
The Multiplex Subsystem of the JBoss
Remoting Project

RonSigal

November 5, 2005

Copyright©2005Ron Sigal

1. Introduction.

The Multiplex subsystem of the JBoss Remoting Project (referred to herein on occasion simply as “Muliplex”) supports the
multiplexing of multiple data streams over a single network connection, based on a reimplementation of the following classes
from java.net:

1. Socket

2. ServerSocket

3. SocketInputStream

4. SocketOutputStream

and the following classes from javax.net:

1. SocketFactory

2. ServerSocketFactory

It is motivated by circumstances in which the number of available ports on a system is restricted by a firewall or other consid-
erations. Since the Remoting project is the principal client of Multiplex, we illustrate multiplexing primarily in the context of a
Remoting application. Remoting supports two modes of client-server communication: (1) method calls from client to server,
with a synchronous response, and (2) client requests for an asynchronous callback from the server. The usual need for separate
ports to support both synchronous and asynchronous modes is obviated by the Multiplexing subsystem.

2. The Prime Scenario.

The typical application of multiplexing in the Remoting context is illustrated by the Prime Scenario, in which a client requir-
ing both synchronous and asynchronous responses from a server is behind a firewall and has only a single port at its disposal.
Without the restriction to a single port, we would have the situation in Figure 1, which requires no multiplexing. With the re-
striction, we have the Prime Scenario, as in Figure 2.

JBossNovember 5, 2005 1



Figure 1. Method calls and callbacks with no port restrictions.

Figure 2. Method calls and callbacks in the Prime Scenario.

Multiplexing is supported primarily by the concept of the virtual socket, implemented by the VirtualSocket class. Virtu-
alSocket is a subclass of java.io.Socket, and supports the full socket API. As is the case with actual sockets, virtual sockets
are created in one of two ways:

1. a constructor (or factory) call on a client, or

2. a call to the accept() method of a server socket on a server.

Accordingly, the other principal Multiplex concept is the virtual server socket, implemented by two classes:

1. MasterServerSocket, and

2. VirtualServerSocket.

The Multiplex Subsystem of the JBoss Remoting Project

JBossNovember 5, 2005 2



These are both subclasses of java.io.ServerSocket, and both implement the full server socket API. Since virtual sockets are
implemented on the foundation of actual sockets, and the creation of actual sockets requires a server socket, we need the sup-
port of actual server sockets in the creation of virtual sockets. It is the role of MasterServerSocket to provide that support. The
accept() method of MasterServerSocket calls super.accept() to create an actual socket which is then wrapped in a mech-
anism which supports one or more virtual sockets. Every Muliplex application requires at least one MasterServerSocket, and
the Prime Scenario requires exactly one. Figure 3 illustrates the process in which a virtual socket v1 connects to a Mas-

terServerSocket, which creates and returns a reference to a new virtual socket v2.

Figure 3. Setting up a synchronous connection.

In Figure 3 we have a connection between v1 and v2, which can support synchronous communication but which offers nothing
not provided by actual sockets. The support of multiplexed callbacks, however, requires the use of the other virtual server
socket class, VirtualServerSocket. Unlike MasterServerSocket, VirtualServerSocket does not depend on superclass facil-
ities, but rather it uses an ordinary client socket, with which implements its own version of the accept() method, able to create
any number of virtual sockets, all of which share a single port with the VirtualServerSocket. It is important to understand
how its use of an actual socket determines the nature of a VirtualServerSocket. Unlike a server socket, a client socket must
be connected to another socket to function, and a VirtualServerSocket has the same property. It follows that a Virtu-

alServerSocket can process requests from just one host, the host to which its actual socket is connected.

The role of the VirtualServerSocket is illustrated in Figure 4. A constructor (or factory method, which calls a constructor) is
called on the server to create virtual socket v3 to support callbacks. The constructor sends a connection request to the Virtu-

alServerSocket on the client, which creates new virtual socket v4 and sends back to v3 a reference to v4. At this point the
Prime Scenario is set up.

The Multiplex Subsystem of the JBoss Remoting Project

JBossNovember 5, 2005 3



Figure 4. Adding an asynchronous connection to Figure 3.

3. Virtual socket groups.

In order to understand the creation of structures like the Prime Scenario and others described below, it is important to under-
stand the concept of a virtual socket group. A virtual socket group is a set of virtual sockets, and zero or one VirtualServer-

Sockets, sharing a single actual socket. We say that the socket group is based on its actual socket. Depending on the state of its
underlying actual socket and the nature of its peer socket group, if any, a socket group may be in one of three states. Let G be a
socket group based on actual socket S. Then G may be

1. bound: S is bound but not connected, or

2. connected: S is connected to socket S' and the socket group based on S' does not contain a VirtualServerSocket, or

3. joinable: S is connected to socket S' and the socket group based on S' does contain a VirtualServerSocket.

Although it is possible for a socket to be neither bound nor connected, we do not consider a socket group to exist until its un-
derlying socket is at least bound to a local address. A connected or joinable socket group is said to be visible, and a bound
socket group is invisible. A socket group is characterized by the pair of addresses

(localAddress, remoteAddress)

where these are the local and remote addresses of the actual socket underlying the socket group. localAddress may take the
special form (*, port), where the wildcard value “*” denotes any hostname by which the local host is known. Depending on the
state of the socket group, remoteAddress may have the special value undefined, indicating that a connection has not yet been
established.

There are two ways of creating a new virtual socket group or of joining an existing socket group: through a binding action or

The Multiplex Subsystem of the JBoss Remoting Project

JBossNovember 5, 2005 4



a connecting action. A binding action is either

1. a call to any of the VirtualServerSocket constructors other than the default constructor (i.e., those with a port paramet-
er), or

2. a call to a bind() method in VirtualSocket or VirtualServerSocket.

A connecting action belongs to one of five categories:

1. a call to any VirtualSocket or VirtualServerSocket constructor that requires a remote address (note that unlike
java.net.ServerSocket, VirtualServerSocket has a such a constructor),

2. a call to a connect() method (again, VirtualServerSocket has a nonstandard connect() method),

3. a call to VirtualServerSocket.accept(),

4. a call to MasterServerSocket.accept(), or

5. a call to MasterServerSocket.acceptServerSocketConnection().

Each binding action has an associated local address, and each connecting action has an associated remote address and an op-
tional local address. For binding actions, and connecting actions in the first two categories, the addresses are given explicitly in
the method call. For a call to VirtualServerSocket.accept(), the addresses are those of the socket group to which the server
socket belongs, and for the two MasterServerSocket methods, the addresses are those of the actual socket they create.

Depending on their associated local and remote addresses and on the socket groups that exist at the time of the action, a bind-
ing or connecting action may have the effect of creating a new socket group or adding a new member to an existing socket
group. The rules are straightforward, but there is one source of possible confusion, the accidental connection problem dis-
cussed below, that must be guarded against. Let V be a virtual socket or virtual server socket undergoing either a binding or
connecting action.

1. binding action rule: If there are visible socket groups whose local address matches the action's local address, then V joins
one of them chosen at random. Otherwise, a new bound socket group is created and V joins it.

2. connecting action rule:

a. For actions in the first two categories, where V is a VirtualSocket (respectively, a VirtualServerSocket):

i. If the action has a remote address but no local address:

A. If there are any joinable (resp., connected) socket groups with a matching remote address, then V joins one
of them chosen at random.

B. If there are no such socket groups, an attempt is made to connect to a MasterServerSocket at the remote
address, and if the attempt succeeds, a new socket group is created and V joins it.

ii.
If the action has both a local address and a remote address:

The Multiplex Subsystem of the JBoss Remoting Project

JBossNovember 5, 2005 5



A. If there is a joinable (resp., connected) socket group with matching addresses, then V joins it

B. Otherwise, if the local address (in particular, its port) is currently in use, the action results in a IOExcep-

tion.

C. Otherwise, a new socket group G is created and bound to the local address. Then an attempt is made to
connect to a MasterServerSocket at the remote address, and if the attempt succeeds, V joins G.

b. For VirtualServerSocket.accept() calls, the new virtual socket joins the socket group to which the server socket
belongs.

c. For MasterServerSocket.accept() calls, a new socket group is created with the new virtual socket as its first mem-
ber.

d. For MasterServerSocket.acceptServerSocketConnection() calls, a new socket group with zero members is cre-
ated.

NOTES:

1. A bound socket group is inaccessible to the connect action rules (which is why it is called "invisible"). The reason is to
avoid a situation in which one virtual socket "highjacks" another virtual socket's group. Suppose that virtual socket v1
binds itself to ("localhost", 5555), but before it gets a chance to connect to ("www.jboss.com", 6666), virtual socket v2
binds to ("localhost", 5555) and then connects to ("www.ibm.com", 7777). Then when v1 tries to connect to
("www.jboss.com", 6666), the attempt fails. This situation cannot occur because at the moment when v2 does its bind,
v1's socket group is invisible and v2 is forced to create it own socket group.

2. The connecting action rules are different for VirtualSocket and VirtualServerSocket (specifically, the former can join
only joinable socket groups, while the later can join connected socket groups) because VirtualSocket needs a Virtu-

alServerSocket to create a peer virtual socket for it to connect to, and a VirtualServerSocket does not need such a
peer.

3. N.B. It is important to understand a possible side effect of a binding action. When V joins a socket group through a bind-
ing action, it is possible that the group is already connected. In this case, a subsequent connecting action (in particular, a
call to connect()) to any address other than the socket group's remote address is invalid, leading to an IOException with
the message "socket is already connected.". This is called the accidental connection problem, and it is avoidable. Both
VirtualSocket and VirtualServerSocket have constructors and nonstandard versions of the connect() which accept
both local and remote addresses. These treat binding and connecting as a single atomic process.

The socket group rules are illustrated in the following two sections.

4. Coding the Prime Scenario.

In order to set up the Prime Scenario, the following steps are necessary (the socket names conform to Figure 4):

1. On the server, create a MasterServerSocket and bind it to port P.

The Multiplex Subsystem of the JBoss Remoting Project

JBossNovember 5, 2005 6



2. On the client, create a virtual socket v1 and connect it to port P.

3. Let Q be the port on the client to which v1 is bound. Create a VirtualServerSocket on the client, bind it to Q, and con-
nect it to P.

4. On the server, create a virtual socket v3 and connect it to port Q.

The Prime Scenario provides an example of creating socket groups. In step 2, a socket group G1 is created on the client
through the construction of v1. It enters the connected state, bound to an arbitrary port Q on the client and connected to port P
on the server. In step 3 a VirtualServerSocket joins G1 by way of binding to Q on the client and connecting to P on the serv-
er. In fact, the socket group rules imply that it is enough to bind the server socket to port Q. Connecting it to P on the server
occurs as a side effect of the binding action. Finally, step 4 adds virtual socket v4 to G1. While G1 is being built on the client, a
socket group G2 is being built on the server. Step 2 results in the creation of G2, along with its first member, a new virtual
socket, v2, returned by the accept() method of the MasterServerSocket. Step 4 adds a second member, v3, to G2.

See Listing 1 and Listing 2 for a simple example of coding these steps. Variants of these samples may be found in the directory
/org/jboss/remoting/samples/multiplex.

5. More general scenarios.

Although Multiplex was motivated by the Prime Scenario, it can also support other connection structures. We describe two al-
ternatives in this section.

5.1. The N-socket scenario.

The N-socket scenario demonstrates that a socket group is not restricted to just two virtual sockets. It also demonstrates that a
VirtualServerSocket does not depend on the prior existence of a connected virtual socket. As long as it has access to a Mas-

terServerSocket ready to accept a connection, it can get started. In fact, the MasterServerSocket.accept() method will si-
lently accept a connection from a VirtualServerSocket while it is waiting for a connection request from a virtual socket, but
the acceptServerSocketConnection() method is designed specifically to accept a connection request from a VirtualServer-

Socket.

The connection structure of the N-socket scenario is depicted in Figure 5 (for N = 3), and the code for a simple client and serv-
er is given in Listing 3 and Listing 4. In the example a socket group with 3 elements is constructed on the server. It is created
with the call

serverSocket.acceptServerSocketConnection()

which creates an actual socket and a socket group which, though it has no members, is connected to a VirtualServerSocket

on the client. The next three lines,

Socket socket1 = new VirtualSocket(“localhost”, 5555);
Socket socket2 = new VirtualSocket(“localhost”, 5555);
Socket socket3 = new VirtualSocket(“localhost”, 5555);

The Multiplex Subsystem of the JBoss Remoting Project

JBossNovember 5, 2005 7



populate the socket group with three virtual sockets. On the client there is a socket group with four members, first created with
the call

serverSocket.connect(connectAddress);

and then further populated by the three subsequent lines

Socket socket1 = serverSocket.accept();
Socket socket2 = serverSocket.accept();
Socket socket3 = serverSocket.accept();

Variants of the N-Socket Scenario client and server may be found in the directory /org/jboss/remoting/samples/multiplex.

Figure 5. The connection structure in the N-Socket Scenario.

5.2. The Symmetric Scenario.

The connection structure in the Symmetric Scenario consists of socket groups on two hosts, each of which contains a Virtu-

alServerSocket and some number of virtual sockets. The scenario is not truly symmetric, since each connection structure has
to begin with a connection request to a MasterServerSocket, but once that happens the “client” and “server” are identical, as
depicted in Figure 6d. Once the line

The Multiplex Subsystem of the JBoss Remoting Project

JBossNovember 5, 2005 8



serverSocket.connect(address);

on the client (see Listing 5) and the line

int port = mss.acceptServerSocketConnection();

on the server (see Listing 6) are executed, the client has a socket group characterized by the address pair

((*, 5555), (“localhost“, 7777))

and consisting of a VirtualServerSocket, and the server has a socket group with zero members characterized by the address
pair

((“localhost“, 7777), (“localhost”, 5555)).

(See Figure 6a.) And once the line

vss.connect(address);

is executed on the server, the new VirtualServerSocket joins the server's socket group, as shown in Figure 6b. After the lines

Socket virtualSocket1 = new VirtualSocket(“localhost”, port);

and

Socket virtualSocket1 = vss.accept();

are executed on the client and server, respectively, each socket group has a new virtual socket (see Figure 6c), and finally, after
the lines

The Multiplex Subsystem of the JBoss Remoting Project

JBossNovember 5, 2005 9



Socket virtualSocket2 = new VirtualSocket(“localhost”, 5555);

and

Socket virtualSocket2 = serverSocket.accept();

are executed on the server and client, respectively, each socket group has a second virtual socket (see Figure 6d).

Figure 6a. The connection structure in the Symmetric Scenario: stage 1.

The Multiplex Subsystem of the JBoss Remoting Project

JBossNovember 5, 2005 10



Figure 6b. The connection structure in the Symmetric Scenario: stage 2.

Figure 6c. The connection structure in the Symmetric Scenario: stage 3.

The Multiplex Subsystem of the JBoss Remoting Project

JBossNovember 5, 2005 11



Figure 6d. The connection structure in the Symmetric Scenario: stage 4.

6. Factories.

In addition to virtual sockets and virtual server sockets, Multiplex also implements the two factories associated with sockets:
the socket factory and the server socket factory. VirtualSocketFactory extends javax.net.SocketFactory and reimplements
all of its methods. VirtualServerSocketFactory extends javax.net.ServerSocketFactory and reimplements all of its meth-
ods (though the backlog parameter is ignored). These two classes make it possible for a section of code to be completely un-
aware that it is using virtual sockets instead of actual sockets. The only configuration involved in the use of these factories is
the need to tell VirtualServerSocketFactory whether it is running on a client or a server, which tells it whether to create
VirtualServerSockets or MasterServerSockets, respectively. That notification is performed by the methods setOnClient()

and setOnServer(). See Listing 7 for an illustration of the idiomatic use of these classes, where the method useFactories()

refers only to the parent classes SocketFactory and ServerSocketFactory.

7. Performance.

It should come as no surprise that the classes in Muliplex perform more slowly than their non-virtual counterparts, since the
multiplexing of data streams requires extra work. Multiplex uses two classes to perform input and output multiplexing: Multi-
plexingInputStream and MultiplexingOutputStream, which are returned by the VirtualSocket methods getInputStream()
and getOutputStream(), respectively. These classes subclass java.io.InputStream and java.io.OutputStream and reimple-
ment all of their methods. Tests show that input/output by these classes is roughly four to five times slower than input/output
by their counterpart classes used by actual sockets, java.net.SocketInputStream and java.net.SocketOutputStream. This
information is gathered from multiple runs of three tests:

bare input: compares the transmission of bytes from a Sock-

etOutputStream to a MultiplexingInputStream

with the transmission of bytes from a SocketOutput-

The Multiplex Subsystem of the JBoss Remoting Project

JBossNovember 5, 2005 12



Stream to a SocketInputStream

bare output: compares the transmission of bytes from a Multi-

plexingOutputStream to a SocketInputStream with
the transmission of bytes from a SocketOutput-

Stream to a SocketInputStream

socket input/output: compares the transmission of bytes from a Multi-

plexingOutputStream to a MultiplexingInput-

Stream with the transmission of bytes from a Sock-

etOutputStream to a SocketInputStream

Each of these tests was run 10 times, transmitting 100,000 bytes each time. Table 1 gives the factor by which the virtual socket
version of each test was slower than the actual socket version.

Table 1. Factors by which virtual socket input/output is slower than actual socket input/output.

bare input bare output socket input/output

minimum:
2.25 1.63 3.19

mean:
3.50 2.80 4.77

maximum:
4.42 4.67 8.58

8. APIs

One of the design goals of Multiplex is to make virtual sockets and their related classes as indistinguishable as possible from
their real counterparts. There are two areas in which Multiplex is detectibly different.

1. The use of the two types of virtual server sockets entails an extra degree of complexity in setting up a multiplexed con-
nection.

2. There are performance differences.

On the other hand, the virtual classes implement complete APIs, so that once a connection is established, a VirtualSocket, for
example, can be passed to a method in place of a Socket and will demonstrate the same behavior. Similarly, MultiplexingIn-
putStreams and MultiplexingOutputStreams are functionally indistinguishable from SocketInputStreams and SocketOut-

putStreams.

It may be useful, however, to be aware of some implementational differences between the two sets of classes. The public meth-
ods in the virtual classes can be placed in five categories.

The Multiplex Subsystem of the JBoss Remoting Project

JBossNovember 5, 2005 13



1. methods implemented directly by the class

2. methods inherited from the real superclass

3. methods implemented by delegation to the underlying real socket

4. methods whose behavior is essentially null (though they may throw an IOException if called on a closed virtual socket)

5. methods which have no counterpart in the real class

Categories 3, 4, and 5 are particularly informative. Methods in category 3 can be used to fine tune a multiplexed connection
by, for example, adjusting buffer sizes. Note that a method such as setReceiveBufferSize() may be called on any virtual
socket in a socket group with the same effect as calling it on any other virtual socket in the same group. Methods in category 4
represent behavior that is not relevant to virtual sockets, and methods in category 5 represent behavior that is specific to the
special nature of multiplexed connections. The category 5 version of VirtualSocket.connect(),

connect(SocketAddress remoteAddress, SocketAddress localAddress, int timeout)

exists to effect an atomic binding/connecting action to avoid the accidental connection problem discussed in the section on vir-
tual socket groups. The notion of connection is irrelevant to ordinary server sockets, but VirtualServerSocket has methods

connect(SocketAddress remoteAddress, SocketAddress localAddress, int timeout)

and isConnected() because a connection must be established before accept() can function.

We also include in category 5 one of VirtualServerSocket's nonstandard constructors, with the signature

VirtualServerSocket(InetSocketAddress remoteAddress, InetSocketAddress localAddress, int timeout)

which calls the two-address form of connect().

The public methods of the main Multiplex classes are categorized in Table 2 and Table 3. The only inherited methods among
the classes listed in Table 2 are found in MasterServerSocket, and we omit an explicit listing of them.

Note. The constructors of VirtualServerSocket that take a backlog parameter ignore its value. The same is true for methods
of VirtualServerSocketFactory.

Table 2. Categories of public methods in the primary public Multiplex classes

The Multiplex Subsystem of the JBoss Remoting Project

JBossNovember 5, 2005 14



VirtualSocket VirtualServerSocket MasterServerSocket

category 1

bind() accept() accept()

close() bind() toString()

connect() close()

getInputStream() getSoTimeout()

getOutputStream() isBound()

getSoTimeout() isClosed()

isClosed() setSoTimeout()

isConnected() toString()

isInputShutdown()

isOutputShutdown()

setSoTimeout()

shutdownInput()

shutdownOutput()

toString()

The Multiplex Subsystem of the JBoss Remoting Project

JBossNovember 5, 2005 15



VirtualSocket VirtualServerSocket MasterServerSocket

category 3

getInetAddress() getInetAddress()

getKeepAlive()/ set-

KeepAlive()

getLocalPort()

getLocalAddress() getLocalSocketAd-

dress()

getLocalPort() getReceiveBuffer-

Size() / setReceiveBuf-
ferSize()

getLocalSocketAd-

dress()

getReuseAddress()/
setReuseAddress()

getPort()

getReceiveBuffer-

Size() / setReceiveBuf-
ferSize()

getRemoteSocketAd-

dress()

getReuseAddress()/
setReuseAddress()

getSendBufferSize()/
setSendBufferSize()

getSOLinger()/ set-

SOLinger()

getTCPNoDelay()/
setTCPNoDelay()

getTrafficClass()/
setTrafficClass()

The Multiplex Subsystem of the JBoss Remoting Project

JBossNovember 5, 2005 16



VirtualSocket VirtualServerSocket MasterServerSocket

category 4

getChannel() getChannel()

getOOBInline()/
setOOBInline()

sendUrgentData()

category 5

connect()
a

connect() acceptServerSocket-

Connection()

isConnected()

VirtualServerSocket()

b

aThis version of connect() is nonstandard in that it has both a local and remote address. It binds to a local address and connects to a remote address in a single
atomic action.
bThis constructor is nonstandard in that it has both a local and remote address. It binds to a local address and connects to a remote address in a single atomic
action.

Table 3. Categories of public methods in the other public Multiplex classes

MultiplexingIn-

putStream

MultiplexingOut-

putStream

VirtualServer-

SocketFactory

VirtualSocket-

Factory

category 1

available() close() createServerSock-

et()

createSocket()

close() write() getDefault() getDefault()

skip()

read()

category 2

mark()

markSupported()

reset()

The Multiplex Subsystem of the JBoss Remoting Project

JBossNovember 5, 2005 17



MultiplexingIn-

putStream

MultiplexingOut-

putStream

VirtualServer-

SocketFactory

VirtualSocket-

Factory

category 4 flush()

category 5

isOnClient()

isOnServer()

setOnClient()

setOnServer()

9. Issues.

Please post issues and bugs to http://jira.jboss.com/jira/browse/JBREM-91.

10. Listings.

Listing 1. Client for Prime Scenario example.

public class PrimeScenarioExampleClient
{

public void runPrimeScenario()
{

try {
// Create a VirtualSocket and connect it to MasterServerSocket.
Socket v1 = new VirtualSocket("localhost", 5555);

// Do some asynchronous input in a separate thread.
new AsynchronousThread(v1).start();

// Do some synchronous communication.
ObjectOutputStream oos = new ObjectOutputStream(v1.getOutputStream());
ObjectInputStream ois = new ObjectInputStream(v1.getInputStream());
oos.writeObject(new Integer(3));
Integer i1 = (Integer) ois.readObject();
v1.close();

}
catch (Exception e) {}

}

class AsynchronousThread extends Thread
{

The Multiplex Subsystem of the JBoss Remoting Project

JBossNovember 5, 2005 18



private Socket virtualSocket;

AsynchronousThread(Socket virtualSocket)
{

this.virtualSocket = virtualSocket;
}

public void run()
{

try {
// Create a VirtualServerSocket that shares a port with virtualSocket.
// (Note that it will be connected by virtue of joining a connected socket group.)
ServerSocket serverSocket = new VirtualServerSocket(virtualSocket.getLocalPort());

// Create a VirtualSocket that shares a port with virtualSocket.
serverSocket.setSoTimeout(10000);
Socket v4 = serverSocket.accept();

// Get an object from the server.
v4.setSoTimeout(10000);
ObjectInputStream ois = new ObjectInputStream(v4.getInputStream());
Object o = ois.readObject();
serverSocket.close();
v4.close();

}
catch (Exception e) {}

}
}

public static void main(String[] args)
{

new PrimeScenarioExampleClient().runPrimeScenario();
}

}

Listing 2. Server for Prime Scenario example.

public class PrimeScenarioExampleServer
{

public void runPrimeScenario()
{

try {
// Create a MasterServerSocket and get a VirtualSocket.
ServerSocket serverSocket = new MasterServerSocket(5555);
serverSocket.setSoTimeout(10000);
Socket v2 = serverSocket.accept();

// Do some asynchronous communication in a separate thread.
Thread asynchronousThread = new AsynchronousThread(v2);
asynchronousThread.start();

// Do some synchronous communication.
ObjectInputStream ois = new ObjectInputStream(v2.getInputStream());
ObjectOutputStream oos = new ObjectOutputStream(v2.getOutputStream());
v2.setSoTimeout(10000);
Object o = ois.readObject();
oos.writeObject(o);

The Multiplex Subsystem of the JBoss Remoting Project

JBossNovember 5, 2005 19



serverSocket.close();
v2.close();

}
catch (Exception e) { }

}

class AsynchronousThread extends Thread
{

private Socket virtualSocket;

public AsynchronousThread(Socket socket) throws IOException
{this.virtualSocket = socket;}

public void run()
{

try {
// Connect to VirtualServerSocket.
Thread.sleep(2000);
String hostName = virtualSocket.getInetAddress().getHostName();
int port = virtualSocket.getPort();
Socket v3 = new VirtualSocket(hostName, port);

// Send an object to the client.
ObjectOutputStream oos = new ObjectOutputStream(v3.getOutputStream());
oos.writeObject(new Integer(7));

oos.flush();
v3.close();

}
catch (Exception e) {}

}
}

public static void main(String[] args)
{

new PrimeScenarioExampleServer().runPrimeScenario();
}

}

Listing 3. Sample client for N-socket scenario.

public class N_SocketScenarioClient
{

public void runN_SocketScenario()
{

try
{

// Create a VirtualServerSocket and connect it to the server.
VirtualServerSocket serverSocket = new VirtualServerSocket(5555);
InetSocketAddress connectAddress = new InetSocketAddress(“localhost”, 6666);
serverSocket.setSoTimeout(10000);
serverSocket.connect(connectAddress);

// Accept connection requests for 3 virtual sockets.
Socket socket1 = serverSocket.accept();
Socket socket2 = serverSocket.accept();
Socket socket3 = serverSocket.accept();

The Multiplex Subsystem of the JBoss Remoting Project

JBossNovember 5, 2005 20



// Do some i/o.
InputStream is1 = socket1.getInputStream();
OutputStream os1 = socket1.getOutputStream();
InputStream is2 = socket2.getInputStream();
OutputStream os2 = socket2.getOutputStream();
InputStream is3 = socket3.getInputStream();
OutputStream os3 = socket3.getOutputStream();
os1.write(3);
os2.write(7);
os3.write(11);
System.out.println(is1.read());
System.out.println(is2.read());
System.out.println(is3.read());

socket1.close();
socket2.close();
socket3.close();
serverSocket.close();

}
catch (Exception e) {}

}

public static void main(String[] args)
{

new N_SocketScenarioClient().runN_SocketScenario();
}

}

Listing 4. Sample server for N-socket scenario.

public class N_SocketScenarioServer
{

public void runN_SocketScenario()
{

try
{

// Create and bind a MasterServerSocket.
MasterServerSocket serverSocket = new MasterServerSocket(6666);

// Accept connection request from VirtualServerSocket.
serverSocket.setSoTimeout(10000);
serverSocket.acceptServerSocketConnection();

// Create 3 virtual sockets
Thread.sleep(2000);
Socket socket1 = new VirtualSocket("localhost", 5555);
Socket socket2 = new VirtualSocket("localhost", 5555);
Socket socket3 = new VirtualSocket("localhost", 5555);

// Do some i/o.
InputStream is1 = socket1.getInputStream();
OutputStream os1 = socket1.getOutputStream();
InputStream is2 = socket2.getInputStream();
OutputStream os2 = socket2.getOutputStream();
InputStream is3 = socket3.getInputStream();
OutputStream os3 = socket3.getOutputStream();
os1.write(is1.read());
os2.write(is2.read());

The Multiplex Subsystem of the JBoss Remoting Project

JBossNovember 5, 2005 21



os3.write(is3.read());

socket1.close();
socket2.close();
socket3.close();
serverSocket.close();

}
catch (Exception e) {}

}

public static void main(String[] args)
{

new N_SocketScenarioServer().runN_SocketScenario();
}

}

Listing 5. Symmetric Scenario client.

public class SymmetricScenarioClient
{

public void runSymmetricScenario()
{

try {
// Get a virtual socket to use for synchronizing client and server.
Socket syncSocket = new Socket("localhost", 6666);
InputStream is_sync = syncSocket.getInputStream();
OutputStream os_sync = syncSocket.getOutputStream();

// Create a VirtualServerSocket and connect
// it to MasterServerSocket running on the server.
VirtualServerSocket serverSocket = new VirtualServerSocket(5555);
InetSocketAddress address = new InetSocketAddress("localhost", 7777);
is_sync.read();
serverSocket.setSoTimeout(10000);
serverSocket.connect(address);

// Call constructor to create a virtual socket and make a connection
// request to the port on the server to which the local VirtualServerSocket
// is connected, i.e., to the remote VirtualServerSocket.
os_sync.write(5);
is_sync.read();
int port = serverSocket.getRemotePort();
Socket virtualSocket1 = new VirtualSocket("localhost", port);
InputStream is1 = virtualSocket1.getInputStream();
OutputStream os1 = virtualSocket1.getOutputStream();

// Create a virtual socket with VirtualServerSocket.accept().
Socket virtualSocket2 = serverSocket.accept();
InputStream is2 = virtualSocket2.getInputStream();
OutputStream os2 = virtualSocket2.getOutputStream();

// Do some i/o and close sockets.
os1.write(9);
System.out.println(is1.read());
os2.write(11);
System.out.println(is2.read());
virtualSocket1.close();
virtualSocket2.close();

The Multiplex Subsystem of the JBoss Remoting Project

JBossNovember 5, 2005 22



syncSocket.close();
serverSocket.close();

}
catch (Exception e) {}

}

public static void main(String[] args)
{

new SymmetricScenarioClient().runSymmetricScenario();
}

}

Listing 6. Symmetric Scenario server.

public class SymmetricScenarioServer
{

public void runSymmetricScenario()
{

try {
// Create ServerSocket and get synchronizing socket.
ServerSocket ss = new ServerSocket(6666);
Socket syncSocket = ss.accept();
ss.close();
InputStream is_sync = syncSocket.getInputStream();
OutputStream os_sync = syncSocket.getOutputStream();

// Create MasterServerSocket, accept connection request from remote
// VirtualServerSocket, and get the bind port of the local actual
// socket to which the VirtualServerSocket is connected.
MasterServerSocket mss = new MasterServerSocket(7777);
os_sync.write(3);
mss.setSoTimeout(10000);
int port = mss.acceptServerSocketConnection();
mss.close();

// Wait until remote VirtualServerSocket is running, then create local
// VirtualServerSocket, bind it to the local port to which the remote
// VirtualServerSocket is connected, and connect it to the remote
// VirtualServerSocket.
is_sync.read();
VirtualServerSocket vss = new VirtualServerSocket(port);
InetSocketAddress address = new InetSocketAddress("localhost", 5555);
vss.setSoTimeout(5000);
vss.connect(address);

// Indicate that the local VirtualServerSocket is running.
os_sync.write(7);

// Create a virtual socket by way of VirtualServerSocket.accept();
serverSocket.setSoTimeout(10000);
Socket virtualSocket1 = vss.accept();
InputStream is1 = virtualSocket1.getInputStream();
OutputStream os1 = virtualSocket1.getOutputStream();

// Call constructor to create a virtual socket and make a connection
// request to the remote VirtualServerSocket.
Socket virtualSocket2 = new VirtualSocket("localhost", 5555);
InputStream is2 = virtualSocket2.getInputStream();

The Multiplex Subsystem of the JBoss Remoting Project

JBossNovember 5, 2005 23



OutputStream os2 = virtualSocket2.getOutputStream();

// Do some i/o and close sockets.
os1.write(is1.read());
os2.write(is2.read());
virtualSocket1.close();
virtualSocket2.close();
syncSocket.close();
vss.close();

}
catch (Exception e) {}

}

public static void main(String[] args)
{

new SymmetricScenarioServer().runSymmetricScenario();
}

}

Listing 7. Sample use of VirtualServerSocketFactory and VirtualSocketFactory.

public class FactoryExample
{

void runFactoryExample()
{

ServerSocketFactory serverSocketFactory = VirtualServerSocketFactory.getDefault();
((VirtualServerSocketFactory) serverSocketFactory).setOnServer();
SocketFactory socketFactory = VirtualSocketFactory.getDefault();
useServerSocketFactory(serverSocketFactory);
useSocketFactory(socketFactory);

}

void useServerSocketFactory(final ServerSocketFactory serverSocketFactory)
{

new Thread()
{

public void run()
{

try
{

ServerSocket serverSocket = serverSocketFactory.createServerSocket(5555);
Socket socket = serverSocket.accept();
int b = socket.getInputStream().read();
socket.getOutputStream().write(b);
socket.close();
serverSocket.close();

}
catch (Exception e)
{

e.printStackTrace();
}

}
}.start();

}

public void useSocketFactory(SocketFactory socketFactory)
{

The Multiplex Subsystem of the JBoss Remoting Project

JBossNovember 5, 2005 24



try
{

Thread.sleep(1000);
Socket socket = socketFactory.createSocket("localhost", 5555);
socket.getOutputStream().write(7);
System.out.println(socket.getInputStream().read());
socket.close();

}
catch (Exception e)
{

e.printStackTrace();
}

}

public static void main(String[] args)
{

new FactoryExample().runFactoryExample();
}

}

The Multiplex Subsystem of the JBoss Remoting Project

JBossNovember 5, 2005 25


	The Multiplex Subsystem of the JBoss Remoting Project
	1. Introduction.
	2. The Prime Scenario.
	3. Virtual socket groups.
	4. Coding the Prime Scenario.
	5. More general scenarios.
	5.1. The N-socket scenario.
	5.2. The Symmetric Scenario.

	6. Factories.
	7. Performance.
	8. APIs
	9. Issues.
	10. Listings.

