Indexing and Querying with
Infinispan 10.0

Table of Contents

1. Indexing and Querying

1.1. Overview
1.2. Embedded Querying
1.2.1. Quick example
1.2.2. Indexing
1.2.3. Querying APIs
1.3. Remote Querying
1.3.1. Storing Protobuf encoded entities
1.3.2. Indexing of Protobuf encoded entries
1.3.3. A remote query example
1.3.4. Analysis
1.4. Statistics
1.5. Performance Tuning
1.5.1. Batch writing in SYNC mode
1.5.2. Writing using async mode
1.5.3. Index reader async strategy
1.5.4. Lucene Options

N T Sy

18
36
36
39
40
41
43
44
44
44
45
45

Chapter 1. Indexing and Querying

1.1. Overview

Infinispan supports indexing and searching of Java Pojo(s) or objects encoded via Protocol Buffers
stored in the grid using powerful search APIs which complement its main Map-like API.

Querying is possible both in library and client/server mode (for Java, C#, Node.js and other clients),
and Infinispan can index data using Apache Lucene, offering an efficient full-text capable search
engine in order to cover a wide range of data retrieval use cases.

Indexing configuration relies on a schema definition, and for that Infinispan can use annotated
Java classes when in library mode, and protobuf schemas for remote clients written in other
languages. By standardizing on protobuf, Infinispan allows full interoperability between Java and
non-Java clients.

Apart from indexed queries, Infinispan can run queries over non-indexed data (indexless queries)
and over partially indexed data (hybrid queries).

In terms of Search APIs, Infinispan has its own query language called Ickle, which is string-based
and adds support for full-text querying. The Query DSL can be used for both embedded and remote
java clients when full-text is not required; for Java embedded clients Infinispan offers the
Hibernate Search Query API which supports running Lucene queries in the grid, apart from
advanced search capabilities like Faceted and Spatial search.

Finally, Infinispan has support for Continuous Queries, which works in a reverse manner to the
other APIs: instead of creating, executing a query and obtain results, it allows a client to register
queries that will be evaluated continuously as data in the cluster changes, generating notifications
whenever the changed data matches the queries.

1.2. Embedded Querying

Embedded querying is available when Infinispan is used as a library. No protobuf mapping is
required, and both indexing and searching are done on top of Java objects. When in library mode, it
is possible to run Lucene queries directly and use all the available Query APIs and it also allows
flexible indexing configurations to keep latency to a minimal.

1.2.1. Quick example

We’re going to store Book instances in an Infinispan cache called "books". Book instances will be
indexed, so we enable indexing for the cache, letting Infinispan configure the indexing
automatically:

Infinispan configuration:

https://developers.google.com/protocol-buffers/
#query_library
#query_remote
http://lucene.apache.org/
https://en.wikipedia.org/wiki/Full-text_search
#query_indexless
#query_hybrid
#query_ickle
#query_dsl
#query_hibernatesearch
#query_continuous
#query_apis
#query_autoconfig
#query_autoconfig

infinispan.xml

<infinispan>
<cache-container>
<transport cluster="infinispan-cluster"/>
<distributed-cache name="books">
<indexing index="LOCAL" auto-config="true"/>
</distributed-cache>
</cache-container>
</infinispan>

Obtaining the cache:

import org.infinispan.Cache;
import org.infinispan.manager.DefaultCacheManager;
import org.infinispan.manager.EmbeddedCacheManager;

EmbeddedCacheManager manager = new DefaultCacheManager("infinispan.xml");
Cache<String, Book> cache = manager.getCache("books");

Each Book will be defined as in the following example; we have to choose which properties are
indexed, and for each property we can optionally choose advanced indexing options using the
annotations defined in the Hibernate Search project.

Book.java

import org.hibernate.search.annotations.*;
import java.util.Date;

import java.util.HashSet;

import java.util.Set;

//Values you want to index need to be annotated with @Indexed, then you pick which
fields and how they are to be indexed:
@Indexed
public class Book {
@Field String title;
@Field String description;
@Field @DateBridge(resolution=Resolution.YEAR) Date publicationYear;
@IndexedEmbedded Set<Author> authors = new HashSet<Author>();

Author.java

public class Author {
@Field String name;
@Field String surname;
// hashCode() and equals() omitted

Now assuming we stored several Book instances in our Infinispan Cache , we can search them for
any matching field as in the following example.

Using a Lucene Query:

// get the search manager from the cache:
SearchManager searchManager = org.infinispan.query.Search.getSearchManager(cache);

// create any standard Lucene query, via Lucene's QueryParser or any other means:
org.apache.lucene.search.Query fullTextQuery = //any Apache Lucene Query

// convert the Lucene query to a CacheQuery:
CacheQuery cacheQuery = searchManager.getQuery(fullTextQuery);

// get the results:
List<Object> found = cacheQuery.list();

A Lucene Query is often created by parsing a query in text format such as "title:infinispan AND
authors.name:sanne”, or by using the query builder provided by Hibernate Search.

// get the search manager from the cache:
SearchManager searchManager = org.infinispan.query.Search.getSearchManager(cache);

// you could make the queries via Lucene APIs, or use some helpers:
QueryBuilder queryBuilder = searchManager.buildQueryBuilderForClass(Book.class).get();

// the queryBuilder has a nice fluent API which guides you through all options.
// this has some knowledge about your object, for example which Analyzers
// need to be applied, but the output is a fairly standard Lucene Query.
org.apache.lucene.search.Query luceneQuery = queryBuilder.phrase()
.onField("description")
.andField("title")
.sentence("a book on highly scalable query engines")
.createQuery();

// the query API itself accepts any Lucene Query, and on top of that
// you can restrict the result to selected class types:
CacheQuery query = searchManager.getQuery(luceneQuery, Book.class);

// and there are your results!
List objectList = query.list();

for (Object book : objectlList) {
System.out.println(book);

}

Apart from list() you have the option for streaming results, or use pagination.

For searches that do not require Lucene or full-text capabilities and are mostly about aggregation

and exact matches, we can use the Infinispan Query DSL API:

import org.infinispan.query.dsl.QueryFactory;
import org.infinispan.query.dsl.Query;
import org.infinispan.query.Search;

// get the query factory:
QueryFactory queryFactory = Search.getQueryFactory(cache);

Query q = queryFactory.from(Book.class)
.having("author.surname").eq("King")
.build();

List<Book> list = g.list();

Finally, we can use an Ickle query directly, allowing for Lucene syntax in one or more predicates:
import org.infinispan.query.dsl.QueryFactory;
import org.infinispan.query.dsl.Query;

// get the query factory:
QueryFactory queryFactory = Search.getQueryFactory(cache);

Query q = queryFactory.create("from Book b where b.author.name = 'Stephen' and " +
"b.description : (+'dark' -'tower')");

List<Book> list = g.list();

1.2.2. Indexing

Indexing in Infinispan happens on a per-cache basis and by default a cache is not indexed. Enabling
indexing is not mandatory but queries using an index will have a vastly superior performance. On
the other hand, enabling indexing can impact negatively the write throughput of a cluster, so make
sure to check the query performance guide for some strategies to minimize this impact depending
on the cache type and use case.

Configuration

General format

To enable indexing via XML, you need to add the <indexing> element plus the index (index mode) to
your cache configuration, and optionally pass additional properties.

#query_ickle
#query_performance
#query_index_mode

<infinispan>
<cache-container default-cache="default">
<replicated-cache name="default">
<indexing index="ALL">
<property name="property.name">some value</property>
</indexing>
</replicated-cache>
</cache-container>
</infinispan>

Programmatic:

import org.infinispan.configuration.cache.*;

ConfigurationBuilder cacheCfg = ...
cache(Cfg.indexing().index(Index.ALL)
.addProperty("property name", "propery value")

Index names

Each property inside the index element is prefixed with the index name, for the index named
org.infinispan.sample.Car the directory_provider is local-heap:

<indexing index="ALL">
<property name="org.infinispan.sample.Car.directory_provider">local-
heap</property>
</indexing>

</infinispan>

cacheCfg.indexing()
.index(Index.ALL)
.addProperty("org.infinispan.sample.Car.directory_provider", "local-heap")

Infinispan creates an index for each entity existent in a cache, and it allows to configure those
indexes independently. For a class annotated with @Indexed, the index name is the fully qualified
class name, unless overridden with the name argument in the annotation.

In the snippet below, the default storage for all entities is infinispan, but Boat instances will be
stored on local-heap in an index named boatIndex. Airplane entities will also be stored in local-
heap. Any other entity’s index will be configured with the property prefixed by default.

package org.infinispan.sample;

@Indexed(name = "boatIndex")
public class Boat {

}

@Indexed
public class Airplane {

}
<indexing index="ALL">
<property name="default.directory_provider">infinispan</property>
<property name="boatIndex.directory_provider">local-heap</property>
<property name="org.infinispan.sample.Airplane.directory_provider">
ram
</property>
</indexing>
</infinispan>

Specifying indexed Entities

Infinispan can automatically recognize and manage indexes for different entity types in a cache.
Future versions of Infinispan will remove this capability so it’s recommended to declare upfront
which types are going to be indexed (list them by their fully qualified class name). This can be done
via xml:

<infinispan>
<cache-container default-cache="default">
<replicated-cache name="default">
<indexing index="ALL">
<indexed-entities>
<indexed-entity>com.acme.query.test.Car</indexed-entity>
<indexed-entity>com.acme.query.test.Truck</indexed-entity>
</indexed-entities>
</indexing>
</replicated-cache>
</cache-container>
</infinispan>

or programmatically:

cacheCfg.indexing()
.index(Index.ALL)
.addIndexedEntity(Car.class)
.addIndexedEntity(Truck.class)

In server mode, the class names listed under the 'indexed-entities' element must use the 'extended’
class name format which is composed of a JBoss Modules module identifier, a slot name, and the
fully qualified class name, these three components being separated by the "' character, (eg.
"com.acme.my-module-with-entity-classes:my-slot:com.acme.query.test.Car"). The entity classes
must be located in the referenced module, which can be either a user supplied module deployed in
the 'modules' folder of your server or a plain jar deployed in the 'deployments' folder. The module
in question will become an automatic dependency of your Cache, so its eventual redeployment will
cause the cache to be restarted.

Only for server, if you fail to follow the requirement of using 'extended' class

9 names and use a plain class name its resolution will fail due to missing class
because the wrong ClassLoader is being used (the Infinispan’s internal class path is
being used).

Index mode

An Infinispan node typically receives data from two sources: local and remote. Local translates to
clients manipulating data using the map API in the same JVM; remote data comes from other
Infinispan nodes during replication or rebalancing.

The index mode configuration defines, from a node in the cluster point of view, which data gets
indexed.

Possible values:

ALL: all data is indexed, local and remote.

LOCAL: only local data is indexed.

PRIMARY_OWNER: Only entries containing keys that the node is primary owner will be
indexed, regardless of local or remote origin.

NONE: no data is indexed. Equivalent to not configure indexing at all.

Index Managers

Index managers are central components in Infinispan Querying responsible for the indexing
configuration, distribution and internal lifecycle of several query components such as Lucene’s
IndexReader and IndexWriter. Each Index Manager is associated with a Directory Provider, which
defines the physical storage of the index.

Regarding index distribution, Infinispan can be configured with shared or non-shared indexes.

Shared indexes

A shared index is a single, distributed, cluster-wide index for a certain cache. The main advantage
is that the index is visible from every node and can be queried as if the index were local, there is no
need to broadcast queries to all members and aggregate the results. The downside is that Lucene
does not allow more than a single process writing to the index at the same time, and the
coordination of lock acquisitions needs to be done by a proper shared index capable index
manager. In any case, having a single write lock cluster-wise can lead to some degree of contention
under heavy writing.

Infinispan supports shared indexes leveraging the Infinispan Directory Provider, which stores
indexes in a separate set of caches. Two index managers are available to use shared indexes:
InfinispanIndexManager and AffinityIndexManager.

Effect of the index mode

Shared indexes should not use the ALL index mode since it’d lead to redundant indexing: since there
is a single index cluster wide, the entry would get indexed when inserted via Cache API, and
another time when Infinispan replicates it to another node. The ALL mode is usually associates with
non-shared indexes in order to create full index replicas on each node.

InfinispanIndexManager

This index manager uses the Infinispan Directory Provider, and is suitable for creating shared
indexes. Index mode should be set to LOCAL in this configuration.

Configuration:

#query_clustered_query_api
#query_non_shared_index

<distributed-cache name="default" >
<indexing index="LOCAL">
<property name="default.indexmanager">
org.infinispan.query.indexmanager.InfinispanIndexManager
</property>
<!-- optional: tailor each index cache -->
<property name="default.locking_cachename">
LuceneIndexesLocking_custom</property>
<property name="default.data_cachename">LuceneIndexesData_custom</property>
<property name="default.metadata_cachename">
LuceneIndexesMetadata_custom</property>
</indexing>
</distributed-cache>

<!-- Optional -->

<replicated-cache name="LuceneIndexeslLocking_custom">
<indexing index="NONE" />
<-- extra confiquration -->

</replicated-cache>

<!-- Optional -->

<replicated-cache name="LuceneIndexesMetadata_custom">
<indexing index="NONE" />
<-- extra confiquration -->

</replicated-cache>

<!-- Optional -->

<distributed-cache name="LuceneIndexesData_custom">
<-- extra confiquration -->
<indexing index="NONE" />

</distributed-cache>

Indexes are stored in a set of clustered caches, called by default LucenelndexesData,
LuceneIndexesMetadata and LucenelndexesLocking.

The LucenelndexesLocking cache is used to store Lucene locks, and it is a very small cache: it will
contain one entry per entity (index).

The LucenelndexesMetadata cache is used to store info about the logical files that are part of the
index, such as names, chunks and sizes and it is also small in size.

The LucenelndexesData cache is where most of the index is located: it is much bigger then the other
two but should be smaller than the data in the cache itself, thanks to Lucene’s efficient storing
techniques.

It’s not necessary to redefine the configuration of those 3 cases, Infinispan will pick sensible
defaults. Reasons re-define them would be performance tuning for a specific scenario, or for
example to make them persistent by configuring a cache store.

In order to avoid index corruption when two or more nodes of the cluster try to write to the index

at the same time, the InfinispanIindexManager internally elects a master in the cluster (which is the
JGroups coordinator) and forwards all indexing works to this master.

AffinityIndexManager

The AffinityIndexManager is an experimental index manager used for shared indexes that also
stores indexes using the Infinispan Directory Provider. Unlike the InfinispanIndexManager, it does
not have a single node (master) that handles all the indexing cluster wide, but rather splits the
index using multiple shards, each shard being responsible for indexing data associated with one or
more Infinispan segments. For an in-depth description of the inner workings, please see the design
doc.

The PRIMARY_OWNER index mode is required, together with a special kind of KeyPartitioner.

XML Configuration:

<distributed-cache name="default"
key-partitioner=
"org.infinispan.distribution.ch.impl.AffinityPartitioner">
<indexing index="PRIMARY_OWNER">
<property name="default.indexmanager">
org.infinispan.query.affinity.AffinityIndexManager
</property>
<!-- optional: control the number of shards, the default is 4 -->
<property name="default.sharding_strategy.nbr_of_shards">10</property>
</indexing>
</distributed-cache>

Programmatic:

import org.infinispan.distribution.ch.impl.AffinityPartitioner;
import org.infinispan.query.affinity.AffinityIndexManager;

ConfigurationBuilder cacheCfg = ...
cacheCfg.clustering().hash().keyPartitioner(new AffinityPartitioner());
cache(Cfg.indexing()

.index(Index.PRIMARY OWNER)

.addProperty("default.indexmanager”, AffinityIndexManager.class.getName())

.addProperty("default.sharding_strategy.nbr_of_shards", "10")

The AffinityIndexManager by default will have as many shards as Infinispan segments, but this
value is configurable as seen in the example above.

The number of shards affects directly the query performance and writing throughput: generally
speaking, a high number of shards offers better write throughput but has an adverse effect on
query performance.

10

https://github.com/infinispan/infinispan/wiki/Index-affinity-proposal
https://github.com/infinispan/infinispan/wiki/Index-affinity-proposal

Non-shared indexes

Non-shared indexes are independent indexes at each node. This setup is particularly advantageous
for replicated caches where each node has all the cluster data and thus can hold all the indexes as
well, offering optimal query performance with zero network latency when querying. Another
advantage is, since the index is local to each node, there is less contention during writes due to the
fact that each node is subjected to its own index lock, not a cluster wide one.

Since each node might hold a partial index, it may be necessary to
link#query_clustered_query_api[broadcast] queries in order to get correct search results, which can
add latency. If the cache is REPL, though, the broadcast is not necessary: each node can hold a full
local copy of the index and queries runs at optimal speed taking advantage of a local index.

Infinispan has two index managers suitable for non-shared indexes: directory-based and near-
real-time. Storage wise, non-shared indexes can be located in ram, filesystem, or Infinispan local
caches.

Effect of the index mode

The directory-based and near-real-time index managers can be associated with different index
modes, resulting in different index distributions.

REPL caches combined with the ALL index mode will result in a full copy of the cluster-wide index
on each node. This mode allows queries to become effectively local without network latency. This is
the recommended mode to index any REPL cache, and that’s the choice picked by the auto-config
when the a REPL cache is detected. The ALL mode should not be used with DIST caches.

REPL or DIST caches combined with LOCAL index mode will cause each node to index only data
inserted from the same JVM, causing an uneven distribution of the index. In order to obtain correct
query results, it’s necessary to use broadcast queries.

REPL or DIST caches combined with PRIMARY_OWNER will also need broadcast queries. Differently
from the LOCAL mode, each node’s index will contain indexed entries which key is primarily owned
by the node according to the consistent hash, leading to a more evenly distributed indexes among
the nodes.

directory-based index manager

This is the default Index Manager used when no index manager is configured. The directory-based
index manager is used to manage indexes backed by a local lucene directory. It supports ram,
filesystem and non-clustered infinispan storage.

Filesystem storage

This is the default storage, and used when index manager configuration is omitted. The index is
stored in the filesystem using a MMapDirectory. It is the recommended storage for local indexes.
Although indexes are persistent on disk, they get memory mapped by Lucene and thus offer decent
query performance.

Configuration:

11

#query_index_mode
#query_index_mode
#query_autoconfig
#query_clustered_query_api
https://lucene.apache.org/core/6_0_0/core/org/apache/lucene/store/MMapDirectory.html

<replicated-cache name="myCache">
<indexing index="ALL">
<!-- Optional: define base folder for indexes -->
<property name="default.indexBase">${java.io.tmpdir}/baseDir</property>
</indexing>
</replicated-cache>

Infinispan will create a different folder under default.indexBase for each entity (index) present in
the cache.

Ram storage

Index is stored in memory using a Lucene RAMDirectory. Not recommended for large indexes or
highly concurrent situations. Indexes stored in Ram are not persistent, so after a cluster shutdown
a re-index is needed. Configuration:

<replicated-cache name="myCache">
<indexing index="ALL">
<property name="default.directory_provider">local-heap</property>
</indexing>
</replicated-cache>

Infinispan storage

Infinispan storage makes use of the Infinispan Lucene directory that saves the indexes to a set of
caches; those caches can be configured like any other Infinispan cache, for example by adding a
cache store to have indexes persisted elsewhere apart from memory. In order to use Infinispan
storage with a non-shared index, it’s necessary to use LOCAL caches for the indexes:

12

https://lucene.apache.org/core/6_0_0/core/org/apache/lucene/store/RAMDirectory.html
#query_massindexer

<replicated-cache name="default">
<indexing index="ALL">
<property name="default.locking_cachename">
LuceneIndexesLocking_custom</property>
<property name="default.data_cachename">LuceneIndexesData_custom</property>
<property name="default.metadata_cachename">
LuceneIndexesMetadata_custom</property>
</indexing>
</replicated-cache>

<local-cache name="LuceneIndexeslLocking_custom">
<indexing index="NONE" />
</local-cache>

<local-cache name="LuceneIndexesMetadata custom">
<indexing index="NONE" />
</local-cache>

<local-cache name="LuceneIndexesData_custom">
<indexing index="NONE" />
</local-cache>

near-real-time index manager

Similar to the directory-based index manager but takes advantage of the Near-Real-Time features of
Lucene. It has better write performance than the directory-based because it flushes the index to the
underlying store less often. The drawback is that unflushed index changes can be lost in case of a
non-clean shutdown. Can be used in conjunction with local-heap, filesystem and local infinispan
storage. Configuration for each different storage type is the same as the directory-based index
manager.

Example with ram:

<replicated-cache name="default">
<indexing index="ALL">
<property name="default.indexmanager">near-real-time</property>
<property name="default.directory_provider">local-heap</property>
</indexing>
</replicated-cache>

Example with filesystem:

<replicated-cache name="default">
<indexing index="ALL">
<property name="default.indexmanager">near-real-time</property>
</indexing>
</replicated-cache>

13

#query_directory_based

External indexes

Apart from having shared and non-shared indexes managed by Infinispan itself, it is possible to
offload indexing to a third party search engine: currently Infinispan supports Elasticsearch as a
external index storage.

Elasticsearch IndexManager (experimental)

This index manager forwards all indexes to an external Elasticsearch server. This is an
experimental integration and some features may not be available, for example indexNullAs for
@IndexedEmbedded annotations is not currently supported.

Configuration:

<indexing index="LOCAL">
<property name="default.indexmanager">elasticsearch</property>
<property name="default.elasticsearch.host">
link:http://elasticHost:9200</property>
<!-- other elasticsearch configurations -->
</indexing>

The index mode should be set to LOCAL, since Infinispan considers Elasticsearch as a single shared
index. More information about Elasticsearch integration, including the full description of the
configuration properties can be found at the Hibernate Search manual.

Automatic configuration

The attribute auto-config provides a simple way of configuring indexing based on the cache type.
For replicated and local caches, the indexing is configured to be persisted on disk and not shared
with any other processes. Also, it is configured so that minimum delay exists between the moment
an object is indexed and the moment it is available for searches (near real time).

<local-cache name="default">
<indexing index="LOCAL" auto-config="true">
</indexing>

</local-cache>

ﬁ it is possible to redefine any property added via auto-config, and also add new
properties, allowing for advanced tuning.

The auto config adds the following properties for replicated and local caches:

Property name value description

default.directory_provider filesystem Filesystem based index. More
details at Hibernate Search
documentation

14

https://hibernate.atlassian.net/browse/HSEARCH-2389
https://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#elasticsearch-integration
http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#search-configuration-directory
http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#search-configuration-directory

Property name value description

default.exclusive_index_use true indexing operation in exclusive
mode, allowing Hibernate
Search to optimize writes

default.indexmanager near-real-time make use of Lucene near real
time feature, meaning indexed
objects are promptly available
to searches

default.reader.strategy shared Reuse index reader across
several queries, thus avoiding
reopening it

For distributed caches, the auto-config configure indexes in Infinispan itself, internally handled as a
master-slave mechanism where indexing operations are sent to a single node which is responsible
to write to the index.

The auto config properties for distributed caches are:

Property name value description

default.directory_provider infinispan Indexes stored in Infinispan.
More details at Hibernate
Search documentation

default.exclusive_index_use true indexing operation in exclusive
mode, allowing Hibernate
Search to optimize writes

default.indexmanager org.infinispan.query.indexman Delegates index writing to a
ager.InfinispanIndexManager single node in the Infinispan
cluster
default.reader.strategy shared Reuse index reader across

several queries, avoiding
reopening it

Re-indexing

Occasionally you might need to rebuild the Lucene index by reconstructing it from the data stored
in the Cache. You need to rebuild the index if you change the definition of what is indexed on your
types, or if you change for example some Analyzer parameter, as Analyzers affect how the index is
written. Also, you might need to rebuild the index if you had it destroyed by some system
administration mistake. To rebuild the index just get a reference to the MassIndexer and start it;
beware it might take some time as it needs to reprocess all data in the grid!

// Blocking execution
SearchManager searchManager = Search.getSearchManager(cache);
searchManager.getMassIndexer().start();

// Non blocking execution
CompletableFuture<Void> future = searchManager.getMassIndexer().startAsyc();

15

http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#infinispan-directories
http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#infinispan-directories

This is also available as a start JMX operation on the Massindexer MBean
registered under the name org.infinispan:type=Query,manager="{name-of-cache-
manager}",cache="{name-of-cache}", component=MassIndexer.

Mapping Entities

Infinispan relies on the rich API of Hibernate Search in order to define fine grained configuration
for indexing at entity level. This configuration includes which fields are annotated, which analyzers
should be used, how to map nested objects and so on. Detailed documentation is available at the
Hibernate Search manual.

@Documentld

Unlike Hibernate Search, using @Documentld to mark a field as identifier does not apply to
Infinispan values; in Infinispan the identifier for all @Indexed objects is the key used to store the
value. You can still customize how the key is indexed using a combination of @Transformable ,
custom types and custom FieldBridge implementations.

@Transformable keys

The key for each value needs to be indexed as well, and the key instance must be transformed in a
String. Infinispan includes some default transformation routines to encode common primitives, but
to use a custom key you must provide an implementation of org.infinispan.query.Transformer .

Registering a key Transformer via annotations

You can annotate your key class with org.infinispan.query.Transformable and your custom
transformer implementation will be picked up automatically:

(transformer = CustomTransformer.class)
public class CustomKey {

}

public class CustomTransformer implements Transformer {
public Object fromString(String s) {

return new CustomKey(...);

public String toString(Object customType) {
CustomKey ck = (CustomKey) customType;
return ...

Registering a key Transformer via the cache indexing configuration

16

https://docs.jboss.org/infinispan/10.0/apidocs/jmxComponents.html#MassIndexer
http://hibernate.org/search/
https://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#search-mapping
https://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#search-mapping

You can use the key-transformers xml element in both embedded and server config:

<replicated-cache name="test">
<indexing index="ALL" auto-config="true">
<key-transformers>
<key-transformer key="com.mycompany.CustomKey" transformer=
"com.mycompany.CustomTransformer"/>
</key-transformers>
</indexing>
</replicated-cache>

or alternatively, you can achieve the same effect by using the Java configuration API (embedded
mode):

ConfigurationBuilder builder = ...
builder.indexing().autoConfig(true)
.addKeyTransformer (CustomKey.class, CustomTransformer.class);

Registering a Transformer programmatically at runtime

Using this technique, you don’t have to annotate your custom key type and you also do not add the
transformer to the, cache indexing configuration, instead, you can add it to the
SearchManagerImplementor dynamically at runtime by invoking
org.infinispan.query.spi.SearchManagerImplementor.registerKeyTransformer(Class<?>, Class<?
extends Transformer>):

org.infinispan.query.spi.SearchManagerImplementor manager = Search.getSearchManager
(cache).unwrap(SearchManagerImplementor.class);
manager .registerKeyTransformer(keyClass, keyTransformer(Class);

This approach is deprecated since 10.0 because it can lead to situations when a
newly started node receives cache entries via initial state transfer and is not able

ﬁ to index them because the needed key transformers are not yet registered (and can
only be registered after the Cache has been fully started). This undesirable
situation is avoided if you register your key transformers using the other available
approaches (configuration and annotation).

Programmatic mapping

Instead of using annotations to map an entity to the index, it’s also possible to configure it
programmatically.

In the following example we map an object Author which is to be stored in the grid and made
searchable on two properties but without annotating the class.

17

import org.apache.lucene.search.Query;

import org.hibernate.search.cfg.Environment;

import org.hibernate.search.cfg.SearchMapping;

import org.hibernate.search.query.dsl.QueryBuilder;
import org.infinispan.Cache;

import org.infinispan.configuration.cache.Configuration;
import org.infinispan.configuration.cache.ConfigurationBuilder;
import org.infinispan.configuration.cache.Index;

import org.infinispan.manager.DefaultCacheManager;
import org.infinispan.query.CacheQuery;

import org.infinispan.query.Search;

import org.infinispan.query.SearchManager;

import java.io.IOException;
import java.lang.annotation.ElementType;
import java.util.Properties;

SearchMapping mapping = new SearchMapping();
mapping.entity(Author.class).indexed()
.property("name", ElementType.METHOD).field()
.property("surname"”, ElementType.METHOD).field();

Properties properties = new Properties();
properties.put(Environment.MODEL_MAPPING, mapping);
properties.put("hibernate.search.[other options]", "[...]1");

Configuration infinispanConfiguration = new ConfigurationBuilder()
.indexing().index(Index.LOCAL)
.withProperties(properties)
.build();

DefaultCacheManager cacheManager = new DefaultCacheManager(infinispanConfiguration);

Cache<Long, Author> cache = cacheManager.getCache();
SearchManager sm = Search.getSearchManager(cache);

Author author = new Author(1, "Manik", "Surtani");
cache.put(author.getId(), author);

QueryBuilder gb = sm.buildQueryBuilderForClass(Author.class).get();
Query q = gb.keyword().onField("name").matching("Manik").createQuery();

CacheQuery cq = sm.getQuery(q, Author.class);
assert cq.getResultSize() == 1;

1.2.3. Querying APIs
You can query Infinispan using:

* Lucene or Hibernate Search Queries. Infinispan exposes the Hibernate Search DSL, which

18

produces Lucene queries. You can run Lucene queries on single nodes or broadcast queries to
multiple nodes in an Infinispan cluster.

* Ickle queries, a custom string-based query language with full-text extensions.

Hibernate Search

Apart from supporting Hibernate Search annotations to configure indexing, it’s also possible to
query the cache using other Hibernate Search APIs

Running Lucene queries

To run a Lucene query directly, simply create and wrap it in a CacheQuery:

import org.infinispan.query.Search;
import org.infinispan.query.SearchManager;
import org.apache.lucene.Query;

SearchManager searchManager = Search.getSearchManager(cache);
Query query = searchManager.buildQueryBuilderForClass(Book.class).get()
.keyword().wildcard().onField("description").matching("*test*")

.createQuery();
CacheQuery<Book> cacheQuery = searchManager.getQuery(query);

Using the Hibernate Search DSL

The Hibernate Search DSL can be used to create the Lucene Query, example:

import org.infinispan.query.Search;

import org.infinispan.query.SearchManager;

import org.apache.lucene.search.Query;

Cache<String, Book> cache = ...

SearchManager searchManager = Search.getSearchManager(cache);

Query luceneQuery = searchManager
.buildQueryBuilderForClass(Book.class).get()
.range().onField("year").from(2005).to(2010)

.createQuery();

List<Object> results = searchManager.getQuery(luceneQuery).list();

For a detailed description of the query capabilities of this DSL, see the relevant section of the
Hibernate Search manual.

19

https://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#section-building-lucene-queries

Faceted Search

Infinispan support Faceted Searches by using the Hibernate Search FacetManager:

// Cache is indexed
Cache<Integer, Book> cache = ...

// 0Obtain the Search Manager
SearchManager searchManager = Search.getSearchManager(cache);

// Create the query builder
QueryBuilder queryBuilder = searchManager.buildQueryBuilderForClass(Book.class).get();

// Build any Lucene Query. Here it's using the DSL to do a Lucene term query on a book
name

Query TluceneQuery = queryBuilder.keyword().wildcard().onField("name").matching(
"bitcoin").createQuery();

// Wrap into a cache Query
CacheQuery<Book> query = searchManager.getQuery(luceneQuery);

// Define the Facet characteristics

FacetingRequest request = queryBuilder.facet()
.name("year_facet")
.onField("year")
.discrete()
.orderedBy(FacetSortOrder.COUNT_ASC)
.createFacetingRequest();

// Associated the FacetRequest with the query
FacetManager facetManager = query.getFacetManager().enableFaceting(request);

// Obtain the facets
List<Facet> facetlList = facetManager.getFacets("year_facet");

A Faceted search like above will return the number books that match 'bitcoin' released on a yearly
basis, for example:

AbstractFacet{facetingName="year_facet', fieldName='year', value='2008', count=1}
AbstractFacet{facetingName="'year_facet', fieldName='year', value='2009', count=1}
AbstractFacet{facetingName="year_facet', fieldName='year', value='2010', count=1}
AbstractFacet{facetingName="year_facet', fieldName='year', value='2011"', count=1}
AbstractFacet{facetingName="'year_facet', fieldName='year', value='2012"', count=1}
AbstractFacet{facetingName="year_facet', fieldName='year', value='2016"', count=1}
AbstractFacet{facetingName="year_facet', fieldName='year', value='2015"', count=2}
AbstractFacet{facetingName="year_facet', fieldName='year', value='2013", count=3}

For more info about Faceted Search, see Hibernate Search Faceting

20

https://en.wikipedia.org/wiki/Faceted_search
http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#query-faceting

Spatial Queries

Infinispan also supports Spatial Queries, allowing to combining full-text with restrictions based on
distances, geometries or geographic coordinates.

Example, we start by using the @Spatial annotation in our entity that will be searched, together
with @Latitude and @Longitude:

@Indexed
@Spatial
public class Restaurant {

@Latitude
private Double latitude;

@Longitude
private Double longitude;

@Field(store = Store.YES)
String name;

// Getters, Setters and other members omitted

to run spatial queries, the Hibernate Search DSL can be used:

// Cache 1is configured as indexed
Cache<String, Restaurant> cache = ...

// Obtain the SearchManager
Searchmanager searchManager = Search.getSearchManager(cache);

// Build the Lucene Spatial Query
Query query = Search.getSearchManager(cache).buildQueryBuilderForClass(Restaurant
.class).get()
.spatial()
within(2, Unit.KM)
.ofLatitude(centerlLatitude)
.andLongitude(centerLongitude)
.createQuery();

// Wrap in a cache Query
CacheQuery<Restaurant> cacheQuery = searchManager.getQuery(query);

List<Restaurant> nearBy = cacheQuery.list();

More info on Hibernate Search manual

21

https://en.wikipedia.org/wiki/Spatial_query
http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#spatial

IndexedQueryMode

It’s possible to specify a query mode for indexed queries. IndexedQueryMode.BROADCAST allows to
broadcast a query to each node of the cluster, retrieve the results and combine them before
returning to the caller. It is suitable for use in conjunction with non-shared indexes, since each
node’s local index will have only a subset of the data indexed.

IndexedQueryMode.FETCH will execute the query in the caller. If all the indexes for the cluster
wide data are available locally, performance will be optimal, otherwise this query mode may
involve fetching indexes data from remote nodes.

The IndexedQueryMode is supported for Lucene Queries and Ickle String queries at the moment
(no Infinispan Query DSL).

Example:

CacheQuery<Person> broadcastQuery = Search.getSearchManager(cache).getQuery(new
MatchAl1DocsQuery(), IndexedQueryMode.BROADCAST);

List<Person> result = broadcastQuery.list();

Infinispan Query DSL

Infinispan provides its own query DSL, independent of Lucene and Hibernate Search. Decoupling
the query API from the underlying query and indexing mechanism makes it possible to introduce
new alternative engines in the future, besides Lucene, and still being able to use the same uniform
query API. The current implementation of indexing and searching is still based on Hibernate
Search and Lucene so all indexing related aspects presented in this chapter still apply.

The new API simplifies the writing of queries by not exposing the user to the low level details of
constructing Lucene query objects and also has the advantage of being available to remote Hot Rod
clients. But before delving into further details, let’s examine first a simple example of writing a
query for the Book entity from the previous example.

Query example using Infinispan's query DSL
import org.infinispan.query.dsl.*;
// get the DSL query factory from the cache, to be used for constructing the Query

object:
QueryFactory qf = org.infinispan.query.Search.getQueryFactory(cache);

// create a query for all the books that have a title which contains "engine":
org.infinispan.query.dsl.Query query = qf.from(Book.class)
.having("title").like("%engine%")
.build();

// get the results:
List<Book> list = query.list();

22

#query_non_shared_index

The API is located in the org.infinispan.query.dsl package. A query is created with the help of the
QueryFactory instance which is obtained from the per-cache SearchManager. Each QueryFactory
instance is bound to the same Cache instance as the SearchManager, but it is otherwise a stateless
and thread-safe object that can be used for creating multiple queries in parallel.

Query creation starts with the invocation of the from(Class entityType) method which returns a
QueryBuilder object that is further responsible for creating queries targeted to the specified entity
class from the given cache.

A query will always target a single entity type and is evaluated over the contents of
9 a single cache. Running a query over multiple caches or creating queries that
target several entity types (joins) is not supported.

The QueryBuilder accumulates search criteria and configuration specified through the invocation of
its DSL methods and is ultimately used to build a Query object by the invocation of the
QueryBuilder.build() method that completes the construction. Being a stateful object, it cannot be
used for constructing multiple queries at the same time (except for nested queries) but can be
reused afterwards.

This QueryBuilder is different from the one from Hibernate Search but has a
somewhat similar purpose, hence the same name. We are considering renaming it
in near future to prevent ambiguity.

Executing the query and fetching the results is as simple as invoking the 1list() method of the
Query object. Once executed the Query object is not reusable. If you need to re-execute it in order to
obtain fresh results then a new instance must be obtained by calling QueryBuilder.build().

Filtering operators

Constructing a query is a hierarchical process of composing multiple criteria and is best explained
following this hierarchy.

The simplest possible form of a query criteria is a restriction on the values of an entity attribute
according to a filtering operator that accepts zero or more arguments. The entity attribute is
specified by invoking the having(String attributePath) method of the query builder which returns
an intermediate context object (FilterConditionEndContext) that exposes all the available operators.
Each of the methods defined by FilterConditionEndContext is an operator that accepts an argument,
except for between which has two arguments and isNull which has no arguments. The arguments
are statically evaluated at the time the query is constructed, so if you’re looking for a feature
similar to SQL’s correlated sub-queries, that is not currently available.

// a single query criterion
QueryBuilder gb = ...
gb.having("title").eq("Hibernate Search in Action");

Table 1. FilterConditionEndContext exposes the following filtering operators:

23

#nested_conditions
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/query/dsl/FilterConditionEndContext.html

Filter

in

in

contains

containsAll

containsAll

containsAny

containsAny

isNull

like

eq

equal

gt

gte

24

Arguments

Collection values

Object... values

Object value

Collection values

Object... values

Collection values

Object... values

String pattern

Object value

Object value

Object value

Object value

Description

Checks that the left operand is
equal to one of the elements
from the Collection of values
given as argument.

Checks that the left operand is
equal to one of the (fixed) list of
values given as argument.

Checks that the left argument
(which is expected to be an
array or a Collection) contains
the given element.

Checks that the left argument
(which is expected to be an
array or a Collection) contains
all the elements of the given
collection, in any order.

Checks that the left argument
(which is expected to be an
array or a Collection) contains
all of the the given elements, in
any order.

Checks that the left argument
(which is expected to be an
array or a Collection) contains
any of the elements of the given
collection.

Checks that the left argument
(which is expected to be an

array or a Collection) contains
any of the the given elements.

Checks that the left argument is
null.

Checks that the left argument
(which is expected to be a
String) matches a wildcard
pattern that follows the JPA
rules.

Checks that the left argument is
equal to the given value.

Alias for eq.

Checks that the left argument is
greater than the given value.

Checks that the left argument is
greater than or equal to the
given value.

Filter Arguments Description

It Object value Checks that the left argument is
less than the given value.

Ite Object value Checks that the left argument is
less than or equal to the given
value.

between Object from, Object to Checks that the left argument is

between the given range limits.

It’s important to note that query construction requires a multi-step chaining of method invocation
that must be done in the proper sequence, must be properly completed exactly once and must not
be done twice, or it will result in an error. The following examples are invalid, and depending on
each case they lead to criteria being ignored (in benign cases) or an exception being thrown (in
more serious ones).

// Incomplete construction. This query does not have any filter on "title" attribute
yet,

// although the author may have intended to add one.

QueryBuilder gb1 = ...

gb1.having("title");

Query q1 = gb1.build(); // consequently, this query matches all Book instances
regardless of title!

// Duplicated completion. This results in an exception at run-time.

// Maybe the author intended to connect two conditions with a boolean operator,

// but this does NOT actually happen here.

QueryBuilder gb2 = ...

gb2.having("title").like("%Data Grid%");
gb2.having("description").like("%clustering%"); // will throw
java.lang.I1llegalStateException: Sentence already started. Cannot use 'having(..)'
again.

Query q2 = @gb2.build();

Filtering based on attributes of embedded entities

The having method also accepts dot separated attribute paths for referring to embedded entity
attributes, so the following is a valid query:

// match all books that have an author named "Manik"
Query query = queryFactory.from(Book.class)

.having("author.name").eq("Manik")
.build();

Each part of the attribute path must refer to an existing indexed attribute in the corresponding
entity or embedded entity class respectively. It’s possible to have multiple levels of embedding.

25

Boolean conditions

Combining multiple attribute conditions with logical conjunction (and) and disjunction (or)
operators in order to create more complex conditions is demonstrated in the following example.
The well known operator precedence rule for boolean operators applies here, so the order of DSL
method invocations during construction is irrelevant. Here and operator still has higher priority
than or even though or was invoked first.

// match all books that have "Data Grid" in their title
// or have an author named "Manik" and their description contains "clustering"
Query query = queryFactory.from(Book.class)
.having("title").like("%Data Grid%")
.or().having("author.name").eq("Manik")
.and().having("description").like("%clustering%")
.build();

Boolean negation is achieved with the not operator, which has highest precedence among logical
operators and applies only to the next simple attribute condition.

// match all books that do not have "Data Grid" in their title and are authored by
"Manik"
Query query = queryFactory.from(Book.class)
.not().having("title").like("%Data Grid%")
.and().having("author.name").eq("Manik")
.build();

Nested conditions

Changing the precedence of logical operators is achieved with nested filter conditions. Logical
operators can be used to connect two simple attribute conditions as presented before, but can also
connect a simple attribute condition with the subsequent complex condition created with the same
query factory.

// match all books that have an author named "Manik" and their title contains

// "Data Grid" or their description contains "clustering"

Query query = queryFactory.from(Book.class)
.having("author.name").eq("Manik")
.and(queryFactory.having("title").1like("%Data Grid%")

.or().having("description").like("%clustering%"))
.build();

Projections

In some use cases returning the whole domain object is overkill if only a small subset of the
attributes are actually used by the application, especially if the domain entity has embedded
entities. The query language allows you to specify a subset of attributes (or attribute paths) to
return - the projection. If projections are used then the Query.list() will not return the whole

26

domain entity but will return a List of Object[], each slot in the array corresponding to a projected
attribute.

// match all books that have "Data Grid" in their title or description
// and return only their title and publication year
Query query = queryFactory.from(Book.class)
.select("title", "publicationYear")
.having("title").like("%Data Grid%")
.or().having("description").like("%Data Grid%"))
.build();

Sorting

Ordering the results based on one or more attributes or attribute paths is done with the
QueryBuilder.orderBy() method which accepts an attribute path and a sorting direction. If multiple
sorting criteria are specified, then the order of invocation of orderBy method will dictate their
precedence. But you have to think of the multiple sorting criteria as acting together on the tuple of
specified attributes rather than in a sequence of individual sorting operations on each attribute.

// match all books that have "Data Grid" in their title or description
// and return them sorted by the publication year and title
Query query = queryFactory.from(Book.class)
.orderBy("publicationYear", SortOrder.DESC)
.orderBy("title", SortOrder.ASC)
.having("title").like("%Data Grid%")
.or().having("description").like("%Data Grid%"))
.build();

Pagination

You can limit the number of returned results by setting the maxResults property of QueryBuilder.
This can be used in conjunction with setting the startOffset in order to achieve pagination of the
result set.

// match all books that have "clustering” in their title
// sorted by publication year and title
// and return 3'rd page of 10 results
Query query = queryFactory.from(Book.class)
.orderBy("publicationYear", SortOrder.DESC)
.orderBy("title", SortOrder.ASC)
.start0ffset(20)
.maxResults(10)
.having("title").like("%clustering%")
.build();

27

ﬁ Even if the results being fetched are limited to maxResults you can still find the
total number of matching results by calling Query.getResultSize().

Grouping and Aggregation

Infinispan has the ability to group query results according to a set of grouping fields and construct
aggregations of the results from each group by applying an aggregation function to the set of values
that fall into each group. Grouping and aggregation can only be applied to projection queries. The
supported aggregations are: avg, sum, count, max, min. The set of grouping fields is specified with
the groupBy(field) method, which can be invoked multiple times. The order used for defining
grouping fields is not relevant. All fields selected in the projection must either be grouping fields or
else they must be aggregated using one of the grouping functions described below. A projection
field can be aggregated and used for grouping at the same time. A query that selects only grouping

fields but no aggregation fields is legal.

Example: Grouping Books by author and counting them.

Query query = queryFactory.from(Book.class)
.select(Expression.property("author"), Expression.count("title"))
.having("title").like("%engine%")

.groupBy("author")
.build();

A projection query in which all selected fields have an aggregation function
O applied and no fields are used for grouping is allowed. In this case the
aggregations will be computed globally as if there was a single global group.

Aggregations

The following aggregation functions may be applied to a field: avg, sum, count, max, min

* avg() - Computes the average of a set of numbers. Accepted values are primitive numbers and
instances of java.lang.Number. The result is represented as java.lang.Double. If there are no non-

null values the result is null instead.

* count() - Counts the number of non-null rows and returns a java.lang.Long. If there are no non-

null values the result is 0 instead.

* max() - Returns the greatest value found. Accepted values must be instances of

java.lang.Comparable. If there are no non-null values the result is null instead.

* min() - Returns the smallest value found. Accepted values must be instances of

java.lang.Comparable. If there are no non-null values the result is null instead.

* sum() - Computes the sum of a set of Numbers. If there are no non-null values the result is null

instead. The following table indicates the return type based on the specified field.

Table 2. Table sum return type

28

Field Type Return Type

Integral (other than BigInteger) Long

Float or Double Double
Biginteger BigInteger
BigDecimal BigDecimal

Evaluation of queries with grouping and aggregation

Aggregation queries can include filtering conditions, like usual queries. Filtering can be performed
in two stages: before and after the grouping operation. All filter conditions defined before invoking
the groupBy method will be applied before the grouping operation is performed, directly to the
cache entries (not to the final projection). These filter conditions may reference any fields of the
queried entity type, and are meant to restrict the data set that is going to be the input for the
grouping stage. All filter conditions defined after invoking the groupBy method will be applied to
the projection that results from the projection and grouping operation. These filter conditions can
either reference any of the groupBy fields or aggregated fields. Referencing aggregated fields that
are not specified in the select clause is allowed; however, referencing non-aggregated and non-
grouping fields is forbidden. Filtering in this phase will reduce the amount of groups based on their
properties. Sorting may also be specified similar to usual queries. The ordering operation is
performed after the grouping operation and can reference any of the groupBy fields or aggregated
fields.

Using Named Query Parameters

Instead of building a new Query object for every execution it is possible to include named
parameters in the query which can be substituted with actual values before execution. This allows
a query to be defined once and be efficiently executed many times. Parameters can only be used on
the right-hand side of an operator and are defined when the query is created by supplying an object
produced by the org.infinispan.query.dsl.Expression.param(String paramName) method to the
operator instead of the usual constant value. Once the parameters have been defined they can be
set by invoking either Query.setParameter(parameterName, value) or
Query.setParameters(parameterMap) as shown in the examples below.

29

import org.infinispan.query.Search;
import org.infinispan.query.dsl.*;

[...]

QueryFactory queryFactory = Search.getQueryFactory(cache);
// Defining a query to search for various authors and publication years
Query query = queryFactory.from(Book.class)
.select("title")
.having("author").eq(Expression.param("authorName"))
.and()
.having("publicationYear").eq(Expression.param("publicationYear"))
.build();

// Set actual parameter values
query.setParameter ("authorName", "Doe");
query.setParameter("publicationYear", 2010);

// Execute the query
List<Book> found = query.list();

Alternatively, multiple parameters may be set at once by supplying a map of actual parameter
values:

Setting multiple named parameters at once

import java.util.Map;
import java.util.HashMap;

[...]

Map<String, Object> parameterMap = new HashMap<>();
parameterMap.put("authorName", "Doe");
parameterMap.put("publicationYear", 2010);

query.setParameters(parameterMap);

A significant portion of the query parsing, validation and execution planning
0 effort is performed during the first execution of a query with parameters. This

effort is not repeated during subsequent executions leading to better performance

compared to a similar query using constant values instead of query parameters.

More Query DSL samples

Probably the best way to explore using the Query DSL API is to have a look at our tests suite.
QueryDslConditionsTest is a fine example.

30

https://github.com/infinispan/infinispan/blob/master/query/src/test/java/org/infinispan/query/dsl/embedded/QueryDslConditionsTest.java

Ickle

Create relational and full-text queries in both Library and Remote Client-Server mode with the Ickle
query language.

Ickle is string-based and has the following characteristics:

Query Java classes and supports Protocol Buffers.

Queries can target a single entity type.

Queries can filter on properties of embedded objects, including collections.

Supports projections, aggregations, sorting, named parameters.

Supports indexed and non-indexed execution.

Supports complex boolean expressions.

Supports full-text queries.

Does not support computations in expressions, such as user.age > sqrt(user.shoeSize+3).
Does not support joins.

Does not support subqueries.

Is supported across various {Infinispan} APIs. Whenever a Query is produced by the
QueryBuilder is accepted, including continuous queries or in event filters for listeners.

To use the API, first obtain a QueryFactory to the cache and then call the .create() method, passing
in the string to use in the query. For instance:

QueryFactory qf = Search.getQueryFactory(remoteCache);
Query q = qf.create("from sample_bank_account.Transaction where amount > 20");

When using Ickle all fields used with full-text operators must be both Indexed and Analysed.

Ickle Query Language Parser Syntax

The parser syntax for the Ickle query language has some notable rules:

Whitespace is not significant.

Wildcards are not supported in field names.

A field name or path must always be specified, as there is no default field.

&& and | | are accepted instead of AND or OR in both full-text and JPA predicates.

I may be used instead of NOT.

A missing boolean operator is interpreted as OR.

String terms must be enclosed with either single or double quotes.

Fuzziness and boosting are not accepted in arbitrary order; fuzziness always comes first.

I=is accepted instead of <>.

31

* Boosting cannot be applied to >>=,<,< operators. Ranges may be used to achieve the same
result.

Fuzzy Queries

To execute a fuzzy query add ~ along with an integer, representing the distance from the term used,
after the term. For instance

Query fuzzyQuery = qf.create("from sample_bank_account.Transaction where description :
"cofee'~2");

Range Queries

To execute a range query define the given boundaries within a pair of braces, as seen in the
following example:

Query rangeQuery = qf.create("from sample_bank_account.Transaction where amount : [20 to 50]");

Phrase Queries

A group of words may be searched by surrounding them in quotation marks, as seen in the
following example:

Query q = qf.create("from sample_bank_account.Transaction where description : 'bus fare™);

Proximity Queries

To execute a proximity query, finding two terms within a specific distance, add a ~ along with the
distance after the phrase. For instance, the following example will find the words canceling and fee
provided they are not more than 3 words apart:

Query proximityQuery = qf.create("from sample_bank_account.Transaction where
description : 'canceling fee'~3 ");

Wildcard Queries

Both single-character and multi-character wildcard searches may be performed:

* Assingle-character wildcard search may be used with the ? character.

* A multi-character wildcard search may be used with the * character.

To search for text or test the following single-character wildcard search would be used:

Query wildcardQuery = gf.create("from sample_bank_account.Transaction where
description : 'te?t'");

To search for test, tests, or tester the following multi-character wildcard search would be useD:

32

Query wildcardQuery = qf.create("from sample_bank_account.Transaction where
description : 'test*'");

Regular Expression Queries

Regular expression queries may be performed by specifing a pattern between /. Ickle uses Lucene’s
regular expression syntax, so to search for the words moat or boat the following could be used:

Query regExpQuery = qf.create("from sample_library.Book where title : /[mbJoat/");

Boosting Queries

Terms may be boosted by adding a » after the term to increase their relevance in a given query, the
higher the boost factor the more relevant the term will be. For instance to search for titles
containing beer and wine with a higher relevance on beer, by a factor of 3, the following could be
used:

Query boostedQuery = gf.create("from sample_library.Book where title : beer”3 OR wine

)

Continuous Query

Continuous Queries allow an application to register a listener which will receive the entries that
currently match a query filter, and will be continuously notified of any changes to the queried data
set that result from further cache operations. This includes incoming matches, for values that have
joined the set, updated matches, for matching values that were modified and continue to match,
and outgoing matches, for values that have left the set. By using a Continuous Query the application
receives a steady stream of events instead of having to repeatedly execute the same query to
discover changes, resulting in a more efficient use of resources. For instance, all of the following
use cases could utilize Continuous Queries:

* Return all persons with an age between 18 and 25 (assuming the Person entity has an age
property and is updated by the user application).
* Return all transactions higher than $2000.

» Return all times where the lap speed of F1 racers were less than 1:45.00s (assuming the cache
contains Lap entries and that laps are entered live during the race).

Continuous Query Execution
A continuous query uses a listener that is notified when:

* An entry starts matching the specified query, represented by a Join event.
* A matching entry is updated and continues to match the query, represented by an Update event.

* An entry stops matching the query, represented by a Leave event.

33

When a client registers a continuous query listener it immediately begins to receive the results
currently matching the query, received as Join events as described above. In addition, it will receive
subsequent notifications when other entries begin matching the query, as Join events, or stop
matching the query, as Leave events, as a consequence of any cache operations that would normally
generate creation, modification, removal, or expiration events. Updated cache entries will generate
Update events if the entry matches the query filter before and after the operation. To summarize,
the logic used to determine if the listener receives a Join, Update or Leave event is:

1. If the query on both the old and new values evaluate false, then the event is suppressed.

2. If the query on the old value evaluates false and on the new value evaluates true, then a join
event is sent.

3. If the query on both the old and new values evaluate true, then an Update event is sent.

4. If the query on the old value evaluates true and on the new value evaluates false, then a Leave
event is sent.

5. If the query on the old value evaluates true and the entry is removed or expired, then a Leave
event is sent.

9 Continuous Queries can use the full power of the Query DSL except: grouping,
aggregation, and sorting operations.

Running Continuous Queries

To create a continuous query you’ll start by creating a Query object first. This is described in the
Query DSL section. Then youll need to obtain the ContinuousQuery
(org.infinispan.query.api.continuous.ContinuousQuery) object of your cache and register the query
and a continuous query listener (org.infinispan.query.api.continuous.ContinuousQueryListener) with
it. A ContinuousQuery object associated to a cache can be obtained by calling the static method
org.infinispan.client.hotrod.Search.getContinuousQuery(RemoteCache<K, V> cache) if running in
remote mode or org.infinispan.query.Search.getContinuousQuery(Cache<K, V> cache) when running
in embedded mode. Once the listener has been created it may be registered by using the
addContinuousQueryListener method of ContinuousQuery:

continuousQuery.addContinuousQuerylListener(query, listener);

The following example demonstrates a simple continuous query use case in embedded mode:

Registering a Continuous Query

import org.infinispan.query.api.continuous.ContinuousQuery;

import org.infinispan.query.api.continuous.ContinuousQueryListener;
import org.infinispan.query.Search;

import org.infinispan.query.dsl.QueryFactory;

import org.infinispan.query.dsl.Query;

import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;

34

#query_dsl
#query_dsl

[...]

// We have a cache of Persons
Cache<Integer, Person> cache = ...

// We begin by creating a ContinuousQuery instance on the cache
ContinuousQuery<Integer, Person> continuousQuery = Search.getContinuousQuery(cache);

// Define our query. In this case we will be looking for any Person instances under 21
years of age.
QueryFactory queryFactory = Search.getQueryFactory(cache);
Query query = queryFactory.from(Person.class)
.having("age").1t(21)
.build();

final Map<Integer, Person> matches = new ConcurrentHashMap<Integer, Person>();

// Define the ContinuousQuerylListener
ContinuousQuerylListener<Integer, Person> listener = new ContinuousQuerylListener
<Integer, Person>() {
@Override
public void resultJoining(Integer key, Person value) {
matches.put(key, value);
}

@0verride
public void resultUpdated(Integer key, Person value) {
// we do not process this event

}

@0verride
public void resultlLeaving(Integer key) {
matches.remove(key);

}
+;

// Add the listener and the query
continuousQuery.addContinuousQueryListener(query, listener);

[...]

// Remove the listener to stop receiving notifications
continuousQuery.removeContinuousQuerylListener(listener);

As Person instances having an age less than 21 are added to the cache they will be received by the
listener and will be placed into the matches map, and when these entries are removed from the
cache or their age is modified to be greater or equal than 21 they will be removed from matches.

35

Removing Continuous Queries

To stop the query from further execution just remove the listener:

continuousQuery.removeContinuousQuerylListener(listener);

Notes on performance of Continuous Queries

Continuous queries are designed to provide a constant stream of updates to the application,
potentially resulting in a very large number of events being generated for particularly broad
queries. A new temporary memory allocation is made for each event. This behavior may result in
memory pressure, potentially leading to OutOfMemoryErrors (especially in remote mode) if queries
are not carefully designed. To prevent such issues it is strongly recommended to ensure that each
query captures the minimal information needed both in terms of number of matched entries and
size of each match (projections can be used to capture the interesting properties), and that each
ContinuousQueryListener is designed to quickly process all received events without blocking and to
avoid performing actions that will lead to the generation of new matching events from the cache it
listens to.

1.3. Remote Querying

Apart from supporting indexing and searching of Java entities to embedded clients, Infinispan
introduced support for remote, language neutral, querying.

This leap required two major changes:

* Since non-JVM clients cannot benefit from directly using Apache Lucene's Java API, Infinispan
defines its own new query language, based on an internal DSL that is easily implementable in
all languages for which we currently have an implementation of the Hot Rod client.

* In order to enable indexing, the entities put in the cache by clients can no longer be opaque
binary blobs understood solely by the client. Their structure has to be known to both server and
client, so a common way of encoding structured data had to be adopted. Furthermore, allowing
multi-language clients to access the data requires a language and platform-neutral encoding.
Google’s Protocol Buffers was elected as an encoding format for both over-the-wire and storage
due to its efficiency, robustness, good multi-language support and support for schema evolution.

1.3.1. Storing Protobuf encoded entities

Remote clients that want to be able to index and query their stored entities must do so using the
Protobuf encoding format. This is key for the search capability to work. But it’s also possible to store
Protobuf entities just for gaining the benefit of platform independence and not enable indexing if
you do not need it.

Protobuf is all about structured data, so first thing you do to use it is define the structure of your
data. This is accomplished by declaring protocol buffer message types in .proto files, like in the
following example. Protobuf is a broad subject, we will not detail it here, so please consult the
Protobuf Developer Guide for an in-depth explanation. It suffices to say for now that our example
defines an entity (message type in protobuf speak) named Book, placed in a package named

36

http://lucene.apache.org/
#query_dsl
http://code.google.com/p/protobuf/
https://developers.google.com/protocol-buffers/docs/overview

book_sample. Our entity declares several fields of primitive types and a repeatable field (an array
basically) named authors. The Author message instances are embedded in the Book message
instance.

library.proto
package book_sample;

message Book {
required string title = 1;
required string description = 2;
required int32 publicationYear = 3; // no native Date type available in Protobuf

repeated Author authors = 4;
}
message Author {
required string name = 1;
required string surname = 2;

}

There are a few important notes we need to make about Protobuf messages:

* nesting of messages is possible, but the resulting structure is strictly a tree, never a graph

* there is no concept of type inheritance

* collections are not supported but arrays can be easily emulated using repeated fields
Using Protobuf with the Java Hot Rod client is a two step process. First, the client must be
configured to use a dedicated marshaller, ProtoStreamMarshaller. This marshaller uses the
ProtoStream library to assist you in encoding your objects. The second step is instructing

ProtoStream library on how to marshall your message types. The following example highlights this
process.

37

https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/marshall/ProtoStreamMarshaller.html
https://github.com/infinispan/protostream

import org.infinispan.client.hotrod.configuration.ConfigurationBuilder;
import org.infinispan.client.hotrod.marshall.MarshallerUtil;
import org.infinispan.protostream.SerializationContext;

ConfigurationBuilder clientBuilder = new ConfigurationBuilder();
clientBuilder.addServer()

.host("10.1.2.3").port(11234)

.marshaller(new ProtoStreamMarshaller());

RemoteCacheManager remoteCacheManager = new RemoteCacheManager(clientBuilder.build());

SerializationContext serCtx = MarshallerUtil.getSerializationContext
(remoteCacheManager);

FileDescriptorSource fds = new FileDescriptorSource();
fds.addProtoFiles("/library.proto");
serCtx.registerProtoFiles(fds);
serCtx.registerMarshaller(new BookMarshaller());
serCtx.registerMarshaller(new AuthorMarshaller());

// Book and Author classes omitted for brevity

The interesting part in this sample is obtaining the SerializationContext associated to the
RemoteCacheManager and then instructing ProtoStream about the protobuf types we want to
marshall. The SerializationContext is provided by the library for this purpose. The
SerializationContext.registerProtoFiles method receives the name of one or more classpath
resources that is expected to be a protobuf definition containing our type declarations.

0 A RemoteCacheManager has no SerializationContext associated with it unless it was
configured to use a ProtoStreamMarshaller.

The next relevant part is the registration of per entity marshallers for our domain model types.
They must be provided by the user for each type or marshalling will fail. Writing marshallers is a
simple process. The BookMarshaller example should get you started. The most important thing you
need to consider is they need to be stateless and threadsafe as a single instance of them is being
used.

38

BookMarshaller.java

import org.infinispan.protostream.MessageMarshaller;

public class BookMarshaller implements MessageMarshaller<Book> {

public String getTypeName() {
return "book_sample.Book";

}

public Class<? extends Book> getJavaClass() {
return Book.class;

}

public void writeTo(ProtoStreamWriter writer, Book book) throws IOException {
writer.writeString("title", book.getTitle());
writer.writeString("description”, book.getDescription());
writer.writeInt("publicationYear", book.getPublicationYear());
writer.writeCollection("authors", book.getAuthors(), Author.class);

public Book readFrom(ProtoStreamReader reader) throws IOException {
String title = reader.readString("title");
String description = reader.readString("description”);
int publicationYear = reader.readInt("publicationYear");
Set<Author> authors = reader.readCollection("authors", new HashSet<>(), Author
.class);
return new Book(title, description, publicationYear, authors);

}

Once you’ve followed these steps to setup your client you can start reading and writing Java objects
to the remote cache and the actual data stored in the cache will be protobuf encoded provided that
marshallers were registered with the remote client for all involved types (Book and Author in our
example). Keeping your objects stored in protobuf format has the benefit of being able to consume
them with compatible clients written in different languages.

1.3.2. Indexing of Protobuf encoded entries

After configuring the client as described in the previous section you can start configuring indexing
for your caches on the server side. Activating indexing and the various indexing specific
configurations is identical to embedded mode and is detailed in the Querying Infinispan chapter.

There is however an extra configuration step involved. While in embedded mode the indexing
metadata is obtained via Java reflection by analyzing the presence of various Hibernate Search

39

#query_configuration_api

annotations on the entry’s class, this is obviously not possible if the entry is protobuf encoded. The
server needs to obtain the relevant metadata from the same descriptor (.proto file) as the client.
The descriptors are stored in a dedicated cache on the server named '__protobuf metadata'. Both
keys and values in this cache are plain strings. Registering a new schema is therefore as simple as
performing a put operation on this cache using the schema’s name as key and the schema file itself
as the value. Alternatively you can use the CLI (via the cache-container=*:register-proto-schemas()
operation), the Management Console or the ProtobufMetadataManager MBean via JMX. Be aware
that, when security is enabled, access to the schema cache via the remote protocols requires that
the user belongs to the '___schema_manager' role.

Once indexing is enabled for a cache all fields of Protobuf encoded entries will be
fully indexed unless you use the @Indexed and @Field protobuf schema pseudo-
annotations in order to control precisely what fields need to get indexed. The
default behaviour can be very inefficient when dealing with types having many or
0 very larger fields so we encourage you to always specify what fields should be
indexed instead of relying on the default indexing behaviour. The indexing
behaviour for protobuf message types that are not annotated can also be modified
per each schema file by setting the protobuf schema option 'indexed_by_default' to
false (its default value is considered true) at the beginning of your schema file.

option indexed_by_default = false; // This disables indexing of types that are not
annotated for indexing

1.3.3. Aremote query example

You’ve managed to configure both client and server to talk protobuf and you’ve enabled indexing.
Let’s put some data in the cache and try to search for it then!

40

import org.infinispan.client.hotrod.*;
import org.infinispan.query.dsl.*;

RemoteCacheManager remoteCacheManager = ...;
RemoteCache<Integer, Book> remoteCache = remoteCacheManager.getCache();

Book book1 = new Book();
book1.setTitle("Hibernate in Action");
remoteCache.put(1, book1);

Book book2 = new Book();
book2.setTile("Hibernate Search in Action");
remoteCache.put(2, book2);

QueryFactory qf = Search.getQueryFactory(remoteCache);

Query query = qf.from(Book.class)
.having("title").like("%Hibernate Search%")
.build();

List<Book> list = query.list(); // Voila! We have our book back from the cache!

The key part of creating a query is obtaining the QueryFactory for the remote cache using the
org.infinispan.client.hotrod.Search.getQueryFactory() method. Once you have this creating the query
is similar to embedded mode which is covered in this section.

1.3.4. Analysis

Analysis is a process that converts input data into one or more terms that you can index and query.

Default Analyzers

Infinispan provides a set of default analyzers as follows:

Definition Description

standard Splits text fields into tokens, treating whitespace
and punctuation as delimiters.

simple Tokenizes input streams by delimiting at non-
letters and then converting all letters to
lowercase characters. Whitespace and non-
letters are discarded.

whitespace Splits text streams on whitespace and returns
sequences of non-whitespace characters as
tokens.

keyword Treats entire text fields as single tokens.

stemmer Stems English words using the Snowball Porter
filter.

41

#query_dsl

Definition Description

ngram Generates n-gram tokens that are 3 grams in size
by default.
filename Splits text fields into larger size tokens than the

standard analyzer, treating whitespace as a
delimiter and converts all letters to lowercase
characters.

These analyzer definitions are based on Apache Lucene and are provided "as-is". For more
information about tokenizers, filters, and CharFilters, see the appropriate Lucene documentation.

Using Analyzer Definitions

To use analyzer definitions, reference them by name in the .proto schema file.

1. Include the Analyze.YES attribute to indicate that the property is analyzed.

2. Specify the analyzer definition with the @Analyzer annotation.

The following example shows referenced analyzer definitions:

/* @Indexed */
message TestEntity {

/* @Field(store = Store.YES, analyze = Analyze.YES, analyzer
@Analyzer(definition = "keyword")) */
optional string id = 1;

/* @Field(store = Store.YES, analyze = Analyze.YES, analyzer
@Analyzer(definition = "simple")) */
optional string name = 2;

}

Creating Custom Analyzer Definitions

If you require custom analyzer definitions, do the following:

1. Create an implementation of the ProgrammaticSearchMappingProvider interface packaged in a JAR
file.

2. Provide a file named org.infinispan.query.spi.ProgrammaticSearchMappingProvider in the META-
INF/services/ directory of your JAR. This file should contain the fully qualified class name of
your implementation.

3. Copy the JAR to the standalone/deployments directory of your Infinispan installation.

o Your deployment must be available to the Infinispan server during startup. You
cannot add the deployment if the server is already running.

The following is an example implementation of the ProgrammaticSearchMappingProvider

42

interface:

import org.apache.lucene.analysis.core.LowerCaseFilterFactory;
import org.apache.lucene.analysis.core.StopFilterFactory;

import org.apache.lucene.analysis.standard.StandardFilterFactory;
import org.apache.lucene.analysis.standard.StandardTokenizerFactory;
import org.hibernate.search.cfg.SearchMapping;

import org.infinispan.Cache;

import org.infinispan.query.spi.ProgrammaticSearchMappingProvider;

public final class MyAnalyzerProvider implements ProgrammaticSearchMappingProvider

{

public void defineMappings(Cache cache, SearchMapping searchMapping) {
searchMapping
.analyzerDef("standard-with-stop", StandardTokenizerFactory.class)
.filter(StandardFilterFactory.class)
.filter(LowerCaseFilterFactory.class)
.filter(StopFilterFactory.class);

4. Specify the JAR in the cache container configuration, for example:

<cache-container name="mycache" default-cache="default">
<modules>
<module name="deployment.analyzers.jar"/>
</modules>

1.4. Statistics

Query Statistics can be obtained from the SearchManager, as demonstrated in the following code
snippet.

SearchManager searchManager = Search.getSearchManager(cache);
org.hibernate.search.stat.Statistics statistics = searchManager.getStatistics();

This data is also available via JMX through the Hibernate Search

StatisticsinfoMBean registered under the name
Q org.infinispan:type=Query,manager="{name-of-cache-manager}",cache="{name-of-
cache}",component=Statistics. Please note this MBean is always registered by

Infinispan but the statistics are collected only if statistics collection is enabled at
cache level.

43

http://docs.jboss.org/hibernate/search/5.7/api/org/hibernate/search/stat/Statistics.html
https://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#_statisticsinfombean
https://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#_statisticsinfombean

Hibernate Search has its own configuration properties

A hibernate.search.jmx_enabled and hibernate.search.generate_statistics for JMX
statistics as explained here. Using them with Infinispan Query is forbidden as it
will only lead to duplicated MBeans and unpredictable results.

1.5. Performance Tuning

1.5.1. Batch writing in SYNC mode

By default, the Index Managers work in sync mode, meaning when data is written to Infinispan, it
will perform the indexing operations synchronously. This synchronicity guarantees indexes are
always consistent with the data (and thus visible in searches), but can slowdown write operations
since it will also perform a commit to the index. Committing is an extremely expensive operation in
Lucene, and for that reason, multiple writes from different nodes can be automatically batched into
a single commit to reduce the impact.

So, when doing data loads to Infinispan with index enabled, try to use multiple threads to take
advantage of this batching.

If using multiple threads does not result in the required performance, an alternative is to load data
with indexing temporarily disabled and run a re-indexing operation afterwards. This can be done
writing data with the SKIP_INDEXING flag:

cache.getAdvancedCache().withFlags(Flag.SKIP_INDEXING).put("key","value");

1.5.2. Writing using async mode

If it’s acceptable a small delay between data writes and when that data is visible in queries, an
index manager can be configured to work in async mode. The async mode offers much better
writing performance, since in this mode commits happen at a configurable interval.

Configuration:

<distributed-cache name="default">
<indexing index="LOCAL">
<property name="default.indexmanager">
org.infinispan.query.indexmanager.InfinispanIndexManager
</property>
<!-- Index data in async mode -->
<property name="default.worker.execution">async</property>
<!-- Optional: configure the commit interval, default is 1000ms -->
<property name="default.index_flush_interval">500</property>
</indexing>
</distributed-cache>

44

https://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#search-monitoring
#query_index_manager
#query_massindexer

1.5.3. Index reader async strategy

Lucene internally works with snapshots of the index: once an IndexReader is opened, it will only
see the index changes up to the point it was opened; further index changes will not be visible until
the IndexReader is refreshed. The Index Managers used in Infinispan by default will check the
freshness of the index readers before every query and refresh them if necessary.

It is possible to tune this strategy to relax this freshness checking to a pre-configured interval by
using the reader.strategy configuration set as async:

<distributed-cache name="default"
key-partitioner=
"org.infinispan.distribution.ch.impl.AffinityPartitioner">
<indexing index="PRIMARY_OWNER">
<property name="default.indexmanager">
org.infinispan.query.affinity.AffinityIndexManager
</property>
<property name="default.reader.strategy">async</property>
<!-- refresh reader every 1s, default is 55 -->
<property name="default.reader.async_refresh_period_ms">1000</property>
</indexing>
</distributed-cache>

The async reader strategy is particularly useful for Index Managers that rely on shards, such as the
AffinityIndexManager.

1.5.4. Lucene Options

It is possible to apply tuning options in Lucene directly. For more details, see the Hibernate Search
manual.

45

https://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#_lucene_configuration
https://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#_lucene_configuration

	Indexing and Querying with Infinispan 10.0
	Table of Contents
	Chapter 1. Indexing and Querying
	1.1. Overview
	1.2. Embedded Querying
	1.2.1. Quick example
	1.2.2. Indexing
	1.2.3. Querying APIs

	1.3. Remote Querying
	1.3.1. Storing Protobuf encoded entities
	1.3.2. Indexing of Protobuf encoded entries
	1.3.3. A remote query example
	1.3.4. Analysis

	1.4. Statistics
	1.5. Performance Tuning
	1.5.1. Batch writing in SYNC mode
	1.5.2. Writing using async mode
	1.5.3. Index reader async strategy
	1.5.4. Lucene Options

