JBoss AS 6.0 WebServices Guide

WebServices with JBoss
Application Server 6

by Alessio Soldano, Richard Opalka, and Jim Ma

. WEDSEIVICES OVEIVIEW ...viieiiiiiee ettt ettt e e e e e e e et e e et e et et e et et et aaeeaees 1

1. IBOSSWS-WEDSEIVICES ...iitiieiieeiiie ettt e e e e e eeenas 3
1.1. What iS @ WED SEIVICE? ...niiiiiie i 3

1.2. WhO needs WED SEIVICES?oiiuiiiiiieii et e 3

1.3. Service Oriented Architecture (SOA)covuiiiiiii e 4

1.4. What web Services are NOt...oieeiiiiiie e 4

2. JBossWS-FromconceptstotechNology ...ooveviiiiicii e 7
A 1= oV o T o] 1= od £ 7
2.1.1. Technical deSCrPLiONceiiiiiiiie e e 7

2.1.2. Contract deliVery PrOCESSuuiiiiiiiiieiiiii et 7

2.2. MESSAQE EXCHANGE ...uiiiiii i 8

2.3, REQISIIES .ot 8

2.4, Future Of WED SErVICESooeviiiiiiiii e 8

A T B U {1 (=7 g o] = 9

[I. Main DOCUMENTALION ...ceeuiiiiiiiii et e e et e e et e e e et e e e e et e e e e et eas 11
3. JIBOSSWS-QUICKSEANT .. e e e e e 13
3. L. RIGNE 0N o 13

3.2. Developing web service implementationsccoovveiiiiiieiiiin e 13
3.2.1. Deploying service implementationscccoeevviiieiiieeiiiiecieeee e, 15

3.3. CONSUMING WED SEIVICESciiiiiiieiiiiie ettt 16

G AN o] =Y T [G 19
3.4.1. ProfilleMgmtService.Wsdlccoouuiiiiiiiiieiii e 19

4, IBOSSWS-USEIGUITE ...ouuiiiiiiiii ittt e et e e e 21
4.1, ComMMON USEI GUITE ..oevniiieeeiee it e e e e e e eeen 21
4.1.1. Web Service CONCEPLS ...ccuuiiiiiieii et 21

4.1.2. Web Service ENAPOINtSuviiiiiiiiiiiiiieceii e 25

4.1.3. Web Service ClENEScoouuiieiiiieeee e 29

4.1.4. ComMMON AP Lo 36

T e To OO 41

4.1.6. CONFIQUIALTION ..uuiiiiii et 42

5. JBOSSWS-StaCKCXFUSEIGUITEuuiiiiiiiiieeiiiii et 45
5.1. JBOSSWS CXF INtEQrationieiiiiiiiiiiiiiieieiii e 45
5.1.1. Creating @ BUS INSLANCEccuuiiiiiiiiiiece e 45

5.1.2. Server Side Integration CustomMizationccoveeeevvieieiiiiieeeiiineeens 46

5.2, EXtENded FEALUIESiiiiiii it e e e 47
5.2.1. WS-AAIESSING ... oeeeeiiieeiiiiiee ettt 48

5.2.2. WS-ReliableMESSAQINGuvivnieiiiiiiii e e e eae e 48

5.2.3. WS-POIICY ovviiiiiii ettt 48

5,204, WS-SECUIMLY ittt e e e s 49

5.2.5. IMS tranSPOItveriieiiie et 60

5.3. HTTP server transport SEIUPovuiiiiiiiee e enas 60

5.4. SOAP MeSSage LOGGING ..eevvuureiiitineiiiii ettt ettt e e e e 61

6. JBOSSWS-JAX-WSTOOIS ..euiiiiiiiiiiiiii e e e 63
6.1, SEIVEI SIUE oeniiiii it 63

JBoss AS 6.0 WebServices Guide

6.1.1. Bottom-Up (USIiNg WSPIOVIAE)uuiiiiiiiiiiieiiiieeiii e e e e 63

6.1.2. Top-Down (USIiNG WSCONSUME)uuneiirrineieiiiaeeeiiieeeeniineeeeniineeeennnns 66

L 2 O 11T | S Lo [P 67

6.3. Command-line, Maven Plugin and Ant Task Referenceccccooeeevinnnnnen. 70

6.4. JAX-WS binding CUStOMIZAtiONcccvuiiiiiieiiiiece e e 71

7. JBOSSWS-WSCONSUIMIE .ottt e e e et e e et e e e e e e e e e e eaaenaes 73
7.1. Command LiNe TOOIuuuiiiiiii e 73

7. 1.1 EXBMPLES ..o 73

2 - V=T = 11 o 1o P 74
7.2.1. EXABMPIES ..ot e 75

7.3 ANE TASK et 77
7.3.1. EXBMPIES ..ot 78

7.4. Related INfOrmationcovoiiiiiiii e 78

8. JBOSSWS-WSPIOVIAE ..ottt e e 79
8.1. CommaNnd LiNe TOOIuuuiiiiiiiiii e 79
8.1.1. EXAMPIES ..ot 79

8.2. MAVEN PIUQGIN ... 79
8.2.1. EXAMPIES ..ot 80

8.3, ANE TASK it 81
8.3.1. EXAMPIES ..ot 82

9. JBOSSWS-WSTUNCHENT .ot 85
0.0, USBOE oieiiiiiiieie ettt e 85

0.2, EXAMPIES it 85

. Additional dOCUMENTALIONiieiiiii e e e e e e e e e ean e 87
10. JBOSSWS-AULNENTICALION .uuiiiiiiiiiiee e 89
10.1. Define the security dOMAINuuiiiiiiiiieii e 89
10.2. Use BindingProvider to set principal/credentialc.cccoveviiiiiiiiieinnnn, 90
10.3. Using HTTP Basic Auth fOr SECUILYoveiiiiiiiiiiiiiieiiii e 91

11, JBOSSWS-SECUIBIIANSPOIT ettt 93
0 R 1= o] T [PP 94

12. JBOSSWS-Endpointmanagementcccuiiiiiiiiiiicei e ee e e e e e 97
12.1. Getting the iNfOrMationcoouuiiiiiiii e 97
2 | =Y 1 o~ PSP 97
2 B =T o o o £ PSP 98
12.4. Snapshots and threshold MOoNItorscooovviiiiiiiiii e 98

13. JBOSSWS-Recordsmanagementcoouuiiiiiiiieiiiiie et 99
R I VLY o - L T =Tt o [=To PP 99
13,2, USE CABSES ..iieuiiiiii ettt ettt e e et ettt e eas 99
13.3. How it works and how t0 USE itoviiiiiiiiii e 100
13.3.1. SEIVEE SIAE et 100

13.3.2. ClENt SIE .vvuiiiiii e 102

13.4. Advanced NiNtS ... 102
13.4.1. Adding CUSIOM FECOFAEIS ...ovvuiiiiieeeiieei e e e 102

13.4.2. Handler's POSItIONveiiiiiieiiiii e 103

13.4.3. Multiple handlers ..o 103

13.5. FULUIE EXIENSIONSuiiei ettt e e e e e e e et e eeanaeees 103
13.5.1. Database rECOIUENc.cuvririiiiieeeieieieiee et 103

13.5.2. CUSLOM 10Q WIIET ..vuiiiiiiiiei ittt 103

13.6. REFEIEINCES ...uuiiiiiiiiieet e 104

V. SAMPIES & TULOTIAUS ...ttt e e 105
14. JBossWS-CXFWS-Addressingtutorialc.ccoviiiiiiiiiiii e 107
I I L= BT Vo T 107
14.2. Generating WSDL and JAX-WS Endpoint Artifactsccooeevvieeennnn, 108
14.3. Writing Regular JAX-WS Clientccoouiiiiiiiiii e 110
14.4. Turning on WS-AdAresSing 1.0ccouuiiiiiiiiiiiieie e e e e e 111
14.4.1. Updating Endpoint Code to Configure WS-Addressing 111

14.4.2. Updating Client Code to Configure WS-Addressingc........ 111

14.4.3. Leveraging WS-Addressing POICYccovvviiiiiiiiiiiiiiiieeccin 112

14.5. SAMPIE SOUICES ...covuiiiiiieii et e e e e et e et e e e e aaeee 113

15. JBossWS-CXFWS-ReliableMessagingtutorialcccooveviiiiiiiiiiiiniiiii e, 115
15.1. THE SEIVICE .oiiiiiiii ittt et e e enenees 115
15.2. Generating WSDL and JAX-WS Endpoint Artifactsccccooevvviniiiinnnnnn. 116
15.3. Generating JAX-WS Client Artifactscccocoieiiiiiiiiicie e 118
15.4. Writing Regular JAX-WS Clientccoouiiiiiiii e 119
15.5. TUurning on WS-RM 1.0 ...oouniiiiiiii e e e e 120
15.5.1. Extending WSDL Using WS-POIlICYccccovviiiiiiiiiiiiiicceiieeees 120

15.5.2. Basic WS-RM configurationccccoiieiiineiiiiicie e, 122

15.5.3. Advanced WS-RM configurationc.c.oeeeeviiiiiiiiineciiiieeeeiie, 122

15.6. SAMPIE SOUICES ...covuiiiiieii ettt e e e e e e e e e e e aaeee 124

16. JBOSSWS-CXFIMStransporttutorialcoooveeiiiiiiiiiiieii e 125
LB. 1. WSDL ittt et 125
16.2. Service Implementationcooooieiiiiiiii e 127
16.3. WEDXIMI e 128
16.4. JhOSSWS-CXEXMI ..t 129

17. IBOSSWS-JAX-WSANNOTAIONS ..ccoiiiiiiiiiiiieeeeieeei e 131
17.1. JAX-WS ANNOLALIONS ...eetniiiiiieeie e eeen e 131
17.1.1. javax.Xml.ws.ServiceMOdEcoceuiiiiiiiiiiieeie e 131

17.1.2. javax.xmlws.WebFaultccoooiiiiii 131

17.1.3. javax.Xml.ws.ReqUESIWIAPPET ...cccvueiiiieiieeeii et eeie e e e e eaes 131

17.1.4. javax.Xxml.wS.ReSPONSEWIEPPETccouvuniiiiiiiieieiiiie et 131

17.1.5. javax.xml.ws.WebServiceClientcocceiveiiiiiiiiieiie e, 132

17.1.6. javax.xml.ws.WebENndpoint ... 132

17.1.7. javax.xml.ws.WebServiceProviderccoovviiiiiiieiiiieciieeeieees 132

17.1.8. javax.xmlL.ws.BindingTYPE ...coovuiiiiiiiieii e 132

17.1.9. javax.xml.ws.WebServiceRefccccoii i, 132

17.1.10. javax.xml.ws.WebServiCeREfScccooiiiiiiiiiiii e, 133

17.1.11. javaxX.XMLWS.ACHON ... 133

17.1.12. javax.XmLwS.FaultACtIONccoiiiiiiiiic e 133

JBoss AS 6.0 WebServices Guide

17.1.13. Annotations Defined by JSR-181

vi

Part I. WebServices Overview

Chapter 1.

JBossWS-WebServices

The Internet features a lot of pages about web services. They describe what web services are,
how they work, which kind of technology is most suitable for their development and so on. This
page's aim is not to provide another web service definition. We will instead highlight some key
concepts about Web services and what they're useful for right now.

1.1. What is a web service?

A Web service is a software system designed to support interoperable machine-to-machine
interaction over a network. It has an interface described in a machine-processable format
(specifically WSDL). Other systems interact with the Web service in a manner prescribed by its
description using SOAP messages, typically conveyed using HTTP with an XML serialization in
conjunction with other Web-related standards.

From W3C Web Services Architecture [1] [http://www.w3.0rg/TR/2004/NOTE-ws-arch-20040211]

Technical details will be later explained in the documentation. What comes out is that web services
provide a standard means of interoperating between different software applications. Each of these
applications may run on a variety of platforms and/or frameworks providing a set of functionalities.
The main concern is about interoperability between services.

« A service provider publishes a service contract that exposes the public functions (operations)
it is able to perform and thus service consumers can use.

« Both service providers and service consumers features concrete softwares that send and
receive messages according to the informations contained in the service contract they agreed
before the communication.

» Basic Web services specifications define the standard way of publishing a service contract and
communicating.

» Web services stacks (like JBossWS) conform to these specifications providing software layers
to developers who want to either implement a service provider or service consumer. This way
they almost only need to develop their own business logic in their preferred way, without dealing
with the low-level details of message exchanges and so on.

1.2. Who needs web services?

Enterprise systems communication may benefit from a wise adoption of WS technologies.
Exposing well designed contracts allows developers to extract an abstract view of their
service capabilities. Considering the standardized way contracts are written, this definitely

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211

Chapter 1. JBossWS-WebServices

helps communication with third-party systems and eventually support business-to-business
integration. No more agreement required on vendor specific implementation details, home-brew
communication protocol or custom per-customer settings. Everything is clear and standardized in
the contract the provider and consumer agree on. Of course this also reduces the dependencies
between implementations allowing other consumers to easily use the provided service without
major changes.

Enterprise system may benefit from web service technologies also for internal heterogenous
subsystems communication. As a matter of fact their interoperability boosts service reuse and
composition. No more need to rewrite whole functionalities only because they were developed by
another enterprise department using another software language.

1.3. Service Oriented Architecture (SOA)

In case you think you already heard something like this... yes, those in previous paragraph
are some of the principles Service Oriented Architecture [http://en.wikipedia.org/wiki/Service-
oriented_architecture] is based on.

Transforming an enterprise business to Service Oriented Architecture includes obtaining
standardized service contract, service reusability, service abstraction, service loose coupling,
service composability and so on.

Of course SOA is an architectural model agnostic to technology platforms and every enterprise
can pursue the strategic goals associated with service-oriented computing using different
technologies. However in the current marketplace, Web Services are probably the technology
platform that better suits SOA principles and are most used to get to this architecture.

1.4. What web services are not...

Needless to say that web services are not the solution for every software system communication.

Nowadays they are meant to be used for loosely-coupled coarse-grained communication, for
message (document) exchange. Moreover during the last years a lot of specifications (WS-
* [http://community.jboss.org/docs/DOC-13554#Future_of Web_Services]) were discussed and
finally approved to standardize ws-related advanced aspects including reliable messaging,
message-level security, cross-service transactions, etc. Finally web service specifications also

http://en.wikipedia.org/wiki/Service-oriented_architecture
http://en.wikipedia.org/wiki/Service-oriented_architecture
http://en.wikipedia.org/wiki/Service-oriented_architecture
http://community.jboss.org/docs/DOC-13554#Future_of_Web_Services
http://community.jboss.org/docs/DOC-13554#Future_of_Web_Services
http://community.jboss.org/docs/DOC-13554#Future_of_Web_Services

What web services are not...

include notion of registries to collect service contract references, to easily discover service
implementations, etc.

This all means that the web services technology platform suits complex enterprise communication
and is not simply the latest way of doing remote procedure calls.

Chapter 2.

JBOSSWS-
Fromconceptstotechnology

This pages is meant to be something like a bridge from the very high level web service concepts
highlighted here and the most important specifications the web service technology platform is
based on.

2.1. Service contracts

Contracts carry technical constraints and requirements of the exposed service as well as
information about data to be exchange to interact with the service. They comprise technical
descriptions and optional non-technical documents. The latter might include human readable
description of the service and the business process it is part of as well as service level agreement
/ quality of provided service information.

2.1.1. Technical description

Service description is mainly provided using the standard Web Service Description Language
(WsSDL) [http://www.w3.0rg/TR/wsdl]. Practically speaking this means one or more XML files
containing information including the service location (endpoint address), the service functionalities
(operations), the input/output messages involved in the communication and the business data
structure. The latter is basically one or more XML Schema definition [http://www.w3.0rg/TR/
xmlschema-0/]. Moreover recent specifications (like WS-Policy [http://schemas.xmlsoap.org/ws/
2004/09/policy/]) allow for more advanced service capabilities to be stated in the contract through
WSDL extensions.

Web service stacks like JBossWS usually have tools to both generate and consume technical
contracts. This helps ensuring also from a practical point of view that owners of service producer
(server) and consumer (client) only need contracts to establish the communication.

2.1.2. Contract delivery process

One of the main concerns about service contracts is the way they're obtained.

As previously said, tools allow developers to automatically generate WSDL contract files given
their service implementation. Advantages and disadvantage of this delivery process include:

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://schemas.xmlsoap.org/ws/2004/09/policy/
http://schemas.xmlsoap.org/ws/2004/09/policy/
http://schemas.xmlsoap.org/ws/2004/09/policy/

Chapter 2. JBossWS-Fromconcep...

« Developers do not have to deal with contracts by hand thus deep knowledge of WSDL and
XML is not required.

« Less effort and time required for services to be developed and go live to production environment.

» Contracts usually need frequent maintenance, refactoring and versioning.

Developers may write contracts first instead. This usually implies an initial collaboration of
architects and business analysts to define a conceptual service design together.

» Services with contracts obtained this way may easily cooperate in a service oriented architecture
« More effort and time required for web service project start-up
» Deep knowledge of WSDL and related technology required

» Contracts tend to have longer lifespans and usually require less maintenance.

2.2. Message exchange

As stated by the W3C definition [http://www.w3.0rg/TR/2004/NOTE-ws-arch-20040211/#whatis],
the communication between web services is standardized by the SOAP [http://www.w3.0rg/TR/
soap/] specification. This means XML messages flow from the provider and consumer endpoints.

Messages' content is described in the wsdl contract. The WSDL file also states the transport
protocol to be used for the transmission; the most common one is of course HTTP, however JMS,
SMTP and other ones are allowed.

2.3. Registries

TODO

2.4. Future of Web Services

The above mentioned specifications are quite common nowadays in the IT industry and many
enterprise have been using them since years.

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#whatis
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#whatis
http://www.w3.org/TR/soap/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/soap/

References

However a real added value to the web service platform is coming from a lot of
recent additional specifications. These cover features that are really relevant to deliver
mission critical enterprise services. For example some of the most important agreements
major vendors came to are those on security (WS-Security [http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=wss]) and reliable messaging (WS-Reliable Messaging
[http://www.0asis-open.org/committees/tc_home.php?wg_abbrev=ws-rx]).

Unfortunately the web service platform is still being defined and many other specifications have
not been implemented by all vendors yet. It is nevertheless important to know from a web service
beginner point of view that many advanced features are actually supported and thus make possible
to cope with many real world enterprise level issues. Moreover the platform is being continuously
enriched and standardized.

2.5. References

Further knowledge is of course required to better understand the web service technology platform.
This however goes beyond the aim of this web service introduction. The highlighted concepts and
references above should nevertheless allow developers with no previous exposure to web service
technology to go through the core of JBossWS documentation [http://community.jboss.org/docs/
DOC-13504].

A rich list of specifications and articles can be found here and should be used to acquire deeper
knowledge. Moreover the whole documentation refers to authoritative third-party documentation
and official specifications whenever required.

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-rx
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-rx
http://community.jboss.org/docs/DOC-13504
http://community.jboss.org/docs/DOC-13504
http://community.jboss.org/docs/DOC-13504

10

Part Il. Main Documentation

JBoss Application Server 6.0 comes with JBossWS-CXF already installed. JBossWS-CXF is
basically the JBoss Web Service integration with Apache CXF stack. This way additional JBoss
features and customizations are added on top of already existing Apache CXF functionalities.
In particular the integration provides technologies for allowing the application server to support
JavaEE requirements in terms of Web Services functionalities.

Below you find the essential documentation on JBossWS - CXF coming with JBoss AS 6. That
covers a quick start, a full user guide and tooling.

Chapter 3.

JBossWS-QuickStart

3.1. Right on’

JBossWS uses the JBoss application server as its target container. The following examples
focus on web service deployments that leverage EJB3 service implementations and the JAX-WS
programming models. For further information on POJO service implementations and advanced
topics you need consult the user guide.

In the following sections we will explore the samples that ship with the JBossWS distribution. They
provide a build structure based on Ant to get you started quickly.

3.2. Developing web service implementations

JAX-WS does leverage JDK 5 annotations [http://java.sun.com/j2se/1.5.0/docs/guide/language/
annotations.html] in order to express web service meta data on Java components and to describe
the mapping between Java data types and XML. When developing web service implementations
you need to decide whether you are going start with an abstract contract (WSDL [http://
www.w3.0org/TR/wsdl]) or a Java component.

If you are in charge to provide the service implementation, then you are probably going to start with
the implementation and derive the abstract contract from it. You are probably not even getting in
touch with the WSDL unless you hand it to 3rd party clients. For this reason we are going to look at
a service implementation that leverages JSR-181 annotations [http://jcp.org/en/jsr/detail?id=181].

Note

Note

Even though detailed knowledge of web service meta data is not required, it will
definitely help if you make yourself familiar with it. For further information see

. [http://jcp.org/en/jsr/detail?id=181]

. [http://java.sun.com/webservices/jaxb/]

When starting from Java you must provide the service implementation. A valid endpoint
implementation class must meet the following requirements:

e It must carry aj avax. j ws. WebSer vi ce annotation (see JSR 181)

« All method parameters and return types must be compatible with the JAXB 2.0

13

http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html
http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html
http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=181
http://java.sun.com/webservices/jaxb/
http://java.sun.com/webservices/jaxb/

Chapter 3. JBossWS-QuickStart

Let's look at a sample EJB3 component that is going to be exposed as a web service. (This is
based on the Retail example).

Don't be confused with the EJB3 annotation @t at el ess. We concentrate on the @¥bSer vi ce
annotation for now.

The service implementation class

1. We are using a stateless session bean implementation
2. Exposed a web service with an explicit namespace

3. It's a doc/lit bare endpoint

4. And offers an 'getCustomerDiscount’ operation

What about the payload?

The method parameters and return values are going to represent our XML payload and
thus require being compatible with JAXB2 [http://java.sun.com/webservices/jaxb/]. Actually you
wouldn't need any JAXB annotations for this particular example, because JAXB relies on
meaningful defaults. For the sake of documentation we put the more important ones here.

Take a look at the request parameter:

http://java.sun.com/webservices/jaxb/
http://java.sun.com/webservices/jaxb/

Deploying service implementations

1. In this case we use @nl Type to specify an XML complex type name and override the
namespace.

3.2.1. Deploying service implementations

Service deployment basically depends on the implementation type. As you may already know
web services can be implemented as EJB3 components or plain old Java objects. This quick start

leverages EJB3 components in all examples, thats why we are going to look at this case in the
next sections.

EJB3 services

15

Chapter 3. JIBossWS-QuickStart

Simply wrap up the service implementation class, the endpoint interface and any custom data
types in a JAR and drop them in the depl oy directory. No additional deployment descriptors
required. Any meta data required for the deployment of the actual web service is taken from the
annotations provided on the implementation class and the service endpoint interface. JBossWS
will intercept that EJB3 deployment (the bean will also be there) and create an HTTP endpoint
at deploy-time:

The JAR package structure

Note

Note

If the deployment was successful you should be able to see your endpoint at

3.3. Consuming web services

When creating web service clients you would usually start from the WSDL. JBossWS ships with
a set of tools to generate the required JAX-WS artefacts to build client implementations. In the
following section we will look at the most basic usage patterns. For a more detailed introductoin to
web service client please consult the user guide [http://community.jboss.org/docs/DOC-13972].

Using wsconsume

The wsconsume tool is used to consume the abstract contract (WSDL) and produce annotated
Java classes (and optionally sources) that define it. We are going to start with the WSDL from

16

http://localhost:8080/jbossws/services
http://localhost:8080/jbossws/services
http://community.jboss.org/docs/DOC-13972
http://community.jboss.org/docs/DOC-13972

Consuming web services

our retail example (ProfileMgmtService.wsdl). For a detailed tool reference you need to consult
the user guide.

Let's try it on our retail sample:

1. Asyou can see we did use the - p switch to specify the package name of the generated sources.

The generated artifacts explained

ProfileMgmt.java Service Endpoint Interface
Customer.java Custom data type
Discount*.java Custom data type
ObjectFactory.java JAXB XML Registry

Chapter 3. JBossWS-QuickStart

Purpose
package-info.java ‘ Holder for JAXB package annotations
ProfileMgmtService.java ‘ Service factory

Basically wsconsume generates all custom data types (JAXB annotated classes), the service
endpoint interface and a service factory class. We will look at how these artifacts can be used the
build web service client implementations in the next section.

Constructing a service stub

Web service clients make use of a service stubs that hide the details of a remote web service
invocation. To a client application a WS invocation just looks like an invocation of any other
business component. In this case the service endpoint interface acts as the business interface.
JAX-WS does use a service factory class to construct this as particular service stub:

1. Create a service factory using the WSDL location and the service name

2. Use the tool created service endpoint interface to build the service stub

3. Use the stub like any other business interface

Note

Note

The creation of the service stub is quite costly. You should take care that it
gets reused by your application code (However it's not thread safe). Within a
EES5 environment you might want to investigate the @\bSer vi ceRef functionality.

18

Appendix

3.4. Appendix

3.4.1. ProfileMgmtService.wsdl

http://org.jboss.ws/samples/retail/profile
http://schemas.xmlsoap.org/wsdl/
http://org.jboss.ws/samples/retail
http://schemas.xmlsoap.org/wsdl/soap/
http://org.jboss.ws/samples/retail/profile
http://www.w3.org/2001/XMLSchema
http://org.jboss.ws/samples/retail
http://www.w3.org/2001/XMLSchema
http://org.jboss.ws/samples/retail/profile
http://org.jboss.ws/samples/retail
http://org.jboss.ws/samples/retail/profile
http://www.w3.org/2001/XMLSchema
http://org.jboss.ws/samples/retail'/

Chapter 3. JBossWS-QuickStart

http://schemas.xmlsoap.org/soap/http'/
http://

Chapter 4.

JBossWS-UserGuide

4.1. Common User Guide

Here below is the documentation that applies to all the JBossWS stack versions, hence including
JBossWS-CXF. This includes basic JAX-WS usage as well as references to common additional
functionalities the JBossWS Web Service Framework provides on top of the CXF stack.

4.1.1. Web Service Concepts

4.1.1.1. Document/Literal

With document style web services two business partners agree on the exchange of complex
business documents that are well defined in XML schema. For example, one party sends a
document describing a purchase order, the other responds (immediately or later) with a document
that describes the status of the purchase order. No need to agree on such low level details as
operation names and their associated parameters.

The payload of the SOAP message is an XML document that can be validated against XML
schema.

Document is defined by the style attribute on the SOAP binding.

With document style web services the payload of every message is defined by a complex type
in XML schema.

http://schemas.xmlsoap.org/soap/http'/

Chapter 4. JBossWS-UserGuide

Therefore, message parts must refer to an element from the schema.

The following message definition is invalid.

4.1.1.1.1. Document/Literal (Bare)

Bare is an implementation detail from the Java domain. Neither in the abstract contract (i.e.
wsdl+schema) nor at the SOAP message level is a bare endpoint recognizable.

A bare endpoint or client uses a Java bean that represents the entire document payload.

The trick is that the Java beans representing the payload contain JAXB annotations that define
how the payload is represented on the wire.

N

2

http://soapbinding.samples.jaxws.ws.test.jboss.org/
http://soapbinding.samples.jaxws.ws.test.jboss.org/
http://soapbinding.samples.jaxws.ws.test.jboss.org/
http://soapbinding.samples.jaxws.ws.test.jboss.org/
http://soapbinding.samples.jaxws.ws.test.jboss.org/

Web Service Concepts

4.1.1.1.2. Document/Literal (Wrapped)

Wrapped is an implementation detail from the Java domain. Neither in the abstract contract (i.e.
wsdl+schema) nor at the SOAP message level is a wrapped endpoint recognizable.

A wrapped endpoint or client uses the individual document payload properties. Wrapped is the
default and does not have to be declared explicitly.

Note, that with JBossWS the request/response wrapper annotations are not required, they will
be generated on demand using sensible defaults.

4.1.1.2. RPC/Literal

With RPC there is a wrapper element that names the endpoint operation. Child elements of the
RPC parent are the individual parameters.

The SOAP body is constructed based on some simple rules:

* The port type operation name defines the endpoint method name
» Message parts are endpoint method parameters

RPC is defined by the style attribute on the SOAP binding.

http://schemas.xmlsoap.org/soap/http'/

Chapter 4. JBossWS-UserGuide

With rpc style web services the portType names the operation (i.e. the java method on the
endpoint)

Operation parameters are defined by individual message parts.

Note, there is no complex type in XML schema that could validate the entire SOAP message
payload.

The element names of RPC parameters/return values may be defined using the JAX-WS
WebParam and WebResult annotations respectively.

4.1.1.3. RPC/Encoded

SOAP encodeding style is defined by the infamous chapter 5 [http://www.w3.0rg/TR/2000/NOTE-
SOAP-20000508/# Toc478383512] of the SOAP-1.1 [http://www.w3.0rg/TR/2000/NOTE-SOAP-

N
~

http://org.jboss.ws/samples/jsr181pojo
http://org.jboss.ws/samples/jsr181pojo
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383512
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383512
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383512
http://www.w3.org/TR/2000/NOTE-SOAP-20000508
http://www.w3.org/TR/2000/NOTE-SOAP-20000508

Web Service Endpoints

20000508] specification. It has inherent interoperability issues that cannot be fixed. The Basic
Profile-1.0 [http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html] prohibits this encoding
style in 4.1.7 SOAP encodingStyle Attribute [http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-
04-16.html#refinement16448072].

JBossWS doesn't support rpc/encoded anymore.

4.1.2. Web Service Endpoints

JAX-WS simplifies the development model for a web service endpoint a great deal. In short, an
endpoint implementation bean is annotated with JAX-WS annotations and deployed to the server.
The server automatically generates and publishes the abstract contract (i.e. wsdl+schema) for
client consumption. All marshalling/unmarshalling is delegated to JAXB.

4.1.2.1. Plain old Java Object (POJO)

Let's take a look at simple POJO endpoint implementation. All endpoint associated metadata is
provided via JSR-181 annotations

The endpoint as a web application

A JAX-WS java service endpoint (JSE) is deployed as a web application.

http://www.w3.org/TR/2000/NOTE-SOAP-20000508
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html#refinement16448072
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html#refinement16448072
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html#refinement16448072

Chapter 4. JBossWS-UserGuide

Packaging the endpoint

A JSR-181 java service endpoint (JSE) is packaged as a web application in a *.war file.

Note, only the endpoint implementation bean and web.xml are required.
Accessing the generated WSDL

A successfully deployed service endpoint will show up in the service endpoint manager. This is
also where you find the links to the generated wsdl.

Note, it is also possible to generate the abstract contract off line using jbossw tools. For details
of that please see Bottom-Up (Java to WSDL)

4.1.2.2. EJB3 Stateless Session Bean (SLSB)

The JAX-WS programming model support the same set of annotations on EJB3 stateless session
beans as on Plain old Java Object (POJO) endpoints. EJB-2.1 endpoints are supported using the
JAX-RPC progamming model (with JBossWS-Native only).

N
»

Web Service Endpoints

Above you see an EJB-3.0 stateless session bean that exposes one method both on the remote
interface and on and as an endpoint operation.

Packaging the endpoint

A JSR-181 EJB service endpoint is packaged as an ordinary ejb deployment.

Accessing the generated WSDL

A successfully deployed service endpoint will show up in the service endpoint manager. This is
also where you find the links to the generated wsdl.

Note, it is also possible to generate the abstract contract off line using jbossw tools. For details
of that please see Bottom-Up (Java to WSDL)

4.1.2.3. Endpoint Provider

JAX-WS services typically implement a native Java service endpoint interface (SEl), perhaps
mapped from a WSDL port type, either directly or via the use of annotations.

Java SEls provide a high level Java-centric abstraction that hides the details of converting between
Java objects and their XML representations for use in XML-based messages. However, in some
cases it is desirable for services to be able to operate at the XML message level. The Provider
interface offers an alternative to SEls and may be implemented by services wishing to work at
the XML message level.

A Provider based service instances invoke method is called for each message received for the
service.

Chapter 4. JBossWS-UserGuide

Note, Service.Mode.PAYLOAD is the default and does not have to be declared explicitly. You can
also use Service.Mode.MESSAGE to access the entire SOAP message (i.e. with MESSAGE the
Provider can also see SOAP Headers)

The abstract contract for a provider endpoint cannot be derived/generated automatically.
Therefore it is necessary to specify the wsdlLocation with the @WebServiceProvider annotation.

4.1.2.4. WebServiceContext

The WebServiceContext is treated as an injectable resource that can be set at the time an endpoint
is initialized. The WebServiceContext object will then use thread-local information to return the
correct information regardless of how many threads are concurrently being used to serve requests
addressed to the same endpoint object.

Web Service Clients

4.1.3. Web Service Clients

4.1.3.1. Service

Servi ce is an abstraction that represents a WSDL service. A WSDL service is a collection of
related ports, each of which consists of a port type bound to a particular protocol and available
at a particular endpoint address.

For most clients, you will start with a set of stubs generated from the WSDL. One of these will be
the service, and you will create objects of that class in order to work with the service (see "static
case" below).

4.1.3.1.1. Service Usage
Static case

Most clients will start with a WSDL file, and generate some stubs using jbossws tools like
wsconsume. This usually gives a mass of files, one of which is the top of the tree. This is the
service implementation class.

The generated implementation class can be recognised as it will have two public constructors, one
with no arguments and one with two arguments, representing the wsdl location (a java.net.URL)
and the service name (a javax.xml.namespace.QName) respectively.

Usually you will use the no-argument constructor. In this case the WSDL location and service
name are those found in the WSDL. These are set implicitly from the WebServiceClient annotation
that decorates the generated class.

The following code snippet shows the generated constructors from the generated class:

29

http://example.com/stocks
http://example.com/stocks.wsdl

Chapter 4. JBossWS-UserGuide

Section Dynamic Proxy explains how to obtain a port from the service and how to invoke an
operation on the port. If you need to work with the XML payload directly or with the XML
representation of the entire SOAP message, have a look at Dispatch.

Dynamic case

In the dynamic case, when nothing is generated, a web service client uses Servi ce. creat e to
create Service instances, the following code illustrates this process.

4.1.3.1.2. Handler Resolver

JAX-WS provides a flexible plug-in framework for message processing modules, known as
handlers, that may be used to extend the capabilities of a JAX-WS runtime system. Handler
Framework describes the handler framework in detail. A Service instance provides access to a
HandlerResolver via a pair of getHandlerResolver/setHandlerResolver methods that may be used
to configure a set of handlers on a per-service, per-port or per-protocol binding basis.

When a Service instance is used to create a proxy or a Dispatch instance then the handler resolver
currently registered with the service is used to create the required handler chain. Subsequent
changes to the handler resolver configured for a Service instance do not affect the handlers on
previously created proxies, or Dispatch instances.

4.1.3.1.3. Executor

Service instances can be configured with a java.util.concurrent.Executor. The executor will then
be used to invoke any asynchronous callbacks requested by the application. The setExecutor and
getExecutor methods of Service can be used to modify and retrieve the executor configured for
a service.

http://example.com/stocks.wsdl
http://example.com/stocks
http://example.org/my.wsdl
http://example.org/sample

Web Service Clients

4.1.3.2. Dynamic Proxy

You can create an instance of a client proxy using one of getPort methods on the Service.

The service endpoint interface (SEI) is usually generated using tools. For details see Top Down
(WSDL to Java)

A generated static Service [http://community.jboss.org/Service] usually also offers typed methods
to get ports. These methods also return dynamic proxies that implement the SEI.

31

http://community.jboss.org/Service
http://community.jboss.org/Service
http://org.jboss.ws/wsref
http://localhost.localdomain:8080/jaxws-samples-webserviceref?wsdl

Chapter 4. JBossWS-UserGuide

4.1.3.3. WebServiceRef

The WebServiceRef annotation is used to declare a reference to a Web service. It follows the
resource pattern exemplified by the javax.annotation.Resource annotation in JSR-250.

There are two uses to the WebServiceRef annotation:

[EEY

. To define a reference whose type is a generated service class. In this case, the type and value
element will both refer to the generated service class type. Moreover, if the reference type
can be inferred by the field/method declaration the annotation is applied to, the type and value
elements MAY have the default value (Object.class, that is). If the type cannot be inferred, then
at least the type element MUST be present with a non-default value.

N

. To define a reference whose type is a SEI. In this case, the type element MAY be present with
its default value if the type of the reference can be inferred from the annotated field/method
declaration, but the value element MUST always be present and refer to a generated service
class type (a subtype of javax.xml.ws.Service). The wsdlLocation element, if present, overrides
theWSDL location information specified in the WebService annotation of the referenced
generated service class.

WebServiceRef Customization

Starting from jboss-5.0.x we offer a number of overrides and extensions to the WebServiceRef
annotation. These include

« define the port that should be used to resolve a container-managed port

Web Service Clients

« define default Stub property settings for Stub objects

« define the URL of a final WSDL document to be used

Example:

For details please see service-ref 5 0.dtd in the jboss docs directory.

33

Chapter 4. JBossWS-UserGuide

4.1.3.4. Dispatch

XMLWeb Services use XML messages for communication between services and service clients.
The higher level JAX-WS APIs are designed to hide the details of converting between Java method
invocations and the corresponding XML messages, but in some cases operating at the XML
message level is desirable. The Dispatch interface provides support for this mode of interaction.

Dispatch supports two usage modes, identified by the constants
javax.xml.ws.Service.Mode.MESSAGE and javax.xml.ws.Service.Mode.PAYLOAD respectively:

Message In this mode, client applications work directly with protocol-specific message structures.
E.g., when used with a SOAP protocol binding, a client application would work directly with a
SOAP message.

Message Payload In this mode, client applications work with the payload of messages rather than
the messages themselves. E.g., when used with a SOAP protocol binding, a client application
would work with the contents of the SOAP Body rather than the SOAP message as a whole.

Dispatch is a low level API that requires clients to construct messages or message payloads as
XML and requires an intimate knowledge of the desired message or payload structure. Dispatch
is a generic class that supports input and output of messages or message payloads of any type.

4.1.3.5. Asynchronous Invocations

The BindingProvider interface represents a component that provides a protocol binding for use by
clients, it is implemented by proxies and is extended by the Dispatch interface.

BindingProvider instances may provide asynchronous operation capabilities. When used,
asynchronous operation invocations are decoupled from the BindingProvider instance at
invocation time such that the response context is not updated when the operation completes.
Instead a separate response context is made available using the Response interface.

http://oneway.samples.jaxws.ws.test.jboss.org/'/
http://oneway.samples.jaxws.ws.test.jboss.org/'/

Web Service Clients

4.1.3.6. Oneway Invocations

@Oneway indicates that the given web method has only an input message and no output.
Typically, a oneway method returns the thread of control to the calling application prior to executing
the actual business method.

4.1.3.7. Timeout Configuration

There are two properties to configure the http connection timeout and client receive time out:

http://

Chapter 4. JBossWS-UserGuide

4.1.4. Common API

This sections describes concepts that apply equally to Web Service Endpoints and Web Service
Clients.

4.1.4.1. Handler Framework

The handler framework is implemented by a JAX-WS protocol binding in both client and server
side runtimes. Proxies, and Dispatch instances, known collectively as binding providers, each use
protocol bindings to bind their abstract functionality to specific protocols.

Client and server-side handlers are organized into an ordered list known as a handler chain. The
handlers within a handler chain are invoked each time a message is sent or received. Inbound
messages are processed by handlers prior to binding provider processing. Outbound messages
are processed by handlers after any binding provider processing.

Handlers are invoked with a message context that provides methods to access and modify inbound
and outbound messages and to manage a set of properties. Message context properties may be
used to facilitate communication between individual handlers and between handlers and client and
service implementations. Different types of handlers are invoked with different types of message
context.

4.1.4.1.1. Logical Handler

Handlers that only operate on message context properties and message payloads. Logical
handlers are protocol agnostic and are unable to affect protocol specific parts of a message.
Logical handlers are handlers that implement javax.xml.ws.handler.LogicalHandler.

4.1.4.1.2. Protocol Handler

Handlers that operate on message context properties and protocol specific messages. Protocol
handlers are specific to a particular protocol and may access and change protocol specific
aspects of a message. Protocol handlers are handlers that implement any interface derived from
javax.xml.ws.handler.Handler except javax.xml.ws.handler.LogicalHandler.

4.1.4.1.3. Service endpoint handlers

On the service endpoint, handlers are defined using the @HandlerChain annotation.

36

Common API

The location of the handler chain file supports 2 formats

1. An absolute java.net.URL in externalForm. (ex: http://myhandlers.foo.com/handlerfilel.xml)
2. A relative path from the source file or class file. (ex: bar/handlerfilel.xml)

4.1.4.1.4. Service client handlers

On the client side, handler can be configured using the @HandlerChain annotation on the SEI
or dynamically using the API.

4.1.4.2. Message Context

MessageContext is the super interface for all JAX-WS message contexts. It extends
Map<String,Object> with additional methods and constants to manage a set of properties that
enable handlers in a handler chain to share processing related state. For example, a handler may
use the put method to insert a property in the message context that one or more other handlers
in the handler chain may subsequently obtain via the get method.

Properties are scoped as either APPLICATION or HANDLER. All properties are available to all
handlers for an instance of an MEP on a particular endpoint. E.g., if a logical handler puts a
property in the message context, that property will also be available to any protocol handlers in
the chain during the execution of an MEP instance. APPLICATION scoped properties are also
made available to client applications (see section 4.2.1) and service endpoint implementations.
The defaultscope for a property is HANDLER.

4.1.4.2.1. Logical Message Context

Logical Handlers are passed a message context of type LogicalMessageContext when invoked.
LogicalMessageContext extends MessageContext with methods to obtain and modify the
message payload, it does not provide access to the protocol specific aspects of amessage. A

37

http://myhandlers.foo.com/handlerfile1.xml

Chapter 4. JBossWS-UserGuide

protocol binding defines what component of a message are available via a logical message
context. The SOAP binding defines that a logical handler deployed in a SOAP binding can access
the contents of the SOAP body but not the SOAP headers whereas the XML/HTTP binding defines
that a logical handler can access the entire XML payload of a message.

4.1.4.2.2. SOAP Message Context

SOAP handlers are passed a SOAPMessageContext when invoked. SOAPMessageContext
extends MessageContext with methods to obtain and modify the SOAP message payload.

4.1.4.3. Fault Handling

An implementation may thow a SOAPFaultException

or an application specific user exception

Note

Note

In case of the latter JBossWS generates the required fault wrapper beans at
runtime if they are not part of the deployment

4.1.4.4. JBossWS Extensions

This section describes propriatary JBoss extensions to JAX-WS, that works with all the supported
stacks.

http://foo

Common API

4.1.4.4.1. Proprietary Annotations

For the set of standard annotations, please have a look at JAX-WS_Annotations.

4.1.4.4.1.1. WebContext

mailto:thomas.diesler@jboss.org
mailto:thomas.diesler@jboss.org

Chapter 4. JBossWS-UserGuide

4.1.4.4.1.2. SecurityDomain

http://jira.jboss.org/jira/browse/JBWS-723
mailto:bill@jboss.org
mailto:bill@jboss.org

Tools

4.1.4.5. JAXB Introductions

As Kohsuke Kawaguchi writes on his blog [http://weblogs.java.net/blog/kohsuke/archive/2007/07/
binding_3rd_par.html], one common complaint from the JAXB users is the lack of support for
binding 3rd party classes. The scenario is this you are trying to annotate your classes with JAXB
annotations to make it XML bindable, but some of the classes are coming from libraries and JDK,
and thus you cannot put necessary JAXB annotations on it.

To solve this JAXB has been designed to provide hooks for programmatic introduction of
annotations to the runtime.

This is currently leveraged by the JBoss JAXB Introductions project, using which users can define
annotations in XML and make JAXB see those as if those were in the class files (perhaps coming
from 3rd party libraries).

JAXB Introductions are currently supported in JBossWS-Native (server side only, since 3.0.2.GA)
and JBossWS-CXF (both server and client side, since 3.2.1.GA).

Take a look at the JAXB Introductions page [http://community.jboss.org/docs/DOC-10075] on the
wiki and at the examples in the sources.

4.1.5. Tools

The JBossWS Web Service Framework provides unified tooling for all the supported stacks. This
currently includes common JAX-WS tools for both contract-first and code-first development and
common management tools.

4.1.5.1. JAX-WS tools

Please refer to JBossWS JAX-WS Tools for details. This covers directions on web
service contract generation (bottom-up development) and consumption (top-down and client
development).

4.1.5.2. Management tools

JBoss and its web service framework come with some tools allowing WS endpoint management.

41

http://weblogs.java.net/blog/kohsuke/archive/2007/07/binding_3rd_par.html
http://weblogs.java.net/blog/kohsuke/archive/2007/07/binding_3rd_par.html
http://weblogs.java.net/blog/kohsuke/archive/2007/07/binding_3rd_par.html
http://community.jboss.org/docs/DOC-10075
http://community.jboss.org/docs/DOC-10075

Chapter 4. JBossWS-UserGuide

Please refer the Endpoint management page for an overview of the available tools. In particular the
JBossWS - Records management gives administrators a means of performing custom analysis
of their web service traffic as well as exporting communication logs.

4.1.5.3. Web Service console

All supported stacks provide a web console for getting the list of the endpoints currently deployed
on a given host as well as basic metrics regarding invocations to them. The console is available
at http://localhost:8080/jbossws/services assuming your application server is currently bound to
localhost:8080.

4.1.6. Configuration

4.1.6.1. Address rewrite

JBossWS allows users to configure the soap:address attribute in the wsdl contract of deployed
services as well as wsdl address in the web service console. [due to a known issue this does not
currently work with JBossWS-Metro, see: JBWS-2462 [https://jira.jboss.org/jira/browse/JBWS-
2462]]

Server configuration options

There're few attributes in the jbossws deployers configuration (currently in jpossws.deployer/
META-INF/stack-agnostic-jboss-beans.xml) controlling the way the soap:address attribute in the
wsdl is rewritten.

If the content of <soap:address> in the wsdl is a valid URL, JBossWS will not rewrite it unless
modifySOAPAddress is true. If the content of <soap:address>is not a valid URL instead, JBossWS

42

http://localhost:8080/jbossws/services
https://jira.jboss.org/jira/browse/JBWS-2462
https://jira.jboss.org/jira/browse/JBWS-2462
https://jira.jboss.org/jira/browse/JBWS-2462

Configuration

will always rewrite it using the attribute values given below. Please note that the variable
${jboss.bind.address} can be used to set the address which the application is bound to at each
startup.

The webServiceSecurePort and webServicePort attributes are used to explicitly define the ports
to be used for rewriting the SOAP address. If these attributes are not set, the ports will be identified
by querying the list of installed connectors. If multiple connectors are found the port of the first
connector is used.

Dynamic rewrite

When the application server is bound to multiple addresses or non-trivial real-world network
architectures cause request for different external addresses to hit the same endpoint, a static
rewrite of the soap:address may not be enough. JBossWS allows for both the soap:address in the
wsdl and the wsdl address in the console to be rewritten with the host use in the client request.
This way, users always get the right wsdl address assuming they're connecting to an instance
having the endpoint they're looking for. To trigger this behaviour, the jbossws.undefined.host
value has to be specified for the webServiceHost attribute.

Of course, when a confidential transport address is required, the addresses are always rewritten
using https protocol and the port currently configured for the https/ssl connector.

43

44

Chapter 5.

JBossWS-StackCXFUserGuide

Note

This page covers features available in JBossWS CXF stack only.

for a basic introduction to JAX-WS programming as well as
documentation on all features, tools, etc. the JBossWS Web Service Framework
provides for every supported stack (including CXF stack).

Also please note this page does not go through the documentation of every feature,
option, etc. provided by Apache CXF; on the countrary the only topics covered here
are specific issues regarding integration with JBoss and stack specific features
provided by JBossWS Web Service Framework for the CXF stack. A few tutorials
are also provided for show how to leverage some WS technologies.

The official Apache CXF documentation is available [http://cxf.apache.org].

5.1. IBossWS CXF Integration

5.1.1. Creating a Bus instance

Most of the Apache CXF features are configurable using the org.apache.cxf.Bus class. New Bus
instances are produced by the currently configured org.apache.cxf.BusFactory implementation
the following way:

The algorithm for selecting the actual implementation of BusFactory to be used leverages
the Service API, basically looking for optional configurations in META-INF/services/... location
using the current classloader. JBossWS-CXF integration comes with his own implementation
of BusFactory, org.jboss.wsf.stack.cxf.client.configuration.JBossWSBusFactory, that allows
for automatic detection of Spring availability as well as seamless setup of JBossWS
customizations on top of Apache CXF. JBossWSBusFactory is automatically retrieved by the
BusFactory.newlnstance() call above.

JBossWS users willing to explicitely use functionalities of
org.apache.cxf.bus.spring.SpringBusFactory or org.apache.cxf.bus.CXFBusFactory, get the
same API with JBossWS additions through JBossWSBusFactory:

45

http://cxf.apache.org
http://cxf.apache.org

Chapter 5. JBossWS-StackCXFUs...

5.1.2. Server Side Integration Customization

It is possible to customize the JBossWS and CXF integration by incorporating the CXF
configuration file to the endpoint deployment archive. In order for that to be possible, JBossWS-
CXF requires Spring to be installed in the application server. The Spring Framework libraries
installation can be perfomed using the JBossWS-CXF installation [http://community.jboss.org/
docs/DOC-13545].

The convention is the following:

« file name must be jbossws-cxf.xml
« for POJO deployments it is located in WEB-INF directory
» for EJB3 deployments it is located in META-INF directory

If user do not provide its own CXF configuration file, a default one is automatically generated
during the deployment.

For POJO deployments the generated jbossws-cxf.xml has the following content:

http://community.jboss.org/docs/DOC-13545
http://community.jboss.org/docs/DOC-13545
http://community.jboss.org/docs/DOC-13545
http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beans
http://cxf.apache.org/jaxws
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd
http://localhost:8080/pojo_endpoint_archive_name

Extended Features

For EJB3 deployments the generated jbossws-cxf.xml has the following content:

Providing custom CXF configuration to the endpoint deployment is useful in cases when users
want to use features that are not part of standard JAX-WS specification but CXF implements them.
For example see CXF WS-RM tutorial customization file. We are providing custom CXF endpoint
configuration there to turn on WS-RM feature for endpoint.

Note

Note

When user incorporates its own CXF configuration to the endpoint
archive he must reference either org.jboss.wsf.stack.cxf.lnvokerJSE or
org.jboss.wsf.stack.cxf.InvokerEJB3 jaxws invoker bean there for each jaxws
endpoint.

5.2. Extended Features

Here [http://cwiki.apache.org/CXF20DOC/ws-support.html] is the CXF documentation about
supported WS-* specifications.

47

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beans
http://cxf.apache.org/jaxws
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd
http://localhost:8080/ejb3_endpoint_archive_name
http://cwiki.apache.org/CXF20DOC/ws-support.html
http://cwiki.apache.org/CXF20DOC/ws-support.html

Chapter 5. JBossWS-StackCXFUs...

5.2.1. WS-Addressing

Apache CXF has a thorough support for WS-Addressing; details are available at the following
pages:

CXF WS-Addressing documentation [http://cwiki.apache.org/CXF20DOC/ws-addressing.html]
CXF WS-Addressing configuration [http://cwiki.apache.org/CXF20DOC/wsaconfiguration.html]

Given the JAXWS specification currently covers WS-Addressing basic fuctionalities, users simply
needing to enable it can make use of the @Addressing annotation and AddressingFeature, as
shown in the following JBossWS-CXF tutorial:

JB0ossWS-CXF WS-Addressing Tutorial

5.2.2. WS-ReliableMessaging

The Apache CXF technical documentation on WS-RealiableMessaging is available as a reference
at the following pages:

CXF WS-ReliableMessaging documentation [http://cwiki.apache.org/CXF20DOC/ws-
reliablemessaging.html] CXF WS-ReliableMessaging configuration [http://cwiki.apache.org/
CXF20DOC/wsrmconfiguration.html]

For a complete tutorial on how to enable WS-ReliableMessaging in a user client-server application,
please take a look at:

JBossWS-CXF WS-ReliableMessaging Tutorial

5.2.3. WS-Policy

Apache CXF technical documentation on the WS-Policy engine and its configuration is available
at:

CXF WS-Policy documentation [http://cwiki.apache.org/CXF20DOC/ws-policy.html] CXF WS-
Policy configuration [http://cwiki.apache.org/CXF20DOC/wspconfiguration.html]

For a complete sample of WS-Policy usage, please take a look at the JBossWS-CXF WS-
ReliableMessaging tutorial below, as WS-RM is implemented leveraging policies there:

48

http://cwiki.apache.org/CXF20DOC/ws-addressing.html
http://cwiki.apache.org/CXF20DOC/ws-addressing.html
http://cwiki.apache.org/CXF20DOC/wsaconfiguration.html
http://cwiki.apache.org/CXF20DOC/wsaconfiguration.html
http://cwiki.apache.org/CXF20DOC/ws-reliablemessaging.html
http://cwiki.apache.org/CXF20DOC/ws-reliablemessaging.html
http://cwiki.apache.org/CXF20DOC/ws-reliablemessaging.html
http://cwiki.apache.org/CXF20DOC/wsrmconfiguration.html
http://cwiki.apache.org/CXF20DOC/wsrmconfiguration.html
http://cwiki.apache.org/CXF20DOC/wsrmconfiguration.html
http://cwiki.apache.org/CXF20DOC/ws-policy.html
http://cwiki.apache.org/CXF20DOC/ws-policy.html
http://cwiki.apache.org/CXF20DOC/wspconfiguration.html
http://cwiki.apache.org/CXF20DOC/wspconfiguration.html
http://cwiki.apache.org/CXF20DOC/wspconfiguration.html

WS-Security

JBossWS-CXF WS-Policy & WS-ReliableMessaging Tutorial

5.2.3.1. Note on PolicyEngine setup

When building up the Bus without Spring libraries available on the classpath, JBossWSBusFactory
still makes sure the PolicyEngine (as well as the RMManager) is properly setup. This allows users
to leverage basic WS-Policy functionalities the same way they'd do with a full Spring-enabled Bus.

5.2.4. WS-Security

Apache CXF [http://cxf.apache.org/] leverages WSS4J [http://ws.apache.org/wss4j/] to provide
WS-Security functionalities. This means that thanks to the JBossWS-CXF integration, users can
create web service applications using CXF - WSS4J implementation of WS-Security and deploy
them on JBoss Application Server.

5.2.4.1. WSS4J security on JBoss

The Apache CXF documentation features an brief chapter on how to use WSS4J security in
CXF [http://cwiki.apache.org/CXF20DOC/ws-security.html]. Here below instead you'll find some
explanations on how to create a simple application and what you need to do to leverage WSS4J
security on JBoss.

Creating the web service endpoint

First of all you need to create the web service endpoint/ client using JAX-WS. This can be achieved
in many ways, for instance you might want to:

1. write your endpoint implementation, then run the wsprovide JBoss commandline tool which
generates the service contract (bottom-up approach);

2. run the wsconsume JBoss commandline tool to get the client artifacts from the service contract
(top-down approach);

3. write your client implementation.

Turn on WS-Security

49

http://cxf.apache.org/
http://cxf.apache.org/
http://ws.apache.org/wss4j/
http://ws.apache.org/wss4j/
http://cwiki.apache.org/CXF20DOC/ws-security.html
http://cwiki.apache.org/CXF20DOC/ws-security.html
http://cwiki.apache.org/CXF20DOC/ws-security.html

Chapter 5. JBossWS-StackCXFUs...

WSS4J security is triggered through interceptors that are added to the service and/or client. These
interceptors allows you to perform the most common WS-Security related process:

» pass authentication tokens between services;
* encrypt messages or parts of messages;

e sign messages;

* timestamp messages.

Interceptors can be added either programmatically or through the Spring xml configuration of
endpoints.

For instance, on server side, you can configure signature and encryption in the jboss-cxf.xml file
this way:

50

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beans
http://cxf.apache.org/jaxws
http://cxf.apache.org/core
http://cxf.apache.org/schemas/core.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd

WS-Security

This specifies the whole security configuration (including algorithms and elements to be signed/
encrypted); moreover it references a properties file (bob.properties) providing the keystore-related
information:

.Merlin

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/soap/envelope/
http://www.w3.org/2000/09/xmldsig#
http://www.w3.org/2000/09/xmldsig#
http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/soap/envelope/
http://www.w3.org/2001/04/xmlenc#rsa-1_5
http://www.w3.org/2001/04/xmlenc#tripledes-cbc
http://@jboss.bind.address@:8080/jaxws-samples-wsse-sign-encrypt

Chapter 5. JBossWS-StackCXFUs...

As you can see in the jbossws-cxf.xml file above, a keystore password callback handler is also
configured; while the properties file has the password for the keystore, this callback handler is
used to set password for each key (it has to match the one used when each key was imported
in the store). Here's a trivial example:

WS-Security

On client side, you can similarly setup the interceptors programmatically; here is an excerpt of
the client for the above described endpoint (of course you can also leverage a proper Spring
configuration for loading an already configured CXF Bus instance):

Package and deploy

To deploy your web service endpoint, you need to package the following files along with your
service implementation and wsdl contract:

* the jbossws-cxf.xml descriptor
« the properties file

« the keystore file (if required for signature/encryption)

53

Chapter 5. JBossWS-StackCXFUs...

« the keystore password callback handler class

For instance, here are the archive contents for the afore mentioned signature & encryption sample
(POJO endpoint):

On client side, instead, you only need the properties and keystore files (assuming you setup the
interceptors programmatically).

Check that JBossWS-CXF is installed on your current JBoss Application Server, deploy and test
your WS-Security-enabled application.

54

WS-Security

5.2.4.2. WS-Security Policies

Starting from JBossWS-CXF 3.1.1, WS-Security Policy implementation is available and can be
used to configure WS-Security more easily.

Please refer to the Apache CXF documentation [http://cwiki.apache.org/CXF20DOC/ws-
securitypolicy.html]; basically instead of manually configuring interceptors in the client or through
jbossws-cxf.xml descriptor, you simply provide the right policies in the WSDL contract.

55

http://cwiki.apache.org/CXF20DOC/ws-securitypolicy.html
http://cwiki.apache.org/CXF20DOC/ws-securitypolicy.html
http://cwiki.apache.org/CXF20DOC/ws-securitypolicy.html
http://schemas.xmlsoap.org/ws/2005/07/securitypolicy
http://schemas.xmlsoap.org/ws/2005/07/securitypolicy
http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/AlwaysToRecipient
http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/AlwaysToRecipient
http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/AlwaysToRecipient
http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/Always
http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/Always

Chapter 5. JBossWS-StackCXFUs...

Just few properties are also required to be set either in the message context or in the jbossws-
cxf.xml descriptor.

DLER,

OPERTI ES,

ERTI ES,

http://schemas.xmlsoap.org/ws/2005/07/securitypolicy
http://schemas.xmlsoap.org/ws/2005/07/securitypolicy
http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beans
http://cxf.apache.org/jaxws
http://cxf.apache.org/core
http://cxf.apache.org/schemas/core.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd
http://@jboss.bind.address@:8080/jaxws-samples-wssePolicy-sign

WS-Security

. sanpl es. wssel

5.2.4.3. Authentication and authorization

The Username Token Profile can of course be used to provide client's credentials to the
target endpoint. Starting from JBossWS-CXF 3.3.0 (which includes Apache CXF 2.2.8), the
username token information can be used for authentication and authorization on JBoss AS (JAAS
integration).

On server side, you need to specify what follows (for instance using a jpossws-cxf.xml descriptor):

e an interceptor for performing authentication and populating a
valid SecurityContext; the provided interceptor should extend
org.apache.cxf.ws.security.wss4j.AbstractUsernameTokenAuthenticatingInterceptor, in
particular JBossWS integration comes with

org.jboss.wsf.stack.cxf.security.authentication.SubjectCreatingInterceptor for this;

e an interceptor for performing authorization; CXF requires that to extend
org.apache.cxf.interceptor.security.AbstractAuthorizinglninterceptor, for instance the
SimpleAuthorizinglnterceptor can be used for simply mapping endpoint operations to allowed
roles.

57

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beans
http://cxf.apache.org/jaxws
http://www.springframework.org/schema/util
http://cxf.apache.org/core
http://cxf.apache.org/schemas/core.xsd
http://www.springframework.org/schema/util
http://www.springframework.org/schema/util/spring-util-2.0.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd

Chapter 5. JBossWS-StackCXFUs...

tor">

Authentication and authorization will simply be delegated to the security domain configured for the
endpoint. Of course you can specify the login module you prefer for that security domain (refer
the application server / security documentation for that).

On client side, the username is provided through API (or a custom Spring configuration used to
load the Bus):

58

http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd
http://@jboss.bind.address@:8080/jaxws-samples-wsse-username-authorize
http://@jboss.bind.address@:8080/jaxws-samples-wsse-username-authorize

WS-Security

The password instead is provided through a password callback handler that needs to
implement javax.security.auth.callback.CallbackHandler, similarly to the keystore's password
callback handler.

If you're running an older JBossWS-CXF version, or you're not interested in the the application
server auth integration, you can use a password callback handler on server side too, configured
through a WSS4JIninterceptor:

. wsse. Server U

Chapter 5. JBossWS-StackCXFUs...

5.2.4.4. Further information

Samples

The JBossWS-CXF source distribution comes with some samples using X.509 certificate
signature and encryption as well as Username Token Profile. You can find them in package
org.jboss.test.ws.jaxws.samples.wsse .

Crypto algorithms

When requiring encryption, you might need to install an additional JCE provider supporting the
crypto algorithms Apache CXF uses. This usually means the Bouncy Castle provider need to be
configured in your JRE. Please refer the Native stack user [http://community.jboss.org/docs/DOC-
13532] guide for further information about this.

5.2.5. JIMS transport

Here is a tutorial on how to deploy and invoke a JMS endpoint using JBossWS-CXF.

5.3. HTTP server transport setup

Apache CXF comes with pluggable transport layers, allowing different transport modules to be
used.

The JBossWS-CXF integration leverages CXF servlet transport for the deployment of endpoints
on top of the running JBoss Application Server.

However, when users directly leverage the JAXWS Endpoint.publish(String
S) [http://download.oracle.com/javase/6/docs/api/javax/xml/ws/
Endpoint.html#publish%28java.lang.String%29] API, endpoints are expected to be deployed on
a standalone http server started just for serving the specified endpoint. Apache CXF currently

60

http://community.jboss.org/docs/DOC-13532
http://community.jboss.org/docs/DOC-13532
http://community.jboss.org/docs/DOC-13532
http://download.oracle.com/javase/6/docs/api/javax/xml/ws/Endpoint.html#publish%28java.lang.String%29
http://download.oracle.com/javase/6/docs/api/javax/xml/ws/Endpoint.html#publish%28java.lang.String%29
http://download.oracle.com/javase/6/docs/api/javax/xml/ws/Endpoint.html#publish%28java.lang.String%29
http://download.oracle.com/javase/6/docs/api/javax/xml/ws/Endpoint.html#publish%28java.lang.String%29

SOAP Message Logging

defaults to using the Jetty [http://jetty.codehaus.org/jetty/] based http transport. Starting from
release 3.4.0, the JBossWS-CXF integration instead uses a different http transport module based
on the http server [http://download.oracle.com/javase/6/docs/jre/api/net/httpserver/spec/com/sun/
net/httpserver/package-summary.html] embedded in JDK®6 distributions. Thanks to Apache CXF
transport pluggability, users can still change the transport they want to use in this case by
simply replacing the jbossws-cxf-transports-httpserver.jar library with another http transport one,
for instance the cxf-rt-transports-http-jetty.jar.

5.4. SOAP Message Logging

In the jbossws-cxf-client.jar[*] file you will find META-INF/cxf/cxf-extension-jbossws.xml, which
contains the JBossWS extensions to the Apache CXF stack. In that file you need to enable

Once you've uncommented the cxf-extension-jbossws.xml contents, you need to re-pack the jar/
zip.

[*] The cxf-extension-jbossws.xml is available from version 3.2.2; if you don't have that file, you
can manually add it and link it in cxf.extensions file.

Finally, please note that logging can be enabled in many ways with Apache CXF, see the following
documentation pages for instance:

« http://cxf.apache.org/docs/configuration.htmi

« http://cxf.apache.org/docs/debugging-and-logging.html

61

http://jetty.codehaus.org/jetty/
http://jetty.codehaus.org/jetty/
http://download.oracle.com/javase/6/docs/jre/api/net/httpserver/spec/com/sun/net/httpserver/package-summary.html
http://download.oracle.com/javase/6/docs/jre/api/net/httpserver/spec/com/sun/net/httpserver/package-summary.html
http://download.oracle.com/javase/6/docs/jre/api/net/httpserver/spec/com/sun/net/httpserver/package-summary.html
http://cxf.apache.org/docs/configuration.html
http://cxf.apache.org/docs/debugging-and-logging.html

62

Chapter 6.

JBossWS-JAX-WSTools

The JAX-WS tools provided by JBossWS can be used in a variety of ways. First we will look at
server-side development strategies, and then proceed to the client.

6.1. Server side

When developing a Web Service Endpoint (the server-side) you have the option of starting from
Java (bottom-up development), or from the abstact contract (WSDL) that defines your service
(top-down development). If this is a new service (no existing contract), the bottom-up approach is
the fastest route; you only need to add a few annotations to your classes to get a service up and
running. However, if you are developing a service with an already defined contract, it is far simpler
to use the top-down approach, since the provided tool will generate the annotated code for you.

Bottom-up use cases:

» Exposing an already existing EJB3 bean as a Web Service
« Providing a new service, and you want the contract to be generated for you

Top-down use cases:

* Replacing the implementation of an existing Web Service, and you can't break compatibility
with older clients

» Exposing a service that conforms to a contract specified by a third party (e.g. a vender that calls
you back using an already defined protocol).

» Creating a service that adheres to the XML Schema and WSDL you developed by hand up front

The following JAX-WS command line tools are included in JBossWS:

Command Description

JBossWS - wsprovide Generates JAX-WS portable artifacts, and
provides the abstract contract. Used for
bottom-up development.

JBossWS - wsconsume Consumes the abstract contract (WSDL and
Schema files), and produces artifacts for both a
server and client. Used for top-down and client
development

JBossWS - wsrunclient Executes a Java client (has a main method)
using the JBossWS classpath.

6.1.1. Bottom-Up (Using wsprovide)

The bottom-up strategy involves developing the Java code for your service, and then annotating
it using JAX-WS annotations. These annotations can be used to customize the contract that is

63

Chapter 6. JBossWS-JAX-WSTools

generated for your service. For example, you can change the operation name to map to anything
you like. However, all of the annotations have sensible defaults, so only the @WebService
annotation is required.

This can be as simple as creating a single class:

A JSE or EJB3 deployment can be built using this class, and it is the only Java code needed
to deploy on JBossWS. The WSDL, and all other Java artifacts called "wrapper classes" will be
generated for you at deploy time. This actually goes beyond the JAX-WS specification, which
requires that wrapper classes be generated using an offline tool. The reason for this requirement
is purely a vender implementation problem, and since we do not believe in burdening a developer
with a bunch of additional steps, we generate these as well. However, if you want your deployment
to be portable to other application servers, you will unfortunately need to use a tool and add the
generated classes to your deployment.

This is the primary purpose of the JBossWS - wsprovidetool, to generate portable JAX-WS
artifacts. Additionally, it can be used to "provide" the abstract contract (WSDL file) for your service.
This can be obtained by invoking JBossWS - wsprovide using the "-w" option:

Inspecting the WSDL reveals a service called EchoService:

As expected, this service defines one operation, "echo":

(o]
-b |

Bottom-Up (Using wsprovide)

Note

Note

Remember that when deploying on JBossWS you do not need to run this tool.
You only need it for generating portable artifacts and/or the abstract contract for
your service.

Let's create a POJO endpoint for deployment on JBoss AS. A simple web.xml needs to be created:

The web.xml and the single class can now be used to create a war:

The war can then be deployed:

65

http://java.sun.com/xml/ns/j2ee
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd

Chapter 6. JBossWS-JAX-WSTools

This will internally invoke JBossWS - wsprovide, which will generate the WSDL. If deployment
was successful, and you are using the default settings, it should be available here: http://
localhost:8080/echo/Echo?wsdl

For a portable JAX-WS deployment, the wrapper classes generated earlier could be added to the
deployment.

6.1.2. Top-Down (Using wsconsume)

The top-down development strategy begins with the abstract contract for the service, which
includes the WSDL file and zero or more schema files. The JBossWS - wsconsume tool is then
used to consume this contract, and produce annotated Java classes (and optionally sources) that
define it.

Note
Note

wsconsume seems to have a problem with symlinks on unix systems

Using the WSDL file from the bottom-up example, a new Java implementation that adheres to this
service can be generated. The "-k" option is passed to JBossWS - wsconsume to preserve the
Java source files that are generated, instead of providing just classes:

The following table shows the purpose of each generated file:

Purpose
Echo.java Service Endpoint Interface
Echo_Type.java ‘ Wrapper bean for request message
EchoResponse.java ‘ Wrapper bean for response message

66

http://localhost:8080/echo/Echo?wsdl
http://localhost:8080/echo/Echo?wsdl

Client Side

ObjectFactory.java JAXB XML Registry
package-info.java Holder for JAXB package annotations
EchoService.java Used only by JAX-WS clients

Examining the Service Endpoint Interface reveals annotations that are more explicit than in the
class written by hand in the bottom-up example, however, these evaluate to the same contract:

The only missing piece (besides the packaging) is the implementation class, which can now be
written, using the above interface.

6.2. Client Side

Before going to detail on the client-side it is important to understand the decoupling concept that is
central to Web Services. Web Services are not the best fit for internal RPC, even though they can
be used in this way. There are much better technologies for this (CORBA, and RMI for example).
Web Services were designed specifically for interoperable coarse-grained correspondence. There
iS no expectation or guarantee that any party participating in a Web Service interaction will be
at any particular location, running on any particular OS, or written in any particular programming
language. So because of this, it is important to clearly separate client and server implementations.
The only thing they should have in common is the abstract contract definition. If, for whatever

Chapter 6. JBossWS-JAX-WSTools

reason, your software does not adhere to this principal, then you should not be using Web
Services. For the above reasons, the recommended methodology for developing a client is
to follow the top-down approach, even if the client is running on the same server.

Let's repeat the process of the top-down section, although using the deployed WSDL, instead of
the one generated offline by JBossWS - wsprovide. The reason why we do this is just to get the
right value for soap:address. This value must be computed at deploy time, since it is based on
container configuration specifics. You could of course edit the WSDL file yourself, although you
need to ensure that the path is correct.

Offline version:

Online version:

Using the online deployed version with JBossWS - wsconsume:

The one class that was not examined in the top-down section, was EchoService.java. Notice how
it stores the location the WSDL was obtained from.

2]
oo

http://localhost.localdomain:8080/echo/Echo

Client Side

As you can see, this generated class extends the main client entry point in JAX-WS,
javax.xml.ws.Service. While you can use Service directly, this is far simpler since it provides the
configuration info for you. The only method we really care about is the getEchoPort() method,
which returns an instance of our Service Endpoint Interface. Any WS operation can then be called
by just invoking a method on the returned interface.

Note
Note

It's not recommended to refer to a remote WSDL URL in a production application.
This causes network I/O every time you instantiate the Service Object. Instead,
use the tool on a saved local copy, or use the URL version of the constructor to
provide a new WSDL location.

All that is left to do, is write and compile the client:

69

Chapter 6. JBossWS-JAX-WSTools

It can then be easily executed using the JBossWS - wsrunclient tool. This is just a convenience
tool that invokes java with the needed classpath:

It is easy to change the endpoint address of your operation at runtime, setting the
ENDPOINT_ADDRESS_PROPERTY as shown below:

6.3. Command-line, Maven Plugin and Ant Task
Reference

« JB0ossWS - wsconsume reference page
» JBossWS - wsprovide reference page

« JBossWS - wsrunclient reference page

JAX-WS binding customization

6.4. JAX-WS binding customization

An introduction to binding customizations:

* http://java.sun.com/webservices/docs/2.0/jaxws/customizations.html

* binding schema [https://jax-ws.dev.java.net/source/browse/jax-ws/guide/docs/wsdl-
customization.xsd?rev=1.2&view=log]

» xnsdoc [https://jax-ws.dev.java.net/nonav/guide/customizations/]
The schema for the binding customization files can be found here:

* https://jax-ws.dev.java.net/source/browse/jax-ws/guide/docs/wsdl-
customization.xsd?rev=1.2&view=log

71

http://java.sun.com/webservices/docs/2.0/jaxws/customizations.html
https://jax-ws.dev.java.net/source/browse/jax-ws/guide/docs/wsdl-customization.xsd?rev=1.2&view=log
https://jax-ws.dev.java.net/source/browse/jax-ws/guide/docs/wsdl-customization.xsd?rev=1.2&view=log
https://jax-ws.dev.java.net/source/browse/jax-ws/guide/docs/wsdl-customization.xsd?rev=1.2&view=log
https://jax-ws.dev.java.net/nonav/guide/customizations/
https://jax-ws.dev.java.net/nonav/guide/customizations/
https://jax-ws.dev.java.net/source/browse/jax-ws/guide/docs/wsdl-customization.xsd?rev=1.2&view=log
https://jax-ws.dev.java.net/source/browse/jax-ws/guide/docs/wsdl-customization.xsd?rev=1.2&view=log

72

Chapter 7.

JBossWS-wsconsume

wsconsume is a command line tool and ant task that “"consumes" the abstract
contract (WSDL file) and produces portable JAX-WS service and client artifacts. For
a more detailed overview, see "Using wsconsume" [http://community.jboss.org/docs/DOC-
13544#TopDown_Using_wsconsume].

7.1. Command Line Tool

The command line tool has the following usage:

Note : The wsdlLocation is used when creating the Service to be used by clients and will be added
to the @WebServiceClient annotation, for an endpoint implementation based on the generated
service endpoint interface you will need to manually add the wsdlLocation to the @WebService
annotation on your web service implementation and not the service endpoint interface.

7.1.1. Examples

Generate artifacts in Java class form only:

Generate source and class files:

~
w

http://community.jboss.org/docs/DOC-13544#TopDown_Using_wsconsume
http://community.jboss.org/docs/DOC-13544#TopDown_Using_wsconsume
http://community.jboss.org/docs/DOC-13544#TopDown_Using_wsconsume

Chapter 7. JBossWS-wsconsume

Generate source and class files in a custom directory:

Generate source and class files in the org.foo package:

Generate source and class files using multiple binding files:

7.2. Maven Plugin

The wsconsume tools is included in the org.jboss.ws.plugins:maven-jaxws-tools-plugin
plugin. The plugin has two goals for running the tool, wsconsume and wsconsume-test, which
basically do the same during different maven build phases (the former triggers the sources
generation during generate-sources phase, the latter during the generate-test-sources one).

The wsconsume plugin has the following parameters:

Attribute Description Default
bindingFiles JAXWS or JAXB binding file true
classpathElements Each classpathElement ${project.compileClasspathElements}
provides a
or

library file to be added to

classpath ${project.testClasspathElements}

catalog Oasis XML Catalog file for none
entity resolution

targetPackage The target Java package for generated
generated code.

bindingFiles One or more JAX-WS or JAXB none

binding file
wsdlLocation Value to use for @WebServiceQjiemerasetil ocation
outputDirectory The output directory for ${project.build.outputDirectory}

generated artifacts.
or

${project.build.testOutputDirectory}

sourceDirectory The output directory for Java ${project.build.directory}/
source. wsconsume/java

~
N

Examples

Attribute Description Default

verbose Enables more informational false
output about command
progress.

wsdls The WSDL files or URLs to n/a
consume

extension Enable SOAP 1.2 binding false
extension.

7.2.1. Examples

You can use wsconsume in your own project build simply referencing the maven-jaxws-tools-
plugin in the configured plugins in your pom.xml file.

The following example makes the plugin consume the test.wsdl file and generate SEI and
wrappers' java sources. The generated sources are then compiled together with the other project
classes.

You can also specify multiple wsdl files, as well as force the target package, enable SOAP 1.2
binding and turn the tool's verbose mode on:

Chapter 7. JBossWS-wsconsume

Finally, if the wsconsume invocation is required for consuming a wsdl to be used in your testsuite
only, you might want to use the wsconsume-test goal as follows:

Ant Task

7.3. Ant Task

Note

Note

With 2.0.GA the task was renamed to
org.jboss.wsf.spi.tools.ant. WSConsumeTask. Also put streamBuffer.jar and stax-
ex.jar in the classpath of the ant task to generate the appropriate artefacts. Both
jar files are in the jbossws lib directory. For jpossws-native-2.0.3.GA these files are
not automatically installed if you run jboss-deployXX.

The wsconsume ant task has the following attributes:

Attribute Description Default
fork Whether or not to run the true
generation task in a separate
VM.
keep Keep/Enable Java source false

code generation.

catalog Oasis XML Catalog file for none
entity resolution

package The target Java package for generated
generated code.

binding A JAX-WS or JAXB binding file none
wsdlLocation Value to use for @WebServiceQjiemerasetil ocation
destdir The output directory for "output”
generated artifacts.
sourcedestdir The output directory for Java value of destdir
source.
target The JAX-WS specification
target. Allowed values are 2.0,
2.1and 2.2
verbose Enables more informational false
output about command
progress.
wsdl The WSDL file or URL n/a

77

Chapter 7. JBossWS-wsconsume

Attribute Description Default

extension Enable SOAP 1.2 binding false
extension.

additionalHeaders Enables processing of implicit false
SOAP headers

Note : The wsdlLocation is used when creating the Service to be used by clients and will be added
to the @WebServiceClient annotation, for an endpoint implementation based on the generated
service endpoint interface you will need to manually add the wsdlLocation to the @WebService
annotation on your web service implementation and not the service endpoint interface.

Also, the following nested elements are supported:

Element Description Default

binding A JAXWS or JAXB binding file none

jvmarg Allows setting of custom jvm
arguments

7.3.1. Examples

Generate JAX-WS source and classes in a separate JVM with separate directories, a custom wsdl
location attribute, and a list of binding files from foo.wsdl:

7.4. Related information

* JAX-WS binding customization [http://java.sun.com/webservices/docs/2.0/jaxws/
customizations.html]

http://java.sun.com/webservices/docs/2.0/jaxws/customizations.html
http://java.sun.com/webservices/docs/2.0/jaxws/customizations.html
http://java.sun.com/webservices/docs/2.0/jaxws/customizations.html

Chapter 8.

JBossWS-wsprovide

wsprovide is a command line tool and ant task that generates portable JAX-WS
artifacts for a service endpoint implementation. It also has the option to "provide" the
abstract contract for offline usage. See "Using wsprovide" [http://community.jboss.org/docs/DOC-
13544#BottomUp_Using_wsprovide] for a detailed walk-through.

8.1. Command Line Tool

The command line tool has the following usage:

8.1.1. Examples

Generating wrapper classes for portable artifacts in the "generated" directory:

Generating wrapper classes and WSDL in the "generated" directory

Using an endpoint that references other jars

8.2. Maven Plugin

The wsprovide tools is included in the org.jboss.ws.plugins:maven-jaxws-tools-plugin plugin.
The plugin has two goals for running the tool, wsprovide and wsprovide-test, which basically do
the same during different maven build phases (the former triggers the sources generation during
process-classes phase, the latter during the process-test-classes one).

The wsprovide plugin has the following parameters:

79

http://community.jboss.org/docs/DOC-13544#BottomUp_Using_wsprovide
http://community.jboss.org/docs/DOC-13544#BottomUp_Using_wsprovide
http://community.jboss.org/docs/DOC-13544#BottomUp_Using_wsprovide

Chapter 8. JBossWS-wsprovide

Attribute

testClasspathElements

Description

Each
provides a

classpathElement

library file to be added to
classpath

Default

${project.compileClasspathEle
or

${project.testClasspathElement

outputDirectory

The output directory for
generated artifacts.

${project.build.outputDirectory}
or

${project.build.testOutputDirect

ments}

ory}

resourceDirectory The output directory for ${project.build.directory}/
resource artifacts (WSDL/ wsprovide/resources
XSD).
sourceDirectory The output directory for Java ${project.build.directory}/
source. wsprovide/java
extension Enable SOAP 1.2 binding false
extension.
generateWsd| Whether or not to generate false
WSDL.
verbose Enables more informational false
output about command
progress.
endpointClass Service Endpoint

Implementation.

8.2.1. Examples

You can use wsprovide in your own project build simply referencing the maven-jaxws-tools-plugin
in the configured plugins in your pom.xml file.

The following example makes the plugin provide the wsdl file and artifact sources for the specified
endpoint class:

80

Ant Task

The following example does the same, but is meant for use in your own testsuite:

8.3. Ant Task

Note

Note

81

Chapter 8. JBossWS-wsprovide

With 2.0.GA the task was renamed to org.jboss.wsf.spi.tools.ant.WSProvideTask

The wsprovide ant task has the following attributes:

Attribute Description Default
fork Whether or not to run the true
generation task in a separate
VM.
keep Keep/Enable Java source false

code generation.

destdir The output directory for "output"
generated artifacts.

resourcedestdir The output directory for value of destdir
resource artifacts (WSDL/
XSD).

sourcedestdir The output directory for Java value of destdir
source.

extension Enable SOAP 1.2 binding false
extension.

genwsdl Whether or not to generate false
WSDL.

verbose Enables more informational false
output about command
progress.

sei Service Endpoint

Implementation.

classpath The classpath that contains "."
the service endpoint
implementation.

8.3.1. Examples

Executing wsprovide in verbose mode with separate output directories for source, resources, and

classes:

82

Examples

83

84

Chapter 9.

JBossWS-wsrunclient

wsrunclient is a command line tool that invokes a JBossWS JAX-WS Web Service client. It builds
the correct classpath and endorsed libs for you. Feel free to use the code for this script to make
your own shell scripts. It is open source after all.

9.1. Usage

9.2. Examples

Invoking a standalone JAX-WS client:

Invoking a standalone JAX-WS client that uses external jars:

85

86

Part Ill. Additional documentation

This section of the book provides documentation on common additional user requirements, like
enabling authentication, securing the transport, etc.

Chapter 10.

JBossWS-Authentication

This page explains the simplest way to authenticate a web service user with JBossWS.

First we secure the access to the SLSB as we would do for normal (non web service) invocations:
this can be easily done through the @RolesAllowed, @PermitAll, @DenyAll annotation. The
allowed user roles can be set with these annotations both on the bean class and on any of its
business methods.

Similarly POJO endpoints are secured the same way as we do for normal web applications in
web.xml:

10.1. Define the security domain

Next, define the security domain for this deployment. This is performed using the
@SecurityDomain [http://community.jboss.org/docs/DOC-13972#SecurityDomain] annotation for
EJB3 endpoints

http://community.jboss.org/docs/DOC-13972#SecurityDomain
http://community.jboss.org/docs/DOC-13972#SecurityDomain

Chapter 10. JBossWS-Authentic...

or modifying the jboss-web.xml for POJO endpoints

The JBossWS security context is configured in login-config.xml and uses the
UsersRolesLoginModule [http://wiki.jboss.org/wiki/Wiki.jsp?page=UsersRolesLoginModule]. As a
matter of fact login-config.xml, that lives in the server config dir, contains this security domain
definition:

Of course you can define and use your own security domain as well as your login module (in order
to check for users' identity querying a database for example).

10.2. Use BindingProvider to set principal/credential

A web service client may use the javax.xml.ws.BindingProvider interface to set the username/
password combination

http://wiki.jboss.org/wiki/Wiki.jsp?page=UsersRolesLoginModule
http://wiki.jboss.org/wiki/Wiki.jsp?page=UsersRolesLoginModule

Using HTTP Basic Auth for security

10.3. Using HTTP Basic Auth for security

To enable HTTP Basic authentication you use the @WebContext [http://community.jboss.org/
docs/DOC-13972#WebContext] annotation on the bean class

For POJO endpoints, we modify the web.xml adding the auth-method element:

http://community.jboss.org/docs/DOC-13972#WebContext
http://community.jboss.org/docs/DOC-13972#WebContext
http://community.jboss.org/docs/DOC-13972#WebContext

92

Chapter 11.

JBossWS-Securetransport

JBossWS allows you to require that requests to a given endpoint use SSL by specifying
the transportGuarantee attribute in the @WebContext [http://community.jboss.org/docs/DOC-
13972#WebContext] annotation.

Here is an example using a SLSB endpoint:

Similarly to enforce the same requirement on POJO endpoints, you need to edit web.xml and add
a user-data-constraint element to your security-constraint element:

If you're manually creating your service contract, make sure that the endpoint address in your
WSDL file uses a secure protocol. The easiest way is to add "https://" to the SOAP Address entry:

http://community.jboss.org/docs/DOC-13972#WebContext
http://community.jboss.org/docs/DOC-13972#WebContext
http://community.jboss.org/docs/DOC-13972#WebContext
https://

Chapter 11. JBossWS-Securetra...

For this to work the Tomcat+SSL connector must be enabled:

Please refer the Tomcat-5.5 SSL Configuration HOWTO [http://tomcat.apache.org/tomcat-5.5-
doc/ssl-howto.html] for further details.

11.1. Client side

On the client side the truststore must be installed:

As you can see, this requires you to setup the environment specifying both the location and type
of your truststore.

Finally, in case you see the following exception:

©
-b I

https://localhost:8443/my-ctx/SecureEndpoint
http://tomcat.apache.org/tomcat-5.5-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-5.5-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-5.5-doc/ssl-howto.html

Client side

you should disable URL checking on the client side:

95

96

Chapter 12.

JBossWS-Endpointmanagement

JBossWS registers MBeans that users can leverage to manage every webservice endpoint. Apart
from the obvious start/stop functionalities, they provide valuable information and statistics about
messages processed by the endpoints.

12.1. Getting the information

JBoss ships with a IMX-Console with all the application server MBeans. It is usually available at
URL http://localhost:8080/jmx-console. For endpoint management you might be interested in the
MBeans belonging to the jboss.ws domain.

The application server also has an applet based web-console which basically has the same data
as the JMX-Console plus some advanced features including snapshot graphics.

Of course you can access an MBean programmatically too. Please refer to the JBoss JMX faq
[http://wiki.jboss.org/wiki/Wiki.jsp?page=FAQJBossIJMX] for further details; here is a brief code
snippet you might want to start from in order to access a ManagedEndpointMBean from the same
virtual machine:

12.2. Metrics

For each deployed endpoint you'll find an
org.jboss.wsf.framework.management.ManagedEndpoint MBean providing basic start/stop
functionalities and metrics. Calling a stopped endpoint will always result in a SOAP fault message.

The metrics available for each managed endpoint are:

« Min, max, average and total processing time: processing includes both the WS stack plus
application server work and the user business logic

97

http://localhost:8080/jmx-console
http://wiki.jboss.org/wiki/Wiki.jsp?page=FAQJBossJMX
http://wiki.jboss.org/wiki/Wiki.jsp?page=FAQJBossJMX

Chapter 12. JBossWS-Endpointm...

 Last start and stop time

* Request, response and fault count

12.3. Records

JBossWS features a highly configurable records' collection and management system. Each record
is basically composed of a message plus additional information (for example the caller address
and the called endpoint operation).

Endpoints can be configured with record processors that are invoked whenever a message flow
is detected and records are thus created.

Every deployed endpoint is configured with default record processors. However custom
processors as well as record filters can be easily plugged in and managed at any time through
JMX. This gives users the chance of performing advanced analysis of the webservice traffic
according to their business requirements.

Please refer to the records management page [http://jbossws.jboss.org/mediawiki/
index.php?titte=Records_management] for further details.

12.4. Snapshots and threshold monitors

As previously said, the JBoss Web Console [http://wiki.jboss.org/wiki/
Wiki.jsp?page=WebConsole] has interesting features including snapshots [http://wiki.jboss.org/
wiki/Wiki.jsp?page=WebConsoleSnapshots] and threshold monitors [http://wiki.jboss.org/wiki/
Wiki.jsp?page=WebConsoleMonitoring].

Snapshots allow users to record changes of a given MBean attribute within a defined time interval.
Data are sampled at a given rate and may be plotted to graphs with a few clicks. Snapshots
are listed in the Web console and can be created simply browsing to http://localhost:8080/web-
console/createSnapshot.jsp .

Threshold monitors allow users to be notified whenever a given MBean attribute exceed a certain
range of values. The threshold monitor's creation and management processes are similar to
those mentioned above for the snapshots. Simply browse to http://localhost:8080/web-console/
createThresholdMonitor.jsp .

Speaking of WS availability and SLA, this all becomes interesting because users
can monitor and take snapshots of critical attributes like the average/max processing
time of a managed endpoint. Moreover, advanced analysis can be performed
leveraging ad-hoc attributes of custom record processors [http://jbossws.jboss.org/mediawiki/
index.php?title=Endpoint_management#Records].

98

http://jbossws.jboss.org/mediawiki/index.php?title=Records_management
http://jbossws.jboss.org/mediawiki/index.php?title=Records_management
http://jbossws.jboss.org/mediawiki/index.php?title=Records_management
http://wiki.jboss.org/wiki/Wiki.jsp?page=WebConsole
http://wiki.jboss.org/wiki/Wiki.jsp?page=WebConsole
http://wiki.jboss.org/wiki/Wiki.jsp?page=WebConsole
http://wiki.jboss.org/wiki/Wiki.jsp?page=WebConsoleSnapshots
http://wiki.jboss.org/wiki/Wiki.jsp?page=WebConsoleSnapshots
http://wiki.jboss.org/wiki/Wiki.jsp?page=WebConsoleSnapshots
http://wiki.jboss.org/wiki/Wiki.jsp?page=WebConsoleMonitoring
http://wiki.jboss.org/wiki/Wiki.jsp?page=WebConsoleMonitoring
http://wiki.jboss.org/wiki/Wiki.jsp?page=WebConsoleMonitoring
http://localhost:8080/web-console/createSnapshot.jsp
http://localhost:8080/web-console/createSnapshot.jsp
http://localhost:8080/web-console/createThresholdMonitor.jsp
http://localhost:8080/web-console/createThresholdMonitor.jsp
http://jbossws.jboss.org/mediawiki/index.php?title=Endpoint_management#Records
http://jbossws.jboss.org/mediawiki/index.php?title=Endpoint_management#Records
http://jbossws.jboss.org/mediawiki/index.php?title=Endpoint_management#Records

Chapter 13.

JBossWS-Recordsmanagement

JBossWS records' collection and management system gives administrators a means of
performing custom analysis of their webservice traffic as well as exporting communication logs.

13.1. What is recorded

Each record is basically composed of a message plus additional information; here are the current
record attributes:

Creation date

* Source host

 Destination host

* Message type (in/out)

« Invoked endpoint operation

» Message envelope (including both soap:header and soap:body for SOAP messages)

» Http headers

» Record group ID (allowing records belonging to the same message flow to be linked together)

Of course records may also have meaningful values for a subset of the afore mentioned record
attributes.

13.2. Use cases

What are records useful for? In spite of endpoint metrics that provide response time information
and counts of invocations, records provide users with rich data about the content of the exchanged
messages and their sender/receiver. The record system allows fine grained management and
is customizable according to the users need; some of the use cases supported by the default
configuration are:

» Logging request and response messages: being able to record messages received from and
sent to a given service consumer without stopping the provider may be really useful. You just
need to set the recording attribute of their endpoint's LogRecorder to true. The added value of
this logging solution comes from the use of filters through which messages coming from a given
address and related to a given wsdl operation only can be logged.

99

Chapter 13. JBossWS-Recordsma...

« Accountability: service providers may want to know which consumers are actually hitting a
given service. This can be done for example using the getClientHosts functionality of the
MemoryBufferRecorder once it has been switched to recording state.

» Getting statistics, filtering records: service administrators might want to see the last records
related to a given endpoint or operation, the last records related to messages coming from
a given customer and the response the system gave them, etc. These information can be
obtained using the getRecordsByOperation, getRecordsByClientHost or the more general
getMatchingRecords functionality of the MemoryBufferRecorder.

13.3. How it works and how to use it

The recording system is composed of

* JAX-WS handlers intercepting inbound and outbound communication

» Record processors plugged into deployed endpoints; handlers collect records and send them
to every processors through the current endpoint. Processors may store records, convert them,
log them, ...

« MBean views of processors that can be used to configure and fine tune recording at runtime

» Record filters allowing selection of information to be recorded as well as providing means of
performing custom queries on the saved records.

13.3.1. Server side

On server side records are collected by JAX-WS handlers and passed to the configured
processors. JBossWS comes with two default record processors that are plugged into every
endpoint during the deployment:

» LogRecorder: a simple record processor that writes records to the configured log.

« MemoryBufferRecorder: a record processor that keeps the last received records in memory and
allows user to search / get statistics on them.

Every processors can be fine tuned to process some record attributes only according to the
user and/or performance requirements. Default processors are not in recording mode upon
creation, thus you need to switch them to recording mode through their MBean interfaces (see
the Recording flag in the jmx-console).

Common processor properties and their respective defaults values are:

 processDestinationHost (true)

100

Server side

e processSourceHost (true)

» processHeaders (true)

» processEnvelope (true)

* processMessageType (true)
» processOperation (true)

» processDate (true)

« recording (false)

The recorders can be configured in the stacks bean configuration

The recording system is available for all the JBossWS supported stacks. However slightly different
procedure is required to enable it depending on the used stack.
Native stack

Native stack comes with JBossWS - JAX-WS Endpoint Configuration [http://community.jboss.org/
docs/DOC-13512]. The default standard endpoint already has the server side recording handler:

101

http://community.jboss.org/docs/DOC-13512
http://community.jboss.org/docs/DOC-13512
http://community.jboss.org/docs/DOC-13512

Chapter 13. JBossWS-Recordsma...

thus nothing is required to use it since it is automatically installed in the pre-handler-chain. Of
course you might want to add it to other endpoint configurations you're using.

Metro and CXF stacks

Other stacks require users to manually add the
org.jboss.wsf.framework.invocation.RecordingServerHandler to their endpoint handler chain. This
can be done the same way common user handlers are added.

Once the handler is properly added to the chain, log recording configuration is agnostic to the
used stack. Users just need to tune the processors parameters though their MBean interfaces.

13.3.2. Client side

JMX management of processors is of course available on server side only. However users might
also be interested in collecting and processing records on client side. Since handlers can be
set on client side too, customer handlers could be configured to capture messages almost like
the RecordingServerHandler does. This is left to the users since it is directly linked to their
custom needs. For instance a common use could be to pass client side collected records to the
LogRecorder.

13.4. Advanced hints

13.4.1. Adding custom recorders

As previously said, the recording system is extensible: JBossWS users can write their
own processors and plug them at runtime into their deployed endpoints through the
addRecordProcessor functionality of the ManagedEndpoint MBean. Every processor needs to
implement the org.jboss.wsf.spi.management.recording.RecordProcessor interface. Then you
can choose one of the two following options:

» Give you record processor an MBean interface declaring the manageable attributes: the
recording system will plug your processor to the endpoint and register a management
MBean for it using your interface. This allows you to create highly configurable
custom processors. For an example of this development option, take a look at the
org.jboss.wsf.framework.management.recording.MemoryBufferRecorder.

« Add your record processor to the managed endpoint as is: the recording system will plug it to
the endpoint and register a standard management MBean for its basic processing configuration.
The org.jboss.wsf.framework.management.recording.LogRecorder is an example of this
development option.

102

Handler's position

A code snippet showing how to get the MBeanProxy instance which you can invoke MBean with
can be found here.

13.4.2. Handler's position

Of course the recording handler's position in the handler chain influences the collected records.
As a matter of fact some information may or may not be available at a given point of the handler
chain execution. The standard endpoint configuration declares the RecordingServerHandler into
the pre-handler-chain. Speaking of the native stack, this means for example that you'll get the
invoked operation data and that decrypted messages will be recorded if using WS-Security, since
the WS-Security handler runs in the post-handler-chain. Users might want to change the recording
handler's position in the chain according to their requirements.

13.4.3. Multiple handlers

Records attributes include a record group ID that is meant to link records whose messages belong
to the same message flow (a request-response for example). In order to set the right group ID to
the records, the current ID is associated to the thread that is processing the endpoint invocation.
This means that multiple related records can be linked together and extracted together from a
processor.

For this reason, you might want to install multiple recording handlers into different points of the
handler chain. For instance, it could make sense to record messages both before and after
encryption/decryption when using WS-Security.

13.5. Future extensions

This paragraph covers eventual future extensions and/or idea JBossWS users may want to
leverage for their own business.

13.5.1. Database recorder

The MemoryBufferRecorder provides interesting functionalities to query the collected records set.
For obvious reasons, records are discarded once a given size of the buffer is reached.

A DB based recorder could be developed; it should work the same way the MemoryBufferRecorder
does, except for records that should be saved through a given datasource. This will provide
persistence of data even in case of application server reboot and webservice application redeploy.
It will also allow records coming from different node of a cluster to be stored together. Finally this
would allow administrators to directly query the database, which might be far more efficient.

13.5.2. Custom log writer

The idea of getting statistics from collected records could be further exploited getting custom logs
from the records. These logs could be outputted by a custom processor in standard or proprietary
formats allowing them to be imported into eventual third-party log processing tools which might
offer complex/funky graphic or statistic functionalities and so on.

103

Chapter 13. JBossWS-Recordsma...

13.6. References

You might want to take a look at the org.jboss.wsf.framework.management.recording and
org.jboss.wsf.spi.management.recording packages in the source code to better understand how
all this works and can be used.

104

Part IV. Samples & Tutorials

Below you find few tutorials on WS-* technologies usage as well as a brief list of reference links
and the list of supported JAX-WS annotations.

Chapter 14.

JBosSsSWS-CXFWS-
Addressingtutorial

Apache CXF [http://incubator.apache.org/cxf/] comes with support for WS-Addressing 1.0 [http:/
www.w3.org/TR/ws-addr-core/]. In this sample we will show how to create client and endpoint
communicating each other using this feature.

Creating WS-Addressing based service and client is very simple. User needs to create regular
JAX-WS service and client first. The last step is to configure the addressing on both sides.

14.1. The Service

We will start with the following endpoint implementation (bottom-up approach):

The endpoint implements the following endpoint interface:

107

http://incubator.apache.org/cxf/
http://incubator.apache.org/cxf/
http://www.w3.org/TR/ws-addr-core/
http://www.w3.org/TR/ws-addr-core/
http://www.w3.org/TR/ws-addr-core/

Chapter 14. JBossWS-CXFWS-Add...

Let's say that compiled endpoint and interface classes are located in directory /Thome/username/
wsa/cxf/classes. Our next step is to generate JAX-WS artifacts and WSDL that will be part of
endpoint archive.

14.2. Generating WSDL and JAX-WS Endpoint Artifacts

We will use wsprovide commandline tool to generate WSDL and JAX-WS artifacts. Here's the
command:

The above command generates the following artifacts:

All aforementioned generated artifacts will be part of endpoint archive. But before we will create
the endpoint archive we need to reference generated WSDL from endpoint. To achieve that we

Generating WSDL and JAX-WS Endpoint
Artifacts

will use wsdlLocation annotation attribute. Here's the updated endpoint implementation before
packaging it to the war file:

Created endpoint war archive consists of the following entries:

109

Chapter 14. JBossWS-CXFWS-Add...

The content of web.xml file is:

14.3. Writing Regular JAX-WS Client

The following is the regular JAX-WS client using endpoint interface to lookup the webservice:

package org.jboss.test.ws.jaxws.samples.wsa;

http://java.sun.com/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd

Turning on WS-Addressing 1.0

Now we have both endpoint and client implementation but without WS-Addressing in place. Our
next goal is to turn on the WS-Addressing feature.

14.4. Turning on WS-Addressing 1.0

In order to turn on WS-Addressing in JBossWS-CXF integration the last two steps are remaining:

e annotate service endpoint with @Addressing annotation

« modify client to configure WS-Addressing using JAX-WS webservice feature

14.4.1. Updating Endpoint Code to Configure WS-Addressing

Now we need to update endpointimplementation to configure WS-Addressing. Here's the updated
endpoint code:

As users can see we added JAX-WS 2.1 Addressing annotation to configure WS-Addressing.
The next step is to repackage the endpoint archive to apply this change.

14.4.2. Updating Client Code to Configure WS-Addressing

Now we need to update client implementation as well to configure WS-Addressing. Here's the
updated client code:

111

Chapter 14. JBossWS-CXFWS-Add...

And that's all. Now we have both JAX-WS client and endpoint communicating each other using
WS-Addressing feature.

14.4.3. Leveraging WS-Addressing Policy

An option you can also evaluate to simplify both client and server deployment, is to let the server
engine generate and publish the wsdl contract instead of using the one mentioned above: (please
note the removal of wsdlLocation attribute in the @WebService annotation)

Sample Sources

This way the endpoint is published with a contract containing a WS-Addressing Policy that tells
clients addressing needs to be on.

The client can then simply do as follows:

No need for setting the AddressingFeature, the policy engine takes care of enabling WS-
Addressing to match the policy advertised by the server.

14.5. Sample Sources

All sources from this tutorial are part of JBossWS-CXF testsuite.

113

114

Chapter 15.

JBosSsSWS-CXFWS-
ReliableMessagingtutorial

Apache CXF [http://incubator.apache.org/cxf/] comes with support for WS-RM 1.0 [http://
specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf]. In this sample we will show how to
create client and endpoint communicating each other using WS-RM 1.0. The sample uses WS-
Policy [http://www.w3.0rg/2006/07/ws-policy/] specification to configure WS-RM.

Creating the WS-RM based service and client is very simple. User needs to create regular JAX-WS
service and client first. The last step is to configure WSRM.

15.1. The service

We will start with the following endpoint implementation (bottom-up approach):

115

http://incubator.apache.org/cxf/
http://incubator.apache.org/cxf/
http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf
http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf
http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf
http://www.w3.org/2006/07/ws-policy/
http://www.w3.org/2006/07/ws-policy/
http://www.w3.org/2006/07/ws-policy/

Chapter 15. JBossWS-CXFWS-Rel...

Let's say that compiled endpoint class is in directory /Thome/username/wsrm/cxf/classes. Our
next step is to generate JAX-WS artifacts and WSDL.

15.2. Generating WSDL and JAX-WS Endpoint Artifacts

We will use wsprovide commandline tool to generate WSDL and JAX-WS artifacts. Here's the
command:

The above command generates the following artifacts:

All aforementioned generated artifacts will be part of endpoint archive. But before we will create
the endpoint archive we need to reference generated WSDL from endpoint. To achieve that we
will use wsdlLocation annotation attribute. Here's the updated endpoint implementation before
packaging it to the war file:

Generating WSDL and JAX-WS Endpoint
Artifacts

Created endpoint war archive consists of the following entries:

Chapter 15. JBossWS-CXFWS-Rel...

The content of web.xml file is:

15.3. Generating JAX-WS Client Artifacts

Before we will write regular JAX-WS client we need to generate client artifacts from WSDL. Here's
the command to achieve that:

The above command generates the following artifacts:

Writing Regular JAX-WS Client

Now the last step is to write the regular JAX-WS client using generated artifacts.

15.4. Writing Regular JAX-WS Client

The following is the regular JAX-WS client using generated artifacts:

119

Chapter 15. JBossWS-CXFWS-Rel...

Now we have both endpoint and client implementation but without WSRM in place. Our next goal
is to turn on the WS-RM feature.

15.5. Turning on WS-RM 1.0

15.5.1. Extending WSDL Using WS-Policy

To activate WSRM on server side we need to extend the WSDL with WSRM and addressing
policies. Here is how it looks like:

http://www.jboss.org/jbossws/ws-extensions/wsrm
http://www.jboss.org/jbossws/ws-extensions/wsrm
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/
http://www.w3.org/2006/07/ws-policy
http://www.w3.org/2001/XMLSchema
http://www.jboss.org/jbossws/ws-extensions/wsrm
http://www.jboss.org/jbossws/ws-extensions/wsrm

Extending WSDL Using WS-Policy

http://www.w3.org/2006/05/addressing/wsdl
http://schemas.xmlsoap.org/ws/2005/02/rm/policy
http://schemas.xmlsoap.org/soap/http

Chapter 15. JBossWS-CXFWS-Rel...

15.5.2. Basic WS-RM configuration

Once the endpoint wsdl is properly updated with the policies elements, the JBossWS-CXF stack
is automatically able to detect the need for the WS-Policy engine to be used, both on client and
server side, for enabling WS-Reliable Messaging.

The endpoint advertises RM capabilities through the published wsdl and the client is required to
also enable WS-RM for successfully exchanging messages with the server.

The regular jaxws client above is enough if the user does not need to tune any specific detail of
the RM subsystem (acknowledgment / retransmission intervals, thresholds, ...)

15.5.3. Advanced WS-RM configuration

When users want to have full control over the way WS-RM communication is established, the
current CXF Bus needs to be properly configured. This can be done through a CXF Spring
configuration.

15.5.3.1. Providing Client CXF Configuration

Next step is to create the client CXF configuration file that will be used by client. The following
file was copied/pasted from CXF 2.0.5 ws_rm sample. It simply activates the WSRM protocol for
CXF client. We will name this file cxf.xml in our sample. Here's the content of this file:

http://localhost:9090/hello
http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://cxf.apache.org/core
http://cxf.apache.org/ws/addressing
http://cxf.apache.org/transports/http/configuration

Advanced WS-RM configuration

And that's almost all. The client configuration needs to picked up by the client classloader; in order
to achieve that the cxf.xml file has to be put in the META-INF directory of client jar. That jar should
then be provided when setting the class loader.

Alternatively the bus configuration can also be read programmatically as follows:

15.5.3.2. Updating Client Code to Read Bus Configuration File

And here's the last piece the updated CXF client:

123

http://schemas.xmlsoap.org/ws/2005/02/rm/policy
http://cxf.apache.org/ws/rm/manager
http://cxf.apache.org/core
http://cxf.apache.org/schemas/core.xsd
http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/schemas/configuration/http-conf.xsd
http://schemas.xmlsoap.org/ws/2005/02/rm/policy
http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd
http://cxf.apache.org/ws/rm/manager
http://cxf.apache.org/schemas/configuration/wsrm-manager.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

Chapter 15. JBossWS-CXFWS-Rel...

15.6. Sample Sources

All sources from this tutorial are part of JBossWS-CXF distribution.

124

Chapter 16.

JBossWS-CXFJMStransporttutorial

JBossWS-CXF supports JMS Transport to transfer SOAP messages. There
is a testcase in the codebase to demonstrate this ability, available
here [http://anonsvn.jboss.org/repos/jbossws/stack/cxf/tags/jbossws-cxf-3.4.0.CR2/modules/
testsuite/cxf-spring-tests/src/test/javal/org/jboss/test/ws/jaxws/samples/jmstransport/]. In this
tutorial, we will use a wsdl first web service example to show you how to enable this feature in
JBossWS.

16.1. WSDL

125

http://anonsvn.jboss.org/repos/jbossws/stack/cxf/tags/jbossws-cxf-3.4.0.CR2/modules/testsuite/cxf-spring-tests/src/test/java/org/jboss/test/ws/jaxws/samples/jmstransport/
http://anonsvn.jboss.org/repos/jbossws/stack/cxf/tags/jbossws-cxf-3.4.0.CR2/modules/testsuite/cxf-spring-tests/src/test/java/org/jboss/test/ws/jaxws/samples/jmstransport/
http://anonsvn.jboss.org/repos/jbossws/stack/cxf/tags/jbossws-cxf-3.4.0.CR2/modules/testsuite/cxf-spring-tests/src/test/java/org/jboss/test/ws/jaxws/samples/jmstransport/
http://org.jboss.ws/samples/jmstransport
http://cxf.apache.org/transports/jms
http://schemas.xmlsoap.org/wsdl/soap/http
http://schemas.xmlsoap.org/wsdl/soap/
http://org.jboss.ws/samples/jmstransport
http://schemas.xmlsoap.org/wsdl/
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/soap/http
http://org.jboss.ws/samples/jmstransport

Chapter 16. JBossWS-CXFJIMStra...

Apache CXF defines the jms wsdl extension, so the jms queue name or other information about
jms in wsdl port can be parsed to send or receive jms message. Check this wiki page to see what
jms attributes you can defined in WSDL. In this wsdl, we define two queues to send and receive
the soap message. CXF uses JNDI to look up the jms ConnectionFactory, so we may also need
to provide the JNDI properties as the following example :

126

http://org.jboss.ws/samples/jmstransport
http://cxf.apache.org/transports/jms
http://org.jboss.ws/samples/jmstransport
http://org.jboss.ws/samples/jmstransport
http://@jboss.bind.address@:8080/jaxws-samples-jmstransport'/

Service Implementation

16.2. Service Implementation

After generated code from this wsdl , we wrote two class to implement this interface for this two
ports . We annotate the portName in annotation to tell web service stack which transport this
service uses :

Ws.] axws. sanp!

127

Chapter 16. JBossWS-CXFJIMStra...

WS. j axws. sanp!

16.3. web.xml

http://java.sun.com/xml/ns/j2ee
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd

jbossws-cxf.xml

It is almost the same as the usual web.xml to deploy a web service except the <load-on-startup>
servlet initializeparameter. This is for jms service start ready when deployment, no need to wait
until the first servlet request to start the jms endpoint.

16.4. jbossws-cxf.xml

In addition to web.xml, the jbossws-cxf.xml is needed to actually pass in cxf to start this two port.

oi nt'

int'

Note: the import resource is the ImsTransportFactory configuration . It is required to jms transport
enablement .

129

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beans
http://cxf.apache.org/transports/jms
http://cxf.apache.org/jaxws
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://www.w3.org/2006/07/ws-policy
http://www.w3.org/2006/07/ws-policy.xsd
http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd
http://cxf.apache.org/transports/jms
http://cxf.apache.org/schemas/configuration/jms.xsd
http://cxf.apache.org/transports/jms

Chapter 16. JBossWS-CXFJIMStra...

Below gives the war file directory structure to make it more clear what inside :

130

Chapter 17.

JBossWS-JAX-WSAnnotations

17.1. JAX-WS Annotations

For details, see JSR-224 - Java APl for XML-Based Web Services (JAX-WS) 2.0 [http://
www.jcp.org/en/jsr/detail?id=224]

17.1.1. javax.xml.ws.ServiceMode

The ServiceMode annotation is used to specify the mode for a provider class, i.e. whether a
provider wants to have access to protocol message payloads (e.g. a SOAP body) or the entire
protocol messages (e.g. a SOAP envelope).

17.1.2. javax.xml.ws.WebFault

The WebFault annotation is used when mapping WSDL faults to Java exceptions, see section
2.5. It is used to capture the name of the fault element used when marshalling the JAXB type
generated from the global element referenced by the WSDL fault message. It can also be used
to customize the mapping of service specific exceptions to WSDL faults.

17.1.3. javax.xml.ws.RequestWrapper

The RequestWrapper annotation is applied to the methods of an SEI. It is used to capture the
JAXB generated request wrapper bean and the element name and namespace for marshalling
/unmarshalling the bean. The default value of localName element is the operationName as defined
in WebMethod annotation and the default value for the targetNamespace element is the target
namespace of the SEL.When starting from Java, this annotation is used to resolve overloading
conflicts in document literal mode. Only the className element is required in this case.

17.1.4. javax.xml.ws.ResponseWrapper

The ResponseWrapper annotation is applied to the methods of an SEI. It is used to capture
the JAXB generated response wrapper bean and the element name and namespace for
marshalling / unmarshalling the bean. The default value of the localName element is the
operationName as defined in the WebMethod appended with "Response” and the default value of
the targetNamespace element is the target namespace of the SEI. When starting from Java, this

131

http://www.jcp.org/en/jsr/detail?id=224
http://www.jcp.org/en/jsr/detail?id=224
http://www.jcp.org/en/jsr/detail?id=224

Chapter 17. JBossWS-JAX-WSAnNnN...

annotation is used to resolve overloading conflicts in document literal mode. Only the className
element is required in this case.

17.1.5. javax.xml.ws.WebServiceClient

The WebServiceClient annotation is specified on a generated service class (see 2.7). It is used
to associate a class with a specific Web service, identify by a URL to a WSDL document and the
qualified name of a wsdl:service element.

17.1.6. javax.xml.ws.WebEndpoint

The WebEndpoint annotation is specified on the getPortName() methods of a generated service
class (see 2.7). It is used to associate a get method with a specific wsdl:port, identified by its local
name (a NCName).

17.1.7. javax.xml.ws.WebServiceProvider

The WebServiceProvider annotation is specified on classes that implement a strongly typed javax-
xml.ws.Provider. It is used to declare that a class that satisfies the requirements for a provider
(see 5.1) does indeed define a Web service endpoint, much like the WebService annotation does
for SEl-based endpoints.

The WebServiceProvider and WebService annotations are mutually exclusive.

17.1.8. javax.xml.ws.BindingType

The BindingType annotation is applied to an endpoint implementation class. It specifies the binding
to use when publishing an endpoint of this type.

The default binding for an endpoint is the SOAP 1.1/HTTP one

17.1.9. javax.xml.ws.WebServiceRef

The WebServiceRef annotation is used to declare a reference to a Web service. It follows the
resource pattern exemplified by the javax.annotation.Resource annotation in JSR-250 [32]. The
WebServiceRef annotation is required to be honored when running on the Java EE 5 platform,
where it is subject to the common resource injection rules described by the platform specification
[33].

132

javax.xml.ws.WebServiceRefs

17.1.10. javax.xml.ws.WebServiceRefs

The WebServiceRefs annotation is used to declare multiple references to Web services on a
single class. It is necessary to work around the limition against specifying repeated annotations
of the same type on any given class, which prevents listing multiple javax.ws.WebServiceRef
annotations one after the other. This annotation follows the resource pattern exemplified by the
javax.annotation.Resources annotation in JSR-250.

Since no name and type can be inferred in this case, each WebServiceRef annotation inside
a WebServiceRefs MUST contain name and type elements with non-default values. The
WebServiceRef annotation is required to be honored when running on the Java EE 5 platform,
where it is subject to the common resource injection rules described by the platform specification.

17.1.11. javax.xml.ws.Action

The Action annotation is applied to the methods of a SEI. It used to generate the wsa:Action on
wsdl:input and wsdl:output of each wsdl:operation mapped from the annotated methods.

17.1.12. javax.xml.ws.FaultAction

The FaultAction annotation is used within the Action annotation to generate the wsa:Action
element on the wsdl:fault element of each wsdl:operation mapped from the annotated methods.

17.1.13. Annotations Defined by JSR-181

JSR-181 defines the syntax and semantics of Java Web Service (JWS) metadata and default
values.

For details, see JSR 181 - Web Services Metadata for the Java Platform [http://jcp.org/en/jsr/
detail?id=181]

17.1.13.1. javax.jws.WebService

Marks a Java class as implementing a Web Service, or a Java interface as defining a Web Service
interface.

17.1.13.2. javax.jws.WebMethod

Customizes a method that is exposed as a Web Service operation.

133

http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=181

Chapter 17. JBossWS-JAX-WSAnNnN...

17.1.13.3. javax.jws.OneWay

Indicates that the given web method has only an input message and no output. Typically, a oneway
method returns the thread of control to the calling application prior to executing the actual business
method. A JSR-181 processor is REQUIRED to report an error if an operation marked @Oneway
has a return value, declares any checked exceptions or has any INOUT or OUT parameters.

17.1.13.4. javax.jws.WebParam

Customizes the mapping of an individual parameter to a Web Service message part and XML
element.

17.1.13.5. javax.jws.WebResult

Customizes the mapping of the return value to a WSDL part and XML element.

17.1.13.6. javax.jws.SOAPBinding

Specifies the mapping of the Web Service onto the SOAP message protocol.

The SOAPBInding annotation has a target of TYPE and METHOD. The annotation may be placed
on a method if and only if the SOAPBiInding.style is DOCUMENT. Implementations MUST report
an error if the SOAPBInding annotation is placed on a method with a SOAPBInding.style of RPC.
Methods that do not have a SOAPBInding annotation accept the SOAPBinding behavior defined
on the type.

17.1.13.7. javax.jws.HandlerChain

The @HandlerChain annotation associates the Web Service with an externally defined handler
chain.

It is an error to combine this annotation with the @ SOAPMessageHandlers annotation.

The @HandlerChain annotation MAY be present on the endpoint interface and service
implementation bean. The service implementation bean's @HandlerChain is used if
@HandlerChain is present on both.

The @HandlerChain annotation MAY be specified on the type only. The annotation target includes
METHOD and FIELD for use by JAX-WS-2.0.

134

	JBoss AS 6.0 WebServices Guide
	Table of Contents
	Part I. WebServices Overview
	Chapter 1. JBossWS-WebServices
	1.1. What is a web service?
	1.2. Who needs web services?
	1.3. Service Oriented Architecture (SOA)
	1.4. What web services are not...

	Chapter 2. JBossWS-Fromconceptstotechnology
	2.1. Service contracts
	2.1.1. Technical description
	2.1.2. Contract delivery process

	2.2. Message exchange
	2.3. Registries
	2.4. Future of Web Services
	2.5. References

	Part II. Main Documentation
	Chapter 3. JBossWS-QuickStart
	3.1. Right on'
	3.2. Developing web service implementations
	3.2.1. Deploying service implementations

	3.3. Consuming web services
	3.4. Appendix
	3.4.1. ProfileMgmtService.wsdl

	Chapter 4. JBossWS-UserGuide
	4.1. Common User Guide
	4.1.1. Web Service Concepts
	4.1.1.1. Document/Literal
	4.1.1.1.1. Document/Literal (Bare)
	4.1.1.1.2. Document/Literal (Wrapped)

	4.1.1.2. RPC/Literal
	4.1.1.3. RPC/Encoded

	4.1.2. Web Service Endpoints
	4.1.2.1. Plain old Java Object (POJO)
	4.1.2.2. EJB3 Stateless Session Bean (SLSB)
	4.1.2.3. Endpoint Provider
	4.1.2.4. WebServiceContext

	4.1.3. Web Service Clients
	4.1.3.1. Service
	4.1.3.1.1. Service Usage
	4.1.3.1.2. Handler Resolver
	4.1.3.1.3. Executor

	4.1.3.2. Dynamic Proxy
	4.1.3.3. WebServiceRef
	4.1.3.4. Dispatch
	4.1.3.5. Asynchronous Invocations
	4.1.3.6. Oneway Invocations
	4.1.3.7. Timeout Configuration

	4.1.4. Common API
	4.1.4.1. Handler Framework
	4.1.4.1.1. Logical Handler
	4.1.4.1.2. Protocol Handler
	4.1.4.1.3. Service endpoint handlers
	4.1.4.1.4. Service client handlers

	4.1.4.2. Message Context
	4.1.4.2.1. Logical Message Context
	4.1.4.2.2. SOAP Message Context

	4.1.4.3. Fault Handling
	4.1.4.4. JBossWS Extensions
	4.1.4.4.1. Proprietary Annotations
	4.1.4.4.1.1. WebContext
	4.1.4.4.1.2. SecurityDomain

	4.1.4.5. JAXB Introductions

	4.1.5. Tools
	4.1.5.1. JAX-WS tools
	4.1.5.2. Management tools
	4.1.5.3. Web Service console

	4.1.6. Configuration
	4.1.6.1. Address rewrite

	Chapter 5. JBossWS-StackCXFUserGuide
	5.1. JBossWS CXF Integration
	5.1.1. Creating a Bus instance
	5.1.2. Server Side Integration Customization

	5.2. Extended Features
	5.2.1. WS-Addressing
	5.2.2. WS-ReliableMessaging
	5.2.3. WS-Policy
	5.2.3.1. Note on PolicyEngine setup

	5.2.4. WS-Security
	5.2.4.1. WSS4J security on JBoss
	5.2.4.2. WS-Security Policies
	5.2.4.3. Authentication and authorization
	5.2.4.4. Further information

	5.2.5. JMS transport

	5.3. HTTP server transport setup
	5.4. SOAP Message Logging

	Chapter 6. JBossWS-JAX-WSTools
	6.1. Server side
	6.1.1. Bottom-Up (Using wsprovide)
	6.1.2. Top-Down (Using wsconsume)

	6.2. Client Side
	6.3. Command-line, Maven Plugin and Ant Task Reference
	6.4. JAX-WS binding customization

	Chapter 7. JBossWS-wsconsume
	7.1. Command Line Tool
	7.1.1. Examples

	7.2. Maven Plugin
	7.2.1. Examples

	7.3. Ant Task
	7.3.1. Examples

	7.4. Related information

	Chapter 8. JBossWS-wsprovide
	8.1. Command Line Tool
	8.1.1. Examples

	8.2. Maven Plugin
	8.2.1. Examples

	8.3. Ant Task
	8.3.1. Examples

	Chapter 9. JBossWS-wsrunclient
	9.1. Usage
	9.2. Examples

	Part III. Additional documentation
	Chapter 10. JBossWS-Authentication
	10.1. Define the security domain
	10.2. Use BindingProvider to set principal/credential
	10.3. Using HTTP Basic Auth for security

	Chapter 11. JBossWS-Securetransport
	11.1. Client side

	Chapter 12. JBossWS-Endpointmanagement
	12.1. Getting the information
	12.2. Metrics
	12.3. Records
	12.4. Snapshots and threshold monitors

	Chapter 13. JBossWS-Recordsmanagement
	13.1. What is recorded
	13.2. Use cases
	13.3. How it works and how to use it
	13.3.1. Server side
	13.3.2. Client side

	13.4. Advanced hints
	13.4.1. Adding custom recorders
	13.4.2. Handler's position
	13.4.3. Multiple handlers

	13.5. Future extensions
	13.5.1. Database recorder
	13.5.2. Custom log writer

	13.6. References

	Part IV. Samples & Tutorials
	Chapter 14. JBossWS-CXFWS-Addressingtutorial
	14.1. The Service
	14.2. Generating WSDL and JAX-WS Endpoint Artifacts
	14.3. Writing Regular JAX-WS Client
	14.4. Turning on WS-Addressing 1.0
	14.4.1. Updating Endpoint Code to Configure WS-Addressing
	14.4.2. Updating Client Code to Configure WS-Addressing
	14.4.3. Leveraging WS-Addressing Policy

	14.5. Sample Sources

	Chapter 15. JBossWS-CXFWS-ReliableMessagingtutorial
	15.1. The service
	15.2. Generating WSDL and JAX-WS Endpoint Artifacts
	15.3. Generating JAX-WS Client Artifacts
	15.4. Writing Regular JAX-WS Client
	15.5. Turning on WS-RM 1.0
	15.5.1. Extending WSDL Using WS-Policy
	15.5.2. Basic WS-RM configuration
	15.5.3. Advanced WS-RM configuration
	15.5.3.1. Providing Client CXF Configuration
	15.5.3.2. Updating Client Code to Read Bus Configuration File

	15.6. Sample Sources

	Chapter 16. JBossWS-CXFJMStransporttutorial
	16.1. WSDL
	16.2. Service Implementation
	16.3. web.xml
	16.4. jbossws-cxf.xml

	Chapter 17. JBossWS-JAX-WSAnnotations
	17.1. JAX-WS Annotations
	17.1.1. javax.xml.ws.ServiceMode
	17.1.2. javax.xml.ws.WebFault
	17.1.3. javax.xml.ws.RequestWrapper
	17.1.4. javax.xml.ws.ResponseWrapper
	17.1.5. javax.xml.ws.WebServiceClient
	17.1.6. javax.xml.ws.WebEndpoint
	17.1.7. javax.xml.ws.WebServiceProvider
	17.1.8. javax.xml.ws.BindingType
	17.1.9. javax.xml.ws.WebServiceRef
	17.1.10. javax.xml.ws.WebServiceRefs
	17.1.11. javax.xml.ws.Action
	17.1.12. javax.xml.ws.FaultAction
	17.1.13. Annotations Defined by JSR-181
	17.1.13.1. javax.jws.WebService
	17.1.13.2. javax.jws.WebMethod
	17.1.13.3. javax.jws.OneWay
	17.1.13.4. javax.jws.WebParam
	17.1.13.5. javax.jws.WebResult
	17.1.13.6. javax.jws.SOAPBinding
	17.1.13.7. javax.jws.HandlerChain

