

JBossRemoting
Version 1.2.0 final

June 21, 2005

Table of Contents
What is JBossRemoting? .. 3
Features ... 3
How to get it.. 4
Design ... 4
Components .. 7
Configuration .. 10

General Connector and Invoker configuration ... 10
Handlers .. 12
Discovery (Detectors) ... 14
Transports (Invokers).. 17
Marshalling ... 26
Callback overview .. 28
Callback Configuration... 30
SSL Support and configuration... 33

Sending streams .. 41
Connection Exception Listeners ... 43
How to use it – sample code ... 43
Client programming model ... 44
Getting the JBossRemoting source and building.. 45
Known issues .. 47
Future plans... 47
Release Notes.. 48

What is JBossRemoting?

The purpose of JBossRemoting is to provide a single API for most network based
invocations and related service that uses pluggable transports and data marshallers. The
JBossRemoting API provides the ability for making synchronous and asynchronous
remote calls, push and pull callbacks, and automatic discovery of remoting servers. The
intention is to allow for the addition of different transports to fit different needs, yet still
maintain the same API for making the remote invocations and only requiring
configuration changes, not code changes.

JBossRemoting is a standalone project, separate from JBoss Application Server project,
but will be the framework used for many of the JBoss projects when making remote calls.
JBossRemoting is included in the recent releases of the JBoss Application Server and can
be run as a service within the container as well. Service configurations are included in
the configuration section below.

Features

• Server identification – a simple String identifier which allows for remoting servers

to be identified and called upon.
• Pluggable transports – can use different protocol transports, such as socket, rmi,

http, etc., via the same remoting API.
• Pluggable data marshallers – can use different data marshallers and unmarshallers

to convert the invocation payloads into desired data format for wire transfer.
• Automatic discovery – can detect remoting servers as they come on and off line.
• Server grouping – ability to group servers by logical domains, so only communicate

with servers within specified domains.
• Callbacks – can receive server callbacks via push and pull models. Pull model

allows for persistent stores and memory management.
• Asynchronous calls – can make asynchronous, or one way, calls to server.
• Local invocation – if making an invocation on a remoting server that is within the

same process space, remoting will automatically make this call by reference, to
improve performance.

• Remote classloading – allows for classes, such as custom marshallers, that do not
exist within client to be loaded from server.

• Sending of streams – allows for clients to send input streams to server, which can be
read on demand on the server.

How to get it

The JBossRemoting distribution can be downloaded from
http://www.jboss.org/products/remoting. This distribution contains everything need to
run JBossRemoting stand alone. The distribution includes binaries, source,
documentation, javadoc, and sample code.

Design

There are several layers to the JBossRemoting framework that mirror each other on the
client and server side. The outer most layer is the one in which the user interacts with.
On the client side, this is the Client class. On the server side, this is the
InvocationHandler. Next is the transport, which is controlled by the invoker layer.
Finally, at the lowest layer is the marshalling, which converts data type to wire format.

Client
Client

Invoker
(transport)

Marshaller

UnMarshaller

Output
Stream

Input
Stream

socket Invocation
Handler

Server
Invoker

(transport)

Marshaller

UnMarshaller

Output
Stream

Input
Stream

Remoting Client Remoting Server

When a user calls on the Client to make an invocation, the client will pass this invocation
request to the appropriate client invoker, based on transport specified by the locator url.
The client invoker will then use the marshaller to convert the invocation request to the
proper data format to send over the network.

On the server side, an unmarshaller will receive this data from the network and convert it
back into a standard invocation request and send it onto the server invoker. The server
invoker will then pass this invocation request onto the user’s implementation of the
invocation handler. The response from the invocation handler will pass back through the
server invoker and onto the marshaller, which will then convert the invocation response
to the proper data format and send back to the client.

The unmarshaller on the client will convert the invocation response from wire data
format into standard invocation response and will be passed back up through the client
invoker and client to the original caller.

Client Side

On the client side, there are a few utility class that help in figuring out which client
invoker and marshall instances should be used.

For determining which client invoker to use, the Client will pass the InvokerRegistry the
locator for the target server it wishes to make invocations on. The InvokerRegistry will
return the appropriate client invoker instance based on information contained within the
locator, such as transport type. The client invoker will then call upon the MarshalFactory
to get the appropriate Marshaller and UnMarshaller for converting the invocation objects
to the proper data format for wire transfer. All invokers have a default data type that can
be used to get the proper marshall instances, but can be overridden within the locator
specified.

Server Side

On the server side, there are also a few utility classes for determining the appropriate
server invoker and marshall instances that should be used. There is also a server specific
class for tying the invocation handler to the server invoker.

On the server side, it is the Connector class that is used as the external point for
configuration and control of the remoting server. The Connector class will call on the
InvokerRegistry with its locator to create a server invoker. Once the server invoker is
returned, the Connector will then register the invocation handlers on it. The server
invoker will use the MarshalFactory to obtain the proper marshal instances as is done on
the client side.

Detection

To add automatic detection, a remoting Detector will need to be added on both the client
and the server side as well as a NetworkRegistry to the client side.

When a Detector on the server side is created and started, it will periodically pull from
the InvokerRegistry all the server invokers that it has created. The detector will then use
the information to publish a detection message containing the locator and subsystems
supported by each server invoker. The publishing of this detection message will be either
via a multicast broadcast or a binding into a JNDI server.

On the client side, the Detector will either receive the multicast broadcast message or poll
the JNDI server for detection messages. If the Detector determines a detection message
is for a remoting server that just came online it will register it in the NetworkRegistry.
The NetworkRegistry houses the detection information for all the discovered remoting
servers. The NetworkRegistry will also emit a JMX notification upon any change to this
registry of remoting servers. The change to the NetworkRegistry can also be for when a
Detector has discovered that a remoting server is no longer available and removes it from
the registry.

Components

This section covers a few of the main components exposed within the Remoting API with
a brief overview.

org.jboss.remoting.Client – is the class the user will create and call on from the client
side. This is the main entry point for making all invocations and adding a callback
listener. The Client class requires only the InvokerLocator for the server you wish to call
upon and that you call connect before use and disconnect after use (which is technically
only required for stateful transports, but good to call in either case).

org.jboss.remoting.InvokerLocator – is a class, which can be described as a string URI,
for identifying a particular JBossRemoting server JVM and transport protocol. For
example, the InvokerLocator string socket://192.168.10.1:8080 describes a
TCP/IP Socket-based transport, which is listening on port 8080 of the IP address,
192.168.10.1. Using the string URI, or the InvokerLocator object, JBossRemoting can
make a client connection to the remote JBoss server. The format of the locator string is
the same as the URI type:

[transport]://[host]:<port>/<parameter=value>&<parameter=value>

A few important points to note about the InvokerLocator. The string representation used
to construct the InvokerLocator may be modified after creation. This can occur if the
host supplied is 0.0.0.0, in which case, the InvokerLocator will attempt to replace with
the value of the local host name.

org.jboss.remoting.transport.Connector - is an MBean that loads a particular
ServerInvoker implementation for a given transport subsystem and one or more
ServerInvocationHandler implementations that handle Subsystem invocations on the

remote server JVM. The Connector is the main user touch point for configuring and
managing a remoting server.

org.jboss.remoting.ServerInvocationHandler – is the interface that the remote server
will call on with an invocation received from the client. This interface must be
implemented by the user. This implementation will also be required to keep track of
callback listeners that have been registered by the client as well.

org.jboss.remoting.InvocationRequest – is the actual remoting payload of an
invocation. This class wraps the caller’s request and provides extra information about the
invocation, such as the caller’s session id and it’s callback locator (if one exists). This
will be object passed to the ServerInvocationHandler.

org.jboss.remoting.stream.StreamInvocationHandler – extends the
ServerInvocationHandler interface and should be implemented if expecting to receive
invocations containing an input stream.

org.jboss.remoting.callback.InvokerCallbackHandler – the interface for any callback
listener to implement. Upon receiving callbacks, the remoting client will call on this
interface if registered as a listener.

org.jboss.remoting.callback.Callback – the callback object passed to the
InvokerCallbackHandler. It contains the callback payload supplied by the invocation
handler, any handle object specified when callback listener was registered, and the
locator from which the callback came from.

org.jboss.remoting.network.NetworkRegistry – this is a singleton class that will keep
track of remoting servers as new ones are detected and dead ones are detected. Upon a
change in the registry, the NetworkRegistry fires a NetworkNotification.

org.jboss.remoting.network.NetworkNotification – a JMX Notification containing
information about a remoting server change on the network. The notification contains
information in regards to the server’s identity and all its locators.

org.jboss.remoting.detection.Detection – is the detection message fired by the
Detectors. Contains the locator and subsystems for the server invokers of a remoting
server as well as the remoting server’s identity.

org.jboss.remoting.ident.Identity – the identity is what uniquely identifies a remoting
server instance. Typically, there is only one identity per JVM in which a remoting server
is running.

org.jboss.remoting.detection.multicast.MulticastDetector – is the detector
implementation that broadcasts its Detection message to other detectors using multicast.

org.jboss.remoting.detection.jndi.JNDIDetector – is the detector implementation that
registers its Detection message to other detectors in a specified JNDI server.

There are a few other components that are not represented as a class, but important to
understand.

Subsystem – a sub-system is an identifier for what higher level system an invocation
handler is associated with. The sub-system is declared as any String value. The reason
for identifying sub-systems is that a remoting Connector’s server invoker may handle
invocations for multiple invocation handlers, which need to routed based on sub-system.
For example, a particular socket based server invoker may handle invocations for both
JMX and EJB. The client making the invocation would then need to identify the intended
sub-system to handle the invocation based on this identifier. If only one handler is added
to a Connector, the client does not need to specify a sub-system when making an
invocation.

Domain – a logical name for a group to which a remoting server can belong. The
detectors can discriminate as to which detection messages they are interested based on
their specified domain. The domain to which a remoting server belongs is stored within
the Identity of that remoting server, which is included within the detection messages.
Detectors can be configured to accept detection messages from one, many or all domains.

Configuration

This covers the configuration for JBoss Remoting discovery, connectors, marshallers, and
transports. All the configuration properties specified can be set either via calls to the
object itself, including via JMX (so can be done via the JMX or Web console), or via a
JBoss AS service xml file. Examples of service xml configurations can be seen with each
of the sections below. There is also an example-service.xml file included in the remoting
distribution that shows full examples of all the remoting configurations.

General Connector and Invoker configuration

The server invoker and invocation handlers are configured via the Connector. Only one
invoker can be declared per connector (multiple InvokerLocator attributes or invoker
elements within the Configuration attribute is not permitted). Although declaring a
invocation handler is not required, it should only be done in the case of declaring a
callback server. Otherwise client invocations can not be processed. The invocation
handler is the only interface that is required by a remoting framework for a user to
implement and will be what the remoting framework calls upon when receiving
invocations.

There are two ways in which to specify the server invoker configuration via a service xml
file. The first is to specify just the InvokerLocator attribute as a sub-element of the
Connector MBean. For example, a possible configuration for a Connector using a socket
invoker that is listening on port 8084 on the test.somedomain.com address would be:

 <mbean code="org.jboss.remoting.transport.Connector"
 xmbean-dd="org/jboss/remoting/transport/Connector.xml"
 name="jboss.remoting:service=Connector,transport=Socket"
 display-name="Socket transport Connector">

 <attribute name="InvokerLocator">

<![CDATA[socket://test.somedomain.com:8084]]>
 </attribute>

 <attribute name="Configuration">

<config>
 <handlers>

 <handler subsystem="mock">
org.jboss.remoting.transport.mock.MockServerInvocationHandler

 </handler>
 </handlers>
 </config>
 </attribute>
 </mbean>

Note that all the server side socket invoker configurations will be set to their default
values in this case. Also important to add CDATA to any locator uri that contains more
than one parameter.

The other way to configure the Connector and its server invoker in greater detail is to
provide an invoker sub-element within the config element of the Configuration attribute.
The only attribute of invoker element is transport, which will specify which transport
type to use (i.e. socket, rmi, or http). All the sub-elements of the invoker element will
be attribute elements with a name attribute specifying the configuration property name
and then the value. An isParam attribute can also be added to indicate that the attribute
should be added to the locator uri, in the case the attribute needs to be used by the client.
An example using this form of configuration is as follows:

 <mbean code="org.jboss.remoting.transport.Connector"
 xmbean-dd="org/jboss/remoting/transport/Connector.xml"
 name="jboss.remoting:service=Connector,transport=Socket"
 display-name="Socket transport Connector">

 <attribute name="Configuration">
 <config>
 <invoker transport="socket">
 <attribute name="numAcceptThreads">1</attribute>
 <attribute name="maxPoolSize">303</attribute>
 <attribute name="clientMaxPoolSize" isParam="true">304</attribute>
 <attribute name="socketTimeout">60000</attribute>
 <attribute name="serverBindAddress">192.168.0.82</attribute>
 <attribute name="serverBindPort">6666</attribute>
 <attribute name="clientConnectAddress">216.23.33.2</attribute>
 <attribute name="clientConnectPort">7777</attribute>
 <attribute name="enableTcpNoDelay" isParam="true">false</attribute>
 <attribute name="backlog">200</attribute>
 </invoker>
 <handlers>
 <handler subsystem="mock">

org.jboss.remoting.transport.mock.MockServerInvocationHandler
 </handler>
 </handlers>
 </config>
 </attribute>

 </mbean>

Also note that ${jboss.bind.address} can be used for any of the bind address properties,
which will be replace with the bind address specified to JBoss when starting (i.e. via the -
b option).

All the attributes set in this configuration could be set directly in the locator uri of the
InvokerLocator attribute value, but would be much more difficult to decipher visually
and is more prone to editing mistakes.

Handlers

Handlers are classes that the invocation is given to on the server side (the final target for
remoting invocations). To implement a handler, all that is needed is to implement the
org.jboss.remoting.ServerInvocationHandler interface. There are a two ways in which to
register a handler with a Connector. The first is to do it programmatically. The second is
via service configuration. For registering programmatically, can either pass the
ServerInvocationHandler reference itself or an ObjectName for the
ServerInvocationHandler (in the case that it is an MBean). To pass the handler reference
directly, call Connector::addInvocationHandler(String subsystem,
ServerInvocationHandler handler). Some sample code of this (from
org.jboss.remoting.samples.simple.SimpleServer):

 InvokerLocator locator = new InvokerLocator(locatorURI);
 Connector connector = new Connector();
 connector.setInvokerLocator(locator.getLocatorURI());
 connector.create();

 SampleInvocationHandler invocationHandler = new SampleInvocationHandler();
 // first parameter is sub-system name. can be any String value.
 connector.addInvocationHandler("sample", invocationHandler);

 connector.start();

To pass the handler by ObjectName, call Connector::addInvocationHandler(String
subsystem, ObjectName handlerObjectName). Some sample code of this (from
org.jboss.test.remoting.handler.mbean.ServerTest):

 MBeanServer server = MBeanServerFactory.createMBeanServer();

 InvokerLocator locator = new InvokerLocator(locatorURI);
 Connector connector = new Connector();
 connector.setInvokerLocator(locator.getLocatorURI());
 connector.start();

 server.registerMBean(connector,

 new ObjectName("test:type=connector,transport=socket"));

 // now create Mbean handler and register with mbean server
 MBeanHandler handler = new MBeanHandler();
 ObjectName objName = new ObjectName("test:type=handler");
 server.registerMBean(handler, objName);

 connector.addInvocationHandler("test", objName);

Is important to note that if not starting the Connector via the service configuration, will
need to explicitly register it with the MBeanServer (will throw exception otherwise).

If using a service configuration for starting the Connector and registering handlers, can
either specify the fully qualified class name for the handler, which will instantiate the
handler instance upon startup (which requires there be a void parameter constructor),
such as:

 <handlers>
 <handler subsystem="mock">

org.jboss.remoting.transport.mock.MockServerInvocationHandler
 </handler>
 </handlers>

where MockServerInvocationHandler will be constructed upon startup and registered
with the Connector as a handler.

Can also use an ObjectName to specify the handler. The configuration is the same, but
instead of specifying a fully qualified class name, you specify the ObjectName for the
handler, such as (can see mbeanhandler-service.xml under remoting tests for full
example):

T
c

H

T
i
r
c
r
s

S

T
i
s
s

D

C

D

D
w

p

o
d

 <handlers>
 <handler subsystem="mock">test:type=handler</handler>
 </handlers>
he only requirement for this configuration is that the handler MBean must already be
reated and registered with the MBeanServer at the point the Connector is started.

andler implementations

he Connectors will maintain the reference to the single handler instance provided (either
ndirectly via the MBean proxy or directly via the instance object reference). For each
equest to the server invoker, the handler will be called upon. Since the server invokers
an be multi-threaded (and in most cases would be), this means that the handler may
eceive concurrent calls to handle invocations. Therefore, handler implementations
hould take care to be thread safe in their implementations.

tream handler

here is also an invocation handler interface that extends the ServerInvocationHandler
nterface specifically for handling of input streams as well as normal invocations. See the
ection on sending streams for further details. As for Connector configuration, it is the
ame.

iscovery (Detectors)

onfiguration common to all detectors:

omains

etectors have the ability to accept multiple domains. What domains that the detector
ill accept as viewable can be either programmatically set via the method:

ublic void setConfiguration(org.w3c.dom.Element xml)

r by adding to jboss-service.xml configuration for the detector. The domains that the
etector is currently accepting can be retrieved from the method:

public org.w3c.dom.Element getConfiguration()

The configuration xml is a MBean attribute of the detector, so can be set or retrieved via
JMX.

There are three possible options for setting up the domains that a detector will accept.
The first is to not call the setConfiguration() method (or just not add the configuration
attribute to the service xml). This will cause the detector to use only its domain and is the
default behavior. This enables it to be backwards compatible with earlier versions of
JBoss Remoting (JBoss 4, DR2 and before).

The second is to call the setConfiguration() method (or add the configuration attribute
to the service xml) with the following xml element:

 <domains>
 <domain>domain1</domain>
 <domain>domain2</domain>
 </domains>

where domain1 and domain2 are the two domains you would like the detector to accept.
This will cause the detector to only accept detections from the domains specified, and no
others.

The third, and final option, is to call the setConfiguration() method (or add the
configuration attribute to the service xml) with the following xml element:

 <domains>
 </domains>

This will cause the detector to accept all detections from any domain.

An example entry of a Multicast detector in the jboss-service.xml that only accepts
detections from the roxanne and sparky domains using port 5555 is as follows:

 <mbean code="org.jboss.remoting.detection.multicast.MulticastDetector"
 name="jboss.remoting:service=Detector,transport=multicast">
 <attribute name="Port">5555</attribute>
 <attribute name="Configuration">
 <domains>
 <domain>roxanne</domain>
 <domain>sparky</domain>
 </domains>
 </attribute>
</mbean>

DefaultTimeDelay - amount of time, in milliseconds, which can elapse without receiving
a detection event before a server will be suspected as being dead and performing an
explicit invocation on it to verify it is alive. If this invocation, or ping, fails, the server
will be removed from the network registry. The default is 5000 milliseconds.

HeartbeatTimeDelay - amount of time to wait between sending (and sometimes
receiving) detection messages. The default is 1000 milliseconds.

JNDIDetector

Port - port to which detector will connect to for the JNDI server.
Host - host to which the detector will connect to for the JNDI server.
ContextFactory - context factory string used when connecting to the JNDI server. The
default is org.jnp.interfaces.NamingContextFactory.
URLPackage - url package string to use when connecting to the JNDI server. The
default is org.jboss.naming:org.jnp.interfaces.
CleanDetectionNumber - Sets the number of detection iterations before manually
pinging remote server to make sure still alive. This is needed since remote server could
crash and yet still have an entry in the JNDI server, thus making it appear that it is still
there. The default value is 5.

Can either set these programmatically using setter method or as attribute within the
remoting-service.xml (or any where else the service is defined). For example:

 <mbean code="org.jboss.remoting.detection.jndi.JNDIDetector"
 name="jboss.remoting:service=Detector,transport=jndi">
 <attribute name="Host">localhost</attribute>
 <attribute name="Port">5555</attribute>
 </mbean>

If the JNDIDetector is started without the Host attribute being set, it will try to start a
local JNP instance (the JBoss JNDI server implementation), on port 1088.

MulticastDetector

DefaultIP - The IP that is used to broadcast detection messages on via multicast. To be
more specific, will be the ip of the multicast group the detector will join. This attribute is
ignored if the Address has already been set when started. Default is 224.1.9.1.
Port - The port that is used to broadcast detection messages on via multicast. Default is
2410.
BindAddress - The address to bind to for the network interface.

http://www.jboss.org/wiki/Wiki.jsp?page=NamingContextFactory

Address - The IP of the multicast group that the detector will join. The default will be
that of the DefaultIP if not explicitly set.

Transports (Invokers)

Server Invokers

The following configuration properties are common to all the current server invokers.

 serverBindAddress - The address on which the server binds to listen for requests. The
default is an empty value which indicates the server should be bound to the host provided
by the locator url, or if this value is null, the local host as provided by
InetAddress.getLocalHost().

Note: This applies for all the server invokers except the rmi server invoker, which does
not honor this configuration property (see JBREM-127)

serverBindPort - The port to listen for requests on. A value of 0 or less indicates that an
free anonymous port should be chosen.

maxNumThreadsOneway - specifies the maximum number of threads to be used within
the thread pool for accepting one way invocations on the server side. This property will
only be used in the case that the default thread pool is used. If a custom thread pool is set,
this property will have no meaning. This property can also be retrieved or set
programmatically via the MaxNumberOfOnewayThreads property.

onewayThreadPool - specifies either the fully qualified class name for a class that
implements the org.jboss.util.threadpool.ThreadPool interface or the JMX ObjectName
for a MBean that implements the org.jboss.util.threadpool.ThreadPool interface. This will
replace the default org.jboss.util.threadpool.BasicThreadPool used by the server invoker.
Note that this value will NOT be retrieved until the first one way (server side) invocation
is made. So if the configuration is invalid, will not be detected until this first call is made.
The thread pool can also be accessed or set via the OnewayThreadPool property
programmatically.

Important to note that the default thread pool used for the one way invocations on the
server side will block the calling thread if all the threads in the pool are in use until one is
released.

http://jira.jboss.com/jira/browse/JBREM-127

Configurations affecting the invoker client

There are some configurations which will impact the invoker client. These will be
communicated to the client invoker via parameters in the Locator URI. These
configurations can not be changed during runtime, so can only be setup upon initial
configuration of the socket invoker on the server side. The following is a list of these and
their affects.

clientConnectPort - the port the client will use to connect to the remoting server. This
would be needed in the case that the client will be going through a router that forwards
the requests externally to a different port internally.

clientConnectAddress- the ip or hostname the client will use to connect to the remoting
server. This would be needed in the case that the client will be going through a router that
forwards the requests externally to a different ip or host internally.

If no client connect address or server bind address specified, will use the local host's
address (via InetAddress.getLocalHost().getHostAddress())

How the server bind address and port is ultimately determined

If the serverBindAddress property is set, it will be used for binding. If the
serverBindAddress is not set, but the clientConnectAddress property is set, the server
invoker will bind to local host address. If neither the serverBindAddress nor the
clientConnectAddress properties are set, then will try to bind to the host specified within
the InvokerLocator. If the host value of the InvokerLocator is also not set, will bind to
local host.

If the serverBindPort property is set, it will be used. If this value is 0 or a negative
number, then the next available port will be found and used. If the serverBindPort
property is not set, but the clientConnectPort property is set, then the next available port
will be found an used. If neither the serverBindPort or the clientConnectPort is set, then
the port specified in the original InvokerLocator will be used. If this is 0 or a negative
number, then the next available port will be found and use. In the case that the next
available port is used because either the serverBindPort or the original InvokerLocator
port value was either 0 or negatvie, the InvokerLocator will be updated to reflect the new
port value.

Socket Invoker

The following configuration properties can be set at any time, but will note take affect
until the socket invoker, on the server side, is stopped and restarted.

backlog - The preferred number of unaccepted incoming connections allowed at a given
time. The actual number may be greater than the specified backlog. When the queue is
full, further connection requests are rejected. Must be a positive value greater than 0. If
the value passed if equal or less than 0, then the default value will be assumed. The
default value is 200.

numAcceptThreads - The number of threads that exist for accepting client connections.
The default is 1.

maxPoolSize - The number of server threads for processing client. The default is 300.

serverSocketClass - specifies the fully qualifies class name for the custom
SocketWrapper implementation to use on the server.

Configurations affecting the Socket invoker client

There are some configurations which will impact the socket invoker client. These will be
communicated to the client invoker via parameters in the Locator URI. These
configurations can not be changed during runtime, so can only be setup upon initial
configuration of the socket invoker on the server side. The following is a list of these and
their affects.

enableTcpNoDelay - can be either true or false and will indicate if client socket should
have TCP_NODELAY turned on or off. TCP_NODELAY is for a specific purpose; to
disable the Nagle buffering algorithm. It should only be set for applications that send
frequent small bursts of information without getting an immediate response; where timely
delivery of data is required (the canonical example is mouse movements).

socketTimeout - The socket timeout value passed to the Socket.setSoTimeout() cmethod.
The default is 60000 (or 1 minute).

clientMaxPoolSize - the client side maximum number of threads. The default is 300.

An example of locator uri for a socket invoker that has TCP_NODELAY set to false and
the client’s max pool size of 30 would be:

socket://
test.somedomain.com:8084/?enableTcpNoDelay=false&maxPoolSize=30

clientSocketClass - specifies the fully qualified class name for the custom
SocketWrapper implementation to use on the client. Note, will need to make sure this is
marked as a client parameter (using the 'isParam' attribute). Making this change will not
affect the marshaller/unmarshaller that is used, which may also be a requirement.

To reiterate, these client configurations can only be set within the server side
configuration and will not change during runtime.

SSL Socket Invoker

Supports all the configuration attributes as the Socket Invoker, plus the following:

serverSocketFactory - Sets the server socket factory. If want ssl support use a server
socket factory that supports ssl. The only requirement is that the server socket factory
value must be an ObjectName, meaning the server socket factory implementation must be
a MBean and also MUST implement the
org.jboss.remoting.security.ServerSocketFactoryMBean interface.

RMI Invoker

registryPort - the port on which to create the RMI registry. The default is 3455. This
also needs to have the isParam attribute set to true (see below for more information on the
isParam attribute).

HTTP Invoker

The HTTP Invoker allows for some of the properties to be passed as headers. The
following are possible http headers and what they mean:

sessionId - is the remoting session id to identify the client caller. If this is not passed, the
HTTPServerInvoker will try to create a session id based on information that is passed.
Note, this means if the sessionId is not passed as part of the header, there is no gurantee
that the sessionId supplied to the invocation handler will always indicate the request from
the same client.

subsystem - the subsystem to call upon (which invoker handler to call upon). If there is
more than one handler per Connector, this will need to be set (otherwise will just use the
only one available).

The following can be set on the HTTP server invoker via normal configuration properties
mechanism.

maxNumThreadsHTTP - specifies the maximum number of threads to be used within
the thread pool used receive incoming requests. This property will only be used in the
case that the default thread pool is used. If a custom thread pool is set, this property has
no meaning. This property can also be retrieved or set programmatically via the
MaxNumberOfHTTPThreads property.

HTTPThreadPool - specifies either the fully qualified class name for a class that
implements the org.jboss.util.threadpool.ThreadPool interface or the JMX ObjectName
for a MBean that implements the org.jboss.util.threadpool.ThreadPool interface. This will
replace the default org.jboss.util.threadpool.BasicThreadPool used by the
HTTPServerInvoker.

The
org.jboss.test.remoting.configuration.threadpool.HTTPThreadPoolConfigurationTestCase
test cases demonstrates how to set a custom ThreadPool implementation via
configuration.

Note: The HTTPServerInvoker is going to be very expensive as need to write out the size
of the response (Content-Length). This basically means serializing the response object to
byte array and getting size of the array (very expensive). See JBREM-138 for further details

HTTPS Invoker

Supports all the configuration attributes as the HTTP Invoker, plus the following:

serverSocketFactory - Sets the server socket factory. If want ssl support use a server
socket factory that supports ssl. The only requirement is that the server socket factory
value must be an ObjectName, meaning the server socket factory implementation must be
a MBean and also MUST implement the
org.jboss.remoting.security.ServerSocketFactoryMBean interface.

HTTP(S) Client Invoker - proxy and basic authentication

This section covers configuration specific to the HTTP Client Invoker only and is NOT
related to HTTP(S) invoker configuration on the server side (via service xml).

proxy

There are a few ways in which to enable http proxy using the HTTP client invoker. The
first is to simply add the following properties to the metadata Map passed on the Client's
invoke() method:

http.proxyHost
http.proxyPort

http://wiki.jboss.org/wiki/Wiki.jsp?page=BasicThreadPool
http://jira.jboss.com/jira/browse/JBREM-138

An example would be:

 Map metadata = new HashMap();
 ...

 // proxy info
 metadata.put("http.proxyHost", "ginger");
 metadata.put("http.proxyPort", "80");

 ...

 response = client.invoke(payload, metadata);

The http.proxyPort property is not required and if not present, will use default of 80.

The other way to enable use of a http proxy server from the HTTP client invoker is to set
the following system properties (either via System.setProperty() method call or via JVM
arguments):

http.proxyHost
http.proxyPort
proxySet

An example would be setting the following JVM arguments:

-Dhttp.proxyHost=ginger -Dhttp.proxyPort=80 -DproxySet=true

Note: when testing with Apache 2.0.48 (mod_proxy and mod_proxy_http), all of the
properties above were required.

Setting the system properties will take precedence over setting the metadata Map.

basic authentication - direct and via proxy

The HTTP client invoker also has support for BASIC authentication for both proxied and
non-proxied invocations. For proxied invocations, the following properties need to be set:

http.proxy.username
http.proxy.password

For non-proxied invocations, the following properties need to be set:

http.basic.username
http.basic.password

For setting either proxied or non-proxied properties, can be done via the metadata map or
system properties (see setting proxy properties above for how to). However, for
authentication properties, values set in the metadata Map will take precedence over those
set within the system properties.

Note: Only the proxy authentication has been tested using Apache 2.0.48; non-proxied
authentication has not.

Since there are many different ways to do proxies and authentication in this great world
of web, not all possible configurations have been tested (or even supported). If you find a
particular problem or see that a particular implementation is not supported, please enter
an issue in Jira (http://jira.jboss.com) under the JBossRemoting project, as this is where
bugs and feature request belong. If have question about how to use these features that is
not documented, please post them to the remoting forum
(http://www.jboss.org/index.html?module=bb&op=viewforum&f=176).

Servlet Invoker

The servlet invoker is a server invoker implementation that uses a servlet running within
a web container to accept initial client invocation requests. The servlet request is then
passed onto the servlet invoker for processing.

The deployment for this particular server invoker is a little different than the other server
invokers since a web deployment is also required. To start, the servlet invoker will need
to be configured and deployed. This can be done by adding the Connector MBean service
to an existing service xml or creating a new one. The following is an example of how to
declare a Connector that uses the servlet invoker:

 <mbean code="org.jboss.remoting.transport.Connector"
 xmbean-dd="org/jboss/remoting/transport/Connector.xml"
 name="jboss.remoting:service=Connector,transport=Servlet"
 display-name="Servlet transport Connector">

 <attribute name="InvokerLocator">
 servlet://localhost:8080/servlet-invoker/ServerInvokerServlet
 </attribute>

 <attribute name="Configuration">
 <config>
 <handlers>
 <handler subsystem="test">
 org.jboss.test.remoting.transport.web.WebInvocationHandler
 </handler>
 </handlers>
 </config>
 </attribute>
 </mbean>

An important point of configuration to note is that the value for the InvokerLocator
attribute is the exact url used to access the servlet for the servlet invoker (more on how to
define this below), with the exception of the protocol being servlet instead of http. This is
important because if using automatic discovery, this is the locator url that will be
discovered and used by clients to connect to this server invoker.

http://jira.jboss.com/
http://www.jboss.org/index.html?module=bb&op=viewforum&f=176

The next step is to configure and deploy the servlet that fronts the servlet invoker. The
pre-built deployment file for this servlet is the servlet-invoker.war file (which can be
found in the release distribution or under the output/lib/ directory if doing a source build).
By default, it is actually an exploded war, so the servlet-invoker.war is actually a
directory so that can be more easily configured (feel free to zip up into an actual war file
if prefer). In the WEB-INF directory is located the web.xml file. This is a standard web
configuration file and should look like:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">

<!--The the JBossRemoting server invoker servlet web.xml descriptor-->
<web-app>
 <servlet>
 <servlet-name>ServerInvokerServlet</servlet-name>

 <description>The ServerInvokerServlet receives requests
 via HTTP protocol from within a web container and
 passes it onto the ServletServerInvoker for
 processing.

 </description>
 <servlet-class>
 org.jboss.remoting.transport.servlet.web.ServerInvokerServlet
 </servlet-class>
 <init-param>
 <param-name>invokerName</param-name>
 <param-value>
 jboss.remoting:service=invoker,transport=servlet
 </param-value>
 <description>The servlet server invoker</description>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>ServerInvokerServlet</servlet-name>
 <url-pattern>/ServerInvokerServlet/*</url-pattern>
 </servlet-mapping>
</web-app>

This file can be changed to meet any web requirements you might have, such as adding
security or changing the actual url context that the servlet maps to. If the url that the
servlet maps to is changed, will need to change the value for the InvokerLocator in the
Connector configuration mentioned above. Also note that there is a parameter,
invokerName, that has the value of the object name of the servlet server invoker. This is
what the ServerInvokerServlet uses to lookup the server invoker which it will pass the
requests onto.

Due to the way the servlet invoker is currently configured and deployed, it must run
within the JBoss application server and is not portable to other web servers.

Exception handling

If the ServletServerInvoker catches any exception thrown from the invocation handler
invoke() call, it will send an error to the client with a status of 500 and include the
original exception message as it's error message. From the client side, the client invoker
will actually throw a CannotConnectException, which will have root exception as its
cause. The cause should be an IOException with the server's message. For example, the
stack trace from the exception thrown within the test case
org.jboss.remoting.transport.servlet.test.ServletInvokerTestClient is:

org.jboss.remoting.CannotConnectException: Can not connect http client invoker.
 at
org.jboss.remoting.transport.http.HTTPClientInvoker.useHttpURLConnection(HTTPClientInvoke
r.java:154)
 at
org.jboss.remoting.transport.http.HTTPClientInvoker.transport(HTTPClientInvoker.java:68)
 at org.jboss.remoting.RemoteClientInvoker.invoke(RemoteClientInvoker.java:113)
 at org.jboss.remoting.Client.invoke(Client.java:221)
 at org.jboss.remoting.Client.invoke(Client.java:184)
 at
org.jboss.remoting.transport.servlet.test.ServletInvokerTestClient.testInvocation(Servlet
InvokerTestClient.java:65)
 at
org.jboss.remoting.transport.servlet.test.ServletInvokerTestClient.main(ServletInvokerTes
tClient.java:98)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
 at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
 at java.lang.reflect.Method.invoke(Method.java:324)
 at com.intellij.rt.execution.application.AppMain.main(AppMain.java:78)
Caused by: java.io.IOException: Server returned HTTP response code: 500 for URL:
http://localhost:8080/servlet-invoker/ServerInvokerServlet
 at
sun.net.www.protocol.http.HttpURLConnection.getInputStream(HttpURLConnection.java:791)
 at
org.jboss.remoting.transport.http.HTTPClientInvoker.useHttpURLConnection(HTTPClientInvoke
r.java:139)
 ... 11 more

Issues

One of the issues of using HTTP/Servlet invoker is that the invocation handlers (those
that implement ServerInvocationHandler), can not provide very much detail in regards to
what is returned in regards to a web context. For example, the content type used for the
response is the same as that of the request. Also can not set specific response header
values or send specific error status (see JBREM-140).

http://jira.jboss.com/jira/browse/JBREM-140

Marshalling

Marshalling of data can range from extremely simple to somewhat complex depending on
how much customization is needed. The following explains how
marshallers/unmarshallers can be configured. Note that this applies for all the different
transports, but will use the socket transport for examples.

The easiest way to configure marshalling, is to specify nothing at all. This will prompt
the remoting invokers to use their default marshaller/unmarshallers. For example, the
socket invoker will use the SerializableMarshaller/SerializableUnMarshaller and
the http invoker will use the HTTPMarshaller/HTTPUnMarshaller, on both the client and
server side.

The next easiest way is to specify the data type of the marshaller/unmarshaller as a
parameter to the locator url. This can be done by simply adding the key word 'datatype' to
the url, such as:

socket://myhost:5400/?datatype=serializable

This can be done for types that are statically bound within the MarshalFactory,
serializable and http, without requiring any extra coding, since they will be available
to any user of remoting. However, is more likely this will be used for custom marshallers
(since could just use the default data type from the invokers if using the statically defined
types). If using custom marshaller/unmarshaller, will need to make sure both are added
programmatically to the MarshalFactory during runtime (on both the client and server
side). This can be done by the following method call within the MarshalFactory:

public static void addMarshaller(String dataType,
 Marshaller marshaller,
 UnMarshaller unMarshaller)

The dataType passed can be any String value desired. For example, could add custom
InvocationMarshaller and InvocationUnMarshaller with the data type of
'invocation'. An example using this data type would then be:

socket://myhost:5400/?datatype=invocation

One of the problems with using a data type for a custom Marshaller/UnMarshaller is
having to explicitly code the addition of these within the MarshalFactory on both the
client and the server. So another approach that is a little more flexible is to specify the
fully qualified class name for both the Marshaller and UnMarshaller on the locator url.
For example:

socket://myhost:5400/?datatype=invocation&
marshaller=org.jboss.invocation.unified.marshall.InvocationMarshaller&
unmarshaller=org.jboss.invocation.unified.marshall.InvocationUnMarshall
er

This will prompt remoting to try to load and instantiate the Marshaller and UnMarshaller
classes. If both are found and loaded, they will automatically be added to the
MarshalFactory by data type, so will remain in memory. Now the only requirement is that
the custom Marshaller and UnMarshaller classes be available on both the client and
server's classpath.

Another requirement of the actual Marshaller and UnMarshaller classes is that they have
a void constructor. Otherwise loading of these will fail.

This configuration can also be applied using the service xml. If using declaration of
invoker using the InvokerLocator attribute, can simply add the datatype, marshaller, and
unmarshaller parameters to the defined InvokerLocator attribute value. For example:

I
a

T
n
t
w

 <attribute name="InvokerLocator">

<![CDATA[socket://${jboss.bind.address}:8084/?datatype=invocation&
marshaller=org.jboss.invocation.unified.marshall.InvocationMarshaller&
unmarshaller=org.jboss.invocation.unified.marshall.InvocationUnMarshaller]]>

 </attribute>

f were using config element to declare the invoker, will need to add an attribute for each
nd include the isParam attribute set to true. For example:

 <invoker transport="socket">
 <attribute name="dataType" isParam="true">invocation</attribute>
 <attribute name="marshaller" isParam="true">

org.jboss.invocation.unified.marshall.InvocationMarshaller
 </attribute>
 <attribute name="unmarshaller" isParam="true">

org.jboss.invocation.unified.marshall.InvocationUnMarshaller
 </attribute>

 </invoker>

his configuration is fine if the classes are present within the client's classpath. If they are
ot, can provide configuration for allowing clients to dynamically load the classes from
he server. To do this, can use the parameter 'loaderport' with the value of the port you
ould like your marshall loader to run on. For example:

 <invoker transport="socket">
 <attribute name="dataType" isParam="true">invocation</attribute>
 <attribute name="marshaller" isParam="true">

org.jboss.invocation.unified.marshall.InvocationMarshaller
 </attribute>

 <attribute name="unmarshaller" isParam="true">
org.jboss.invocation.unified.marshall.InvocationUnMarshaller

 </attribute>
 <attribute name="loaderport" isParam="true">5401</attribute>
 </invoker>

When this parameter is supplied, the Connector will recognize this at startup and create a
marshall loader connector automatically, which will run on the port specified. The locator
url will be exactly the same as the original invoker locator, except will be using the
socket transport protocol and will have all marshalling parameters removed (except the
dataType). When the remoting client can not load the marshaller/unmarshaller for the
specified data type, it will try to load them from the marshall loader service running on
the loader port, including any classes it depends on. This will happen automatically and
not coding is required (only the ability for the client to access the server on the specified
loader port, so must provide access if running through firewall).

Callback overview

Although this section covers callback configuration, will need to first cover a little
general information about callbacks within remoting. There are two models for callbacks,
push and pull. In the push model, the client will register a callback server via an
InvokerLocator with the target server. When the target server has a callback to deliver,
it will call on the callback server directly and send the callback message. There is little
configuration needed for this and is covered in detail in the remoting user’s guide.

The other model, pull callbacks, allows the client to call on the target server to collect the
callback messages waiting for it. The target server then has to manage these callback
messages on the server until the client calls to collect them. Since the server has no
control of when the client will call to get the callbacks, it has to be aware of memory
constraints as it manages a growing number of callbacks. The way the callback server
does this is through use of a persistence policy. This policy indicates at what point the
server has too little free memory available and therefore the callback message should be
put into a persistent store. This policy can be configured via the memPercentCeiling
attribute (see more on configuring this below).

By default, the persistent store used by the invokers is the
org.jboss.remoting.NullCallbackStore. The NullCallbackStore will simply
throw away the callback to help avoid running out of memory. When the persistence
policy is triggered and the NullCallbackStore is called upon to store the callback, the
invocation handler making the call will be thrown an IOException with the message:

Callback has been lost because not enough free memory to hold object.

and there will be an error in the log stating which object was lost. In this same scenario,
the client will get an instance of the org.jboss.remoting.NullCallbackStore.
FailedCallback class when they call to get their callbacks. This class will throw a
RuntimeException with the following message when getCallbackObject() is called:

This is an invalid callback. The server ran out of memory, so callbacks were lost.

Also, the payload of the callback will be the same string. The client will also get any
valid callbacks that were kept in memory before the persistence policy was triggered.

An example case when using the NullCallbackStore might be callback objects A, B,
and C are stored in memory because there is enough free memory. Then when callback D
comes, the persistence policy is triggered and the NullCallbackStore is asked to persist
callback D. The NullCallbackStore will throw away callback D and create a
FailedCallback object to take its place. Then callback E comes, and there is still too
little free memory, so that is thrown away by the NullCallbackStore.

Then the client calls to get its callbacks. It will receive a List containing callbacks A, B,
C and the FailedCallback. When the client asks the FailedCallback for its callback
payload, it will throw fore mentioned exception.

Besides the default NullCallbackStore, there is a truly persistent CallbackStore,
which will persist callback messages to disk so they will not be lost. The description of
the CallbackStore is as follows:

Acts as a persistent list which writes Serializable objects to disk and will retrieve them in
same order in which they were added (FIFO). Each file will be named according to the
current time (using System.currentTimeMillis() with the file suffix specified (see below).
When the object is read and returned by calling the getNext() method, the file on disk for
that object will be deleted. If for some reason the store VM crashes, the objects will still
be available upon next startup. The attributes to make sure to configure are:

file path - this determines which directory to write the objects. The default value is the
property value of 'jboss.server.data.dir' and if this is not set, then will be 'data'. For
example, might be /jboss/server/default/data.

file suffix - the file suffix to use for the file written for each object stored.

This is also a service mbean, so can be run as a service within JBoss AS or stand alone.

Custom callback stores can also be implemented and defined within configuration. The
only requirement is that it implements the org.jboss.remoting.SerializableStore
interface and has a void constructor (only in the case of using a fully qualified classname
in configuration).

Once a callback client has been removed as a listener, all persisted callbacks will be
removed from disk.

Callback Configuration

All callback configuration will need to be defined within the invoker configuration, since
the invoker is the parent that creates the callback servers as needed (when client registers
for pull callbacks). Example service xml are included below.

callbackMemCeiling - the percentage of free memory available before callbacks will be
persisted. If the memory heap allocated has reached its maximum value and the percent
of free memory available is less than the callbackMemCeiling, this will trigger persisting
of the callback message. The default value is 20.

Note: The calculations for this is not always accurate. The reason is that total memory
used is usually less than the max allowed. Thus, the amount of free memory is relative to
the total amount allocated at that point in time. It is not until the total amount of memory
allocated is equal to the max it will be allowed to allocate. At this point, the amount of
free memory becomes relevant. Therefore, if the memory percentage ceiling is high, it
might not trigger until after free memory percentage is well below the ceiling.

callbackStore - specifies the callback store to be used. The value can be either an MBean
ObjectName or a fully qualified class name. If using class name, the callback store
implementation must have a void constructor. The default is to use the
NullCallbackStore.

CallbackStore configuration

The CallbackStore can be configured via the invoker configuration as well.

StoreFilePath - indicates to which directory to write the callback objects. The default
value is the property value of 'jboss.server.data.dir' and if this is not set, then will be
'data'. Will then append 'remoting' and the callback client's session id. An example would
be 'data\remoting\5c4o05l-9jijyx-e5b6xyph-1-e5b6xyph-2'.

StoreFileSuffix - indicates the file suffix to use for the callback objects written to disk.
The default value is ‘ser’.

Sample service configuration

Socket transport with callback store specified by class name and memory ceiling set to
30%:

 <mbean code="org.jboss.remoting.transport.Connector"
 xmbean-dd="org/jboss/remoting/transport/Connector.xml"
 name="jboss.remoting:service=Connector,transport=Socket"
 display-name="Socket transport Connector">

 <attribute name="Configuration">
 <config>
 <invoker transport="socket">
 <attribute name="callbackStore">org.jboss.remoting.CallbackStore</attribute>
 <attribute name="callbackMemCeiling">30</attribute>
 </invoker>
 <handlers>
 <handler subsystem="test">

org.jboss.remoting.callback.pull.memory.CallbackInvocationHandler
 </handler>

 </handlers>
 </config>
 </attribute>
 </mbean>

Socket transport with callback store specified by MBean ObjectName and declaration of
CallbackStore as service:

 <mbean code="org.jboss.remoting.CallbackStore"
 name="jboss.remoting:service=CallbackStore,type=Serializable"
 display-name="Persisted Callback Store">

 <!-- the directory to store the persisted callbacks into -->
 <attribute name="StoreFilePath">callback_store</attribute>
 <!-- the file suffix to use for each callback persisted to disk -->
 <attribute name="StoreFileSuffix">cbk</attribute>
 </mbean>

 <mbean code="org.jboss.remoting.transport.Connector"
 xmbean-dd="org/jboss/remoting/transport/Connector.xml"
 name="jboss.remoting:service=Connector,transport=Socket"
 display-name="Socket transport Connector">

 <attribute name="Configuration">
 <config>
 <invoker transport="socket">
 <attribute name="callbackStore">

jboss.remoting:service=CallbackStore,type=Serializable
 </attribute>

 </invoker>
 <handlers>
 <handler subsystem="test">

org.jboss.remoting.callback.pull.memory.CallbackInvocationHandler
 </handler>

 </handlers>
 </config>
 </attribute>
 </mbean>

Socket transport with callback store specified by class name and the callback store’s file
path and file suffix defined:

 <mbean code="org.jboss.remoting.transport.Connector"
 xmbean-dd="org/jboss/remoting/transport/Connector.xml"
 name="jboss.remoting:service=Connector,transport=Socket"
 display-name="Socket transport Connector">

 <attribute name="Configuration">
 <config>
 <invoker transport="socket">
 <attribute name="callbackStore">org.jboss.remoting.CallbackStore</attribute>
 <attribute name="StoreFilePath">callback</attribute>
 <attribute name="StoreFileSuffix">cst</attribute>
 </invoker>
 <handlers>
 <handler subsystem="test">

org.jboss.remoting.callback.pull.memory.CallbackInvocationHandler
 </handler>

 </handlers>
 </config>
 </attribute>
 </mbean>

Programmatic configuration

It is possible to configure all this programmatically, if running outside the JBoss
Application server for example, but is a little more tedious. Since the remoting
components are all bound together by the org.jboss.remoting.transport.Connector
class, will need to call its setConfiguration(org.w3c.dom.Element xml) method
with same xml as in the mbean service configuration, before calling its start() method.

The xml passed to the Connector should have <config> element as the root element and
continue from there with <invoker> sub-element and so on.

SSL Support and configuration

There are two transports that now support SSL; sslsocket and https. This section will
cover configuration, implementation, some samples, and some troubleshooting tips.

Both the sslsocket and https transports are extensions of their non-ssl counter parts,
socket and http transports, so the same basic configurations will apply. Therefore, only
the ssl specific configurations will be covered here.

An example of a service xml that covers all the different transport and service
configurations and be found at

http://wiki.jboss.org/wiki/Wiki.jsp?page=Remoting_example_service_xml .

sslsocket

The sslsocket transport can be defined in one of two ways if using a service xml to
declare the remoting server. The first is to use the sslsocket protocol keyword in the
locator url of the InvokerLocator attribute value of the Connector service mbean. For
example:

 <mbean code="org.jboss.remoting.transport.Connector"
 xmbean-dd="org/jboss/remoting/transport/Connector.xml"
 name="jboss.remoting:service=Connector,transport=SSLSocket"
 display-name="SSL Socket transport Connector">

 <attribute name="InvokerLocator">
 sslsocket://myhost:8084
 </attribute>

The other way is to not use the InvokerLocator attribute, but instead a more verbose
Configuration attribute, which declares the invoker transport type as a sub-element. For
example:

 <mbean code="org.jboss.remoting.transport.Connector"
 xmbean-dd="org/jboss/remoting/transport/Connector.xml"
 name="jboss.remoting:service=Connector,transport=SSLSocket"
 display-name="SSL Socket transport Connector">

 <attribute name="Configuration">
 <config>
 <invoker transport="sslsocket">
 <attribute name="numAcceptThreads">1</attribute>
 <attribute name="maxPoolSize">303</attribute>

If defining the remoting server programmatically, not from a server xml file, all that is
needed is to create the InvokerLocator with sslsocket as the protocol. Of course the
other Connector operations will be needed as well. A simple example would be:

Connector connector = new Connector();
InvokerLocator locator = new InvokerLocator(“sslsocket://myhost:8084”);
connector.setInvokerLocator(locator.getLocatorURI());
connector.create();
connector.addInvocationHandler(getSubsystem(),
 getServerInvocationHandler());
 connector.start();

http://wiki.jboss.org/wiki/Wiki.jsp?page=Remoting_example_service_xml

SSL Server Socket Selection

All of the forms of configuration mentioned previously will use the default configuration
for selecting which SSL server socket factory to use. Technically, this is done by calling
on the javax.net.ssl.SSLServerSocketFactory’s getDefault() method. This will
require that both the javax.net.ssl.keyStore and the
javax.net.ssl.keyStorePassword system properties are set. This can be done by
either calling the System.setProperty() or via JVM arguments. This also means that
all the SSL configurations default to those of the JVM vendor.

There are two ways in which to customize the SSL configuration to be used by the
SSLSocketServerInvoker. The first is to explicitly set the server socket factory that the
invoker should use to create it’s server sockets. This can be done programmatically via
the following method (which is also exposed as a JMX operation):

public void setServerSocketFactory(ServerSocketFactory
serverSocketFactory)

The server socket factory to be used by the invoker can also be set via configuration
within the service xml. To do this, the serverSocketFactory attribute will need to be
set as a sub-element of the invoker element (this can not be done if just specifying the
invoker configuration using the InvokerLocator attribute). The attribute value must be
the JMX ObjectName of a MBean that implements the
org.jboss.remoting.security.ServerSocketFactoryMBean interface. An example
of this configuration would be:

 <mbean code="org.jboss.remoting.transport.Connector"
 xmbean-dd="org/jboss/remoting/transport/Connector.xml"
 name="jboss.remoting:service=Connector,transport=Socket"
 display-name="Socket transport Connector">

 <attribute name="Configuration">
 <config>
 <invoker transport="sslsocket">
 <attribute name="serverSocketFactory">
 jboss.remoting:service=ServerSocketFactory,type=SSL
 </attribute>
 <attribute name="numAcceptThreads">1</attribute>

The JBossRemoting project provides an implementation of the
ServerSocketFactoryMBean that can be used and should provide most of the
customization features that would be needed. More on this implementation later.

The order of selecting which server socket factory is:

1. If a javax.net.ServerSocketFactory has been specified via the
setServerSocketFactory() method, use this.

2. If the serverSocketFactory property has been set, then take the String value,
create an ObjectName from it, look up that MBean from the MBeanServer that
the invoker has been registered with (by way of the Connector) and create a proxy
to that MBean of type
org.jboss.remoting.security.ServerSocketFactoryMBean. Then use this
proxy. Technically, a user could set the serverSocketFactory property with the
locator url, but the preferred method is to use the explicit configuration via the
invoker element’s attribute, as discussed above.

3. If the server socket factory has not been set explicitly of via the
serverSocketFactory property, then use the
javax.net.ssl.SSLServerSocketFactory’s getDefault() method.

Note: If want to set the server socket factory via the invoker’s
setServerSocketFactory() method, it requires a bit of work, so would opt for using a
configuration setting when possible. The following snippet of code shows how it can be
done programmatically:

Connector connector = new Connector();
InvokerLocator locator = new InvokerLocator(“sslsocket://myhost:8084”);
connector.setInvokerLocator(locator.getLocatorURI());
connector.create();
// create your server socket factory
ServerSocketFactory svrSocketFactory = createServerSocketFactory();
// notice that the invoker has to be explicitly cast to the
// SSLSocketServerInvoker type
SSLSocketServerInvoker socketSvrInvoker = (SSLSocketServerInvoker)
connector.getServerInvoker();
socketSvrInvoker.setServerSocketFactory(svrSocketFactory);

connector.addInvocationHandler(getSubsystem(),
 getServerInvocationHandler());
connector.start();

The ordering is also important in that call to the Connector’s create() method will
create the invoker so that it is available via the getServerInvoker() method. However,
the server socket factory MUST be set before the Connector’s start() method is called,
because this will cause the invoker’s start() method to be called, which will create the
server socket to listen on (and is too late to swap out the server socket factory being
used).

https

The https transport is very similar to the sslsocket transport in regards to how the ssl
configuration is done. Therefore will only mention the differences here. The first major
difference is the transport protocol keyword to identify it, which is https. The two
different service xml configurations would be:

 <mbean code="org.jboss.remoting.transport.Connector"
 xmbean-dd="org/jboss/remoting/transport/Connector.xml"

 name="jboss.remoting:service=Connector,transport=HTTPS"
 display-name="HTTPS transport Connector">

 <attribute name="InvokerLocator">https://myhost:8084</attribute>

and

 <mbean code="org.jboss.remoting.transport.Connector"
 xmbean-dd="org/jboss/remoting/transport/Connector.xml"
 name="jboss.remoting:service=Connector,transport=HTTPS"
 display-name="HTTPS transport Connector">

 <attribute name="Configuration">
 <config>
 <invoker transport="https">

Again, if using the https transport programmatically, the only change from using the
sslsocket transport would be they locator url used. For example:

InvokerLocator locator = new InvokerLocator(“https://myhost:8084”);

The SSL server socket selection process is exactly the same as described in the sslsocket
section above. This includes the setServerSocketFactory() method and the
serverSocketFactory configuration attribute. The only difference would be if setting
the server socket factory programmatically, would need to cast to the
HTTPSServerInvoker. For example, the code would look like:

HTTPSServerInvoker httpsSvrInvoker = (HTTPSServerInvoker)
connector.getServerInvoker();

SSLSocketBuilder

Although any socket server factory can be set on the SSLSocketServerInvoker and the
HTTPSSocketInvoker, there is a customizable server socket factory service provided
within JBossRemoting that supports SSL. This is the
org.jboss.remoting.security.SSLServerSocketFactoryService class. The
SSLServerSocketFactoryService class extends the javax.net.ServerSocketFactory
class and also implements the SSLServerSocketFactoryServiceMBean interface (so
that it can be set using the socketServerFactory attribute described previously. Other
than providing the proper interfaces, this class is a simple wrapper around the
org.jboss.remoting.security.SSLSocketBuilder class.

The SSLSocketBuilder is where the ssl server socket (and ssl sockets for clients)
originate and is where all the properties for the ssl server socket are configured (more on
this further below). The SSLSocketBuilder is also a service MBean, so can be configured
and started from within a service xml.

This is an example of both the configurations as might be found within a service xml:

 <!-- This service is used to build the SSL Server socket factory -->
 <!-- This will be where all the store/trust information will be set. -->
 <!-- If do not need to make any custom configurations, no extra attributes -->
 <!-- need to be set for the SSLSocketBuilder and just need to set the -->
 <!-- javax.net.ssl.keyStore and javax.net.ssl.keyStorePassword system properties. -->
 <!-- This can be done by just adding something like the following to the run -->
 <!-- script for JBoss -->
 <!-- (this one is for run.bat): -->
 <!-- set JAVA_OPTS=-Djavax.net.ssl.keyStore=.keystore -->
 <!-- -Djavax.net.ssl.keyStorePassword=opensource %JAVA_OPTS% -->
 <!-- Otherwise, if want to customize the attributes for SSLSocketBuilder, -->
 <!-- will need to uncomment them below. -->
 <mbean code="org.jboss.remoting.security.SSLSocketBuilder"
 name="jboss.remoting:service=SocketBuilder,type=SSL"
 display-name="SSL Server Socket Factory Builder">
 <!-- IMPORTANT - If making ANY customizations, this MUST be set to false. -->
 <!-- Otherwise, will used default settings and the following attributes will be
ignored. -->
 <attribute name="UseSSLServerSocketFactory">false</attribute>
 <!-- This is the url string to the key store to use -->
 <attribute name="KeyStoreURL">.keystore</attribute>
 <!-- The password for the key store -->
 <attribute name="KeyStorePassword">opensource</attribute>
 <!-- The password for the keys (will use KeystorePassword if this is not set
explicitly. -->
 <attribute name="KeyPassword">opensource</attribute>
 <!-- The protocol for the SSLContext. Default is TLS. -->
 <attribute name="SecureSocketProtocol">TLS</attribute>
 <!-- The algorithm for the key manager factory. Default is SunX509. -->
 <attribute name="KeyManagementAlgorithm">SunX509</attribute>
 <!-- The type to be used for the key store. -->
 <!-- Defaults to JKS. Some acceptable values are JKS (Java Keystore - Sun's
keystore format), -->
 <!-- JCEKS (Java Cryptography Extension keystore - More secure version of JKS), and
-->
 <!-- PKCS12 (Public-Key Cryptography Standards #12 keystore - RSA's Personal
Information Exchange Syntax Standard). -->
 <!-- These are not case sensitive. -->
 <attribute name="KeyStoreType">JKS</attribute>
 </mbean>

 <!-- The server socket factory mbean to be used as attribute to socket invoker -->
 <!-- See serverSocketFactory attribute above for where it is used -->
 <!-- This service provides the exact same API as the ServerSocketFactory, so -->
 <!-- can be set as an attribute of that type on any MBean requiring an
ServerSocketFactory. -->
 <mbean code="org.jboss.remoting.security.SSLServerSocketFactoryService"
 name="jboss.remoting:service=ServerSocketFactory,type=SSL"
 display-name="SSL Server Socket Factory">
 <depends optional-attribute-name="SSLSocketBuilder"
 proxy-type="attribute">jboss.remoting:service=SocketBuilder,type=SSL</depends>
 </mbean>

There are two modes in which the SSLSocketBuilder can be run. The first is the default
mode where all that is needed is to declare the SSLSocketBuilder and set the system
properties javax.net.ssl.keyStore and javax.net.ssl.keyStorePassword. This will use the
JVM vendor’s default configuration for creating the SSL server socket factory.

If want to be able to customize any of the SSL properties, the first requirement is that the
default mode is turned off. This is IMPORTANT because otherwise, if the default mode
is not explicitly turned off, all other settings will be IGNORED, even if they are
explicitly set. To turn off the default mode via service xml configuration, set the
UseSSLServerSocketFactory attribute to false. This can be done programmatically by
calling the setUseSSLServerSocketFactory() and passing false as the parameter value.

The configuration properties are as follows:

SecureSocketProtocol - The protocol for the SSLContext. Some acceptable values are
TLS, SSL, and SSLv3. Defaults to TLS (DEFAULT_SECURE_SOCKET_PROTOCOL)

KeyManagementAlgorithm - The algorithm for the key manager factory. Defaults to
SunX509? (DEFAULT_KEY_MANAGEMENT_ALGORITHM)

KeyStoreType - The type to be used for the key store. Defaults to JKS
(DEFAULT_KEY_STORE_TYPE). Some acceptable values are JKS (Java Keystore -
Sun's keystore format), JCEKS (Java Cryptography Extension keystore - More secure
version of JKS), and PKCS12 (Public-Key Cryptography Standards #12 keystore - RSA's
Personal Information Exchange Syntax Standard). These are not case sensitive.

KeyStorePassword - The password to use for the key store. This only needs to be set if
setUseSSLServerSocketFactory() is set to false (otherwise will be ignored). The value
passed will also be used for the key password if it is not explicitly set.

KeyPassword - Sets the password to use for the keys within the key store. This only
needs to be set if setUseSSLServerSocketFactory() is set to false (otherwise will be
ignored). If this value is not set, but the key store password is, it will use that value for
the key password.

Some other points of note:

• A SecureRandom is NOT configurable. When calling SSLContext's init() method,
it is actually null, so will use the default implementation.

• Note that there are currently no ways to specify providers, so will use the default
provider (which is determined by the JVM vendor).

• If the key password is not set, will try to use the value of the key store password.

General Security How To

Since we are talking about keystores and truststores, this section will quickly go over
how to quickly generate a test keystore and truststore for testing. This is not intended to
be a full security overview, just an example of how I originally created mine for testings

To get started, will need to create key store and trust store.

Generating key entry into keystore:

C:\tmp\ssl>keytool -genkey -alias remoting -keyalg RSA
Enter keystore password: opensource
What is your first and last name?
 [Unknown]: Tom Elrod
What is the name of your organizational unit?
 [Unknown]: Development

http://wiki.jboss.org/wiki/Edit.jsp?page=SunX509

What is the name of your organization?
 [Unknown]: JBoss Inc
What is the name of your City or Locality?
 [Unknown]: Atlanta
What is the name of your State or Province?
 [Unknown]: GA
What is the two-letter country code for this unit?
 [Unknown]: US
Is CN=Tom Elrod, OU=Development, O=JBoss Inc, L=Atlanta, ST=GA, C=US
correct?
 [no]: yes

Enter key password for <remoting>
 (RETURN if same as keystore password):

Since did not specify the -keystore filename parameter, created the keystore in
$HOME/.keystore (or C:\Documents and Settings\Tom\.keystore).

Export the RSA certificate (without the private key)

C:\tmp\ssl>keytool -export -alias remoting -file remoting.cer
Enter keystore password: opensource
Certificate stored in file <remoting.cer>

Import the RSE certificate into a new truststore file.

C:\tmp\ssl>keytool -import -alias remoting -keystore .truststore -file
remoting.cer
Enter keystore password: opensource
Owner: CN=Tom Elrod, OU=Development, O=JBoss Inc, L=Atlanta, ST=GA,
C=US
Issuer: CN=Tom Elrod, OU=Development, O=JBoss Inc, L=Atlanta, ST=GA,
C=US
Serial number: 426f1ee3
Valid from: Wed Apr 27 01:10:59 EDT 2005 until: Tue Jul 26 01:10:59 EDT
2005
Certificate fingerprints:
 MD5: CF:D0:A8:7D:20:49:30:67:44:03:98:5F:8E:01:4A:6A
 SHA1:
C6:76:3B:6C:79:3B:8D:FD:FB:4F:33:3B:25:C9:01:9D:50:BF:9F:8A
Trust this certificate? [no]: yes
Certificate was added to keystore

Now have two files, .keystore for the server and .truststore for the client.

Troubleshooting Tips

Common errors when using server socket factory:

1. javax.net.ssl.SSLException: No available certificate corresponds to the SSL
cipher suites which are enabled.

The 'javax.net.ssl.keyStore' system property has not been set and are using the default
SSLServerSocketFactory.

1. java.net.SocketException: Default SSL context init failed: Cannot recover key

The 'javax.net.ssl.keyStorePassword' system property has not been set and are using the
default SSLServerSocketFactory.

1. java.io.IOException: Can not create SSL Server Socket Factory due to the url to
the key store not being set.

The default SSLServerSocketFactory is NOT being used (so custom configuration for the
server socket factory) and the key store url has not been set.

1. java.lang.IllegalArgumentException: password can't be null

The default SSLServerSocketFactory is NOT being used (so custom configuration for the
server socket factory) and the key store password has not been set.

Sending streams

Support for sending InputStreams using remoting has been added. It is important to note
that this feature DOES NOT copy the stream data directly from the client to the server,
but is a true on demand stream. Although this is obviously slower than reading from a
stream on the server that has been copied locally, it does allow for true streaming on the
server. It also for better memory control by the user (verses the framework trying to copy
a 3 Gig file into memory and blowing up).

Use of this new feature is simple. From the client side, there is new method in
org.jboss.remoting.Client with the signature:

public Object invoke(InputStream inputStream, Object param)
 throws Throwable

So from the client side, would just call invoke as done in the past, and pass the
InputStream and the payload as the parameters. An example of the code from the client
side would be (this is taken directly from
org.jboss.test.remoting.stream.StreamingTestClient):

 String param = "foobar";
 File testFile = new File(fileURL.getFile());
 ...
 Object ret = remotingClient.invoke(fileInput, param);

http://wiki.jboss.org/wiki/Wiki.jsp?page=SocketException

From the server side, will need to implement
org.jboss.remoting.stream.StreamInvocationHandler instead of
org.jboss.remoting.ServerInvocationHandler. StreamInvocationHandler extends
ServerInvocationHandler, with the addition of one new method:

public Object handleStream(InputStream stream, Object param)

The stream passed to this method can be called on just as any regular local stream. Under
the covers, the InputStream passed is really proxy to the real input stream that exists in
the client's VM. Subsequent calls to the stream passed will actually be converted to calls
on the real stream on the client via this proxy. If the client makes an invocation on the
server passing an InputStream as the parameter and the server handler does not
implement StreamInvocationhandler, an exception will be thrown to the client caller.

It is VERY IMPORTANT that the StreamInvocationHandler implementation close the
InputStream when it finished reading, as will close the real stream that lives within the
client VM.

Configuration

By default, the stream server which runs within the client JVM uses the following values
for its locator uri:

transport - socket

host - tries to first get local host name and if that fails, the local ip (if that fails, localhost).

port - 5405

Currently, the only way to override these settings is to set the following system properties
(either via JVM arguments or via System.setProperty() method):

remoting.stream.transport - sets the transport type (rmi, http, socket, etc.)

 remoting.stream.host - host name or ip address to use

remoting.stream.port - the port to listen on

These properties are important because currently the only way for a target server to get
the stream data from the stream server (running within the client JVM) is to have the
server socket make the invocation an a new connection back to the client (see issues
below).

Issues:

This is a first pass at the implementation and needs some work in regards to
optimizations and configuration. In particular, there is a remoting server that is started to
service request from the stream proxy on the target server for data from the original
stream. This raises an issue with the current transports, since the client will have to accept
calls for the original stream on a different socket. This may be difficult when control over
the client's environment (including firewalls) may not be available. A bi-directional
transport, based of the JMS UIL2 invocation layer, is planned for remoting which will
allow calls from the server to go over the same socket connection established by the
client to the server (JBREM-91). This will make communications back to client much
simpler from this standpoint. However, I won't be able to get to this transport
implementation for a while, so if you are interested in getting it done sooner, please e-
mail me (tom dat jboss).

Connection Exception Listeners

Tt is possible to register a listener to receive callbacks when a connection failure is
detected, even when the client is idle.

The only requirement is to implement the org.jboss.remoting.ConnectionListener
interface, which has only one method:

public void handlerConnectionException(Throwable throwable, Client
client)

Then call the addConnectionListener() method on the Client class and pass your listener
instance.

Currently, the Client will use the org.jboss.remoting.ConnectionValidator class to handle
the detection of connection failures. This is done by pinging the server periodically
(defaults to every 2 seconds). If there is a failure during this ping, the exception and the
Client will be passed to the listener.

How to use it – sample code

Sample code demonstrating different remoting features can be found in the examples
directory. They can be compiled and run manually via your IDE or via an ant build file
found in the examples directory.

There are five sets of sample code, each with their own package; simple, oneway,
detection, stream, and callback. Within each of these packages, there will be a server and
a client class that will need to be executed. If running samples from command line and
have ant installed, can use the following ant targets:

Simple invocation - run-simple-client & run-simple-server
Oneway invocation – run-oneway-client & run-oneway-server
Discovery and invocation – run-detector-client & run-detector-server
Callbacks (push & pull) – run-callback-client & run-callback-server
Sending streams – run-stream-client & run-stream-server

So if wanted to run the simple sample would open a command prompt and type:

ant run-simple-server

and then:

ant run-simple-client

Each target will compile the sample classes if they have not been already. Remember to
always run the server first, then the client.

Client programming model

The approach taken for the programming model on the client side is one based on a
session based model. This means that it is expected that once a Client is created for a
particular target server, it will be used exclusively to make call on that server. This
expectation is dictates some of the behavior of the remoting client.

For example, if create a Client on the client side to make server invocations, including
adding callback listeners, will have to use that same instance of Client to remove the
callback listeners. This is because the Client creates a unique session id that it passes
within the calls to the server. This id is used as part of the key for registering callback
listeners on the server. If create a new Client instance and remove the callback listeners, a
new session id will be passed to the server invoker, who will not recognize the callback
listener to be removed.

See test case org.jboss.test.remoting.callback.push.MultipleCallbackServersTestCase

Getting the JBossRemoting source and building

The JBossRemoting source code resides in the JBoss CVS repository under the CVS
module JBossRemoting. To check out the source using the anonymous account, use the
following command:

cvs -d:pserver:anonymous@anoncvs.forge.jboss.com:/cvsroot/jboss
checkout JBossRemoting

To check out the source using a committer user id, use the following:

cvs -d:ext:username@cvs.forge.jboss.com:/cvsroot/jboss checkout
JBossRemoting

This should checkout the entire remoting project, including doc, tests, libs, etc., which is
aprx 5MB (due to thirdparty libs).

See http://www.jboss.org/wiki/Wiki.jsp?page=CVSRepository for more information on
how to access the JBoss CVS repository.

The build process for JBossRemoting is based of a standard ant build file (build.xml).
The version of ant that is supported is ant 1.6.2, but should work with earlier versions as
there are not special ant features being used.

The main ant build targets are as follows:

compile - compiles all the core JBossRemoting classes.

jars - creates the jboss-remoting.jar file from the compiled classes
javadoc - creates the javadoc html files for JBossRemoting
tests.compile - compiles the JBossRemoting test files
tests.jars - creates the jboss-remoting-tests.jar and jboss-remoting-loading-tests.jar
files.
tests.quick - runs the functional unit tests for JBossRemoting.
tests - runs all the tests for JBossRemoting to include functional and performance tests
for all the different transports.
clean - removes all the build artifacts and directories.
most - calls clean then jars target.
dist - builds the full JBossRemoting distribution including running the full test suite.
dist.quick - builds the full JBossRemoting distribution, but does not run the test suite.

The root directory for all build output is the output directory. Under this directory will be:

classes - compiled core classes
etc - deployment and JMX XMBean xml files
lib - all the jars and war file produced by the build
tests - contains the compiled test classes and test results

http://www.jboss.org/wiki/Wiki.jsp?page=CVSRepository

For most development, the most target can be used. Please run the tests.quick target
before checking anything in to ensure that code changes did not break any previously
functioning test.

Known issues

All of the known issues and road map can be found on our bug tracking system, Jira, at
http://jira.jboss.com/jira/secure/BrowseProject.jspa?id=10031 (require member plus
registration, which is free). If you find more, please post them to Jira. If you have
questions post them to the JBoss Remoting, Unified Invokers forum
(http://www.jboss.org/index.html?module=bb&op=viewforum&f=176).

1. The RMI server invoker does not use the serverBindAddress property for its configuration, nor
does it allow for custom socket factories (JBREM-127)

2. The HTTP server invoker does not wait for in flight request to finish processing before
executing full stop when the stop() method is called. (JBREM-115)

3. If the bind address is 0.0.0.0, the InvokerLocator will call
InetAddress.getLocalHost().getHostName(). Need to be configurable for either ip or host name.
(JBREM-120)

4. The payload is currently deserialized on the server side (ServerInvoker). Need to only
deserialize the remoting specific payload in the ServerInvoker and pass along the still marshaled
target payload to the sub-system handler (UnifiedInvoker), since should have the same
classloader context as the end target. (JBREM-42).

5. Dynamic classloading is not fully implemented. Is possible to dynamically load classes on the
client from the server if configured to do so, but can not currently load classes on the server from
the client. (JBREM-47).

6. The HTTP client and server invoker only support POST requests. This is a somewhat low
priority until can find better use cases for this feature (JBREM-33).

Future plans

Full road map for JBossRemoting can be found at
http://jira.jboss.com/jira/browse/JBREM?report=com.atlassian.jira.plugin.system.project:
roadmap-panel):

If you have an questions, comments, bugs, fixes, contributions, or flames, please post
them to the JBoss Remoting, Unified Invokers forum
(http://www.jboss.org/index.html?module=bb&op=viewforum&f=176). You can also
find more information about JBoss Remoting on our wiki
(http://www.jboss.org/wiki/Wiki.jsp?page=Remoting).

Thanks for checking it out.

-Tom

http://jira.jboss.com/jira/secure/BrowseProject.jspa?id=10031
http://www.jboss.org/index.html?module=bb&op=viewforum&f=176
http://www.jboss.org/index.html?module=bb&op=viewforum&f=176

Tom Elrod
JBossRemoting Lead
JBoss, Inc.
tom@jboss.org

Release Notes

API incompatabilities between JBossRemoting 1.0.2 and 1.2.0

The following public API for JBossRemoting was changed in release 1.2.0 which will
make it incompatible with previous versions:

• Removed ClientInvokerAdapter and dependant classes
• Callback related classes moved to new remoting callback package
• InvokerCallbackHandler accepts Callback type as parameter instead of

InvocationRequest

Release Notes - JBoss Remoting - Version 1.2.0 final

** Feature Request
 * [JBREM-8] - Ability to stream files via remoting
 * [JBREM-22] - Manipulation of the client proxy interceptor stack
 * [JBREM-24] - Allow for specific network interface bindings
 * [JBREM-27] - Support for HTTP/HTTPS proxy
 * [JBREM-35] - Servlet Invoker - counterpart to HTTP Invoker (runs within web
container)
 * [JBREM-43] - custom socket factories
 * [JBREM-46] - Connection failure callback
 * [JBREM-87] - Add handler metadata to detection messages
 * [JBREM-93] - Callback handler returning a generic Object
 * [JBREM-94] - callback server specific implementation
 * [JBREM-109] - Add support for JaasSecurityDomain within SSL support
 * [JBREM-122] - need log4j.xml in examples

** Bug
 * [JBREM-58] - Bug with multiple callback handler registered with same server
 * [JBREM-64] - Need MarshalFactory to produce new instance per get request
 * [JBREM-84] - Duplicate Connector shutdown using same server invoker
 * [JBREM-92] - in-VM push callbacks don't work
 * [JBREM-97] - Won't compile under JDK 1.5
 * [JBREM-108] - can not set bind address and port for rmi and http(s)

mailto:tom@jboss.org

 * [JBREM-114] - getting callbacks for a callback handler always returns null
 * [JBREM-125] - can not configure transport, port, or host for the stream server
 * [JBREM-131] - invoker registry not update if server invoker changes locator
 * [JBREM-134] - can not remove callback listeners from multiple callback servers
 * [JBREM-137] - Invalid RemoteClientInvoker reference maintained by
InvokerRegistry after invoker disconnect()
 * [JBREM-141] - bug connecting client invoker when client detects that previously
used one is disconnected
 * [JBREM-143] - NetworkRegistry should not be required for detector to run on server
side

** Task
 * [JBREM-11] - Create seperate JBoss Remoting module in CVS
 * [JBREM-20] - break out remoting into two seperate projects
 * [JBREM-34] - Need to add configuration properties for HTTP server invoker
 * [JBREM-39] - start connector on new thread
 * [JBREM-55] - Clean up Callback implementation
 * [JBREM-57] - Remove use of InvokerRequest in favor of Callback object
 * [JBREM-62] - update UnifiedInvoker to use remote marshall loading
 * [JBREM-67] - Add ability to set ThreadPool via configuration
 * [JBREM-98] - remove isDebugEnabled() within code as is now depricated
 * [JBREM-101] - Fix serialization versioning between releases of remoting
 * [JBREM-104] - Release JBossRemoting 1.1.0
 * [JBREM-110] - create jboss-remoting-client.jar
 * [JBREM-113] - Convert remote tests to use JRunit instead of distributed test
framework
 * [JBREM-123] - update detection samples
 * [JBREM-128] - standardize address and port binding configuration for all transports
 * [JBREM-130] - updated wiki for checkout and build
 * [JBREM-132] - write test case for JBREM-131
 * [JBREM-133] - Document use of Client (as a session object)
 * [JBREM-135] - Remove ClientInvokerAdapter

** Reactor Event
 * [JBREM-65] - move callback specific classes into new callback package
 * [JBREM-111] - pass socket's output/inputstream directly to marshaller/unmarshaller

Release Notes - JBoss Remoting - Version 1.0.2 final

** Bug
 * [JBREM-36] - performance tests fail for http transports
 * [JBREM-66] - Race condition on startup
 * [JBREM-82] - Bad warning in Connector.
 * [JBREM-88] - HTTP invoker only binds to localhost
 * [JBREM-89] - HTTPUnMarshaller finishing read early

 * [JBREM-90] - HTTP header values not being picked up on the http invoker server

** Task
 * [JBREM-70] - Clean up build.xml. Fix .classpath and .project for eclipse
 * [JBREM-83] - Updated Invocation marshalling to support standard payloads

Release Notes - JBoss Remoting - Version 1.0.1 final

** Feature Request
 * [JBREM-54] - Need access to HTTP response headers

** Bug
 * [JBREM-1] - Thread.currentThread().getContextClassLoader() is wrong
 * [JBREM-31] - Exception handling in http server invoker
 * [JBREM-32] - HTTP Invoker - check for threading issues
 * [JBREM-50] - Need ability to set socket timeout on socket client invoker
 * [JBREM-59] - Pull callback collection is unbounded - possible Out of Memory
 * [JBREM-60] - Incorrect usage of debug level logging
 * [JBREM-61] - Possible RMI exception semantic regression

** Task
 * [JBREM-15] - merge UnifiedInvoker from remoting branch
 * [JBREM-30] - Better integration for registering invokers with MBeanServer
 * [JBREM-37] - backport to 4.0 branch before 1.0.1 final release
 * [JBREM-56] - Add Callback object instead of using InvokerRequest

** Reactor Event
 * [JBREM-51] - defining marshaller on remoting client

Release Notes - JBoss Remoting - Version 1.0.1 beta

** Bug
 * [JBREM-19] - Try to reconnect on connection failure within socket invoker
 * [JBREM-25] - Deadlock in InvokerRegistry

** Feature Request
 * [JBREM-12] - Support for call by value
 * [JBREM-26] - Ability to use MBeans as handlers

** Task
 * [JBREM-3] - Fix Asyn invokers - currently not operable
 * [JBREM-4] - Added test for throwing exception on server side
 * [JBREM-5] - Socket invokers needs to be fixed
 * [JBREM-16] - Finish HTTP Invoker

 * [JBREM-17] - Add CannotConnectException to all transports
 * [JBREM-18] - Backport remoting from HEAD to 4.0 branch

** Reactor Event
 * [JBREM-23] - Refactor Connector so can configure transports
 * [JBREM-29] - Over load invoke() method in Client so metadata not required

	Table of Contents
	What is JBossRemoting?
	Features
	How to get it
	Design
	Components
	Configuration
	General Connector and Invoker configuration
	Handlers
	Discovery (Detectors)
	Domains
	JNDIDetector
	MulticastDetector

	Transports (Invokers)
	Server Invokers
	Socket Invoker
	SSL Socket Invoker
	RMI Invoker
	HTTP Invoker
	HTTPS Invoker
	HTTP(S) Client Invoker - proxy and basic authentication
	Servlet Invoker

	Marshalling
	Callback overview
	Callback Configuration
	CallbackStore configuration
	Sample service configuration
	Programmatic configuration

	SSL Support and configuration
	sslsocket
	SSL Server Socket Selection
	https
	SSLSocketBuilder
	General Security How To
	Troubleshooting Tips

	Sending streams
	Configuration
	Issues:

	Connection Exception Listeners
	How to use it – sample code
	Client programming model
	Getting the JBossRemoting source and building
	Known issues
	Future plans
	Release Notes
	API incompatabilities between JBossRemoting 1.0.2 and 1.2.0

