Integrating Infinispan 10.1

Table of Contents

1. Integrations
1.1. Apache Spark
1.2. Apache Hadoop
1.3. Apache Lucene
1.3.1. Lucene compatibility
1.3.2. Maven dependencies
1.3.3. How to use it
1.3.4. Configuration
1.3.5. Using a CacheLoader
1.3.6. Storing the index in a database
1.3.7. Loading an existing Lucene Index
1.3.8. Architectural limitations
1.3.9. Suggestions for optimal performance
1.3.10. Demo
1.3.11. Additional Links
1.3.12. Directory Provider for Hibernate Search
1.3.13. Maven dependencies
1.3.14. How to use it
1.3.15. Configuration
1.3.16. Architecture considerations
2. JPA/Hibernate 2L Cache
2.1. Deployment Scenarios
2.1.1. Single-Node Standalone Hibernate Application
2.1.2. Single-Node Standalone Spring Application
2.1.3. Single-Node WildFly Application
2.1.4. Multi-Node Standalone Hibernate Application
2.1.5. Multi-Node Standalone Spring Application
2.1.6. Multi-Node WildFly Application
2.2. Configuration Reference
2.2.1. Default Local Configuration
2.2.2. Default Cluster Configuration
2.2.3. Configuration Properties
2.3. Cache Strategies
2.4. Using minimal puts
2.5. JPA / Hibernate OGM
3. Using Infinispan with Spring
3.1. Setting Up Infinispan as a Spring Cache Provider
3.1.1. Adding Spring Cache Support

© ©O© 0 00 0 00 00 ~J O O U1 U1 = N = =B =R =

NN NN NN R R B R R |l | Rl) Rl) e,
N NG N = = T LS IS T N O (O JO RN JC R ‘ORI \CI T)

3.1.2. Configuring Infinispan as the Spring Cache Provider
3.2. Adding Caching to Your Application
3.2.1. Adding Cache Entries
3.2.2. Deleting Cache Entries
3.3. Configuring Timeouts for Cache Operations
3.4. Externalizing Sessions Using Spring Session
4. Infinispan modules for WildFly / EAP
4.1. Installation
4.2. Application Dependencies
4.2.1. Infinispan core
4.2.2. Remote
4.2.3. Embedded Query
4.2.4. Lucene Directory
4.2.5. Hibernate Search directory provider for Infinispan
4.2.6. Usage
4.2.7. Embedded Mode
4.3. Troubleshooting
4.3.1. Enable logging
4.3.2. Print dependency tree

25
26
26
26
27
28
30
30
30
31
31
32
32
32
33
33
36
36
36

Chapter 1. Integrations

Infinispan can be integrated with a number of other projects, as detailed below.

1.1. Apache Spark

Infinispan provides an Apache Spark connector capable of exposing caches as an RDD, allowing
batch and stream jobs to be run against data stored in Infinispan. For further details, see the
Infinispan Spark connector documentation. Also check the Docker based Twitter demo.

1.2. Apache Hadoop

The Infinispan Hadoop connector can be used to expose Infinispan as a Hadoop compliant data
source and sink that implements InputFormat/OutputFormat. For further details, refer to the full
documentation.

1.3. Apache Lucene
Infinispan includes a highly scalable distributed Apache Lucene Directory implementation.

This directory closely mimics the same semantics of the traditional filesystem and RAM-based
directories, being able to work as a drop-in replacement for existing applications using Lucene and
providing reliable index sharing and other features of Infinispan like node auto-discovery,
automatic failover and rebalancing, optionally transactions, and can be backed by traditional
storage solutions as filesystem, databases or cloud store engines.

The implementation extends Lucene’s org.apache.lucene.store.Directory so it can be used to store
the index in a cluster-wide shared memory, making it easy to distribute the index. Compared to
rsync-based replication this solution is suited for use cases in which your application makes
frequent changes to the index and you need them to be quickly distributed to all nodes. Consistency
levels, synchronicity and guarantees, total elasticity and auto-discovery are all configurable; also
changes applied to the index can optionally participate in a JTA transaction, optionally supporting
XA transactions with recovery.

Two different LockFactory implementations are provided to guarantee only one IndexWriter at a
time will make changes to the index, again implementing the same semantics as when opening an
index on a local filesystem. As with other Lucene Directories, you can override the LockFactory if
you prefer to use an alternative implementation.

1.3.1. Lucene compatibility

Apache Lucene versions 5.5.X

1.3.2. Maven dependencies

All you need is the following:

http://spark.apache.org
https://github.com/infinispan/infinispan-spark/blob/master/README.md
https://github.com/infinispan/infinispan-spark/tree/master/examples/twitter/README.md
https://hadoop.apache.org/docs/stable/api/org/apache/hadoop/mapreduce/InputFormat.html
https://hadoop.apache.org/docs/stable/api/org/apache/hadoop/mapreduce/OutputFormat.html
https://github.com/infinispan/infinispan-hadoop/blob/master/README.md
http://lucene.apache.org

pom.xml

<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-lucene-directory</artifactId>
</dependency>

1.3.3. How to use it

See the below example of using the Infinispan Lucene Directory in order to index and query a
single Document:

import java.io.IOException;

import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Document;

import org.apache.lucene.document.Field;

import org.apache.lucene.document.StringField;

import org.apache.lucene.index.DirectoryReader;

import org.apache.lucene.index.IndexWriter;

import org.apache.lucene.index.IndexWriterConfig;

import org.apache.lucene.index.Term;

import org.apache.lucene.search.IndexSearcher;

import org.apache.lucene.search.TermQuery;

import org.apache.lucene.search.TopDocs;

import org.apache.lucene.store.Directory;

import org.infinispan.lucene.directory.DirectoryBuilder;
import org.infinispan.manager.DefaultCacheManager;

// Create caches that will store the index. Here the programmatic configuration is
used

DefaultCacheManager defaultCacheManager = new DefaultCacheManager();

Cache metadataCache = defaultCacheManager.getCache("metadataCache");

Cache dataCache = defaultCacheManager.getCache("dataCache");

Cache lockCache = defaultCacheManager.getCache("lockCache");

// Create the directory
Directory directory = DirectoryBuilder.newDirectoryInstance(metadataCache, dataCache,
lockCache, indexName).create();

// Use the directory in Lucene
IndexWriterConfig indexWriterConfig = new IndexWriterConfig(new StandardAnalyzer())
.setOpenMode (IndexWriterConfig.OpenMode.CREATE_OR_APPEND);

IndexWriter indexWriter = new IndexWriter(directory, indexWriterConfig);

// Index a single document

Document doc = new Document();

doc.add(new StringField("field", "value", Field.Store.N0));
indexWriter.addDocument(doc);

indexWriter.close();

// Querying the inserted document

DirectoryReader directoryReader = DirectoryReader.open(directory);
IndexSearcher searcher = new IndexSearcher(directoryReader);
TermQuery query = new TermQuery(new Term("field", "value"));
TopDocs topDocs = searcher.search(query, 10);
System.out.println(topDocs.totalHits);

The indexName in the DirectoryBuilder is a unique key to identify your index. It takes the same role
as the path did on filesystem based indexes: you can create several different indexes giving them

different names. When you use the same indexName in another instance connected to the same
network (or instantiated on the same machine, useful for testing) they will join, form a cluster and
share all content. Using a different indexName allows you to store different indexes in the same set
of Caches.

The metadataCache, dataCache and lockCache are the caches that will store the indexes. More
details provided below.

New nodes can be added or removed dynamically, making the service administration very easy and
also suited for cloud environments: it’s simple to react to load spikes, as adding more memory and
CPU power to the search system is done by just starting more nodes.

1.3.4. Configuration

Infinispan can be configured as LOCAL clustering mode, in which case it will disable clustering
features and serve as a cache for the index, or any clustering mode. A transaction manager is not
mandatory, but when enabled the changes to the index can participate in transactions.

Batching was required in previous versions, it’s not strictly needed anymore.

As pointed out in the javadocs of DirectoryBuilder, it’s possible for it to use more than a single
cache, using specific configurations for different purposes. Each cache is explained below:

Lock Cache

The lock cache is used to store a single entry per index that will function as the directory lock.
Given the small storage requirement this cache is usually configured as REPL_SYNC. Example of
declarative configuration:

<replicated-cache name="LuceneIndexesLocking" mode="SYNC" remote-timeout="25000">
<transaction mode="NONE"/>
<indexing index="NONE" />
<memory>
<object size="-1"/>
</memory>
</replicated-cache>

Metadata Cache

The metadata cache is used to store information about the files of the directory, such as buffer sizes
and number of chunks. It uses more space than the Lock Cache, but not as much as the Data Cache,
so using a REPL_SYNC cache should be fine for most cases. Example of configuration:

https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/lucene/directory/DirectoryBuilder.html

<replicated-cache name="LuceneIndexesMetadaData" mode="SYNC" remote-timeout="25000">
<transaction mode="NONE"/>
<indexing index="NONE" />
<memory>
<object size="-1"/>
</memory>
</replicated-cache>

Data Cache

The Infinispan Lucene directory splits large (bigger than the chunkSize configuration) files into
chunks and stores them in the Data cache. This is the largest of the 3 index caches, and both
DIST_SYNC/REPL_SYNC cache modes can be used. Usage of REPL_SYNC offers lower latencies for
queries since each node holds the whole index locally; DIST_SYNC, on the other hand, will affect
query latency due to remote calls to fetch for chunks, but offers better scalability.

Example of configuration:

<distributed-cache name="LuceneIndexesData" mode="SYNC" remote-timeout="25000">
<transaction mode="NONE"/>
<indexing index="NONE" />
<memory>
<object size="-1"/>
</memory>
</distributed-cache>

1.3.5. Using a CacheLoader

Using a CacheLoader you can have the index content backed up to a permanent storage; you can
use a shared store for all nodes or one per node, see cache passivation for more details.

When using a CacheLoader to store a Lucene index, to get best write performance you would need
to configure the CacheLoader with async=true .

1.3.6. Storing the index in a database

It might be useful to store the Lucene index in a relational database; this would be very slow but
Infinispan can act as a cache between the application and the JDBC interface, making this
configuration useful in both clustered and non-clustered configurations. When storing indexes in a
JDBC database, it’s suggested to use the JdbcStringBasedCacheStore , which will need the key-to-
string-mapper attribute to be set to org.infinispan.lucene.LuceneKey2StringMapper:

<jdbc:string-keyed-jdbc-store preload="true" key-to-string-mapper=
"org.infinispan.lucene.LuceneKey2StringMapper">

1.3.7. Loading an existing Lucene Index

The org.infinispan.lucene.cachestore.LuceneCacheLoader is an Infinispan CacheLoader able to have
Infinispan directly load data from an existing Lucene index into the grid. Currently this supports
reading only.

Property Description Default

location The path where the indexes are none (mandatory)
stored. Subdirectories (of first
level only) should contain the
indexes to be loaded, each
directory matching the index
name attribute of the Infinispan
Directory constructor.

autoChunkSize A threshold in bytes: if any 32MB
segment is larger than this, it
will be transparently chunked
in smaller cache entries up to
this size.

I's worth noting that the IO operations are delegated to Lucene’s standard
org.apache.lucene.store.FSDirectory , which will select an optimal approach for the running
platform.

Implementing write-through should not be hard: you’re welcome to try implementing it.

1.3.8. Architectural limitations

This Directory implementation makes it possible to have almost real-time reads across multiple
nodes. A fundamental limitation of the Lucene design is that only a single IndexWriter is allowed to
make changes on the index: a pessimistic lock is acquired by the writer; this is generally ok as a
single IndexWriter instance is very fast and accepts update requests from multiple threads. When
sharing the Directory across Infinispan nodes the IndexWriter limitation is not lifted: since you can
have only one instance, that reflects in your application as having to apply all changes on the same
node. There are several strategies to write from multiple nodes on the same index:

Index write strategies
* One node writes, the other delegate to it sending messages
* Each node writes on turns

* You application makes sure it will only ever apply index writes on one node

The Infinispan Lucene Directory protects its content by implementing a distributed locking strategy,
though this is designed as a last line of defense and is not to be considered an efficient mechanism
to coordinate multiple writes: if you don’t apply one of the above suggestions and get high write
contention from multiple nodes you will likely get timeout exception.

1.3.9. Suggestions for optimal performance

JGroups and networking stack

JGroups manages all network I0 and as such it is a critical component to tune for your specific
environment. Make sure to read the JGroups reference documentation, and play with the
performance tests included in JGroups to make sure your network stack is setup appropriately.
Don’t forget to check also operating system level parameters, for example buffer sizes dedicated for
networking. JGroups will log warning when it detects something wrong, but there is much more
you can look into.

Using a CacheStore

Currently all CacheStore implementations provided by Infinispan have a significant slowdown; we
hope to resolve that soon but for the time being if you need high performance on writes with the
Lucene Directory the best option is to disable any CacheStore; the second best option is to configure
the CacheStore as async . If you only need to load a Lucene index from read-only storage, see the
above description for org.infinispan.lucene.cachestore.LuceneCacheLoader .

Apply standard Lucene tuning

All known options of Lucene apply to the Infinispan Lucene Directory as well; of course the effect
might be less significant in some cases, but you should definitely read the Apache Lucene
documentation .

Disable batching and transactions

Early versions required Infinispan to have batching or transactions enabled. This is no longer a
requirement, and in fact disabling them should provide little improvement in performance.

Set the right chunk size

The chunk size can be specified using the DirectoryBuilder fluent API. To correctly set this variable
you need to estimate what the expected size of your segments is; generally this is trivial by looking
at the file size of the index segments generated by your application when it’s using the standard
FSDirectory. You then have to consider:

* The chunk size affects the size of internally created buffers, and large chunk sizes will cause
memory usage to grow. Also consider that during index writing such arrays are frequently
allocated.

* If a segment doesn’t fit in the chunk size, it’s going to be fragmented. When searching on a
fragmented segment performance can’t peak.

Using the org.apache.lucene.index.IndexWriterConfig you can tune your index writing to
approximately keep your segment size to a reasonable level, from there then tune the chunksize,
after having defined the chunksize you might want to revisit your network configuration settings.

http://jgroups.org/manual-3.x/html/index.html
http://lucene.apache.org/core/index.html
http://lucene.apache.org/core/index.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/lucene/directory/DirectoryBuilder.html

1.3.10. Demo

There is a simple command-line demo of its capabilities distributed with Infinispan under
demos/lucene-directory; make sure you grab the "Binaries, server and demos" package from
download page, which contains all demos.

Start several instances, then try adding text in one instance and searching for it on the other. The
configuration is not tuned at all, but should work out-of-the box without any changes. If your
network interface has multicast enabled, it will cluster across the local network with other
instances of the demo.

1.3.11. Additional Links

* Issue tracker: https://jira.jboss.org/browse/ISPN/component/12312732

* Source code: https://github.com/infinispan/infinispan/tree/master/lucene/lucene-directory/src/
main/java/org/infinispan/lucene

1.3.12. Directory Provider for Hibernate Search

Hibernate Search applications can use Infinispan as a directory provider, taking advantage of
Infinispan’s distribution and low latency capabilities to store the Lucene indexes.

1.3.13. Maven dependencies

pom.xml

<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-directory-provider</artifactId>
</dependency>

1.3.14. How to use it

The directory provider alias is "infinispan”, and to enable it for an index, the following property
should be in the Hibernate Search configuration:

hibernate.search.MyIndex.directory_provider = infinispan

to enable it by default for all indexes:

hibernate.search.default.directory_provider = infinispan

The Infinispan cluster will start with a default configuration, see below how to override it.

https://jira.jboss.org/browse/ISPN/component/12312732
https://github.com/infinispan/infinispan/tree/master/lucene/lucene-directory/src/main/java/org/infinispan/lucene
https://github.com/infinispan/infinispan/tree/master/lucene/lucene-directory/src/main/java/org/infinispan/lucene
https://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#configuration
https://github.com/infinispan/infinispan/blob/master/lucene/directory-provider/src/main/resources/default-hibernatesearch-infinispan.xml

1.3.15. Configuration

Optional properties allow for a custom Infinispan configuration or to use an existent
EmbeddedCacheManager:

Property Description Example value

hibernate.search.infinispan.co Custom configuration for config/infinispan.xml

nfiguration_resourcename Infinispan

hibernate.search.infinispan.co Qverrides the JGroups stack in jgroups-ec2.xml

nfiguration.transport_override o Infinispan configuration file
_resourcename

hibernate.search.infinispan.ca Specifies the JNDI name under java:jboss/infinispan/containe
chemanager_jndiname which the r/hibernate-search
EmbeddedCacheManager to use
is bound. Will cause the
properties above to be ignored
when present

1.3.16. Architecture considerations

The same limitations presented in the Lucene Directory apply here, meaning the index will be
shared across several nodes and only one IndexWriter can have the lock.

One common strategy is to use Hibernate Search’s JMS Master/Slave or JGroups backend together
with the Infinispan directory provider: instead of sending updates directly to the index, they are
sent to a JMS queue or JGroups channel and a single node applies all the changes on behalf of all
other nodes.

Refer to the Hibernate Search documentation for instructions on how to setup JMS or JGroups
backends.

https://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/

Chapter 2. JPA/Hibernate 2L Cache

Hibernate manages a second-level cache where it moves data into and out as a result of operations
performed by Session or EntityManager (JPA). The second-level cache is pluggable via an SPI which
Infinispan implements. This enables Infinispan to be used as second-level cache for Hibernate.

Hibernate documentation contains a lot of information about second-level cache, types of caches...
etc. This chapter focuses on what you need to know to use Infinispan as second-level cache
provider with Hibernate.

Applications running in environments where Infinispan is not default cache provider for Hibernate
will need to depend on the correct cache provider version.

The Infinispan cache provider version suitable for your application depends on the Hibernate
version in use:

Hibernate 5.3

Use the following Maven coordinates:

<dependency>
<groupId>org.infinispan</groupld>
<artifactId>infinispan-hibernate-cache-v53</artifactId>
<version>${version.infinispan}</version>

</dependency>

Hibernate 5.2

o Hibernate 5.2 is supported in Infinispan 9.2.x only.

Use the following Maven coordinates:

<dependency>
<groupId>org.infinispan</groupld>
<artifactId>infinispan-hibernate-cache</artifactId>
<version>${version.infinispan}</version>
</dependency>

Hibernate 5.1

Use the following Maven coordinates:

<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-hibernate-cache-v51</artifactId>
</dependency>

10

https://docs.jboss.org/hibernate/orm/5.2/userguide/html_single/Hibernate_User_Guide.html#caching

Hibernate version 5.0 and earlier: the Infinispan cache provider is shipped by

o Hibernate. Documentation and Maven coordinates are located in the Hibernate
documentation.

Apart from Infinispan specific configuration, it’s worth noting that enabling second cache requires
some changes to the descriptor file (persistence.xml for JPA or application.properties for Spring).
To use second level cache, you first need to enable the second level cache so that entities and/or
collections can be cached:

Table 1. Enable second-level cache
JPA <property name="hibernate.cache.use_second_level_cache" value="true"/>

Spring Spring.jpa.properties.hibernate.cache.use_second_level_cache=true

To select which entities/collections to cache, first annotate them with javax.persistence.Cacheable.
Then make sure shared cache mode is set to ENABLE_SELECTIVE:

Table 2. Enable selective shared cached mode

JPA <shared-cache-mode>ENABLE_SELECTIVE</shared-cache-mode>

Spring spring.jpa.properties.javax.persistence.sharedCache.mode=ENABLE_SELECTIVE

This is the most common way of selecting which entities/collections to cache.

0 However, there are alternative ways to which are explained in the Hibernate
documentation.

Optionally, queries can also be cached but for that query cache needs to be enabled:

Table 3. Enable query cache
JPA <property name="hibernate.cache.use_query_cache" value="true"/>

Spring SPring.jpa.properties.hibernate.cache.use_query_cache=true

As well as enabling query cache, forcing a query to be cached requires the query
0 to be made cacheable. For example, for JPA queries:
query.setHint("org.hibernate.cacheable", Boolean.TRUE).

The best way to find out whether second level cache is working or not is to inspect the statistics. By
inspecting the statistics you can verify if the cache is being hit, if any new data is stored in cache...
etc. Statistics are disabled by default, so it is recommended that you enable statistics:

Table 4. Enable statistics
JPA <property name="hibernate.generate_statistics" value="true" />

Spring SPring.jpa.properties.hibernate.generate_statistics=true

11

https://docs.jboss.org/hibernate/orm/5.0/userguide/html_single/Hibernate_User_Guide.html#caching-provider-infinispan
https://docs.jboss.org/hibernate/orm/5.0/userguide/html_single/Hibernate_User_Guide.html#caching-provider-infinispan
https://docs.jboss.org/hibernate/orm/5.2/userguide/html_single/Hibernate_User_Guide.html#caching-mappings
https://docs.jboss.org/hibernate/orm/5.2/userguide/html_single/Hibernate_User_Guide.html#caching-mappings

2.1. Deployment Scenarios

How to configure Infinispan to be the second level cache provider varies slightly depending on the
deployment scenario:

2.1.1. Single-Node Standalone Hibernate Application

In standalone library mode, a JPA/Hibernate application runs inside a Java SE application or inside
containers that don’t offer Infinispan integration.

Enabling Infinispan second level cache provider inside a JPA/Hibernate application that runs in
single node is very straightforward. First, make sure the Hibernate Infinispan cache provider is
available in the classpath. Then, modify the persistence.xml to include these properties:

<!-- Use Infinispan second level cache provider -->
<property name="hibernate.cache.region.factory_class" value="infinispan"/>

<l--
Force using local configuration when only using a single node.
Otherwise a clustered configuration is loaded.
-->
<property name="hibernate.cache.infinispan.cfg"
value="org/infinispan/hibernate/cache/commons/builder/infinispan-configs-
local.xml"/>

By default when running standalone, the Infinispan second-level cache provider uses an Infinispan
configuration that’s designed for clustered environments. However, Infinispan also provides a
configuration designed for local, single node, environments. To enable that configuration, set
hibernate.cache.infinispan.cfg to org/infinispan/hibernate/cache/commons/builder/infinispan-
configs-local.xml value. You can find more about the configuration check the Default Local
Configuration section.

A simple tutorial showing how to use Infinispan as Hibernate cache provider in a standalone
application can be found here.

2.1.2. Single-Node Standalone Spring Application

Using Hibernate within Spring applications is a very common use case. In this section you will
learn what you need to do configure Hibernate within Spring to use Infinispan as second-level
cache provider.

As in the previous case, start by making sure that Hibernate Infinispan Cache provider is available
in the classpath. Then, modify application.properties file to contain:

12

#default_local_configuration_second_level
#default_local_configuration_second_level
https://github.com/infinispan/infinispan-simple-tutorials/tree/master/hibernate-cache/local

Use Infinispan second level cache provider
spring.jpa.properties.hibernate.cache.region.factory_class=infinispan

#

Force using local configuration when only using a single node.

Otherwise a clustered configuration is loaded.
spring.jpa.properties.hibernate.cache.infinispan.cfg=org/infinispan/hibernate/cache/co
mmons/builder/infinispan-configs-local.xml

By default when running standalone, the Infinispan second-level cache provider uses an Infinispan
configuration that’s designed for clustered environments. However, Infinispan also provides a
configuration designed for local, single node, environments. To enable that configuration, set
spring.jpa.properties.hibernate.cache.infinispan.cfg to
org/infinispan/hibernate/cache/commons/builder/infinispan-configs-local.xml value. You can find
more about the configuration check the Default Local Configuration section.

A simple tutorial showing how to use Infinispan as Hibernate cache provider in a Spring
application can be found here.

2.1.3. Single-Node WildFly Application

In WildFly, Infinispan is the default second level cache provider for JPA/Hibernate. This means that
when using JPA in WildFly, region factory is already set to infinispan. Infinispan’s configuration is
located in WildFly’s standalone.xml file. It follows the same settings explained in Default Local
Configuration section.

n When running in WildFly, do not set hibernate.cache.infinispan.cfg. The
configuration of the caches comes from WildFly’s configuration file.

Several aspects of the Infinispan second level cache provider can be configured directly in
persistence.xml. This means that some of those tweaks do not require changing WildFly’s
standalone.xml file. You can find out more about these changes in the Configuration Properties
section.

So, to enable Hibernate to use Infinispan as second-level cache, all you need to do is enable second-
level cache. This is explained in detail in the introduction of this chapter.

A simple tutorial showing how to use Infinispan as Hibernate cache provider in a WildFly
application can be found here.

2.1.4. Multi-Node Standalone Hibernate Application

When running a JPA/Hibernate in a multi-node environment and enabling Infinispan second-level
cache, it is necessary to cluster the second-level cache so that cache consistency can be guaranteed.
Clustering the Infinispan second-level cache provider is as simple as adding the following property
to the persistence.xml file:

13

#default_local_configuration_second_level
https://github.com/infinispan/infinispan-simple-tutorials/tree/master/hibernate-cache/spring-local
#default_local_configuration_second_level
#default_local_configuration_second_level
#configuration_properties
https://github.com/infinispan/infinispan-simple-tutorials/tree/master/hibernate-cache/wildfly-local

<!-- Use Infinispan second level cache provider -->
<property name="hibernate.cache.region.factory_class" value="infinispan"/>

The default Infinispan configuration used by the second-level cache provider is already configured
to work in a cluster environment, so no need to add any extra properties. You can find more about
the configuration check the Default Cluster Configuration section.

2.1.5. Multi-Node Standalone Spring Application

If interested in running a Spring application that uses Hibernate and Infinispan as second level
cache, the cache needs to be clustered. Clustering the Infinispan second-level cache provider is as
simple as adding the following property to the application.properties file:

Use Infinispan second level cache provider
spring.jpa.properties.hibernate.cache.region.factory_class=infinispan

The default Infinispan configuration used by the second-level cache provider is already configured
to work in a cluster environment, so no need to add any extra properties. You can find more about
the configuration check the Default Cluster Configuration section.

2.1.6. Multi-Node WildFly Application

As mentioned in the single node WildFly case, Infinispan is the default second level cache provider
for JPA/Hibernate when running inside WildFly. This means that when using JPA in WildFly, region
factory is already set to infinispan.

When running WildFly multi-node clusters, it is recommended that you start off by using
clustered.xml configuration file. Within this file you can find Hibernate Infinispan caches
configured with the correct settings to work in a clustered environment. You can find more about
the configuration check the Default Cluster Configuration section.

Several aspects of the Infinispan second level cache provider can be configured directly in
persistence.xml. This means that some of those tweaks do not require changing WildFly’s
standalone-ha.xml file. You can find out more about these changes in the Configuration Properties
section.

So, to enable Hibernate to use Infinispan as second-level cache, all you need to do is enable second-
level cache. Enabling second-level cache is explained in detail in the introduction of this chapter.

2.2. Configuration Reference

This section is dedicated at explaining configuration in detail as well as some extra configuration
options.

14

#default_cluster_configuration_second_level
#default_cluster_configuration_second_level
#default_cluster_configuration_second_level
#configuration_properties

2.2.1. Default Local Configuration

Infinispan second-level cache provider comes with a configuration designed for local, single node,
environments. These are the characteristics of such configuration:

Entities, collections, queries and timestamps are stored in non-transactional local caches.
Entities and collections query caches are configured with the following eviction settings:

» Eviction wake up interval is 5 seconds.
 Max number of entries are 10,000.

* Max idle time before expiration is 100 seconds.

Default eviction algorithm is LRU, least recently used.

You can change these settings on a per entity or collection basis or per individual entity or
collection type. More information in the Configuration Properties section below.

No eviction/expiration is configured for timestamp caches, nor it’s allowed.

2.2.2. Default Cluster Configuration

Infinispan second-level cache provider default configuration is designed for multi-node clustered
environments. The aim of this section is to explain the default settings for each of the different
global data type caches (entity, collection, query and timestamps), why these were chosen and what
are the available alternatives. These are the characteristics of such configuration:

Entities and Collections

By default all entities and collections are configured to use a synchronous invalidation as clustering
mode. Whenever a new entity or collection is read from database and needs to be cached, it’s only
cached locally in order to reduce intra-cluster traffic. This option can be changed so that
entities/collections are cached cluster wide, by switching the entity/collection cache to be replicated
or distributed. How to change this option is explained in the Configuration Properties section.

When data read from the database is put in the cache, with replicated or
distributed caches, the data is propagated to other nodes using asynchronous
communication. In the presence of concurrent database loads, one operation will

A succeed while others might fail (silently). This is fine because they’d all be trying to
put the same data loaded from the database. This has the side effect that under
these circumstances, the cache might not be up to date right after making the JPA
call that leads to the database load. However, the cache will eventually contain the
data loaded, even if it happens after a short delay.

All entities and collections are configured to use a synchronous invalidation as clustering mode. This
means that when an entity is updated, the updated cache will send a message to the other members
of the cluster telling them that the entity has been modified. Upon receipt of this message, the other
nodes will remove this data from their local cache, if it was stored there. This option can be
changed so that both local and remote nodes contain the updates by configuring entities or
collections to use a replicated or distributed cache. With replicated caches all nodes would contain

15

#configuration_properties
#configuration_properties

the update, whereas with distributed caches only a subset of the nodes. How to change this option
is explained in the Configuration Properties section.

All entities and collections have initial state transfer disabled since there’s no need for it.

Entities and collections are configured with the following eviction settings. You can change these
settings on a per entity or collection basis or per individual entity or collection type. More
information in the Configuration Properties section below.

 Eviction wake up interval is 5 seconds.
* Max number of entries are 10,000.
* Max idle time before expiration is 100 seconds.

* Default eviction algorithm is LRU, least recently used.

Queries

Assuming that query caching has been enabled for the persistence unit (see chapter introduction),
the query cache is configured so that queries are only cached locally. Alternatively, you can
configure query caching to use replication by selecting the replicated-query as query cache name.
However, replication for query cache only makes sense if, and only if, all of this conditions are true:

* Performing the query is quite expensive.
» The same query is very likely to be repeatedly executed on different cluster nodes.

* The query is unlikely to be invalidated out of the cache

Hibernate must aggressively invalidate query results from the cache any time any
instance of one of the entity types targeted by the query. All such query results are
invalidated, even if the change made to the specific entity instance would not have

o affected the query result. For example: the cached result of SELECT id FROM cars
where color = 'red' is thrown away when you call INSERT INTO cars VALUES -,
color = 'blue'. Also, the result of an update within a transaction is not visible to
the result obtained from the query cache.

query cache uses the same eviction/expiration settings as for entities/collections.
query cache has initial state transfer disabled. It is not recommended that this is enabled.

Up to Hibernate 5.2 both transactional and non-transactional query caches have been supported,
though non-transactional variant is recommended. Hibernate 5.3 drops support for transactional
caches, only non-transactional variant is supported. If the cache is configured with transactions this
setting is ignored and warning is logged.

Timestamps

The timestamps cache is configured with asynchronous replication as clustering mode. Local or
invalidated cluster modes are not allowed, since all cluster nodes must store all timestamps. As a
result, no eviction/expiration is allowed for timestamp caches either.

16

#configuration_properties
#configuration_properties

Asynchronous replication was selected as default for timestamps cache for
performance reasons. A side effect of this choice is that when an entity/collection

o is updated, for a very brief period of time stale queries might be returned. It’s
important to note that due to how Infinispan deals with asynchronous replication,
stale queries might be found even query is done right after an entity/collection
update on same node.

Hibernate must aggressively invalidate query results from the cache any time any
instance of one of the entity types is modified. All cached query results referencing
given entity type are invalidated, even if the change made to the specific entity
instance would not have affected the query result. The timestamps cache plays

o here an important role - it contains last modification timestamp for each entity
type. After a cached query results is loaded, its timestamp is compared to all
timestamps of the entity types that are referenced in the query. If any of these is
higher, the cached query result is discarded and the query is executed against DB.
This requires synchronization of the wall clock across the cluster to work as
expected.

2.2.3. Configuration Properties

As explained above, Infinispan second-level cache provider comes with default configuration in
infinispan-config.xml that is suited for clustered use. If there’s only single JVM accessing the DB,
you can use more performant infinispan-config-local.xml by setting the
hibernate.cache.infinispan.cfg property. If you require further tuning of the cache, you can
provide your own configuration. Caches that are not specified in the provided configuration will
default to infinispan-config.xml (if the provided configuration uses clustering) or infinispan-
config-local.xml.

It is not possible to specify the configuration this way in WildFly. Cache
configuration changes in WildFly should be done either modifying the cache

A configurations inside the application server configuration, or creating new caches
with the desired tweaks and plugging them accordingly. See examples below on
how entity/collection specific configurations can be applied.

Use custom Infinispan configuration
<property

name="hibernate.cache.infinispan.cfg"
value="my-infinispan-configuration.xml" />

If the cache is configured as transactional, Infinispan cache provider automatically
sets transaction manager so that the TM used by Infinispan is the same as TM used
by Hibernate.

Cache configuration can differ for each type of data stored in the cache. In order to override the
cache configuration template, use property hibernate.cache.infinispan.data-type.cfg where data-

17

type can be one of:

* entity: Entities indexed by @Id or @EmbeddedId attribute.

» immutable-entity: Entities tagged with @Immutable annotation or set as mutable=false in mapping
file.

* naturalid: Entities indexed by their @Naturalld attribute.

* collection: All collections.

» timestamps: Mapping entity type — last modification timestamp. Used for query caching.
* query: Mapping query — query result.

» pending-puts: Auxiliary caches for regions using invalidation mode caches.
For specifying cache template for specific region, use region name instead of the data-type:

Use custom cache template

<property
name="hibernate.cache.infinispan.entities.cfqg"
value="custom-entities" />

<property
name="hibernate.cache.infinispan.query.cfg"
value="custom-query-cache" />

<property
name="hibernate.cache.infinispan.com.example.MyEntity.cfg"
value="my-entities" />

<property
name="hibernate.cache.infinispan.com.example.MyEntity.someCollection.cfg"
value="my-entities-some-collection" />

Use custom cache template in WildFly

When applying entity/collection level changes inside JPA applications deployed in WildFly, it is
necessary to specify deployment name and persistence unit name (separated by # character):

<property

name=
"hibernate.cache.infinispan._war_or_ear_name_#_unit_name_.com.example.MyEntity.cfg"

value="my-entities" />
<property

name=
"hibernate.cache.infinispan._war_or_ear_name_#_unit_name_.com.example.MyEntity.someCol
lection.cfg"

value="my-entities-some-collection" />

o Cache configurations are used only as a template for the cache created for given
region. Usually each entity hierarchy or collection has its own region

18

A

Except for eviction/expiration settings, it is highly recommended not to deviate
from the template configuration settings.

Some options in the cache configuration can also be overridden directly through properties. These

are:

* hibernate.cache.infinispan.something.

LIRS.

» hibernate.cache.infinispan.something.

the cache.

* hibernate.cache.infinispan.something.

cache (in milliseconds).

» hibernate.cache.infinispan.something.

read/modification (in milliseconds).

* hibernate.cache.infinispan.something.

expired entries.

eviction.strategy: Available options are NONE, LRU and

eviction.max_entries: Maximum number of entries in

expiration.lifespan: Lifespan of entry from insert into

expiration.max_idle: Lifespan of entry from last

expiration.wake_up_interval: Period of thread checking

* hibernate.cache.infinispan.statistics: Globally enables/disable Infinispan statistics collection,
and their exposure via JMX.

Example:

<property
value=
<property
value=
<property
value=
<property
value=
<property
value=

name="hibernate.
"LRU"/>
name="hibernate.
"2000"/>
name="hibernate.
"5000" />
name="hibernate.
"60000"/>
name="hibernate.
"30000"/>

cache.

cache.

cache.

cache.

cache.

infinispan.
infinispan.
infinispan.
infinispan.

infinispan.

entity.
entity.
entity.
entity.

entity.

eviction.strategy"
eviction.wake_up_interval"
eviction.max_entries"
expiration.lifespan”

expiration.max_idle"

With the above configuration, you’re overriding whatever eviction/expiration settings were defined
for the default entity cache name in the Infinispan cache configuration used. This happens
regardless of whether it’s the default one or user defined. More specifically, we’re defining the

following:

 All entities to use LRU eviction strategy

* The eviction thread to wake up every 2 seconds (2000 milliseconds)

* The maximum number of entities for each entity type to be 5000 entries

* The lifespan of each entity instance to be 1 minute (60000 milliseconds).

* The maximum idle time for each entity instance to be 30 seconds (30000 milliseconds).

You can also override eviction/expiration settings on a per entity/collection type basis. This allows
overrides that only affects a particular entity (i.e. com.acme.Person) or collection type (.e.

19

com.acme.Person.addresses). Example:

<property name="hibernate.cache.infinispan.com.acme.Person.eviction.strategy"
value= "LIRS"/>

Inside of WildFly, same as with the entity/collection configuration override, eviction/expiration
settings would also require deployment name and persistence unit information (a working
example can be found here):

<property name=
"hibernate.cache.infinispan._war_or_ear_name_#_unit_name_.com.acme.Person.eviction.str
ategy"

value= "LIRS"/>
<property name=
"hibernate.cache.infinispan._war_or_ear_name_#_unit_name_.com.acme.Person.expiration.1
ifespan”

value= "65000"/>

2.3. Cache Strategies

Infinispan cache provider supports all Hibernate cache strategies: transactional, read-write,
nonstrict-read-write and read-only.

Integrations with Hibernate 4.x required transactional invalidation caches and in
integrations with Hibernate ≤ 5.2 transactional invalidation caches are supported (in
JTA environment). However for all 5.x versions non-transactional caches are preferred.
With Hibernate 5.3 the support for transactional caches has been dropped completely, and both
<code>read-write</code> and <code>transactional</code> use the same implementation. Infinispan
provides the same consistency guarantees for both <code>transactional</code> and <code>read-
write</code> strategies, use of transactions is considered an implementation detail.

In integrations with Hibernate 5.2 or lower the actual setting of cache concurrency mode (read-
write vs. transactional) is not honored on invalidation caches, the appropriate strategy is selected
based on the cache configuration (non-transactional vs. transactional).

Support for replicated/distributed caches for read-write and read-only strategies has been added
during 5.x development and this requires exclusively non-transactional configuration. Also eviction
should not be used in this configuration as it can lead to consistency issues. Expiration (with
reasonably long max-idle times) can be used.

Nonstrict-read-write strategy is supported on non-transactional distributed/replicated caches, but
the eviction should be turned off as well. In addition to that, the entities must use versioning. This
means that this strategy cannot be used for caching natural IDs (which are never versioned). This
mode mildly relaxes the consistency - between DB commit and end of transaction commit a stale
read may occur in another transaction. However this strategy uses less RPCs and can be more
performant than the other ones.

20

https://github.com/infinispan/infinispan-simple-tutorials/tree/master/hibernate-cache/wildfly-local

Read-only mode is supported in all configurations mentioned above but use of this mode currently
does not bring any performance gains.

The available combinations are summarized in table below:

Table 5. Cache concurrency strategy/cache mode compatibility table

Concurrency strategy Cache transactions Cache mode Eviction

transactional ≤ 5.2 transactional invalidation yes

transactional ≥ 5.3 non- invalidation yes
transactional

read-write non-transactional invalidation yes

read-write non-transactional distributed/replicated no

nonstrict-read-write non-transactional distributed/replicated no

Changing caches to behave different to the default behaviour explained in previous section is
explained in the Configuration Properties section.

Use of transactional caches is possible only in JTA environment. Hibernate
supports JDBC-only transactions but Infinispan transactional caches do not

o integrate with these. Therefore, in non-JTA environment the only option is to use
read-write, nonstrict-read-write or read-only on non-transactional cache.
Configuring the cache as transactional in non-JTA can lead to undefined
behaviour.

Stale read with nonstrict-read-write strategy

A=0 (non-cached), B=0 (cached in 2LC)

TX1: write A = 1, write B = 1

TX1: start commit

TX1: commit A, B in DB

TX2: read A = 1 (from DB), read B = @ (from 2LC) // breaks transactional atomicity
TX1: update A, B in 2LC

TX1: end commit

Tx3: read A =1, B =1 // reads after TX1 commit completes are consistent again

2.4. Using minimal puts

Hibernate offers a configuration option hibernate.cache.use_minimal_puts which is off by default in
Infinispan implementation. This option checks if the cache contains given key before updating the
value from database (put-from-load) and omits the update if the cached value is already present.
When using invalidation caches it makes sense to keep this off as the put-from-load is local node-
only and silently fails if the entry is locked. With replicated/distributed caches the update is applied
to remote nodes, even if the local node already contains the entry, and this has higher performance
impact, so it might make sense to turn this option on and avoid updating the cache.

21

#configuration_properties

2.5. JPA [Hibernate OGM

Hibernate can perform CRUD operations directly on an Infinispan cluster.

Hibernate OGM is an extension of the popular Hibernate ORM project which makes the Hibernate
API suited to interact with NoSQL databases such as Infinispan.

When some of your object graphs need high scalability and elasticity, you can use Hibernate OGM
to store these specific entities into Infinispan instead of your traditional RDBMS. The drawback is
that Infinispan - not being a relational database - can not run complex relational queries.

Hibernate OGM allows you to get started with Infinispan in minutes, as:

the JPA API and its annotations are simple and well known

* you don’t need to learn Protobuf or Externalizer encoding formats

no need to learn the Infinispan API

the Hot Rod client is also setup and managed for you

It will still be beneficial to eventually learn how to configure Infinispan for top performance and
learn about all capabilities it has, but you can get a proof of concept application done quickly with
the example configuration.

Hibernate OGM also gives you several more benefits; being designed and implemented in
collaboration with the Infinispan team it incorporates experience and deep understanding of how
to best perform some common operations.

For example a common mistake for people new to Infinispan is to "serialize" Java POJOs for long
term storage of important information; the Infinispan API allows this as it’s useful for short lived
caching of metadata, but you wouldn’t be able to de-serialize your data when you make any
changes to your model. You wouldn’t want to wipe your database after any and each update of your
application, would you?

In the best of cases such an encoding wouldn’t be very efficient; in some worse scenarios your team
might not have thought such details though and you get stuck into a complex migration on your live
data.

Just like when using Hibernate ORM with a relational database, data stored over Hibernate OGM is
easy to recover even using other tools as it’s encoded using a well defined Protobuf schema.

Being able to "map" new domain objects by simply adding a couple of annotations is going to make
you more productive than re-inventing such error-prone encoding techniques, or figuring out how
to best store object graphs and relations into Infinispan.

Finally, using Hibernate OGM allows you to use all existing framework integration points, such as
injecting an EntityManager as usual: it’s not yet another tool but it’s the real Hibernate, so inheriting
all well known integrations: this will work in Java EE, Spring, Grails, Jhipster, ... and all other
technologies integrating with Hibernate.

It’s booted like any Hibernate instance: compared to using it with an RDBMS you just have to

22

change some configuration properties, and of course omit the DataSource as Infinispan won’t use
one.

For more details, check the Hibernate OGM project and the Hibernate OGM / Infinispan section of
the documentation.

23

http://hibernate.org/ogm/
https://docs.jboss.org/hibernate/stable/ogm/reference/en-US/html_single/#ogm-infinispan

Chapter 3. Using Infinispan with Spring

Infinispan integrates with the Spring Framework to make it easy to add caching capabilities to your
applications.

3.1. Setting Up Infinispan as a Spring Cache Provider

Infinispan implements the Spring SPI to offer high-performance, in-memory caching capabilities.

3.1.1. Adding Spring Cache Support

The Spring Framework offers a cache abstraction with two simple annotations:

e @Cacheable adds entries to the cache.

» @CacheEvict removes entries from the cache.
To add caching support to your application, do the following:

1. Enable cache annotations in your application context either declaratively or programmatically.

- Declaratively: Add <cache:annotation-driven/> to your application context.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns:cache="http://www.springframework.org/schema/cache"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/cache
http://www.springframework.org/schema/cache/spring-cache.xsd">

<cache:annotation-driven />

</beans>

- Programmatically: Enable cache support as follows:

public class Config {
}

2. Add Infinispan and the Spring integration module to your pom. xml.
o Embedded mode: infinispan-spring5-embedded

o Remote client-server mode: infinispan-spring5-remote

24

http://spring.io/
https://docs.spring.io/spring/docs/5.1.3.RELEASE/spring-framework-reference/integration.html#cache

The following is an example with embedded mode:

<dependencies>
<dependency>
<groupIld>org.infinispan</groupld>
<artifactId>infinispan-spring5-embedded</artifactId>
</dependency>
<!-- Tip: Use the Spring Boot starter
instead of the spring-boot artifact. -->
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-context</artifactId>
<version>${version.spring}</version>
</dependency>
</dependencies>

3.1.2. Configuring Infinispan as the Spring Cache Provider

The Spring cache provider SPI has two interfaces through which it interacts with Infinispan:
org.springframework.cache.CacheManager and org.springframework.cache.Cache. The CacheManager
interface acts as a factory for named Cache instances.

At runtime Spring looks for a CacheManager implementation that has a bean named cacheManager in
the application context.

You can configure your application context either declaratively or programmatically.

* Declaratively:

<!-- Infinispan cache manager -->
<bean id="cacheManager"
class=

"org.infinispan.spring.embedded.provider.SpringEmbeddedCacheManagerFactoryBean"

p:configurationFilelocation=
"classpath:/org/infinispan/spring/embedded/provider/sample/books-infinispan-
config.xml" />

* Programmatically:

25

public class Config {

public CacheManager cacheManager() {
return new SpringEmbeddedCacheManager (infinispanCacheManager());

}

private EmbeddedCacheManager infinispanCacheManager() {
return new DefaultCacheManager();

}

3.2. Adding Caching to Your Application

Add the @Cacheable and @CacheEvict annotations to your application code.

3.2.1. Adding Cache Entries
The @Cacheable annotation adds returned values to a defined cache.

For instance, you have a data access object (DAO) for books. You want book instances to be cached
after they have been loaded from the underlying database using BookDao#findBook(Integer bookId).

Annotate the findBook(Integer bookId) method with @Cacheable as follows:

(value = "books", key = "#bookId")
public Book findBook(Integer bookId) {...}

Any Book instances returned from findBook(Integer bookId) are stored in a cache named books,
using bookId as the key.

Note that "#bookId" is an expression in the Spring Expression Language that evaluates the bookId
argument.

If your application needs to reference entries in the cache directly, you should
o include the key attribute. Without this attribute, Spring generates a hash from the
supplied method arguments to use as the cache key.

3.2.2. Deleting Cache Entries

The @CacheEvict annotation deletes entries from a defined cache.

Annotate the deleteBook(Integer bookId) method with @CacheEvict as follows:

26

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html

// Evict all entries in the "books" cache

@Transactional

@CacheEvict (value="books", key = "#bookId", allEntries = true)
public void deleteBookAllEntries() {...}

// Evict entries in the "books" cache that match #bookId
@Transactional

@CacheEvict (value="books", key = "#bookId")

public void deleteBook(Integer bookId) {...]}

3.3. Configuring Timeouts for Cache Operations

The Infinispan Spring cache provider defaults to blocking behaviour when performing read and
write operations. By default operations are synchronous and do not time out. However, you might
want to set a maximum time to wait for operations before timing out in some situations. For
example, timeouts are useful if you need to ensure that an operation completes within a certain
time and you can ignore the cached value.

infinispan.spring.operation.read.timeout

Specifies the time, in milliseconds, to wait for read operations to complete. The default is @ which
means unlimited wait time.

infinispan.spring.operation.write.timeout

Specifies the time, in milliseconds, to wait for write operations to complete. The default is 0
which means unlimited wait time.

To configure timeouts for cache operations, set the properties in the context XML for your
application on either SpringEmbeddedCacheManagerFactoryBean or
SpringRemoteCacheManagerFactoryBean.

(r) In remote client-server mode, you can also add these properties to hotrod-
- client.properties.

The following example shows the timeout properties in the context XML for
SpringRemoteCacheManagerFactoryBean:

<bean id="springRemoteCacheManagerConfiguredUsingConfigurationProperties"
class="
org.infinispan.spring.remote.provider.SpringRemoteCacheManagerFactoryBean">
<property name="configurationProperties">
<props>
<prop key="infinispan.spring.operation.read.timeout">500</prop>
<prop key="infinispan.spring.operation.write.timeout">700</prop>
</props>
</property>
</bean>

27

3.4. Externalizing Sessions Using Spring Session

Spring Session lets you externalize user session information into Infinispan.
To configure Spring Session integration in your application, do the following:

1. Add dependencies to your pom.xml.
o Embedded mode: infinispan-spring5-embedded

o Remote client-server mode: infinispan-spring5-remote

The following is an example with remote client-server mode:

<dependencies>
<dependency>
<groupId>org.infinispan</groupld>
<artifactId>infinispan-core</artifactId>
</dependency>
<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-spring5-remote</artifactId>
</dependency>
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-context</artifactId>
<version>${version.spring}</version>
</dependency>
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-session-core</artifactId>
<version>${version.spring}</version>
</dependency>
<dependency>
<groupld>org.springframework</groupld>
<artifactId>spring-web</artifactId>
<version>${version.spring}</version>
</dependency>
</dependencies>

2. Specify the appropriate FactoryBean to expose a CacheManager instance.
o Embedded mode: SpringEmbeddedCacheManagerFactoryBean
o Remote client-server mode: SpringRemoteCacheManagerFactoryBean
3. Enable Spring Session with the appropriate annotation.
- Embedded mode: @EnableInfinispanEmbeddedHttpSession

o Remote client-server mode: @EnableInfinispanRemoteHttpSession

These annotations have optional parameters:

28

http://docs.spring.io/spring-session/docs/current/reference/html5

= maxInactivelntervalInSeconds sets session expiration time in seconds. The default is 1800.

= cacheName specifies the name of the cache that stores sessions. The default is sessions.

The following example shows a complete, annotation-based configuration:

@EnableInfinispanEmbeddedHttpSession
@Configuration
public class Config {

@Bean
public SpringEmbeddedCacheManagerFactoryBean springCacheManager() {
return new SpringEmbeddedCacheManagerFactoryBean();

}

//An optional confiqguration bean responsible for replacing the default
//cookie that obtains configuration.
//For more information refer to the Spring Session documentation.
@Bean
public HttpSessionStrategy httpSessionStrategy() {

return new HeaderHttpSessionStrategy();

}

29

Chapter 4. Infinispan modules for WildFly /
EAP

As the Infinispan modules shipped with WildFly / EAP are tailored to its internal usage, it is
recommend to install separate modules if you want to use Infinispan in your application that is
deployed to WildFly / EAP. By installing these modules, it is possible to deploy user applications
without packaging the Infinispan JARs within the deployments (WARs, EARs, etc), thus minimizing
their size. Also, there will be no conflict with WildFly / EAP’s internal modules since the slot will be
different.

4.1. Installation

The modules for WildFly / EAP are available in the downloads section of our site. After extracting
the zip, copy the contents of the modules directory to the WILDFLY_HOME/modules directory, so that for
example the Infinispan core module would be under WILDFLY_HOME/modules/system/add-
ons/{moduleprefix}/org/infinispan/core.

4.2. Application Dependencies

If you are using Maven to build your application, mark the Infinispan dependencies as provided
and configure your artifact archiver to generate the appropriate MANIFEST.MF file:

30

http://wildfly.org/
https://www.redhat.com/en/technologies/jboss-middleware/application-platform
http://infinispan.org/download/

pom.xml

<dependencies>
<dependency>
<groupId>org.infinispan</groupIld>
<artifactId>infinispan-core</artifactld>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-cachestore-jdbc</artifactId>
<scope>provided</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-war-plugin</artifactId>
<configuration>
<archive>
<manifestEntries>
<Dependencies>org.infinispan.core:ispn-10.1 services,
org.infinispan.cachestore.jdbc:ispn-10.1 services</Dependencies>
</manifestEntries>
</archive>
</confiquration>
</plugin>
</plugins>
</build>

The next section illustrates the manifest entries for different types of Infinispan’s dependencies.

4.2.1. Infinispan core

In order expose only Infinispan core dependencies to your application, add the follow to the
manifest:

MANIFEST.MF

Manifest-Version: 1.0
Dependencies: org.infinispan:ispn-10.1 services

4.2.2. Remote

If you need to connect to remote Infinispan servers via Hot Rod, including execution of remote
queries, use the module org.infinispan.remote that exposes the needed dependencies conveniently:

31

MANIFEST.MF

Manifest-Version: 1.0
Dependencies: org.infinispan.remote:ispn-10.1 services

4.2.3. Embedded Query

For embedded querying, including the Infinispan Query DSL, Lucene and Hibernate Search
Queries, add the following:

MANIFEST.MF

Manifest-Version: 1.0
Dependencies: org.infinispan:ispn-10.1 services, org.infinispan.query:ispn-10.1
services

4.2.4. Lucene Directory

Lucene users who wants to simple use Infinispan as a org.apache.lucene.store.Directory don’t need
to add the query module, the entry below is sufficient:

MANIFEST.MF

Manifest-Version: 1.0
Dependencies: org.infinispan.lucene-directory:ispn-10.1

4.2.5. Hibernate Search directory provider for Infinispan

The Hibernate Search directory provider for Infinispan is also contained within the Infinispan
modules zip. It is not necessary to add an entry to the manifest file since the Hibernate Search
module already has an optional dependency to it. When choosing the Infinispan module zip to use,
start by checking which Hibernate Search is in use, more details below.

Usage with {wildflybrandname} Internal Hibernate Search Modules

The Hibernate Search module present in {wildflybrandname} 10.x has slot "5.5", which in turn has
an optional dependency to org.infinispan.hibernate-search.directory-provider:for-
hibernatesearch-5.5. This dependency will be available once the Infinispan modules are installed.

Usage with other Hibernate Search modules

The module org.hibernate.search:ispn-10.1 distributed with Infinispan is to be used together with
Infinispan Query only (querying data from caches), and should not be used by Hibernate ORM
applications. To use a Hibernate Search with a different version that is present in
{wildflybrandname}, please consult the Hibernate Search documentation.

Make sure that the chosen Hibernate Search optional slot for org.infinispan.hibernate-
search.directory-provider matches the one distributed with Infinispan.

32

#modules_installation_section
https://docs.jboss.org/hibernate/search/5.6/reference/en-US/html_single/#search-configuration-deploy-on-wildfly

4.2.6. Usage

There are two possible ways for your application to utilize Infinispan within {wildflybrandname},
embedded mode and server mode.

4.2.7. Embedded Mode

All CacheManagers and cache instances are created in your application logic. The lifecycle of your
EmbeddedCacheManager is tightly coupled with your application’s lifecycle, resulting in any
manager instances created by your application being destroyed with your application.

Server Mode

In server mode, it is possible for cache containers and caches to be created before runtime as part
of {wildflybrandname}'s standalone/domain.xml configuration. This allows cache instances to be
shared across multiple applications, with the lifecycle of the underlying cache container being
independent of the deployed application.

Configuration

To enable server mode, make the following additions to your {wildflybrandname} configuration in
standalone/domain.xml:

1. Add the Infinispan extensions to your <extensions> section.

<extensions>
<extension module="org.infinispan.extension:ispn-10.1"/>
<extension module="org.infinispan.server.endpoint:ispn-10.1"/>
<extension module="org.jgroups.extension:ispn-10.1"/>

<!--Other wildfly extensions-->
</extensions>

2. Configure the Infinispan subsystem and your required containers and caches in the server
profile that requires Infinispan.

o Be sure that you define the module attribute to load the correct Infinispan
classes.

33

<subsystem xmlns="urn:infinispan:server:core:10.1">
<cache-container module="org.infinispan.extension:ispn-10.1" name=
"infinispan_container" default-cache="default">

<transport/>

<global-state/>

<distributed-cache name="default"/>

<distributed-cache name="memcachedCache"/>

<distributed-cache name="namedCache"/>
</cache-container>
</subsystem>

3. Define the {wildflybrandname} socket-bindings required by the endpoint and/or JGroup
subsystems

4. Configure any endpoints that you require via the endpoint subsystem:

<subsystem xmlns="urn:infinispan:server:endpoint:10.1">
<hotrod-connector socket-binding="hotrod" cache-container="infinispan_container">
<topology-state-transfer lazy-retrieval="false" lock-timeout="1000"
replication-timeout="5000"/>
</hotrod-connector>
<rest-connector socket-binding="rest" cache-container="infinispan_container">
<authentication security-realm="ApplicationRealm" auth-method="BASIC"/>
</rest-connector>
</subsystem>

5. Define the JGroups transport, ensuring that you define the model attribute for each protocol.

o You do not neet to define a JGroups transport for local cache configurations.
The JGroups transport is required for clustered cache configurations only.

34

https://docs.jboss.org/author/display/WFLY10/Interfaces+and+ports

<subsystem xmlns="urn:infinispan:server:jgroups:10.1">
<channels default="cluster">
<channel name="cluster" stack="udp"/>
</channels>
<stacks>
<stack name="udp">
<transport type="UDP" socket-binding="jgroups-udp" module="org.jgroups:ispn-
10.1"/>
<protocol type="PING" module="org.jgroups:ispn-10.1"/>
<protocol type="MERGE3" module="org.jgroups:ispn-10.1"/>
<protocol type="FD_SOCK" socket-binding="jgroups-udp-fd" module=
org.jgroups:ispn-10.1"/>
<protocol type="FD_ALL" module="org.jgroups:ispn-10.1"/>
<protocol type="VERIFY_SUSPECT" module="org.jgroups:ispn-10.1"/>
<protocol type="pbcast.NAKACK2" module="org.jgroups:ispn-10.1"/>
<protocol type="UNICAST3" module="org.jgroups:ispn-10.1"/>
<protocol type="pbcast.STABLE" module="org.jgroups:ispn-10.1"/>
<protocol type="pbcast.GMS" module="org.jgroups:ispn-10.1"/>
<protocol type="UFC" module="org.jgroups:ispn-10.1"/>
<protocol type="MFC" module="org.jgroups:ispn-10.1"/>
<protocol type="FRAG2" module="org.jgroups:ispn-10.1"/>
</stack>
</stacks>
</subsystem>

Accessing Containers and Caches

Once a container has been defined in your server’s configuration, it is possible to inject an instance
of a CacheContainer or Cache into your application using the @Resource JNDI lookup. A container is
accessed using the following string java:jboss/datagrid-infinispan/container/<container_name> and
similarly a cache is accessed via java:jboss/datagrid-
infinispan/container/<container_name>/cache/<cache_name>

The example below shows how to inject the CacheContainer called "infinispan_container" and the
distributed cache "namedCache" into an application.

public class ExampleApplication {
@Resource(lookup = "java:jboss/datagrid-infinispan/container/infinispan_container
ll)

CacheContainer container;

@Resource(lookup = "java:jboss/datagrid-
infinispan/container/infinispan_container/cache/namedCache")
Cache cache;

}

35

4.3. Troubleshooting

4.3.1. Enable logging

Enabling trace on org.jboss.modules can be useful to debug issues like LinkageError and
ClassNotFoundException. To enable it at runtime using the {wildflybrandname} CLI:

bin/jboss-cli.sh -c '/subsystem=1ogging/logger=org.jboss.modules:add’
bin/jboss-cli.sh -c '/subsystem=1ogging/logger=org.jboss.modules:write-
attribute(name=1evel,value=TRACE)"'

4.3.2. Print dependency tree

The following command can be used to print all dependencies for a certain module. For example, to
obtain the tree for the module org.infinispan:ispn-10.1, execute from WILDFLY_HOME:

$ java -jar jboss-modules.jar -deptree -mp modules/ "org.infinispan:ispn-10.1"

36

	Integrating Infinispan 10.1
	Table of Contents
	Chapter 1. Integrations
	1.1. Apache Spark
	1.2. Apache Hadoop
	1.3. Apache Lucene
	1.3.1. Lucene compatibility
	1.3.2. Maven dependencies
	1.3.3. How to use it
	1.3.4. Configuration
	1.3.5. Using a CacheLoader
	1.3.6. Storing the index in a database
	1.3.7. Loading an existing Lucene Index
	1.3.8. Architectural limitations
	1.3.9. Suggestions for optimal performance
	1.3.10. Demo
	1.3.11. Additional Links
	1.3.12. Directory Provider for Hibernate Search
	1.3.13. Maven dependencies
	1.3.14. How to use it
	1.3.15. Configuration
	1.3.16. Architecture considerations

	Chapter 2. JPA/Hibernate 2L Cache
	2.1. Deployment Scenarios
	2.1.1. Single-Node Standalone Hibernate Application
	2.1.2. Single-Node Standalone Spring Application
	2.1.3. Single-Node WildFly Application
	2.1.4. Multi-Node Standalone Hibernate Application
	2.1.5. Multi-Node Standalone Spring Application
	2.1.6. Multi-Node WildFly Application

	2.2. Configuration Reference
	2.2.1. Default Local Configuration
	2.2.2. Default Cluster Configuration
	2.2.3. Configuration Properties

	2.3. Cache Strategies
	2.4. Using minimal puts
	2.5. JPA / Hibernate OGM

	Chapter 3. Using Infinispan with Spring
	3.1. Setting Up Infinispan as a Spring Cache Provider
	3.1.1. Adding Spring Cache Support
	3.1.2. Configuring Infinispan as the Spring Cache Provider

	3.2. Adding Caching to Your Application
	3.2.1. Adding Cache Entries
	3.2.2. Deleting Cache Entries

	3.3. Configuring Timeouts for Cache Operations
	3.4. Externalizing Sessions Using Spring Session

	Chapter 4. Infinispan modules for WildFly / EAP
	4.1. Installation
	4.2. Application Dependencies
	4.2.1. Infinispan core
	4.2.2. Remote
	4.2.3. Embedded Query
	4.2.4. Lucene Directory
	4.2.5. Hibernate Search directory provider for Infinispan
	4.2.6. Usage
	4.2.7. Embedded Mode

	4.3. Troubleshooting
	4.3.1. Enable logging
	4.3.2. Print dependency tree

