
JBoss Application Server 5

2

Clustering Guide

Authors
Brian Stansberry

Galder Zamarreno
ISBN:

Publication date: Nov 2008

JBoss Application Server 5

This book is the Jboss Application Server 5 Clustering Guide.

JBoss Application Server 5: Clustering Guide: Authors
by Brian Stansberry, Galder Zamarreno, and Samson Kittoli

JBoss Application Server 5

v

1. Clustering .. 1

1. Introduction ... 1

2. Cluster Definition ... 1

3. HAPartition .. 3

4. JBoss Cache channels .. 4

4.1. Service Architectures .. 5

4.1.1. Client-side interceptor architecture 5

4.1.2. Load balancer .. 7

4.2. Load-Balancing Policies .. 8

4.2.1. Client-side interceptor architecture 9

4.2.2. External load balancer architecture 9

4.3. Farming Deployment ... 10

4.4. Distributed state replication services ... 12

2. Clustered JNDI Services .. 13

1. How it works ... 14

2. Client configuration .. 16

2.1. For clients running inside the application server 16

2.1.1. Accessing HA-JNDI Resources from EJBs and WARs

-- Environment Naming Context .. 18

2.1.2. Why do this programmatically and not just put this in a

jndi.properties file? ... 19

2.1.3. How can I tell if things are being bound into HA-JNDI that

shouldn't be? ... 19

2.2. For clients running outside the application server 19

2.3. JBoss configuration ... 21

3. Clustered Session EJBs ... 25

1. Stateless Session Bean in EJB 2.x ... 25

2. Stateful Session Bean in EJB 2.x ... 26

2.1. The EJB application configuration .. 26

2.2. Optimize state replication .. 27

2.3. The HASessionState service configuration 28

2.4. Handling Cluster Restart .. 28

2.5. JNDI Lookup Process .. 30

2.6. SingleRetryInterceptor ... 31

3. Stateless Session Bean in EJB 3.0 ... 31

4. Stateful Session Beans in EJB 3.0 .. 32

4. Clustered Entity EJBs .. 37

1. Entity Bean in EJB 2.x ... 37

2. Entity Bean in EJB 3.0 ... 38

2.1. Configure the distributed cache .. 38

2.2. Configure the entity beans for cache .. 40

2.3. Query result caching ... 43

5. HTTP Services .. 47

1. Configuring load balancing using Apache and mod_jk 48

JBoss Application Server 5

vi

2. Download the software ... 48

3. Configure Apache to load mod_jk ... 48

4. Configure worker nodes in mod_jk .. 50

5. Configuring JBoss to work with mod_jk ... 52

6. Configuring HTTP session state replication .. 53

7. Enabling session replication in your application 55

8. Using FIELD level replication .. 57

9. Monitoring session replication ... 60

10. Using Clustered Single Sign On .. 61

11. Clustered Singleton Services .. 61

11.1. HASingletonDeployer service ... 62

11.2. Mbean deployments using HASingletonController 63

11.3. HASingleton deployments using a Barrier 65

11.4. Determining the master node ... 66

6. JBoss Messaging Clustering Notes ... 69

1. Unique server peer id .. 69

2. Clustered destinations .. 69

3. Clustered durable subs .. 69

4. Clustered temporary destinations .. 69

5. Non clustered servers .. 69

6. Message ordering in the cluster .. 70

7. Idempotent operations .. 70

7.1. Clustered connection factories ... 70

7. JBossCache and JGroups Services .. 71

1. JGroups Configuration ... 71

2. Common Configuration Properties .. 74

3. Transport Protocols .. 74

3.1. UDP configuration ... 74

3.2. TCP configuration ... 76

3.3. TUNNEL configuration ... 78

4. Discovery Protocols ... 79

4.1. PING .. 79

4.2. TCPGOSSIP ... 80

4.3. TCPPING ... 81

4.4. MPING ... 81

5. Failure Detection Protocols ... 82

5.1. FD ... 82

5.2. FD_SOCK .. 83

5.3. VERIFY_SUSPECT ... 83

5.4. FD versus FD_SOCK .. 84

6. Reliable Delivery Protocols ... 85

6.1. UNICAST ... 85

6.2. NAKACK .. 86

7. Other Configuration Options ... 86

vii

7.1. Group Membership ... 86

7.2. Flow Control ... 87

7.2.1. Why is FC needed on top of TCP ? TCP has its own flow

control ! ... 88

7.2.2. So do I always need FC? ... 89

7.3. Fragmentation ... 89

7.4. State Transfer ... 90

7.5. Distributed Garbage Collection ... 90

7.6. Merging .. 91

7.7. Binding JGroups Channels to a particular interface 92

7.8. Isolating JGroups Channels ... 93

7.9. Changing the Group Name .. 94

7.10. Changing the multicast address and port 94

7.11. JGroups Troubleshooting ... 95

7.12. Causes of missing heartbeats in FD ... 96

viii

Chapter 1.

1

Clustering
High Availability Enterprise Services via JBoss

Clusters

1. Introduction

Clustering allows us to run an application on several parallel servers (a.k.a cluster

nodes) while providing a single view to application clients. Load is distributed across

different servers, and even if one or more of the servers fails, the application is still

accessible via the surviving cluster nodes. Clustering is crucial for scalable enterprise

applications, as you can improve performance by simply adding more nodes to the

cluster. Clustering is crucial for highly available enterprise applications, as it is the

clustering infrastructure that supports the redundancy needed for high availability.

The JBoss Application Server (AS) comes with clustering support out of the box.

The simplest way to start a JBoss server cluster is to start several JBoss instances

on the same local network, using the run -c all command for each instance.

Those server instances, all started in the all configuration, detect each other and

automatically form a cluster.

In the first section of this chapter, we discuss basic concepts behind JBoss's

clustering services. It is important that you understand these concepts before reading

the rest of the chapter. Clustering configurations for specific types of applications are

covered after this section.

2. Cluster Definition

A cluster is a set of nodes that communicate with each other and work toward a

common goal. In a JBoss Application Server cluster (also known as a “partition”),

a node is an JBoss Application Server instance. Communication between the

nodes is handled by the JGroups group communication library, with a JGroups

Channel providing the core functionality of tracking who is in the cluster and reliably

exchanging messages between the cluster members. JGroups channels with the

same configuration and name have the ability to dynamically discover each other

and form a group. This is why simply executing “run -c all” on two AS instances on

the same network is enough for them to form a cluster – each AS starts a Channel

(actually, several) with the same default configuration, so they dynamically discover

each other and form a cluster. Nodes can be dynamically added to or removed from

clusters at any time, simply by starting or stopping a Channel with a configuration

and name that matches the other cluster members. In summary, a JBoss cluster is

a set of AS server instances each of which is running an identically configured and

named JGroups Channel.

Chapter 1. Clustering

2

On the same AS instance, different services can create their own Channel. In a

default 5.0.x AS, four different services create channels – the web session replication

service, the EJB3 SFSB replication service, the EJB3 entity caching service,

and a core general purpose clustering service known as HAPartition. In order to

differentiate these channels, each must have a unique name, and its configuration

must match its peers yet differ from the other channels.

So, if you go to two AS 5.0.x instances and execute run -c all, the channels will

discover each other and you'll have a conceptual cluster. It's easy to think of this as

a two node cluster, but it's important to understand that you really have 4 channels,

and hence 4 two node clusters.

On the same network, even for the same service, we may have different clusters.

Figure 1.1, “Clusters and server nodes” shows an example network of JBoss server

instances divided into three clusters, with the third cluster only having one node. This

sort of topology can be set up simply by configuring the AS instances such that within

a set of nodes meant to form a cluster the Channel configurations and names match

while they differ from any other channels on the same network.

Figure 1.1. Clusters and server nodes

The section on “JGroups Configuration” and on “Isolating JGroups Channels”

covers in detail how to configure Channels such that desired peers find each other

and unwanted peers do not. As mentioned above, by default JBoss AS uses four

HAPartition

3

separate JGroups Channels. These can be divided into two broad categories: the

Channel used by the general purpose HAPartition service, and three Channels

created by JBoss Cache for special purpose caching and cluster wide state

replication.

3. HAPartition

HAPartition is a general purpose service used for a variety of tasks in AS clustering.

At its core, it is an abstraction built on top of a JGroups Channel that provides

support for making/receiving RPC invocations on/from one or more cluster members.

HAPartition also supports a distributed registry of which clustering services are

running on which cluster members. It provides notifications to interested listeners

when the cluster membership changes or the clustered service registry changes.

HAPartition forms the core of many of the clustering services we'll be discussing

in the rest of this guide, including smart client-side clustered proxies, EJB 2 SFSB

replication and entity cache management, farming, HA-JNDI and HA singletons.

The following example shows the HAPartition MBean definition packaged with

the standard JBoss AS distribution. So, if you simply start JBoss servers with their

default clustering settings on a local network, you would get a default cluster named

DefaultPartition that includes all server instances as its nodes.

<mbean code="org.jboss.ha.framework.server.ClusterPartition"

 name="jboss:service=DefaultPartition">

 <! -- Name of the partition being built -->

 <attribute name="PartitionName">

 ${jboss.partition.name:DefaultPartition}

 </attribute>

 <! -- The address used to determine the node name -->

 <attribute name="NodeAddress">${jboss.bind.address}</attribute>

 <! -- Determine if deadlock detection is enabled -->

 <attribute name="DeadlockDetection">False</attribute>

 <! -- Max time (in ms) to wait for state transfer to complete.

 Increase for large states -->

 <attribute name="StateTransferTimeout">30000</attribute>

 <! -- The JGroups protocol configuration -->

 <attribute name="PartitionConfig">

 </attribute>

</mbean>

Chapter 1. Clustering

4

Here, we omitted the detailed JGroups protocol configuration for this channel.

JGroups handles the underlying peer-to-peer communication between nodes, and

its configuration is discussed in Section 1, “JGroups Configuration”. The following list

shows the available configuration attributes in the HAPartition MBean.

• PartitionName is an optional attribute to specify the name of the cluster. Its default

value is DefaultPartition. Use the -g (a.k.a. --partition) command line switch

to set this value at JBoss startup.

• NodeAddress is an optional attribute used to help generate a unique name for this

node.

• DeadlockDetection is an optional boolean attribute that tells JGroups to run

message deadlock detection algorithms with every request. Its default value is

false.

• StateTransferTimeout is an optional attribute to specify the timeout for state

replication across the cluster (in milliseconds). State replication refers to the

process of obtaining initial application state from other already-running cluster

members at service startup. Its default value is 30000.

• PartitionConfig is an element to specify JGroup configuration options for this

cluster (see Section 1, “JGroups Configuration”).

In order for nodes to form a cluster, they must have the exact same PartitionName

and the ParitionConfig elements. Changes in either element on some but not all

nodes would cause the cluster to split.

You can view the current cluster information by pointing your

browser to the JMX console of any JBoss instance in the cluster (i.e.,

http://hostname:8080/jmx-console/) and then clicking on the

jboss:service=DefaultPartition MBean (change the MBean name to reflect

your partitionr name if you use the -g startup switch). A list of IP addresses for the

current cluster members is shown in the CurrentView field.

Note

While it is technically possible to put a JBoss server instance into

multiple HAPartitions at the same time, this practice is generally not

recommended, as it increases management complexity.

4. JBoss Cache channels

JBoss Cache is a fully featured distributed cache framework that can be used in any

application server environment or standalone. JBoss AS integrates JBoss Cache

Service Architectures

5

to provide cache services for HTTP sessions, EJB 3.0 session beans, and EJB 3.0

entity beans. Each of these cache services is defined in a separate Mbean, and

each cache creates its own JGroups Channel. We will cover those MBeans when we

discuss specific services in the next several sections.

4.1. Service Architectures

The clustering topography defined by the HAPartition MBean on each node is of

great importance to system administrators. But for most application developers, you

are probably more concerned about the cluster architecture from a client application's

point of view. Two basic clustering architectures are used with JBoss AS: client-side

interceptors (a.k.a smart proxies or stubs) and external load balancers. Which

architecture your application will use will depend on what type of client you have.

4.1.1. Client-side interceptor architecture

Most remote services provided by the JBoss application server, including JNDI,

EJB, JMS, RMI and JBoss Remoting, require the client to obtain (e.g., to look up

and download) a stub (or proxy) object. The stub object is generated by the server

and it implements the business interface of the service. The client then makes

local method calls against the stub object. The stub automatically routes the call

across the network and where it is invoked against service objects managed in

the server. In a clustering environment, the server-generated stub object includes

an interceptor that understands how to route calls to multiple nodes in the cluster.

The stub object figures out how to find the appropriate server node, marshal call

parameters, un-marshall call results, and return the result to the caller client.

The stub interceptors maintain up-to-date knowledge about the cluster. For instance,

they know the IP addresses of all available server nodes, the algorithm to distribute

load across nodes (see next section), and how to failover the request if the target

node not available. As part of handling each service request, if the cluster topology

has changed the server node updates the stub interceptor with the latest changes

in the cluster. For instance, if a node drops out of the cluster, each of client stub

interceptor is updated with the new configuration the next time it connects to any

active node in the cluster. All the manipulations done by the service stub are

transparent to the client application. The client-side interceptor clustering architecture

is illustrated in Figure 1.2, “The client-side interceptor (proxy) architecture for

clustering”.

Chapter 1. Clustering

6

Figure 1.2. The client-side interceptor (proxy) architecture for

clustering

Note

Section 1, “Stateless Session Bean in EJB 2.x” describes how to

enable the client proxy to handle the entire cluster restart.

Service Architectures

7

4.1.2. Load balancer

Other JBoss services, in particular the HTTP-based services, do not require the

client to download anything. The client (e.g., a web browser) sends in requests

and receives responses directly over the wire according to certain communication

protocols (e.g., the HTTP protocol). In this case, an external load balancer is required

to process all requests and dispatch them to server nodes in the cluster. The client

only needs to know about how to contact the load balancer; it has no knowledge of

the JBoss AS instances behind the load balancer. The load balancer is logically part

of the cluster, but we refer to it as “external” because it is not running in the same

process as either the client or any of the JBoss AS instances. It can be implemented

either in software or hardware. There are many vendors of hardware load balancers;

the mod_jk Apache module is an excellent example of a software load balancer. An

external load balancer implements its own mechanism for understanding the cluster

configuration and provides its own load balancing and failover policies. The external

load balancer clustering architecture is illustrated in Figure 1.3, “The external load

balancer architecture for clustering”.

Chapter 1. Clustering

8

Figure 1.3. The external load balancer architecture for clustering

A potential problem with an external load balancer architecture is that the load

balancer itself may be a single point of failure. It needs to be monitored closely to

ensure high availability of the entire cluster's services.

4.2. Load-Balancing Policies

Both the JBoss client-side interceptor (stub) and load balancer use load balancing

policies to determine which server node to which node a new request should be sent.

In this section, let's go over the load balancing policies available in JBoss AS.

Load-Balancing Policies

9

4.2.1. Client-side interceptor architecture

In JBoss 5.0.0, the following load balancing options are available when the

client-side interceptor architecture is used. The client-side stub maintains a list of all

nodes providing the target service; the job of the load balance policy is to pick a node

from this list for each request.

• Round-Robin (org.jboss.ha.framework.interfaces.RoundRobin): each call is

dispatched to a new node, proceeding sequentially through the list of nodes. The

first target node is randomly selected from the list.

• Random-Robin (org.jboss.ha.framework.interfaces.RandomRobin): for each

call the target node is randomly selected from the list.

• First Available (org.jboss.ha.framework.interfaces.FirstAvailable): one

of the available target nodes is elected as the main target and is thereafter used

for every call; this elected member is randomly chosen from the list of members

in the cluster. When the list of target nodes changes (because a node starts or

dies), the policy will choose a new target node unless the currently elected node

is still available. Each client-side stub elects its own target node independently of

the other stubs, so if a particular client downloads two stubs for the same target

service (e.g., an EJB), each stub will independently pick its target. This is an

example of a policy that provides “session affinity” or “sticky sessions”, since the

target node does not change once established.

• First Available Identical All Proxies

(org.jboss.ha.framework.interfaces.FirstAvailableIdenticalAllProxies):

has the same behaviour as the "First Available" policy but the elected target node

is shared by all stubs in the same client-side VM that are associated with the same

target service. So if a particular client downloads two stubs for the same target

service (e.g. an EJB), each stub will use the same target.

Each of the above is an implementation of the

org.jboss.ha.framework.interfaces.LoadBalancePolicy interface; users are free to

write their own implementation of this simple interface if they need some special

behavior. In later sections we'll see how to configure the load balance policies used

by different services.

4.2.2. External load balancer architecture

As noted above, an external load balancer provides its own load balancing

capabilities. What capabilities are supported depends on the provider of the load

balancer. The only JBoss requirement is that the load balancer support “session

affinitiy” (a.k.a. “sticky sessions”). With session affinitiy enabled, once the load

balancer routes a request from a client to node A and the server initiates a session,

Chapter 1. Clustering

10

all future requests associated with that session must be routed to node A, so long as

node A is available.

4.3. Farming Deployment

The easiest way to deploy an application into the cluster is to use the farming

service. That is to hot-deploy the application archive file (e.g., the EAR, WAR or SAR

file) in the all/farm/ directory of any of the cluster members and the application

will be automatically duplicated across all nodes in the same cluster. If node joins

the cluster later, it will pull in all farm deployed applications in the cluster and deploy

them locally at start-up time. If you delete the application from one of the running

cluster server node's farm/ folder, the application will be undeployed locally and then

removed from all other cluster server nodes farm folder (triggers undeployment.) You

should manually delete the application from the farm folder of any server node not

currently connected to the cluster.

Note

Currently, due to an implementation weakness, the farm deployment

service only works for 1) archives located in the farm/ directory of

the first node to join the cluster or 2) hot-deployed archives. If you

first put a new application in the farm/ directory and then start the

server to have it join an already running cluster, the application will not

be pushed across the cluster or deployed. This is because the farm

service does not know whether the application really represents a new

deployment or represents an old deployment that was removed from

the rest of the cluster while the newly starting node was off-line. We

are working to resolve this issue.

Note

You can only put zipped archive files, not exploded directories, in the

farm directory. If exploded directories are placed in farm the directory

contents will be replicated around the cluster piecemeal, and it is very

likely that remote nodes will begin trying to deploy things before all the

pieces have arrived, leading to deployment failure.

Note

Farmed deployment is not atomic. A problem deploying, undeploying

or redeploying an application on one node in the cluster will not

prevent the deployment, undeployment or redeployment being done

Farming Deployment

11

on the other nodes. There is no rollback capability. Deployment is also

not staggered; it is quite likely, for example, that a redeployment will

happen on all nodes in the cluster simultaneously, briefly leaving no

nodes in the cluster providing service.

Farming is enabled by default in the all configuration in JBoss AS distributions, so

you will not have to set it up yourself. The farm-service.xml configuration file is

located in the deploy/deploy.last directory. If you want to enable farming in a custom

configuration, simply copy the farm-service.xml file and copy it to the JBoss deploy

directory $JBOSS_HOME/server/your_own_config/deploy/deploy.last. Make

sure that your custom configuration has clustering enabled.

After deploying farm-service.xml you are ready to rumble. The required

FarmMemberService MBean attributes for configuring a farm are listed below.

<?xml version="1.0" encoding="UTF-8"?>

<server>

 <mbean code="org.jboss.ha.framework.server.FarmMemberService"

 name="jboss:service=FarmMember,partition=DefaultPartition">

 ...

 <depends optional-attribute-name="ClusterPartition"

 proxy-type="attribute">

 jboss:service=${jboss.partition.name:DefaultPartition}

 </depends>

 <attribute name="ScanPeriod">5000</attribute>

 <attribute name="URLs">farm/</attribute>

 ...

 </mbean>

</server>

• ClusterPartition is a required attribute to inject the HAPartition service that the

farm service uses for intra-cluster communication.

• URLs points to the directory where deployer watches for files to be deployed.

This MBean will create this directory is if does not already exist. If a full URL

is not provided, it is assumed that the value is a filesytem path relative to the

configuration directory (e.g. $JBOSS_HOME/server/all/).

• ScanPeriod specifies the interval at which the folder must be scanned for

changes.. Its default value is 5000.

Chapter 1. Clustering

12

The farming service is an extension of the URLDeploymentScanner, which scans

for hot deployments in the deploy/ directory. So, you can use all the attributes

defined in the URLDeploymentScanner MBean in the FarmMemberService MBean.

In fact, the URLs and ScanPeriod attributes listed above are inherited from the

URLDeploymentScanner MBean.

4.4. Distributed state replication services

In a clustered server environment, distributed state management is a key service

the cluster must provide. For instance, in a stateful session bean application, the

session state must be synchronized among all bean instances across all nodes,

so that the client application reaches the same session state no matter which node

serves the request. In an entity bean application, the bean object sometimes needs

to be cached across the cluster to reduce the database load. Currently, the state

replication and distributed cache services in JBoss AS are provided via three ways:

the HASessionState Mbean, the DistributedState MBean and the JBoss Cache

framework.

• The HASessionState MBean is a legacy service that provides session replication

and distributed cache services for EJB 2.x stateful session beans. The MBean

is defined in the all/deploy/cluster-service.xml file. We will show its

configuration options in the EJB 2.x stateful session bean section later.

• The DistributedState Mbean is a legacy service built on the HAPartition service.

It is supported for backwards compatibility reasons, but new applications should

not use it; they should use the much more sophisticated JBoss Cache instead.

• As mentioned above JBoss Cache is used to provide cache services for HTTP

sessions, EJB 3.0 session beans and EJB 3.0 entity beans. It is the primary

distributed state management tool in JBoss AS, and is an excellent choice for

any custom caching requirements your applications may have. We will cover

JBoss Cache in more detail when we discuss specific services in the next several

sections..

Chapter 2.

13

Clustered JNDI Services
JNDI is one of the most important services provided by the application server. The

JBoss HA-JNDI (High Availability JNDI) service brings the following features to JNDI:

• Transparent failover of naming operations. If an HA-JNDI naming Context is

connected to the HA-JNDI service on a particular JBoss AS instance, and that

service fails or is shut down, the HA-JNDI client can transparently fail over to

another AS instance.

• Load balancing of naming operations. An HA-JNDI naming Context will

automatically load balance its requests across all the HA-JNDI servers in the

cluster.

• Automatic client discovery of HA-JNDI servers (using multicast).

• Unified view of JNDI trees cluster-wide. Client can connect to the HA-JNDI service

running on any node in the cluster and find objects bound in JNDI on any other

node. This is accomplished via two mechanisms:

• Cross-cluster lookups. A client can perform a lookup and the server side HA-JNDI

service has the ability to find things bound in regular JNDI on any node in the

cluster.

• A replicated cluster-wide context tree. An object bound into the HA-JNDI service

will be replicated around the cluster, and a copy of that object will be available

in-VM on each node in the cluster.

JNDI is a key component for many other interceptor-based clustering services:

those services register themselves with the JNDI so that the client can lookup their

proxies and make use of their services. HA-JNDI completes the picture by ensuring

that clients have a highly-available means to look up those proxies. However, it is

important to understand that using HA-JNDI (or not) has no effect whatsoever on the

clustering behavior of the objects that are looked up. To illustrate:

• If an EJB is not configured as clustered, looking up the EJB via HA-JNDI does not

somehow result in the addition of clustering capabilities (load balancing of EJB

calls, transparent failover, state replication) to the EJB.

• If an EJB is configured as clustered, looking up the EJB via regular JNDI instead

of HA-JNDI does not somehow result in the removal of the bean proxy's clustering

capabilities.

Chapter 2. Clustered JNDI Ser...

14

1. How it works

The JBoss client-side HA-JNDI naming Context is based on the client-side

interceptor architecture. The client obtains an HA-JNDI proxy object (via the

InitialContext object) and invokes JNDI lookup services on the remote server through

the proxy. The client specifies that it wants an HA-JNDI proxy by configuring the

naming properties used by the InitialContext object. This is covered in detail in the

“Client Configuration” section. Other than the need to ensure the appropriate naming

properties are provided to the InitialContext, the fact that the naming Context is using

HA-JNDI is completely transparent to the client.

On the server side, he the HA-JNDI service maintains a cluster-wide context tree.

The cluster wide tree is always available as long as there is one node left in the

cluster. Each node in the cluster also maintains its own local JNDI context tree.

The HA-JNDI service on that node is able to find objects bound into the local JNDI

context tree. An application can bind its objects to either tree. The design rationale

for this architecture is as follows:

• It avoids migration issues with applications that assume that their JNDI

implementation is local. This allows clustering to work out-of-the-box with just a

few tweaks of configuration files.

• In a homogeneous cluster, this configuration actually cuts down on the amount of

network traffic. A homogenous cluster is one where the same types of objects are

bound under the same names on each node.

• Designing it in this way makes the HA-JNDI service an optional service since all

underlying cluster code uses a straight new InitialContext() to lookup or create

bindings.

On the server side, a naming Context obtained via a call to new InitialContext()

will be bound to the local-only, non-cluster-wide JNDI Context (this is actually basic

JNDI). So, all EJB homes and such will not be bound to the cluster-wide JNDI

Context, but rather, each home will be bound into the local JNDI.

When a remote client does a lookup through HA-JNDI, HA-JNDI will delegate to

the local JNDI Context when it cannot find the object within the global cluster-wide

Context. The detailed lookup rule is as follows.

• If the binding is available in the cluster-wide JNDI tree, return it.

• If the binding is not in the cluster-wide tree, delegate the lookup query to the local

JNDI service and return the received answer if available.

• If not available, the HA-JNDI services asks all other nodes in the cluster if their

local JNDI service owns such a binding and returns the answer from the set it

receives.

How it works

15

• If no local JNDI service owns such a binding, a NameNotFoundException is finally

raised.

In practice, objects are rarely bound in the cluster-wide JNDI tree; rather they are

bound in the local JNDI tree. For example, when EJBs are deployed, their proxies

are always bound in local JNDI, not HA-JNDI. So, an EJB home lookup done through

HA-JNDI will always be delegated to the local JNDI instance.

Note

If different beans (even of the same type, but participating in different

clusters) use the same JNDI name, this means that each JNDI server

will have a logically different "target" bound (JNDI on node 1 will

have a binding for bean A and JNDI on node 2 will have a binding,

under the same name, for bean B). Consequently, if a client performs

a HA-JNDI query for this name, the query will be invoked on any

JNDI server of the cluster and will return the locally bound stub.

Nevertheless, it may not be the correct stub that the client is expecting

to receive! So, it is always best practice to ensure that across the

cluster different names are used for logically different bindings.

Note

You cannot currently use a non-JNP JNDI implementation (i.e.

LDAP) for your local JNDI implementation if you want to use

HA-JNDI. However, you can use JNDI federation using the

ExternalContext MBean to bind non-JBoss JNDI trees into the JBoss

JNDI namespace. Furthermore, nothing prevents you using one

centralized JNDI server for your whole cluster and scrapping HA-JNDI

and JNP.

Note

If a binding is only made available on a few nodes in the cluster (for

example because a bean is only deployed on a small subset of nodes

in the cluster), the probability that a lookup will hit a HA-JNDI server

that does not own this binding is higher and thus the lookup will need

to be forwarded to all nodes in the cluster. Consequently, the query

time will be longer than if the binding would have been available

locally. Moral of the story: as much as possible, cache the result of

your JNDI queries in your client.

Chapter 2. Clustered JNDI Ser...

16

So, an EJB home lookup through HA-JNDI, will always be delegated to the local

JNDI instance. If different beans (even of the same type, but participating in different

clusters) use the same JNDI name, it means that each JNDI server will have a

different "target" bound (JNDI on node 1 will have a binding for bean A and JNDI

on node 2 will have a binding, under the same name, for bean B). Consequently, if

a client performs a HA-JNDI query for this name, the query will be invoked on any

JNDI server of the cluster and will return the locally bound stub. Nevertheless, it may

not be the correct stub that the client is expecting to receive!

Note

You cannot currently use a non-JNP JNDI implementation (i.e.

LDAP) for your local JNDI implementation if you want to use

HA-JNDI. However, you can use JNDI federation using the

ExternalContext MBean to bind non-JBoss JNDI trees into the

JBoss JNDI namespace. Furthermore, nothing prevents you though

of using one centralized JNDI server for your whole cluster and

scrapping HA-JNDI and JNP.

Note

If a binding is only made available on a few nodes in the cluster

(for example because a bean is only deployed on a small subset of

nodes in the cluster), the probability to lookup a HA-JNDI server that

does not own this binding is higher and the lookup will need to be

forwarded to all nodes in the cluster. Consequently, the query time

will be longer than if the binding would have been available locally.

Moral of the story: as much as possible, cache the result of your JNDI

queries in your client.

2. Client configuration

2.1. For clients running inside the application server

If you want to access HA-JNDI from inside the application server, you must explicitly

get an InitialContext by passing in JNDI properties. The following code shows how to

create a naming Context bound to HA-JNDI:

Properties p = new Properties();

p.put(Context.INITIAL_CONTEXT_FACTORY,

"org.jnp.interfaces.NamingContextFactory");

p.put(Context.URL_PKG_PREFIXES, "jboss.naming:org.jnp.interfaces");

For clients running inside the application server

17

p.put(Context.PROVIDER_URL, "localhost:1100"); // HA-JNDI port.

return new InitialContext(p);

The Context.PROVIDER_URL property points to the HA-JNDI service configured in

the HANamingService MBean (see the section called “JBoss configuration”).

However, this does not work in all cases, especially when running a multihomed

cluster (several JBoss instances on one machine bound to different IPs). A safer

method is not to specify the Context.PROVIDER_URL (which does not work in all

scenarios) but the partition name property:

Properties p = new Properties();

p.put(Context.INITIAL_CONTEXT_FACTORY,

 "org.jnp.interfaces.NamingContextFactory");

p.put(Context.URL_PKG_PREFIXES, "jboss.naming:org.jnp.interfaces");

p.put("jnp.partitionName", "DefaultPartition"); // partition name.

return new InitialContext(p);

Do not attempt to simplify things by placing a jndi.properties file in your deployment

or by editing the AS's conf/jndi.properties file. Doing either will almost certainly break

things for your application and quite possibly across the application server. If you

want to externalize your client configuration, one approach is to deploy a properties

file not named jndi.properties, and then programatically create a Properties object

that loads that file's contents.

Note

Previously, HANamingServiceMBean.bindAddress served two

functions: From trunk/cluster/src/etc/hajndi-service.xml:

<!-- Bind address of bootstrap and HA-JNDI RMI

 endpoints -->

 <attribute

 name="BindAddress">${jboss.bind.address}</attribute>

The bootstrap and HA-JNDI RMI endpoints are now defined

separately:

 <!-- Bind address of bootstrap endpoint -->

 <attribute

 name="BindAddress">${jboss.bind.address}</attribute>

 <!-- Bind address of the HA-JNDI RMI endpoint -->

 <attribute

 name="RmiBindAddress">${jboss.bind.address}</

attribute>

Chapter 2. Clustered JNDI Ser...

18

They each default to the same value. Users may want to override the

RMI bind address if deployed on a multi-homed machine, and want to

use an specific network interface for HA-JNDI RMI calls. This ability

already exists in the standard NamingService.

2.1.1. Accessing HA-JNDI Resources from EJBs and WARs --

Environment Naming Context

If your HA-JNDI client is an EJB or servlet, the least intrusive way to configure the

lookup of resources is to bind the resources to the environment naming context of

the bean or webapp performing the lookup. The binding can then be configured to

use HA-JNDI instead of a local mapping. Following is an example of doing this for a

JMS connection factory and queue (the most common use case for this kind of thing.

Within the bean definition in the ejb-jar.xml or in the war's web.xml you will need to

define two resource-ref mappings, one for the connection factory and one for the

destination.

<resource-ref>

 <res-ref-name>jms/ConnectionFactory</res-ref-name>

 <res-type>javax.jms.QueueConnectionFactory</res-type>

 <res-auth>Container</res-auth>

</resource-ref>

<resource-ref>

 <res-ref-name>jms/Queue</res-ref-name>

 <res-type>javax.jms.Queue</res-type>

 <res-auth>Container</res-auth>

</resource-ref>

Using these examples the bean performing the lookup can obtain the connection

factory by looking up 'java:comp/env/jms/ConnectionFactory' and can obtain the

queue by looking up 'java:comp/env/jms/Queue'.

Within the JBoss-specific deployment descriptor (jboss.xml for EJBs, jboss-web.xml

for a WAR) these references need to mapped to a URL that makes use of HA-JNDI.

<resource-ref>

 <res-ref-name>jms/ConnectionFactory</res-ref-name>

 <jndi-name>jnp://localhost:1100/ConnectionFactory</jndi-name>

</resource-ref>

<resource-ref>

 <res-ref-name>jms/Queue</res-ref-name>

 <jndi-name>jnp://localhost:1100/queue/A</jndi-name>

For clients running outside the application

server

19

 </resource-ref>

The URL should be the URL to the HA-JNDI server running on the same node as the

bean; if the bean is available the local HA-JNDI server should also be available. The

lookup will then automatically query all of the nodes in the cluster to identify which

node has the JMS resources available.

2.1.2. Why do this programmatically and not just put this in a

jndi.properties file?

The JBoss application server's internal naming environment is controlled by the

conf/jndi.properties file, which should not be edited.

No other jndi.properties file should be deployed inside the application server because

of the possibility of its being found on the classpath when it shouldn't and thus

disrupting the internal operation of the server. For example, if an EJB deployment

included a jndi.properties configured for HA-JNDI, when the server binds the EJB

proxies into JNDI it will likely bind them into the replicated HA-JNDI tree and not into

the local JNDI tree where they belong.

2.1.3. How can I tell if things are being bound into HA-JNDI that

shouldn't be?

Go into the the jmx-console and execute the list operation on the

jboss:service=JNDIView mbean. Towards the bottom of the results, the contents

of the "HA-JNDI Namespace" are listed. Typically this will be empty; if any of

your own deployments are shown there and you didn't explicitly bind them there,

there's probably an improper jndi.properties file on the classpath. Please visit

the following link for an example: Problem with removing a Node from Cluster

[http://www.jboss.com/index.html?module=bb&op=viewtopic&t=104715]

2.2. For clients running outside the application server

The JNDI client needs to be aware of the HA-JNDI cluster. You can

pass a list of JNDI servers (i.e., the nodes in the HA-JNDI cluster) to the

java.naming.provider.url JNDI setting in the jndi.properties file. Each server

node is identified by its IP address and the JNDI port number. The server nodes are

separated by commas (see Section 2.3, “JBoss configuration” for how to configure

the servers and ports).

java.naming.provier.url=server1:1100,server2:1100,server3:1100,server4:1100

When initialising, the JNP client code will try to get in touch with each server node

from the list, one after the other, stopping as soon as one server has been reached.

It will then download the HA-JNDI stub from this node.

http://www.jboss.com/index.html?module=bb&op=viewtopic&t=104715
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=104715

Chapter 2. Clustered JNDI Ser...

20

Note

There is no load balancing behavior in the JNP client lookup process

itself. It just goes through the provider lists and uses the first available

server to obtain the stub. The HA-JNDI provider list only needs to

contain a subset of HA-JNDI nodes in the cluster.

The downloaded smart proxy contains the list of currently running nodes and the

logic to load balance naming requests and to fail-over to another node if necessary.

Furthermore, each time a JNDI invocation is made to the server, the list of targets in

the proxy interceptor is updated (only if the list has changed since the last call).

If the property string java.naming.provider.url is empty or if all servers it mentions

are not reachable, the JNP client will try to discover a HA-JNDI server through

a multicast call on the network (auto-discovery). See the section called “JBoss

configuration” on how to configure auto-discovery on the JNDI server nodes.

Through auto-discovery, the client might be able to get a valid HA-JNDI server

node without any configuration. Of course, for auto-discovery to work, the network

segment(s) between the client and the server cluster must be configured to

propagate such multicast datagrams.

Note

By default the auto-discovery feature uses multicast group address

230.0.0.4 and port1102.

In addition to the java.naming.provider.url property, you can specify a set

of other properties. The following list shows all clustering-related client side

properties you can specify when creating a new InitialContext. (All of the standard,

non-clustering-related environment properties used with regular JNDI are also

available.)

• java.naming.provider.url: Provides a list of IP addresses and port numbers for

HA-JNDI provider nodes in the cluster. The client tries those providers one by one

and uses the first one that responds.

• jnp.disableDiscovery: When set to true, this property disables the automatic

discovery feature. Default is false.

• jnp.partitionName: In an environment where multiple HA-JNDI services bound

to distinct clusters (a.k.a. partitions), are running, this property allows you to

ensure that your client only accepts automatic-discovery responses from servers

in the desired partition. If you do not use the automatic discovery feature (i.e.

jnp.disableDiscovery is true), this property is not used. By default, this property is

JBoss configuration

21

not set and the automatic discovery select the first HA-JNDI server that responds,

irregardless of the cluster partition name.

• jnp.discoveryTimeout: Determines how much time the context will wait for a

response to its automatic discovery packet. Default is 5000 ms.

• jnp.discoveryGroup: Determines which multicast group address is used

for the automatic discovery. Default is 230.0.0.4. Must match the value of the

AutoDiscoveryAddress configured on the server side HA-JNDI service.

• jnp.discoveryPort: Determines which multicast group port is used for

the automatic discovery. Default is 1102. Must match the value of the

AutoDiscoveryPort configured on the server side HA-JNDI service.

• jnp.discoveryTTL: specifies the TTL (time-to-live) for autodiscovery IP multicast

packets. This value represents the number of network hops a multicast packet can

be allowed to propagate before networking equipment should drop the packet.

Despite its name, it does not represent a unit of time.

2.3. JBoss configuration

The cluster-service.xml file in the all/deploy directory includes the following

MBean to enable HA-JNDI services.

<mbean code="org.jboss.ha.jndi.HANamingService"

name="jboss:service=HAJNDI">

<depends optional-attribute-name="ClusterPartition"

proxy-

type="attribute">jboss:service=${jboss.partition.name:DefaultPartition}</

depends>

<mbean>

You can see that this MBean depends on the DefaultPartition MBean defined

above it (discussed earlier in this chapter). In other configurations, you can put that

element in the jboss-service.xml file or any other JBoss configuration files in

the /deploy directory to enable HA-JNDI services. The available attributes for this

MBean are listed below.

• Cluster Partition is a required attribute to inject the HAPartition service that

HA-JNDI uses for intra-cluster communication.

• BindAddress is an optional attribute to specify the address to which the HA-JNDI

server will bind waiting for JNP clients. Only useful for multi-homed computers.

The default value is the value of the jboss.bind.address system property, or the

host's default addresss if that property is not set. The jboss.bind.address system

property is set if the -b command line switch is used when JBoss is started.

Chapter 2. Clustered JNDI Ser...

22

• Port is an optional attribute to specify the port to which the HA-JNDI server will

bind waiting for JNP clients. The default value is 1100.

• Backlog is an optional attribute to specify the backlog value used for the TCP

server socket waiting for JNP clients. The default value is 50.

• RmiPort determines which port the server should use to communicate with the

downloaded stub. This attribute is optional. The default value is 1101. If no value is

set, the server automatically assigns a RMI port.

• DiscoveryDisabled is a boolean flag that disables configuration of the auto

discovery multicast listener.

• AutoDiscoveryAddress is an optional attribute to specify the multicast address

to listen to for JNDI automatic discovery. The default value is the value of the

jboss.partition.udpGroup system property, or 230.0.0.4 if that is not set. The

jboss.partition.udpGroup system property is set if the -u command line switch is

used when JBoss is started.

• AutoDiscoveryGroup is an optional attribute to specify the multicast group to

listen to for JNDI automatic discovery.. The default value is 1102.

• AutoDiscoveryBindAddress sets the interface on which HA-JNDI should

listen for auto-discovery request packets. If this attribute is not specified and a

BindAddress is specified, the BindAddress will be used..

• AutoDiscoveryTTL specifies the TTL (time-to-live) for autodiscovery IP multicast

packets. This value represents the number of network hops a multicast packet can

be allowed to propagate before networking equipment should drop the packet.

Despite its name, it does not represent a unit of time.

• LoadBalancePolicy specifies the class name of the

LoadBalancePolicyimplementation that should be included in the client proxy. See

the earlier section on “Load-Balancing Policies” for details.

• LookupPool specifies the thread pool service used to control the bootstrap and

auto discovery lookups.

The full default configuration of the HANamingService MBean is as follows.

 <mbean code="org.jboss.ha.jndi.HANamingService"

 name="jboss:service=HAJNDI">

 <!-- We now inject the partition into the HAJNDI service instead

 of requiring that the partition name be passed -->

 <depends optional-attribute-name="ClusterPartition"

 proxy-

JBoss configuration

23

type="attribute">jboss:service=${jboss.partition.name:DefaultPartition}</

depends>

 <!-- Bind address of bootstrap and HA-JNDI RMI endpoints -->

 <attribute name="BindAddress">${jboss.bind.address}</attribute>

 <!-- Port on which the HA-JNDI stub is made available -->

 <attribute name="Port">1100</attribute>

 <!-- RmiPort to be used by the HA-JNDI service once bound. 0 =>

 auto. -->

 <attribute name="RmiPort">1101</attribute>

 <!-- Accept backlog of the bootstrap socket -->

 <attribute name="Backlog">50</attribute>

 <!-- The thread pool service used to control the bootstrap and

 auto discovery lookups -->

 <depends optional-attribute-name="LookupPool"

 proxy-type="attribute">jboss.system:service=ThreadPool</depends>

 <!-- A flag to disable the auto discovery via multicast -->

 <attribute name="DiscoveryDisabled">false</attribute>

 <!-- Set the auto-discovery bootstrap multicast bind address. If

 not

 specified and a BindAddress is specified, the BindAddress will be

 used. -->

 <attribute

 name="AutoDiscoveryBindAddress">${jboss.bind.address}</attribute>

 <!-- Multicast Address and group port used for auto-discovery -->

 <attribute

 name="AutoDiscoveryAddress">${jboss.partition.udpGroup:230.0.0.4}</

attribute>

 <attribute name="AutoDiscoveryGroup">1102</attribute>

 <!-- The TTL (time-to-live) for autodiscovery IP multicast

 packets -->

 <attribute name="AutoDiscoveryTTL">16</attribute>

 <!-- The load balancing policy for HA-JNDI -->

 <attribute

 name="LoadBalancePolicy">org.jboss.ha.framework.interfaces.RoundRobin</

attribute>

 <!-- Client socket factory to be used for client-server

 RMI invocations during JNDI queries

 <attribute name="ClientSocketFactory">custom</attribute>

 -->

 <!-- Server socket factory to be used for client-server

 RMI invocations during JNDI queries

 <attribute name="ServerSocketFactory">custom</attribute>

 -->

 </mbean>

It is possible to start several HA-JNDI services that use different clusters. This can

be used, for example, if a node is part of many clusters. In this case, make sure that

Chapter 2. Clustered JNDI Ser...

24

you set a different port or IP address for eachservices. For instance, if you wanted to

hook up HA-JNDI to the example cluster you set up and change the binding port, the

Mbean descriptor would look as follows.

<mbean code="org.jboss.ha.jndi.HANamingService"

 name="jboss:service=HAJNDI">

 <depends optional-attribute-name="ClusterPartition"

 proxy-type="attribute">jboss:service=MySpecialPartition</depends>

 <attribute name="Port">56789</attribute>

</mbean>

Chapter 3.

25

Clustered Session EJBs
Session EJBs provide remote invocation services. They are clustered based on the

client-side interceptor architecture. The client application for a clustered session

bean is exactly the same as the client for the non-clustered version of the session

bean, except for a minor change to the java.naming.provier.url system property

to enable HA-JNDI lookup (see previous section). No code change or re-compilation

is needed on the client side. Now, let's check out how to configure clustered session

beans in EJB 2.x and EJB 3.0 server applications respectively.

1. Stateless Session Bean in EJB 2.x

Clustering stateless session beans is most probably the easiest case: as no state is

involved, calls can be load-balanced on any participating node (i.e. any node that has

this specific bean deployed) of the cluster. To make a bean clustered, you need to

modify its jboss.xml descriptor to contain a <clustered> tag.

<jboss>

 <enterprise-beans>

 <session>

 <ejb-name>nextgen.StatelessSession</ejb-name>

 <jndi-name>nextgen.StatelessSession</jndi-name>

 <clustered>True</clustered>

 <cluster-config>

 <partition-name>DefaultPartition</partition-name>

 <home-load-balance-policy>

 org.jboss.ha.framework.interfaces.RoundRobin

 </home-load-balance-policy>

 <bean-load-balance-policy>

 org.jboss.ha.framework.interfaces.RoundRobin

 </bean-load-balance-policy>

 </cluster-config>

 </session>

 </enterprise-beans>

</jboss>

Note

The <clustered>True</clustered> element is really just an

alias for the <configuration-name>Clustered Stateless

Chapter 3. Clustered Session EJBs

26

SessionBean</configuration-name> element in the

conf/standard-jboss.xml file.

In the bean configuration, only the <clustered> element is mandatory. It indicates

that the bean needs to support clustering features. The <cluster-config> element

is optional and the default values of its attributes are indicated in the sample

configuration above. Below is a description of the attributes in the <cluster-config>

element..

• partition-name specifies the name of the cluster the bean participates in. The

default value is DefaultPartition. The default partition name can also be set

system-wide using the jboss.partition.name system property.

• home-load-balance-policy indicates the class to be used by the home stub

to balance calls made on the nodes of the cluster. By default, the proxy will

load-balance calls in a RoundRobin fashion. You can also implement your own

load-balance policy class or use the class FirstAvailable that persists to use the

first node available that it meets until it fails.

• bean-load-balance-policy Indicates the class to be used by the bean stub

to balance calls made on the nodes of the cluster. Comments made for the

home-load-balance-policy attribute also apply.

2. Stateful Session Bean in EJB 2.x

Clustering stateful session beans is more complex than clustering their stateless

counterparts since JBoss needs to manage the state information. The state of all

stateful session beans are replicated and synchronized across the cluster each time

the state of a bean changes. The JBoss AS uses the HASessionState MBean to

manage distributed session states for clustered EJB 2.x stateful session beans. In

this section, we cover both the session bean configuration and the HASessionState

MBean configuration.

2.1. The EJB application configuration

In the EJB application, you need to modify the jboss.xml descriptor file for each

stateful session bean and add the <clustered> tag.

<jboss>

 <enterprise-beans>

 <session>

 <ejb-name>nextgen.StatefulSession</ejb-name>

 <jndi-name>nextgen.StatefulSession</jndi-name>

 <clustered>True</clustered>

Optimize state replication

27

 <cluster-config>

 <partition-name>DefaultPartition</partition-name>

 <home-load-balance-policy>

 org.jboss.ha.framework.interfaces.RoundRobin

 </home-load-balance-policy>

 <bean-load-balance-policy>

 org.jboss.ha.framework.interfaces.FirstAvailable

 </bean-load-balance-policy>

 <session-state-manager-jndi-name>

 /HASessionState/Default

 </session-state-manager-jndi-name>

 </cluster-config>

 </session>

 </enterprise-beans>

</jboss>

In the bean configuration, only the <clustered> tag is mandatory to indicate that the

bean works in a cluster. The <cluster-config> element is optional and its default

attribute values are indicated in the sample configuration above.

The <session-state-manager-jndi-name> tag is used to give the JNDI name of

the HASessionState service to be used by this bean.

The description of the remaining tags is identical to the one for stateless session

bean. Actions on the clustered stateful session bean's home interface are by default

load-balanced, round-robin. Once the bean's remote stub is available to the client,

calls will not be load-balanced round-robin any more and will stay "sticky" to the first

node in the list.

2.2. Optimize state replication

As the replication process is a costly operation, you can optimise this behaviour by

optionally implementing in your bean class a method with the following signature:

public boolean isModified ();

Before replicating your bean, the container will detect if your bean implements this

method. If your bean does, the container calls the isModified() method and it only

replicates the bean when the method returns true. If the bean has not been modified

(or not enough to require replication, depending on your own preferences), you can

return false and the replication would not occur. This feature is available on JBoss

AS 3.0.1+ only.

Chapter 3. Clustered Session EJBs

28

2.3. The HASessionState service configuration

The HASessionState service MBean is defined in the

all/deploy/cluster-service.xml file.

<mbean

 code="org.jboss.ha.hasessionstate.server.HASessionStateService"

 name="jboss:service=HASessionState">

 <depends>jboss:service=Naming</depends>

 <!-- We now inject the partition into the HAJNDI service instead

 of requiring that the partition name be passed -->

 <depends optional-attribute-name="ClusterPartition"

 proxy-type="attribute">

 jboss:service=${jboss.partition.name:DefaultPartition}

 </depends>

 <!-- JNDI name under which the service is bound -->

 <attribute name="JndiName">/HASessionState/Default</attribute>

 <!-- Max delay before cleaning unreclaimed state.

Defaults to 30*60*1000 => 30 minutes -->

<attribute name="BeanCleaningDelay">0</attribute>

</mbean>

The configuration attributes in the HASessionState MBean are listed below.

• ClusterPartition is a required attribute to inject the HAPartition service that

HA-JNDI uses for intra-cluster communication.

• JndiName is an optional attribute to specify the JNDI name under which this

HASessionState service is bound. The default value is /HAPartition/Default.

• BeanCleaningDelay is an optional attribute to specify the number of miliseconds

after which the HASessionState service can clean a state that has not been

modified. If a node, owning a bean, crashes, its brother node will take ownership

of this bean. Nevertheless, the container cache of the brother node will not know

about it (because it has never seen it before) and will never delete according to the

cleaning settings of the bean. That is why the HASessionState service needs to

do this cleanup sometimes. The default value is 30*60*1000 milliseconds (i.e., 30

minutes).

2.4. Handling Cluster Restart

We have covered the HA smart client architecture in the section called “Client-side

interceptor architecture”. The default HA smart proxy client can only failover as long

Handling Cluster Restart

29

as one node in the cluster exists. If there is a complete cluster shutdown, the proxy

becomes orphaned and loses knowledge of the available nodes in the cluster. There

is no way for the proxy to recover from this. The proxy needs to look up a fresh set of

targets out of JNDI/HAJNDI when the nodes are restarted.

The 3.2.7+/4.0.2+ releases contain a RetryInterceptor that can be added to the proxy

client side interceptor stack to allow for a transparent recovery from such a restart

failure. To enable it for an EJB, setup an invoker-proxy-binding that includes the

RetryInterceptor. Below is an example jboss.xml configuration.

 <jboss>

 <session>

 <ejb-name>nextgen_RetryInterceptorStatelessSession</ejb-name>

 <invoker-bindings>

 <invoker>

 <invoker-proxy-binding-name>

 clustered-retry-stateless-rmi-invoker

 </invoker-proxy-binding-name>

 <jndi-name>

 nextgen_RetryInterceptorStatelessSession

 </jndi-name>

 </invoker>

 </invoker-bindings>

 <clustered>true</clustered>

 </session>

 <invoker-proxy-binding>

 <name>clustered-retry-stateless-rmi-invoker</name>

 <invoker-mbean>jboss:service=invoker,type=jrmpha</invoker-mbean>

 <proxy-factory>org.jboss.proxy.ejb.ProxyFactoryHA</proxy-factory>

 <proxy-factory-config>

 <client-interceptors>

 <home>

 <interceptor>

 org.jboss.proxy.ejb.HomeInterceptor

 </interceptor>

 <interceptor>

 org.jboss.proxy.SecurityInterceptor

 </interceptor>

 <interceptor>

 org.jboss.proxy.TransactionInterceptor

 </interceptor>

 <interceptor>

 org.jboss.proxy.ejb.RetryInterceptor

 </interceptor>

 <interceptor>

 org.jboss.invocation.InvokerInterceptor

 </interceptor>

Chapter 3. Clustered Session EJBs

30

 </home>

 <bean>

 <interceptor>

 org.jboss.proxy.ejb.StatelessSessionInterceptor

 </interceptor>

 <interceptor>

 org.jboss.proxy.SecurityInterceptor

 </interceptor>

 <interceptor>

 org.jboss.proxy.TransactionInterceptor

 </interceptor>

 <interceptor>

 org.jboss.proxy.ejb.RetryInterceptor

 </interceptor>

 <interceptor>

 org.jboss.invocation.InvokerInterceptor

 </interceptor>

 </bean>

 </client-interceptors>

 </proxy-factory-config>

 </invoker-proxy-binding>

2.5. JNDI Lookup Process

In order to recover the HA proxy, the RetryInterceptor does a lookup in JNDI. This

means that internally it creates a new InitialContext and does a JNDI lookup. But, for

that lookup to succeed, the InitialContext needs to be configured properly to find your

naming server. The RetryInterceptor will go through the following steps in attempting

to determine the proper naming environment properties:

1. It will check its own static retryEnv field. This field can be set by client code via a

call to RetryInterceptor.setRetryEnv(Properties). This approach to configuration

has two downsides: first, it reduces portability by introducing JBoss-specific

calls to the client code; and second, since a static field is used only a single

configuration per JVM is possible.

2. If the retryEnv field is null, it will check for any environment properties bound to

a ThreadLocal by the org.jboss.naming.NamingContextFactory class. To use

this class as your naming context factory, in your jndi.properties set property

java.naming.factory.initial=org.jboss.naming.NamingContextFactory. The

advantage of this approach is use of org.jboss.naming.NamingContextFactory is

simply a configuration option in your jndi.properties file, and thus your java code

is unaffected. The downside is the naming properties are stored in a ThreadLocal

and thus are only visible to the thread that originally created an InitialContext.

3. If neither of the above approaches yield a set of naming environment properties,

a default InitialContext is used. If the attempt to contact a naming server is

SingleRetryInterceptor

31

unsuccessful, by default the InitialContext will attempt to fall back on multicast

discovery to find an HA-JNDI naming server. See the section on “ClusteredJNDI

Services” for more on multicast discovery of HA-JNDI.

2.6. SingleRetryInterceptor

The RetryInterceptor is useful in many use cases, but a disadvantage it has is that

it will continue attempting to re-lookup the HA proxy in JNDI until it succeeds. If for

some reason it cannot succeed, this process could go on forever, and thus the EJB

call that triggered the RetryInterceptor will never return. For many client applications,

this possibility is unacceptable. As a result, JBoss doesn't make the RetryInterceptor

part of its default client interceptor stacks for clustered EJBs.

In the 4.0.4.RC1 release, a new flavor of retry interceptor was introduced,

the org.jboss.proxy.ejb.SingleRetryInterceptor. This version works like the

RetryInterceptor, but only makes a single attempt to re-lookup the HA proxy in JNDI.

If this attempt fails, the EJB call will fail just as if no retry interceptor was used.

Beginning with 4.0.4.CR2, the SingleRetryInterceptor is part of the default client

interceptor stacks for clustered EJBs.

The downside of the SingleRetryInterceptor is that if the retry attempt is made during

a portion of a cluster restart where no servers are available, the retry will fail and no

further attempts will be made.

3. Stateless Session Bean in EJB 3.0

To cluster a stateless session bean in EJB 3.0, all you need to do is to annotate

the bean class withe the @Clustered annotation. You can pass in the load balance

policy and cluster partition as parameters to the annotation. The default load balance

policy is org.jboss.ha.framework.interfaces.RandomRobin and the default

cluster is DefaultPartition. Below is the definition of the @Cluster annotation.

public @interface Clustered {

 Class loadBalancePolicy() default LoadBalancePolicy.class;

 String partition() default

 "${jboss.partition.name:DefaultPartition}";

}

Here is an example of a clustered EJB 3.0 stateless session bean implementation.

@Stateless

@Clustered

public class MyBean implements MySessionInt {

Chapter 3. Clustered Session EJBs

32

 public void test() {

 // Do something cool

 }

}

The @Clustered annotation can also be omitted and the clustering configuration

applied in jboss.xml:

<jboss>

 <enterprise-beans>

 <session>

 <ejb-name>NonAnnotationStateful</ejb-name>

 <clustered>true</clustered>

 <cluster-config>

 <partition-name>FooPartition</partition-name>

 <load-balance-policy>

 org.jboss.ha.framework.interfaces.RandomRobin

 </load-balance-policy>

 </cluster-config>

 </session>

 </enterprise-beans>

</jboss>

4. Stateful Session Beans in EJB 3.0

To cluster stateful session beans in EJB 3.0, you need to tag the

bean implementation class with the @Cluster annotation, just

as we did with the EJB 3.0 stateless session bean earlier. The

@org.jboss.ejb3.annotation.cache.tree.CacheConfig annotation can also be applied

to the bean to specify caching behavior. Below is the definition of the @CacheConfig

annotation:

public @interface CacheConfig

{

String name() default "jboss.cache:service=EJB3SFSBClusteredCache";

int maxSize() default 10000;

long idleTimeoutSeconds() default 300;

boolean replicationIsPassivation() default true;

long removalTimeoutSeconds() default 0;

}

• name specifies the object name of the JBoss Cache Mbean that should be used for

caching the bean (see below for more on this Mbean).

Stateful Session Beans in EJB 3.0

33

• maxSize specifies the maximum number of beans that can cached before the

cache should start passivating beans, using an LRU algorithm.

• idleTimeoutSeconds specifies the max period of time a bean can go unused

before the cache should passivate it (irregardless of whether maxSize beans are

cached.)

• removalTimeoutSeconds specifies the max period of time a bean can go unused

before the cache should remove it altogether.

• replicationIsPassivation specifies whether the cache should consider a

replication as being equivalent to a passivation, and invoke any @PrePassivate

and @PostActivate callbacks on the bean. By default true, since replication

involves serializing the bean, and preparing for and recovering from serialization is

a common reason for implementing the callback methods.

Here is an example of a clustered EJB 3.0 stateful session bean implementation.

@Stateful

@Clustered

@CacheConfig(maxSize=5000,removalTimeoutSeconds=18000)

public class MyBean implements MySessionInt {

 private int state = 0;

 public void increment() {

 System.out.println("counter: " + (state++));

 }

}

As with stateless beans, the @Clustered annotation can also be omitted and the

clustering configuration applied in jboss.xml; see the example above.

As with EJB 2.0 clustered SFSBs, JBoss provides a mechanism whereby a

bean implementation can expose a method the container can invoke to check

whether the bean's state is not dirty after a request and doesn't need to be

replicated. With EJB3, the mechanism is a little more formal; instead of just

exposing a method with a known signature, an EJB3 SFSB must implement the

org.jboss.ejb3.cache.Optimized interface:

public interface Optimized {

boolean isModified();

}

JBoss Cache provides the session state replication service for EJB 3.0

stateful session beans. The related MBean service is defined in the

Chapter 3. Clustered Session EJBs

34

ejb3-clustered-sfsbcache-service.xml file in the deploy directory. The contents

of the file are as follows.

<server>

 <mbean code="org.jboss..cache.TreeCache"

 name="jboss.cache:service=EJB3SFSBClusteredCache">

 <attribute name="ClusterName">

 ${jboss.partition.name:DefaultPartition}-SFSBCache

 </attribute>

 <attribute name="IsolationLevel">REPEATABLE_READ</attribute>

 <attribute name="CacheMode">REPL_ASYNC</attribute>

 <!-- We want to activate/inactivate regions as beans are

 deployed -->

 <attribute name="UseRegionBasedMarshalling">true</attribute>

 <!-- Must match the value of "useRegionBasedMarshalling" -->

 <attribute name="InactiveOnStartup">true</attribute>

 <attribute name="ClusterConfig">

 </attribute>

 <!-- The max amount of time (in milliseconds) we wait until the

 initial state (ie. the contents of the cache) are retrieved from

 existing members. -->

 <attribute name="InitialStateRetrievalTimeout">17500</attribute>

 <!-- Number of milliseconds to wait until all responses for a

 synchronous call have been received.

 -->

 <attribute name="SyncReplTimeout">17500</attribute>

 <!-- Max number of milliseconds to wait for a lock acquisition

 -->

 <attribute name="LockAcquisitionTimeout">15000</attribute>

 <!-- Name of the eviction policy class. -->

 <attribute name="EvictionPolicyClass">

 org.jboss.cache.eviction.LRUPolicy

 </attribute>

 <!-- Specific eviction policy configurations. This is LRU -->

 <attribute name="EvictionPolicyConfig">

 <config>

 <attribute name="wakeUpIntervalSeconds">5</attribute>

 <name>statefulClustered</name>

Stateful Session Beans in EJB 3.0

35

 <!-- So default region would never timeout -->

 <region name="/_default_">

 <attribute name="maxNodes">0</attribute>

 <attribute name="timeToIdleSeconds">0</attribute>

 </region>

 </config>

 </attribute>

 <!-- Store passivated sessions to the file system -->

 <attribute name="CacheLoaderConfiguration">

 <config>

 <passivation>true</passivation>

 <shared>false</shared>

 <cacheloader>

 <class>org.jboss.cache.loader.FileCacheLoader</class>

 <!-- Passivate to the server data dir -->

 <properties>

 location=${jboss.server.data.dir}${/}sfsb

 </properties>

 <async>false</async>

 <fetchPersistentState>true</fetchPersistentState>

 <ignoreModifications>false</ignoreModifications>

 </cacheloader>

 </config>

 </attribute>

 </mbean>

</server>

The configuration attributes in this MBean are essentially the same as the

attributes in the standard JBoss Cache TreeCache MBean discussed in Chapter 7,

JBossCache and JGroups Services. Again, we omitted the JGroups configurations in

the ClusterConfig attribute (see more in Section 1, “JGroups Configuration”). Two

noteworthy items:

• The cache is configured to support eviction. The EJB3 SFSB container uses the

JBoss Cache eviction mechanism to manage SFSB passivation. When beans are

deployed, the EJB container will programatically add eviction regions to the cache,

one region per bean type.

• A JBoss Cache CacheLoader is also configured; again to support SFSB

passivation. When beans are evicted from the cache, the cache loader

passivates them to a persistent store; in this case to the filesystem in the

$JBOSS_HOME/server/all/data/sfsb directory. JBoss Cache supports a variety of

different CacheLoader implementations that know how to store data to different

persistent store types; see the JBoss Cache documentation for details. However, if

Chapter 3. Clustered Session EJBs

36

you change the CacheLoaderConfiguration, be sure that you do not use a shared

store (e.g., a single schema in a shared database.) Each node in the cluster must

have its own persistent store, otherwise as nodes independently passivate and

activate clustered beans, they will corrupt each others data.

Chapter 4.

37

Clustered Entity EJBs
In a JBoss AS cluster, the entity bean instance caches need to be kept in sync

across all nodes. If an entity bean provides remote services, the service methods

need to be load balanced as well.

To use a clustered entity bean, the application does not need to do anything special,

except for looking up EJB 2.x remote bean references from the clustered HA-JNDI.

1. Entity Bean in EJB 2.x

First of all, it is worth noting that clustering 2.x entity beans is a bad thing to do. Its

exposes elements that generally are too fine grained for use as remote objects to

clustered remote objects and introduces data synchronization problems that are

non-trivial. Do NOT use EJB 2.x entity bean clustering unless you fit into the sepecial

case situation of read-only, or one read-write node with read-only nodes synched

with the cache invalidation services.

To cluster EJB 2.x entity beans, you need to add the <clustered> element to the

application's jboss.xml descriptor file. Below is a typical jboss.xml file.

<jboss>

 <enterprise-beans>

 <entity>

 <ejb-name>nextgen.EnterpriseEntity</ejb-name>

 <jndi-name>nextgen.EnterpriseEntity</jndi-name>

 <clustered>True</clustered>

 <cluster-config>

 <partition-name>DefaultPartition</partition-name>

 <home-load-balance-policy>

 org.jboss.ha.framework.interfaces.RoundRobin

 </home-load-balance-policy>

 <bean-load-balance-policy>

 org.jboss.ha.framework.interfaces.FirstAvailable

 </bean-load-balance-policy>

 </cluster-config>

 </entity>

 </enterprise-beans>

</jboss>

Chapter 4. Clustered Entity EJBs

38

The EJB 2.x entity beans are clustered for load balanced remote invocations. All the

bean instances are synchronized to have the same contents on all nodes.

However, clustered EJB 2.x Entity Beans do not have a distributed locking

mechanism or a distributed cache. They can only be synchronized by using

row-level locking at the database level (see <row-lock> in the CMP specification)

or by setting the Transaction Isolation Level of your JDBC driver to be

TRANSACTION_SERIALIZABLE. Because there is no supported distributed locking

mechanism or distributed cache Entity Beans use Commit Option "B" by default

(See standardjboss.xml and the container configurations Clustered CMP 2.x

EntityBean, Clustered CMP EntityBean, or Clustered BMP EntityBean). It is

not recommended that you use Commit Option "A" unless your Entity Bean is

read-only. (There are some design patterns that allow you to use Commit Option

"A" with read-mostly beans. You can also take a look at the Seppuku pattern

http://dima.dhs.org/misc/readOnlyUpdates.html. JBoss may incorporate this pattern

into later versions.)

Note

If you are using Bean Managed Persistence (BMP), you

are going to have to implement synchronization on your

own. The MVCSoft CMP 2.0 persistence engine (see

http://www.jboss.org/jbossgroup/partners.jsp) provides different kinds

of optimistic locking strategies that can work in a JBoss cluster.

2. Entity Bean in EJB 3.0

In EJB 3.0, the entity beans primarily serve as a persistence data model. They do

not provide remote services. Hence, the entity bean clustering service in EJB 3.0

primarily deals with distributed caching and replication, instead of load balancing.

2.1. Configure the distributed cache

To avoid round trips to the database, you can use a cache for your entities. JBoss

EJB 3.0 entity beans are implemented by Hibernate, which has support for a

second-level cache. The Hibernate setup used for the JBoss EJB 3.0 implementation

uses JBoss Cache as its underlying second-level cache implementation. The

second-level cache provides the following functionalities.

• If you persist a cache enabled entity bean instance to the database via the entity

manager the entity will inserted into the cache.

• If you update an entity bean instance and save the changes to the database via

the entity manager the entity will updated in the cache.

http://dima.dhs.org/misc/readOnlyUpdates.html
http://www.jboss.org/jbossgroup/partners.jsp

Configure the distributed cache

39

• If you remove an entity bean instance from the database via the entity manager

the entity will removed from the cache.

• If loading a cached entity from the database via the entity manager, and that entity

does not exist in the database, it will be inserted into the cache.

The JBoss Cache service for EJB 3.0 entity beans is configured in a TreeCache

MBean in the deploy/ejb3-entity-cache-service.xml file. The name of the

cache MBean service is jboss.cache:service=EJB3EntityTreeCache. Below are

the contents of the ejb3-entity-cache-service.xml file in the standard JBoss

distribution. Again, we omitted the JGroups configuration element ClusterConfig.

 <server>

 <mbean code="org.jboss.cache.TreeCache"

 name="jboss.cache:service=EJB3EntityTreeCache">

 <depends>jboss:service=Naming</depends>

 <depends>jboss:service=TransactionManager</depends>

 <!-- Name of cluster. Needs to be the same on all nodes in the

 clusters,

 in order to find each other -->

 <attribute name="ClusterName">

 ${jboss.partition.name:DefaultPartition}-EntityCache

 </attribute>

 <!-- Configure the TransactionManager -->

 <attribute name="TransactionManagerLookupClass">

 org.jboss.cache.JBossTransactionManagerLookup

 </attribute>

 <attribute name="IsolationLevel">REPEATABLE_READ</attribute>

 <attribute name="CacheMode">REPL_SYNC</attribute>

 <!-- Must be true if any entity deployment uses a scoped

 classloader -->

 <attribute name="UseRegionBasedMarshalling">true</attribute>

 <!-- Must match the value of "useRegionBasedMarshalling" -->

 <attribute name="InactiveOnStartup">true</attribute>

 <attribute name="ClusterConfig">

 </attribute>

 <attribute name="InitialStateRetrievalTimeout">17500</attribute>

 <attribute name="SyncReplTimeout">17500</attribute>

 <attribute name="LockAcquisitionTimeout">15000</attribute>

Chapter 4. Clustered Entity EJBs

40

 <attribute name="EvictionPolicyClass">

 org.jboss.cache.eviction.LRUPolicy

 </attribute>

 <!-- Specific eviction policy configurations. This is LRU -->

 <attribute name="EvictionPolicyConfig">

 <config>

 <attribute name="wakeUpIntervalSeconds">5</attribute>

 <!-- Cache wide default -->

 <region name="/_default_">

 <attribute name="maxNodes">5000</attribute>

 <attribute name="timeToLiveSeconds">1000</attribute>

 </region>

 </config>

 </attribute>

 </mbean>

</server>

This is a replicated cache, so, if running within a cluster, and the cache is updated,

changes to the entries in one node will be replicated to the corresponding entries in

the other nodes in the cluster.

JBoss Cache allows you to specify timeouts to cached entities. Entities not accessed

within a certain amount of time are dropped from the cache in order to save memory.

The above configuration sets up a default configuration region that says that at

most the cache will hold 5000 nodes, after which nodes will start being evicted from

memory, least-recently used nodes last. Also, if any node has not been accessed

within the last 1000 seconds, it will be evicted from memory. In general, a node in

the cache represents a cached item (entity, collection, or query result set), although

there are also a few other node that are used for internal purposes. If the above

values of 5000 maxNodes and 1000 idle seconds are invalid for your application(s),

you can change the cache-wide defaults. You can also add separate eviction regions

for each of your entities; more on this below.

Now, we have JBoss Cache configured to support distributed caching of EJB 3.0

entity beans. We still have to configure individual entity beans to use the cache

service.

2.2. Configure the entity beans for cache

You define your entity bean classes the normal way. Future versions of JBoss EJB

3.0 will support annotating entities and their relationship collections as cached, but

for now you have to configure the underlying hibernate engine directly. Take a look at

the persistence.xml file, which configures the caching options for hibernate via its

optional property elements. The following element in persistence.xml defines that

caching should be enabled:

Configure the entity beans for cache

41

<!-- Clustered cache with TreeCache -->

<property name="cache.provider_class">

 org.jboss.ejb3.entity.TreeCacheProviderHook

</property>

The following property element defines the object name of the cache to be used, i.e.,

the name of the TreeCache MBean shown above.

<property name="treecache.mbean.object_name">

 jboss.cache:service=EJB3EntityTreeCache

</property>

Finally, you should give a “region_prefix” to this configuration. This ensures that all

cached items associated with this persistence.xml are properly grouped together in

JBoss Cache. The jboss.cache:service=EJB3EntityTreeCache cache is a shared

resource, potentially used by multiple persistence units. The items cached in that

shared cache need to be properly grouped to allow the cache to properly manage

classloading. <property name="hibernate.cache.region_prefix" value="myprefix"/>

If you do not provide a region prefix, JBoss will automatically provide one for you,

building it up from the name of the EAR (if any) and the name of the JAR that

includes the persistence.xml. For example, a persistence.xml packaged in foo.ear,

bar.jar would be given “foo_ear,bar_jar” as its region prefix. This is not a particularly

friendly region prefix if you need to use it to set up specialized eviction regions (see

below), so specifying your own region prefix is recommended.

Next we need to configure what entities be cached. The default is to

not cache anything, even with the settings shown above. We use the

@org.hibernate.annotations.Cache annotation to tag entity beans that needs to

be cached.

@Entity

@Cache(usage=CacheConcurrencyStrategy.TRANSACTIONAL)

public class Account implements Serializable {

 //

}

A very simplified rule of thumb is that you will typically want to do caching for

objects that rarely change, and which are frequently read. You can fine tune the

cache for each entity bean in the ejb3-entity-cache-service.xml configuration

file. For instance, you can specify the size of the cache. If there are too many

Chapter 4. Clustered Entity EJBs

42

objects in the cache, the cache could evict oldest objects (or least used objects,

depending on configuration) to make room for new objects. Assuming the

region_prefix specified in persistence.xml was myprefix, the default name

of the cache region for the com.mycompany.entities.Account entity bean

/myprefix/com/mycompany/entities/Account.

<server>

 <mbean code="org.jboss.cache.TreeCache"

 name="jboss.cache:service=EJB3EntityTreeCache">

 <attribute name="EvictionPolicyConfig">

 <config>

 <attribute name="wakeUpIntervalSeconds">5</attribute>

 <region name="/_default_">

 <attribute name="maxNodes">5000</attribute>

 <attribute name="timeToLiveSeconds">1000</attribute>

 </region>

 <!-- Separate eviction rules for Account entities -->

 <region name="/myprefix/com/mycompany/entities/Account">

 <attribute name="maxNodes">10000</attribute>

 <attribute name="timeToLiveSeconds">5000</attribute>

 </region>

 </config>

 </attribute>

 </mbean>

</server>

If you do not specify a cache region for an entity bean class, all instances of this

class will be cached in the /_default region as defined above. The @Cache

annotation exposes an optional attribute “region” that lets you specify the cache

region where an entity is to be stored, rather than having it be automatically be

created from the fully-qualified class name of the entity class.

@Entity

@Cache(usage=CacheConcurrencyStrategy.TRANSACTIONAL,

region=”Account”)

public class Account implements Serializable {

//

}

The eviction configuration would then become:

<server>

 <mbean code="org.jboss.cache.TreeCache"

Query result caching

43

 name="jboss.cache:service=EJB3EntityTreeCache">

 <attribute name="EvictionPolicyConfig">

 <config>

 <attribute name="wakeUpIntervalSeconds">5</attribute>

 <region name="/_default_">

 <attribute name="maxNodes">5000</attribute>

 <attribute name="timeToLiveSeconds">1000</attribute>

 </region>

 <!-- Separate eviction rules for Account entities -->

 <region name="/myprefix/Account">

 <attribute name="maxNodes">10000</attribute>

 <attribute name="timeToLiveSeconds">5000</attribute>

 </region>

 </config>

 </attribute>

 </mbean>

</server>

2.3. Query result caching

The EJB3 Query API also provides means for you to save in the second-level cache

the results (i.e., collections of primary keys of entity beans, or collections of scalar

values) of specified queries. Here we show a simple example of annotating a bean

with a named query, also providing the Hibernate-specific hints that tells Hibernate to

cache the query.

First, in persistence.xml you need to tell Hibernate to enable query caching:

<property name="hibernate.cache.use_query_cache" value="true"/>

Next, you create a named query associated with an entity, and tell Hibernate you

want to cache the results of that query:

@Entity

@Cache (usage=CacheConcurrencyStrategy.TRANSACTIONAL,

region=”Account”)

@NamedQueries({

@NamedQuery(name="account.bybranch",

query="select acct from Account as acct where acct.branch = ?1",

hints={@QueryHint(name="org.hibernate.cacheable",value="true")})

})

public class Account implements Serializable {

//

}

Chapter 4. Clustered Entity EJBs

44

The @NamedQueries, @NamedQuery and @QueryHint annotations are all in the

javax.persistence package.See the Hibernate and EJB3 documentation for more on

how to use EJB3 queries and on how to instruct EJB3 to cache queries.

By default, Hibernate stores query results in JBoss Cache in a region named

{region_prefix}/org/hibernate/cache/StandardQueryCache. Based on this, you can

set up separate eviction handling for your query results. So, if the region prefix were

set to myprefix in persistence.xml, you could, for example, create this sort of eviction

handling:

<server>

 <mbean code="org.jboss.cache.TreeCache"

 name="jboss.cache:service=EJB3EntityTreeCache">

 <attribute name="EvictionPolicyConfig">

 <config>

 <attribute name="wakeUpIntervalSeconds">5</attribute>

 <region name="/_default_">

 <attribute name="maxNodes">5000</attribute>

 <attribute name="timeToLiveSeconds">1000</attribute>

 </region>

 <!-- Separate eviction rules for Account entities -->

 <region name="/myprefix/Account">

 <attribute name="maxNodes">10000</attribute>

 <attribute name="timeToLiveSeconds">5000</attribute>

 </region>

 <!-- Cache queries for 10 minutes -->

 <region

 name="/myprefix/org/hibernate/cache/StandardQueryCache">

 <attribute name="maxNodes">100</attribute>

 <attribute name="timeToLiveSeconds">600</attribute>

 </region>

 </config>

 </attribute>

 </mbean>

</server>

The @NamedQuery.hints attribute shown above takes an array of vendor-specific

@QueryHints as a value. Hibernate accepts the “org.hibernate.cacheRegion” query

hint, where the value is the name of a cache region to use instead ofthe default

/org/hibernate/cache/StandardQueryCache. For example:

 @Entity

Query result caching

45

 @Cache (usage=CacheConcurrencyStrategy.TRANSACTIONAL,

 region=”Account”)

 @NamedQueries({

 @NamedQuery(name="account.bybranch",

 query="select acct from Account as acct where acct.branch = ?1",

 hints={@QueryHint(name="org.hibernate.cacheable",value="true"),

 @QueryHint(name=”org.hibernate.cacheRegion,value=”Queries”)

 })

 })

 public class Account implements Serializable {

 //

 }

The related eviction configuration:

<server>

 <mbean code="org.jboss.cache.TreeCache"

 name="jboss.cache:service=EJB3EntityTreeCache">

 <attribute name="EvictionPolicyConfig">

 <config>

 <attribute name="wakeUpIntervalSeconds">5</attribute>

 <region name="/_default_">

 <attribute name="maxNodes">5000</attribute>

 <attribute name="timeToLiveSeconds">1000</attribute>

 </region>

 <!-- Separate eviction rules for Account entities -->

 <region name="/myprefix/Account">

 <attribute name="maxNodes">10000</attribute>

 <attribute name="timeToLiveSeconds">5000</attribute>

 </region>

 <!-- Cache queries for 10 minutes -->

 <region name="/myprefix/Queries">

 <attribute name="maxNodes">100</attribute>

 <attribute name="timeToLiveSeconds">600</attribute>

 </region>

 </config>

 </attribute>

 </mbean>

</server>

46

Chapter 5.

47

HTTP Services
HTTP session replication is used to replicate the state associated with your web

clients on other nodes of a cluster. Thus, in the event one of your node crashes,

another node in the cluster will be able to recover. Two distinct functions must be

performed:

• Session state replication

• Load-balancing of incoming invocations

State replication is directly handled by JBoss. When you run JBoss in the all

configuration, session state replication is enabled by default. Just configure your web

application as distributable in its web.xml (see below), deploy it, and its session state

is automtically replicated across all JBoss instances in the cluster.

However, load-balancing is a different story; it is not handled by JBoss itself and

requires an external load balancer. aThis function could be provided by specialized

hardware switches or routers (Cisco LoadDirector for example) or by specialized

software running on commodity hardware. As a very common scenario, we will

demonstrate how to set up a software load balancer using Apache httpd and mod_jk.

Note

A load-balancer tracks HTTP requests and, depending on the

session to which the request is linked, it dispatches the request to the

appropriate node. This is called load-balancing with sticky-sessions:

once a session is created on a node, every future request will also be

processed by that same node. Using a load-balancer that supports

sticky-sessions but not configuring your web application for session

replication allows you to scale very well by avoiding the cost of

session state replication: each query will always be handled by the

same node. But in case a node dies, the state of all client sessions

hosted by this node (the shopping carts, for example) will be lost

and the clients will most probably need to login on another node and

restart with a new session. In many situations, it is acceptable not

to replicate HTTP sessions because all critical state is stored in a

database. In other situations, losing a client session is not acceptable

and, in this case, session state replication is the price one has to pay.

Chapter 5. HTTP Services

48

1. Configuring load balancing using Apache and

mod_jk

Apache is a well-known web server which can be extended by plugging in modules.

One of these modules, mod_jk has been specifically designed to allow the forwarding

of requests from Apache to a Servlet container. Furthermore, it is also able to

load-balance HTTP calls to a set of Servlet containers while maintaining sticky

sessions, which is what is most interesting for us in this section.

2. Download the software

First of all, make sure that you have Apache installed. You can download Apache

directly from Apache web site at http://httpd.apache.org/. Its installation is

pretty straightforward and requires no specific configuration. As several versions

of Apache exist, we advise you to use version 2.0.x. We will consider, for the next

sections, that you have installed Apache in the APACHE_HOME directory.

Next, download mod_jk binaries. Several versions of mod_jk exist as well.

We strongly advise you to use mod_jk 1.2.x, as both mod_jk and mod_jk2

are deprecated, unsupported and no further developments are going

on in the community. The mod_jk 1.2.x binary can be downloaded from

http://www.apache.org/dist/jakarta/tomcat-connectors/jk/binaries/.

Rename the downloaded file to mod_jk.so and copy it under

APACHE_HOME/modules/.

3. Configure Apache to load mod_jk

Modify APACHE_HOME/conf/httpd.conf and add a single line at the end of the file:

Include mod_jk's specific configuration file

Include conf/mod-jk.conf

Next, create a new file named APACHE_HOME/conf/mod-jk.conf:

Load mod_jk module

Specify the filename of the mod_jk lib

LoadModule jk_module modules/mod_jk.so

Where to find workers.properties

JkWorkersFile conf/workers.properties

Where to put jk logs

Configure Apache to load mod_jk

49

JkLogFile logs/mod_jk.log

Set the jk log level [debug/error/info]

JkLogLevel info

Select the log format

JkLogStampFormat "[%a %b %d %H:%M:%S %Y]"

JkOptions indicates to send SSK KEY SIZE

JkOptions +ForwardKeySize +ForwardURICompat -ForwardDirectories

JkRequestLogFormat

JkRequestLogFormat "%w %V %T"

Mount your applications

JkMount /application/* loadbalancer

You can use external file for mount points.

It will be checked for updates each 60 seconds.

The format of the file is: /url=worker

/examples/*=loadbalancer

JkMountFile conf/uriworkermap.properties

Add shared memory.

This directive is present with 1.2.10 and

later versions of mod_jk, and is needed for

for load balancing to work properly

JkShmFile logs/jk.shm

Add jkstatus for managing runtime data

<Location /jkstatus/>

 JkMount status

 Order deny,allow

 Deny from all

 Allow from 127.0.0.1

</Location>

Please note that two settings are very important:

• The LoadModule directive must reference the mod_jk library you have downloaded

in the previous section. You must indicate the exact same name with the

"modules" file path prefix.

• The JkMount directive tells Apache which URLs it should forward to the mod_jk

module (and, in turn, to the Servlet containers). In the above file, all requests

with URL path /application/* are sent to the mod_jk load-balancer. This way,

you can configure Apache to server static contents (or PHP contents) directly

Chapter 5. HTTP Services

50

and only use the loadbalancer for Java applications. If you only use mod_jk as a

loadbalancer, you can also forward all URLs (i.e., /*) to mod_jk.

In addition to the JkMount directive, you can also use the JkMountFile directive to

specify a mount points configuration file, which contains multiple Tomcat forwarding

URL mappings. You just need to create a uriworkermap.properties file in the

APACHE_HOME/conf directory. The format of the file is /url=worker_name. To get

things started, paste the following example into the file you created:

Simple worker configuration file

Mount the Servlet context to the ajp13 worker

/jmx-console=loadbalancer

/jmx-console/*=loadbalancer

/web-console=loadbalancer

/web-console/*=loadbalancer

This will configure mod_jk to forward requests to /jmx-console and /web-console

to Tomcat.

You will most probably not change the other settings in mod_jk.conf. They are used

to tell mod_jk where to put its logging file, which logging level to use and so on.

4. Configure worker nodes in mod_jk

Next, you need to configure mod_jk workers file conf/workers.properties. This

file specifies where the different Servlet containers are located and how calls should

be load-balanced across them. The configuration file contains one section for each

target servlet container and one global section. For a two nodes setup, the file could

look like this:

Define list of workers that will be used

for mapping requests

worker.list=loadbalancer,status

Define Node1

modify the host as your host IP or DNS name.

worker.node1.port=8009

worker.node1.host=node1.mydomain.com

worker.node1.type=ajp13

worker.node1.lbfactor=1

worker.node1.cachesize=10

Define Node2

modify the host as your host IP or DNS name.

Configure worker nodes in mod_jk

51

worker.node2.port=8009

worker.node2.host= node2.mydomain.com

worker.node2.type=ajp13

worker.node2.lbfactor=1

worker.node2.cachesize=10

Load-balancing behaviour

worker.loadbalancer.type=lb

worker.loadbalancer.balance_workers=node1,node2

worker.loadbalancer.sticky_session=1

#worker.list=loadbalancer

Status worker for managing load balancer

worker.status.type=status

Basically, the above file configures mod_jk to perform weighted round-robin load

balancing with sticky sessions between two servlet containers (JBoss Tomcat) node1

and node2 listening on port 8009.

In the works.properties file, each node is defined using the worker.XXX naming

convention where XXX represents an arbitrary name you choose for each of the

target Servlet containers. For each worker, you must specify the host name (or

IP address) and the port number of the AJP13 connector running in the Servlet

container.

The lbfactor attribute is the load-balancing factor for this specific worker. It is

used to define the priority (or weight) a node should have over other nodes. The

higher this number is for a given worker relative to the other workers, the more HTTP

requests the worker will receive. This setting can be used to differentiate servers with

different processing power.

The cachesize attribute defines the size of the thread pools associated to the

Servlet container (i.e. the number of concurrent requests it will forward to the

Servlet container). Make sure this number does not outnumber the number of

threads configured on the AJP13 connector of the Servlet container. Please review

http://jakarta.apache.org/tomcat/connectors-doc/config/workers.html for

comments on cachesize for Apache 1.3.x.

The last part of the conf/workers.properties file defines the loadbalancer worker.

The only thing you must change is the worker.loadbalancer.balanced_workers

line: it must list all workers previously defined in the same file: load-balancing will

happen over these workers.

The sticky_session property specifies the cluster behavior for HTTP sessions. If

you specify worker.loadbalancer.sticky_session=0, each request will be load

balanced between node1 and node2; i.e., different requests for the same session will

go to different servers. But when a user opens a session on one server, it is always

Chapter 5. HTTP Services

52

necessary to always forward this user's requests to the same server, as long as that

server is available. This is called a "sticky session", as the client is always using the

same server he reached on his first request. To enable session stickiness, you need

to set worker.loadbalancer.sticky_session to 1.

Note

A non-loadbalanced setup with a single node requires a

worker.list=node1 entry.

5. Configuring JBoss to work with mod_jk

Finally, we must configure the JBoss Tomcat instances on all clustered nodes so that

they can expect requests forwarded from the mod_jk loadbalancer.

On each clustered JBoss node, we have to name the node according to the name

specified in workers.properties. For instance, on JBoss instance node1, edit the

JBOSS_HOME/server/all/deploy/jboss-web.deployer/server.xml file (replace

/all with your own server name if necessary). Locate the <Engine> element and

add an attribute jvmRoute:

<Engine name="jboss.web" defaultHost="localhost" jvmRoute="node1">

... ...

</Engine>

You also need to be sure the AJP connector in server.xml is enabled (i.e.,

uncommented). It is enabled by default.

<!-- Define an AJP 1.3 Connector on port 8009 -->

<Connector port="8009" address="${jboss.bind.address}"

 protocol="AJP/1.3"

emptySessionPath="true" enableLookups="false" redirectPort="8443"

 />

Then, for each JBoss Tomcat instance in the

cluster, we need to tell it that mod_jk is in use, so

it can properly manage the jvmRoute appended

to its session cookies so that mod_jk can properly

route incoming requests. Edit the

JBOSS_HOME/server/all/deploy/jbossweb-tomcat50.sar/META-INF/jboss-

service.xml file (replace /all with your own server name). Locate the

<attribute> element with a name of UseJK, and set its value to true:

Configuring HTTP session state replication

53

<attribute name="UseJK">true</attribute>

At this point, you have a fully working Apache+mod_jk load-balancer setup that will

balance call to the Servlet containers of your cluster while taking care of session

stickiness (clients will always use the same Servlet container).

Note

For more updated information on using

mod_jk 1.2 with JBoss Tomcat, please refer

to the JBoss wiki page at

http://wiki.jboss.org/wiki/

Wiki.jsp?page=UsingMod_jk1.2WithJBoss.

6. Configuring HTTP session state replication

The preceding discussion has been focused on using mod_jk as a load balancer.

The content of the remainder our discussion of clustering HTTP services in JBoss AS

applies no matter what load balancer is used.

In Section 4, “Configure worker nodes in mod_jk”, we covered how to use sticky

sessions to make sure that a client in a session always hits the same server node in

order to maintain the session state. However, sticky sessions by themselves are not

an ideal solution. If a node goes down, all its session data is lost. A better and more

reliable solution is to replicate session data across the nodes in the cluster. This way,

the client can hit any server node and obtain the same session state.

The jboss.cache:service=TomcatClusteringCache MBean

makes use of JBoss Cache to provide HTTP session replication

services to the JBoss Tomcat cluster. This MBean is defined in the

deploy/jboss-web-cluster.sar/META-INF/jboss-service.xml file.

Note

Before AS 4.2.0, the location of the HTTP session cache configuration

file was deploy/tc5-cluster.sar/META-INF/jboss-service.xml.

Prior to AS 4.0.4 CR2, the file was named

deploy/tc5-cluster-service.xml.

Below is a typical deploy/jbossweb-cluster.sar/META-INF/jboss-service.xml

file. The configuration attributes in the TomcatClusteringCache MBean are very

similar to those in the JBoss AS cache configuration.

Chapter 5. HTTP Services

54

<mbean code="org.jboss.cache.aop.TreeCacheAop"

 name="jboss.cache:service=TomcatClusteringCache">

 <depends>jboss:service=Naming</depends>

 <depends>jboss:service=TransactionManager</depends>

 <depends>jboss.aop:service=AspectDeployer</depends>

 <attribute name="TransactionManagerLookupClass">

 org.jboss.cache.BatchModeTransactionManagerLookup

 </attribute>

 <attribute name="IsolationLevel">REPEATABLE_READ</attribute>

 <attribute name="CacheMode">REPL_ASYNC</attribute>

 <attribute name="ClusterName">

 Tomcat-${jboss.partition.name:Cluster}

 </attribute>

 <attribute name="UseMarshalling">false</attribute>

 <attribute name="InactiveOnStartup">false</attribute>

 <attribute name="ClusterConfig">

 </attribute>

 <attribute name="LockAcquisitionTimeout">15000</attribute>

 <attribute name="SyncReplTimeout">20000</attribute>

</mbean>

Note that the value of the mbean element's code attribute is

org.jboss.cache.aop.TreeCacheAop, which is different from the other JBoss Cache

Mbeans used in JBoss AS. This is because FIELD granularity HTTP session

replication (covered below) needs the added features of the TreeCacheAop (a.k.a.

PojoCache) class.

The details of all the configuration options for a TreeCache MBean are covered in the

JBoss Cache documentation. Below, we will just discuss several attributes that are

most relevant to the HTTP cluster session replication.

• TransactionManagerLookupClass sets the transaction manager factory. The

default value is org.jboss.cache.BatchModeTransactionManagerLookup. It

tells the cache NOT to participate in JTA-specific transactions. Instead, the cache

manages its own transactions. Please do not change this.

Enabling session replication in your application

55

• CacheMode controls how the cache is replicated. The valid values are REPL_SYNC

and REPL_ASYNC. With either setting the client request thread updates the local

cache with the current sesssion contents and then sends a message to the caches

on the other members of the cluster, telling them to make the same change. With

REPL_ASYNC (the default) the request thread returns as soon as the update

message has been put on the network. With REPL_SYNC, the request thread

blocks until it gets a reply message from all cluster members, informing it that

the update was successfully applied. Using synchronous replication makes

sure changes are applied aroundthe cluster before the web request completes.

However, synchronous replication is much slower.

• ClusterName specifies the name of the cluster that the cache works within. The

default cluster name is the the word "Tomcat-" appended by the current JBoss

partition name. All the nodes must use the same cluster name.

• The UseMarshalling and InactiveOnStartup attributes must have the same

value. They must be true if FIELD level session replication is needed (see later).

Otherwise, they are default to false.

• ClusterConfig configures the underlying JGroups stack. Please refer to Section 1,

“JGroups Configuration” for more information.

• LockAcquisitionTimeout sets the maximum number of milliseconds to wait for a

lock acquisition when trying to lock a cache node. The default value is 15000.

• SyncReplTimeout sets the maximum number of milliseconds to wait for a

response from all nodes in the cluster when a synchronous replication message

is sent out. The default value is 20000; should be a few seconds longer than

LockAcquisitionTimeout.

7. Enabling session replication in your application

To enable clustering of your web application you must tag it as distributable in the

web.xml descriptor. Here's an example:

<?xml version="1.0"?>

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"

 version="2.4">

 <distributable/>

 <!-- ... -->

</web-app>

You can futher configure session replication using the replication-config element

in the jboss-web.xml file. Here is an example:

Chapter 5. HTTP Services

56

<jboss-web>

 <replication-config>

 <replication-trigger>SET_AND_NON_PRIMITIVE_GET</replication-

trigger>

 <replication-granularity>SESSION</replication-granularity>

 <replication-field-batch-mode>true</replication-field-batch-mode>

 </replication-config>

</jboss-web>

The replication-trigger element determines what triggers a session replication

(i.e. when is a session is considered dirty and in need of replication). It has 4

options:

• SET: With this policy, the session is considered dirty only when an attribute is

set in the session (i.e., HttpSession.setAttribute() is invoked.) If your application

always writes changed values back into the session, this option will be most

optimal in terms of performance. The downside of SET is that if an object is

retrieved from the session and modified without being written back into the

session, the session manager will not know the attribute is dirty and the change to

that object may not be replicated.

• SET_AND_GET: With this policy, any attribute that is get or set will be marked as

dirty. If an object is retrieved from the session and modified without being written

back into the session, the change to that object will be replicated. The downside

of SET_AND_GET is that it can have significant performance implications, since

even reading immutable objects from the session (e.g., strings, numbers) will mark

the read attributes as needing to be replicated.

• SET_AND_NON_PRIMITIVE_GET: This policy is similar to the SET_AND_GET

policy except that get operationsthat return attribute values with primitive types

do not mark the attribute as dirty. Primitive system types (i.e., String, Integer,

Long, etc.) are immutable, so there is no reason to mark an attribute with such a

type as dirty just because it has been read. If a get operation returns a value of

a non-primitive type, the session manager has no simple way to know whether

the object is mutable, so it assumes it is an marks the attribute as dirty. This

setting avoids the downside of SET while reducing the performance impact of

SET_AND_GET. It is the default setting.

• ACCESS: This option causes the session to be marked as dirty whenever it is

accessed. Since a the session is accessed during each HTTP request, it will

be replicated with each request. The purpose of ACCESS is to ensure session

last-access timestamps are kept in sync around the cluster.. Since with the other

replication-trigger options the time stamp may not be updated in other clustering

nodes because of no replication, the session in other nodes may expire before the

Using FIELD level replication

57

active node if the HTTP request does not retrieve or modify any session attributes.

When this option is set, the session timestamps will be synchronized throughout

the cluster nodes. Note that use of this option can have a significant performance

impact, so use it with caution. With the other replication-trigger options, if a session

has gone 80% of its expiration interval without being replicated, as a safeguard its

timestamp will be replicated no matter what. So, ACCESS is only useful in special

circumstances where the above safeguard is considered inadequate.

The replication-granularity element controls the size of the replication units.

The supported values are:

• ATTRIBUTE: Replication is only for the dirty attributes in the session plus some

session data, like the last-accessed timestamp. For sessions that carry large

amounts of data, this option can increase replication performance. However,

attributes will be separately serialized, so if there are any shared references

between objects stored in the attributes, those shared references may be broken

on remote nodes. For example, say a Person object stored under key “husband”

has a reference to an Address, while another Person object stored under key

“wife” has a reference to that same Address object. When the “husband” and “wife”

attributes are separately deserialized on the remote nodes, each Person object will

now have a reference to its own Address object; the Address object will no longer

be shared.

• SESSION: The entire session object is replicated if any attribute is dirty. The entire

session is serialized in one unit, so shared object references are maintained on

remote nodes. This is the default setting.

• FIELD: Replication is only for individual changed data fields inside session

attribute objects. Shared object references will be preserved across the cluster.

Potentially most performant, but requires changes to your application (this will be

discussed later).

The replication-field-batch-mode element indicates whether you want all

replication messages associated with a request to be batched into one message.

Only applicable if replication-granularity is FIELD. Default is true.

If your sessions are generally small, SESSION is the better policy. If your session

is larger and some parts are infrequently accessed, ATTRIBUTE replication will be

more effective. If your application has very big data objects in session attributes

and only fields in those objects are frequently modified, the FIELD policy would be

the best. In the next section, we will discuss exactly how the FIELD level replication

works.

8. Using FIELD level replication

FIELD-level replication only replicates modified data fields inside objects stored

in the session. Its use could potentially drastically reduce the data traffic between

Chapter 5. HTTP Services

58

clustered nodes, and hence improve the performance of the whole cluster. To use

FIELD-level replication, you have to first prepare (i.e., bytecode enhance) your Java

class to allow the session cache to detect when fields in cached objects have been

changed and need to be replicated.

The first step in doing this is to identify the classes that need to be prepared. This is

done via annotations. For example:

@org.jboss.cache.aop.AopMarker

public class Address

{

...

}

If you annotate a class with InstanceAopMarker instead, then all of its subclasses

will be automatically annotated as well. Similarly, you can annotate an interface

with InstanceofAopMarker and all of its implementing classes will be annotated. For

example:

@org.jboss.cache.aop.InstanceOfAopMarker

public class Person

{

...

}

then when you have a sub-class like

public class Student extends Person

{

...

}

There will be no need to annotate Student. It will be annotated automatically

because it is a sub-class of Person. Jboss AS 4.2 requires JDK 5 at runtime,

but some users may still need to build their projects using JDK 1.4. In this case,

annotating classes can be done via JDK 1.4 style annotations embedded in

JavaDocs. For example:

/*

 * My usual comments here first.

 * @@org.jboss.web.tomcat.tc5.session.AopMarker

 */

public class Address

{

...

}

Using FIELD level replication

59

The anologue for @InstanceAopMarker is:

/*

 *

 * @@org.jboss.web.tomcat.tc5.session.InstanceOfAopMarker

 */

public class Person

{

...

}

Once you have annotated your classes, you will need to perform a pre-processing

step to bytecode enhance your classes for use by TreeCacheAop. You need to use

the JBoss AOP pre-compiler annotationc and post-compiler aopc to process the

above source code before and after they are compiled by the Java compiler. The

annotationc step is only need if the JDK 1.4 style annotations are used; if JDK 5

annotations are used it is not necessary. Here is an example on how to invoke those

commands from command line.

$ annotationc [classpath] [source files or directories]

$ javac -cp [classpath] [source files or directories]

$ aopc [classpath] [class files or directories]

Please see the JBoss AOP documentation for the usage of the pre- and

post-compiler. The JBoss AOP project also provides easy to use ANT tasks to help

integrate those steps into your application build process.

Note

You can see a complete example on

how to build, deploy, and validate a

FIELD-level replicated web application

from this page:

http://wiki.jboss.org/wiki/

Wiki.jsp?page=Http_session_field_level_example. The example

bundles the pre- and post-compile tools so you do not need to

download JBoss AOP separately.

When you deploy the web application into JBoss AS, make sure that the following

configurations are correct:

• In the server's deploy/jboss-web-cluster.sar/META-INF/jboss-service.xml

file, the inactiveOnStartup and useMarshalling attributes must both be true.

http://wiki.jboss.org/wiki/Wiki.jsp?page=Http_session_field_level_example
http://wiki.jboss.org/wiki/Wiki.jsp?page=Http_session_field_level_example

Chapter 5. HTTP Services

60

• In the application's jboss-web.xml file, the replication-granularity attribute

must be FIELD.

Finally, let's see an example on how to use FIELD-level replication on those data

classes. Notice that there is no need to call session.setAttribute() after you

make changes to the data object, and all changes to the fields are automatically

replicated across the cluster.

// Do this only once. So this can be in init(), e.g.

if(firstTime)

{

 Person joe = new Person("Joe", 40);

 Person mary = new Person("Mary", 30);

 Address addr = new Address();

 addr.setZip(94086);

 joe.setAddress(addr);

 mary.setAddress(addr); // joe and mary share the same address!

 session.setAttribute("joe", joe); // that's it.

 session.setAttribute("mary", mary); // that's it.

}

Person mary = (Person)session.getAttribute("mary");

mary.getAddress().setZip(95123); // this will update and replicate

 the zip code.

Besides plain objects, you can also use regular Java collections of those objects

as session attributes. JBoss cache automatically figures out how to handle those

collections and replicate field changes in their member objects.

9. Monitoring session replication

If you have deployed and accessed your application, go to the

jboss.cache:service=TomcatClusteringCache MBean and invoke the

printDetails operation. You should see output resembling the following.

/JSESSION

/localhost

/quote

/FB04767C454BAB3B2E462A27CB571330

VERSION: 6

Using Clustered Single Sign On

61

FB04767C454BAB3B2E462A27CB571330:

 org.jboss.invocation.MarshalledValue@1f13a81c

/AxCI8Ovt5VQTfNyYy9Bomw**

VERSION: 4

AxCI8Ovt5VQTfNyYy9Bomw**:

 org.jboss.invocation.MarshalledValue@e076e4c8

This output shows two separate web sessions, in one application named quote, that

are being shared via JBossCache. This example uses a replication-granularity

of session. Had ATTRIBUTE level replication been used, there would be additional

entries showing each replicated session attribute. In either case, the replicated

values are stored in an opaque MarshelledValue container. There aren't currently

any tools that allow you to inspect the contents of the replicated session values.

If you do not see any output, either the application was not correctly marked as

distributable or you haven't accessed a part of application that places values in

the HTTP session. The org.jboss.cache and org.jboss.web logging categories

provide additional insight into session replication useful for debugging purposes.

10. Using Clustered Single Sign On

JBoss supports clustered single sign-on, allowing a user to authenticate to one

web application on a JBoss server and to be recognized on all web applications,

on that same machine or on another node in the cluster, that are deployed on the

same virtual host. Authentication replication is handled by the same JBoss Cache

Mbean that is used by the HTTP session replication service. Although session

replication does not need to be explicitly enabled for the applications in question, the

jboss-web-cluster.sar file needs to be deployed.

To enable single sign-on, you must add the ClusteredSingleSignOn valve to the

appropriate Host elements of the tomcat server.xml file. The valve configuration is

shown here:

<Valve

 className="org.jboss.web.tomcat.tc5.sso.ClusteredSingleSignOn" />

11. Clustered Singleton Services

A clustered singleton service (also known as an HA singleton) is a service that is

deployed on multiple nodes in a cluster, but is providing its service on only one of

the nodes. The node running the singleton service is typically called the master

node. When the master fails or is shut down, another master is selected from the

remaining nodes and the service is restarted on the new master. Thus, other than

a brief interval when one master has stopped and another has yet to take over, the

service is always being provided by one but only one node.

Chapter 5. HTTP Services

62

Figure 5.1. Topology after the Master Node fails

The JBoss Application Server (AS) provides support for a number of strategies for

helping you deploy clustered singleton services. In this section we will explore the

different strategies. All of the strategies are built on top of the HAPartition service

described in the introduction. They rely on the HAPartition to provide notifications

when different nodes in the cluster start and stop; based on those notifications each

node in the cluster can independently (but consistently) determine if it is now the

master node and needs to begin providing a service.

11.1. HASingletonDeployer service

The simplest and most commonly used strategy for deploying an HA singleton is

to take an ordinary deployment (war, ear, jar, whatever you would normally put

in deploy) and deploy it in the $JBOSS_HOME/server/all/deploy-hasingleton

directory instead of in deploy. The deploy-hasingleton directory does not lie

under deploy or farm, so its contents are not automatically deployed when an AS

instance starts. Instead, deploying the contents of this directory is the responsibility

of a special service, the jboss.ha:service=HASingletonDeployer MBean

(which itself is deployed via the deploy/deploy-hasingleton-service.xml file.) The

HASingletonDeployer service is itself an HA Singleton, one whose provided service

when it becomes master is to deploy the contents of deploy-hasingleton and whose

service when it stops being the master (typically at server shutdown) is to undeploy

the contents of deploy-hasingleton.

Mbean deployments using

HASingletonController

63

So, by placing your deployments in deploy-hasingleton you know that they will

be deployed only on the master node in the cluster. If the master node cleanly shuts

down, they will be cleanly undeployed as part of shutdown. If the master node fails or

is shut down, they will be deployed on whatever node takes over as master.

Using deploy-hasingleton is very simple, but it does have two drawbacks:

• There is no hot-deployment feature for services in deploy-hasingleton.

Redeploying a service that has been deployed to deploy-hasingleton requires a

server restart.

• If the master node fails and another node takes over as master, your singleton

service needs to go through the entire deployment process before it will be

providing services. Depending on how complex the deployment of your service

is and what sorts of startup activities it engages in, this could take a while, during

which time the service is not being provided.

11.2. Mbean deployments using HASingletonController

If your service is an Mbean (i.e., not a J2EE deployment like an ear or war or jar),

you can deploy it along with a service called an HASingletonController in order to

turn it into an HA singleton. It is the job of the HASingletonController to work with the

HAPartition service to monitor the cluster and determine if it is now the master node

for its service. If it determines it has become the master node, it invokes a method

on your service telling it to begin providing service. If it determines it is no longer the

master node, it invokes a method on your service telling it to stop providing service.

Let's walk through an illustration.

First, we have an MBean service that we want to make an HA singleton. The only

thing special about it is it needs to expose in its MBean interface a method that can

be called when it should begin providing service, and another that can be called

when it should stop providing service:

public class HASingletonExample

implements HASingletonExampleMBean {

private boolean isMasterNode = false;

public void startSingleton() {

isMasterNode = true;

}

.

public boolean isMasterNode() {

return isMasterNode;

 }

Chapter 5. HTTP Services

64

 public void stopSingleton() {

 isMasterNode = false;

 }

}

We used “startSingleton” and “stopSingleton” in the above example, but you could

name the methods anything.

Next, we deploy our service, along with an HASingletonController to control it, most

likely packaged in a .sar file, with the following META-INF/jboss-service.xml:

 <server>

 <!-- This MBean is an example of a clustered singleton -->

 <mbean code="org.jboss.ha.examples.HASingletonExample"

 name=“jboss:service=HASingletonExample"/>

 <!-- This HASingletonController manages the cluster Singleton -->

 <mbean code="org.jboss.ha.singleton.HASingletonController"

 name="jboss:service=ExampleHASingletonController">

 <!-- Inject a ref to the HAPartition -->

 <depends optional-attribute-name="ClusterPartition"

 proxy-type="attribute">

 jboss:service=${jboss.partition.name:DefaultPartition}

 </depends>

 <!-- Inject a ref to the service being controlled -->

 <depends optional-attribute-name="TargetName">

 jboss:service=HASingletonExample

 </depends>

 <!-- Methods to invoke when become master / stop being master

 -->

 <attribute name="TargetStartMethod">startSingleton</attribute>

 <attribute name="TargetStopMethod">stopSingleton</attribute>

 </mbean>

</server>

Voila! A clustered singleton service.

The obvious downside to this approach is it only works for MBeans. Upsides are that

the above example can be placed in deploy or farm and thus can be hot deployed

and farmed deployed. Also, if our example service had complex, time-consuming

startup requirements, those could potentially be implemented in create() or start()

methods. JBoss will invoke create() and start() as soon as the service is deployed;

it doesn't wait until the node becomes the master node. So, the service could be

primed and ready to go, just waiting for the controller to implement startSingleton() at

which point it can immediately provide service.

HASingleton deployments using a Barrier

65

The jboss.ha:service=HASingletonDeployer service discussed above is itself an

interesting example of using an HASingletonController. Here is its deployment

descriptor (extracted from the deploy/deploy-hasingleton-service.xml file):

<mbean code="org.jboss.ha.singleton.HASingletonController"

name="jboss.ha:service=HASingletonDeployer">

 <depends optional-attribute-name="ClusterPartition"

 proxy-type="attribute">

 jboss:service=${jboss.partition.name:DefaultPartition}

 </depends>

 <depends optional-attributeame="TargetName">

 jboss.system:service=MainDeployer

 </depends>

 <attribute name="TargetStartMethod">deploy</attribute>

 <attribute name="TargetStartMethodArgument">

 ${jboss.server.home.url}/deploy-hasingleton

 </attribute>

 <attribute name="TargetStopMethod">undeploy</attribute>

 <attribute name="TargetStopMethodArgument">

 ${jboss.server.home.url}/deploy-hasingleton

 </attribute>

</mbean>

A few interesting things here. First the service being controlled is the MainDeployer

service, which is the core deployment service in JBoss. That is, it's a service that

wasn't written with an intent that it be controlled by an HASingletonController. But

it still works! Second, the target start and stop methods are “deploy” and “undeploy”.

No requirement that they have particular names, or even that they logically have

“start” and “stop” functionality. Here the functionality of the invoked methods is

more like “do” and “undo”. Finally, note the “TargetStart(Stop)MethodArgument”

attributes. Your singleton service's start/stop methods can take an argument, in this

case the location of the directory the MainDeployer should deploy/undeploy.

11.3. HASingleton deployments using a Barrier

Services deployed normally inside deploy or farm that want to be started/stopped

whenever the content of deploy-hasingleton gets deployed/undeployed, (i.e.,

whenever the current node becomes the master), need only specify a dependency

on the Barrier mbean:

<depends>jboss.ha:service=HASingletonDeployer,type=Barrier</

depends>

The way it works is that a BarrierController is deployed along with the

jboss.ha:service=HASingletonDeployer MBean and listens for JMX notifications

from it. A BarrierController is a relatively simple Mbean that can subscribe to

Chapter 5. HTTP Services

66

receive any JMX notification in the system. It uses the received notifications to

control the lifecycle of a dynamically created Mbean called the Barrier.The Barrier is

instantiated, registered and brought to the CREATE state when the BarrierController

is deployed. After that, the BarrierController starts and stops the Barrier when

matching JMX notifications are received. Thus, other services need only depend

on the Barrier MBean using the usual <depends> tag, and they will be started and

stopped in tandem with the Barrier. When the BarrierController is undeployed the

Barrier is destroyed too.

This provides an alternative to the deploy-hasingleton approach in that we can use

farming to distribute the service, while content in deploy-hasingleton must be copied

manually on all nodes.

On the other hand, the barrier-dependent service will be instantiated/created

(i.e., any create() method invoked) on all nodes, but only started on the master

node. This is different with the deploy-hasingleton approach that will only deploy

(instantiate/create/start) the contents of the deploy-hasingleton directory on one of

the nodes.

So services depending on the barrier will need to make sure they do minimal or no

work inside their create() step, rather they should use start() to do the work.

Note

The Barrier controls the start/stop of dependent services, but not

their destruction, which happens only when the BarrierController

is itself destroyed/undeployed. Thus using the Barrier to control

services that need to be "destroyed" as part of their normal “undeploy”

operation (like, for example, an EJBContainer) will not have the

desired effect.

11.4. Determining the master node

The various clustered singleton management strategies all depend on the fact that

each node in the cluster can independently react to changes in cluster membership

and correctly decide whether it is now the “master node”. How is this done?

Prior to JBoss AS 4.2.0, the methodology for this was fixed and simple. For each

member of the cluster, the HAPartition mbean maintains an attribute called the

CurrentView, which is basically an ordered list of the current members of the

cluster. As nodes join and leave the cluster, JGroups ensures that each surviving

member of the cluster gets an updated view. You can see the current view by

going into the JMX console, and looking at the CurrentView attribute in the

jboss:service=DefaultPartition mbean. Every member of the cluster will have

the same view, with the members in the same order.

Determining the master node

67

Let's say, for example, that we have a 4 node cluster, nodes A through D, and the

current view can be expressed as {A, B, C, D}. Generally speaking, the order of

nodes in the view will reflect the order in which they joined the cluster (although this

is not always the case, and should not be assumed to be the case.)

To further our example, let's say there is a singleton service (i.e., an

HASingletonController) named Foo that's deployed around the cluster, except,

for whatever reason, on B. The HAPartition service maintains across the cluster a

registry of what services are deployed where, in view order. So, on every node in the

cluster, the HAPartition service knows that the view with respect to the Foo service

is {A, C, D} (no B).

Whenever there is a change in the cluster topology of the Foo service, the

HAPartition service invokes a callback on Foo notifying it of the new topology. So,

for example, when Foo started on D, the Foo service running on A, C and D all got

callbacks telling them the new view for Foo was {A, C, D}. That callback gives each

node enough information to independently decide if it is now the master. The Foo

service on each node does this by checking if they are the first member of the view –

if they are, they are the master; if not, they're not. Simple as that.

If A were to fail or shutdown, Foo on C and D would get a callback with a new view

for Foo of {C, D}. C would then become the master. If A restarted, A, C and D would

get a callback with a new view for Foo of {C, D, A}. C would remain the master –

there's nothing magic about A that would cause it to become the master again just

because it was before.

68

Chapter 6.

69

JBoss Messaging Clustering

Notes

1. Unique server peer id

JBoss Messaging clustering should work out of the box in the all configuration with

no configuration changes. It is however crucial that every node is assigned a unique

server id.

Every node deployed must have a unique id, including those in a particular LAN

cluster, and also those only linked by message bridges.

2. Clustered destinations

JBoss Messaging clusters JMS queues and topics transparently across the cluster.

Messages sent to a distributed queue or topic on one node are consumable on other

nodes. To designate that a particular destination is clustered simply set the clustered

attribute in the destination deployment descriptor to true.

JBoss Messaging balances messages between nodes, catering for faster or slower

consumers to efficiently balance processing load across the cluster.

If you do not want message redistribution between nodes, but still want to retain

the other characteristics of clustered destinations, you can specify the attribute

ClusterPullConnectionFactoryName on the server peer.

3. Clustered durable subs

JBoss Messaging durable subscriptions can also be clustered. This means multiple

subscribers can consume from the same durable subscription from different nodes of

the cluster. A durable subscription will be clustered if it's topic is clustered.

4. Clustered temporary destinations

JBoss Messaging also supports clustered temporary topics and queues. All

temporary topics and queues will be clustered if the post office is clustered.

5. Non clustered servers

If you don't want your nodes to participate in a cluster, or only have one non

clustered server you can set the clustered attribute on the postoffice to false.

Chapter 6. JBoss Messaging Cl...

70

6. Message ordering in the cluster

If you wish to apply strict JMS ordering to messages, such that a particular JMS

consumer consumes messages in the same order as they were produced by a

particular producer, you can set the DefaultPreserveOrdering attribute in the

server peer to true. By default this is false.

Note

The side effect of setting this to true is that messages cannot be

distributed as freely around the cluster.

7. Idempotent operations

If the call to send a persistent message to a persistent destination returns

successfully with no exception, then you can be sure that the message was

persisted. However if the call doesn't return successfully e.g. if an exception is

thrown, then you can't be sure the message wasn't persisted. This is because the

failure might have occurred after persisting the message but before writing the

response to the caller. This is a common attribute of any RPC type call: You can't

tell by the call not returning that the call didn't actually succeed. Whether it's a

web services call, a HTTP get request, an EJB invocation the same applies. The

trick is to code your application so your operations are idempotent i.e. they can be

repeated without getting the system into an inconsistent state. With a message

system you can do this on the application level, by checking for duplicate messages,

and discarding them if they arrive. Duplicate checking is a very powerful technique

that can remove the need for XA transactions in many cases.

7.1. Clustered connection factories

If the supportsLoadBalancing attribute of the connection factory is set to true then

consecutive create connection attempts will round robin between available servers.

The first node to try is chosen randomly.

If the supportsFailover attribute of the connection factory is set to true then automatic

failover is enabled. This will automatically failover from one server to another,

transparently to the user, in case of failure.

If automatic failover is not required or you wish to do manual failover (JBoss MQ

style) this can be set to false, and you can supply a standard JMS ExceptionListener

on the connection which will be called in case of connection failure. You would then

need to manually close the connection, lookup a new connection factory from HA

JNDI and recreate the connection.

Chapter 7.

71

JBossCache and JGroups

Services
JGroups and JBossCache provide the underlying communication, node replication

and caching services, for JBoss AS clusters. Those services are configured as

MBeans. There is a set of JBossCache and JGroups MBeans for each type of

clustering applications (e.g., the Stateful Session EJBs, HTTP session replication

etc.).

The JBoss AS ships with a reasonable set of default JGroups and JBossCache

MBean configurations. Most applications just work out of the box with the default

MBean configurations. You only need to tweak them when you are deploying an

application that has special network or performance requirements.

1. JGroups Configuration

The JGroups framework provides services to enable peer-to-peer communications

between nodes in a cluster. It is built on top a stack of network communication

protocols that provide transport, discovery, reliability and failure detection, and

cluster membership management services. Figure 7.1, “Protocol stack in JGroups”

shows the protocol stack in JGroups.

Chapter 7. JBossCache and JGr...

72

Figure 7.1. Protocol stack in JGroups

JGroups configurations often appear as a nested attribute in cluster related MBean

services, such as the PartitionConfig attribute in the ClusterPartition MBean

or the ClusterConfig attribute in the TreeCache MBean. You can configure the

behavior and properties of each protocol in JGroups via those MBean attributes.

Below is an example JGroups configuration in the ClusterPartition MBean.

<mbean code="org.jboss.ha.framework.server.ClusterPartition"

 name="jboss:service=${jboss.partition.name:DefaultPartition}">

 <attribute name="PartitionConfig">

 <Config>

 <UDP mcast_addr="${jboss.partition.udpGroup:228.1.2.3}"

 mcast_port="${jboss.hapartition.mcast_port:45566}"

 tos="8"

JGroups Configuration

73

 ucast_recv_buf_size="20000000"

 ucast_send_buf_size="640000"

 mcast_recv_buf_size="25000000"

 mcast_send_buf_size="640000"

 loopback="false"

 discard_incompatible_packets="true"

 enable_bundling="false"

 max_bundle_size="64000"

 max_bundle_timeout="30"

 use_incoming_packet_handler="true"

 use_outgoing_packet_handler="false"

 ip_ttl="${jgroups.udp.ip_ttl:2}"

 down_thread="false" up_thread="false"/>

 <PING timeout="2000"

 down_thread="false" up_thread="false"

 num_initial_members="3"/>

 <MERGE2 max_interval="100000"

 down_thread="false" up_thread="false" min_interval="20000"/>

 <FD_SOCK down_thread="false" up_thread="false"/>

 <FD timeout="10000" max_tries="5"

 down_thread="false" up_thread="false" shun="true"/>

 <VERIFY_SUSPECT timeout="1500" down_thread="false"

 up_thread="false"/>

 <pbcast.NAKACK max_xmit_size="60000"

 use_mcast_xmit="false" gc_lag="0"

 retransmit_timeout="300,600,1200,2400,4800"

 down_thread="false" up_thread="false"

 discard_delivered_msgs="true"/>

 <UNICAST timeout="300,600,1200,2400,3600"

 down_thread="false" up_thread="false"/>

 <pbcast.STABLE stability_delay="1000"

 desired_avg_gossip="50000"

 down_thread="false" up_thread="false"

 max_bytes="400000"/>

 <pbcast.GMS print_local_addr="true" join_timeout="3000"

 down_thread="false" up_thread="false"

 join_retry_timeout="2000" shun="true"

 view_bundling="true"/>

 <FRAG2 frag_size="60000" down_thread="false"

 up_thread="false"/>

 <pbcast.STATE_TRANSFER down_thread="false"

 up_thread="false" use_flush="false"/>

 </Config>

 </attribute>

</mbean>

Chapter 7. JBossCache and JGr...

74

All the JGroups configuration data is contained in the <Config> element under

the JGroups config MBean attribute. This information is used to configure a

JGroups Channel; the Channel is conceptually similar to a socket, and manages

communication between peers in a cluster. Each element inside the <Config>

element defines a particular JGroups Protocol; each Protocol performs one function,

and the combination of those functions is what defines the characteristics of the

overall Channel. In the next several sections, we will dig into the commonly used

protocols and their options and explain exactly what they mean.

2. Common Configuration Properties

The following common properties are exposed by all of the JGroups protocols

discussed below:

• down_thread whether the protocol should create an internal queue and a queue

processing thread (aka the down_thread) for messages passed down from higher

layers. The higher layer could be another protocol higher in the stack, or the

application itself, if the protocol is the top one on the stack. If true (the default),

when a message is passed down from a higher layer, the calling thread places

the message in the protocol's queue, and then returns immediately. The protocol's

down_thread is responsible for reading messages off the queue, doing whatever

protocol-specific processing is required, and passing the message on to the next

protocol in the stack.

• up_thread is conceptually similar to down_thread, but here the queue and thread

are for messages received from lower layers in the protocol stack.

Generally speaking, up_thread and down_thread should be set to false.

3. Transport Protocols

The transport protocols send messages from one cluster node to another (unicast)

or from cluster node to all other nodes in the cluster (mcast). JGroups supports UDP,

TCP, and TUNNEL as transport protocols.

Note

The UDP, TCP, and TUNNEL elements are mutually exclusive. You can

only have one transport protocol in each JGroups Config element

3.1. UDP configuration

UDP is the preferred protocol for JGroups. UDP uses multicast or multiple unicasts

to send and receive messages. If you choose UDP as the transport protocol for

your cluster service, you need to configure it in the UDP sub-element in the JGroups

Config element. Here is an example.

UDP configuration

75

<UDP mcast_addr="${jboss.partition.udpGroup:228.1.2.3}"

 mcast_port="${jboss.hapartition.mcast_port:45566}"

 tos="8"

 ucast_recv_buf_size="20000000"

 ucast_send_buf_size="640000"

 mcast_recv_buf_size="25000000"

 mcast_send_buf_size="640000"

 loopback="false"

 discard_incompatible_packets="true"

 enable_bundling="false"

 max_bundle_size="64000"

 max_bundle_timeout="30"

 use_incoming_packet_handler="true"

 use_outgoing_packet_handler="false"

 ip_ttl="${jgroups.udp.ip_ttl:2}"

 down_thread="false" up_thread="false"/>

The available attributes in the above JGroups configuration are listed below.

• ip_mcast specifies whether or not to use IP multicasting. The default is true. If set

to false, it will send n unicast packets rather than 1 multicast packet. Either way,

packets are UDP datagrams.

• mcast_addr specifies the multicast address (class D) for joining a group (i.e., the

cluster). If omitted, the default is 228.8.8.8 .

• mcast_port specifies the multicast port number. If omitted, the default is 45566.

• bind_addr specifies the interface on which to receive and send multicasts

(uses the -Djgroups.bind_address system property, if present). If you have

a multihomed machine, set the bind_addr attribute or system property to the

appropriate NIC IP address. By default, system property setting takes priority over

XML attribute unless -Djgroups.ignore.bind_addr system property is set.

• receive_on_all_interfaces specifies whether this node should listen on all

interfaces for multicasts. The default is false. It overrides the bind_addr

property for receiving multicasts. However, bind_addr (if set) is still used to send

multicasts.

• send_on_all_interfaces specifies whether this node send UDP packets via all

the NICs if you have a multi NIC machine. This means that the same multicast

message is sent N times, so use with care.

• receive_interfaces specifies a list of of interfaces to receive multicasts

on. The multicast receive socket will listen on all of these interfaces.

This is a comma-separated list of IP addresses or interface names. E.g.

"192.168.5.1,eth1,127.0.0.1".

Chapter 7. JBossCache and JGr...

76

• ip_ttl specifies time-to-live for IP Multicast packets. TTL is the commonly used

term in multicast networking, but is actually something of a misnomer, since the

value here refers to how many network hops a packet will be allowed to travel

before networking equipment will drop it.

• use_incoming_packet_handler specifies whether to use a separate thread to

process incoming messages. Sometimes receivers are overloaded (they have

to handle de-serialization etc). Packet handler is a separate thread taking care

of de-serialization, receiver thread(s) simply put packet in queue and return

immediately. Setting this to true adds one more thread. The default is true.

• use_outgoing_packet_handler specifies whether to use a separate thread to

process outgoing messages. The default is false.

• enable_bundling specifies whether to enable message bundling. If it is true,

the node would queue outgoing messages until max_bundle_size bytes have

accumulated, or max_bundle_time milliseconds have elapsed, whichever occurs

first. Then bundle queued messages into a large message and send it. The

messages are unbundled at the receiver. The default is false.

• loopback specifies whether to loop outgoing message back up the stack. In

unicast mode, the messages are sent to self. In mcast mode, a copy of the mcast

message is sent. The default is false

• discard_incompatibe_packets specifies whether to discard packets from

different JGroups versions. Each message in the cluster is tagged with a JGroups

version. When a message from a different version of JGroups is received, it will be

discarded if set to true, otherwise a warning will be logged. The default is false

• mcast_send_buf_size, mcast_recv_buf_size, ucast_send_buf_size,

ucast_recv_buf_size define receive and send buffer sizes. It is good to have a

large receiver buffer size, so packets are less likely to get dropped due to buffer

overflow.

• tos specifies traffic class for sending unicast and multicast datagrams.

Note

On Windows 2000 machines, because of the media sense feature

being broken with multicast (even after disabling media sense), you

need to set the UDP protocol's loopback attribute to true.

3.2. TCP configuration

Alternatively, a JGroups-based cluster can also work over TCP connections.

Compared with UDP, TCP generates more network traffic when the cluster size

increases. TCP is fundamentally a unicast protocol. To send multicast messages,

TCP configuration

77

JGroups uses multiple TCP unicasts. To use TCP as a transport protocol, you should

define a TCP element in the JGroups Config element. Here is an example of the TCP

element.

<TCP start_port="7800"

 bind_addr="192.168.5.1"

 loopback="true"

 down_thread="false" up_thread="false"/>

Below are the attributes available in the TCP element.

• bind_addr specifies the binding address. It can also be set with the

-Djgroups.bind_address command line option at server startup.

• start_port, end_port define the range of TCP ports the server should bind to. The

server socket is bound to the first available port from start_port. If no available

port is found (e.g., because of a firewall) before the end_port, the server throws

an exception. If no end_port is provided or end_port < start_port then there

is no upper limit on the port range. If start_port == end_port, then we force

JGroups to use the given port (start fails if port is not available). The default is

7800. If set to 0, then the operating system will pick a port. Please, bear in mind

that setting it to 0 will work only if we use MPING or TCPGOSSIP as discovery

protocol because TCCPING requires listing the nodes and their corresponding ports.

• loopback specifies whether to loop outgoing message back up the stack. In

unicast mode, the messages are sent to self. In mcast mode, a copy of the mcast

message is sent. The default is false.

• recv_buf_size, send_buf_size define receive and send buffer sizes. It is good to

have a large receiver buffer size, so packets are less likely to get dropped due to

buffer overflow.

• conn_expire_time specifies the time (in milliseconds) after which a connection

can be closed by the reaper if no traffic has been received.

• reaper_interval specifies interval (in milliseconds) to run the reaper. If both values

are 0, no reaping will be done. If either value is > 0, reaping will be enabled. By

default, reaper_interval is 0, which means no reaper.

• sock_conn_timeout specifies max time in millis for a socket creation. When

doing the initial discovery, and a peer hangs, don't wait forever but go on after the

timeout to ping other members. Reduces chances of *not* finding any members at

all. The default is 2000.

• use_send_queues specifies whether to use separate send queues for each

connection. This prevents blocking on write if the peer hangs. The default is true.

Chapter 7. JBossCache and JGr...

78

• external_addr specifies external IP address to broadcast to other group members

(if different to local address). This is useful when you have use (Network Address

Translation) NAT, e.g. a node on a private network, behind a firewall, but you can

only route to it via an externally visible address, which is different from the local

address it is bound to. Therefore, the node can be configured to broadcast its

external address, while still able to bind to the local one. This avoids having to

use the TUNNEL protocol, (and hence a requirement for a central gossip router)

because nodes outside the firewall can still route to the node inside the firewall, but

only on its external address. Without setting the external_addr, the node behind

the firewall will broadcast its private address to the other nodes which will not be

able to route to it.

• skip_suspected_members specifies whether unicast messages should not be

sent to suspected members. The default is true.

• tcp_nodelay specifies TCP_NODELAY. TCP by default nagles messages, that is,

conceptually, smaller messages are bundled into larger ones. If we want to invoke

synchronous cluster method calls, then we need to disable nagling in addition to

disabling message bundling (by setting enable_bundling to false). Nagling is

disabled by setting tcp_nodelay to true. The default is false.

3.3. TUNNEL configuration

The TUNNEL protocol uses an external router to send messages. The external

router is known as a GossipRouter. Each node has to register with the router. All

messages are sent to the router and forwarded on to their destinations. The TUNNEL

approach can be used to setup communication with nodes behind firewalls. A node

can establish a TCP connection to the GossipRouter through the firewall (you can

use port 80). The same connection is used by the router to send messages to nodes

behind the firewall as most firewalls do not permit outside hosts to initiate a TCP

connection to a host inside the firewall. The TUNNEL configuration is defined in the

TUNNEL element in the JGroups Config element. Here is an example..

<TUNNEL router_port="12001"

 router_host="192.168.5.1"

 down_thread="false" up_thread="false/>

The available attributes in the TUNNEL element are listed below.

• router_host specifies the host on which the GossipRouter is running.

• router_port specifies the port on which the GossipRouter is listening.

• loopback specifies whether to loop messages back up the stack. The default is

true.

Discovery Protocols

79

4. Discovery Protocols

The cluster needs to maintain a list of current member nodes at all times so that the

load balancer and client interceptor know how to route their requests. Discovery

protocols are used to discover active nodes in the cluster and detect the oldest

member of the cluster, which is the coordinator. All initial nodes are discovered when

the cluster starts up. When a new node joins the cluster later, it is only discovered

after the group membership protocol (GMS, see Section 7.1, “Group Membership”)

admits it into the group.

Since the discovery protocols sit on top of the transport protocol, you can choose to

use different discovery protocols based on your transport protocol. These are also

configured as sub-elements in the JGroups MBean Config element.

4.1. PING

PING is a discovery protocol that works by either multicasting PING requests to

an IP multicast address or connecting to a gossip router. As such, PING normally

sits on top of the UDP or TUNNEL transport protocols. Each node responds

with a packet {C, A}, where C=coordinator's address and A=own address. After

timeout milliseconds or num_initial_members replies, the joiner determines the

coordinator from the responses, and sends a JOIN request to it (handled by). If

nobody responds, we assume we are the first member of a group.

Here is an example PING configuration for IP multicast.

<PING timeout="2000"

 num_initial_members="2"

 down_thread="false" up_thread="false"/>

Here is another example PING configuration for contacting a Gossip Router.

<PING gossip_host="localhost"

 gossip_port="1234"

 timeout="3000"

 num_initial_members="3"

 down_thread="false" up_thread="false"/>

The available attributes in the PING element are listed below.

• timeout specifies the maximum number of milliseconds to wait for any responses.

The default is 3000.

Chapter 7. JBossCache and JGr...

80

• num_initial_members specifies the maximum number of responses to wait for

unless timeout has expired. The default is 2.

• gossip_host specifies the host on which the GossipRouter is running.

• gossip_port specifies the port on which the GossipRouter is listening on.

• gossip_refresh specifies the interval (in milliseconds) for the lease from the

GossipRouter. The default is 20000.

• initial_hosts is a comma-seperated list of addresses (e.g.,

host1[12345],host2[23456]), which are pinged for discovery.

If both gossip_host and gossip_port are defined, the cluster uses the

GossipRouter for the initial discovery. If the initial_hosts is specified, the cluster

pings that static list of addresses for discovery. Otherwise, the cluster uses IP

multicasting for discovery.

Note

The discovery phase returns when the timeout ms have elapsed or

the num_initial_members responses have been received.

4.2. TCPGOSSIP

The TCPGOSSIP protocol only works with a GossipRouter. It works essentially

the same way as the PING protocol configuration with valid gossip_host and

gossip_port attributes. It works on top of both UDP and TCP transport protocols.

Here is an example.

<TCPGOSSIP timeout="2000"

 initial_hosts="192.168.5.1[12000],192.168.0.2[12000]"

 num_initial_members="3"

 down_thread="false" up_thread="false"/>

The available attributes in the TCPGOSSIP element are listed below.

• timeout specifies the maximum number of milliseconds to wait for any responses.

The default is 3000.

• num_initial_members specifies the maximum number of responses to wait for

unless timeout has expired. The default is 2.

• initial_hosts is a comma-seperated list of addresses (e.g.,

host1[12345],host2[23456]) for GossipRouters to register with.

TCPPING

81

4.3. TCPPING

The TCPPING protocol takes a set of known members and ping them for discovery.

This is essentially a static configuration. It works on top of TCP. Here is an example

of the TCPPING configuration element in the JGroups Config element.

<TCPPING timeout="2000"

 initial_hosts="hosta[2300],hostb[3400],hostc[4500]"

 port_range="3"

 num_initial_members="3"

 down_thread="false" up_thread="false"/>

The available attributes in the TCPPING element are listed below.

• timeout specifies the maximum number of milliseconds to wait for any responses.

The default is 3000.

• num_initial_members specifies the maximum number of responses to wait for

unless timeout has expired. The default is 2.

• initial_hosts is a comma-seperated list of addresses (e.g.,

host1[12345],host2[23456]) for pinging.

• port_range specifies the number of consecutive ports to be probed when

getting the initial membership, starting with the port specified in the initial_hosts

parameter. Given the current values of port_range and initial_hosts above,

the TCPPING layer will try to connect to hosta:2300, hosta:2301, hosta:2302,

hostb:3400, hostb:3401, hostb:3402, hostc:4500, hostc:4501, hostc:4502. The

configuration options allows for multiple nodes on the same host to be pinged.

4.4. MPING

MPING uses IP multicast to discover the initial membership. It can be used with all

transports, but usually this is used in combination with TCP. TCP usually requires

TCPPING, which has to list all group members explicitly, but MPING doesn't have

this requirement. The typical use case for this is when we want TCP as transport,

but multicasting for discovery so we don't have to define a static list of initial hosts in

TCPPING or require external Gossip Router.

<MPING timeout="2000"

 bind_to_all_interfaces="true"

 mcast_addr="228.8.8.8"

 mcast_port="7500"

 ip_ttl="8"

 num_initial_members="3"

Chapter 7. JBossCache and JGr...

82

 down_thread="false" up_thread="false"/>

The available attributes in the MPING element are listed below.

• timeout specifies the maximum number of milliseconds to wait for any responses.

The default is 3000.

• num_initial_members specifies the maximum number of responses to wait for

unless timeout has expired. The default is 2..

• bind_addr specifies the interface on which to send and receive multicast packets.

• bind_to_all_interfaces overrides the bind_addr and uses all interfaces in

multihome nodes.

• mcast_addr, mcast_port, ip_ttl attributes are the same as related attributes in

the UDP protocol configuration.

5. Failure Detection Protocols

The failure detection protocols are used to detect failed nodes. Once a failed node

is detected, a suspect verification phase can occur after which, if the node is still

considered dead, the cluster updates its view so that the load balancer and client

interceptors know to avoid the dead node. The failure detection protocols are

configured as sub-elements in the JGroups MBean Config element.

5.1. FD

FD is a failure detection protocol based on heartbeat messages. This protocol

requires each node to periodically send are-you-alive messages to its neighbour.

If the neighbour fails to respond, the calling node sends a SUSPECT message to

the cluster. The current group coordinator can optionally double check whether the

suspected node is indeed dead after which, if the node is still considered dead,

updates the cluster's view. Here is an example FD configuration.

<FD timeout="2000"

 max_tries="3"

 shun="true"

 down_thread="false" up_thread="false"/>

The available attributes in the FD element are listed below.

• timeout specifies the maximum number of milliseconds to wait for the responses

to the are-you-alive messages. The default is 3000.

• max_tries specifies the number of missed are-you-alive messages from a node

before the node is suspected. The default is 2.

FD_SOCK

83

• shun specifies whether a failed node will be shunned. Once shunned, the node

will be expelled from the cluster even if it comes back later. The shunned node

would have to re-join the cluster through the discovery process. JGroups allows

to configure itself such that shunning leads to automatic rejoins and state transfer,

which is the default behaivour within JBoss Application Server.

Note

Regular traffic from a node counts as if it is a live. So, the

are-you-alive messages are only sent when there is no regular traffic

to the node for sometime.

5.2. FD_SOCK

FD_SOCK is a failure detection protocol based on a ring of TCP sockets created

between group members. Each member in a group connects to its neighbor (last

member connects to first) thus forming a ring. Member B is suspected when its

neighbor A detects abnormally closed TCP socket (presumably due to a node B

crash). However, if a member B is about to leave gracefully, it lets its neighbor A

know, so that it does not become suspected. The simplest FD_SOCK configuration

does not take any attribute. You can just declare an empty FD_SOCK element in

JGroups's Config element.

<FD_SOCK_down_thread="false" up_thread="false"/>

There available attributes in the FD_SOCK element are listed below.

• bind_addr specifies the interface to which the server socket should bind to. If

-Djgroups.bind_address system property is defined, XML value will be ignore.

This behaivour can be reversed setting -Djgroups.ignore.bind_addr=true system

property.

5.3. VERIFY_SUSPECT

This protocol verifies whether a suspected member is really dead by pinging that

member once again. This verification is performed by the coordinator of the cluster.

The suspected member is dropped from the cluster group if confirmed to be dead.

The aim of this protocol is to minimize false suspicions. Here's an example.

<VERIFY_SUSPECT timeout="1500"

 down_thread="false" up_thread="false"/>

The available attributes in the FD_SOCK element are listed below.

Chapter 7. JBossCache and JGr...

84

• timeout specifies how long to wait for a response from the suspected member

before considering it dead.

5.4. FD versus FD_SOCK

FD and FD_SOCK, each taken individually, do not provide a solid failure detection

layer. Let's look at the the differences between these failure detection protocols to

understand how they complement each other:

• FD

• An overloaded machine might be slow in sending are-you-alive responses.

• A member will be suspected when suspended in a debugger/profiler.

• Low timeouts lead to higher probability of false suspicions and higher network

traffic.

• High timeouts will not detect and remove crashed members for some time.

• FD_SOCK:

• Suspended in a debugger is no problem because the TCP connection is still open.

• High load no problem either for the same reason.

• Members will only be suspected when TCP connection breaks

• So hung members will not be detected.

• Also, a crashed switch will not be detected until the connection runs into the TCP

timeout (between 2-20 minutes, depending on TCP/IP stack implementation).

The aim of a failure detection layer is to report real failures and therefore avoid false

suspicions. There are two solutions:

1. By default, JGroups configures the FD_SOCK socket with KEEP_ALIVE, which

means that TCP sends a heartbeat on socket on which no traffic has been

received in 2 hours. If a host crashed (or an intermediate switch or router crashed)

without closing the TCP connection properly, we would detect this after 2 hours

(plus a few minutes). This is of course better than never closing the connection (if

KEEP_ALIVE is off), but may not be of much help. So, the first solution would be

to lower the timeout value for KEEP_ALIVE. This can only be done for the entire

kernel in most operating systems, so if this is lowered to 15 minutes, this will affect

all TCP sockets.

2. The second solution is to combine FD_SOCK and FD; the timeout in FD can be

set such that it is much lower than the TCP timeout, and this can be configured

Reliable Delivery Protocols

85

individually per process. FD_SOCK will already generate a suspect message if

the socket was closed abnormally. However, in the case of a crashed switch or

host, FD will make sure the socket is eventually closed and the suspect message

generated. Example:

<FD_SOCK down_thread="false" up_thread="false"/>

<FD timeout="10000" max_tries="5" shun="true"

down_thread="false" up_thread="false" />

This suspects a member when the socket to the neighbor has been closed

abonormally (e.g. process crash, because the OS closes all sockets). However, f

a host or switch crashes, then the sockets won't be closed, therefore, as a seond

line of defense, FD will suspect the neighbor after 50 seconds. Note that with this

example, if you have your system stopped in a breakpoint in the debugger, the node

you're debugging will be suspected after ca 50 seconds.

A combination of FD and FD_SOCK provides a solid failure detection layer and for

this reason, such technique is used accross JGroups configurations included within

JBoss Application Server.

6. Reliable Delivery Protocols

Reliable delivery protocols within the JGroups stack ensure that data pockets

are actually delivered in the right order (FIFO) to the destination node. The basis

for reliable message delivery is positive and negative delivery acknowledgments

(ACK and NAK). In the ACK mode, the sender resends the message until the

acknowledgment is received from the receiver. In the NAK mode, the receiver

requests retransmission when it discovers a gap.

6.1. UNICAST

The UNICAST protocol is used for unicast messages. It uses ACK. It is configured as

a sub-element under the JGroups Config element. If the JGroups stack is configured

with TCP transport protocol, UNICAST is not necessary because TCP itself

guarantees FIFO delivery of unicast messages. Here is an example configuration for

the UNICAST protocol.

<UNICAST timeout="100,200,400,800"

down_thread="false" up_thread="false"/>

There is only one configurable attribute in the UNICAST element.

• timeout specifies the retransmission timeout (in milliseconds). For instance, if the

timeout is "100,200,400,800", the sender resends the message if it hasn't received

Chapter 7. JBossCache and JGr...

86

an ACK after 100 ms the first time, and the second time it waits for 200 ms before

resending, and so on.

6.2. NAKACK

The NAKACK protocol is used for multicast messages. It uses NAK. Under this

protocol, each message is tagged with a sequence number. The receiver keeps track

of the sequence numbers and deliver the messages in order. When a gap in the

sequence number is detected, the receiver asks the sender to retransmit the missing

message. The NAKACK protocol is configured as the pbcast.NAKACK sub-element

under the JGroups Config element. Here is an example configuration.

<pbcast.NAKACK max_xmit_size="60000" use_mcast_xmit="false"

 retransmit_timeout="300,600,1200,2400,4800" gc_lag="0"

 discard_delivered_msgs="true"

 down_thread="false" up_thread="false"/>

The configurable attributes in the pbcast.NAKACK element are as follows.

• retransmit_timeout specifies the retransmission timeout (in milliseconds). It is the

same as the timeout attribute in the UNICAST protocol.

• use_mcast_xmit determines whether the sender should send the retransmission

to the entire cluster rather than just the node requesting it. This is useful when the

sender drops the pocket -- so we do not need to retransmit for each node.

• max_xmit_size specifies maximum size for a bundled retransmission, if multiple

packets are reported missing.

• discard_delivered_msgs specifies whether to discard delivery messages on the

receiver nodes. By default, we save all delivered messages. However, if we only

ask the sender to resend their messages, we can enable this option and discard

delivered messages.

• gc_lag specifies the number of messages garbage collection lags behind.

7. Other Configuration Options

In addition to the protocol stacks, you can also configure JGroups network services

in the Config element.

7.1. Group Membership

The group membership service in the JGroups stack maintains a list of active

nodes. It handles the requests to join and leave the cluster. It also handles

the SUSPECT messages sent by failure detection protocols. All nodes in the

Flow Control

87

cluster, as well as the load balancer and client side interceptors, are notified if the

group membership changes. The group membership service is configured in the

pbcast.GMS sub-element under the JGroups Config element. Here is an example

configuration.

<pbcast.GMS print_local_addr="true"

 join_timeout="3000"

 down_thread="false" up_thread="false"

 join_retry_timeout="2000"

 shun="true"

 view_bundling="true"/>

The configurable attributes in the pbcast.GMS element are as follows.

• join_timeout specifies the maximum number of milliseconds to wait for a new

node JOIN request to succeed. Retry afterwards.

• join_retry_timeout specifies the maximum number of milliseconds to wait after a

failed JOIN to re-submit it.

• print_local_addr specifies whether to dump the node's own address to the output

when started.

• shun specifies whether a node should shun itself if it receives a cluster view that it

is not a member node.

• disable_initial_coord specifies whether to prevent this node as the cluster

coordinator.

• view_bundling specifies whether multiple JOIN or LEAVE request arriving at the

same time are bundled and handled together at the same time, only sending out 1

new view / bundle. This is is more efficient than handling each request separately.

7.2. Flow Control

The flow control service tries to adapt the sending data rate and the receiving data

among nodes. If a sender node is too fast, it might overwhelm the receiver node

and result in dropped packets that have to be retransmitted. In JGroups, the flow

control is implemented via a credit-based system. The sender and receiver nodes

have the same number of credits (bytes) to start with. The sender subtracts credits

by the number of bytes in messages it sends. The receiver accumulates credits for

the bytes in the messages it receives. When the sender's credit drops to a threshold,

the receivers sends some credit to the sender. If the sender's credit is used up, the

sender blocks until it receives credits from the receiver. The flow control service is

configured in the FC sub-element under the JGroups Config element. Here is an

example configuration.

Chapter 7. JBossCache and JGr...

88

<FC max_credits="1000000"

down_thread="false" up_thread="false"

 min_threshold="0.10"/>

The configurable attributes in the FC element are as follows.

• max_credits specifies the maximum number of credits (in bytes). This value

should be smaller than the JVM heap size.

• min_credits specifies the threshold credit on the sender, below which the receiver

should send in more credits.

• min_threshold specifies percentage value of the threshold. It overrides the

min_credits attribute.

Note

Applications that use synchronous group RPC calls primarily do

not require FC protocol in their JGroups protocol stack because

synchronous communication, where the hread that makes the call

blocks waiting for responses from all the members of the group,

already slows overall rate of calls. Even though TCP provides flow

control by itself, FC is still required in TCP based JGroups stacks

because of group communication, where we essentially have to send

group messages at the highest speed the slowest receiver can keep

up with. TCP flow control only takes into account individual node

communications and has not a notion of who's the slowest in the

group, which is why FC is required.

7.2.1. Why is FC needed on top of TCP ? TCP has its own flow

control !

The reason is group communication, where we essentially have to send group

messages at the highest speed the slowest receiver can keep up with. Let's say we

have a cluster {A,B,C,D}. D is slow (maybe overloaded), the rest is fast. When A

sends a group message, it establishes TCP connections A-A (conceptually), A-B,

A-C and A-D (if they don't yet exist). So let's say A sends 100 million messages to

the cluster. Because TCP's flow control only applies to A-B, A-C and A-D, but not

to A-{B,C,D}, where {B,C,D} is the group, it is possible that A, B and C receive the

100M, but D only received 1M messages. (BTW: this is also the reason why we need

NAKACK, although TCP does its own retransmission).

Now JGroups has to buffer all messages in memory for the case when the original

sender S dies and a node asks for retransmission of a message of S. Because all

Fragmentation

89

members buffer all messages they received, they need to purge stable messages

(= messages seen by everyone) every now and then. This is done by the STABLE

protocol, which can be configured to run the stability protocol round time based (e.g.

every 50s) or size based (whenever 400K data has been received).

In the above case, the slow node D will prevent the group from purging messages

above 1M, so every member will buffer 99M messages ! This in most cases leads to

OOM exceptions. Note that - although the sliding window protocol in TCP will cause

writes to block if the window is full - we assume in the above case that this is still

much faster for A-B and A-C than for A-D.

So, in summary, we need to send messages at a rate the slowest receiver (D) can

handle.

7.2.2. So do I always need FC?

This depends on how the application uses the JGroups channel. Referring to the

example above, if there was something about the application that would naturally

cause A to slow down its rate of sending because D wasn't keeping up, then FC

would not be needed.

A good example of such an application is one that makes synchronous group RPC

calls (typically using a JGroups RpcDispatcher.) By synchronous, we mean the

thread that makes the call blocks waiting for responses from all the members of the

group. In that kind of application, the threads on A that are making calls would block

waiting for responses from D, thus naturally slowing the overall rate of calls.

A JBoss Cache cluster configured for REPL_SYNC is a good example of an

application that makes synchronous group RPC calls. If a channel is only used for a

cache configured for REPL_SYNC, we recommend you remove FC from its protocol

stack.

And, of course, if your cluster only consists of two nodes, including FC in a

TCP-based protocol stack is unnecessary. There is no group beyond the single

peer-to-peer relationship, and TCP's internal flow control will handle that just fine.

Another case where FC may not be needed is for a channel used by a JBoss Cache

configured for buddy replication and a single buddy. Such a channel will in many

respects act like a two node cluster, where messages are only exchanged with one

other node, the buddy. (There may be other messages related to data gravitation that

go to all members, but in a properly engineered buddy replication use case these

should be infrequent. But if you remove FC be sure to load test your application.)

7.3. Fragmentation

This protocol fragments messages larger than certain size. Unfragments at the

receiver's side. It works for both unicast and multicast messages. It is configured

Chapter 7. JBossCache and JGr...

90

in the FRAG2 sub-element under the JGroups Config element. Here is an example

configuration.

 <FRAG2 frag_size="60000" down_thread="false" up_thread="false"/>

The configurable attributes in the FRAG2 element are as follows.

• frag_size specifies the max frag size in bytes. Messages larger than that are

fragmented.

Note

TCP protocol already provides fragmentation but a fragmentation

JGroups protocol is still needed if FC is used. The reason for this is

that if you send a message larger than FC.max_bytes, FC protocol

would block. So, frag_size within FRAG2 needs to be set to always be

less than FC.max_bytes.

7.4. State Transfer

The state transfer service transfers the state from an existing node (i.e., the cluster

coordinator) to a newly joining node. It is configured in the pbcast.STATE_TRANSFER

sub-element under the JGroups Config element. It does not have any configurable

attribute. Here is an example configuration.

<pbcast.STATE_TRANSFER down_thread="false" up_thread="false"/>

7.5. Distributed Garbage Collection

In a JGroups cluster, all nodes have to store all messages received for potential

retransmission in case of a failure. However, if we store all messages forever, we

will run out of memory. So, the distributed garbage collection service in JGroups

periodically purges messages that have seen by all nodes from the memory in each

node. The distributed garbage collection service is configured in the pbcast.STABLE

sub-element under the JGroups Config element. Here is an example configuration.

<pbcast.STABLE stability_delay="1000"

 desired_avg_gossip="5000"

 down_thread="false" up_thread="false"

 max_bytes="400000"/>

The configurable attributes in the pbcast.STABLE element are as follows.

Merging

91

• desired_avg_gossip specifies intervals (in milliseconds) of garbage collection

runs. Value 0 disables this service.

• max_bytes specifies the maximum number of bytes received before the cluster

triggers a garbage collection run. Value 0 disables this service.

• stability_delay specifies delay before we send STABILITY msg (give others a

change to send first). If used together with max_bytes, this attribute should be set

to a small number.

Note

Set the max_bytes attribute when you have a high traffic cluster.

7.6. Merging

When a network error occurs, the cluster might be partitioned into several different

partitions. JGroups has a MERGE service that allows the coordinators in partitions to

communicate with each other and form a single cluster back again. The flow control

service is configured in the MERGE2 sub-element under the JGroups Config element.

Here is an example configuration.

<MERGE2 max_interval="10000"

 min_interval="2000"

 down_thread="false" up_thread="false"/>

The configurable attributes in the FC element are as follows.

• max_interval specifies the maximum number of milliseconds to send out a

MERGE message.

• min_interval specifies the minimum number of milliseconds to send out a MERGE

message.

JGroups chooses a random value between min_interval and max_interval to

send out the MERGE message.

Note

The cluster states are not merged in a merger. This has to be done

by the application. If MERGE2 is used in conjunction with TCPPING,

the initial_hosts attribute must contain all the nodes that could

potentially be merged back, in order for the merge process to work

properly. Otherwise, the merge process would not merge all the

Chapter 7. JBossCache and JGr...

92

nodes even though shunning is disabled. Alternatively use MPING,

which is commonly used with TCP to provide multicast member

discovery capabilities, instead of TCPPING to avoid having to specify

all the nodes.

7.7. Binding JGroups Channels to a particular interface

In the Transport Protocols section above, we briefly touched on how the interface to

which JGroups will bind sockets is configured. Let's get into this topic in more depth:

First, it's important to understand that the value set in any bind_addr element in

an XML configuration file will be ignored by JGroups if it finds that system property

jgroups.bind_addr (or a deprecated earlier name for the same thing, bind.address)

has been set. The system property trumps XML. If JBoss AS is started with the -b

(a.k.a. --host) switch, the AS will set jgroups.bind_addr to the specified value.

Beginning with AS 4.2.0, for security reasons the AS will bind most services to

localhost if -b is not set. The effect of this is that in most cases users are going to be

setting -b and thus jgroups.bind_addr is going to be set and any XML setting will be

ignored.

So, what are best practices for managing how JGroups binds to interfaces?

• Binding JGroups to the same interface as other services. Simple, just use -b:

./run.sh -b 192.168.1.100 -c all

• Binding services (e.g., JBoss Web) to one interface, but use a different one for

JGroups:

./run.sh -b 10.0.0.100 -Djgroups.bind_addr=192.168.1.100 -c all

Specifically setting the system property overrides the -b value. This is a common

usage pattern; put client traffic on one network, with intra-cluster traffic on another.

• Binding services (e.g., JBoss Web) to all interfaces. This can be done like this:

./run.sh -b 0.0.0.0 -c all

However, doing this will not cause JGroups to bind to all interfaces! Instead ,

JGroups will bind to the machine's default interface. See the Transport Protocols

section for how to tell JGroups to receive or send on all interfaces, if that is what

you really want.

• Binding services (e.g., JBoss Web) to all interfaces, but specify the JGroups

interface:

Isolating JGroups Channels

93

./run.sh -b 0.0.0.0 -Djgroups.bind_addr=192.168.1.100 -c all

Again, specifically setting the system property overrides the -b value.

• Using different interfaces for different channels:

./run.sh -b 10.0.0.100 -Djgroups.ignore.bind_addr=true -c all

This setting tells JGroups to ignore the jgroups.bind_addr system property, and

instead use whatever is specfied in XML. You would need to edit the various XML

configuration files to set the bind_addr to the desired interfaces.

7.8. Isolating JGroups Channels

Within JBoss AS, there are a number of services that independently create JGroups

channels -- 3 different JBoss Cache services (used for HttpSession replication,

EJB3 SFSB replication and EJB3 entity replication) along with the general purpose

clustering service called HAPartition that underlies most other JBossHA services.

It is critical that these channels only communicate with their intended peers; not

with the channels used by other services and not with channels for the same

service opened on machines not meant to be part of the group. Nodes improperly

communicating with each other is one of the most common issues users have with

JBoss AS clustering.

Whom a JGroups channel will communicate with is defined by its group name,

multicast address, and multicast port, so isolating JGroups channels comes down

to ensuring different channels use different values for the group name, multicast

address and multicast port.

To isolate JGroups channels for different services on the same set of AS instances

from each other, you MUST change the group name and the multicast port. In other

words, each channel must have its own set of values.

For example, say we have a production cluster of 3 machines, each of which has

an HAPartition deployed along with a JBoss Cache used for web session clustering.

The HAPartition channels should not communicate with the JBoss Cache channels.

They should use a different group name and multicast port. They can use the same

multicast address, although they don't need to.

To isolate JGroups channels for the same service from other instances of the service

on the network, you MUST change ALL three values. Each channel must have its

own group name, multicast address, and multicast port.

For example, say we have a production cluster of 3 machines, each of which has an

HAPartition deployed. On the same network there is also a QA cluster of 3 machines,

Chapter 7. JBossCache and JGr...

94

which also has an HAPartition deployed. The HAPartition group name, multicast

address, and multicast port for the production machines must be different from those

used on the QA machines.

7.9. Changing the Group Name

The group name for a JGroups channel is configured via the service that starts the

channel. Unfortunately, different services use different attribute names for configuring

this. For HAPartition and related services configured in the deploy/cluster-service.xml

file, this is configured via a PartitionName attribute. For JBoss Cache services, the

name of the attribute is ClusterName.

Starting with JBoss AS 4.0.4, for the HAPartition and all the standard JBoss Cache

services, we make it easy for you to create unique groups names simply by using the

-g (a.k.a. –partition) switch when starting JBoss:

./run.sh -g QAPartition -b 192.168.1.100 -c all

This switch sets the jboss.partition.name system property, which is used as a

component in the configuration of the group name in all the standard clustering

configuration files. For example,

<attribute

 name="ClusterName">Tomcat-${jboss.partition.name:Cluster}</

attribute>

7.10. Changing the multicast address and port

The -u (a.k.a. --udp) command line switch may be used to control the multicast

address used by the JGroups channels opened by all standard AS services.

/run.sh -u 230.1.2.3 -g QAPartition -b 192.168.1.100 -c all

This switch sets the jboss.partition.udpGroup system property, which you can see

referenced in all of the standard protocol stack configs in JBoss AS:

<Config>

<UDP mcast_addr="${jboss.partition.udpGroup:228.1.2.3}"

Unfortunately, setting the multicast ports is not so simple. As described above,

by default there are four separate JGroups channels in the standard JBoss AS all

configuration, and each should be given a unique port. There are no command line

switches to set these, but the standard configuration files do use system properties

to set them. So, they can be configured from the command line by using -D. For

example,

JGroups Troubleshooting

95

 /run.sh -u 230.1.2.3 -g QAPartition

 -Djboss.hapartition.mcast_port=12345

 -Djboss.webpartition.mcast_port=23456

 -Djboss.ejb3entitypartition.mcast_port=34567

 -Djboss.ejb3sfsbpartition.mcast_port=45678 -b 192.168.1.100 -c all

Why isn't it sufficient to change the group name?

If channels with different group names share the same multicast address and

port, the lower level JGroups protocols in each channel will see, process and

eventually discard messages intended for the other group. This will at a minimum

hurt performance and can lead to anomalous behavior.

Why do I need to change the multicast port if I change the address?

It should be sufficient to just change the address, but there is a problem on several

operating systems whereby packets addressed to a particular multicast port are

delivered to all listeners on that port, regardless of the multicast address they are

listening on. So the recommendation is to change both the address and the port.

7.11. JGroups Troubleshooting

Nodes do not form a cluster

Make sure your machine is set up correctly for IP multicast. There are 2 test

programs that can be used to detect this: McastReceiverTest and McastSenderTest.

Go to the $JBOSS_HOME/server/all/lib directory and start McastReceiverTest, for

example:

java -cp jgroups.jar org.jgroups.tests.McastReceiverTest

 -mcast_addr 224.10.10.10 -port 5555

Then in another window start McastSenderTest:

java -cp jgroups.jar org.jgroups.tests.McastSenderTest -mcast_addr

 224.10.10.10 -port 5555

If you want to bind to a specific network interface card (NIC), use -bind_addr

192.168.0.2, where 192.168.0.2 is the IP address of the NIC to which you want to

bind. Use this parameter in both the sender and the receiver.

You should be able to type in the McastSenderTest window and see the output in

the McastReceiverTest window. If not, try to use -ttl 32 in the sender. If this still

fails, consult a system administrator to help you setup IP multicast correctly, and ask

the admin to make sure that multicast will work on the interface you have chosen or,

if the machines have multiple interfaces, ask to be told the correct interface. Once

Chapter 7. JBossCache and JGr...

96

you know multicast is working properly on each machine in your cluster, you can

repeat the above test to test the network, putting the sender on one machine and the

receiver on another.

7.12. Causes of missing heartbeats in FD

Sometimes a member is suspected by FD because a heartbeat ack has not been

received for some time T (defined by timeout and max_tries). This can have multiple

reasons, e.g. in a cluster of A,B,C,D; C can be suspected if (note that A pings B, B

pings C, C pings D and D pings A):

• B or C are running at 100% CPU for more than T seconds. So even if C sends a

heartbeat ack to B, B may not be able to process it because it is at 100%

• B or C are garbage collecting, same as above.

• A combination of the 2 cases above

• The network loses packets. This usually happens when there is a lot of traffic on

the network, and the switch starts dropping packets (usually broadcasts first, then

IP multicasts, TCP packets last).

• B or C are processing a callback. Let's say C received a remote method call

over its channel and takes T+1 seconds to process it. During this time, C will not

process any other messages, including heartbeats, and therefore B will not receive

the heartbeat ack and will suspect C.

	JBoss Application Server 5
	Table of Contents
	Chapter 1. Clustering
	1. Introduction
	2. Cluster Definition
	3. HAPartition
	4. JBoss Cache channels
	4.1. Service Architectures
	4.1.1. Client-side interceptor architecture
	4.1.2. Load balancer

	4.2. Load-Balancing Policies
	4.2.1. Client-side interceptor architecture
	4.2.2. External load balancer architecture

	4.3. Farming Deployment
	4.4. Distributed state replication services

	Chapter 2. Clustered JNDI Services
	1. How it works
	2. Client configuration
	2.1. For clients running inside the application server
	2.1.1. Accessing HA-JNDI Resources from EJBs and WARs -- Environment Naming Context
	2.1.2. Why do this programmatically and not just put this in a jndi.properties file?
	2.1.3. How can I tell if things are being bound into HA-JNDI that shouldn't be?

	2.2. For clients running outside the application server
	2.3. JBoss configuration

	Chapter 3. Clustered Session EJBs
	1. Stateless Session Bean in EJB 2.x
	2. Stateful Session Bean in EJB 2.x
	2.1. The EJB application configuration
	2.2. Optimize state replication
	2.3. The HASessionState service configuration
	2.4. Handling Cluster Restart
	2.5. JNDI Lookup Process
	2.6. SingleRetryInterceptor

	3. Stateless Session Bean in EJB 3.0
	4. Stateful Session Beans in EJB 3.0

	Chapter 4. Clustered Entity EJBs
	1. Entity Bean in EJB 2.x
	2. Entity Bean in EJB 3.0
	2.1. Configure the distributed cache
	2.2. Configure the entity beans for cache
	2.3. Query result caching

	Chapter 5. HTTP Services
	1. Configuring load balancing using Apache and mod_jk
	2. Download the software
	3. Configure Apache to load mod_jk
	4. Configure worker nodes in mod_jk
	5. Configuring JBoss to work with mod_jk
	6. Configuring HTTP session state replication
	7. Enabling session replication in your application
	8. Using FIELD level replication
	9. Monitoring session replication
	10. Using Clustered Single Sign On
	11. Clustered Singleton Services
	11.1. HASingletonDeployer service
	11.2. Mbean deployments using HASingletonController
	11.3. HASingleton deployments using a Barrier
	11.4. Determining the master node

	Chapter 6. JBoss Messaging Clustering Notes
	1. Unique server peer id
	2. Clustered destinations
	3. Clustered durable subs
	4. Clustered temporary destinations
	5. Non clustered servers
	6. Message ordering in the cluster
	7. Idempotent operations
	7.1. Clustered connection factories

	Chapter 7. JBossCache and JGroups Services
	1. JGroups Configuration
	2. Common Configuration Properties
	3. Transport Protocols
	3.1. UDP configuration
	3.2. TCP configuration
	3.3. TUNNEL configuration

	4. Discovery Protocols
	4.1. PING
	4.2. TCPGOSSIP
	4.3. TCPPING
	4.4. MPING

	5. Failure Detection Protocols
	5.1. FD
	5.2. FD_SOCK
	5.3. VERIFY_SUSPECT
	5.4. FD versus FD_SOCK

	6. Reliable Delivery Protocols
	6.1. UNICAST
	6.2. NAKACK

	7. Other Configuration Options
	7.1. Group Membership
	7.2. Flow Control
	7.2.1. Why is FC needed on top of TCP ? TCP has its own flow control !
	7.2.2. So do I always need FC?

	7.3. Fragmentation
	7.4. State Transfer
	7.5. Distributed Garbage Collection
	7.6. Merging
	7.7. Binding JGroups Channels to a particular interface
	7.8. Isolating JGroups Channels
	7.9. Changing the Group Name
	7.10. Changing the multicast address and port
	7.11. JGroups Troubleshooting
	7.12. Causes of missing heartbeats in FD

