
Date: 2002-06-10, 11:06:28 AM

DAIN SUNDSTROM
The JBoss Group

JBossCMP

Edition

2

 P A G E i i

Page ii

D A I N S U N D S T R O M A N D T H E J B O S S G R O U P

JBossCMP

© JBoss Group, LLC
2520 Sharondale Dr.

Atlanta, GA 30305 USA
sales@jbossgroup.com

 P A G E i i i

Page iii

Table of Contents

Preface... viii
Forward .. viii
About the Authors.. viii
Dedication... viii
Acknowledgments .. viii

0. Introduction to JBossCMP..1
What this Book Covers ... 1
Organization.. 1

1. Setup..3
Example Code.. 3

Read-ahead ...7

2. Entities...11
Entity Classes .. 11
Entity Declaration... 12
Entity Mapping... 13

3. CMP-Fields ...16
CMP-Field Abstract Accessors .. 16
CMP-Field Declaration... 16
CMP-Field Column Mapping... 17
Read-only Fields .. 18
Dependent Value Classes (DVCs)... 19

4. Container Managed Relationships ...23
CMR-Field Abstract Accessors.. 23
Relationship Declaration ... 24
Relationship Mapping ... 26

Relationship Role Mapping.. 27
Foreign Key Mapping.. 29
Relation-table Mapping... 30

5. Queries...33

 P A G E i v

Page iv

Finder and ejbSelect Declaration ... 33
EJB-QL Declaration... 34
Overriding the EJB-QL to SQL Mapping .. 35

JBossQL .. 36
DynamicQL .. 37
DeclaredSQL.. 38
BMP Custom Finders .. 42

6. Optimized Loading ...43
Loading Scenario ... 43
Load Groups.. 45
Read-ahead... 46

on-find .. 46
on-load.. 48
none ... 50

Loading Process... 50
Commit Options ... 51
Eager-loading Process .. 51
Lazy-loading Process .. 53

Transactions.. 57

A. About The JBoss Group ..61

B. Defaults..62

C. Datasource Customization ...65
Type Mapping.. 65
Function Mapping .. 66

D. Revision History...67
Beta 1... 67

Chapter 2 Entities .. 67
Chapter 3 CMP-Fields ... 67
Chapter 4 Container Managed Relationships .. 67
Chapter 6 Optimized Loading.. 68

Beta 2... 68
Chapter 5 Queries .. 68

 P A G E v

Page v

Table of Listings
Listing 1-1, The EJB 2.0 DOCTYPE Declaration ___3
Listing 2-1, Entity Local Home Interface ___11
Listing 2-2, Entity Local Interface___11
Listing 2-3, Entity Implementation Class ___12
Listing 2-4, The ejb-jar.xml Entity Declaration___13
Listing 2-5, The jbosscmp-jdbc.xml Entity Mapping___14
Listing 3-1, cmp-field Abstract Accessor Declaration __16
Listing 3-2, The ejb-jar.xml cmp-field Declaration __17
Listing 3-3, The jbosscmp-jdbc.xml cmp-field Mapping __17
Listing 3-4, The jbosscmp-jdbc.xml cmp-field read-only Declaration _________________________________19
Listing 3-5, The jbosscmp-jdbc.xml Dependent Value Class Declaration_______________________________20
Listing 3-6, Generated Column Names for ContactInfo Dependent Value Class _________________________21
Listing 3-7, The jbosscmp-jdbc.xml cmp-field Dependent Value Class Property Override _________________22
Listing 4-1, Collection Valued cmr-field Abstract Accessor Declaration ________________________________23
Listing 4-2, Single Valued cmr-field Abstract Accessor Declaration ___________________________________24
Listing 4-3, The ejb-jar.xml Relationship Declaration__24
Listing 4-4, The jbosscmp-jdbc.xml Relationship Mapping Template _________________________________26
Listing 4-5, The jbosscmp-jdbc.xml Foreign Key Mapping__30
Listing 4-6, The jbosscmp-jdbc.xml Relation-table Mapping __31
Listing 5-1, Finder Declaration ___33
Listing 5-2, ejbSelect Declaration ___34
Listing 5-3, The ejb-jar.xml Query Declaration __34
Listing 5-4, The jbosscmp-jdbc.xml EJB-QL Override Template _____________________________________36
Listing 5-5, JBossQL Expanded BNF ___36
Listing 5-6, The jbosscmp-jdbc.xml JBossQL Override___37
Listing 5-7, JBossQL SQL Mapping __37
Listing 5-8, DynamicQL Example Code___38
Listing 5-9, The jbosscmp-jdbc.xml DynamicQL Override __38
Listing 5-10, The jbosscmp-jdbc.xml DeclaredSQL Override __39
Listing 5-11, DeclaredSQL SQL Mapping ___39
Listing 5-12, The jbosscmp-jdbc.xml DeclaredSQL Override With From Clause _________________________39
Listing 5-13, The jbosscmp-jdbc.xml DeclaredSQL With From Clause SQL Mapping _____________________40
Listing 5-14, The jbosscmp-jdbc.xml DeclaredSQL ejbSelect Override ________________________________40
Listing 5-15, The jbosscmp-jdbc.xml DeclaredSQL ejbSelect SQL Mapping ____________________________41
Listing 5-16, Custom Finder Example Code ___42
Listing 6-1, Loading Scenario Example Code __43
Listing 6-2, Unoptimized findAll Query ___44
Listing 6-3, Unoptimized Load Queries___44
Listing 6-4, The jbosscmp-jdbc.xml Load Group Declaration__46
Listing 6-5, on-find Optimized findAll Query___46
Listing 6-6, The jbosscmp-jdbc.xml on-find Declaration ___48
Listing 6-7, on-load (Unoptimized) findAll Query ___48
Listing 6-8, on-load Optimized Load Queries __49
Listing 6-9, The jbosscmp-jdbc.xml on-load Declaration ___50
Listing 6-10, The jbosscmp-jdbc.xml none Declaration __50
Listing 6-11, The jboss.xml Commit Option Declaration ___51
Listing 6-12, The jbosscmp-jdbc.xml Eager Load Declaration _______________________________________52

 P A G E v i

Page vi

Listing 6-13, The jbosscmp-jdbc.xml Lazy Load Group Declaration___________________________________53
Listing 6-14, Relationship Lazy Loading Example Code __55
Listing 6-15, The jbosscmp-jdbc.xml Relationship Lazy Loading Configuration _________________________56
Listing 6-16, on-find Optimized findAll Query__56
Listing 6-17, on-find Optimized Relationship Load Queries ___56
Listing 6-18, No Transaction Loading Example Code __58
Listing 6-19, No Transaction on-find Optimized findAll Query _______________________________________58
Listing 6-20, No Transaction on-load Optimized Load Queries ______________________________________59
Listing 6-21, User Transaction Example Code ___60
Listing B-1, The jbosscmp-jdbc.xml Defaults Declaration __62
Listing C-1, The jbosscmp-jdbc.xml Type Mapping Declaration______________________________________65
Listing C-2, The jbosscmp-jdbc.xml Function Mapping Declaration___________________________________66

 P A G E v i i

Page vii

Table of Tables
Table 1-1, Example Code Ant Targets .. 9
Table 2-1, entity Tags .. 14
Table 3-1, cmp-field Tags ... 18
Table 4-1, ejb-relationship-role Tags ... 25
Table 4-2, ejb-relation Tags.. 27
Table 4-3, ejb-relationship-role Tags ... 27
Table 4-4, key-field Tags .. 28
Table 4-5, relation-table-mapping Tags.. 31
Table 5-1, select Tags .. 41
Table 6-1, Unoptimized Query Execution.. 45
Table 6-2, on-find Optimized Query Execution .. 47
Table 6-3, on-load Optimized Query Execution ... 49
Table 6-4, on-find Optimized Relationship Query Execution ... 57
Table 6-5, No Transaction on-find Optimized Query Execution ... 59
Table B-1, defaults Tags... 62
Table C-1, Type Mapping Tags.. 65

Page viii

Preface

Forward
In high school, I told my English teacher that mathematics and physics were much more
important than his class. He smiled and laughed at my lame excuse for not doing an assignment
and gave me a zero. Over the last year, I have learned how wrong I was. It doesn't matter how
good your code is if no one can figure out how to use it.

About the Authors
Dain Sundstrom is the Chief Architect of JBossCMP, an implementation of the Enterprise Java
Beans 2.0 Container Managed Persistence specification. Dain earns a living on the sales of the
JBossCMP 2.0 documentation and as an independent consultant in Minneapolis, MN (USA).

The JBoss Group, LLC, headed by Marc Fleury, is composed of over 1000 developers
worldwide who are working to deliver a full range of J2EE tools, making JBoss the premier
Enterprise Java application server for the Java 2 Enterprise Edition platform.

JBoss is an open source, standards-compliant, J2EE application server implemented in 100%
Pure Java. The JBoss/Server and complement of products are delivered under a public license.
With 150,000 downloads per month, JBoss is the most downloaded J2EE based server in the
industry.

Dedication
To Marleta for putting up with me all these years.

Acknowledgments
I would like to thank all of you who have posted bug reports. Without these reports, JBossCMP
would have never become stable.

Preface

i

Page 1

0. Introduction to JBossCMP

What this Book Covers
JBossCMP is a powerful persistence engine compliant with the EJB 2.0 CMP 2.0 specification.
This documentation explains how to configure JBossCMP for CMP 2.0. Specifically, it includes
an introduction to each feature, along with its configuration, and a guide to specifying the
database mapping of container managed data. Although the general reader may find this
intellectually stimulating, the configuration of JBossCMP is not required to simply deploy and run
an EJB 2.0 application; therefore, this documentation is intended primarily for those interested in
using advanced features, specifying an exact database mapping, or tuning, all of which require
further configuration.

This documentation assumes that the reader is familiar with Java, EJB and JBoss. It does not
assume familiarity with JAWS, the JBoss CMP 1.1 persistence engine, although such familiarity
may be helpful. For those without CMP experience, general CMP 2.0 coding and declaration are
covered, although this documentation is by no means a complete introduction to CMP.

Organization
Each chapter of this documentation covers a specific feature of CMP 2.0. The first section of a
chapter quickly introduces the feature, describes the java code required, and explains the
declaration of the element in the ejb-jar.xml file. The remaining sections describe JBossCMP
features and configuration. A short description of each chapter follows:

Chapter 1, Setup

This chapter explains the setup of configuration files relevant to JBossCMP.

Chapter 2, Entities

This chapter explains the configuration of entities with the exception of cmp-fields, cmr-
fields, and queries, which are described in separate chapters.

Chapter

0

C H A P T E R 0 : I N T R O D U C T I O N T O J B O S S C M P P A G E 2

Page 2

Chapter 3, CMP-Fields

This chapter explains the configuration of cmp-fields and focuses on the new features such as
eager/lazy loading, read-only fields, and dependent value classes.

Chapter 4, Container Managed Relationships

This chapter explains container managed relationships and the configuration of relationships
for JBossCMP. The chapter focuses on the database relationship mapping.

Chapter 5, Queries

This chapter explains the declaration of queries for finder and ejbSelect methods, and how to
override the EJB-QL to SQL mapping.

Chapter 6, Optimized Loading

This chapter explains the loading process and its configuration.

Appendix A, About The JBoss Group

This appendix contains information about The JBoss Group.

Appendix B, Defaults

This appendix explains the configuration of JBossCMP default options.

Appendix C, Datasource Customization

This appendix explains the configuration of a datasource.

Appendix D, Revision History

This appendix details the changes to JBossCMP and this document.

Page 3

1. Setup

JBossCMP is the default persistence manager for EJB 2.0 applications. Because JBossCMP is a
core feature of JBoss 3.0, no action beyond the basic JBoss installation (see the JBoss 3.0 Quick
Start Guide) is required to use CMP 2.0, but there are some details to note when creating a new
EJB 2.0 application or when upgrading an EJB 1.1 application.

When JBoss deploys an EJB jar file, it uses the DOCTYPE of the ejb-jar.xml deployment
descriptor to determine the version of the EJB jar. The correct DOCTYPE for EJB 2.0 follows:

<!DOCTYPE ejb-jar PUBLIC
 "-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN"
 "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

Listing 1-1, The EJB 2.0 DOCTYPE Declaration

If the public identifier of the DOCTYPE is "-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 2.0//EN" JBossCMP will use the "Standard CMP 2.x EntityBean" configuration in
the standardjboss.xml file. If you have an application that uses a custom entity bean
configuration, and you are upgrading to EJB 2.0, you must change the persistence-manager and
add the new interceptors (see the "Standard CMP 2.x EntityBean" configuration in the
standardjboss.xml file for details). No further configuration is necessary to deploy and run your
EJB 2.0 application successfully.

Example Code
The full source code for all of the examples presented in this documentation is available as part of
the downloaded package, and is based on the Crime Portal, which models criminal organizations.
A diagram of the portions of the Criminal Portal data model used in the example code follows:

Chapter

1

http://prdownloads.sourceforge.net/jboss/JBoss.3.0QuickStart.pdf
http://prdownloads.sourceforge.net/jboss/JBoss.3.0QuickStart.pdf

C H A P T E R 1 : S E T U P P A G E 4

Page 4

gangsterId : Integer
name : String
nickName : String
badness : int
contactInfo : ContactInfo

«EntityBean»
Gangster

name : String
description : String

«EntityBean»
Organization

Organization1

MemberGangsters*

name : String
score : double
setupCost : double

«EntityBean»
Job

Gangsters*

Jobs*

description : String
street : String
city : String
state : String
zip : int

«EntityBean»
Location

1

Hangout

0..1

Enemies

*

*

The example code requires jboss-3.0.0 and Jakarta Ant 1.4.1 or later. The setup of Ant is
described in Chapter 0 of the JBoss 3.0 Quick Start Guide. The build.xml file in the example
code relies on the JBOSS_HOME environment to find JBoss, so check that this variable is set
before running Ant. Ant will give you the following output if JBOSS_HOME is not set:

$ ant
Buildfile: build.xml

cleandist:

prepare:
 [mkdir] Created dir: C:\work\jboss\cmp-example\output
 [mkdir] Created dir: C:\work\jboss\cmp-example\output\classes
 [mkdir] Created dir: C:\work\jboss\cmp-example\output\lib

compile:
 [javac] Compiling 22 source files to C:\work\jboss\cmp-example\output\classes

BUILD FAILED

c:\work\jboss\cmp-example\build.xml:55: C:\work\jboss\cmp-example\${env.JBOSS_HO
ME}\lib not found.

http://sourceforge.net/project/showfiles.php?group_id=22866
http://jakarta.apache.org/site/binindex.html
http://prdownloads.sourceforge.net/jboss/JBoss.3.0QuickStart.pdf

C H A P T E R 1 : S E T U P P A G E 5

Page 5

Total time: 0 seconds

To build the example code, simply execute Ant with no arguments. The output follows:

$ ant
Buildfile: build.xml

cleandist:

prepare:
 [mkdir] Created dir: C:\work\jboss\cmp-example\output
 [mkdir] Created dir: C:\work\jboss\cmp-example\output\classes
 [mkdir] Created dir: C:\work\jboss\cmp-example\output\lib

compile:
 [javac] Compiling 22 source files to C:\work\jboss\cmp-example\output\classes

build-ejb.jar:
 [jar] Building jar: C:\work\jboss\cmp-example\output\lib\gangster-cmp2.jar

deploy:
 [copy] Copying 1 file to c:\jboss-3.0.0\server\default\deploy

BUILD SUCCESSFUL

Total time: 3 seconds

This command builds and deploys the application in the JBoss server. When you start your JBoss
server, or if it is already running, you should see the following deployment messages:

21:35:34,128 INFO [MainDeployer] Starting deployment of package: file:/C:/jboss
-3.0.0/server/default/deploy/gangster-cmp2.jar
21:35:34,449 INFO [EJBDeployer]
Bean : GangsterEJB
Section: 10.6.2
Warning: CMP entity beans may not define the implementation of a finder.

21:35:34,519 INFO [EJBDeployer]
Bean : AutoNumberEJB
Method : public String ejbCreate(String)
Section: 10.6.4
Warning: The throws clause must define the javax.ejb.CreateException.

21:35:34,559 INFO [EjbModule] Creating
21:35:34,910 INFO [EjbModule] Deploying OrganizationEJB
21:35:34,930 INFO [EjbModule] Deploying GangsterEJB
21:35:34,960 INFO [EjbModule] Deploying JobEJB
21:35:34,980 INFO [EjbModule] Deploying LocationEJB
21:35:35,000 INFO [EjbModule] Deploying AutoNumberEJB
21:35:35,050 INFO [EjbModule] Deploying EJBTestRunnerEJB
21:35:35,080 INFO [EjbModule] Deploying ReadAheadEJB

C H A P T E R 1 : S E T U P P A G E 6

Page 6

21:35:35,641 INFO [EjbModule] Created
21:35:35,641 INFO [EjbModule] Starting
21:35:35,651 INFO [LocationEJB] Created table 'LOCATION' successfully.
21:35:35,681 INFO [OrganizationEJB] Created table 'ORGANIZATION' successfully.
21:35:35,741 INFO [AutoNumberEJB] Created table 'AUTONUMBER' successfully.
21:35:35,751 INFO [JobEJB] Created table 'JOB' successfully.
21:35:35,801 INFO [GangsterEJB] Created table 'GANGSTER' successfully.
21:35:35,811 INFO [GangsterEJB] Created table 'GANGSTER_ENEMIES' successfully.
21:35:35,841 INFO [GangsterEJB] Created table 'GANGSTER_JOB' successfully.
21:35:35,961 INFO [EjbModule] Started
21:35:35,961 INFO [MainDeployer] Successfully completed deployment of package:
file:/C:/jboss-3.0.0/server/default/deploy/gangster-cmp2.jar

Ignore the two verifier messages. Normally verifier messages should not be ignored, but in this
case, they are incorrect. 1 At this point you are ready to begin testing the application. There are
three Ant targets central to testing: setup, test, and teardown. The setup target loads sample data
into the database, the test target executes the unit test cases, and the teardown target removes the
sample data from the database. The following shows the execution of the setup target:

$ ant setup
Buildfile: build.xml

prepare:

compile:

setup:
 [junit] .
 [junit] Time: 2.193
 [junit]
 [junit] OK (1 tests)
 [junit]

BUILD SUCCESSFUL

Total time: 4 seconds

The following shows execution of the test target:

$ ant test
Buildfile: build.xml

prepare:

compile:

1 The first message "CMP entity beans may not define the implementation of a finder" is correct in warning that the EJB specification does
not allow beans to implement a finder method; however, as JBossCMP does allow finders to be implemented using BMP custom finders, it
can safely be ignored. The second message "The throws clause must define the javax.ejb.CreateException" is a bug in the JBoss auto-
number sample code.

C H A P T E R 1 : S E T U P P A G E 7

Page 7

test:
 [junit]
 [junit] Time: 1.522
 [junit]
 [junit] OK (11 tests)
 [junit]

BUILD SUCCESSFUL

Total time: 2 secondsTotal time: 2 seconds

The following shows the execution of the teardown target:

$ ant teardown
Buildfile: build.xml

prepare:

compile:

teardown:
 [junit] .
 [junit] Time: 0.801
 [junit]
 [junit] OK (1 tests)
 [junit]

BUILD SUCCESSFUL

Total time: 2 seconds

Read-ahead
A set of tests has been developed to demonstrate the optimized loading configurations presented
in Chapter 6. Before the read-ahead tests can be run, the log level of JBossCMP must be
increased. Logging in JBoss is handled by log4j, and log4j is controlled by the log4j.xml file in the
server/default/conf directory. Two steps are necessary to setup the logging for the read-ahead
tests: adjust the log levels of the org.jboss and org.jboss.ejb.plugins.cmp categories, and adjust
the Console appender threshold. The following shows the changes to the log4j.xml file necessary
to decrease the org.jboss category to INFO and the changes to increase the
org.jboss.ejb.plugins.cmp category to DEBUG:

 <!-- ================ -->
 <!-- Limit categories -->
 <!-- ================ -->

 <!-- Limit JBoss categories to INFO -->
 <category name="org.jboss">
 <priority value="INFO"/>
 </category>

C H A P T E R 1 : S E T U P P A G E 8

Page 8

 <category name="org.jboss.ejb.plugins.cmp">
 <priority value="DEBUG"/>
 </category>

The following shows the changes to the log4j.xml file necessary to decrease the threshold of the
Console appender:

 <!-- ============================== -->
 <!-- Append messages to the console -->
 <!-- ============================== -->

 <appender name="CONSOLE" class="org.apache.log4j.ConsoleAppender">
 <param name="Threshold" value="DEBUG"/>
 <param name="Target" value="System.out"/>

 <layout class="org.apache.log4j.PatternLayout">
 <!-- The default pattern: Date Priority [Category] Message\n -->
 <param name="ConversionPattern" value="%d{ABSOLUTE} %-5p [%c{1}] %m%n"/>
 </layout>
 </appender>

Now that the logging is setup correctly, the read-ahead tests will display useful information (you
may have to restart the JBoss server for it to recognize the changes to the log4j.xml file). The
following shows the actual execution of the readahead Ant target:

$ ant readahead
Buildfile: build.xml

prepare:

compile:

readahead:
 [junit] .
 [junit] Time: 1.542
 [junit]
 [junit] OK (1 tests)
 [junit]

BUILD SUCCESSFUL

Total time: 2 seconds

When the readahead Ant target is executed, all of the SQL queries executed during the test are
displayed in the JBoss server console. The important things to note when analyzing the output
are the number of queries executed, the columns selected, and the number of rows loaded. The
following shows the read-ahead none portion of the JBoss server console output from read-ahead
test:

C H A P T E R 1 : S E T U P P A G E 9

Page 9

read-ahead none

22:05:42,539 DEBUG [findAll_none] Executing SQL: SELECT t0_g.id FROM GANGSTER t0
_g ORDER BY t0_g.id ASC
22:05:42,559 DEBUG [GangsterEJB] Executing SQL: SELECT name, nick_name, badness,
 hangout, organization FROM GANGSTER WHERE (id=?)
22:05:42,559 DEBUG [GangsterEJB] Executing SQL: SELECT name, nick_name, badness,
 hangout, organization FROM GANGSTER WHERE (id=?)
22:05:42,579 DEBUG [GangsterEJB] Executing SQL: SELECT name, nick_name, badness,
 hangout, organization FROM GANGSTER WHERE (id=?)
22:05:42,609 DEBUG [GangsterEJB] Executing SQL: SELECT name, nick_name, badness,
 hangout, organization FROM GANGSTER WHERE (id=?)
22:05:42,619 DEBUG [GangsterEJB] Executing SQL: SELECT name, nick_name, badness,
 hangout, organization FROM GANGSTER WHERE (id=?)
22:05:42,639 DEBUG [GangsterEJB] Executing SQL: SELECT name, nick_name, badness,
 hangout, organization FROM GANGSTER WHERE (id=?)
22:05:42,649 DEBUG [GangsterEJB] Executing SQL: SELECT name, nick_name, badness,
 hangout, organization FROM GANGSTER WHERE (id=?)
22:05:42,669 DEBUG [GangsterEJB] Executing SQL: SELECT name, nick_name, badness,
 hangout, organization FROM GANGSTER WHERE (id=?)
22:05:42,689 INFO [ReadAheadTest]

The following table contains a list of all of the Ant targets:

Table 1-1, Example Code Ant Targets

Target Description

build This target compiles the test code, builds the deployment ejb-jar, and copies
the jar into the JBoss deployment directory causing the JBoss server to
deploy the example application. This is the default target.

undeploy This target deletes the application jar from the JBoss deployment directory
causing the JBoss server to undeploy the application.

setup This target loads the sample data into the database. This target can only be
run after the application is deployed

test This target executes the basic application test suite. This target can only be
run after the sample data has been loaded into the database with the setup
target.

test-gui This target executes the basic application test suite using the JUnit Swing
GUI. This target can only be run after the sample data has been loaded into
the database with the setup target.

C H A P T E R 1 : S E T U P P A G E 1 0

Page 10

Target Description

readahead This target executes the read-ahead test suite. This target can only be run
after the sample data has been loaded into the database with the setup
target. Note this target is only useful after the log level has been configured
as described in this chapter.

readahead-gui This target executes the read-ahead test suite using the JUnit Swing GUI.
This target can only be run after the sample data has been loaded into the
database with the setup target. Note this target is only useful after the log
level has been configured as described in this chapter.

teardown This target removes the sample data that was loaded into the database with
the setup target.

clean This target deletes all of the class files and jars built for the test application.

Page 11

2. Entities

Entity Classes
Although several new features have been added, and there have been major changes to cmp-fields
and finders, the basic entity bean structure has not changed much in CMP 2.0. A new feature of
EJB 2.0 is the addition of local interfaces. A local interface is composed of two interfaces, the
local interface and the local home interface. 2 These interfaces are conceptually the same thing as
the remote interface and home interface (sometimes referred to as the remote home), except that
local interfaces are only accessible within the same Java VM. This allows local interfaces to use
pass-by-reference semantics, removing the overhead associated with serializing and deserializing
every method parameter. 3 Local interfaces are not unique to CMP and are not discussed in this
documentation. The simplified code for the Gangster entity follows:

// Gangster Local Home Interface
public interface GangsterHome extends EJBLocalHome {
 Gangster create(Integer id, String name, String nickName) throws CreateException;
 Gangster findByPrimaryKey(Integer id) throws FinderException;
}

Listing 2-1, Entity Local Home Interface

// Gangster Local Interface
public interface Gangster extends EJBLocalObject {
 Integer getGangsterId();
 String getName();
 String getNickName();
 void setNickName(String nickName);
}

Listing 2-2, Entity Local Interface

2 The term local interface is used to refer to the EJBLocalObject alone, as well as to refer to the EJBLocalObject/ EJBLocalHome
combination. Although this is confusing, it is the current usage of the term in the EJB community.

3 Most J2EE servers, including JBoss, can optimize in VM calls over a remote interface by using pass-by-reference semantics.

Chapter

2

C H A P T E R 2 : E N T I T I E S P A G E 1 2

Page 12

// Gangster Implementation Class
public abstract class GangsterBean implements EntityBean {
 private EntityContext ctx;
 private Category log = Category.getInstance(getClass());

 public Integer ejbCreate(Integer id, String name, String nickName)
 throws CreateException {

 log.info("Creating Gangster " + id + " '" + nickName + "' "+ name);
 setGangsterId(id);
 setName(name);
 setNickName(nickName);
 return null;
 }

 public void ejbPostCreate(Integer id, String name, String nickName) { }

 // CMP field accessors ---
 public abstract Integer getGangsterId();
 public abstract void setGangsterId(Integer gangsterId);

 public abstract String getName();
 public abstract void setName(String name);

 public abstract String getNickName();
 public abstract void setNickName(String nickName);

 // EJB callbacks ---
 public void setEntityContext(EntityContext context) { ctx = context; }
 public void unsetEntityContext() { ctx = null; }
 public void ejbActivate() { }
 public void ejbPassivate() { }
 public void ejbRemove() { log.info("Removing " + getName()); }
 public void ejbStore() { }
 public void ejbLoad() {}
}

Listing 2-3, Entity Implementation Class

Entity Declaration
The declaration of an entity in the ejb-jar.xml file has not changed much in CMP 2.0. The
declaration of the GangsterEJB follows:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ejb-jar PUBLIC
 "-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN"
 "http://java.sun.com/j2ee/dtd/ejb-jar_2_0.dtd">

<ejb-jar>
 <enterprise-beans>
 <entity>

C H A P T E R 2 : E N T I T I E S P A G E 1 3

Page 13

 <display-name>Gangster Entity Bean</display-name>
 <ejb-name>GangsterEJB</ejb-name>

 <local home>org.jboss.docs.cmp2.crimeportal.GangsterHome</local home>
 <local>org.jboss.docs.cmp2.crimeportal.Gangster</local>
 <ejb-class>org.jboss.docs.cmp2.crimeportal.GangsterBean</ejb-class>

 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.Integer</prim-key-class>
 <reentrant>False</reentrant>
 <cmp-version>2.x</cmp-version>
 <abstract-schema-name>gangster</abstract-schema-name>

 <cmp-field><field-name>gangsterId</field-name></cmp-field>
 <cmp-field><field-name>name</field-name></cmp-field>
 <cmp-field><field-name>nickName</field-name></cmp-field>

 <primkey-field>gangsterId</primkey-field>
 </entity>
 </enterprise-beans>
</ejb-jar>

Listing 2-4, The ejb-jar.xml Entity Declaration

The new local home and local elements are equivalent to the home and remote elements. The
cmp-version element is new and can be either 1.x or the default 2.x. This element was added so
1.x and 2.x entities could be mixed in the same application. The abstract-schema-name element is
also new and is used to identify this entity type in EJB-QL queries, which are discussed in
Chapter 5.

Entity Mapping
The JBossCMP configuration for the entity is declared with an entity element in the
jbosscmp-jdbc.xml file. This file is located in the META-INF directory of the ejb-jar file and
contains all of the optional configuration information for JBossCMP. The entity elements are
grouped together in the enterprise-beans element under the top level jbosscmp-jdbc element. An
example entity configuration follows:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE jbosscmp-jdbc PUBLIC
 "-//JBoss//DTD JBOSSCMP-JDBC 3.0//EN"
 "http://www.jboss.org/j2ee/dtd/jbosscmp-jdbc_3_0.dtd">

<jbosscmp-jdbc>
 <enterprise-beans>
 <ejb-name>GangsterEJB</ejb-name>
 <table-name>gangster</table-name>

 <!-- CMP Fields (see Chapter 3) -->

C H A P T E R 2 : E N T I T I E S P A G E 1 4

Page 14

 <!-- Load Groups (see Chapter 6)-->

 <!-- Queries (see Chapter 5) -->

 </entity>
 </enterprise-beans>
</jbosscmp-jdbc>

Listing 2-5, The jbosscmp-jdbc.xml Entity Mapping

In this case the DOCTYPE declaration is optional, but will reduce configuration errors. In
addition, all of the elements are optional except for ejb-name, which is used to match the
configuration to an entity declared in the ejb-jar.xml file. Unless noted otherwise, the default
values come from the defaults section of the jbosscmp-jdbc.xml file, which is discussed in
Appendix B. A detailed description of each entity element follows:

Table 2-1, entity Tags

Tag Name Description Required

ejb-name This is the name of the EJB to which this configuration
applies. This element must match an ejb-name of an entity in
the ejb-jar.xml file.

Yes

datasource This is the jndi-name used to look up the datasource. All
database connections used by an entity or relation-table are
obtained from the datasource. Having different datasources
for entities is not recommended, as it vastly constrains the
domain over which finders and ejbSelects can query.

No, default is
java:/DefaultDS

datasource-
mapping

This specifies the name of the type-mapping, which
determines how Java types are mapped to SQL types, and
how EJB-QL functions are mapped to database specific
functions. Type-mapping is discussed in Appendix C.

No, default is
Hypersonic
SQL

create-table If true, JBossCMP will attempt to create a table for the
entity. When the application is deployed, JBossCMP checks
if a table already exists before creating the table. If a table is
found, it is logged, and the table is not created. This option is
very useful during the early stages of development when the
table structure changes often.

No, default is
true

remove-table If true, JBossCMP will attempt to drop the table for each
entity and each relation-table mapped relationship. When the
application is undeployed, JBossCMP will attempt to drop
the table. This option is very useful during the early stages of
development when the table structure changes often.

No, default is
false

C H A P T E R 2 : E N T I T I E S P A G E 1 5

Page 15

Tag Name Description Required

read-only If true, the bean provider will not be allowed to change the
value of any fields. A field that is read-only will not be stored
in, or inserted into, the database. If a primary key field is
read-only, the create method will throw a CreateException.
If a set accessor is called on a read-only field, it throws an
EJBException. Read-only fields are useful for fields that are
filled in by database triggers, such as last update. The
read-only option can be overridden on a per cmp-field basis,
which is discussed in Chapter 3.

No, default is
false

read-time-out This is the amount of time in milliseconds that a read on a
read-only field is valid. A value of 0 means that the value is
always reloaded at the start of a transaction, and a value of -1
means that the value never times out. This option can also be
overridden on a per cmp-field basis. If read-only is false, this
value is ignored.

No, default is
300

row-locking If true, JBossCMP will lock all rows loaded in a transaction.
Most databases implement this by using the SELECT FOR
UPDATE syntax when loading the entity, but the actual
syntax is determined by the row-locking-template in the
datasource-mapping used by this entity.

No, default is
false

pk-constraint If true, JBossCMP will add a primary key constraint when
creating tables.

No, default is
true

read-ahead This controls caching of query results and cmr-fields for the
entity. This option is discussed in Chapter 6.

No, see Chapter
6

list-cache-max This specifies the number of read-lists that can be tracked by
this entity. This option is discussed in Chapter 6.

No, default is
1000

table-name This is the name of the table that will hold data for this
entity. Each entity instance will be stored in one row of this
table.

No, default is
ejb-name

Page 16

3. CMP-Fields

CMP-Field Abstract Accessors
Although cmp-fields have not changed in CMP 2.0 with regards to functionality, they are no
longer declared using fields in the bean implementation class. In CMP 2.0, cmp-fields are not
directly accessible; rather each cmp-field is declared in the bean implementation class of the entity
with a set of abstract accessor methods. Abstract accessors are similar to JavaBean property
accessors, except no implementation is given. For example, the following listing declares the
gangsterId, name, nickName, and badness cmp-fields in the gangster entity:

public abstract class GangsterBean implements EntityBean {
 public abstract Integer getGangsterId();
 public abstract void setGangsterId(Integer gangsterId);

 public abstract String getName();
 public abstract void setName(String param);

 public abstract String getNickName();
 public abstract void setNickName(String param);

 public abstract int getBadness();
 public abstract void setBadness(int param);
}

Listing 3-1, cmp-field Abstract Accessor Declaration

Each cmp-field is required to have both a getter and a setter method, and each accessor method
must be declared public abstract.

CMP-Field Declaration
The declaration of a cmp-field in the ejb-jar.xml file has not changed at all in EJB 2.0. For
example, to declare the gangsterId, name, nickName and badness fields defined in Listing 3-1 you
would add the following to the ejb-jar.xml file:

<ejb-jar>
 <enterprise-beans>
 <entity>
 <ejb-name>GangsterEJB</ejb-name>

Chapter

3

C H A P T E R 3 : C M P - F I E L D S P A G E 1 7

Page 17

 <cmp-field><field-name>gangsterId</field-name></cmp-field>
 <cmp-field><field-name>name</field-name></cmp-field>
 <cmp-field><field-name>nickName</field-name></cmp-field>
 <cmp-field><field-name>badness</field-name></cmp-field>
 </entity>
 </enterprise-beans>
</ejb-jar>

Listing 3-2, The ejb-jar.xml cmp-field Declaration

CMP-Field Column Mapping
The mapping of a cmp-field is declared in a cmp-field element within the entity. An example
cmp-field mapping follows:

<jbosscmp-jdbc>
 <enterprise-beans>
 <entity>
 <ejb-name>GangsterEJB</ejb-name>
 <table-name>gangster</table-name>
 <cmp-field>
 <field-name>gangsterId</field-name>
 <column-name>id</column-name>
 </cmp-field>
 <cmp-field>
 <field-name>name</field-name>
 <column-name>name</column-name>
 <not-null/>
 </cmp-field>
 <cmp-field>
 <field-name>nickName</field-name>
 <column-name>nick_name</column-name>
 <jdbc-type>VARCHAR</jdbc-type>
 <sql-type>VARCHAR(64)</sql-type>
 </cmp-field>
 <cmp-field>
 <field-name>badness</field-name>
 <column-name>badness</column-name>
 </cmp-field>
 </entity>
 </enterprise-beans>
</jbosscmp-jdbc>

Listing 3-3, The jbosscmp-jdbc.xml cmp-field Mapping

In the cmp-field element, you can control the name and datatype of the column. A detailed
description of each element is shown in Table 3-1.

C H A P T E R 3 : C M P - F I E L D S P A G E 1 8

Page 18

Table 3-1, cmp-field Tags

Tag Name Description Required

field-name This is the name of the cmp-field that is being configured. It
must match the name of a cmp-field declared for this entity
in the ejb-jar.xml file.

Yes

column-name This is the name of the column to which the cmp-field is
mapped.

No, default is
field-name

not-null If this empty element is present, JBossCMP will add NOT
NULL to the end of the column declaration when
automatically creating the table for this entity.

No, default for
primary key
fields and
primitives not-
null

jdbc-type This is the JDBC type that is used when setting parameters in
a JDBC PreparedStatement or loading data from a JDBC
ResultSet. The valid types are defined in java.sql.Types.

Only required if
sql-type is
specified, default
is based on
datasource-
mapping

sql-type This is the SQL type that is used in create table statements
for this field. Valid sql-types are only limited by your
database vendor.

Only required if
jdbc-type is
specified, default
is based on
datasource-
mapping

Read-only Fields
Another benefit of abstract accessors for cmp-fields is the ability to have read-only fields. JAWS
supported read-only with read-time-out for entities. The problem with CMP 1.x was the bean
provider could always change the value of a field on a read-only entity, and there was nothing the
container could do. With CMP 2.x, the container provides the implementation for the accessor,
and therefore can throw an exception when the bean provider attempts to set the value of a
read-only bean.

In JBossCMP this feature has been extended to the field level with the addition of the read-only
and read-time-out elements to the cmp-field element. These elements work the same way as they
do at the entity level. If a field is read-only, it will never be used in an INSERT or UPDATE
statement. If a primary key field is read-only, the create method will throw a CreateException. If a
set accessor is called for a read-only field, it throws an EJBException. Read-only fields are useful

C H A P T E R 3 : C M P - F I E L D S P A G E 1 9

Page 19

for fields that are filled in by database triggers, such as last update. A read-only cmp-field
declaration example follows:

<jbosscmp-jdbc>
 <enterprise-beans>
 <entity>
 <ejb-name>GangsterEJB</ejb-name>
 <cmp-field>
 <field-name>lastUpdated</field-name>
 <read-only>true</read-only>
 <read-time-out>1000</read-time-out>
 </cmp-field>
 </entity>
 </enterprise-beans>
</jbosscmp-jdbc>

Listing 3-4, The jbosscmp-jdbc.xml cmp-field read-only Declaration

Dependent Value Classes (DVCs)
A Dependent Value Class (DVC) is a fancy term used to identity any Java class that is the type of
a cmp-field, other than the automatically recognized types. See section 10.3.3 of the Enterprise
JavaBeans Specification Version 2.0 Final Release for further requirements. By default, a
DVC is serialized, and the serialized form is stored in a single database column. Although not
discussed here, there are several known issues with the long-term storage of classes in serialized
form. JBossCMP supports the storage of the internal data of a DVC into one or more columns.

This is useful for supporting legacy JavaBeans and database structures. It is not uncommon to
find a database with a highly flattened structure (e.g., a PURCHASE_ORDER table with the
fields SHIP_LINE1, SHIP_LINE2, SHIP_CITY, etc. and an additional set of fields for the
billing address). Other common database structures include telephone numbers with separate
fields for area code, exchange, and extension, or a person's name spread across several fields.
With a DVC, multiple columns can be mapped to one logical JavaBean. It is important to note
that DVCs are not the same thing as Dependent Value Objects. 4

JBossCMP requires that a DVC to be mapped must follow the JavaBeans naming specification
for simple properties, and that each property to be stored in the database must have both a getter
and a setter method. 5 Furthermore, the bean must be serializable and must have a no argument
constructor. A property can be any simple type, an unmapped DVC or a mapped DVC, but

4 Dependent Value Objects were added in Proposed Final Draft 1 of the EJB 2.0 Specification and subsequently replaced with local
interfaces in Proposed Final Draft 2.

5 The requirement that a DVC use the JavaBeans naming convention will be removed in a future release of JBossCMP. The current
proposal is to allow the value to be retrieved from any no argument method and to be set with any single argument method or with a
constructor.

http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/ejb/docs.html

C H A P T E R 3 : C M P - F I E L D S P A G E 2 0

Page 20

cannot be an EJB. 6 An example declaration of a phone number DVC and contact information
DVC follows:

<jbosscmp-jdbc>
 <dependent-value-classes>
 <dependent-value-class>
 <description>A phone number</description>
 <class>org.jboss.docs.cmp2.crimeportal.PhoneNumber</class>
 <property>
 <property-name>areaCode</property-name>
 <column-name>area_code</column-name>
 </property>
 <property>
 <property-name>exchange</property-name>
 <column-name>exchange</column-name>
 </property>
 <property>
 <property-name>extension</property-name>
 <column-name>extension</column-name>
 </property>
 </dependent-value-class>
 <dependent-value-class>
 <description>General contact info</description>
 <class>org.jboss.docs.cmp2.crimeportal.ContactInfo</class>
 <property>
 <property-name>cell</property-name>
 <column-name>cell</column-name>
 </property>
 <property>
 <property-name>pager</property-name>
 <column-name>pager</column-name>
 </property>
 <property>
 <property-name>email</property-name>
 <column-name>email</column-name>
 <jdbc-type>VARCHAR</jdbc-type>
 <sql-type>VARCHAR(128)</sql-type>
 </property>
 </dependent-value-class>
 </dependent-value-classes>
</jbosscmp-jdbc>

Listing 3-5, The jbosscmp-jdbc.xml Dependent Value Class Declaration

Each DVC is declared with a dependent-value-class element. A DVC is identified by the Java
class type declared in the class element. Each property to be persisted is declared with a property
element. This specification is based on the cmp-field element, so it should be self-explanatory.

6 This restriction will also be removed in a future release. The current proposal involves storing the primary key fields in the case of a local
entity and the entity handle in the case of a remote entity.

C H A P T E R 3 : C M P - F I E L D S P A G E 2 1

Page 21

The dependent-value-classes section defines the internal structure and default mapping of the
classes. When JBossCMP encounters a field that has an unknown type, it searches the list of
registered DVCs, and if a DVC is found, it persists this field into a set of columns, otherwise the
field is stored in serialized form in a single column. JBossCMP does not support inheritance of
DVCs; therefore, this search is only based on the declared type of the field. A DVC can be
constructed from other DVCs, so when JBossCMP runs into a DVC, it flattens the DVC tree
structure into a set of columns. If JBossCMP finds a DVC circuit during startup, it will throw an
EJBException. The default column name of a property is the column name of the base cmp-field
followed by an underscore and then the property column name. If the property is a DVC, the
process is repeated. For example, a cmp-field of type ContactInfo (see Listing 3-5) and named
info will have the following columns:

info_cell_area_code
info_cell_exchange
info_cell_extension
info_pager_area_code
info_pager_exchange
info_pager_extension
info_email

Listing 3-6, Generated Column Names for ContactInfo Dependent Value Class

The automatically generated column names can quickly become excessively long and awkward.
The default mappings of columns can be overridden in the entity element as follows:

<jbosscmp-jdbc>
 <enterprise-beans>
 <entity>
 <ejb-name>GangsterEJB</ejb-name>
 <cmp-field>
 <field-name>contactInfo</field-name>
 <property>
 <property-name>cell.areaCode</property-name>
 <column-name>cell_area</column-name>
 </property>
 <property>
 <property-name>cell.exchange</property-name>
 <column-name>cell_exch</column-name>
 </property>
 <property>
 <property-name>cell.extension</property-name>
 <column-name>cell_ext</column-name>
 </property>
 <property>
 <property-name>pager.areaCode</property-name>
 <column-name>page_area</column-name>
 </property>
 <property>
 <property-name>pager.exchange</property-name>
 <column-name>page_exch</column-name>

C H A P T E R 3 : C M P - F I E L D S P A G E 2 2

Page 22

 </property>
 <property>
 <property-name>pager.extension</property-name>
 <column-name>page_ext</column-name>
 </property>
 <property>
 <property-name>email</property-name>
 <column-name>email</column-name>
 <jdbc-type>VARCHAR</jdbc-type>
 <sql-type>VARCHAR(128)</sql-type>
 </property>
 </cmp-field>
 </entity>
 </enterprise-beans>
</jbosscmp-jdbc>

Listing 3-7, The jbosscmp-jdbc.xml cmp-field Dependent Value Class Property Override

As shown in Listing 3-7, when overriding property info for the entity, you need to refer to the
property from a flat perspective as in cell.areaCode.

Page 23

4. Container Managed Relationships

Container Managed Relationships (CMRs) are a powerful new feature of CMP 2.0. Programmers
have been creating relationships between entity objects since EJB 1.0 was introduced (not to
mention since the introduction of databases), but before CMP 2.0 the programmer had to write a
lot of code for each relationship in order to extract the primary key of the related entity and store
it in a pseudo foreign key field. The simplest relationships were tedious to code, and complex
relationships with referential integrity required many hours to code. With CMP 2.0 there is no
need to code relationships by hand. The container can manage one-to-one, one-to-many and
many-to-many relationships, with referential integrity. One restriction with CMRs is that they are
only defined between local interfaces. This means that a relationship cannot be created between
two entities in different virtual machines. 7

There are two basic steps to create a container managed relationship: create the cmr-field abstract
accessors and declare the relationship in the ejb-jar.xml file. The following two sections describe
these steps.

CMR-Field Abstract Accessors
CMR-Field abstract accessors have the same signatures as cmp-fields, except that single-valued
relationships must return the local interface of the related entity, and multi-valued relationships
can only return a java.util.Collection (or java.util.Set) object. As with cmp-fields, at least one of
the two entities in a relationship must have cmr-field abstract accessors. For example, to declare a
one-to-many relationship between Organization and Gangster, first add the following to the
OrganizationBean class:

public abstract class OrganizationBean implements EntityBean {
 public abstract Set getMemberGangsters();
 public abstract void setMemberGangsters(Set gangsters);
}

Listing 4-1, Collection Valued cmr-field Abstract Accessor Declaration

Second, add the following to the GangsterBean class:

7 The EJB specification does not even allow for relationships between entities in different applications within the same VM.

Chapter

4

C H A P T E R 4 : C O N T A I N E R M A N A G E D R E L A T I O N S H I P S P A G E 2 4

Page 24

public abstract class GangsterBean implements EntityBean {
 public abstract Organization getOrganization();
 public abstract void setOrganization(Organization org);
}

Listing 4-2, Single Valued cmr-field Abstract Accessor Declaration

Although in Listing 4-1 and Listing 4-2 each bean declared a cmr-field, only one of the two beans
in a relationship must have a set of accessors. As with cmp-fields, a cmr-field is required to have
both a getter and a setter method.

Relationship Declaration
The declaration of relationships in the ejb-jar.xml file is complicated and error prone. The XML
used to declared relationships is as inconsistent as Visual Basic syntax. The best way to configure
a relationship is to use a tool, such as XDoclet, or cut and paste a working relationship. The
declaration of the Organization-Gangster relationship follows:

<ejb-jar>
 <relationships>
 <ejb-relation>
 <ejb-relation-name>Organization-Gangster</ejb-relation-name>
 <ejb-relationship-role>
 <!-- outdented to fit on a printed page -->
<ejb-relationship-role-name>org-has-gangsters</ejb-relationship-role-name>
 <multiplicity>One</multiplicity>
 <relationship-role-source>
 <ejb-name>OrganizationEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>memberGangsters</cmr-field-name>
 <cmr-field-type>java.util.Set</cmr-field-type>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relationship-role>
 <!-- outdented to fit on a printed page -->
<ejb-relationship-role-name>gangster-belongs-to-org</ejb-relationship-role-name>
 <multiplicity>Many</multiplicity>
 <cascade-delete/>
 <relationship-role-source>
 <ejb-name>GangsterEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>organization</cmr-field-name>
 </cmr-field>
 </ejb-relationship-role>
 </ejb-relation>
 </relationships>
</ejb-jar>

Listing 4-3, The ejb-jar.xml Relationship Declaration

http://xdoclet.sourceforge.net/

C H A P T E R 4 : C O N T A I N E R M A N A G E D R E L A T I O N S H I P S P A G E 2 5

Page 25

As you can see, each relationship is declared with an ejb-relation element within the top level
relationships8 element, and each ejb-relation contains two ejb-relationship-role elements (one for
each entity in the relationship). The ejb-relationship-role tags are described in the following table:

Table 4-1, ejb-relationship-role Tags

Tag Name Description Required

ejb-relationship-
role-name

Used to identify the role and match the database mapping
in the jbosscmp-jdbc.xml file. The name cannot be the
same as the related role.

No

multiplicity Must be "One" or "Many". Note, as with all XML
elements, this element is case-sensitive.

Yes

cascade-delete If this empty element is present, JBossCMP will delete the
child entity when the parent entity is deleted. Cascade
deletion is only allowed for a role where the other side of
the relationship has a multiplicity of one.

No, default is to
not cascade
delete

relationship-role-
source/ ejb-
name

This is the entity that has the role. Yes

cmr-field/
cmr-field-name

This is the name of the cmr-field if the entity has one. Only required if
entity has cmr-
field abstract
accessor

cmr-field/
cmr-field-type

This is the type of the cmr-field. 9 Must be
java.util.Collection or java.util.Set.

Only required if
cmr-field abstract
accessor is
collection valued

After adding the cmr-field abstract accessors and declaring the relationship, the relationship
should be functional. For more information on relationships, see section 10.3 of the Enterprise
JavaBeans Specification Version 2.0 Final Release. The next section discusses the database
mapping of the relationship.

8 This is the first place where the specification is inconsistent. It would be much easier if the specification used the following tags:
relationships, relationship, and relationship-name.

9 This is another place where the spec goes awry, as the tag is completely unnecessary. The cmr-field-type is readily accessible in the cmr-
field get accessor method return type, and return types cannot be overridden.

http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/ejb/docs.html

C H A P T E R 4 : C O N T A I N E R M A N A G E D R E L A T I O N S H I P S P A G E 2 6

Page 26

Relationship Mapping
Relationships can be mapped using either a foreign key or a separate relation-table. One-to-one
and one-to-many relationships use the foreign key mapping style by default, and many-to-many
relationships use only the relation-table mapping style. The mapping of a relationship is declared
in the relationships section of the jbosscmp-jdbc.xml file. Relationships are identified by the
ejb-relation-name from the ejb-jar.xml file. The basic template of the relationship mapping
declaration for Organization-Gangster follows:

<jbosscmp-jdbc>
 <relationships>
 <ejb-relation>
 <ejb-relation-name>Organization-Gangster</ejb-relation-name>

 <!--
 | Mapping style declaration
 | <foreign-key> or <relation-table>
 -->

 <read-only>false</read-only>
 <read-time-out>300</read-time-out>

 <ejb-relationship-role>
 <!-- outdented to fit on a printed page -->
<ejb-relationship-role-name>org-has-gangsters</ejb-relationship-role-name>

 <fk-constraint>true</fk-constraint>

 <key-fields>
 <!-- Organization primary key field mappings -->
 </key-fields>

 <read-ahead><strategy>on-load</strategy></read-ahead>

 </ejb-relationship-role>
 <ejb-relationship-role>
 <!-- outdented to fit on a printed page -->
<ejb-relationship-role-name>gangster-belongs-to-org</ejb-relationship-role-name>
 <fk-constraint>true</fk-constraint>

 <key-fields>
 <!— Gangster primary key field mappings -->
 </key-fields>

 <read-ahead><strategy>on-load</strategy></read-ahead>

 </ejb-relationship-role>
 </ejb-relation>
 </relationships>
</jbosscmp-jdbc>

Listing 4-4, The jbosscmp-jdbc.xml Relationship Mapping Template

C H A P T E R 4 : C O N T A I N E R M A N A G E D R E L A T I O N S H I P S P A G E 2 7

Page 27

After the ejb-relation-name of the relationship being mapped is declared, the mapping style is
declared using a foreign-key-mapping element or a relation-table-mapping element, both of which
are discussed in the next two sections. The read-only and read-time-out elements have the same
semantics they did in the entity element (see Chapter 2). The ejb-relationship-role elements are
optional, but if one is declared, the other must also be declared. A detailed description of the
elements contained in the ejb-relationship-role element follows:

Table 4-2, ejb-relation Tags

Tag Name Description Required

ejb-relation-
name

This is the name of the relationship that is being configured.
This element must match the name of a relationship declared
in the ejb-jar.xml file.

Yes

read-only If true, the bean provider will not be allowed to change the
value of this relationship. A relationship that is read-only will
not be stored in, or inserted into, the database. If a set
accessor is called on a read-only relationship, it throws an
EJBException.

No, default is
false

read-time-out This is the amount of time in milliseconds that a read on a
read-only relationship is valid. A value of 0 means that the
value is always reloaded at the start of a transaction, and a
value of -1 means that the value never times out. If read-only
is false, this value is ignored.

No, default is
300

The ejb-relation element must contain either a foreign-key-mapping element or a
relation-table-mapping element, which are described in the foreign key mapping and
relation-table mapping sections respectively. This element may also contain a pair of
ejb-relationship-role elements as described in the following section.

Relationship Role Mapping
Each of the two ejb-relationship-role elements contains mapping information specific to an entity
in the relationship. A detailed description of the main elements follows:

Table 4-3, ejb-relationship-role Tags

Tag Name Description Required

ejb-relationship-role-
name

This is the name of the role to which this configuration
applies. This element must match the name of one of the
roles declared for this query in the ejb-jar.xml file.

Yes

C H A P T E R 4 : C O N T A I N E R M A N A G E D R E L A T I O N S H I P S P A G E 2 8

Page 28

Tag Name Description Required

fk-constraint If true, JBossCMP will add a foreign key constraint to the
tables. JBossCMP will only add the constraint if both the
primary table and the related table were created by
JBossCMP during deployment.

No, default
is false

key-fields This specifies the mapping of the primary key fields of
the current entity. This element is only necessary if exact
field mapping is desired. Otherwise, the key-fields
element must10 contain a key-field element for each
primary key field of the current entity. The details of this
element are described below.

No, default
depends on
mapping
type

read-ahead This controls the caching of this relationship. This option
is discussed in Chapter 6.

No, see
Chapter 6

As noted in Table 4-3 the key-fields element contains a key-field for each primary key field of the
current entity. The key-field element uses the same syntax as the cmp-field element of the entity,
except that key-field does not support the not-null option. Key-fields of a relation-table are
automatically not null, because they are the primary key of the table. On the other hand, foreign
key fields must always be nullable. 11 A detailed description of the elements contained in the
key-field element follows:

Table 4-4, key-field Tags

Tag Name Description Required

field-name This identifies the field to which this mapping applies. This
name must match a primary key field of the current entity.

Yes

10 Note that with foreign key mapping this element can be empty; this means that there will be not be a foreign key for the current entity.
This is required for the many side of a one-to-many relationship, such a Gangster in the Organization-Gangster example.

11 The current implementation of JBossCMP inserts a row into the database for a new entity between ejbCreate and ejbPostCreate. Since the
EJB specification does not allow a relationship to be modified until ejbPostCreate, a foreign key will be initially set to null. There is a similar
problem with removal. This limitation will be removed in a future release.

C H A P T E R 4 : C O N T A I N E R M A N A G E D R E L A T I O N S H I P S P A G E 2 9

Page 29

Tag Name Description Required

column-name Specifies the column name in which this primary key field
will be stored. If this is relationship uses
foreign-key-mapping, this column will be added to the table
for the related entity. If this relationship uses
relation-table-mapping, this column is added to the
relation-table. This element is not allowed for mapped
dependent value class; instead use the property element
described in Chapter 3.

No, default
depends on
mapping type

jdbc-type This is the JDBC type that is used when setting parameters
in a JDBC PreparedStatement or loading data from a JDBC
ResultSet. The valid types are defined in java.sql.Types.

Only required if
sql-type is
specified, default
is based on
datasource-
mapping

sql-type This is the SQL type that is used in create table statements
for this field. Valid sql-types are only limited by your
database vendor.

Only required if
jdbc-type is
specified, default
is based on
datasource-
mapping

Foreign Key Mapping
Foreign key mapping is the most common mapping style for one-to-one and one-to-many
relationships, but is not allowed for many-to many relationships. The foreign key mapping
element is simply declared by adding an empty foreign key-mapping element to the ejb-relation
element.

As noted in the previous section, with a foreign key mapping the key-fields declared in the
ejb-relationship-role are added to the table of the related entity. If the key-fields element is empty,
a foreign key will not be created for the entity. In a one-to-many relationship, the many side
(Gangster in the example) must have an empty key-fields element, and the one side (Organization
in the example) must have a key-fields mapping. In one-to-one relationships, one or both roles
can have foreign keys.

The foreign key mapping is not dependent on the direction of the relationship. This means that
in a one-to-one unidirectional relationship (only one side has an accessor) one or both roles can
still have foreign keys.

C H A P T E R 4 : C O N T A I N E R M A N A G E D R E L A T I O N S H I P S P A G E 3 0

Page 30

The complete foreign key mapping for the Organization-Gangster relationship follows:

<jbosscmp-jdbc>
 <relationships>
 <ejb-relation>
 <ejb-relation-name>Organization-Gangster</ejb-relation-name>
 <foreign-key-mapping/>

 <ejb-relationship-role>
 <!-- outdented to fit on a printed page -->
<ejb-relationship-role-name>org-has-gangsters</ejb-relationship-role-name>
 <key-fields>
 <key-field>
 <field-name>name</field-name>
 <column-name>organization</column-name>
 </key-field>
 </key-fields>
 </ejb-relationship-role>

 <ejb-relationship-role>
 <!-- outdented to fit on a printed page -->
<ejb-relationship-role-name>gangster-belongs-to-org</ejb-relationship-role-name>
 <key-fields/>
 </ejb-relationship-role>
 </ejb-relation>
 </relationships>
</jbosscmp-jdbc>

Listing 4-5, The jbosscmp-jdbc.xml Foreign Key Mapping

Relation-table Mapping
Relation-table mapping is less common for one-to-one and one-to-many relationships, but is the
only mapping style allowed for many-to-many relationships. The relation-table-mapping for the
Gangster-Job relationship follows:

<jbosscmp-jdbc>
 <relationships>
 <ejb-relation>
 <ejb-relation-name>Gangster-Jobs</ejb-relation-name>
 <relation-table-mapping>
 <table-name>gangster_job</table-name>
 </relation-table-mapping>

 <ejb-relationship-role>
 <!-- outdented to fit on a printed page -->
<ejb-relationship-role-name>gangster-has-jobs</ejb-relationship-role-name>
 <key-fields>
 <key-field>
 <field-name>gangsterId</field-name>
 <column-name>gangster</column-name>
 </key-field>
 </key-fields>

C H A P T E R 4 : C O N T A I N E R M A N A G E D R E L A T I O N S H I P S P A G E 3 1

Page 31

 </ejb-relationship-role>
 <ejb-relationship-role>
 <!-- outdented to fit on a printed page -->
<ejb-relationship-role-name>job-has-gangsters</ejb-relationship-role-name>
 <key-fields>
 <key-field>
 <field-name>name</field-name>
 <column-name>job</column-name>
 </key-field>
 </key-fields>
 </ejb-relationship-role>
 </ejb-relation>
 </relationships>
</jbosscmp-jdbc>

Listing 4-6, The jbosscmp-jdbc.xml Relation-table Mapping

The relation-table-mapping element contains a subset of the options available in the entity
element. A detailed description of these elements is reproduced here for convenience:

Table 4-5, relation-table-mapping Tags

Tag Name Description Required

table-name This is the name of the table that will hold data for this
relationship.

No, default is
based on entity
and cmr-field
names

datasource This is the jndi-name used to look up the datasource. All
database connections are obtained from the datasource.
Having different datasources for entities is not
recommended, as it vastly constrains the domain over which
finders and ejbSelects can query.

No, default is
java:/DefaultDS

datasource-
mapping

This specifies the name of the type-mapping, which
determines how Java types are mapped to SQL types, and
how EJB-QL functions are mapped to database specific
functions. Type-mapping is discussed in Appendix C.

No, default is
Hypersonic
SQL

create-table If true, JBossCMP will attempt to create a table for the
relationship. When the application is deployed, JBossCMP
checks if a table already exists before creating the table. If a
table is found, it is logged, and the table is not created. This
option is very useful during the early stages of development
when the table structure changes often.

No, default is
true

C H A P T E R 4 : C O N T A I N E R M A N A G E D R E L A T I O N S H I P S P A G E 3 2

Page 32

Tag Name Description Required

remove-table If true, JBossCMP will attempt to drop the relation-table
when the application is undeployed. This option is very
useful during the early stages of development when the table
structure changes often.

No, default is
false

row-locking If true, JBossCMP will lock all rows loaded in a transaction.
Most databases implement this by using the SELECT FOR
UPDATE syntax when loading the entity, but the actual
syntax is determined by the row-locking-template in the
datasource-mapping used by this entity.

No, default is
false

pk-constraint If true, JBossCMP will add a primary key constraint when
creating tables.

No, default is
true

Page 33

5. Queries

Another powerful new feature of CMP 2.0 is the introduction of the EJB Query Language
(EJB-QL) and ejbSelect methods. In CMP 1.1, every EJB container had a different way to specify
finders, and this was a serious threat to J2EE portability. In CMP 2.0, EJB-QL was created to
specify finders and ejbSelect methods in a platform independent way. The ejbSelect method is
designed to provide private query statements to an entity implementation. Unlike finders, which
are restricted to only return entities of the same type as the home interface on which they are
defined, ejbSelect methods can return any entity type or just one field of the entity.

EJB-QL is beyond the scope of this documentation, so only the basic method coding and query
declaration will be covered here. For more information, see Chapter 11 of the Enterprise
JavaBeans Specification Version 2.0 Final Release or one of the many excellent articles
written on CMP 2.0.

Finder and ejbSelect Declaration
The declaration of finders has not changed in CMP 2.0. Finders are still declared in the home
interface (local or remote) of the entity. Finders defined on the local home interface do not throw
a RemoteException. The following code declares the findBadDudes_ejbql12 finder on the
GangsterHome interface:

public interface GangsterHome extends EJBLocalHome {
 Collection findBadDudes_ejbql(int badness) throws FinderException;
}

Listing 5-1, Finder Declaration

The ejbSelect methods are declared in the entity implementation class, and must be public
abstract just like cmp-field and cmr-field abstract accessors. Select methods must be declared to
throw a FinderException, but not a RemoteException. The following code declares an ejbSelect
method:

12 Ignore the "ejbql" suffix; it is not required. Later this query will be implemented using JBossQL and DeclaredSQL, and the suffix is used
to separate the different query specifications in the jbosscmp-jdbc.xml file.

Chapter

5

http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/ejb/docs.html

C H A P T E R 5 : Q U E R I E S P A G E 3 4

Page 34

public abstract class GangsterBean implements EntityBean {
 public abstract Set ejbSelectBoss_ejbql(String name) throws FinderException;
}

Listing 5-2, ejbSelect Declaration

EJB-QL Declaration
The EJB 2.0 specification requires that every ejbSelect or finder method (except
findByPrimaryKey) have an EJB-QL query defined in the ejb-jar.xml file. 13 The EJB-QL query is
declared in a query element, which is contained in the entity element. The following is the
declaration for the queries defined in Listing 5-1 and Listing 5-2:

<ejb-jar>
 <enterprise-beans>
 <entity>
 <ejb-name>GangsterEJB</ejb-name>
 <query>
 <query-method>
 <method-name>findBadDudes_ejbql</method-name>
 <method-params><method-param>int</method-param></method-params>
 </query-method>
 <ejb-ql><![CDATA[
 SELECT OBJECT(g)
 FROM gangster g
 WHERE g.badness > ?1
]]></ejb-ql>
 </query>
 <query>
 <query-method>
 <method-name>ejbSelectBoss_ejbql</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </query-method>
 <ejb-ql><![CDATA[
 SELECT DISTINCT underling.organization.theBoss
 FROM gangster underling
 WHERE underling.name = ?1 OR underling.nickName = ?1
]]></ejb-ql>
 </query>
 </entity>
 </enterprise-beans>
</ejb-jar>

Listing 5-3, The ejb-jar.xml Query Declaration

13 Currently this is not enforced by JBossCMP, but a future release will enforce this by throwing an exception during deployment.

C H A P T E R 5 : Q U E R I E S P A G E 3 5

Page 35

EJB-QL is similar to SQL but has some surprising differences. The following are some important
things to note about EJB-QL:

� EJB-QL is a typed language, meaning that it only allows comparison of like types (i.e.,
strings can only be compared with strings).

� In an equals comparison a variable (single valued path) must be on the left hand side.
Some examples follow: 14

g.hangout.state = 'CA' Legal

'CA' = g.shippingAddress.state NOT Legal

'CA' = 'CA' NOT Legal

(r.amountPaid * .01) > 300 NOT Legal

r.amountPaid > (300 / .01) Legal

� Parameters use a base 1 index like java.sql.PreparedStatement.

� Parameters are only allowed on the right hand side of a comparison. For example:

gangster.hangout.state = ?1 Legal

?1 = gangster.hangout.state NOT Legal

Overriding the EJB-QL to SQL Mapping
The EJB-QL to SQL mapping can be overridden in the jbosscmp-jdbc.xml file. The finder or
ejbSelect is still required to have an EJB-QL declaration in the ejb-jar.xml file, but the ejb-ql
element can be left empty. Currently the SQL can be overridden with JBossQL, DynamicQL,
DeclaredSQL or a BMP style custom ejbFind method. All EJB-QL overrides are non-standard
extensions to the EJB 2.0 specification, so use of these extensions will limit portability of your
application. All of the EJB-QL overrides, except for BMP custom finders, use the following
declaration template:

<jbosscmp-jdbc>
 <enterprise-beans>
 <entity>
 <ejb-name>GangsterEJB</ejb-name>
 <query>
 <query-method>
 <method-name>findBadDudes</method-name>
 <method-params><method-param>int</method-param></method-params>

14 The example "(r.amountPaid * .01) > 300" is presented on page 244 of "Enterprise JavaBeans 3rd Edition" by Richard Monson-Haefel to
demonstrate the use of arithmetic operators in a WHERE clause, and is included here to highlight the fact that it is not legal EJB-QL syntax.

C H A P T E R 5 : Q U E R I E S P A G E 3 6

Page 36

 </query-method>
 <!—-
 | ejb-ql override here
 | <jboss-ql>, <dynamic-ql>, or <declared-sql>
 -->
 </query>
 </entity>
 </enterprise-beans>
</ejb-jar>

Listing 5-4, The jbosscmp-jdbc.xml EJB-QL Override Template

JBossQL
JBossQL is a superset of EJB-QL that is designed to address some of the inadequacies of
EJB-QL. In addition to a more flexible syntax, new functions, key words, and clauses have been
added to JBossQL. At the time of this writing, JBossQL includes support for an ORDER BY
clause, parameters in the IN and LIKE operators, and the UCASE and LCASE functions. The
modifications to the EJB-QL BNF follow:

JBossQL := select_clause from_clause [where_clause] [order_by_clause]

order_by_clause := ORDER BY order_by_path_expression (, order_by_path_expression)*

order_by_path_expression :=
 (numeric_valued_path | string_valued_path | datetime_valued_path)
 [ASC | DESC]

in_expression ::=
 single_valued_path_expression [NOT]IN
 ((string_literal | string_valued_parameter)
 [, (string_literal | string_valued_parameter)]*)

like_expression ::=
 single_valued_path_expression [NOT]LIKE
 (pattern_value | string_valued_parameter)
 [ESCAPE (escape-character | string_valued_parameter)]

functions_returning_strings ::=
 CONCAT (string_expression, string_expression) |
 SUBSTRING (string_expression, arithmetic_expression, arithmetic_expression)
 UCASE (string_expression) |
 LCASE (string_expression)

Listing 5-5, JBossQL Expanded BNF

JBossQL is declared in the jbosscmp-jdbc.xml file with a jboss-ql element containing the
JBossQL query. See Listing 5-6 below for an example JBossQL declaration and Listing 5-7 for the
generated SQL:

<jbosscmp-jdbc>
 <enterprise-beans>
 <entity>
 <ejb-name>GangsterEJB</ejb-name>

C H A P T E R 5 : Q U E R I E S P A G E 3 7

Page 37

 <query>
 <query-method>
 <method-name>findBadDudes_jbossql</method-name>
 <method-params><method-param>int</method-param></method-params>
 </query-method>
 <jboss-ql><![CDATA[
 SELECT OBJECT(g)
 FROM gangster g
 WHERE g.badness > ?1
 ORDER BY g.badness DESC
]]></jboss-ql>
 </query>
 </entity>
 </enterprise-beans>
</ejb-jar>

Listing 5-6, The jbosscmp-jdbc.xml JBossQL Override

SELECT t0_g.id
FROM gangster t0_g
WHERE t0_g.badness > ?
ORDER BY t0_g.badness DESC

Listing 5-7, JBossQL SQL Mapping

DynamicQL
DynamicQL allows the runtime generation and execution of JBossQL queries. A DynamicQL
query method is an abstract method that takes the JBossQL query and the query arguments as
parameters. JBossCMP compiles the JBossQL and executes the generated SQL. The following
generates a JBossQL query that selects all the gangsters that have a hangout in any state in the
states set:

public abstract class GangsterBean implements EntityBean {

 public abstract Set ejbSelectGeneric(String jbossQl, Object[] arguments)
 throws FinderException;

 public Set ejbHomeSelectInStates(Set states) throws FinderException {
 // generate JBossQL query
 StringBuffer jbossQl = new StringBuffer();
 jbossQl.append("SELECT OBJECT(g) ");
 jbossQl.append("FROM gangster g ");
 jbossQl.append("WHERE g.hangout.state IN (");
 for(int i = 0; i < states.size(); i++) {
 if(i > 0) {
 jbossQl.append(", ");
 }
 jbossQl.append("?").append(i+1);
 }
 jbossQl.append(") ORDER BY g.name");

 // pack arguments into an Object[]

C H A P T E R 5 : Q U E R I E S P A G E 3 8

Page 38

 Object[] args = states.toArray(new Object[states.size()]);

 // call dynamic-ql query
 return ejbSelectGeneric(jbossQl.toString(), args);
 }
}

Listing 5-8, DynamicQL Example Code

The DynamicQL ejbSelect method may have any valid ejbSelect method name, but the method
must always take a String and Object array as parameters. DynamicQL is declared in the
jbosscmp-jdbc.xml file with an empty dynamic-ql element. The following is the declaration for
the query defined in Listing 5-8:

<jbosscmp-jdbc>
 <enterprise-beans>
 <entity>
 <ejb-name>GangsterEJB</ejb-name>
 <query>
 <query-method>
 <method-name>ejbSelectGeneric</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 <method-param>java.lang.Object[]</method-param>
 </method-params>
 </query-method>
 <dynamic-ql/>
 </query>
 </entity>
 </enterprise-beans>
</jbosscmp-jdbc>

Listing 5-9, The jbosscmp-jdbc.xml DynamicQL Override

DeclaredSQL
DeclaredSQL is based on the JAWS finder declaration, but has been updated for CMP 2.0.
Commonly this declaration is used to limit a query with a WHERE clause that cannot be
represented in EJB-QL or JBossQL. See Listing 5-10 below for an example DeclaredSQL
declaration and Listing 5-11 for the generated SQL:

<jbosscmp-jdbc>
 <enterprise-beans>
 <entity>
 <ejb-name>GangsterEJB</ejb-name>
 <query>
 <query-method>
 <method-name>findBadDudes_declaredsql</method-name>
 <method-params><method-param>int</method-param></method-params>
 </query-method>
 <declared-sql>
 <where><![CDATA[badness > {0}]]></where>

C H A P T E R 5 : Q U E R I E S P A G E 3 9

Page 39

 <order><![CDATA[badness DESC]]></order>
 </declared-sql>
 </query>
 </entity>
 </enterprise-beans>
</ejb-jar>

Listing 5-10, The jbosscmp-jdbc.xml DeclaredSQL Override

SELECT id
FROM gangster
WHERE badness > ?
ORDER BY badness DESC

Listing 5-11, DeclaredSQL SQL Mapping

As you can see, JBossCMP generates the SELECT and FROM clauses necessary to select the
primary key for this entity. If desired an additional FROM clause can be specified that is
appended to the end of the automatically generated FROM clause. See Listing 5-12 below for an
example DeclaredSQL declaration with an additional FROM clause and Listing 5-13 for the
generated SQL:

<jbosscmp-jdbc>
 <enterprise-beans>
 <entity>
 <ejb-name>GangsterEJB</ejb-name>
 <query>
 <query-method>
 <method-name>ejbSelectBoss_declaredsql</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </query-method>
 <declared-sql>
 <select>
 <distinct/>
 <ejb-name>GangsterEJB</ejb-name>
 <alias>boss</alias>
 </select>
 <from><![CDATA[, gangster g, organization o]]></from>
 <where><![CDATA[
 (LCASE(g.name) = {0} OR LCASE(g.nick_name) = {0}) AND
 g.organization = o.name AND o.the_boss = boss.id
]]></where>
 </declared-sql>
 </query>
 </entity>
 </enterprise-beans>
</ejb-jar>

Listing 5-12, The jbosscmp-jdbc.xml DeclaredSQL Override With From Clause

C H A P T E R 5 : Q U E R I E S P A G E 4 0

Page 40

SELECT DISTINCT boss.id
FROM gangster boss, gangster g, organization o
WHERE (LCASE(g.name) = ? OR LCASE(g.nick_name) = ?) AND
 g.organization = o.name AND o.the_boss = boss.id

Listing 5-13, The jbosscmp-jdbc.xml DeclaredSQL With From Clause SQL Mapping

Notice that the FROM clause starts with a comma. This is because the container appends the
declared FROM clause to the end of the generated FROM clause. It is also possible for the
FROM clause to start with a SQL JOIN statement. Since this is an ejbSelect method, it must have
a select element to declare the entity that will be selected. Note that an alias is also declared for
the query. If an alias is not declared, the table-name is used as the alias, resulting in a SELECT
clause with the table_name.field_name style column declarations. Not all database vendors
support the table_name.field_name syntax, so the declaration of an alias is preferred. Listing 5-13
also used the optional empty distinct element, which causes the SELECT clause to use the
SELECT DISTINCT declaration. The DeclaredSQL declaration can also be used in ejbSelect
methods to select a cmp-field. The following example selects all of the zip codes in which an
Organization operates:

<jbosscmp-jdbc>
 <enterprise-beans>
 <entity>
 <ejb-name>OrganizationEJB</ejb-name>
 <query>
 <query-method>
 <method-name>ejbSelectOperatingZipCodes_declaredsql</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </query-method>
 <declared-sql>
 <select>
 <distinct/>
 <ejb-name>LocationEJB</ejb-name>
 <field-name>zipCode</field-name>
 <alias>hangout</alias>
 </select>
 <from>, organization o, gangster g</from>
 <where>
 LCASE(o.name) = {0} AND o.name = g.organization AND
 g.hangout = hangout.id
 </where>
 <order>hangout.zip</order>
 </declared-sql>
 </query>
 </entity>
 </enterprise-beans>
</ejb-jar>

Listing 5-14, The jbosscmp-jdbc.xml DeclaredSQL ejbSelect Override

C H A P T E R 5 : Q U E R I E S P A G E 4 1

Page 41

SELECT DISTINCT hangout.zip
FROM location hangout, organization o, gangster g
WHERE LCASE(o.name) = ? AND o.name = g.organization AND g.hangout = hangout.id
ORDER BY hangout.zip

Listing 5-15, The jbosscmp-jdbc.xml DeclaredSQL ejbSelect SQL Mapping

The following table describes each element of the select clause:

Table 5-1, select Tags

Tag Name Description Required

distinct If this empty element is present, JBossCMP will add the
DISTINCT keyword to the generated SELECT clause.

No, default is to
use DISTINCT
if method
returns a
java.util.Set

alias This specifies the alias that will be used for the main select
table.

No, default is
ejb-name

ejb-name This is the ejb-name of the entity that will be selected. No, required if
ejbSelect
method

field-name This is the name of the cmp-field that will be selected from
the specified entity.

No, default is to
select entire
entity

Parameters

JBossCMP DeclaredSQL uses a completely new parameter handling system, which supports
entity and DVC parameters. Parameters are enclosed in curly brackets and use a base zero index,
which is different from the base one EJB-QL parameters. There are three categories of
parameters: simple, DVC, and entity:

� A simple parameter can be of any type except for a known (mapped) DVC or an entity. A
simple parameter only contains the argument number, such as {0}. When a simple
parameter is set, the JDBC type used to set the parameter is determined by the datasource-
mapping for the entity. An unknown DVC is serialized and then set as a parameter. Note
that most databases do not support the use of a BLOB value in a WHERE clause.

� A DVC parameter can be any known (mapped) DVC. A DVC parameter must be
dereferenced down to a simple property (one that is not another DVC). For example, if
we had a property of type ContactInfo (as declared in Chapter 3), valid parameter
declarations would be {0.email} and {0.cell.areaCode} but not {0.cell}. The JDBC type

C H A P T E R 5 : Q U E R I E S P A G E 4 2

Page 42

used to set a parameter is based on the class type of the property and the datasource-
mapping of the entity. The JDBC type used to set the parameter is the JDBC type that is
declared for that property in the dependent-value-class element.

� An entity parameter can be any entity in the application. An entity parameter must be
dereferenced down to a simple primary key field or simple property of a DVC primary key
field. For example, if we had a parameter of type Gangster, a valid parameter declaration
would be {0.gangsterId}. If we had some entity with a primary key field named info of
type ContactInfo (as declared in Chapter 3), a valid parameter declaration would be
{0.info.cell.areaCode}. Only fields that are members of the primary key of the entity can
be dereferenced (this restriction may be removed in later versions). The JDBC type used
to set the parameter is the JDBC type that is declared for that field in the entity
declaration.

BMP Custom Finders
JBossCMP continues the tradition of JAWS in supporting bean managed persistence custom
finders. If a custom finder matches a finder declared in the home or local home interface,
JBossCMP will always call the custom finder over any other implementation declared in the
ejb-jar.xml or jbosscmp-jdbc.xml files. The following simple example finds the entities by a
collection of primary keys: 15

public abstract class GangsterBean implements EntityBean {
 public Collection ejbFindByPrimaryKeys(Collection keys) {
 return keys;
 }
}

Listing 5-16, Custom Finder Example Code

15 This is a very useful finder because it quickly coverts primary keys into real Entity objects without contacting the database. One drawback
is that it can create an Entity object with a primary key that does not exist in the database. If any method is invoked on the bad Entity, a
NoSuchEntityException will be thrown.

Page 43

6. Optimized Loading

The goal of optimized loading is to load the smallest amount of data required to complete a
transaction in the least number of queries. The tuning of JBossCMP depends on a detailed
knowledge of the loading process. This chapter describes the internals of the JBossCMP loading
process and its configuration. Tuning of the loading process really requires a holistic
understanding of the loading system, so this chapter may have to be read more than once.

Loading Scenario
The easiest way to investigate the loading process is to look at a usage scenario. The most
common scenario is to locate a collection of entities and iterate over the results performing some
operation. The following example generates an html table containing all of the gangsters:

public String createGangsterHtmlTable_none() throws FinderException {
 StringBuffer table = new StringBuffer();
 table.append("<table>");

 Collection gangsters = gangsterHome.findAll_none();
 for(Iterator iter = gangsters.iterator(); iter.hasNext();) {
 Gangster gangster = (Gangster)iter.next();
 table.append("<tr>");
 table.append("<td>").append(gangster.getName()).append("</td>");
 table.append("<td>").append(gangster.getNickName()).append("</td>");
 table.append("<td>").append(gangster.getBadness()).append("</td>");
 table.append("</tr>");
 }

 table.append("</table>");
 return table.toString();
}

Listing 6-1, Loading Scenario Example Code

Assume this code is called within a single transaction and all optimized loading has been disabled.
At Arrow 1, JBossCMP will execute the following query:

SELECT t0_g.id
FROM gangster t0_g

Chapter

6

C H A P T E R 6 : O P T I M I Z E D L O A D I N G P A G E 4 4

Page 44

ORDER BY t0_g.id ASC

Listing 6-2, Unoptimized findAll Query

Then at Arrow 2, in order to load the eight Gangsters in the sample database, JBossCMP
executes the following eight queries:

SELECT name, nick_name, badness, hangout, organization
FROM gangster WHERE (id=0)

SELECT name, nick_name, badness, hangout, organization
FROM gangster WHERE (id=1)

SELECT name, nick_name, badness, hangout, organization
FROM gangster WHERE (id=2)

SELECT name, nick_name, badness, hangout, organization
FROM gangster WHERE (id=3)

SELECT name, nick_name, badness, hangout, organization
FROM gangster WHERE (id=4)

SELECT name, nick_name, badness, hangout, organization
FROM gangster WHERE (id=5)

SELECT name, nick_name, badness, hangout, organization
FROM gangster WHERE (id=6)

SELECT name, nick_name, badness, hangout, organization
FROM gangster WHERE (id=7)

Listing 6-3, Unoptimized Load Queries

There are two problems with this scenario. First, an excessive number of queries are executed
because JBossCMP executes one query for findAll and one query for each element found; this is
called the "n+1" problem16 and is addressed with the read-ahead strategies described in the
following sections. Second, values of unused fields are loaded because JBossCMP loads the

16 The reason for this behavior has to do with the handling of query results inside the JBoss container. Although it appears that the actual
entity beans selected are returned when a query is executed, JBoss really only returns the primary keys of the matching entities, and does not
load the entity until a method is invoked on it.

C H A P T E R 6 : O P T I M I Z E D L O A D I N G P A G E 4 5

Page 45

hangout and organization fields, 17 which are never accessed. Configuration of eager loading is
described in the Eager-loading Process section of this chapter. The following table shows the
execution of the queries:

Table 6-1, Unoptimized Query Execution

id name nick_name badness hangout organization

0 Yojimbo Bodyguard 7 0 Yakuza

1 Takeshi Master 10 1 Yakuza

2 Yuriko Four finger 4 2 Yakuza

3 Chow Killer 9 3 Triads

4 Shogi Lightning 8 4 Triads

5 Valentino Pizza-Face 4 5 Mafia

6 Toni Toothless 2 6 Mafia

7 Corleone Godfather 6 7 Mafia

Load Groups
The configuration and optimization of the loading system begins with the declaration of named
load groups in the entity. A load group contains the names of cmp-fields and cmr-fields with a
foreign key (e.g., Gangster in the Organization-Gangster example) that will be loaded in a single
operation. An example configuration follows:

<jbosscmp-jdbc>
 <enterprise-beans>
 <entity>
 <ejb-name>GangsterEJB</ejb-name>
 <load-groups>
 <load-group>
 <load-group-name>basic</load-group-name>
 <field-name>name</field-name>
 <field-name>nickName</field-name>
 <field-name>badness</field-name>

17 Normally JBossCMP would also load the contactInfo field, but for the sake of readability, it has been disabled in this example because
contact info maps to seven columns. The actual configuration used to disable the default loading of the contactInfo field is presented in
Listing 6-12.

C H A P T E R 6 : O P T I M I Z E D L O A D I N G P A G E 4 6

Page 46

 </load-group>
 <load-group>
 <load-group-name>contact info</load-group-name>
 <field-name>nickName</field-name>
 <field-name>contactInfo</field-name>
 <field-name>hangout</field-name>
 </load-group>
 </load-groups>
 </entity>
 </enterprise-beans>
</jbosscmp-jdbc>

Listing 6-4, The jbosscmp-jdbc.xml Load Group Declaration

In Listing 6-4, two load groups are declared: basic and contact info. Note that the load groups do
not need to be mutually exclusive. For example, both of the load groups contain the nickName
field. In addition to the declared load groups, JBossCMP automatically adds a group named "*"
(the star group) that contains every cmp-field and cmr-field with a foreign key in the entity.

Read-ahead
Optimized loading in JBossCMP is called read-ahead. This term was inherited from JAWS, and
refer to the technique of reading the row for an entity being loaded, as well as the next several
rows; hence the term read-ahead. JBossCMP implements two main strategies (on-find and
on-load) to optimize the loading problem identified in the previous section.

The extra data loaded during read-ahead is not immediately associated with an entity object in
memory, as entities are not materialized in JBoss until actually accessed. Instead, it is stored in
the preload cache where it remains until it is loaded into an entity or the end of the transaction
occurs. The following sections describe the read-ahead strategies.

on-find
The on-find strategy reads additional columns when the query is invoked. If the query in the
scenario detailed in Listing 6-1 is on-find optimized, JBossCMP will execute the following query at
Arrow 1:

SELECT t0_g.id, t0_g.name, t0_g.nick_name, t0_g.badness
FROM gangster t0_g
ORDER BY t0_g.id ASC

Listing 6-5, on-find Optimized findAll Query

Then at Arrow 2, all of the required data would be in the preload cache, so no additional queries
would be executed. This strategy is effective for queries that return a small amount of data, but

C H A P T E R 6 : O P T I M I Z E D L O A D I N G P A G E 4 7

Page 47

becomes very inefficient when trying to load a large result set into memory. 18 The following table
shows the execution of this query:

Table 6-2, on-find Optimized Query Execution

id name nick_name badness hangout organization

0 Yojimbo Bodyguard 7 0 Yakuza

1 Takeshi Master 10 1 Yakuza

2 Yuriko Four finger 4 2 Yakuza

3 Chow Killer 9 3 Triads

4 Shogi Lightning 8 4 Triads

5 Valentino Pizza-Face 4 5 Mafia

6 Toni Toothless 2 6 Mafia

7 Corleone Godfather 6 7 Mafia

The read-ahead strategy and load-group for a query is defined in the query element. If a
read-head strategy is not declared in the query element, the strategy declared in the entity element
or defaults element is used. The on-find configuration follows:

<jbosscmp-jdbc>
 <enterprise-beans>
 <entity>
 <ejb-name>GangsterEJB</ejb-name>
 <query>
 <query-method>
 <method-name>findAll_onfind</method-name>
 <method-params/>
 </query-method>
 <jboss-ql><![CDATA[
 SELECT OBJECT(g)
 FROM gangster g
 ORDER BY g.gangsterId
]]></jboss-ql>
 <read-ahead>
 <strategy>on-find</strategy>

18 JBossCMP uses soft references in the read-ahead cache implementation, so data will be cached and then immediately released.

C H A P T E R 6 : O P T I M I Z E D L O A D I N G P A G E 4 8

Page 48

 <page-size>4</page-size>
 <eager-load-group>basic</eager-load-group>
 </read-ahead>
 </query>
 </entity>
 </enterprise-beans>
</jbosscmp-jdbc>

Listing 6-6, The jbosscmp-jdbc.xml on-find Declaration

One problem with the on-find strategy is that it must load additional data for every entity
selected. Commonly in web applications only a fixed number of results are rendered on a page.
Since the preloaded data is only valid for the length of the transaction, and a transaction is limited
to a single web http hit, most of the preloaded data is not used. The on-load strategy discussed in
the next section does not suffer from this problem.

on-load
The on-load strategy block loads additional data for several entities when an entity is loaded,
starting with the requested entity and the next several entities in the order they were selected.19
This strategy is based on the theory that the results of a find or ejbSelect will be accessed in
forward order. When a query is executed, JBossCMP stores the order of the entities found in the
list cache. Later, when one of the entities is loaded, JBossCMP uses this list to determine the
block of entities to load. The number of lists stored in the cache is specified with the list-cache-
max element of the entity. This strategy is also used when faulting in data not loaded in the
on-find strategy. With this strategy, the query executed at Arrow 1 remains unchanged.

SELECT t0_g.id
FROM gangster t0_g
ORDER BY t0_g.id ASC

Listing 6-7, on-load (Unoptimized) findAll Query

If, for example, the page size is set to four, JBossCMP will execute the following two queries to
load the name, nickName and badness fields for the entities:

SELECT id, name, nick_name, badness
FROM gangster
WHERE (id=0) OR (id=1) OR (id=2) OR (id=3)

19 This is the read-ahead technique from JAWS.

C H A P T E R 6 : O P T I M I Z E D L O A D I N G P A G E 4 9

Page 49

SELECT id, name, nick_name, badness
FROM gangster
WHERE (id=4) OR (id=5) OR (id=6) OR (id=7)

Listing 6-8, on-load Optimized Load Queries

The following table shows the execution of these queries:

Table 6-3, on-load Optimized Query Execution

id name nick_name badness hangout organization

0 Yojimbo Bodyguard 7 0 Yakuza

1 Takeshi Master 10 1 Yakuza

2 Yuriko Four finger 4 2 Yakuza

3 Chow Killer 9 3 Triads

4 Shogi Lightning 8 4 Triads

5 Valentino Pizza-Face 4 5 Mafia

6 Toni Toothless 2 6 Mafia

7 Corleone Godfather 6 7 Mafia

As with the on-find strategy, on-load is declared in the read-ahead element. The on-load
configuration follows:

<jbosscmp-jdbc>
 <enterprise-beans>
 <entity>
 <ejb-name>GangsterEJB</ejb-name>
 <query>
 <query-method>
 <method-name>findAll_onload</method-name>
 <method-params/>
 </query-method>
 <jboss-ql><![CDATA[
 SELECT OBJECT(g)
 FROM gangster g
 ORDER BY g.gangsterId
]]></jboss-ql>
 <read-ahead>

C H A P T E R 6 : O P T I M I Z E D L O A D I N G P A G E 5 0

Page 50

 <strategy>on-load</strategy>
 <page-size>4</page-size>
 <eager-load-group>basic</eager-load-group>
 </read-ahead>
 </query>
 </entity>
 </enterprise-beans>
</jbosscmp-jdbc>

Listing 6-9, The jbosscmp-jdbc.xml on-load Declaration

none
The none strategy is really an anti-strategy. This strategy causes the system to fall back to the
default lazy-load code, and specifically does not read-ahead any data or remember the order of
the found entities. This results in the queries and performance shown at the beginning of this
chapter. The none strategy is declared with a read-ahead element. If the read-ahead element
contains a page-size element or eager-load-group, it is ignored. The none strategy is declared in
the following configuration:

<jbosscmp-jdbc>
 <enterprise-beans>
 <entity>
 <ejb-name>GangsterEJB</ejb-name>
 <query>
 <query-method>
 <method-name>findAll_none</method-name>
 <method-params/>
 </query-method>
 <jboss-ql><![CDATA[
 SELECT OBJECT(g)
 FROM gangster g
 ORDER BY g.gangsterId
]]></jboss-ql>
 <read-ahead>
 <strategy>none</strategy>
 </read-ahead>
 </query>
 </entity>
 </enterprise-beans>
</jbosscmp-jdbc>

Listing 6-10, The jbosscmp-jdbc.xml none Declaration

Loading Process
In the previous section several steps use the phrase "when the entity is loaded." This was
intentionally left vague because the commit option specified for the entity and the current state of
the transaction determine when an entity is loaded. The following section describes the commit
options and the loading processes.

C H A P T E R 6 : O P T I M I Z E D L O A D I N G P A G E 5 1

Page 51

Commit Options
Central to the loading process are the commit options, which control when the data for an entity
expires. JBoss supports four commit options A, B, C and D. The first three are described in
section 10.5.9 of the Enterprise JavaBeans Specification Version 2.0 Final Release and the
forth, D, is specific to JBoss. A detailed description of each commit option follows:

� A: JBossCMP assumes it is the sole user of the database; therefore, JBossCMP can cache
the current value of an entity between transactions, which can result is substantial
performance gains. As a result of this assumption, no data managed by JBossCMP can be
changed outside of JBossCMP. For example, changing data in another program or with
the use of direct JDBC (even within JBoss) will result in an inconsistent database state.

� B: JBossCMP assumes that there is more than one user of the database but keeps the
context information about entities between transactions. This context information is used
for optimizing loading of the entity. 20 This is the default commit option.

� C: JBossCMP discards all entity context information at the end of the transaction.

� D: This is a JBoss specific commit option. This option is similar to commit option A,
except that the data only remains valid for a specified amount of time.

The commit option is declared in the jboss.xml file. For a detailed description of this file see the
JBoss 3.0 Quick Start Guide. The following example changes the commit option to A for all
entity beans in the application:

<jboss>
 <container-configurations>
 <container-configuration>
 <container-name>Standard CMP 2.x EntityBean</container-name>
 <commit-option>A</commit-option>
 </container-configuration>
 </container-configurations>
</jboss>

Listing 6-11, The jboss.xml Commit Option Declaration

Eager-loading Process
One of the most important changes in CMP 2.0 is the change from using class fields for
cmp-fields to abstract accessor methods. In CMP 1.x, the container could not know which fields
were required in a transaction, so the container had to eager-load every field when loading the

20 In a future version, JBossCMP will be able to keep the current data of a commit option B entity between transactions and validate that the
data is still current using last-update optimistic locking. For entities that contain a large amount of data, this will result in a significant
performance enhancement.

http://java.sun.com/products/ejb/docs.html
http://prdownloads.sourceforge.net/jboss/JBoss.3.0QuickStart.pdf

C H A P T E R 6 : O P T I M I Z E D L O A D I N G P A G E 5 2

Page 52

bean. In CMP 2.x, the container creates the implementation for the abstract accessors, so the
container can know when the data for a field is required. JBossCMP can be configured to
eager-load only some of the fields when loading an entity, and later lazy-load the remaining fields
as needed.

When an entity is loaded, JBossCMP must determine the fields that need to be loaded. By
default, JBossCMP will use the eager-load-group of the last query that selected this entity. If the
entity has not been selected in a query, or the last query used the none read-ahead strategy,
JBossCMP uses the default eager-load-group declared for the entity. In the following
configuration, the basic load group is set as the default eager-load-group for the GangsterEJB
entity:

<jbosscmp-jdbc>
 <enterprise-beans>
 <entity>
 <ejb-name>GangsterEJB</ejb-name>
 <load-groups>
 <load-group>
 <load-group-name>most</load-group-name>
 <field-name>name</field-name>
 <field-name>nickName</field-name>
 <field-name>badness</field-name>
 <field-name>hangout</field-name>
 <field-name>organization</field-name>
 </load-group>
 </load-groups>
 <eager-load-group>most</eager-load-group>
 </entity>
 </enterprise-beans>
</jbosscmp-jdbc>

Listing 6-12, The jbosscmp-jdbc.xml Eager Load Declaration

The eager loading process is initiated the first time a method is called on an entity in a
transaction. A detailed description of the load process follows:

1. If the entity context is still valid, no loading is necessary, and therefore the loading
process is done. The entity context will be valid when using commit option A, or
when using commit option D, and the data has not timed out.

2. Any residual data in the entity context is flushed. This assures that old data does
not bleed into the new load.

3. The primary key value is injected back into the primary key fields. The primary key
object is actually independent of the fields and needs to be reloaded after the flush
in step 2.

4. All data in the preload cache for this entity is loaded into the fields.

C H A P T E R 6 : O P T I M I Z E D L O A D I N G P A G E 5 3

Page 53

5. JBossCMP determines the additional fields that still need to be loaded. Normally
the fields to load are determined by the eager-load group of the entity, but can be
overridden if the entity was located using a query or cmr-field with an on-find or
on-load read-ahead strategy. If all of the fields have already been loaded, the load
process skips to step 7.

6. A query is executed to select the necessary column. If this entity is using the
on-load strategy, a page of data is loaded as described in the on-load section. The
data for the current entity is stored in the context and the data for the other entities
is stored in the preload cache.

7. The ejbLoad method of the entity is called.

Lazy-loading Process
Lazy-loading is the other half of eager-loading. If a field is not eager-loaded, it must be
lazy-loaded. When the bean accesses an unloaded field, JBossCMP loads the field and any field in
a lazy-load-group of which the unloaded field is a member. JBossCMP performs a set join and
then removes any field that is already loaded. An example follows:

<jbosscmp-jdbc>
 <enterprise-beans>
 <entity>
 <ejb-name>GangsterEJB</ejb-name>
 <load-groups>
 <load-group>
 <load-group-name>basic</load-group-name>
 <field-name>name</field-name>
 <field-name>nickName</field-name>
 <field-name>badness</field-name>
 </load-group>
 <load-group>
 <load-group-name>contact info</load-group-name>
 <field-name>nickName</field-name>
 <field-name>contactInfo</field-name>
 <field-name>hangout</field-name>
 </load-group>
 </load-groups>
 <lazy-load-groups>
 <load-group-name>basic</load-group-name>
 <load-group-name>contact info</load-group-name>
 </lazy-load-groups>
 </entity>
 </enterprise-beans>
</jbosscmp-jdbc>

Listing 6-13, The jbosscmp-jdbc.xml Lazy Load Group Declaration

C H A P T E R 6 : O P T I M I Z E D L O A D I N G P A G E 5 4

Page 54

When the bean provider calls getName() with this configuration, JBossCMP loads name,
nickName and badness (assuming they are not already loaded). When the bean provider calls
getNickName(), the name, nickName, badness, contactInfo, and hangout are loaded. A detailed
description of the lazy-loading process follows:

1. All data in the preload cache for this entity is loaded into the fields.

2. If the field value was loaded by the preload cache the lazy-load process is finished.

3. JBossCMP finds all of the lazy load groups that contain this field, performs a set
join on the groups, and removes any field that has already been loaded.

4. A query is executed to select the necessary column. As in the basic load process,
JBossCMP may load a block of entities. The data for the current entity is stored in
the context and the data for the other entities is stored in the preload cache.

Relat ionsh ips

Relationships are a special case in lazy-loading because a cmr-field is both a field and query. As a
field it can be on-load block loaded, meaning the value of the currently sought entity and the
values of the cmr-field for the next several entities are loaded. As a query, the field values of the
related entity can be preloaded on-find.

Again, the easiest way to investigate the loading is to look at a usage scenario. In this example, an
html table is generated containing each gangster and their hangout. The example code follows:

C H A P T E R 6 : O P T I M I Z E D L O A D I N G P A G E 5 5

Page 55

public String createGangsterHangoutHtmlTable() throws FinderException {
 StringBuffer table = new StringBuffer();
 table.append("<table>");

 Collection gangsters = gangsterHome.findAll_onfind();
 for(Iterator iter = gangsters.iterator(); iter.hasNext();) {
 Gangster gangster = (Gangster)iter.next();
 Location hangout = gangster.getHangout();
 table.append("<tr>");
 table.append("<td>").append(gangster.getName()).append("</td>");
 table.append("<td>").append(gangster.getNickName()).append("</td>");
 table.append("<td>").append(gangster.getBadness()).append("</td>");
 table.append("<td>").append(hangout.getCity()).append("</td>");
 table.append("<td>").append(hangout.getState()).append("</td>");
 table.append("<td>").append(hangout.getZipCode()).append("</td>");
 table.append("</tr>");
 }

 table.append("</table>");
 return table.toString();
}

Listing 6-14, Relationship Lazy Loading Example Code

For this example, the configuration of the Gangster findAll_onfind query is unchanged from the
on-find section. The configuration of the Location entity and Gangster-Hangout relationship
follows:

<jbosscmp-jdbc>
 <enterprise-beans>
 <entity>
 <ejb-name>LocationEJB</ejb-name>
 <load-groups>
 <load-group>
 <load-group-name>quick info</load-group-name>
 <field-name>city</field-name>
 <field-name>state</field-name>
 <field-name>zipCode</field-name>
 </load-group>
 </load-groups>
 <eager-load-group/>
 </entity>
 </enterprise-beans>
 <relationships>
 <ejb-relation>
 <ejb-relation-name>Gangster-Hangout</ejb-relation-name>
 <foreign-key-mapping/>
 <ejb-relationship-role>
 <!-- outdented to fit on a printed page -->
<ejb-relationship-role-name>gangster-has-a-hangout</ejb-relationship-role-name>
 <key-fields/>
 <read-ahead>
 <strategy>on-find</strategy>

C H A P T E R 6 : O P T I M I Z E D L O A D I N G P A G E 5 6

Page 56

 <page-size>4</page-size>
 <eager-load-group>quick info</eager-load-group>
 </read-ahead>
 </ejb-relationship-role>
 <ejb-relationship-role>
 <!-- outdented to fit on a printed page -->
<ejb-relationship-role-name>hangout-for-a-gangster</ejb-relationship-role-name>
 <key-fields>
 <key-field>
 <field-name>locationId</field-name>
 <column-name>hangout</column-name>
 </key-field>
 </key-fields>
 </ejb-relationship-role>
 </ejb-relation>
 </relationships>
</jbosscmp-jdbc>

Listing 6-15, The jbosscmp-jdbc.xml Relationship Lazy Loading Configuration

At Arrow 1, JBossCMP will execute the following query:

SELECT t0_g.id, t0_g.name, t0_g.nick_name, t0_g.badness
FROM gangster t0_g
ORDER BY t0_g.id ASC

Listing 6-16, on-find Optimized findAll Query

Then at Arrow 2, JBossCMP executes the following two queries to load the city, state, and zip
fields of the hideout:

SELECT gangster.id, gangster.hangout,
 location.city, location.st, location.zip
FROM gangster, location
WHERE (gangster.hangout=location.id) AND
 ((gangster.id=0) OR (gangster.id=1) OR
 (gangster.id=2) OR (gangster.id=3))

SELECT gangster.id, gangster.hangout,
 location.city, location.st, location.zip
FROM gangster, location
WHERE (gangster.hangout=location.id) AND
 ((gangster.id=4) OR (gangster.id=5) OR
 (gangster.id=6) OR (gangster.id=7))

Listing 6-17, on-find Optimized Relationship Load Queries

C H A P T E R 6 : O P T I M I Z E D L O A D I N G P A G E 5 7

Page 57

The following table shows the execution of the queries:

Table 6-4, on-find Optimized Relationship Query Execution

Gangster Location

id name nick_name badness hangout id city st zip

0 Yojimbo Bodyguard 7 0 0 San Fran CA 94108

1 Takeshi Master 10 1 1 San Fran CA 94133

2 Yuriko Four finger 4 2 2 San Fran CA 94133

3 Chow Killer 9 3 3 San Fran CA 94133

4 Shogi Lightning 8 4 4 San Fran CA 94133

5 Valentino Pizza-Face 4 5 5 New York NY 10017

6 Toni Toothless 2 6 6 Chicago IL 60661

7 Corleone Godfather 6 7 7 Las Vegas NV 89109

Transactions
All of the examples presented in this chapter have been defined to run in a transaction.
Transaction granularity is a dominating factor in optimized loading because transactions define
the lifetime of preloaded data. If the transaction completes, commits, or rolls back, the data in
the preload cache is lost. This can result in a severe negative performance impact.

The performance impact of running without a transaction will be demonstrated with an example
similar to Listing 6-1. This example uses an on-find optimized query that selects the first four
gangsters (to keep the result set small), and it is executed without a wrapper transaction. The
example code follows:

C H A P T E R 6 : O P T I M I Z E D L O A D I N G P A G E 5 8

Page 58

public String createGangsterHtmlTable_no_tx() throws FinderException {
 StringBuffer table = new StringBuffer();
 table.append("<table>");
 Collection gangsters = gangsterHome.findFour();
 for(Iterator iter = gangsters.iterator(); iter.hasNext();) {
 Gangster gangster = (Gangster)iter.next();
 table.append("<tr>");
 table.append("<td>").append(gangster.getName()).append("</td>");
 table.append("<td>").append(gangster.getNickName()).append("</td>");
 table.append("<td>").append(gangster.getBadness()).append("</td>");
 table.append("</tr>");
 }
 table.append("</table>");
 return table.toString();
}

Listing 6-18, No Transaction Loading Example Code

The query executed at Arrow 1 follows:

SELECT t0_g.id, t0_g.name, t0_g.nick_name, t0_g.badness
FROM gangster t0_g
WHERE t0_g.id < 4
ORDER BY t0_g.id ASC

Listing 6-19, No Transaction on-find Optimized findAll Query

Normally this would be the only query executed, but since this code is not running in a
transaction, all of the preloaded data is thrown away as soon as findAll returns. Then at Arrow 2
JBossCMP executes the following four queries (one for each loop): 21

SELECT id, name, nick_name, badness
FROM gangster
WHERE (id=0) OR (id=1) OR (id=2) OR (id=3)

SELECT id, name, nick_name, badness
FROM gangster
WHERE (id=1) OR (id=2) OR (id=3)

SELECT id, name, nick_name, badness
FROM gangster
WHERE (id=2) OR (id=3)

21 It's actually worse than this. JBossCMP executes each of these queries three times; once for each cmp-field that is accessed. This is
because the preloaded values are discarded between the cmp-field accessor calls.

C H A P T E R 6 : O P T I M I Z E D L O A D I N G P A G E 5 9

Page 59

SELECT name, nick_name, badness
FROM gangster
WHERE (id=3)

Listing 6-20, No Transaction on-load Optimized Load Queries

The following table shows the execution of the queries:

Table 6-5, No Transaction on-find Optimized Query Execution

This performance is much worse than read-ahead none because of the amount of data loaded
from the database. The number of rows loaded is determined by the following equation:

This all happens because the transaction in the example is bounded by a single call on the entity.
This brings up the important question "How do I run my code in a transaction?" The answer
depends on where the code runs. If it runs in an EJB (session, entity, or message driven), the
method must be marked with the Required or RequiresNew trans-attribute in the
assembly-descriptor. If the code is not running in an EJB, a user transaction is necessary. The
following code wraps a call to the method declared in Listing 6-18 with a user transaction:

C H A P T E R 6 : O P T I M I Z E D L O A D I N G P A G E 6 0

Page 60

public String createGangsterHtmlTable_with_tx() throws FinderException {
 UserTransaction tx = null;
 try {
 InitialContext ctx = new InitialContext();
 tx = (UserTransaction) ctx.lookup("UserTransaction");
 tx.begin();

 String table = createGangsterHtmlTable_no_tx();

 if(tx.getStatus() == Status.STATUS_ACTIVE) {
 tx.commit();
 }
 return table;
 } catch(Exception e) {
 try {
 if(tx != null) tx.rollback();
 } catch(SystemException unused) {
 // eat the exception we are exceptioning out anyway
 }
 if(e instanceof FinderException) {
 throw (FinderException) e;
 }
 if(e instanceof RuntimeException) {
 throw (RuntimeException) e;
 }
 throw new EJBException(e);
 }
}

Listing 6-21, User Transaction Example Code

Page 61

A. About The JBoss Group

The JBoss Group, LLC. is an Atlanta-based professional services company created by Marc
Fleury, founder and lead developer of the JBoss J2EE-based open source web application server.
The JBoss Group brings together core JBoss developers to provide services such as training,
support and consulting, as well as management of the JBoss software and services affiliate
programs. These commercial activities subsidize the development of the free core JBoss server.
For additional information on The JBoss Group see the JBoss website at
http://www.jboss.org/jbossgroup/services.jsp.

Appendix

A

http://www.jboss.org/jbossgroup/services.jsp

Page 62

B. Defaults

JBossCMP global defaults are defined in the standardjbosscmp-jdbc.xml file of the
server/<server-name>/conf/directory file in the JBoss 3.0 distribution. Each application can
override the global defaults in the jbosscmp-jdbc.xml file. The default options are contained in a
defaults element of the configuration file. An example of the defaults section follows:

<jbosscmp-jdbc>
 <defaults>
 <datasource>java:/DefaultDS</datasource>
 <datasource-mapping>Hypersonic SQL</datasource-mapping>
 <create-table>true</create-table>
 <remove-table>false</remove-table>
 <read-only>false</read-only>
 <read-time-out>300</read-time-out>
 <pk-constraint>true</pk-constraint>
 <fk-constraint>false</fk-constraint>
 <row-locking>false</row-locking>
 <preferred-relation-mapping>foreign-key</preferred-relation-mapping>
 <read-ahead>
 <strategy>on-load</strategy>
 <page-size>1000</page-size>
 <eager-load-group>*</eager-load-group>
 </read-ahead>
 <list-cache-max>1000</list-cache-max>
 </defaults>
</jbosscmp-jdbc>

Listing B-1, The jbosscmp-jdbc.xml Defaults Declaration

Each option can apply to entities, relationships, or both, and can be overridden in the specific
entity or relationship. A detailed description of each option follows:

Table B-1, defaults Tags

Tag Name Description Required

datasource This is the jndi-name used to look up the datasource. All
database connections used by an entity or relation-table are
obtained from the datasource.

No, default it
java:/DefaultDS

Appendix

B

A P P E N D I X B : D E F A U L T S P A G E 6 3

Page 63

Tag Name Description Required

datasource-
mapping

This specifies the name of the type-mapping, which
determines how Java types are mapped to SQL types, and
how EJB-QL functions are mapped to database specific
functions. Type-mapping is discussed in Appendix C.

No, default is
Hypersonic
SQL

create-table If true, JBossCMP will attempt to create a table for the
entity. When the application is deployed, JBossCMP checks
if a table already exists before creating the table. If a table is
found, it is logged, and the table is not created. This option is
very useful during the early stages of development when the
table structure changes often.

No, default is
true

remove-table If true, JBossCMP will attempt to drop the table for each
entity and each relation-table mapped relationship when the
application is undeployed. This option is very useful during
the early stages of development when the table structure
changes often.

No, default is
false

read-only If true, the bean provider will not be allowed to change the
value of any fields. A field that is read-only will not be stored
in, or inserted into, the database. If a primary key field is
read-only, the create method will throw a CreateException.
If a set accessor is called on a read-only field, it throws an
EJBException. Read-only fields are useful for fields that are
filled in by database triggers, such as last update. The
read-only option can be overridden on a per cmp-field basis,
which is discussed in Chapter 3.

No, default is
false

read-time-out This is the amount of time in milliseconds that a read on a
read-only field is valid. A value of 0 means that the value is
always reloaded at the start of a transaction, and a value of -1
means that the value never times out. This option can also be
overridden on a per cmp-field basis. If read-only is false, this
value is ignored.

No, default is
300

row-locking If true, JBossCMP will lock all rows loaded in a transaction.
Most databases implement this by using the SELECT FOR
UPDATE syntax when loading the entity, but the actual
syntax is determined by the row-locking-template in the
datasource-mapping used by this entity.

No, default is
false

A P P E N D I X B : D E F A U L T S P A G E 6 4

Page 64

Tag Name Description Required

preferred-
relation-
mapping

This is used to determine the default mapping for
relationships. The valid options are foreign-key and
relation-table. This option applies to relationships.

No, default is
foreign-key

pk-constraint If true, JBossCMP will add a primary key constraint when
creating tables.

No, default is
true

read-ahead This controls caching of query results and cmr-fields for the
entity. This option is discussed in Chapter 6.

No, see Chapter
6

list-cache-max This specifies the number of read-lists that can be tracked by
this entity. This option is discussed in Chapter 6.

No, default is
1000

Page 65

C. Datasource Customization

JBossCMP includes predefined type-mappings for the following databases: Cloudscape, DB2,
DB2/400, Hypersonic SQL, InformixDB, InterBase, MS SQLSERVER, MS SQLSERVER2000,
mySQL, Oracle7, Oracle8, Oracle9i, PointBase, PostgreSQL, PostgreSQL 7.2, SapDB, SOLID,
and Sybase. If you do not like the supplied mapping, or a mapping is not supplied for your
database, you will have to define a new mapping. If you find an error in one of the supplied
mappings, or if you create a new mapping for a new database, please consider posting a patch at
the JBoss project page on SourceForge.

Type Mapping
A type-mapping is simply a set of mappings between Java class types and database types. The
following is the current mapping of a short for Oracle 9i.

<jbosscmp-jdbc>
 <type-mapping>
 <name>Oracle9i</name>
 <mapping>
 <java-type>java.lang.Short</java-type>
 <jdbc-type>NUMERIC</jdbc-type>
 <sql-type>NUMBER(5)</sql-type>
 </mapping>
 </type-mapping>
</jbosscmp-jdbc>

Listing C-1, The jbosscmp-jdbc.xml Type Mapping Declaration

If JBossCMP cannot find a mapping for a type, it will serialize the object and use the
java.lang.Object mapping. The following describes the three elements of the mapping element:

Table C-1, Type Mapping Tags

Tag Name Description Required

java-type This is the fully qualified name of the Java class to be
mapped. If the class is a primitive wrapper class such as
java.lang.Short, the mapping also applies to the primitive
type.

Yes

Appendix

C

http://sourceforge.net/projects/jboss

A P P E N D I X C : D A T A S O U R C E C U S T O M I Z A T I O N P A G E 6 6

Page 66

Tag Name Description Required

jdbc-type This is the JDBC type that is used when setting parameters in
a JDBC PreparedStatement or loading data from a JDBC
ResultSet. The valid types are defined in java.sql.Types.

Yes

sql-type This is the SQL type that is used in create table statements.
Valid sql-types are only limited by your database vendor.

Yes

Function Mapping
EJB-QL and JBossQL contain eight functions: ABS, CONCAT, LENGTH, LCASE, LOCATE,
SQRT, SUBSTRING, and UCASE. By default, these functions are mapped to JDBC SQL
extension scalar functions. For example, CONCAT('Hot', 'Java') would map to {fn concat('Hot',
'Java')}. Several of the major database vendors do not support this function style in a pathetic
effort to lock users into their database. The mapping for these functions can be overridden by
adding function-mapping elements to the type-mapping element. The following is an example of
the concat function mapping for Oracle 9i.

<jbosscmp-jdbc>
 <type-mapping>
 <name>Oracle9i</name>
 <function-mapping>
 <function-name>concat</function-name>
 <function-sql>(?1 || ?2)</function-sql>
 </function-mapping>
 </type-mapping>
</jbosscmp-jdbc>

Listing C-2, The jbosscmp-jdbc.xml Function Mapping Declaration

Page 67

D. Revision History

This appendix lists changes to this document and changes to JBossCMP.

Beta 1
Chapter 2 Entities
Changed type-mapping element in entity and defaults to datasource-mapping. This change was
required to enable DTD validation.

Moved description of read-ahead to Chapter 6

Removed the debug element. Logging is now completely controlled by log4j.

Clarified interpretation of read-time-out element.

Changed select-for-update element to row-locking. Not all database vendors support the
SELECT FOR UPDATE syntax, but most support some form of row locking.

Chapter 3 CMP-Fields
Moved description and specification of eager/lazy loading to Chapter 6.

Support for not-null columns has been added.

Chapter 4 Container Managed Relationships
Completely changed the mapping of relationships in ejb-jar.xml.

� Moved the ejb-relationship-role elements out of the foreign-key-mapping and
relation-table-mapping elements.

� Merged foreign-key-fields and table-key-fields into a common key-fields element. Keys
are now always defined in terms of the current entity. This changes nothing for relation-
table-mapped relationships, but for foreign-key-mapped relationships, the key-field
mapping is exactly backwards.

Appendix

D

A P P E N D I X D : R E V I S I O N H I S T O R Y P A G E 6 8

Page 68

Added support for read-only relationships with the introduction of the read-only and read-time-
out elements.

Added support for automatic foreign-key constraint generation with the addition of the
fk-constraint element to ejb-relationship-role.

Added support for all table related configuration elements to relation-table-mapping.

Chapter 6 Optimized Loading
The read-ahead code has been completely rewritten.

The specification of eager/lazy loading groups has completely changed.

� Added named load groups which are referenced in the eager-load-group, lazy-load-groups,
and read-ahead elements.

� The eager-load element has been replaced with the eager-load-group element, which only
contains the name of the group to eager load by default.

� The lazy-load-groups element no longer contains lazy-load-group elements; rather it
contains load-group-name elements.

A row-locking-template has been added to type-mapping elements to enable vendor specific
row-locking syntax.

Beta 2
Chapter 5 Queries
Completely rewrote EJB-QL compiler using JavaCC.

� Removed restriction on mySQL usage of NOT EMPTY operator by adding support for
LEFT JOIN instead of EXISTS subquery.

� Fixed the mapping of MEMBER OF and NOT EMPTY clause.

Added JBoss query language (JBossQL).

Added DynamicQL, which allows runtime compilation and execution of JBossQL.

Changed DeclaredSQL to allow finder to use DISTINCT.

Added the ability to specify the alias used for the main select table.

	Preface
	Forward
	About the Authors
	Dedication
	Acknowledgments

	Introduction to JBossCMP
	What this Book Covers
	Organization

	Setup
	Example Code
	Read-ahead

	Entities
	Entity Classes
	Entity Declaration
	Entity Mapping

	CMP-Fields
	CMP-Field Abstract Accessors
	CMP-Field Declaration
	CMP-Field Column Mapping
	Read-only Fields
	Dependent Value Classes (DVCs)

	Container Managed Relationships
	CMR-Field Abstract Accessors
	Relationship Declaration
	Relationship Mapping
	Relationship Role Mapping
	Foreign Key Mapping
	Relation-table Mapping

	Queries
	Finder and ejbSelect Declaration
	EJB-QL Declaration
	Overriding the EJB-QL to SQL Mapping
	JBossQL
	DynamicQL
	DeclaredSQL
	Parameters

	BMP Custom Finders

	Optimized Loading
	Loading Scenario
	Load Groups
	Read-ahead
	on-find
	on-load
	none

	Loading Process
	Commit Options
	Eager-loading Process
	Lazy-loading Process
	Relationships

	Transactions

	About The JBoss Group
	Defaults
	Datasource Customization
	Type Mapping
	Function Mapping

	Revision History
	Beta 1
	Chapter 2 Entities
	Chapter 3 CMP-Fields
	Chapter 4 Container Managed Relationships
	Chapter 6 Optimized Loading

	Beta 2
	Chapter 5 Queries

