
JBoss Remoting
Version 1.0.1 beta

January 12, 2005

What is JBoss Remoting?

The purpose of JBoss Remoting is to provide a single API for most network based
invocations and related service that uses pluggable transports and data marshallers. The
JBoss Remoting API provides the ability for making synchronous and asynchronous
remote calls, push and pull callbacks, and automatic discovery of remoting servers. The
intention is to allow for the addition of different transports to fit different needs, yet still
maintain the same API for making the remote invocations and only requiring
configuration changes, not code changes, to fit these different needs.

JBoss Remoting is currently a sub-module of the JBoss Application Server and will likely
be the framework used for many of the other projects when making remote calls.

Features

• Server identification – a simple String identifier which allows for remoting servers

to be identified and called upon.
• Pluggable transports – can use different protocol transports, such as socket, rmi,

http, etc., via the same remoting API.
• Pluggable data marshallers – can use different data marshallers and unmarshallers

to convert the invocation payloads into desired data format for wire transfer.
• Automatic discovery – can detect remoting servers as they come on and off line.
• Server grouping – ability to group servers by logical domains, so only communicate

with servers within specified domains.
• Callbacks – can receive server callbacks via push and pull models.
• Asynchronous calls – can make asynchronous, or one way, calls to server.
• Local invocation – if making an invocation on a remoting server that is within the

same process space, remoting will automatically make this call by reference, to
improve performance.

How to get it

The JBoss Remoting distribution can be downloaded from
http://www.jboss.org/products/remoting. This distribution contains everything need to
run JBoss Remoting stand alone. The distribution includes binaries, source,
documentation, javadoc, and sample code.

Design

From the highest level, there are three components involved when making a remote
invocation using JBoss Remoting; a client, a connector, and an invocation handler.

The user constructs a Client, providing the locator for which remote server to make the
remote invocations on. The user then calls on the Client to make the invocation, passing
the invocation payload. The Client will then make the network call to the remote server,
which is the Connector. The connector will then call on the InvocationHandler to process
the invocation. This handler is the user’s implementation of the InvocationHandler
interface.

The marshalling of the data, network protocol negotiation, and other related tasks are
handled by the remoting framework. The effect of this is whatever payload object is
passed from the user, noted by number 1 in diagram, is exactly what is passed to the
InvocationHandler, noted by number 3 in diagram and all that was required by the user
on the client was a locator, which can be expressed as a simple String.

To add automatic detection, a remoting Detector and NetworkRegistry will need to be
added on both the client and server side.

When the Connector is created, it will register itself with the local NetworkRegistry. The
Detector on the server will publish a detection message containing the locator for all the
Connectors registered with the NetworkRegistry.

The Detector on the client side will receive this detection message and post the locator
information for the server Connectors to the NetworkRegistry. The user can then query
the NetworkRegistry to determine all the Connectors that are available on the network.
Based on the query result, the user can then determine which locator to use when creating
the Client to be used for making invocations.

Components

This section covers a few of the main components exposed within the Remoting API with
a brief overview. Will start with a class diagram for those classes related to making
invocations and callbacks.

Client – is the class the user will create and call on from the client side. This is the main
entry point for making all invocations and adding a callback listener. The Client class
requires only the InvokerLocator for the server you wish to call upon and that you call
connect before use and disconnect after use (which is technically only required for
stateful transports, but good to call in either case).

InvokerLocator – is a class, which can be described as a string URI, for describing a
particular JBoss server JVM and transport protocol. For example, the InvokerLocator
string socket://192.168.10.1:8080 describes a TCP/IP Socket-based transport, which
is listening on port 8080 of the IP address, 192.168.10.1. Using the string URI, or the
InvokerLocator object, JBoss Remoting can make a client connection to the remote
JBoss server. The format of the string URI is the same as a type URI:

[transport]://[ipaddress]:<port>/<parameter=value>&<parameter=value>

Connector - is an MBean that loads a particular ServerInvoker implementation for a
given transport subsystem and one or more ServerInvocationHandler implementations
that handle Subsystem invocations on the remote server JVM. There is exactly one
Connector per transport type.

ServerInvocationHandler – is the interface that the remote server will call on with an
invocation received from the client. This interface must be implemented by the user.
This implementation will also be required to keep track of callback listeners that have
been registered by the client as well.

InvocationRequest – is the actual remoting payload of an invocation. This class wraps
the caller’s request and provides extra information about the invocation, such as the
caller’s session id and it’s callback locator (if one exists).

InvokerCallbackHandler – the interface for any callback listener to implement. Upon
receiving callbacks, the remoting client will call on this interface if registered as a
listener.

Next is the class diagram for classes related to automatic discovery.

NetworkRegistry – this is a singleton class that will keep track of remoting servers as
new ones are detected and dead ones are detected. Upon a change in the registry, the
NetworkRegistry fires a NetworkNotification.

NetworkNotification – a JMX Notification containing information about a remoting
server change on the network. The notification contains information in regards to the
server’s identity and all its locators.

Detection – is the detection message fired by the Detectors.

MulticastDetector – is the detector implementation that broadcasts its Detection
message to other detectors using multicast.

JNDIDetector – is the detector implementation that registers its Detection message to
other detectors in a specified JNDI server.

Another component that is not represented as a class, but is important to understand is the
sub-system.

Subsystem – a sub-system is an identifier for what higher level system an invocation
handler is associated with. The sub-system is declared as any String value. The reason
for identifying sub-systems is that a remoting Connector may handle invocations for
multiple invocation handlers, which need to routed based on sub-system. For example, a
particular socket based Connector may handle invocations for both JMX and EJB. The
client making the invocation would then need to identify the intended sub-system to
handle the invocation based on this identifier. If only one handler is added to a
Connector, the client does not need to specify a sub-system when making an invocation.

How to use it – sample code

This section will cover basic examples of how to use JBoss Remoting and highlight some
of the features previously discussed. The source code covered in the examples of this
section are provided within the JBoss Remoting distribution (see “How do I get it”
section above).

The sample classes discussed can be found in the examples directory. They can be
compiled and run manually via your IDE or via an ant build file found in the examples
directory.

Simple Invocation

To start, we will cover how to make a simple invocation from a remoting client to a
remoting server. Let’s begin with the server (see
org.jboss.samples.simple.SimpleServer). The two main things needed are a Connector
and an InvocationHandler. The following shows how the Connector is created,
configured, and started.

 public void setupServer(String locatorURI) throws Exception
 {
 InvokerLocator locator = new InvokerLocator(locatorURI);
 Connector connector = new Connector();
 connector.setInvokerLocator(locator.getLocatorURI());
 connector.start();

 SampleInvocationHandler invocationHandler = new SampleInvocationHandler();
 // first parameter is sub-system name. can be any String value.
 connector.addInvocationHandler("sample", invocationHandler);
 }

In this method, we are passed a locator as represented by a String. The default value will
be rmi://localhost:5400. This String is used to create the InvokerLocator for the
Connector and is turn what is registered with the NetworkRegistry and will be what the
client needs to connect to this remoting server.

Once we have created the Connector, set its locator, and started it, we need to add an
invocation handler. The InvocationHandler implementation used for this example is an
inner class, SimpleInvocationHandler. The first parameter passed when adding an
invocation handler is the name of the sub-system the handler is associated with.

The primary method of concern within the InvocationHandler is the invoke method, as
seen here.

 public Object invoke(InvocationRequest invocation) throws Throwable
 {
 // Print out the invocation request
 System.out.println("Invocation request is: " +

 invocation.getParameter());

 // Just going to return static string
 return RESPONSE_VALUE;
 }

Here we are just printing out the parameter originally passed by the client. We then
return a String, represented in a static constant String variable.

Now let’s look at the client code (see org.jboss.samples.simple.SimpleClient).

 public void makeInvocation(String locatorURI) throws Throwable
 {
 InvokerLocator locator = new InvokerLocator(locatorURI);
 System.out.println("Calling remoting server with locator uri of: " + locatorURI);

 // This could have been new Client(locator), but want to show that subsystem param is null
 // Could have also been new Client(locator, "sample");
 Client remotingClient = new Client(locator, null);
 Object response = remotingClient.invoke("Do something", null);

 System.out.println("Invocation response: " + response);
 }

We create the locator, just as we did in the server code and use it to create the Client
instance. Is important to note that the sub-system is not required, but would be needed if
there were multiple handlers being used by server connector. Then we make our
invocation, passing “Do something” as our parameter. The second parameter is null and
is only used to specify protocol specific hints (which will be discussed later, but would
include information such as if the HTTP invoker should use POST or GET).

To run the these examples, open two command prompts and go to the examples directory.
To run the server, run the ant target ‘run-simple-server’ and for the client, run the ant
target ‘run-simple-client’. Note that the server will start and wait 10 seconds for the
client to run and then shutdown.

Output from the client is:

O

C

N
t
t
t

Calling remoting server with locator uri of: rmi://localhost:5400
org.jboss.remoting.transport.rmi.RMIServerInvoker_Stub[RemoteStub [ref:
[endpoint:[192.168.0.110:5400](remote),objID:[1bd0dd4:1002bed457b:-8000, 0]]]]
Invocation response: This is the return to SampleInvocationHandler invocation

utput from the server is:

Starting remoting server with locator uri of: rmi://localhost:5400
Invocation request is: Do something

allbacks

ow we will look at setting up callbacks from the server. This example will build off of
he previous simple example. First, lets look at the server code. It is exactly the same as
he previous simple server, but in the SampleInvocationHandler, have added a collection
o store listeners when they are added and changed the invoke() method.

 public Object invoke(InvocationRequest invocation) throws Throwable
 {
 InvocationRequest callbackInvocationRequest = new
 InvocationRequest(invocation.getSessionId(),
 invocation.getSubsystem(), "This is the payload of callback invocation.",

null, null, invocation.getLocator());
 Iterator itr = listeners.iterator();
 while (itr.hasNext())
 {
 InvokerCallbackHandler callbackHandler = (InvokerCallbackHandler) itr.next();
 callbackHandler.handleCallback(callbackInvocationRequest);
 }

 return RESPONSE_VALUE;

 }

The invoke method has been changed to call on callback handlers, if any exist, upon
being called. Note that the handleCallback() method of CallbackHandler interface
requires type InvocationRequest. In this example, we use the values of the
InvocationRequest passed to use for most of the parameters used to construct the
InvocationRequest we will use for the callback.

The client code for the callback example is also based of the previous simple example,
but requires a few more changes. To start, let’s look at code required for pull callbacks.

 public void testPullCallback() throws Throwable
 {
 CallbackHandler callbackHandler = new CallbackHandler();
 // by passing only the callback handler, will indicate pull callbacks
 remotingClient.addListener(callbackHandler);
 // now make invocation on server, which should cause a callback to happen
 makeInvocation();

 List callbacks = remotingClient.getCallbacks();
 Iterator itr = callbacks.iterator();
 while (itr.hasNext())
 {
 System.out.println("Callback value = " + itr.next());
 }

 // remove callback handler from server
 remotingClient.removeListener(callbackHandler);
 }

First, we have to create a CallbackHandler, which is a simple inner class that implements
the InvokerCallbackHandler interface. Then we add this listener to the Client instance
that has already been created. After making an invocation, which will generate a
callback, we call on the client to get any callbacks. We then remove the callback handler
from the client, so that callbacks are no longer collected for our handler.

Next, let’s look at the code for a push callback. This is a little more complicated as we’ll
now need a remoting server to receive the callbacks from the remoting server.

 public void testPushCallback() throws Throwable
 {
 // Need to create remoting server to receive callbacks.

 // Using loctor with port value one higher than the target server
 String callbackLocatorURI = transport + "://" + host + ":" + (port + 1);
 InvokerLocator callbackLocator = new InvokerLocator(callbackLocatorURI);

 // call to create remoting server to
 // receive client callbacks.
 setupServer(callbackLocator);

 CallbackHandler callbackHandler = new CallbackHandler();
 // by passing only the callback handler, will indicate pull callbacks
 remotingClient.addListener(callbackHandler, callbackLocator);
 // now make invocation on server, which should cause a callback to happen
 makeInvocation();

 // need to wait for brief moment so server can callback
 Thread.sleep(2000);

 // remove callback handler from server
 remotingClient.removeListener(callbackHandler);
 }

This is done similar to the way we created one in the CallbackServer class. Now when
we call on the client to add the callback listener, we pass the callback handler and the
locator for the remoting server we just created. [Note: an interesting point is that the
locator we provide does not have to be for a local remoting server, it could be for another
remote server, but the practicality for this is minimal.]

Now we a make an invocation on the server using the client and this will cause the
invocation handler on the server to generate a callback. In our example, we wait for a
few seconds to allow the server to callback on our client callback handler, before we
remove the callback handler as a listener. While we are waiting, the CallbackHandler’s
handleCallback() method should have been called with the callback InvocationRequest.

To run the these examples, open two command prompts and go to the examples directory.
To run the server, run the ant target ‘run-callback-server’ and for the client, run the ant
target ‘run-callback-client’. Note that the server will start and wait 10 seconds for the
client to run and then shutdown.

Output from the client:

O

D

I
u
s
s

I
M
a

O
o
d

Calling remoting server with locator uri of: rmi://localhost:5400
org.jboss.remoting.transport.rmi.RMIServerInvoker_Stub[RemoteStub [ref:
[endpoint:[192.168.0.78:5400](remote),objID:[1bd0dd4:1002eca578e:-8000, 0]]]]
Invocation response: This is the return to SampleInvocationHandler invocation
Callback value = org.jboss.remoting.InvocationRequest@544ec1
Starting remoting server with locator uri of: InvokerLocator [rmi://127.0.0.1:5401/]
Received callback value of: This is the payload of callback invocation.
Invocation response: This is the return to SampleInvocationHandler invocation

utput from the server:
Starting remoting server with locator uri of: rmi://localhost:5400
org.jboss.remoting.transport.rmi.RMIServerInvoker_Stub[RemoteStub [ref:
[endpoint:[192.168.0.78:5401](remote),objID:[ecd7e:1002eca69fb:-8000, 0]]]]

etectors

n this example, we will use the same code from the simple invocation example, but will
se automatic detection to determine which server the client will call upon. For the
erver code, it is almost exactly the same, with the addition of a new method,
etupDetector().

 public void setupDetector() throws Exception
 {
 MBeanServer server = MBeanServerFactory.createMBeanServer();

 NetworkRegistry registry = NetworkRegistry.getInstance();
 server.registerMBean(registry, new ObjectName("remoting:type=NetworkRegistry"));

 MulticastDetector detector = new MulticastDetector();
 server.registerMBean(detector, new ObjectName("remoting:type=MulticastDetector"));
 detector.start();
 }

n this method we have added the code to create and register the NetworkRegistry and a
ulticastDetector. Once the detector is started, it will watch for any new Connectors that

re started and send out detection messages.

n the client side, we will do basically the same thing, except on the client, we add
urselves as a notification listener so we will be notified when a new server has been
iscovered.

 public void setupDetector() throws Exception
 {
 MBeanServer server = MBeanServerFactory.createMBeanServer();

 NetworkRegistry registry = NetworkRegistry.getInstance();
 server.registerMBean(registry, new ObjectName("remoting:type=NetworkRegistry"));

 // register class as listener, so know when new server found
 registry.addNotificationListener(this, null, null);

 MulticastDetector detector = new MulticastDetector();
 server.registerMBean(detector, new ObjectName("remoting:type=MulticastDetector"));
 detector.start();
 }

When the NetworkRegistry is told about a new server being discovered, it will fire a
notification, which will call back on our notification listener method.

 public void handleNotification(Notification notification, Object handback)
 {
 if(notification instanceof NetworkNotification)
 {
 NetworkNotification networkNotification = (NetworkNotification)notification;
 InvokerLocator[] locators = networkNotification.getLocator();
 for(int x = 0; x < locators.length; x++)
 {
 try
 {
 makeInvocation(locators[x].getLocatorURI());
 }
 catch (Throwable throwable)
 {
 throwable.printStackTrace();
 }
 }
 }
 }

Once we get the notification, we will check to see if it is an NetworkNotification and if
so, get the locators for the newly found server and make an invocation on it. Also notice
that all the invoker variables, such as host, port, transport, have been removed because all
this is supplied for us in the NetworkNotification.

To run the these examples, open two command prompts and go to the examples directory.
To run the server, run the ant target ‘run-detector-server’ and for the client, run the ant
target ‘run-detector-client’. Note that the server will start and wait 10 seconds for the
client to run and then shutdown.

Output from the client:

n

O

C

T
(
c
c

D

C

D

D
w

p

o
d

p

T
J

T
T
a
d
J

T
t

Calling remoting server with locator uri of: rmi://127.0.0.1:5400/
org.jboss.remoting.transport.rmi.RMIServerInvoker_Stub[RemoteStub [ref:
[endpoint:[192.168.0.110:5400](remote),objID:[e83912:100307cbfe5:-7fff, 0]]]]
Invocation response: This is the return to SampleInvocationHandler invocatio

utput from the server:

Starting remoting server with locator uri of: rmi://localhost:5400
Invocation request is: Do something

onfiguration

his covers the configuration for JBoss Remoting discovery, connectors, and transports
as of 1.0.1 beta release). All the configuration properties specified can be set either via
alls to the object itself, including via JMX (so can be done via the JMX or Web
onsole), or via a service.xml file. Examples of service.xml files can be seen below.

iscovery (Detectors)

onfiguration common to all detectors:

omains

etectors have the ability to accept multiple domains. What domains that the detector
ill accept as viewable can be either programmatically set via the method:

ublic void setConfiguration(org.w3c.dom.Element xml)

r by adding to jboss-service.xml configuration for the detector. The domains that the
etector is currently accepting can be retrieved from the method:

ublic org.w3c.dom.Element getConfiguration()

he configuration xml is a MBean attribute of the detector, so can be set or retrieved via
MX.

here are three possible options for setting up the domains that a detector will accept.
he first is to not call the setConfiguration() method (or just not add the configuration
ttribute to the service xml). This will cause the detector to use only its domain and is the
efault behavior. This enables it to be backwards compatible with earlier versions of
Boss Remoting (JBoss 4, DR2 and before).

he second is to call the setConfiguration() method (or add the configuration attribute
o the service xml) with the following xml element:

 <domains>
 <domain>domain1</domain>
 <domain>domain2</domain>
 </domains>

where domain1 and domain2 are the two domains you would like the detector to accept.
This will cause the detector to only accept detections from the domains specified, and no
others.

The third, and final option, is to call the setConfiguration() method (or add the
configuration attribute to the service xml) with the following xml element:

 <domains>
 </domains>

This will cause the detector to accept all detections from any domain.

An example entry of a Multicast detector in the jboss-service.xml that only accepts
detections from the roxanne and sparky domains using port 5555 is as follows:

<mbean code="org.jboss.remoting.detection.multicast.MulticastDetector"
 name="jboss.remoting:service=Detector,transport=multicast">
 <attribute name="Port">5555</attribute>
 <attribute name="Configuration">
 <domains>
 <domain>roxanne</domain>
 <domain>sparky</domain>
 </domains>
 </attribute>
</mbean>

DefaultTimeDelay - amount of time, in milliseconds, which can elapse without receiving
a detection event before a server will be suspected as being dead and performing an
explicit invocation on it to verify it is alive. If this invocation, or ping, fails, the server
will be removed from the network registry. The default is 5000 milliseconds.

HeartbeatTimeDelay - amount of time to wait between sending (and sometimes
receiving) detection messages. The default is 1000 milliseconds.

JNDIDetector

Port - port to which detector will connect to for the JNDI server.
Host - host to which the detector will connect to for the JNDI server.
ContextFactory - context factory string used when connecting to the JNDI server. The
default is org.jnp.interfaces.NamingContextFactory.
URLPackage - url package string to use when connecting to the JNDI server. The
default is org.jboss.naming:org.jnp.interfaces.
CleanDetectionNumber - Sets the number of detection iterations before manually
pinging remote server to make sure still alive. This is needed since remote server could

http://www.jboss.org/wiki/Wiki.jsp?page=NamingContextFactory

crash and yet still have an entry in the JNDI server, thus making it appear that it is still
there. The default value is 5.

Can either set these programmatically using setter method or as attribute within the
remoting-service.xml (or any where else the service is defined). For example:

 <mbean code="org.jboss.remoting.detection.jndi.JNDIDetector"
 name="jboss.remoting:service=Detector,transport=jndi">
 <attribute name="Host">localhost</attribute>
 <attribute name="Port">5555</attribute>
 </mbean>

If the JNDIDetector is started without the Host attribute being set, it will try to start a
local JNP instance (the JBoss JNDI server implementation), on port 1088.

MulticastDetector

DefaultIP - The IP that is used to broadcast detection messages on via multicast. To be
more specific, will be the ip of the multicast group the detector will join. This attribute is
ignored if the Address has already been set when started. Default is 224.1.9.1.
Port - The port that is used to broadcast detection messages on via multicast. Default is
2410.
BindAddress? - The address to bind to for the network interface.
Address - The IP of the multicast group that the detector will join. The default will be
that of the DefaultIP if not explicitly set.

Transports (Invokers)

Socket Invoker

The following configuration properties can be set at any time, but will note take affect
until the socket invoker, on the server side, is stopped and restarted.

backlog - The preferred number of unaccepted incoming connections allowed at a given
time. The actual number may be greater than the specified backlog. When the queue is
full, further connection requests are rejected. Must be a positive value greater than 0. If
the value passed if equal or less than 0, then the default value will be assumed. The
default value is 200.

numAcceptThreads - The number of threads that exist for accepting client connections.
The default is 1.

maxPoolSize - The number of server threads for processing client. The default is 300.

socketTimeout - The socket timeout value passed to the Socket.setSoTimeout() cmethod.
The default is 60000 (or 1 minute).

serverBindAddress - The address on which the server binds its listening socket. The
default is an empty value which indicates the server should be bound on all interfaces.

serverBindPort - The port used for the server socket. A value of 0 indicates that an
anonymous port should be chosen.

Configurations affecting the Socket invoker client

There are some configurations which will impact the socket invoker client. These will be
communicated to the client invoker via parameters in the Locator URI. These
configurations can not be changed during runtime, so can only be setup upon initial
configuration of the socket invoker on the server side. The following is a list of these and
their affects.

enableTcpNoDelay - can be either true or false and will indicate if client socket should
have TCP_NODELAY turned on or off. TCP_NODELAY is for a specific purpose; to
disable the Nagle buffering algorithm. It should only be set for applications that send
frequent small bursts of information without getting an immediate response; where timely
delivery of data is required (the canonical example is mouse movements).

clientMaxPoolSize - the client side maximum number of threads. The default is 300.

An example of locator uri for a socket invoker that has TCP_NODELAY set to false and
the client’s max pool size of 30 would be:

socket://
test.somedomain.com:8084/?enableTcpNoDelay=false&maxPoolSize=30

clientConnectPort - the port the client will use to connect to the remoting server. This
would be needed in the case that the client will be going through a router that forwards
the requests externally to a different port internally.

clientConnectAddress- the ip or hostname the client will use to connect to the remoting
server. This would be needed in the case that the client will be going through a router that
forwards the requests externally to a different ip or host internally.

If no client connect address or server bind address specified, will use the local host's
address (via InetAddress.getLocalHost().getHostAddress())

If no client connector port or server bind port specified, will use the
PortUtil.findFreePort() to find an available port.

If client (or server if client not present) bind address is set to 0.0.0.0, will use
InetAddress.getLocalHost().getHostAddress() to get the host to use for the locator
uri to be provided to client via discovery.

To reiterate, these client configurations can only be set within the server side
configuration and will not change during runtime.

RMI Invoker

registryPort - the port on which to create the RMI registry. The default is 3455. This
also needs to have the isParam attribute set to true (see below for more information on the
isParam attribute).

HTTP Invoker

The HTTP Invoker does not have properties in the same sense as the other invokers (this
is still a todo). However, metadata will be passed as headers. The following are possible
http headers and what they mean:

sessionId - is the remoting session id to identify the client caller. If this is not passed, the
HTTPServerInvoker? will try to create a session id based on information that is passed.
Note, this means if the sessionId is not passed as part of the header, there is no gurantee
that the sessionId supplied to the invocation handler will always indicate the request from
the same client.

subsystem - the subsystem to call upon (which invoker handler to call upon). If there is
more than one handler per Connector, this will need to be set (otherwise will just use the
only one available).

As of 1.0.1 beta release, the HTTP Invoker only supports POST requests on the server (to
be fixed for 1.0.1 final release).

For example of how to use the HTTP Invoker (both client and server side), see the test
classes under remoting/tests/src/org/jboss/remoting/transport/http. They give examples of
how to make different calls (object, xml/soap, and html) and what headers will need to be
set and how. Full documentation will be coming soon on this.

Note: The HTTPServerInvoker is going to be very expensive as need to write out the size
of the response (Content-Length). This basically means serializing the response object to
byte array and getting size of the array (very expensive).

General Connector and Invoker configuration

Important to note that only one invoker can be declared per connector (so don't put
multiple InvokerLocator attributes or invoker elements within the Configuration
attribute). At least one handler must also be specified as well. For more information about

http://www.jboss.org/wiki/Edit.jsp?page=HTTPServerInvoker

handlers, please see the JBoss Remoting User Guide. In short, this is the only interface
that is required by a remoting framework for a user to implement and will be what the
remoting framework calls upon when receiving invocations.

There are two ways in which to specify the invoker, or transport, configuration via a
service xml file. The first is to specify just the InvokerLocator attribute as a sub-element
of the Connector MBean. All the client side configurations can be made part of the
locator uri in this approach. For example, a possible configuration for a Connector using
a socket invoker that has TCP_NODELAY set to false and the client's max pool size of
30 that is listening on port 8084 on the test.somedomain.com address would be:

 <mbean code="org.jboss.remoting.transport.Connector"
 xmbean-dd="org/jboss/remoting/transport/Connector.xml"
 name="jboss.remoting:service=Connector,transport=Socket"
 display-name="Socket transport Connector">

 <attribute
name="InvokerLocator"><![CDATA[socket://test.somedomain.com:8084/?enabl
eTcpNoDelay=false&clientMaxPoolSize=30]]></attribute>

 <attribute name="Configuration">
<config>
 <handler
subsystem="mock">org.jboss.remoting.transport.mock.MockServerInvocation
Handler</handler>
 </handlers>
</config>
 </attribute>

 </mbean>

Note that all the server side socket invoker configurations will be set to their default
values in this case. Also important to add CDATA to any locator uri that contains more
than one parameter.

The other way to configure the Connector and its invoker in greater detail is to provide an
invoker sub-element within the config element of the Configuration attribute. The only
attribute of invoker element is transport, which will specify which transport type to use
(i.e. socket, rmi, or http). All the sub-elements of the invoker element will be attribute
elements with a name attribute specifying the configuration property name and then the
value. An isParam attribute can also be added to indicate that the attribute should be
added to the locator uri, in the case the attribute needs to be used by the client. An
example using this form of configuration is as follows:

 <mbean code="org.jboss.remoting.transport.Connector"
 xmbean-dd="org/jboss/remoting/transport/Connector.xml"
 name="jboss.remoting:service=Connector,transport=Socket"
 display-name="Socket transport Connector">

 <attribute name="Configuration">
 <config>

 <invoker transport="socket">
 <attribute name="numAcceptThreads">1</attribute>
 <attribute name="maxPoolSize">303</attribute>
 <attribute name="clientMaxPoolSize"
isParam="true">304</attribute>
 <attribute name="socketTimeout">60000</attribute>
 <attribute
name="serverBindAddress">192.168.0.82</attribute>
 <attribute name="serverBindPort">6666</attribute>
 <attribute
name="clientConnectAddress">216.23.33.2</attribute>
 <attribute name="clientConnectPort">7777</attribute>
 <attribute name="enableTcpNoDelay"
isParam="true">false</attribute>
 <attribute name="backlog">200</attribute>
 </invoker>
 <handlers>
 <handler
subsystem="mock">org.jboss.remoting.transport.mock.MockServerInvocation
Handler</handler>
 </handlers>
 </config>
 </attribute>

 </mbean>

Also note that ${jboss.bind.address} can be used for any of the bind address properties,
which will be replace with the bind address specified to JBoss when starting (i.e. via the -
b option).

Handlers

Handlers are classes that the invocation is given to on the server side (the final target for
remoting invocations). To implement a handler, all that is needed is to implement the
org.jboss.remoting.ServerInvocationHandler interface. There are a two ways in which to
register a handler with a Connector. The first is to do it programmatically. The second is
via service configuration. For registering programmatically, can either pass the
ServerInvocationHandler reference itself or an ObjectName for the
ServerInvocationHandler (in the case that it is an MBean). To pass the handler reference
directly, call Connector::addInvocationHandler(String subsystem,
ServerInvocationHandler handler). Some sample code of this (from
org.jboss.samples.simple.SimpleServer):

 InvokerLocator locator = new InvokerLocator(locatorURI);
 Connector connector = new Connector();
 connector.setInvokerLocator(locator.getLocatorURI());
 connector.start();

 SampleInvocationHandler invocationHandler = new
SampleInvocationHandler();
 // first parameter is sub-system name. can be any String value.
 connector.addInvocationHandler("sample", invocationHandler);

To pass the handler by ObjectName, call Connector::addInvocationHandler(String
subsystem, ObjectName handlerObjectName). Some sample code of this (from
org.jboss.remoting.handler.mbean.ServerTest):

 MBeanServer server = MBeanServerFactory.createMBeanServer();

 InvokerLocator locator = new InvokerLocator(locatorURI);
 Connector connector = new Connector();
 connector.setInvokerLocator(locator.getLocatorURI());
 connector.start();

 server.registerMBean(connector, new
ObjectName("test:type=connector,transport=socket"));

 // now create Mbean handler and register with mbean server
 MBeanHandler handler = new MBeanHandler();
 ObjectName objName = new ObjectName("test:type=handler");
 server.registerMBean(handler, objName);

 connector.addInvocationHandler("test", objName);

Is important to note that if not starting the Connector via the service configuration, will
need to explicitly register it with the MBeanServer (will throw exception otherwise).

If using a service configuration for starting the Connector and registering handlers, can
either specify the fully qualified class name for the handler, which will instanciate the
handler instance upon startup (which requires there be a void parameter constructor),
such as:

 <handlers>
 <handler
subsystem="mock">org.jboss.remoting.transport.mock.MockServerInvocation
Handler</handler>
 </handlers>

where MockServerInvocationHandler will be constructed upon startup and registered
with the Connector as a handler.

Can also use an ObjectName to specify the handler. The configuration is the same, but
instead of specifying a fully qualified class name, you specify the ObjectName for the
handler, such as (can see mbeanhandler-service.xml under remoting tests for full
example):

 <handlers>
 <handler subsystem="mock">test:type=handler</handler>
 </handlers>

The only requirement for this configuration is that the handler MBean must already be
created and registered with the MBeanServer at the point the Connector is started.

Handler implementations

The Connectors will maintain the reference to the single handler instance provided (either
indirectly via the MBean proxy or directly via the instance object reference). For each
request to the server invoker, the handler will be called upon. Since the server invokers
can be multi-threaded (and in most cases would be), this means that the handler may
receive concurrent calls to handle invocations. Therefore, handler implementations
should take care to be thread safe in their implementations.

Known issues

This is an beta release of JBoss Remoting, so although this release is more stable than the
alpha release, along with more features, it is still not complete. The final release is
planned for end of January or early Feburary 2005. Here are some of the high level
issues that are currently known. All of the known issues and road map can be found on
our bug tracking system, Jira, at
http://jira.jboss.com/jira/secure/BrowseProject.jspa?id=10031 (require member plus
registration, which is free). If you find more, please post them to Jira. If you have
questions post them to the JBoss Remoting, Unified Invokers forum
(http://www.jboss.org/index.html?module=bb&op=viewforum&f=176).

1. HTTP Invoker is not complete yet. Only POST requests are supported on the
server side (GET support should be included by final release). The HTTP Invoker
has not been stress tested yet, so stability under load is not yet known.

Future plans

Actually going to start with a little history here. JBoss Remoting was originally written
by Jeff Haynie (jhaynie@vocalocity.net) and Tom Elrod (tom@jboss.org) and still exists
in its older form in the JBoss 3.2 branch (has been backported to the 4.0 branch, but was
not until after the 4.0.0 and 4.0.1 releases). This release is based off of jboss-head branch
(which is actually HEAD) in CVS. The basics from the older version still remains in the
current version, but is being refactored for this next release (and official first stand alone
release). That being said, here is what is planned in the future (can see full road map at
http://jira.jboss.com/jira/browse/JBREM?report=com.atlassian.jira.plugin.system.project:
roadmap-panel):

- Add specific method for streaming large binary files.
- Add HTTP/HTTPS proxy and GET request support.
- Add Servlet Invoker (counter part to the HTTP Invoker)
- Add support for custom socket factories
- Add high availability to remoting
- Distributed garbage collection
- Client transport idle connection timeout
- Smart proxies

http://jira.jboss.com/jira/secure/BrowseProject.jspa?id=10031
http://www.jboss.org/index.html?module=bb&op=viewforum&f=176
mailto:jhaynie@vocalocity.net
mailto:tom@jboss.org

- Connection failure callback
- Dynamic classloading
- Support for redeploy on server and synch on client
- Add UIL2 type transport
- Add JGroups transport
- Add SMTP transport
- Add NIO transport

If you have an questions, comments, bugs, fixes, contributions, or flames, please post
them to the JBoss Remoting, Unified Invokers forum
(http://www.jboss.org/index.html?module=bb&op=viewforum&f=176). You can also
find more information about JBoss Remoting on our wiki
(http://www.jboss.org/wiki/Wiki.jsp?page=Remoting).

Thanks for checking it out.

-Tom

Tom Elrod
JBoss Core Developer
JBoss, Inc.
tom@jboss.org

Release Notes

Release Notes - JBoss Remoting - Version 1.0.1 beta

** Bug
 * [JBREM-19] - Try to reconnect on connection failure within socket invoker
 * [JBREM-25] - Deadlock in InvokerRegistry

** Feature Request
 * [JBREM-12] - Support for call by value
 * [JBREM-26] - Ability to use MBeans as handlers

** Task
 * [JBREM-3] - Fix Asyn invokers - currently not operable
 * [JBREM-4] - Added test for throwing exception on server side
 * [JBREM-5] - Socket invokers needs to be fixed
 * [JBREM-16] - Finish HTTP Invoker
 * [JBREM-17] - Add CannotConnectException to all transports
 * [JBREM-18] - Backport remoting from HEAD to 4.0 branch

http://www.jboss.org/index.html?module=bb&op=viewforum&f=176
mailto:tom@jboss.org

** Reactor Event
 * [JBREM-23] - Refactor Connector so can configure transports
 * [JBREM-29] - Over load invoke() method in Client so metadata not required

	What is JBoss Remoting?
	Features
	How to get it
	Design
	Components
	How to use it – sample code
	Simple Invocation
	Callbacks
	Detectors

	Configuration
	Discovery (Detectors)
	Domains
	JNDIDetector
	MulticastDetector

	Transports (Invokers)
	Socket Invoker
	RMI Invoker
	HTTP Invoker
	General Connector and Invoker configuration

	Known issues
	Future plans
	Release Notes

