The Multiplex Subsystem of the JBoss
Remoting Project

RonSigal

November 5, 2005
Copyright©2005Ron Sigal

1. Introduction.

The Multiplex subsystem of the JBoss Remoting Project (referred to herein on occasion simply as “Muliplex”) supports the
multiplexing of multiple data streams over a single network connection, based on a reimplementation of the following classes
fromj ava. net :

1. Socket
2. Server Socket
3. Socket | nput Stream

4. Socket Qut put St ream

and the following classes from j avax. net :

1. SocketFactory
2. Server Socket Factory

It is motivated by circumstances in which the number of available ports on a system is restricted by afirewall or other consid-
erations. Since the Remoting project is the principal client of Multiplex, we illustrate multiplexing primarily in the context of a
Remoting application. Remoting supports two modes of client-server communication: (1) method calls from client to server,
with a synchronous response, and (2) client requests for an asynchronous callback from the server. The usua need for separate
ports to support both synchronous and asynchronous modes is obviated by the Multiplexing subsystem.

2. The Prime Scenario.

The typical application of multiplexing in the Remoting context is illustrated by the Prime Scenario, in which a client requir-
ing both synchronous and asynchronous responses from a server is behind a firewall and has only a single port at its disposal.
Without the restriction to a single port, we would have the situation in Figure 1, which requires no multiplexing. With the re-
striction, we have the Prime Scenario, asin Figure 2.

JBossNovember 5, 2005 1

The Multiplex Subsystem of the JBoss Remoting Project

key:
®— . —®
callbacks + ~port
— _p" —
method calls @ - socket
client server

Figure 1. Method calls and callbacks with no port restrictions.

-method call stream

\ L callbacks L r'/

- callback stream

‘if "meMcalls T \:\ - port
- socket

client server

ot

- virtual socket

Figure 2. Method calls and callbacks in the Prime Scenario.

Multiplexing is supported primarily by the concept of the virtual socket, implemented by the Vi rt ual Socket Class. Virtu-
al Socket isasubclass of j ava. i 0. Socket , and supports the full socket API. Asis the case with actual sockets, virtual sockets
are created in one of two ways:

1. aconstructor (or factory) call on aclient, or
2. acaltotheaccept () method of aserver socket on a server.

Accordingly, the other principal Multiplex concept isthe virtual server socket, implemented by two classes:

1. MasterServer Socket , and

2. Virtual Server Socket .

JBossNovember 5, 2005 2

The Multiplex Subsystem of the JBoss Remoting Project

These are both subclasses of j ava. i 0. Server Socket , and both implement the full server socket API. Since virtual sockets are
implemented on the foundation of actual sockets, and the creation of actual sockets requires a server socket, we need the sup-
port of actual server socketsin the creation of virtual sockets. It isthe role of Mast er Ser ver Socket to provide that support. The
accept () method of Mast er Server Socket callS super. accept () to create an actual socket which is then wrapped in a mech-
anism which supports one or more virtual sockets. Every Muliplex application requires at least one Mast er Ser ver Socket , and
the Prime Scenario requires exactly one. Figure 3 illustrates the process in which a virtual socket vl connects to a Mas-
t er Ser ver Socket , which creates and returns a reference to a new virtua socket v2.

- port

return v2
5 — ey — T~ @ -socket
re que st conne ction T D - virtual socket
(@) - MasterServerSocket
client server
—P» - cCreates

Figure 3. Setting up a synchronous connection.

In Figure 3 we have a connection between v1 and v2, which can support synchronous communication but which offers nothing
not provided by actual sockets. The support of multiplexed callbacks, however, requires the use of the other virtual server
socket class, Vi rt ual Ser ver Socket . Unlike Mast er Ser ver Socket , Vi r t ual Ser ver Socket does not depend on superclass facil-
ities, but rather it uses an ordinary client socket, with which implementsits own version of the accept () method, ableto create
any number of virtual sockets, al of which share a single port with the Vi rt ual Server Socket . It is important to understand
how its use of an actual socket determines the nature of a Vi rt ual Ser ver Socket . Unlike a server socket, a client socket must
be connected to another socket to function, and a Vi rtual Server Socket has the same property. It follows that a Virtu-
al Server Socket Can process reguests from just one host, the host to which its actual socket is connected.

Therole of the vi rt ual Server Socket isillustrated in Figure 4. A constructor (or factory method, which calls a constructor) is
called on the server to create virtual socket v3 to support callbacks. The constructor sends a connection request to the Vi rt u-
al Server Socket on the client, which creates new virtual socket v4 and sends back to v3 a reference to v4. At this point the
Prime Scenariois set up.

JBossNovember 5, 2005 3

The Multiplex Subsystem of the JBoss Remoting Project

- port

re quest connection
B

- real socket

- virtual socket
return vd

- MasterServerSocket

al - VinualServerSocket

client server g -creates

Figure 4. Adding an asynchronous connection to Figure 3.

3. Virtual socket groups.

In order to understand the creation of structures like the Prime Scenario and others described below, it is important to under-
stand the concept of avirtual socket group. A virtual socket group is a set of virtual sockets, and zero or one Vi r t ual Ser ver -

Socket S, sharing a single actual socket. We say that the socket group is based on its actual socket. Depending on the state of its
underlying actual socket and the nature of its peer socket group, if any, a socket group may be in one of three states. Let G bea
socket group based on actual socket S. Then G may be

1. bound: Sisbound but not connected, or
2. connected: Sisconnected to socket S and the socket group based on S does not contain a Vi r t ual Ser ver Socket , OF
3. joinable: Sisconnected to socket S and the socket group based on S does contain a Vi r t ual Ser ver Socket .

Although it is possible for a socket to be neither bound nor connected, we do not consider a socket group to exist until its un-
derlying socket is at least bound to a local address. A connected or joinable socket group is said to be visible, and a bound
socket group isinvisible. A socket group is characterized by the pair of addresses

(local Address, remoteAddress)

where these are the local and remote addresses of the actual socket underlying the socket group. local Address may take the
special form (*, port), where the wildcard value “*” denotes any hostname by which the local host is known. Depending on the
state of the socket group, remoteAddress may have the special value undefined, indicating that a connection has not yet been
established.

There are two ways of creating a new virtual socket group or of joining an existing socket group: through a binding action or

JBossNovember 5, 2005 4

The Multiplex Subsystem of the JBoss Remoting Project

aconnecting action. A binding action is either

1. acall toany of the vi rt ual Server Socket constructors other than the default constructor (i.e., those with a port paramet-
er), or

2. acall toabind() methodin Virtual Socket Or Virtual Server Socket .

A connecting action belongs to one of five categories:

1. acal to any virtual Socket Or Virtual Server Socket constructor that requires a remote address (note that unlike
java. net. Server Socket , Vi rt ual Server Socket has asuch a constructor),

2. acdltoaconnect () method (again, Vi rt ual Server Socket hasanonstandard connect () method),
3. acaltovirtual Server Socket . accept (),
4. acall to Mast er Server Socket . accept (), Or

5. acall to Mast er Server Socket . accept Ser ver Socket Connecti on().

Each binding action has an associated local address, and each connecting action has an associated remote address and an op-
tional local address. For binding actions, and connecting actionsin the first two categories, the addresses are given explicitly in
the method call. For acall to vi rt ual Server Socket . accept (), the addresses are those of the socket group to which the server
socket belongs, and for the two Mast er Ser ver Socket methods, the addresses are those of the actual socket they create.

Depending on their associated local and remote addresses and on the socket groups that exist at the time of the action, a bind-
ing or connecting action may have the effect of creating a new socket group or adding a new member to an existing socket
group. The rules are straightforward, but there is one source of possible confusion, the accidental connection problem dis-
cussed below, that must be guarded against. Let V be a virtual socket or virtual server socket undergoing either a binding or
connecting action.

1. binding action rule: If there are visible socket groups whose local address matches the action's local address, then V joins
one of them chosen at random. Otherwise, a new bound socket group is created and V joinsiit.

2. connecting action rule:

a. For actionsin thefirst two categories, where Visavi rt ual Socket (respectively, avirt ual Server Socket):

i. If the action has a remote address but no local address:

A. If there are any joinable (resp., connected) socket groups with a matching remote address, then V joins one
of them chosen at random.

B. If there are no such socket groups, an attempt is made to connect to a Mast er Ser ver Socket at the remote
address, and if the attempt succeeds, a new socket group is created and V joinsiit.

If the action has both alocal address and aremote address:

JBossNovember 5, 2005 5

The Multiplex Subsystem of the JBoss Remoting Project

A. If thereisajoinable (resp., connected) socket group with matching addresses, then V joinsiit

B. Otherwise, if the local address (in particular, its port) is currently in use, the action results in a | Cexcep-
tion.

C. Otherwise, a new socket group G is created and bound to the local address. Then an attempt is made to
connect to aMast er Ser ver Socket a the remote address, and if the attempt succeeds, V joins G.

b. For virtual Server Socket . accept () calls, the new virtual socket joins the socket group to which the server socket
belongs.

Cc. For masterServer Socket . accept () calls, anew socket group is created with the new virtual socket asits first mem-
ber.

d. For Master Server Socket . accept Ser ver Socket Connecti on() calls, a new socket group with zero members is cre-
ated.

NOTES:

A bound socket group is inaccessible to the connect action rules (which is why it is called "invisible"). The reason is to
avoid a situation in which one virtual socket "highjacks' another virtual socket's group. Suppose that virtual socket v1
binds itself to ("localhost”, 5555), but before it gets a chance to connect to (“www.jboss.com”, 6666), virtual socket v2
binds to ("localhost”, 5555) and then connects to ("www.ibm.com”, 7777). Then when vl tries to connect to
("www.jboss.com”, 6666), the attempt fails. This situation cannot occur because at the moment when v2 does its bind,
vl1's socket group isinvisible and v2 is forced to create it own socket group.

The connecting action rules are different for Vi r t ual Socket and Vi rt ual Server Socket (specifically, the former can join
only joinable socket groups, while the later can join connected socket groups) because Vi rt ual Socket needs a Virt u-
al Server Socket to create a peer virtual socket for it to connect to, and a Vi rt ual Ser ver Socket does not need such a
peer.

N.B. It isimportant to understand a possible side effect of a binding action. When V joins a socket group through a bind-
ing action, it is possible that the group is aready connected. In this case, a subsequent connecting action (in particular, a
call to connect ()) to any address other than the socket group's remote address isinvalid, leading to an | Cexcept i on With
the message "socket is aready connected.”. Thisis called the accidental connection problem, and it is avoidable. Both
Vi rtual Socket and Vi rtual Server Socket have constructors and nonstandard versions of the connect () which accept
both local and remote addresses. These treat binding and connecting as a single atomic process.

The socket group rules areillustrated in the following two sections.

4. Coding the Prime Scenario.

In order to set up the Prime Scenario, the following steps are necessary (the socket names conform to Figure 4):

1.

On the server, create aMast er Ser ver Socket and bind it to port P.

JBossNovember 5, 2005 6

The Multiplex Subsystem of the JBoss Remoting Project

2. Ontheclient, create avirtual socket vl and connect it to port P.

3. Let Q bethe port on the client to which v1 is bound. Create a Vi rt ual Server Socket on the client, bind it to Q, and con-
nect it to P.

4. Onthe server, create avirtual socket v3 and connect it to port Q.

The Prime Scenario provides an example of creating socket groups. In step 2, a socket group G1 is created on the client
through the construction of v1. It enters the connected state, bound to an arbitrary port Q on the client and connected to port P
on the server. In step 3 a Vi rt ual Ser ver Socket joins G1 by way of binding to Q on the client and connecting to P on the serv-
er. In fact, the socket group rules imply that it is enough to bind the server socket to port Q. Connecting it to P on the server
occurs as a side effect of the binding action. Finally, step 4 adds virtual socket v4 to G1. While G1 is being built on the client, a
socket group G2 is being built on the server. Step 2 results in the creation of G2, along with its first member, a new virtua
socket, v2, returned by the accept () method of the Mast er Ser ver Socket . Step 4 adds a second member, v3, to G2.

See Listing 1 and Listing 2 for a simple example of coding these steps. Variants of these samples may be found in the directory
/org/jboss/remoting/samples/multiplex.

5. More general scenarios.

Although Multiplex was motivated by the Prime Scenario, it can also support other connection structures. We describe two al-
ternatives in this section.

5.1. The N-socket scenario.

The N-socket scenario demonstrates that a socket group is not restricted to just two virtual sockets. It also demonstrates that a
Vi rt ual Server Socket does not depend on the prior existence of a connected virtual socket. Aslong as it has access to a Mas-

t er Ser ver Socket ready to accept a connection, it can get started. In fact, the Mast er Ser ver Socket . accept () method will si-
lently accept a connection from a Vi r t ual Ser ver Socket while it iswaiting for a connection request from a virtual socket, but
the accept Ser ver Socket Connect i on() method is designed specifically to accept a connection request from avi rt ual Ser ver -

Socket .

The connection structure of the N-socket scenario is depicted in Figure 5 (for N = 3), and the code for asimple client and serv-
er isgivenin Listing 3 and Listing 4. In the example a socket group with 3 elements is constructed on the server. It is created
with the call

server Socket . accept Ser ver Socket Connecti on()

which creates an actual socket and a socket group which, though it has no members, is connected to a Vi r t ual Ser ver Socket
on the client. The next three lines,

Socket socket 1
Socket socket 2
Socket socket 3

new Vi rtual Socket (“l ocal host”, 5555);
new Vi rtual Socket (“I ocal host”, 5555);
new Vi rtual Socket (“I ocal host”, 5555);

JBossNovember 5, 2005 7

The Multiplex Subsystem of the JBoss Remoting Project

populate the socket group with three virtual sockets. On the client there is a socket group with four members, first created with
the call

server Socket . connect (connect Addr ess) ;

and then further populated by the three subsequent lines

server Socket . accept ();
server Socket . accept ();
server Socket . accept ();

Socket socket 1
Socket socket 2
Socket socket 3

Variants of the N-Socket Scenario client and server may be found in the directory /org/jboss/remoting/samples/multiplex.

- port

-virtual socket

e
T
@ - real socket

- MasterServerSocket

il - VirtualServerSocket

client server g -creates

Figure 5. The connection structure in the N-Socket Scenario.

5.2. The Symmetric Scenario.

The connection structure in the Symmetric Scenario consists of socket groups on two hosts, each of which containsavi rt u-
al Server Socket and some number of virtual sockets. The scenario is not truly symmetric, since each connection structure has
to begin with a connection request to a Mast er Ser ver Socket , but once that happens the “client” and “server” are identical, as
depicted in Figure 6d. Once the line

JBossNovember 5, 2005 8

The Multiplex Subsystem of the JBoss Remoting Project

server Socket . connect (addr ess) ;

on the client (see Listing 5) and the line

int port = mss. accept Server Socket Connection();

on the server (see Listing 6) are executed, the client has a socket group characterized by the address pair

((*, 5555), (“localhost*, 7777))

and consisting of a Vi rt ual Server Socket , and the server has a socket group with zero members characterized by the address
pair

(“localhost*, 7777), (“localhost”, 5555)).

(See Figure 6a.) And oncetheline

vss. connect (address);

is executed on the server, the new Vi rt ual Ser ver Socket joinsthe server's socket group, as shown in Figure 6b. After the lines

Socket virtual Socket1l = new Virtual Socket (“l ocal host”, port);

and

Socket virtual Socket1l = vss. accept();

are executed on the client and server, respectively, each socket group has a new virtual socket (see Figure 6¢), and finally, after
the lines

JBossNovember 5, 2005 9

The Multiplex Subsystem of the JBoss Remoting Project

Socket virtual Socket2 = new Virtual Socket (“l ocal host”, 5555);

and

Socket virtual Socket2 = server Socket. accept () ;

are executed on the server and client, respectively, each socket group has a second virtual socket (see Figure 6d).

L1 - port

@ - real socket

0 - virtual socket

{ - MasterServerSocket

al - VirtualServerSocket

client server — g -creates

Figur e 6a. The connection structure in the Symmetric Scenario: stage 1.

JBossNovember 5, 2005

10

The Multiplex Subsystem of the JBoss Remoting Project

- port

L
T
@ - real socket
O

- virtual socket

- MasterServerSocket

,j:’ - VirtualServerSocket

client server — g -Creates

Figure 6b. The connection structure in the Symmetric Scenario: stage 2.

—L - port

@ -real socket

0 - virtual socket

F o
= fwl - MasterServerSocket

quf:} - VirtualServerSocket

client server — g -creates

Figur e 6¢. The connection structure in the Symmetric Scenario: stage 3.

JBossNovember 5, 2005

The Multiplex Subsystem of the JBoss Remoting Project

- port

- real socket

- virtual socket

- MasterServerSocket

- VirtualServerSocket

client server : —

Figure 6d. The connection structure in the Symmetric Scenario: stage 4.

6. Factories.

In addition to virtual sockets and virtual server sockets, Multiplex also implements the two factories associated with sockets:
the socket factory and the server socket factory. Vi rt ual Socket Fact ory extendsj avax. net . Socket Fact ory and reimplements
all of itsmethods. Vi rt ual Ser ver Socket Fact ory extendsj avax. net . Ser ver Socket Fact ory and reimplements all of its meth-
ods (though the backlog parameter is ignored). These two classes make it possible for a section of code to be completely un-
aware that it is using virtual sockets instead of actual sockets. The only configuration involved in the use of these factoriesis
the need to tell Vi rt ual Server Socket Fact ory Whether it is running on a client or a server, which tells it whether to create
Vi rt ual Server Socket S Of Mast er Ser ver Socket S, respectively. That notification is performed by the methods set onc i ent ()
and set OnSer ver (). See Listing 7 for an illustration of the idiomatic use of these classes, where the method useFact ori es()
refers only to the parent classes Socket Fact ory and Ser ver Socket Fact ory.

7. Performance.

It should come as no surprise that the classes in Muliplex perform more slowly than their non-virtual counterparts, since the
multiplexing of data streams requires extrawork. Multiplex uses two classes to perform input and output multiplexing: mil ti -
pl exi ngl nput St reamand Mul t i pl exi ngQut put St r eam Which are returned by the Vi r t ual Socket methods get | nput St rean()
and get Qut put St rean() , respectively. These classes subclassj ava. i o. | nput St reamand j ava. i o. Qut put St r eamand reimple-
ment all of their methods. Tests show that input/output by these classes is roughly four to five times slower than input/output
by their counterpart classes used by actual sockets, j ava. net. Socket | nput St reamand j ava. net . Socket Qut put St ream This
information is gathered from multiple runs of three tests:

bareinput: compares the transmission of bytes from a Sock-
et Qutput Stream to a Miltiplexingl nput Stream
with the transmission of bytes from a Socket Qut put -

JBossNovember 5, 2005 12

The Multiplex Subsystem of the JBoss Remoting Project

St reamto aSocket | nput St ream

bare output: compares the transmission of bytes from a mul ti -
pl exi ngQut put St ream tO @ Socket | nput St r eam With
the transmission of bytes from a Socket Qut put -
St reamto aSocket | nput St ream

socket input/output: compares the transmission of bytes from a mul ti -
pl exi ngQut put Stream tO0 a Miltiplexingl nput -
St ream With the transmission of bytes from a Sock-
et Qut put St r eamto a Socket | nput St r eam

Each of these tests was run 10 times, transmitting 100,000 bytes each time. Table 1 gives the factor by which the virtual socket
version of each test was slower than the actual socket version.

Table 1. Factors by which virtual socket input/output isslower than actual socket input/output.

bareinput bar e output socket input/output
2.25 1.63 3.19

minimum;
3.50 2.80 4,77

mean:
4.42 4.67 8.58

maximum:

8. APIs

One of the design goals of Multiplex isto make virtual sockets and their related classes as indistinguishable as possible from
their real counterparts. There are two areas in which Multiplex is detectibly different.

1. The use of the two types of virtual server sockets entails an extra degree of complexity in setting up a multiplexed con-
nection.

2. There are performance differences.

On the other hand, the virtual classes implement complete APIs, so that once a connection is established, a Vi r t ual Socket , for
example, can be passed to amethod in place of a Socket and will demonstrate the same behavior. Similarly, mul ti pl exi ngl n-
put St reans and Mul ti pl exi ngQut put St r eans are functionally indistinguishable from Socket | nput St r eans and Socket Qut -
put St r eans.

It may be useful, however, to be aware of some implementational differences between the two sets of classes. The public meth-
odsin the virtual classes can be placed in five categories.

JBossNovember 5, 2005 13

The Multiplex Subsystem of the JBoss Remoting Project

1. methodsimplemented directly by the class

2. methods inherited from the real superclass

3. methodsimplemented by delegation to the underlying real socket

4. methods whose behavior is essentially null (though they may throw an | CExcepti on if called on a closed virtual socket)
5. methods which have no counterpart in the real class

Categories 3, 4, and 5 are particularly informative. Methods in category 3 can be used to fine tune a multiplexed connection
by, for example, adjusting buffer sizes. Note that a method such as set Recei veBuf f er Si ze() may be caled on any virtua
socket in a socket group with the same effect as calling it on any other virtual socket in the same group. Methods in category 4
represent behavior that is not relevant to virtual sockets, and methods in category 5 represent behavior that is specific to the
specia nature of multiplexed connections. The category 5 version of Vi r t ual Socket . connect (),

connect (Socket Addr ess renot eAddr ess, Socket Address | ocal Address, int tineout)

exists to effect an atomic binding/connecting action to avoid the accidental connection problem discussed in the section on vir-
tual socket groups. The notion of connection isirrelevant to ordinary server sockets, but Vi r t ual Ser ver Socket has methods

connect (Socket Addr ess renpt eAddr ess, Socket Address | ocal Address, int tinmeout)

and i sConnect ed() because a connection must be established before accept () can function.

We also include in category 5 one of Vi rt ual Ser ver Socket 's nonstandard constructors, with the signature

Vi rtual Server Socket (| net Socket Addr ess renot eAddr ess, | net Socket Address | ocal Address, int timeout)

which calls the two-address form of connect ().

The public methods of the main Multiplex classes are categorized in Table 2 and Table 3. The only inherited methods among
the classes listed in Table 2 are found in Mast er Ser ver Socket , and we omit an explicit listing of them.

Note. The constructors of Vi rt ual Server Socket that take a backlog parameter ignore its value. The same is true for methods
of Vi rtual Server Socket Factory.

Table 2. Categories of public methodsin the primary public Multiplex classes

JBossNovember 5, 2005 14

The Multiplex Subsystem of the JBoss Remoting Project

category 1

Vi rt ual Socket

Vi rtual Server Socket Mast er Ser ver Socket

bi nd() accept () accept ()
cl ose() bi nd() toString()
connect () cl ose()

get | nput St ream()

get Qut put St r ean()

get SoTi nmeout ()

get SoTi meout ()

i sBound()

i sC osed()

i sd osed()

i sConnect ed()

set SoTi neout ()

toString()

i sl nput Shut down()

i sQut put Shut down()

set SoTi meout ()

shut downl nput ()

shut downQut put ()

toString()

JBossNovember 5, 2005

15

The Multiplex Subsystem of the JBoss Remoting Project

category 3

Vi rt ual Socket Vi rt ual Server Socket

get | net Addr ess() get | net Addr ess()

Mast er Ser ver Socket

get KeepAl i ve()/ set- getLocal Port()

KeepAl i ve()

get Local Address() get Local Socket Ad-
dress()

get Local Port () get Recei veBuf f er -
Si ze() / set Recei veBuf -
ferSize()

get Local Socket Ad- get ReuseAddr ess()/

dress() set ReuseAddr ess()

get Port ()

get Recei veBuf f er -
Si ze() / set Recei veBuf -
ferSize()

get Renot eSocket Ad-
dress()

get ReuseAddress()/
set ReuseAddr ess()

get SendBuf f er Si ze() /
set SendBuf f er Si ze()

get SOLi nger () / set -
SCOLi nger ()

get TCPNoDel ay()/
set TCPNoDel ay/()

getTrafficd ass()/
set TrafficC ass()

JBossNovember 5, 2005

16

The Multiplex Subsystem of the JBoss Remoting Project

Vi rt ual Socket

get Channel ()

Vi rtual Server Socket Mast er Ser ver Socket

get Channel ()

get OOBI nline()/

category 4
egory set OOBI nl i ne()
sendUr gent Dat a()
connect () a
category 5

connect () accept Server Socket -

Connecti on()

i sConnect ed()

Vi rt ual Server Socket ()
b

This version of connect () is nonstandard in that it has both alocal and remote address. It binds to alocal address and connects to aremote addressin asingle

atomic action.

BThis constructor is nonstandard in that it has both a local and remote address. It binds to a local address and connects to a remote address in a single atomic

action.

Table 3. Categories of public methodsin the other public Multiplex classes

Mul ti pl exi ngl n- Mul ti pl exi ngQut - Virtual Server - Vi rtual Socket -

put St ream put St ream Socket Factory Factory

avai | abl e() cl ose() creat eServer Sock- createSocket ()

et ()

cl ose() wite() get Defaul t () get Defaul t ()
category 1

ski p()

read()

mar k()
category 2 mar kSupport ed()

reset ()

JBossNovember 5, 2005

17

The Multiplex Subsystem of the JBoss Remoting Project

Mul ti pl exi ngl n- Mul ti pl exi ngQut - Virtual Server - Vi rtual Socket -
put St ream put St ream Socket Fact ory Factory
category 4 flush()
isOndient()
i sOnServer ()
category 5
setOnC i ent()
set OnServer ()
9. Issues.

Please post issuesand bugsto http://jira.jboss. conjiral browse/ JBREM 91.

10. Listings.

Listing 1. Client for Prime Scenario example.

public class PrinmeScenari oExanpl eCl i ent

{

public void runPrimeScenario()

{
try {

// Create a Virtual Socket and connect it to MasterServer Socket .

Socket v1 = new Virtual Socket ("l ocal host", 5555);

/1 Do some asynchronous input in a separate thread.

new AsynchronousThread(vl).start();

/1 Do some synchronous conmuni cati on.

bj ect Qut put St ream oos = new Cbj ect Qut put St ream(v1. get Qut put Strean());

bj ect I nput Stream oi s = new bj ect | nput Strean(vl. getlnputStreamn());

00s. W iteQbject(new Integer(3));
Integer il = (Integer) ois.readObject();
vl. close();

}
catch (Exception e) {}

}

cl ass AsynchronousThread extends Thread

{

JBossNovember 5, 2005

18

The Multiplex Subsystem of the JBoss Remoting Project

}

private Socket virtual Socket;

Asynchr onousThr ead(Socket virtual Socket)

{
}

t his.virtual Socket = virtual Socket ;

public void run()

{
try {
// Create a Virtual Server Socket that shares a port with virtual Socket.

/1 (Note that it will be connected by virtue of joining a connected socket group.)
Server Socket server Socket = new Virtual Server Socket (virtual Socket. get Local Port());

/Il Create a Virtual Socket that shares a port with virtual Socket.
server Socket . set SoTi meout (10000) ;
Socket v4 = server Socket.accept();

/'l Get an object fromthe server.

v4. set SoTi neout (10000) ;

bj ect I nput Stream oi s = new bj ect | nput Strean(v4. get |l nput Strean());
hj ect o = ois.readObject();

server Socket . cl ose();

v4. cl ose();

catch (Exception e) {}

public static void main(String[] args)

{
}

new Pri nmeScenari oExanpl eCl i ent (). runPrimeScenario();

Listing 2. Server for Prime Scenario example.

public class PrineScenari oExanpl eServer

{

public void runPrimeScenario()

{

try {
/1 Create a MasterServerSocket and get a Virtual Socket.
Server Socket server Socket = new Mast er Server Socket (5555) ;
server Socket . set SoTi neout (10000) ;
Socket v2 = server Socket.accept();

/1 Do some asynchronous conmuni cation in a separate thread.
Thread asynchronousThread = new AsynchronousThread(v2);
asynchronousThread. start();

/1 Do some synchronous conmuni cati on.

bj ect I nput Stream oi s = new bj ect | nput Strean(v2. get |l nput Stream());
bj ect Qut put St ream oos = new Cbj ect Qut put St ream(v2. get Qut put Strean()) ;
v2. set SoTi meout (10000) ;

hj ect o = ois.readObject();

00s. W iteObject(0);

JBossNovember 5, 2005

19

The Multiplex Subsystem of the JBoss Remoting Project

}

server Socket . cl ose();
v2.close();

catch (Exception e) { }

cl ass AsynchronousThread extends Thread

{

}

private Socket virtual Socket;

publ i c AsynchronousThr ead(Socket socket) throws | OException
{this.virtual Socket = socket;}

public void run()

{
try {
/1 Connect to Virtual Server Socket .
Thr ead. sl eep(2000) ;
String hostNane = virtual Socket. getl net Address(). get Host Nane() ;
int port = virtual Socket. getPort();
Socket v3 = new Virtual Socket (host Nanme, port);

/1 Send an object to the client.

hj ect Qut put St ream oos = new Cbj ect Qut put St ream(v3. get Qut put Strean()) ;

00s. W iteObject(new Integer(7));

oos. flush();
v3.close();

catch (Exception e) {}

public static void main(String[] args)

{
}

new Pri nmeScenari oExanpl eServer (). runPri meScenario();

Listing 3. Sampleclient for N-socket scenario.

public class N_Socket Scenari od i ent

{

public void runN_Socket Scenari o()

{

try
{
/]l Create a Virtual Server Socket and connect it to the server.
Vi rtual Server Socket server Socket = new Virtual Server Socket (5555) ;

I net Socket Addr ess connect Address = new | net Socket Address(“l ocal host”,

server Socket . set SoTi meout (10000) ;
server Socket . connect (connect Addr ess) ;

/1 Accept connection requests for 3 virtual sockets.
Socket socket 1 server Socket . accept ();
Socket socket 2 server Socket . accept () ;
Socket socket 3 server Socket . accept ();

6666) ;

JBossNovember 5, 2005

20

The Multiplex Subsystem of the JBoss Remoting Project

/1 Do sone i/o.

I nput Stream i sl = socket 1. getlnput Strean();
Qut put St ream os1 = socket 1. get Qut put Strean() ;
I nput Stream i s2 = socket 2. get | nput Strean() ;
Qut put St ream 0s2 = socket 2. get Qut put St rean() ;
I nput Stream i s3 = socket 3. get | nput Strean() ;
Qut put St ream 0s3 = socket 3. get Qut put Strean() ;
osl.wite(3);

os2.wite(7);

os3. wite(1ll);

Systemout.println(isl.read());
Systemout.println(is2.read());
Systemout.println(is3.read());

socket 1. cl ose();
socket 2. cl ose();
socket 3. cl ose();
server Socket . cl ose();

catch (Exception e) {}

}
public static void main(String[] args)
{
new N _Socket Scenari od i ent (). runN _Socket Scenari o();
}

Listing 4. Sample server for N-socket scenario.

public class N _Socket Scenari oServer
{
public void runN_Socket Scenari o()
{
try

{
// Create and bind a Master Server Socket .

Mast er Server Socket server Socket = new Mast er Server Socket (6666) ;

/'l Accept connection request from Virtual Server Socket .

server Socket . set SoTi meout (10000) ;
server Socket . accept Ser ver Socket Connection();

// Create 3 virtual sockets
Thr ead. sl eep(2000) ;

Socket socketl = new Virtual Socket ("Il ocal host", 5555);
new Vi rtual Socket ("I ocal host", 5555);
new Vi rtual Socket ("I ocal host", 5555);

Socket socket 2
Socket socket 3

/1 Do sone i/o.

I nput Stream i sl = socket 1. getl nput Strean();
Qut put St ream os1 = socket 1. get Qut put Strean() ;
I nput Stream i s2 = socket 2. get | nput Strean();
Qut put St ream 0s2 = socket 2. get Qut put Strean() ;
I nput Stream i s3 = socket 3. get | nput Strean() ;
Qut put St ream 0s3 = socket 3. get Qut put St rean() ;
osl.wite(isl.read());

os2.wite(is2.read());

JBossNovember 5, 2005

21

The Multiplex Subsystem of the JBoss Remoting Project

}

os3.wite(is3.read());

socket 1. cl ose();
socket 2. cl ose();
socket 3. cl ose();
server Socket . cl ose();

catch (Exception e) {}

public static void main(String[] args)

{
}

new N_Socket Scenari oServer ().runN_Socket Scenari o();

Listing 5. Symmetric Scenario client.

public class SymmetricScenariod i ent

{

public void runSymretricScenari o()

{

try {

/]l Get a virtual socket to use for synchronizing client and server.
Socket syncSocket = new Socket ("I ocal host", 6666);

I nput Stream i s_sync = syncSocket. get | nput Strean();

Qut put St ream os_sync = syncSocket . get Qut put Strean() ;

/1 Create a Virtual Server Socket and connect

/1l it to MasterServerSocket running on the server.

Virtual Server Socket server Socket = new Virtual Server Socket (5555) ;

I net Socket Addr ess address = new | net Socket Address("I| ocal host", 7777);
i s_sync.read();

server Socket . set SoTi meout (10000) ;

server Socket . connect (addr ess) ;

/1 Call constructor to create a virtual socket and nake a connection

/'l request to the port on the server to which the |ocal Virtual Server Socket
// is connected, i.e., to the renpte Virtual Server Socket .

os_sync.write(5);

is_sync.read();

int port = server Socket. get Renot ePort ();

Socket virtual Socket1l = new Virtual Socket ("l ocal host", port);

I nput Streamisl = virtual Socket 1. get | nput Strean();

Qut put Stream os1 = virtual Socket 1. get Qut put Strean() ;

/l Create a virtual socket with Virtual Server Socket . accept ().
Socket virtual Socket2 = server Socket. accept () ;

I nput Stream i s2 = virtual Socket 2. get | nput Strean() ;

Qut put St ream 0s2 = vi rtual Socket 2. get Qut put St rean() ;

/1 Do sone i/o and cl ose sockets.
osl.wite(9);
Systemout.println(isl.read());
os2.wite(1l);
Systemout.println(is2.read());
vi rtual Socket 1. cl ose();

vi rtual Socket 2. cl ose();

JBossNovember 5, 2005

22

The Multiplex Subsystem of the JBoss Remoting Project

syncSocket . cl ose();
server Socket . cl ose();

catch (Exception e) {}

}
public static void main(String[] args)
{
new Symmetri cScenari ol ient().runSymetricScenario();
}

Listing 6. Symmetric Scenario server.

public class SymetricScenari oServer
{
public void runSymretricScenari o()
{

try {
/| Create ServerSocket and get synchroni zi ng socket.

Server Socket ss = new Server Socket (6666) ;

Socket syncSocket = ss.accept();

ss. close();

I nput Stream i s_sync = syncSocket. get | nput Strean();
Qut put St ream os_sync = syncSocket . get Qut put St rean() ;

/| Create MasterServerSocket, accept connection request fromrenote
/1 Virtual Server Socket, and get the bind port of the |ocal actual
/'l socket to which the Virtual Server Socket is connected.

Mast er Server Socket nmss = new Mast er Server Socket (7777) ;
os_sync.wite(3);

nss. set SoTi meout (10000) ;

int port = nss.accept Server Socket Connection();

nss. cl ose();

/1l Wait until renote Virtual ServerSocket is running, then create |ocal
/1 Virtual Server Socket, bind it to the local port to which the renote
/1 Virtual Server Socket is connected, and connect it to the renmote

/1 Virtual Server Socket .

is_sync.read();

Vi rtual Server Socket vss = new Virtual Server Socket (port);

I net Socket Addr ess address = new | net Socket Address("| ocal host", 5555);
vss. set SoTi neout (5000) ;

vss. connect (address);

/1 Indicate that the |ocal Virtual ServerSocket is running.
os_sync.wite(7);

/] Create a virtual socket by way of Virtual Server Socket. accept();
server Socket . set SoTi meout (10000) ;

Socket virtual Socket1l = vss. accept();

I nput Streamisl = virtual Socket 1. get | nput Strean();

Qut put Stream os1 = vi rtual Socket 1. get Qut put Strean() ;

/1 Call constructor to create a virtual socket and nmake a connection
/] request to the renote Virtual Server Socket .

Socket virtual Socket2 = new Virtual Socket ("l ocal host", 5555);

I nput Streamis2 = virtual Socket 2. get | nput Strean();

JBossNovember 5, 2005

The Multiplex Subsystem of the JBoss Remoting Project

Qut put St ream 0s2 = vi rtual Socket 2. get Qut put St rean() ;

/] Do sone i/o and cl ose sockets.
osl.wite(isl.read());
os2.wite(is2.read());

vi rtual Socket 1. cl ose();

vi rtual Socket 2. cl ose();
syncSocket . cl ose();

vss. cl ose();

}
catch (Exception e) {}
}
public static void main(String[] args)
{
new Symmetri cScenari oServer (). runSynmetricScenario();
}

Listing 7. Sample use of Virtual Server SocketFactory and Virtual SocketFactory.

public class FactoryExanpl e
{

voi d runFact or yExanpl e()
{

Server Socket Fact ory server Socket Factory = Virtual Server Socket Fact ory. get Defaul t () ;

((Virtual Server Socket Factory) server Socket Factory).set OnServer();
Socket Fact ory socket Factory = Virtual Socket Factory. get Defaul t();
useSer ver Socket Fact ory(server Socket Factory);

useSocket Fact ory(socket Fact ory);

}

voi d useServer Socket Factory(fi nal Server Socket Factory server Socket Fact ory)

{

new Thread()

{

public void run()
{

try

{

Server Socket server Socket = server Socket Factory. creat eServer Socket (5555) ;

Socket socket = server Socket.accept();
int b = socket.getlnputStrean().read();
socket . get Qut put Stream().write(b);
socket . cl ose();
server Socket . cl ose();

}

catch (Exception e)

{

}
}
}.start();

e.printStackTrace();

}

public void useSocket Fact ory(Socket Factory socket Factory)

{

JBossNovember 5, 2005

24

The Multiplex Subsystem of the JBoss Remoting Project

}

try

Thr ead. sl eep(1000) ;

Socket socket = socket Factory. createSocket ("l ocal host"

socket. getQut put Stream().wite(7);
System out . println(socket.getlnputStreanm().read());
socket . cl ose();

}
catch (Exception e)
{
e.printStackTrace();
}

public static void main(String[] args)

{
}

new Fact or yExanpl e() . runFact or yExanpl e() ;

5555) ;

JBossNovember 5, 2005

25

	The Multiplex Subsystem of the JBoss Remoting Project
	1. Introduction.
	2. The Prime Scenario.
	3. Virtual socket groups.
	4. Coding the Prime Scenario.
	5. More general scenarios.
	5.1. The N-socket scenario.
	5.2. The Symmetric Scenario.

	6. Factories.
	7. Performance.
	8. APIs
	9. Issues.
	10. Listings.

