o JBoss

JBoss Remoting

Version 1.0.1 final
February 25, 2005

Table of Contents

What iS JBOSS REMOTING? ..ot 3
FAIUTES ...ttt ettt b et E e et h e e e bt R e n e R e r e ne e 3
HOW B0 QBT L.ttt bbbttt 4
3T o ISP 4
COMPONENES ...ttt bttt b e bt b e b e et s bt e b e e n e s e b e e b e eneas 6
(@00) T[0T L1 o] ST 10
General Connector and Invoker configurationcccocceveieienienc s 10
HANAIEIS ..ot b e bbb 12
DISCOVEIY (DEIECLOIS) ...uviveeieeieeieesieeste ettt sttt ettt sbe e be e beenbeeneenneeneas 14
TranSPOrtS (INVOKEIS)ccuveiiiie ettt et eena e aeenaesneenneens 17
MAISNAITING ...t b e b nre s 19
CallDACK OVEIVIBW ..ottt bbb 22
Callback CoNFIQUIALIONcouiiieiieicce et 24
HOW 10 USE it — SAMPIE COURvvviieieeiiee ettt 28
KCNOWIN ISSUBS ...ttt stttk t e st b et et st e e beene e ebeebenneenne s 29
FULUPE PIANS..... ettt et e e s e e te e beeneesreeteeneenteenseeneenneas 29

REIEASE N DTS ... s 30

What is JBoss Remoting?

The purpose of JBoss Remoting is to provide a single API for most network based
invocations and related service that uses pluggable transports and data marshallers. The
JBoss Remoting API provides the ability for making synchronous and asynchronous
remote calls, push and pull callbacks, and automatic discovery of remoting servers. The
intention is to allow for the addition of different transports to fit different needs, yet still
maintain the same API for making the remote invocations and only requiring
configuration changes, not code changes, to fit these different needs.

JBoss Remoting is currently a sub-module of the JBoss Application Server and will likely
be the framework used for many of the other projects when making remote calls. JBoss
Remoting 1.0.1 final will be included in the JBoss AS 4.0.2 distribution and can be run as
a service within the container as well. Service configurations are included in the
configuration section below.

Features

e Server identification — a simple String identifier which allows for remoting servers
to be identified and called upon.

e Pluggable transports — can use different protocol transports, such as socket, rmi,
http, etc., via the same remoting API.

e Pluggable data marshallers — can use different data marshallers and unmarshallers
to convert the invocation payloads into desired data format for wire transfer.

e Automatic discovery — can detect remoting servers as they come on and off line.

e Server grouping — ability to group servers by logical domains, so only communicate
with servers within specified domains.

e Callbacks — can receive server callbacks via push and pull models. Pull model
allows for persistent stores and memory management.

e Asynchronous calls — can make asynchronous, or one way, calls to server.

e Local invocation — if making an invocation on a remoting server that is within the
same process space, remoting will automatically make this call by reference, to
improve performance.

e Remote classloading — allows for classes, such as custom marshallers, that do not
exist within client to be loaded from server.

How to get it

The JBoss Remoting distribution can be downloaded from
http://www.jboss.org/products/remoting. This distribution contains everything need to
run JBoss Remoting stand alone. The distribution includes binaries, source,
documentation, javadoc, and sample code.

Design

From the highest level, there are three components involved when making a remote
invocation using JBoss Remoting; a client, a connector, and an invocation handler.

Network
Boundary

1 — Client Connector 3| InvocationHandler

Y

The user constructs a Client, providing the locator for which remote server to make the
remote invocations on. The user then calls on the Client to make the invocation, passing
the invocation payload. The Client will then make the network call to the remote server,
which is the Connector. The connector will then call on the InvocationHandler to process
the invocation. This handler is the user’s implementation of the InvocationHandler
interface.

The marshalling of the data, network protocol negotiation, and other related tasks are
handled by the remoting framework. The effect of this is whatever payload object is
passed from the user, noted by number 1 in diagram, is exactly what is passed to the
InvocationHandler, noted by number 3 in diagram and all that was required by the user
on the client was a locator, which can be expressed as a simple String.

To add automatic detection, a remoting Detector and NetworkRegistry will need to be
added on both the client and server side.

Neatwork

Boundary
(]
]
Publish
Detector -—Detection—— Detector
Message
(]
(]
Post Remote Detection ' Get Registerad Connectors
Y 8 Y
Lookup]
i NetworkRegist . NetworkRegistr
Connector gistry] g Y
(]
. 3
g] Registry Connector
1.]
(]
. ‘ .
b Client 20— Connector —3.-#| InvocationHandler
(]
(]
(]

When the Connector is created, it will register itself with the local NetworkRegistry. The
Detector on the server will publish a detection message containing the locator for all the
Connectors registered with the NetworkRegistry.

The Detector on the client side will receive this detection message and post the locator
information for the server Connectors to the NetworkRegistry. The user can then query
the NetworkRegistry to determine all the Connectors that are available on the network.
Based on the query result, the user can then determine which locator to use when creating
the Client to be used for making invocations.

Components

This section covers a few of the main components exposed within the Remoting API with
a brief overview. Will start with a class diagram for those classes related to making
invocations and callbacks.

Client
(from ong:jboss: remoting)

== cregte ==+Client(locator:invokerLocator} Client

reate ==+Client(locator: InvolkerLocator subsystem: String): Client

= create ==+Cliert(cl Gl ssloader)ocator:invokerLocator subsystem: String): Client
== create ==+Client(cl Cl ssLoaderinvoler Clientlinvoker subsystem: String): Client
+setSessionldisessionld:String) void

+getS essionld (:String

+isConnected(}boolean =< interface ==
+conned():void ServerinvocationH andler
+dlisconnect() void (fiom org:jboss::remoting)

+getinvoler):Clientinvoker

+setlnvok er{nvoker: Clientlnvoke) void

+getSubsystem (:String

+setSubsystem(subsystem: String):void

+invoke(param : Dbject): O bject

+invole(param: Object metad ata: Map) Ohbject

+involeOne way(param: O biect sendPayload: Map clie ntSide: boolean) void

+HnvoleeCne way{param: O bject sendPayload: Map): void

+addliste nercall back Handle r:InvokerC allbackHand ler) void

+addListenencall back Handle rInvokerC allbackHand ler cliertLocator:invokerLocator), void
+addListe nerfcallbadk Handler nvokerC allbackH andler clisrtLocator: nvokerLocator call badi HandlerDbject: Dlject): void
+removelistenericallback Handler: InvolerC allbackH andler): void

+getCallbacks(y List

+setharshaller(marshallerMarshall er):void
+setlnidarshaller{unmarshallerUniarshaller void

+zethBeanServer(serverMB eanServer): void

+setinvok erinvoler: Serverinvoked): void

+invoke(invocation: InvocationReque st): Object

+addListe nerfcallbadk Handler InvolkerC allbackH andler): void
+removelistener(callback Handler:InvolerC allbackH andler): void

E &

InvocationRequest InvokerLocator
(o m org: jboss: remoting) (o m org: jboss remoting)

-locator

+getlocator{tinvokerLocator
+setLocatonlo cator:invokerLocator) void

reate ==+ nvokerLocator{uri:String)involerLocator
reate ==+nvokerLocator(protocol String host String portint path:String param eters: Map): InvokerLocator

+getSubsystem (:String +hashC ode(tint
+zetSubsystemsubsystem: String):void +equals{obj: Object boolean
+getSessionld(:String +getlocatorURI (X String
+setSessionld{sessionl d:String) void +getP roto col (i String

+getP arameter(): Object +getHost(rString
+setParameter(arg. Object). void +getP ort(yint

+getRequedP adoad() Map +getP ath(1String
+zetRequestP ayload(recuestP ayloac Map):vaid +getP arameters(Map
+getRetumP ayload(x Map +oSting(: String

+zetR eturnPayload(returnP ayload: Mag): veid +getOriginalJRI(xString

+narrow]): Clientlnvoker

-lo cator
Callback
(fiom org: fhoss remating) Comnector
+CALLBACK HAMDLE QBJECT KE'Y:Shring="callbad: handle objed" (from org:jboss:remoting. trangp ont)

+SERVER LOCATOR KEY:Strings "server locator”

=< create ==+Callbacki{callback Payload: O bject) Callback
+getCallbackHandleObje d{ Object

+getC allbackO hjea(): O hjsct

+getServerLocaton) InvokerLocator

== cleate ==+Connector(}Connector

+HzStarted():boolean

+preRegister(server:MEB eanServer name: Objecthame): ObjectM ame
+postR egister(egistrationD on e:Boolean): void

+preDeregister(): void

+postD eregister) void

== interface == +stait(). void
InvokerCallbackH andler +stop():void
(fiom org: jhoss remating) +createl): voic
+handleC allback{invocation: Invocati onR egue st ¥ void :Z:tﬁLfc::(dlo\lr'(ojlclj\wnkerLocmnr

+setlnvok erLocatorlo cator: String} void

+getlnvol el o cator () String

+zetC onfiguration{zml Element)void

+getC onfiguration(): Element

+acldlnvocationHandler(subsystem: String hand erObjedMame: OhjectMame): void
+addinvocationHandlersubsystem: String handler: ServerlnvocationHandler): void
+removel nvocati onHand er{ subsystem : String): voicd

Client —is the class the user will create and call on from the client side. This is the main
entry point for making all invocations and adding a callback listener. The Client class
requires only the InvokerLocator for the server you wish to call upon and that you call
connect before use and disconnect after use (which is technically only required for
stateful transports, but good to call in either case).

InvokerLocator — is a class, which can be described as a string URI, for describing a
particular JBoss server JVM and transport protocol. For example, the InvokerLocator
string socket://192.168.10.1:8080 describes a TCP/IP Socket-based transport, which
is listening on port 8080 of the IP address, 192.168.10.1. Using the string URI, or the
InvokerLocator object, JBoss Remoting can make a client connection to the remote
JBoss server. The format of the string URI is the same as a type URI:

[transport]://[ipaddress]:<port>/<parameter=value>&<parameter=value>

Connector - is an MBean that loads a particular ServerInvoker implementation for a
given transport subsystem and one or more ServerlInvocationHandler implementations
that handle Subsystem invocations on the remote server JVM.

ServerlnvocationHandler — is the interface that the remote server will call on with an
invocation received from the client. This interface must be implemented by the user.
This implementation will also be required to keep track of callback listeners that have
been registered by the client as well.

InvocationRequest — is the actual remoting payload of an invocation. This class wraps
the caller’s request and provides extra information about the invocation, such as the
caller’s session id and it’s callback locator (if one exists).

InvokerCallbackHandler — the interface for any callback listener to implement. Upon
receiving callbacks, the remoting client will call on this interface if registered as a
listener.

HetworkH otification
(from org. jboss remoting: . network)

+SERVER ADDED:Shing= “|boss.network.server added”

+SERVER UPDATED:Shing= "boss network server updated”
+SERVER REMOWED:Shing= "boss.networl.server removed”
DOMAIN CHANGED:String= "jb oss network domain changed"”

+getl dentity():| dertity
+getlocator(fInvokerLocator]]

== create >=+hNetworlioti fication{source: O bjectlame type:String,id entity ldertity invokers:InvokerLocator[]x MetworkMotification

HetworkRegistry
(fom org: jboss remoting: network)

== cregte == +MetworkRegistry(xMetworkRegisry
+oetinstance() MetworkR eqistry

+addServeridentity: |dertity invol ers:lnvokerLocator[[) void
+updat eServer(id entity | dentity in vol ers:InvokerLocator(]): void
+getS ervers{f Networkinstance(]

+hasServer(identity: |dertity):boolean

+ejueryServers(iifter: NetworkF iker N ebworkinstance(]
+removeServer{identity:|dentity): void

+geth oti ficatio ninfo(YM B eanMotif cationlnfo[]

+removeN ofificati onListene ninoti fication Listener:Moti ficationListener): void
+postDeregister() void

+postRegister{aBo olean:Boolean): void

+preDeregister(): void

+preR egisgter(mBeanServer:MB eanServer objediam e ObjectName) ObjectName
+changeDomain(newDomain:String):void

+addNetificationListener{noti ficationListener: NotificationL ist ener noti ficationFilter: M otificationF itter o: Object): void

Next is the class diagram for classes related to automatic discovery.

<2 interface ==
Detector
(from org: fhoss:remotingdetection)
+stat() void
+stop():void

=< realize ==

A

AbstractDatactor
(from org. jboss remoting::detection)

Detection
(from erg.jhoss: remoting: detection)

<= create ==+Detection (idertity:| dentity locators|nvokerLocator(]). D etection
+equalsiobj Objectthoolean

+hashC ode(xint

+toShing(): String

+getldentity():Idertity

+getlocators():InvokerLocator(]

<< creste >>+AbstradDete cor(AbstractDete ctor
+setHeartbest TimeD elayheartbest Tim eDelay long): void
+getHeartbeatTimeDelay{Ilong

+setDefault TimeDelaydetau tTimeD elaylo ng): void
+getDefauttTine Delay(long

+start() void
+stop():void
-singleton | +postD eregister():void
+postR edister(aBo olean: Boolean): void
+preD eregister():void
+preR egigerimBeanServer:MB eanServer objediam e:0bjectilame). ObjectMame
+setConfiguration(xml: Efemenfy:void
+getConfiguration() Element

i

MulticastD etector
(from org: jboss: remoting:detectio n::multicast)

JNDIDetector
(from org:fboss::remoting. :detectio i di)

+DETECTION SUBCOMTEXT MAME:String= "detection”

+getDefaultiP():String

+setDefaultIP (defaultP: String) void
+getAddress(iInetAddress
+setAddress(ip netAddress): void
+getBindAddressy net Address
+setBindAddress(ipl netAddress): vaid
+getP ort{):int

+getPort(portint):void

+start(): void

+stop():void

+getP ait()int

+setPort{port int): void

+getHost(): String

+setHost(host: String): void

+getCont extF actory(): String

+zetContextFactory contexdF actory: String void
+getlURLP ackage(String
+zetlURLPackage(urlP ackage: String): void
+stat(yvoid

+getCleanDetectionMumber(yint

+zetCleanDet ectionMumber(cleanDete dionMumber int): void
+stop()void

NetworkRegistry — this is a singleton class that will keep track of remoting servers as
new ones are detected and dead ones are detected. Upon a change in the registry, the
NetworkRegistry fires a NetworkNotification.

NetworkNotification — a JMX Notification containing information about a remoting
server change on the network. The notification contains information in regards to the

server’s identity and all its locators.

Detection — is the detection message fired by the Detectors.

MulticastDetector — is the detector implementation that broadcasts its Detection
message to other detectors using multicast.

JNDIDetector — is the detector implementation that registers its Detection message to
other detectors in a specified JNDI server.

Another component that is not represented as a class, but is important to understand is the
sub-system.

Subsystem — a sub-system is an identifier for what higher level system an invocation
handler is associated with. The sub-system is declared as any String value. The reason
for identifying sub-systems is that a remoting Connector may handle invocations for
multiple invocation handlers, which need to routed based on sub-system. For example, a
particular socket based Connector may handle invocations for both IMX and EJB. The
client making the invocation would then need to identify the intended sub-system to
handle the invocation based on this identifier. If only one handler is added to a
Connector, the client does not need to specify a sub-system when making an invocation.

Configuration

This covers the configuration for JBoss Remoting discovery, connectors, marshallers, and
transports. All the configuration properties specified can be set either via calls to the
object itself, including via JMX (so can be done via the JMX or Web console), or via a
JBoss AS service xml file. Examples of service xml configurations can be seen with each
of the sections below. There is also an example-service.xml file included in the remoting
distribution that shows full examples of all the remoting configurations.

General Connector and Invoker configuration

Only one invoker can be declared per connector (multiple InvokerLocator attributes or
invoker elements within the Configuration attribute is not permitted). At least one
handler must also be specified as well, which is the only interface that is required by a
remoting framework for a user to implement and will be what the remoting framework
calls upon when receiving invocations.

There are two ways in which to specify the invoker, or transport, configuration via a
service xml file. The first is to specify just the InvokerLocator attribute as a sub-element
of the Connector MBean. All the client side configurations can be made part of the
locator uri in this approach. For example, a possible configuration for a Connector using
a socket invoker that has the client's max pool size of 30 that is listening on port 8084 on
the test.somedomain.com address would be:

<mbean code="org.jboss.remoting.transport.Connector"
xmbean-dd="org/jboss/remoting/transport/Connector.xml"
name="jboss.remoting:service=Connector,transport=Socket"
display-name="Socket transport Connector">

<attribute name="InvokerLocator">
<I[CDATA[socket://test.somedomain.com:8084/? &clientMaxPoolSize=30]]>
</attribute>

<attribute name="Configuration">
<config>
<handlers>
<handler subsystem="mock">
org.jboss.remoting.transport.mock.MockServerinvocationHandler
</handler>
</handlers>
</config>
</attribute>
</mbean>

Note that all the server side socket invoker configurations will be set to their default
values in this case. Also important to add CDATA to any locator uri that contains more
than one parameter.

The other way to configure the Connector and its invoker in greater detail is to provide an
invoker sub-element within the config element of the Configuration attribute. The only
attribute of invoker element is transport, which will specify which transport type to use
(i.e. socket, rmi, or http). All the sub-elements of the invoker element will be attribute
elements with a name attribute specifying the configuration property name and then the
value. An isParam attribute can also be added to indicate that the attribute should be
added to the locator uri, in the case the attribute needs to be used by the client. An
example using this form of configuration is as follows:

<mbean code="org.jboss.remoting.transport.Connector"
xmbean-dd="org/jboss/remoting/transport/Connector.xml"
name="jboss.remoting:service=Connector,transport=Socket"
display-name="Socket transport Connector">

<attribute name="Configuration">
<config>
<invoker transport="socket">
<attribute name="numAcceptThreads">1</attribute>
<attribute name="maxPoolSize">303</attribute>
<attribute name="clientMaxPoolSize" isParam="true">304</attribute>
<attribute name="socketTimeout">60000</attribute>
<attribute name="serverBindAddress">192.168.0.82</attribute>
<attribute name="serverBindPort">6666</attribute>
<attribute name="clientConnectAddress">216.23.33.2</attribute>
<attribute name="clientConnectPort">7777</attribute>
<attribute name="enableTcpNoDelay" isParam="true">false</attribute>
<attribute name="backlog">200</attribute>
</invoker>
<handlers>
<handler subsystem="mock">
org.jboss.remoting.transport.mock.MockServerinvocationHandler
</handler>
</handlers>
</config>
</attribute>

</mbean>

Also note that ${jboss.bind.address} can be used for any of the bind address properties,
which will be replace with the bind address specified to JBoss when starting (i.e. via the -
b option).

All the attributes set in this configuration could be set directly in the locator uri of the
InvokerLocator attribute value, but would be much more difficult to decipher visually
and is more prone to editing mistakes.

Handlers

Handlers are classes that the invocation is given to on the server side (the final target for
remoting invocations). To implement a handler, all that is needed is to implement the
org.jboss.remoting.ServerlinvocationHandler interface. There are a two ways in which to
register a handler with a Connector. The first is to do it programmatically. The second is
via service configuration. For registering programmatically, can either pass the
ServerinvocationHandler reference itself or an ObjectName for the
ServerinvocationHandler (in the case that it is an MBean). To pass the handler reference
directly, call Connector::addinvocationHandler(String subsystem,
ServerinvocationHandler handler). Some sample code of this (from
org.jboss.samples.simple.SimpleServer):

InvokerLocator locator = new InvokerLocator(locatorURI);
Connector connector = new Connector();
connector.setinvokerLocator(locator.getLocatorURI());
connector.start();

SamplelnvocationHandler invocationHandler = new SamplelnvocationHandler();
/I first parameter is sub-system name. can be any String value.
connector.addIinvocationHandler("sample", invocationHandler);

To pass the handler by ObjectName, call Connector::addInvocationHandler(String
subsystem, ObjectName handlerObjectName). Some sample code of this (from
org.jboss.remoting.handler.mbean.ServerTest):

MBeanServer server = MBeanServerFactory.createMBeanServer();

InvokerLocator locator = new InvokerLocator(locatorURI);
Connector connector = new Connector();
connector.setlnvokerLocator(locator.getLocatorURI());
connector.start();

server.registerMBean(connector,
new ObjectName("test:type=connector,transport=socket"));

/l now create Mbean handler and register with mbean server
MBeanHandler handler = new MBeanHandler();

ObjectName objName = new ObjectName("test:type=handler");
server.registerMBean(handler, objName);

connector.addIinvocationHandler("test", objName);

Is important to note that if not starting the Connector via the service configuration, will
need to explicitly register it with the MBeanServer (will throw exception otherwise).

If using a service configuration for starting the Connector and registering handlers, can
either specify the fully qualified class name for the handler, which will instantiate the
handler instance upon startup (which requires there be a void parameter constructor),
such as:

<handlers>
<handler subsystem="mock">
org.jboss.remoting.transport.mock.MockServerinvocationHandler
</handler>
</handlers>

where MockServerinvocationHandler will be constructed upon startup and registered
with the Connector as a handler.

Can also use an ObjectName to specify the handler. The configuration is the same, but
instead of specifying a fully qualified class name, you specify the ObjectName for the
handler, such as (can see mbeanhandler-service.xml under remoting tests for full
example):

<handlers>
<handler subsystem="mock">test:type=handler</handler>
</handlers>

The only requirement for this configuration is that the handler MBean must already be
created and registered with the MBeanServer at the point the Connector is started.

Handler implementations

The Connectors will maintain the reference to the single handler instance provided (either
indirectly via the MBean proxy or directly via the instance object reference). For each
request to the server invoker, the handler will be called upon. Since the server invokers
can be multi-threaded (and in most cases would be), this means that the handler may

receive concurrent calls to handle invocations. Therefore, handler implementations
should take care to be thread safe in their implementations.

Discovery (Detectors)
Configuration common to all detectors:
Domains

Detectors have the ability to accept multiple domains. What domains that the detector
will accept as viewable can be either programmatically set via the method:

public void setConfiguration(org.w3c.dom.Element xml)

or by adding to jboss-service.xml configuration for the detector. The domains that the
detector is currently accepting can be retrieved from the method:

public org.w3c.dom.Element getConfiguration()

The configuration xml is a MBean attribute of the detector, so can be set or retrieved via
JMX.

There are three possible options for setting up the domains that a detector will accept.
The first is to not call the setConfiguration() method (or just not add the configuration

attribute to the service xml). This will cause the detector to use only its domain and is the
default behavior. This enables it to be backwards compatible with earlier versions of
JBoss Remoting (JBoss 4, DR2 and before).

The second is to call the setConfiguration() method (or add the configuration attribute
to the service xml) with the following xml element:

<domains>
<domain>domainl</domain>
<domain>domain2</domain>

</domains>

where domainil and domain2 are the two domains you would like the detector to accept.
This will cause the detector to only accept detections from the domains specified, and no
others.

The third, and final option, is to call the setConfiguration() method (or add the
configuration attribute to the service xml) with the following xml element:

<domains>
</domains>

This will cause the detector to accept all detections from any domain.

An example entry of a Multicast detector in the jboss-service.xml that only accepts
detections from the roxanne and sparky domains using port 5555 is as follows:

<mbean code="org.jboss.remoting.detection.multicast.MulticastDetector"
name="jboss.remoting:service=Detector,transport=multicast">
<attribute name="Port">5555</attribute>
<attribute name="Configuration">
<domains>
<domain>roxanne</domain>
<domain>sparky</domain>
</domains>
</attribute>
</mbean>

DefaultTimeDelay - amount of time, in milliseconds, which can elapse without receiving
a detection event before a server will be suspected as being dead and performing an
explicit invocation on it to verify it is alive. If this invocation, or ping, fails, the server
will be removed from the network registry. The default is 5000 milliseconds.

HeartbeatTimeDelay - amount of time to wait between sending (and sometimes
receiving) detection messages. The default is 1000 milliseconds.

JNDIDetector

Port - port to which detector will connect to for the JNDI server.

Host - host to which the detector will connect to for the JINDI server.

ContextFactory - context factory string used when connecting to the JNDI server. The
default is org. jnp. interfaces.NamingContextFactory.

URLPackage - url package string to use when connecting to the JNDI server. The
default is org.jboss.naming:org.jnp.interfaces.

CleanDetectionNumber - Sets the number of detection iterations before manually
pinging remote server to make sure still alive. This is needed since remote server could
crash and yet still have an entry in the JNDI server, thus making it appear that it is still
there. The default value is 5.

Can either set these programmatically using setter method or as attribute within the
remoting-service.xml (or any where else the service is defined). For example:

<mbean code="org.jboss.remoting.detection.jndi.JNDIDetector"
name="jboss.remoting:service=Detector,transport=jndi">
<attribute name="Host">localhost</attribute>
<attribute name="Port">5555</attribute>
</mbean>

If the JINDIDetector is started without the Host attribute being set, it will try to start a
local JNP instance (the JBoss JNDI server implementation), on port 1088.

MulticastDetector

DefaultlP - The IP that is used to broadcast detection messages on via multicast. To be
more specific, will be the ip of the multicast group the detector will join. This attribute is
ignored if the Address has already been set when started. Default is 224.1.9.1.

Port - The port that is used to broadcast detection messages on via multicast. Default is
2410.

BindAddress - The address to bind to for the network interface.

Address - The IP of the multicast group that the detector will join. The default will be
that of the DefaultIP if not explicitly set.

Transports (Invokers)

Socket Invoker

The following configuration properties can be set at any time, but will note take affect
until the socket invoker, on the server side, is stopped and restarted.

backlog - The preferred number of unaccepted incoming connections allowed at a given
time. The actual number may be greater than the specified backlog. When the queue is
full, further connection requests are rejected. Must be a positive value greater than 0. If
the value passed if equal or less than 0, then the default value will be assumed. The
default value is 200.

numAcceptThreads - The number of threads that exist for accepting client connections.
The default is 1.

maxPoolSize - The number of server threads for processing client. The default is 300.

socketTimeout - The socket timeout value passed to the Socket.setSoTimeout() cmethod.
The default is 60000 (or 1 minute).

serverBindAddress - The address on which the server binds its listening socket. The
default is an empty value which indicates the server should be bound on all interfaces.

serverBindPort - The port used for the server socket. A value of 0 indicates that an
anonymous port should be chosen.

Configurations affecting the Socket invoker client

There are some configurations which will impact the socket invoker client. These will be
communicated to the client invoker via parameters in the Locator URI. These
configurations can not be changed during runtime, so can only be setup upon initial
configuration of the socket invoker on the server side. The following is a list of these and
their affects.

enableTcpNoDelay - can be either true or false and will indicate if client socket should
have TCP_NODELAY turned on or off. TCP_NODELAY is for a specific purpose; to
disable the Nagle buffering algorithm. It should only be set for applications that send
frequent small bursts of information without getting an immediate response; where timely
delivery of data is required (the canonical example is mouse movements).

clientMaxPoolSize - the client side maximum number of threads. The default is 300.

An example of locator uri for a socket invoker that has TCP_NODELAY set to false and
the client’s max pool size of 30 would be:

socket://
test.somedomain.com:8084/?enableTcpNoDelay=Ffalse&maxPoolSize=30

clientConnectPort - the port the client will use to connect to the remoting server. This
would be needed in the case that the client will be going through a router that forwards
the requests externally to a different port internally.

clientConnectAddress- the ip or hostname the client will use to connect to the remoting
server. This would be needed in the case that the client will be going through a router that
forwards the requests externally to a different ip or host internally.

If no client connect address or server bind address specified, will use the local host's
address (via InetAddress.getLocalHost() .getHostAddress())

If no client connector port or server bind port specified, will use the
PortUtil.findFreePort() to find an available port.

If client (or server if client not present) bind address is set to 0.0.0.0, will use
InetAddress.getLocalHost() .getHostAddress() to get the host to use for the locator
uri to be provided to client via discovery.

To reiterate, these client configurations can only be set within the server side
configuration and will not change during runtime.

RMI Invoker

registryPort - the port on which to create the RMI registry. The default is 3455. This
also needs to have the isParam attribute set to true (see below for more information on the
isParam attribute).

HTTP Invoker

The HTTP Invoker does not have properties in the same sense as the other invokers (this
is still a todo). However, metadata will be passed as headers. The following are possible
http headers and what they mean:

sessionld - is the remoting session id to identify the client caller. If this is not passed, the
HTTPServerinvoker will try to create a session id based on information that is passed.
Note, this means if the sessionld is not passed as part of the header, there is no gurantee
that the sessionld supplied to the invocation handler will always indicate the request from
the same client.

subsystem - the subsystem to call upon (which invoker handler to call upon). If there is
more than one handler per Connector, this will need to be set (otherwise will just use the
only one available).

As of 1.0.1 beta release, the HTTP Invoker only supports POST requests on the server (to
be fixed for 1.0.1 final release).

For example of how to use the HTTP Invoker (both client and server side), see the test
classes under remoting/tests/src/org/jboss/remoting/transport/http. They give examples of
how to make different calls (object, xml/soap, and html) and what headers will need to be
set and how. Full documentation will be coming soon on this.

Note: The HTTPServerinvoker is going to be very expensive as need to write out the size
of the response (Content-Length). This basically means serializing the response object to
byte array and getting size of the array (very expensive).

Marshalling

Marshalling of data can range from extremely simple to somewhat complex depending on
how much customization is needed. The following explains how
marshallers/unmarshallers can be configured. Note that this applies for all the different
transports, but will use the socket transport for examples.

The easiest way to configure marshalling, is to specify nothing at all. This will prompt
the remoting invokers to use their default marshaller/unmarshallers. For example, the
socket invoker will use the SerializableMarshal ler/SerializableUnMarshaller and

the http invoker will use the HTTPMarshal ler/HTTPUnMarshal ler, on both the client and
server side.

The next easiest way is to specify the data type of the marshaller/unmarshaller as a
parameter to the locator url. This can be done by simply adding the key word 'datatype’ to
the url, such as:

socket://myhost:5400/?datatype=serializable

This can be done for types that are statically bound within the MarshalFactory,
serializable and http, without requiring any extra coding, since they will be available
to any user of remoting. However, is more likely this will be used for custom marshallers
(since could just use the default data type from the invokers if using the statically defined
types). If using custom marshaller/unmarshaller, will need to make sure both are added
programmatically to the MarshalFactory during runtime (on both the client and server
side). This can be done by the following method call within the MarshalFactory:

public static void addMarshaller(String dataType,
Marshaller marshaller,
UnMarshaller unMarshaller)

The dataType passed can be any String value desired. For example, could add custom
InvocationMarshaller and InvocationUnMarshaller with the data type of
‘invocation’. An example using this data type would then be:

socket://myhost:5400/?datatype=invocation

One of the problems with using a data type for a custom Marshaller/UnMarshaller is
having to explicitly code the addition of these within the MarshalFactory on both the
client and the server. So another approach that is a little more flexible is to specify the
fully qualified class name for both the Marshaller and UnMarshaller on the locator url.
For example:

socket://myhost:5400/?datatype=invocation&

marshaller=org. jboss. invocation.unified.marshall. InvocationMarshaller&
unmarshaller=org. jboss. invocation.unified.marshall. InvocationUnMarshall
er

This will prompt remoting to try to load and instantiate the Marshaller and UnMarshaller
classes. If both are found and loaded, they will automatically be added to the
MarshalFactory by data type, so will remain in memory. Now the only requirement is that
the custom Marshaller and UnMarshaller classes be available on both the client and
server's classpath.

Another requirement of the actual Marshaller and UnMarshaller classes is that they have
a void constructor. Otherwise loading of these will fail.

This configuration can also be applied using the service xml. If using declaration of
invoker using the InvokerLocator attribute, can simply add the datatype, marshaller, and
unmarshaller parameters to the defined InvokerLocator attribute value. For example:

<attribute name="InvokerLocator">
<I[CDATA[socket://${jboss.bind.address}:8084/?datatype=invocation&
marshaller=org.jboss.invocation.unified.marshall.InvocationMarshaller&
unmarshaller=org.jboss.invocation.unified.marshall.InvocationUnMarshaller]]>

</attribute>

If were using config element to declare the invoker, will need to add an attribute for each
and include the isParam attribute set to true. For example:

<invoker transport="socket">
<attribute name="dataType" isParam="true">invocation</attribute>
<attribute name="marshaller" isParam="true">
org.jboss.invocation.unified.marshall.InvocationMarshaller
</attribute>
<attribute name="unmarshaller" isParam="true">
org.jboss.invocation.unified.marshall.InvocationUnMarshaller
</attribute>
</invoker>

This configuration is fine if the classes are present within the client's classpath. If they are
not, can provide configuration for allowing clients to dynamically load the classes from
the server. To do this, can use the parameter 'loaderport’ with the value of the port you
would like your marshall loader to run on. For example:

<invoker transport="socket">
<attribute name="dataType" isParam="true">invocation</attribute>
<attribute name="marshaller" isParam="true">
org.jboss.invocation.unified.marshall.InvocationMarshaller
</attribute>
<attribute name="unmarshaller" isParam="true">
org.jboss.invocation.unified.marshall.InvocationUnMarshaller
</attribute>
<attribute name="loaderport" isParam="true">5401</attribute>
</invoker>

When this parameter is supplied, the Connector will recognize this at startup and create a
marshall loader connector automatically, which will run on the port specified. The locator
url will be exactly the same as the original invoker locator, except will be using the
socket transport protocol and will have all marshalling parameters removed (except the
dataType). When the remoting client can not load the marshaller/unmarshaller for the
specified data type, it will try to load them from the marshall loader service running on
the loader port, including any classes it depends on. This will happen automatically and
not coding is required (only the ability for the client to access the server on the specified
loader port, so must provide access if running through firewall).

Callback overview

Although this section covers callback configuration, will need to first cover a little
general information about callbacks within remoting. There are two models for callbacks,
push and pull. In the push model, the client will register a callback server via an
InvokerLocator with the target server. When the target server has a callback to deliver,
it will call on the callback server directly and send the callback message. There is little
configuration needed for this and is covered in detail in the remoting user’s guide.

The other model, pull callbacks, allows the client to call on the target server to collect the
callback messages waiting for it. The target server then has to manage these callback
messages on the server until the client calls to collect them. Since the server has no
control of when the client will call to get the callbacks, it has to be aware of memory
constraints as it manages a growing number of callbacks. The way the callback server
does this is through use of a persistence policy. This policy indicates at what point the
server has too little free memory available and therefore the callback message should be
put into a persistent store. This policy can be configured via the memPercentCeiling
attribute (see more on configuring this below).

By default, the persistent store used by the invokers is the

org.jboss.remoting.Nul ICal IbackStore. The Nul ICal IbackStore will simply
throw away the callback to help avoid running out of memory. When the persistence
policy is triggered and the Nul ICal IbackStore is called upon to store the callback, the
invocation handler making the call will be thrown an 10Exception with the message:

Callback has been lost because not enough free memory to hold object.

and there will be an error in the log stating which object was lost. In this same scenario,
the client will get an instance of the org. jboss.remoting.NullCal IbackStore.

Fai ledCal Iback class when they call to get their callbacks. This class will throw a
RuntimeException with the following message when getCal Ibackobject() is called:

This is an invalid callback. The server ran out of memory, so callbacks were lost.

Also, the payload of the callback will be the same string. The client will also get any
valid callbacks that were kept in memory before the persistence policy was triggered.

An example case when using the Nul ICal IbackStore might be callback objects A, B,
and C are stored in memory because there is enough free memory. Then when callback D
comes, the persistence policy is triggered and the Nul ICal 1backStore is asked to persist
callback D. The NulIcal IbackStore will throw away callback D and create a

Fai ledCal Iback object to take its place. Then callback E comes, and there is still too
little free memory, so that is thrown away by the Nul ICal IbackStore.

Then the client calls to get its callbacks. It will receive a List containing callbacks A, B,
C and the Fai ledCal Iback. When the client asks the Fai ledCal Iback for its callback
payload, it will throw fore mentioned exception.

Besides the default Nul ICal IbackStore, there is a truly persistent Cal IbackStore,
which will persist callback messages to disk so they will not be lost. The description of
the CallbackStore is as follows:

Acts as a persistent list which writes Serializable objects to disk and will retrieve them in
same order in which they were added (FIFO). Each file will be named according to the
current time (using System.currentTimeMillis() with the file suffix specified (see below).
When the object is read and returned by calling the getNext() method, the file on disk for
that object will be deleted. If for some reason the store VM crashes, the objects will still
be available upon next startup. The attributes to make sure to configure are:

file path - this determines which directory to write the objects. The default value is the
property value of ‘jboss.server.data.dir’ and if this is not set, then will be 'data’. For
example, might be /jboss/server/default/data.

file suffix - the file suffix to use for the file written for each object stored.

This is also a service mbean, so can be run as a service within JBoss AS or stand alone.
Custom callback stores can also be implemented and defined within configuration. The
only requirement is that it implements the org. jboss.remoting.SerializableStore
interface and has a void constructor (only in the case of using a fully qualified classname

in configuration).

Once a callback client has been removed as a listener, all persisted callbacks will be
removed from disk.

Callback Configuration

All callback configuration will need to be defined within the invoker configuration, since
the invoker is the parent that creates the callback servers as needed (when client registers
for pull callbacks). Example service xml are included below.

callbackMemcCeiling - the percentage of free memory available before callbacks will be
persisted. If the memory heap allocated has reached its maximum value and the percent
of free memory available is less than the callbackMemCeiling, this will trigger persisting
of the callback message. The default value is 20.

Note: The calculations for this is not always accurate. The reason is that total memory
used is usually less than the max allowed. Thus, the amount of free memory is relative to
the total amount allocated at that point in time. It is not until the total amount of memory
allocated is equal to the max it will be allowed to allocate. At this point, the amount of
free memory becomes relevant. Therefore, if the memory percentage ceiling is high, it
might not trigger until after free memory percentage is well below the ceiling.

callbackStore - specifies the callback store to be used. The value can be either an MBean
ObjectName or a fully qualified class name. If using class name, the callback store
implementation must have a void constructor. The default is to use the
NullCallbackStore.

CallbackStore configuration
The CallbackStore can be configured via the invoker configuration as well.

StoreFilePath - indicates to which directory to write the callback objects. The default
value is the property value of 'jboss.server.data.dir' and if this is not set, then will be
'data’. Will then append 'remoting' and the callback client's session id. An example would
be 'data\remoting\5¢c4005I-9jijyx-e5b6xyph-1-e5b6xyph-2'.

StoreFileSuffix - indicates the file suffix to use for the callback objects written to disk.
The default value is “ser’.

Sample service configuration

Socket transport with callback store specified by class name and memory ceiling set to
30%:

<mbean code="org.jboss.remoting.transport.Connector"
xmbean-dd="org/jboss/remoting/transport/Connector.xml"
name="jboss.remoting:service=Connector,transport=Socket"
display-name="Socket transport Connector">

<attribute name="Configuration">
<config>
<invoker transport="socket">
<attribute name="callbackStore">org.jboss.remoting.CallbackStore</attribute>
<attribute name="callbackMemCeiling">30</attribute>
</invoker>
<handlers>
<handler subsystem="test">
org.jboss.remoting.callback.pull.memory.CallbackinvocationHandler
</handler>
</handlers>
</config>
</attribute>
</mbean>

Socket transport with callback store specified by MBean ObjectName and declaration of
CallbackStore as service:

<mbean code="org.jboss.remoting.CallbackStore"
name="jboss.remoting:service=CallbackStore,type=Serializable"
display-name="Persisted Callback Store">

<!-- the directory to store the persisted callbacks into -->
<attribute name="StoreFilePath">callback store</attribute>
<!-- the file suffix to use for each callback persisted to disk -->
<attribute name="StoreFileSuffix">cbk</attribute>

</mbean>

<mbean code="org.jboss.remoting.transport.Connector"
xmbean-dd="org/jboss/remoting/transport/Connector.xml"
name="jboss.remoting:service=Connector,transport=Socket"
display-name="Socket transport Connector">

<attribute name="Configuration">
<config>
<invoker transport="socket">
<attribute name="callbackStore">
jboss.remoting:service=CallbackStore,type=Serializable
</attribute>
</invoker>
<handlers>
<handler subsystem="test">
org.jboss.remoting.callback.pull. memory.CallbackinvocationHandler
</handler>
</handlers>
</config>
</attribute>
</mbean>

Socket transport with callback store specified by class name and the callback store’s file
path and file suffix defined:

<mbean code="org.jboss.remoting.transport.Connector"
xmbean-dd="org/jboss/remoting/transport/Connector.xml"
name="jboss.remoting:service=Connector,transport=Socket"
display-name="Socket transport Connector">

<attribute name="Configuration">
<config>
<invoker transport="socket">
<attribute name="callbackStore">org.jboss.remoting.CallbackStore</attribute>
<attribute name="StoreFilePath">callback</attribute>
<attribute name="StoreFileSuffix">cst</attribute>
</invoker>
<handlers>
<handler subsystem="test">
org.jboss.remoting.callback.pull.memory.CallbackinvocationHandler
</handler>
</handlers>
</config>
</attribute>
</mbean>

Programmatic configuration

It is possible to configure all this programmatically, if running outside the JBoss
Application server for example, but is a little more tedious. Since the remoting
components are all bound together by the org. jboss. remoting.transport.Connector
class, will need to call its setConfiguration(org.w3c.dom.Element xml) method
with same xml as in the mbean service configuration, before calling its start() method.

The xml passed to the Connector should have <config> element as the root element and
continue from there with <invoker> sub-element and so on.

How to use it — sample code

Sample code demonstrating different remoting features can be found in the examples
directory. They can be compiled and run manually via your IDE or via an ant build file
found in the examples directory.

There are four sets of sample code, each with their own package; simple, oneway,
detection, and callback. Within each of these packages, there will be a server and a client
class that will need to be executed. If running samples from command line and have ant
installed, can use the following ant targets:

Simple invocation - run-simple-client & run-simple-server

Oneway invocation — run-oneway-client & run-oneway-server

Discovery and invocation — run-detector-client & run-detector-server

Callbacks (push & pull) — run-callback-clint & run-callback-server

So if wanted to run th simple sample would open a command prompt and type:

ant run-simple-server

and then:

ant run-simple-client

Each target will compile the sample classes if they have not been already. Remember to
always run the server first, then the client.

Known issues

All of the known issues and road map can be found on our bug tracking system, Jira, at
http://jira.jboss.com/jira/secure/BrowseProject.jspa?id=10031 (require member plus
registration, which is free). If you find more, please post them to Jira. If you have
questions post them to the JBoss Remoting, Unified Invokers forum
(http://www.jboss.org/index.html?module=bb&op=viewforum&f=176).

1. HTTP Invoker is not complete yet. Only POST requests are supported on the
server side (GET is not yet supported).

2. The HTTP Invoker has been stress tested and performance is slow, especially
with oneway invocations. Under extremely high loads using oneway invocations
with the HTTP Invoker will cause clients to experience invocation exceptions due
to not being able to handle more requests.

Future plans

Actually going to start with a little history here. JBoss Remoting was originally written
by Jeff Haynie (jhaynie@vocalocity.net) and Tom Elrod (tom@jboss.org) and still exists
in its older form in the JBoss 3.2 branch (has been backported to the 4.0 branch, but was
not until after the 4.0.0 and 4.0.1 releases). This release is based off of jboss-head branch
(which is actually HEAD) in CVS. The basics from the older version still remains in the
current version, but is being refactored for this next release (and official first stand alone
release). That being said, here is what is planned in the future (can see full road map at
http://jira.jboss.com/jira/browse/JBREM?report=com.atlassian.jira.plugin.system.project:
roadmap-panel):

- Add specific method for streaming large binary files.
- Add HTTP/HTTPS proxy and GET request support.
- Add Servlet Invoker (counter part to the HTTP Invoker)
- Add support for custom socket factories

- Add high availability to remoting

- Distributed garbage collection

- Client transport idle connection timeout

- Smart proxies

- Connection failure callback

- Dynamic classloading (partially implemented)

- Support for redeploy on server and synch on client

- Add UIL2 type transport

- Add JGroups transport

- Add SMTP transport

- Add NIO transport

If you have an questions, comments, bugs, fixes, contributions, or flames, please post
them to the JBoss Remoting, Unified Invokers forum
(http://www.jboss.org/index.html?module=bb&op=viewforum&f=176). You can also
find more information about JBoss Remoting on our wiki
(http://www.jboss.org/wiki/Wiki.jsp?page=Remoting).

Thanks for checking it out.
-Tom

Tom Elrod

JBoss Core Developer
JBoss, Inc.
tom@jboss.org

Release Notes

Release Notes - JBoss Remoting - Version 1.0.1 final

** Feature Request
* [JBREM-54] - Need access to HTTP response headers

*% Bug
* [JBREM-1] - Thread.currentThread().getContextClassLoader() is wrong
* [JBREM-31] - Exception handling in http server invoker
* [JBREM-32] - HTTP Invoker - check for threading issues
* [JBREM-50] - Need ability to set socket timeout on socket client invoker
* [JBREM-59] - Pull callback collection is unbounded - possible Out of Memory
* [JBREM-60] - Incorrect usage of debug level logging
* [JBREM-61] - Possible RMI exception semantic regression

** Task
* [JBREM-15] - merge UnifiedInvoker from remoting branch
* [JBREM-30] - Better integration for registering invokers with MBeanServer
* [JBREM-37] - backport to 4.0 branch before 1.0.1 final release
* [JBREM-56] - Add Callback object instead of using InvokerRequest

** Reactor Event
* [JBREM-51] - defining marshaller on remoting client

Release Notes - JBoss Remoting - Version 1.0.1 beta

*% Bug
* [JBREM-19] - Try to reconnect on connection failure within socket invoker
* [JBREM-25] - Deadlock in InvokerRegistry

** Feature Request
* [JBREM-12] - Support for call by value
* [JBREM-26] - Ability to use MBeans as handlers

** Task
* [JBREM-3] - Fix Asyn invokers - currently not operable
* [JBREM-4] - Added test for throwing exception on server side
* [JBREM-5] - Socket invokers needs to be fixed
* [JBREM-16] - Finish HTTP Invoker
* [JBREM-17] - Add CannotConnectException to all transports
* [JBREM-18] - Backport remoting from HEAD to 4.0 branch

** Reactor Event
* [JBREM-23] - Refactor Connector so can configure transports
* [JBREM-29] - Over load invoke() method in Client so metadata not required

	Table of Contents
	What is JBoss Remoting?
	Features
	How to get it
	Design
	Components
	Configuration
	General Connector and Invoker configuration
	Handlers
	Discovery (Detectors)
	Domains
	JNDIDetector
	MulticastDetector

	Transports (Invokers)
	Socket Invoker
	RMI Invoker
	HTTP Invoker

	Marshalling
	Callback overview
	Callback Configuration
	CallbackStore configuration
	Sample service configuration
	Programmatic configuration

	How to use it – sample code
	Known issues
	Future plans
	Release Notes

