Configuring Infinispan Cluster
Transport

Table of Contents

1. Understanding Infinispan Caches
1.1. Cache Interface
1.2. Cache Managers
1.3. Cache Containers
1.4. Cache Modes
1.4.1. Cache Mode Comparison
2. Local Caches
2.1. Simple Caches
3. Clustered Caches
3.1. Invalidation Mode
3.2. Replicated Caches
3.3. Distributed Caches
3.3.1. Read consistency
3.3.2. Key Ownership
3.3.3. Zero Capacity Node
3.3.4. Hashing Configuration
3.3.5. Initial cluster size
3.3.6. L1 Caching
3.3.7. Server Hinting
3.3.8. Key affinity service
3.4. Scattered Caches
4. Asynchronous Communication with Clustered Caches
4.1. Asynchronous Communications
4.2. Asynchronous API

4.3. Return Values in Asynchronous Communication

0 OO O R NN R R, R e

NN NN N R B R R R R, |l R, |,
[N N N N N G % T S T O N U CE)

Chapter 1. Understanding Infinispan Caches

Infinispan caches provide flexible, in-memory data stores that you can configure to suit use cases
such as:

* boosting application performance with high-speed local caches.
» optimizing databases by decreasing the volume of write operations.

* providing resiliency and durability for consistent data across clusters.

1.1. Cache Interface

Cache<K, V> is the central interface for Infinispan and extends java.util.concurrent.ConcurrentMap.

Cache entries are highly concurrent data structures in key:value format that support a wide and
configurable range of data types, from simple strings to much more complex objects.

1.2. Cache Managers

Infinispan provides a CacheManager interface that lets you create, modify, and manage local or
clustered caches. Cache Managers are the starting point for using Infinispan caches.

There are two CacheManager implementations:

EmbeddedCacheManager
Entry point for caches when running Infinispan inside the same Java Virtual Machine (JVM) as
the client application, which is also known as Library Mode.

RemoteCacheManager
Entry point for caches when running Infinispan as a remote server in its own JVM. When it
starts running, RemoteCacheManager establishes a persistent TCP connection to a Hot Rod endpoint
on a Infinispan server.

Both embedded and remote CacheManager implementations share some methods
and properties. However, semantic differences do exist between
EmbeddedCacheManager and RemoteCacheManager.

1.3. Cache Containers

Cache containers declare one or more local or clustered caches that a Cache Manager controls.

Cache container declaration
<cache-container name="clustered" default-cache="default">

</cache-container>

1.4. Cache Modes

Infinispan Cache Managers can create and control multiple caches that use
different modes. For example, you can use the same Cache Manager for local
caches, distributes caches, and caches with invalidation mode.

Local Caches

Infinispan runs as a single node and never replicates read or write operations on cache entries.

Clustered Caches

Infinispan instances running on the same network can automatically discover each other and
form clusters to handle cache operations.

Invalidation Mode

Rather than replicating cache entries across the cluser, Infinispan evicts stale data from all
nodes whenever operations modify entries in the cache. Infinispan performs local read
operations only.

Replicated Caches

Infinispan replicates each cache entry on all nodes and performs local read operations only.

Distributed Caches
Infinispan stores cache entries across a subset of nodes and assigns entries to fixed owner
nodes. Infinispan requests read operations from owner nodes to ensure it returns the correct
value.

Scattered Caches

Infinispan stores cache entries across a subset of nodes. By default Infinispan assigns a primary
owner and a backup owner to each cache entry in scattered caches. Infinispan assigns primary
owners in the same way as with distributed caches, while backup owners are always the nodes
that initiate the write operations. Infinispan requests read operations from at least one owner
node to ensure it returns the correct value.

1.4.1. Cache Mode Comparison

The cache mode that you should choose depends on the qualities and guarantees you need for your
data.

The following table summarizes the primary differences between cache modes:

Simple Local Invalidatio Replicated Distributed Scattered
n
Clustered No No Yes Yes Yes Yes
Read Highest High High High Medium Medium
performance (local) (local) (local) (local) (owners) (primary)

Write
performance

Capacity

Availability

Features

Simple Local Invalidatio Replicated Distributed Scattered

n
Highest High Low Lowest Medium Higher
(local) (local) (all nodes, (all nodes) (owner (single RPC)
no data) nodes)
Single node Single node Single node Smallest Cluster Cluster
node (sum_@G=1A" (sum_(@G=1)A"
nodes""nod nodes"'nod
e_capacity")/ e_capacity")/
llownersll "2"
Single node Single node Single node All nodes Owner Owner
nodes nodes
No TX, All All All All No TX
persistence
, iIndexing

Chapter 2. Local Caches

While Infinispan is particularly interesting in clustered mode, it also offers a very capable local
mode. In this mode, it acts as a simple, in-memory data cache similar to a ConcurrentHashMap.

But why would one use a local cache rather than a map? Caches offer a lot of features over and
above a simple map, including write-through and write-behind to a persistent store, eviction of
entries to prevent running out of memory, and expiration.

Infinispan’s Cache interface extends JDK’s ConcurrentMap—making migration from a map to
Infinispan trivial.

Infinispan caches also support transactions, either integrating with an existing transaction
manager or running a separate one. Local caches transactions have two choices:

1. When to lock? Pessimistic locking locks keys on a write operation or when the user calls
AdvancedCache.lock(keys) explicitly. Optimistic locking only locks keys during the transaction
commit, and instead it throws a WriteSkewCheckException at commit time, if another transaction
modified the same keys after the current transaction read them.

2. Isolation level. We support read-committed and repeatable read.

2.1. Simple Caches

Traditional local caches use the same architecture as clustered caches, i.e. they use the interceptor
stack. That way a lot of the implementation can be reused. However, if the advanced features are
not needed and performance is more important, the interceptor stack can be stripped away and
simple cache can be used.

So, which features are stripped away? From the configuration perspective, simple cache does not
support:

* transactions and invocation batching

* persistence (cache stores and loaders)

* custom interceptors (there’s no interceptor stack!)

* indexing

* transcoding

* store as binary (which is hardly useful for local caches)
From the API perspective these features throw an exception:

* adding custom interceptors

e Distributed Executors Framework
So, what’s left?

* basic map-like API

* cache listeners (local ones)

* expiration

* eviction

* security

* JMX access

* statistics (though for max performance it is recommended to switch this off using statistics-

available=false)

Declarative configuration

<local-cache name="mySimpleCache" simple-cache="true">
<!-- expiration, eviction, security... -->
</local-cache>

Programmatic configuration

CacheManager cm = getCacheManager();

ConfigurationBuilder builder = new ConfigurationBuilder().simpleCache(true);
cm.defineConfiguration("mySimpleCache", builder.build());

Cache cache = cm.getCache("mySimpleCache");

Simple cache checks against features it does not support, if you configure it to use e.g. transactions,
configuration validation will throw an exception.

Chapter 3. Clustered Caches

Clustered caches store data across multiple Infinispan nodes using JGroups technology as the
transport layer to pass data across the network.

3.1. Invalidation Mode

You can use Infinispan in invalidation mode to optimize systems that perform high volumes of read
operations. A good example is to use invalidation to prevent lots of database writes when state
changes occur.

This cache mode only makes sense if you have another, permanent store for your data such as a
database and are only using Infinispan as an optimization in a read-heavy system, to prevent
hitting the database for every read. If a cache is configured for invalidation, every time data is
changed in a cache, other caches in the cluster receive a message informing them that their data is
now stale and should be removed from memory and from any local store.

originator

CHe

¥ e

Figure 1. Invalidation mode

Sometimes the application reads a value from the external store and wants to write it to the local
cache, without removing it from the other nodes. To do this, it must call
Cache.putForExternalRead(key, value) instead of Cache.put(key, value).

Invalidation mode can be used with a shared cache store. A write operation will both update the
shared store, and it would remove the stale values from the other nodes' memory. The benefit of
this is twofold: network traffic is minimized as invalidation messages are very small compared to
replicating the entire value, and also other caches in the cluster look up modified data in a lazy
manner, only when needed.

ﬁ Never use invalidation mode with a local store. The invalidation message will not
remove entries in the local store, and some nodes will keep seeing the stale value.

An invalidation cache can also be configured with a special cache loader, ClusterLoader. When
(lusterLoader is enabled, read operations that do not find the key on the local node will request it
from all the other nodes first, and store it in memory locally. In certain situation it will store stale
values, so only use it if you have a high tolerance for stale values.

Invalidation mode can be synchronous or asynchronous. When synchronous, a write blocks until
all nodes in the cluster have evicted the stale value. When asynchronous, the originator broadcasts
invalidation messages but doesn’t wait for responses. That means other nodes still see the stale
value for a while after the write completed on the originator.

Transactions can be used to batch the invalidation messages. Transactions acquire the key lock on
the primary owner. To find more about how primary owners are assigned, please read the Key
Ownership section.

* With pessimistic locking, each write triggers a lock message, which is broadcast to all the nodes.
During transaction commit, the originator broadcasts a one-phase prepare message (optionally
fire-and-forget) which invalidates all affected keys and releases the locks.

* With optimistic locking, the originator broadcasts a prepare message, a commit message, and an
unlock message (optional). Either the one-phase prepare or the unlock message is fire-and-
forget, and the last message always releases the locks.

3.2. Replicated Caches

Entries written to a replicated cache on any node will be replicated to all other nodes in the cluster,
and can be retrieved locally from any node. Replicated mode provides a quick and easy way to
share state across a cluster, however replication practically only performs well in small clusters
(under 10 nodes), due to the number of messages needed for a write scaling linearly with the
cluster size. Infinispan can be configured to use UDP multicast, which mitigates this problem to
some degree.

Each key has a primary owner, which serializes data container updates in order to provide
consistency. To find more about how primary owners are assigned, please read the Key Ownership
section.

#key_ownership
#key_ownership
#key_ownership

originator,
backup

primary

A9

8 /(| O

ge

backup

Figure 2. Replicated mode

backup

Replicated mode can be synchronous or asynchronous.

* Synchronous replication blocks the caller (e.g. on a cache.put(key, value)) until the
modifications have been replicated successfully to all the nodes in the cluster.

» Asynchronous replication performs replication in the background, and write operations return
immediately. Asynchronous replication is not recommended, because communication errors, or
errors that happen on remote nodes are not reported to the caller.

If transactions are enabled, write operations are not replicated through the primary owner.

* With pessimistic locking, each write triggers a lock message, which is broadcast to all the nodes.
During transaction commit, the originator broadcasts a one-phase prepare message and an
unlock message (optional). Either the one-phase prepare or the unlock message is fire-and-
forget.

* With optimistic locking, the originator broadcasts a prepare message, a commit message, and an
unlock message (optional). Again, either the one-phase prepare or the unlock message is fire-
and-forget.

3.3. Distributed Caches

Distribution tries to keep a fixed number of copies of any entry in the cache, configured as
numOwners. This allows the cache to scale linearly, storing more data as nodes are added to the
cluster.

As nodes join and leave the cluster, there will be times when a key has more or less than numOwners
copies. In particular, if numOwners nodes leave in quick succession, some entries will be lost, so we
say that a distributed cache tolerates numOwners - 1 node failures.

The number of copies represents a trade-off between performance and durability of data. The more
copies you maintain, the lower performance will be, but also the lower the risk of losing data due to
server or network failures. Regardless of how many copies are maintained, distribution still scales
linearly, and this is key to Infinispan’s scalability.

The owners of a key are split into one primary owner, which coordinates writes to the key, and
zero or more backup owners. To find more about how primary and backup owners are assigned,
please read the Key Ownership section.

10

#key_ownership

originator

e

C
v

backup

Figure 3. Distributed mode

primary

A9

ge

backup

11

A read operation will request the value from the primary owner, but if it doesn’t respond in a
reasonable amount of time, we request the value from the backup owners as well. (The
infinispan.stagger.delay system property, in milliseconds, controls the delay between requests.) A
read operation may require @ messages if the key is present in the local cache, or up to 2 *
numOwners messages if all the owners are slow.

A write operation will also result in at most 2 * numOwners messages: one message from the
originator to the primary owner, numOwners - 1 messages from the primary to the backups, and the
corresponding ACK messages.

ﬁ Cache topology changes may cause retries and additional messages, both for reads
and for writes.

Just as replicated mode, distributed mode can also be synchronous or asynchronous. And as in
replicated mode, asynchronous replication is not recommended because it can lose updates. In
addition to losing updates, asynchronous distributed caches can also see a stale value when a
thread writes to a key and then immediately reads the same key.

Transactional distributed caches use the same kinds of messages as transactional replicated caches,
except lock/prepare/commit/unlock messages are sent only to the affected nodes (all the nodes that
own at least one key affected by the transaction) instead of being broadcast to all the nodes in the
cluster. As an optimization, if the transaction writes to a single key and the originator is the
primary owner of the key, lock messages are not replicated.

3.3.1. Read consistency

Even with synchronous replication, distributed caches are not linearizable. (For transactional
caches, we say they do not support serialization/snapshot isolation.) We can have one thread doing
a single put:

cache.get(k) -> v1
cache.put(k, v2)
cache.get(k) -> v2

But another thread might see the values in a different order:

cache.get(k) -> v2
cache.get(k) -> v1

The reason is that read can return the value from any owner, depending on how fast the primary
owner replies. The write is not atomic across all the owners—in fact, the primary commits the
update only after it receives a confirmation from the backup. While the primary is waiting for the
confirmation message from the backup, reads from the backup will see the new value, but reads
from the primary will see the old one.

12

3.3.2. Key Ownership

Distributed caches split entries into a fixed number of segments and assign each segment to a list of
owner nodes. Replicated caches do the same, with the exception that every node is an owner.

The first node in the list of owners is the primary owner. The other nodes in the list are backup
owners. When the cache topology changes, because a node joins or leaves the cluster, the segment
ownership table is broadcast to every node. This allows nodes to locate keys without making
multicast requests or maintaining metadata for each key.

The numSegments property configures the number of segments available. However, the number of
segments cannot change unless the cluster is restarted.

Likewise the key-to-segment mapping cannot change. Keys must always map to the same segments
regardless of cluster topology changes. It is important that the key-to-segment mapping evenly
distributes the number of segments allocated to each node while minimizing the number of
segments that must move when the cluster topology changes.

You can customize the key-to-segment mapping by configuring a KeyPartitioner or by using the
Grouping API.

However, Infinispan provides the following implementations:

SyncConsistentHashFactory

Uses an algorithm based on consistent hashing. Selected by default when server hinting is
disabled.

This implementation always assigns keys to the same nodes in every cache as long as the cluster
is symmetric. In other words, all caches run on all nodes. This implementation does have some
negative points in that the load distribution is slightly uneven. It also moves more segments than
strictly necessary on a join or leave.

TopologyAwareSyncConsistentHashFactory

Similar to SyncConsistentHashFactory, but adapted for Server Hinting. Selected by default when
server hinting is enabled.

DefaultConsistentHashFactory

Achieves a more even distribution than SyncConsistentHashFactory, but with one disadvantage.
The order in which nodes join the cluster determines which nodes own which segments. As a
result, keys might be assigned to different nodes in different caches.

Was the default from version 5.2 to version 8.1 with server hinting disabled.

TopologyAwareConsistentHashFactory

Similar to DefaultConsistentHashFactory, but adapted for Server Hinting.
Was the default from version 5.2 to version 8.1 with server hinting enabled.

ReplicatedConsistentHashFactory

Used internally to implement replicated caches. You should never explicitly select this algorithm

13

https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/distribution/ch/KeyPartitioner.html
#grouping_api
http://en.wikipedia.org/wiki/Consistent_hashing
#server_hinting
#server_hinting

in a distributed cache.

Capacity Factors

Capacity factors are another way to customize the mapping of segments to nodes. The nodes in a
cluster are not always identical. If a node has 2x the memory of a "regular" node, configuring it
with a capacityFactor of 2 tells Infinispan to allocate 2x segments to that node. The capacity factor
can be any non-negative number, and the hashing algorithm will try to assign to each node a load
weighted by its capacity factor (both as a primary owner and as a backup owner).

One interesting use case is nodes with a capacity factor of 0. This could be useful when some nodes
are too short-lived to be useful as data owners, but they can’t use HotRod (or other remote
protocols) because they need transactions. With cross-site replication as well, the "site master"
should only deal with forwarding commands between sites and shouldn’t handle user requests, so
it makes sense to configure it with a capacity factor of 0.

3.3.3. Zero Capacity Node

You might need to configure a whole node where the capacity factor is @ for every cache, user
defined caches and internal caches. When defining a zero capacity node, the node won’t hold any
data. This is how you declare a zero capacity node:

<cache-container zero-capacity-node="true" />

new GlobalConfigurationBuilder().zeroCapacityNode(true);

However, note that this will be true for distributed caches only. If you are using replicated caches,
the node will still keep a copy of the value. Use only distributed caches to make the best use of this
feature.

3.3.4. Hashing Configuration

This is how you configure hashing declaratively, via XML:

<distributed-cache name="distributedCache" owners="2" segments="100" capacity-factor=

||2|| />

And this is how you can configure it programmatically, in Java:

14

Configuration ¢ = new ConfigurationBuilder()
.clustering()
.cacheMode(CacheMode.DIST_SYNC)
.hash()
.numOwners(2)
.numSegments(100)
.capacityFactor(2)
.build();

3.3.5. Initial cluster size

Infinispan’s very dynamic nature in handling topology changes (i.e. nodes being added / removed
at runtime) means that, normally, a node doesn’t wait for the presence of other nodes before
starting. While this is very flexible, it might not be suitable for applications which require a specific
number of nodes to join the cluster before caches are started. For this reason, you can specify how
many nodes should have joined the cluster before proceeding with cache initialization. To do this,
use the initialClusterSize and initialClusterTimeout transport properties. The declarative XML
configuration:

<transport initial-cluster-size="4" initial-cluster-timeout="30000" />
The programmatic Java configuration:

GlobalConfiguration global = new GlobalConfigurationBuilder()
.transport()
.initialClusterSize(4)
.initialClusterTimeout(30000)
.build();

The above configuration will wait for 4 nodes to join the cluster before initialization. If the initial
nodes do not appear within the specified timeout, the cache manager will fail to start.

3.3.6. L1 Caching

When L1 is enabled, a node will keep the result of remote reads locally for a short period of time
(configurable, 10 minutes by default), and repeated lookups will return the local L1 value instead of
asking the owners again.

15

originator

Figure 4. L1 caching

16

primary

L1 caching is not free though. Enabling it comes at a cost, and this cost is that every entry update
must broadcast an invalidation message to all the nodes. L1 entries can be evicted just like any
other entry when the the cache is configured with a maximum size. Enabling L1 will improve
performance for repeated reads of non-local keys, but it will slow down writes and it will increase
memory consumption to some degree.

Is L1 caching right for you? The correct approach is to benchmark your application with and
without L1 enabled and see what works best for your access pattern.

3.3.7. Server Hinting

The following topology hints can be specified:

Machine

This is probably the most useful, when multiple JVM instances run on the same node, or even
when multiple virtual machines run on the same physical machine.

Rack

In larger clusters, nodes located on the same rack are more likely to experience a hardware or
network failure at the same time.

Site
Some clusters may have nodes in multiple physical locations for extra resilience. Note that Cross
site replication is another alternative for clusters that need to span two or more data centres.

All of the above are optional. When provided, the distribution algorithm will try to spread the
ownership of each segment across as many sites, racks, and machines (in this order) as possible.

Configuration

The hints are configured at transport level:

<transport
cluster="MyCluster"
machine="LinuxServer@1"
rack="Rack01"
site="US-WestCoast" />

3.3.8. Key affinity service

In a distributed cache, a key is allocated to a list of nodes with an opaque algorithm. There is no
easy way to reverse the computation and generate a key that maps to a particular node. However,
we can generate a sequence of (pseudo-)random keys, see what their primary owner is, and hand
them out to the application when it needs a key mapping to a particular node.

API

Following code snippet depicts how a reference to this service can be obtained and used.

17

// 1. Obtain a reference to a cache
Cache cache = ...
Address address = cache.getCacheManager().getAddress();

// 2. Create the affinity service
KeyAffinityService keyAffinityService = KeyAffinityServiceFactory
.newLocalKeyAffinityService(

cache,

new RndKeyGenerator(),

Executors.newSingleThreadExecutor(),

100);

// 3. Obtain a key for which the local node is the primary owner
Object localKey = keyAffinityService.getKeyForAddress(address);

// 4. Insert the key in the cache
cache.put(localKey, "yourValue");

The service is started at step 2: after this point it uses the supplied Executor to generate and queue
keys. At step 3, we obtain a key from the service, and at step 4 we use it.

Lifecycle

KeyAffinityService extends Lifecycle, which allows stopping and (re)starting it:

public interface Lifecycle {
void start();
void stop();

}

The service is instantiated through KeyAffinityServiceFactory. All the factory methods have an
Executor parameter, that is used for asynchronous key generation (so that it won’t happen in the
caller’s thread). It is the user’s responsibility to handle the shutdown of this Executor.

The KeyAffinityService, once started, needs to be explicitly stopped. This stops the background key
generation and releases other held resources.

The only situation in which KeyAffinityService stops by itself is when the cache manager with
which it was registered is shutdown.

Topology changes

When the cache topology changes (i.e. nodes join or leave the cluster), the ownership of the keys
generated by the KeyAffinityService might change. The key affinity service keep tracks of these
topology changes and doesn’t return keys that would currently map to a different node, but it won’t
do anything about keys generated earlier.

As such, applications should treat KeyAffinityService purely as an optimization, and they should

18

not rely on the location of a generated key for correctness.

In particular, applications should not rely on keys generated by KeyAffinityService for the same
address to always be located together. Collocation of keys is only provided by the Grouping API.

The Grouping API

Complementary to Key affinity service, the grouping API allows you to co-locate a group of entries
on the same nodes, but without being able to select the actual nodes.

How does it work?

By default, the segment of a key is computed using the key’s hashCode(). If you use the grouping API,
Infinispan will compute the segment of the group and use that as the segment of the key. See the
Key Ownership section for more details on how segments are then mapped to nodes.

When the group API is in use, it is important that every node can still compute the owners of every
key without contacting other nodes. For this reason, the group cannot be specified manually. The
group can either be intrinsic to the entry (generated by the key class) or extrinsic (generated by an
external function).

How do I use the grouping API?
First, you must enable groups. If you are configuring Infinispan programmatically, then call:
Configuration ¢ = new ConfigurationBuilder()

.clustering().hash().groups().enabled()
.build();

Or, if you are using XML:

<distributed-cache>
<groups enabled="true"/>
</distributed-cache>

If you have control of the key class (you can alter the class definition, it’s not part of an
unmodifiable library), then we recommend using an intrinsic group. The intrinsic group is
specified by adding the @Group annotation to a method. Let’s take a look at an example:

19

#grouping_api
#key_affinity_service
#key_ownership

class User {

String office;

public int hashCode() {
// Defines the hash for the key, normally used to determine location

}

// Override the location by specifying a group
// A1l keys in the same group end up with the same owners
@Group
public String getOffice() {
return office;

}
}

0 The group method must return a String

If you don’t have control over the key class, or the determination of the group is an orthogonal
concern to the key class, we recommend using an extrinsic group. An extrinsic group is specified by
implementing the Grouper interface.

public interface Grouper<T> {
String computeGroup(T key, String group);

Class<T> getKeyType();

If multiple Grouper classes are configured for the same key type, all of them will be called, receiving
the value computed by the previous one. If the key class also has a @Group annotation, the first
Grouper will receive the group computed by the annotated method. This allows you even greater
control over the group when using an intrinsic group. Let’s take a look at an example Grouper
implementation:

20

public class KXGrouper implements Grouper<String> {

// The pattern requires a String key, of length 2, where the first character is
// "k" and the second character is a digit. We take that digit, and perform

// modular arithmetic on it to assign it to group "@" or group "1".

private static Pattern kPattern = Pattern.compile("(”k)(<a>\\d)$");

public String computeGroup(String key, String group) {
Matcher matcher = kPattern.matcher(key);
if (matcher.matches()) {
String g = Integer.parselnt(matcher.group(2)) % 2 + "";
return g,
} else {
return null;
}
}

public Class<String> getKeyType() {
return String.class;

}

Grouper implementations must be registered explicitly in the cache configuration. If you are
configuring Infinispan programmatically:

Configuration ¢ = new ConfiqurationBuilder()
.clustering().hash().groups().enabled().addGrouper(new KXGrouper())
.build();

Or, if you are using XML:

<distributed-cache>
<groups enabled="true">
<grouper class="com.acme.KXGrouper" />
</groups>
</distributed-cache>

Advanced Interface

AdvancedCache has two group-specific methods:

getGroup(groupName)

Retrieves all keys in the cache that belong to a group.

removeGroup(groupName)

Removes all the keys in the cache that belong to a group.

21

https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/AdvancedCache.html#getGroup-java.lang.String-
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/AdvancedCache.html#removeGroup-java.lang.String-

Both methods iterate over the entire data container and store (if present), so they can be slow when
a cache contains lots of small groups.

3.4. Scattered Caches

Scattered mode is very similar to Distribution Mode as it allows linear scaling of the cluster. It
allows single node failure by maintaining two copies of the data (as Distribution Mode with
numOwners=2). Unlike Distributed, the location of data is not fixed; while we use the same
Consistent Hash algorithm to locate the primary owner, the backup copy is stored on the node that
wrote the data last time. When the write originates on the primary owner, backup copy is stored on
any other node (the exact location of this copy is not important).

This has the advantage of single Remote Procedure Call (RPC) for any write (Distribution Mode
requires one or two RPCs), but reads have to always target the primary owner. That results in faster
writes but possibly slower reads, and therefore this mode is more suitable for write-intensive
applications.

Storing multiple backup copies also results in slightly higher memory consumption. In order to
remove out-of-date backup copies, invalidation messages are broadcast in the cluster, which
generates some overhead. This makes scattered mode less performant in very big clusters (this
behaviour might be optimized in the future).

When a node crashes, the primary copy may be lost. Therefore, the cluster has to reconcile the
backups and find out the last written backup copy. This process results in more network traffic
during state transfer.

Since the writer of data is also a backup, even if we specify machine/rack/site ids on the transport
level the cluster cannot be resilient to more than one failure on the same machine/rack/site.

Currently it is not possible to use scattered mode in transactional cache. Asynchronous replication
is not supported either; use asynchronous Cache API instead. Functional commands are not
implemented neither but these are expected to be added soon.

The cache is configured in a similar way as the other cache modes, here is an example of
declarative configuration:

<scattered-cache name="scatteredCache" />
And this is how you can configure it programmatically:

Configuration ¢ = new ConfigurationBuilder()
.clustering().cacheMode(CacheMode.SCATTERED_SYNC)
.build();

Scattered mode is not exposed in the server configuration as the server is usually accessed through
the Hot Rod protocol. The protocol automatically selects primary owner for the writes and
therefore the write (in distributed mode with two owner) requires single RPC inside the cluster, too.

22

Therefore, scattered cache would not bring the performance benefit.

23

Chapter 4. Asynchronous Communication
with Clustered Caches

4.1. Asynchronous Communications

All clustered cache modes can be configured to use asynchronous communications with the
mode="ASYNC" attribute on the <replicated-cache/>, <distributed-cache>, or <invalidation-cache/>
element.

With asynchronous communications, the originator node does not receive any acknowledgement
from the other nodes about the status of the operation, so there is no way to check if it succeeded
on other nodes.

We do not recommend asynchronous communications in general, as they can cause inconsistencies
in the data, and the results are hard to reason about. Nevertheless, sometimes speed is more
important than consistency, and the option is available for those cases.

4.2. Asynchronous API

The Asynchronous API allows you to use synchronous communications, but without blocking the
user thread.

There is one caveat: The asynchronous operations do NOT preserve the program order. If a thread
calls cache.putAsync(k, v1); cache.putAsync(k, v2), the final value of k may be either v1 or v2. The
advantage over using asynchronous communications is that the final value can’t be v1 on one node
and v2 on another.

0 Prior to version 9.0, the asynchronous API was emulated by borrowing a thread
from an internal thread pool and running a blocking operation on that thread.

4.3. Return Values in Asynchronous Communication

Because the C(ache interface extends java.util.Map, write methods like put(key, value) and
remove(key) return the previous value by default.

In some cases, the return value may not be correct:
1. When using AdvancedCache.withFlags() with Flag.IGNORE_RETURN_VALUE, Flag.SKIP_REMOTE_LOOKUP,
or Flag.SKIP_CACHE_LOAD.
2. When the cache is configured with unreliable-return-values="true".
3. When using asynchronous communications.

4. When there are multiple concurrent writes to the same key, and the cache topology changes.
The topology change will make Infinispan retry the write operations, and a retried operation’s
return value is not reliable.

24

https://docs.jboss.org/infinispan/10.0/configdocs/

Transactional caches return the correct previous value in cases 3 and 4. However, transactional
caches also have a gotcha: in distributed mode, the read-committed isolation level is implemented
as repeatable-read. That means this example of "double-checked locking" won’t work:

Cache cache = ...
TransactionManager tm = ...

tm.begin();
try {
Integer v1 = cache.get(k);
// Increment the value
Integer v2 = cache.put(k, v1 + 1);
if (Objects.equals(v1, v2) {

// success
} else {
// retry
}
} finally {
tm.commit();
}
The correct way to implement this is to use

cache.getAdvancedCache().withFlags(Flag.FORCE_WRITE_LOCK).get (k).

In caches with optimistic locking, writes can also return stale previous values. Write skew checks
can avoid stale previous values.

25

	Configuring Infinispan Cluster Transport
	Table of Contents
	Chapter 1. Understanding Infinispan Caches
	1.1. Cache Interface
	1.2. Cache Managers
	1.3. Cache Containers
	1.4. Cache Modes
	1.4.1. Cache Mode Comparison

	Chapter 2. Local Caches
	2.1. Simple Caches

	Chapter 3. Clustered Caches
	3.1. Invalidation Mode
	3.2. Replicated Caches
	3.3. Distributed Caches
	3.3.1. Read consistency
	3.3.2. Key Ownership
	3.3.3. Zero Capacity Node
	3.3.4. Hashing Configuration
	3.3.5. Initial cluster size
	3.3.6. L1 Caching
	3.3.7. Server Hinting
	3.3.8. Key affinity service

	3.4. Scattered Caches

	Chapter 4. Asynchronous Communication with Clustered Caches
	4.1. Asynchronous Communications
	4.2. Asynchronous API
	4.3. Return Values in Asynchronous Communication

