Using the Infinispan REST Server

Table of Contents

1. REST Server

1.1. Running the REST server
1.1.1. Security
1.2. Supported protocols
1.3. CORS
1.4. Data formats
1.4.1. Configuration
1.4.2. Supported formats
1.4.3. Accept header
1.4.4. Key-Content-Type header
1.4.5. JSON/Protostream conversion
1.5. REST V1 API
1.5.1. Putting data in
1.5.2. Getting data back out
1.5.3. Listing keys
1.5.4. Removing data
1.5.5. Querying
1.6. REST v2 (version 2) API
1.6.1. Working with Caches

1.6.2. Interacting with Cache Managers

1.6.3. Working with Counters

1.6.4. Interacting with Infinispan Servers
1.6.5. Interacting with Infinispan Clusters

1.6.6. Server-side tasks
1.7. Client-Side Code

1.7.1. Ruby example

1.7.2. Python 3 example

1.7.3. Java example

1.7.4. REST Example with the HttpClient API

© 00 00 T O O O Ul R R W W W R e

e L L S T - - O R U R NS R
o U1 U1 W W Kk K, 00 B b O

Chapter 1. REST Server

The Infinispan Server distribution contains a module that implements RESTful HTTP access to the
Infinispan data grid, built on Netty.

1.1. Running the REST server

The REST server endpoint is part of the Infinispan Server and by default listens on port 8080. To
run the server locally, download the zip distribution and execute in the extracted directory:

bin/standalone.sh -b 0.0.0.0
or alternatively, run via docker:

docker run -it -p 8080:8080 -e "APP_USER=user" -e "APP_PASS=changeme"
jboss/infinispan-server

1.1.1. Security

The REST server is protected by authentication, so before usage it is necessary to create an
application login. When running via docker, this is achieved by the APP_USER and APP_PASS
command line arguments, but when running locally, this can be done with:

bin/add-user.sh -u user -p changeme -a

1.2. Supported protocols

The REST Server supports HTTP/1.1 as well as HTTP/2 protocols. It is possible to switch to HTTP/2 by
either performing a HTTP/1.1 Upgrade procedure or by negotiating communication protocol using
TLS/ALPN extension.

Note: TLS/ALPN with JDK8 requires additional steps from the client perspective. Please refer to
your client documentation but it is very likely that you will need Jetty ALPN Agent or OpenSSL
bindings.

1.3. CORS

The REST server supports CORS including preflight and rules based on the request origin.

Example:

<rest-connector name="rest1" socket-binding="rest" cache-container="default">
<cors-rules>
<cors-rule name="restrict host1" allow-credentials="false">
<allowed-origins>http://host1,https://host1</allowed-origins>
<allowed-methods>GET</allowed-methods>
</cors-rule>
<cors-rule name="allow ALL" allow-credentials="true" max-age-seconds="2000">
<allowed-origins>*</allowed-origins>
<allowed-methods>GET,OPTIONS,POST,PUT,DELETE</allowed-methods>
<allowed-headers>Key-Content-Type</allowed-headers>
</cors-rule>
</cors-rules>
</rest-connector>

The rules are evaluated sequentially based on the "Origin" header set by the browser; in the
example above if the origin is either "http://hostl" or "https://host1" the rule "restrict host1" will
apply, otherwise the next rule will be tested. Since the rule "allow ALL" permits all origins, any
script coming from a different origin will be able to perform the methods specified and use the
headers supplied.

The <cors-rule> element can be configured as follows:

Config Description Mandatory

name The name of the rule yes

allow-credentials Enable CORS requests to use no
credentials

allowed-origins A comma separated list used to yes

set the CORS 'Access-Control-
Allow-Origin' header to indicate
the response can be shared
with the origins

allowed-methods A comma separated list used to yes
set the CORS 'Access-Control-
Allow-Methods' header in the
preflight response to specify the
methods allowed for the
configured origin(s)

max-age-seconds The amount of time CORS no
preflight request headers can
be cached

expose-headers A comma separated list used to no

set the CORS 'Access-Control-
Expose-Headers' in the preflight
response to specify which
headers can be exposed to the
configured origin(s)

1.4. Data formats

1.4.1. Configuration

Each cache exposed via REST stores data in a configurable data format defined by a MediaType.
More details in the configuration here.

An example of storage configuration is as follows:

<cache>
<encoding>
<key media-type="application/x-java-object; type=java.lang.Integer"/>
<value media-type="application/xml; charset=UTF-8"/>
</encoding>
</cache>

When no MediaType is configured, Infinispan assumes "application/octet-stream" for both keys and
values, with the following exceptions:

o If the cache is indexed, it assumes "application/x-protostream"

1.4.2. Supported formats

Data can be written and read in different formats than the storage format; Infinispan can convert
between those formats when required.

The following "standard" formats can be converted interchangeably:

* application/x-java-object
 application/octet-stream
* application/x-www-form-urlencoded

* text/plain
The following formats can be converted to/from the formats above:

* application/xml

* application/json

* application/x-jboss-marshalling
* application/x-protostream

* application/x-java-serialized
Finally, the following conversion is also supported:
* Between application/x-protostream and application/json

All the REST API calls can provide headers describing the content written or the required format of

the content when reading. Infinispan supports the standard HTTP/1.1 headers "Content-Type" and
"Accept" that are applied for values, plus the "Key-Content-Type" with similar effect for keys.

1.4.3. Accept header

The REST server is compliant with the RFC-2616 Accept header, and will negotiate the correct
MediaType based on the conversions supported. Example, sending the following header when
reading data:

Accept: text/plain;q=0.7, application/json;q=0.8, */*;q=0.6

will cause Infinispan to try first to return content in JSON format (higher priority 0.8). If it’s not
possible to convert the storage format to JSON, next format tried will be text/plain (second highest
priority 0.7), and finally it falls back to ** that will pick a format suitable for displaying
automatically based on the cache configuration.

1.4.4. Key-Content-Type header

Most REST API calls have the Key included in the URL. Infinispan will assume the Key is a
java.lang.String when handling those calls, but it’s possible to use a specific header Key-Content-
Type for keys in different formats.

Examples:
» Specifying a byte[] Key as a Base64 string:

API call:
‘PUT /my-cache/AQIDBDM="

Headers:

Key-Content-Type: application/octet-stream
 Specifying a byte[] Key as a hexadecimal string:

API call:

GET /my-cache/0x01CA03042F

Headers:
Key-Content-Type: application/octet-stream; encoding=hex

» Specifying a double Key:

API call:

POST /my-cache/3.141456

Headers:
Key-Content-Type: application/x-java-object;type=java.lang.Double

The type parameter for application/x-java-object is restricted to:

* Primitive wrapper types
* java.lang.String

* Bytes, making application/x-java-object;type=Bytes equivalent to application/octet-
stream;encoding=hex

1.4.5. JSON/Protostream conversion

When caches are indexed, or specifically configured to store application/x-protostream, it’s possible
to send and receive JSON documents that are automatically converted to/from protostream. In
order for the conversion to work, a protobuf schema must be registered.

The registration can be done via REST, by doing a POST/PUT in the ___protobuf metadata cache.
Example using cURL:

curl -u user:password -X POST --data-binary @./schema.proto
http://127.0.0.1:8080/rest/___protobuf_metadata/schema.proto

When writing a JSON document, a special field _type must be present in the document to identity
the protobuf Message corresponding to the document.

For example, consider the following schema:

message Person {
required string name =
required int32 age = 2;

}

1;

A conformant JSON document would be:

{
" _type": "Person",
"name": "user1",
"age": 32

}

1.5. REST V1 API

The REST V1 API supports basic cache capabilities including operations on keys and query, and is
now deprecated. For a more powerful and comprehensive API, check the REST V2 API.

HTTP PUT and POST methods are used to place data in the cache, with URLs to address the cache
name and key(s) - the data being the body of the request (the data can be anything you like). Other
headers are used to control the cache settings and behaviour.

1.5.1. Putting data in

PUT /rest/{cacheName}/{cacheKey}

A PUT request of the above URL form will place the payload (body) in the given cache, with the
given key (the named cache must exist on the server). For example http://someserver/hr/payRoll-3
(in which case hr is the cache name, and payRoll-3 is the key). Any existing data will be replaced,
and Time-To-Live and Last-Modified values etc will updated (if applicable).

POST /rest/{cacheName}/{cacheKey}

Exactly the same as PUT, only if a value in a cache/key already exists, it will return a Http CONFLICT
status (and the content will not be updated).

Headers
* Key-Content-Type: OPTIONAL The content type for the Key present in the URL.
* Content-Type : OPTIONAL The MediaType of the Value being sent.

» timeToLiveSeconds : OPTIONAL number (the number of seconds before this entry will
automatically be deleted). If no parameter is sent, Infinispan assumes configuration default
value. Passing any negative value will create an entry which will live forever.

* maxIdleTimeSeconds : OPTIONAL number (the number of seconds after last usage of this entry
when it will automatically be deleted). If no parameter is sent, Infinispan configuration default
value. Passing any negative value will create an entry which will live forever.

Passing 0 as parameter for timeToLiveSeconds and/or maxIdleTimeSeconds

 If both timeTolLiveSeconds and maxIdleTimeSeconds are 0, the cache will use the default 1ifespan
and maxIdle values configured in XML/programmatically

* If only maxIdleTimeSeconds is O, it uses the timeTolLiveSeconds value passed as parameter (or -1 if
not present), and default maxIdle configured in XML/programmatically

» If only timeTolLiveSeconds is 0, it uses default 1ifespan configured in XML/programmatically, and
maxIdle is set to whatever came as parameter (or -1 if not present)

1.5.2. Getting data back out

HTTP GET and HEAD are used to retrieve data from entries.

GET /rest/{cacheName}/{cacheKey}

This will return the data found in the given cacheName, under the given key - as the body of the
response. A Content-Type header will be present in the response according to the Media Type
negotiation. Browsers can use the cache directly of course (eg as a CDN). An ETag will be returned
unique for each entry, as will the Last-Modified and Expires headers field indicating the state of the
data at the given URL. ETags allow browsers (and other clients) to ask for data only in the case
where it has changed (to save on bandwidth) - this is standard HTTP and is honoured by Infinispan.

Headers

* Key-Content-Type: OPTIONAL The content type for the Key present in the URL. When omitted,
application/x-java-object; type=java.lang.String is assumed

* Accept: OPTIONAL The required format to return the content

It is possible to obtain additional information by appending the "extended" parameter on the query
string, as follows:

GET /rest/cacheName/cacheKey?extended

This will return the following custom headers:

* Cluster-Primary-Owner: the node name of the primary owner for this key

Cluster-Backup-Owners: the node names of the backup owners for this key

Cluster-Node-Name: the JGroups node name of the server that has handled the request

Cluster-Physical-Address: the physical JGroups address of the server that has handled the
request.

HEAD /rest/{cacheName}/{cacheKey}

The same as GET, only no content is returned (only the header fields). You will receive the same
content that you stored. E.g., if you stored a String, this is what you get back. If you stored some
XML or JSON, this is what you will receive. If you stored a binary (base 64 encoded) blob, perhaps a
serialized; Java; object - you will need to; deserialize this yourself.

Similarly to the GET method, the HEAD method also supports returning extended information via
headers. See above.

Headers

» Key-Content-Type: OPTIONAL The content type for the Key present in the URL. When omitted,
application/x-java-object; type=java.lang.String is assumed

1.5.3. Listing keys

GET /rest/{cacheName}

This will return a list of keys present in the given cacheName as the body of the response. The
format of the response can be controlled via the Accept header as follows:

 application/xml - the list of keys will be returned in XML format.

* application/json - the list of keys will be return in JSON format.

* text/plain - the list of keys will be returned in plain text format, one key per line

If the cache identified by cacheName is distributed, only the keys owned by the node handling the
request will be returned. To return all keys, append the "global" parameter to the query, as follows:

GET /rest/cacheName?global

1.5.4. Removing data

Data can be removed at the cache key/element level, or via a whole cache name using the HTTP
delete method.

DELETE /rest/{cacheName}/{cacheKey}
Removes the given key name from the cache.

Headers

* Key-Content-Type: OPTIONAL The content type for the Key present in the URL. When omitted,
application/x-java-object; type=java.lang.String is assumed

DELETE /rest/{cacheName}

Removes ALL the entries in the given cache name (i.e., everything from that path down). If the
operation is successful, it returns 200 code.

1.5.5. Querying

The REST server supports Ickle Queries in JSON format. It’s important that the cache is configured
with application/x-protostream for both Keys and Values. If the cache is indexed, no configuration is
needed.

GET /rest/{cacheName}?action=search&query={ickle query}

Will execute an Ickle query in the given cache name.

Request parameters
» query: REQUIRED the query string
e max_results: OPTIONAL the number of results to return, default is 10
* offset: OPTIONAL the index of the first result to return, default is 0
» query_mode: OPTIONAL the execution mode of the query once it’s received by server. Valid

values are FETCH and BROADCAST. Default is FETCH.

Query Result

Results are JSON documents containing one or more hits. Example:

"total _results" : 150,

"hits" : [{
"hit" : {
"name" : "user1",
"age" : 35
}
oo
"hit" : {
"name" : "user2",
"age" : 42
}
oA
"hit" : {
"name" : "user3",
"age" : 12
}
}]

* total results: NUMBER, the total number of results from the query.
* hits: ARRAY, list of matches from the query

* hit: OBJECT, each result from the query. Can contain all fields or just a subset of fields in case a
Select clause is used.

POST /{cacheName}?action=search

Similar to que query using GET, but the body of the request is used instead to specify the query
parameters.

Example:

{

"query":"from Entity where name:\"user1\"",
"max_results":20,
"offset":10

}

1.6. REST v2 (version 2) API

The Infinispan REST v2 API improves on the REST vl API, offering the same features and
capabilities in addition to supporting resources beyond caching.

0 The REST v1 API is deprecated and will not be supported in the next version of
Infinispan

1.6.1. Working with Caches

Use the REST API to create and manage caches on your Infinispan cluster and interact with cached
entries.

Creating Caches

To create a named cache across the Infinispan cluster, invoke a POST request:
POST /rest/v2/caches/{cacheName}

To configure the cache, you supply the configuration in XML or JSON format as part of the request
payload.

XML Configuration

A configuration in XML format must conform to the schema and include:

* <infinispan> root element.

e <cache-container> definition.

The following example shows a valid XML configuration:

<infinispan>
<cache-container>
<distributed-cache name="cacheName" mode="SYNC">
<memory>
<object size="20"/>
</memory>
</distributed-cache>
</cache-container>
</infinispan>

JSON Configuration

A configuration in JSON format payload:

» Requires the cache definition only.
» Must follow the structure of an XML configuration.
o XML elements become JSON objects.

o XML attributes become JSON fields.

The following example shows the previous XML configuration in JSON format:

10

{
"distributed-cache": {

"mode": "SYNC",
"memory": {
"object": {
"size": 20
}
}
}
}
Table 1. Headers
Header Required or Optional Parameter
Content-Type REQUIRED Sets the MediaType for the
Infinispan configuration
payload; either application/xml
or application/json.
Flags OPTIONAL Used to set AdminFlags

Checking if caches exist

To verify if a cache is defined in Infinispan cluster, invoke a HEAD request:

HEAD /v2/caches/{cacheName}

Creating Caches with Templates

To create caches across a Infinispan cluster with pre-defined templates, invoke a POST request with
no payload and an extra request parameter:

POST /rest/v2/caches/{cacheName}?template={templateName}

Retrieving Cache Configuration

To retrieve the configuration of a Infinispan cache, invoke a GET request:

GET /rest/v2/caches/{name}?action=config

Table 2. Headers

11

Header Required or Optional Parameter

Accept OPTIONAL Sets the required format to
return content. Supported
formats are application/xml
and application/json. The
default is application/json. See
Accept for more information.

Converting Cache Configurations

To convert a certain existing cache configuration that is in XML format to JSON, invoke:

POST /rest/v2/caches?action=toJSON

The POST body must contain a valid cache XML configuration and the response will contain the
equivalent JSON representation.

Retrieving All the details related to a cache

To retrieve the details of a Infinispan cache, invoke a GET request:

GET /rest/v2/caches/{name}

Infinispan returns the detail of the cache in JSON format, for example:

12

{

"stats": {
"misses": -1,
"time_since_start": -1,
"time_since_reset": -1,
"hits": -1,
"current_number_of_entries": -1,
“current_number_of_entries_in_memory": -1,
"total_number_of_entries": -1,
"stores": -1,
"off_heap_memory_used": -1,
"data_memory_used": -1,
"retrievals": -1,
"remove_hits": -1,
"remove_misses": -1,
"evictions": -1,
"average_read_time": -1,
"average_read_time_nanos": -1,
"average_write_time": -1,
"average_write_time_nanos": -1,
"average_remove_time": -1,
"average_remove_time_nanos": -1,
"required_minimum_number_of_nodes": -1

I

"size": 0,

"configuration": "{\"distributed-cache\":{\"mode\" :\"SYNC\",\"transaction\":{\"stop-

timeout\":0,\"mode\":\"NONE\"}}}",

"rehash_in_progress": false,

"indexing_in_progress": true,

"bounded": false,

"indexed": true,

"persistent": false,

"transactional": false,

"secured": false,

"has_remote_backup": false

 stats current stats of the cache.

* size the estimated size for the cache.

» configuration the cache configuration.

* rehash_in_progress true when a rehashing is in progress.
* indexing_in_progress true when indexing is in progress.
* bounded when expiration is enabled

* indexed true if the cache is indexed

» persistent true if the cache is persisted

e transactional true if the cache is transactional

13

e secured true if the cache is secured

* has_remote_backup true if the cache has remote backups

Adding Entries

To add entries to a named cache, invoke a POST request:

POST /rest/v2/caches/{cacheName}/{cacheKey}

The preceding request places the payload, or request body, in the cacheName cache with the cacheKey
key. The request replaces any data that already exists and updates the Time-To-Live and Last-

Modified values, if they apply.

If a value already exists for the specified key, the POST request returns an HTTP CONFLICT status and
does not modify the value. To update values, you should use PUT requests. See Replacing Entries.

Table 3. Headers

Header

Key-Content-Type

Content-Type

timeToLiveSeconds

maxIdleTimeSeconds

flags

Required or Optional

OPTIONAL

OPTIONAL

OPTIONAL

OPTIONAL

OPTIONAL

Parameter

Sets the content type for the key
in the request. See Key-Content-
Type for more information.

Sets the MediaType of the value
for the key.

Sets the number of seconds
before the entry is
automatically deleted. If you do
not set this parameter,
Infinispan uses the default
value from the configuration. If
you set a negative value, the
entry is never deleted.

Sets the number of seconds that
entries can be idle. If a read or
write operation does not occur
for an entry after the maximum
idle time elapses, the entry is
automatically deleted. If you do
not set this parameter,
Infinispan uses the default
value from the configuration. If
you set a negative value, the
entry is never deleted.

The flags used to add the entry.
See Flag for more information.

0 The flags header also applies to all other operations involving data manipulation

on the cache,

14

If both timeTolLiveSeconds and maxIdleTimeSeconds have a value of 0, Infinispan uses
the default 1ifespan and maxIdle values from the configuration.

If only maxIdleTimeSeconds has a value of 0, Infinispan uses:

* the default maxIdle value from the configuration.

ﬁ * the value for timeTolLiveSeconds that you pass as a request parameter or a value
of -1if you do not pass a value.

If only timeTolLiveSeconds has a value of 0, Infinispan uses:

* the default 1ifespan value from the configuration.

* the value for maxIdle that you pass as a request parameter or a value of -1 if
you do not pass a value.
Replacing Entries

To replace entries in a named cache, invoke a PUT request:
PUT /rest/v2/caches/{cacheName}/{cacheKey}

If a value already exists for the specified key, the PUT request updates the value. If you do not want
to modify existing values, use POST requests that return HTTP CONFLICT status instead of modifying
values. See Adding Values.

Retrieving Data By Keys

To retrieve data for a specific key in a cache, invoke a GET request:
GET /rest/v2/caches/{cacheName}/{cacheKey}

The server returns data from the given cache, cacheName, under the given key, cacheKey, in the
response body. Responses contain Content-Type headers that correspond to the MediaType
negotiation.

Browsers can also access caches directly, for example as a content delivery
network (CDN). Infinispan returns a unique ETag for each entry along with the
Last-Modified and Expires header fields.

i

These fields provide information about the state of the data that is returned in
your request. ETags allow browsers and other clients to request only data that has
changed, which conserves bandwidth.

Table 4. Headers

15

Header Required or Optional Parameter

Key-Content-Type OPTIONAL Sets the content type for the key
in the request. The default is
application/x-java-object;
type=java.lang.String. See Key-
Content-Type for more
information.

Accept OPTIONAL Sets the required format to
return content. See Accept for
more information.

Append the extended parameter to the query string to get additional information:
GET /cacheName/cacheKey?extended

The preceding request returns custom headers:
Q * Cluster-Primary-Owner returns the node name that is the primary owner of the
key.

* (luster-Node-Name returns the JGroups node name of the server that handled
the request.

* Cluster-Physical-Address returns the physical JGroups address of the server
that handled the request.

Checking if Entries Exist

To check if a specific entry exists in a cache, invoke a HEAD request:
HEAD /rest/v2/caches/{cacheName}/{cacheKey}

The preceding request returns only the header fields and the same content that you stored with the
entry. For example, if you stored a String, the request returns a String. If you stored binary, base64-
encoded, blobs or serialized Java objects, Infinispan does not de-serialize the content in the request.

HEAD requests also support the extended parameter.

Table 5. Headers

Header Required or Optional Parameter

Key-Content-Type OPTIONAL Sets the content type for the key
in the request. The default is
application/x-java-object;
type=java.lang.String. See Key-
Content-Type for more
information.

16

Deleting Entries

To delete entries from a cache, invoke a DELETE request:

DELETE /rest/v2/caches/{cacheName}/{cacheKey}

Infinispan removes the entry under cacheKey from the cache.

Table 6. Headers

Header Required or Optional

Key-Content-Type OPTIONAL

Removing Caches

To remove caches, invoke a DELETE request:

DELETE /rest/v2/caches/{cacheName}

Parameter

Sets the content type for the key
in the request. The default is
application/x-java-object;
type=java.lang.String. See Key-
Content-Type for more
information.

Infinispan deletes all data and removes the cache named cacheName from the cluster.

Retrieving cache keys

To obtain all the keys from the cache in JSON format, invoke a GET request:

GET /rest/v2/caches/{cacheName}?action=keys

Table 7. Request Parameters

Parameter Required or Optional

batch-size OPTIONAL

Clearing Caches

Value

Specifies the internal batch size
when retrieving the keys. The
default value is 1000.

To delete all data from a cache, invoke a GET request with the ?action=clear parameter:

GET /rest/v2/caches/{cacheName}?action=clear

17

Getting Cache Size

To obtain the size of a cache across the entire cluster, invoke a GET request with the ?action=size
parameter:

GET /rest/v2/caches/{cacheName}?action=size

Getting Cache Statistics

To obtain runtime statistics of a cache invoke a GET request:

GET /rest/v2/caches/{cacheName}?action=stats

Indexing and Search

Use the REST API to search data, monitor and obtain stats about indexes and queries.

Querying Caches

Invoke a GET request to perform and Ickle query on a given cache:

GET /rest/v2/caches/{cacheName}?action=search&query={ickle query}

Infinispan returns one or more query hits in JSON format, for example:

{
"total results" : 150,
"hits" : [{
"hit" : {
"name" : "user1",
"age" : 35
}
oA
"hit" @ {
"name" : "user2",
"age" : 42
}
oA
"hit" @ {
"name" : "user3",
"age" : 12
}
}]
}

» total_results displays the total number of results from the query.

18

* hitsis an array of matches from the query.

* hitis an object that matches the query.

Hits can contain all fields or a subset of fields if you use a Select clause.

Table 8. Request Parameters

Parameter Required or Optional Value

query REQUIRED Specifies the query string.

max_results OPTIONAL Sets the number of results to
return. The default is 10.

offset OPTIONAL Specifies the index of the first
result to return. The default is 0.

query_mode OPTIONAL Specifies how the Infinispan

server executes the query.
Values are FETCH and BROADCAST.
The default is FETCH.

To use the body of the request instead of specifying query parameters, invoke a POST request:

POST /rest/v2/caches/{cacheName}?action=search

The following example shows a query in the request body:

{
"query":"from Entity where name:\"user1\"",
"max_results":20,
"offset":10

}

Reindexing data

To re-index all data in a cache, use a GET request:

GET /v2/caches/{cacheName}/search/indexes?action=mass-index?mode={mode}

The mode param can be:

* sync: a response with code 200 will be received only after the reindexing is finished

* async: a response with code 200 will be returned right away, and the reindexing will keep
running in the cluster. Use the Index Stats REST call to check the status.

Purging indexes

To delete all indexes from a cache, execute a GET request:

19

GET /v2/caches/{cacheName}/search/indexes?action=clear

Obtaining index stats

To obtain information about the indexes present in the cache, use a GET request:

GET /v2/caches/{cacheName}/search/indexes/stats

The result will be a JSON document:

{
"indexed_class_names": ["org.infinispan.sample.User"],
"indexed _entities_count": {
"org.infinispan.sample.User": 4
Iy
"index_sizes": {
"cacheName_protobuf": 14551
b
"reindexing": false
}

* indexed_class_names: The class names of the indexes present in the cache. For protobuf, this
value will always be org.infinispan.query.remote.impl.indexing.ProtobufValueWrapper

 indexed_entities_count: The number of entities indexed per class
* index_sizes: The size in bytes per index present in the cache

* reindexing: If true, the MassIndexer was started in this cache

Obtaining query stats

To obtain information about the queries executed, use a GET request:

GET /v2/caches/{cacheName}/search/query/stats

The result will be a JSON document:

20

"search_query_execution_count":20,
"search_query_total_time":5,
"search_query_execution_max_time":154,
"search_query_execution_avg_time":2,
"object_loading_total_time":1,
"object_loading_execution_max_time":1,
"object_loading_execution_avg_time":1,
"objects_loaded_count":20,
"search_query_execution_max_time_query_string": "FROM entity"

 search_query_execution_count: Number of queries executed

* search_query_total_time: Total time spent on queries

* search_query_execution_max_time: Maximum time taken for a query
* search_query_execution_avg_time: Average query time

* object_loading_total_time: Total time spent loading objects from the cache after query
execution

* object_loading_execution_max_time: Maximum time spent loading objects execution
* object_loading_execution_avg_time: Average time spent loading objects execution
* objects_loaded_count: Count of object loaded

» search_query_execution_max_time_query_string: Slowest query executed

Clearing query stats

The runtime stats above can be reset by sending a GET request:

GET /v2/caches/{cacheName}/search/query/stats?action=clear

Listing Caches

To obtain a list of caches available in a Infinispan cluster, invoke a GET request:

GET /rest/v2/caches/

Cross site replication

Use the REST API to monitor and control Cross Site (x-site) replication on your Infinispan cluster.
See Cross Site replication for more details about this feature.

Getting status of all backup sites

21

GET /v2/caches/{cacheName}/x-site/backups/

The response contains each site followed by a description of the status. Example:

{
"NYC": "online",
"LON": "offline"

Table 9. Returned Status

Value

Description
online All nodes in the backup site are online
offline All node in the backup site are offline
mixed

Some nodes in the backup site are online and
others offline. It will include in the status the

nodes that are offline. E.g.: mixed, offline on
nodes: Node1, Node2

Getting status of a backup site

To obtain the status of a single backup site:

GET /v2/caches/{cacheName}/x-site/backups/{siteName}

The response contains each node in the backup site with the status. Example:

{
"NodeA":"offline",
"NodeB":"online"

Table 10. Returned Status

Value Description
online The node is online
offline The node is offline
failed

Failed to obtain status, the remote cache could
be shutting down or a network error occurred
during the request

Taking a backup site offline

To take a backup site siteName offline, for the cache cacheName, execute a GET request:

22

GET /v2/caches/{cacheName}/x-site/backups/{siteName}?action=take-offline

Bringing a backup site online

To take a backup site siteName online, for the cache cacheName, execute a GET request:

GET /v2/caches/{cacheName}/x-site/backups/{siteName}?action=bring-online

Starting a state push to a backup site

To start pushing state of a cache cacheName to a remote backup site siteName, execute a GET request:

GET /v2/caches/{cacheName}/x-site/backups/{siteName}?action=start-push-state

Cancelling an ongoing state push to a backup site

To cancel a state push of the cache cacheName to a remote backup site siteName, execute a GET
request:

GET /v2/caches/{cacheName}/x-site/backups/{siteName}?action=cancel-push-state

Getting the status of a state push

To obtain the status of an ongoing state push of cache cacheName to backup siteName execute a GET
request:

GET /v2/caches/{cacheName}/x-site/backups/{siteName}?action=cancel-push-state

The response will be a JSON document with each destination site name and the state transfer status.
Example:

“NYC":"CANCELED",
IILON" : IIOKII

The possible statuses are SENDING, OK, ERROR and CANCELLING

Tuning the take offline parameters of a remote site

A remote site can be automatically marked as offline in case some conditions are met. To check the
configured parameters, execute a GET request:

23

GET /v2/caches/{cacheName}/x-site/backups/{siteName}/take-offline-config

The response include two fields, after_failures and min_wait:

{

"after_failures": 2,
"min_wait": 1000

}

To change those parameters, execute a PUT request:
PUT /v2/caches/{cacheName}/x-site/backups/{siteName}/take-offline-config

with a body containing the new values, e.g.:

{

"after_failures": 4,
"min_wait": 5000

}

Cancelling the receiving state on a site

The main use for this method is when the link between the sites is broken and the receiver site
keeps it state transfer state forever.

To set the cluster to normal state in the scope of cacheName for state pushed from site siteName
execute a GET request:

GET /v2/caches/{cacheName}/x-site/backups/{siteName}?action=cancel-receive-state

Clearing the state transfer status of a pushing site

To clear the state transfer status of a (sending) site, execute a GET request:

GET /v2/caches/{cacheName}/x-site/local?action=clear-push-state-status

1.6.2. Interacting with Cache Managers

The REST API lets you interact with Infinispan Cache Managers to cluster and usage statistics.

Getting Basic Cache Manager Information

To obtain information about a cache manager, invoke a GET request:

24

GET /rest/v2/cache-managers/{cacheManagerName}

Infinispan responds with a JSON document such as the following:

25

"version":"xx.x.x-FINAL",
"name":"default",
"coordinator":true,
"cache_configuration_names":[
"___protobuf_metadata",
"cache2",
"CacheManagerResourceTest",
"cachel"
1
"cluster_name":"ISPN",
"physical_addresses":"[127.0.0.1:35770]",
"coordinator_address":"CacheManagerResourceTest-NodeA-49696",
"cache_manager_status":"RUNNING",
"created cache count":"3",
"running_cache_count":"3",
"node_address": "CacheManagerResourceTest-NodeA-49696",
"cluster_members":[
"CacheManagerResourceTest-NodeA-49696",
"CacheManagerResourceTest-NodeB-28120"
1
"cluster_members_physical_addresses":[
"127.0.0.1:35770",
"127.0.0.1:60031"
1
"cluster_size":2,
"defined _caches":[

{
"name":"CacheManagerResourceTest",
"started":true

b

{

"name":"cachel",
"started":true

b

{

"name":"___protobuf_metadata",
"started":true

+

{

"name":"cache2",
"started":true
}

 version contains the Infinispan version

* name contains the name of the cache manager as defined in the configuration

26

» coordinator is true if the cache manager is the coordinator of the cluster

* cache_configuration_names contains an array of all caches configurations defined in the cache
manager

* cluster_name contains the name of the cluster as defined in the configuration
* physical_addresses contains the physical network addresses associated with the cache manager
» coordinator_address contains the physical network addresses of the coordinator of the cluster

» cache_manager_status the lifecycle status of the cache manager. For possible values, check the
org.infinispan.lifecycle.ComponentStatus documentation

» created_cache_count number of created caches, excludes all internal and private caches
* running_cache_count number of created caches that are running
* node_address contains the logical address of the cache manager

* cluster_members and cluster_members_physical_addresses an array of logical and physical
addresses of the members of the cluster

e cluster_size number of members in the cluster

» defined_caches A list of all caches defined in the cache manager, excluding private caches but
including internal caches that are accessible

Getting Cluster Health

To review health information for a Infinispan cluster, invoke a GET request:

GET /rest/v2/cache-managers/{cacheManagerName}/health

Infinispan responds with a JSON document such as the following:

27

"cluster_health":{
"cluster _name":"ISPN",
"health_status":"HEALTHY",
"number_of nodes":2,
"node_names": [
"NodeA-36229",
"NodeB-28703"

]
}
"cache_health":[
{
"status":"HEALTHY",
"cache_name":"___protobuf_metadata"
I¥
{
"status":"HEALTHY",
"cache_name":"cache2"
iy
{
"status":"HEALTHY",
"cache_name": "mycache"
H
{
"status":"HEALTHY",
"cache_name":"cachel"
}

e cluster_health contains the health of the cluster
o cluster_name specifies the name of the cluster as defined in the configuration.
o health_status provides one of the following:
= DEGRADED indicates at least one of the caches is in degraded mode.
= HEALTHY_REBALANCING indicates at least one cache is in the rebalancing state.
= HEALTHY indicates all cache instances in the cluster are operating as expected.

o number_of_nodes displays the total number of cluster members. Returns a value of 0 for non-
clustered (standalone) servers.

> node_names is an array of all cluster members. Empty for standalone servers.
* cache_health contains health information per-cache
o status HEALTHY, DEGRADED or HEALTHY_REBALANCING

o cache_name the name of the cache as defined in the configuration.

28

Getting Cache Manager Health Status

To retrieve the health status of the cache managers, without the need for authentication, invoke a
GET request:

GET /rest/v2/cache-managers/{cacheManagerName}/health/status

Infinispan responds with one of the following in text/plain:

o HEALTHY
o HEALTHY_REBALANCING
» DEGRADED

Checking REST Endpoint Availability

To check that a Infinispan server REST endpoint is available, invoke a HEAD request in the health
resource:

HEAD /rest/v2/cache-managers/{cacheManagerName}/health

If the preceding request returns a successful response code then the Infinispan REST server is
running and serving requests.

Obtaining Global Configuration for Cache Managers

To obtain the GlobalConfiguration associated with the Cache Manager, invoke a GET request:

GET /rest/v2/cache-managers/{cacheManagerName}/config

Table 11. Headers

Header Required or Optional Parameter

Accept OPTIONAL The required format to return
the content. Supported formats
are application/json and
application/xml. JSON is
assumed if no header is
provided.

Obtaining Configuration for All Caches

To get the configuration for all caches, invoke a GET request:

GET /rest/v2/cache-managers/{cacheManagerName}/cache-configs

Infinispan responds with a JSON array that contains each cache and cache configuration:

29

{
"name":"cachel",
"configuration":{
"distributed-cache":{
"mode":"SYNC",
"partition-handling":{
"when-split":"DENY_READ_WRITES"
I
"statistics":true
}
}
I
{
"name":"cache2",
"configuration":{
"distributed-cache":{
"mode":"SYNC",
"transaction":{
"mode": "NONE"
}
+
}
}

(Experimental) Obtaining caches with cache information

To get the list of all the caches of a cache manager with cache informations, invoke a GET request:

GET /rest/v2/cache-managers/{cacheManagerName}/caches

Infinispan responds with a JSON array that contains each cache and the cache information:

30

[{
"status" : "RUNNING",

"name" : "cachel",

"type" : "local-cache",
"size" : 123,
"simple_cache" : false,
"transactional"” : false,
"persistent" : false,
"bounded": false,
"secured": false,
"indexed": true,
"has_remote_backup": true

oA
"status" : "RUNNING",
"name" : "cache2",
"type" : "distributed-cache",
"size" : 23,

"simple_cache" : false,
"transactional” : true,
"persistent" : false,
"bounded": false,
"secured": false,
"indexed": true,
"has_remote_backup": true

}H

Getting Cache Manager Statistics

To obtain the statistics of a Cache Manager, invoke a GET request.

GET /rest/v2/cache-managers/{cacheManagerName}/stats

Infinispan responds with a JSON document that contains the following information:

31

32

"statistics_enabled":true,
"read write ratio":0.0,
"time_since_start":1,
"time_since reset":1,
"number_of _entries":0,
"total_number_of _entries":0,
"off_heap_memory_used":0,
"data_memory_used":0,
"misses":0,

"remove_hits":0,
"remove_misses":0,
"evictions":0,
"average_read_time":0,
"average_read_time_nanos":0,
"average_write_time":0,
"average_write_time_nanos":0,
"average_remove_time":0,
"average_remove_time_nanos":0,
"required_minimum_number_of_nodes":1,
"hits":0,

"stores":0,
"current_number_of_entries_in_memory":0,
"hit_ratio":0.0,
"retrievals":0

statistics_enabled is true if statistics collection is enabled for the Cache Manager.
read_write_ratio displays the read/write ratio across all caches.
time_since_start shows the time, in seconds, since the Cache Manager started.

time_since_reset shows the number of seconds since the Cache Manager statistics were last
reset.

number_of_entries shows the total number of entries currently in all caches from the Cache
Manager. This statistic returns entries in the local cache instances only.

total_number_of_entries shows the number of store operations performed across all caches for
the Cache Manager.

off_heap_memory_used shows the amount, in bytes[], of off-heap memory used by this cache
container.

data_memory_used shows the amount, in bytes[], that the current eviction algorithm estimates is
in use for data across all caches. Returns 0 if eviction is not enabled.

misses shows the number of get () misses across all caches.
remove_hits shows the number of removal hits across all caches.
remove_misses shows the number of removal misses across all caches.

evictions shows the number of evictions across all caches.

* average_read_time shows the average number of milliseconds taken for get() operations across
all caches.

* average_read_time_nanos same as average_read_time but in nanoseconds.

* average_remove_time shows the average number of milliseconds for remove() operations across
all caches.

* average_remove_time_nanos same as average_remove_time but in nanoseconds.

* required_minimum_number_of_nodes shows the required minimum number of nodes to guarantee
data consistency.

* hits provides the number of get() hits across all caches.
 stores provides the number of put() operations across all caches.

» current_number_of_entries_in_memory shows the total number of entries currently in all caches,
excluding passivated entries.

* hit_ratio provides the total percentage hit/(hit+miss) ratio for all caches.

* retrievals shows the total number of get() operations.

Managing Cross site replication

The REST API expose several operations to manage cross site replication for all the caches in a
cache manager.

Retrieving backup statuses

To retrieve the statuses of all backup sites from the caches of cacheManagerName, do a GET request:

GET /rest/v2/cache-managers/{cacheManagerName}/x-site/backups/

Example response:

{
"SF0-3":{
"status":"online"
iy
"NYC-2":{
"status":"mixed",
"online":[
"CACHE_1"
1.
"offline":[
"CACHE 2"
]
}
}

The status field can assume the following values:

33

* online: all caches are online in the backup site.
» offline: all caches are offline in the backup site.

* mixed: some caches are online and others offline, and their names will be listed in the online and
offline arrays respectively.

Taking a backup site offline
To take all caches from cacheManagerName offline, for the backup site siteName, execute a GET request:

GET /rest/v2/cache-managers/{cacheManagerName}/x-site/backups/{siteName}?action=take-
offline

Bringing a backup site online
To bring all caches from cacheManagerName online, for the backup site siteName, execute a GET

request:

GET /rest/v2/cache-managers/{cacheManagerName}/x-site/backups/{siteName}?action=bring-
online

Starting a state push

To start pushing state of all caches of cacheManagerName to a backup site siteName, execute a GET

request:

GET /rest/v2/cache-managers/{cacheManagerName}/x-site/backups/{siteName}?action=start-
push-state

Cancelling an ongoing state push

To cancel an ongoing state push of all caches of cacheManagerName to a remote backup site siteName,
execute a GET request:

GET /rest/v2/cache-managers/{cacheManagerName}/x-
site/backups/{siteName}?action=cancel-push-state

1.6.3. Working with Counters

Use the REST API to create, delete, and modify counters.

Creating Counters

To create a counter, invoke a POST request with the configuration as payload:

34

POST /rest/v2/counters/{counterName}

The payload must contain a configuration for the counter in JSON format, as in the following
examples:

{

"weak-counter":{
"initial-value":5,
"storage":"PERSISTENT",
"concurrency-level":1

}

}
{

"strong-counter”:{
"initial-value":3,
"storage":"PERSISTENT",
"upper-bound":5

}

}

Deleting Counters

To delete a counter, invoke a DELETE request with the counter name:

DELETE /rest/v2/counters/{counterName}

Retrieving Counter Configuration

The get the counter configuration, invoke a GET request with the counter name:

GET /rest/v2/counters/{counterName}/config

Infinispan responds with a JSON representation of the counter configuration.

Adding Values to Counters

To add a value to a named counter, invoke a POST request:

POST /rest/v2/counters/{counterName}

If the request payload is empty, the counter is incremented by one, otherwise the payload is
interpreted as a signed long and added to the counter.

35

Request responses depend on the type of counter, as follows:

* WEAK counters return empty responses.

* STRONG counters return their values after the operation is applied.

0 This method processes plain/text content only.

Getting Counter Values

To retrieve the value of a counter, invoke a GET request:

GET /rest/v2/counters/{counterName}

Table 12. Headers

Header Required or Optional Parameter

Accept OPTIONAL The required format to return
the content. Supported formats
are application/json and
text/plain. JSON is assumed if no
header is provided.

Resetting Counters

To reset counters, invoke a GET request with the 7action=reset parameter:

GET /rest/v2/counters/{counterName}?action=reset

Incrementing Counters

To increment a counter, invoke a GET request with the 7action=increment parameter:
GET /rest/v2/counters/{counterName}?action=increment

Responses depend on the type of counter, as follows:

* WEAK counters return empty responses.

» STRONG counters return their values after the operation is applied.

Adding Deltas to Counters

To add an arbitrary amount to a counter, invoke a GET request with the ?action=add and delta
parameters:

GET /rest/v2/counters/{counterName}?action=add&delta={delta}

36

Request responses depend on the type of counter, as follows:

* WEAK counters return empty responses.

» STRONG counters return their values after the operation is applied.
Decrementing Counters
To decrement a counter, invoke a GET request with the ?action=decrement parameter:

GET /rest/v2/counters/{counterName}?action=decrement

Request responses depend on the type of counter, as follows:

* WEAK counters return empty responses.

» STRONG counters return their values after the operation is applied.
compareAndSet Strong Counters

To atomically set the value of a strong counter with the compareAndSet method, invoke a GET request:

GET
/rest/v2/counters/{counterName}?action=compareAndSet&expect={expect}&update={update}

Infinispan atomically sets the value to {update} if the current value is {expect}. If the operation is
successful, Infinispan returns true.

compareAndSwap Strong Counters

To atomically set the value of a strong counter with the compareAndSwap method, invoke a GET
request:

GET
/rest/v2/counters/{counterName}?action=compareAndSwap&expect={expect}&update={update}

Infinispan atomically sets the value to {update} if the current value is {expect}. If the operation is
successful, Infinispan returns the previous value in the payload.

Listing Counters

To obtain a list of counters available in a Infinispan cluster, invoke a GET request:

GET /rest/v2/counters/

37

1.6.4. Interacting with Infinispan Servers

The REST API lets you interact with Infinispan servers to retrieve server configuration and
information, Java Virtual Machine (JVM) memory usage and thread dumps. You can also perform
operations to manage servers.

Retrieving Basic Server Information

To view basic information about a Infinispan server, invoke a GET request:
GET /rest/v2/server

The response contains the server name, codename, and version in JSON format, as in the following
example:

{

"version":"Infinispan 'Codename' xx.x.x.Final"

Cache Managers

To obtain the list of the server’s cache managers:
GET /rest/v2/server/cache-managers

The response will contain an array with the names of the cache managers configured in the server.

Ignoring caches

A cache can be excluded temporarily from receiving requests from clients, returning a code 503
(service unavailable) for REST clients or a Server Error (code 0x85) for Hot Rod clients.

To ignore a cache, use an empty POST request with the cache manager name and the cache name:
POST /v2/server/ignored-caches/{cache-manager}/{cache}

To remove the cache from the ignore list, use a DELETE request:
DELETE /v2/server/ignored-caches/{cache-manager}/{cache}

Finally, to check the caches that are ignored, do a GET request:

GET /v2/server/ignored-caches/{cache-manager}

38

Q Currently Infinispan only supports a single cache manager per server, but for
future compatibility the name must be provided in the requests above.

Obtaining Server Configuration

To get the configuration for a Infinispan server, invoke a GET request:
GET /rest/v2/server/config

The server responds with the configuration in JSON format. The structure follows the server
schema, as in the following example:

39

"server":{
"interfaces":{

"interface":{
“name":"public",
"inet-address":{

"value":"127.0.0.1"
}
}
I¥
"socket-bindings":{

"port-offset":0,

"default-interface":"public",

"socket-binding":[

{
"name": "memcached",
"port":11221,
"interface":"memcached"
}
]
H
"security":{
"security-realms":{
"security-realm":{
"name":"default"
}
}
}

ndpoints":{
"socket-binding":"default",
"security-realm":"default",
"hotrod-connector":{
"name": "hotrod"

}

"rest-connector":{

"name":"rest"

}

Getting Environment Variables

To get environment variables that the server uses, invoke a GET request:

GET /rest/v2/server/env

40

Getting JVM Memory Details

To get information about JVM memory usage, invoke a GET request:
GET /rest/v2/server/memory

The server responds with heap and non-heap memory statistics, direct memory usage, and
information about memory pools and garbage collection in JSON format.

Getting JVM Thread Dumps

To get the current thread dump for the JVM, invoke a GET request:
GET /rest/v2/server/threads

The response is the current thread dump in text/plain format.

Stopping Infinispan Servers

To stop the Infinispan server, invoke a GET request:
GET /rest/v2/server?action=stop

The server responds with 200(0K) and then stops running.

1.6.5. Interacting with Infinispan Clusters

The REST API lets you interact with Infinispan clusters to retrieve cluster-wide configuration and
information. You can also perform operations to manage clusters.

Stopping Infinispan Clusters

To gracefully stop Infinispan clusters, invoke a GET request:
GET /rest/v2/cluster?action=stop

The server responds with 200(0K) and then the cluster performs a graceful shutdown.

You can also stop one or more specific servers by passing their names:

GET /rest/v2/cluster?action=stop&server=server-38760&server=bespin-1223

1.6.6. Server-side tasks

The REST API lets you interact with Infinispan servers to retrieve server configuration and

41

information, Java Virtual Machine (JVM) memory usage and thread dumps. You can also perform
operations to manage servers.

Retrieving Tasks Information

To view information about available tasks, invoke a GET request:

GET /rest/v2/tasks

The response consists of a list of available tasks, including the name, the engine that handles the
task, the named parameters for the task, the execution mode (ONE_NODE or ALL_NODES) and the
allowed security role in JSON format, as in the following example:

"name": "SimpleTask",
"type": "TaskEngine",
"parameters": [

"p1",

"p2"
]I
"execution_mode": "ONE_NODE",
"allowed role": null

"name": "RunOnAllNodesTask",
"type": "TaskEngine",
"parameters": [

Ilp1 n
1
"execution_mode": "ALL_NODES",
"allowed role": null

"name": "SecurityAwareTask",
"type": "TaskEngine",
"parameters": [],
"execution_mode": "ONE_NODE",
"allowed_role": "MyRole"

Executing Tasks

To execute a task, invoke a GET request:

GET /rest/v2/tasks/myTask?action=exec¶m.pl=vi¶m.p2=v2

42

The request includes the task name and any required parameters as request parameters prefixed
by param. The response will contain the task result.

Uploading Script Tasks

To upload a script tasks, invoke a PUT or POST request:
POST /rest/v2/tasks/taskName

supplying as the content payload the script you wish to upload. The script can then be executed like
any other task using the task execution action.

1.7. Client-Side Code

Part of the point of a RESTful service is that you don’t need to have tightly coupled client
libraries/bindings. All you need is a HTTP client library. For Java, Apache HTTP Commons Client
works just fine (and is used in the integration tests), or you can use java.net API.

1.7.1. Ruby example

Shows how to interact with the REST api from ruby.
No special libraries, just standard net/http

#

Author: Michael Neale

#

require 'net/http'

uri = URI.parse('http://localhost:8080/rest/default/MyKey")
http = Net::HTTP.new(uri.host, uri.port)

#Create new entry

post = Net::HTTP::Post.new(uri.path, {"Content-Type" => "text/plain"})
post.basic_auth('user', 'pass")
post.body = "DATA HERE"

resp = http.request(post)

puts "POST response code : " + resp.code

#get it back

get = Net::HTTP::Get.new(uri.path)
get.basic_auth('user', 'pass')

resp = http.request(get)

puts "GET response code: " + resp.code
puts "GET Body: " + resp.body

43

#luse PUT to overwrite

put = Net::HTTP::Put.new(uri.path, {"Content-Type" => "text/plain"})
put.basic_auth('user', 'pass")
put.body = "ANOTHER DATA HERE"

resp = http.request(put)

puts "PUT response code : " + resp.code

#and remove...
delete = Net::HTTP::Delete.new(uri.path)
delete.basic_auth('user', 'pass')

resp = http.request(delete)

puts "DELETE response code : " + resp.code

#Create binary data like this... just the same...

uri = URI.parse('http://localhost:8080/rest/default/MyLogo")

put = Net::HTTP::Put.new(uri.path, {"Content-Type" => "application/octet-stream"})
put.basic_auth('user', 'pass")

put.body = File.read('./logo.png")

resp = http.request(put)

puts "PUT response code : " + resp.code

#and if you want to do json...
require 'rubygems’
require 'json'

#inow for fun, lets do some JSON !

uri = URI.parse('http://localhost:8080/rest/jsonCache/user")

put = Net::HTTP::Put.new(uri.path, {"Content-Type" => "application/json"})
put.basic_auth('user', 'pass")

data = { => "michael", => 42 }
put.body = data.to_json

resp = http.request(put)

puts "PUT response code : " + resp.code

get = Net::HTTP::Get.new(uri.path)
get.basic_auth('user', 'pass')

resp = http.request(get)

puts "GET Body: " + resp.body

1.7.2. Python 3 example

import urllib.request

Setup basic auth

base_uri = 'http://localhost:8080/rest/default’

auth_handler = urllib.request.HTTPBasicAuthHandler ()
auth_handler.add_password(user="user', passwd='pass', realm="ApplicationRealm', uri
=base_uri)

opener = urllib.request.build_opener(auth_handler)
urllib.request.install_opener(opener)

putting data in
data = "SOME DATA HERE \!"

req = urllib.request.Request(url=base_uri + '/Key', data=data.encode("UTF-8"), method
='PUT",
headers={"Content-Type": "text/plain"})
with urllib.request.urlopen(req) as f:
pass

print(f.status)
print(f.reason)

getting data out
resp = urllib.request.urlopen(base_uri + '/Key')
print(resp.read().decode('utf-8"))

1.7.3. Java example

package org.infinispan;

import java.io.BufferedReader;
import java.io.IOException;

import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.net.HttpURLConnection;
import java.net.URL;

import java.util.Baseb4;

/**

* Rest example accessing a cache.
*

* @author Samuel Tauil (samuel@redhat.com)
*/
public class RestExample {

/**
* Method that puts a String value in cache.

46

* @param urlServerAddress URL containing the cache and the key to insert

* @param value Text to insert

* @param user Used for basic auth
* @param password Used for basic auth
*/

public void putMethod(String urlServerAddress, String value, String user, String
password) throws IOException {

System. out . printIn(" - <o "
System.out.println("Executing PUT");
System. out . printLA(" - - - "

URL address = new URL(urlServerAddress);

System.out.println("executing request " + urlServerAddress);
HttpURLConnection connection = (HttpURLConnection) address.openConnection();
System.out.println("Executing put method of value: " + value);
connection.setRequestMethod("PUT");
connection.setRequestProperty("Content-Type", "text/plain");
addAuthorization(connection, user, password);

connection.setDoOutput(true);

OutputStreamWriter outputStreamWriter = new OutputStreamWriter(connection
.getOutputStream());
outputStreamWriter.write(value);

connection.connect();

outputStreamWriter.flush();

System.out.println("-----------mmmmm "N

System.out.println(connection.getResponseCode() + " " + connection
.getResponseMessage());

System.out.println("------------------co "Y;

connection.disconnect();

* Method that gets a value by a key in url as param value.

* @param urlServerAddress URL containing the cache and the key to read

* @param user Used for basic auth
* @param password Used for basic auth
* @return String value

*/

public String getMethod(String urlServerAddress, String user, String password)
throws IOException {
String line;
StringBuilder stringBuilder = new StringBuilder();

System. out . printLn(" - - oo "
System.out.println("Executing GET");
SyStem. Out . printLn(" - oo s

URL address = new URL(urlServerAddress);

System.out.println("executing request " + urlServerAddress);
HttpURLConnection connection = (HttpURLConnection) address.openConnection();
connection.setRequestMethod("GET");
connection.setRequestProperty("Content-Type", "text/plain");
addAuthorization(connection, user, password);

connection.setDoOutput(true);

BufferedReader bufferedReader = new BufferedReader(new InputStreamReader
(connection.getInputStream()));

connection.connect();

while ((line = bufferedReader.readline()) != null) {
stringBuilder.append(line).append('\n");
}

System.out.println("Executing get method of value: " + stringBuilder.toString

0);

System.out.println("-----------------cim ")

System.out.println(connection.getResponseCode() + " " + connection
.getResponseMessage());

ST BT T L = m e s e ")

connection.disconnect();

return stringBuilder.toString();
}

private void addAuthorization(HttpURLConnection connection, String user, String
pass) {
String credentials = user + + pass;
String basic = Base64.getEncoder().encodeToString(credentials.getBytes());
connection.setRequestProperty("Authorization", "Basic " + basic);

}

/**

* Main method example.
*/
public static void main(String[] args) throws IOException {
RestExample restExample = new RestExample();
String user = "user";
String pass = "pass";
restExample.putMethod("http://localhost:8080/rest/default/1", "Infinispan REST
Test", user, pass);
restExample.getMethod("http://localhost:8080/rest/default/1", user, pass);

}

47

1.7.4. REST Example with the HttpClient API

package org.infinispan;

import java.io.IOException;

import java.net.URI;

import java.net.http.HttpClient;
import java.net.http.HttpRequest;
import java.net.http.HttpResponse;
import java.util.Baseb4;

/**

* RestExample class shows you how to access your cache via HttpClient API with Java
11 or later.
*
* @author Gustavo Lira (glira@redhat.com)
*/
public class RestExample {
private static final String SERVER_ADDRESS = "http://localhost:11222";
private static final String CACHE_URI = "/rest/v2/caches/default";

/**

* postMethod create a named cache.

* @param httpClient HTTP client that sends requests and receives responses

* @param builder Encapsulates HTTP requests

* @throws IOException

* @throws InterruptedException

*/

public void postMethod(HttpClient httpClient, HttpRequest.Builder builder) throws
IOException, InterruptedException {

System. out . printLA(" —-- - <o "
System.out.println("Executing POST");
System.out . prntLA(" == - oo "

HttpRequest request = builder.POST(HttpRequest.BodyPublishers.noBody()).build();
HttpResponse<Void> response = httpClient.send(request, HttpResponse.
BodyHandlers.discarding());

N ")
System.out.println(response.statusCode());
R e L LT ")
}
/**

* putMethod stores a String value in your cache.

* @param httpClient HTTP client that sends requests and receives responses
* @param builder Encapsulates HTTP requests

* @throws IOException

* @throws InterruptedException

*/

48

public void putMethod(HttpClient httpClient, HttpRequest.Builder builder) throws
I0Exception, InterruptedException {

System. out . printIn(" - - - N
System.out.println("Executing PUT");
System. out . printIn(" - oo "

String cacheValue = "Infinispan REST Test";

HttpRequest request = builder.PUT(HttpRequest.BodyPublishers.ofString(
cacheValue)).build();

HttpResponse<Void> response = httpClient.send(request, HttpResponse.
BodyHandlers.discarding());

ST CURE o P IMELK s===sssosassoeascsocassocazosomassooaas= ")
System.out.println(response.statusCode());
SIS OUE DFTIELI - sosssssasassseascsocasssonssocassnonass ")
}
/*7\‘

* getMethod get a String value from your cache.
* @param httpClient HTTP client that sends requests and receives responses
* @param builder Encapsulates HTTP requests

* @return String value
* @throws IOException
*/

public String getMethod(HttpClient httpClient, HttpRequest.Builder builder) throws
I0Exception, InterruptedException {

System. out . printIn(" - - - N
System.out.println("Executing GET");
System. out . printIn(" - oo "

HttpRequest request = builder.GET().build();
HttpResponse<String> response = httpClient.send(request, HttpResponse
.BodyHandlers.ofString());

System.out.println("Executing get method of value: " + response.body());

ST QURE o P IMELK - s===sssosassoeascsocassocazosomassooaasx ")
System.out.println(response.statusCode());
SIS OUE DFTIELI - sosssssasassseascsocasssonssocassnonass ")

return response.body();

}

public static void main(String[] args) throws IOException, InterruptedException {
RestExample restExample = new RestExample();
HttpClient httpClient = HttpClient.newBuilder().version(HttpClient.Version
HTTP_1_1).build();

restExample.postMethod(httpClient, getHttpReqestBuilder(String.format("%s%s",
SERVER_ADDRESS, CACHE_URI)));
restExample.putMethod(httpClient, getHttpReqestBuilder(String.format("%s%s/1",

50

SERVER_ADDRESS, CACHE_URI)));
restExample.getMethod(httpClient, getHttpReqestBuilder(String.format("%s%s/1",
SERVER_ADDRESS, CACHE_URI)));
}

private static String basicAuth(String username, String password) {
return "Basic " + Baseb64.getEncoder().encodeToString((username + ":" + password
)-getBytes());
}

private static final HttpRequest.Builder getHttpReqestBuilder(String url) {
return HttpRequest.newBuilder()
.Uuri(URI.create(url))
.header ("Content-Type", "text/plain")
.header("Authorization", basicAuth("user", "pass"));

	Using the Infinispan REST Server
	Table of Contents
	Chapter 1. REST Server
	1.1. Running the REST server
	1.1.1. Security

	1.2. Supported protocols
	1.3. CORS
	1.4. Data formats
	1.4.1. Configuration
	1.4.2. Supported formats
	1.4.3. Accept header
	1.4.4. Key-Content-Type header
	1.4.5. JSON/Protostream conversion

	1.5. REST V1 API
	1.5.1. Putting data in
	1.5.2. Getting data back out
	1.5.3. Listing keys
	1.5.4. Removing data
	1.5.5. Querying

	1.6. REST v2 (version 2) API
	1.6.1. Working with Caches
	1.6.2. Interacting with Cache Managers
	1.6.3. Working with Counters
	1.6.4. Interacting with Infinispan Servers
	1.6.5. Interacting with Infinispan Clusters
	1.6.6. Server-side tasks

	1.7. Client-Side Code
	1.7.1. Ruby example
	1.7.2. Python 3 example
	1.7.3. Java example
	1.7.4. REST Example with the HttpClient API

