
Administration Guide for Infinispan
10.1

Table of Contents

1. Setting Up Partition Handling . 1

1.1. Partition handling. 1

1.1.1. Split brain . 2

1.1.2. Successive nodes stopped . 4

1.1.3. Conflict Manager . 4

1.1.4. Usage . 6

1.1.5. Configuring partition handling . 7

1.1.6. Monitoring and administration. 8

2. Extending Infinispan. 10

2.1. Custom Commands. 10

2.1.1. An Example . 10

2.1.2. Preassigned Custom Command Id Ranges . 10

2.2. Extending the configuration builders and parsers . 11

3. Custom Interceptors . 12

3.1. Adding custom interceptors declaratively . 12

3.2. Adding custom interceptors programatically . 12

3.3. Custom interceptor design . 13

4. Rolling Upgrades and Updates with Kubernetes and OpenShift . 14

4.1. Performing Rolling Updates on Kubernetes . 14

4.2. Performing Rolling Upgrades on Kubernetes . 16

Chapter 1. Setting Up Partition Handling

1.1. Partition handling

An Infinispan cluster is built out of a number of nodes where data is stored. In order not to lose

data in the presence of node failures, Infinispan copies the same data — cache entry in Infinispan

parlance — over multiple nodes. This level of data redundancy is configured through the numOwners

configuration attribute and ensures that as long as fewer than numOwners nodes crash

simultaneously, Infinispan has a copy of the data available.

However, there might be catastrophic situations in which more than numOwners nodes disappear

from the cluster:

Split brain

Caused e.g. by a router crash, this splits the cluster in two or more partitions, or sub-clusters that

operate independently. In these circumstances, multiple clients reading/writing from different

partitions see different versions of the same cache entry, which for many application is

problematic. Note there are ways to alleviate the possibility for the split brain to happen, such as

redundant networks or IP bonding. These only reduce the window of time for the problem to

occur, though.

numOwners nodes crash in sequence

When at least numOwners nodes crash in rapid succession and Infinispan does not have the time to

properly rebalance its state between crashes, the result is partial data loss.

The partition handling functionality discussed in this section allows the user to configure what

operations can be performed on a cache in the event of a split brain occurring. Infinispan provides

multiple partition handling strategies, which in terms of Brewer’s CAP theorem determine whether

availability or consistency is sacrificed in the presence of partition(s). Below is a list of the provided

strategies:

Strategy Description CAP

DENY_READ_WRITES If the partition does not have all

owners for a given segment,

both reads and writes are

denied for all keys in that

segment.

Consistency

1

Strategy Description CAP

ALLOW_READS Allows reads for a given key if it

exists in this partition, but only

allows writes if this partition

contains all owners of a

segment. This is still a

consistent approach because

some entries are readable if

available in this partition, but

from a client application

perspective it is not

deterministic.

Consistency

ALLOW_READ_WRITES Allow entries on each partition

to diverge, with conflict

resolution attempted upon the

partitions merging.

Availability

The requirements of your application should determine which strategy is appropriate. For example,

DENY_READ_WRITES is more appropriate for applications that have high consistency

requirements; i.e. when the data read from the system must be accurate. Whereas if Infinispan is

used as a best-effort cache, partitions maybe perfectly tolerable and the ALLOW_READ_WRITES

might be more appropriate as it favours availability over consistency.

The following sections describe how Infinispan handles split brain and successive failures for each

of the partition handling strategies. This is followed by a section describing how Infinispan allows

for automatic conflict resolution upon partition merges via merge policies. Finally, we provide a

section describing how to configure partition handling strategies and merge policies.

1.1.1. Split brain

In a split brain situation, each network partition will install its own JGroups view, removing the

nodes from the other partition(s). We don’t have a direct way of determining whether the has been

split into two or more partitions, since the partitions are unaware of each other. Instead, we

assume the cluster has split when one or more nodes disappear from the JGroups cluster without

sending an explicit leave message.

Split Strategies

In this section, we detail how each partition handling strategy behaves in the event of split brain

occurring.

ALLOW_READ_WRITES

Each partition continues to function as an independent cluster, with all partitions remaining in

AVAILABLE mode. This means that each partition may only see a part of the data, and each

partition could write conflicting updates in the cache. During a partition merge these conflicts are

automatically resolved by utilising the ConflictManager and the configured EntryMergePolicy.

2

DENY_READ_WRITES

When a split is detected each partition does not start a rebalance immediately, but first it checks

whether it should enter DEGRADED mode instead:

• If at least one segment has lost all its owners (meaning at least numOwners nodes left since the

last rebalance ended), the partition enters DEGRADED mode.

• If the partition does not contain a simple majority of the nodes (floor(numNodes/2) + 1) in the

latest stable topology, the partition also enters DEGRADED mode.

• Otherwise the partition keeps functioning normally, and it starts a rebalance.

The stable topology is updated every time a rebalance operation ends and the coordinator

determines that another rebalance is not necessary.

These rules ensures that at most one partition stays in AVAILABLE mode, and the other partitions

enter DEGRADED mode.

When a partition is in DEGRADED mode, it only allows access to the keys that are wholly owned:

• Requests (reads and writes) for entries that have all the copies on nodes within this partition

are honoured.

• Requests for entries that are partially or totally owned by nodes that disappeared are rejected

with an AvailabilityException.

This guarantees that partitions cannot write different values for the same key (cache is consistent),

and also that one partition can not read keys that have been updated in the other partitions (no

stale data).

To exemplify, consider the initial cluster M = {A, B, C, D}, configured in distributed mode with

numOwners = 2. Further on, consider three keys k1, k2 and k3 (that might exist in the cache or not)

such that owners(k1) = {A,B}, owners(k2) = {B,C} and owners(k3) = {C,D}. Then the network splits in

two partitions, N1 = {A, B} and N2 = {C, D}, they enter DEGRADED mode and behave like this:

• on N1, k1 is available for read/write, k2 (partially owned) and k3 (not owned) are not available

and accessing them results in an AvailabilityException

• on N2, k1 and k2 are not available for read/write, k3 is available

A relevant aspect of the partition handling process is the fact that when a split brain happens, the

resulting partitions rely on the original segment mapping (the one that existed before the split

brain) in order to calculate key ownership. So it doesn’t matter if k1, k2, or k3 already existed cache

or not, their availability is the same.

If at a further point in time the network heals and N1 and N2 partitions merge back together into the

initial cluster M, then M exits the degraded mode and becomes fully available again. During this

merge operation, because M has once again become fully available, the ConflictManager and the

configured EntryMergePolicy are used to check for any conflicts that may have occurred in the

interim period between the split brain occurring and being detected.

As another example, the cluster could split in two partitions O1 = {A, B, C} and O2 = {D}, partition

3

O1 will stay fully available (rebalancing cache entries on the remaining members). Partition O2,

however, will detect a split and enter the degraded mode. Since it doesn’t have any fully owned

keys, it will reject any read or write operation with an AvailabilityException.

If afterwards partitions O1 and O2 merge back into M, then the ConflictManager attempts to resolve

any conflicts and D once again becomes fully available.

ALLOW_READS

Partitions are handled in the same manner as DENY_READ_WRITES, except that when a partition is

in DEGRADED mode read operations on a partially owned key WILL not throw an

AvailabilityException.

Current limitations

Two partitions could start up isolated, and as long as they don’t merge they can read and write

inconsistent data. In the future, we will allow custom availability strategies (e.g. check that a certain

node is part of the cluster, or check that an external machine is accessible) that could handle that

situation as well.

1.1.2. Successive nodes stopped

As mentioned in the previous section, Infinispan can’t detect whether a node left the JGroups view

because of a process/machine crash, or because of a network failure: whenever a node leaves the

JGroups cluster abruptly, it is assumed to be because of a network problem.

If the configured number of copies (numOwners) is greater than 1, the cluster can remain available

and will try to make new replicas of the data on the crashed node. However, other nodes might

crash during the rebalance process. If more than numOwners nodes crash in a short interval of time,

there is a chance that some cache entries have disappeared from the cluster altogether. In this case,

with the DENY_READ_WRITES or ALLOW_READS strategy enabled, Infinispan assumes (incorrectly)

that there is a split brain and enters DEGRADED mode as described in the split-brain section.

The administrator can also shut down more than numOwners nodes in rapid succession, causing the

loss of the data stored only on those nodes. When the administrator shuts down a node gracefully,

Infinispan knows that the node can’t come back. However, the cluster doesn’t keep track of how

each node left, and the cache still enters DEGRADED mode as if those nodes had crashed.

At this stage there is no way for the cluster to recover its state, except stopping it and repopulating

it on restart with the data from an external source. Clusters are expected to be configured with an

appropriate numOwners in order to avoid numOwners successive node failures, so this situation should

be pretty rare. If the application can handle losing some of the data in the cache, the administrator

can force the availability mode back to AVAILABLE via JMX.

1.1.3. Conflict Manager

The conflict manager is a tool that allows users to retrieve all stored replica values for a given key.

In addition to allowing users to process a stream of cache entries whose stored replicas have

conflicting values. Furthermore, by utilising implementations of the EntryMergePolicy interface it

is possible for said conflicts to be resolved automatically.

4

Detecting Conflicts

Conflicts are detected by retrieving each of the stored values for a given key. The conflict manager

retrieves the value stored from each of the key’s write owners defined by the current consistent

hash. The .equals method of the stored values is then used to determine whether all values are

equal. If all values are equal then no conflicts exist for the key, otherwise a conflict has occurred.

Note that null values are returned if no entry exists on a given node, therefore we deem a conflict

to have occurred if both a null and non-null value exists for a given key.

Merge Policies

In the event of conflicts arising between one or more replicas of a given CacheEntry, it is necessary

for a conflict resolution algorithm to be defined, therefore we provide the EntryMergePolicy

interface. This interface consists of a single method, "merge", whose returned CacheEntry is utilised

as the "resolved" entry for a given key. When a non-null CacheEntry is returned, this entries value

is "put" to all replicas in the cache. However when the merge implementation returns a null value,

all replicas associated with the conflicting key are removed from the cache.

The merge method takes two parameters: the "preferredEntry" and "otherEntries". In the context of

a partition merge, the preferredEntry is the primary replica of a CacheEntry stored in the partition

that contains the most nodes or if partitions are equal the one with the largest topologyId. In the

event of overlapping partitions, i.e. a node A is present in the topology of both partitions {A},

{A,B,C}, we pick {A} as the preferred partition as it will have the higher topologId as the other

partition’s topology is behind. When a partition merge is not occurring, the "preferredEntry" is

simply the primary replica of the CacheEntry. The second parameter, "otherEntries" is simply a list

of all other entries associated with the key for which a conflict was detected.


EntryMergePolicy::merge is only called when a conflict has been detected, it is not

called if all CacheEntrys are the same.

Currently Infinispan provides the following implementations of EntryMergePolicy:

Policy Description

MergePolicy.NONE (default) No attempt is made to resolve conflicts. Entries

hosted on the minority partition are removed

and the nodes in this partition do not hold any

data until the rebalance starts. Note, this

behaviour is equivalent to prior Infinispan

versions which did not support conflict

resolution. Note, in this case all changes made to

entries hosted on the minority partition are lost,

but once the rebalance has finished all entries

will be consistent.

5

Policy Description

MergePolicy.PREFERRED_ALWAYS Always utilise the "preferredEntry".

MergePolicy.NONE is almost equivalent to

PREFERRED_ALWAYS, albeit without the

performance impact of performing conflict

resolution, therefore MergePolicy.NONE should

be chosen unless the following scenario is a

concern. When utilising the

DENY_READ_WRITES or DENY_READ strategy, it

is possible for a write operation to only partially

complete when the partitions enter DEGRADED

mode, resulting in replicas containing

inconsistent values.

MergePolicy.PREFERRED_ALWAYS will detect

said inconsistency and resolve it, whereas with

MergePolicy.NONE the CacheEntry replicas will

remain inconsistent after the cluster has

rebalanced.

MergePolicy.PREFERRED_NON_NULL Utilise the "preferredEntry" if it is non-null,

otherwise utilise the first entry from

"otherEntries".

MergePolicy.REMOVE_ALL Always remove a key from the cache when a

conflict is detected.

Fully qualified class name The custom implementation for merge will be

used Custom merge policy

1.1.4. Usage

During a partition merge the ConflictManager automatically attempts to resolve conflicts utilising

the configured EntryMergePolicy, however it is also possible to manually search for/resolve

conflicts as required by your application.

The code below shows how to retrieve an EmbeddedCacheManager’s ConflictManager, how to

retrieve all versions of a given key and how to check for conflicts across a given cache.

6

EmbeddedCacheManager manager = new DefaultCacheManager("example-config.xml");

Cache<Integer, String> cache = manager.getCache("testCache");

ConflictManager<Integer, String> crm = ConflictManagerFactory.get(cache

.getAdvancedCache());

// Get All Versions of Key

Map<Address, InternalCacheValue<String>> versions = crm.getAllVersions(1);

// Process conflicts stream and perform some operation on the cache

Stream<Map<Address, InternalCacheEntry<Integer, String>>> stream = crm.getConflicts();

stream.forEach(map -> {

 CacheEntry<Object, Object> entry = map.values().iterator().next();

 Object conflictKey = entry.getKey();

 cache.remove(conflictKey);

});

// Detect and then resolve conflicts using the configured EntryMergePolicy

crm.resolveConflicts();

// Detect and then resolve conflicts using the passed EntryMergePolicy instance

crm.resolveConflicts((preferredEntry, otherEntries) -> preferredEntry);


Although the ConflictManager::getConflicts stream is processed per entry, the

underlying spliterator is in fact lazily-loading cache entries on a per segment basis.

1.1.5. Configuring partition handling

Unless the cache is distributed or replicated, partition handling configuration is ignored. The

default partition handling strategy is ALLOW_READ_WRITES and the default EntryMergePolicy is

MergePolicies::PREFERRED_ALWAYS.

<distributed-cache name="the-default-cache">

 <partition-handling when-split="ALLOW_READ_WRITES" merge-policy="

PREFERRED_NON_NULL"/>

</distributed-cache>

The same can be achieved programmatically:

ConfigurationBuilder dcc = new ConfigurationBuilder();

dcc.clustering().partitionHandling()

 .whenSplit(PartitionHandling.ALLOW_READ_WRITES)

 .mergePolicy(MergePolicies.PREFERRED_ALWAYS);

Implement a custom merge policy

It’s also possible to provide custom implementations of the EntryMergePolicy

7

<distributed-cache name="the-default-cache">

 <partition-handling when-split="ALLOW_READ_WRITES" merge-policy=

"org.example.CustomMergePolicy"/>

</distributed-cache>

ConfigurationBuilder dcc = new ConfigurationBuilder();

dcc.clustering().partitionHandling()

 .whenSplit(PartitionHandling.ALLOW_READ_WRITES)

 .mergePolicy(new CustomMergePolicy());

public class CustomMergePolicy implements EntryMergePolicy<String, String> {

 @Override

 public CacheEntry<String, String> merge(CacheEntry<String, String> preferredEntry,

List<CacheEntry<String, String>> otherEntries) {

 // decide which entry should be used

 return the_solved_CacheEntry;

 }

Deploy custom merge policies to a Infinispan server instance

To utilise a custom EntryMergePolicy implementation on the server, it’s necessary for the

implementation class(es) to be deployed to the server. This is accomplished by utilising the java

service-provider convention and packaging the class files in a jar which has a META-

INF/services/org.infinispan.conflict.EntryMergePolicy file containing the fully qualified class name

of the EntryMergePolicy implementation.

list all necessary implementations of EntryMergePolicy with the full qualified name

org.example.CustomMergePolicy

In order for a Custom merge policy to be utilised on the server, you should enable object storage, if

your policies semantics require access to the stored Key/Value objects. This is because cache entries

in the server may be stored in a marshalled format and the Key/Value objects returned to your

policy would be instances of WrappedByteArray. However, if the custom policy only depends on the

metadata associated with a cache entry, then object storage is not required and should be avoided

(unless needed for other reasons) due to the additional performance cost of marshalling data per

request. Finally, object storage is never required if one of the provided merge policies is used.

1.1.6. Monitoring and administration

The availability mode of a cache is exposed in JMX as an attribute in the Cache MBean. The

attribute is writable, allowing an administrator to forcefully migrate a cache from DEGRADED

mode back to AVAILABLE (at the cost of consistency).

8

The availability mode is also accessible via the AdvancedCache interface:

AdvancedCache ac = cache.getAdvancedCache();

// Read the availability

boolean available = ac.getAvailability() == AvailabilityMode.AVAILABLE;

// Change the availability

if (!available) {

 ac.setAvailability(AvailabilityMode.AVAILABLE);

}

9

Chapter 2. Extending Infinispan

Infinispan can be extended to provide the ability for an end user to add additional configurations,

operations and components outside of the scope of the ones normally provided by Infinispan.

2.1. Custom Commands

Infinispan makes use of a command/visitor pattern to implement the various top-level methods you

see on the public-facing API.

While the core commands - and their corresponding visitors - are hard-coded as a part of

Infinispan’s core module, module authors can extend and enhance Infinispan by creating new

custom commands.

As a module author (such as infinispan-query, etc.) you can define your own commands.

You do so by:

1. Create a META-INF/services/org.infinispan.commands.module.ModuleCommandExtensions file and

ensure this is packaged in your jar.

2. Implementing ModuleCommandFactory, ModuleCommandInitializer and ModuleCommandExtensions

3. Specifying the fully-qualified class name of the ModuleCommandExtensions implementation in

META-INF/services/org.infinispan.commands.module.ModuleCommandExtensions.

4. Implement your custom commands and visitors for these commands

2.1.1. An Example

Here is an example of an META-

INF/services/org.infinispan.commands.module.ModuleCommandExtensions file, configured accordingly:

org.infinispan.commands.module.ModuleCommandExtensions

org.infinispan.query.QueryModuleCommandExtensions

For a full, working example of a sample module that makes use of custom commands and visitors,

check out Infinispan Sample Module .

2.1.2. Preassigned Custom Command Id Ranges

This is the list of Command identifiers that are used by Infinispan based modules or frameworks.

Infinispan users should avoid using ids within these ranges. (RANGES to be finalised yet!) Being this

a single byte, ranges can’t be too large.

Infinispan Query: 100 - 119

Hibernate Search: 120 - 139

Hot Rod Server: 140 - 141

10

2.2. Extending the configuration builders and parsers

If your custom module requires configuration, it is possible to enhance Infinispan’s configuration

builders and parsers. Look at the custom module tests for a detail example on how to implement

this.

11

Chapter 3. Custom Interceptors

It is possible to add custom interceptors to Infinispan, both declaratively and programatically.

Custom interceptors are a way of extending Infinispan by being able to influence or respond to any

modifications to cache. Example of such modifications are: elements are added/removed/updated

or transactions are committed. For a detailed list refer to CommandInterceptor API.

3.1. Adding custom interceptors declaratively

Custom interceptors can be added on a per named cache basis. This is because each named cache

have its own interceptor stack. Following xml snippet depicts the ways in which a custom

interceptor can be added.

<local-cache name="cacheWithCustomInterceptors">

 <!--

 Define custom interceptors. All custom interceptors need to extend

org.jboss.cache.interceptors.base.CommandInterceptor

 -->

 <custom-interceptors>

 <interceptor position="FIRST" class="com.mycompany.CustomInterceptor1">

 <property name="attributeOne">value1</property>

 <property name="attributeTwo">value2</property>

 </interceptor>

 <interceptor position="LAST" class="com.mycompany.CustomInterceptor2"/>

 <interceptor index="3" class="com.mycompany.CustomInterceptor1"/>

 <interceptor before="org.infinispanpan.interceptors.CallInterceptor" class=

"com.mycompany.CustomInterceptor2"/>

 <interceptor after="org.infinispanpan.interceptors.CallInterceptor" class=

"com.mycompany.CustomInterceptor1"/>

 </custom-interceptors>

</local-cache>

3.2. Adding custom interceptors programatically

In order to do that one needs to obtain a reference to the AdvancedCache . This can be done as

follows:

CacheManager cm = getCacheManager();//magic

Cache aCache = cm.getCache("aName");

AdvancedCache advCache = aCache.getAdvancedCache();

Then one of the addInterceptor() methods should be used to add the actual interceptor. For further

documentation refer to AdvancedCache javadoc.

12

3.3. Custom interceptor design

When writing a custom interceptor, you need to abide by the following rules.

• Custom interceptors must extend BaseCustomInterceptor

• Custom interceptors must declare a public, empty constructor to enable construction.

• Custom interceptors will have setters for any property defined through property tags used in

the XML configuration.

13

Chapter 4. Rolling Upgrades and Updates

with Kubernetes and OpenShift

Pods running in Kubernetes and OpenShift are immutable. The only way you can alter the

configuration is to roll out a new deployment.

Upgrades and updates sound similar but are distinct processes for rolling out new deployments.

4.1. Performing Rolling Updates on Kubernetes

Rolling updates replace existing pods with new ones.

• Rolling Updates

• When to Use a Rolling Deployment

Example DeploymentConfiguration for Rolling Updates

- apiVersion: v1

 kind: DeploymentConfig

 metadata:

 name: infinispan-cluster

 spec:

 replicas: 3

 strategy:

 type: Rolling

 rollingParams:

 updatePeriodSeconds: 10

 intervalSeconds: 20

 timeoutSeconds: 600

 maxUnavailable: 1

 maxSurge: 1

 template:

 spec:

 containers:

 - args:

 - -Djboss.default.jgroups.stack=kubernetes

 image: jboss/infinispan-server:latest

 name: infinispan-server

 ports:

 - containerPort: 8181

 protocol: TCP

 - containerPort: 9990

 protocol: TCP

 - containerPort: 11211

 protocol: TCP

 - containerPort: 11222

 protocol: TCP

 - containerPort: 57600

14

 protocol: TCP

 - containerPort: 7600

 protocol: TCP

 - containerPort: 8080

 protocol: TCP

 env:

 - name: KUBERNETES_NAMESPACE

 valueFrom: {fieldRef: {apiVersion: v1, fieldPath: metadata.namespace}}

 terminationMessagePath: /dev/termination-log

 terminationGracePeriodSeconds: 90

 livenessProbe:

 exec:

 command:

 - /usr/local/bin/is_running.sh

 initialDelaySeconds: 10

 timeoutSeconds: 80

 periodSeconds: 60

 successThreshold: 1

 failureThreshold: 5

 readinessProbe:

 exec:

 command:

 - /usr/local/bin/is_healthy.sh

 initialDelaySeconds: 10

 timeoutSeconds: 40

 periodSeconds: 30

 successThreshold: 2

 failureThreshold: 5


Kubernetes uses very similar concept to Deployment Configurations called

Deployment.

It is also highly recommended to adjust the JGroups stack to discover new nodes (or leaves) more

quickly. One should at least adjust the value of FD_ALL timeout and adjust it to the longest GC Pause.

Other hints for tuning configuration parameters are:

• OpenShift should replace running nodes one by one. This can be achieved by adjusting

rollingParams (maxUnavailable: 1 and maxSurge: 1).

• Depending on the cluster size, one needs to adjust updatePeriodSeconds and intervalSeconds. The

bigger cluster size is, the bigger those values should be used.

• When using Initial State Transfer, the initialDelaySeconds value for both probes should be set to

higher value.

• During Initial State Transfer nodes might not respond to probes. The best results are achieved

with higher values of failureThreshold and successThreshold values.

15

4.2. Performing Rolling Upgrades on Kubernetes

Rolling upgrades migrate data from one Infinispan cluster to another.

For both Kubernetes and OpenShift, the rolling upgrade procedure is nearly identical to the

procedure for Infinispan server rolling upgrades.

Differences in rolling upgrade procedures

• Depending on configuration, it is a good practice to use OpenShift Routes or Kubernetes Ingress

API to expose services to the clients. During the upgrade the Route (or Ingress) used by the

clients can be altered to point to the new cluster.

• Invoking CLI commands can be done by using Kubernetes (kubectl exec) or OpenShift clients

(oc exec). Here is an example: oc exec <POD_NAME> — '/opt/jboss/infinispan-server/bin/ispn-
cli.sh' '-c' '--controller=$(hostname -i):9990' '/subsystem=datagrid-infinispan/cache-
container=clustered/distributed-cache=default:disconnect-source(migrator-name=hotrod)'

Key differences when upgrading using the library mode:

• Client application needs to expose JMX. It usually depends on application and environment type

but the easiest way to do it is to add the following switches into the Java boostrap script

-Dcom.sun.management.jmxremote -Dcom.sun.management.jmxremote.port=<PORT>.

• Connecting to the JMX can be done by forwarding ports. With OpenShift this might be achieved

by using oc port-forward command whereas in Kubernetes by kubectl port-forward.

The last step in the Rolling Upgrade (removing a Remote Cache Store) needs to be performed

differently. We need to use Kubernetes/OpenShift Rolling update command and replace Pods

configuration with the one which does not contain Remote Cache Store.

A detailed instruction might be found in ISPN-6673 ticket.

16

	Administration Guide for Infinispan 10.1
	Table of Contents
	Chapter 1. Setting Up Partition Handling
	1.1. Partition handling
	1.1.1. Split brain
	1.1.2. Successive nodes stopped
	1.1.3. Conflict Manager
	1.1.4. Usage
	1.1.5. Configuring partition handling
	1.1.6. Monitoring and administration

	Chapter 2. Extending Infinispan
	2.1. Custom Commands
	2.1.1. An Example
	2.1.2. Preassigned Custom Command Id Ranges

	2.2. Extending the configuration builders and parsers

	Chapter 3. Custom Interceptors
	3.1. Adding custom interceptors declaratively
	3.2. Adding custom interceptors programatically
	3.3. Custom interceptor design

	Chapter 4. Rolling Upgrades and Updates with Kubernetes and OpenShift
	4.1. Performing Rolling Updates on Kubernetes
	4.2. Performing Rolling Upgrades on Kubernetes

