JBoss Cache TreeCache - A Structured, Replic-
ated, Transactional Cache

User Documentation

Release 1.4.1 "Cayenne"

Table of Contents

1= =0 2 PPPERR iv
O g 1 oo [T £ o o PSRRI 1
1.1 What iSATIEECACNE?ceoii ittt ettt e e e e e e ettt e e e e e e e e e s st e e eeaeeeeaannenaneeeeeas 1

1.2, TreECACNE BASICScoiiiiiiieiiiiiie ettt ettt ettt ettt e e et e e e e bt e e s sbb e e e s nnnb e e e e e nees 1

pZ N ok 01 = ot (U = PSPPSR 3
BT = =S T o N SR 4
O N (=0 o 1= SO 7
g I o= o T SR 7

4.2. Clustered Cache - USiNg REPIICALTIONccoiiiiiiiiiiiiiee e e e e e e e 7
4.2.1. Replicated Caches and TranSaCtioNSeeooiiiiieeiiiiiie e 7

4.2.1.1. ONE Phase COMMILSuveiiiiiiiiieeiiiiee et e et e ettt e e steee e e s e e e s snnbe e e e s snrneeeeans 8

4.2.1.2. TWO Phase COMMILSoiiieeiiiiiiiiiiiiie et e e e e s e e e e e e e e neeaeee e e e e e e e s enneeees 8

Ny =10 o (o VA = o) o (o SRR 8

4.2.2.1. SAlECtiNg BUATIESeveieiiiiiiee et 8

4.2.2.2. BUYPOOIS ...ttt ettt e e et e e e s nee e e e e ennte e e e e nnrneeeeans 9

4.2.2.3. FAIIOVES ..o 9

4.2.2.4. IMPLEMENTBLIONoiiiiiiiieeiti et e e s e e s e eeeaa 9

4.2.2.5. CONFIQUIBLIONiiiiiiiiee e e e e et e e e e e e e e e e et e e e e e e e s e snn e r e e e e e e e s e ennnerees 10

4.3. Clustered Cache - USiNg INVAITAEIIONccoiuviiiiiiiiiieeeiei e 11

5. TransaCtionS @aNd CONCUITENCYcceeeeeeeeee e e e ettt et e et eaeeas 12
5.1, CONCUITENT ACCESS ...iiiiieiiei ettt eaeaeans 12
o000t I o € P OSPPPRSRR 12

5.1.2. PESSIMISHIC IOCKING ..vvvviiiieeiiiiiiiiiee et e e s ettt e e e s e e e e e e e s s e e e e e e e e s e s sannrareeaaaeeaaaas 12

oI A IR =0 = o gl =Y =SSR 12

5.1.2.2. Insertion and Removal Of NOGESccuueiiiiiiiiieiiiiie e 13

5.1.3. OPtiMISHIC IOCKING ...ceiuttiieeiiiiiie ettt e e e e e e snbae e e e 14

oIRGB L o 111 (o B = USRI 14

5.1.3.2. CONFIQUIBLIONveiieiiiiiie ettt ettt e e e e e s e e e e anbaeeeean 14

5.2. TranSaCtioNal SUPPONTceeeeeeiiiieeieiee e e e e e ettt et e e e e e e s e ettt e e e e e e s s aanneeaeeeeaeeeeaaannnaneeeeaaeeesaannnenes 15
I I e 0 o = TP PPRRRR 16

B. BEVICHION POIICIES ...ttt e ettt e e e e e e s sttt e e e e e e s e s sntt et e e eaeeeaannssaneeeeaeeeeans 17
6.1. EVICLION POLICY PIUGIN ...eeiiiiiiii ettt e e e e et e e e e e e e e et e e e e e e e s s eanreees 17

6.2. TreeCache Eviction Policy CONfiQUIaLIONc.eeeiiiiuriieiiiiiie et 29

6.3. TreeCache LRU eviction policy implementationccccoeeeeee e, 31

6.4. TreeCache FIFO eviction policy implementationcoooueiiiiieiee e 32

6.5. TreeCache MRU eviction policy implementationcc..eeeiiieeoiiiiiiiiee e 32

6.6. TreeCache LFU eviction policy implementationccuvveiieeee i 33

A o 0= 0 7= o = USSR PPRERR 35
7.1. The CacheL oader INTEITACEooiiiiiiiie e raee e 38

7.2. ConfigUIation VIAXIMLooiiiiiiiieeii ettt e e e e s e e e e s annnneeeans 39

7.3. CaChe PESSIVALIONcceee e 42

7.4, CaChEL OA0EN USE CASES ..vvviieieiiieiiiiiiete e e e et e sttt et ea e e e s asat bt eeeaeeesssasstaaeeeeaaeessasssstaneeeaaeessannnneees 42
7.4.1. Local CBChEWItN SEOTE ...oieeeecee e e e e e e e e e e e e e e 42

7.4.2. Replicated caches with all nodes sharing the SSame Storeccccvveeeveee i 43

JBoss Release 1.4.1 "Cayenne"

JBoss Cache TreeCache - A Structured, Replicated, Transac-

7.4.3. Replicated caches with only one node having astoreccoovvviiiiiiieeiee e 44

7.4.4. Replicated caches with each node having itSOWN SIOTeoceviiiiiiiiiiiiee e 44

745, HIErarChiCal CACNESciiiiiiiie et e e e e e e e e 46

7.4.6. TcpDelegatingCaChEL OBTENcuuiiiiiiiiee e 47

7.4.7. RmiDelegatingCacheLoader ..., 48

7.5. IDBC-based CaCheL 0a0ENcoiiiiiiiieiiiie et e e 49
7.5.1. IDBCCachel oader CONfigUIaLioNcueeeeiiiirieeiiiiiie e e e e e e e 50

7.5.1.1. Table CONfiQUIAtioNcooiiiiiiiee e e e e e e neees 50

T.5.1.2. DAASOUICE ... oo 50

7.5.1.3. IDBC AMVEN ..ttt e e e e et e e e anee e e e e enreeeeeantneeeeans 50

7.5.1.4. Configuration EXaMPIEeeiiiiiiiie e 50

8. TreeCaCheMarShall@roooi it e e e e e e e e e e e e ettt e e e e e e e s e s annneneeeeaeeeaaas 52
oI T S Lol U o PSSR 52

8.2. Region ACIVaLi ON/INGCLIVALIONcouviiieiiiiiie et e e s e e e e e e 53
8.2.1. Example usage of Region Activation/INaCtivationccccccooviiiiiiieieeee e 55

8.3. Region Activation/Inactivation with aCachelLoadercccoveiiiiiiiiiiiiiie e 57

8.4. Performance over Java SEraliZatiONcocuuuiiiiiieee et 58

8.5. Backward COMPELIDITITYcoiiuiiiiiiiiii e 58

LSS = (N I =0 = PO PRPPRRRR 59
9.1, TYPES Of SEAE TIaNSIEN ..eeiiieiii e e e e a e e e s e enraees 59

9.2. When State TranSfEr OCCUISevveiiiiieeeeseeieiieieeee e e e s aeeteteeeeeaeeessannteaereaaaessasansnaaaeeeaaeessannnsenes 60

10. Version Compatibility and INteroperabilityccooiiiiiiiiiiiie e 62
(I Oo g1 1T 0= 1 o o PP UUPPPTRPPPPPP 63
11.1. Sample XML-Based CONfIQUIaLionccccciiiiiiiiiiiinnnnsnnnannsnensnsannsnsnsnnnsssnsnsnsnsnnnnns 63
11.2. Definition of XIML @triBULEScceviieiiiieiiee et e e e eeaeas 66

11.3. OVEITIOING OPLIONSeeieeeiiiee ettt e e e e e e e e e e s e e e e asn e e e e s annr e e e e e anrneeeeans 69

12, Management INFOIMBLIONuuiiiiiie e e e e e e e e e e e e e s e st ab e e e e e e e e saantrbneeeeaeeeaans 71
12.1. JBOSS CAChE IMBEENS ...t e ettt e ettt e e e e e e sttt e e e e e e e e e snsntaeeeeaaeeeeaannsseeeeeeens 71

12.2. JBOSS CACNE SEAISHICSeeeeiiieiieeeiieie e ettt e ettt e ettt e e st e e e st e e e e st e e e asne e e e e annbeeeesanseeeeeans 71

12.3. Receiving Cache NOLITICAIIONSeviiiiiiiiieiiiiiee et beee e 73

12.4. Accessing Cache MBeans in a Standalone Environmentccccccoiiiiiniennnnennnninnnnnnnnnnnnnn. 75

13. Running JBoss Cache within JBOSS APPlICalion SEIVEYcccoiiiiiiiiiiieiee et e e e ssiinree e e e e 77
13.1. RUNNING @S 8N IMBEANcoiiiiiiie ittt e s e s e e e e e e e 77

JBoss Release 1.4.1 "Cayenne"

Preface

This and its accompanying documents describe JBoss Cache's TreeCache, atree-structured replicated, transactional
cache. JBoss Cache's PojoCache, an "object-oriented" cache that is the AOP-enabled subclass of TreeCache, allow-
ing for Plain Old Java Objects (POJOs) to be inserted and replicated transactionally in a cluster, is described separ-
ately in asimilar user guide.

The TreeCache is fully configurable. Aspects of the system such as replication mechanisms, transaction isolation
levels, eviction policies, and transaction managers are all configurable. The TreeCache can be used in a standalone
fashion - independent of JBoss Application Server or any other application server. PojoCache on the other hand re-
quires both TreeCache and the JBossAOP standal one subsystem. PojoCache, documented separately, is the first in
the market to provide a POJO cache functionality.

This document is meant to be a user guide to explain the architecture, api, configuration, and examples for JBoss
Cache's TreeCache. Good knowledge of the Java programming language along with a string appreciation and un-
derstanding of transactions and concurrent threads is presumed. No prior knowledge of JBoss Application Server is
expected or required.

If you have questions, use the user forum [1] linked on the JBoss Cache website [2] . We also provide a mechanism
for tracking bug reports and feature requests on the JBoss JIRA issue tracker [3] . If you are interested in the devel-
opment of JBoss Cache or in tranglating this documentation into other languages, we'd love to hear from you.
Please post a message on the user forum or contact us on the developer mailing list [4] .

JBoss Cache is an open-source product based on LGPL. Commercia development support, production support and
training for JBoss Cache is available through JBoss Inc. [5] JBoss Cache is a product in JBoss Professional Open
Source JEM S [6] (JBoss Enterprise Middleware Suite).

[1] http://www.jboss.com/index.html ?modul e=bb& op=viewforum& f=157
[2] http://labs.jboss.com/jbosscache

[3] http://jirajboss.com

[4] http://lists.jboss.org

[5] http://www.jboss.com

[6] http://www.jboss.com/products/index

JBoss Release 1.4.1 "Cayenne" iv

http://www.jboss.com/index.html?module=bb&op=viewforum&f=157
http://labs.jboss.com/jbosscache
http://jira.jboss.com
http://lists.jboss.org
http://www.jboss.com
http://www.jboss.com/products/index

Introduction

1.1. What is a TreeCache?

A TreeCache is atree-structured, replicated, transactiona cache from JBoss Cache. Tr eeCache is the backbone for
many fundamental JBoss Application Server clustering services, including - in certain versions - clustering JNDI,
HTTP and EJB sessions, and clustering IMS.

In addition to this, Tr eeCache can be used as a standalone transactional and replicated cache or even an object ori-
ented data store, may be embedded in other J2EE compliant application servers such as BEA WebL ogic or IBM
WebSphere, servlet containers such as Tomcat, or even in Java applications that do not run from within an applica
tion server.

1.2. TreeCache Basics

The structure of a TreeCache is a tree with nodes. Each node has a name and zero or more children. A node can
only have 1 parent; there is currently no support for graphs. A node can be reached by navigating from the root re-
cursively through children, until the requested node is found. It can also be accessed by giving a fully qualified
name (FQN), which consists of the concatenation of all node names from the root to the node in question.

A TreeCache can have multiple roots, allowing for a number of different trees to be present in a single cache in-
stance. Note that a one level tree is essentially a Hashvap. Each node in the tree has a map of keys and values. For a
replicated cache, al keys and values have to be Seri al i zabl e. Serializability is not a requirement for Poj oCache,
where reflection and aspect-oriented programming is used to replicate any type.

A TreeCache can be either local or replicated. Local trees exist only inside the Java VM in which they are created,
whereas replicated trees propagate any changes to all other replicated trees in the same cluster. A cluster may span
different hosts on a network or just different JVMs on asingle host.

The first version of Tr eeCache Was essentially a single Hashivap that replicated. However, the decision was taken to
go with atree structured cache because (a) it is more flexible and efficient and (b) atree can always be reduced to a
map, thereby offering both possibilities. The efficiency argument was driven by concerns over replication over-
head, and was that a value itself can be a rather sophisticated object, with aggregation pointing to other objects, or
an object containing many fields. A small change in the object would therefore trigger the entire object (possibly
the transitive closure over the object graph) to be serialized and propagated to the other nodes in the cluster. With a
tree, only the modified nodes in the tree need to be serialized and propagated. This is not necessarily a concern for
TreeCache, but isavital requirement for Poj oCache (aswe will see in the separate Poj oCache documentation).

When a change is made to the Tr eeCache, and that change is done in the context of atransaction, then we defer the
replication of changes until the transaction commits successfully. All modifications are kept in a list associated

JBoss Release 1.4.1 "Cayenne" 1

Introduction

with the transaction for the caller. When the transaction commits, we replicate the changes. Otherwise, (on aroll-
back) we simply undo the changes locally and release any locks, resulting in zero replication traffic and overhead.
For example, if acaller makes 100 modifications and then rolls back the transaction, we will not replicate anything,
resulting in no network traffic.

If a caller has no transaction associated with it (and isolation level is not NONE - more about this later), we will
replicate right after each modification, e.g. in the above case we would send 100 messages, plus an additional mes-
sage for the rollback. In this sense, running without a transaction can be thought of as analogous as running with
auto-commit switched on in JDBC terminology, where each operation is committed automatically.

There is an API for plugging in different transaction managers. all it requires is to get the transaction associated
with the caller's thread. Several Transact i onManager Lookup implementations are provided for popular transaction
managers, including a bummy Tr ansact i onManager for testing.

Finally, we use pessimistic locking of the cache by default, with optimistic locking as a configurable option. With
pessimistic locking, we can configure the local locking policy corresponding to database-style transaction isolation
levels, i.e, SERIALIZABLE, REPEATABLE, READ_COMMITTED, READ_UNCOMMITTED and NONE.
More on transaction isolation levels will be discussed later. Note that the cluster-wide isolation level is READ-
UNCOMMITTED by default as we don't acquire a cluster-wide lock on touching an object for which we don't yet
have alock (this would result in too high an overhead for messaging).

With optimistic locking, isolation levels are ignored as each transaction effectively maintains a copy of the data
with which it works on and then attempts to merge back into the tree structure upon transaction completion. This
results in a near-serializable degree of data integrity, applied cluster-wide, for the minor performance penalty in-
curred when validating workspace data at commit time, and the occasional transaction commit failure due to valid-
ation failures at commit time.

JBoss Release 1.4.1 "Cayenne" 2

Architecture

Figure 2.1. Schematic TreeCache ar chitecture

The architecture is shown above. The example shows 2 Java VMs, each has created an instance of TreeCache.
These VMs can be located on the same machine, or on 2 different machines. The setup of the underlying group
communication subsystem is done using JGroups[1].

Any modification (see API below) in one cache will be replicated to the other cache! and vice versa Depending on
the transactional settings, this replication will occur either after each modification or at the end of atransaction (at
commit time). When a new cache is created, it can optionally acquire the contents from one of the existing caches
on startup.

[1] http://www.jgroups.org
Note that you can have more than 2 caches in a cluster.

JBoss Release 1.4.1 "Cayenne" 3

http://www.jgroups.org

Here's some sample code before we dive into the AP itself:

TreeCache tree = new TreeCache();

tree.
tree.
tree.
tree.
tree.
tree.
tree.

set C ust er Nane(" deno-cl uster");

setClusterProperties("default.xm™"); // uses defaults if not provided
set CacheMbde(Tr eeCache. REPL_SYNC) ;

createService(); // not necessary, but is same as MBean lifecycle
startService(); // kick start tree cache

put("/al/b/c", "name", "Ben");

put ("/al/b/c/d", "uid", new |Integer(322649));

Integer tnp = (Integer) tree.get("/a/b/c/d", "uid");

tree.
tree.
tree.

renove("/alb");
st opServi ce();
destroyService(); // not necessary, but is same as MBean |lifecycle

Basic API

The sample code first creates a Tr eeCache instance and then configures it. There is another constructor which ac-
cepts a number of configuration options. However, the TreeCache can be configured entirely from an XML file
(shown later) and we don't recommend manual configuration as shown in the sample.

The cluster name, properties of the underlying JGroups stack, and cache mode (synchronous replication) are con-
figured first (alist of configuration options is shown later). Then we start the Tr eeCache. If replication is enabled,

thiswill make the Tr eeCache join the cluster, and acquireinitial state from an existing node.

Then we add 2 items into the cache: the first e ement creates a node "a' with a child node "b" that has a child node
"c". (TreeCache by default creates intermediary nodes that don't exist). The key "name" is then inserted into the "/
a/lb/c" node, with avalue of "Ben".

The other element will create just the subnode "d" of "c" because "/a/b/c" already exists. It binds the integer 322649
under key "uid".

The resulting tree looks like this:

JBoss Release 1.4.1 "Cayenne"

Basic API

1)

[e 1

d mal LA

Figure 3.1. Sample Tree Nodes

The TreeCache has 4 nodes "a", "b", "c" and "d". Nodes "/a/lb/c" has values "name" associated with "Ben" in its
map, and node "/alb/c/d" has values "uid" and 322649.

Each node can be retrieved by its absolute name (e.g. "/a/b/c") or by navigating from parent to children (e.g. navig-
atefrom"a"' to "b", then from "b" to "c").

The next method in the example gets the value associated with key="uid" in node "/a/b/c/d", which is the integer
322649.

The remove() method then removes node "/a/lb" and all subnodes recursively from the cache. In this case, nodes "/
alb/c/d", "falblc" and "/alb" will be removed, leaving only "/a".

Finally, the Tr eeCache is stopped. This will cause it to leave the cluster, and every node in the cluster will be noti-
fied. Note that TreeCache can be stopped and started again. When it is stopped, all contents will be deleted. And
when it isrestarted, if it joins a cache group, the state will be replicated initially. So potentialy you can recreate the
contents.

In the sample, replication was enabled, which caused the 2 put() and the 1 remove() methods to replicated their
changesto all nodesin the cluster. The get() method was executed on the local cache only.

Keysinto the cache can be either strings separated by slashes ('/), e.g. "/alb/c", or they can be fully qualified names
Fgns. An Fgn is essentially alist of Objects that need to implement hashCode() and equals(). All strings are actu-
aly transformed into Fgns internally. Fgns are more efficient than strings, for example:

String nl = "/300/322649";
Fgn n2 = new Fgn(new Obj ect{new I nt eger (300), new | nteger (322649)});

In this example, we want to access a hode that has information for employee with id=322649 in department with
id=300. The string version needs two map lookups on Strings, whereas the Fgn version needs two map lookups on

JBoss Release 1.4.1 "Cayenne" 5

Basic API

Integers. In alarge hashtable, the hashCode() method for String may have collisions, leading to actual string com-
parisons. Also, clients of the cache may already have identifiers for their objects in Object form, and don't want to
transform between Object and Strings, preventing unnecessary copying.

Note that the modification methods are put() and remove(). The only get method is get().

There are 2 put() methods? : put (Fgn node, Object key, Object key) and put(Fgn node, Map val ues). The
former takes the node name, creates it if it doesn't yet exist, and put the key and value into the node's map, return-
ing the previous value. The latter takes a map of keys and values and adds them to the node's map, overwriting ex-
isting keys and values. Content that is not in the new map remains in the node's map.

There are 3 remove() methods: renove(Fgn node, Obj ect key), renove(Fgn node) and renoveDat a(Fgn node) .
The first removes the given key from the node. The second removes the entire node and all subnodes, and the third
removes all elements from the given node's map.

The get methods are: get (Fgn node) and get (Fgn node, Obj ect key). The former returns a Node> object, allow-
ing for direct navigation, the latter returns the value for the given key for anode.

Also, the Tr eeCache has a number of getters and setters. Since the APl may change at any time, we recommend the
Javadoc for up-to-date information.

2Plus their equivalent helper methods taking a String as node name.
hisis mainly used internally, and we may decide to remove public access to the Node in afuture release.

JBoss Release 1.4.1 "Cayenne" 6

Clustered Caches

The TreeCache can be configured to be either local (standalone) or clustered. If in a cluster, the cache can be con-
figured to replicate changes, or to invalidate changes. A detailed discussion on this follows.

4.1. Local Cache

Local caches don't join a cluster and don't communicate with other nodes in a cluster. Therefore their elements
don't need to be serializable - however, we recommend making them serializable, enabling a user to change the
cache mode at any time.

4.2. Clustered Cache - Using Replication

Replicated caches replicate all changes to the other Tr eeCache instances in the cluster. Replication can either hap-
pen after each modification (no transactions), or at the end of atransaction (commit time).

Replication can be synchronous or asynchronous . Use of either one of the options is application dependent. Syn-
chronous replication blocks the caller (e.g. on a put()) until the modifications have been replicated successfully to
all nodesin a cluster. Asynchronous replication performs replication in the background (the put() returns immedi-
ately). TreeCache also offers a replication queue, where modifications are replicated periodically (i.e. interval-
based), or when the queue size exceeds a number of elements, or a combination thereof.

Asynchronous replication is faster (no caller blocking), because synchronous replication requires acknowledgments
from al nodesin a cluster that they received and applied the modification successfully (round-trip time). However,
when a synchronous replication returns successfully, the caller knows for sure that all modifications have been ap-
plied at all nodes, whereas this may or may not be the case with asynchronous replication. With asynchronous rep-
lication, errors are ssimply written to alog. Even when using transactions, a transaction may succeed but replication
may not succeed on all Tr eeCache instances.

4.2.1. Replicated Caches and Transactions

When using transactions, replication only occurs at the transaction boundary - i.e., when a transaction commits.
This results in minimising replication traffic since a single modification os broadcast rather than a series of indi-
vidual modifications, and can be a lot more efficient than not using transactions. Another effect of thisis that if a
transaction were to roll back, nothing is broadcast across a cluster.

Depending on whether you are running your cluster in asynchronous or synchronous mode, JBoss Cache will use
either a single phase or two phase commit [1] protocol, respectively.

[1] http://en.wikipedia.org/wiki/Two-phase_commit_protocol

JBoss Release 1.4.1 "Cayenne" 7

http://en.wikipedia.org/wiki/Two-phase_commit_protocol

Clustered Caches

4.2.1.1. One Phase Commits

Used when your cache mode is REPL_ASY NC. All modifications are replicated in asingle call, which instructs re-
mote caches to apply the changes to their local in-memory state and commit locally. Remote errors/rollbacks are
never fed back to the originator of the transaction since the communication is asynchronous.

4.2.1.2. Two Phase Commits

Used when your cache mode is REPL_SYNC. Upon committing your transaction, JBoss Cache broadcasts a pre-
pare call, which carries all modifications relevant to the transaction. Remote caches then acquire local locks on
their im-memory state and apply the modifications. Once all remote caches respond to the prepare call, the originat-
or of the transaction broadcasts a commit. This instructs all remote caches to commit their data. If any of the caches
fail to respond to the prepare phase, the originator broadcasts a rollback.

Note that although the prepare phase is synchronous, the commit and rollback phases are asynchronous. Thisis be-
cause Sun's JTA specification [2] does not specify how transactional resources should deal with failures at this
stage of atransaction; and other resources participating in the transaction may have indeterminate state anyway. As
such, we do away with the overhead of synchronous communication for this phase of the transaction. That said,
they can be forced to be synchronous using the SyncConmi t Phase and SyncRol | backPhase configuration options.

4.2.2. Buddy Replication

Buddy Replication allows you to suppress replicating your data to all instances in a cluster. Instead, each instance
picks one or more 'buddies in the cluster, and only replicates to these specific buddies. This greatly helps scalabil-
ity asthereis no longer amemory and network traffic impact every time another instance is added to a cluster.

One of the most common use cases of Buddy Replication is when areplicated cache is used by a servlet container
to store HTTP session data. One of the pre-requisites to buddy replication working well and being areal benefit is
the use of session affinity, also known as sticky sessionsin HT TP session replication speak. What this means is that
if certain data is frequently accessed, it is desirable that this is aways accessed on one instance rather than in a
round-robin fashion as this helps the cache cluster optimise how it chooses buddies, where it stores data, and min-
imises replication traffic.

If thisis not possible, Buddy Replication may prove to be more of an overhead than a benefit.

4.2.2.1. Selecting Buddies

Buddy Replication uses an instance of a or g. j boss. cache. buddyr epl i cati on. BuddyLocat or which contains the
logic used to select buddies in a network. JBoss Cache currently ships with a single implementation,
org. j boss. cache. buddyr epl i cat i on. Next Menber BuddyLocat or , which is used as a default if no implementation
is provided. The Next Menber BuddyLocat or Selects the next member in the cluster, as the name suggests, and guar-
antees an even spread of buddies for each instance.

The Next Menmber BuddyLocat or takesin 2 parameters, both optional.

* nunBuddi es - specifies how many buddies each instance should pick to back its data onto. This defaultsto 1.

* ignoreCol ocat edBuddi es - means that each instance will try to select a buddy on a different physical host. If
[2] http://java.sun.com/products/jtal

JBoss Release 1.4.1 "Cayenne" 8

http://java.sun.com/products/jta/

Clustered Caches

not able to do so though, it will fall back to colocated instances. This defaultsto t r ue.

4.2.2.2. BuddyPools

Also known as replication groups, a buddy pool is an optional construct where each instance in a cluster may be
configured with abuddy pool nhame. Think of this as an ‘exclusive club membership' where when selecting buddies,
BuddyLocat or Swould try and select buddies sharing the same buddy pool name. This allows system administrators
a degree of flexihility and control over how buddies are selected. For example, a sysadmin may put two instances
on two separate physical servers that may be on two separate physical racks in the same buddy pool. So rather than
picking an instance on a different host on the same rack, BuddyLocat or Swould rather pick the instance in the same
buddy pool, on a separate rack which may add a degree of redundancy.

4.2.2.3. Failover

In the unfortunate event of an instance crashing, it is assumed that the client connecting to the cache (directly or in-
directly, via some other service such as HTTP session replication) is able to redirect the request to any other ran-
dom cache instance in the cluster. Thisiswhere a concept of Data Gravitation comesin.

Data Gravitation is a concept where if a request is made on a cache in the cluster and the cache does not contain
this information, it then asks other instances in the cluster for the data. If even this fails, it would (optionally) ask
other instances to check in the backup data they store for other caches. This means that even if a cache containing
your session dies, other instances will still be able to access this data by asking the cluster to search through their
backups for this data.

Once located, this datais then transferred to the instance which requested it and is added to this instance's data tree.
It is then (optionally) removed from all other instances (and backups) so that if session affinity is used, the affinity
should now be to this new cache instance which has just taken ownership of this data.

Data Gravitation is implemented as an interceptor. The following (all optional) configuration properties pertain to
data gravitation.

* dataGravitationRemoveOnFi nd - forces all remote caches that own the data or hold backups for the data to re-
move that data, thereby making the requesting cache the new data owner. If set to f al se an evict is broadcast
instead of a remove, so any state persisted in cache loaders will remain. This is useful if you have a shared
cache loader configured. Defaultsto t r ue.

e dataGavitationSearchBackupTrees - ASkS remote instances to search through their backups as well as main
data trees. Defaults to t rue. The resulting effect is that if thisis t rue then backup nodes can respond to data
gravitation requests in addition to data owners.

e autoDataG avitation - Whether data gravitation occurs for every cache miss. My default thisisset tof al se to
prevent unnecessary network calls. Most use cases will know when it may need to gravitate data and will pass
in an Opt i on to enable data gravitation on a per-invocation basis. If aut oDat aGravi tation iStrue this Opti on
IS unnecessary.

4.2.2.4. Implementation

JBoss Release 1.4.1 "Cayenne" 9

Clustered Caches

BuddyManager _ TreeCache
{org. jhoss. cache. buddyreplication) {org. jhoss. cache)

+EBUDDY _BACKUP SUBTREE : 5tring = "_BUDDY _BACKUP “{readOnly -
+BUDDY_BACKUP SUBTREE_FOR : Fon = Fon.fromStringBUDDY_BACKUP SUBTFEEEXreadOnly

< < Constructor > »+Buddyt anageri element : Element)
< < Qemer> >+isEnabled(: boolean

< < getter> > +getBuddyPoolbamed : String

< <getters > +getGroupMamerromAddress address © Object) : String BaseRpelnterceptor
+init{ cache : TreeCache } : waoid {org.jhoss.cache.interceptors)
< < getter» »+isAutoDataCravitation(: boolean

< < geter> >+isDaraCravitationRemowvednFindy : boolean

< < getter» »+isDataCravitationSearchBackupTrees() : boolean

< < getter> >+ getBuddyCommunicationTimeout : int
+handlePoolhameBroadcast{ address : IpAddress, poolkame : String) woid
+handleRemoweFromBudchyDroup(groupiame : String) © void
+handlebssignToBuddyCroupi newSroup @ BuddyGroup, state : Map) @ woid

< < getters »+getBackupFant buddyGrouphame ; Obiect, origFan : Fond : Fan
< < gemer: >+ qetBackupFon(buddyGroupRoot @ Fon, orighgn @ Fan) @ Fogn

< <getters »+isBackupFan(name Fon) - hoolean

< < getters >+ getBuddyAddresses) © List -
+transformFgnse call ; [BCMethodCall) ¢ JECMethodCall DataGravitatorinterceptor
+transformFagnsg call : JBCMethodCall, transformForCurrentCall © boalean) © JBCMethadCall (org jboss cache interceptors)
< < Qeter> >+ getBackupFoni originalFon : Fgn) : Fon
< <getter> > +getactualFon fon - Fon) : Fon

<<sener: > +setCachef cache : TreeCache) © woid
+imnwokef call : MethodCall) : Object

Buddyl pcator @]
(org.jboss.cache buddyreplication)

+init(props - Properties » - void
+locateBuddies) buddPooiMap | Map, currentMembership | List, datalwner | lpaddress) List

¥
|

BuddyGroup |
(org. jhoss. cache. buddyreplication)

|
NextMemberBuddyLocator
< <getter> >+getGroupMame() : String {org. jhoss. cache. buddyreplication)
< < setters »+setGroupMamed grouphlame : String) © woid
< < Qemer> >+getDatadwner(; [pAddress
< <setters »+setDataOwner(dataCwner : lpaAddress) woid +init{ props . Properties) : wvoid
< <getter> > +getBuddiesd : List +locateBuddies{ buddyPoolMap : Map, currentMembership : List, dataCwner : IpAddress) : List
< < setier> »+setBuddies(buddies : List) : woid s
+t0Stringd) : String

Figure4.1. Class diagram of the classesinvolved in buddy replication and how they arerelated to each other

4.2.2.5. Configuration

<l-- Buddy Replication config -->
<attri bute name="BuddyRepli cati onConfig">
<config>

<l-- Enabl es buddy replication. This is the ONL\
<buddyRepl i cat i onEnabl ed>t r ue</ buddyRepl i cat i onEnabl ed>

<I'-- These are the default val ues anyway -->
<buddyLocat or Cl ass>or g. j boss. cache. buddyr epl i cati on. Next Menber BuddyLocat or </ k

<l-- nunBuddi es is the nunber of backup nodes eac
each node will *try* to select a buddy on a different physical host. |If
it will fall back to col ocated nodes. -->

<buddyLocat or Properti es>
nunBuddi es = 1
i gnor eCol ocat edBuddi es = true
</ buddyLocat or Properti es>

<I-- Away to specify a preferred replication grc
the same pool nane (falling back to other buddies if not available). This a
backup buddi es are picked, so for exanple, nodes may be hinted topick buddies
or power supply for added fault tol erance. -->
<buddyPool Nane>nyBuddyPool Repl i cati onG oup</ buddyPool Nanme>

<l-- Comuni cation timeout for inter-buddy group

JBoss Release 1.4.1 "Cayenne" 10

Clustered Caches

from groups, defaults to 1000. -->
<buddyCommuni cat i onTi meout >2000</ buddy Conmuni cat i onTi meout >

<!-- \Wether data is renoved fromold owners wher
<dat aGravi t ati onRenobveOnFi nd>t rue</ dat aGravi tati c

<I'-- \Whet her backup nodes can respond to data gre
defaults to true. -->
<dat aGravi t at i onSear chBackupTr ees>t r ue</ dat aG avi

<l-- \Wether all cache nmisses result in a data gr
enabl e data gravitation on a per-invocati
<aut oDat aG avi t ati on>f al se</ aut oDat aGr avitati on>

</ confi g>
</attribute>

4.3. Clustered Cache - Using Invalidation

If a cache is configured for invalidation rather than replication, every time data is changed in a cache other caches
in the cluster receive a message informing them that their datais now stale and should be evicted from memory. In-
validation, when used with a shared cache loader (see chapter on Cache Loaders) would cause remote caches to
refer to the shared cache loader to retrieve modified data. The benefit of thisis twofold: network traffic is minim-
ised as invalidation messages are very small compared to replicating updated data, and also that other cachesin the
cluster look up modified datain alazy manner, only when needed.

Invalidation messages are sent after each modification (no transactions), or at the end of a transaction, upon suc-
cessful commit. This is usually more efficient as invalidation messages can be optimised for the transaction as a
whole rather than on a per-modification basis.

Invalidation too can be synchronous or asynchronous, and just as in the case of replication, synchronous invalida-
tion blocks until all caches in the cluster receive invalidation messages and have evicted stale data while asyn-
chronous invalidation works in a ‘fire-and-forget’ mode, where invalidation messages are broadcast but doesn't
block and wait for responses.

JBoss Release 1.4.1 "Cayenne" 11

Transactions and Concurrency

5.1. Concurrent Access

JBoss Cache uses a pessimistic locking scheme by default to prevent concurrent access to the same data. Optimistic
locking may alternatively be used, and is discussed later.

5.1.1. Locks

Locking is done internally, on a node-level. For example when we want to access "/a/b/c”, alock will be acquired
for nodes "a', "b" and "c". When the same transaction wants to access "/a/b/c/d", since we aready hold locks for
"a', "b" and "c", we only need to acquire alock for "d".

Lock owners are either transactions (call is made within the scope of an existing transaction) or threads (no transac-
tion associated with the call). Regardless, a transaction or a thread is internally transformed into an instance of
d obal Transacti on, which is used as a globally unique ID for modifications across a cluster. E.g. when we run a
two-phase commit protocol (see below) across the cluster, the @ obal Transact i on uniquely identifies the unit of
work across a cluster.

Locks can be read or write locks. Write locks serialize read and write access, whereas read-only locks only serialize
read access. When a write lock is held, no other write or read locks can be acquired. When aread lock is held, oth-
ers can acquire read locks. However, to acquire write locks, one has to wait until al read locks have been released.
When scheduled concurrently, write locks always have precedence over read locks. Note that (if enabled) read
locks can be upgraded to write locks.

Using read-write locks helps in the following scenario: consider a tree with entries "/a/lb/n1" and "/a/lb/n2". With
write-locks, when Tx1 accesses "/a/lb/nl", Tx2 cannot access "/a/lb/n2" until Tx1 has completed and released its
locks. However, with read-write locks this is possible, because Tx1 acquires read-locks for "/a/lb" and a read-write
lock for "/alb/nl". Tx2 isthen able to acquire read-locks for "/a/b" aswell, plus a read-write lock for "/alb/n2". This
allows for more concurrency in accessing the cache.

5.1.2. Pessimistic locking

By default, JBoss Cache uses pessimistic locking. Locking is not exposed directly to user. Instead, a transaction
isolation level which provides different locking behaviour is configurable.

5.1.2.1. Isolation levels

JBoss Cache supports the following transaction isolation levels, analogous to database ACID isolation levels. A
user can configure an instance-wide isolation level of NONE, READ_UNCOMMITTED, READ_COMMITTED,

JBoss Release 1.4.1 "Cayenne" 12

Transactions and Concurrency

REPEATABLE_READ, or SERIALIZABLE. REPEATABLE_READ isthe default isolation level used.

1. NONE. No transaction support is needed. There is no locking at this level, e.g., users will have to manage the
dataintegrity. Implementations use no locks.

2. READ_UNCOMMITTED. Data can be read anytime while write operations are exclusive. Note that this level
doesn't prevent the so-called "dirty read" where data modified in Tx1 can be read in Tx2 before Tx1 commits.
In other words, if you have the following sequence,

Tx1 Tx2

using this isolation level will not Tx2 read operation. Implementations typically use an exclusive lock for
writes while reads don't need to acquire alock.

3. READ_COMMITTED. Data can be read any time as long as there is no write. This level prevents the dirty
read. But it doesn't prevent the so-called ‘ non-repeatable read’ where one thread reads the data twice can pro-
duce different results. For example, if you have the following sequence,

Tx1 Tx2
R

w
R

where the second read in Tx1 thread will produce different result.

Implementations usually use a read-write lock; reads succeed acquiring the lock when there are only reads,
writes have to wait until there are no more readers holding the lock, and readers are blocked acquiring the lock
until there are no more writers holding the lock. Reads typically release the read-lock when done, so that a
subsequent read to the same data has to re-acquire a read-lock; this leads to nonrepeatable reads, where 2 reads
of the same data might return different values. Note that, the write only applies regardless of transaction state
(whether it has been committed or not).

4. REPEATABLE_READ. Data can be read while there is no write and vice versa. This level prevents "non-
repeatable read" but it does not prevent the so-called "phantom read" where new data can be inserted into the
tree from the other transaction. Implementations typicaly use a read-write lock. This is the default isolation
level used.

5. SERIALIZABLE. Data access is synchronized with exclusive locks. Only 1 writer or reader can have the lock
at any given time. Locks are released at the end of the transaction. Regarded as very poor for performance and
thread/transaction concurrency.

5.1.2.2. Insertion and Removal of Nodes

By default, before inserting a new node into the tree or removing an existing node from the tree, JBoss Cache will
only attempt to acquire a read lock on the new node's parent node. This approach does not treat child nodes as an
integral part of a parent node's state. This approach allows greater concurrency if nodes are frequently added or re-

JBoss Release 1.4.1 "Cayenne" 13

Transactions and Concurrency

moved, but at a cost of lesser correctness. For use cases where greater correctness is necessary, JBoss Cache
provides a configuration option LockPar ent For Chi | dl nser t Renove. If thisis set to true, insertions and removals
of child nodes require the acquisition of awrite lock on the parent node.

5.1.3. Optimistic locking

The motivation for optimistic locking is to improve concurrency. When alot of threads have a lot of contention for
access to the data tree, it can be inefficient to lock portions of the tree - for reading or writing - for the entire dura-
tion of a transaction as we do in pessimistic locking. Optimistic locking allows for greater concurrency of threads
and transactions by using a technique called data versioning, explained here. Note that isolation levels (if con-
figured) areignored if optimistic locking is enabled.

5.1.3.1. Architecture

Optimistic locking treats all method calls as transactional 4 Evenif you do not invoke a call within the scope of an
ongoing transaction, JBoss Cache creates an implicit transaction and commits this transaction when the invocation
completes. Each transaction maintains a transaction workspace, which contains a copy of the data used within the
transaction.

For example, if a transaction calls get("/a/b/c"), nodes a, b and ¢ are copied from the main data tree and into the
workspace. The data is versioned and all calls in the transaction work on the copy of the data rather than the actual
data. When the transaction commits, it's workspace is merged back into the underlying tree by matching versions.
If there is aversion mismatch - such as when the actual data tree has a higher version than the workspace, perhaps
if another transaction were to access the same data, change it and commit before the first transaction can finish - the
transaction throws aRol | backExcept i on when committing and the commit fails.

Optimistic locking uses the same locks we speak of above, but the locks are only held for a very short duration - at
the start of a transaction to build a workspace, and when the transaction commits and has to merge data back into
thetree.

So while optimistic locking may occasionally fail if version validations fail or may run slightly slower than pessim-
istic locking due to the inevitable overhead and extra processing of maintaining workspaces, versioned data and
validating on commit, it does buy you a near-SERIALIZABLE degree of data integrity while maintaining a very
high level of concurrency.

5.1.3.2. Configuration
Optimistic locking is enabled by using the Nodel ockingScheme XML attribute, and setting it to "OPTIMISTIC":

<l--
Node | ocki ng schene:
OPTI M STI C
PESSI M STI C (defaul t)
-=>
<attribute name="NodeLocki ngScheme">0OPTI M STl C</ attri bute>

4Because of this requirement, you must always have a transaction manager configured when using optimistic locking.

JBoss Release 1.4.1 "Cayenne" 14

Transactions and Concurrency

5.2. Transactional Support

JBoss Cache can be configured to use transactions to bundle units of work, which can then be replicated as one
unit. Alternatively, if transaction support is disabled, it is equivalent to setting AutoCommit to on where modifica-
tions are potential Iy5 replicated after every change (if replication is enabled).

What JBoss Cache does on every incoming call (e.g. put()) is:

1. get the transaction associated with the thread

2. regigter (if not already done) with the transaction manager to be notified when a transaction commits or is
rolled back.

In order to do this, the cache has to be configured with an instance of a Tr ansact i onManager Lookup which returns
aj avax.transaction. Transacti onManager.

JBoss Cache ships with JBossTransacti onManager Lookup and Generi cTransacti onManager Lookup. The
JBossTransact i onManager Lookup is able to bind to a running JBoss Application Server and retrieve a Tr ansac-
ti onManager wWhile the Generi cTransacti onManager Lookup is able to bind to most popular Java EE application
servers and provide the same functionality. A dummy implementation - Dummy Tr ansact i onManager Lookup - iSalso
provided, which may be used for standalone JBoss Cache applications and unit tests running outside a Java EE Ap-
plication Server. Being a dummy, however, thisis just for demo and testing purposes and is not recommended for
production use.

The implementation of the JBossTr ansact i onManager Lookup isasfollows:

public class JBossTransacti onManager Lookup i npl enents Transacti onManager Lookup {
publ i ¢ JBossTransacti onManager Lookup() {}

publ i c Transacti onManager get Transacti onManager () throws Exception {
oj ect tnp=new | nitial Context().|ookup("java:/Transacti onManager");
return (Transacti onManager)t np;

The implementation looks up the JBoss Transaction Manager from JNDI and returnsiit.

When acall comesin, the Tr eeCache gets the current transaction and records the modification under the transaction
as key. (If thereis no transaction, the modification is applied immediately and possibly replicated). So over thelife-
time of the transaction al modifications will be recorded and associated with the transaction. Also, the Tr eeCache
registers with the transaction to be notified of transaction committed or aborted when it first encounters the transac-
tion.

When atransaction rolls back, we undo the changes in the cache and release all locks.

When the transaction commits, we initiate a two-phase commit protocol6 > in the first phase, a PREPARE contain-
ing al modifications for the current transaction is sent to all nodes in the cluster. Each node acquires all necessary
locks and applies the changes, and then sends back a success message. If a node in a cluster cannot acquire all
locks, or fails otherwise, it sends back afailure message.

5Dependi ng on whether interval -based asynchronous replication is used
6Only with synchronous replication or invalidation.

JBoss Release 1.4.1 "Cayenne" 15

Transactions and Concurrency

The coordinator of the two-phase commit protocol waits for all responses (or a timeout, whichever occurs first). If
one of the nodes in the cluster responds with FAIL (or we hit the timeout), then a rollback phase is initiated: a
ROLLBACK messageis sent to al nodes in the cluster. On reception of the ROLLBACK message, every node un-
does the changes for the given transaction, and releases all locks held for the transaction.

If all responses are OK, a COMMIT message is sent to all nodes in the cluster. On reception of a COMMIT mes-
sage, each node applies the changes for the given transaction and releases all locks associated with the transaction.

When we referred to 'transaction’, we actually mean a global representation of a local transaction, which uniquely
identifies a transaction across a cluster.

5.2.1. Example

Let'slook at an example of how to use JBoss Cache in a standalone (i.e. outside an application server) fashion with
dummy transactions:

Properties prop = new Properties();

prop. put (Cont ext. | Nl TI AL_CONTEXT_FACTORY, "org.]j boss. cache.transacti on. DunmyCont ext Fact ory");
User Transaction tx=(UserTransaction)new I nitial Context(prop).|ookup("UserTransaction");
TreeCache tree = new TreeCache();

PropertyConfigurator config = new PropertyConfigurator();

config.configure(tree, "META-INF/repl Sync-service.xm");

tree.createService(); // not necessary

tree.startService(); // kick start tree cache

try {
tx. begin();
tree.put("/classes/cs-101", "description", "the basics");
tree.put("/classes/cs-101", "teacher", "Ben");

tx.commt();

}

cat ch(Thr owabl e ex) {
try { tx.rollback(); } catch(Throwable t) {}
}

Thefirst lines obtain a user transaction using the 'JEE way' via INDI. Note that we could also say

User Transacti on tx = new DummyUser Tr ansact i on(DumyTr ansact i onManager . get | nst ance());

Then we create a new TreeCache and configure it using a PropertyConfigurator class and a configuration XML file
(see below for alist of al configuration options).

Next we start the cache. Then, we start a transaction (and associate it with the current thread internally). Any meth-
ods invoked on the cache will now be collected and only applied when the transaction is committed. In the above
case, we create a node "/classes/cs-101" and add 2 elements to its map. Assuming that the cache is configured to
use synchronous replication, on transaction commit the modifications are replicated. If there is an exception in the
methods (e.g. lock acquisition failed), or in the two-phase commit protocol applying the modifications to all nodes
in the cluster, the transaction is rolled back.

JBoss Release 1.4.1 "Cayenne" 16

Eviction Policies

Eviction policies specify the behavior of a node residing inside the cache, e.g., life time and maximum numbers al-
lowed. Memory constraints on servers mean caches cannot grow indefinitely, so policies need to be in place to re-
strict the size of the cache in memory.

6.1. Eviction Policy Plugin

The design of the JBoss Cache eviction policy framework is based on the loosely coupled observable pattern (albeit
still synchronous) where the eviction region manager will register a TreeCachelLi st ener to handle cache events
and relay them back to the eviction policies. Whenever a cached node is added, removed, evicted, or visited, the
eviction registered Tr eeCachelLi st ener Will maintain state statistics and information will be relayed to each indi-
vidual Eviction Region. Each Region can define a different Evi cti onPol i cy implementation that will know how to
correlate cache add, remove, and visit events back to a defined eviction behavior. It's the policy provider's respons-
ibility to decide when to call back the cache "evict" operation.

Thereisasingle eviction thread (timer) that will run at a configured interval. This thread will make callsinto each
of the policy providers and inform it of any TreeCacheLi st ener aggregated adds, removes and visits (gets) to the
cache during the configured interval. The eviction thread is responsible for kicking off the eviction policy pro-
cessing (asingle pass) for each configured eviction cache region.

In order to implement an eviction policy, the following interfaces must be implemented:
org.jboss.cache.eviction.EvictionPolicy, org.jboss.cache.eviction.EvictionAlgorithm,
org.jboss.cache.eviction.EvictionQueue and org.jboss.cache.eviction.EvictionConfiguration. When compounded
together, each of these interface implementations define al the underlying mechanics necessary for a complete
eviction policy implementation.

JBoss Release 1.4.1 "Cayenne" 17

Eviction Policies

EvictionTimerTask
-regionsToProcess
+rund)

[1

1 L

RegionManager

FevictionTimerTask | EvictionTimerTask

+oreateRegion(in fon ; String, in element) : Region

+ereateRegion(in fgn ; String, in evictionPolicy ; EvictionPolicy, in evictionConfiguration : EvictionConfiguration) : Region
+eonfigure(in treecache : TreeCache)

+removeRegion(in fgn @ String)

+hasRegion(in fqn : Siring) : boclean

+oetRegion{in fgn : String) : Region

-

1

Region

+rodehadifyl)
+nodeRamoved()
+nodeCreated() HgetEvictionPolicy() @ EviclionPolicy
+nodelisited|) HsetAddedMode() : Fgn
+setRemovedMode() - Fgn
<l7—, 1 +setVisitedMode() : Fgn
winterfacer winterfaces 1 [*getEvictianConfiguration()
TreeCacheListener EvictionConfiguration L I,J
+nodeModify() +parsaXML Configiin elament) 1
+nodeRemaoved|) winterface»EvictionPolicy
+nodeCreated() %}‘ +avict()
+nodeVisited) LRUConfiguration LRUPolicy r[> +rgetEvicionAlganthm() ;| EvictionAlgovithm
. rmaxMNodes - int 1
HdleTimaSeconds © int 1
1 i ainterfacesEvictionAlgorithm
; r I‘D +process(in region | Roegion)
TreeCache LRUAIgorithm +getEvictionQueus() ; EviclionQuewue
+put() - Object 1
+gell) | Object N
+removel) - Object
+oalEvictionRegionManager() : RegionManager
g e ger() d 20 wintarfaces
LRUQueue . EvictionQueus

+gatFirstNodeEntry)) : NodeEniry
+oathlodaEniry(in fgr : Fgn) @ NodeEniry
+eontainsNodeEntry() @ boolaan
tremoveNodeEntryfin nodeEntry : NodeEntry)
+addNodsEntry(in nodeEniry | NodeEniry)
+siza() - int

+claar()

Figure6.1. TreeCacheeviction UML Diagram

public interface EvictionPolicy

{

/**

* Evict a node formthe underlying cache.
*

* @aram fqgn Dat aNode corresponds to this fqn.
* @hrows Exception

=f

voi d evict(Fgn fgn) throws Exception;

/**

* Return children names as bjects

ModeEntry

=-miodifiedTimeStamp : long
-creationTimeStamp : long
-numberOfdodelisits - int

JBoss Release 1.4.1 "Cayenne"

18

Eviction Policies

*

* @aramfqn

* @eturn Child nanes under given fqgn
*/

Set get Chi | drenNanes(Fgn fqn);

/**

* |s this a |l eaf node?

*

* @aram fqgn

* @eturn true/false if |eaf node.
*/

bool ean hasChil d(Fgn fqn);

(bj ect get CacheData(Fgn fqgn, Object key);

/**
* Method called to configure this inplenmentation.
*/

voi d confi gure(TreeCache cache);

/**
* Get the associated EvictionAlgorithmused by the EvictionPolicy.
* <p/ >
* This relationship should be 1-1.

*

* @eturn An EvictionAl gorithminplenentation.
“f
Evi cti onAl gorithm get Evi cti onAl gorithm();

/**

* The EvictionConfiguration inplenentation class used by this EvictionPolicy.
*

* @eturn EvictionConfiguration inplenmentation class.
*/
Cl ass get EvictionConfigurationd ass();

}
public interface EvictionA gorithm
{
/**
* Entry point for evictin algorithm This is an api called by the EvictionTi mer Task
* to process the node events in waiting and actual pruning, if necessary.
*
* @aramregion Region that this algorithmw |l operate on.
*/
voi d process(Region region) throws EvictionException;
/**
* Reset the whole eviction queue. Queue nmay needs to be reset due to corrupted state, for exanple.
*
* @aramregion Region that this algorithmw || operate on.
e/
voi d reset Evi cti onQueue(Regi on region);
/**
* Get the EvictionQueue inplenentation used by this algorithm
*
* @eturn the EvictionQueue inpl enentation.
*/
Evi cti onQueue get Evi cti onQueue();
}

JBoss Release 1.4.1 "Cayenne" 19

Eviction Policies

public interface EvictionQueue

return normal ly.

{
/**
* Get the first entry in the queue.
* <pl/>
* |f there are no entries in queue, this method will return null.
* <pl>
* The first node returned is expected to be the first node to evict.
* @eturn first NodeEntry in queue.
*/
publ i c NodeEntry getFirstNodeEntry();
/**
* Retrieve a node entry by Fqgn.
* <p/>
* This will return null if the entry is not found.
*
* @aramfqgn Fqn of the node entry to retrieve.
* @eturn Node Entry object associated with given Fgn param
*/
publ i c NodeEntry get NodeEntry(Fgn fqn);
publ i c NodeEntry get NodeEntry(String fqn);
/**
* Check if queue contains the given NodeEntry.
* @aramentry NodeEntry to check for existence in queue.
* @eturn true/false if NodeEntry exists in queue.
*/
publ i c bool ean cont ai nsNodeEnt ry(NodeEntry entry);
/**
* Renpve a NodeEntry from queue.
* <pl>
* |f the NodeEntry does not exist in the queue, this nethod will
* @aramentry The NodeEntry to renove from queue.
*/
public void removeNodeEnt ry(NodeEntry entry);
/**
* Add a NodeEntry to the queue.
*
* @aramentry The NodeEntry to add to queue.
*/
publ i c void addNodeEnt ry(NodeEntry entry);
/**
* Get the size of the queue.
*
* @eturn The nunmber of items in the queue.
*/
public int size();
/**
* Clear the queue.
“f
public void clear();
}

public interface EvictionConfiguration

JBoss Release 1.4.1 "Cayenne"

20

Eviction Policies

public static final int WAKEUP_DEFAULT = 5;

public static final String ATTR = "attribute";
public static final String NAME = "nane";

stati
stati
stati
stati
stati
stati
stati
stati

publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i

final String REG ON = "region";

final String WAKEUP_I NTERVAL_SECONDS = "wakeUpl nt er val Seconds";
final String MAX_NODES = "maxNodes";

final String TIME_TO | DLE_SECONDS = "ti meTol dl eSeconds";

final String TIME TO LI VE SECONDS = "ti neToLi veSeconds";

final String MAX_AGE _SECONDS = "maxAgeSeconds";

final String MN_NODES = "m nNodes";

final String REG ON_POLI CY_CLASS = "policyd ass";

O0O0000O0O0
O0O0000O0O0

*

/
Parse the XM. configuration for the given specific eviction region

<p/ >

The el enent paraneter should contain the entire region bl ock. An exanple
of an entire Elenent of the regi on woul d be:

<p/ >

<regi on name="abc" >

<attri bute name="naxNodes">10</attri bute>

</ regi on>

@ar am el ement DOM el enent for the region. <regi on nanme="abc"></regi on>
@ hrows Confi gureException

L S R T I R . N

-~

public void parseXM.Confi g(El enent el enent) throws ConfigureException;

Note that:

The EvictionConfiguration class ‘parseXML Config(Element)' method expects only the DOM element pertain-
ing to the region the policy is being configured for.

The EvictionConfiguration implementation should maintain getter and setter methods for configured properties
pertaining to the policy used on a given cache region. (e.g. for LRUConfiguration there is aint getMaxNodes()
and a setMaxNodes(int))

Alternatively, the implementation of a new eviction policy provider can be further simplified by extending BaseE-
victionPolicy and BaseEvictionAlgorithm. Or for properly sorted EvictionAlgorithms (sorted in eviction order - see
LFUAIgorithm) extending BaseSortedEvictionAlgorithm and implementing SortedEvictionQueue takes care of
most of the common functionality available in a set of eviction policy provider classes

public abstract class BaseEvictionPolicy inplenments EvictionPolicy

{

protected static final Fgn ROOT = new Fgn("/");
protected TreeCache cache_;

publ i ¢ BaseEvi ctionPolicy()

{
}

/** EvictionPolicy interface inplenmentation */

/**

* Evict the node under given Fgn from cache.

*

JBoss Release 1.4.1 "Cayenne" 21

Eviction Policies

* @aramfqn The fgn of a node in cache.
* @hrows Exception

*/
public void evict(Fgn fqgn) throws Exception
{
cache_.evict(fqgn);
}
/**

* Return a set of child names under a given Fgn.

*

* @aramfqgn Get child names for given Fgn in cache.
* @eturn Set of children nane as (bjects

*/
public Set get Chil drenNames(Fgn fqn)
{
try
{
return cache_. get Chi | drenNanes(fqgn);
}
catch (CacheException e)
{
e.printStackTrace();
}
return null;
}
publ i c bool ean hasChil d(Fgn fqgn)
{
return cache_. hasChil d(fqgn);
}
publ i c Object getCachebData(Fgn fgn, Object key)
{
try
{
return cache_. get(fqgn, key);
}
catch (CacheException e)
{
e.printStackTrace();
}
return null;
}
public void configure(TreeCache cache)
{
this.cache_ = cache;
}

public abstract class BaseEvictionAl gorithminplenments EvictionAl gorithm

{

private static final Log | og = LogFactory. getLog(BaseEvictionAl gorithm cl ass);

prot ect ed Regi on region;
prot ect ed BoundedBuf fer recycl eQueue;
protected Evicti onQueue evicti onQueue;

/**

* This method will create an Evicti onQueue inplenentation and prepare it for use.

*

* @aramregion Region to setup an eviction queue for.

* @eturn The created EvictionQueue to be used as the eviction queue for this algorithm

JBoss Release 1.4.1 "Cayenne" 22

Eviction Policies

* @hrows EvictionException

* @ee EvictionQueue

*/

protected abstract EvictionQueue setupEvi cti onQueue(Regi on region) throws EvictionException

/**

* This method will check whether the given node should be evicted or not.
*

* @aram ne NodeEntry to test eviction for
* @eturn True if the given node should be evicted. False if the given node should not be evicted.
*
/
protected abstract bool ean shoul dEvi ct Node(NodeEntry ne);

prot ected BaseEvi ctionAl gorithm()

{
recycl eQueue = new BoundedBuffer();
}
protected void initialize(Region region) throws Evicti onException
{
this.region = region;
evi cti onQueue = setupEvi cti onQueue(region);
}
/**
* Process the given region
* <p/>
* Eviction Processing enconpasses the foll ow ng:
* <p/>
* - Add/ Renpve/ Visit Nodes
* - Prune according to Eviction Algorithm
* - Enpty/Retry the recycle queue of previously evicted but | ocked (during actual cache eviction) noc
*
* @aram region Cache region to process for eviction
* @hrows EvictionException
*

~

public void process(Region region) throws EvictionException

{
if (this.region == null)
{
this.initialize(region);
}
thi s. processQueues(region);
this. enpt yRecycl eQueue();
this.prune();
}
public void resetEvicti onQueue(Regi on region)
{
}
/**

* Get the underlying EvictionQueue inplenentation.

*

* @eturn the EvictionQueue used by this algorithm
* @ee EvictionQueue
*/

public EvictionQueue getEvictionQueue()

{

}

/**

* Event processing for Evict/Add/Visiting of nodes.
* <p/>

return this.evictionQeue;

JBoss Release 1.4.1 "Cayenne" 23

Eviction Policies

- On AddEvents a new el enent is added into the eviction queue
- On RenpveEvents, the renoved el enment is renobved fromthe eviction queue.
- On VisitEvents, the visited node has its eviction statistics updated (idleTime, nunber Of NodeVi si s

@ar am regi on Cache region to process for eviction.
@ hrows EvictionException
/
protected void processQueues(Regi on regi on) throws EvictionException

{

*
*
*
*
*
*
*

Evi ct edEvent Node node;
int count = O;
whil e ((node = region.takelLast Event Node()) !'= null)
{
int event Type = node. get Event ();
Fgn fgn = node. get Fgn();

count ++;
swi tch (event Type)
{
case EvictedEvent Node. ADD_EVENT:
thi s. processAddedNodes(fqn);
br eak;
case Evi ct edEvent Node. REMOVE _EVENT:
thi s. processRemovedNodes(fgn);
br eak;
case Evict edEvent Node. VI SI T_EVENT:
this. processVi sitedNodes(fqgn);
br eak;
defaul t:
t hrow new Runti neException("Illegal Eviction Event type " + eventType);

}

if (log.isTraceEnabl ed())
{

}

| og.trace("processed " + count + " node events");

}

protected void evict(NodeEntry ne)
{
Il NodeEntry ne = evi cti onQueue. get NodeEntry(fqn);
if (ne!=null)
{
evi cti onQueue. renoveNodeEntry(ne);
if (!this.evictCacheNode(ne.getFqgn()))
{
try
{

}

catch (InterruptedException e)

{

recycl eQueue. put (ne) ;

e.printStackTrace();

* Evict a node from cache.

*

* @aram fgn node corresponds to this fqgn
* @eturn True if successful

=

JBoss Release 1.4.1 "Cayenne" 24

Eviction Policies

prot ect ed bool ean evi ct CacheNode(Fqn fqgn)

{
if (log.isTraceEnabl ed())

{
}

Evi cti onPolicy policy = region.getEvictionPolicy();
/1 Do an eviction of this node

|l og.trace("Attenpting to evict cache node with fgn of " + fqgn);

try
{
policy.evict(fqn);

catch (Exception e)
{

if (e instanceof Ti meout Exception)

{

|l og.warn("eviction of " + fqgn + " timed out. WII retry later.");
return false;

}
e.printStackTrace();

return fal se;

}

if (log.isTraceEnabl ed())
{

}

return true;

| og.trace("Eviction of cache node with fgn of " + fqn + " successful");

}

* %
/* Process an Added cache node.

*

* @aramfqn FQN of the added node.

* @hrows EvictionException
prf)t ected voi d processAddedNodes(Fgn fgn) throws EvictionException
{ i{f (log.isTraceEnabl ed())

}

long stanp = SystemcurrentTimeM I lis();
NodeEntry ne = new NodeEntry(fqn);

ne. set Modi fi edTi neSt anp(st anp) ;

ne. set Nunber O NodeVi si ts(1);

/l add it to the node map and eviction queue
i f (evictionQueue.contai nsNodeEntry(ne))

| og.trace("Adding node " + fqgn + " to eviction queue");

if (log.isTraceEnabl ed())
{

}
t hi s. processVi si t edNodes(ne. get Fgn());

return;

| og.trace(" Queue already contains " + ne.getFgn() + " processing it as visited");

}

evi cti onQueue. addNodeEnt ry(ne) ;

if (log.isTraceEnabl ed())
{

}

| og.trace(ne.getFgn() + " added successfully to eviction queue");

JBoss Release 1.4.1 "Cayenne"

25

Eviction Policies

}
/**
* Renpve a node from cache.
* <pl/>
* This nmethod will renove the node fromthe eviction queue as well as
* evict the node from cache.
* <p/>
* |f a node cannot be renpved from cache, this nethod will renpve it fromthe eviction queue
* and place the element into the recycl eQueue. Each node in the recycle queue will get retried until
* proper cache eviction has taken place.
* <p/>
* Because EvictionQueues are collections, when iterating themfroman iterator, use iterator.renove()
* to avoi d Concurrent Modi ficati onExceptions. Use the bool ean paranmeter to indicate the calling contex
*
* @aramfqgn FON of the renmpbved node
* @hrows EvictionException
*

~

protected void processRenbvedNodes(Fgn fqn) throws Evicti onException

{
if (log.isTraceEnabl ed())

{
| og.trace("Renpving node " + fqn + " fromeviction queue and attenpting eviction");
}
NodeEntry ne = evi cti onQueue. get NodeEntry(fqn);
if (ne!=null)
{
evi cti onQueue. renoveNodeEntry(ne);
}
if (log.isTraceEnabl ed())
{
log.trace(fqn + " renoved from eviction queue");
}
}
/**
* Visit a node in cache.
* <p/>
* This nmethod will update the nunVisits and nodifiedTi mestanp properties of the Node.
* These properties are used as statistics to deternmine eviction (LRU, LFU MU, etc..)
* <p/>
* *Note* that this method updates Node Entries by reference and does not put them back
* into the queue. For sone sorted collections, a renpve, and a re-add is required to
* maintain the sorted order of the el enents.
*
* @aramfqn FON of the visited node.
* @hrows EvictionException
*

~

protected void processVisitedNodes(Fgn fqn) throws EvictionException
{
NodeEntry ne = evi cti onQueue. get NodeEntry(fqn);
if (ne == null)
{
thi s. processAddedNodes(fqn);
return;

/1 note this method will visit and nodify the node statistics by reference!
/1 if a collection is only guaranteed sort order by adding to the collection,
/1 this inplementation will not guarantee sort order.

ne. set Number Of NodeVi si t s(ne. get Number Of NodeVi sits() + 1);

ne. set Mbdi fi edTi meSt anp(System currentTimeM I 1is());

/**

JBoss Release 1.4.1 "Cayenne"

26

Eviction Policies

Enpty the Recycle Queue.
<p/ >
This method will go through the recycle queue and retry to evict the nodes from cache.

@hrows Evicti onException
/
protected void enptyRecycl eQueue() throws Evicti onException

{

*
*
*
*
*
*

while (true)

{
Fgn fagn;

try
{

}

catch (InterruptedException e)

{

fgn = (Fgn) recycl eQueue. pol | (0);

e.printStackTrace();
br eak;

if (fqn == null)

if (log.isTraceEnabl ed())
{

}

br eak;

| og.trace("Recycl e queue is enpty");

if (log.isTraceEnabl ed())
| og.trace("enptying recycle bin. Evict node " + fqgn);
[/ Still doesn't work
if (!evictCacheNode(fqn))
try
{
recycl eQueue. put (fgn);

catch (InterruptedException e)
{

}

br eak;

e.printStackTrace();

}

protected void prune() throws EvictionException

{
NodeEntry entry;

while ((entry = evictionQueue.getFirstNodeEntry()) !'= null)

i f (this.shoul dEvi ct Node(entry))

{
this.evict(entry);
}
el se
{
br eak;
}

JBoss Release 1.4.1 "Cayenne"

Eviction Policies

Note that:

e The BaseEvictionAlgorithm class maintains a processing structure. It will process the ADD, REMOVE, and
VISIT events queued by the Region (events are originated from the EvictionTreeCachelListener) first. It aso
maintains an collection of items that were not properly evicted during the last go around because of held locks.
That list is pruned. Finaly, the EvictionQueue itself is pruned for entries that should be evicted based upon the
configured eviction rules for the region.

public abstract class BaseSortedEvictionAl gorithm extends BaseEvictionAl gorithminplenents EvictionAl

{

private static final Log | og = LogFactory. getLog(BaseSortedEvictionAl gorithm class);

public void process(Region region) throws Evicti onException

{
super . process(region);
}
protected void processQueues(Regi on region) throws Evicti onException
{

bool ean evi cti onNodesModi fied = fal se;

Evi ct edEvent Node node;
int count = O;
whil e ((node = region.takelLast Event Node()) !'= null)
{
int event Type = node. get Event ();
Fgn fgn = node. get Fgn();

count ++;
swi tch (event Type)
{
case EvictedEvent Node. ADD_EVENT:
thi s. processAddedNodes(fqn);
evi cti onNodesModi fied = true;
br eak;
case Evi ct edEvent Node. REMOVE_EVENT:
t hi s. processRenpvedNodes(fqgn);
br eak;
case Evict edEvent Node. VI SI T_EVENT:
t hi s. processVi si t edNodes(fqgn);
evi cti onNodesModi fied = true;

br eak;
defaul t:
t hrow new Runti neException("Illegal Eviction Event type " + eventType);
}
}
if (log.isTraceEnabl ed())
{
| og.trace("Eviction nodes visited or added requires resort of queue " + evictionNodeshbdifi ec
}

this.resortEvicti onQueue(evicti onNodeshbdi fi ed);

if (log.isTraceEnabl ed())
{

JBoss Release 1.4.1 "Cayenne" 28

Eviction Policies

L I A

*

*/

| og.trace("processed " + count + " node events");

}

This method is called to resort the queue after add or visit events have occurred.

<p/ >

If the paraneter is true, the queue needs to be resorted. If it is false, the queue does not
need resorting.

@ar am evi cti onQueueModi fied True if the queue was added to or visisted during event processing.

protected void resortEvi cti onQueue(bool ean evi cti onQueueMdi fi ed)

{

}

Note that:

Il ong begin = SystemcurrentTimeM | lis();
((SortedEvi cti onQueue) evictionQueue).resortEvicti onQueue();
long end = SystemcurrentTineMI1is();

if (log.isTraceEnabl ed())

{
long diff = end - begin;
log.trace("Took " + diff + "nms to sort queue with " + getEvictionQueue().size() + " elenents"”

}

e The BaseSortedEvictionAlgorithm class will maintain a boolean through the algorithm processing that will de-
termine if any new nodes were added or visited. This allows the Algorithm to determine whether to resort the
eviction queue items (in first to evict order) or to skip the potentially expensive sorting if there have been no
changesto the cache in thisregion.

public interface SortedEvi cti onQueue extends Evicti onQueue

* Provide contract to resort a sorted queue.

public void resortEvicti onQueue();

{
/ * %
*/
}
Note that:

e The SortedEvictionQueue interface defines the contract used by the BaseSortedEvictionAlgorithm abstract
classthat is used to resort the underlying queue. Again, the queue sorting should be sorted in first to evict order.
The first entry in the list should evict before the last entry in the queue. The last entry in the queue should be
the last entry that will require eviction.

6.2. TreeCache Eviction Policy Configuration

TreeCache 1.2.X allows a single eviction policy provider class to be configured for use by all regions. As of
TreeCache 1.3.x each cache region can define its own eviction policy provider or it can use the eviction policy pro-
vider class defined at the cache level (1.2.x backwards compatibility)

JBoss Release 1.4.1 "Cayenne" 29

Eviction Policies

Here is an example of alegacy 1.2.x EvictionPolicyConfig element to configure TreeCache for use with a single
eviction policy provider

<attribute name="EvictionPolicyC ass">org.jboss. cache. eviction.LRUPolicy</attribute>

<I-- Specific eviction policy configurations. This is LRU -->
<attribute name="EvictionPolicyConfig">
<confi g>
<attribute name="wakeUpl nt erval Seconds" >5</attri bute>
<l-- Cache wide default -->

<regi on name="/_default_">
<attribute nanme="naxNodes">5000</attri bute>
<attribute nanme="ti neToLi veSeconds">1000</attri but e>

</regi on>

<regi on nanme="/org/jboss/data">
<attribute nanme="naxNodes">5000</attri bute>
<attribute name="ti neToLi veSeconds">1000</attri but e>

</regi on>

<regi on name="/org/jboss/test/data">
<attribute nanme="naxNodes">5</attri bute>
<attribute name="ti neToLi veSeconds">4</attri bute>

</regi on>

<regi on nane="/test/">
<attribute name="naxNodes">10000</attri bute>
<attribute name="ti nmeToLi veSeconds" >5</ attri bute>

</regi on>

<r egi on nane="/nmaxAgeTest/">
<attribute name="naxNodes">10000</attri bute>
<attribute nane="ti neToLi veSeconds">8</attri bute>
<attribute name="nmaxAgeSeconds">10</attri bute>

</ regi on>

</ confi g>
</attribute>

Here is an example of configuring a different eviction provider per region

<attribute name="EvictionPolicyConfig">

<confi g>
<attribute name="wakeUpl nt erval Seconds" >5</attri bute>
<l-- Cache wide default -->

<regi on nanme="/_default_" policyCd ass="org.jboss. cache. evicti on. LRUPol i cy">
<attribute name="nmaxNodes">5000</attri bute>
<attribute name="tineToLi veSeconds">1000</attri but e>

</ regi on>

<regi on nanme="/org/jboss/data" policyC ass="org. | boss. cache. evi cti on. LFUPol i cy" >
<attribute name="nmaxNodes">5000</attri bute>
<attri bute name="mi nNodes">1000</attri bute>

</ regi on>

<regi on name="/org/jboss/test/data" policyd ass="org.]jboss.cache. eviction. Fl FOPolicy">
<attri bute name="neaxNodes">5</attri bute>

</regi on>

<regi on nane="/test/" policyC ass="org.j boss. cache. evi cti on. MRUPol i cy" >
<attribute name="nmaxNodes">10000</attri bute>

</ regi on>

<regi on nanme="/maxAgeTest/" policyC ass="org.jboss. cache. evi cti on. LRUPol i cy" >
<attribute name="naxNodes">10000</attri bute>
<attribute name="ti neToLi veSeconds">8</attri bute>
<attri bute name="naxAgeSeconds">10</attri bute>

</regi on>

</ confi g>
</attribute>

JBoss Release 1.4.1 "Cayenne" 30

Eviction Policies

Lastly, an example of mixed mode. In this scenario the regions that have a specific policy defined will use that
policy. Those that do not will default to the policy defined on the entire cache instance.

<attribute name="EvictionPolicyC ass">org.jboss. cache. eviction.LRUPolicy</attribute>

<I-- Specific eviction policy configurations. This is LRU -->
<attribute name="EvictionPolicyConfig">
<confi g>
<attribute name="wakeUpl nt erval Seconds" >5</attri bute>
<I-- Cache wide default -->

<regi on name="/_default_">
<attribute name="nmaxNodes">5000</attri bute>
<attribute name="ti neToLi veSeconds">1000</attri bute>
</regi on>
<regi on name="/org/jboss/data" policyCl ass="org.jboss. cache. evi ction. Fl FOPol i cy" >
<attribute name="nmaxNodes">5000</attri bute>
</regi on>
<regi on nane="/test/" policyd ass="org.jboss. cache. eviction. MRUPol i cy">
<attribute name="nmaxNodes">10000</attri bute>
</regi on>
<r egi on nane="/nmaxAgeTest/">
<attribute name="nmaxNodes">10000</attri bute>
<attribute name="ti neToLi veSeconds" >8</attri bute>
<attri bute name="naxAgeSeconds">10</attri bute>
</ regi on>
</ confi g>
</attribute>

TreeCache now allows reconfiguration of eviction policy providers programatically at runtime. An example of how
to reconfigure at runtime and how to set an LRU region to have maxNodes to 12345 timeToLiveSeconds to 500
and maxAgeSeconds to 1000 programatically.

/1 note this is just to show that a running TreeCache instance nust be
/1 retrieved sonehow. How it is inplenented is up to the inplenentor
TreeCache cache = get Runni ngTr eeCachel nst ance();

org. j boss. cache. evi cti on. Regi onManager regi onManager = cache. get Evi cti onRegi onManager () ;
org.j boss. cache. evi cti on. Regi on regi on = regi onManager . get Regi on("/ myRegi onNane") ;

Evi cti onConfi guati on config = regi on. get Evi cti onConfiguration();

((LRUConfi guration)config).set MaxNodes(12345);

((LRUConfi guration)config).setTi mneToLi veSeconds(500);

((LRUConfi guration)config).set MaxAgeSeconds(1000);

6.3. TreeCache LRU eviction policy implementation

TreeCache hasimplemented a LRU eviction policy, or g. j boss. cache. evi cti on. LRUPol i cy, that controls both the
node lifetime and age. This policy guarantees O(n) = 1 for adds, removals and lookups (visits). It has the following
configuration parameters:

e wakeUpl nterval Seconds. This is the interval (in seconds) to process the node events and also to perform
sweeping for the size limit and age-out nodes.

e Region. Region is a group of nodes that possess the same eviction policy, e.g., same expired time. In

JBoss Release 1.4.1 "Cayenne" 31

Eviction Policies

TreeCache, region is denoted by afgn, e.g., / conpany/ per sonnel , and it is recursive. In specifying the region,
the order is important. For example, if / or g/ j boss/ t est is specified before / or g/ j boss/ t est/ dat a, then any
node under / or g/ j boss/ t est / dat a belongs to the first region rather than the second. Note also that whenever
eviction policy is activated, there should always be a/ _def aul t _ region which covers al the eviction policies
not specified by the user. In addition, the region configuration is not programmable, i.e., all the palicies have to
be specified via XML configuration.

* maxNodes. Thisisthe maximum number of nodes allowed in this region. O denotes no limit.
e timeToLi veSeconds. Timeto idle (in seconds) before the node is swept away. 0 denotes no limit.

* maxAgeSeconds. Time an object should exist in TreeCache (in seconds) regardiess of idle time before the
node is swept away. 0 denotes no limit.

Please see the above section for an example.

6.4. TreeCache FIFO eviction policy implementation

TreeCache has implemented a FIFO eviction policy, org. j boss. cache. evi cti on. FI FOPol i cy, that will control
the eviction in a proper first in first out order. This policy guarantees O(n) = 1 for adds, removals and lookups
(visits). It has the following configuration parameters:

e wakeUpl nt erval Seconds. This is the interval (in seconds) to process the node events and aso to perform
sweeping for the size limit and age-out nodes.

e Region. Region is a group of nodes that possess the same eviction policy, eg., same expired time. In
TreeCache, region is denoted by afqgn, e.g., / conpany/ per sonnel , and it is recursive. In specifying the region,
the order is important. For example, if / or g/ j boss/ t est is specified before / or g/ j boss/ t est/ dat a, then any
node under / or g/ j boss/ t est / dat a belongs to the first region rather than the second. Note also that whenever
eviction policy is activated, there should always be a/ _def aul t _ region which covers al the eviction policies
not specified by the user. In addition, the region configuration is not programmable, i.e., all the policies have to
be specified via XML configuration.

e maxNodes. Thisisthe maximum number of nodes allowed in this region. Any integer less than or equal to 0
will throw an exception when the policy provider is being configured for use.

Please read the above section for an example.

6.5. TreeCache MRU eviction policy implementation

TreeCache has implemented a MRU eviction policy, or g. j boss. cache. evi cti on. MRUPol i cy, that will control the
eviction in based on most recently used algorithm. The most recently used nodes will be the first to evict with this
policy. This policy guarantees O(n) = 1 for adds, removals and lookups (visits). It has the following configuration
parameters:

JBoss Release 1.4.1 "Cayenne" 32

Eviction Policies

e wakeUpl nterval Seconds. This is the interval (in seconds) to process the node events and also to perform
sweeping for the size limit and age-out nodes.

e Region. Region is a group of nodes that possess the same eviction policy, e.g., same expired time. In
TreeCache, region is denoted by afgn, e.g., / conpany/ per sonnel , and it is recursive. In specifying the region,
the order is important. For example, if / org/j boss/ t est is specified before/ or g/ j boss/ t est/ dat a, then any
node under / or g/ j boss/ t est / dat a belongs to the first region rather than the second. Note also that whenever
eviction policy is activated, there should always be a/ _def aul t _ region which covers all the eviction policies
not specified by the user. In addition, the region configuration is not programmable, i.e., al the policies have to
be specified via XML configuration.

e maxNodes. Thisis the maximum number of nodes allowed in thisregion. Any integer less than or equal to O
will throw an exception when the policy provider is being configured for use.

Please read the above section for an example.

6.6. TreeCache LFU eviction policy implementation

TreeCache has implemented a LFU eviction policy, or g. j boss. cache. evi cti on. LFUPol i cy, that will control the
eviction in based on least frequently used algorithm. The least frequently used nodes will be the first to evict with
this policy. Node usage starts at 1 when a node is first added. Each time it is visted, the node usage counter incre-
ments by 1. This number is used to determine which nodes are least frequently used. LFU is also a sorted eviction
algorithm. The underlying EvictionQueue implementation and algorithm is sorted in ascending order of the node
visits counter. This class guarantees O(n) = 1 for adds, removal and searches. However, when any number of nodes
are added/visited to the queue for a given processing pass, a single O(n) = n*log(n) operation is used to resort the
gueue in proper LFU order. Similarly if any nodes are removed or evicted, a single O(n) = n pruning operation is
necessary to clean up the EvictionQueue. LFU has the following configuration parameters:

e wakeUpl nterval Seconds. This is the interval (in seconds) to process the node events and also to perform
sweeping for the size limit and age-out nodes.

* Region. Region is a group of nodes that possess the same eviction policy, e.g., same expired time. In
TreeCache, region is denoted by afgn, e.g., / conpany/ per sonnel , and it is recursive. In specifying the region,
the order is important. For example, if / or g/ j boss/ t est is specified before / or g/ j boss/ t est/ dat a, then any
node under / or g/ j boss/ t est / dat a belongs to the first region rather than the second. Note also that whenever
eviction policy is activated, there should always be a/ _def aul t _ region which covers all the eviction policies
not specified by the user. In addition, the region configuration is not programmable, i.e., al the policies have to
be specified via XML configuration.

e maxNodes. Thisis the maximum number of nodes allowed in this region. A value of 0 for maxNodes means
that thereis no upper bound for the configured cache region.

e nminNodes. Thisisthe minimum number of nodes alowed in this region. This value determines what the
eviction queue should prune down to per pass. e.g. If minNodes is 10 and the cache grows to 100 nodes, the
cache is pruned down to the 10 most frequently used nodes when the eviction timer makes a pass through
the eviction algorithm.

JBoss Release 1.4.1 "Cayenne" 33

Eviction Policies

Please read the above section for an example.

JBoss Release 1.4.1 "Cayenne"

Cache Loaders

JBoss Cache can use a cache loader to back up the in-memory cache to a backend datastore. If JBoss Cacheis con-
figured with a cache loader, then the following features are provided:

* Whenever a cache element is accessed, and that element is not in the cache (e.g. due to eviction or due to server
restart), then the cache loader transparently loads the element into the cache if found in the backend store.

* Whenever an element is modified, added or removed, then that modification is persisted in the backend store
viathe cache loader. If transactions are used, all modifications created within atransaction are persisted. To this
end, the cache loader takes part in the two phase commit protocol run by the transaction manager.

Currently, the cache loader API looks similar to the TreeCache API. In the future, they will both implement the
same interface. The goal isto be able to form hierarchical cache topologies, where one cache can delegate to anoth-
er, which in turn may delegate to yet another cache.

As of JBossCache 1.3.0, you can now define several cache loaders, in a chain. The impact is that the cache will
look at al of the cache loaders in the order they've been configured, until it finds a valid, non-null element of data.
When performing writes, all cache loaders are written to (except if the ignoreMaodifications element has been set to
true for a specific cache loader. See the configuration section below for details.

The cache loader interface is defined in org.jboss.cache.loader.Cachel oader as follows (edited for brevity):

public interface CacheLoader extends Service {

/**

* Sets the configuration. WIIl be called before {@ink #create()} and {@ink #start()}
* @aram props A set of properties specific to a given CachelLoader

“f

voi d set Confi g(Properties props);

voi d set Cache(TreeCache c);

/**

* Returns a list of children nanes, all nanes are <enprelative</enr. Returns null if the parent node
* The returned set nust not be nodified, e.g. use Collections.unnodifiableSet(s) to return the result
* @aram fqgn The FQN of the parent

* @eturn Set<String> A list of children. Returns null if no children nodes are present, or the pare
* not present

*/

Set get Chil drenNames(Fgn fqn) throws Exception;

/**

* Returns the value for a given key. Returns null if the node doesn't exist, or the value is not bour
*/

Cbj ect get (Fgn nanme, Object key) throws Exception;

JBoss Release 1.4.1 "Cayenne" 35

Cache Loaders

/**

* Returns all keys and values fromthe persistent store, given a fully qualified nane.

*

* NOTE that the expected return value of this method has changed from JBossCache 1.2.x

* and before! This will affect cache |oaders witten prior to JBossCache 1.3.0 and such
* inpl enentations shoul d be checked for conpliance with the behavi our expected.

*

* @ar am nane

* @eturn Map<Onj ect, Obj ect > of keys and values for the given node. Returns null if the node is not
* found. If the node is found but has no attributes, this nethod returns an enpty Map.
* @hrows Exception

*/

Map get (Fgn nane) throws Exception;

/**

* Checks whether the CachelLoader has a node with Fgn
* @eturn True if node exists, fal se otherw se

*/

bool ean exi sts(Fqn nanme) throws Exception;

/**

* |nserts key and value into the attributes hashmap of the given node. If the node does not exist, al
* parent nodes fromthe root down are created automatically

*/

voi d put (Fgn nane, Object key, Object value) throws Exception;

*

/
Inserts all elements of attributes into the attributes hashmap of the given node, overwiting exi st
attributes, but not clearing the existing hashmap before insertion (nmaking it a union of existing &
new attri butes)

If the node does not exist, all parent nodes fromthe root down are created autonatically

@aram nanme The fully qualified name of the node

@aram attributes A Map of attributes. Can be null

EE N T

~

voi d put(Fgn nane, Map attributes) throws Exception;

/**

* |nserts all nodifications to the backend store. Overwite whatever is already in
* the datastore.

* @aram nodi fications A List<Mdification> of nodifications

* @hrows Exception

*/

voi d put(List nodifications) throws Exception;

/** Renoves the given key and value fromthe attributes of the given node. No-op if node doesn't exi st
voi d renove(Fgn nane, Object key) throws Exception;

/**

* Renpves the given node. If the node is the root of a subtree, this will recursively renove all subr
* depth-first

*/

voi d renmove(Fgn nanme) throws Exception;

/** Rermoves all attributes froma given node, but doesn't delete the node itself */
voi d renoveDat a(Fqn nane) throws Exception;

Prepare the nodifications. For exanple, for a DB-based CachelLoader:

Create a | ocal (JDBC) transaction

<l i >Associ ate the local transaction w th <code>tx</code> (tx is the key)

<l i >Execut e the corespondi ng SQL statenments against the DB (statenments derived from nodifications)

E I

JBoss Release 1.4.1 "Cayenne" 36

Cache Loaders

</ ol >

For non-transacti onal CachelLoader (e.g. file-based), this could be a null operation

@ar am t x The transaction, just used as a hashmap key

@ar am nodi fications List<Mdification> a list of all nodifications within the given transaction

@ar am one_phase Persist inmmediately and (for exanple) commit the |ocal JDBC transaction as wel
we won't get a {@ink #conmmt(Qoject)} or {@ink #roll back(Cbject)} nmethod cal

L T

/
voi d prepare((Cbject tx, List nodifications, bool ean one_phase) throws Exception;

/**

* Commt the transaction. A DB-based CachelLoader woul d | ook up the | ocal JDBC transaction asoci ated
* W th <code>t x</code> and conmt that transaction

* Non-transactional CachelLoaders could sinply wite the data that was previously saved transiently ur
* given <code>tx</code> key, to (for exanple) a file system (note this only holds if the previous pre
* not define one_phase=true

*/

voi d comit(Object tx) throws Exception;

/**

* Roll the transaction back. A DB-based CacheLoader would | ook up the |ocal JDBC transaction asoci ate
* W th <code>t x</code> and roll back that transaction

*/

voi d rol | back(Obj ect tx);

/**

* Fetch the entire state for this cache from secondary storage (disk, DB) and return it as a byte buf
* This is for initialization of a new cache froma renote cache. The new cache woul d then call
* storeEntireState()
* todo: define binary format for exchanging state
*
/
byte[] | oadEntireState() throws Exception;

/** Store the given state in secondary storage. Overwite whatever is currently in storage */
void storeEntireState(byte[] state) throws Exception;

NOTE: the contract defined by the Cachel oader interface has changed from JBoss Cache 1.3.0 onwards, specific-
aly with the get (Fgn fgn) method. Special care must be taken with custom Cachel oader implementations to en-
sure this new contract is still adhered to. See the javadoc above on this method for details, or visit thiswiki page [1]
for more discussion on this.

Cachel oader implementations that need to support partial state transfer should also implement the subinterface
org.jboss.cache.loader.ExtendedCachel oader:

public interface ExtendedCacheLoader extends CachelLoader

{

/**

* Fetch a portion of the state for this cache from secondary storage

* (disk, DB) and return it as a byte buffer.

* This is for activation of a portion of new cache froma renote cache.
The new cache would then call {@ink #storeState(byte[], Fgn)}.

*

*

* @aram subtree Fgn nanming the root (i.e. highest |evel parent) node of
* the subtree for which state is requested.
*
*
*

@ee org. | boss. cache. TreeCache#acti vat eRegi on(St ri ng)
/
byte[] | oadState(Fgn subtree) throws Exception;

/**

* Store the given portion of the cache tree's state in secondary storage.

[1] http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossCacheCachel oaders

JBoss Release 1.4.1 "Cayenne" 37

http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossCacheCacheLoaders

Cache Loaders

Overwrite whatever is currently in secondary storage. |If the transferred
state has Fgns equal to or children of paraneter subtree,

then no special behavior is required. herw se, ensure that

the state is integrated under the given 'subtree'. Typically

in the latter case 'subtree’ would be the Fgn of the buddy

backup region for a buddy group; e.g.

If the the transferred state had Fgns starting with "/a" and
"subtree' was "/ _BUDDY_BACKUP /192.168. 1. 2: 5555" then the
state should be stored in the |ocal persistent store under
"/ _BUDDY_BACKUP_/192. 168. 1. 2: 5555/ a"

@ar am st ate the state to store

@ar am subtree Fgn nami ng the root (i.e. highest |evel parent) node of
the subtree included in 'state'. |f the Fqns
of the data included in 'state' are not
al ready children of 'subtree', then their
Fgns shoul d be altered to make them children of
"subtree' before they are persisted.

EE R 2 T S I I S I S N

/
voi d storeState(byte[] state, Fgn subtree) throws Exception;

*

/
Sets the {@ink Regi onManager} this object should use to manage
mar shal | i ng/ unmar shal | i ng of different regions using different
cl assl oaders.

NOTE: This nmethod is only intended to be used by the TreeCache instance
this cache | oader is associated wth.

L

-~

@ar am nanager the regi on nanager to use, or null.

voi d set Regi onManager (Regi onManager manager);

NOTE: If acache loader is used along with buddy replication, the cache loader must implement Ext endedCachel-
oader unlessitsFet chPersi st ent St at e property is set to false.

NOTE: the contract defined by the Ext endedCachelLoader interface has changed from JBoss Cache 1.4.0 onwards,
specifically with the requirement that data passed to st oreSt at e method be integrated under the given subtree,
even if that data didn't originate in that subtree. This behavior is necessary to properly support buddy replication.
Special care must be taken with custom ExtendedCacheloader implementations to ensure this new contract is still
adhered to.

7.1. The CacheLoader Interface

The interaction between JBoss Cache and a Cachel oader implementation is as follows. When CachelLoader Con-
figuration (see below) is non-null, an instance of each configured cachel oader is created when the cacheis cre-
ated. Since CachelLoader extends Servi ce,

public interface Service {
voi d create() throws Exception;

void start() throws Exception;

voi d stop();

JBoss Release 1.4.1 "Cayenne" 38

Cache Loaders

voi d destroy();
}

Cacheloader . creat e() and CachelLoader.start () are called when the cache is started. Correspondingly, st op()
and destroy() are called when the cache is stopped.

Next, set Confi g() and set Cache() are called. The latter can be used to store a reference to the cache, the former
is used to configure this instance of the Cachel oader. For example, here a database Cachel oader could establish a
connection to the database.

The Cachel oader interface has a set of methods that are called when no transactions are used: get (), put (), re-
nove() and reroveDat a() : they get/set/remove the value immediately. These methods are described as javadoc
comments in the above interface.

Then there are three methods that are used with transactions. prepare(), commit () and rol | back(). The pre-
par e() method is called when atransaction is to be committed. It has a transaction object and a list of modfications
as argument. The transaction object can be used as a key into a hashmap of transactions, where the values are the
lists of modifications. Each modification list has a number of Mdi fi cati on elements, which represent the changes
made to a cache for a given transaction. When prepare() returns successfully, then the Cachel oader must be able
to commit (or rollback) the transaction successfully.

Currently, the TreeCache takes care of caling prepare(), commit() and rollback() on the Cachel oaders at the right
time. We intend to make both the TreeCache and the Cacheloaders XA resources, so that instead of calling those
methods on aloader, the cache will only enlist the loader with the TransactionManager on the same transaction.

The commi t () method tells the Cacheloader to commit the transaction, and ther ol | back() method tells the Cach-
el oader to discard the changes associated with that transaction.

The last two methods are | oadEntireStat e() and st oreEntireStat e() . The first method asks the Cacheloader to
get the entire state the backend store manages and return it as a byte buffer, and the second tells a Cachel oader to
replace its entire state with the byte buffer argument. These methods are used for scenarios where each JBossCache
node in acluster hasits own local data store, e.g. alocal DB, and - when anew node starts - we haveto initialize its
backend store with the contents of the backend store of an existing member. See below for deails.

The Ext endedCachelLoader methods are also related to state transfer. The | oadSt at e(Fgn) method is called when
the cache is preparing a partial state transfer -- that is, the transfer of just the portion of the cache loader's state that
isrooted in the given Fgn. ThestoreStat e(byte[], Fgn) method is then invoked on the cache loader of the node
that is receiving the state transfer. Partial state transfers occur when the cache's act i vat eRegi on() API isused and
during the formation of buddy groupsif buddy replication is used.

7.2. Configuration via XML

The Cachel oader is configured as follows in the JBossCache XML file:

<l-- -->
<l -- Defines TreeCache configuration ->
<I-- =o>

<nbean code="org.jboss. cache. TreeCache" nanme="j boss. cache: servi ce=TreeCache" >

<I-- New 1.3.x cache | oader config block -->

JBoss Release 1.4.1 "Cayenne" 39

Cache Loaders

<attri bute name="CachelLoader Confi gurati on">

<confi g>
<I-- if passivation is true, only the first cache |oader is used; the rest are ignored --
<passi vat i on>f al se</ passi vati on>
<l-- comma delinmted FQNs to preload -->
<pr el oad>/ </ pr el oad>
<l-- are the cache | oaders shared in a cluster? -->

<shar ed>f al se</ shar ed>

<I-- we can now have mnul tiple cache | oaders, which get chained -->
<l-- the 'cachel oader' el enent nmay be repeated -->
<cachel oader >
<cl ass>org. j boss. cache. | oader. JDBCCachelLoader </ cl ass>
<I-- same as the old CacheLoaderConfig attribute -->
<properties>
cache. jdbc. driver=com nysql . jdbc. Driver
cache. jdbc. url =j dbc: nmysql : //1 ocal host : 3306/] bossdb
cache. j dbc. user =r oot
cache. j dbc. passwor d=
</ properties>

<l-- whether the cache | oader wites are asynchronous -->
<async>f al se</ async>
<l-- only one cache | oader in the chain nay set fetchPersistentState to true.
An exception is thrown if nmore than one cache | oader sets this to true. -->
<f et chPer si st ent St at e>t rue</ f et chPer si st ent St at e>
<I'-- determ nes whether this cache | oader ignores wites - defaults to false. -->
<i gnor eModi fi cati ons>f al se</i gnoreModi fications>
<I-- if set to true, purges the contents of this cache | oader when the cache starts
Defaults to false. -->

<pur geOnSt ar t up>f al se</ purgeOnSt art up>
</ cachel oader >

</ confi g>
</attribute>

</ nbean>
Note: In JBossCache releases prior to 1.3.0, the cache loader configuration block used to look like this. Note that

this form is DEPRECATED and you will have to replace your cache loader configuration with a block similar to
the one above.

<l-- -->
<I'-- Defines TreeCache configuration -->
<l-- -->

<nbean code="org.jboss. cache. TreeCache" nanme="j boss. cache: servi ce=TreeCache" >
<attri bute name="CachelLoader Cl ass">org. j boss. cache. | oader. bdbj e. Bdbj eCacheLoader </ attri but e>
<I-- attribute nanme="CachelLoader d ass">org.j boss. cache. | oader. Fi | eCacheLoader</attribute -->
<attri bute name="CachelLoader Confi g" repl ace="fal se">
| ocation=c:\\tnp\\ bdbj e
</attribute>
<attribute name="CachelLoader Shared">true</attri bute>
<attri bute name="CachelLoader Prel oad">/</attribute>
<attribute name="CachelLoader Fet chTransi ent St at e">f al se</attri bute>
<attri bute name="CachelLoader Fet chPersi stent State">true</attri bute>
<attribute name="CachelLoader Asynchronous">true</attri bute>
</ nbean>

The cacheLoader d ass attribute defines the class of the Cachel oader implementation. (Note that, because of abug
in the properties editor in JBoss, backslashes in variables for Windows filenames might not get expanded correctly,
so replace="false" may be necessary).

JBoss Release 1.4.1 "Cayenne" 40

Cache Loaders

The currently available implementations shipped with JBossCache are:

* Fil eCacheLoader, Which is a simple filesystem-based implementation. The <cachel oader ><pr operti es> ele-
ment needs to contain a "location” property, which maps to a directory where the file is located (e.g., "loca
tion=c:\\tmp").

e Bdbj eCachelLoader, which is a Cacheloader implementation based on the Sleepycat DB Java Edition. The
<cachel oader ><pr oper ti es> element needs to contain a "location" property, which maps to a directory,where
the database file for Sleepycat resides (e.g., "location=c:\\tmp").

e JDBCCacheLoader , Which is a Cachel oader implementation using JDBC to access any relational database. The
<cachel oader ><pr oper t i es> element contains a number of properties needed to connect to the database such
as username, password, and connection URL. See the section on JDBCCachel oader for more details.

* Local Del egati ngCacheLoader, which enables loading from and storing to another local (same VM)
TreeCache.

* TcpDel egati ngCacheLoader , which enables loading from and storing to a remote (different VM) TreeCache
using TCP as the transport mechanism. This Cacheloader is available in JBossCache version 1.3.0 and above.

e dusteredCacheLoader, which alows querying of other caches in the same cluster for in-memory data via the
same clustering protocols used to replicate data. Writes are not 'stored' though, as replication would take care of
any updates needed. Y ou need to specify a property called "t i meout ", along value telling the cache loader how
many milliseconds to wait for responses from the cluster before assuming a null value. For example, "t i nmeout
= 3000" would use a timeout value of 3 seconds. This Cachel oader is available in JBossCache version 1.3.0
and above.

Note that the Sleepycat implementation is much more efficient than the filesystem-based implementation, and
provides transactional guarantees, but requires a commercia license if distributed with an application (see ht-
tp://www.dl eepycat.com/jeforjbosscache for details).

An implementation of Cachel.oader hasto have an empty constructor due to the way it is instantiated.

The properti es element defines a configuration specific to the given implementation. The filesystem-based imple-
mentation for example defines the root directory to be used, whereas a database implementation might define the
database URL, name and password to establish a database connection. This configuration is passed to the Cachel -
oader implementation via CachelLoader . set Confi g(Properties). Note that backspaces may have to be escaped.
Analogous to the CachelLoader Conf i g attribute in pre-1.3.0 configurations.

prel oad allows us to define alist of nodes, or even entire subtrees, that are visited by the cache on startup, in order
to preload the data associated with those nodes. The default (/") loads the entire data available in the backend store
into the cache, which is probably not a good idea given that the data in the backend store might be large. As an ex-
ample, /a, /product/catal ogue loads the subtrees/a and / pr oduct/ cat al ogue into the cache, but nothing else.
Anything else isloaded lazily when accessed. Prel oading makes sense when one anticipates using elements under a
given subtree frequently. Note that preloading loads all nodes and associated attributes from the given node, re-
cursively up to the root node. Analogous to the CacheLoader Pr el oad attribute in pre-1.3.0 configurations.

f et chPer si st ent St at e determines whether or not to fetch the persistent state of a cache when joining a cluster.
Only one configured cache loader may set this property to true; if more than one cache loader does so, a configura-
tion exception will be thrown when starting your cache service. Analogous to the CachelLoader Fet chPer si st ent -

JBoss Release 1.4.1 "Cayenne" 41

Cache Loaders

St at e attribute in pre-1.3.0 configurations.

async determines whether writes to the cache loader block until completed, or are run on a separate thread so
writes return immediately. If thisis set to true, an instance of or g. j boss. cache. | oader . AsyncCacheLoader iSCOn-
structed with an instance of the actual cache loader to be used. The AsyncCachelLoader then delegates all requests
to the underlying cache loader, using a separate thread if necessary. See the Javadocs on
org. j boss. cache. | oader . AsyncCachelLoader for more details. If unspecified, the async element defaults to false.
Analogous to the CachelLoader Asynchr onous attribute in pre-1.3.0 configurations.

Note on using the async element: there is always the possibility of dirty reads since all writes are performed asyn-
chronously, and it is thus impossible to guarantee when (and even if) a write succeeds. This needs to be kept in
mind when setting the async element to true.

i gnor eModi fi cati ons determines whether write methods are pushed down to the specific cache loader. Situations
may arise where transient application data should only reside in a file based cache loader on the same server as the
in-memory cache, for example, with a further shared JDBC cache loader used by all serversin the network. This
feature alows you to write to the 'local’ file cache loader but not the shared JDBC cache loader. This property de-
faultsto f al se, SO writes are propagated to all cache loaders configured.

pur geOnSt at up empties the specified cache loader (if i gnor eModi fi cat i ons iSfal se) when the cache loader starts
up.

7.3. Cache passivation

A Cachel oader can be used to enforce node passivation and activation on eviction in a TreeCache.

Cache Passivation is the process of removing an object from in-memory cache and writing it to a secondary data
store (e.g., file system, database) on eviction. Cache Activation is the process of restoring an object from the data
store into the in-memory cache when it's needed to be used. In both cases, the configured Cachel oader will be used
to read from the data store and write to the data store.

When the eviction policy in effect calls evict() to evict a node from the cache, if passivation is enabled, a notifica
tion that the node is being passivated will be emitted to the tree cache listeners and the node and its children will be
stored in the cache loader store. When a user calls get() on a node that was evicted earlier, the node is loaded (lazy
loaded) from the cache loader store into the in-memory cache. When the node and its children have been loaded,
they're removed from the cache loader and a notification is emitted to the tree cache listeners that the node has been
activated.

To enable cache passivation/activation, you can set passi vati on to true. The default is false. You set it via the
XML cache configuration file. The XML above shows the passi vat i on element when configuring a cache loader.
When passivation is used, only the first cache loader configured is used. All others are ignored.

7.4. CachelLoader use cases

7.4.1. Local cache with store

Thisis the simplest case. We have a JBossCache instance, whose mode is LocAL, therefore no replication is going
on. The Cachel oader smply loads non-existing elements from the store and stores modifications back to the store.

JBoss Release 1.4.1 "Cayenne" 42

Cache Loaders

When the cache is started, depending on the prel oad element, certain data can be preloaded, so that the cache is
partly warmed up.

When using PojoCache, this means that entire POJOs can be stored to a database or a filesystem, and when access-
ing fields of a POJO, they will be lazily loaded using the Cachel oader to access a backend store. This feature ef-
fectively provides simple persistency for any POJO.

7.4.2. Replicated caches with all nodes sharing the same store

The following figure shows 2 JBossCache nodes sharing the same backend store:

(achel.oader C }ac-hr:L oader

Figure 7.1. 2 nodes sharing a backend store

Both nodes have a Cachel oader that accesses a common shared backend store. This could for example be a shared
filesystem (using the FileCachel.oader), or a shared database. Because both nodes access the same store, they don't
necessarily need state transfer on startup.7Rather, theFet chl nMenor ySt at e attribute could be set to false, resulting
in a'cold' cache, that gradually warms up as elements are accessed and loaded for the first time. This would mean
that individual caches in a cluster might have different in-memory state at any given time (largely depending on
their preloading and eviction strategies).

When storing a value, the writer takes care of storing the change in the backend store. For example, if hodel made

“of course they can enable state transfer, if they want to have awarm or hot cache after startup.

JBoss Release 1.4.1 "Cayenne" 43

Cache Loaders

change C1 and node2 C2, then nodel would tell its Cachel oader to store C1, and node2 would tell its Cachel oader
to store C2.

7.4.3. Replicated caches with only one node having a store

C

(fachel oadd

l

Figure 7.2. 2 nodes but only one accesses the backend store

r

Thisisasimilar case as the previous one, but here only one node in the cluster interacts with a backend store viaits
Cacheloader. All other nodes perform in-memory replication. A use case for this is HTTP session replication,
where all nodes replicate sessions in-memory, and - in addition - one node saves the sessions to a persistent
backend store. Note that here it may make sense for the Cacheloader to store changes asynchronously, that is not
on the caller's thread, in order not to slow down the cluster by accessing (for example) a database. This is a non-
issue when using asynchronous replication.

7.4.4. Replicated caches with each node having its own store

JBoss Release 1.4.1 "Cayenne’ 44

Cache Loaders

“achel oader

[
o

(Cachel . oadei

Sl e

Figure 7.3. 2 nodes each having itsown backend store

Here, each node has its own datastore. Modifications to the cache are (a) replicated across the cluster and (b) per-
sisted using the Cachel oader. This means that all datastores have exactly the same state. When replicating changes
synchronously and in a transaction, the two phase commit protocol takes care that all modifications are replicated
and persisted in each datastore, or noneis replicated and persisted (atomic updates).

Note that currently JBossCache is not an X AResource, that means it doesn't implement recovery. When used with a
TransactionManager that supports recovery, this functionality is not available.

The challenge here is state transfer: when a new node starts it needs to do the following:

1. Téll the coordinator (oldest node in a cluster) to send it the state

2. The coordinator then needs to wait until all in-flight transactions have completed. During this time, it will not
allow for new transactions to be started.

3. Then the coordinator asks its Cachel. oader for the entire state using | oadentireState() . It then sends back
that state to the new node.

4. The new node then tells its Cachel oader to store that state in its store, overwriting the old state. This is the
Cacheloader . st oreEntireState() method

5. Asan option, the transient (in-memory) state can be transferred as well during the state transfer.

JBoss Release 1.4.1 "Cayenne" 45

Cache Loaders

6. Thenew node now has the same state in its backend store as everyone else in the cluster, and modifications re-
ceived from other nodes will now be persisted using the local Cacheloader.

7.4.5. Hierarchical caches

If you need to set up a hierarchy within asingle VM, you can use the Local Del egat i ngCacheLoader . This type of
hierarchy can currently only be set up programmatically. The code below shows how a first-level cache delegates
to alocal second-level cache:

TreeCache firstLevel, secondLevel
Local Del egati ngCacheLoader cache_| oader;

/1 create and configure firstLeve
firstLevel =new TreeCache();

/'l create and configure secondlLeve
secondLevel =new TreeCache();

/| create Del egati ngCachelLoader
cache_| oader =new Local Del egati ngCachelLoader (secondLevel);

/1 set CachelLoader in firstLeve
firstLevel . set CacheLoader (cache_| oader);

/'l start secondLeve
secondLevel . start Servi ce();

/1 start firstLeve
firstLevel .startService();

If you need to set up a hierarchy across VMs but within a cluster, you can use the RpcDel egat i ngCacheLoader ,
which delegates all cache loading requests from non-coordinator caches to the cluster's coordinator cache. The co-
ordinator cache is the first cache in the cluster to come online. Note that if the coordinator cache leaves the cluster
for any reason, the second cache in the cluster to come online becomes the coordinator and so on. The XML below
shows how to configure a cluster using RocDel egat i ngCacheloader :

<I-i- -->
<I'-- Defines TreeCache configuration -->
<l-- o

<nbean code="org.jboss. cache. TreeCache" nanme="j boss. cache: servi ce=TreeCache" >

<attri bute name="CachelLoader Confi gurati on">
<confi g>
<passi vat i on>f al se</ passi vati on>
<pr el oad>/ sone/ st uf f </ pr el oad>
<cachel oader >
<cl ass>org. j boss. cache. | oader. RpcDel egat i ngCachelLoader </ cl ass>

<I-- whether the cache | oader wites are asynchronous -->
<async>f al se</async>
<I-- only one cache |oader in the chain may set fetchPersistentState to true.
An exception is thrown if nore than one cache | oader sets this to true. -->
<f et chPer si st ent St at e>f al se</f et chPer si st ent St at e>
<l-- determ nes whether this cache | oader ignores wites - defaults to false. -->
<i gnor eModi fi cati ons>f al se</i gnoreMdi fi cati ons>
<I-- if set to true, purges the contents of this cache | oader when the cache starts up
Defaults to false. -->

<pur geOnSt art up>f al se</ purgeOnStart up>

JBoss Release 1.4.1 "Cayenne" 46

Cache Loaders

</ cachel oader >
</ confi g>
</attribute>

</ nbean>

Note that currently (JBossCache 1.3.0) this cache loader is not well supported, and has not been tested. We suggest
to use TcpDel egatingCachel oader instead (see next).

7.4.6. TcpDelegatingCachelLoader

This cache loader allows to delegate loads and stores to another instance of JBossCache, which could reside (a)in
the same address space, (b) in a different process on the same host, or (c) in a different process on a different host.
Option (a) is mostly used for unit testing, and the envisaged useis (b) and (c).

A TcpDelegatingCachel oader talks to a remote TcpCacheServer, which can be a standal one process, or embedded
as an MBean inside JBoss. The TcpCacheServer has a reference to another JBossCache, which it can create itself,
or whichisgiventoit (e.g. by JBoss, using dependency injection).

The TcpDelegatingCacheloader is configured with the host and port of the remote TcpCacheServer, and uses this
to communicate to it.

An example set of a TcpCacheServer running inside of JBoss is shown below:

<server>
<cl asspath codebase="./lib" archives="j boss-cache.jar"/>

<nbean code="org.jboss. cache. | oader.tcp. TcpCacheServer" nane="jboss. cache: servi ce=TcpCacheServer">
<depends optional -attri bute-name="Cache"
proxy-type="attribute">j boss. cache: servi ce=Tr eeCache</ depends>
<attribute name="Bi ndAddr ess" >${j boss. bi nd. addr ess: | ocal host}</attri bute>
<attribute name="Port">7500</attri bute>
<attri bute name="MBeanServer Nane"></attri bute>
<I--<attribute nane="CacheNane">j boss. cache: servi ce=TreeCache</ attri but e>-->
</ mbean>

</ server>

The BindAddress and Port define where its server socket is listening on, and an existing JBossCache MBean isin-
jected into it (assigned to 'Cache’). This means that all requests from the TcpDelegatingCachel oader will be re-
ceived by thisinstance and forwarded to the JBossCache M Bean.

Note that there is also a 'Config' attribute which points to a config XML file for JBossCache. If it is set, then the
TcpCacheServer will create its own instance of JBossCache and configure it according to the Config attribute.

The client side looks as follow:

<attribute name="CachelLoader Confi gurati on">
<confi g>
<cachel oader >
<cl ass>org. j boss. cache. | oader.tcp. TcpDel egati ngCacheLoader </ cl ass>
<properties>
host =l ocal host

JBoss Release 1.4.1 "Cayenne" 47

Cache Loaders

port =7500
</ properties>
</ cachel oader >
</ confi g>
</attribute>

This means this instance of JBossCache will delegate all load and store requests to the remaote TcpCacheServer run-
ning at local host: 7500.

A typica use case could be multiple replicated instance of JBossCache in the same cluster, all delegating to the
same TcpCacheServer instance. The TcpCacheServer might itself delegate to a database via JDBCCachel oader,
but the point hereisthat - if we have 5 nodes all accessing the same dataset - they will load the data from the Tcp-
CacheServer, which has do execute one SQL statement per unloaded data set. If the nodes went directly to the data-
base, then we'd have the same SQL executed multiple times. So TcpCacheServer serves as a natural cache in front
of the DB (assuming that a network round trip is faster than a DB access (which usually also include a network
round trip)).

To dleviate single point of failure, we could combine this with a ChainingCachel oader, where the first Cachel -
oader is a ClusteredCachel oader, the second a TcpDelegatingCachel oader, and the last a JDBCachel oader, ef-
fectively defining our cost of accessto acache inincreasing order of cost.

7.4.7. RmiDelegatingCachelLoader

Similar to the TcpDel egatingCachel oader, the RmiDel egatingCachel oader uses RMI as a method of communi cat-
ing with aremote cache.

An RmiDelegatingCachel oader talks to a remote RmiCacheServer, which is a standalone process. The RmiC-
acheServer has a reference to another JBossCache, which it can create itself, or which is given to it (e.g. by JBoss,
using dependency injection).

The RmiDelegatingCachel oader is configured with the host, port of the remote RMI server and the bind name of
the RmiCacheServer, and uses this to communicate.

An example set of an RmiCacheServer running inside of JBoss is shown below:

<server>
<cl asspath codebase="./lib" archives="j boss-cache.jar"/>

<nbean code="org.j boss. cache. | oader.rm . Rm CacheServer" nanme="j boss. cache: servi ce=Rm CacheSer\
<depends optional -attri bute-name="Cache"
proxy-type="attri bute">j boss. cache: servi ce=Tr eeCache</ depends>
<l-- the address and port of the RM server. -->
<attribute name="Bi ndAddress" >${j boss. bi nd. address: | ocal host}</attri bute>
<attribute name="Port">1098</attri bute>
<attribute name="Bi ndNane">M/Rmi CacheServer </ attri bute>
<attri bute name="MBeanServer Nane"></attri bute>
<I--<attribute nane="CacheNane">j boss. cache: servi ce=TreeCache</attri but e>-->
</ mbean>

</ server >

The BindAddress and Port should point to an already-running RMI server and the BindName is the name the object

JBoss Release 1.4.1 "Cayenne" 48

Cache Loaders

is bound to in the RMI server. An existing JBossCache MBean is injected into it (assigned to 'Cache’). This means
that all requests from the TcpDelegatingCachel oader will be received by this instance and forwarded to the JBoss-
Cache MBean.

Note that there is aso a 'Config' attribute which points to a config XML file for JBossCache. If it is set, then the
RmiCacheServer will create its own instance of JBossCache and configure it according to the Config attribute.

The client side looks as follow:

<attri bute name="CachelLoader Confi gurati on">
<confi g>
<cachel oader >
<cl ass>or g. j boss. cache. | oader . Rmi Del egat i ngCachelLoader </ cl ass>
<properties>
host =l ocal host
port=1098
name=MyRm CacheSer ver
</ properties>
</ cachel oader >
</ confi g>
</attribute>

This means this instance of JBossCache will delegate al load and store requests to the remote RmiCacheServer
running as MyRmiCacheServer on an RMI server running on localhost:1098.

Very similar use case scenarios that apply to TcpDelegatingCachel oaders above apply to RmiDelegatingCachel-
oaders aswell.

7.5. JDBC-based CacheLoader

JBossCache is distributed with a JDBC-based Cachel oader implementation that stores/loads nodes' state into are-
lational database. The implementing classisor g. j boss. cache. | oader . JDBCCacheLoader .

The current implementation uses just one table. Each row in the table represents one node and contains three
columns:

e column for FQN (which isalso aprimary key column)
» column for node contents (attribute/value pairs)
» column for parent FQN

FQN's are stored as strings. Node content is stored as a BLOB. WARNING: TreeCache does not impose any limita-
tions on the types of objects used in FQN but this implementation of Cachel oader requires FQN to contain only
objects of typej ava. | ang. Stri ng. Another limitation for FON is its length. Since FQN is a primary key, its de-
fault column type is VARCHAR which can store text values up to some maximum length determined by the database.
FQN is also subject to any maximum primary key length restriction imposed by the database.

See http://wiki.jboss.org/wiki/Wiki.jsp?page=JDBCCacheloader [2] for configuration tips with specific database
systems.

[2] 772

JBoss Release 1.4.1 "Cayenne" 49

???

Cache Loaders

7.5.1. JDBCCacheLoader configuration

7.5.1.1. Table configuration

Table and column names as well as column types are configurable with the following properties.

» cachejdbc.table.name - the name of the table. The default value is 'jbosscache'.
e cache.jdbc.table.primarykey - the name of the primary key for the table. The default value is 'jbosscache pk'.

e cachejdbc.table.create - can be true or false. Indicates whether to create the table during startup. If true, the ta-
bleiscreated if it doesn't already exist. The default valueistrue.

e cachejdbc.table.drop - can be true or false. Indicates whether to drop the table during shutdown. The default
valueistrue.

e cache.jdbc.fgn.column - FQN column name. The default valueis'fgn'.
e cache.jdbc.fgn.type - FQN column type. The default value is 'varchar(255)".
« cache.jdbc.node.column - node contents column name. The default value is 'node’.

« cache.jdbc.node.type - node contents column type. The default value is 'blob'. This type must specify a valid
binary datatype for the database being used.

7.5.1.2. DataSource

If you are using JBossCache in a managed environment (e.g., an application server) you can specify the INDI name
of the DataSource you want to use.

» cache.jdbc.datasource - INDI name of the DataSource. The default valueis 'java:/DefaultDS..

7.5.1.3. JDBC driver

If you are not using DataSource you have the following properties to configure database access using a JDBC
driver.

e cachejdbc.driver - fully qualified JDBC driver name.
e cache.jdbc.url - URL to connect to the database.
» cache.jdbc.user - user name to connect to the database.

e cache.jdbc.password - password to connect to the database.

7.5.1.4. Configuration example

Below is an example of a JDBC Cachel oader using Oracle as database. The Cachel oaderConfiguration XML ele-
ment contains an arbitrary set of properties which define the database-related configuration.

JBoss Release 1.4.1 "Cayenne" 50

Cache Loaders

<attribute name="CachelLoader Confi gurati on">
<confi g>
<passi vati on>f al se</ passi vati on>
<pr el oad>/ sone/ st uf f </ pr el oad>
<cachel oader >
<cl ass>or g. j boss. cache. | oader. JDBCCachelLoader </ cl ass>
<l-- sanme as the old CacheLoaderConfig attribute -->
<properties>
cache. j dbc. t abl e. nane=j bosscache
cache. jdbc. tabl e. create=true
cache. jdbc. tabl e. drop=true
cache. j dbc. tabl e. pri mar ykey=j bosscache_pk
cache. j dbc. f gn. col um=f gn
cache. j dbc. f gn. t ype=var char (255)
cache. j dbc. node. col utTm=node
cache. j dbc. node. t ype=bl ob
cache. j dbc. par ent. col um=par ent
cache. jdbc.driver=oracle.jdbc. Oracl eDri ver
cache. jdbc. url =j dbc: oracl e: thin: @ocal host: 1521: JBOSSDB
cache. j dbc. user =SCOTT
cache. j dbc. passwor d=Tl GER
</ properties>

<I-- whether the cache | oader wites are asynchronous -->
<async>f al se</ async>
<I-- only one cache |oader in the chain may set fetchPersistentState to true.
An exception is thrown if nore than one cache | oader sets this to true. -->
<f et chPer si st ent St at e>t rue</ f et chPer si st ent St at e>
<I'-- determ nes whether this cache | oader ignores wites - defaults to false. -->
<i gnor eModi fi cati ons>f al se</i gnoreMdi fi cati ons>
<l-- if set to true, purges the contents of this cache | oader when the cache starts up
Defaults to false. -->

<pur geOnSt art up>f al se</ purgeOnSt art up>
</ cachel oader >
</ confi g>
</attribute>

Asan aternative to configuring the entire JDBC connection, the name of an existing data source can be given:

<attri bute name="CachelLoader Confi gurati on">
<confi g>

<passi vati on>f al se</ passi vati on>

<pr el oad>/ sone/ st uf f </ pr el oad>

<cachel oader >
<cl ass>org. j boss. cache. | oader. JDBCCachelLoader </ cl ass>
<I-- sanme as the old CachelLoaderConfig attribute -->
<properties>

cache. j dbc. dat asour ce=j ava: / Def aul t DS

</ properties>

<l-- whether the cache | oader wites are asynchronous -->
<async>f al se</ async>
<l-- only one cache | oader in the chain nmay set fetchPersistentState to true.
An exception is thrown if nmore than one cache | oader sets this to true. -->
<f et chPer si st ent St at e>t rue</ f et chPer si st ent St at e>
<l-- determ nes whether this cache | oader ignores wites - defaults to false. -->
<i gnor eModi fi cati ons>f al se</i gnoreMdi fi cati ons>
<I-- if set to true, purges the contents of this cache |oader when the cache starts up
Defaults to false. -->

<pur geOnSt art up>f al se</ purgeOnSt art up>
</ cachel oader >
</ config>
</attribute>

JBoss Release 1.4.1 "Cayenne" 51

TreeCacheMarshaller

Rather than using standard Java serialization to seridize j ava. | ang. refl ect . Met hod objects and their parameters
when remote caches talk to each other to replicate data, JBoss Cache uses its own mechanism to marshall and un-
marshall data called the Tr eeCacheMar shal | er .

In addition to providing the performance and efficiency enhancements over standard Java seridization, The
TreeCacheMar shal | er also performs one other function. In order to deserialize an object replicated to it from are-
mote cache, a cache instance needs to have access to the classloader that defines the object's class. Thisis simple if
the cache's own classloader can access the required classes, but for situations where JBoss Cache is used as a ser-
vice supporting clients that use different classloaders, the Tr eeCacheMar shal | er can be configured to use different
classoaders on a per-region basis by allowing application code to register a classloader that should be used to
handle replication for a portion of the tree.

8.1. Basic Usage

Tr eeCache exposes the following basic API for controlling the behavior of Tr eeCacheMar shal | er :

/**
* Sets whether narshal ling uses scoped class |oaders on a per region basis.
*
* This property nust be set to true before any call to
* {@ink #registerd assLoader(String, C assLoader)} or
* {@ink #activateRegi on(String)}
*
* @aramisTrue
*/
voi d set UseRegi onBasedMar shal | i ng(bool ean isTrue);

/**

* Gets whether marshalling uses scoped class | oaders on a per regi on basis.
*/

bool ean get UseRegi onBasedMar shal |i ng();

*

~

L N S R T I B B N

Regi sters the given cl assl oader w th TreeCacheMarshaller for
use in unmarshalling replicated objects for the specified region.

@aram fgn The fgn region. This fgn and its children will use this classloader for (un)marshalling.
@aram cl The cl ass | oader to use

@ hr ows Regi onNaneConflict Exception if fgn i s a descendant of
an FON that al ready has a cl assl oader
regi stered.

@hrows |11l egal StateException if useMarshalling i S false

~

voi d regi sterCd assLoader(String fgn, C assLoader cl) throws Regi onNaneConfl i ct Excepti on;

/**

JBoss Release 1.4.1 "Cayenne" 52

TreeCacheMarshaller

Instructs the TreeCachemarshaller to no | onger use a speci al
cl assl oader to unmarshal replicated objects for the specified region.

@ hrows Regi onNot FoundException if no cl assl oader has been registered for
fqn.
* @hrows |1 egal StateException if usemarshalling i S false
*/
voi d unregi sterC assLoader (String fqn) throws Regi onNot FoundExcepti on;

*
*
* @aramfqgn The fgn of the root node of region.
*
*
*

Property UseRegi onBasedMar shal | i ng controls whether classloader-based marshalling should be used. This prop-
erty should be set as part of normal cache configuration, typically in the cache's XML configuration file:

<attribute name="UseRegi onBasedMarshal | i ng">true</attri bute>

Anytime after UseRegi onBasedMar shal | i ng iS Set to t r ue, the application code can call r egi st er d assLoader to
associate a classloader with the portion of the cache rooted in a particular FQN. Once registered, the classloader
will be used to unmarshal any replication traffic related to the node identified by the FQN or to any of its descend-
ants.

At thistime, r egi st er d assLoader only supports String-based FQNSs.

Notethat it isillegal to register aclassloader for an FQN that is a descendant of an FQN for which a classloader has
already been registered. For example, if classloader X is registered for FQN / a, a Regi onNanmeConf | i ct Excepti on
will be thrown if an attempt is made to register classloader Y for FQN / a/ b.

Method unr egi st er d assLoader isused to remove the association between a classloader and a particular cache re-
gion. Be sure to call this method when you are done using the cache with a particular classloader, or areference to
the classloader will be held, causing a memory |eak!

8.2. Region Activation/Inactivation

The basic API discussed above is helpful, but in situations where applications with different classloaders are shar-
ing a cache, the lifecycle of those applications will typically be different from that of the cache. The result of thisis
that it is difficult or impossible to register all required classloaders before a cache is started. For example, consider
the following scenario:

1. TreeCache on machine A starts.

2. OnA aclassloader is registered under FON /x.

3. Machine B starts, so TreeCache on B starts.

4. Anobjectisput inthe machine A cache under FON /x/1.

5. Replication to B fails, as the required classloader is not yet registered.

6. OnB aclassloader is registered under FQN /x, but too late to prevent the replication error.

Furthermore, if any objects had been added to server A before server B was started, the initial transfer of state from

JBoss Release 1.4.1 "Cayenne" 53

TreeCacheMarshaller

A to B would have failed aswell, as B would not be able to unmarshal the transferred objects.

To resolve this problem, if region-based marshalling is used a cache instance can be configured to ignore replica-
tion events for a portion of the tree. That portion of the tree is considered "inactive". After the needed classloader
has been registered, the portion of the tree can be "activated". Activation causes the following events to occur:

* Any existing state for that portion of the tree is transferred from another node in the cluster and integrated into
thelocal tree.

» TreeCacheMarshaller begins normal handling of replication traffic related to the portion of the tree.

In addition to the basic marshalling related API discussed above, TreeCache exposes the following API related to
activating and inactivating portions of the cache:

/**

* Sets whether the entire tree is inactive upon startup, only respondi ng

* to replication nessages after {@ink #activateRegion(String)} is

* called to activate one or nore parts of the tree.

* <p>

* This property is only relevant if {@ink #getUseRegi onBasedMarshalling()} is
*

. true.

*

-~

public void setlnactiveOnStartup(bool ean inactiveOnStartup);

/**

* CGets whether the entire tree is inactive upon startup, only respondi ng
* to replication nessages after {@ink #activateRegion(String)} is

* called to activate one or nore parts of the tree.

* <p>

* This property is only relevant if {@ink #get UseRegi onBasedMarshalling()} is
* true.

*

/
publ i c bool ean islnactiveOnStartup();

*

/
Causes the cache to transfer state for the subtree rooted at

subtreeFgn and to begin accepting replication nessages

for that subtree.

<p>

NOTE: </ strong> This nmethod will cause the creation of a node

in the local tree at subtreeFqn whet her or not that

node exists anywhere else in the cluster. |f the node does not exi st

el sewhere, the local node will be enpty. The creation of this node will
not be replicated.

@ar am subtreeFgn Fgn string indicating the uppernbpst node in the
portion of the tree that should be activated.

@ hr ows Regi onNot Enpt yException i f the node subtreeFgn
exi sts and has either data or children

@hrows |11 egal StateException
if {@ink #get UseRegi onBasedMar shal | i ng() useRegi onBasedMarshal | ing} is false

EE R A S S R I N T T R R I

~

public void activateRegi on(String subtreeFqgn)
t hrows Regi onNot Enpt yExcepti on, Regi onNameConfl i ct Excepti on, CacheExcepti on;

/**

* Causes the cache to stop accepting replication events for the subtree
* rooted at subtreeFqgn and evict all nodes in that subtree.

JBoss Release 1.4.1 "Cayenne" 54

TreeCacheMarshaller

@ar am subtreeFgn Fgn string indicating the uppernbpst node in the
portion of the tree that should be activated.

@ hrows Regi onNanmeConflict Exception if subtreeFgn i ndi cates
a node that is part of another
subtree that is being specially
managed (either by activate/inactiveRegi on()
or by registerd assLoader())

@ hrows CacheException if there is a problem evicting nodes

L R S . . S N

@hrows |11 egal StateException
if {@ink #get UseRegi onBasedMar shal | i ng() useRegi onBasedMarshal ling} is false

*

*/
public void inactivateRegi on(String subtreeFqn) throws Regi onNameConfl i ct Excepti on, CacheExcepti on;

Property | nactivenStartup controls whether the entire cache should be considered inactive when the cache
starts. In most use cases where region activation is needed, this property would be set to true. This property should
be set as part of normal cache configuration, typically in the cache's XML configuration file:

<attribute name="InactiveOnStartup">true</attri bute>

When | nacti veOnSt art up is Set to true, no state transfer will be performed on startup, even if property Fet chi n-
Menor ySt at e iStrue.

When act i vat eRegi on() is invoked, each node in the cluster will be queried to see if it has active state for that
portion of the tree. If one does, it will return the current state, which will then be integrated into the tree. Once state
is transferred from one node, no other nodes will be asked for state. This process is somewhat different from the
initial state transfer process that occurs at startup when property Fet chl nMenorySt at e is Set to true. During initial
state transfer, only the oldest member of the cluster is queried for state. This approach is inadequate for region ac-
tivation, as it is possible that the oldest member of the cluster also has the region inactivated, and thus cannot
provide state. So, each node in the cluster is queried until one provides state.

Before requesting state from other nodes, act i vat eRegi on() will confirm that there is no existing data in the por-
tion of the tree being activated. If thereis any, aRegi onNot Enpt yExcept i on Will be thrown.

It is important to understand that when aregion of the tree is marked as inactive, this only means replication traffic
from other cluster nodes related to that portion of the tree will be ignored. It is still technically possible for objects
to be placed in the inactive portion of the tree locally (viaaput call), and any such local activity will be replicated
to other nodes. TreeCache will not prevent this kind of local activity on an inactive region, but, as discussed above
acti vat eRegi on() will throw an exception if it discovers datain aregion that is being activated.

8.2.1. Example usage of Region Activation/Inactivation

As an example of the usage of region activation and inactivation, let's imagine a scenario where a TreeCache in-
stance is deployed as a shared MBean service by deploying a- servi ce. xm inthe JBoss/ depl oy directory. One of
the users of this cache could be a web application, which when started will register its classloader with the
TreeCache and activate its own region of the cache.

First, the XML configuration file for the shared cache service would be configured as follows (only relevant por-
tions are shown):

<?xm version="1.0" encodi ng="UTF-8" ?>

JBoss Release 1.4.1 "Cayenne" 55

TreeCacheMarshaller

<server>
<cl asspat h codebase="./I1ib" archi ves="jboss-cache.jar, jgroups.jar" />

<l-- -->
<I-- Defines TreeCache configuration -->
<I-- o

<nmbean code="org.j boss. cache. TreeCache" name="com xyz. cache: servi ce=Shar edCache" >

<l-- Configure Marshalling -->
<attribute name="get UseRegi onBasedMarshal | i ng">true</attri bute>
<attribute name="InactiveOnStartup">true</attribute>

</ mbean>
</ server >

For the webapp, registering/unregistering the classloader and activating/inactivating the app's region in the cache
are tasks that should be done as part of initialization and destruction of the app. So, using a Ser vl et Cont ext L-
i st ener to manage these tasks seemslogical. Following is an example listener:

package exanpl e;

i mport j avax. managenent. Mal f or medCbj ect NaneExcepti on
i mport javax. managenent. Obj ect Nane;

i mport javax.servl et. Servl et Cont ext Event ;

i mport javax.servlet. Servl et Cont ext Li st ener

i mport org.jboss. cache. TreeCacheMBean
i mport org.jboss. m.util.MeanProxyExt;

public class Activel nacti veRegi onExanpl e i npl ements Servl et Cont ext Li st ener

{

private TreeCacheMBean cache;

public void contextlnitialized(ServletContextEvent arg0) {

try {
findCache();

cache. regi sterd assLoader ("/ exanpl e", Thread. current Thread() . get Cont ext d assLoader());
cache. acti veRegi on("/ exanpl e");

}
catch (Exception e) {

/1 ... handl e exception
}

}

public voi d context Destroyed(Servl et Cont ext Event arg0) {
cache. i nacti vat eRegi on("/ exanpl e");
cache. unr egi st er d assLoader ("/ exanpl e");

}

private void findCache() throws MalfornmedObj ect NanmeException {
/1 Find the shared cache service in JMX and create a proxy to it
Cbj ect Nane cacheServi ceName_ = new Obj ect Nane("com xyz. cache: servi ce=Shar edCache") ;
/'l Create Proxy-Object for this service
cache = (TreeCacheMBean) MBeanProxyExt. create(TreeCacheMBean. cl ass, cacheServi ceNane_);

JBoss Release 1.4.1 "Cayenne" 56

TreeCacheMarshaller

The listener makes use of the JBoss utility class MBeanPr oxyExt to find the TreeCache in IMX and create a proxy
to it. (See the "Running and using TreeCache inside JBoss" section below for more on accessing a TreeCache). It
then registersits classloader with the cache and activates its region. When the webapp is being destroyed, it inactiv-
atesitsregion and unregisters its classloader (thus ensuring that the classloader isn't leaked via areferenceto it held
by TreeCacheMarshaller).

Note the order of the method calls in the example class -- register a classloader before activating a region, and inac-
tivate the region before unregistering the classloader.

8.3. Region Activation/Inactivation with a CachelLoader

The activateRegion()/inactivateRegion() APl can be used in conjunction with a Cacheloader as well, but only if
the cache loader implementation implements interface or g. j boss. cache. | oader . Ext endedCacheLoader . Thisisa
subinterface of the normal cacheLoader interface. It additionally specifies the following methods needed to support
the partial state transfer that occurs when aregion is activated:

*

Fetch a portion of the state for this cache from secondary storage
(disk, DB) and return it as a byte buffer.

This is for activation of a portion of new cache froma renpte cache.
The new cache would then call {@ink #storeState(byte[], Fgn)}.

@ar am subtree Fgn nami ng the root (i.e. highest |evel parent) node of
the subtree for which state is requested.

@ee org.jboss. cache. TreeCache#acti vat eRegi on(Stri ng)

I R S . S I

~

byte[] | oadState(Fgn subtree) throws Exception;

*

/
Store the given portion of the cache tree's state in secondary storage.
Overwite whatever is currently in secondary storage.

@ar am st ate the state to store
@ar am subtree Fgn naming the root (i.e. highest |evel parent) node of
the subtree included in state.

L S

-~

voi d storeState(byte[] state, Fgn subtree) throws Exception;

/**

* Sets the {@ink Regi onManager} this object should use to nanage
* marshal | i ng/unmarshal ling of different regions using different
* cl assl oaders.

* <p>

* NOTE: </ strong> This nmethod is only intended to be used
* by the TreeCache instance this cache | oader is

* associated with.

* </ p>

*

* @ar am manager the region nanager to use, or null.

*

-~

voi d set Regi onManager (Regi onManager manager);

JBoss Release 1.4.1 "Cayenne" 57

TreeCacheMarshaller

JBossCache currently comes with two implementations of ExtendedCachel oader, Fi | eExt endedCachelLoader and
JDBCExt endedCacheLoader . These classes extend FileCachel oader and JDBCCachel oader, respectively, imple-
menting the extra methods in the extended interface.

8.4. Performance over Java serialization

To achieve the performance and efficiency gains, the Tr eeCacheMar shal | er uses a number of techniques including
method ids for known methods and magic numbers for known internal class types which drastically reduces the
size of callsto remote caches, greatly improving throughput and reducing the overhead of Java serialization.

To make things even faster, the Tr eeCacheMar shal | er uses JBoss Serialization [1], a highly efficient drop-in re-
placement for Java serialization for user-defined classes. JBoss Serialization is enabled and always used by default,
although this can be disabled, causing the marshalling of user-defined classes to revert to Java serialization. JBoss
Serialization is disabled by passing in the - Dseri al i zat i on. j boss=f al se environment variable into your VM.

8.5. Backward compatibility

Marshalling in JBoss Cache is now versioned. All communications between caches contain a version short which
allows JBoss Cache instances of different versions to communicate with each other. Up until JBoss Cache 1.4.0, all
versions were able to communicate with each other anyway since they al used simple seridization of
org.j groups. Met hodCal | objects, provided they all used the same version of JGroups. This requirement (more a
requirement of the JGroups messaging layer than JBoss Cache) till exists, even though with JBoss Cache 1.4.0,
we've moved to a much more efficient and sophisticated marshalling mechanism.

JBoss Cache 1.4.0 and future releases of JBoss Cache will always be able to unmarshall data from previous ver-
sions of JBoss Cache. For JBoss Cache 1.4.0 and future releases to marshall datain aformat that is compatible with
older versions, however, you would have to start JBoss Cache with the following configuration attribute:

<I-- takes values such as 1.2.3, 1.2.4 and 1.3.0 -->
<attribute name="ReplicationVersion">1.2.4</attri bute>

[1] http://labs.jboss.org/portal/index.html ?ctrl:id=page.default.info& project=serialization

JBoss Release 1.4.1 "Cayenne" 58

http://labs.jboss.org/portal/index.html?ctrl:id=page.default.info&project=serialization

State Transfer

"State Transfer" refers to the process by which a JBoss Cache instance prepares itself to begin providing a service
by acquiring the current state from another cache instance and integrating that state into its own state.

9.1. Types of State Transfer

The state that is acquired and integrated can consist of two basic types:

1. "Transient" or "in-memory" state. This consists of the actual in-memory state of another cache instance -- the
contents of the various in-memory nodes in the cache that is providing state are serialized and transferred; the
recipient deserializes the data, creates corresponding nodes in its own in-memory tree, and populates them
with the transferred data.

"In-memory" state transfer is enabled by setting the cache's Fet chl nMenor y St at e property to t r ue.

2. "Persistent" state. Only applicable if a non-shared cache loader is used. The state stored in the state-provider
cache's persistent store is deserialized and transferred; the recipient passes the data to its own cache loader,
which persistsit to the recipient's persistent store.

"Persistent” state transfer is enabled by setting a cache loader's CachelLoader Fet chPer si st ent St at e property
tot rue. If multiple cache loaders are configured in a chain, only one can have this property set to true; other-
wise you will get an exception at startup.

Persistent state transfer with a shared cache loader does not make sense, as the same persistent store that
provides the datawill just end up receiving it. Therefore, if a shared cache loader is used, the cache will not al-
low a persistent state transfer even if a cache loader has CacheLoader Fet chPer si stent Stat e Settotr ue.

Which of these types of state transfer is appropriate depends on the usage of the cache.

1. If awrite-through cache loader is used, the current cache state is fully represented by the persistent state. Data
may have been evicted from the in-memory state, but it will still be in the persistent store. In this case, if the
cache loader is not shared, persistent state transfer is used to ensure the new cache has the correct state. In-
memory state can be transferred as well if the desireisto have a"hot" cache -- one that has all relevant datain
memory when the cache begins providing service. (Note that the "Cachel oaderPreload” configuration para-
meter can be used as well to provide a "warm" or "hot" cache without requiring an in-memory state transfer.
This approach somewhat reduces the burden on the cache instance providing state, but increases the load on
the persistent store on the recipient side.)

2. If acache loader is used with passivation, the full representation of the state can only be obtained by combin-
ing the in-memory (i.e. non-passivated) and persistent (i.e. passivated) states. Therefore an in-memory state

JBoss Release 1.4.1 "Cayenne" 59

State Transfer

transfer is necesssary. A persistent state transfer is necessary if the cache loader is not shared.

3. If no cache loader is used and the cache is solely a write-aside cache (i.e. one that is used to cache data that
can also be found in a persistent store, e.g. a database), whether or not in-memory state should be transferred
depends on whether or not a"hot" cache is desired.

9.2. When State Transfer Occurs

If either in-memory or persistent state transfer is enabled, a full or partial state transfer will be done at various
times, depending on how the cacheis used. "Full" state transfer refers to the transfer of the state related to the entire
tree -- i.e. the root node and all nodes below it. A "partial" state transfer is one where just a portion of the tree is
transferred -- i.e. anode at agiven Fgn and all nodes below it.

If either in-memory or persistent state transfer is enabled, state transfer will occur at the following times:

1. Initia state transfer. This occurs when the cache isfirst started (as part of the processing of thestart () meth-
od). Thisis afull state transfer. The state is retrieved from the cache instance that has been operational the
longest. If there is any problem receiving or integrating the state, the cache will not start.

Initial state transfer will occur unless:

a. ThecachesinactiveOnStartup property istrue. This property is used in conjunction with region-based
marshalling; see below for more on this.

b. Buddy replication is used. See below for more on state transfer with buddy replication.

2. Partial state transfer following region activation. Only relevant when region-based marshalling is used. Here a
special classloader is needed to unmarshal the state for a portion of the tree. State transfer cannot succeed until
the application registers this classloader with the cache. Once the application registers its classloader, it calls
acti vat eRegi on(String fqgn).Aspart of the region activation process, a partial state transfer of the relevant
subtree's state is performed. The state is requested from the oldest cache instance in the cluster; if that instance
responds with no state, state is requested from each instance one by one until one provides state or al in-
stances have been queried.

Typically when region-based marshalling is used, the cache's | nact i veOnSt ar t up property isset totrue. This
suppresses initial state transfer, which would fail due to the inability to deserialize the transferred state.

3. Buddy replication. When buddy replication is used, initial state transfer is disabled. Instead, when a cache in-
stance joins the cluster, it becomes the buddy of one or more other instances, and one or more other instances
become its buddy. Each time an instance determines it has a new buddy providing backup for it, it pushesit's
current state to the new buddy. This "pushing” of state to the new buddy is slightly different from other forms
of state transfer, which are based on a"pull" approach (i.e. recipient asks for and receives state). However, the
process of preparing and integrating the state is the same.

This "push” of state upon buddy group formation only occurs if the I nacti venSt art up property is set to
false. If it is true, state transfer amongst the buddies only occurs when the application cals ac-
ti vat eRegi on(String fqn) onthevarious members of the group.

JBoss Release 1.4.1 "Cayenne" 60

State Transfer

Partial state transfer following an act i vat eRegi on() call is dlightly different in the buddy replication case as
well. Instead of requesting the partial state from one cache instance, and trying all instances until one re-
sponds, with buddy replication the instance that is activating a region will request partial state from each in-
stance for which it is serving as a backup.

JBoss Release 1.4.1 "Cayenne" 61

10

Version Compatibility and Interoperability

While this is not absolutely guaranteed, generally speaking within a major version, releases of JBoss Cache are
meant to be compatible and interoperable. Compatible in the sense that it should be possible to upgrade an applica
tion from one version to another by simply replacing the jars. Interoperable in the sense that if two different ver-
sions of JBoss Cache are used in the same cluster, they should be able to exchange replication and state transfer
messages. Note however that interoperability requires use of the same JGroups version in al nodes in the cluster.
In most cases, the version of JGroups used by aversion of JBoss Cache can be upgraded.

Inthe 1.2.4 and 1.2.4.SP1 releases, APl compatibility and interoperability with previous releases was broken. The
primary purpose of the 1.2.4.SP2 release was to restore API compatibility and interoperability. Note, however, that
restoring APl compatibility with earlier releases meant that 1.2.4.SP2 is not completely APl compatible with the
other two 1.2.4 releases. If you have built applications on top of 1.2.4 or 1.2.4.SP1, please recompile before up-
grading to 1.2.4.SP2 in order to be sure you have no issues.

Beginning in 1.2.4.SP2, a new configuration attribute Repl i cat i onVer si on has been added. This attribute needs to
be set in order to alow interoperability with previous releases. The value should be set to the release name of the
version with which interoperability is desired, e.g. "1.2.3". If this attribute is set, the wire format of replication and
state transfer messages will conform to that understood by the indicated release. This mechanism allows us to im-
prove JBoss Cache by using more efficient wire formats while still providing a means to preserve interoperability.

In arare usage scenario, multiple different JBoss Cache instances may be operating on each node in a cluster, but
not all need to interoperate with a version 1.2.3 cache, and thus some caches will not be configured with Repl i ca-
ti onVersion set to 1.2.3. This can cause problems with seriaization of Fgn objects. If you are using this kind of
configuration, are having problems and are unwilling to set Repl i cati onVersi on to 1. 2. 3 on all caches, a work-
around isto set system property j boss. cache. f qn. 123conpati bl e tOt r ue.

JBoss Release 1.4.1 "Cayenne" 62

11

Configuration

All properties of the cache are configured via setters and can be retrieved via getters. This can be done either manu-
ally, or viathe Proper t yConfi gur at or and an XML file.

11.1. Sample XML-Based Configuration

A sample XML configuration file is shown below:

<?xm version="1.0" encodi ng="UTF-8" ?>
<server>
<cl asspath codebase="./lib" archives="j boss-cache.jar, jgroups.jar" />

<l-- -->
<I-- Defines TreeCache configuration -->
<l-- -->

<nbean code="org.jboss. cache. TreeCache" nanme="j boss. cache: servi ce=TreeCache" >
<depends>j boss: servi ce=Nani ng</ depends>
<depends>j boss: servi ce=Tr ansact i onManager </ depends>

<l-- Configure the Transacti onManager -->
<attribute name="Transacti onManager LookupCl ass">org.j boss. cache. DummyTr ansact i onManager Lookup</attrik

<l--
Node | ocki ng schene :
PESSI M STI C (defaul t)
OPTI M STI C
-->
<attribute name="NodelLocki ngSchene" >PESSI M STI C</ attri but e>

<l--
Node | ocki ng isolation |evel
SERI ALI ZABLE
REPEATABLE_READ (defaul t)
READ_COWM TTED
READ_UNCOWM TTED
NONE

(ignored if NodeLocki ngSchene is OPTIM STI C)
-->

<attribute name="1|sol ati onLevel ">REPEATABLE_READ</ attri but e>

<I'-- Lock parent before doing node additions/renoves -->
<attri bute name="LockPar ent For Chi |l dl nsert Renove" >t rue</attri but e>

<l-- Val i d nodes are LOCAL
REPL_ASYNC
REPL_SYNC
I NVALI DATI ON_ASYNC
I NVALI DATI ON_SYNC
-->
<attribute nane="CacheMode" >LOCAL</ attri but e>

JBoss Release 1.4.1 "Cayenne" 63

Configuration

<I-- Whether each interceptor should have an nbean
regi stered to capture and display its statistics. -->
<attribute name="Usel nt er cept or Moeans" >true</attri bute>

<l-- Nane of cluster. Needs to be the sanme for all TreeCache nodes in a
cluster, in order to find each other -->
<attribute nanme="C ust er Nane" >JBoss- Cache-Cl uster</attri but e>

<I-- Unconment next three statements to enable JG oups multipl exer
This configuration is dependent on the JG oups nultiplexer being
regi stered in an MBean server such as JBosSsAS. -->

<l--

<depends>j gr oups. mux: name=Mul ti pl exer </ depends>
<attribute name="Mul ti pl exer Servi ce">j groups. mux: nane=Mul ti pl exer</attri bute>
<attribute name="Muil tipl exer St ack">udp</attri bute>

-->
<l-- JGoups protocol stack properties. CusterConfig isn't used if the
mul ti pl exer is enabled and successfully initialized. -->
<attribute name="d usterConfig">
<confi g>
<l-- UDP: if you have a multihonmed machi ne,
set the bind_addr attribute to the appropriate NIC |P address
-->
<l-- UDP: On Wndows nmchi nes, because of the nedia sense feature
bei ng broken with nmulticast (even after disabling nmedia sense)
set the | oopback attribute to true
-->

<UDP ntast _addr="228.1.2.3" ntast_port="45566" ip_ttl="64" ip_ncast="true"
ncast _send_buf _si ze="150000" ntast _recv_buf_si ze="80000" ucast_send_buf _si ze="150000"
ucast _recv_buf _si ze="80000" | oopback="fal se" />
<PI NG ti neout ="2000" num. nitial _nenbers="3" up_thread="fal se" down_t hread="fal se" />
<MERGE2 mi n_interval ="10000" max_i nterval ="20000" />
<FD shun="true" up_thread="true" down_t hread="true" />
<VERI FY_SUSPECT ti neout ="1500" up_t hread="fal se" down_t hread="fal se" />
<pbcast. NAKACK gc_| ag="50" max_xmt_size="8192" retransmt_ti neout="600, 1200, 2400, 4800" up_t hr eac
down_t hread="fal se" />
<UNI CAST ti meout =" 600, 1200, 2400" wi ndow_si ze="100" mi n_t hreshol d="10" down_t hread="fal se" />
<pbcast. STABLE desired_avg_gossi p="20000" up_t hread="fal se" down_t hread="fal se" />
<FRAG frag_si ze="8192" down_t hread="fal se" up_thread="fal se" />
<pbcast. GVS joi n_tineout ="5000" join_retry_tinmeout="2000" shun="true" print_|ocal _addr="true" />
<pbcast . STATE_TRANSFER up_t hread="f al se" down_t hread="fal se" />
</ confi g>
</attribute>

<I-- The max amount of time (in mlliseconds) we wait until the
initial state (ie. the contents of the cache) are retrieved from
exi sting nmenbers in a clustered environnent

-->

<attribute name="Initial StateRetrieval Ti neout">5000</attri bute>

<l-- Nunber of milliseconds to wait until all responses for a
synchronous call have been received.

caD

<attribute name="SyncRepl Ti meout ">10000</attri but e>

<l-- Max nunber of mlliseconds to wait for a | ock acquisition -->
<attribute name="LockAcqui sitionTi meout">15000</attri bute>

<l-- Name of the eviction policy class. -->
<attribute name="EvictionPolicyC ass">org.jboss.cache. eviction.LRUPolicy</attribute>

<I-- Specific eviction policy configurations. This is LRU -->
<attribute name="EvictionPolicyConfig">
<confi g>

JBoss Release 1.4.1 "Cayenne" 64

Configuration

<attribute name="wakeUpl nt er val Seconds" >5</attri but e>
<l-- Cache wi de default -->

<regi on nane="/_default_">

<attribute nanme="naxNodes">5000</attri bute>
<attribute name="ti neToLi veSeconds" >1000</attri bute>

<I-- Maximumtine an object is kept in cache regardless of idle time -->
<attribute name="maxAgeSeconds">120</attri bute>
</ regi on>

<regi on nanme="/org/jboss/data">
<attribute nanme="naxNodes">5000</attri bute>
<attribute nanme="ti neToLi veSeconds">1000</attri but e>
</regi on>

<regi on nanme="/org/jboss/test/data">
<attribute name="nmaxNodes">5</attri bute>
<attribute nanme="ti neToLi veSeconds" >4</attri bute>
</regi on>
</ confi g>
</attribute>

<l-- New 1. 3.x cache | oader config block -->
<attribute name="CachelLoader Confi gurati on">
<confi g>
<l-- if passivation is true, only the first cache |oader is used; the rest are ignored --

<passi vati on>f al se</ passi vati on>
<prel oad>/al/ b, /all TenpObj ects, /sone/specific/fqgn</prel oad>
<shar ed>f al se</ shar ed>

<I-- we can now have multiple cache | oaders, which get chained -->
<cachel oader >
<cl ass>or g. j boss. cache. | oader. Fi | eCachelLoader </ cl ass>
<l-- sanme as the old CacheLoaderConfig attribute -->
<properties>
| ocation=/tnp/ myFil eStore
</ properties>

<I-- whether the cache | oader wites are asynchronous -->
<async>f al se</async>
<I-- only one cache |oader in the chain may set fetchPersistentState to true.
An exception is thrown if nore than one cache | oader sets this to true. -->
<f et chPer si st ent St at e>t rue</ f et chPer si st ent St at e>
<l-- determ nes whether this cache | oader ignores wites - defaults to false. -->
<i gnor eModi fi cati ons>f al se</i gnoreMdi fi cati ons>
<l-- if set to true, purges the contents of this cache | oader when the cache starts
Defaults to false. -->

<pur geOnSt art up>f al se</ purgeOnStart up>
</ cachel oader >

<cachel oader >
<cl ass>org. j boss. cache. | oader. JDBCCachelLoader </ cl ass>
<I-- sanme as the old CachelLoaderConfig attribute -->
<properties>
cache. jdbc. driver=com nysql .jdbc. Driver
cache. jdbc. url =j dbc: nmysql : / /1 ocal host : 3306/ bossdb
cache. j dbc. user =r oot
cache. j dbc. passwor d=
</ properties>

<I-- whether the cache | oader wites are asynchronous -->
<async>t rue</ async>
<l-- only one cache | oader in the chain may set fetchPersistentState to true.
An exception is thrown if nore than one cache | oader sets this to true. -->
<f et chPer si st ent St at e>f al se</f et chPer si st ent St at e>
<I'-- determ nes whether this cache | oader ignores wites - defaults to false. -->
<i gnor eModi fi cati ons>t rue</i gnoreMdi fi cati ons>
<I-- if set to true, purges the contents of this cache | oader when the cache starts
Defaults to false. -->

JBoss Release 1.4.1 "Cayenne" 65

Configuration

<pur geOnsSt ar t up>f al se</ purgeOnSt art up>
</ cachel oader >

</ confi g>

</attribute>

</ mbean>
</ server>

The PropertyConfigurator.configure() method needs to have as argument a filename which is located on the
classpath; it will use be used to configure JBoss Cache from the properties defined in it. Note that this configura-
tion fil 8e is used to configure JBoss Cache both as a standal one cache, and as an MBean if run inside the JBoss con-
tainer.

11.2. Definition of XML attributes

A list of definitions of each of the XML attributes used above:

Name Description

BuddyReplicationConfig An XML element that contains detailed buddy replic-
ation configuration. See section above on Buddy Rep-
lication.

Cachel oaderConfiguration An XML element that contains detailed cache loader

configuration. See section above on Cache Loaders.

CacheMode LOCAL, REPL_SYNC, REPL_ASYNC, INVALID-
ATION_SYNC or INVALIDATION_ASYNC

ClusterConfig The configuration of the underlying JGroups stack.
Ignored if Ml tipl exerService and Ml tipl exer -
St ack are used. See the various *-servicexml filesin
the source distribution et c/ META- | NF folder for ex-
amples. See the JGroups documentation [1] or the
JGroups wiki page[2] for more information.

ClusterName Name of cluster. Needs to be the same for al nodesin
acluster in order for them to communicate with each
other.

EvictionPolicyClass The name of a class implementing EvictionPolicy.

Bwe will switch to using an XMBean in afuture release.
[1] http://www.jgroups.org
[2] http://wiki.jboss.org/wiki/Wiki.jsp?page=JGroups

JBoss Release 1.4.1 "Cayenne" 66

http://www.jgroups.org
http://wiki.jboss.org/wiki/Wiki.jsp?page=JGroups

Configuration

EvictionPolicyConfig
FetchinMemoryState (renamed from FetchStateOn-

Startup)

InactiveOnStartup

Initial StateRetrieval Timeout

Deprecated; it is preferable to configure the eviction
policy class as part of the Evi cti onPol i cyConfi g.

Configuration parameter for the specified eviction
policy. Note that the content is provider specific.

Whether or not to acquire the initial in-memory state
from existing members. Allows for hot/cold caches
(trueffalse). Also see the fetchPersistentState element
in Cachel oaderConfiguration.

Whether or not the entire tree is inactive upon startup,
only responding to replication messages after ac-
tivateRegion() is caled to activate one or more
parts of the tree. If true, property Fet chl nMenorysS-
tate isignored. This property should only be set to
trueif UseRegi onBasedMar shal | i ng isalsotrue.

Time in milliseconds to wait for initial state retrieval.
This should be longer than LockAcqui si ti onTi meout
as the node providing state may need to wait that long
to acquire necessary read locks on the cache.

IsolationLevel

LockAcquisitionTimeout

LockParentForChildlnsertRemove

Node locking isolation level : SERIALIZABLE, RE-
PEATABLE_READ (defaullt),
READ_COMMITTED, READ_UNCOMMITTED,
and NONE. Note that thisisignored if Nodel ocking-
Scheme is OPTIMISTIC. Case doesn't matter. See
documentation on Transactions and Concurrency for
more details.

Time in milliseconds to wait for alock to be acquired.
If a lock cannot be acquired an exception will be
thrown.

Controls whether inserting or removing a node re-
quires a write lock on the node's parent (when pess-
imistic locking is used). The default value isf al se.

MultiplexerService

The IMX object name of the service that defines the
JGroups multiplexer. In JBoss AS 5 this service is
normally defined in the jgroups-multiplexer.sar. If
this attribute is defined, the cache will look up the
multiplexer service in IMX and will use it to obtain a
multiplexed JGroups channel. The configuration of

JBoss Release 1.4.1 "Cayenne"

67

Configuration

the channel will be that associated with Ml ti pl ex-
erStack. The dustercConfig attribute will be ig-
nored.

MultiplexerStack

The name of the JGroups stack to be used with the
TreeCache cluster. Stacks are defined in the configur-
ation of the external Ml ti pl exer Servi ce discussed
above. In JBoss AS 5 this is normally done in the
jgroups-multiplex-
er.sar\META-INF\multiplexer-stacks.xml file. The
default stack is udp. This attribute is used in conjunc-
tion with Mul ti pl exer Servi ce.

NodeL ockingScheme

ReplicationVersion

May be PESSIMISTIC (default) or OPTIMISTIC.
See documentation on Transactions and Concurrency
for more details.

Tells the cache to seridize cluster traffic in a format
consistent with that used by the given release of
JBoss Cache. Different JBoss Cache versions use dif-
ferent wire formats; setting this attribute tells a cache
from alater release to serialize data using the format
from an earlier release. This allows caches from dif-
ferent releases to interoperate. For example, a
1.2.4.SP2 cache could have this value set to "1.2.3",
allowing it to interoperate with a 1.2.3 cache. Valid
values are a dot-separated release number, with any
SP qualifer also separated by a dot, eg. "1.2.3" or
"1.2.4.5P2".

Repl Queuel nterval Time in milliseconds for elements from the replica-
tion queue to be replicated.
Repl QueueM axElements Max number of elements in the replication queue un-

SyncCommitPhase

til replication kicksin.

This option is used to control the behaviour of the
commit part of a 2-phase commit protocol, when us-
ing REPL_SYNC (does not apply to other cache
modes). By default thisisset tof al se. Thereisa per-
formance penalty to enabling this, especialy when
running in alarge cluster, but the upsides are greater
cluster-wide data integrity. See the chapter on
Clustered Caches for more information on this.

JBoss Release 1.4.1 "Cayenne"

68

Configuration

SyncRepl Timeout For synchronous replication: time in milliseconds to
wait until replication acks have been received from
al nodesin the cluster.

SyncRollbackPhase This option is used to control the behaviour of the
rollback part of a 2-phase commit protocol, when us-
ing REPL_SYNC (does not apply to other cache
modes). By default thisisset to f al se. Thereisaper-
formance penalty to enabling this, especially when
running in a large cluster, but the upsides are greater
cluster-wide data integrity. See the chapter on
Clustered Caches for more information on this.

TransactionManagerL ookupClass The fully qualified name of a class implementing
TransactionManagerLookup. Default is JBossTrans-
actionManagerLookup. There is also an option of
DummyTransactionM anagerL ookup for example.

UselnterceptorMbeans Specifies whether each interceptor should have an as-
sociated mbean registered. Interceptor mbeans are
used to capture statistics and display them in IMX.
This setting enables or disables al such interceptor
mbeans. Default value istrue.

UseRegionBasedMarshalling When unmarshalling replicated data, this option spe-
cifies whether or not to use different classloaders (for
different cache regions). This defaults to f al se if un-
specified.

UseReplQueue For asynchronous replication: whether or not to use a
replication queue (true/false).

L ockParentForChildlnsertRemove When used with pessimistic locking and I sol at i on-
Level oOf REPEATABLE READ, this parameter specifies
whether parent nodes need to be locked for writing
when adding or removing child nodes. This prevents
phantom reads, providing "stronger-
than-repeatable-read" data integrity. This defaults to
fal se and isignored if used with optimistic locking
or other isolation levels.

11.3. Overriding options

JBoss Release 1.4.1 "Cayenne"

Configuration

As of JBoss Cache 1.3.0, a new API has been introduced, to allow you to override certain behaviour of the cache
on a per invocation basis. This involves creating an instance of or g. j boss. cache. confi g. Opti on, Setting the op-
tions you wish to override on the opt i on object and passing it in as a parameter to overloaded versions of get (),
put () andremove() . Seethe javadocs on the opt i on class for details on these options.

JBoss Release 1.4.1 "Cayenne" 70

12

Management Information

JBoss Cache includes IMX MBeans to expose cache functionality and provide statistics that can be used to analyze
cache operations. JBoss Cache can also broadcast cache events as MBean notifications for handling via IMX mon-
itoring tools.

12.1. JBoss Cache MBeans

JBoss Cache provides an MBean that allows JMX access to a cache instance. This MBean is accessible from an
MBean server through the service name specified in the cache instance's configuration. For example, the Tomcat
clustering cache instance is accessible through the service named "jboss.cache:service=TomcatClusteringCache."
This MBean can be used to perform most cache operations viaJJM X.

JBoss Cache also provides MBeans for each interceptor configured in the cache's interceptor stack. These MBeans
are used to capture and expose statistics related to cache operations. They are hierarchically associated with the
cache's primary MBean and have service names that reflect this relationship. For example, a replication interceptor
MBean for the TomcatClusteringCache instance will be accessible through the service named
"jboss.cache:service=TomcatCl usteringCache, treecache-interceptor=Replicationl nterceptor."”

12.2. JBoss Cache Statistics

JBoss Cache captures statistics in its interceptors and exposes the statistics through interceptor MBeans. Cache in-
terceptor MBeans are enabled by default; these MBeans can be disabled for a specific cache instance through the
Usel nterceptor Mbeans attribute. See the Configuration chapter for further details on configuration of this attribute.

Each interceptor's MBean provides an attribute that can be used to disable maintenance of statistics for that inter-
ceptor. Note that the mgjority of the statistics are provided by the CacheM gmtlnterceptor MBean so this interceptor
isthe most significant in this regard. If you want to disable all statistics for performance reasons, you should utilize
the UselnterceptorMbeans configuration setting as this will prevent the CacheMgmtinterceptor from being in-
cluded in the cache's interceptor stack when the cache is started.

Each interceptor provides the following common operations and attributes.

e dumpStatistics - returns a Map containing the interceptor's attributes and values.
* resetStatistics - resets al statistics maintained by the interceptor.
» setStatisticsEnabled(boolean) - allows statistics to be disabled for a specific interceptor.

The following table describes the statistics currently available for JBoss Cache.

JBoss Release 1.4.1 "Cayenne" 71

Management Information

Table 12.1. JBoss Cache M anagement Statistics

MBean Name Attribute Type Description

Activationlnterceptor Activations long Number of passivated nodes that have
been activated.

Cachel oaderInterceptor Cachel oaderLoads long Number of nodes loaded through a
cache loader.

Cachel oaderinterceptor ~ Cachel oaderMisses long Number of unsuccessful attempts to
load a node through a cache loader.

CacheM gmtlInterceptor Hits long Number of successful attribute retriev-
als.

CacheM gmtlnterceptor Misses long Number of unsuccessful attribute re-
trievals.

CacheM gmitlnterceptor Stores long Number of attribute store operations.

CacheM gmitlnterceptor Evictions long Number of node evictions.

CacheM gmtlnterceptor NumberOfAttributes int Number of attributes currently cached.

CacheM gmtlnterceptor NumberOfNodes int Number of nodes currently cached.

CacheM gmtlnterceptor ElapsedTime long Number of seconds that the cache has
been running.

CacheM gmtlnterceptor TimeSinceReset long Number of seconds since the cache stat-
istics have been reset.

CacheMgmtlnterceptor ~ AverageReadTime long Average time in milliseconds to retrieve
a cache attribute, including unsuccess-
ful attribute retrievals.

CacheM gmitlnterceptor AverageWriteTime long Average time in milliseconds to write a
cache attribute.

CacheM gmitlnterceptor HitMissRatio double Ratio of hits to hits and misses. A hit is
a get attribute operation that results in
an object being returned to the client.
The retrieval may be from a cache load-
er if the entry isn't in the local cache.

CacheM gmtlnterceptor ReadWriteRatio double Ratio of read operations to write opera-
tions. Thisis the ratio of cache hits and
misses to cache stores.

CacheStorel nterceptor Cachel oaderStores long Number of nodes written to the cache
loader.

Invalidationl nterceptor Invalidations long Number of cached nodes that have been

invalidated.

JBoss Release 1.4.1 "Cayenne"

72

Management Information

MBean Name Attribute Type Description

Passivationl nterceptor Passivations long Number of cached nodes that have been
passivated.

TxInterceptor Prepares long Number of transaction prepare opera
tions performed by thisinterceptor.

TxInterceptor Commits long Number of transaction commit opera
tions performed by this interceptor.

TxInterceptor Rollbacks long Number of transaction rollbacks opera-

tions performed by thisinterceptor.

12.3. Receiving Cache Notifications

JBoss Cache users can register alistener to receive cache events as described in the Eviction Policies chapter. Users
can alternatively utilize the cache's management information infrastructure to receive these events via IMX notific-
ations. Cache events are accessible as notifications by registering a NotificationListener for the CacheMgmtinter-
ceptor MBean. This functionality is only available if cache statistics are enabled as described in the previous sec-

tion.

The following table depicts the IMX natifications available for JBoss Cache as well as the cache events to which
they correspond. These are the notifications that can be received through the CacheM gmtlnterceptor MBean. Each
notification represents a single event published by JBoss Cache and provides user data corresponding to the para-

meters of the event.

Table 12.2. JBoss Cache M Bean Notifications

Notification Type

Notification Data

TreeCachelListener Event

org.jboss.cache.CacheStarted String : cache service name cacheStarted
org.jboss.cache.CacheStopped String : cache service name cacheStopped
org.jboss.cache.NodeCreated String : fgn NodeCreated
org.jboss.cache.NodeEvicted String : fgn NodeEvicted
org.jboss.cache.Nodel oaded String : fgn Nodel oaded
org.jboss.cache.NodeM odifed String : fgn NodeModifed
org.jboss.cache.NodeRemoved String : fgn NodeRemoved
org.jboss.cache.NodeVisited String : fgn NodeVisited
org.jboss.cache.ViewChange String : view ViewChange
org.jboss.cache.NodeActivate NodeActivate

Object[0]=String: fgn

Object[1]=Boolean: pre

JBoss Release 1.4.1 "Cayenne"

73

Management Information

Notification Type Notification Data TreeCachel istener Event

org.jboss.cache.NodeEvict Object[0]=String: fgn NodeEvict
Object[1]=Boolean: pre
org.jboss.cache.NodeM odify Object[0]=String: fgn NodeM odify

Object[1]=Boolean: pre
Object[2]=Boolean: isLocal

org.jboss.cache.NodePassivate Object[0]=String: fgn NodePassivate
Object[1]=Boolean: pre
org.jboss.cache.NodeRemove Object[0]=String: fgn NodeRemove

Object[1]=Boolean: pre
Object[2]=Boolean: isLocal

The following is an example of how to programmatically receive cache notifications when running in a JBoss ap-
plication server environment. In this example, the client uses afilter to specify which events are of interest.

M/Li stener |istener = new MyLi stener();
NotificationFilterSupport filter = null;

/1 get reference to MBean server
Context ic = new Initial Context();
MBeanSer ver Connecti on server = (MBeanServer Connection)ic. | ookup("jnx/invoker/RM Adaptor");

/1 get reference to CacheMgnt | nterceptor MBean

String cache_service = "jboss. cache: servi ce=Tontat Cl ust eri ngCache";

String ngnt _service = cache_service + ", treecache-interceptor=CacheMynt | nterceptor";
Cbj ect Nane ngnt _nane = new Obj ect Nanme(mgnt _servi ce);

/1 configure a filter to only receive node created and renpved events
filter = new NotificationFilterSupport();

filter.disabl eAll Types();

filter.enabl eType(CacheMynt | nt er cept or. NOTI F_NODE_CREATED) ;
filter.enabl eType(CacheMynt | nt er cept or. NOTI F_NODE_REMOVED) ;

Il register the listener with a filter
/1l leave the filter null to receive all cache events
server.addNotificationLi stener(ngnt_nane, listener, filter, null);

Il

/1 on conpl etion of processing, unregister the |istener
server.renpveNotificationLi stener(nmgnt _name, |istener, filter, null);

The following is the simple notification listener implementation used in the previous example.

private class MListener inplenments NotificationListener, Serializable {
public void handl eNotification(Notification notification, Object handback) {

JBoss Release 1.4.1 "Cayenne" 74

Management Information

String nmessage = notification. get Message();

String type = notification.getType();

oj ect userData = notification.getUserData();

Systemout.println(type + ": "+message);

if (userData == null) ({
Systemout.println("notification data is null");

else if (userData instanceof String) {
Systemout.println("notification data: "+(String)userData);

el se if (userData instanceof Object[]) {
bject[] ud = (Object[])userData;
for (int i =0; i > ud.length; i++) {
Systemout.println("notification data: "+ud[i].toString());

}
}
el se {

Systemout. println("notification data class: " + userData.getC ass().getNane());
}

}
}

Note: the JBoss Cache management implementation only listens to cache events after a client registers to receive
MBean natifications. As soon as no clients are registered for notifications, the MBean will remove itself as a cache
listener.

12.4. Accessing Cache MBeans in a Standalone Environment

JBoss Cache MBeans are readily accessed when running cache instances in an application server that provides an
MBean server interface such as JBoss IMX Console. Refer to server documentation for instructions on how to ac-
cess MBeans running in a server's MBean container.

JBoss Cache MBeans are also accessible when running in a non-server environment if the VM is JDK 5.0 or later.
When running a standalone cache in aJDK 5 environment, you can access the cache's MBeans as follows.

1. Setthe system property -Dcom.sun.management.j mxremote when starting the VM where the cache will run.
2. Oncethe VM isrunning, start the JDK 5 jconsole utility, located in the JDK's /bin directory.

3. When the utility loads, you will be able to select your VM and connect to it. The JBoss Cache MBeans will
be available on the MBeans panel.

Note: The jconsole utility will automatically register as alistener for cache notifications when connected to a VM
running JBoss Cache instances.

The following figure shows cache interceptor MBeans in jconsole. Cache statistics are displayed for the CacheMg-
mt interceptor:

JBoss Release 1.4.1 "Cayenne" 75

Management Information

< J2SE 5.0 Monitering & Management Console: 2780 @localhost

mEx]

Connection

MBeans

| Summary | Memory | Threads | Classes | MBeans | VM |

E Tree

o= [JMimplementation
& [Jjava.lang
o= [java.util logging
¢ [1iboss.cache
¢ [ClusterTreeCache
@ [Cachemgrmtinters eptor|
53 Callinterceptar
o3 PeasimisticLockinterceptor
@ Replicationinterceptor
@ Tuinterceptor
@ Unlockinterceptor
o= [TomeatClusteringCache

[Aributes | Operations | Netifications | Info |

g MName Yalue
‘|AverageReadTime 0
| AverageWriteTime 2
-|ElapsedTime 541
-||Evictions 0
“|HitMissRatio 0.8571428571428571
“||Hits 6
Misses 1
“|Numberoatributes 6
“[Numberomodes 3
“|ReadwriteRatio 0.7
“|statisticsEnabled true
“|Stores 10
‘| TimesSinceReset 541

Refresh

Figure 12.1. CacheM gmtlnter ceptor M Bean

JBoss Release 1.4.1 "Cayenne"

76

13

Running JBoss Cache within JBoss Application Serv-
er

If JBoss Cacheisrunin JBoss AS then JBoss Cache can be deployed as an MBean. The steps below illustrate how
to do this. We do not deploy JBoss Cache as a Service Archive (SAR), but as a JAR (j boss-cache. j ar in thelib
directory) and an XML file defining the MBean. Of course, JBoss Cache can also be deployed as a SAR, or even as
part of aWAR, EJB or EAR.

First, thej boss- cache. j ar file hasto be copied to the/lib directory and JBoss AS has to be restarted. Then aregu-
lar IBoss Cache configuration filein XML format has to be copied to the /deploy directory. The XML file format is
the same as discussed in the Configuration chapter.

In order to be used from a client such as a servlet in the Tomcat web container inside the same JBoss container,
JMX can be used:

MBeanSer ver server=MBeanServer Locat or. | ocat eJBoss();
Tr eeCacheMBean cache

cache=(Tr eeCacheMBean) MBeanPr oxyExt . cr eat e(Tr eeCacheMBean. cl ass, "jboss. cache: servi ce=TreeCache"

cache.put("/a/b/c", null);

The MBeanServerLocator class is a helper to find the (only) JBoss MBean server inside the current VM. The static
create() method creates a dynamic proxy to the given interface and uses IMX to dynamically dispatch methods in-
voked against the generated interface. The name used to look up the MBean is the same as defined in the configura-
tionfile.

13.1. Running as an MBean

If JBoss Cache is run inside of JBoss AS (as an MBean), we can bind it into INDI using JyrmpProxyFactory, just
like any other MBean. Below is an example of how to do this:

<mbean
code="org.j boss.invocation.jrnp.server.JRVWProxyFact ory"
nanme="nydonai n: servi ce=pr oxyFactory, t ype=j rnp, t arget =fact ory">
<attribute
nanme="1nvoker Nanme" >j boss: servi ce=i nvoker, type=jrnp</attri but e>
<attribute
nanme="Tar get Nane" >j boss. cache: servi ce=TreeCache</attri but e>
<attribute name="Jndi Name">My/Cache</attri bute> <attribute
name="1nvokeTar get Met hod" >true</attri bute> <attribute
nane="Export edl nt erface">org.j boss. cache. TreeCacheMBean</ attri but e>
<attribute name="Clientlnterceptors"> <iterceptors>
<i nterceptor>org.jboss. proxy. dient Met hodl nt er cept or </ i nt er cept or >
<i nter cept or>or g. j boss. proxy. Securityl nterceptor</interceptor>
<i nterceptor>org.jboss.invocation.|nvokerlnterceptor</interceptor>
</iterceptors> </attribute>
<depends>j boss: servi ce=i nvoker, t ype=j r np</ depends>

JBoss Release 1.4.1 "Cayenne" 77

server)

Running JBoss Cache within JBoss Application Server

<depends>j boss. cache: servi ce=Tr eeCache</ depends>
</ mbean>

The I nvoker Name attribute needs to point to a valid JBoss invoker MBean. Tar get Nane is the IMX name of the
MBean that needs to be bound into JNDI. Jndi Nane is the name under which the MBean will be bound, and Expor -
tedl nter f ace isthe interface name of the MBean.

JBoss Release 1.4.1 "Cayenne" 78

	JBoss Cache TreeCache - A Structured, Replicated, Transactional Cache
	Table of Contents
	Preface
	Chapter 1. Introduction
	1.1. What is a TreeCache?
	1.2. TreeCache Basics

	Chapter 2. Architecture
	Chapter 3. Basic API
	Chapter 4. Clustered Caches
	4.1. Local Cache
	4.2. Clustered Cache - Using Replication
	4.2.1. Replicated Caches and Transactions
	4.2.1.1. One Phase Commits
	4.2.1.2. Two Phase Commits

	4.2.2. Buddy Replication
	4.2.2.1. Selecting Buddies
	4.2.2.2. BuddyPools
	4.2.2.3. Failover
	4.2.2.4. Implementation
	4.2.2.5. Configuration

	4.3. Clustered Cache - Using Invalidation

	Chapter 5. Transactions and Concurrency
	5.1. Concurrent Access
	5.1.1. Locks
	5.1.2. Pessimistic locking
	5.1.2.1. Isolation levels
	5.1.2.2. Insertion and Removal of Nodes

	5.1.3. Optimistic locking
	5.1.3.1. Architecture
	5.1.3.2. Configuration

	5.2. Transactional Support
	5.2.1. Example

	Chapter 6. Eviction Policies
	6.1. Eviction Policy Plugin
	6.2. TreeCache Eviction Policy Configuration
	6.3. TreeCache LRU eviction policy implementation
	6.4. TreeCache FIFO eviction policy implementation
	6.5. TreeCache MRU eviction policy implementation
	6.6. TreeCache LFU eviction policy implementation

	Chapter 7. Cache Loaders
	7.1. The CacheLoader Interface
	7.2. Configuration via XML
	7.3. Cache passivation
	7.4. CacheLoader use cases
	7.4.1. Local cache with store
	7.4.2. Replicated caches with all nodes sharing the same store
	7.4.3. Replicated caches with only one node having a store
	7.4.4. Replicated caches with each node having its own store
	7.4.5. Hierarchical caches
	7.4.6. TcpDelegatingCacheLoader
	7.4.7. RmiDelegatingCacheLoader

	7.5. JDBC-based CacheLoader
	7.5.1. JDBCCacheLoader configuration
	7.5.1.1. Table configuration
	7.5.1.2. DataSource
	7.5.1.3. JDBC driver
	7.5.1.4. Configuration example

	Chapter 8. TreeCacheMarshaller
	8.1. Basic Usage
	8.2. Region Activation/Inactivation
	8.2.1. Example usage of Region Activation/Inactivation

	8.3. Region Activation/Inactivation with a CacheLoader
	8.4. Performance over Java serialization
	8.5. Backward compatibility

	Chapter 9. State Transfer
	9.1. Types of State Transfer
	9.2. When State Transfer Occurs

	Chapter 10. Version Compatibility and Interoperability
	Chapter 11. Configuration
	11.1. Sample XML-Based Configuration
	11.2. Definition of XML attributes
	11.3. Overriding options

	Chapter 12. Management Information
	12.1. JBoss Cache MBeans
	12.2. JBoss Cache Statistics
	12.3. Receiving Cache Notifications
	12.4. Accessing Cache MBeans in a Standalone Environment

	Chapter 13. Running JBoss Cache within JBoss Application Server
	13.1. Running as an MBean

