
The Professional Open Source™ Company

JBossRemoting

Architecture Overview

2 The Professional Open Source™ Company

What is JBoss Remoting

• JBoss Remoting is a framework with a single, simple API for
making network based invocations and other network related
services.

• Features of JBoss Remoting:
Server identification – a simple String identifier which
allows for remoting servers to be identified and called
upon.
Pluggable transports – can use different protocol
transports, such as socket, rmi, http, etc., via the same
remoting API.
Pluggable data marshallers – can use different data
marshallers and unmarshallers to convert the invocation
payloads into desired data format for wire transfer.
Automatic discovery – can detect remoting servers as
they come on and off line.
Server grouping – ability to group servers by logical
domains, so only communicate with servers within
specified domains.

3 The Professional Open Source™ Company

What is JBoss Remoting

• Features of JBoss Remoting (cont.):
Callbacks – can receive server callbacks via push and
pull models. Pull model allows for persistent stores and
memory management.
Asynchronous calls – can make asynchronous, or one
way, calls to server.
Local invocation – if making an invocation on a
remoting server that is within the same process space,
remoting will automatically make this call by reference,
to improve performance.
Remote classloading – allows for classes, such as
custom marshallers, that do not exist within client to be
loaded from server.
Sending of streams – allows for clients to send input
streams to server, which can be read on demand on the
server.

4 The Professional Open Source™ Company

Core Architecture

• Client – the external API access point for client code.
• Client/Server Invoker – protocol specific implementation. For example,

SocketClientInvoker and SocketServerInvoker.
• Marshaller/UnMarshaller – receives the streams from the invoker

converting wire data to Object form and vise versa.
• Invocation Handler – end target interface implemented by user that

receives the invocation from the client.

5 The Professional Open Source™ Company

Architecture - InvokerLocator

• InvokerLocator – is the Object that uniquely identifies
a remoting server. The invoker locator can be
constructed using a simple uri String. The
InvokerLocator is what is used to construct both the
remoting client and the remoting server; nothing else
is needed.

• Examples of InvokerLocator uri strings:
socket://test.somedomain.com:5400
http://test.somedomain.com:5401
rmi:/test.somedomain.com:5402
socket://test.somedomain.com:8084/?enableTcpNoD
elay=false&clientMaxPoolSize=30
socket://${jboss.bind.address}:4446/?datatype=inv
ocation

http://test.somedomain.com:5401/

6 The Professional Open Source™ Company

Architecture – server side

• Connector – the service that binds
the invocation handler(s) to the
server invoker. The Connector is
used as the external point for
configuration and control of the
remoting server.

• InvokerRegistry – will create the
server invoker for the Connector
based on locator uri.

• MarshalFactory – creates the
appropriate marshaller and
unmarshaller for the server invoker
based on data type specified by
locator or by default data type of for
the server invoker.

7 The Professional Open Source™ Company

Architecture – client side

• InvokerRegistry – will create the
client invoker for the Client based
on locator uri.

• MarshalFactory – will created the
appropriate marshaller and
unmarshaller to be used by the
client invoker.

8 The Professional Open Source™ Company

Architecture - detection

• Detector - will broadcast
(multicast) or bind (JNDI)
detection messages based on
server invokers registered within
InvokerRegistry. Detection
message will contain locator uri
and supported subsystems.

• Detector - will receive (multicast)
or poll for (JNDI) detection
messages and publish changes to
topology to the NetworkRegistry

• NetworkRegistry – contains listing
of all remoting servers available.

9 The Professional Open Source™ Company

Configuration

• Configuration for remoting can be
handled either programmatically or
via JBoss service xml (when deployed
within JBoss AS container).

• The full documentation for
configuration can be found within the
remoting User Guide or on the Wiki
(see links on
http://www.jboss.org/products/remoting).

http://www.jboss.org/products/remoting

10 The Professional Open Source™ Company

JBoss Remoting information

• Project page - http://www.jboss.org/products/remoting

User Guide
Wiki
Demo
Forum

• Introducing JBoss Remoting
published at OnJava.com
http://www.onjava.com/pub/a/onjava/2005/02/23/remoting.html

http://www.jboss.org/products/remoting
http://www.onjava.com/pub/a/onjava/2005/02/23/remoting.html

11 The Professional Open Source™ Company

Sample Code

Sample code for starting remoting server.

String locatorURI = “socket://localhost:5400”;
InvokerLocator locator = new InvokerLocator(locatorURI);
Connector connector = new Connector();
connector.setInvokerLocator(locator.getLocatorURI());
connector.create();

SampleInvocationHandler invocationHandler = new SampleInvocationHandler();
// first parameter is sub-system name. can be any String value.
connector.addInvocationHandler("sample", invocationHandler);

connector.start();

12 The Professional Open Source™ Company

Sample Code

Implementation for the ServerInvocationHandler.

public static class SampleInvocationHandler implements ServerInvocationHandler
{

public Object invoke(InvocationRequest invocation) throws Throwable
{

// Print out the invocation request
System.out.println("Invocation request is: " + invocation.getParameter());
// Just going to return static string as this is just simple example code.
return “This is the response”;

}

public void addListener(InvokerCallbackHandler callbackHandler) { … }
public void removeListener(InvokerCallbackHandler callbackHandler) { … }
public void setMBeanServer(MBeanServer server) { … }
public void setInvoker(ServerInvoker invoker) { … }

}

13 The Professional Open Source™ Company

Sample Code

Remoting client code.

String locatorURI = “socket://localhost:5400”;
InvokerLocator locator = new InvokerLocator(locatorURI);
System.out.println("Calling remoting server with locator uri of: " + locatorURI);

Client remotingClient = new Client(locator);
Object response = remotingClient.invoke("Do something");

System.out.println("Invocation response: " + response);

	JBossRemoting
	What is JBoss Remoting
	What is JBoss Remoting
	Core Architecture
	Architecture - InvokerLocator
	Architecture – server side
	Architecture – client side
	Architecture - detection
	Configuration
	JBoss Remoting information
	Sample Code
	Sample Code
	Sample Code

