	11.1.63. Rest example
	11.1.64. Scheduled Message
	11.1.65. Security
	11.1.66. Send Acknowledgements
	11.1.67. Spring Integration
	11.1.68. SSL Transport
	11.1.69. Static Message Selector
	11.1.70. Static Message Selector Using JMS
	11.1.71. Stomp
	11.1.72. Stomp1.1
	11.1.73. Stomp1.2
	11.1.74. Stomp Over Web Sockets
	11.1.75. Symmetric Cluster
	11.1.76. Temporary Queue
	11.1.77. Topic
	11.1.78. Topic Hierarchy
	11.1.79. Topic Selector 1
	11.1.80. Topic Selector 2
	11.1.81. Transaction Failover
	11.1.82. Failover Without Transactions
	11.1.83. Transactional Session
	11.1.84. XA Heuristic
	11.1.85. XA Receive
	11.1.86. XA Send
	11.1.87. XA with Transaction Manager

	11.2. Core API Examples
	11.2.1. Embedded

	11.3. Java EE Examples
	11.3.1. EJB/JMS Transaction
	11.3.2. Resource Adapter Configuration
	11.3.3. Resource Adapter Remote Server Configuration
	11.3.4. JMS Bridge
	11.3.5. MDB (Message Driven Bean)
	11.3.6. Servlet Transport
	11.3.7. Servlet SSL Transport
	11.3.8. XA Recovery

	Chapter 12. Routing Messages With Wild Cards
	Chapter 13. Understanding the HornetQ Wildcard Syntax
	Chapter 14. Filter Expressions
	Chapter 15. Persistence
	15.1. Configuring the bindings journal
	15.2. Configuring the jms journal
	15.3. Configuring the message journal
	15.4. An important note on disabling disk write cache.
	15.5. Installing AIO
	15.6. Configuring HornetQ for Zero Persistence
	15.7. Import/Export the Journal Data

	Chapter 16. Configuring the Transport
	16.1. Understanding Acceptors
	16.2. Understanding Connectors
	16.3. Configuring the transport directly from the client side.
	16.4. Configuring the Netty transport
	16.4.1. Single Port Support
	16.4.2. Configuring Netty TCP
	16.4.3. Configuring Netty SSL
	16.4.4. Configuring Netty HTTP
	16.4.5. Configuring Netty Servlet

	Chapter 17. Detecting Dead Connections
	17.1. Cleaning up Dead Connection Resources on the Server
	17.1.1. Closing core sessions or JMS connections that you have failed to close

	17.2. Detecting failure from the client side.
	17.3. Configuring Asynchronous Connection Execution

	Chapter 18. Resource Manager Configuration
	Chapter 19. Flow Control
	19.1. Consumer Flow Control
	19.1.1. Window-Based Flow Control
	19.1.1.1. Using Core API
	19.1.1.2. Using JMS

	19.1.2. Rate limited flow control
	19.1.2.1. Using Core API
	19.1.2.2. Using JMS

	19.2. Producer flow control
	19.2.1. Window based flow control
	19.2.1.1. Using Core API
	19.2.1.2. Using JMS
	19.2.1.3. Blocking producer window based flow control

	19.2.2. Rate limited flow control
	19.2.2.1. Using Core API
	19.2.2.2. Using JMS

	Chapter 20. Guarantees of sends and commits
	20.1. Guarantees of Transaction Completion
	20.2. Guarantees of Non Transactional Message Sends
	20.3. Guarantees of Non Transactional Acknowledgements
	20.4. Asynchronous Send Acknowledgements
	20.4.1. Asynchronous Send Acknowledgements

	Chapter 21. Message Redelivery and Undelivered Messages
	21.1. Delayed Redelivery
	21.1.1. Configuring Delayed Redelivery
	21.1.2. Example

	21.2. Dead Letter Addresses
	21.2.1. Configuring Dead Letter Addresses
	21.2.2. Dead Letter Properties
	21.2.3. Example

	21.3. Delivery Count Persistence

	Chapter 22. Message Expiry
	22.1. Message Expiry
	22.2. Configuring Expiry Addresses
	22.3. Configuring The Expiry Reaper Thread
	22.4. Example

	Chapter 23. Large Messages
	23.1. Configuring the server
	23.2. Configuring Parameters
	23.2.1. Using Core API
	23.2.2. Using JMS
	23.2.3. Compressed Large Messages
	23.2.3.1. compress-large-messages
	23.2.3.2.

	23.3. Streaming large messages
	23.3.1. Streaming over Core API
	23.3.2. Streaming over JMS

	23.4. Streaming Alternative
	23.5. Large message example

	Chapter 24. Paging
	24.1. Page Files
	24.2. Configuration
	24.3. Paging Mode
	24.3.1. Configuration

	24.4. Dropping messages
	24.5. Dropping messages and throwing an exception to producers
	24.6. Blocking producers
	24.7. Caution with Addresses with Multiple Queues
	24.8. Example

	Chapter 25. Queue Attributes
	25.1. Predefined Queues
	25.2. Using the API
	25.3. Configuring Queues Via Address Settings

	Chapter 26. Scheduled Messages
	26.1. Scheduled Delivery Property
	26.2. Example

	Chapter 27. Last-Value Queues
	27.1. Configuring Last-Value Queues
	27.2. Using Last-Value Property
	27.3. Example

	Chapter 28. Message Grouping
	28.1. Using Core API
	28.2. Using JMS
	28.3. Example
	28.4. Example
	28.5. Clustered Grouping
	28.5.1. Clustered Grouping Best Practices
	28.5.2. Clustered Grouping Example

	Chapter 29. Extra Acknowledge Modes
	29.1. Using PRE_ACKNOWLEDGE
	29.2. Individual Acknowledge
	29.3. Example

	Chapter 30. Management
	30.1. The Management API
	30.1.1. Core Management API
	30.1.1.1. Core Server Management
	30.1.1.2. Core Address Management
	30.1.1.3. Core Queue Management
	30.1.1.4. Other Core Resources Management

	30.1.2. JMS Management API
	30.1.2.1. JMS Server Management
	30.1.2.2. JMS ConnectionFactory Management
	30.1.2.3. JMS Queue Management
	30.1.2.4. JMS Topic Management

	30.2. Using Management Via JMX
	30.2.1. Configuring JMX
	30.2.1.1. MBeanServer configuration

	30.2.2. Example

	30.3. Using Management Via Core API
	30.3.1. Configuring Core Management

	30.4. Using Management Via JMS
	30.4.1. Configuring JMS Management
	30.4.2. Example

	30.5. Management Notifications
	30.5.1. JMX Notifications
	30.5.2. Core Messages Notifications
	30.5.2.1. Configuring The Core Management Notification Address

	30.5.3. JMS Messages Notifications
	30.5.4. Example
	30.5.5. Notification Types and Headers

	30.6. Message Counters
	30.6.1. Configuring Message Counters
	30.6.2. Example

	30.7. Administering HornetQ Resources Using The JBoss AS Admin Console
	30.7.1. JMS Queues
	30.7.2. JMS Topics
	30.7.3. JMS Connection Factories

	Chapter 31. Security
	31.1. Role based security for addresses
	31.2. Secure Sockets Layer (SSL) Transport
	31.3. Basic user credentials
	31.4. Changing the security manager
	31.5. JAAS Security Manager
	31.5.1. Example

	31.6. JBoss AS Security Manager
	31.6.1. Configuring Client Login
	31.6.2. Changing the Security Domain

	31.7. Changing the username/password for clustering

	Chapter 32. Application Server Integration and Java EE
	32.1. Configuring Message-Driven Beans
	32.1.1. Using Container-Managed Transactions
	32.1.2. Using Bean-Managed Transactions
	32.1.3. Using Message Selectors with Message-Driven Beans

	32.2. Sending Messages from within JEE components
	32.3. MDB and Consumer pool size
	32.4. Configuring the JCA Adaptor
	32.4.1. Global Properties
	32.4.2. Adapter Outbound Configuration
	32.4.3. Adapter Inbound Configuration
	32.4.4. Configuring the adapter to use a standalone HornetQ Server
	32.4.4.1.
	32.4.4.1.1. Configuring the Incoming Adaptor
	32.4.4.1.2. Configuring the outgoing adaptor
	32.4.4.1.3. Jar dependencies

	32.5. Configuring the JBoss Application Server to connect to Remote HornetQ Server
	32.5.1. Configuring JBoss 5
	32.5.2. Configuring JBoss 5

	32.6. High Availability JNDI (HA-JNDI)
	32.7. XA Recovery
	32.7.1. XA Recovery Configuration
	32.7.1.1. Configuration Settings

	32.7.2. Example

	Chapter 33. The JMS Bridge
	33.1. JMS Bridge Parameters
	33.2. Source and Target Connection Factories
	33.3. Source and Target Destination Factories
	33.4. Quality Of Service
	33.4.1. AT_MOST_ONCE
	33.4.2. DUPLICATES_OK
	33.4.3. ONCE_AND_ONLY_ONCE
	33.4.4. Time outs and the JMS bridge
	33.4.5. Examples

	Chapter 34. Client Reconnection and Session Reattachment
	34.1. 100% Transparent session re-attachment
	34.2. Session reconnection
	34.3. Configuring reconnection/reattachment attributes
	34.4. ExceptionListeners and SessionFailureListeners

	Chapter 35. Diverting and Splitting Message Flows
	35.1. Exclusive Divert
	35.2. Non-exclusive Divert

	Chapter 36. Core Bridges
	36.1. Configuring Bridges

	Chapter 37. Duplicate Message Detection
	37.1. Using Duplicate Detection for Message Sending
	37.2. Configuring the Duplicate ID Cache
	37.3. Duplicate Detection and Bridges
	37.4. Duplicate Detection and Cluster Connections

	Chapter 38. Clusters
	38.1. Clusters Overview
	38.2. Server discovery
	38.2.1. Dynamic Discovery
	38.2.1.1. Broadcast Groups
	38.2.1.2. Discovery Groups
	38.2.1.3. Defining Discovery Groups on the Server
	38.2.1.4. Discovery Groups on the Client Side
	38.2.1.4.1. Configuring client discovery using JMS
	38.2.1.4.2. Configuring client discovery using Core

	38.2.2. Discovery using static Connectors
	38.2.2.1. Configuring a Cluster Connection
	38.2.2.2. Configuring a Client Connection
	38.2.2.2.1. Configuring client discovery using JMS
	38.2.2.2.2. Configuring client discovery using Core

	38.3. Server-Side Message Load Balancing
	38.3.1. Configuring Cluster Connections
	38.3.2. Cluster User Credentials

	38.4. Client-Side Load balancing
	38.5. Specifying Members of a Cluster Explicitly
	38.6. Message Redistribution
	38.7. Cluster topologies
	38.7.1. Symmetric cluster
	38.7.2. Chain cluster

	Chapter 39. High Availability and Failover
	39.1. Live - Backup Groups
	39.1.1. HA modes
	39.1.2. Data Replication
	39.1.2.1. Configuration

	39.1.3. Shared Store
	39.1.3.1. Configuration

	39.1.4. Failing Back to live Server

	39.2. Failover Modes
	39.2.1. Automatic Client Failover
	39.2.1.1. Failing over on the Initial Connection
	39.2.1.2. A Note on Server Replication
	39.2.1.3. Handling Blocking Calls During Failover
	39.2.1.4. Handling Failover With Transactions
	39.2.1.5. Handling Failover With Non Transactional Sessions

	39.2.2. Getting Notified of Connection Failure
	39.2.3. Application-Level Failover

	Chapter 40. Libaio Native Libraries
	40.1. Compiling the native libraries
	40.1.1. Install requirements
	40.1.2. Invoking the compilation

	Chapter 41. Thread management
	41.1. Server-Side Thread Management
	41.1.1. Server Scheduled Thread Pool
	41.1.2. General Purpose Server Thread Pool
	41.1.3. Expiry Reaper Thread
	41.1.4. Asynchronous IO

	41.2. Client-Side Thread Management

	Chapter 42. Logging
	42.1. Logging in a client or with an Embedded server
	42.2. Logging With The JBoss Application Server

	Chapter 43. REST Interface
	43.1. Goals of REST Interface
	43.2. Installation and Configuration
	43.2.1. Installing Within Pre-configured Environment
	43.2.2. Bootstrapping HornetQ Along with REST
	43.2.3. REST Configuration

	43.3. HornetQ REST Interface Basics
	43.3.1. Queue and Topic Resources
	43.3.2. Queue Resource Response Headers
	43.3.3. Topic Resource Response Headers

	43.4. Posting Messages
	43.4.1. Duplicate Detection
	43.4.2. Persistent Messages
	43.4.3. TTL, Expiration and Priority

	43.5. Consuming Messages via Pull
	43.5.1. Auto-Acknowledge
	43.5.1.1. Creating an Auto-Ack Consumer or Subscription
	43.5.1.2. Consuming Messages
	43.5.1.3. Recovering From Network Failures
	43.5.1.4. Recovering From Client or Server Crashes

	43.5.2. Manual Acknowledgement
	43.5.2.1. Creating manually-acknowledged consumers or subscriptions
	43.5.2.2. Consuming and Acknowledging a Message
	43.5.2.3. Recovering From Network Failures
	43.5.2.4. Recovering From Client or Server Crashes

	43.5.3. Blocking Pulls with Accept-Wait
	43.5.4. Clean Up Your Consumers!

	43.6. Pushing Messages
	43.6.1. The Queue Push Subscription XML
	43.6.2. The Topic Push Subscription XML
	43.6.3. Creating a Push Subscription at Runtime
	43.6.4. Creating a Push Subscription by Hand
	43.6.5. Pushing to Authenticated Servers

	43.7. Creating Destinations
	43.8. Securing the HornetQ REST Interface
	43.8.1. Within JBoss Application server
	43.8.2. Security in other environments

	43.9. Mixing JMS and REST
	43.9.1. JMS Producers - REST Consumers
	43.9.2. REST Producers - JMS Consumers

	Chapter 44. Embedding HornetQ
	44.1. Simple Config File Embedding
	44.1.1. Core API Only
	44.1.2. JMS API

	44.2. POJO instantiation - Embedding Programmatically
	44.3. Dependency Frameworks

	Chapter 45. Spring Integration
	Chapter 46. AeroGear Integration
	46.1. Configuring an AeroGear Connector Service
	46.2. How to send a message for AeroGear

	Chapter 47. Intercepting Operations
	47.1. Implementing The Interceptors
	47.2. Configuring The Interceptors
	47.3. Interceptors on the Client Side
	47.4. Example

	Chapter 48. Interoperability
	48.1. Stomp
	48.1.1. Native Stomp support
	48.1.1.1. Limitations
	48.1.1.2. Stomp 1.1/1.2 Notes
	48.1.1.2.1. Virtual Hosting
	48.1.1.2.2. Heart-beating

	48.1.2. Mapping Stomp destinations to HornetQ addresses and queues
	48.1.3. STOMP and connection-ttl
	48.1.4. Stomp and JMS interoperability
	48.1.4.1. Using JMS destinations
	48.1.4.2. Sending and consuming Stomp message from JMS or HornetQ Core API
	48.1.4.3. Message IDs for Stomp messages
	48.1.4.4. Handling of Large Messages with Stomp

	48.1.5. Stomp Over Web Sockets
	48.1.6. StompConnect

	48.2. REST
	48.3. AMQP
	48.3.1. AMQP and security
	48.3.2. AMQP Links
	48.3.3. AMQP and destinations
	48.3.4. AMQP and Coordinations - Handling Transactions

	Chapter 49. Performance Tuning
	49.1. Tuning persistence
	49.2. Tuning JMS
	49.3. Other Tunings
	49.4. Tuning Transport Settings
	49.5. Tuning the VM
	49.6. Avoiding Anti-Patterns

	Chapter 50. Configuration Reference
	50.1. Server Configuration
	50.1.1. hornetq-configuration.xml
	50.1.2. hornetq-jms.xml
	50.1.3. Using Masked Passwords in Configuration Files
	50.1.3.1. Password Masking in Server Configuration File
	50.1.3.1.1. The password masking property
	50.1.3.1.2. Specific masking behaviors
	50.1.3.1.2.1. cluster-password
	50.1.3.1.2.2. Passwords in connectors and acceptors
	50.1.3.1.2.3. Passwords in Core Bridge configurations

	50.1.3.1.3. Examples

	50.1.3.2. JMS Bridge password masking
	50.1.3.3. Masking passwords in HornetQ ResourceAdapters and MDB activation configurations
	50.1.3.4. Masking passwords in hornetq-users.xml
	50.1.3.5. Choosing a decoder for password masking
	50.1.3.5.1. The built-in Decoder
	50.1.3.5.2. Using a different decoder
	50.1.3.5.3. Implementing your own codecs

