Monitoring Infinispan 10.0

Table of Contents

1. Management
1.1. CLI
1.2. Console
1.3. JMX
1.4. Prometheus
1.5. Access Logs
1.5.1. Enabling Access Logs
1.5.2. Access Log Properties
2. Management Tooling
2.1. JMX
2.1.1. Understanding The Exposed MBeans
2.1.2. Enabling JMX Statistics
2.1.3. Monitoring cluster health
2.1.4. Multiple JMX Domains
2.1.5. Registering MBeans In Non-Default MBean Servers
2.1.6. Available MBeans
2.2. Command-Line Interface (CLI)
2.2.1. Commands
2.3. Hawt.io

2.4. Writing plugins for other management tools

© 9 9 O OO O U s s e wWw WD R R

= =
o o

Chapter 1. Management

1.1. CLI

You can use the CLI to perform management operations on a standalone node or a domain
controller.

$ bin/cli.sh

[disconnected /] connect

[standalone@localhost:9990 /] cd subsystem=datagrid-infinispan
[standalone@localhost:9990 subsystem=datagrid-infinispan] cd cache-container=1local
[standalone@localhost:9990 cache-container=1ocal] cd local-cache=default
[standalone@localhost:9990 local-cache=default]

The CLI is extremely powerful and supports a number of useful features to navigate the
management resource tree as well as inspecting single resources or entire subtrees. It is also
possible to batch multiple commands together so that they are applied as a single operation.

1.2. Console

You can use the web console to perform management operations on servers running in either
standalone or domain mode. The console only supports a subset of the operations provided by the
CLL however you can perform the following actions:

View/Edit Cache Container Configuration

* Execute Tasks across Containers

View/Edit Cache Configurations

Create/Destroy Cache Instances
» View Cluster/Server/Cache Statistics

» View event logs

Start/Stop servers/clusters (domain mode only)

To access the console start your server(s) in the required mode, navigate to http://localhost:9990
and enter your user credentials. If you would like to contribute to the development of the console,
the source code can be found here.

Before you can use the web console, you must first setup at least one user account

9 via the ./bin/add-user.sh script. Detailed instructions of this process are presented
in your browser if you attempt to access the console before creating any user
accounts.

http://localhost:9990
https://github.com/infinispan/infinispan-management-console

1.3. JMX

You can monitor an Infinispan Server over JMX in two ways:

* Use JConsole or VisualVM running locally as the same user. This will use a local jvmstat
connection and requires no additional setup

* Use JMX remoting (aka JSR-160) to connect from any host. This requires connecting through the
management port (usually 9990) using a special protocol which respects the server security
configuration

To setup a client for JMX remoting you need to add the $ISPN_HOME/bin/client/jboss-client.jar to
your client’s classpath and use one of the following service URLSs:

* service:jmx:remote-http-jmx://host:port for plain connections through the management
interface

» service:jmx:remote-https-jmx://host:port for TLS connections through the management
interface (although this requires having the appropriate keys available)

* service:jmx:remoting-jmx://localhost:port for connections through the remoting interface
(necessary for connecting to individual servers in a domain)

The JMX subsystem registers a service with the Remoting endpoint so that remote access to JMX can
be obtained over the exposed Remoting connector. This is switched on by default in standalone
mode and accessible over port 9990 but in domain mode it is switched off so it needs to be enabled.
In domain mode the port will be the port of the Remoting connector for the Server instance to be
monitored.

<subsystem xmlns="urn:jboss:domain:jmx:1.3">
<expose-resolved-model/>
<expose-expression-model/>
<remoting-connector use-management-endpoint="false"/>
</subsystem>

1.4. Prometheus

You can also expose JMX beans using Prometheus. In order to do this, just run the server with
additional parameter --jmx, for example: ./standalone.xml -c cloud.xml --jmx. Prometheus
configuration is stored in prometheus_config.yaml file. It is possible to override this file by specifying
it after --jmx parameter. For example: ./standalone.sh -c cloud.xml --jmx my-config.yaml.

1.5. Access Logs

Hot Rod and REST endpoints can record all inbound client requests as log entries with the following
categories:

* org.infinispan.HOTROD_ACCESS_LOG logging category for the Hot Rod endpoint.
* org.infinispan.REST_ACCESS_L0G logging category for the REST endpoint.

http://www.oracle.com/technetwork/java/jvmstat-142257.html
https://prometheus.io/docs/prometheus/latest/querying/api/

1.5.1. Enabling Access Logs

Access logs for Hot Rod and REST endpoints are disabled by default. To enable either logging
category, set the level to TRACE in the server configuration file, as in the following example:

<logger category="org.infinispan.HOTROD_ACCESS_LOG" use-parent-handlers="false">
<level name="TRACE"/>
<handlers>
<handler name="HR-ACCESS-FILE"/>
</handlers>
</logger>

1.5.2. Access Log Properties
The default format for access logs is as follows:

%X{address} %X{user} [%d{dd/MMM/yyyy:HH:mm:ss z}] "%X{method} %m %X{protocol}" %X{status}
%X{requestSize} %X{responseSize} %X{duration}%n

The preceding format creates log entries such as the following:
127.0.0.1 - [30/0ct/2018:12:41:50 CET] "PUT /rest/default/key HTTP/1.1" 404 5 77 10

Logging properties use the %X{name} notation and let you modify the format of access logs. The
following are the default logging properties:

Property Description

address Either the X-Forwarded-For header or the client
IP address.

user Principal name, if using authentication.

method Method used. PUT, GET, and so on.

protocol Protocol used. HTTP/1.1, HTTP/2, HOTROD/2.9, and
SO on.

status An HTTP status code for the REST endpoint. 0K or
an exception for the Hot Rod endpoint.

requestSize Size, in bytes, of the request.

responseSize Size, in bytes, of the response.

duration Number of milliseconds that the server took to

handle the request.

Q Use the header name prefixed with h: to log headers that were included in
requests; for example, %X{h:User-Agent}.

Chapter 2. Management Tooling

Management of Infinispan instances is all about exposing as much relevant statistical information
that allows administrators to get a view of the state of each Infinispan instance. Taking in account
that a single installation could be made up of several tens or hundreds Infinispan instances,
providing clear and concise information in an efficient manner is imperative. The following
sections dive into the range of management tooling that Infinispan provides.

2.1. JMX

Over the years, J]MX has become the de facto standard for management and administration of
middleware and as a result, the Infinispan team has decided to standardize on this technology for
the exposure of management and statistical information.

2.1.1. Understanding The Exposed MBeans

By connecting to the VM(s) where Infinispan is running with a standard JMX GUI such as JConsole
or VisualVM you should find the following MBeans:

* For CacheManager level JMX statistics, without further configuration, you should see an MBean
called org.infinispan:type=CacheManager,name="DefaultCacheManager" with properties
specified by the CacheManager MBean .

* Using the cacheManagerName attribute in globaljmxStatistics XML element, or using the
corresponding GlobalJmxStatisticsConfigurationBuilder.cacheManagerName(String
cacheManagerName) call, you can name the cache manager in such way that the name is used
as part of the JMX object name. So, if the name had been "Hibernate2L.C", the JMX name for the
cache manager would have been: org.infinispan:type=CacheManager,name="Hibernate2LC" .
This offers a nice and clean way to manage environments where multiple cache managers are
deployed, which follows JMX best practices .

» For Cache level JMX statistics, you should see several different MBeans depending on which
configuration options have been enabled. For example, if you have configured a write behind
cache store, you should see an MBean exposing properties belonging to the cache store

component. All Cache level MBeans follow the same format though which is the following:
org.infinispan:type=Cache,name="${name-of-cache}(${cache-mode})",manager="${name-of-cache-

manager}", component=${component-name} where:

* ${name-of-cache} has been substituted by the actual cache name. If this cache represents the
default cache, its name will be ___defaultCache.

* ${cache-mode} has been substituted by the cache mode of the cache. The cache mode is
represented by the lower case version of the possible enumeration values shown here.

* ${name-of-cache-manager} has been substituted by the name of the cache manager to which
this cache belongs. The name is derived from the cacheManagerName attribute value in
globallmxStatistics element.

* ${component-name} has been substituted by one of the JMX component names in the JMX
reference documentation .

http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
https://docs.oracle.com/javase/8/docs/technotes/guides/management/jconsole.html
https://docs.oracle.com/javase/8/docs/technotes/guides/visualvm/
https://docs.jboss.org/infinispan/10.0/apidocs/jmxComponents.html#CacheManager
https://docs.jboss.org/infinispan/10.0/apidocs/jmxComponents.html#CacheManager
http://www.oracle.com/technetwork/java/javase/tech/best-practices-jsp-136021.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/configuration/cache/CacheMode
https://docs.jboss.org/infinispan/10.0/apidocs/jmxComponents.html
https://docs.jboss.org/infinispan/10.0/apidocs/jmxComponents.html

For example, the cache store JMX component MBean for a default cache configured with

synchronous distribution would have the following name:
org.infinispan:type=Cache,name="___defaultcache(dist_sync)",manager="DefaultCacheManager", compo
nent=CacheStore

Please note that cache and cache manager names are quoted to protect against illegal characters
being used in these user-defined names.

2.1.2. Enabling JMX Statistics

The MBeans mentioned in the previous section are always created and registered in the
MBeanServer allowing you to manage your caches but some of their attributes do not expose
meaningful values unless you take the extra step of enabling collection of statistics. Gathering and
reporting statistics via JMX can be enabled at 2 different levels:

CacheManager level

The CacheManager is the entity that governs all the cache instances that have been created from it.
Enabling CacheManager statistics collections differs depending on the configuration style:

* If configuring the CacheManager via XML, make sure you add the following XML under the
<cache-container /> element:

<cache-container statistics="true"/>
o If configuring the CacheManager programmatically, simply add the following code:

GlobalConfigurationBuilder globalConfigurationBuilder = ...
globalConfigurationBuilder.globalJmxStatistics().enable();

Cache level

At this level, you will receive management information generated by individual cache instances.
Enabling Cache statistics collections differs depending on the configuration style:

o If configuring the Cache via XML, make sure you add the following XML under the one of the
top level cache elements, such as <local-cache />:

<local-cache statistics="true"/>
* If configuring the Cache programmatically, simply add the following code:

ConfigurationBuilder configurationBuilder = ...
configurationBuilder.jmxStatistics().enable();

2.1.3. Monitoring cluster health

It is also possible to monitor Infinispan cluster health using JMX. On CacheManager there’s an
additional object called CacheContainerHealth. It contains the following attributes:

» cacheHealth - a list of caches and corresponding statuses (HEALTHY, DEGRADED or
HEALTHY_REBALANCING)

* clusterHealth - overall cluster health

* clusterName - cluster name

» freeMemoryKb - Free memory obtained from JVM runtime measured in KB

* numberOfCpus - The number of CPUs obtained from JVM runtime

* numberOfNodes - The number of nodes in the cluster

 totalMemoryKb - Total memory obtained from JVM runtime measured in KB

2.1.4. Multiple JMX Domains

There can be situations where several CacheManager instances are created in a single VM, or Cache
names belonging to different CacheManagers under the same VM clash.

Using different JMX domains for multi cache manager environments should be last resort. Instead,
it’s possible to name a cache manager in such way that it can easily be identified and used by
monitoring tools. For example:

e Via XML:
<cache-container statistics="true" name="Hibernate2LC"/>
* Programmatically:

GlobalConfigurationBuilder globalConfigurationBuilder = ...
globalConfigurationBuilder.globalJmxStatistics()

.enable()

.cacheManagerName("Hibernate2LC");

Using either of these options should result on the CacheManager MBean name being:
org.infinispan:type=CacheManager,name="Hibernate2LC"

For the time being, you can still set your own jmxDomain if you need to and we also allow duplicate
domains, or rather duplicate JMX names, but these should be limited to very special cases where
different cache managers within the same JVM are named equally.

2.1.5. Registering MBeans In Non-Default MBean Servers

Let’s discuss where Infinispan registers all these MBeans. By default, Infinispan registers them in
the standard JVM MBeanServer platform . However, users might want to register these MBeans in a

https://docs.oracle.com/javase/8/docs/api/java/lang/management/ManagementFactory.html#getPlatformMBeanServer--

different MBeanServer instance. For example, an application server might work with a different
MBeanServer instance to the default platform one. In such cases, users should implement the
MBeanServerLookup interface provided by Infinispan so that the getMBeanServer() method
returns the MBeanServer under which Infinispan should register the management MBeans. Once
you have your implementation ready, simply configure Infinispan with the fully qualified name of
this class. For example:

e Via XML:
<cache-container statistics="true">

<jmx mbean-server-lookup="com.acme.MyMBeanServerLookup" />
</cache-container>

* Programmatically:

GlobalConfigurationBuilder globalConfigurationBuilder = ...
globalConfigurationBuilder.globalJmxStatistics()

.enable()

.mBeanServerLookup(new com.acme.MyMBeanServerLookup());

2.1.6. Available MBeans

For a complete list of available MBeans, refer to the JMX reference documentation

2.2. Command-Line Interface (CLI)

Infinispan offers a simple Command-Line Interface (CLI) with which it is possible to interact with
the data within the caches and with most of the internal components (e.g. transactions, cross-site
backups, rolling upgrades).

The CLI is built out of two elements: a server-side module and the client command tool. The server-
side module (infinispan-cli-server-$VERSION.jar) provides the actual interpreter for the
commands and needs to be included alongside your application. Infinispan Server includes CLI
support out of the box.

Currently the server (and the client) use the JMX protocol to communicate, but in a future release
we plan to support other communication protocols (in particular our own Hot Rod).

The CLI offers both an interactive and a batch mode. To invoke the client, run the bin/ispn-
cli.[sh|bat] script.

The following is a list of command-line switches which affect how the CLI can be started:

https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/jmx/MBeanServerLookup.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/jmx/MBeanServerLookup.html#getMBeanServer--
https://docs.jboss.org/infinispan/10.0/apidocs/jmxComponents.html

-c¢, --connect=URL connects to a running instance of Infinispan.
JMX over RMI
jmx://[username[:password]]@host:port[/container[/cache]]
JMX over JBoss remoting
remoting://[username[:password]]@host:port[/container[/cache]]
-f, --file=FILE reads input from the specified file instead of using

interactive mode. If FILE is '-', then commands will be read

from stdin
-h, --help shows this help page
-v, --version shows version information

* JMX over RMI is the traditional way in which JMX clients connect to MBeanServers. Please refer
to the JDK Monitoring and Management documentation for details on how to configure the
process to be monitored

* JMX over JBoss Remoting is the protocol of choice when your Infinispan application is running
within WildFly or EAP.

The connection to the application can also be initiated from within the CLI using the connect
command.

[disconnected//]> connect jmx://localhost:12000
[jmx://localhost:12000/MyCacheManager/>

The CLI prompt will show the active connection information, including the currently selected
CacheManager. Initially no cache is selected so, before performing any cache operations, one must
be selected. For this the cache command is used. The CLI supports tab-completion for all commands
and options and for most parameters where it makes sense to do so. Therefore typing cache and
pressing TAB will show a list of active caches:

[jmx://localhost:12000/MyCacheManager/> cache
___defaultcache namedCache
[jmx://localhost:12000/MyCacheManager/]> cache defaultcache

[jmx://1localhost:12000/MyCacheManager/___defaultcache]>

Pressing TAB at an empty prompt will show the list of all available commands:

alias cache container encoding get locate remove
site upgrade

abort clearcache create end help put replace
start version

begin commit disconnect evict info quit rollback
stats

The CLI is based on Ash and therefore offers many keyboard shortcuts to navigate and search the

http://docs.oracle.com/javase/6/docs/technotes/guides/management/agent.html
https://github.com/aeshell/aesh

history of commands, to manipulate the cursor at the prompt, including both Emacs and VI modes
of operation.

2.2.1. Commands

abort

The abort command is used to abort a running batch initiated by the start command

[jmx://1localhost:12000/MyCacheManager/namedCache]> start
[jmx://localhost:12000/MyCacheManager/namedCache]> put a a
[jmx://localhost:12000/MyCacheManager/namedCache]> abort
[jmx://localhost:12000/MyCacheManager/namedCache]> get a
null

begin

The begin command starts a transaction. In order for this command to work, the cache(s) on which
the subsequent operations are invoked must have transactions enabled.

[jmx://localhost:12000/MyCacheManager/namedCache]> begin
[jmx://1localhost:12000/MyCacheManager/namedCache]> put a a
[jmx://localhost:12000/MyCacheManager/namedCache]> put b b
[jmx://1localhost:12000/MyCacheManager/namedCache]> commit

cache

The cache command selects the cache to use as default for all subsequent operations. If it is invoked
without parameters it shows the currently selected cache.

[jmx://1localhost:12000/MyCacheManager/namedCache]> cache ___defaultcache
[jmx://localhost:12000/MyCacheManager/___defaultcache]> cache
___defaultcache

[jmx://1localhost:12000/MyCacheManager/___defaultcache]>

clearcache

The clearcache command clears a cache from all content.

[jmx://localhost:12000/MyCacheManager/namedCache]> put a a
[jmx://1localhost:12000/MyCacheManager/namedCache]> clearcache
[jmx://1localhost:12000/MyCacheManager/namedCache]> get a

null

commit

The commit command commits an ongoing transaction

[jmx://1localhost:12000/MyCacheManager/namedCache]> begin
[jmx://1localhost:12000/MyCacheManager/namedCache]> put a a
[jmx://localhost:12000/MyCacheManager/namedCache]> put b b
[jmx://1localhost:12000/MyCacheManager/namedCache]> commit

container

The container command selects the default container (cache manager). Invoked without parameters
it lists all available containers

[jmx://localhost:12000/MyCacheManager/namedCache]> container

MyCacheManager OtherCacheManager
[jmx://localhost:12000/MyCacheManager/namedCache]> container OtherCacheManager
[jmx://1localhost:12000/0therCacheManager/]>

create

The create command creates a new cache based on the configuration of an existing cache definition

[jmx://localhost:12000/MyCacheManager/namedCache]> create newCache like namedCache
[jmx://1localhost:12000/MyCacheManager/namedCache]> cache newCache
[jmx://localhost:12000/MyCacheManager/newCache]>

deny

When authorization is enabled and the role mapper has been configured to be the
ClusterRoleMapper, principal to role mappings are stored within the cluster registry (a replicated
cache available to all nodes). The deny command can be used to deny roles previously assigned to a
principal:

[remoting://localhost:9999]> deny supervisor to user]

disconnect

The disconnect command disconnects the currently active connection allowing the CLI to connect to
another instance.

[remoting://localhost:9999]> deny supervisor to user]

10

encoding

The encoding command is used to set a default codec to use when reading/writing entries from/to a
cache. When invoked without arguments it shows the currently selected codec. This command is
useful since currently remote protocols such as HotRod and Memcached wrap keys and values in
specialized structures.

[jmx://1localhost:12000/MyCacheManager/namedCache]> encoding

none

[jmx://1localhost:12000/MyCacheManager/namedCache]> encoding --list
memcached

hotrod

none

rest

[jmx://1localhost:12000/MyCacheManager/namedCache]> encoding hotrod

end

The end command is used to successfully end a running batch initiated by the start command

[jmx://1localhost:12000/MyCacheManager/namedCache]> start
[jmx://1localhost:12000/MyCacheManager/namedCache]> put a a
[jmx://localhost:12000/MyCacheManager/namedCache]> end
[jmx://1localhost:12000/MyCacheManager/namedCache]> get a

a

evict

The evict command is used to evict from the cache the entry associated with a specific key.

[jmx://1localhost:12000/MyCacheManager/namedCache]> put a a
[jmx://localhost:12000/MyCacheManager/namedCache]> evict a

get

The get command is used to show the value associated to a specified key. For primitive types and
Strings, the get command will simply print the default representation. For other objects, a JSON
representation of the object will be printed.

[jmx://1localhost:12000/MyCacheManager/namedCache]> put a a
[jmx://localhost:12000/MyCacheManager/namedCache]> get a
a

grant

When authorization is enabled and the role mapper has been configured to be the
ClusterRoleMapper, principal to role mappings are stored within the cluster registry (a replicated

11

cache available to all nodes). The grant command can be used to grant new roles to a principal:

[remoting://localhost:9999]> grant supervisor to user]

info

The info command is used to show the configuration of the currently selected cache or container.

[jmx://localhost:12000/MyCacheManager/namedCache]> info
GlobalConfiguration{asyncListenerExecutor=ExecutorFactoryConfiguration{factory=org.inf
inispan.executors.DefaultExecutorFactory@38add58},
asyncTransportExecutor=ExecutorFactoryConfiguration{factory=org.infinispan.executors.D
efaultExecutorFactory@7bc9cl4c},
evictionScheduledExecutor=ScheduledExecutorFactoryConfiguration{factory=org.infinispan
.executors.DefaultScheduledExecutorFactory@7ab1a411},
replicationQueueScheduledExecutor=ScheduledExecutorFactoryConfiguration{factory=org.in
finispan.executors.DefaultScheduledExecutorFactory@248a9705},
globalJmxStatistics=GlobalImxStatisticsConfiguration{allowDuplicateDomains=true,
enabled=true, jmxDomain='jboss.infinispan’',
mBeanServerLookup=org.jboss.as.clustering.infinispan.MBeanServerProvider@bc@dc@1,
cacheManagerName="1ocal', properties={}},
transport=TransportConfiguration{clusterName="ISPN', machineId="null', rackId="null',
siteld="null', strictPeerToPeer=false, distributedSyncTimeout=240000, transport=null,
nodeName="null', properties={}},
serialization=SerializationConfiguration{advancedExternalizers={1100=org.infinispan.se
rver.core.CacheValue$Externalizer@sfabc91d,
1101=org.infinispan.server.memcached.MemcachedValue$Externalizer@720bffd,
1104=org.infinispan.server.hotrod.ServerAddress$Externalizer@771c7eb2},
marshaller=org.infinispan.marshall.VersionAwareMarshaller@6fc21535, version=52,
classResolver=org.jboss.marshalling.ModularClassResolver@2efe83e5},
shutdown=ShutdownConfiguration{hookBehavior=DONT_REGISTER}, modules={},
site=SiteConfiguration{localSite="null'}}

locate

The locate command shows the physical location of a specified entry in a distributed cluster.

[jmx://1localhost:12000/MyCacheManager/namedCache]> locate a
[host/nodel, host/node?]

put

The put command inserts an entry in the cache. If the cache previously contained a mapping for the
key, the old value is replaced by the specified value. The user can control the type of data that the
CLI will use to store the key and value.

12

[jmx://1localhost:12000/MyCacheManager/namedCache]> put a a
[jmx://localhost:12000/MyCacheManager/namedCache]> put b 100
[jmx://1localhost:12000/MyCacheManager/namedCache]> put ¢ 41391
[jmx://1localhost:12000/MyCacheManager/namedCache]> put d true
[jmx://localhost:12000/MyCacheManager/namedCache]> put e { "package.MyClass": {"i": 5,
“x": null, "b": true } }

The put command can optionally specify a lifespan and a maximum idle time.

[jmx://1localhost:12000/MyCacheManager/namedCache]> put a a expires 10s
[jmx://localhost:12000/MyCacheManager/namedCache]> put a a expires 10m maxidle Tm

replace

The replace command replaces an existing entry in the cache. If an old value is specified, then the
replacement happens only if the value in the cache coincides.

[jmx://1localhost:12000/MyCacheManager/namedCache]> put a a
[jmx://1localhost:12000/MyCacheManager/namedCache]> replace a b
[jmx://1localhost:12000/MyCacheManager/namedCache]> get a

b

[jmx://1localhost:12000/MyCacheManager/namedCache]> replace a b ¢
[jmx://1localhost:12000/MyCacheManager/namedCache]> get a

c

[jmx://1localhost:12000/MyCacheManager/namedCache]> replace a b d
[jmx://1localhost:12000/MyCacheManager/namedCache]> get a

c

roles

When authorization is enabled and the role mapper has been configured to be the
ClusterRoleMapper, principal to role mappings are stored within the cluster registry (a replicated
cache available to all nodes). The roles command can be used to list the roles associated to a specific
user, or to all users if one is not given:

[remoting://localhost:9999]> roles user1
[supervisor, reader]

rollback

The rollback command rolls back an ongoing transaction

13

[jmx://1localhost:12000/MyCacheManager/namedCache]> begin
[jmx://localhost:12000/MyCacheManager/namedCache]> put a a
[jmx://1localhost:12000/MyCacheManager/namedCache]> put b b
[jmx://1localhost:12000/MyCacheManager/namedCache]> rollback

site

The site command performs operations related to the administration of cross-site replication. It can

be

used to obtain information related to the status of a site and to change the status (online/offline)

[jmx://1localhost:12000/MyCacheManager/namedCache]> site --status NYC

online

[jmx://localhost:12000/MyCacheManager/namedCache]> site --offline NYC

ok

[jmx://localhost:12000/MyCacheManager/namedCache]> site --status NYC

offline

[jmx://1localhost:12000/MyCacheManager/namedCache]> site --online NYC

start

The start command initiates a batch of operations.

[jmx://localhost:12000/MyCacheManager/namedCache]> start
[jmx://localhost:12000/MyCacheManager/namedCache]> put a a
[jmx://1localhost:12000/MyCacheManager/namedCache]> put b b
[jmx://localhost:12000/MyCacheManager/namedCache]> end

stats

The stats command displays statistics about a cache

14

[jmx://localhost:12000/MyCacheManager/namedCache]> stats

Statistics: {
averageWriteTime: 143
evictions: 10
misses: 5
hitRatio: 1.0
readWriteRatio: 10.0
removeMisses: 0
timeSinceReset: 2123
statisticsEnabled: true
stores: 100
elapsedTime: 93
averageReadTime: 14
removeHits: @
numberOfEntries: 100
hits: 1000

}

LockManager: {
concurrencylLevel: 1000
numberOfLocksAvailable: 0
numberOfLocksHeld: 0

+

upgrade

The upgrade command performs operations used during the rolling upgrade procedure.

[jmx://localhost:12000/MyCacheManager/namedCache]> upgrade --synchronize=hotrod --all
[jmx://1localhost:12000/MyCacheManager/namedCache]> upgrade --disconnectsource=hotrod
--all

version
The version command displays version information about both the CLI client and the server
[jmx://localhost:12000/MyCacheManager/namedCache]> version

Client Version x.x.x.Final
Server Version x.x.x.Final

Data Types

The CLI understands the following types:

* string strings can either be quoted between single (') or double (") quotes, or left unquoted. In
this case it must not contain spaces, punctuation and cannot begin with a number e.g. 'a string’,
key001

* int an integer is identified by a sequence of decimal digits, e.g. 256

15

long a long is identified by a sequence of decimal digits suffixed by 1, e.g. 10001
double

o a double precision number is identified by a floating point number(with optional exponent
part) and an optional 'd' suffix, e.g.3.14

float

o a single precision number is identified by a floating point number(with optional exponent
part) and an 'f' suffix, e.g. 10.3f

boolean a boolean is represented either by the keywords true and false

UUID a UUID is represented by its canonical form XXXXXXXX-XXXX-XXXX-XXXX-
XXXXXXXXXXXX

* JSON serialized Java classes can be represented using JSON notation, e.g.
{"package.MyClass":{"i":5,"x":null,"b":true}}. Please note that the specified class must be
available to the CacheManager’s class loader.

Time Values

A time value is an integer number followed by time unit suffix: days (d), hours (h), minutes (m),
seconds (s), milliseconds (ms).

2.3. Hawt.io

Hawt.io, a slick, fast, HTML5-based open source management console, also has support for
Infinispan. Refer to Hawt.io’s documentation for information regarding this plugin.

2.4. Writing plugins for other management tools

Any management tool that supports JMX already has basic support for Infinispan. However, custom
plugins could be written to adapt the JMX information for easier consumption.

16

http://hawt.io
http://hawt.io/plugins/infinispan/

	Monitoring Infinispan 10.0
	Table of Contents
	Chapter 1. Management
	1.1. CLI
	1.2. Console
	1.3. JMX
	1.4. Prometheus
	1.5. Access Logs
	1.5.1. Enabling Access Logs
	1.5.2. Access Log Properties

	Chapter 2. Management Tooling
	2.1. JMX
	2.1.1. Understanding The Exposed MBeans
	2.1.2. Enabling JMX Statistics
	2.1.3. Monitoring cluster health
	2.1.4. Multiple JMX Domains
	2.1.5. Registering MBeans In Non-Default MBean Servers
	2.1.6. Available MBeans

	2.2. Command-Line Interface (CLI)
	2.2.1. Commands

	2.3. Hawt.io
	2.4. Writing plugins for other management tools

