
Infinispan 9.1 Glossary
The Infinispan community

Table of Contents
1. 2-phase commit . 2

2. Atomicity, Consistency, Isolation, Durability (ACID) . 3

3. Basically Available, Soft-state, Eventually-consistent (BASE) . 4

4. Consistency, Availability and Partition-tolerance (CAP) Theorem . 5

5. Consistent Hash . 6

6. Data grid . 7

7. Deadlock . 8

8. Distributed Hash Table (DHT) . 9

9. Externalizer. 10

10. Hot Rod. 11

11. In-memory data grid . 12

12. Isolation level . 13

13. JTA synchronization . 14

14. Livelock . 15

15. Memcached . 16

16. Multiversion Concurrency Control (MVCC). 17

17. Near Cache . 18

18. Network partition . 19

19. NoSQL . 20

20. Optimistic locking . 21

21. Pessimistic locking . 22

22. READ COMMITTED . 23

23. Relational Database Management System (RDBMS) . 24

24. REPEATABLE READ . 25

25. Representational State Transfer (ReST) . 26

26. Split brain . 27

27. Structured Query Language (SQL). 28

28. Write-behind . 29

29. Write skew . 30

30. Write-through. 31

31. XA resource . 32


This glossary aims to clarify some of the terms frequently
encountered in Infinispan’s User Guide, Getting Started Guide,
FAQs, etc.

1

../user_guide/user_guide.html
../getting_started/getting_started.html
../faqs/faqs.html

Chapter 1. 2-phase commit
2-phase commit protocol (2PC) is a consensus protocol used for atomically commit or rollback
distributed transactions.

More resources

• Wikipedia article

2

http://en.wikipedia.org/wiki/Two-phase_commit_protocol

Chapter 2. Atomicity, Consistency, Isolation,
Durability (ACID)
According to Wikipedia, ACID (Atomicity, Consistency, Isolation, Durability) is a set of properties
that guarantee that database transactions are processed reliably. In the context of databases, a
single logical operation on the data is called a transaction. For example, a transfer of funds from
one bank account to another, even involving multiple changes such as debiting one account and
crediting another, is a single transaction.

More resources

• Wikipedia

3

http://en.wikipedia.org/wiki/ACID
http://en.wikipedia.org/wiki/ACID

Chapter 3. Basically Available, Soft-state,
Eventually-consistent (BASE)
BASE, also known as Eventual Consistency, is seen as the polar opposite of ACID, properties seen as
desirable in traditional database systems.

BASE essentially embraces the fact that true consistency cannot be achieved in the real world, and
as such cannot be modelled in highly scalable distributed systems. BASE has roots in Eric Brewer’s
CAP Theorem, and eventual consistency is the underpinning of any distributed system that aims to
provide high availability and partition tolerance.

Infinispan has traditionally followed ACID principles as far as possible, however an eventually
consistent mode embracing BASE is on the roadmap.

More resources

• A good article on ACM compares BASE versus ACID.

• An excellent talk on eventual consistency and BASE in Riak is also available on InfoQ.

4

http://en.wikipedia.org/wiki/Eventual_consistency
http://queue.acm.org/detail.cfm?id=1394128
http://queue.acm.org/index.cfm
http://www.infoq.com/presentations/Riak-Core

Chapter 4. Consistency, Availability and
Partition-tolerance (CAP) Theorem
Made famous by Eric Brewer at UC Berkeley, this is a theorem of distributed computing that can be
simplified to state that one can only practically build a distributed system exhibiting any two of the
three desirable characteristics of distributed systems, which are: Consistency, Availability and
Partition-tolerance (abbreviated to CAP). The theorem effectively stresses on the unreliability of
networks and the effect this unreliability has on predictable behavior and high availability of
dependent systems.

Infinispan has traditionally been biased towards Consistency and Availability, sacrificing Partition-
tolerance. However, Infinispan does have a Partition-tolerant, eventually-consistent mode in the
pipeline. This optional mode of operation will allow users to tune the degree of consistency they
expect from their data, sacrificing partition-tolerance for this added consistency.

More resources

• The theorem is well-discussed online, with many good resources to follow up on, including this
document.

• A more recent article by Eric Brewer himself appears on InfoQ a modern analysis of the
theorem .

5

http://en.wikipedia.org/wiki/Eric_Brewer_(computer_scientist)
http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed

Chapter 5. Consistent Hash
A technique of mapping keys to servers such that, given a stable cluster topology, any server in the
cluster can locate where a given key is mapped to with minimal computational complexity.

Consistent hashing is a purely algorithmic technique, and doesn’t rely on any metadata or any
network broadcasts to "search" for a key in a cluster. This makes it extremely efficient to use.

More resources

• Wikipedia

6

http://en.wikipedia.org/wiki/Consistent_hashing

Chapter 6. Data grid
A data grid is a cluster of (typically commodity) servers, normally residing on a single local-area
network, connected to each other using IP based networking. Data grids behave as a single
resource, exposing the aggregate storage capacity of all servers in the cluster. Data stored in the
grid is usually partitioned, using a variety of techniques, to balance load across all servers in the
cluster as evenly as possible. Data is often redundantly stored in the grid to provide resilience to
individual servers in the grid failing i.e. more than one copy is stored in the grid, transparently to
the application.

Data grids typically behave in a peer-to-peer fashion. Infinispan, for example, makes use of JGroups
as a group communication library and is hence biased towards a peer-to-peer design. Such design
allows Infinispan to exhibit self-healing characteristics, providing service even when individual
servers fail and new nodes are dynamically added to the grid.

Infinispan also makes use of TCP and optionally UDP network protocols, and can be configured to
make use of IP multicast for efficiency if supported by the network.

7

http://www.jgroups.org

Chapter 7. Deadlock
A deadlock is a situation in which two or more competing actions are each waiting for the other to
finish, and thus neither ever does.

8

Chapter 8. Distributed Hash Table (DHT)
A distributed hash table (DHT) is a class of a decentralized distributed system that provides a
lookup service similar to a hash table; (key, value) pairs are stored in a DHT, and any participating
node can efficiently retrieve the value associated with a given key. Responsibility for maintaining
the mapping from keys to values is distributed among the nodes, in such a way that a change in the
set of participants causes a minimal amount of disruption. This allows a DHT to scale to extremely
large numbers of nodes and to handle continual node arrivals, departures, and failures.

9

Chapter 9. Externalizer
An Externalizer is a class that knows how to marshall a given object type to a byte array, and how to
unmarshall the contents of a byte array into an instance of the object type. Externalizers are
effectively an Infinispan extension that allows users to specify how their types are serialized. The
underlying Infinispan marshalling infrastructure builds on JBoss Marshalling , and offers efficient
payloads and stream caching. This provides much better performance than standard Java
serialization.

More resources

• Plug your own Externalizer implementation into Infinispan

10

http://www.jboss.org/jbossmarshalling
../user_guide/user_guide.html#plugging_infinispan_with_user_defined_externalizers

Chapter 10. Hot Rod
Hot Rod is the name of Infinispan’s custom TCP client/server protocol which was created in order to
overcome the deficiencies of other client/server protocols such as Memcached. HotRod, as opposed
to other protocols, has the ability of handling failover on an Infinispan server cluster that
undergoes a topology change. To achieve this, the Hot Rod regularly informs the clients of the
cluster topology.

Hot Rod enables clients to do smart routing of requests in partitioned, or distributed, Infinispan
server clusters. This means that Hot Rod clients can determine the partition in which a key is
located and communicate directly with the server that contains the key. This is made possible by
Infinispan servers sending the cluster topology to clients, and the clients using the same consistent
hash as the servers.

More resources

• Information about the protocol

• Starting a Hot Rod server

• Hot Rod client libraries

11

../user_guide/user_guide.html#hot_rod_protocol
../user_guide/user_guide.html#using_hot_rod_server
http://www.infinispan.org/hotrod-clients/

Chapter 11. In-memory data grid
An in-memory data grid (IMDG) is a special type of data grid. In an IMDG, each server uses its main
system memory (RAM) as primary storage for data (as opposed to disk-based storage). This allows
for much greater concurrency, as lock-free STM techniques such as compare-and-swap can be used
to allow hardware threads accessing concurrent datasets. As such, IMDGs are often considered far
better optimized for a multi-core and multi-CPU world when compared to disk-based solutions. In
addition to greater concurrency, IMDGs offer far lower latency access to data (even when compared
to disk-based data grids using solid state drives).

The tradeoff is capacity. Disk-based grids, due to the far greater capacity of hard disks, exhibit two
(or even three) orders of magnitude greater capacity for the same hardware cost.

12

http://en.wikipedia.org/wiki/Software_transactional_memory
http://en.wikipedia.org/wiki/Compare-and-swap
http://en.wikipedia.org/wiki/Solid-state_drive

Chapter 12. Isolation level
Isolation is a property that defines how/when the changes made by one operation become visible to
other concurrent operations. Isolation is one of the ACID properties.

Infinispan ships with REPEATABLE_READ and READ_COMMITTED isolation levels, the latter being
the default.

13

Chapter 13. JTA synchronization
A Synchronization is a listener which receives events relating to the transaction lifecycle. A
Synchronization implementor receives two events, before completion and after completion .
Synchronizations are useful when certain activities are required in the case of a transaction
completion; a common usage for a Synchronization is to flush an application’s caches.

14

https://docs.oracle.com/javaee/7/api/javax/transaction/Synchronization.html

Chapter 14. Livelock
A livelock is similar to a deadlock, except that the states of the processes involved in the livelock
constantly change with regard to one another, none progressing.

A real-world example of livelock occurs when two people meet in a narrow corridor, and each tries
to be polite by moving aside to let the other pass, but they end up swaying from side to side without
making any progress because they both repeatedly move the same way at the same time.

15

Chapter 15. Memcached
Memcached is an in-memory caching system, often used to speed-up database-driven websites.
Memcached also defines a text based, client/server, caching protocol, known as the Memcached
protocol Infinispan offers a server which speaks the Memcached protocol, allowing Memcached
itself to be replaced by Infinispan. Thanks to Infinispan’s clustering capabilities, it can offer data
failover capabilities not present in original Memcached systems.

More resources

• Infinispan’s Memcached Server

• The memcached website

16

../user_guide/user_guide.html#using_infinispan_memcached_server
http://memcached.org

Chapter 16. Multiversion Concurrency
Control (MVCC)
Multiversion concurrency control is a concurrency control method commonly used by database
management systems to provide concurrent access to the database and in programming languages
to implement transactional memory.

More resources

• Wikipedia

17

http://en.wikipedia.org/wiki/Multiversion_concurrency_control

Chapter 17. Near Cache
A technique for caching data in the client when communicating with a remote cache, for example,
over the Hot Rod protocol. This technique helps minimize remote calls to retrieve data.

18

Chapter 18. Network partition
Network partitions happens when multiple parts of a cluster become separated due to some type of
network failure, whether permanent or temporary. Often temporary failures heal spontaneously,
within a few seconds or at most minutes, but the damage that can occur during a network partition
can lead to inconsistent data. Closely tied to Brewer’s CAP theorem, distributed systems choose to
deal with a network partition by either sacrificing availability (either by shutting down or going
into read-only mode) or consistency by allowing concurrent and divergent updates to the same
data.

Network partitions are also commonly known as a Split Brain, after the biological condition of the
same name.

For more detailed discussion, see this blog post.

19

http://en.wikipedia.org/wiki/CAP_theorem
http://codahale.com/you-cant-sacrifice-partition-tolerance/

Chapter 19. NoSQL
A NoSQL database provides a mechanism for storage and retrieval of data that employs less
constrained consistency models than traditional relational databases. Motivations for this approach
include simplicity of design, horizontal scaling and finer control over availability. NoSQL databases
are often highly optimized key–value stores intended for simple retrieval and appending
operations, with the goal being significant performance benefits in terms of latency and
throughput. NoSQL databases are finding significant and growing industry use in big data and real-
time web applications.

20

Chapter 20. Optimistic locking
Optimistic locking is a concurrency control method that assumes that multiple transactions can
complete without affecting each other, and that therefore transactions can proceed without locking
the data resources that they affect. Before committing, each transaction verifies that no other
transaction has modified its data. If the check reveals conflicting modifications, the committing
transaction rolls back.

21

Chapter 21. Pessimistic locking
A lock is used when multiple threads need to access data concurrently. This prevents data from
being corrupted or invalidated when multiple threads try to modify the same item of data. Any
single thread can only modify data to which it has applied a lock that gives them exclusive access to
the record until the lock is released. However, pessimistic locking isn’t ideal from a throughput
perspective, as locking is expensive and serializing writes may not be desired. Optimistic locking is
often seen as a preferred alternative in many cases.

22

Chapter 22. READ COMMITTED
READ_COMMITTED is one of two isolation levels the Infinispan’s locking infrastructure provides
(the other is REPEATABLE_READ). Isolation levels have their origins in relational databases.

In Infinispan, READ_COMMITTED works slightly differently to databases. READ_COMMITTED says
that "data can be read as long as there is no write", however in Infinispan, reads can happen
anytime thanks to MVCC. MVCC allows writes to happen on copies of data, rather than on the data
itself. Thus, even in the presence of a write, reads can still occur, and all read operations in
Infinispan are non-blocking (resulting in increased performance for the end user). On the other
hand, write operations are exclusive in Infinispan, (and so work the same way as
READ_COMMITTED does in a database).

With READ_COMMITTED, multiple reads of the same key within a transaction can return different
results, and this phenomenon is known as non-repeatable reads. This issue is avoided with
REPETEABLE_READ isolation level.

By default, Infinispan uses READ_COMMITTED as isolation level.

23

http://en.wikipedia.org/wiki/Isolation_level#READ_COMMITTED
http://en.wikipedia.org/wiki/Isolation_level#Non-repeatable_reads

Chapter 23. Relational Database
Management System (RDBMS)
A relational database management system (RDBMS) is a database management system that is
based on the relational model. Many popular databases currently in use are based on the relational
database model.

24

Chapter 24. REPEATABLE READ
REPEATABLE_READ is one of two isolation levels the Infinispan’s locking infrastructure provides
(the other is READ_COMMITTED). Isolation levels have their origins in relational databases.

In Infinispan, REPEATABLE_READ works slightly differently to databases. REPEATABLE_READ says
that "data can be read as long as there are no writes, and vice versa". This avoids the non-
repeatable reads phenomenon, because once data has been written, no other transaction can read
it, so there’s no chance of re-reading the data and finding different data.

Some definitions of REPEATABLE_READ say that this isolation level places shared locks on read
data; such lock could not be acquired when the entry is being written. However, Infinispan has an
MVCC concurrency model that allows it to have non-blocking reads. Infinispan provides
REPEATABLE_READ semantics by keeping the previous value whenever an entry is modified. This
allows Infinispan to retrieve the previous value if a second read happens within the same
transaction, but it allows following phenomena:

cache.get("A") // returns 1
cache.get("B") // returns 1

Thread1: tx1.begin()
Thread1: cache.put("A", 2)
Thread1: cache.put("B", 2)
Thread2: tx2.begin()
Thread2: cache.get("A") // returns 1
Thread1: tx1.commit()
Thread2: cache.get("B") // returns 2
Thread2: tx2.commit()

25

http://en.wikipedia.org/wiki/Isolation_level#REPEATABLE_READ
http://en.wikipedia.org/wiki/Isolation_level#Non-repeatable_reads
http://en.wikipedia.org/wiki/Isolation_level#Non-repeatable_reads

Chapter 25. Representational State Transfer
(ReST)
ReST is a software architectural style that promotes accessing resources via a uniform generic
interface. HTTP is an implementation of this architecture, and generally when ReST is mentioned, it
refers to ReST over HTTP protocol. When HTTP is used, the uniform generic interface for accessing
resources is formed of GET, PUT, POST, DELETE and HEAD operations.

Infinispan’s ReST server offers a ReSTful API based on these HTTP methods, and allow data to be
stored, retrieved and deleted.

More resources

• The Infinispan REST Server

26

../user_guide/user_guide.html#infinispan_rest_server

Chapter 26. Split brain
A colloquial term for a network partition. See network partition for more details.

27

Chapter 27. Structured Query Language
(SQL)
SQL is a special-purpose programming language designed for managing data held in a relational
database management system (RDBMS). Originally based upon relational algebra and tuple
relational calculus, SQL consists of a data definition language and a data manipulation language.
The scope of SQL includes data insert, query, update and delete, schema creation and modification,
and data access control.

28

Chapter 28. Write-behind
Write-behind is a cache store update mode. When this mode is used, updates to the cache are
asynchronously written to the cache store. Normally this means that updates to the cache store are
not performed in the client thread.

An alternative cache store update mode is write-through.

More resources

• Infinispan User guide

29

../user_guide/user_guide.html#write_through_and_write_behind_caching

Chapter 29. Write skew
In a write skew anomaly, two transactions (T1 and T2) concurrently read an overlapping data set
(e.g. values V1 and V2), concurrently make disjoint updates (e.g. T1 updates V1, T2 updates V2), and
finally concurrently commit, neither having seen the update performed by the other. Were the
system serializable, such an anomaly would be impossible, as either T1 or T2 would have to occur
"first", and be visible to the other. In contrast, snapshot isolation such as REPEATABLE_READ and
READ_COMMITTED permits write skew anomalies.

Infinispan can detect write skews and can be configured to roll back transactions when write skews
are detected.

30

Chapter 30. Write-through
Write-through is a cache store update mode. When this mode is used, clients update a cache entry,
e.g. via a Cache.put() invocation, the call will not return until Infinispan has updated the underlying
cache store. Normally this means that updates to the cache store are done in the client thread.

An alternative mode in which cache stores can be updated is write-behind.

More resources

• Infinispan User guide

31

../user_guide/user_guide.html#write_through_and_write_behind_caching

Chapter 31. XA resource
An XA resource is a participant in an XA transaction (also known as a distributed transaction). For
example, given a distributed transaction that operates over a database and Infinispan, XA defines
both Infinispan and the database as XA resources.

Java’s API for XA transactions is JTA and XAResource is the Java interface that describes an XA
resource.

32

http://en.wikipedia.org/wiki/X/Open_XA
http://en.wikipedia.org/wiki/Java_Transaction_API
https://docs.oracle.com/javase/8/docs/api/javax/transaction/xa/XAResource.html

	Infinispan 9.1 Glossary
	Table of Contents
	Chapter 1. 2-phase commit
	Chapter 2. Atomicity, Consistency, Isolation, Durability (ACID)
	Chapter 3. Basically Available, Soft-state, Eventually-consistent (BASE)
	Chapter 4. Consistency, Availability and Partition-tolerance (CAP) Theorem
	Chapter 5. Consistent Hash
	Chapter 6. Data grid
	Chapter 7. Deadlock
	Chapter 8. Distributed Hash Table (DHT)
	Chapter 9. Externalizer
	Chapter 10. Hot Rod
	Chapter 11. In-memory data grid
	Chapter 12. Isolation level
	Chapter 13. JTA synchronization
	Chapter 14. Livelock
	Chapter 15. Memcached
	Chapter 16. Multiversion Concurrency Control (MVCC)
	Chapter 17. Near Cache
	Chapter 18. Network partition
	Chapter 19. NoSQL
	Chapter 20. Optimistic locking
	Chapter 21. Pessimistic locking
	Chapter 22. READ COMMITTED
	Chapter 23. Relational Database Management System (RDBMS)
	Chapter 24. REPEATABLE READ
	Chapter 25. Representational State Transfer (ReST)
	Chapter 26. Split brain
	Chapter 27. Structured Query Language (SQL)
	Chapter 28. Write-behind
	Chapter 29. Write skew
	Chapter 30. Write-through
	Chapter 31. XA resource

