
Infinispan Guide to Cross-Site
Replication

Table of Contents

1. Infinispan Cross-Site Replication . 2

1.1. Cross-Site Replication. 2

1.1.1. Site Masters. 2

1.2. Adding Backups to Caches . 3

1.3. Backup Strategies . 3

1.3.1. Synchronous Backups . 3

1.3.2. Asynchronous Backups . 4

1.3.3. Synchronous vs Asynchronous Backups . 4

1.4. Automatically Taking Backups Offline . 4

1.5. State Transfer . 5

1.6. Client Connections Across Sites . 6

1.6.1. Concurrent Writes and Conflicting Entries . 7

1.7. Expiration with Cross-Site Replication . 9

2. Configuring Infinispan for Cross-Site Replication . 10

2.1. Configuring Cluster Transport for Cross-Site Replication. 10

2.1.1. JGroups RELAY2 Stacks . 10

2.1.2. Custom JGroups RELAY2 Stacks . 11

2.2. Adding Backup Locations to Caches. 12

2.3. Backing Up to Caches with Different Names . 13

2.4. Configuring Cross-Site Conflict Resolution. 13

2.5. Verifying Cross-Site Views . 14

2.6. Configuring Hot Rod Clients for Cross-Site Replication. 14

3. Performing Cross-Site Replication Operations . 16

3.1. Performing Cross-Site Operations with the CLI . 16

3.1.1. Bringing Backup Locations Offline and Online . 16

3.1.2. Pushing State to Backup Locations . 16

3.2. Performing Cross-Site Operations with the REST API . 17

3.2.1. Getting Status of All Backup Locations . 17

3.2.2. Getting Status of Specific Backup Locations. 18

3.2.3. Taking Backup Locations Offline . 18

3.2.4. Bringing Backup Locations Online . 18

3.2.5. Pushing State to Backup Locations . 18

3.2.6. Canceling State Transfer . 19

3.2.7. Getting State Transfer Status . 19

3.2.8. Clearing State Transfer Status . 19

3.2.9. Modifying Take Offline Conditions. 19

3.2.10. Canceling State Transfer from Receiving Sites . 20

3.2.11. Getting Status of Backup Locations . 20

3.2.12. Taking Backup Locations Offline . 21

3.2.13. Bringing Backup Locations Online . 21

3.2.14. Starting State Transfer. 21

3.2.15. Canceling State Transfer . 22

3.3. Performing Cross-Site Operations with JMX . 22

3.3.1. Configuring Infinispan to Register JMX MBeans. 22

3.3.2. Performing Cross-Site Operations. 22

4. Monitoring and Troubleshooting Global Infinispan Clusters . 24

4.1. Enabling Infinispan Statistics . 24

4.2. Enabling Infinispan Metrics. 25

4.2.1. Collecting Infinispan Metrics . 25

4.3. Configuring Infinispan to Register JMX MBeans. 26

4.3.1. JMX MBeans for Cross-Site Replication . 26

4.4. Collecting Logs and Troubleshooting Cross-Site Replication . 27

4.4.1. Cross-Site Log Messages . 28

Find out how Infinispan performs cross-site replication so you can get optimal

performance and avoid issues. Learn how to configure Infinispan to back up

data to remote clusters. Follow procedures to transfer state from one cluster to

another, take sites offline, and so on.

1

Chapter 1. Infinispan Cross-Site Replication

Cross-site replication allows you to back up data from one Infinispan cluster to another. Learn the

concepts to understand how Infinispan cross-site replication works before you configure your

clusters.

1.1. Cross-Site Replication

Infinispan clusters running in different locations can discover and communicate with each other.

Sites are typically data centers in various geographic locations. Cross-site replication bridges

Infinispan clusters in sites to form global clusters, as in the following diagram:

LON is a datacenter in London, England.

NYC is a datacenter in New York City, USA.


Infinispan can form global clusters across two or more sites.

For example, configure a third Infinispan cluster running in San Francisco, SFO, as

backup location for LON and NYC.

1.1.1. Site Masters

Site masters are the nodes in Infinispan clusters that are responsible for sending and receiving

requests from backup locations.

If a node is not a site master, it must forward backup requests to a local site master. Only site

masters can send requests to backup locations.

For optimal performance, you should configure all nodes as site masters. This increases the speed

of backup requests because each node in the cluster can backup to remote sites directly without

having to forward backup requests to site masters.

2


Diagrams in this document illustrate Infinispan clusters with one site master

because this is the default for the JGroups RELAY2 protocol. Likewise, a single site

master is easier to illustrate because each site master in a cluster communicates

with each site master in the remote cluster.

1.2. Adding Backups to Caches

Name remote sites as backup locations in your cache definitions.

For example, the following diagram shows three caches, "customers", "eu-orders", and "us-orders":

• In LON, "customers" names NYC as a backup location.

• In NYC, "customers" names LON as a backup location.

• "eu-orders" and "us-orders" do not have backups and are local to the respective cluster.

1.3. Backup Strategies

Infinispan clusters can use different strategies for backing up data to remote sites.

Infinispan replicates across sites at the same time that writes to local caches occur. For example, if a

client writes "k1" to LON, Infinispan backs up "k1" to NYC at the same time.

1.3.1. Synchronous Backups

When Infinispan replicates data to backup locations, it waits until the operation completes before

writing to the local cache.

You can control how Infinispan handles writes to the local cache if backup operations fail. For

example, you can configure Infinispan to attempt to abort local writes and throw exceptions if

backups to remote sites fail.

Synchronous backups also support two-phase commits with caches that participate in optimistic

transactions. The first phase of the backup acquires a lock. The second phase commits the

modification.

3


Two-phase commit with cross-site replication has a significant performance

impact because it requires two round-trips across the network.

1.3.2. Asynchronous Backups

When Infinispan replicates data to backup locations, it does not wait until the operation completes

before writing to the local cache.

Asynchronous backup operations and writes to the local cache are independent of each other. If

backup operations fail, write operations to the local cache continue and no exceptions occur.

1.3.3. Synchronous vs Asynchronous Backups

Synchronous backups offer the strongest guarantee of data consistency across sites. If

strategy=sync, when cache.put() calls return you know the value is up to date in the local cache and

in the backup locations.

The trade-off for this consistency is performance. Synchronous backups have much greater latency

in comparison to asynchronous backups.

Asynchronous backups, on the other hand, do not add latency to client requests so they have no

performance impact. However, if strategy=async, when cache.put() calls return you cannot be sure

of the value in the backup locations is the same as in the local cache.

1.4. Automatically Taking Backups Offline

You can configure backup locations to go offline automatically when the remote sites become

unavailable. This prevents Infinispan nodes from continuously attempting to replicate data to

offline backup locations, which results in error messages and consumes resources.

Timeout for backup operations

Backup configurations include timeout values for operations to replicate data. If operations do not

complete before the timeout occurs, Infinispan records them as failures.

<backup site="NYC" strategy="ASYNC" timeout="10000"> ①

 ...

</backup>

① Operations to replicate data to NYC are recorded as failures if they do not complete after 10

seconds.

Number of failures

You can specify the number of consecutive failures that can occur before backup locations go

offline.

For example, the following configuration for NYC sets five as the number of failed operations

before it goes offline:

4

<backup site="NYC" strategy="ASYNC" timeout="10000">

 <take-offline after-failures="5"/> ①

</backup>

① If a cluster attempts to replicate data to NYC and five consecutive operations fail, Infinispan

automatically takes the backup offline.

Time to wait

You can also specify how long to wait before taking sites offline when backup operations fail. If a

backup request succeeds before the wait time runs out, Infinispan does not take the site offline.

<backup site="NYC" strategy="ASYNC" timeout="10000">

 <take-offline after-failures="5"

 min-wait="15000"/> ①

</backup>

① If a cluster attempts to replicate data to NYC and there are five consecutive failures and 15

seconds elapse after the first failed operation, Infinispan automatically takes the backup offline.



Set a negative or zero value for the after-failures attribute if you want to use only

a minimum time to wait to take sites offline.

<take-offline after-failures="-1" min-wait="10000"/>

1.5. State Transfer

State transfer is an administrative operation that synchronizes data between sites.

For example, LON goes offline and NYC starts handling client requests. When you bring LON back

online, the Infinispan cluster in LON does not have the same data as the cluster in NYC.

To ensure the data is consistent between LON and NYC, you can push state from NYC to LON.

• State transfer is bidirectional. For example, you can push state from NYC to LON or from LON

to NYC.

• Pushing state to offline sites brings them back online.

• State transfer overwrites only data that exists on both sites, the originating site and the

receiving site. Infinispan does not delete data.

For example, "k2" exists on LON and NYC. "k2" is removed from NYC while LON is offline.

When you bring LON back online, "k2" still exists at that location. If you push state from NYC to

LON, the transfer does not affect "k2" on LON.

5


To ensure contents of the cache are identical after state transfer, remove all

data from the cache on the receiving site before pushing state. Use the clear()

method.

• State transfer does not overwrite updates to data that occur after you initiate the push.

For example, "k1,v1" exists on LON and NYC. LON goes offline so you push state transfer to

LON from NYC, which brings LON back online. Before state transfer completes, a client puts

"k1,v2" on LON.

In this case the state transfer from NYC does not overwrite "k1,v2" because that modification

happened after you initiated the push.

Reference

• org.infinispan.Cache.clear()

• Clearing Caches with the CLI

 Run help clearcache from the CLI for command details and examples.

• Clearing Caches with the REST API

1.6. Client Connections Across Sites

Clients can write to Infinispan clusters in either an Active/Passive or Active/Active configuration.

Active/Passive

The following diagram illustrates Active/Passive where Infinispan handles client requests from one

site only:

In the preceding image:

1. Client connects to the Infinispan cluster at LON.

6

2. Client writes "k1" to the cache.

3. The site master at LON, "n1", sends the request to replicate "k1" to the site master at NYC, "nA".

With Active/Passive, NYC provides data redundancy. If the Infinispan cluster at LON goes offline for

any reason, clients can start sending requests to NYC. When you bring LON back online you can

synchronize data with NYC and then switch clients back to LON.

Active/Active

The following diagram illustrates Active/Active where Infinispan handles client requests at two

sites:

In the preceding image:

1. Client A connects to the Infinispan cluster at LON.

2. Client A writes "k1" to the cache.

3. Client B connects to the Infinispan cluster at NYC.

4. Client B writes "k2" to the cache.

5. Site masters at LON and NYC send requests so that "k1" is replicated to NYC and "k2" is

replicated to LON.

With Active/Active both NYC and LON replicate data to remote caches while handling client

requests. If either NYC or LON go offline, clients can start sending requests to the online site. You

can then bring offline sites back online, push state to synchronize data, and switch clients as

required.

1.6.1. Concurrent Writes and Conflicting Entries

Conflicting entries can occur with Active/Active site configurations if clients write to the same

entries at the same time but at different sites.

For example, client A writes to "k1" in LON at the same time that client B writes to "k1" in NYC. In

this case, "k1" has a different value in LON than in NYC. After replication occurs, there is no

7

guarantee which value for "k1" exists at which site.

To ensure data consistency, Infinispan uses a vector clock algorithm to detect conflicting entries

during backup operations, as in the following illustration:

 LON NYC

k1=(n/a) 0,0 0,0

k1=2 1,0 --> 1,0 k1=2

k1=3 1,1 <-- 1,1 k1=3

k1=5 2,1 1,2 k1=8

 --> 2,1 (conflict)

(conflict) 1,2 <--

Vector clocks are timestamp metadata that increment with each write to an entry. In the preceding

example, 0,0 represents the initial value for the vector clock on "k1".

A client puts "k1=2" in LON and the vector clock is 1,0, which Infinispan replicates to NYC. A client

then puts "k1=3" in NYC and the vector clock updates to 1,1, which Infinispan replicates to LON.

However if a client puts "k1=5" in LON at the same time that a client puts "k1=8" in NYC, Infinispan

detects a conflicting entry because the vector value for "k1" is not strictly greater or less between

LON and NYC.

When it finds conflicting entries, Infinispan uses the Java compareTo(String anotherString) method

to compare site names. To determine which key takes priority, Infinispan selects the site name that

is lexicographically less than the other. Keys from a site named AAA take priority over keys from a

site named AAB and so on.

Following the same example, to resolve the conflict for "k1", Infinispan uses the value for "k1" that

originates from LON. This results in "k1=5" in both LON and NYC after Infinispan resolves the

conflict and replicates the value.


Prepend site names with numbers as a simple way to represent the order of

priority for resolving conflicting entries; for example, 1LON and 2NYC.

Custom Conflict Resolution

Infinispan provides other algorithms for conflict resolution. They can found in XSiteMergePolicy

enum.

• DEFAULT: Uses the algorithm described above.

• PREFER_NON_NULL: If there is a write/remove conflict it keeps the write operation and discards the

remove operation. For all other combinations, it uses the DEFAULT.

8

• PREFER_NULL: Similar to PREFER_NON_NULL but, instead, it discards the write operation.

• ALWAYS_REMOVE: In case of any conflict, it removes the key from both sites.

In addition, XSiteEntryMergePolicy interface can be implemented to add your own conflict

resolution algorithm:

XSiteEntryMergePolicy class

public interface XSiteEntryMergePolicy<K, V> {

 CompletionStage<SiteEntry<V>> mrege(K key, SiteEntry<V> localEntry, SiteEntry<V>

remoteEntry);

}

The SiteEntry contains the value and Metadata associates with a specific site.

Reference

• java.lang.String#compareTo()

• XSiteEntryMergePolicy

• XSiteMergePolicy

• SiteEntry

• Configure Cross-Site Conflict Resolution

1.7. Expiration with Cross-Site Replication

Expiration removes cache entries based on time. Infinispan provides two ways to configure

expiration for entries:

lifespan

Sets the maximum amount of time that entries can exist.

When you set lifespan with cross-site replication, Infinispan clusters expire entries

independently of remote sites.

max-idle

Specifies how long entries can exist based on read or write operations in a given time period.

When you set a max-idle with cross-site replication, Infinispan clusters send touch commands to

coordinate idle timeout values with remote sites.


Using maximum idle expiration in cross-site deployments can impact performance

because the additional processing to keep max-idle values synchronized means

some operations take longer to complete.

9

Chapter 2. Configuring Infinispan for Cross-

Site Replication

Configuring Infinispan to replicate data across sites, you first set up cluster transport so Infinispan

clusters can discover each other and site masters can communicate. You then add backup locations

to cache definitions in your Infinispan configuration.

2.1. Configuring Cluster Transport for Cross-Site

Replication

Add JGroups RELAY2 to your transport layer so that Infinispan clusters can communicate with

backup locations.

Procedure

1. Open infinispan.xml for editing.

2. Add the RELAY2 protocol to a JGroups stack, for example:

<jgroups>

 <stack name="xsite" extends="udp">

 <relay.RELAY2 site="LON" xmlns="urn:org:jgroups" max_site_masters="1000"/>

 <remote-sites default-stack="tcp">

 <remote-site name="LON"/>

 <remote-site name="NYC"/>

 </remote-sites>

 </stack>

</jgroups>

3. Configure Infinispan cluster transport to use the stack, as in the following example:

<cache-container name="default" statistics="true">

 <transport cluster="${cluster.name}" stack="xsite"/>

</cache-container>

4. Save and close infinispan.xml.

Reference

• JGroups RELAY2 Stacks

• Infinispan Configuration Schema

2.1.1. JGroups RELAY2 Stacks

Infinispan clusters use JGroups RELAY2 for inter-cluster discovery and communication.

10

<jgroups>

 <stack name="xsite" ①

 extends="udp"> ②

 <relay.RELAY2 xmlns="urn:org:jgroups" ③

 site="LON" ④

 max_site_masters="1000"/> ⑤

 <remote-sites default-stack="tcp"> ⑥

 <remote-site name="LON"/> ⑦

 <remote-site name="NYC"/>

 </remote-sites>

 </stack>

</jgroups>

① Defines a stack named "xsite" that declares which protocols to use for your Infinispan cluster

transport.

② Uses the default JGroups UDP stack for intra-cluster traffic.

③ Adds RELAY2 to the stack for inter-cluster transport.

④ Names the local site. Infinispan replicates data in caches from this site to backup locations.

⑤ Configures a maximum of 1000 site masters for the local cluster. You should set max_site_masters

>= the number of nodes in the Infinispan cluster for optimal performance with backup requests.

⑥ Specifies all site names and uses the default JGroups TCP stack for inter-cluster transport.

⑦ Names each remote site as a backup location.

2.1.2. Custom JGroups RELAY2 Stacks

<jgroups>

 <stack name="relay-global" extends="tcp"> ①

 <MPING stack.combine="REMOVE"/>

 <TCPPING initial_hosts="192.0.2.0[7800]" stack.combine="INSERT_AFTER"

stack.position="TCP"/>

 </stack>

 <stack name="xsite" extends="udp">

 <relay.RELAY2 site="LON" xmlns="urn:org:jgroups"

 max_site_masters="10" ②

 can_become_site_master="true"/>

 <remote-sites default-stack="relay-global">

 <remote-site name="LON"/>

 <remote-site name="NYC"/>

 </remote-sites>

 </stack>

</jgroups>

① Adds a custom RELAY2 stack that extends the TCP stack and uses TCPPING instead of MPING for

discovery.

② Sets the maximum number of site masters and optionally specifies additional RELAY2

11

properties. See JGroups RELAY2 documentation.

You can also reference externally defined JGroups stack files as follows:

<stack-file name="relay-global" path="jgroups-relay.xml"/>

In the preceding configuration jgroups-relay.xml provides a JGroups stack such as this:

<config xmlns="urn:org:jgroups"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:org:jgroups http://www.jgroups.org/schema/jgroups-

4.1.xsd">

 <!-- Use TCP for inter-cluster transport. -->

 <TCP bind_addr="127.0.0.1"

 bind_port="7200"

 port_range="30"

 thread_pool.min_threads="0"

 thread_pool.max_threads="8"

 thread_pool.keep_alive_time="5000"

 />

 <!-- Use TCPPING for inter-cluster discovery. -->

 <TCPPING timeout="3000"

 initial_hosts="127.0.0.1[7200]"

 port_range="3"

 ergonomics="false"/>

 <!-- Provide other JGroups stack configuration as required. -->

</config>

Reference

• Setting Up Infinispan Clusters

• JGroups RELAY2

• Relaying between multiple sites (RELAY2)

2.2. Adding Backup Locations to Caches

Specify the names of remote sites so Infinispan can back up data to those locations.

Procedure

1. Add the backups element to your cache definition.

2. Specify the name of each remote site with the backup element.

As an example, in the LON configuration, specify NYC as the remote site.

12

3. Repeat the preceding steps so that each site is a backup for all other sites. For example, you

cannot add LON as a backup for NYC without adding NYC as a backup for LON.


Cache configurations can be different across sites and use different backup

strategies. Infinispan replicates data based on cache names.

Example "customers" configuration in LON

<replicated-cache name="customers">

 <backups>

 <backup site="NYC" strategy="ASYNC" />

 </backups>

</replicated-cache>

Example "customers" configuration in NYC

<distributed-cache name="customers">

 <backups>

 <backup site="LON" strategy="SYNC" />

 </backups>

</distributed-cache>

Reference

• Infinispan Configuration Schema

2.3. Backing Up to Caches with Different Names

By default, Infinispan replicates data between caches that have the same name.

Procedure

• Use backup-for to replicate data from a remote site into a cache with a different name on the

local site.

For example, the following configuration backs up the "customers" cache on LON to the "eu-

customers" cache on NYC.

<distributed-cache name="eu-customers">

 <backups>

 <backup site="LON" strategy="SYNC" />

 </backups>

 <backup-for remote-cache="customers" remote-site="LON" />

</distributed-cache>

2.4. Configuring Cross-Site Conflict Resolution

Specify the algorithm name of the implementation to use when conflict happens.

13

Procedure

• Use merge-policy to configure the conflict resolution algorithm.

Using Infinispan algorithm

<distributed-cache name="eu-customers">

 <backups merge-policy="ALWAYS_REMOVE">

 <backup site="LON" strategy="ASYNC"/>

 </backups>

</distributed-cache>

Using a custom implementation

<distributed-cache name="eu-customers">

 <backups merge-policy="org.mycompany.MyCustomXSiteEntryMergePolicy">

 <backup site="LON" strategy="ASYNC"/>

 </backups>

</distributed-cache>

Reference

• XSiteEntryMergePolicy

• XSiteMergePolicy

• Infinispan Configuration Schema

2.5. Verifying Cross-Site Views

After you configure Infinispan for cross-site replication, you should verify that Infinispan clusters

successfully form cross-site views.

Procedure

• Check log messages for ISPN000439: Received new x-site view messages.

For example, if the Infinispan cluster in LON has formed a cross-site view with the Infinispan

cluster in NYC, it provides the following messages:

INFO [org.infinispan.XSITE] (jgroups-5,${server.hostname}) ISPN000439: Received new

x-site view: [NYC]

INFO [org.infinispan.XSITE] (jgroups-7,${server.hostname}) ISPN000439: Received new

x-site view: [NYC, LON]

2.6. Configuring Hot Rod Clients for Cross-Site

Replication

Configure Hot Rod clients to use Infinispan clusters at different sites.

14

hotrod-client.properties

Servers at the active site

infinispan.client.hotrod.server_list = LON_host1:11222,LON_host2:11222,LON_host3:11222

Servers at the backup site

infinispan.client.hotrod.cluster.NYC =

NYC_hostA:11222,NYC_hostB:11222,NYC_hostC:11222,NYC_hostD:11222

ConfigurationBuilder

ConfigurationBuilder builder = new ConfigurationBuilder();

builder.addServers("LON_host1:11222;LON_host2:11222;LON_host3:11222")

 .addCluster("NYC")

 .addClusterNodes(

"NYC_hostA:11222;NYC_hostB:11222;NYC_hostC:11222;NYC_hostD:11222")



Use the following methods to switch Hot Rod clients to the default cluster or to a

cluster at a different site:

• RemoteCacheManager.switchToDefaultCluster()

• RemoteCacheManager.switchToCluster(${site.name})

Reference

• org.infinispan.client.hotrod.configuration package description

• org.infinispan.client.hotrod.configuration.ConfigurationBuilder

• org.infinispan.client.hotrod.RemoteCacheManager

15

Chapter 3. Performing Cross-Site Replication

Operations

Bring sites online and offline. Transfer cache state to remote sites.

3.1. Performing Cross-Site Operations with the CLI

The Infinispan command line interface lets you remotely connect to Infinispan servers, manage

sites, and push state transfer to backup locations.

Prerequisites

• Start the Infinispan CLI.

• Connect to a running Infinispan cluster.

3.1.1. Bringing Backup Locations Offline and Online

Take backup locations offline manually and bring them back online.

Procedure

1. Create a CLI connection to Infinispan.

2. Check if backup locations are online or offline with the site status command:

//containers/default]> site status --cache=cacheName --site=NYC

 --site is an optional argument. If not set, the CLI returns all backup locations.

3. Manage backup locations as follows:

◦ Bring backup locations online with the bring-online command:

//containers/default]> site bring-online --cache=customers --site=NYC

◦ Take backup locations offline with the take-offline command:

//containers/default]> site take-offline --cache=customers --site=NYC

For more information and examples, run the help site command.

3.1.2. Pushing State to Backup Locations

Transfer cache state to remote backup locations.

Procedure

16

1. Create a CLI connection to Infinispan.

2. Use the site command to push state transfer, as in the following example:

//containers/default]> site push-site-state --cache=cacheName --site=NYC

For more information and examples, run the help site command.

Reference

Infinispan Command Line Interface

3.2. Performing Cross-Site Operations with the REST

API

Infinispan servers provide a REST API that allows you to perform cross-site operations.

3.2.1. Getting Status of All Backup Locations

Retrieve the status of all backup locations with GET requests.

GET /v2/caches/{cacheName}/x-site/backups/

Infinispan responds with the status of each backup location in JSON format, as in the following

example:

{

 "NYC": "online",

 "LON": "offline"

}

Table 1. Returned Status

Value Description

online All nodes in the local cluster have a cross-site

view with the backup location.

offline No nodes in the local cluster have a cross-site

view with the backup location.

mixed Some nodes in the local cluster have a cross-site

view with the backup location, other nodes in

the local cluster do not have a cross-site view.

The response indicates status for each node.

17

3.2.2. Getting Status of Specific Backup Locations

Retrieve the status of a backup location with GET requests.

GET /v2/caches/{cacheName}/x-site/backups/{siteName}

Infinispan responds with the status of each node in the site in JSON format, as in the following

example:

{

 "NodeA":"offline",

 "NodeB":"online"

}

Table 2. Returned Status

Value Description

online The node is online.

offline The node is offline.

failed Not possible to retrieve status. The remote cache

could be shutting down or a network error

occurred during the request.

3.2.3. Taking Backup Locations Offline

Take backup locations offline with POST requests and the ?action=take-offline parameter.

POST /v2/caches/{cacheName}/x-site/backups/{siteName}?action=take-offline

3.2.4. Bringing Backup Locations Online

Bring backup locations online with the ?action=bring-online parameter.

POST /v2/caches/{cacheName}/x-site/backups/{siteName}?action=bring-online

3.2.5. Pushing State to Backup Locations

Push cache state to a backup location with the ?action=start-push-state parameter.

POST /v2/caches/{cacheName}/x-site/backups/{siteName}?action=start-push-state

18

3.2.6. Canceling State Transfer

Cancel state transfer operations with the ?action=cancel-push-state parameter.

POST /v2/caches/{cacheName}/x-site/backups/{siteName}?action=cancel-push-state

3.2.7. Getting State Transfer Status

Retrieve status of state transfer operations with the ?action=push-state-status parameter.

GET /v2/caches/{cacheName}/x-site/backups?action=push-state-status

Infinispan responds with the status of state transfer for each backup location in JSON format, as in

the following example:

{

 "NYC":"CANCELED",

 "LON":"OK"

}

Table 3. Returned Status

Value Description

SENDING State transfer to the backup location is in

progress.

OK State transfer completed successfully.

ERROR An error occurred with state transfer. Check log

files.

CANCELLING State transfer cancellation is in progress.

3.2.8. Clearing State Transfer Status

Clear state transfer status for sending sites with the ?action=clear-push-state-status parameter.

POST /v2/caches/{cacheName}/x-site/local?action=clear-push-state-status

3.2.9. Modifying Take Offline Conditions

Sites go offline if certain conditions are met. Modify the take offline parameters to control when

backup locations automatically go offline.

Procedure

1. Check configured take offline parameters with GET requests and the take-offline-config

19

parameter.

GET /v2/caches/{cacheName}/x-site/backups/{siteName}/take-offline-config

The Infinispan response includes after_failures and min_wait fields as follows:

{

 "after_failures": 2,

 "min_wait": 1000

}

2. Modify take offline parameters in the body of PUT requests.

PUT /v2/caches/{cacheName}/x-site/backups/{siteName}/take-offline-config

3.2.10. Canceling State Transfer from Receiving Sites

If the connection between two backup locations breaks, you can cancel state transfer on the site

that is receiving the push.

Cancel state transfer from a remote site and keep the current state of the local cache with the

?action=cancel-receive-state parameter.

POST /v2/caches/{cacheName}/x-site/backups/{siteName}?action=cancel-receive-state

3.2.11. Getting Status of Backup Locations

Retrieve the status of all backup locations from Cache Managers with GET requests.

GET /rest/v2/cache-managers/{cacheManagerName}/x-site/backups/

Infinispan responds with status in JSON format, as in the following example:

20

{

 "SFO-3":{

 "status":"online"

 },

 "NYC-2":{

 "status":"mixed",

 "online":[

 "CACHE_1"

],

 "offline":[

 "CACHE_2"

]

 }

}

Table 4. Returned Status

Value Description

online All nodes in the local cluster have a cross-site

view with the backup location.

offline No nodes in the local cluster have a cross-site

view with the backup location.

mixed Some nodes in the local cluster have a cross-site

view with the backup location, other nodes in

the local cluster do not have a cross-site view.

The response indicates status for each node.

3.2.12. Taking Backup Locations Offline

Take backup locations offline with the ?action=take-offline parameter.

POST /rest/v2/cache-managers/{cacheManagerName}/x-site/backups/{siteName}?action=take-

offline

3.2.13. Bringing Backup Locations Online

Bring backup locations online with the ?action=bring-online parameter.

POST /rest/v2/cache-managers/{cacheManagerName}/x-

site/backups/{siteName}?action=bring-online

3.2.14. Starting State Transfer

Push state of all caches to remote sites with the ?action=start-push-state parameter.

21

POST /rest/v2/cache-managers/{cacheManagerName}/x-

site/backups/{siteName}?action=start-push-state

3.2.15. Canceling State Transfer

Cancel ongoing state transfer operations with the ?action=cancel-push-state parameter.

POST /rest/v2/cache-managers/{cacheManagerName}/x-

site/backups/{siteName}?action=cancel-push-state

3.3. Performing Cross-Site Operations with JMX

Infinispan provides JMX tooling to perfrom cross-site operations such as pushing state transfer and

bringing sites online.

3.3.1. Configuring Infinispan to Register JMX MBeans

Infinispan can register JMX MBeans that you can use to collect statistics and perform

administrative operations. However, you must enable statistics separately to JMX otherwise

Infinispan provides 0 values for all statistic attributes.

Procedure

• Enable JMX declaratively or programmatically.

Declaratively

<cache-container>

 <jmx enabled="true" /> ①

</cache-container>

① Registers Infinispan JMX MBeans.

Programmatically

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()

 .jmx().enable() ①

 .build();

① Registers Infinispan JMX MBeans.

3.3.2. Performing Cross-Site Operations

Perform cross-site operations via JMX clients.

Prerequisites

• Configure Infinispan to register JMX MBeans

22

Procedure

1. Connect to Infinispan with any JMX client.

2. Invoke operations from the following MBeans:

◦ XSiteAdmin provides cross-site operations for caches.

◦ GlobalXSiteAdminOperations provides cross-site operations for Cache Managers.

For example, to bring sites back online, invoke bringSiteOnline(siteName).

See the Infinispan JMX Components documentation for details about available cross-site operations.

Reference

• XSiteAdmin MBean

• GlobalXSiteAdminOperations MBean

23

Chapter 4. Monitoring and Troubleshooting

Global Infinispan Clusters

Infinispan provides statistics for cross-site replication operations via JMX or the /metrics endpoint

for Infinispan server.

Cross-site replication statistics are available at cache level so you must explicitly enable statistics

for your caches. Likewise, if you want to collect statistics via JMX you must configure Infinispan to

register MBeans.

Infinispan also includes an org.infinispan.XSITE logging category so you can monitor and

troubleshoot common issues with networking and state transfer operations.

4.1. Enabling Infinispan Statistics

Infinispan lets you enable statistics for Cache Managers and caches. However, enabling statistics for

a Cache Manager does not enable statistics for the caches that it controls. You must explicitly enable

statistics for your caches.

 Infinispan server enables statistics for Cache Managers by default.

Procedure

• Enable statistics declaratively or programmatically.

Declaratively

<cache-container statistics="true"> ①

 <local-cache name="mycache" statistics="true"/> ②

</cache-container>

① Enables statistics for the Cache Manager.

② Enables statistics for the named cache.

Programmatically

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()

 .cacheContainer().statistics(true) ①

 .build();

 ...

Configuration config = new ConfigurationBuilder()

 .statistics().enable() ②

 .build();

① Enables statistics for the Cache Manager.

② Enables statistics for the named cache.

24

4.2. Enabling Infinispan Metrics

Configure Infinispan to export gauges and histograms.

Procedure

• Configure metrics declaratively or programmatically.

Declaratively

<cache-container statistics="true"> ①

 <metrics gauges="true" histograms="true" /> ②

</cache-container>

① Computes and collects statistics about the Cache Manager.

② Exports collected statistics as gauge and histogram metrics.

Programmatically

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()

 .statistics().enable() ①

 .metrics().gauges(true).histograms(true) ②

 .build();

① Computes and collects statistics about the Cache Manager.

② Exports collected statistics as gauge and histogram metrics.

4.2.1. Collecting Infinispan Metrics

Collect Infinispan metrics with monitoring tools such as Prometheus.

Prerequisites

• Enable statistics. If you do not enable statistics, Infinispan provides 0 and -1 values for metrics.

• Optionally enable histograms. By default Infinispan generates gauges but not histograms.

Procedure

• Get metrics in Prometheus (OpenMetrics) format:

$ curl -v http://localhost:11222/metrics

• Get metrics in MicroProfile JSON format:

$ curl --header "Accept: application/json" http://localhost:11222/metrics

Next steps

Configure monitoring applications to collect Infinispan metrics. For example, add the following to

25

prometheus.yml:

static_configs:

 - targets: ['localhost:11222']

Reference

• Prometheus Configuration

• Enabling Infinispan Statistics

4.3. Configuring Infinispan to Register JMX MBeans

Infinispan can register JMX MBeans that you can use to collect statistics and perform

administrative operations. However, you must enable statistics separately to JMX otherwise

Infinispan provides 0 values for all statistic attributes.

Procedure

• Enable JMX declaratively or programmatically.

Declaratively

<cache-container>

 <jmx enabled="true" /> ①

</cache-container>

① Registers Infinispan JMX MBeans.

Programmatically

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()

 .jmx().enable() ①

 .build();

① Registers Infinispan JMX MBeans.

4.3.1. JMX MBeans for Cross-Site Replication

Infinispan provides JMX MBeans for cross-site replication that let you gather statistics and perform

remote operations.

The org.infinispan:type=Cache component provides the following JMX MBeans:

• XSiteAdmin exposes cross-site operations that apply to specific cache instances.

• StateTransferManager provides statistics for state transfer operations.

• InboundInvocationHandler provides statistics and operations for asynchronous and synchronous

cross-site requests.

The org.infinispan:type=CacheManager component includes the following JMX MBean:

26

• GlobalXSiteAdminOperations exposes cross-site operations that apply to all caches in a cache

container.

For details about JMX MBeans along with descriptions of available operations and statistics, see the

Infinispan JMX Components documentation.

Reference

Infinispan JMX Components

4.4. Collecting Logs and Troubleshooting Cross-Site

Replication

Diagnose and resolve issues related to Infinispan cross-site replication. Use the Infinispan

Command Line Interface (CLI) to adjust log levels at run-time and perform cross-site

troubleshooting.

Procedure

1. Open a terminal in $ISPN_HOME.

2. Create a Infinispan CLI connection.

3. Adjust run-time logging levels to capture DEBUG messages if necessary.

For example, the following command enables DEBUG log messages for the org.infinispan.XSITE

category:

[//containers/default]> logging set --level=DEBUG org.infinispan.XSITE

You can then check the Infinispan log files for cross-site messages in the

${infinispan.server.root}/log directory.

4. Use the site command to view status for backup locations and perform troubleshooting.

For example, check the status of the "customers" cache that uses "LON" as a backup location:

[//containers/default]> site status --cache=customers

{

 "LON" : "online"

}

Another scenario for using the Infinispan CLI to troubleshoot is when the network connection

between backup locations is broken during a state transfer operation.

If this occurs, Infinispan clusters that receive state transfer continually wait for the operation to

complete. In this case you should cancel the state transfer to the receiving site to return it to a

normal operational state.

For example, cancel state transfer for "NYC" as follows:

27

[//containers/default]> site cancel-receive-state --cache=mycache --site=NYC`

Reference

• Infinispan Server Troubleshooting

• Working with Infinispan Server Logs

4.4.1. Cross-Site Log Messages

Find user actions for log messages related to cross-site replication.

Log level Identifier Message Description

DEBUG ISPN000400 Node null was suspected Infinispan prints this message

when it cannot reach backup

locations. Ensure that sites are

online and check network

status.

INFO ISPN000439 Received new x-site view:

${site.name}

Infinispan prints this message

when sites join and leave the

global cluster.

INFO ISPN100005 Site ${site.name} is online. Infinispan prints this message

when a site comes online.

INFO ISPN100006 Site ${site.name} is offline. Infinispan prints this message

when a site goes offline. If you

did not take the site offline

manually, this message could

indicate a failure has occurred.

Check network status and try to

bring the site back online.

WARN ISPN000202 Problems backing up data for

cache ${cache.name} to site

${site.name}:

Infinispan prints this message

when issues occur with state

transfer operations along with

the exception. If necessary

adjust Infinispan logging to get

more fine-grained logging

messages.

WARN ISPN000289 Unable to send X-Site state

chunk to ${site.name}.

Indicates that Infinispan cannot

transfer a batch of cache entries

during a state transfer

operation. Ensure that sites are

online and check network

status.

28

Log level Identifier Message Description

WARN ISPN000291 Unable to apply X-Site state

chunk.

Indicates that Infinispan cannot

apply a batch of cache entries

during a state transfer

operation. Ensure that sites are

online and check network

status.

WARN ISPN000322 Unable to re-start x-site state

transfer to site ${site.name}

Indicates that Infinispan cannot

resume a state transfer

operation to a backup location.

Ensure that sites are online and

check network status.

ERROR ISPN000477 Unable to perform operation

${operation.name} for site

${site.name}

Indicates that Infinispan cannot

successfully complete an

operation on a backup location.

If necessary adjust Infinispan

logging to get more fine-grained

logging messages.

FATAL ISPN000449 XSite state transfer timeout

must be higher or equals than 1

(one).

Results when the value of the

timeout attribute is 0 or a

negative number. Specify a

value of at least 1 for the

timeout attribute in the state

transfer configuration for your

cache definition.

FATAL ISPN000450 XSite state transfer waiting time

between retries must be higher

or equals than 1 (one).

Results when the value of the

wait-time attribute is 0 or a

negative number. Specify a

value of at least 1 for the wait-

time attribute in the state

transfer configuration for your

cache definition.

FATAL ISPN000576 Cross-site Replication not

available for local cache.

Cross-site replication does not

work with the local cache

mode. Either remove the

backup configuration from the

local cache definition or use a

distributed or replicated cache

mode.

29

	Infinispan Guide to Cross-Site Replication
	Table of Contents
	Chapter 1. Infinispan Cross-Site Replication
	1.1. Cross-Site Replication
	1.1.1. Site Masters

	1.2. Adding Backups to Caches
	1.3. Backup Strategies
	1.3.1. Synchronous Backups
	1.3.2. Asynchronous Backups
	1.3.3. Synchronous vs Asynchronous Backups

	1.4. Automatically Taking Backups Offline
	1.5. State Transfer
	1.6. Client Connections Across Sites
	1.6.1. Concurrent Writes and Conflicting Entries

	1.7. Expiration with Cross-Site Replication

	Chapter 2. Configuring Infinispan for Cross-Site Replication
	2.1. Configuring Cluster Transport for Cross-Site Replication
	2.1.1. JGroups RELAY2 Stacks
	2.1.2. Custom JGroups RELAY2 Stacks

	2.2. Adding Backup Locations to Caches
	2.3. Backing Up to Caches with Different Names
	2.4. Configuring Cross-Site Conflict Resolution
	2.5. Verifying Cross-Site Views
	2.6. Configuring Hot Rod Clients for Cross-Site Replication

	Chapter 3. Performing Cross-Site Replication Operations
	3.1. Performing Cross-Site Operations with the CLI
	3.1.1. Bringing Backup Locations Offline and Online
	3.1.2. Pushing State to Backup Locations

	3.2. Performing Cross-Site Operations with the REST API
	3.2.1. Getting Status of All Backup Locations
	3.2.2. Getting Status of Specific Backup Locations
	3.2.3. Taking Backup Locations Offline
	3.2.4. Bringing Backup Locations Online
	3.2.5. Pushing State to Backup Locations
	3.2.6. Canceling State Transfer
	3.2.7. Getting State Transfer Status
	3.2.8. Clearing State Transfer Status
	3.2.9. Modifying Take Offline Conditions
	3.2.10. Canceling State Transfer from Receiving Sites
	3.2.11. Getting Status of Backup Locations
	3.2.12. Taking Backup Locations Offline
	3.2.13. Bringing Backup Locations Online
	3.2.14. Starting State Transfer
	3.2.15. Canceling State Transfer

	3.3. Performing Cross-Site Operations with JMX
	3.3.1. Configuring Infinispan to Register JMX MBeans
	3.3.2. Performing Cross-Site Operations

	Chapter 4. Monitoring and Troubleshooting Global Infinispan Clusters
	4.1. Enabling Infinispan Statistics
	4.2. Enabling Infinispan Metrics
	4.2.1. Collecting Infinispan Metrics

	4.3. Configuring Infinispan to Register JMX MBeans
	4.3.1. JMX MBeans for Cross-Site Replication

	4.4. Collecting Logs and Troubleshooting Cross-Site Replication
	4.4.1. Cross-Site Log Messages

